English

FUJITSU Software BS2000

SESAM/SQL-Server V9.0

SQL Reference Manual Part 1

User Guide

Edition October 2016

O
FUJITSU

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN 1SO 9001:2008

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2008.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © 2016 Fujitsu Technology Solutions GmbH.
All rights reserved. Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Content

1.1
1.2
1.3

2

21

2.2
2.21
222
223
2.2.3.1
2232

23
2.31
232

2.4
241
242
243
244
245
246
247
2438
249
2410

2.5

Preface e 15
Objectives and target groups of thismanual 15
Summaryofcontents 16
Notational conventions e e e e 16
Embeddingof SQLinprograms00 19
Program structure e e e e e e e e e e e e 20
Hostvariables i i e e e e e e e e e e e e 21
Defining hostvariables 21
Using hostvariables 21
Indicator variables 22

Defining indicator variables o 22

Usingindicatorvariables 22
Monitoring success and errorhandling 24
Monitoring success e e e e 24
Errorhandling 24
{01 1o Y 25
Read-only cursors e e e e 26
Updatable cursors 26
Definingacursor e e 27
Openingacursor e 28
Positioncursorandreadrow 28
Updating ordeletingarow 29
Storingacursor. e 29
CloSe acursor v e e 29
Restore acursor e 29
Cursorexamples e 30
Dynamic SQL e e e e e e e e e e e e 32

U22420-J-2125-12-76

Content

2.51

2511
2512
2513
252

2521
2522
2523
2524
2525
253

2.5.3.1
2532
2533
2534
2535
2536
2537

2.6

2.6.1
2.6.2
2.6.3

3.1

3.2

3.21
3.2.2
3.2.3
3.24
3.2.5

3.3

3.3.1
3.3.2
3.3.3
3.34
3.3.5
3.3.6
3.3.7
3.3.8

Dynamicstatement 32
Prepare a dynamic statemento 33
Querying the data types of the placeholders and values 33
Execute a dynamic statement. L. 34

Dynamic cursor descriptions e 34
Preparing dynamic cursor descriptions 34
Determining the SQL data types of the placeholders 35
Determining the SQL data types of the derived columns 35
Evaluating dynamic cursor descriptions 35
Storingresults L 35

Descriptorarea e 36
Creating adescriptorarea 37
Structure of adescriptorarea Lo 37
Descriptorareafields 37
Assigning values to the descriptorarea 43
Querying the descriptorarea 44
Using values from the descriptorarea 44
Releasing the descriptorarea 44

SQL statements in CALL DML transactions 45

Step-by-step conversion of CALL DML statements 46

Using User-Close and release sessionresources 47

Setting the isolationlevel 47

Lexical elementsandnames e e 49

SESAM/SQL characterrepertoire00 49

Lexicalunits e e e e e e e e 50

Stings e 50

NUMETICS e e e 51

Delimitersymbols 51

Separators L e 52

Comments e 52

Pragmas and annotations L oo 53

AUTONOMOUS TRANSACTION pragma v v v it 56

DATATYPE pragma o o it e e e e e s e 57

DEBUG ROUTINE pragma ottt s 58

DEBUG VALUE pragma o o it e ittt e e e e 59

EXPLAIN pragma e e 61

ISOLATION LEVEL pragma. e e e i e d e e e 63

LIMIT ABORT _EXECUTION pragma v v i e e e it e e 64

LOCKMODE pragma o o it e e e e e e s e 65

U22420-J-2125-12-76

Content

3.3.9
3.3.10
3.3.11

3.4

3.4.1
3.4.2
3.4.3

41

411
41.2
41.3
414

4.2
4.21
422

423

424

425

4.3
4.3.1
4.3.2
4.3.3
434
4.3.41

LOOPLIMITpragma e e e e e e e e e e e s e e 65
PREFETCH pragma e e e s s s 66
UTILITY MODE pragma o i e e e e e e e e e e e 68
Names e e e e e e e e e e 69
Unqualified names e 70
Qualified names L 75
Definingnames e 78
Datatypesandvalues i i e 79
Overview of data types and the associated valueranges 80
Datatype groups 80
Rangeofvalues L 81
Column 81
Parameters of routines and local variables 81
Datatypes o i i e e e e e e e e e e 82
Overview of SQL datatypes 83
Alphanumeric and national datatypes L. 84
CHARACTER - String with a fixed length 84
CHARACTER VARYING - String with a variable length 86
NATIONAL CHARACTER - Strings with a fixed length 87
NATIONAL CHARACTER VARYING - Strings with a variable length 88
Numericdatatypes L 89
SMALLINT - Smallinteger 89
INTEGER - Integers e 90
NUMERIC - Fixed-pointnumbers 91
DECIMAL - Fixed-pointnumbers 92
REAL- Single-precision floating-pointnumbers 93
DOUBLE PRECISION - Double-precision floating-point numbers 94
FLOAT - Floating-pointnumbers 95
Timedatatypes 96
DATE e 96
TIME . . . e 97
TIMESTAMP 98
Compatibility between datatypes 99
Values o e e e e e e e e e e e 100
Literals 101
Specifyingvalues 102
Values for multiple columns Lo 103
NULL value e 104

Keyword forthe NULL value 104

U22420-J-2125-12-76

Content

4.3.4.2
4.3.4.3
4344
4.3.4.5
4.3.5

4.3.5.1
4.3.5.2
4.3.5.3
4354
4.3.6

4.3.6.1
4.3.6.2
4.3.7

4.3.7.1
4.3.7.2

4.4

4.4.1
4.4.2
443
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8

5.1

5.2

521
522
523
524
525
5.2.6
5.2.7
528

NULL value intable columns, 104
NULL value in functions, expressions and predicates 105
NULL value in GROUP BY i i 105
NULL value in ORDERBY e 105
Strings 106
Alphanumericliterals 106
National literals 108
Specialliterals 110
Usingstrings e 112
Numericvalues e 115
Numericliterals 115
Usingnumericvalues 116
Timevalues 117
Timeliterals 117
Usingtimevalueso 119
Assignmentrules e e e e e e e e e 121
Entering valuesintablecolumns 121
Default values fortablecolumns 123
Values for placeholders 124
Reading values into host variables or a descriptorarea 125
Transferring values between host variables and a descriptorarea 127
Modifying the target data type by means of the CAST operator 129
Supplying input parameters forroutines 129
Entering values in a procedure parameter (output) or local variable 130
Compound language constructs 133
Expression e e e e e e e e e e e e e 134
Function e e e e e e e e 140
Timefunctions e 141
String functions L 142
Numericfunctions 144
Aggregate functions L 145
Table functions e 148
Cryptographic functions L 149
User Defined Functions (UDFs) 151
Alphabetical reference section: Functions 152
ABS()- Absolute value 152
AVG() - Arithmeticaverage 153
CEILING() - Smallest integer greater thanthevalue 155
CHAR_LENGTH() - Determine stringlength 156

U22420-J-2125-12-76

Content

5.3
5.3.1
5.3.1.1
5.3.2
5.3.3
5.3.4
5.3.5
5.3.6
5.3.7

COLLATE() - Determine collation element for national strings 158
COUNT(*)-Counttablerows i 160
COUNT()-Countelements it 161
CSV() - Reading a BS2000 fileasatable 163
CURRENT _DATE-Currentdate 167
CURRENT_TIME(3) - Currenttime 168
CURRENT_TIMESTAMP(3) - Currenttimestamp 168
DATE_OF_JULIAN_DAY() - Convert Julianday number 169
DECRYPT()-Decryptdata 170
DEE() - Table withoutcolumns 173
ENCRYPT()-Encryptdata 174
EXTRACT() - Extract components ofatimevalue 176
FLOOR() - Largest integer less thanthevalue 178
HEX_OF_VALUE() - Present any value in hexadecimal format 179
JULIAN_DAY_OF_DATE()-Convertdate 182
LOCALTIME(3) - Currentlocaltime 184
LOCALTIMESTAMP(3) - Current local timestamp 184
LOWER() - Convert uppercase characters 185
MAX() - Determine largestvalue 186
MIN() - Determine lowestvalue, 188
MOD() - Remainder of an integer division (modulo) 190
NORMALIZE() - Convert national string to normalform 191
OCTET_LENGTHY() - Determine stringlength 193
POSITION() - Determine string position 194
REP_OF VALUE() - Presentanyvalueasastring 195
SIGN() - Determine sign 197
SUBSTRING() - Extract substring 198
SUM()-Calculate sum 201
TRANSLATE() - Transliterate / transcode string 203
TRIM()-Remove characters 206
TRUNC() - Remove decimalplaces 208
UPPER() - Convert lowercase characters 209
VALUE_OF_HEX() - Present hexadecimal formatasavalue 210
VALUE_OF REP()-Presentastringasavalue. 212
Predicates e e e 214
Comparison of tworows 216

Comparisonrules e 217
Quantified comparison (comparison with therows ofatable) 222
BETWEEN predicate (range query) 224
CASTABLE predicate (convertibility check) 226
IN predicate (elementary query) 227
LIKE predicate (simple pattern comparison) 230
LIKE_REGEX predicate (pattern comparison with regular expressions) 233

U22420-J-2125-12-76

Content

5.3.8
5.3.9

5.4

5.5

5.5.1
5.5.2
55.3
554
55.5

5.6

5.7
571
5.7.2

5.8

6.1

6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

6.3

6.4
6.4.1
6.4.2
6.4.3
6.4.3.1
6.4.3.2
6.4.3.3
6.4.3.4
6.4.3.5

6.5
6.5.1

6.6

NULL predicate (comparison with the NULL value) 241
EXISTS predicate (existence query) 243
Searchconditions e 244
CASE expression i i i i i i i e e e e e e e e e e e e e e 248
CASE expression with search condition 249
Simple CASE expression e e e 251
CASE expressionwith NULLIF 253
CASE expression with COALESCE 254
CASE expression with MIN/ MAX 257
CAST expression i i i i e e e e e e e e 258
Integrity constraint e 264
Columneconstraints 266
Table constraints 269
Column definitions 272
Query expression L. . L. e e e e e e e e e e e e e e e e 277
Table specifications e 279
SELECT expression i i i i i e e e e e e e e e e 282
SELECT list - Selectderived columns 284
SELECT...FROM - Specifytable 288
SELECT..WHERE - Selectderived columns 290
SELECT...GROUP BY - Group derivedrows 292
SELECT..HAVING - Selectgroups, 294
TABLE -Tablequery o i e e e e e e e e 295
JOoins . . L e e e e e e e e e e e 296
JOIN eXpression e e 297
Joins without join expression 299
Jointypes 299

Crossjoins L e 299

Innerjoins L 301

Outerjoins L e 303

Union joins L e 304

Compound jOiNS e 305
Subquery e e e e e e e 310
Correlated subqueries 311
Combining query expressions withUNION 313

U22420-J-2125-12-76

Content

6.7

6.8

6.8.1
6.8.2
6.8.3

71

711
7.1.2
7.1.3
7.1.4

7.2

7.21
7.2.2
7.2.3
7.2.4
7.2.5

7.3
7.4
7.5
7.6
7.7
7.8

8

8.1

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5
8.1.6
8.1.7
8.1.8

Combining query expressions withEXCEPT 316
Updatability of query expressions 318
Rules for updatable query expressions 318
Updatable view e 318
Update viacursor. e e 319
Routines L e e e e e e e e 321
Procedures (Stored Procedures), 323
Creatingaprocedure e 323
Execute aprocedure 325
Deleteaprocedure e 325
Examples of procedures 326
User Defined Functions (UDFs) 332
Creatinga UDF e 332
Executinga UDF 333
Deletinga UDF e 333
Uncorrelated functioncalls o 334
Examplesof UDFs 336
EXECUTE privilege forroutines 337
Informationonroutines o 338
Pragmasinroutines e 339
Control statementsinroutines 342
COMPOUND statementinroutines 342
Diagnostic information inroutines, 344
SQLstatements e e e e e e e e e e 353
Summaryofcontents e 353
SQL statements for schema definition and administration 353
SQL statements for querying and updatingdata 355
SQL statements for transaction management 356
SQL statements for sessioncontrol L Lo oL 356
SQL statements fordynamicSQL Lo L oo 357
WHENEVER statement for ESQL error handling 357
SQL statements for managing the storage structure 358
SQL statements for managing userentries o oL 358

U22420-J-2125-12-76

Content

8.1.9
8.1.10
8.1.11

8.2

8.2.1
8.2.2
8.2.3

Utility statements 359
Control statements 359
Diagnosticstatements 359
Descriptions in alphabeticalorder 360
Descriptionformat 360
SQL statementsinroutines L L 361
SQL statementdescriptions L L 365
ALLOCATE DESCRIPTOR - Request SQL descriptorarea 365
ALTER SPACE - Modify space parameters 367
ALTER STOGROUP - Modify storagegroup 369
ALTER TABLE - Modifybasetable 371
CALL -Execute procedure 388
CASE - Execute SQL statements conditionally 391
CLOSE -CI0SE CUISOr v v o o e e e e e e e e e e s s e 395
COMMIT WORK - Terminate transaction 396
COMPOUND - Execute SQL statements ina common context 399
CREATE FUNCTION - Create User Defined Function (UDF) 409
CREATE INDEX-Createindex it 413
CREATE PROCEDURE - Create procedure 416
CREATE SCHEMA -Createschema 420
CREATE SPACE -Createspace v i i iiiii ittt 422
CREATE STOGROUP - Create storagegroup 425
CREATE SYSTEM_USER - Create systementry 427
CREATE TABLE - Create basetable 430
CREATE USER - Create authorization identifier 441
CREATE VIEW -Createview it e 442
DEALLOCATE DESCRIPTOR - Release SQL descriptorarea 446
DECLARE CURSOR-Declarecursor v .. 447
DELETE -Deleterows 453
DESCRIBE - Query data type of input and outputvalues 456
DROP FUNCTION - Delete User Defined Function (UDF) 459
DROP INDEX -Deleteindex 460
DROP PROCEDURE - Delete procedure 462
DROP SCHEMA -Deleteschema 463
DROP SPACE -Deletespace 464
DROP STOGROUP - Delete storagegroup 466
DROP SYSTEM_USER - Delete systementry 467
DROP TABLE - Delete basetable 470
DROP USER - Delete authorization identifier 472
DROP VIEW -Delete view 473
EXECUTE - Execute prepared statement. 474
EXECUTE IMMEDIATE - Execute dynamic statement 478
FETCH - Position cursorandreadrow 481

U22420-J-2125-12-76

Content

9

9.1
9.1.1
9.1.2

9.2
9.2.1
9.2.2

FOR - Execute SQL statementsinaloop 486
GET DIAGNOSTICS - Output diagnostic information 489
GET DESCRIPTOR - Read SQL descriptorarea 492
GRANT - Grant privileges 495
IF - Execute SQL statements conditionally 503
INCLUDE - Insert program text into ESQL programs 505
INSERT - Insertrowsintable 506
ITERATE - Switchtothenextlooppass 514
LEAVE - Terminate a loop or COMPOUND statement 515
LOOP - Execute SQL statementsinaloop 516
MERGE - Insert rows in a table or update columnvalues 518
OPEN-OpPEen CUrsor v v it i e e e e e s s s e e e 524
PERMIT - Specify user identification for SESAM/SQL V1.x 526
PREPARE - Prepare dynamic statement 527
REORG STATISTICS - Re-generate global statistics 537
REPEAT - Execute SQL statementsinaloop 538
RESIGNAL - Report exception in local exception routine 540
RESTORE -Restore cursor it i i it e 542
RETURN - Supply the return value of a User Defined Function (UDF) 544
REVOKE - Revoke privileges 545
ROLLBACK WORK - Roll back transaction 553
SELECT - Read individualrows 555
SET-Assignvalue e 558
SET CATALOG - Set default databasename 559
SET DESCRIPTOR - Update SQL descriptorarea 560
SET SCHEMA - Specify default schemaname 565
SET SESSION AUTHORIZATION - Set authorization identifier 567
SET TRANSACTION - Define transaction attributes 569
SIGNAL - Report exceptioninroutine 574
STORE - Save cursorposition 576
UPDATE - Update columnvalues 577
WHENEVER - Defineerrorhandling 582
WHILE - Execute SQL statementsinaloop 584
SESAM-CLI e e e e e e e e e e e e e e e e 587
Conceptofthe SESAMCLI @ . i it ittt e e 587
Structure of SESAM CLlcalls 589
Statements that initiate transactionsinCLIcalls 594
SESAMCLIcalls i e e e e e e e e e e 596
Overview e e 596
Alphabetical reference sectiono oL 599

U22420-J-2125-12-76

Content

10

10.1

SQL BLOB CLS ISBTAB-SQLbcis. 600
SQL BLOB CLS REF-SQLbcre 602
SQL BLOB OBJ CLONE-SQLbocl. 604
SQL BLOB OBJ CREATE-SQLbocr 606
SQL BLOB OBJ CREAT2-SQLboc2 608
SQL BLOB OBJ DROP-SQLbodr 610
SQL BLOB TAG _GET-SQLbtge 612
SQL BLOB TAG PUT-SQLbtpu 615
SQL BLOB VAL CLOSE-SQLbvcl oo 617
SQL BLOB VAL FETCH-SQLbvfe 618
SQL BLOB VAL GET-SQLbvge 620
SQL BLOB VAL LEN-SQLbvle. 622
SQL BLOB VAL OPEN-SQLbvop 624
SQL BLOB VAL PUT-SQLbvpu 627
SQL BLOB VAL STOW-SQLbvst 629
SQL DIAG SEQ GET-SQLdsg o i o e 631
Informationschemas e e e 633
Views of the INFORMATION_SCHEMA 634
BASE _TABLES e 636
BASE_TABLE_COLUMNS e 637
CATALOG PRIVILEGES e e 641
CHARACTER_SETS s e e e e 642
CHECK _CONSTRAINTS e e e e s 642
COLLATIONS e e 643
COLUMNS . . . s 644
COLUMN_PRIVILEGES e e s 648
CONSTRAINT_COLUMN _USAGE e 649
CONSTRAINT _TABLE_USAGE e 650
DA LOGS e 650
INDEXES s 651
INDEX COLUMN USAGE s e 652
KEY_COLUMN _USAGE e e e 653
MEDIA DESCRIPTIONS e e e 654
MEDIA RECORDS e 655
PARAMETERS e 656
PARTITIONS e e 659
RECOVERY_UNITS e s e e 660
REFERENTIAL_CONSTRAINTS s 662
ROUTINES e e e 663
ROUTINE_COLUMN_USAGE o 668

U22420-J-2125-12-76

Content

10.2

ROUTINE_PRIVILEGES . . .« o e v ot 669
ROUTINE_ROUTINE_USAGE . . .+« o e oo e 670
ROUTINE_TABLE_USAGE . . .\ o v ot 671
SCHEMATA o o o e e e e 672
SPACES .« o ot 672
SQL_FEATURES . . .\ o o oo e e, 673
SQL_IMPL_INFO .« o oo o e e 674
SQL_LANGUAGES. S . .« o o e o oo e 675
SQAL_SIZING .« .« o o o e e, 676
STOGROUPS . . o o oo e e e s, 676
STOGROUP_VOLUME_USAGE . . .« o oo, 677
SYSTEM_ENTRIES . . . o o ot 678
TABLES . o o o e 678
TABLE_CONSTRAINTS . .« o o o ot e e, 679
TABLE_PRIVILEGES . . . o o v o oot 680
TRANSLATIONS . . o o o oo e e 681
USAGE_PRIVILEGES o v ot e e e 682
USERS . o o v o e e e e 683
VIEWS o e e e e 683
VIEW_COLUMN_USAGE . . .\ o oot e 684
VIEW ROUTINE_USAGE . . .« o v ot e 684
VIEW TABLE_USAGE . . .« o ot ot 685
Views of the SYS_INFO_SCHEMA o o oot e e e e 686
SYS CATALOGS . .\ o v ottt e e, 688
SYS_CHECK_CONSTRAINTS . .\ o oo oo, 688
SYS CHECK USAGE . .« . o o o oot e s, 689
SYS COLUMNS . . .\ oo oot e, 690
SYS DA LOGS . o o oo o 694
SYS DBC_ENTRIES . . o o vt oot e 695
SYS DML_RESOURCES . . .« ottt 697
SYS ENVIRONMENT .« o o o oo et e 698
SYS INDEXES . .+ o v oot e e e e 699
SYS LOCK_CONFLICTS . . o o oot e s, 701
SYS_MEDIA DESCRIPTIONS . . . o oot 705
SYS PARAMETERS . . .« o o oot 706
SYS PARTITIONS . .\ o o ot e 707
SYS PRIVILEGES . . .« o o vt e e e 709
SYS_ RECOVERY _UNITS . . o o o oot s, 710
SYS_REFERENTIAL_CONSTRAINTS . . . o oot 713
SYS ROUTINES . . .\ oo oo oo e e s 714
SYS_ ROUTINE_ERRORS . . .« o ot tee s, 716
SYS_ROUTINE_PRIVILEGES o oo oo 718
SYS_ROUTINE_ROUTINE_USAGE o v oo 718

U22420-J-2125-12-76

Content

1"

1.1
11.2
1.3

SYS ROUTINE _USAGE e 719
SYS _SCHEMATA e 719
SYS SPACES e 720
SYS _SPACE_PROPERTIES e 721
SYS SPECIAL_PRIVILEGES o 723
SYS STOGROUPS e 724
SYS_SYSTEM _ENTRIES e 724
SYS TABLES e 725
SYS _TABLE_CONSTRAINTS e 726
SYS_UNIQUE_CONSTRAINTS e e 727
SYS USAGE _PRIVILEGES e 728
SYS USERS e 728
SYS VIEW USAGE e 729
SYS VIEW ROUTINE_USAGE e 730
Appendix e e e e e e e e e e e e e e e e e e 731
Syntax elements of SESAM/SQL e 731
Syntax overview of the CSVfile 743
SQL keywords e e e e e e e e e e e e e 745
Related publications e 755
IndeX e 757

U22420-J-2125-12-76

1 Preface

The functions and architectural features of the SESAM/SQL-Server database system meet
all the demands placed on a powerful database server in today’s world. These
characteristics are reflected in its name: SESAM/SQL-Server.

SESAM/SQL-Server is available in a standard edition for single-task operation and in an
enterprise edition for multitask operation.

For the sake of simplicity, we shall use the name SESAM/SQL throughout this manual to
refer to SESAM/SQL-Server.

The following introductory descriptions are contained centrally in the “Core manual”:
e Brief product description

e Structure of the SESAM/SQL server documentation

e Demonstration database

e Readme file

e Changes since the last editions of the manuals

1.1 Objectives and target groups of this manual

This manual is intended for all SESAM/SQL users working with SQL.

It is assumed that you are already familiar with the “Core manual”, in particular with the
SESAM/SQL objects and concepts upon which SQL statements are based. It is also
assumed that you have a basic knowledge of relational databases.

If you want to call SQL statements interactively via the utility monitor, you must be familiar
with the utility monitor (see the “Utility Monitor” manual).

If you plan on embedding SQL statements in a program, you must be familiar with the
COBOL programming language and the ESQL precompiler (see the “ESQL-COBOL for
SESAM/SQL-Server” manual.)

U22420-J-2125-12-76 15

Summary of contents Preface

1.2

1.3

Summary of contents

This manual contains a complete description of the SQL database language as used in the
database system SESAM/SQL. Specific reference is made to any differences to or
extensions of the SQL standard.

The chapter “Embedding of SQL in programs” describes SQL-specific concepts for using
SQL statements in a host language (COBOL). The remaining chapters describe SQL
language constructs in logical sequence. In each chapter, itis assumed that you are familiar
with the language constructs dealt with in the previous chapters and are not described
again.

The chapter “SQL statements” includes an alphabetical reference section containing all the
SQL statements.

The chapter “SESAM-CLI” describes the structure of the SESAM-CLI interface. This
interface is used to create and edit BLOB objects. It also includes an alphabetical reference
section which explains the individual CLI calls in detail.

The chapter “Information schemas” describes the views of the INFORMATION_SCHEMA
and SYS_INFO_SCHEMA schemas.

The appendix is an alphabetical reference section for the syntaxes used and reserved
keywords of SESAM/SQL.

A list of references and an index is provided at the end of the manual.

The manual contains a large number of examples. These refer in each case to the content
of the preceding description. Some of the examples for SQL language constructs,
particularly those for expressions and query expressions, run only in a superordinate
statement and are not executable independently.

Notational conventions

The following notational conventions are used in this manual:

Syntax definitions

UPPERCASE SQL keywords

underscored Default values

bold Used for emphasis in running text

italics Variables in syntax definitions and running text

16

U22420-J-2125-12-76

Preface

Notational conventions

Fixed-space font

[]

{}

i
AN

Program text in syntax definitions and examples

Definition character
The specification to the right of : : = defines the syntax of
the element on the left.

In unqualified syntax definitions this character separates
the alternative specifications.

May be omitted
The brackets are metacharacters and must not be entered
in an SQL statement.

Alternative specifications in syntax definitions (over
several lines). Each line contains one alternative.

The braces are metacharacters and must not be entered
in an SQL statement.

Encloses clauses in syntax definitions that can be
repeated (on a single line).

The braces are metacharacters and must not be entered
in an SQL statement.

In syntax definitions, a comma followed by three dots
means that you can repeat the preceding specification any
number of times, separating each specification with a
comma. If you do not repeat a specification, you must omit
the comma.

In syntax definitions, an ellipsis means that you can repeat
the preceding specification any number of times. In
examples, the ellipsis means that the rest of the statement
is of no significance to the example.

The ellipsis is a metacharacter and must not be entered in
an SQL statement.

Indicates notes that are of particular importance.

Indicates warnings.

The strings <date>, <time> and <ver> in examples indicate the current displays for date,
time and version when the examples are otherwise independent of date, time and version.

U22420-J-2125-12-76

17

Notational conventions Preface

18 U22420-J-2125-12-76

2 Embedding of SQL in programs

Programming language-specific interfaces that allow you to incorporate SQL statements in
a program are available, thus allowing you to access a database from a program.
SESAM/SQL provides an interface for the programming language COBOL.

The concepts involved in embedding SQL statements in a program are the same for all
programming languages and are referred to as ESQL (Embedded SQL). Programs that
include embedded SQL statements are called ESQL programs.

This chapter explains the concepts involved in embedding SQL statements in a program.
It covers the following topics:

Program structure

Host variables

Monitoring success and error handling
cursor

Dynamic SQL

You will find language-specific details in the “ESQL-COBOL for SESAM/SQL-Server”
manual.

U22420-J-2125-12-76 19

Program structure Embedding of SQL in programs

2.1

Program structure

An ESQL program consists of program text in the relevant programming language, also
referred to as the host language, and SQL statements. SQL statements may be included
wherever host language statements are permitted. The beginning and end of an SQL
statement are marked so that they can be distinguished from the statements in the host
language. The way in which the statements are marked depends on the programming
language involved.

If host language variables (host variables) are used in the SQL statements, the program
includes additional sections (DECLARE SECTION) in which these variables are defined.
DECLARE SECTIONs may be included wherever variable definitions in the host language
are allowed. The beginning and end of a DECLARE SECTION are marked by EXEC SQL
BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION respectively (the
exact syntax is language-specific and is described in the “ESQL-COBOL for SESAM/SQL-
Server” manual. An ESQL program may include any number of DECLARE SECTIONSs.

@ ESQL COBOL programs with executable examples of database statements can be
found in the demonstration database of SESAM/SQL (see the “Core manual”).

20

U22420-J-2125-12-76

Embedding of SQL in programs Host variables

2.2

2.21

2.2.2

Host variables

A host variable is a host language variable that can be used in an embedded SQL
statement. A host variable is used to transfer values from the database to the program in
the host language for further processing or to transfer data to the database and provide
values required for certain calculations.

Defining host variables

A host variable must be defined in the program in a DECLARE SECTION in accordance
with programming language conventions. The location of the definition and use of a host
variable must satisfy the following conditions:

e In the program text, a variable must be defined before it is used in an SQL statement.

e The definition must be valid, with regard to programming language conventions, for any
use to which the variable may be put in an SQL or host language statement.

e The definition of a variable that is used in a DECLARE CURSOR statement defining a
cursor must be valid for all OPEN statements of the defined cursor.

The data type of the host variable depends on the data type of the SESAM/SQL values for
which this host variable is to be used. The ESQL language interface provides predefined
data types that must be used for host variables. The assigned COBOL data type is specified
for each SESAM/SQL data type in the “ESQL-COBOL for SESAM/SQL-Server’ manual.

Using host variables

In SQL statements that query data in the database, the values read can be stored in host
variables.

In SQL statements that insert values into the database, update values in the database or in
which calculations are performed (functions, expressions, predicates, search conditions),
the values can be made available via host variables.

Other instances in which values in SQL statements can or must be provided via host
variables are described in the chapter “SQL statements” on page 353 as part of the
description of the individual SQL statements.

A host variable is preceded in an SQL statement by a colon:
s host-variable

U22420-J-2125-12-76 21

Host variables Embedding of SQL in programs

2.23

2.2.31

2.23.2

Host variables can also be vectors containing several values of the same data type. This
allows you to assign aggregates to multiple columns or to transfer aggregates from multiple
columns to a host variable. The syntax for vectors is language-specific and is described in
the “ESQL-COBOL for SESAM/SQL-Server’ manual.

Indicator variables

A host variable can be combined with another host variable known as an indicator variable.
An indicator variable is used to express the NULL value, which does not exist in
programming languages, and to monitor the transfer of alphanumeric and national values
from the database.

Defining indicator variables

When you define a host variable that you want to use as an indicator variable, you must
assign it the host language data type that corresponds to the SQL data type SMALLINT.
The exact data type is specified in the “ESQL-COBOL for SESAM/SQL-Server” manual.

Using indicator variables

A host variable can only be combined with an indicator variable for the purpose of querying
data in the database, inserting values in the database, updating values in the database or
for use in calculations (functions, expressions, predicates, search conditions).

You specify an indicator variable after the host variable. They may be separated by the
keyword INDICATOR, although this is not necessary:
: host-variable [INDICATOR] :indicator-variable

If the host variable is a vector, the associated indicator variable must also be a vector with
the same number of elements. Each element in the host variable is assigned the
corresponding element in the indicator variable. The syntax for vectors is language-specific
and is described in thel “ESQL-COBOL for SESAM/SQL-Server” manual.

22

U22420-J-2125-12-76

Embedding of SQL in programs Host variables

Querying values

SESAM/SQL assigns one of the following values to the indicator variable when you query
a value in the database and subsequently assign it to a host variable:

0 The host variable contains the value read.
The assignment was error free.

-1 The value to be assigned is the NULL value.

>0 For alphanumeric or national values:
The host variable was assigned a truncated string.
The value of the indicator variable indicates the original length in code units.

Inserting or updating values

If you specify values in SQL statements via host variables, you can use the indicator
variable to specify a NULL value. To do this, you must assign the indicator variable a
negative value before the SQL statement is called. When the SQL statement is executed,
the NULL value is used instead of the value of the host variable.

U22420-J-2125-12-76 23

Monitoring success and error handling Embedding of SQL in programs

2.3

2.31

2.3.2

Monitoring success and error handling

Once an SQL statement has been executed, the ESQL program should check whether
execution was successful so that appropriate action can be taken in the event of an error.

Monitoring success

Use the host variable SQLSTATE, which SESAM/SQL supports in the ESQL interface, to
check whether a statement was successful.

You must define SQLSTATE in your program in a DECLARE SECTION with the SQL data
type CHAR(5). This definition must be located before the first SQL statement in the program
text and must be valid, with regard to programming language conventions, for all the
statements that use it.

After an SQL statement has been executed, SQLSTATE is assigned an SQL status code.
The possible values for SQLSTATE are described in the “Messages” manual.

For reasons of compatibility with SESAM/SQL V1.x, the host variable SQLCODE for
monitoring the success of SQL statements is supported. You should not, however, use this
host variable in new applications.

Error handling

There are two ways of taking appropriate action if an SQL statement was unsuccessful:
e Query SQLSTATE and branch according to the status code
e Use the WHENEVER statement

You can use WHENEVER to specify that, after execution of an SQL statement with an
SQLSTATE = '00xxx' and = '01xxx", the program is to continue executing or is to branch
to a certain part of the program where error handling is performed. You can specify
branching within the program for two error classes:

— NOT FOUND: no data available, e.g. when the end of a table is reached
— SQLERROR: other errors that result in abortion of SQL statements

You can specify the WHENEVER statement more than once in a program. The
specifications made in a WHENEVER statement are valid for all subsequent SQL
statements in the program text up to the next WHENEVER statement for the same error
class.

24

U22420-J-2125-12-76

Embedding of SQL in programs Cursor

2.4 Cursor

Because many programming languages do not provide an equivalent of the type “table”, the
concept of the cursor is used when SQL statements are embedded in programs. A cursor
enables you to process the rows of a table individually one after the other.

A cursor is assigned to a table referred to as the cursor table. This table is the derived table
of the query expression that defined the cursor.

There are a number of SQL statements that can be used with cursors:
DECLARE CURSOR Declare a cursor

OPEN Opening a cursor
CLOSE Close a cursor
FETCH Position cursor and read row

DELETE ... WHERE CURRENT OF ...
Delete current row

UPDATE ... WHERE CURRENT OF ...
Update current row

STORE Save cursor position
RESTORE Restore cursor position

A cursor must be defined, be opened before it is used, and be closed after it has been used.
The SQL statements must be used in a predefined order.

There are two types of cursors: cursors that can be updated (updatable cursor) and cursors
that cannot be updated.

In routines, local cursors which can only be addressed within the COMPOUND
statement are defined with the DECLARE CURSOR statement, see section “Local
cursors” on page 404.

A local cursor differs from a normal cursor only in its limited area of validity.

U22420-J-2125-12-76 25

Cursor Embedding of SQL in programs
241 Read-only cursors
A cursor that cannot be updated can only be used for reading rows from the cursor table
and is therefore referred to as a read-only cursor.
The diagram below indicates the SQL statements that can be used for a non-dynamic read-
only cursor and the order in which they are used:
RESTORE
—l ’—’ STOREﬁ
—» OPEN L » CLOSE —»
FETCHg
RESTORE can only be used to open a cursor after a STORE statement. If a cursor position
has been stored, FETCH cannot be used.
Other statements that can be used with dynamic cursors are described in the section
“Dynamic cursor descriptions” on page 34.
2.4.2 Updatable cursors

An updatable cursor can be used to delete or update rows in a table in addition to reading
rows.

The diagram below indicates the SQL statements that can be used for a non-dynamic
updatable cursor and the order in which they are used:

RESTORE
—l ’—’ STORE —

— OPEN » CLOSE —»

v
STOREﬁ

UPDATE

v

FETCH

DELETE

26

U22420-J-2125-12-76

Embedding of SQL in programs Cursor

243

RESTORE can only be used to open a cursor after a STORE statement. If a cursor position
has been stored, FETCH cannot be used.

Other statements that can be used with dynamic cursors are described in the section
“Dynamic cursor descriptions” on page 34.

Defining a cursor

A cursor is defined with a DECLARE CURSOR statement. During definition, the cursor is
assigned a cursor description. The cursor description is the query expression that defines
the cursor table.

The query expression is specified directly in the DECLARE CURSOR statement for static
cursors and local cursors (in routines). In the case of dynamic cursors, it is created when
the program is executed (see section “Dynamic cursor descriptions” on page 34).

The following characteristics of the cursor can be specified in the definition:

Positioning
There are two kinds of cursors: scrollable cursors and sequential cursors.

A scrollable cursor can be positioned freely on any row in the cursor table. It is defined by
specifying the keyword SCROLL.

A cursor defined with NO SCROLL can only be positioned on the next row in the cursor
table.

Lifetime

If a cursor is to remain open after the end of a transaction, this can be specified using the
WITH HOLD clause. The only prerequisite is that the cursor must be open prior to
completion of the transaction. The WITH HOLD clause is not permitted for local cursors (in
routines).

A cursor defined with WITHOUT HOLD is closed implicitly once the transaction has
completed. WITHOUT HOLD is the default value.
Sorting

An ORDER BY clause can be specified in the cursor description indicating that the rows in
the cursor table are to be sorted.

U22420-J-2125-12-76 27

Cursor

Embedding of SQL in programs

24.4

2.4.5

Number of hits

A FETCH FIRST max ROWS ONLY clause for limiting the number of hits supplied can only be
specified in the cursor description.

Updatability

A cursor is updatable if the query expression used to define the cursor is updatable (see
section “Updatability of query expressions” on page 318), and neither SCROLL nor ORDER
BY nor the FOR READ ONLY clause was specified in the cursor declaration.

An updatable cursor references exactly one base table. Individual rows in this table can be
deleted or updated using the cursor position to indicate the appropriate row. The FOR
UPDATE clause in the cursor description can be used for updatable cursors to specify the
columns whose values can be updated.

If a cursor is not updatable, it can only be used to read rows from the relevant cursor table.
A cursor cannot be updated in the case of FETCH FIRST max ROWS ONLY, either.

Opening a cursor

A cursor must be opened before it can be used.

The OPEN statement is used to open a cursor. The values for host variables in the cursor
description and for special literals (see page 110) and time functions (CURRENT_DATE,
CURRENT_TIME(3), CURRENT_TIMESTAMP(3), etc.) are determined. After a cursor is
opened, it is positioned before the first row of the corresponding cursor table (see section
“OPEN - Open cursor” on page 524).

Position cursor and read row

If you want to read a row in the cursor table, you must position the cursor on this row with
FETCH. The column values of the current row are fetched into host variables or into a
descriptor area (see section “Descriptor area” on page 36).

In order to read the next row, the cursor must be repositioned. A cursor declared with
SCROLL can be positioned freely. A cursor defined without SCROLL or with NO SCROLL
can only be positioned on the next row.

28

U22420-J-2125-12-76

Embedding of SQL in programs Cursor

2.4.6

24.7

24.8

24.9

Updating or deleting a row

If you are using an updatable cursor, you can update or delete a row in the base table upon
which the cursor description is based after you have positioned the cursor. To do this, use
the UPDATE... WHERE CURRENT OF or DELETE... WHERE CURRENT OF statement.

The update or delete operation refers to the row in the cursor table on which the cursor is
currently positioned. The position of the cursor is not changed by an update operation. After
a delete operation, the cursor is positioned on the next row in the cursor table (or after the
last row, if the end of the table has been reached. You must reposition the cursor with
FETCH before you can perform another update or delete operation.

Storing a cursor

If you want to retain the cursor table and the cursor position beyond the end of the current
transaction, you can save the cursor with the STORE statement. Please note, however, that
between STORE and the subsequent closure of the cursor, the cursor table can no longer
be read with FETCH. STORE is not permitted for local cursors (in routines).

Another simpler option for keeping a cursor open across several transactions is to use the
WITH HOLD clause in the cursor definition. The WITH HOLD clause is not permitted for
local cursors (in routines).

Close a cursor

You close a cursor with the CLOSE statement.

In addition, a cursor is closed when the transaction in which the cursor was opened is
terminated. However, this does not apply if the cursor was specified with WITH HOLD and
the transaction is not reset.

Restore a cursor

A cursor saved with STORE can be restored with the RESTORE statement. The cursor is
opened and the cursor table can again be accessed. RESTORE is not permitted for local
cursors (in routines).

The information that has been stored can be lost under certain circumstances. These
circumstances are described in the section “RESTORE - Restore cursor” on page 542.

U22420-J-2125-12-76 29

Cursor Embedding of SQL in programs

2410 Cursor examples

Example of a cursor with ORDER BY

The cursor CUR_CONTACTS defines a section of the CONTACTS table containing the
last name, first name and department for all customers with customer numbers greater
than 103. The rows are to be sorted in ascending sequence by department and, within
the departments in descending sequence by last name.

@ DECLARE cur_contacts CURSOR FOR
SELECT Tname, fname, department
FROM contacts WHERE cust_num > 103
ORDER BY department ASC, 1name DESC

The cursor is opened with the OPEN statement
OPEN cur_contacts

At this point, the cursor table includes the following rows:

Iname fname department
Buschmann Anke
Bauer Xaver
Heinlein Robert Purchasing
Davis Mary Purchasing

Null values are shown in the table above as empty fields. When rows are sorted using
ORDER BY in SESAM/SQL, null values are regarded as being less than any non-null
value.

In an ESQL program, the cursor table can be read row by row in a loop. The column
values are passed to the host variables NAME, FIRSTNAME and DEPT.

@ FETCH cur_contacts INTO :LNAME,
:FIRSTNAME INDICATOR :IND_FIRSTNAME,
:DEPT INDICATOR :IND_DEPT

30 U22420-J-2125-12-76

Embedding of SQL in programs Cursor

Example of SQL data manipulation using a cursor

Use the cursor CUR_VAT to select all services for which no VAT is calculated. It is
specified with WITH HOLD so that it remains open even after a COMMIT WORK
provided that it was open at the end of the transaction:

Ega DECLARE CUR_VAT CURSOR WITH HOLD FOR
SELECT service_num, service_text, vat
FROM service WHERE vat=0.00

OPEN cur_vat

The following cursor table is produced when the cursor is opened:

service_nu |service_text vat
m

4 Systems analysis 0.00
5 Database design 0.00
10 Travel expenses 0.00

A VAT rate of 15% is to be charged for these services. A sequence of FETCH and
UPDATE statements allows the rows of the SERVICE table to be updated. FETCH
NEXT positions the cursor on the next row.

E§3 FETCH NEXT cur_vat INTO :SERVICE_NUM,
:SERVICE_TEXT INDICATOR :IND_SERVICE_TEXT
:VAT INDICATOR :IND_VAT

UPDATE service SET vat=0.15 WHERE CURRENT OF cur_vat

The cursor is then positioned on the second row of the cursor table:

é§3 FETCH NEXT cur_vat INTO :SERVICE_NUM,
:SERVICE_TEXT INDICATOR :IND_SERVICE_TEXT
:VAT INDICATOR :IND_VAT

UPDATE service SET vat=0.15 WHERE CURRENT OF cur_vat

The transaction is closed with COMMIT WORK. Because of the WITH HOLD clause,
the cursor can be positioned on the third row of the cursor table by issuing a FETCH
statement immediately after COMMIT WORK.

U22420-J-2125-12-76 31

Dynamic SQL Embedding of SQL in programs

2.5 Dynamic SQL

2.51

SESAM/SQL allows you to generate SQL statements and cursor descriptions dynamically
during execution of an ESQL program. The concepts and language resources involved in
this are referred to by the term dynamic SQL and are described in this section.

A dynamic statement (or cursor description) does not have to be known when a program is
compiled. Instead, it can be constructed dynamically when the program is executed and is
made available in a host variable.

A routine (see chapter “Routines” on page 323) may not contain any dynamic SQL
statements or cursor descriptions.

Placeholder

You cannot use host variables in a dynamic SQL statement (or cursor description). Instead,
you use question marks as placeholders for unknown input values. The rules governing
placeholders are described in the “PREPARE - Prepare dynamic statement” on page 527.

Dynamic statement

A dynamic statement can either be executed directly once, or it can be prepared. A
prepared statement can be executed any number of times.

You cannot use any placeholders in a statement that is executed directly, and it must not
return any values.

A prepared statement remains prepared for execution for at least the duration of the current
transaction.

The diagram below provides you with an overview of the SQL statements that can be used
in dynamic statements:

»DESCRIBE GET/SET »GET
INPUT/OUTPUT DESCRIPTOR ‘ DESCRIPTOR

—» PREPARE » EXECUTE

[USING]

[INTO]

v

—» EXECUTE IMMEDIATE —»

A descriptor area must be created with ALLOCATE DESCRIPTOR before it is used in
DESCRIBE and GET/SET DESCRIPTOR (see section “Descriptor area” on page 36).

32

U22420-J-2125-12-76

Embedding of SQL in programs Dynamic SQL

2511

2.51.2

Prepare a dynamic statement

You prepare a dynamic statement with PREPARE. You define a name, or statement
identifier, that is used to refer to the dynamic statement in subsequent statements and in
the EXECUTE statement in particular. All SQL statements that can be prepared are listed
in the section “Assignments for PREPARE” on page 535.

You specify an alphanumeric host variable for the as yet unknown SQL statement
represented by the statement identifier. The length of the variable must not exceed 32000
characters. You cannot specify an indicator variable.

In the program, you assign the host variable the desired SQL statement as an alphanumeric
string. You can, for example, read in the SQL statement via an interactive program and then
use it to construct the string that is transferred to the host variable.

When the PREPARE statement is executed, the dynamic statement must be known with
the exception of the values of the placeholders. If the statement is not correct, the
PREPARE statement is aborted with errors.

Querying the data types of the placeholders and values

If a dynamic statement contains placeholders, you can query the number and SQL data
types of the placeholders with DESCRIBE INPUT after you have prepared the statement
with PREPARE. To do this, you must specify a descriptor area to which the description of
the SQL data types is returned.

You can query the number and data types of the values returned by the prepared statement
with DESCRIBE OUTPUT and store the information in a previously requested descriptor
area. The number is O if the prepared statement is not a SELECT statement or cursor
description.

You can read the item descriptors in the descriptor area with GET DESCRIPTOR (see
section “Descriptor area” on page 36).

U22420-J-2125-12-76 33

Dynamic SQL Embedding of SQL in programs

2.51.3

2.5.2

2521

Execute a dynamic statement

You can prepare and execute a dynamic statement directly with EXECUTE IMMEDIATE.
In this case, however, the statement cannot include any placeholders or return any values.
All the SQL statements that can be executed with EXECUTE IMMEDIATE are listed in the
description of the EXECUTE IMMEDIATE statement, page 478.

You execute a statement prepared with PREPARE with the EXECUTE statement. If the
statement includes placeholders, the corresponding values can be made available via host
variables or via a descriptor area that has already been supplied with values in the USING
clause of the EXECUTE statement.

In a dynamic SELECT statement, the INTO clause can be used to store the results in host
variables or in a previously created descriptor area.

Dynamic cursor descriptions

A cursor can also be assigned a dynamic cursor description in the DECLARE CURSOR
statement. The cursor is then referred to as a dynamic cursor. A non-dynamic cursor is also
referred to as a static cursor. A dynamic cursor description is prepared with the PREPARE
statement.

The figure below provides you with an overview of the SQL statements for dynamic cursor
descriptions:

DESCRIBE GET/SET GET
INPUT/OUTPUT | DESCRIPTOR rDESCRIPTOR—i
> PREPARE > OPEN —» FETCH
[USING] INTO

v

The other SQL statements relevant to cursors are described in the sections “Read-only
cursors” on page 26 and “Updatable cursors” on page 26.

Preparing dynamic cursor descriptions

You prepare a dynamic cursor description with the PREPARE statement. You define a
name, or statement identifier, for the cursor description. Each cursor declared with this
statement identifier is assigned the corresponding cursor description.

You specify an alphanumeric host variable for the as yet unknown query expression. The
length of the variable must not exceed 32000 characters. You cannot specify an indicator
variable.

34

U22420-J-2125-12-76

Embedding of SQL in programs Dynamic SQL

When the program is executed, you assign the host variable the desired query expression
as an alphanumeric string.

Except for the values of the placeholders, the query expression must be known when the
PREPARE statement is executed. If the query expression is not correct, the PREPARE
statement is aborted with errors.

2.5.2.2 Determining the SQL data types of the placeholders

If a dynamic cursor description includes placeholders, you can query the number and SQL
data types of the placeholders with DESCRIBE INPUT after the cursor description has been
prepared with the PREPARE statement.

To do this, you must specify a descriptor area to which the description of the data types is
returned. You can read the item descriptors in the descriptor area with GET DESCRIPTOR
(see section “Descriptor area” on page 36).

2.5.2.3 Determining the SQL data types of the derived columns

You can query the number and SQL data types of the derived columns of a dynamic cursor
description with DESCRIBE OUTPUT and store the information in a previously created
descriptor area.

2.5.2.4 Evaluating dynamic cursor descriptions

A dynamic cursor description is evaluated when the cursor is opened with the OPEN
statement.

If a dynamic cursor description includes placeholders, the associated values can be made
available in the USING clause of the OPEN statement via host variables or a descriptor
area that has already been supplied with values. Otherwise, the same rules apply to the
evaluation of a dynamic cursor as apply to a static cursor.

2.5.2.5 Storing results

The rows of the cursor table are read with FETCH, just as they are for a static cursor. Unlike
a static cursor, the column values of a row that are read can be stored not only in host
variables but also in a previously created descriptor area.

U22420-J-2125-12-76 35

Dynamic SQL Embedding of SQL in programs

2.5.3 Descriptor area

A descriptor area is a storage area that you use to store values or information about the
SQL data types for dynamic statements or cursor descriptions.

A descriptor area can be used in the following cases:

e The SQL data types of the placeholders in a prepared statement or cursor description
can be queried and stored in a descriptor area (DESCRIBE INPUT).

e The SQL data types of the derived columns of a prepared SELECT statement or cursor
description can be queried and stored in a descriptor area (DESCRIBE OUTPUT).

e The values for the placeholders in a dynamic statement or cursor description can be
transferred from a descriptor area upon execution (USING clause of EXECUTE or
OPEN).

e The values returned by a dynamic statement or cursor description can be stored in a
descriptor area (INTO clause of EXECUTE or FETCH).

There are a number of SQL statements that use descriptor areas. These statements must
be called in a predefined order.

The figure below provides you with an overview of these statements and indicates the order
in which the statements can be called (GET/SET DESCRIPTOR can be a series of
GET/SET DESCRIPTOR statements).

GET
DESCRIPTOR—l EXECUTE
’—’ USING v
ALLOCATE—» DESCRIBE » SET — DEALLOCATE
DESCRIPTOR
DESCRIPTOR INPUT DESCRIPTOR OPEN A
USING
—» EXECUTE
J J INTO v
ALLOCATE —» DESCRIBE —— —»GET —L—» DEALLOCATE
DESCRIPTOR OUTPUT A DESCRIPTOR DESCRIPTOR
—»FETCH ——
INTO

36 U22420-J-2125-12-76

Embedding of SQL in programs Dynamic SQL

2.5.31

2.5.3.2

2533

Creating a descriptor area

You create a descriptor area with ALLOCATE DESCRIPTOR. You must specify the
maximum number of items that this descriptor area can hold.

The items themselves are still undefined after ALLOCATE DESCRIPTOR.

Structure of a descriptor area

A descriptor area consists of a COUNT field and a number of items (item descriptors).

Each item in the descriptor area consists of a number of fields that describe an SQL data
type and which may contain a value of this type.

One item descriptor is used for an atomic column or value. In the case of a multiple column
or aggregate, one item descriptor is used for each column element or occurrence.

Descriptor area fields

The descriptor area fields include the COUNT field, which exists once for each descriptor
area, and the fields of the various items.

Each descriptor item consists of the following fields:
e REPETITIONS

e TYPE

e DATETIME_INTERVAL_CODE
e PRECISION

e SCALE

e LENGTH

e INDICATOR

o DATA

e OCTET_LENGTH
e NULLABLE

o NAME

e UNNAMED

You will find detailed descriptions of the various fields below.

U22420-J-2125-12-76 37

Dynamic SQL Embedding of SQL in programs

COUNT

The COUNT descriptor area field contains a value for the number of item descriptors used
or required.

If the number of item descriptors specified in a DESCRIBE statement is greater than the
defined maximum number of items, only the COUNT field is set to the specified number. All
other fields are not assigned a value.

SQL data type: SMALLINT

Item descriptor fields

Not all the fields are supplied with a value for each item descriptor. Fields that have not been
supplied with a value have an undefined value.

The fields are described in alphabetical order below.

DATA

Is only defined if the value in the INDICATOR field is greater than or equal to 0: Value
of the item descriptor.

SQL data type: determined by the fields TYPE, LENGTH, PRECISION, SCALE and
DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_CODE
Only for date and time data types:

Data type of the item descriptor.

DATETIME_INTERVAL_CODE |SQL data type
1 DATE
2 TIME
3 TIMESTAMP

Table 1: Descriptor area field DATETIME_INTERVAL_CODE

SQL data type: SMALLINT

38

U22420-J-2125-12-76

Embedding of SQL in programs Dynamic SQL

INDICATOR
Information on the value of the item descriptor:

<0 Value is the NULL value

>0 Original length of an alphanumeric or national string that was truncated during
transfer from the database

0 else

SQL data type: SMALLINT

LENGTH
Only for alphanumeric, national and time data types:

Length of the SQL data type in characters or code units for national data types.

LENGTH For SQL data type
length CHAR(length)

max VARCHAR(max)
cu_length NCHAR(cu_length)
cu_max NVARCHAR(cu_max)
10 DATE

12 TIME(3)

23 TIMESTAMP(3)

Table 2: Descriptor area field LENGTH

SQL data type: SMALLINT

NAME

Column name if the item refers to a column, otherwise a column name that is used
internally.

SQL data type: CHAR(#) or VARCHAR(n), where n > 128

U22420-J-2125-12-76 39

Dynamic SQL

Embedding of SQL in programs

NULLABLE

Specification of whether the value of the item descriptor can be the NULL value.

1 Value can be the NULL value
0 else

SQL data type: SMALLINT

OCTET_LENGTH

Maximum memory requirements of the data type indicated by the fields TYPE,
LENGTH, PRECISION, SCALE and DATETIME_INTERVAL_CODE in bytes. If these
fields do not specify a correct SQL data type, the value of OCTET_LENGTH is

undefined.

The value of OCTET_LENGTH is implementation-dependent for numeric and time data
types and may change in future versions of SESAM/SQL.

OCTET_LENGTH

For SQL data type

length

CHAR(length)

max+2

VARCHAR (max)

2%cu_length

NCHAR(cu_length)

2%cu_max+2

NVARCHAR(cu_max)

precision+1

NUMERIC(precision,scale)

precision/2+1, if precision even
(precision-1)/2+1, else

DECIMAL (precision,scale)

4 INTEGER

2 SMALLINT

4, if precision<22 FLOAT (precision)

8, else

4 REAL

8 DOUBLE PRECISION
6 DATE

8 TIME(3)

14 TIMESTAMP(3)

Table 3: Descriptor area field OCTET_LENGTH

SQL data type: SMALLINT

U22420-J-2125-12-76

Embedding of SQL in programs Dynamic SQL

PRECISION
Only for numeric data types and TIME and TIMESTAMP:
number of decimal or binary digits of the SQL data type.

PRECISION | For SQL data type
precision NUMERIC(precision,scale)
precision DECIMAL (precision,scale)
31 INTEGER

15 SMALLINT

precision FLOAT (precision)

21 REAL

53 DOUBLE PRECISION

3 TIME(3)

3 TIMESTAMP(3)

Table 4: Descriptor area field PRECISION

SQL data type: SMALLINT

REPETITIONS
Dimension of a multiple column or aggregate.

A separate item in the descriptor area is used for each occurrence of a multiple column
or aggregate. The REPETITIONS field of the first item descriptor contains the number
of occurrences or column elements. The REPETITIONS field of all subsequent item
descriptors is set to 1.

REPETITIONS is set to 1 for atomic values.
SQL data type: SMALLINT

U22420-J-2125-12-76 41

Dynamic SQL

Embedding of SQL in programs

SCALE

Only for integer and fixed-point number data types:

number of places to the right of the decimal point for the SQL data type.

SCALE |For SQL data type

scale

NUMERIC(precision,scale)

scale

DECIMAL (precision,scale)

0

INTEGER

0

SMALLINT

Table 5: Descriptor area field SCALE

SQL data type: SMALLINT

TYPE

SQL data type of the item descriptor:

TYPE

SQL data type

NVARCHAR

NCHAR

CHAR

NUMERIC

DECIMAL

INTEGER

SMALLINT

FLOAT

REAL

DOUBLE PRECISION

DATE, TIME or TIMESTAMP

- LI |
DleloNlola| s w| N

VARCHAR

Table 6: Descriptor area field TYPE

SQL data type: SMALLINT

42

U22420-J-2125-12-76

Embedding of SQL in programs Dynamic SQL

UNNAMED

Specification of whether the NAME field contains a valid column name.

0 NAME contains a column name
1 else

SQL data type: SMALLINT

2.5.3.4 Assigning values to the descriptor area

Once you have created a descriptor area, you can assign values to this area in a number
of ways:

e Data type descriptions:
You can use DESCRIBE to place the description of the SQL data types of the
placeholders or derived values of a prepared statement or cursor description in the
descriptor area.

e \Values:
You can use EXECUTE ... INTO or FETCH ... INTO to place queried values in the
descriptor area.

e Data type descriptions and values:
You can use SET DESCRIPTOR to set the items in the descriptor area. The values
assigned to the item descriptor fields are described in the section “SET DESCRIPTOR
- Update SQL descriptor area” on page 560.

The fields NAME, UNNAMED and NULLABLE are only set for DESCRIBE.

The fields TYPE, DATETIME_INTERVAL_CODE, LENGTH, PRECISION, SCALE,
REPETITIONS can be set with SET DESCRIPTOR and DESCRIBE.

The fields INDICATOR and DATA can be set with SET DESCRIPTOR or with EXECUTE
INTO and FETCH INTO if an SQL descriptor area is used.

If a value is transferred from a host variable to a descriptor area field, the SQL data type of
the host variable must satisfy the conditions described for SET DESCRIPTOR, page 560,
and in the section “Transferring values between host variables and a descriptor area” on
page 127.

U22420-J-2125-12-76 43

Dynamic SQL Embedding of SQL in programs

2.5.3.5 Querying the descriptor area

2.5.3.6

2.5.3.7

You can query the value of the COUNT field and the fields of individual item descriptors with
GET DESCRIPTOR.

To query an item, enter the number of the item descriptor and the fields whose values you
wish to query. The item descriptor fields are described in section “Descriptor area fields” on
page 37.

When transferring a value from an item descriptor field to a host variable, the SQL data type
of the host variable must satisfy the conditions described for GET DESCRIPTOR on
page 492 and in the section “Transferring values between host variables and a descriptor
area” on page 127.

Using values from the descriptor area

The fields TYPE, DATETIME_INTERVAL_CODE, LENGTH, PRECISION, SCALE,
REPETITIONS are read for EXECUTE, OPEN and FETCH if an SQL descriptor area is
used for the input or output values.

The fields INDICATOR and DATA are read for EXECUTE USING and OPEN USING if an
SQL descriptor area is used for the input values.
Releasing the descriptor area

If you no longer need a descriptor area, you release the memory used by the descriptor
area with DEALLOCATE DESCRIPTOR.

44

U22420-J-2125-12-76

Embedding of SQL in programs SQL statements in CALL DML transactions

2.6 SQL statements in CALL DML transactions

SESAM/SQL supports the SQL and CALL DML interfaces.

In mixed mode operation, both interfaces can be used together in an ESQL COBOL
application (see the “CALL-DM Applications” manual).

You can use SQL and CALL DML interfaces together within the same transaction: In order
to simplify the step-by-step conversion to the SQL environment, it is possible to issue SQL
statements within CALL DML transactions in existing CALL DML applications.

CALL DML transaction

A CALL DML transaction starts with the CALL DML statement BTA and ends with a roll
forward or rollback of the transaction.

You use the CALL DML statement ETA to roll a CALL DML transaction forward. A
transaction is rolled back either by means of the statement RTA or internally by
SESAM/SQL DBH when, for example, a deadlock is resolved.

Under openUTM, a transaction is rolled forward by the PEND variable which ends the
transaction and rolled back by rolling back the UTM transaction.

Permitted SQL statements in a CALL DML transaction

Within a CALL DML transaction you can execute all SQL statements which are used to
query and change data, SQL statements for dynamic SQL, some SQL statements for
session control, the CALL statement, and the WHENEVER statement (for the initiation of
the SQL statements, see section “Summary of contents” on page 353).

The following SQL statements are not permitted within a CALL DML transaction:

e COMMIT WORK

e ROLLBACK WORK

Any statements which are not permitted in a SQL-DML transaction are also not permitted:
e SET TRANSACTION

e SET SESSION AUTHORIZATION

e SQL statements for schema definition and administration

e SQL statements for managing the storage structure

e SQL statements for managing user entries

e Utility statements

@ If the SET TRANSACTION statement is issued before a CALL DML transaction, the
settings are only valid for existing SQL statements within the following (CALL DML)
transaction. After the transaction is finished the defaults are valid again.

U22420-J-2125-12-76 45

SQL statements in CALL DML transactions Embedding of SQL in programs

2.6.1 Step-by-step conversion of CALL DML statements

In order to convert existing CALL DML statements to work with the SQL interface, it is
advisable to perform the steps in a given order. Below you can find a brief summary of the
most important steps listed in accordance with the type of application or statement.

TIAM application

If you want to convert a CALL DML transaction into a TIAM statement for use with the SQL
interface, proceed as follows:

1. One at a time, replace all CALL DML statements other than BTA, ETA and RTA with
SQL statements

2. Then replace the BTA, ETA and RTA statements:
— delete BTA without replacement
— replace ETA with COMMIT WORK
— replace RTA with ROLLBACK WORK

openUTM application

If you want to convert a CALL DML transaction into an openUTM application for use with
the SQL interface, proceed as follows:

1. One at a time, replace all CALL DML statements other than BTA, ETA and RTA with
SQL statements

2. Then replace the BTA, ETA and RTA statements:
— delete BTA without replacement
— delete ETA without replacement
— replace RTA with RSET (RSET is a function at the openUTM KDCS interface)

46 U22420-J-2125-12-76

Embedding of SQL in programs SQL statements in CALL DML transactions

2.6.2

2.6.3

CALL SQL statements outside a CALL DML transaction

In order to convert CALL DML statements which are issued outside of CALL DML
transactions for use at the SQL interface, you must replace them by the corresponding SQL
statements. In this case, there are no restrictions concerning permitted SQL statements.
Note that most SQL statements implicitly open a transaction. This must be closed before
the next CALL DML statement.

Using User-Close and release session resources

The User-Close in a CALL DML application closes all the requesting user’s logical files.
After the successful execution of User-Close, all resources of the logical files of this user
are released.

Within an SQL application it is not possible to terminate an SQL conversation explicitly. The
resources of an SQL conversation are not released until the associated TIAM application
has terminated. Under openUTM, the resources of an SQL conversation are released when
the associated UTM conversation terminates.

There is no statement in SQL which is equivalent to a User-Close in a CALL DML
application. If a CALL DML statement contains multiple User-Close statements you should
therefore increase the DBH option USERS before you switch to the SQL interface. In this
way, you can avoid resource bottlenecks.

Setting the isolation level

The locking concept which ensures data consistency is implemented in CALL DML
applications in the following way: if a retrieval statement accesses the user data in a CALL
DML table, SESAM/SQL DBH locks the relevant record against access by other
transactions until the executing transaction is either terminated or rolled back. Depending
on the Open mode a shared or exclusive lock is set. In addition, SESAM/SQL permits the
following modifications of the locking concept for individual CALL DML statements:

— reading without a lock (Read No Lock)
— ignoring the lock (Read No Wait)
— reading without a lock and ignoring the lock

When a CALL DML transaction is converted it is advisable to change the locking behavior
as little as possible. If a shared or exclusive lock is set for a CALL DML transaction, you
should use the SQL statement SET TRANSACTION to set the isolation level
REPEATABLE READ prior to the transaction.

U22420-J-2125-12-76 47

SQL statements in CALL DML transactions Embedding of SQL in programs

If the locking behavior for individual CALL DML applications has been changed, it is
advisable to use the pragma ISOLATION LEVEL. You can use this to define a specific
isolation level for the corresponding SQL statement which is equivalent to the locking
behavior of the associated CALL DML statement:

e replace “Read No Lock” with READ COMMITED
e replace “Read No Lock and Read No Wait* with READ UNCOMMITED

Only in the case of “Read No Lock® SESAM/SQL ignorant of the corresponding isolation
level. Here, you should decide on a case-by-case basis whether the isolation level READ
COMMITED or READ UNCOMMITED is more suitable.

48

U22420-J-2125-12-76

3 Lexical elements and names

This chapter describes the following:
e SESAM/SQL character repertoire
e Lexical units

e Pragmas and annotations

e Names

3.1 SESAM/SQL character repertoire

The SESAM/SQL character repertoire consists of letters, digits and special characters.
Letters are uppercase letters A-Z and lowercase letters a-z (without umlauts and B).
Digits are the characters 0-9.

The following are special characters:

", - & ()= +] < >72 % [1 .(space)

U22420-J-2125-12-76 49

Lexical units Lexical elements and names

3.2 Lexical units

3.21

The text sequences formed from the SQL character repertoire are divided into lexical units.
An SQL statement consists of the following lexical units:

e strings

® numerics

e delimiter symbols
e Separators

e Comments

String Delimiter Numeric
| symbol
[] % b HT N |
SELECT onum, order_text FROM orders WHERE order_num = 10001
| | | || |
Separator
Strings

Examples of character strings are the SQL keywords and names, as well as alphanumeric
literals, national literals and time literals.

Strings for SQL keywords

An SQL keyword is a sequence of uppercase or lowercase letters. An SQL keyword is not
enclosed in double or single quotes. You will find a list of all SQL keywords in the section
“SQL keywords” on page 745.

Example: SELECT

In this manual, all SQL keywords appear in uppercase letters to distinguish them from the
rest of the text.

Strings for names

The syntax for names is described in the section “Names” on page 69.

50

U22420-J-2125-12-76

Lexical elements and names Lexical units

Strings for literals

Strings for alphanumeric literals, national literals and time literals are enclosed in single
quotes (see section “Alphanumeric literals” on page 106, section “National literals” on
page 108 and section “Time literals” on page 117).

Example: 'Miller'

3.2.2 Numerics

A numeric is a sequence made up of the digits 0-9. Numeric literals are constructed from
numerics and the characters + - . E.

Example: 314

The syntax for numeric literals is described in section “Numeric literals” on page 115.

3.2.3 Delimiter symbols

Examples of the delimiter symbols are the operators and the following special characters:

S A L

U22420-J-2125-12-76 51

Lexical units Lexical elements and names

3.24

3.2.5

Operators

Operators are used to create expressions and predicates. The following table provides an
overview of the operators defined in SESAM/SQL:

Operator |Meaning

* Multiplication

/ Division

+ Addition

- Minus sign

= Equal to
<> Not equal to

> Greater than

< Less than
>= Greater than or equal to
<= Less than or equal to
Il Concatenation

Table 7: Operators

The meaning of the operators is explained in detail in the chapter “Compound language
constructs” on page 133.

Separators

You use separators to separate lexical units. Separators are blanks, newline markers and
comments.

Comments

SQL allows you to add comments for the purpose of documenting SQL statements.
Comments start with the character string -- and end with the end of the line. There are also
parenthesized comments which start with /* and end with */ and which can also be nested.

Pragmas and annotations are also considered comments (see section “Pragmas and
annotations” on page 53).

In dynamic SQL statements, no other comments which start with -- are allowed beside
pragmas.

52

U22420-J-2125-12-76

Lexical elements and names Pragmas and annotations

3.3 Pragmas and annotations

Pragmas and annotations are special SQL comments which are interpreted by
SESAM/SQL. You can use them to provide information for the execution of SQL or utility
statements. Pragmas and annotations containing syntax errors are treated as comments
and ignored by SESAM/SQL.

A pragma can only be contained at the start of an SQL or utility statement. They may be
preceded only by comments (including further pragmas) and delimiters. Pragmas have an
effect on the entire statement, including the views used. The PREFETCH pragma even has
an effect on all operators with a cursor.

An annotation can only be contained at certain positions in the text of a statement.
Irrespective of its position, it has an effect only on one particular operation in the statement.
Only one annotation can ever be contained at each of these positions. However, a
statement can contain multiple annotations and also the views used.

Pragmas and annotations have an effect only in the case of particular sets of statements,
otherwise they are ignored. For information on using pragmas in routines, see section
“Pragmas in routines” on page 339.

Pragmas and annotations are used for different purposes. They are described in various
SESAM/SQL manuals, see the tables on the following pages.

Format
pragma ::= ——%PRAGMA pragma text, ... end of line
annotation ::= /*} annotation_text 7%*/

U22420-J-2125-12-76 53

Pragmas and annotations Lexical elements and names

pragma_text
A string of keywords, literals and names.
The string may contain blanks but no other delimiters.

The formats for pragma_text and its effect are described in the places specified in the

table below:
pragma_text begins with | Meaning For description see
AUTONOMOUS Write data independently of the page 56
TRANSACTION surrounding transaction
CHECK Observe integrity constraints “SQL Reference Manual Part
2: Utilities” manual

DATA TYPE Use old CALL-DML types page 57
DEBUG ROUTINE Receive error information for page 58

routines
DEBUG VALUE Receive information for page 59

assignments in routines
EXPLAIN Output access plan page 61
IGNORE Ignore index “Performance” manual
ISOLATION LEVEL Define isolation level page 63
JOIN Select join method “Performance” manual
KEEP JOIN ORDER Retain join order “Performance” manual
LIMIT Limit resource utilization page 64
ABORT_EXECUTION
LOCK MODE Set lock mode page 65
LOOP LIMIT Limit number of loop passes page 65
OPTIMIZATION Restrict access planning “Performance” manual
PREFETCH Control block mode page 66
SIMPLIFICATION Control optimization techniques “Performance” manual
USE Use index “Performance” manual
UTILITY MODE Control transaction management | page 68

Table 8: pragmas

When you specify more than one pragma beginning with the same keyword in a
statement, the last one specified is used. However, regardless of their order the
IGNORE and USE pragmas are interpreted according to special rules.

54

U22420-J-2125-12-76

Lexical elements and names Pragmas and annotations

end of line
New line in the SQL source text.
When the SQL text is specified as a string in a PREPARE or EXECUTE IMMEDIATE
statement, the alphanumeric character X'15' in this string means new line.

annotation_text
A string of keywords.
The string may contain blanks and new lines, but no comments.

An annotation must follow a keyword. Only blanks and new lines may be contained
between these, but no comments. The preceding keyword determines the permitted
format of annotation_text and the effect of the annotation. An annotation which does not
comply with these rules is regarded as a comment and ignored.

The formats for annotation_text and its effects are described in the place specified in the

table below:
Annotation after keyword Meaning For description see
JOIN Select join algorithm “Performance” manual
CACHE Cache CSV file in “Performance” manual
temporary file
VOLATILE Always calculate function |page 335
value anew
IMMUTABLE Do not calculate function |page 335
value anew in
uncorrelated function calls

Table 9: Annotations

If a pragma and an annotation would have different effects on an operation in a statement
(e.g. selection of different Join algorithm), the annotation normally has priority. The
description of the annotation contains the details.

U22420-J-2125-12-76 55

Pragmas and annotations Lexical elements and names

3.3.1 AUTONOMOUS TRANSACTION pragma

The pragma AUTONOMOUS TRANSACTION enables data to be written to a database
irrespective of the surrounding transaction.

In particular, the data is written persistently to the database before the SQL statement
ROLLBACK WORK has possibly executed the transaction.

The pragma may only be specified in SQL statements for modifying data, i.e. in INSERT,

UPDATE (search condition satisfied), DELETE (search condition satisfied), MERGE, and
CALL. If the pragma is specified in statements for querying data, the statement is rejected
with SQLSTATE.

The pragma may not be used in routines.

AUTONOMOUS TRANSACTION

Notes

e The SQL statement after the pragma AUTONOMOUS TRANSACTION is executed in
the user’s current transaction, but in a separate runtime environment (own thread, own
transaction context). The user’s transaction-control statements have no effect.

The internal user identification (APPLICATION-NAME=AUTTRAN) is used, see the
“Database Operation” manual. It is visible in information outputs while the autonomous
transaction is executing. However, an autonomous transaction cannot be administered.

e Lock conflicts
The transaction context of the autonomous transaction is independent of the
application’s surrounding transaction and of other transactions.
On the one hand, this can lead to a deadlock between the autonomous transaction and
the surrounding transaction. This deadlock is resolved by resetting the autonomous
transaction. The autonomous transaction is reported to the SQLSTATE 81SAT.
On the other hand, this can lead to a deadlock between the autonomous transaction
and other transactions. Such deadlocks are resolved by resetting the “least costly”
transaction. When the autonomous transaction is affected by this, the SQLSTATE
81SAT is reported to it.

e Canceling the application
When the application which triggered thr autonomous transaction aborts, first the
autonomous transaction is canceled, and then the current transaction or the
application.

56

U22420-J-2125-12-76

Lexical elements and names Pragmas and annotations

3.3.2 DATA TYPE pragma

The DATA TYPE pragma indicates that a column can only be created in the attribute format
for CALL DML tables.

This pragma only takes effect if it is specified in the ALTER TABLE ... ADD COLUMN
statement and the table is a CALL DML table.

DATA TYPE OLDEST

U22420-J-2125-12-76 57

Pragmas and annotations Lexical elements and names

3.3.3 DEBUG ROUTINE pragma

The DEBUG ROUTINE pragma provides additional information on an execution of a routine
which is possibly errored. This information can be read using the
SYS ROUTINE_ERRORS view of the SYS_INFO_SCHEMA, see page 716.

The DEBUG ROUTINE pragma is effective only outside routines. It is only effective ahead
of the SQLL statement CALL and ahead of the DML statements DECLARE CURSOR,
DELETE, INSERT, MERGE, SELECT, and UPDATE. When specified ahead of DML
statements, the pragma has an effect on all User Defined Functions (UDFs) and the
routines of the DML statement these contain.

The pragma has been renamed SESAM/SQL V9.0. For compatibility reasons,
DEBUG PROCEDURE can also still be specified.

ALL

DEBUG ROUTINE [{USER

} 1 [LEVEL unmsigned_integer]

unsigned_integer
When unsigned_integer > 0, additional information is collected for the executed SQL
statements of the current routine.

unsigned_integer = 1 is the default value when the LEVEL clause is not specified.
When unsigned_integer = 0, the pragma is ignored.

The following approach makes sense:
The pragma is initially active in an application with a value > 0 in, and then later (without
changing the text length) disabled by the value 0.

USER
Depending on the LEVEL set, information is collected for the SQL statements which are
prefixed by the DEBUG VALUE pragma (see page 59).

LL
In addition to the DEBUG information mentioned under USER, general DEBUG
information is also created (irrespective of the LEVEL set).
For example, every SQLSTATE or SQLrowcount reported by an errored SQL statement
is recorded. Internal calls of routines are also recorded. The position of an SQL

statement within the text of a routine is normally also recorded.

58

U22420-J-2125-12-76

Lexical elements and names Pragmas and annotations

3.3.4 DEBUG VALUE pragma

The DEBUG VALUE pragma provides additional information for the following SQL
statements.

e SET in routines (procedures and User Defined Functions (UDFs))
e RETURN in User Defined Functions (UDFs)

This information can be read using the SYS_ROUTINE_ERRORS view of the
SYS_INFO_SCHEMA, see page 716.

The DEBUG VALUE pragma is currently only effective before these SQL statements.

DEBUG VALUE [LEVEL unmsigned integer]

unsigned_integer
When unsigned_integer > 0, additional information is collected for the aforementioned
statements when the DEBUG ROUTINE pragma is positioned ahead of the SQL
statement CALL or ahead of a DML statement (for routines contained in this). In
addition, unsigned_integer for DEBUG ROUTINE must be greater than or equal to
unsigned_integer for DEBUG VALUE.

The following information is then collected:

e Inthe case of SET, the assigned value and the name of the target field (parameter
or local variable)

e In the case of RETURN, the value returned

In the case of strings, long values are, if required, truncated.

unsigned_integer = 1 is the default value when the LEVEL clause is not specified.
When unsigned_integer = 0, the pragma has no effect.

The following approach makes sense:
The pragma is initially active in an application with a value > 0 in, and then later (without
changing the text length) disabled by the value 0.

The DEBUG VALUE pragma can also remain in the text of a routine after the
end of a test or debugging phase provided the calling SQL statements do not
use the corresponding DEBUG ROUTINE pragma.

U22420-J-2125-12-76 59

Pragmas and annotations Lexical elements and names

Example

The SET statements of a procedure can be prefixed with the DEBUG VALUE pragma with
various values for unsigned_integer . Calling the routine with the DEBUG ROUTINE pragma
and different values for unsigned_integer causes information to be collected in various
scopes.

CREATE PROCEDURE P (OUT parl INTEGER,OUT par2 INTEGER)
MODIFIES SQL DATA
BEGIN
——%PRAGMA DEBUG VALUE LEVEL 3
SET parl = 42;
——%PRAGMA DEBUG VALUE LEVEL 10
SET par2 = 43;
END

With the procedure call below, only the first assignment (par1=42) is recorded:
—— %PRAGMA DEBUG ROUTINE LEVEL 5
CALL P(myparl, mypar2)

Both assignments are recorded in the case of the procedure call below:
—— %PRAGMA DEBUG ROUTINE LEVEL 20
CALL P(myparl, mypar2)

The DEBUG VALUE pragmas can remain unchanged in the text of the routine. They only
have an effect when there is a corresponding unsigned_integer in the DEBUG ROUTINE
pragma.

60

U22420-J-2125-12-76

Lexical elements and names Pragmas and annotations

3.3.5 EXPLAIN pragma

The EXPLAIN pragma is used to output the access plan selected by the optimizer. You can
only use this pragma if the current authorization identifier has the special privilege UTILITY.

This pragma is only effective in the following SQL statements:
- CALL

— cursor description (for dynamic cursors)

— DECLARE CURSOR (for a static cursor)

— DELETE

— INSERT

- MERGE

— SELECT

— UPDATE

In routines, the pragma is ignored, see section “Pragmas in routines” on page 339.

This pragma is only effective in a static statement if you precompile the program while the
database is online.

EXPLAIN INTO file

file

Name of the SAM file into which the explanation is to be output. If the file already exists,
the explanation is appended to the file.

If file includes a BS2000 user ID, this user ID is used. If not, the ID of the Data Base
Handler for the database referenced in the SQL statement is used. In both cases the
DBH must have write permission for the file. You specify an alphanumeric literal for file.
No lowercase letters should be contained in this.

In the case of dynamic statements, the explanation is output when the PREPARE statement
or EXECUTE IMMEDIATE statement is executed. For static statements, the explanation is
output during precompilation.

The explanation comprises the SQL statement and an edited representation of the access
plan. The representation of access plans is described in the “Performance” manual.

You can display the contents of the file with SHOW-FILE. If you want to read the file with
EDT, you must enter the following command:
ADD-FILE-LINK LINK-NAME=EDTSAM,FILE-NAME=file, ..., BUFFER-LENGTH=(STD,2), ...

In the EDT you can also enter: @OPEN F=file, TYPE=CATALOG

U22420-J-2125-12-76 61

Pragmas and annotations Lexical elements and names

3.3.6

ISOLATION LEVEL pragma

The ISOLATION LEVEL pragma determines the isolation level for database accesses
performed by an SQL or utility statement.

This pragma is only effective in the following SQL statements:

— CALL and in routines (see section “Pragmas in routines” on page 339)
— cursor description (for dynamic cursors)

— DECLARE CURSOR (for a static cursor)

— DELETE

— INSERT

- MERGE

— SELECT

— UPDATE

READ UNCOMMITTED
READ NOWAIT
ISOLATION LEVEL < READ COMMITTED
REPEATABLE READ
SERTALIZABLE

CAUTION!

& The ISOLATION LEVEL READ NOWAIT can only be set by Pragma but not within
the SET TRANSACTION Statement. If you have specified the ISOLATION LEVEL
pragma, any database access performed in connection with this statement takes
place under CONSISTENCY LEVEL 1, see page 571.

If you specify a lower isolation level than specified for the transaction, the isolation
level defined for the transaction is no longer guaranteed.

The isolation levels are described in the section “SET TRANSACTION - Define transaction
attributes” on page 569.

If you have specified the ISOLATION LEVEL pragma, any database access performed in
connection with this statement takes place under this isolation level.

62

U22420-J-2125-12-76

Lexical elements and names Pragmas and annotations

3.3.7 LIMIT ABORT_EXECUTION pragma

The LIMIT ABORT_EXECUTION pragma controls the use of resources during the
processing of an SQL statement. This pragma allows you to systematically provide
statements with a local stop criterion. This local stop criterion is more restrictive than the
global stop criterion ABORT-EXECUTION required for complex batch programs. ABORT-
EXECUTION is set using RETRIEVAL-CONTROL or MODIFY-RETRIEVAL-CONTROL.

The local stop criterion set using LIMIT ABORT_EXECUTION

e is only valid for the current request.

e cannot be overridden by MODIFY-RETRIEVAL-CONTROL.
e has no effect if the pragma is not in a “searching” statement.

e has no effect if the value has been specified as 0 or the specified value is greater than
that of the global stop criterion. In this case the value of the global stop criterion applies.

If several LIMIT ABORT_EXECUTION pragmas are specified in one request, the last valid
pragma value will apply. If no LIMIT ABORT_EXECUTION pragma is specified, the global
stop criterion will apply.

In a sequence of DECLARE CURSOR, OPEN and FETCH statements, the pragma must
be specified in the DECLARE CURSOR statement. Its effect depends on the search path
selected, but only when the OPEN or FETCH statement is executed.

The pragma can also be used in CALL and in routines, see section “Pragmas in routines”
on page 339.

LIMIT ABORT_EXECUTION block_access

block_access
This argument allows you to specify the number of logical block access instances. Once
this number has been reached, no more hits will be detected and the statement will be
terminated. The number of block access instances should be specified as an unsigned
integer ranging from 0 to 2147483647.

U22420-J-2125-12-76 63

Pragmas and annotations Lexical elements and names

3.3.8

3.3.9

LOCK MODE pragma

The LOCK MODE pragma sets the lock mode. It is only effective in SQL-DML statements.

The pragma can be used in CALL and in routines, see section “Pragmas in routines” on
page 339.

LOCK MODE EXCLUSIVE

If LOCK MODE EXCLUSIVE is specified, every access to the database connected directly
or indirectly with this SQL statement involves exclusive locks. Otherwise the lock mode is
defined by the system.

LOOP LIMIT pragma

The LOOP LIMIT pragma enables you to limit the number of loop passes in a routine.

The LOOP LIMIT pragma is effective ahead of the SQL statement CALL and ahead of other
DML statements. When specified ahead of DML statements, the pragma has an effect on
all User Defined Functions (UDFs) and the routines of the DML statement these contain.
When placed ahead of SQL statements, the pragma has no effect in a routine.

LOOP LIMIT unsigned integer

unsigned_integer
Specifies the maximum number of passes for a loop.

When unsigned_integer=0, the number of loop passes is unlimited.
unsigned_integer=0 is also the default value when the pragma is not specified.

When this pragma is specified, the loop body is canceled after the specified number of
passes has been executed for each called loop of the routine concerned, and an
SQLSTATE is reported. This enables endless loops to be avoided.

64

U22420-J-2125-12-76

Lexical elements and names Pragmas and annotations

3.3.10 PREFETCH pragma

The PREFETCH pragma controls the block mode of the SQL statement FETCH (for
positioning the cursor). Block mode accelerates the execution of the FETCH statement. It
is effective only when FETCH positions the cursor on the next record in the cursor table
(FETCH NEXT...).

The PREFETCH pragma allows you to activate block mode and specify a blocking

factor (n). When the first FETCH NEXT... statement is executed, the column values of the
current record are read, and the next n -1 records of the associated cursor table are stored
in a buffer. When the next n-1 FETCH NEXT... statements that specify the same cursor are
executed, the next record can be accessed directly without involving the DBH.

The PREFETCH pragma is effective only in the following SQL statements:
e DECLARE CURSOR (for a static cursor)
e cursor description (for dynamic cursors)

If the cursor description of the DECLARE CURSOR statement or the cursor description for
dynamic cursors contains a FOR UPDATE clause, the PREFETCH pragma is ignored and
block mode is not activated.

When block mode is activated, it makes the cursor defined in the DECLARE CURSOR
statement or the cursor description the prefetch cursor.

Block mode cursors are not supported in linked-in mode.

PREFETCH blocking_factor

blocking factor
You must enter an integer without a preceding sign as the blocking factor (data type
SMALLINT).

If the blocking factor (n) is greater than 0, up to n-1 records of the specified cursor table
are stored in a buffer.

If the blocking factor is 0, the PREFETCH pragma has no effect.

You can enable/disable the pragma and thus activate/deactivate block mode by
specifying either a value greater than 0 or the value 0 itself for n.

U22420-J-2125-12-76 65

Pragmas and annotations

Lexical elements and names

When block mode is activated, the following restrictions apply:

Only the FETCH NEXT statement is permitted for the prefetch cursor cursor in the same
compilation unit. The following SQL statements can no longer be executed:

UPDATE ... WHERE CURRENT of cursor
DELETE ... WHERE CURRENT of cursor
STORE cursor

FETCH cursor with a cursor position other than NEXT or with a different INTO
clause to the first FETCH NEXT statement.

After the execution of a FETCH NEXT statement whose INTO clause contains the
name of an SQL descriptor area, this SQL descriptor area must not be modified by a
SET DESCRIPTOR, DESCRIBE or DEALLOCATE DESCRIPTOR statement.

The prefetch cursor must always be addressed by the same FETCH NEXT statement,
i.e. by the same statement in a loop or subroutine.

66

U22420-J-2125-12-76

Lexical elements and names Pragmas and annotations

3.3.11

UTILITY MODE pragma

The UTILITY MODE pragma determines whether transaction logging is effective in the SQL
statement in which this pragma is specified. Transaction logging makes it possible to roll a
transaction back to a consistent state.

The UTILITY MODE pragma is only effective in the SQL statement ALTER TABLE:

It only works if the ALTER TABLE statement adds, changes or deletes columns in a base
table. In an ALTER TABLE statement which adds or deletes integrity constraints, the
UTILITY MODE pragma has no effect.

ON
UTILITY MODE {ﬁ}

ON Transaction logging is deactivated during the execution of the SQL statement. The
associated ALTER TABLE statement does not open a transaction.
No save data for the ALTER TABLE statement is stored. If an error occurs which
results in an interruption of the statement, the transaction cannot be rolled back to
a consistent state. When an error occurs, the space containing the base table is
damaged and must be repaired using the RECOVER utility statement (see the
“SQL Reference Manual Part 2: Utilities”).

OFF The pragma has no effect.
The transaction logging remains active.

An ALTER TABLE statement, for which the UTILITY MODE pragma is switched ON and is

effective, is aborted with an error message in the following cases:

— when a transaction is active

— when the ALTER TABLE statement deletes a column, i.e. using DROP COLUMN
column CASCADE

— when the ALTER TABLE statement deletes a column and an index for this column is
still defined

— when the ALTER TABLE statement adds a column with an index definition for this
column

If no UTILITY MODE pragma is specified for an ALTER TABLE statement then the default
setting, UTILITY MODE OFF, is effective.

CAUTION!

If you use the UTILITY MODE ON pragma then, after an error or consistency check,
the space containing the base table to be changed is defective. To avoid data loss,
you should save the space before issuing the ALTER TABLE statement. The save
is necessary if you want to use the utility statement RECOVER to repair it.

U22420-J-2125-12-76 67

Names

Lexical elements and names

3.4 Names

Names are strings used to identify objects.
In SESAM/SQL, there are names for the following SQL objects:

database (catalog)

Schema

Space

Storage group

table (base table, view, correlation)
Column

Index

Integrity constraint

Authorization identifier

cursor

Routine (routine parameter, local variable, error)
label

dynamic statement:

The name of a dynamic statement is referred to in this manual as the statement
identifier to distinguish it from the actual name of the statement, such as SELECT, for
example.

symbolic attribute name of a CALL DML column:
The syntax for the symbolic attribute name of a column is the same as the syntax for
symbolic attribute names in SESAM/SQL Version 1.x.

host variable:

The name of a host variable must observe the conventions of the programming
language involved. These conventions are described in the manuals for the relevant
programming language and they are not explained here.

68

U22420-J-2125-12-76

Lexical elements and names Names

3.4.1 Unqualified names

Unqualified names are either regular names consisting of letters, digits and the underscore
character that are not enclosed in double quotes, or special names, which must be
enclosed in double quotes.

regular_name
special_name

letter
regular_name : := letter [< digit >1] ...

unqual_name : := {

special_name : := "character..."

letter : := a|blcldlel[flglhli]j[k[TImInfolplqlrlsitiulvIwlx|ylz]
AIBICIDIE[FIGIHITIJIKILIMIN[O[PIQIRISITIUIVIWIX]Y|Z

digit : := 0]1|2|3]4|5/6]7|8]9

regular_name
Regular name, which is not enclosed in double quotes. A regular name cannot be a
reserved SQL keyword (see section “SQL keywords” on page 745).

letter
Lowercase letter between a and z or uppercase letter between A and Z of the
SESAM/SQL character repertoire. Lowercase letters are automatically converted
into uppercase letters. Umlauts cannot be used.

digit
Digit between 0 and 9.
Underscore character.

special_name
Special name, which must be enclosed in double quotes. A special name can be a
reserved SQL keyword and can include special characters.

character
The first character cannot be the underscore character. Otherwise, you can use any
printable character (i.e. >X'40') in the SESAM/SQL character repertoire for character. A
distinction is made between uppercase and lowercase letters. If character is the double
quote character itself (X'7F"), it must be represented by two immediately adjacent
double quotes. The pair of double quote characters is considered a single character.

U22420-J-2125-12-76 69

Names

Lexical elements and names

Identical unqualified names

Two regular names are considered identical if, after the letters have been converted into
uppercase letters, the characters at the corresponding positions in each name are identical.

A regular name and a special name are considered identical if, after the letters in the regular
name have been converted into uppercase letters and the quotations have been removed
from the special name, the characters at the corresponding positions in each name are
identical. If the strings have different lengths, the shorter one is padded with blanks.

Two special names are considered identical if, after the quotations have been removed, the
characters at the corresponding positions in each name are identical. If the strings have
different lengths, the shorter one is padded with blanks.

Example

The following unqualified names are considered identical:

ABC

abc

1 ABC 1
IIABC 1

The following unqualified names are different:

Abc and "Abc"
"ABC" and "abc"

Identical names can be used interchangeably any time they occur.

70

U22420-J-2125-12-76

Lexical elements and names Names

The following names of database objects are unqualified names:

statement _id
authorization_identifier
catalog

cursor

unqual_base table_name
unqual_constraint_name
unqual_index_name
unqual_routine_name
unqual _schema_name
unqual_space_name
unqual_stogroup name
unqual_view_name
error_name
correlation_name

local variable

label

routine_parameter
column

> ::= unqual name

statement_id
Name of a dynamic statement. The statement identifier must be unique within the
compilation unit.
The statement identifier can be up to 18 characters long.

authorization_identifier
Name of an authorization identifier. The first 10 characters of the authorization identifier
must be unique within the database.

If the name of the authorization identifier is specified without double quotes, it can
include only letters and digits. If it is enclosed in double quotes, it must start with an
uppercase letter and can only include uppercase letters, digits and the special
characters “-” and “.”. The special characters cannot occur at the end of the significant
part of the authorization identifier (the first 10 characters).

The strings “..”, “.-” and “-.” are not permitted.

The string “--” is permitted.

The authorization identifier can be up to 18 characters long.

catalog
Name of a database. If the name of the database is specified without double quotes, it
can include only letters and digits. If it is enclosed in double quotes, it must start with an
uppercase letter and can only include uppercase letters, digits and the special
characters “-” and “.”. The special characters cannot occur at the end of the database
name. The strings “..”, “.-” and “-.” are not permitted. The string is permitted.

The database name may be up to 18 characters long.

“ o

U22420-J-2125-12-76 71

Names

Lexical elements and names

cursor
Name of a cursor. A cursor name can only occur once in a DECLARE CURSOR
statement within a compilation unit.
The cursor name may be up to 18 characters long.

unqual_base_table name
Name of a base table. The unqualified name of a base table must be different from the
other base table names and view names in the schema.
The unqualified base table name may be up to 31 characters long.

unqual_constraint_name
Name of an integrity constraint. The name must be different from the other integrity
constraint names in the schema.
The unqualified name of an integrity constraint can be up to 31 characters long.

unqual_index_name
Name of an index. The unqualified index name must be unique within the index names
of the schema.
The unqualified index name may be up to 18 characters long.

unqual_routine_name
Name of a routine. The unqualified routine name must be different from the other
routine names in the schema.
The unqualified routine name may be up to 31 characters long.

unqual_schema_name
Name of a schema. The unqualified schema name must be unique within the schema
names of a database.
The unqualified schema name may be up to 31 characters long.

unqual_space_name
Name of a space. The first 12 characters of the unqualified space name must be unique
within the space names of a database. If the space name is specified without double
quotes, it can include only letters and digits. If it is enclosed in double quotes, it must
start with an uppercase letter and can only include uppercase letters, digits and the
special characters “-” and “.”. The special characters cannot occur at the end of the
significant part of the space name (the first 12 characters).

The strings “..”, “.-” and “-.” are not permitted.

The string “--” is permitted.
The unqualified space name may be up to 18 characters long.

72

U22420-J-2125-12-76

Lexical elements and names Names

unqual_stogroup name
Name of a storage group. The unqualified name of the storage group must be unique
within the storage group of a database.
The unqualified name of a storage group can be up to 18 characters long.

unqual_view _name
Name of a view. The unqualified name of a the view must be different from the other
base table names and view names in the schema.
The unqualified view name may be up to 31 characters long.

exception_name
Name of an exception or SQLSTATE in a COMPOUND statement.
All exception names in the COMPOUND statement must differ from each other.
The exception name may be up to 31 characters long.

correlation_name
Rename a table.
The correlation name may be up to 31 characters long.

local variable
Name of a local variable in a COMPOUND statement. The variable name must be
unique in the COMPOUND statement and differ from all parameter names in the
routine.
The variable name may be up to 31 characters long.

label
Name of a label in a routine. The label may not be identical to another label in the body
statement.
Reserved keywords and the following names are not permitted as label names:
ATOMIC, DO, ELSEIF, ITERATE, IF, LEAVE, LOOP, REPEAT, RESIGNAL, SIGNAL,
UNTIL, WHILE.
The label name may be up to 31 characters long.

routine_parameter
Name of a routine parameter. The parameter name must be unique within the routine.
The parameter name may be up to 31 characters long.

column
Name of a column. The column name must be unique within the table.
The unqualified column name may be up to 31 characters long.

U22420-J-2125-12-76 73

Names

Lexical elements and names

3.4.2 Qualified names

You can qualify the names of objects in an SQL statement in order to uniquely identify
different objects that have the same name. The following qualifications are possible:

qualification with the database name for:
schema, space, storage group, table, index, integrity constraint and routine

qualification with the schema name for:
table, index, integrity constraint and routine

qualification with the table name or the correlation name for:
column (see page 279)

The syntax overview below illustrates these possibilities:

index
integrity constraint_name
routine
schema
qualified name ::=
= space
stogroup
table
index : := [Lcatalog. Junqual_schema_name.lunqual_index_name
integrity_constraint_name: := [[catalog. lunqual_schema_name.lunqual_constraint_name
routine: := [Lcatalog. Junqual schema_name. Junqual_routine_name
schema : := [catalog. Junqual_schema_name
space : := [catalog. lunqual_space_name
stogroup : := [catalog. lunqual stogroup name

[Lcatalog. lunqual_schema_name. Junqual_basis_table_name
table : := < [Lcatalog. Junqual_schema_name. Junqual_view_name
correlation_name

74

U22420-J-2125-12-76

Lexical elements and names Names

Implicit qualification

The following implicit qualification is valid:

e If no schema qualification is specified, the name refers to the default schema.
e If no catalog qualification is specified, the name refers to the default database.

The default schema and database are set with the precompiler option SOURCE-
PROPERTIES (see the “ESQL-COBOL for SESAM/SQL-Server” manual). The default
database and schema names can be redefined with SET CATALOG and SET SCHEMA
respectively. The redefined default values are valid for all statements prepared with
PREPARE or executed with EXECUTE IMMEDIATE from the time redefinition is performed
up until the defaults are redefined again or until the end of the SQL session.

Other rules for implicit qualification apply to CREATE and GRANT statements within
a CREATE SCHEMA statement (see section “CREATE SCHEMA - Create schema”
on page 420).
Example
Qualifying a table name indicates the schema and database to which the table belongs:

ordercust.orderproc.customers:
CUSTOMERS table in the ORDERPROC schema of the ORDERCUST database

orderproc.customers:
CUSTOMERS table in the ORDERPROC schema of the default database.

customers:
CUSTOMERS table in the default schema

U22420-J-2125-12-76 75

Names Lexical elements and names

Overview
Name type Examples Meaning
Regular name Customers “Customers” and “customers” are
customers equivalent
job_2 Numerics and the underscore
character are permitted
Special name "TAB—ELLE" Special characters are permitted
TV
"with_2_quotes:""""" Quotes must be entered twice
Unqualified name | orderproc Schema ORDERPROC
Qualified name ordercust.orderproc.Viewl Table VIEW1 in the schema
ORDERPROC of the database
ORDERCUST
"View"."SELECT(5)" Single column SELECT(5) in the
table View
"WIEW"."SELECT"(5) Occurrence of the multiple column
SELECT of the table VIEW
A.order_num Column name ORDER_NUM
qualified by the correlation name A

Table 10: Names in SESAM/SQL

76 U22420-J-2125-12-76

Lexical elements and names

Names

3.4.3 Defining names

The name of an object is usually defined when the object itself is defined using the
appropriate SQL statement. The name has then been introduced and the object can be
referenced using this name in any subsequent statements.

The table below illustrated how the various names can be defined or declared:

SQL object

SQL statement or part of statement

database (catalog)

CREATE CATALOG (utility statement)

Schema CREATE SCHEMA
TABLE

Base table CREATE TABLE

View CREATE VIEW

Correlation Table specification in query expression
Column CREATE TABLE, ALTER TABLE

CREATE VIEW, query expression

Integrity constraint

CONSTRAINT clause in
CREATE TABLE, ALTER TABLE

User Defined Function (UDF)

Index CREATE INDEX
Routine
Procedure CREATE PROCEDURE

CREATE FUNCTION

Storage group

CREATE STOGROUP

Space

CREATE SPACE

Authorization identifier

CREATE USER

cursor

DECLARE CURSOR

statement identifier

PREPARE

Table 11: Defining names

U22420-J-2125-12-76

77

Names Lexical elements and names

78 U22420-J-2125-12-76

4 Data types and values

This chapter is subdivided into the following sections:
e Overview

e Datatypes

e Values

e Assignment rules

It has two parts. After an overview of the SESAM/SQL data types and their corresponding
range of values, the first part provides you with all the information you need to know about
data types with regard to defining table columns:

e syntax
e range of values defined by the data type
e Compatibility between data types

@ In routines, the routine parameters and the local variables also have a data type.

The second part provides you with all the information you need for using the values of a
data type:

e syntax of the literals
e rules for entering the values in table columns, routine parameters, and local variables
e rules for using values in expressions and search conditions

e rules governing data type compatibility and conversion during assignment

U22420-J-2125-12-76 79

Overview

Data types and values

4.1 Overview of data types and the associated value ranges

411

The values, or data, that a table contains must lie within a specific range of values. The
range of values is determined by the data type.

Data type groups

SESAM/SQL supports the following data types:

e Strings:

— Alphanumeric data types:

i

CHARACTER
CHARACTER VARYING

In the SESAM/SQL suite of manuals the term “alphanumeric” expresses the
affiliation to an EBCDIC character set, e.g. alphanumeric data type,
alphanumeric value, alphanumeric literal. The short forms CHAR and
VARCHAR are used in this manual for the alphanumeric data types.

— National data types:

i

NATIONAL CHARACTER
NATIONAL CHARACTER VARYING

In the SESAM/SQL suite of manuals the term “national” expresses the affiliation
to a Unicode character set, e.g. national data type, national value, national
literal. The short forms NCHAR and NVARCHAR are used in this manual for the
national data types.

e Numeric data types

— Integer data types:

SMALLINT
INTEGER

— Fixed-point number data types:

NUMERIC
DECIMAL

— Floating-point number data types:

REAL
DOUBLE PRECISION
FLOAT

80

U22420-J-2125-12-76

Data types and values Overview

41.2

41.3

41.4

e Time data types:
— DATE
- TIME
— TIMESTAMP

Range of values

Each data type defines a corresponding range of values. Like the data type groups, there
are alphanumeric values, national values, numeric values and time values. There are also
NULL values (see section “NULL value” on page 104).

Appropriate literals and rules on how the values can be used exist for these values. These
are described in the section “Values” on page 100.

Column

The rows in a table are divided into columns. Each column has a name and data type.
SESAM/SQL distinguishes between atomic and multiple columns.
In an atomic column, exactly one value can be stored in each row.

In a multiple column, several values of the same type can be stored in each row. A multiple
column is made up of a number of column elements. In the case of a single column, a single
value is stored for each row. The value of a column element is called an occurrence. The
value of a multiple column is called an aggregate. An aggregate is made up of the
occurrences of the individual column elements.

A column element is referenced within the multiple column using its position number.
Contiguous subareas of a multiple column are specified using the position numbers of the
first and last column elements in the subarea.

Example

X[2] or X(2)
Second column element of the multiple column X

X[4..7] or X(4..7)
Subarea consisting of column elements 4, 5, 6, and 7 of the multiple column X

Parameters of routines and local variables

In routines, parameters and local variables can be used. Parameters and local variables
have a name and a data type. In contrast to columns, they cannot be multiple.

U22420-J-2125-12-76 81

Data types

Data types and values

4.2

Data types

You must specify a data type for each column in a table when you define the columns with
CREATE TABLE or ALTER TABLE. The data type defines the type of values that you can
enter in the column. After you have defined a table, you can use ALTER TABLE to a certain
extent to change the existing data type.

BLOBs (Binary Large Objects) are based on existing data types in SESAM/SQL and are
therefore not a new data type in themselves. Information on their structure and how to use
them can be found in the chapter “SESAM-CLI” on page 587 and in the “Core manual’.

Excluding the NULL value

If you want to exclude the NULL value for a column, you must specify this when you define
the table with CREATE TABLE or ALTER TABLE by including a NOT NULL constraint (see
section “Column constraints” on page 266).

Multiple columns

All the elements in a multiple column have the same data type. You can use any data type
except VARCHAR and NVARCHAR for a multiple column. The dimension of a multiple
column indicates the number of elements; it is specified when the data type is assigned and
must be between 1 and 255.

82

U22420-J-2125-12-76

Data types and values Data types

4.2.1 Overview of SQL data types

The following overview indicates the syntax for all SQL data types used in column
definitions:

data_type : :=

[[di.mensifm] 1CHARLACTERIL (length) 1
(dimension)

CHARLCACTERT VARYING(max)
VARCHAR (max)

[{{”é’l’;‘fe’zlss’l"o’;]) } J{EéaigNAL CHAR[ACTER]} [(cu_length [CODE_UNITS1)]

NATIONAL CHAR[CACTER] VARYING
NCHAR VARYING (cu_max [CODE_UNITSI)
NVARCHAR g

SMALLINT

INTLEGER]

NUMERICL (precisionl ,scalel)]
DECLIMALIL (precisionl ,scalel)]
REAL

[{Mimensm] 1< DOUBLE PRECISION -
(dimension)
FLOATL (precision)]
DATE
TIME(3)
TIMESTAMP(3)

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

The data types are described in the order in which they are listed in the overview.

U22420-J-2125-12-76 83

CHARACTER Alphanumeric data types

4.2.2 Alphanumeric and national data types

The alphanumeric and national data types are described in the following sections.

CHARACTER - String with a fixed length

You use the data type CHARACTER or CHAR for columns that can store alphanumeric
values of a fixed length (see section “Alphanumeric literals” on page 106).

[J [dimension] 1\ y o ACTERTT length) 1
(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column; dimension
indicates the number of column elements. dimension can be enclosed in square
brackets or parentheses.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

length
Unsigned integer between 1 and 256 that indicates the length of the CHAR column.

length omitted:
length=1.
Range of values for CHAR columns

A CHAR column can contain alpnanumeric values of the length specified for the column.

84 U22420-J-2125-12-76

Alphanumeric data types

CHARACTER

Example

=3

The CUSTOMERS table contains 6 CHAR columns of varying lengths.
The values that the columns can store are alphanumeric strings with a length of 3,
25, 40 and 50 respectively:

company
street
city
country
cust_tel

cust_info

CHAR(40) NOT NULL
CHAR(40)
CHAR(40)
CHAR(3)
CHAR(25)
CHAR(50)

U22420-J-2125-12-76

85

CHARACTER VARYING Alphanumeric data types

CHARACTER VARYING - String with a variable length

You use the data type CHARACTER VARYING or VARCHAR for columns that can store
alphanumeric values of a variable length (see section “Alphanumeric literals” on page 106).

CHARLCACTER] VARYING(max)
VARCHAR (max)

max
Unsigned integer between 1 and 32 000 that defines the maximum length of the
VARCHAR column.
Range of values for VARCHAR columns
A VARCHAR column can contain alphanumeric values of any length that are less than or
equal to the specified maximum length.
Example

You define a VARCHAR column description that can store alphanumeric values with a
maximum length of 1000 characters as follows:

description VARCHAR(1000)

86

U22420-J-2125-12-76

Alphanumeric data types NATIONAL CHARACTER

NATIONAL CHARACTER - Strings with a fixed length

The data type NATIONAL CHARACTER or NCHAR is used for columns which can contain
fixed-length national values (see the section “National literals” on page 108).

[dimension] NATIONAL CHARCACTER]
th LCODE_UNITSI)1]
[{ (dimension) . NCHAR [Ccu_leng -)

dimension
Unsigned integer between 1 and 255. The column is a multiple column; dimension
indicates the number of column elements. dimension can be enclosed in square
brackets or parentheses.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

cu_length
Unsigned integer between 1 and 128 that defines the length of the NCHAR column in

code units.

cu_length omitted:
cu_length=1.

In SESAM/SQL the encoding form UTF-16 in which each code unit consists of
2 bytes is used for Unicode strings.

Range of values for NCHAR columns

An NCHAR column can contain national values of the length specified for the column.

Example
@ The MANUALS table contains one INTEGER and two NCHAR columns of fixed

length. The values which the NCHAR columns can contain are national strings of
the length 20 or 30:

ord_num INTEGER
language NCHAR(20)
title NCHAR(30)

U22420-J-2125-12-76 87

NATIONAL CHARACTER VARYING Alphanumeric data types

NATIONAL CHARACTER VARYING - Strings with a variable length

The data type NATIONAL CHARACTER VARYING or NVARCHAR is used for columns
which can contain national values (see the section “National literals” on page 108) with a
variable length.

{NATIONAL CHARLCACTERI VARYING

NCHAR VARYING (cu_max LCODE_UNITSI)
NVARCHAR

cu_max
Unsigned integer between 1 and 16000 that defines the maximum length of the
NVARCHAR columns in code units.

In SESAM/SQL the encoding form UTF-16 in which each code unit consists of
2 bytes is used for Unicode strings.
Range of values for NVARCHAR columns
An NVARCHAR column can contain national values of any length which are less than or
equal to the specified maximum length.
Example

You define an NVARCHAR column description_in_Greek which can contain national
values with a maximum length of 1000 characters as follows:

description_in_Greek NVARCHAR(1000)

88

U22420-J-2125-12-76

Numeric data types SMALLINT

4.2.3 Numeric data types

The numeric data types are described in the following sections.

SMALLINT - Small integer

You use the data type SMALLINT for columns that can store small integers (see section
“Numeric values” on page 115).

[{[dimension] | gy | T

(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

Range of values for SMALLINT columns
The range of values for a SMALLINT column is -2 to 215-1.

Example

You define a SMALLINT columns quantity as follows:

quantity SMALLINT

U22420-J-2125-12-76 89

INTEGER

Numeric data types

INTEGER - Integers

You use the data type INTEGER for columns that can store large integers (see section
“Numeric values” on page 115).

[{[dimension]

(dimension) 1 INTLEGER

dimension

Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.
Range of values for INTEGER columns

The range of values for an INTEGER column is 23110 2811,

Example
@ The SERVICE table has three INTEGER columns:

service_num INTEGER
order_num INTEGER NOT NULL
service_total INTEGER CHECK (service_total > 0)

90

U22420-J-2125-12-76

Numeric data types NUMERIC

NUMERIC - Fixed-point numbers

You use the data type NUMERIC for columns that can store fixed-point numbers (see
section “Numeric values” on page 115). Unlike DECIMAL, the internal representation of
NUMERIC is more efficient with regard to output to the screen.

(dimension) 1 NUMERICL (precisionl ,scalel)]

[{[dimension]

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

precision
Unsigned integer between 1 and 31 that indicates the total number of significant digits.

precision omitted:
precision=1.

scale
Unsigned integer between 0 and precision that indicates the number of digits to the right
of the decimal point.

scale omitted:
scale=0.

Range of values for NUMERIC fixed-point columns

A NUMERIC fixed-point column can store fixed-point numbers whose value is 0 or ranges
from 10-5¢ale g qQprecision-scale_qy-scale

Example
@ The SERVICE table has three NUMERIC fixed-point columns:

service_price NUMERIC(5,0)
vat NUMERIC(2,2)
inv_num NUMERIC(4,0)

The vat column contains fixed-point numbers with two digits to the right of the
decimal point and no digits (that are not equal to null) to the left of the decimal point.

U22420-J-2125-12-76 91

DECIMAL

Numeric data types

DECIMAL - Fixed-point numbers

You use the data type DECIMAL for columns that can store fixed-point numbers (see
section “Numeric values” on page 115).

Unlike NUMERIC, the internal representation of DECIMAL is shorter and more efficient for
calculation purposes.

L [dlfnenszf)n] 1 DECLIMALIL (precisionl ,scalel)]
(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

precision
Unsigned integer between 1 and 31 that indicates the total number of significant digits.

precision omitted:
precision=1.

scale
Unsigned integer between 0 and precision that indicates the number of digits to the right
of the decimal point.

scale omitted:
scale=0.
Range of values for DECIMAL fixed-point columns
A DECIMAL fixed-point column can contain fixed-point numbers whose value is 0 or ranges
from 1o-scale to 1 Oprecision-scale_»] O-scale_
Example

You define a DECIMAL column weight with six digits to the left of the decimal point and
two digits to the right of the decimal point as follows:

weight DECIMAL(8,2)

92

U22420-J-2125-12-76

Numeric data types REAL

REAL- Single-precision floating-point numbers

You use the data type REAL for columns that can store single-precision floating-point
numbers (see section “Numeric values” on page 115).

[{[dtmenswn]] REAL

(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.
Range of values for REAL columns

A REAL column can contain floating-point numbers whose value is 0 or ranges from 5.4E"
" to0 7.2E*7S.

The precision of REAL floating-point numbers is 21 binary digits, which is approximately
6 decimal digits.

Example

You define a REAL column weight as follows:

weight REAL

U22420-J-2125-12-76 93

DOUBLE PRECISION Numeric data types

DOUBLE PRECISION - Double-precision floating-point numbers

You use the data type DOUBLE PRECISION for columns that can store double-precision
floating-point numbers (see section “Numeric values” on page 115).

[{[d’menm"] 1 DOUBLE PRECISION

(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.
Range of values for DOUBLE PRECISION columns

A DOUBLE PRECISION column can contain floating-point numbers whose value is 0 or
ranges from 5.4E79 to 7.2E*75.

The precision of DOUBLE PRECISION floating-point numbers is 53 binary digits or
approximately 16 decimal digits.

Example
You define a DOUBLE PRECISION column weight as follows:

weight DOUBLE PRECISION

94

U22420-J-2125-12-76

Numeric data types FLOAT

FLOAT - Floating-point numbers

You use the data type FLOAT for columns that can store floating-point numbers (see
section “Numeric values” on page 115). The precision can be specified.

[{[dzmenslonj 1 FLOATL (precision)]

(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

precision
Unsigned integer between 1 and 53 that indicates the minimum number of binary digits
for the mantissa.

precision omitted:
precision=1.
Range of values for FLOAT columns

A FLOAT column can contain a floating-point number whose value is 0 or ranges from
5.4E79 to 7.2E*75

In SESAM/SQL, the precision of FLOAT floating-point numbers is 53 binary digits if precision
is greater than 21, otherwise it is 21 binary digits.

Example
You define a FLOAT column test_value with a precision of at least 30 binary digits as
follows:
test_value FLOAT(30)

U22420-J-2125-12-76 95

DATE

Time data types

4.2.4 Time data types

The date and time data types are described in the following sections.

DATE

You use the data type DATE for columns that can store a date (see section “Time values”
on page 117).

[{[dlmenswn]] DATE

(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.
Range of values for DATE columns

A DATE column can contain date specifications lying in the range 0001-01-01 to
9999-12-31. The date specification must observe the rules of the Gregorian calendar even
if the date involved is before the introduction of the Gregorian calendar.

Example

@ The ORDERS table contains three DATE columns:

order_date DATE DEFAULT CURRENT_DATE
actual DATE
target DATE

96

U22420-J-2125-12-76

Time data types TIME

TIME

You use the data type TIME for columns that can store a time (see section “Time values”
on page 117).

[{[d’memw”] 1 TIME(3)

(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:

The column is an atomic column.
Range of values for TIME columns
A TIME column can contain times that lie within the range 00:00:00.000 to 23:59:61.999.
The range for seconds (00.000 to 61.999) allows you to specify up to two leap seconds.
Example

You define a TIME column wakeup_time as follows:

wakeup_time TIME(3)

U22420-J-2125-12-76 97

TIMESTAMP Time data types

TIMESTAMP

You use the data type TIMESTAMP for columns that can store a time stamp (see section
“Time values” on page 117).

[{[dzmenswn] 1 TIMESTAMP(3)

(dimension)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.
Range of values for TIMESTAMP columns

A TIMESTAMP column can contain dates that lie within the range 0001-01-01 to
9999-12-31 and times that lie within in the range 00:00:00.000 to 23:59:61.999.

The range for seconds (00.000 to 61.999) allows you to specify up to two leap seconds. The
date specification must observe the rules of the Gregorian calendar even if the date
involved is before the introduction of the Gregorian calendar.

Example

You define a TIMESTAMP column appointment as follows:

appointment TIMESTAMP(3)

98 U22420-J-2125-12-76

Data types

Compatibility

4.2.5 Compatibility between data types

If values are used in calculations, predicates and assignments, the data types of the
operands involved must be compatible.

Two data types are compatible if they fulfill the following conditions:

Both data types are CHAR or VARCHAR.
Both data types are NCHAR or NVARCHAR.

Both data types are numeric (SMALLINT, INTEGER, NUMERIC, DECIMAL, REAL,
DOUBLE PRECISION or FLOAT).

Both data types are DATE.
Both data types are TIME.
Both data types are TIMESTAMP.

Values from various character sets are not converted implicitly in SESAM/SQL to make
them compatible.

Transliteration of strings is possible with the TRANSLATE function, see the section
“TRANSLATE() - Transliterate / transcode string” on page 203.

U22420-J-2125-12-76

99

Values

Data types and values

4.3 Values

Values are specified in SESAM/SQL statements for the following purpose:
e insert or update column values (INSERT, MERGE, UPDATE)

e perform calculations and comparisons (e.g. SELECT column selection, HAVING, ON
and WHERE search conditions)

SESAM/SQL makes a distinction between NULL values and non-NULL values. Non-NULL
values are grouped according to data type.

Therefore, there are the following groups of values:

e NULL values (see section “NULL value” on page 104)

e alphanumeric values (see section “Strings” on page 106)

e national values (see section “Strings” on page 106)

e numeric values (see section “Numeric values” on page 115)
e time values (see section “Time values” on page 117)

REF values, which occur in conjunction with BLOBs (Binary Large Obijects), are special
alphanumeric values used to reference BLOBs in base tables. Information on defining REF
values in base tables can be found in the section “Column definitions” on page 272.
Information on their structure and how to use them can be found in the chapter “SESAM-
CLI” on page 587 and in the “Core manual’.

100

U22420-J-2125-12-76

Values Literals

4.3.1 Literals

With the exception of NULL values, there are corresponding literals for each group of
values:

alphanumeric_literal
national_literal
literal - - =< special_literal
numeric_literal
time_literal

alphanumeric_literal
Alphanumeric literal (see section “Alphanumeric literals” on page 106).

national_literal
National literal (see section “National literals” on page 108).

special_literal
Special literal (see section “Special literals” on page 110).

numeric_literal
Numeric literal (see section “Numeric literals” on page 115).

time_literal
Time value (see section “Time literals” on page 117).

U22420-J-2125-12-76 101

Specifying values Values

4.3.2 Specifying values

A value can be specified in the following ways:
e as aliteral

e with a user variable when the statement is not part of a routine (see section “Host
variables” on page 21)

e with a parameter (see page 416) or a local variable (see page 402) when the statement
is part of a routine

e with a placeholder "?" for values which are not yet known
(in a dynamic statement or cursor description, see section “Dynamic SQL” on page 32)

literal
:host_variable [LINDICATOR] :indicator variable]
value : := < routine_parameter

local variable
?

literal
Alphanumeric literal, national literal, special literal, numeric literal or time literal.

host_variable
Name of the host variable that contains the value.

If you have specified an indicator variable and the value of the indicator variable is
negative, the NULL value is used instead of the value of the host variable.

indicator_variable
Name of an indicator variable for the preceding host variable. The data type of
indicator_variable is SMALLINT.

routine_parameter
Name of a routine's parameter which contains the value.

local variable
Name of a routine's local variable which contains the value.

? Placeholder in a dynamic SQL statement.

102 U22420-J-2125-12-76

Values Values for multiple columns

4.3.3 Values for multiple columns

The value for a multiple column is an aggregate. An aggregate consists of one or more
elements called occurrences. The number of occurrences must be between 1 and 255 and
must correspond to the dimension of the multiple column. Values in multiple columns are
referred to as multiple values; values in atomic columns are referred to as atomic values (or
simply as values).

oz < value -
aggregate : .= NULL y e
value
Value of the occurrence.
NULL

NULL value for the occurrence.

If you set elements of the multiple column to the NULL value with INSERT or UPDATE and
the subsequent elements are not null, the non-NULL values in the multiple columns are
moved to smaller position numbers and the NULL values are entered after all the non-NULL
values.

Example

You can use INSERT to assign values to the numeric multiple column COLOR_TAB
with three elements:

INSERT INTO color_tab (rgb(1..3)) VALUES (<0.88,NULL,0.77>)
The multiple column then contains the multiple value:

<0.88,0.77,NULL>

U22420-J-2125-12-76 103

NULL value Values

4.3.4 NULL value

NULL values are a special feature of relational databases. A NULL value means a value is
undefined or unknown.

The NULL value is different to all other values. Do not confuse it with a string with the length
0, the blank or numeric 0.

4.3.41 Keyword for the NULL value

The keyword for the NULL value is NULL. NULL can only be specified during INSERT,
MERGE and UPDATE operations, in a CAST expression, in a CASE expression and as the
DEFAULT in column definitions to set a column value to the NULL value.

Example

You enter an item whose color is unknown into the ITEMS table as follows:

@ INSERT INTO items VALUES (5, 'Valve', NULL, 1.00, 350, 100)

NULL can also be specified in predicates (search queries, IF statement), as the default
value of local variables (in routines), and in SET and RETURN statements.

4.3.4.2 NULL value in table columns

You can prohibit use of the NULL value in a column in a base table by specifying one of the
following column constraints in the column definition:

e NOT NULL constraint
e PRIMARY KEY constraint
e check constraint that prohibits use of the NULL value

If use of the NULL value is not prohibited, a column can contain the NULL value.

104 U22420-J-2125-12-76

Values

NULL value

4343

4.3.4.4

4.3.4.5

NULL value in functions, expressions and predicates

The keyword NULL cannot be specified for values in expressions (except in CASE and
CAST expressions), functions and predicates. You can, however, specify subexpressions
(for example, a column name) whose result is the NULL value.

If the NULL value occurs in an expression, the result of the expression is also the NULL
value.

If the NULL value occurs in a predicate, the result is usually the truth value unknown. There
are, however, exceptions such as the predicate IS [NOT] NULL, for example. The result of
each function, operator and predicate if an operand is the NULL value can be found in the
chapter “Compound language constructs” on page 133.

NULL value in GROUP BY

If you specify the GROUP BY clause in a SELECT statement, all the rows that contain the
NULL value in the same grouping columns and identical values in the rest of the grouping
columns are grouped together.

NULL value in ORDER BY

If you specify the ORDER BY clause in a cursor description, indicating that a cursor table
is to be sorted, NULL values are smaller than all non-NULL values.

U22420-J-2125-12-76 105

Strings Values
4.3.5 Strings
Strings are sequences of any characters in EBCDIC or Unicode. EBCDIC strings are
termed “alphanumeric values”, Unicode strings are termed “national values”.
In SESAM/SQL, alphanumeric literals, national literals and special literals are used to
represent strings.
4.3.5.1 Alphanumeric literals

The syntax for an alphanumeric literal is defined as follows:

'Lcharacter. . .1"' Useparator. .. "' [character...1'}...] }
]

Iph ic_literal : :=
phanimerte _ferd {X‘ Chex hex]. .. ' [{separator...'Chexhexl...'}...

character
Any EBCDIC character. If a string contains a single quote ('), you must duplicate this
single quote. The pair of single quote characters is considered a single character (e.g.
'Variable length strings are of the type ''CHARACTER VARYING''').

hex
A hexadecimal character from the range 0-9, A-F or a-f

The data type of an alphanumeric literal is CHAR(length). length is the number of characters
or pairs of hexadecimal numbers. Alphanumeric literals can be up to 256 characters long.
Strings with the length 0 are permitted as literals although it is not possible to define a data
type CHAR(0) (see section “Alphanumeric and national data types” on page 84). The data
type is then VARCHAR(0).

The two forms of alphanumeric literal, character and hex, may be concatenated, as for
instance in the German number “fiinfzig” (50, 'f'||x'FD'|| 'nfzig') orin a concatenation
with a special literal (' User:' | |CURRENT_USER).

“|I” must be used as the operator for the concatenation.

@ When strings are concatenated, either both operands must be alphanumeric
(CHAR or VARCHAR) or both must be of the national type (NCHAR or
NVARCHAR), see the section “Compatibility between data types” on page 99.

106

U22420-J-2125-12-76

Values Strings

separator
Separator that separates two substrings from each other (see section “Separators” on
page 52). If an alphanumeric literal consists of two or more substrings, adjacent
substrings must be separated by one or more separators. At least one of the separators
must be a transition point to the next row.

The result of an alphanumeric literal comprising substrings is the concatenation of the
substrings involved without the operator for concatenation having to be written for this
purpose.

Example

The following alphanumeric literal consists of three substrings:

'Separated ' —— First substring
'by table ' —— Second substring
"and bed' —— Third substring

The result is the string 'Separated by table and bed'.

U22420-J-2125-12-76 107

Strings Values

4.3.5.2 National literals

The syntax for a national literal is defined as follows:

national literal : :=

N' Ccharacter. . .1'[{separator. .. "' [character...]1'}...]
NX'[4hex...]1'[{separator..." ' [4hex...]1'}...]
character character
3 esc 4hex esc 4hex s
ug&' R tor.." "}...JLUESCAPE' '
L esct Ghex 1" [{separator...' [esct Ghex boo 0L esc']
esc esc esc esc
character

A Unicode character which is also contained in the EDFO3IRV character set. If a string
contains a single quote ('), you must duplicate this single quote. The duplicated single
quote counts as one character.

4hex
4hex is a group of 4 consecutive hexadecimal characters and constitutes a UTF-16 code
unit which must be in the range 0000 through FFFF. (However, the UTF-16 code units
FFFE and FFFF and the code units in the range FDDO - FDEF are so-called
noncharacters and may not be used in literals in SESAM/SQL, see the Unicode concept
in SESAM/SQL in the “Core Manual”.) When 4/ex is specified, lower case is permitted
for the hexadecimal characters A through F.

Example
NX'004100420043" for the string 'ABC".

esc 4hex
Hexadecimal representation of a code point through the escape character esc and
(without any intervening blank) a 4-digit hexadecimal value 4hex which must be in the
range 0000 through FFFD. The specification esc must be written exactly as specified in
the UESCAPE clause. When esc4hex is specified, lower case is permitted for the
hexadecimal characters A through F.

Example

U&'\0ODF" for the character 'R}’

U&'\0395\03BB\03BB\03B7\03BD\03BI\03BA\O3AC means Greek’
returns the string “EAAnv Lx& means Greek”

108 U22420-J-2125-12-76

Values Strings

esct 6hex
Hexadecimal representation of a code point through the escape character esc followed
by ,,+“ and (without any intervening blank) a 6-digit hexadecimal value 6kex which
must be in the range 000000 through 10FFFD. (The code points 10FFFE and 10FFFF
and also the code points from the ranges OxFFFE and OxFFFF (where x is a
hexadecimal number) are so-called noncharacters and may not be used in literals in
SESAM/SQL, see the Unicode concept in SESAM/SQL in the “Core manual”). The
specification esc must be written exactly as specified in the UESCAPE clause. When
esc+ 6hex is specified, lower case is permitted for the hexadecimal characters A through
F.

Example
U&'\+0000DF’ for the character '3'.

esc esc
With esc esc (without any intervening blank) you can invalidate the esc character, as a
result of which this string represents an esc character.

Example
U&'"\\’ for the character '\'

UESCAPE 'esc'
Specification of an escape character. esc can be any alphanumeric character with the
exception of the plus character, double quotes ("), single quote (') and blank.

If UESCAPE 'esc' is not specified, the backslash (\) is used as the default.

The data type of a national literal is NCHAR(cu_length). cu_length is the number of code units
(1 code unit in UTF-16 = 2 bytes). The strings may be up to 128 code units long. Strings of
which are 0 characters long are permitted as literals, although it is not possible to define a
data type NCHAR(0) (see the section “Strings” on page 106). The data type is then
NVARCHAR(0).

1 code unit is required to represent a code point in UTF-16, except in the case of code
points which are contained in the range 010000 through 10FFFD. These code points
require two code units.

U22420-J-2125-12-76 109

Strings Values

The various forms of national data type can be concatenated as, for example, in “Price in €”:

N'Price in '||NX'20AC'
N'Price in '||U&'\20AC"

“|I” must be used as the operator for the concatenation.

@ When strings are concatenated, either both operands must be alphanumeric
(CHAR or VARCHAR) or both must be of the national type (NCHAR or
NVARCHAR), see the section “Compatibility between data types” on page 99.

separator
Separator that separates two substrings from each other (see section “Separators” on
page 52). If a national literal consists of two or more substrings, adjacent substrings
must be separated by one or more separators. At least one of the separators must be
a transition point to the next row.

The result of a string literal consisting of substrings is the concatenation of the
substrings involved without the operator for concatenation having to be written for this
purpose.

4.3.5.3 Special literals

The syntax for special literals is as follows:

CURRENT_CATALOG
CURRENT_ISOLATION_LEVEL
CURRENT_REFERENCED_CATALOG
CURRENT_SCHEMA
CCURRENT_JUSER

SYSTEM_USER

special_literal : :=

CURRENT_CATALOG
Name of the database preset with the SQL statement SET CATALOG or SET SCHEMA
or the *IMPLICIT string if no database is preset.
The result is a string of the type CHAR(18).

110 U22420-J-2125-12-76

Values Strings

CURRENT_ISOLATION_LEVEL
Isolation level of the current transaction (defined implicitly by the user configuration or
explicitly by the SQL statement SET TRANSACTION /evel at the beginning of a
transaction). It does not specify the isolation level which is defined on a statement-
specific basis with the pragma ISOLATION LEVEL.
The result is a value of the type INTEGER in accordance with the table below: .

Result |lIsolation level Consistency
levels
8 SERIALIZABLE 4
4 REPEATABLE READ 3
5 READ NO WAIT 1
2 READ COMMITTED 2
1 READ UNCOMMITTED 0

CURRENT_REFERENCED_CATALOG
Name of the database to which the current statement refers.
The result is a string of the type CHAR(18).

CURRENT_SCHEMA
Name of the schema preset with the SQL statement SET SCHEMA or the *IMPLICIT
string if no schema is preset.
The result is an alphanumeric string of the type VARCHAR(31).

[CURRENT_ JUSER
Name of the current authorization identifier.
The result is a string of the type CHAR(18).

SYSTEM_USER
Name of the current system user. The name is made up of the host name, the UTM
application name (or blanks) and the UTM or BS2000 user ID.
The result is a string of the type CHAR(24).

U22420-J-2125-12-76 111

Strings

Values

4.3.5.4 Using strings

An alphanumeric or a national value can be used in:

Assignments:
(see section “Assignment rules” on page 121)

Functions:
An alphanumeric or a national value can be used in the aggregate functions COUNT(),
MIN() and MAX(), in numeric functions and in string functions.

Concatenation:

Two alphanumeric values can be concatenated to create a single alphanumeric value;
two national values can be concatenated to create a single national value. See section
“Compatibility between data types” on page 99.

Predicates:

An alphanumeric or a national value can be used in comparisons with another value or
with a derived column, in range queries, in element queries and in pattern comparisons.
All the values concerned must be either alphanumeric values or national values, see
the section “Compatibility between data types” on page 99. The rules governing
comparisons are described in the section “Comparison of two rows” on page 216.

Functions, expressions and predicates are described in detail in the chapter “Compound
language constructs” on page 133.

Alphanumeric literals in the form X'..." must not be used in SET CATALOG, SET SCHEMA,
SET SESSION AUTHORIZATION statements or in the GLOBAL descriptor.

112

U22420-J-2125-12-76

Values Strings

Examples

Enter first and last name in the CUSTOMERS table:

é%ﬁ INSERT INTO customers (cust_num, company, street, zip)
VALUES (100, 'Siemens AG', 'Otto—Hahn—-Ring 6',81739)

INSERT INTO customers (cust_num, company, street, zip)
VALUES (100,Siemens AG,"Otto-Hahn-Ring 6",81739)
This is an error: strings must be enclosed in single quotes.

Search for the names of the tables, the authorization identifiers and the privileges for which
the current authorization identifier has a table privilege:

CREATE VIEW privileged AS SELECT TABLE_NAME, GRANTEE, PRIVILEGE_TYPE
FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES WHERE GRANTOR = UTIUNIV

Define the table BOOKS with the VARCHAR column TITLE and enter values:

CREATE TABLE books (order_number INTEGER, title VARCHAR(50))
COMMIT WORK

INSERT INTO books VALUES (3456, 'Not Now Bernard')

INSERT INTO books VALUES (5777, 'Lullabies')

INSERT INTO books VALUES (7888,

'This is a very long title with more than fifty characters')

The last title is not entered. An error message is issued.

Enter additional information on the contact person Mary Davis in the CONTACTS table:

UPDATE contacts set contact_info=('Ms. Davis is '
'on leave from ’
'1.8 to 31.10') where contact_num=40

The following is incorrect:

UPDATE contacts set contact_info=
('Ms. Davis is ' 'on leave ' 'from 1.8 to 31.10')
where contact_num=40

At least one of the separators between the substrings must be a transition to the next
line.
Comparing strings

" Mai' < ' Maijer' is true

' Majer' < ' Maier' is false

U22420-J-2125-12-76 113

Strings

Values

Define the MANUALS table with the NCHAR columns LANGUAGE and TITLE and enter
values:

é§3 CREATE TABLE manuals

(ord_num INTEGER, Tanguage NCHAR(20), title NCHAR(30))
COMMIT WORK

INSERT INTO manuals
VALUES (1001, N'Deutsch', N'Betriebsanleitung'),
(1002, N'English', N'Operating Manual'),
(1003, U&'Fran\00E7ais', N'Manuel d''utilisation'),
(1004, U&'Espa\00Flol', N'Manual de instrucciones'),
(1005, N'Italiano', N'Istruzioni per 1''uso'),
(1006, NX'039503BBO3BB0O3B703BD0O3B903BA0O3AC',
NX'039F03B403B703B303AF03B503C2002003BB"
'03B503B903C403BFO3C503C103B303AF03B103C2")

The LANGUAGE and TITLE titles then contain the following national values:
LANGUAGE TITLE

Deutsch Betriebsanleitung
English Operating Manual
Francais Manuel d'utilisation
Espano] Manual de instrucciones
I[taliano Istruzioni per 1'uso

EAANV LKE Odnyleg Asittoupylac

114

U22420-J-2125-12-76

Values Numeric values

4.3.6 Numeric values

Numeric values are integers, fixed-point numbers and floating-point numbers.

4.3.6.1 Numeric literals

The syntax for numeric literals is defined as follows:

integer

numeric_literal : := . fixed_pt_number
floating pt_number

+
integer : :=[{_} 1 unsigned_ integer(.]

unsigned_ integer[. unsigned_ integer]

+ . .
fixed _pt_number : :=[{_}] unsigned_ integer.
. unsigned_ integer

+
floating pt number : := fixed jtnumberE[{_}] unsigned__integer

unsigned__integer : := digit. . .

digit
Decimal digit O to 9.
Integers and fixed-point literals can have up to 31 digits.

The data type of the literal is integer, fixed-point number or floating-point number with
the specified number of digits to the right and left of the decimal point.

U22420-J-2125-12-76 115

Numeric values Values

4.3.6.2 Using numeric values

A numeric value can be used in:

e Assignments:
(see section “Assignment rules” on page 121)

e Aggregate functions:
A numeric value can be used in the aggregate functions AVG(), COUNT(), MIN(), MAX()
and SUM().

e Time functions:
A numeric value can be used in the time function DATE_OF_JULIAN_DAY()

e Expressions:
A numeric value can be used in calculations with the operators +, -, * and /. All the
values in the expression must be numeric.

e Predicates:
A numeric value can be used in comparisons with another value or with a derived
column, in range queries and in element queries.
All the values in the expression must be numeric. The rules governing comparisons are
described in the section “Comparison of two rows” on page 216.

Functions, expressions and predicates are described in detail in the chapter “Compound
language constructs” on page 133.

Examples

The following examples refer to the SERVICE table.

Enter an order number as follows:

INSERT INTO service (service_num, order_num, service_total, service_price)
VALUES (5000, 250, 1, NULL)

Update the order quantity:
UPDATE service SET service_total=34.75 WHERE service_num=5000
The specified value is converted into an integer.
UPDATE service SET service_total='lots' WHERE service_num=5000

This is an error: The specified value is not numeric.

116 U22420-J-2125-12-76

Values

Time values

4.3.7 Time values

43.71

SESAM/SQL makes a distinction between the following types of time values:
e Date A date consists of the specifications: year, month and day.

e Time A time consists of the specifications: hours, minutes, seconds and fractions of a
second.

e Timestamp A time stamp contains a date and time.

Time literals

The syntax for time literals is defined as follows:

DATE 'year-month-day'
time literal : := < 1IME "hour:minute:second'

TIMESTAMP 'year-month-day hour:minute:second'

DATE
Date. The data type of the time literal is DATE.

TIME
Time. The data type of the time literal is TIME(3).

TIMESTAMP
Time stamp. The data type of the time literal is TIMESTAMP(3).

year
Four-digit unsigned integer between 0001 and 9999 indicating the year.

month
Two-digit unsigned integer between 01 and 12 indicating the month.

day
Two-digit unsigned integer between 01 and 31 (corresponding to the month and year)
indicating the day.

hour
Two-digit unsigned integer between 00 and 23 indicating the hour.

minute
Two-digit unsigned integer between 00 and 59 indicating the minute.

second
Unsigned fixed-point number between 00.000 and 60.999 that indicates the seconds
and fractions of a second. A two-digit specification must be made for the seconds and
a three-digit specification for the fractions of a second.
The range of values allows specification of one leap second.

U22420-J-2125-12-76 117

Time values Values

A date specification must observe the rules of the Gregorian calendar even if the date
involved is before the introduction of the Gregorian calendar.

In SESAM/SQL, you can use an abbreviated notation without an introductory time keyword
if it is clear from the context that you are dealing with a time literal and not an alphanumeric
literal.

Examples

To output, from the ORDERS table, all orders which were completed before the specified
date.

SELECT * FROM orders WHERE actual < '2013-01-01"

The actual column was defined with the DATE data type during table creation. It is
therefore immediately obvious from the left-hand comparison operand that the specified
literal is a time literal. The keyword DATE can therefore be omitted on the right-hand
side.

Literal in the SELECT list.
SELECT COUNT(*) AS number, '2013-05-01' AS date FROM orders

The derived table contains a row with the number of orders and with the DATE column.
The data type results from the specified expression. The data type for the DATE column
is therefore CHAR(10).

To avoid possible sources of error, you are recommended to always specify time literals
with an introductory time keyword (DATE, TIME, TIMESTAMP).

CAUTION!

The separators between the component values must be specified exactly as stated
below:

hyphen “-” between year, month and day

blank “” between day and hour

colon “” between hour, minutes and seconds

period “.” between seconds and fractions of a second.

118 U22420-J-2125-12-76

Values Time values

4.3.7.2 Using time values

A time value can be used in:

e Assignments:
(see section “Assignment rules” on page 121)

e Aggregate functions:
A time value can be used in the aggregate functions COUNT(), MIN() and MAX().

e Numeric functions:
A time value can be used in the numeric function JULIAN_DAY_OF_DATE().

e Predicates:
A time value can be used in comparisons with another value or with a derived column,
in range queries and in element queries. All the values involved must be of the same
time data type. The rules governing comparisons are described in the section
“Comparison of two rows” on page 216.

o CAST expressions:
A time value can be converted to a value of a different data type.

Functions and predicates are described in detail in the chapter “Compound language
constructs” on page 133.

U22420-J-2125-12-76 119

Time values Values

Examples
The following examples refer to the ORDERS table and the fictitious table EXAMPLE.
Update the delivery date for order 300:

UPDATE orders SET order_date=DATE'2013-10-06' WHERE order_num=300

UPDATE orders SET order_date=DATE'2013-10-06' WHERE order_num=300
The following is incorrect: Since the single-digit value 6 for a day is not permitted. The
correct specification would be 06.

In the column wakeup_time, the time 7:51 hours and 19.77 seconds is entered:
CREATE TABLE example (wakeup_time TIME (3), appointment TIMESTAMP (3))
INSERT INTO example (wakeup_time) VALUES (TIME'07:51:19.770"')

In the column appointment, the time stamp 16:00 hours on November 24th, 2010 is
entered:

INSERT INTO example (appointment)
VALUES (TIMESTAMP'2013-10-06 16:00:00.000', ...)

INSERT INTO example (appointment)
VALUES (TIMESTAMP'2013-10-06 16:00"')
The following is incorrect: As the seconds have not been specified.

120 U22420-J-2125-12-76

Data types and values Assignment rules

4.4 Assignment rules

When values are assigned or transferred, the source data type and the target data type
must be compatible (see section “Compatibility between data types” on page 99).

Other rules depend on where the values are being transferred to or from.

A distinction is made between the following:

Entering values in table columns

Default values for table columns

Values for placeholders

Storing values in host variables or a descriptor area

Transferring values between host variables and a descriptor area
Modifying the target data type by means of the CAST operator
Supplying input parameters for routines

Entering values in a procedure parameter (output) or local variable

The following sections provide you with an overview of the assignment rules for the above-
mentioned cases.

441 Entering values in table columns

The following rules apply when inserting or updating values into table columns with
INSERT, MERGE or UPDATE:

Atomic values and multiple values with the dimension 1 can be entered in atomic
columns and in multiple columns (or subareas) with the dimension 1.

Multiple values with a dimension greater than 1 can be entered in multiple columns (or
subareas) with the same dimension.

Additional data-type-specific rules, which depend on the data type involved, also apply.
These are described below.

U22420-J-2125-12-76 121

Assignment rules Data types and values

Strings

You can enter an alphanumeric value in a column with an alphanumeric data type or a
national value in a column with a national data type. The following rules apply:

e If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

e If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type. If characters are removed that are not blanks, the value is not
entered and an error message is issued.

e If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type. If characters are removed that are
not blanks, the value is not entered and an error message is issued.

Numeric values

You can enter a numeric value in a column with a numeric data type. If the numeric data
types are not the same, the value is converted to the data type of the column. The following
rules apply:

e If the number of digits to the right of the decimal point of the value is too large for the
data type of the column, the value is rounded.

e If the value is too large for the data type of the column, the value is not entered and an
error message is issued.

Time values

You can only enter a time value in a column with the same data type:
e adate in a DATE column
e atimein a TIME column

e atime stamp in a TIMESTAMP column

122 U22420-J-2125-12-76

Data types and values Assignment rules

4.4.2 Default values for table columns

The rules that apply to the default value for a column that you can specify with the DEFAULT
clause of the CREATE TABLE or ALTER TABLE statement are more strict than those for
entering values in table columns. The rules also apply for the definition of local variables (in
routines). They are contained in the table below:

SQL data type of the Possible SQL default value
column
CHAR(length) — Alphanumeric literal with length < length or max
VARCHAR(max) — Special literal (CURRENT_ JUSER and
SYSTEM_USER only (only recommended for length or
max < 128))
— NULL
NCHAR(cu_length) — National literal with length = cu_length or cu_max
NVARCHAR(cu_max — NULL
REF(table) — As for CHAR(237)
DECIMAL (precision,scale) — Fixed-point or floating-point number belonging to the
NUMERIC(precision,scale) range of values for the column
INTEGER — NULL
SMALLINT
REAL, DOUBLE PRECISION |- Numeric literal
FLOAT (precision) (the number is rounded off if necessary)
— NULL
DATE — Literal of the type DATE
— CURRENT_DATE
— NULL
TIME(3) — Literal of the type TIME(3)
— CURRENT_TIME
— NULL
TIMESTAMP(3) — Literal of the type TIMESTAMP(3)
— CURRENT_TIMESTAMP
— NULL

Table 12: Default values for table columns

U22420-J-2125-12-76 123

Assignment rules Data types and values

4.4.3 Values for placeholders

The following rules apply if values are made available for placeholders in host variables or
in a descriptor area (EXECUTE...USING, OPEN...USING):

e The data type of the input value must be compatible with the data type of the
placeholder, which is indicated by the position of the placeholder (see “Rules for
placeholders” on page 527).

e Values for atomic placeholders and multiple placeholders with the dimension 1 can be
made available via an atomic host variable, a vector with one element, or via an item
descriptor.

e Placeholders for aggregates with a dimension d > 1 can be made available via a vector
with d elements or via d sequential item descriptors.

e Additional data-type-specific rules, which depend on the data type involved, also apply.
These are described below.

Strings

You can use the value of a host variable or item descriptor with an alphanumeric data type
for an alphanumeric placeholder. For a placeholder with a national data type you can use
the value from a user variable or a descriptor area entry with a national data type. The
following rules apply:

If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type. If characters are removed that are not blanks, the value is not
entered and a warning is issued.

If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type. If characters are removed that are
not blanks, the value is not entered and a warning is issued.

124

U22420-J-2125-12-76

Data types and values Assignment rules

44.4

Numeric values

You can use a value from a host variable or an item descriptor with a numeric data type for
a numeric placeholder. If the numeric data types are not the same, the value is converted
to the target data type. The following rules apply:

e If the number of digits to the right of the decimal point of the value is too large for the
target data type, the value is rounded.

e If the value is too large for the target data type, the value is not entered and an error
message is issued.

Time values

In the case of a placeholder with a date or time data type, you can only use a value from a
host variable or item descriptor of the same data type:

e adate for a DATE placeholder
e atime for a TIME placeholder
e atime stamp for a TIMESTAMP placeholder

Reading values into host variables or a descriptor area

The following rules apply if values from table columns or output parameters of a routine are
stored in a host variable or in a descriptor area (SELECT...INTO, EXECUTE...INTO,
FETCH...INTO, INSERT...RETURN INTO, CALL):

e Values from atomic columns, multiple columns with the dimension 1 or output
parameters of a procedure can be stored in an atomic host variable, a vector with one
element, or in an item descriptor.

e Aggregates from multiple columns with a dimension d > 1 can be stored in a vector with
d elements or in d sequential item descriptors.

e If the value to be transferred is a NULL value, the indicator variable or item descriptor
field INDICATOR, as appropriate, is set to -1. If no indicator variable has been specified
for a host variable, an error message is issued.

e Depending on the data type, data-type-specific rules which are contained below also
apply.

U22420-J-2125-12-76 125

Assignment rules Data types and values

Strings

You can read an alphanumeric column value or an alphanumeric output parameter of a
procedure into an alphanumeric host variable or item descriptor. You can read a national
column value or a national output parameter of a procedure into a national host variable or
item descriptor with a national data type. The following rules apply:

e If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

e If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type and a warning is issued. The indicator variable (if specified) or item
descriptor field INDICATOR, as appropriate, is set to the original length of the column
value.

e If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type and a warning is issued. The
indicator variable (if specified) or item descriptor field INDICATOR, as appropriate, is
set to the original length of the column value.

Numeric values

You can read a numeric column value or a numeric output parameter of a procedure into a
numeric host variable or item descriptor. If the numeric data types are not the same, the
value is converted to the target data type. The following rules apply:

e If the number of digits to the right of the decimal point of the value is too large for the
target data type, the value is rounded.

e If the value is too large for the target data type, the value is not entered and an error
message is issued.

Time values

You can only read a column value with a time data type or an output parameter of a
procedure with a time data type into a host variable or item descriptor of the same data type:

e a date into a DATE host variable or item descriptor
e atime into a TIME host variable or item descriptor

e atime stamp into a TIMESTAMP host variable or item descriptor

126

U22420-J-2125-12-76

Data types and values Assignment rules

4.4.5 Transferring values between host variables and a descriptor area

The rules governing the transfer of values between host variables an a descriptor area are
more strict than those for transferring values between host variables (or descriptor area)
and table columns:

e The following applies to all fields except NAME and DATA: The SQL data type of the
host variable in which the value of a field is stored or from which a value is read must
be SMALLINT.

e Ifthe value of the NAME field is read, the host variable must be of the type CHAR(#) or
VARCHAR(n) where n > 128.

e If the value of the DATA field is stored in a host variable or read from a host variable,
the SQL data type of the host variable must match the data type described by the fields
TYPE, DATETIME_INTERVAL_CODE, LENGTH, PRECISION and SCALE of the
same item descriptor. The rules are contained below in accordance with the data type.

Strings

The length of the host variable must be the same as the value in the item descriptor field
LENGTH for the SQL data types CHAR and NCHAR.

In the case of the SQL data types VARCHAR and NVARCHAR, the maximum length of the
host variable must be the same as the value of the item descriptor field LENGTH if the value
is to be transferred from the host variable to the descriptor area. If the value is transferred
from the descriptor area to the host variable, the maximum length of the host variable must
be at least as big as the value of the item descriptor field LENGTH.

Numeric values

For the SQL data type NUMERIC or DECIMAL, the total number of significant digits of the
host variable must be the same as the value of the item descriptor field PRECISION and
the number of digits to the right of the decimal point the same as the value of the item
descriptor field SCALE.

Time values

The SQL data type of the host variable must correspond to the data type of the item
descriptor field DATETIME_INTERVAL_CODE.

In the case of the SQL data types TIME and TIMESTAMP, the item descriptor field
PRECISION must contain the value 3.

U22420-J-2125-12-76 127

Assignment rules Data types and values

Recommended procedure

The following procedure is recommended if you do not want to have to define host variables
for every possible data type:

1.

4.

Use DESCRIBE to store the data type description for the value in the DATA field of the
item descriptor.

Query the data type of the item descriptor with GET DESCRIPTOR.

Change the data type of the item descriptor to match the data type of the host variable
with SET DESCRIPTOR.

Transfer the value from DATA to or from the host variable.

Example

You want to prepare the following dynamic statement:
SELECT street, country, zip, city FROM customers WHERE company='Siemens'

After executing DESCRIBE OUTPUT, GET DESCRIPTOR will provide you with the
following data type descriptions:

VALUE REPETITIONS TYPE LENGTH PRECISION SCALE Corresponding

data type
1 1 1 40 0 0 CHAR(40)
2 1 1 3 0 0 CHAR(3)
3 1 2 5 0 NUMERIC(5,0)
4 1 1 40 0 0 CHAR(40)

If you want to use host variables of the type CHAR(100) and NUMERIC(15,5) for storing
values, use SET DESCRIPTOR to set the item descriptor fields to the following values:

VALUE REPETITIONS TYPE LENGTH PRECISION SCALE

1 1 1 100
2 1 1 100
3 1 2 15 5
4 1 1 100

You can now execute the prepared statement with EXECUTE. The values are stored in
the descriptor area. STREET, COUNTRY and CITY are padded on the right with blanks
until their length is 100. Five leading zeros and five zeros after the decimal point are
added to ZIP.

You can use GET DESCRIPTOR to transfer the values to the appropriate host variables
and process them.

128

U22420-J-2125-12-76

Data types and values Assignment rules

44.6

44.7

Modifying the target data type by means of the CAST operator

In some cases, you can use the CAST operator (see section “CAST expression” on
page 258) to specify an appropriate target data type, even if SESAM/SQL determines a
different data type internally.

Example
The following dynamic statement contains a two-digit operator with a placeholder (?).
UPDATE service SET vat=0.15+7?

SESAM/SQL determines the data type of the placeholder for this two-digit operator
from the data type of the other operator with NUMERIC(3,2). If the user wants a
different data type, such as NUMERIC(4,2), he or she can use the CAST operator to
specify this:

UPDATE service SET vat=CAST(? AS NUMERIC(4,2))

Supplying input parameters for routines

When you assign values to the input parameters for the routine in a CALL statement
(procedure call) or when a User Defined Function (UDF) is called, data-type-specific rules
apply. These are described below.

Strings

You can assign an alphanumeric value to an input parameter with the alphanumeric data
type or a national value to an input parameter with a national data type. The following rules
apply:

e If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

e If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type. If characters are removed that are not blanks, the value is not
entered and an error message is issued.

e If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type. If characters are removed that are
not blanks, the value is not entered and an error message is issued.

U22420-J-2125-12-76 129

Assignment rules Data types and values

4.4.8

Numeric values

You can assign a numeric value to an input parameter with a numeric data type. If the
numeric data types are not the same, the value is converted to the data type of the input
parameter. The following rules apply:

e If the number of digits to the right of the decimal point of the value is too large for the
data type of the input parameter, the value is rounded.

e Ifthe value is too large for the data type of the input parameter, the value is not entered
and an error message is issued.

Time values

You can only assign a time value to an input parameter with the same data type:
e adate in an input parameter with the data type DATE
e a time for an input parameter with the data type TIME

e atime stamp in an input parameter with the data type TIMESTAMP

Entering values in a procedure parameter (output) or local variable

When you assign values to the output parameters in a procedure or to the local variables
or the function value of a UDF in a routine (SET, RETURN, SELECT...INTO,
FETCH...INTO, INSERT...RETURN INTO), data-type-specific rules apply. These are
described below.

Strings

You can enter an alphanumeric value in an output parameter or a local variable with an
alphanumeric data type. You can enter a national value in an output parameter or local
variable with a national data type. The following rules apply:

e If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

e If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type and a warning is issued.

e |If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type and a warning is issued.

130

U22420-J-2125-12-76

Data types and values Assignment rules

Numeric values

You can enter a numeric value in an output parameter or local variable with a numeric data
type. If the numeric data types are not the same, the value is converted to the target data
type. The following rules apply:

e If the number of digits to the right of the decimal point of the value is too large for the
target data type, the value is rounded.

e If the value is too large for the target data type, the value is not entered and an error
message is issued.

Time values

You can only enter a value with time data type in an output parameter or local variable with
the same data type:

e A date in an output parameter or local variable with the data type DATE
e Atime in an output parameter or local variable with the data type TIME

e A time stamp in an output parameter or local variable with the data type TIMESTAMP

U22420-J-2125-12-76 131

Assignment rules Data types and values

132 U22420-J-2125-12-76

5 Compound language constructs

This chapter describes the compound language constructs that can occur in SESAM/SQL
statements. It is subdivided into the following sections:

e Expression

e Function

e Predicates

e Search condition
e CASE expression
e CAST expression
e Integrity constraint
e Column definitions

These language constructs are made up of basic elements, such as names, literals and
other language constructs. They are described in logical sequence.

U22420-J-2125-12-76 133

Expression Compound language constructs

5.1 Expression

The evaluation of an expression returns a value or supplies a table (table functions).
Expressions can occur in:

e Column selection (SELECT expression, SELECT expression)

e predicates in search conditions (e.g. WHERE clause, HAVING clause)

e assignments (INSERT, MERGE or UPDATE statement)

e SQL statements which are used in routines (e.g. CASE statement)

An expression consists of operands and can include operators. The operators are used on
the results of the operands.

The result of the evaluation is an alphanumeric, national, numeric or time value.
A table function returns a table as a result.

The operands are not evaluated in a predefined order. In certain cases, a partial expression
is not calculated if it is not required for calculating the total result.

When an operand is evaluated with a function call, the function is first performed and then
the function call replaced by the resulting value or the table which is returned.

134 U22420-J-2125-12-76

Compound language constructs

Expression

Syntax diagram of an expression:

value
column

column(pos_no)
[table.] column[pos_no]
{column (min..max)

columnfmin..max]

expression : := < function

subquery

monadic_op expression
expression dyadic_op expression
case_expression

cast_expression

(expression)
column ::= unqual _name
pos_no : := unsigned_integer
min ::= unsigned_integer
max : := unsigned integer

+
monadic _op ::=< _
*

~

+

dyadic op ::=

J

U22420-J-2125-12-76

135

Expression Compound language constructs

value
Alphanumeric value, national value, numeric value or time value (see section “Values”

on page 100).

table
Name of the table containing column. If a correlation name has been defined for the
table, specify the correlation name instead of the table name.

column
Name of the column from which the values are to be taken.
Any square brackets shown here in italics are special characters, and must be
specified in the statement.

pos_no
Unsigned integer
The value is taken from the (pos_no-col,,;,+1)th column element of the multiple
column column and can be used as an atomic value.

If column is not a multiple column, pos_no is smaller than col,,;, or pos_no is greater
than col,,,,, an error message is issued.

col,,;, and col,,,, are the smallest and largest position numbers of the multiple
column.

min..max
Unsigned integers

The value is the aggregate from the column elements (min-col,,;,+1) to (max-

col,,;,,+1) of the multiple column column.

If column is not a multiple column, min is not smaller than max, min is smaller than

col,,;, or max is greater than col,,,,, an error message is issued.

col,,;, and col,,,, are the smallest and largest position numbers of the multiple
column.

pos_no Of min..max omitted:
column cannot be a multiple column.

position
Function (see section “Function” on page 140).

subquery
Subquery (see section “Subquery” on page 310) that returns exactly one value.

136 U22420-J-2125-12-76

Compound language constructs Expression

monadic_op
Monadic operator that sets the sign. expression must be numeric and cannot be a
multiple value with a dimension > 1.

+

The value remains as it is.
The value is negated.

dyadic_op
Dyadic operator. Neither of the operand expressions can be a multiple value with a
dimension > 1.

a*b

Multiply a with b.
The expressions @ and b must be numeric.

If and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with ¢,+7, significant digits with a maximum number of 31 digits. The
number of digits to the right of the decimal point is r,+r,, with @ maximum number
of 31 digits.

t, and ¢, are the total number of significant digits for « and 5.

r, and r, are the number of digits to the right of the decimal point for « and b
respectively.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, an error message is issued.
If the total number of significant digits is too big, the number is rounded.

alb

Divide a by b.
The expressions @ and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with 31 significant digits. The number of digits to the right of the decimal
point is 31-/,-r,, at least however 0.

1, is the number of digits to the left of the decimal point for a.

r, is the number of digits to the right of the decimal point for 2.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type or the value of b is 0, an error
message is issued. If the total number of significant digits is too big, the number is
rounded.

U22420-J-2125-12-76

137

Expression

Compound language constructs

a+b

Add a and b.
The expressions a and b must be numeric.

If « and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with 7., +r,,..+1 significant digits with a maximum number of 31 digits. The
number of digits to the right of the decimal point is r,,,,,.

L.ax 1S the larger of the two numbers of digits to the left of the decimal point for a and
b.

rmax 1S the larger of the two numbers of digits to the right of the decimal point for a
and b.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, an error message is issued.
If the total number of significant digits is too big, the number is rounded.

a-b

Subtract b from a.
The expressions a and b must be numeric.

If @ and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with 7., +r,,..+1 significant digits with a maximum number of 31 digits. The
number of digits to the right of the decimal point is r,,,,,.

L.ax 1S the larger of the two numbers of digits to the left of the decimal point for a and
b.

rmax 1S the larger of the two numbers of digits to the right of the decimal point for a
and b.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, an error message is issued.
If the total number of significant digits is too big, the number is rounded.

allb

Concatenate a and b.
The expressions a and b must result in alphanumeric or national values.

If « and b are of the data type CHAR, the result is of the data type CHAR with a
length of 7,+], (in characters), and this sum may not be greater than 256.

If « and b are of the data type NCHAR, the result is of the data type NCHAR with a
length of [+, (in code units), and this sum may not be greater than 128.

If a or b is of the data type VARCHAR, the result is of the data type VARCHAR with
a length of [+, (in characters), but at most 32 000.

138

U22420-J-2125-12-76

Compound language constructs Expression

If a or b is of the data type NVARCHAR, the result is of the data type NVARCHAR
with a length of /,+/, (in code units), but at most 16 000.
1, and [, are the lengths of a and 5.

If a result of the type CHAR is longer than 256 characters or the result of the type
NCHAR is longer than 128 characters, an error message is issued.

If a result of the type VARCHAR is longer than 32 000 characters, the string is
truncated from the right to a length of 32 000 characters and if a result of the type
NVARCHAR is longer than 16 000 characters, the string is truncated from the right
to a length of 16 000 characters. If characters are removed that are not blanks, an
error message is issued.

case_expression

CASE expression (see section “CASE expression” on page 248).

cast_expression

CAST expression (see section “CAST expression” on page 258).

Precedence

Expressions enclosed in parentheses have highest precedence.
Monadic operators take precedence over dyadic operators.

The operators for multiplication (*) and division (/) take precedence over the operators
for addition (+) and subtraction (-).

Operators for multiplication all have the same precedence level.
Operators for addition all have the same precedence level.
Operators with the same precedence level are applied from left to right.

When expression is an unqualified name ungual_name for which there is both a column
and a routine parameter or a local variable with this name in the area of validity, the
routine parameter or the local variable is used.

Recommendation
The names of routine parameters and local variables should differ from column
names (e.g. by assigning a prefix such as par_ or var_).

U22420-J-2125-12-76 139

Function

Compound language constructs

5.2 Function

A function calculates a value or returns a table (table function). Functions can be called from
within expressions. When an operand is evaluated with a function call, the function is first
performed and then the function call replaced by the resulting value or the table which is
returned. SESAM/SQL functions fall into two groups:

e Time functions

e String functions

e Numeric functions

e Aggregate functions

e Table functions

e Cryptographic functions

e User Defined Functions (UDFs)

time_function
string_function
string_function
aggregate_function
table_ function
crypto_function
user_defined_function

function : :=

time_function
Time function (see section “Time functions” on page 141).

string_function
String function (see section “String functions” on page 142).

numeric_function
Numeric function (see section “Numeric functions” on page 144).

aggregate function
Aggregate function (see section “Aggregate functions” on page 145).

table function
Table function (see section “Table functions” on page 148).

crypto_function
Cryptographic function (see section “Cryptographic functions” on page 149).

user_defined_function
User Defined Function (see section “User Defined Functions (UDFs)” on page 151).

140

U22420-J-2125-12-76

Compound language constructs Function

5.2.1

Time functions

Time functions determine following data
e current date (CURRENT_DATE)
e current time (CURRENT_TIME(3) or LOCALTIME(3))

e time stamp with the current date and current time (CURRENT_TIMESTAMP(3) or
LOCALTIMESTAMP(3))

e date corresponding to an integer value (DATE_OF_JULIAN_DAY) (see also the inverse
function JULIAN_DAY_OF_DATE on page 182).

LOCALTIMESTAMP(3) and CURRENT_TIMESTAMP(3) are equivalent in SESAM/SQL,
as are LOCALTIME(3) and CURRENT_TIME(3).

CURRENT_DATE

CURRENT_TIME(3)

LOCALTIME(3)
CURRENT_TIMESTAMP(3)
LOCALTIMESTAMP(3)
DATE_OF_JULIAN_DAY (expression)

time_function : :=

expression
Numeric integer value which SESAM/SQL interprets as a Julian day number. expression
may not be a multiple value with dimension > 1.

If the time functions CURRENT_DATE, CURRENT_TIME(3), LOCALTIME(3),
CURRENT_TIMESTAMP(3) and LOCALTIMESTAMP(3) are included in a statement
multiple times, they are executed simultaneously. This also applies for all time functions that
are evaluated as the result of the statement:

e time functions in the DEFAULT clause of the column definition if the default value is
used

e time functions that occur in the SELECT expression of a view or temporary view if the
view or temporary view is referenced

All the values that are returned have the same data and/or time. Therefore, you cannot use
time functions to determine execution times within a statement.

Time functions in dynamic statements and in cursor descriptions are evaluated when the
EXECUTE, EXECUTE IMMEDIATE or OPEN statement is performed.

U22420-J-2125-12-76 141

Function Compound language constructs

5.2.2 String functions

String functions perform the following tasks:

e extract substrings (SUBSTRING)

e transliterate alphanumeric strings to national strings or vice versa (TRANSLATE)
e transcode national strings from UTFE to UTF-16 or vice versa (TRANSLATE)

e remove leading or trailing characters of strings (TRIM)

e convert uppercase letters to lowercase letters or lowercase letters to uppercase letters
(LOWER, UPPER)

e convert a value of any data type to the internal presentation (as an alphanumeric string
or in hexadecimal format) and vice versa (HEX_OF_VALUE, VALUE_OF_HEX,
REP_OF_VALUE, VALUE_OF_REP)

e fornational strings, supply the collation element in accordance with the Default Unicode
Translation Table (COLLATE)

e convert national strings to normal form (NORMALIZE)

string_function : :=

SUBSTRING (expression FROM startposition [FOR substring length1LTUSING CODE_UNITSI)
TRANSLATE (expression USING [[catalog.]INFORMATION_SCHEMA.] transname
[DEFAULT character] [, lengthl)

LEADING
TRIM (LL< TRAILING > I[character] FROM] expression)

BOTH
LOWER (expression)
UPPER (expression)
< HEX_OF_VALUE (expression2) L
VALUE_OF_HEX C(expression3, data_type)
REP_OF_VALUE C(expression2)
VALUE_OF_REP (expression3, data_type)

. DUCET_WITH_VARS
COLLATE (expression USING {DUCET_NO_VARS } L, lengthl)

F
NORMALIZE (expression [{% } L, lengthl])

character: := expression
length: := unsigned integer

142 U22420-J-2125-12-76

Compound language constructs Function

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR). expression may not be a multiple value with dimension > 1.
See also section “Compatibility between data types” on page 99.

Restrictions that apply to a function are described in the description of the relevant
function.

expression2
Expression of any data type. The internal presentation of this value is returned as an
alphanumeric string or in hexadecimal format.
expression2 may not be a multiple value with dimension > 1.

expression3
Alphanumeric expression which is the internal presentation of a value of the type
data_type. This value is the result.
expression3 may not be a multiple value with dimension > 1.

Startposition
Integral numeric expression for the position of the start of the substring.

substring length
Integral numeric expression for the length of the substring.

data_type
Data type of the result.

length
Maximum length of the result string.

U22420-J-2125-12-76 143

Function Compound language constructs

5.2.3 Numeric functions

Numeric functions achieve various purposes:

e ABS(), CEILING(), FLOOR(), MOD(), SIGN() and TRUNC() execute the corresponding
mathematical functions on the specified numeric expressions.

o CHARACTER_LENGTH(), OCTET_LENGTHY() and POSITION() calculate the
number of bytes or code units in a string or the position of a string in another string.

e JULIAN_DAY_OF_DATE() converts a date into an integer value.
e EXTRACT() extracts specific components of a time value.

When a numeric function is evaluated, a numeric value is returned.

ABS (expression)
CEILLCING] (expression)
FLOOR (expression)

MOD (dividend,divisor)
SIGN (expression)
TRUNC (expression)

numeric_function : := CHAR_LENGTH . CODE_UNITS
{CHARACTER_LENGTH (expressiontUSING 4 gorTs &

OCTET_LENGTH (expression)
POSITION (expression IN expression LUSING CODE_UNITSI)

JULTAN_DAY_OF_DATE (expression)
EXTRACT (part FROM expression)

expression
In ABS(), CEILING(), FLOOR(), MOD(), SIGN() and TRUNC(): numeric expression.
In EXTRACT() and JULIAN_DAY_OF_DATE(): time value expression.
Otherwise: alphanumeric expression or national expression.

expression may not be a multiple value with dimension > 1.

144 U22420-J-2125-12-76

Compound language constructs Function

5.2.4 Aggregate functions

Aggregate functions return the average, count, maximum value, minimum value or sum of
a set of values or the number of rows in a derived table.

AVG
COUNT

ALL
MAX ;
i ([{DISTINCT}]eXPreSSlon)

ion- = <
aggregate_function: : SUM -

COUNT (*)

expression
Expression determining the values in the set (see section “Expression” on page 134).

The expression for each aggregate function except for COUNT(*) can have a certain
data type. The permitted data type(s) for each function is specified in the function
description.

The following restrictions apply to expression:

® expression cannot include any multiple columns.

e expression cannot include any aggregate functions.
® expression cannot include any subqueries.

e Ifacolumn name in expression specifies a column of a higher-level query expression
(external reference), expression may only include this column name.

In this case, the aggregate function must satisfy one of the following conditions:
— The aggregate function is included in a SELECT list.

— The aggregate function is included in a subquery of a HAVING clause. The
column name must indicate a column of the SELECT expression that contains
a HAVING clause.

@ The aggregate functions MIN() and MAX() reference the set of all values in a
column in a table. They differ in this way from a CASE expression with MIN / MAX
(see page 257), which references different expressions.

U22420-J-2125-12-76 145

Function Compound language constructs

Calculating aggregate functions

In all the aggregate functions except COUNT(*), the expression specified as the function
argument determines the set of values used in the aggregate function.

If the SELECT expression or SELECT statement in which the aggregate function occurs
does not include a GROUP BY clause, the argument expression is used on all the rows in
the table (or the rows that satisfy the WHERE clause) referenced by the column
specifications in the argument expression. If the argument expression does not contain a
column specification, the argument expression is used on all the rows in the table of the
SELECT expression. The result is a single-column table.

If this table contains NULL values, these are removed before the aggregate function is
performed. A warning is issued.

If DISTINCT is specified in the aggregate function, only unique values are taken into
account, i.e. if a value occurs more than once in a table, the duplicates are removed before
the aggregate function is performed.

The aggregate function is then used on the remaining values of the single-column table and
returns exactly one value.

If the corresponding SELECT expression (or SELECT statement) includes a GROUP BY
clause, the aggregate function is calculated as described for each group separately and
returns exactly one value per group.

Examples

Without GROUP BY: The following expression calculates the sum of the trebled price of the
items from the ITEMS table:

SELECT SUM (3*price) FROM items

In order to calculate the expression, the argument expression 3*price is used on all the
rows of the ITEMS table. This returns the following derived column:

(2101.50
690,00
450.00
450.00
120.00
120.00
180.00

15.00
15.00
30.00
3.00
3.30
2.25

The sum of the values is 41880.05.

146 U22420-J-2125-12-76

Compound language constructs Function

With GROUP BY: The following expression calculates the total stock per location from the
WAREHOUSE table.

SELECT Tlocation, SUM (stock) FROM warehouse GROUP BY location

In order to calculate the expression the stock per location is grouped together first:

location stock
Main warehouse 2
1

10

10

3

3

1

15

8

6

11

120

248

Parts warehouse 9
6

3

200

180

47

Subsequently, the stock is added together for each warehouse.

location
Main warehouse 438
Parts warehouse 445

U22420-J-2125-12-76 147

Function Compound language constructs

5.2.5 Table functions

Table functions generate tables whose content depends on the call parameters or is
derived from external data sources, e.g. files.

CSV (LFILE] file DELIMITER delimiter [QUOTE quote]

table_function : := LESCAPE escapel, data_type, . . .)

DEE [()]

The table functions are described on page 163 and page 173.

148 U22420-J-2125-12-76

Compound language constructs Function

5.2.6 Cryptographic functions

The ENCRYPT() and DECRYPT() functions are used to encrypt and decrypt individual
values. Sensitive data is protected against unauthorized access by encryption. Only the
users who know the “key” can decrypt the data.

The REP_OF_VALUE() and VALUE_OF_REP() functions can be used to jointly encrypt
multiple values and to decrypt them again.

Introductory information on access control by means of data encryption in SESAM/SQL is
provided in the “Core manual’.

to_function - : = ENCRYPT (expression, key)
crypro_junction = : DECRYPT (expression2, key, data_type)
key : := expression
expression

Expression whose value is to be encrypted.
expression may not be a multiple value with dimension > 1.

expression2
Alphanumeric expression whose value is to be encrypted.
expression2 may not be a multiple value with dimension > 1.

key
Key for encryption and decryption.

data_type
Data type of the decrypted value.
data_type may not be an aggregate (see page 103).

U22420-J-2125-12-76 149

Function

Compound language constructs

Application information

Since the encryption algorithm AES (see the “Core manual”) - as it is used in SESAM/SQL
- processes blocks of 16 characters, the length of the output value is always a multiple of
16 characters. If two input values differ in only one bit, all the characters in their encrypted
values will differ.

Encrypted values can be compared to see whether they are identical or not identical. They
are identical or not identical precisely when the unencrypted values are identical or not
identical. The unencrypted values must have the same data type here. In the case of strings
the unencrypted values must also have the same length.

However, the comparisons 01 = 1.0 and 'abc' = 'abc.' each returns the truth value
TRUE although the encryptions of these four values are all different.

Other comparisons (e.g. with < or <) of encrypted values return results which have nothing
to do with the corresponding comparisons of the unencrypted values. The predicates
BETWEEN and LIKE do not make sense for encrypted data, either. The same applies for
sorting by means of ORDER BY.

The encryption of a NULL value returns the NULL value of the corresponding data type.
Whether or not a value is a NULL value is therefore not confidential information when
encryption takes place. The encryption of a string with the length 0, on the other hand,
returns a string with the length 16. Without knowing the key no distinction can be made from
the encryptions of strings with 1 to 14 alphanumeric characters.

CAUTION!

@ Encrypted values can normally not be encrypted if they are truncated or extended
(even if the new length is a multiple of 16). A column with encrypted values should
therefore, for example, not have the data type CHAR(20) because then 4 blanks
would be added to each encrypted value. These blanks would have to be removed
again before encryption could take place.

150

U22420-J-2125-12-76

Compound language constructs Function

5.2.7 User Defined Functions (UDFs)

UDFs have an almost identical function scope to procedures. They are described in detail
in the chapter “Routines” on page 321.
The current authorization identifier must have the EXECUTE privilege for the UDF.

CHECK constraints may not contain a UDF.

user_defined function ::= unqual routine_name arguments

arguments ::= (Lexpression [{,expressiont...11)

unqual_routine_name
Name of the UDF to be executed. You can qualify the unqualified UDF name with a
database and schema name.

(Lexpression [{,expression}t...11)
List of arguments. The number of arguments must be the same as the number of UDF
parameters in the UDF definition. The order of the arguments must correspond to that
of the parameters. If no parameter is defined for the UDF, the list consists only of the
parentheses.

The nth parameter is assigned the value of the nth argument before the UDF is
executed.

The data type of the nth argument must be compatible with the data type of the nth
parameter. For input parameters, see the information in section “Supplying input
parameters for routines” on page 129.

U22420-J-2125-12-76 151

ABS() Alphabetical reference section: Functions

5.2.8 Alphabetical reference section: Functions

The functions are described in alphabetical order in the following sections.

ABS() - Absolute value

Function group: numeric function

ABS() determines the absolute value of a numeric value.

ABS (expression)

expression
Numeric expression.
expression may not be a multiple value with dimension > 1.
Result
When expression returns the NULL value, the result is the NULL value.

Otherwise: the absolute value of expression. In other words the value of expression when
expression is positive, otherwise the value of -(expression).

Data type: like expression

Examples
ABS (3,14) returns the value 3,14.
ABS (-3,14) returns the value 3,14.

152 U22420-J-2125-12-76

Alphabetical reference section: Functions AVG()

AVG() - Arithmetic average

Function group: aggregate function

AVG() calculates the average of a set of numeric values. NULL values are ignored.

ALL

AVG (L fSTINCT }] expression)

LL

All values are taken into account, including duplicate values.

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

expression
Numeric expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

If the set of values returned by expression is empty, the result or the result for this group is
the NULL value.

Otherwise:

Without GROUP BY clause:
Returns the arithmetic average of all the values in the specified expression (see
“Calculating aggregate functions” on page 146).

With GROUP BY clause:
Returns the arithmetic average per group of all the values in the derived column for this

group.

U22420-J-2125-12-76 153

AVG()

Alphabetical reference section: Functions

Data type: like expression with the following number of digits:

Integer or fixed-point number:

The total number of significant digits is 31, the number of digits to the right of the
decimal point is 31-#+r. t and r are the total number of significant digits and the number
of digits after the decimal point, respectively, in expression.

Floating-point number:

The total number of significant digits corresponds to 21 binary digits for REAL numbers
and 53 for DOUBLE PRECISION.

Examples

SELECT without GROUP BY:

Calculate the average price of the services in the SERVICE table of the demonstration
database (result: 783.33):

SELECT AVG(service_price) FROM service

If you enter a row in the table that contains the NULL value in the column service_price,
the result does not change.

SELECT with GROUP BY:

The average price is calculated for each order number:

SELECT order_num, AVG(service_price) FROM service GROUP BY order_num

order_num

200 1025
211 662.5
250 662.5

154

U22420-J-2125-12-76

Alphabetical reference section: Functions CEILING()

CEILING() - Smallest integer greater than the value

Function group: numeric function

CEILING() (“round up to the ceiling”) determines the smallest integer which is greater than
or equal to the specified numeric value. In the case of non-integer numeric values,
CEILING() always rounds up.

CEILLING] (expression)

expression
Fixed-point value of the type NUMERIC(p,s) or DECIMAL(p,s) if the number of decimal
places s is greater than 0, otherwise a numeric expression.
expression may not be a multiple value with dimension > 1.
Result
When expression returns the NULL value, the result is the NULL value.
Otherwise:
The smallest integer which is greater than the specified numeric value.
Data type: NUMERIC(g+1,0) or DECIMAL(qg+1,0) where g=MIN(31,p+1) if the number of
decimal places s is greater than 0, otherwise like expression.
Examples
CEILING (3,14) returns the value 4.
CEILING (=3,14) returns the value -3.

CEILING (10,14) returns the value 11.

U22420-J-2125-12-76 155

CHAR_LENGTH() Alphabetical reference section: Functions

CHAR_LENGTH() - Determine string length

Function group: numeric function

CHAR_LENGTH() or CHARACTER_LENGTHY() determines the number of bytes or code
units in a string.

CHAR_LENGTH , CODE_UNITS
{CHARACTER_LENGTH } (expression LUSING {OCTETS }])

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR).

In the case of the alphanumeric data types CHAR and VARCHAR, CHAR_LENGTH()
and OCTET_LENGTHY() (see section “OCTET_LENGTH() - Determine string length”
on page 193) return the same values because each character is represented in
precisely one byte (octet).

In the case of the national data types NCHAR and NVARCHAR the length can be
determined either in bytes (OCTET_LENGTH and CHAR_LENGTH ... USING
OCTETS functions) or in UTF-16 code units (CHAR_LENGTH ... USING
CODE_UNITS function). A code unit in UTF-16 = 2 bytes. The number of Unicode
characters in a national string can be less than the number of code units in UTF-16 as
some Unicode characters are represented by two consecutive code units in UTF-16
(surrogate pairs).

expression may not be a multiple value with dimension > 1. See also section
“Compatibility between data types” on page 99.

USING CODE_UNITS
The length is to be output in code units.
In the data types CHAR and VARCHAR, 1 code unit = 1 byte.
In the data types NCHAR and NVARCHAR, 1 code unit = 2 bytes.

USING OCTETS
The length is to be output in bytes.
In the data types CHAR and VARCHAR, 1 character = 1 byte.
In the data types NCHAR and NVARCHAR, 1 character = 1 or 2 code units = 2 or 4
bytes respectively.

156

U22420-J-2125-12-76

Alphabetical reference section: Functions CHAR_LENGTH()

Result

If the string contains the NULL value, the result is the NULL value.
Otherwise:

The result is the number of bytes or code units in the string.

Data type: INTEGER

Examples

Determine the number of bytes (characters) contained in the alphanumeric string 'only
(result: 4).

CHAR_LENGTH ('only') USING OCTETS

Determine the number of bytes contained in the national string 'for' (result: 6).
CHAR_LENGTH (N'for') USING OCTETS

Determine the number of code units contained in the national string 'for' (result: 3).
CHAR_LENGTH (N'for') USING CODE_UNITS

Determine the number of code units contained in the national string '‘Munchen' (result: 7).
CHAR_LENGTH (U&'M\OOFCnchen')

U22420-J-2125-12-76 157

COLLATE() Alphabetical reference section: Functions

COLLATE() - Determine collation element for national strings

Function group: string function

COLLATE() supplies, for national strings, the collation element in accordance with the
Default Unicode Collation Table (DUCET), see the “Core manual’.

Code points which are not assigned and code points > U+2FFF are ignored.
Collation elements extend to comparison level 3; level 4 is ignored.

COLLATE
. DUCET_WITH_VARS
(expression USING [[catalog.]INFORMATION_SCHEMA.]{DUCET_,\IO_\/ARS } L, lengthl)
length : := unsigned integer
expression

National expression.

DUCET_WITH_VARS
DUCET_NO_VARS

Name of the collation (sort sequence) to be used.
In SESAM/SQL all collation names are predefined. These are the names which are also
defined in the BS2000 software product SORT for sorting strings.

In the case of DUCET_NO_VARS, the variable collation elements, e.g. blanks,
punctuation marks and continuation characters, are ignored.

In the case of DUCET_WITH_VARS, they are taken into account.
The strings U&'cannot' and U&'can not' are sorted in this order with
DUCET_NO_VARS, and in the opposite order with DUCET_WITH_VARS.

The collation can be qualified by a database name and the schema name
INFORMATION_SCHEMA, otherwise the INFORMATION_SCHEMA is taken as the
predefined database.

length
Maximum length of the collation element where 1 < length < 32000.

Length not specified:
The result can have a length length of 32000 bytes, depending on expression.

158 U22420-J-2125-12-76

Alphabetical reference section: Functions COLLATE()

Result
When expression returns the NULL value, the result is the NULL value.
Otherwise:

The result is the collation element for expression in accordance with the Default Unicode
Collation Table (DUCET) with the length n =4 + 6 * (length of expression in code units),
where n < 32000.

If the length of the collation clement is greater than the specified or maximum length, the
function is aborted with SQLSTATE.

Data type: VARCHAR(%)

Examples

Output of a list of customer contacts sorted according to the Default Unicode Collation
Table taking into account the variable collation elements:

=3

UNLOAD ONLINE DATA CONTACTS (LNAME,FNAME,TITLE,CONTACT_TEL,POSITION) -
INTO FILE 'DAT.070.C.DUCETWITHVARS' -
CSV_FORMAT DELIMITER ';' QUOTE '"' ESCAPE '\' EBCDIC -
ORDER BY COLLATE(TRANSLATE(LNAME USING EDFO41 DEFAULT N'?') -
USING DUCET_WITH_VARS,200) -

ASC, -

COLLATECTRANSLATE(FNAME USING EDFO41 DEFAULT N'?') -
USING DUCET_WITH_VARS,200) —

ASC

Output of the collation element for a letter:
HEX_OF_VALUE(COLLATE(TRANSLATE ('A' USING EDF041) USING DUCET_NO_VARS))

(OE33000OZOOOO8OO 1

U22420-J-2125-12-76 159

COUNT(*)

Alphabetical reference section: Functions

COUNT(*) - Count table rows

Function group: aggregate function

COUNT(*) counts the rows in a table. Rows containing NULL values are included in the
count.

COUNT (%)

Result

Without GROUP BY clause:
Returns the number of rows in the derived table of the corresponding SELECT
expression (or corresponding SELECT statement). Duplicate rows and rows containing
only NULL values are included.

With GROUP BY clause:
Returns the number of rows per group for each group in the derived table.

Data type: DECIMAL(31,0)

Examples

SELECT without GROUP BY:
Query the number of customers living in Munich in the CUSTOMERS table (result: 3):

SELECT COUNT(*) FROM customers WHERE city="Munich'

SELECT with GROUP BY:
Count the customers for each city:

SELECT city, COUNT(*) FROM customers GROUP BY city

city

Berlin

Bern 33

Hanover
Moenchengladbach
Munich

New York, NY

— W e

160

U22420-J-2125-12-76

Alphabetical reference section: Functions COUNT()

COUNT() - Count elements

Function group: aggregate function

COUNT() counts the elements in a set of values. NULL values are not included in the count.

ALL

COUNT (L D_ISTINCT}] expression)

LL

All values are taken into account, including duplicate value.

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

expression
Numeric expression, alphanumeric expression, national expression or time value
expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

Without GROUP BY clause:
Number of values in the set returned by expression (see “Calculating aggregate
functions” on page 146).

With GROUP BY clause:
Returns the number of values in each group.

Data type: DECIMAL (31, 0)

U22420-J-2125-12-76 161

COUNT() Alphabetical reference section: Functions

Examples

SELECT without GROUP BY:
Determine the number of different service descriptions in the SERVICE table (result: 7):

SELECT COUNT(DISTINCT service_text) FROM service

SELECT with GROUP BY:
Count the number of different services for each order number:

SELECT order_num, COUNT(DISTINCT service_text) FROM service
GROUP BY order_num

order_num

200 2
211 4
260 2

162 U22420-J-2125-12-76

Alphabetical reference section: Functions CSsV()

CSV() - Reading a BS2000 file as a table

Function group: table function

The table function CSV() enables you to use the content of a BS2000 file as a “read-only”
table in any SQL statements.

CSV format (CSV: Comma Separated Values) is used to display SQL tables in files here.
This is a standardized format for the platform-independent exchange of table data, see
“Format of CSV files” on page 165. The file contains the sequence of table rows, each row
containing its column values sequentially as a string. Such files can be generated with a
large number of software products (e.g. with Microsoft EXCEL).

CSV (LFILE] file DELIMITER delimiter [QUOTE quote]l [ESCAPE escapel, data type, ...)

FILE file
Name of the input file. You must specify file as an alphanumeric literal.

The input file must be a SAM file.
If the input file is not located in the ID of the DBH, the DBH ID must have read
authorization for this file. Otherwise the DBH cannot access the input file.

If a read password is required for the file, this must be added to the BS2000 file in the
form ?PASSWORD=<password>, €.g. ':80SH: $ABC.MYFILE?PASSWORD=C' 'ABCD"' " '.

password can be specified in several different ways:

— C''string""
string contains four printable characters.

— X''hex_string'’
hex_string contains eight hexadecimal characters.

- n

n identifies an integer from - 2147483648 to + 2147483647.

DELIMITER delimiter
Delimiters (DELIMITER characters) between the column values of the CSV file.
A DELIMITER character can also be part of a value, see the descriptions of quote and
escape below.
delimiter must be specified as an alphanumeric literal with the length 1.

U22420-J-2125-12-76 163

CSsV() Alphabetical reference section: Functions

QUOTE quote
QUOTE characters in which the column values in the CSV file can be enclosed. These
QUOTE characters are not part of the column value. A QUOTE character in the column
value must be entered twice in the CSV file.
When a value is enclosed in QUOTE characters, it can also contain NEWLINE
characters (which are not interpreted as a line break) or DELIMITER characters. A
value consisting only of an opening and a closing QUOTE character is interpreted as a
value with the length 0.
quote must be specified as an alphanumeric literal with the length 1.
When QUOTE is not specified, the column values in the CSV file cannot be enclosed
in QUOTE characters.

ESCAPE escape
ESCAPE character with which ESCAPE sequences consisting of two characters in the
input file begin.
ESCAPE sequences enable DELIMITER characters, QUOTE characters and ESCAPE
characters to be written as part of a column value and NEWLINE characters to be
ignored as a delimiter between two input lines.
escape must be specified as an alphanumeric literal with the length 1.
When ESCAPE is not specified, no ESCAPE sequences can be used in the CSV file.

The characters specified for DELIMITER, QUOTE and ESCAPE must all be
different.

data_type,...
Data types of the various columns in the table which is read from the CSV file.

Every data_type must be data type CHARACTER(n) (where 1 < n < 256) or
CHARACTER VARYING(n) (where 1 < n < 32000).

Result

A table with as many columns as data types which are specified, each with the specified
data type.

Example
@ A new SERVICE_ENCR base table is set up. Its contents are taken from a CSV file.

INSERT INTO service_encr (setext, seprice_encr) SELECT a,b
FROM TABLE(CSV(FILE 'out.service.070' DELIMITER ':"',
CHAR(25) ,VARCHAR(16)))
AS t(a,b)

164 U22420-J-2125-12-76

Alphabetical reference section: Functions CSsV()

Format of CSV files

The CSV format (CSV: Comma Separated Values) is a standardized format for the
platform-independent exchange of table data. Such files can be generated and edited with
a large number of software products (e.g. with Microsoft EXCEL).

Tables are presented in CSV files as a sequence of lines, the lines in a file being separated
by (one or more) NEWLINE characters (line breaks). The transition to the next record in a
SAM file is also such a new line, although this is not an EBCDIC character. A record in a
SAM file can contain multiple lines, separated by a NEWLINE character. New line
characters may also occur before the first and after the last line.

The various column values in a line are separated by a single DELIMITER character. A
DELIMITER character may also occur after the last column value of a line.

There are two ways of presenting the various column values in each line:

The individual characters in a column can be enclosed in QUOTE characters or not. In the
first case the column values can also contain the NEWLINE and the DELIMITER
characters. However, a QUOTE character in the column value must be entered twice
(otherwise it terminates the column value). Column values in QUOTE characters can only
be used if the QUOTE operand is specified in the CSV function.

If a column value does not begin with the QUOTE character (or if the QUOTE operand is
not specified in the CSV function), the column value will end before the next DELIMITER or
NEWLINE character.

In SESAM/SQL you can also define an ESCAPE character. The ESCAPE character
enables you to use ESCAPE sequences in the column value, which are interpreted as

follows:
Escape sequence Interpreted as
escape newline “no character”
escape delimiter a DELIMITER character
escape quote a QUOTE character
escape escape an ESCAPE character

ESCAPE sequences are also permitted in column values which are enclosed in QUOTE
characters. ESCAPE NEWLINE in particular is useful, because when an ESCAPE
character is contained at the end of a SAM record, the line is regarded as not yet completed
and is continued with the following SAM record. The lines in a CSV file can thus be longer
than one record in a SAM file of BS2000.

If errors occur when the CSV file is read or an infringement of the CSV format is detected
(e.g. in the case of end of file in a column value which begins with a QUOTE character but
does not end with one), this is indicated with an error code.

U22420-J-2125-12-76 165

csV()

Alphabetical reference section: Functions

Note on NEWLINE characters
In CSV format four EBCDIC control characters are interpreted as a NEWLINE characters:
X'04' is the NEXT LINE character

X'0D' is the CARRIAGE RETURN character. Its ASCII equivalent is used as the newline
character in some Macintosh systems.

X'15" is the LINE FEED character. Its ASCII equivalent is used as the newline character
in POSIX and LINUX systems. In EBCDIC systems from IBM it is used as NEXT
LINE or LINE FEED. The ASCII equivalent of X'0D15' is used as a string for (one)
newline character in Windows systems.

X'25' is the PRIVATE USE TWO character. However, in EBCDIC systems from IBM it is
used as LINE FEED or NEXT LINE, and in the IBM z/OS Unix System Services as
a newline character.

The CSV format accepts all these control characters (like the transition to the next record
of a SAM file) as newline characters.
Syntax of a CSV file

A syntactical presentation of the format of a CSV file is provided on page 743.

Interpreting CSV files as an SQL table

In the CSV function the number of columns to be read and their data types are specified.
These columns correspond to the column values in the CSV file in the same order. If a line
in the CSV file contains fewer column values, NULL values are added. If a line in the CSV
file contains more column values, the surplus column values are ignored.

A line in a CSV file must contain at least one character. Multiple consecutive newline
characters are treated as one newline character.

An empty column value (e.g. between two consecutive DELIMITER characters) is
interpreted as a NULL value.

A column value which is longer than the (maximum) length of the column’s data type is
truncated. A warning is issued.

If the data type of the column is CHARACTER(n) but the column value is shorter than n, the
column value is padded at the end with blanks (X'40").

A column value with the length 0 can be written with QUOTE characters, e.g. as " if
DELIMITER ;' QUOTE ™ is specified in the CSV function.

166

U22420-J-2125-12-76

Alphabetical reference section: Functions CURRENT_DATE

Restrictions in the use of CSV files

The BS2000 file is opened exclusively. It can therefore not be used simultaneously by the
same or another SQL transaction in another CSV function. A remedy is offered by the
CACHE annotation, in which the CSV is cached temporarily, see the “Performance”
manual.

If the file cannot be opened, an error message is issued and processing is terminated.

The file is closed only when the query containing it has been analyzed fully or when the
query is no longer required (e.g. because the cursor which used the file is closed) or when
the CSV file is cached.

In addition, there is a maximum number of CSV files (currently 4) which may be opened
simultaneously. If this maximum number is exceeded, a corresponding error message is
issued.

When one coded character set (CODE_TABLE not equal to _NONE_or CODED-CHARACTER-SET
not equal to *NONE) each is defined for the database used and for the CSV file, the two
names specified must be the same.

CURRENT_DATE - Current date

Function group: time function
CURRENT_DATE returns the current date.

CURRENT_DATE

Result
Current date

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: DATE

U22420-J-2125-12-76 167

CURRENT_TIME(3) Alphabetical reference section: Functions

CURRENT_TIME(3) - Current time

Function group: time function
CURRENT_TIME(3) returns the current time.

CURRENT_TIME(3)

Result
Current time

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: TIME

CURRENT_TIMESTAMP(3) - Current time stamp

Function group: time function
CURRENT_TIMESTAMP(3) returns the current time stamp.

CURRENT_TIMESTAMP(3)

Result
Current time stamp

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: TIMESTAMP

168 U22420-J-2125-12-76

Alphabetical reference section: Functions DATE_OF_JULIAN_DAY()

DATE_OF_JULIAN_DAY() - Convert Julian day nhumber

Function group: time function

DATE_OF_JULIAN_DAY() returns the corresponding date in the Gregorian calendar for a
given Julian day number (see also the inverse function JULIAN_DAY_OF_DATE() on
page 182).

The Julian day number of a date is the number of days which have passed since the 24th
November, 4714 BC (in accordance with the Gregorian calendar).

DATE_OF_JULIAN_DAY() and JULIAN_DAY_OF_DATE() are inverse functions.

@ When, for example, a constraint exists in the form JULIAN_DAY_OF_DATE(column)
< :user_variable, the SQL Optimizer can then convert this constraint internally to the
constraint column < DATE_OF_JULIAN_DAY (:user_variable) in order to permit the
use of indexes on column. Consequently :user_variable may only contain values
which are permitted as an argument of DATE_OF_JULIAN_DAY(). This also
applies for any constant expressions in place of :user_variable.

DATE_OF_JULTAN_DAY (expression)

expression
Numeric integer expression. Its value represents the number of days which have
passed since the 24th November 4714 B.C. Its value must lie between 1721426 and
5373484.
expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

SESAM/SQL interprets the value of expression as a Julian day number. The result of the
function is the date which corresponds to this Julian day number.

Data type: DATE

Example
DATE_OF_JULTAN_DAY (2451545)

(2000—01—01)

U22420-J-2125-12-76 169

DECRYPT()

Alphabetical reference section: Functions

DECRYPT() - Decrypt data

Functon group: cryptographic function

DECRYPT() decrypts strings in accordance with the AES algorithm and using a key of
128 bits (16 bytes) in Electronic Codebook Mode (ECM) to the corresponding value of a
specified data type.

DECRYPT (expression, key, data type)

expression
Specifies the value which is to be decrypted.
The value must be of the alphanumeric data type CHARACTER or CHARACTER
VARYING.
expression may not be a multiple value with dimension > 1.
The length of expression must be an integral multiple of 16 and greater than 0. A NULL
value is also permitted.

key
Key with which the value of expression is to be decrypted.
Alphanumeric string with a length of 16 characters, i.e. of the data type
CHARACTER(16) or CHARACTER VARYING(n) where n >16.
A NULL value of one of these data types is also permissible.
To obtain a correct result, the key must be the same as that which was used for
encryption with ENCRYPT().

data_type
Data type of the decrypted value (without dimension specification). The data types
permitted depend on the (maximum) length of the data type of expression, see the table
on the next page.

Result

If the value of expression or key is the NULL value, the result is the NULL value.

Otherwise:

For the decrypted value of expression in the specified data type, see the table on the next
page. For possible errors, see “Error cases” on page 172.

Data type: the specified data_type

Data type of expression data_type and data type of the result
CHAR(m), VARCHAR(= m) ! CHAR(n) if n < 256 2
Table 13: Permitted combinations in the case of DECRYPT()

170

U22420-J-2125-12-76

Alphabetical reference section: Functions

DECRYPT()

Data type of expression

data_type and data type of the result

CHAR(m), VARCHAR(= m) ! VARCHAR(n) 2
CHAR(m), VARCHAR(= m) ! NCHAR(n) 3
CHAR(m), VARCHAR(= m) ! NVARCHAR(n) 3

CHAR(16), VARCHAR(= 16

SMALLINT, INTEGER

CHAR(16), VARCHAR(= 16

NUMERIC (up to 14 characters)

CHAR(32), VARCHAR(= 32

NUMERIC (15 to 30 characters)

CHAR(48), VARCHAR(= 48

NUMERIC (31 characters)

CHAR(16), VARCHAR(= 16

DECIMAL (up to 27 characters)

CHAR(32), VARCHAR(> 32

DECIMAL (28 to 31 characters)

CHAR(16), VARCHAR(= 16

FLOAT, REAL, DOUBLE PRECISION

)
)
)
)
)
)
)
)

CHAR(16), VARCHAR(= 16 DATE, TIME(3), TIMESTAMP(3)

Table 13: Permitted combinations in the case of DECRYPT()
1

m must be> 16 and an integral multiple of 16
2 Length n must be > 1 and between (m - 17) and (m -2) (inclusive)
8 Length n must be > 1 and between (m/2 - 1) and (m/2 - 8) (inclusive)

Examples
Decryption in a SELECT expression:

SELECT DECRYPT(sprice_encr, '0123456789ABCDEF' ,NUMERIC(5,0))
AS test_decr FROM service

The VALUE_OF_REP function also enables individual values of a jointly encoded string to
be decrypted (see also page 175):

VALUE_OF_REP (SUBSTRING (DECRYPT (wagesandbonus, :key, CHAR(12))
FROM 7 FOR 6), NUMERIC(6))
AS bonus

U22420-J-2125-12-76 171

DECRYPT() Alphabetical reference section: Functions

Error cases
The following errors can occur when the DECRYPT function is executed:
e The length of the encrypted string is 0 or not an integral multiple of 16.

e The key key is a string with a length which is not 16 or it is not the key that was used for
encryption.

e The decrypted value does not match the data type specified in the result (when, for
example, a SMALLINT value is encrypted, but INTEGER was specified as the result
type in the DECRYPT function (or vice versa)).

However, when the DECRYPT function is executed no check is made to see whether the
decrypted result is assigned precisely the same data type as the encrypted value. Only the
internal presentation of values is encrypted and decrypted, but no additional information.

Thus, for example, in SESAM/SQL the values of the data types INTEGER,
CHARACTER(4), NUMERIC(4,0), DECIMAL(7,2) and REAL which are not equal to NULL
all have an internal presentation with precisely 4 bytes. Consequently a value of the data
type INTEGER can be encrypted and decrypted to a value of the type CHAR(4) or REAL.
The DECRYPT function does not return an error even if decryption is to the type
NUMERIC(4,0). Depending on the decrypted value, however, an error can occur in a
subsequent arithmetic operation.

172 U22420-J-2125-12-76

Alphabetical reference section: Functions DEE()

DEE() - Table without columns

Function group: table function
The table function DEE() returns a table without columns with one row.

In SESAM/SQL there are no other tables of this kind. They can, for example, be used to
analyze an expression without reference to a base table. No SQL privilege is required for
reading with DEE().

DEE [(O)1]

Result

The table without columns with one row.

Examples
This query returns details of SQL mode:

SELECT CURRENT_USER AS "Who am I",
LOCALTIMESTAMP(3) AS "and what time is it, anyway"
FROM TABLE(DEE())

The following query is executed for database k9 and could return a different time:

SELECT LOCALTIMESTAMP(3) AS "local time on catalog K9"
FROM TABLE(K9.DEE())

The following query expands table T by one row with NULL values:
SELECT * FROM T UNION JOIN TABLE(DEE())

U22420-J-2125-12-76 173

ENCRYPT() Alphabetical reference section: Functions

ENCRYPT() - Encrypt data

Functon group: cryptographic function

ENCRYPT() encrypts values of any data type using the AES algorithm and a key of 128 bits
(16 bytes) in Electronic Codebook Mode (ECM).

ENCRYPT (expression, key)

expression
Expression whose value is to be encrypted.
The value may be of any data type, but not CHARACTER VARYING (= 31998) or
NATIONAL CHARACTER VARYING (16000).
expression may not be a multiple value with dimension > 1.

key
Key with which the value of expression is to be encrypted.
Alphanumeric string with a length of 16 characters, i.e. of the data type
CHARACTER(16) or CHARACTER VARYING(n) where n >16.
A NULL value of one of these data types is also permissible.

Result
If the value of expression or key is the NULL value, the result is the NULL value.
Otherwise:

The encrypted value of expression.

Data type: CHARACTER VARYING with a maximum length in accordance with the table
on the next page.

174 U22420-J-2125-12-76

Alphabetical reference section: Functions

ENCRYPT()

Data type of expression

Data type of the result

FLOAT, REAL, DOUBLE PRECISION

VARCHAR(16)

DATE, TIME(3), TIMESTAMP(3)

CHAR(m) VARCHAR(n)
VARCHAR(m) where m < 31998 VARCHAR(n)
NCHAR(m) VARCHAR(n) 2
NVARCHAR(m) where m < 15999 VARCHAR(n) 2
SMALLINT, INTEGER VARCHAR(16)
NUMERIC (up to 14 characters) VARCHAR(16)
NUMERIC (15 to 30 characters) VARCHAR(32)
NUMERIC (31 characters) VARCHAR(48)
DECIMAL (up to 27 characters) VARCHAR(16)
DECIMAL (28 to 31 characters) VARCHAR(32)

(

(

VARCHAR(16)

Table 14: Data type of the result of ENCRYPT()

" Where n is the lowest integral multiple of 16 which is>m + 2

2 Where n is the lowest integral multiple of 16 which is = 2*m + 2

@ If expression has a data type whose values can have different lengths (i.e.
(NATIONAL) CHARACTER VARYING), the encrypted values can also have
different lengths. However, the length of the encrypted value is always a multiple of

16 characters, see the table above.

If, for example, expression has the data type VARCHAR(20), the result ENCRYPT()
will have the data type VARCHAR(32); strings with 0 to 14 characters are encrypted
in strings with 16 characters, strings with 15 to 20 characters in strings with 32

characters. The precise length of the unencrypted value cannot be determined from
the encrypted value without knowledge of the key (it is encrypted together with the

value).

Examples

NULL:
UPDATE service SET

srec_encr=ENCRYPT(service_price, '0123456789ABCDEF"'),
service_price = NULL WHERE service_price IS NOT NULL

@ The values of the SERVICE_PRICE column are encrypted in the SREC_ENCR
column; the unencrypted values of the SERVICE_PRICE column are converted to

The REP_OF_VALUE function also enables multiple values to be encrypted in a

string (see also page 171):
ENCRYPT (REP_OF_VALUE(wages)

|| REP_OF_VALUE(bonus),

tkey)

U22420-J-2125-12-76

175

EXTRACT() Alphabetical reference section: Functions

EXTRACT() - Extract components of a time value

Function group: numeric function

EXTRACTY() selects the specified component from a time value.
EXTRACT() uses the Gregorian calendar to do this, including the dates before its
introduction on 10/15/1582.

EXTRACT (component FROM expression)

YEAR

MONTH

DAY

HOUR

MINUTE
component ::=< SECOND
YEAR_OF_WEEK
WEEK_OF_YEAR

~

DAY_OF_WEEK
DAY_OF_YEAR
part
Specification of the component. Permissible entries:
YEAR selects the year of timestamp or date, e.g. 2013
MONTH selects the month of the year of a timestamp or date, e.g. 2 for February
DAY selects the day of the month of a timestamp or date, e.g. 25
HOUR selects the hour of the day of a timestamp or of a time, e.g. 23

MINUTE selects the minute of the hour of a timestamp or of a time, e.g. 58
SECOND selects the second of the minute of a timestamp or of a time, e.g. 35.765

YEAR_OF_WEEK determines the year in which the week of a timestamp or day lies,
e.g. 2013

WEEK_OF_YEAR determines the week of the year of a timestamp or date, e.g. 52

DAY_OF_WEEK determines the day of the week of a timestamp or date, e.g. 3 for
Wednesday

DAY_OF_YEAR determines the day of the year of a timestamp or date, e.g. 365

176 U22420-J-2125-12-76

Alphabetical reference section: Functions EXTRACT()

expression
Time value expression. Permissible types are:
— TIMESTAMP is permissible for every component
— TIME with component HOUR, MINUTE or SECOND
— DATE with component YEAR, MONTH, DAY, YEAR_OF_WEEK, WEEK_OF_YEAR, DAY_OF_WEEK
or DAY_OF_YEAR

expression may not be a multiple value with dimension > 1.

Result
When expression returns the NULL value, the result is the NULL value.
Otherwise:

The corresponding numeric value.

Data type: DECIMAL(1,0) with component DAY_0F_WEEK
DECIMAL(2,0) with component MONTH, DAY, HOUR, MINUTE, WEEK_OF_YEAR
DECIMAL(3,0) with component DAY_OF_YEAR
DECIMAL(4,0) with component YEAR und YEAR_OF_WEEK
DECIMAL(5,3) with component SECOND

Examples
Determining the current year number.

EXTRACT (YEAR FROM CURRENT_DATE)
Determining the day in the year.

EXTRACT (DAY_OF_YEAR FROM DATE '<date>')
Determining the current second.

EXTRACT (SECOND FROM CURRENT_TIME(3))

U22420-J-2125-12-76 177

FLOOR()

Alphabetical reference section: Functions

FLOOR() - Largest integer less than the value

Function group: numeric function

FLOOR() (“round down to the floor”) determines the largest integer which is less than or
equal to the specified numeric value. In the case of non-integer numeric values, FLOOR()
always rounds down.

FLOOR (expression)

expression
Fixed-point value of the type NUMERIC(p,s) or DECIMAL(p,s) if the number of decimal
places s is greater than 0, otherwise a numeric expression.
expression may not be a multiple value with dimension > 1.
Result
When expression returns the NULL value, the result is the NULL value.
Otherwise:
The largest integer which is less than the specified numeric value.
Data type: NUMERIC(g+1,0) or DECIMAL(g+1,0) where g=MIN(31,p+1) if the number of
decimal places s is greater than 0, otherwise like expression.
Examples
FLOOR (3,14) returns the value 3.
FLOOR (-3,14) returns the value -4.

FLOOR (10,54) returns the value 10.

178

U22420-J-2125-12-76

Alphabetical reference section: Functions HEX_OF_VALUE()

HEX_OF_VALUE() - Present any value in hexadecimal format

Function group: string function

HEX_OF_VALUE() presents a value of any data type in hexadecimal format, i.e. in a string
consisting of the hexadecimal characters 0,1,2,...,9,a,b,...,f.

This enables any bit patterns to be output in readable format.

HEX_OF_VALUE (expression)

expression
Expression whose value is to be presented in hexadecimal format.
The data type may not be CHARACTER VARYING(n) with a maximum length of n >
16000 and not NATIONAL CHARACTER VARYING(n) with a maximum length of n >
8000.
expression may not be a multiple value with dimension > 1.

Result
If the value of expression is the NULL value, the result is the NULL value.

Otherwise:

The internal presentation of the value of expression in hexadecimal format as an
alphanumeric string. Its length is specified in the table on the next page.

Data type: CHARACTER VARYING with a maximum length in accordance with the table
on the next page.

U22420-J-2125-12-76 179

HEX_OF_VALUE()

Alphabetical reference section: Functions

Data type of expression Data type of the result Length of the result
if not NULL

CHAR(n) VARCHAR(2*n) 2*n

VARCHAR(n) where n < 16000 |VARCHAR(2*n) 0 to 2*n, even

NCHAR(n) VARCHAR(4*n) 4*n

NVARCHAR(n) where n < 8000 |VARCHAR(4*n) 0 to 4*n, divisible by 4

SMALLINT VARCHAR(4) 4

INTEGER VARCHAR(8) 8

NUMERIC(p,s) VARCHAR(2*p) 2*p

DECIMAL(p,s) VARCHAR(q ") q’

REAL, FLOAT (< 21 characters) | VARCHAR(8) 8

DOUBLE PRECISION, VARCHAR(16) 16

FLOAT (= 22 characters)

DATE VARCHAR(12) 12

TIME(3) VARCHAR(16) 16

TIMESTAMP(3) VARCHAR(28) 28

Table 15: Data types and lengths in the case of HEX_OF_VALUE()

1

Examples

q=p+2 if p is even; q=p+1 if p is odd.

HEX_OF_VALUE (CAST (254 AS SMALLINT))

00fe

HEX_OF_VALUE ('ABC')

clc2c3

180

U22420-J-2125-12-76

Alphabetical reference section: Functions HEX_OF_VALUE()

Internal presentation of values in SESAM/SQL

The internal presentation of values which are not equal to NULL in SESAM/SQL as
returned by the REP_OF_VALUE() and HEX_OF_VALUE() functions is similar to the
internal presentation of corresponding values in other programming languages (e.g.

COBOL, C).
SQL data_type Sample value internal presentation
(hexadecimal format)
CHAR, VARCHAR 'ABC' clc2c3
EBCDIC string
NCHAR, NVARCHAR N'ABC' 004100420043
UTF16 string
SMALLINT +300 012C
2 bytes with binary presentation of value |-300 fed4
(2 Excess Code)
INTEGER +300 0000012c
4 bytes with binary presentation of value |-300 fffffedd
(2 Excess Code)
NUMERIC(p,s) +123.5 f1f2f3fh
p bytes with EBCDIC characters for digits, |-123.5 f1f2f3d5
sign in the last byte
DECIMAL(p,s) +123.5 01235c
FLOOR(p/2)" bytes with 2 digits each, -123.5 01235d
last byte with 1 digit and sign
REAL, FLOAT (< 21 characters) +2.550625e+2 45ff1000
1 byte for sign and exponent, (=255 + 1/16)
3 bytes mantissa
DOUBLE PRECISION, +2.5506250000e+2 c5ff100000000000
FLOAT (=22 characters)
1 byte for sign and exponent for
base 16, 7 bytes mantissa
DATE DATE'2000-08-11" 07d800008000b
2 bytes each with year, month, day in
binary format
TIME(3) TIME'12:34:56.123' 000c00220038007b
2 bytes each with hours, minutes, seconds
and milliseconds in binary format
TIMESTAMP(3) TIMESTAMP 07d800008000b000c00
Like DATE and TIME(3) '2000-08-11 12:34:56.123"' | 220038007b

Table 16: Overview of the internal presentation of values in SESAM/SQL

1 FLOOR(p/2) is the largest whole number< p/2

U22420-J-2125-12-76 181

JULIAN_DAY_OF_DATE() Alphabetical reference section: Functions

JULIAN_DAY_OF_DATE() - Convert date

Function group: numeric function

JULIAN_DAY_OF_DATE() returns the Julian day number which corresponds to a given
date time value (see also the inverse function “DATE_OF_JULIAN_DAY()” on page 169).

The Julian day number for the 24th November 4714 B.C. (in accordance with the Gregorian
calendar) is “0”.

The Julian day number for a later date is the number of days which have passed between
the 24th November 4714 B.C. and the later date. For example, the DATE '0001-01-01'
corresponds to the Julian day number “1721426”, the DATE '9999-12-31' corresponds to
the Julian day number “5373484”.

DATE_OF_JULIAN_DAY() and JULIAN_DAY_OF_DATE() are inverse functions.

@ When, for example, a constraint exists in the form JULIAN_DAY_OF_DATE(column)
< :user_variable, the SQL Optimizer can then convert this constraint internally to the
constraint column < DATE_OF_JULIAN_DAY (:user_variable) in order to permit the
use of indexes on column. Consequently :user_variable may only contain values
which are permitted as an argument of DATE_OF_JULIAN_DAY(). This also
applies for any constant expressions in place of :user_variable.

JULTAN_DAY_OF_DATE C(expression)

expression
Time value expression whose evaluation gives a value of the DATE data type;
value is between 0001-01-01 and 9999-12-31.
expression may not be a multiple value with dimension > 1.
Result
When expression returns the NULL value, the result is the NULL value.
Otherwise:
the result is the Julian day number which represents the date which results from expression.

Data type: INTEGER

182

U22420-J-2125-12-76

Alphabetical reference section: Functions JULIAN_DAY_OF_DATE()

Examples

JULTAN_DAY_OF_DATE(DATE'2000-01-01")

(2451545 1

To create a view which outputs the orders for the last two weeks:

CREATE VIEW orders AS SELECT * FROM job
WHERE todate >= DATE_OF_JULIAN_DAY (JULIAN_DAY_OF_DATE(CURRENT_DATE)-14)

U22420-J-2125-12-76 183

LOCALTIME(3) Alphabetical reference section: Functions

LOCALTIME(3) - Current local time

Function group: time function
LOCALTIME(3) returns the current local time.

LOCALTIME(3)

Result
Current local time

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: TIME

LOCALTIMESTAMP(3) - Current local time stamp

Function group: time function
LOCALTIMESTAMP(3) returns the current local time stamp.

LOCALTIMESTAMP(3)

Result
Current local time stamp

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: TIMESTAMP

184 U22420-J-2125-12-76

Alphabetical reference section: Functions LOWER()

LOWER() - Convert uppercase characters

Function group: string function

LOWER() converts uppercase characters in a string to lowercase characters.

LOWER (expression)

expression
Alphanumeric expression or national expression.
Result
When expression returns the NULL value, the result is the NULL value.
Otherwise:

o If expression is an alphanumeric expression, the result is a copy of the string which
results from the evaluation of expression, uppercase letters of the SESAM/SQL
character repertoire (see page 49) being replaced by equivalent lowercase letters (A-Z
without umlauts and R3).

o If expression is a national expression, uppercase letters are replaced by equivalent
lowercase letters in accordance with the Unicode rules (as with the XHCS function
tolower).

Data type: like expression

Examples

SELECT LOWER(strasse) FROM kunde WHERE knr=100

otto—hahn-ring 6

LOWER('A") returns the value 'A'.

LOWER(NX'00C4 ") returns the value NX'00E4' (which corresponds to 'a') because the
Unicode rules are used.

U22420-J-2125-12-76 185

MAX()

Alphabetical reference section: Functions

MAX() - Determine largest value

Function group: aggregate function

MAX() determines the largest value in a set of values. NULL values are ignored. Comparing
alphanumeric values, national values, numeric values and time values is described in
section “Comparison of two rows” on page 216.

ALL

MAX (L ETINCT }] expression)

ALL / DISTINCT
ALL or DISTINCT can be specified but has no effect on the result.

expression
Numeric expression, alphanumeric expression, national expression or time value
expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

If the set of values returned by expression is empty, the result or the result for this group is
the NULL value.

Otherwise:

Without GROUP BY clause:
Determines the largest value in the set of values returned by expression (see
“Calculating aggregate functions” on page 146).

With GROUP BY clause:
Returns the largest value of each group.

Data type: like expression

186

U22420-J-2125-12-76

Alphabetical reference section: Functions MAX()

Examples

SELECT without GROUP BY:
Query the highest service price for order 211 in the SERVICE table (result: 1200):

SELECT MAX(service_price) FROM service WHERE order_num=211

SELECT with GROUP BY:
Determine the highest service price for each order number:

SELECT order_num, MAX(service_price) FROM service GROUP BY order_num

order_num

200 1500
211 1200
250 1200

U22420-J-2125-12-76 187

MIN()

Alphabetical reference section: Functions

MIN() - Determine lowest value

Function group: aggregate function

MIN() determines the smallest element in a set of values. NULL values are ignored.
Comparing alphanumeric values, national values, numeric values and time values is
described in section “Comparison of two rows” on page 216.

ALL

MIN (L D_ISTINCT>] expression)

ALL / DISTINCT
ALL or DISTINCT can be specified but has no effect on the result.

expression
Numeric expression, alphanumeric expression, national expression or time value
expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

If the set of values returned by expression is empty, the result or the result for this group is
the NULL value.

Otherwise:

Without GROUP BY clause:
Determines the lowest value in the set of values returned by expression (see “Calculating
aggregate functions” on page 146).

With GROUP BY clause:
Returns the lowest value of each group.

Data type: like expression

188

U22420-J-2125-12-76

Alphabetical reference section: Functions

MIN()

Examples

SELECT without GROUP BY:
Query the lowest service price for order 211 in the SERVICE table (result: 50):

SELECT MIN(service_price) FROM service WHERE order_num=211

SELECT with GROUP BY:
Determine the lowest service price for each order number:

SELECT order_num, MIN(service_price) FROM service GROUP BY order_num

order_num

200 75
211 50
250 125

U22420-J-2125-12-76

189

MOD()

Alphabetical reference section: Functions

MOD() - Remainder of an integer division (modulo)

Function group: numeric function

MOD() determines the remainder of a division of two integers.

MOD (dividend, divisor)

dividend ::= expression
divisor ::= expression
dividend

Integer numeric expression (SMALLINT, INTEGER, NUMERIC(p,0), DECIMAL(p,0))
for the dividend of the division.

divisor
Integer numeric expression (SMALLINT, INTEGER, NUMERIC(q,0), DECIMAL(q,0))
for the divisor of the division. divisor may not be 0.

dividend and divisor may not be multiple values with a dimension > 1.

Result

When dividend or divisor returns the NULL value, the result is the NULL value.
When dividend returns the value 0, the result is 0.

Otherwise:

The result is the integer remainder of the division dividend | divisor with the same sign as
dividend.

Data type: like divisor.

Examples
MOD (3,2) returns the value 1.

MOD (-3,-2) returns the value -1.

190

U22420-J-2125-12-76

Alphabetical reference section: Functions NORMALIZE()

NORMALIZE() - Convert national string to normal form

Function group: string function

The encoding of a character in Unicode is not unambiguous, i.e. more than one coding can
exist for a character, see the “Core manual’.

A typical example of this is provided by the German umlauts. For example, the character A
has both the code point U+00C4 (composed form) and the code point combination U+0041
and U+0308 (decomposed form). In normalized presentation forms these differences do not
occur. If two normalized strings differ, it is in their different code point presentations.

NORMALIZE() converts a national string with national characters which have code points
in the range U+0000 through U+2FFF to a normalized form. Other characters, e.g. surrogates,
remain unchanged.

F
NORMALIZE C(expression [{% } L, length1])

length : := unsigned_integer

expression
National-expression. Its evaluation returns a national string (data type NCHAR or
NVARCHAR) in normalized form.
expression may not be a multiple value with dimension > 1.

NFC / NFD
Normalization forms C (“Canonical Decomposition followed by Canonical
Composition”) and D (“Canonical Decomposition”) of the Unicode standard.

NFC maps all code points which together result in a character to the corresponding
code point. NFD breaks down each “compound” character into its component parts, to
the basic characters and the diacritical characters linked to these. The order of the
linked diacritical characters is strictly defined here.

length
Maximum length of the normalized presentation in code units.

Length not specified:
The result can have a length of up to 16000 code units, depending on expression.
Result

If the value of expression is the NULL value, the result is the NULL value.

U22420-J-2125-12-76 191

NORMALIZE() Alphabetical reference section: Functions

Otherwise:

The normalized presentation of the value of expression.

The following applies: length of the normalized presentation (NFC) < length of the non-
normalized presentation < length of the normalized presentation (NFD).

If the length of the normalized presentation is greater than the specified length, the function
is aborted with SQLSTATE.

Data typ: NVARCHAR(MIN(2#n,16000)),
where n is the length of the argument data type NCHAR(n) or NVARCHAR(n). For an
argument of type NCHAR the data type is NVARCHAR too.

Example

The following search condition normalizes a user name in order to detect unwanted users
who can log in various presentation forms.

. WHERE NORMALIZE(:customer,NFC)
NOT IN (SELECT name FROM unwanted_customers)

192

U22420-J-2125-12-76

Alphabetical reference section: Functions OCTET_LENGTH()

OCTET_LENGTH() - Determine string length

Function group: numeric function

OCTET_LENGTH() determines the number of bytes in a string.

OCTET_LENGTH (expression)

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR). expression may not be a multiple value with dimension > 1.
See also section “Compatibility between data types” on page 99.

Result

If the string contains the NULL value, the result is the NULL value.

Otherwise:

The result is the number of bytes in the string.

Data type: INTEGER

Examples
Determine the number of bytes in the alphanumeric string 'only' (result: 4).
OCTET_LENGTH ('only")

Determine the number of bytes in the national string 'An evening in old Miinchen' (result:
16).

OCTET_LENGTH (U&'An evening in old M\0OFCnchen')

U22420-J-2125-12-76 193

POSITION() Alphabetical reference section: Functions

POSITION() - Determine string position

Function group: numeric function

POSITION() determines the position of a string in another string.

POSITION (expression IN expression[USING CODE_UNITSI)

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR). expression may not be a multiple value with dimension > 1.
See also section “Compatibility between data types” on page 99.

Result

In the following description of the possible results, string! is the string whose position is to
be determined, and string? is the other string.

stringl and/or string2 contains the NULL value:
The result is the NULL value.

stringl has the length O:
The result is 1.

stringl is in string2:
The result is 1 greater than the number of characters (for CHAR/VARCHAR) or code
units (for NCHAR/NVARCHAR) of string2 which precede the first character or the first
code unit of stringl.

Otherwise: The result is 0.
Data type: INTEGER

Examples

Determine the position of the string 'nett' in the string 'annette’ (result: 3):
POSITION ('nett' IN 'annette')

Determine the position of the string 'Vogue' (result: 26):
POSITION('Vogue' IN '"If it''s in vogue it''s in Vogue.')

Determine the position of the string 'Puss' in the string 'boots' (result: 0):

POSITION ('Puss' IN 'boots')

194 U22420-J-2125-12-76

Alphabetical reference section: Functions REP_OF_VALUE()

REP_OF_VALUE() - Present any value as a string

Function group: string function

REP_OF_VALUE() presents a value of any data type as a alphanumeric string (sequence
of bytes).

REP_OF_VALUE (expression)

expression
Expression whose value is to be presented as a string.
expression may not be a multiple value with dimension > 1.

Result
If the value of expression is the NULL value, the result is the NULL value.

Otherwise:

The internal presentation of the value of expression as a sequence of bytes in an
alphanumeric string. For the internal presentation of the various data types, see table 16 on
page 181.

Data type: CHARACTER VARYING(n), where the maximum length n of the data type
expression is dependent on the values shown in the table on the next page.

U22420-J-2125-12-76 195

REP_OF_VALUE()

Alphabetical reference section: Functions

Data type of expression

Data type of the result

Length of the result

if not NULL
CHAR(n) VARCHAR(N) n
VARCHAR(n) VARCHAR(n) Oton
NCHAR(n) VARCHAR(2*n) 2*n
NVARCHAR(n) VARCHAR(2*n) 0 to 2*n, even
SMALLINT VARCHAR(2) 2
INTEGER VARCHAR(4) 4
NUMERIC(p,s) VARCHAR(N) p
DECIMAL(p,s) VARCHAR(q ") q’
REAL, FLOAT (< 21 characters) | VARCHAR(4) 4
DOUBLE PRECISION, VARCHAR(8) 8
FLOAT (= 22 characters)
DATE VARCHAR(6) 6
TIME(3) VARCHAR(8) 8
TIMESTAMP(3) VARCHAR(14) 14

Table 17: Data types and lengths in the case of REP_OF_VALUE

1

Examples

q=(p + 2)/2if pis even; g=(p + 1)/2 is p is odd.

REP_OF_VALUE (CAST (254 AS SMALLINT))

254 is presented in binary format as X'00fe’ (2 bytes).

These 2 bytes (not printable) are also the result of the expression.

REP_OF_VALUE ('ABC")

The result is the string 'ABC'.

196

U22420-J-2125-12-76

Alphabetical reference section: Functions SIGN()

SIGN() - Determine sign

Function group: numeric function

SIGN() determines the sign of a numeric value.

SIGN C(expression)

expression
Numeric expression.
expression may not be a multiple value with dimension > 1.
Result
When expression returns the NULL value, the result is the NULL value.
When expression returns the value 0, the result is 0.
When expression is > 0, the result is 1.
When expression is < 0, the result is -1.
Data type: DECIMAL(1,0)

Examples
SIGN (3,14) returns the value 1.

SIGN (-3,14) returns the value -1.

U22420-J-2125-12-76 197

SUBSTRING() Alphabetical reference section: Functions

SUBSTRING() - Extract substring

Function group: string function

SUBSTRING() extracts a substring from a string.

SUBSTRING (expression FROM startposition [FOR substring lengthJLUSING CODE_UNITSI)

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR). See also section “Compatibility between data types” on
page 99.

startposition
Numeric expression whose data type is DECIMAL or NUMERIC without decimal places
(SCALE 0), SMALLINT or INTEGER. The evaluation of startposition returns an integer
or a fixed-point number without decimal places.
It cannot be a multiple value with a dimension greater than 1.

startposition specifies the position of a character in or outside the string returned when
expression is evaluated. startposition specifies the character as of which the substring is
to be extracted.

substring length
Numeric expression whose data type is DECIMAL or NUMERIC without decimal places
(SCALE 0), SMALLINT or INTEGER. The evaluation of substring length returns an
integer or a fixed-point number without decimal places. The value of substring length
cannot be less than 0.
It cannot be a multiple value with a dimension greater than 1.

substring length specifies the maximum length of the substring.

Result

In the following description of the possible results, string is the string returned when
expression is evaluated.

The result is the NULL value when expression, startposition and/or substring have the NULL
value.

198

U22420-J-2125-12-76

Alphabetical reference section: Functions SUBSTRING()

The result is a string with a length of 0 when any of the following conditions are fulfilled:
® startposition is greater than the number of characters in string.

e string has the length 0.

® substring lengthis 0.

o The sum of startposition and substring lengthis < 1.

Otherwise:

The result is a substring of string. The order in which the characters occur corresponds to
the order of the characters in string. The substring contains the number of characters
specified by startposition and substring length:

substring_length is specified and startposition =1:
The substring contains substring length characters (but not beyond the last character of
string), beginning with the character of string specified by startposition.

substring_length is specified and startposition < 1:
The substring contains (startposition + substring_length-1) characters (but not beyond the
last character of string), beginning with the first character of sring.

substring_length is not specified and startposition = 1
The substring contains, as of startposition, all the characters in the string up to the last
character.

substring_length is not specified and startposition < 1
The whole string is extracted.

Data type: If expression has the alphanumeric data type CHAR(n) or VARCHAR(»), the
result has the alphanumeric data type VARCHAR(n).

If expression has the national data type NCHAR(n) or NVARCHAR(n), the result has the
national data type NVARCHAR(»).

U22420-J-2125-12-76 199

SUBSTRING() Alphabetical reference section: Functions

Examples

A substring is to be extracted from the string 'The Poodle Parlor'.
"The Poodle Parlor' is the company name of a customer in the CUSTOMERS table.

startposition is > 1, substring_length is specified:
SELECT SUBSTRING (company FROM 6 FOR 4) FROM customers WHERE cust_num=105

The result is the string 'Poodle’.

startposition is 0, substring_length is specified:
SELECT SUBSTRING (company FROM O FOR 5) FROM customers WHERE cust_num=105
The result is the string 'The' with a length of (0+4-1) = 3.

startposition is <0 and (startposition + substring length -1) is greater than the length of string:

SELECT SUBSTRING (company FROM -2 FOR 20) FROM customers WHERE
cust_num=105

The result is the string "The Poodle Parlor'.

startposition is > 1, substring length is not specified:
SELECT SUBSTRING (company FROM 6) FROM customers WHERE cust_num=105

The result is the string 'Poodle Parlor'.

startposition is greater than the number of characters in string:
SELECT SUBSTRING (company FROM 15 FOR 5) FROM customers WHERE cust_num=105

The result is a string with a length of 0.

200 U22420-J-2125-12-76

Alphabetical reference section: Functions SUM()

SUM() - Calculate sum

Function group: aggregate function

SUM() calculates the sum of all the values in a set. NULL values are ignored.

ALL

SUM (L fSTINCT } 1 expression)

LL

All values are taken into account, including duplicate value.

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

expression
Numeric expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

If the set of values returned by expression is empty, the result or the result for this group is
the NULL value.

Otherwise:

Without GROUP BY clause:
Calculates the sum of the values returned by expression(see “Calculating aggregate
functions” on page 146).

With GROUP BY clause:
Returns the sum of the values in the derived column of each group.

Data type: like expression with the following number of digits:

Integer or fixed-point number:
The total number of significant digits is 31, the number of digits to the right of the
decimal point remains the same.

Floating-point number:
The total number of significant digits corresponds to 21 binary digits for REAL numbers
and 53 for DOUBLE PRECISION.

If the sum of the values is too large for this data type, an error message is issued.

U22420-J-2125-12-76 201

SUM() Alphabetical reference section: Functions

Example
Calculate the sum of the parts for each item number in the PURPOSE table:
SELECT item_num, SUM(number) FROM purpose GROUP BY item_num

item_num

1 4
120 27
200 20

202 U22420-J-2125-12-76

Alphabetical reference section: Functions TRANSLATE()

TRANSLATE() - Transliterate / transcode string

Function group: string function

TRANSLATE() transliterates, i.e. converts, an alphanumeric string into a national string or
vice versa, see the “Core manual”.

TRANSLATE() transcodes, i.e. converts, a string in the character set UTFE to a national
string in the character set UTF-16 or vice versa, see the “Core manual’.

TRANSLATE (expression USING [[catalog. 1INFORMATION_SCHEMA. Jtransname
[DEFAULT character] [, lengthl)

character: := expression
length: := unsigned_integer
expression

Alphanumeric expression or national expression.

Its evaluation returns either an alphanumeric string or a national string. See also section
“Compatibility between data types” on page 99.

expression may not be a multiple value with dimension > 1.

transname
Unqualified Name for a transliteration of EBCDIC to Unicode (character set UTF-16)
and vice versa or for a transcoding of UTF-EBCDIC to UTF-16 and vice versa.

In SESAM/SQL all transliteration names are predefined. They are either the CCS
names which are defined in the BS2000 subsystem XHCS for transliteration between
EBCDIC and UTF-16 or CATALOG_DEFAULT for transliteration in the preselected
database if CODE_TABLE is not set to _NONE_ for the latter (see CREATE/ALTER
CATALOG statements in the “SQL Reference Manual Part 2: Utilities”). The CCS name
can be up to 8 characters long.

When expression is an alphanumeric expression and the transliteration name UTFE (!) is
specified, expression is transcoded from UTF-EBCDIC (character set UTFE) to the
character set UTF-16.

When expression is a national expression (i.e. the character set is UTF-16) and the
transliteration name UTFE is specified, expression is transcoded from UTF-16 to the
character set UTFE.

Transliteration and transcoding can be qualified by a database name and the schema
name INFORMATION_SCHEMA, otherwise the INFORMATION_SCHEMA of the
predefined database is assumed.

character

U22420-J-2125-12-76 203

TRANSLATE() Alphabetical reference section: Functions

With character you can define a substitute character which is to be output in place of
characters which cannot be processed with the specified transname. If you have not
specified DEFAULT character and expression contains a character that cannot be

processed with the specified transname, the containing SQL statement is aborted with
SQLSTATE.

If expression has the alphanumeric data type CHAR or VARCHAR, the substitute
character must have the national data type NCHAR(1) or NVARCHAR () with n>1.

If expression has the national data type NCHAR or NVARCHAR, the substitute character
must have the alphanumeric data type CHAR(1) or VARCHAR(») with n>1.

length
Maximum length of the transliterated or transcoded string in code units.

1 < length < 16000 when expression is an alphanumeric string
(transliteration name is an EBCDIC character set or UTFE).

1 < length < 32000 when expression is a national string
(transliteration name is an EBCDIC character set).

Length not specified:
The result has the maximum possible length (see above).

Result
If expression and/or character return NULL, the result is NULL.
Otherwise:

The result is the string with the specified or maximum length which results from the
transliteration or transcoding of expression.

If the substitute character had to be used in the transliteration, the warning SQLSTATE
'01SBB' is issued.

When the length of the transliterated or transcoded string is greater than the specified or
maximum length, the function is aborted with SQLSTATE.

204 U22420-J-2125-12-76

Alphabetical reference section: Functions TRANSLATE()

Data type:
If expression has the alphanumeric data type CHAR(»z) or VARCHAR(n), the result has the
national data type NVARCHAR(»n).

If expression has the national data type NCHAR or NVARCHAR, the result of the
transliteration has the alphanumeric data type VARCHAR(%) and, in the case of
transcoding, the national data type NVARCHAR(n) .

Examples

The specified national string is to be transliterated by transliterating EDFO3IRV to the
standard BS2000 character set. Non-displayable characters are represented as question
marks.

TRANSLATE (NX'0041004200430308" USING
WORLD_CUST.INFORMATION_SCHEMA.EDFO3IRV DEFAULT '?")

The result ist the string 'ABC?".

The specified alphanumeric string is to be interpreted as a string with the character set UTF-
EBCDIC and to be transcoded to the Unicode character set UTF-16.

TRANSLATE ('ABC' USING UTFE)

(004100420043 W

Interprets a file NAMETITEL. TXT in the character set UTFE (created, e.g., with UNLOAD) as
a CSV file.

CREATE VIEW MYVIEW(x,y) AS

SELECT TRANSLATE(name USING UTFE), TRANSLATE(titel USING UTFE)

FROM TABLE(CSV(FILE 'NAMETITEL.TXT' DELIMITER ';',CHAR(25),VARCHAR(16)))
AS T(name,titel)

U22420-J-2125-12-76 205

TRIM() Alphabetical reference section: Functions

TRIM() - Remove characters

Function group: string function

TRIM() removes leading and/or trailing characters of a string.

LEADING
TRIM (L[< TRATILING »1 [character] FROM] expression)
BOTH

character : := expression

character | expression
character and expression are either both alphanumeric expressions (data type CHAR or
VARCHAR) or both national expressions (data type NCHAR or NVARCHAR).
Neither of the operands may be a multiple value with a dimension greater than 1.
The value of character has the length 1. If you do not specify character, the default is a
blank (..).

FROM
FROM operator; you can only specify FROM is you also specify LEADING, TRAILING
or BOTH and/or character.

Result

If character and/or expression returns the NULL value, the result is the NULL value.

Otherwise:

The result is a copy of the string returned when expression is evaluated, except that leading
and/or trailing characters that correspond to the value of character are removed. Whether
leading or trailing characters are removed depends on whether you specify LEADING,
TRAILING or BOTH:

LEADING Leading characters are removed.
TRAILING Trailing characters are removed.

BOTH Leading and trailing characters are removed. BOTH is the default.

206 U22420-J-2125-12-76

Alphabetical reference section: Functions TRIM()

Data type:
If expression has the alphanumeric data type CHAR(»z) or VARCHAR(n), the result has the
alphanumeric data type VARCHAR(n).

If expression has the national data type NCHAR(n) or NVARCHAR(n), the result has the
national data type NVARCHAR(#n).

Examples

The following examples are equivalent and return 'ABC'.
TRIM(C' ABC ")
TRIM (BOTH ' ' FROM ' ABC ")

The following example returns 'BLE WAS | ERE | SAW ELB'.
TRIM (BOTH N'N' FROM N'NURDUGUDRUN')

A record is inserted in the table PROFESSORS. The form_of address column in the table
has the data type VARCHAR(50). It is to receive the value 'Professor'.

The corresponding COBOL user variable has the data type PIC X(50). To ensure that only
the value 'Professor' rather than the value 'Professor..." with 36 trailing characters is
transferred, you use the TRIM string function:

INSERT INTO professors (..., form_of_address, ...)
VALUES (..., TRIM (TRAILING FROM :FORM_OF_ADDRESS), ...)

U22420-J-2125-12-76 207

TRUNC() Alphabetical reference section: Functions

TRUNC() - Remove decimal places

Function group: numeric function
TRUNC() determines the integer share of a numeric value.

TRUNC() performs no rounding in the case of non-integer values.

TRUNC (expression)

expression
Numeric expression.
expression may not be a multiple value with dimension > 1.
Result
When expression returns the NULL value, the result is the NULL value.
Otherwise:

expression > 0: the largest integer which is less than or equal to the specified numeric
value, i.e. FLOOR(expression).

expression < 0: the smallestinteger which is greater than or equal to the specified numeric
value, i.e. CEILING(expression).

Data type: NUMERIC(p-s,0) for data type of expression NUMERIC(p,s) or
DECIMAL(g-s,0) DECIMAL(q,s) where p,q>s

like expression for data type of expression integer numeric (SMALLINT,
INTEGER, NUMERIC(p,0), DECIMAL(q,0) or REAL,
DOUBLE PRECISION, FLOAT

Examples
TRUNC (3,14) returns the value 3.

TRUNC (=3,14) returns the value -3.

208 U22420-J-2125-12-76

Alphabetical reference section: Functions UPPER()

UPPER() - Convert lowercase characters

Function group: string function

UPPER() converts the lowercase characters in a string to uppercase characters.

UPPER (expression)

expression
Alphanumeric expression or national expression.
Result
When expression returns the NULL value, the result is the NULL value.
Otherwise:

— If expression is an alphanumeric expression, the result is a copy of the string which
results from the evaluation of expression, lowercase letters of the SESAM/SQL character
repertoire (see page 49) being replaced by equivalent uppercase letters (a-z without
umlauts and B).

— If expression is a national expression, lowercase letters are replaced by equivalent
uppercase letters in accordance with the Unicode rules (as with the XHCS function
toupper).

Data type: like expression

Examples

SELECT UPPER(city) FROM customers WHERE cust_num=100
Returns the string '"MUNICH'.

UPPER(C'&")
Returns the value 'a'".

UPPER(NX'O0E4 ")

Returns the value NX'00C4' (which corresponds to 'A') because the Unicode rules are
used.

U22420-J-2125-12-76 209

VALUE_OF_HEX() Alphabetical reference section: Functions

VALUE_OF_HEX() - Present hexadecimal format as a value

Function group: string function

The VALUE_OF_HEX() function returns a value of the specified data type from the internal
presentation provided in hexadecimal format.
It is the inverse function of HEX_OF_VALUE().

VALUE_OF_HEX C(expression, data_type)

expression
The internal presentation of the result value in hexadecimal format.
The value of expression may only contain the characters '0' through '9', 'a' through 'f' and
'A' through 'F".
expression must have the data type CHARACTER(n) (n even) or CHARACTER
VARYING(n).
Its value must either be the NULL value or have a length which suits the data type
data_type (See the table on the next page). The data type of expression must permit values
of this length or of the maximum length.
expression may not be a multiple value with dimension > 1.

data_type
Data type of the value (without dimension specification), expression being the
presentation in hexadecimal format.
The data type may not be CHARACTER VARYING(n) with a maximum length of n >
16000 and not NATIONAL CHARACTER VARYING(n) with a maximum length of n >
8000.

Result
If the value of expression is the NULL value, the result is the NULL value.
Otherwise:

The value of the specified data_type whose internal presentation in hexadecimal format is the
value of expression. For the internal presentation of the various data types, see table 16 on
page 181.

Data type: the specified data_type

When this function is executed, no check is made to see whether data_type is the
same data type which was used beforehand for the corresponding presentation in
internal formal using HEX_OF_VALUE().

210

U22420-J-2125-12-76

Alphabetical reference section: Functions

VALUE_OF_HEX()

Length of expression in characters data_type

2*n CHAR(n)

0to2*n VARCHAR(N)

4*n NCHAR(n)

0 to 4*n, divisible by 4 NVARCHAR(n)

4 SMALLINT

8 INTEGER

2*p NUMERIC(p,s)

ql DECIMAL(p,s)

8 REAL, FLOAT (< 21 characters)
16 DOUBLE PRECISION, FLOAT (= 22 characters)
12 DATE

16 TIME(3)

28 TIMESTAMP(3)

Table 18: Data types and lengths in the case of VALUE_OF_HEX

1 g=p+2if p is even; g=p+1 if p is odd.

Examples

VALUE_OF_HEX ('00fe', SMALLINT)

N
254
VALUE_OF_HEX ('clc2c3', CHAR(3))
N
ABC

U22420-J-2125-12-76

211

VALUE_OF_REP() Alphabetical reference section: Functions

VALUE_OF_REP() - Present a string as a value

Function group: string function

The VALUE_OF_REP() function returns a value of the specified data type from the internal
presentation provided (sequence of bytes).
It is the inverse function of REP_OF_VALUE().

VALUE_OF_REP (expression, data_type)

expression
The internal presentation of the result value. For the internal presentation of the various
data types, see table 16 on page 181.
expression must have the data type CHARACTER(n) (n even) or CHARACTER
VARYING(n).
Its value must either be the NULL value or have a length which suits the data type
data_type (See the table on the next page). The data type of expression must permit values
of this length or of the maximum length.
expression may not be a multiple value with dimension > 1.

data_type
Data type of the value (without dimension specification), expression being the internal
presentation.

Result

If the value of expression is the NULL value, the result is the NULL value.

Otherwise:

The value of the specified data_type whose internal presentation is the value of expression.

Data type: the specified data_type

When this function is executed, no check is made to see whether data_type is the
same data type which was used beforehand for the corresponding presentation in
internal formal using REP_OF_VALUE().

212 U22420-J-2125-12-76

Alphabetical reference section: Functions VALUE_OF_REP()

Length of expression in characters data_type

n CHAR(n)

Oton VARCHAR(n)

2*n NCHAR(n)

0 to 2*n, even NVARCHAR(n)

2 SMALLINT

4 INTEGER

p NUMERIC(p,s)

ql DECIMAL(p,s)

4 REAL, FLOAT (< 21 characters)
8 DOUBLE PRECISION, FLOAT (= 22 characters)
6 DATE

8 TIME(3)

14 TIMESTAMP(3)

Table 19: Data types and lengths in the case of VALUE_OF_REP

1 g=(p + 2)/2 if p is even; g=(p + 1)/2 if p is odd

Examples

VALUE_OF_REP (X'OOfe', SMALLINT)

N
254
VALUE_OF_REP ('ABC', CHAR(3))
N
ABC

U22420-J-2125-12-76 213

Predicates Compound language constructs

5.3 Predicates

Predicates are components of search conditions (see section “Search conditions” on
page 244).

A predicate consists of operands and operators. Predicates can be grouped together as
follows according to the operator involved:

e Comparison of two rows

e Quantified comparison (comparison with the rows of a table)

e BETWEEN predicate (range query)

e CASTABLE predicate (convertibility check)

e IN predicate (elementary query)

e LIKE predicate (simple pattern comparison)

e LIKE_REGEX predicate (pattern comparison with regular expressions)
e NULL predicate (comparison with the NULL value)

e EXISTS predicate (existence query)

The individual groups are described below in the above order.

A predicate returns the truth value true, false or unknown. The value of a predicate is
calculated by calculating the values of the operands and applying the appropriate operators
to the calculated values. In certain cases an operand is not calculated at all, or is only
partially calculated, if this is enough to determine the result.

214 U22420-J-2125-12-76

Compound language constructs Predicates

The diagram below provides a simplified overview of the syntax of all predicates:

row comparison_op row

vector _column comparison_op expression

ALL

row comparison_op < SOME & subquery
ANY

row [NOT] BETWEEN row AND row
vector_column [NOTJ BETWEEN expression AND expression

expression 1S [NOT]1 CASTABLE AS data type

praedicate : := < -
row TNOT] TN 4 bauery
(row, ...)
vector_column [NOT] IN (expression , expression , . ..)

operand [NOT]1 LIKE pattern [ESCAPE character. . .]
operand [NOT]1 LIKE_REGEX regular expression [FLAG flag]
expression 1S [NOTJ NULL

EXISTS subquery

(expression , . ..)
row : 1= =< expression
subquery

column[min..max]

vector _column : := [table.] .
column(min..max

<

>
comparison_op - <=

>=

<>
operand . expression
pattern : .= expression
character ::= expression
regular_expression = expression

flag ::= expression

U22420-J-2125-12-76 215

Comparison of two rows Predicates

5.3.1 Comparison of two rows

Two rows are compared lexicographically according to a comparison operator. If both rows
only have one column, you will obtain the normal comparison of two values.

row comparison_op row
vector_column comparison_op expression
(expression , . ..)
row : = = expression
subquery

column[min..max]
column(min..max)

vector_column : := [table.]{

comparison_op ::= < ._

row
Operands for comparison.

Each expression in row must be atomic. The row consists of the expression values in the
order specified. A single expression therefore returns a row with one column.

subquery must return a table without multiple columns, and with at most one row. This
row is the comparison operand. If the table returned is empty, the comparison operand
is a row with the NULL value in each column.

The rows to be compared must have the same number of columns and the
corresponding columns of the left and right rows must have compatible data types
(see section “Compatibility between data types” on page 99).

vector_column
A multiple column, which is compared according to special rules. The column
specification may not be an external reference.

Any square brackets shown here in italics are special characters, and must be
specified in the statement.

216 U22420-J-2125-12-76

Predicates Comparison of two rows

expression
The expression value must be atomic and its data type must be compatible with the data
type of the vector_column occurrences (see section “Compatibility between data types”
on page 99).

comparison_op
Comparison operator.

= Compare whether two values are the same

< Compare whether one value is smaller than the other
> Compare whether one value is greater than the other
<= Compare whether one value is smaller than or equal to the other
>= Compare whether one value is greater than or equal to the other

<> Compare whether two values are not equal

Result

row comparison_op row
If rows with more than one column are compared , the lexicographical comparison rules
for rows will apply (see section “Comparison rules”.

If single-column rows are compared, the comparison rules will depend on the data type
of the columns (see section “Comparison rules”).

vector_column comparison_op expression
Each occurrence of vector _column is compared with expression according to the
comparision rules for the data type (see section “Comparison rules” below). The
comparison results are combined with OR.

Example
If X is a multiple column with 3 elements, the comparison
X[1..3]1 >= 13
is equivalent to the following comparisons:
X[1] >= 13 OR X[21 >= 13 OR X[31 >= 13

5.3.1.1 Comparison rules

The way in which a comparison operation is performed depends on the operands.
Lexicographical comparison rules apply to the comparison of rows with more than one
column; in the case of comparisons of single-column rows and values, the comparison rules
are based on the data types. These rules are collected in the following paragraphs.

U22420-J-2125-12-76 217

Comparison of two rows Predicates

Lexicographical comparison

The result of the comparison is derived from the comparison of the values in corresponding
columns of the two rows. The values in columns situated further to the right are only
significant if the values in all the previous columns are the same for both operands (sorting
in the lexicon also occurs according to these comparison rules).

In formal terms this means:

For a comparison of two rows with the comparison operator 0P that is either “<” or “>”, with
column values L1,L2, ..., Ln in the left-hand operand and with column values
R1,R2,..., Rn in the right-hand operand, the result is the truth value true or false or
unknown respectively, if there is an i index between 1 and n, so that all the comparisons

L1 = R1
L2 = R2

L&i—l).= R(%—l)
return the truth value true, and the comparison
Li OoP Ri
returns the truth value true, or false, or unknown, respectively.
The individual comparisons are carried out as described below, depending on the data type.
Please note the following:

e The value in one of the columns may well be NULL without the result of the whole
comparison being unknown.

For example the comparison (1,CAST(NULL AS INT)) < (2,0) the truth value true as
aresult. The second column is ignored in the comparison because the values of the first
columns are already different.

e Not all columns need to be relevant for the comparison result. You should not,
therefore, rely on all of the columns in both rows always being evaluated.

e The comparison (L1, L2, ..., Ln) = (Rl, R2, ..., Rn) is equivalent to the
comparison L1 = R1 AND L2 = R2 ... AND Ln = Rn.

In the case of the comparison operators “<”, “<=", “>=" and “>”, however, there is no
straightforward correspondence.

218

U22420-J-2125-12-76

Predicates

Comparison of two rows

Comparing two values

If one or both of the operands are the NULL value, all comparison operators return the truth
value unknown (see also section “NULL value” on page 104).

Alphanumeric values

Two alphanumeric values are compared from left to right character by character. If the two
values have different lengths, the shorter string is padded on the right with blanks (X'40") so
that both values have the same length.

Two strings are identical if each has the same character at the same position.

If two strings are not identical, the EBCDIC code of the first two differing characters
determines which string is greater or smaller.

National values

Two national values are compared from left to right code unit by code unit. If the two values
have different lengths, the shorter string is padded on the right with blanks (NX'0020'")so that
both values have the same length.

Two strings are identical if each has the same code unit at the same position.

If two strings are not identical, the binary value of the first two differing UTF-16 code units
determines which string is greater or smaller.

Numeric values

Values of numeric data types are compared in accordance with their arithmetic value. Two
numeric values are the same if they are both 0, or if they have the same sign and the same
amount.

Time values

Dates, times and time stamps can be compared. The data type of both operands must be
the same.

e One date is greater than another if it is a later date.
e One time is greater than another if it is a later point in time.

e One time stamp is greater than another if either the date is later or, if the date is the
same, the time is later.

U22420-J-2125-12-76 219

Comparison of two rows Predicates

Examples
1. 1 <= 1is always true.

2. Comparing alphanumeric values:
Select the customers from the CUSTOMERS table that come from Munich, and include
the customer information:

SELECT company, cust_info, city FROM customers WHERE city = 'Munich'

company cust_info city

Siemens AG Electrical Munich
Login GmbH PC networks Munich
Plenzer Trading Fruit market Munich

3. Comparing with a subquery that returns an atomic value:
Select the items that need the greatest number of part 501 from the PURPOSE table:

SELECT item_num FROM purpose
WHERE part = 501 AND number = (SELECT MAX(number)
FROM purpose WHERE part = 501)

The subquery returns one row exactly, as the maximum is determined for a single
group.

item_num
200

You can also write the example with the comparison of two rows each with two columns:

SELECT item_num FROM purpose
WHERE (part, number) = (SELECT 501, MAX(number)
FROM purpose WHERE part = 501)

220 U22420-J-2125-12-76

Predicates

Comparison of two rows

4.

In this example a cursor table is defined with ORDER BY.
The WHERE clause selects those rows that come after the rows with cust_num 012 and
target DATE'<date>""in the order stipulated by ORDER BY:

DECLARE cur_order CURSOR FOR
SELECT order_num, cust_num, atext, target FROM orders
WHERE (cust_num, target) > (012, DATE'<date>')
ORDER BY cust_num, target

You will only receive orders which are to be finished after the specified date from a
customer with customer number 012, and all orders from customers with a greater
customer number.

The lexicographical comparison rules differ from the comparison rules for ORDER BY
only in the case of NULL values.

Lexicographical comparison of rows

DECLARE rest_purpose CURSOR FOR
SELECT item_num, part, SUM(number) FROM purpose
WHERE (item_num, part) > (:last_item_num, :last_part)
GROUP BY item_num, part
HAVING SUM(number) > 0
ORDER BY item_num, part

This cursor reads how many exemplars of each part are contained in the various items.
Items are read in ascending order by their item number; items with identical item
numbers are read in ascending order by part number.

The WHERE clause allows for reading the cursor table piecemeal (FETCH).

For example, if you have read up to item 120 and up to part 230 and if you have opened
the cursor again with the user variables : Tast_item_num = 120and :Tast_part = 230,
the cursor table will only contain entries for item 120 and parts with numbers > 230 and
entries for items with numbers > 120 (and any parts).

U22420-J-2125-12-76 221

Quantified comparison Predicates

5.3.2 Quantified comparison (comparison with the rows of a table)

The value of a row is compared with the rows of a table. It is determined whether the
comparison holds true either for all the rows of the table, or else for at least one row.

ALL
row comparison_op < SOME subquery 1

ANY
(expression , . ..)
row - 1= < expression
subquery 2
<
>
comparison_op ::= < .
>=
<>
row

Left operand for the comparison.

Each expression in row must be an atomic value. The row consists of the expression
values in the order specified. A single expression therefore returns a row with one
column.

subquery 2 must return a table without multiple columns and with at most one row. This
row is the left comparison operand. If the table returned is empty, the comparison
operand is a row with the NULL value in each column.

comparison_op
Comparison operator.

= Compare whether two values are the same

< Compare whether one value is smaller than the other
> Compare whether one value is greater than the other
<= Compare whether one value is smaller than or equal to the other
>= Compare whether one value is greater than or equal to the other

<> Compare whether two values are not equal

222 U22420-J-2125-12-76

Predicates Quantified comparison

subquery 1
The number of columns must equal the number of columns of row; corresponding
columns of row and subquery I must have compatible data types (see section
“Compatibility between data types” on page 99).

Result

ALL
True if the right-hand operand is an empty table or if the results of the comparisons of
the left-hand operand with each row of the right-hand operand are all true.

False if the result of the comparison of the left-hand operand with at least one row of
the right-hand operand is false.

Unknown in all other cases.

SOME / ANY
True if the result of the comparison of the left-hand operand with at least one row of the
right-hand operand is true.

False if the right-hand operand is an empty table or if the results of the comparisons of
the left-hand operand with each row of the right-hand operand are all false.

Unknown in all other cases.

All comparisons are carried out according to the comparison rules in section “Comparison
rules” on page 217.

Examples

This returns true if the current date is later than all the dates in the derived column and all
of these dates are non-null. It returns false if the current date is earlier than at least one date
or is the same as at least one date other than NULL in the derived column. In all other
cases, the comparison returns unknown.

CURRENT_DATE > ALL (SELECT target FROM orders)

From the PURPOSE table, select the items that have a part the total number of which is
greater than the total number of all the parts of the item with the item number 1.

SELECT item_num FROM purpose
WHERE number > ALL (SELECT number FROM purpose WHERE item_num = 1)

U22420-J-2125-12-76 223

BETWEEN predicate Predicates

5.3.3 BETWEEN predicate (range query)

It is determined whether the row lies within a range specified its lower and upper limits.

row_I [NOT] BETWEEN row_2 AND row_3
vector_column [NOT] BETWEEN expression AND expression

(expression , . ..)
row : 1= < expression
subquery

[table.] {coh”””[mln..max]

vector _column : := .
- column(min..max)

row
Each expression in row must be atomic. The row consists of the expression values in the
order specified. A single expression therefore returns a row with one column.

subquery must return a table without multiple columns and with at most one row. This
row is the operand. If the table returned is empty, the operand is a row with the NULL
value in each column.

All three rows must have the same number of columns; corresponding columns must
have compatible data types (see section “Compatibility between data types” on
page 99).

vector_column
A multiple column with special rules for the result. The column specification may not be
an external reference.

expression
The values must be atomic and their data types must be compatible with the data type
of the vector_column occurrences (section “Compatibility between data types” on
page 99).

Result

row_1 BETWEEN row 2 AND row_3 is identical to:
(row_I >=row_2) AND (row_1 <= row_3)

row_1 NOT BETWEEN row_2 AND row_3is identical to:
NOT (row_1 BETWEEN row_2 AND row_3)

224

U22420-J-2125-12-76

Predicates BETWEEN predicate

vector_column [NOT] BETWEEN expression AND expression

— The range query is performed for each occurrence of vector _column.
— The individual results are combined with OR.

Example

If X is a multiple column with 3 elements, the range query X[1..31 BETWEEN 13 AND 20
is equivalent to the following range queries:
XC11 BETWEEN 13 AND 20 OR X[2]1 BETWEEN 13 AND 20 OR X[31 BETWEEN 13 AND 20

Examples

BETWEEN predicate with numeric range:
Select all the items from the ITEMS table whose price is between 0 and 10 Euros, which
include the item name in the output.

égj SELECT item_num, item_name, price FROM items
WHERE price BETWEEN 0.00 AND 10.00

item_num item_name price
210 Front hub 5.00
220 Back hub 5.00
230 Rim 10.00
240 Spoke 1.00
500 Screw M5 1.10
501 Nut M5 0.75

BETWEEN predicate with range of dates:
Select all the orders placed in December 2013 from the ORDERS table, which include
the order number, customer number, order date and order text in the output:

SELECT order_num, cust_num, order_text, order_date FROM orders
WHERE order_date BETWEEN DATE'2013-12-01' AND DATE'2013-12-31'

order_ cust_ order_text order_date
num num

210 106 Customer administration 2013-12-13
211 106 Database design customers 2013-12-30

BETWEEN predicate with a host variable: :
MINIMUM is a host variable. The comparison returns true if the product of
SERVICE_PRICE*SERVICE_TOTAL (price per service unit times number of service
units) is outside the specified range. It returns false if the product is within the range.
The comparison returns unknown if the value of SERVICE_PRICE or
SERVICE_TOTAL is unknown.

service_price*service_total NOT BETWEEN :MINIMUM AND 2000

U22420-J-2125-12-76 225

CASTABLE predicate Predicates

5.3.4 CASTABLE predicate (convertibility check)

This checks whether an expression can be converted to a particular data type.

The CASTABLE predicate enables you to check whether a corresponding CAST
expression (see section “CAST expression” on page 258) can be executed before it is
executed and to react appropriately.

expression 1S [NOT1 CASTABLE AS data type

expression
CAST operand. The value of expression may not be a multiple value with a dimension >
1.

data_type
Target data type for the result of the corresponding CAST expression.
data_type may not contain a dimension for a multiple column.

@ It must be possible to combine the data type of expression with data_type, see the
table 23 on page 259.

Result

Without NOT:

True if expression can be converted to the specified data type.
False if expression cannot be converted to the specified data type.

With NOT:

True if expression cannot be converted to the specified data type.
False if expression can be converted to the specified data type.

Example
Check whether an entry can be converted to a numeric data type with a particular length.

CASE WHEN :input IS CASTABLE AS NUMERIC(7,2)
THEN CAST :input AS NUMERIC(7,2)
ELSE -1

END

226 U22420-J-2125-12-76

Predicates IN predicate

5.3.5 IN predicate (elementary query)

This determines whether a row occurs in a table.

row 1 [NOT] TN JSubauery 2
- (row_ 2, ...)

vector_column [NOTJ IN C(expression, ...)

(expression , . . .)
row 1 ::= < expression

subquery 1

(expression , . ..)
row 2 ::= P .
= expression

columnfmin..max]

vector_column : := [table.] .
column (min..max)

row_1
returns one row.

Each expression in row_I must be atomic. The row consists of the expression values in
the order specified. A single expression therefore returns a row with one column.

subquery 1
must return a table without multiple columns and with at most one row. This row is the
left-hand operand. If the table returned is empty, the operand is a row with the NULL
value in each column.

subquery 2
this table is the right-hand operand.

row 2
The right-hand operand is the table whose individual row(s) are specified with row 2. If
row_2 is specified several times then the data type of each column of the table is
determined by the rules described under “Data type of the derived column for UNION”
on page 314.

row_1, row_2, subquery I and subquery 2 must all have the same number of columns; the
data types of the corresponding columns must be compatible (see section “Compatibility
between data types” on page 99).

U22420-J-2125-12-76 227

IN predicate Predicates

vector_column

A multiple column with special rules for the result. The column specification may not be
an external reference.

expression
The values must be atomic and their data types must be compatible with the data type
of the vector_column occurrences (section “Compatibility between data types” on
page 99).

Result

row_1 IN subquery 2 orrow 1IN (row_2,...):

True if the comparison for equality of row_I with at least one row of the right-hand
operand yields true.

False if all the comparisons for equality of row_1 with some row of the right-hand

operand yield false, or if the right-hand operand is a subquery which returns an empty
table.

Unknown in all other cases.
row_1 NOT IN subquery 2 orrow_I NOT IN (row_2,...):
is identical to:
NOT (row_1 IN subquery 2) or. NOT (row_I IN (row_2,...))

The comparison rules for “=" apply (see also section “Comparison rules” on page 217).

vector_column [NOT] IN (expression, ,...)

The IN predicate is evaluated for each occurrence of vector_column.
The individual results are combined with OR.

Example

If X is a multiple column with 3 elements, the range query X[1..31 BETWEEN 13 AND 30
is equivalent to the following element queries:
XC1J IN (13, 20, 30) OR XC21 IN (13, 20, 30) OR XC31 IN (13, 20, 30)

228 U22420-J-2125-12-76

Predicates IN predicate

Examples

IN predicate with single rows as right-hand operand:
Select the customers from Munich or Berlin from the CUSTOMERS table.

SELECT company, cust_info, city FROM customer
WHERE city IN ('Munich', 'Berlin')

company cust_info city

Siemens AG Electrical Munich
Login GmbH PC networks Munich
Plenzer Trading Fruit market Munich
Freddys Fishery Unit retail Berlin

IN predicate with subquery as right-hand operand:
Select the orders for which no training was performed from the ORDERS and SERVICE
tables.

SELECT cust_num FROM orders
WHERE order_num NOT IN (SELECT order_num FROM service WHERE
service_text = 'Training')

U22420-J-2125-12-76 229

LIKE predicate Predicates

5.3.6 LIKE predicate (simple pattern comparison)

A LIKE predicate determines whether an alphanumeric or a national value matches a
specified pattern. A pattern is a string that, in addition to normal characters, can also include
placeholders and escape characters.

A placeholder represents either one character or else any number of characters. A
placeholder can also be used as a normal character in a pattern if its special meaning is
canceled with the escape character. You can define the escape character with the ESCAPE
clause.

operand [NOT]1 LIKE pattern [ESCAPE character]

operand ::= expression
pattern: := expression
character: := expression
operand
Alphanumeric or national expression representing the operand for the pattern
comparison.

The value of operand must either be atomic or the name of a multiple column. If the
operand is a multiple column, the entry for the column cannot be an external reference
(i.e. the column of a superordinate query expression).

pattern
Alphanumeric or national expression to which the value from operand is to be matched.
pattern can include the following:

— normal characters (i.e. all except placeholders and escape characters)

— Placeholder
Placeholder Meaning
_ (underscore) one arbitrary character
% arbitrary (possibly empty) character string

— escape characters (each followed by a placeholder or another escape character)

Blanks in pattern, even at the beginning or end, form part of the pattern.

230

U22420-J-2125-12-76

Predicates

LIKE predicate

ESCAPE clause
You use the ESCAPE clause to define an escape character. If you place an escape
character in front of a placeholder, the placeholder loses its function as a placeholder
and is interpreted instead as a normal character. You can also use the escape character
to cancel the special meaning of the escape character and use it as a normal character.

character
Alphanumeric or national expression whose value has a length of 1. In this
comparison, character acts as an escape character.

ESCAPE omitted:
No escape character is defined.

The data types of operand, pattern and character must be comparable, i.e. they all

@ have either one of the data types CHAR and VARCHAR or all have one of the data
types NCHAR and NVARCHAR, see also the section “Compatibility between data
types” on page 99.

Result
operand is an atomic value:

Unknown if the value of operand, pattern or character is the NULL value, otherwise

Without NOT:
True if the placeholders for characters and strings in pattern can be replaced by
characters and strings, respectively, so that the result is equal to the value of
operand, and has the same length.

False in all other cases.

With NOT:
True if the placeholders for characters and strings in pattern cannot be replaced by
characters and strings, respectively, so that the result is equal to the value of
operand, and has the same length.

False in all other cases.
operand is a multiple column:

The pattern comparison is performed for every occurrence in operand.
The individual results are combined with OR.

U22420-J-2125-12-76 231

LIKE predicate Predicates

Examples
Select all the contact people from the CONTACTS table whose first name starts with Ro:
SELECT fname, Tname FROM contacts WHERE fname LIKE 'Ro%'

fname Tname
Roland Loetzerich
Robert Heinlein

The following statement selects all the rows from table TAB whose column COL starts with
the underscore character and ends with at least one space:

SELECT * FROM tab WHERE col LIKE '@_% ' ESCAPE '@’

The following predicate returns true for all three-character values for TITLE whose first
character is “M” and whose third character is “.”, i.e. for titles such as “Mr.” or “Ms.”. “ "is a
placeholder which stands for any single character. Since the data type for the Title column
is TITLE CHAR(20), the string must be padded with blanks to a length of exactly

20 characters.

title LIKE 'M_.

The escape character “!” cancels the placeholder “%” with the result that the comparison
only returns true for 'Travel expenses%Discount'.

service_text LIKE 'Travel expenses!%Discount ' ESCAPE '!'

232

U22420-J-2125-12-76

Predicates

LIKE_REGEX predicate

5.3.7

LIKE_REGEX predicate (pattern comparison with regular expressions)

A check is made to see whether an alphanumeric value matches a specified regular
expression. Regular expressions are precisely defined search patterns which go far beyond
the options of the search patterns in the LIKE predicate. Regular expressions are a
powerful means of searching large data sets for complex search conditions. They have long
been used, for example, in the Perl programming language.

operand [NOT1 LIKE_REGEX regular expression [FLAG modifiers]

operand ::= expression

regular_expression ::= expression

modifiers ::= expression
operand

Alphanumeric expression which presents the operand for the comparison with the
regular expression.
The value of operand may not be a multiple value with a dimension > 1.

regular_expression
Alphanumeric expression whose value is a regular expression which the value of
operand should match. For information on the structure of regular expressions, see
page 237.
You specify modifiers for regular _expression in the FLAG clause.
The value of regular _expression may not be a multiple value with a dimension > 1.

U22420-J-2125-12-76 233

LIKE_REGEX predicate

Predicates

FLAG clause

Alphanumeric expression of the modifiers for regular_expression.
You can specify the following modifiers:

Sflag

Meaning

i
(caseless)

If this modifier is set, letters in the pattern match both upper and lower case
letters.

m
(multiline)

By default, SESAM/SQL treats the subject string as consisting of a single “line”
of characters, even if it actually contains several NEWLINE characters (see
page 166). The “start of line” metacharacter (*) matches only at the start of the
string, while the “end of line” metacharacter ($) matches only at the end of the
string.

When this modifier is set, the “start of line” and “end of line” constructs match
immediately following or immediately before any newline in the subject string,
respectively, as well as at the very start and end.

If there are no NEWLINE characters in a subject string, or no occurrences of A
or $ in a pattern, setting this modifier has no effect.

s
(dotall)

If this modifier is set, a dot metacharacter in the pattern matches all characters
including NEWLINE characters (see page 166). Without it, newlines are
excluded.

A negative class such as [*a] always matches a newline character, independent
of the setting of this modifier.

X
(extended)

If this modifier is set, whitespace data characters in the pattern are totally
ignored except when escaped or inside a character class; and characters
between an unescaped # outside a character class and the next newline
character, inclusive, are also ignored. This makes it possible to include
comments inside complicated patterns. Note, however, that this applies only to
data characters. Whitespace characters may never appear within special
character sequences in a pattern, for example within the sequence (?(which
introduces a conditional subpattern.

flag must consist of lowercase letters. Each character can be specified multiple times.
No blanks may be specified.

FLAG clause not specified:
No modifiers are defined for regular_expression.

234

U22420-J-2125-12-76

Predicates LIKE_REGEX predicate

Result

Unknown if the value of operand, regular_expression or flag is the NULL value, otherwise

Without NOT:

True if the placeholders for characters and strings in regular_expression can be replaced
by characters and strings, respectively, so that the result is equal to the value of
operand, and has the same length.

False in all other cases.

With NOT:
True if the placeholders for characters and strings in regular_expression cannot be

replaced by characters and strings, respectively, so that the result is equal to the value
of operand, and has the same length.

False in all other cases.

U22420-J-2125-12-76 235

LIKE_REGEX predicate Predicates

Examples

Select all the contact people from the CONTACTS table whose last name contains the
string with meier “or something similar”:

SELECT fname, Iname FROM contacts
WHERE Tname LIKE_REGEX '[Ca—z1* M [ael? [iyl [a—-z]* r' FLAG 'ix'

fname Tname
Albert Gansmeier
Berta Hintermayr
Thea Mayerer
Herbert Meier
Anton Kusmir

In the CONTACTS table find the incorrect ZIP codes in the ZIP column:
SELECT * FROM contacts WHERE zip NOT LIKE_REGEX '\d{5}"'

In the CONTACTS table find all the email contacts for Fuijitsu:

SELECT address FROM contacts
WHERE address LIKE_REGEX '([A-Za-zJ])+\.([A-Za-zJ+)@fujitsu\.com'

address
Albert.Gansmeier@fujitsu.com
Berta.Hintermayr@fujitsu.com
Thea.Mayerer@fujitsu.com

236 U22420-J-2125-12-76

Predicates

LIKE_REGEX predicate

Regulédre Ausdriicke in SESAM/SQL

The regular expressions in the LIKE_REGEX predicate correspond to the regular
expressions in the Perl programming language with the following exceptions:

e They are not enclosed in delimiters

e There is no “replace” function

e The modifiers are specified in the FLAG clause

Special characters

Special characters in regular expressions have special functions:

Character

Meaning

Example

The period stands for any character other
than a period.

en.e
Hits e.g.: entire, entice, fence

The plus sign stands for single or multiple
occurrence of the character preceding it.

e+

Hits e.g. speaker, feeling, veeery good

The asterisk stands for no, single or
multiple occurrence of the character
preceding it.

sex
Hits e.g. storm, very good, feeling

The question mark stands for no or single
occurrence of the character preceding it.

se?
Hits e.g. storm, seldom
but not: seesaw

The circumflex can negate a sign class or,
in the case of strings, specify that the
following search pattern must occur at the
start of the search area.

“Hans

Hits e.g. Hans Master, Hans Miiller
but not: Master Hans
~[~a6uA00T*$

Hits e.g. Master

but not: Mdller

In the case of strings the dollar sign
specifies that the preceding search pattern
must occur at the end of the search area.

Hans$
Hits e.g. Master Hans
but not: Hans Master

The vertical slash separates alternative
expressions.

[MImJ]aster
Hits e.g. Master, master
but not: Naster, aster

\ The backslash masks the subsequent clTif\?
(special) character. Hit with clif?
but not: cliff
[1 Square brackets limit a character class. Mallnslter

Hits e.g. Malter, Manter, Master
but not: Marter

U22420-J-2125-12-76

237

LIKE_REGEX predicate

Predicates

Character

Meaning

Example

The hyphen separates the limits of a
character class.

Mala-z]lter
Hits e.g. Malter, Manter, Master
but not: Mastner

()

Parentheses group partial expressions.

(Mr.|Ms.) M[a-z1+
Hit with Mr. Master, Ms. Muller
but not: Baroness Master

{} Braces are a repetition specification for clif{2,5}
preceding characters. Hit with cliff, cliffffhanger
but not: clif

Character repetitions

You check single character repetitions with the special characters +, * or 7, see the table

above.

You can also use braces to check multiple character repetitions: {m,n}. Here m specifies
the minimum number and n the maximum number of repetitions.

The following specifications are permitted:

{m} Repetition exactly m times
{m.} Repetition at least m times
{m,n} Repetition at least m times, but not more than n times

f{1,3} returns, for example, hits with life, cliff and cliffhanger.

Groupings

Groupings are formed using parentheses. The subsequent repetition character the refers
to the entire expression enclosed in parentheses.

h(el)+1o returns, for example, hits with hello, helello, helelello.

Selection of characters

A list of characters if square brackets offers a selection of characters which the regular
expression can match. The expression in square brackets stands only for one character
from the list.

MalTnsIter returns, for example, hits with Malter, Manter and Master, but not with Maltner.

In order to specify a selection from a digit range or a section of the alphabet, use the hyphen

[A-Z1La-z1+L[0-91{2} returns hits with words which begin with an uppercase letter followed
by one or more lowercase letters and are concluded with precisely two digits, e.g.
Masterson15, Smith01, but not masterson15, Smith1.

238

U22420-J-2125-12-76

Predicates LIKE_REGEX predicate

Alternatives

nlu

You can use the vertical slash “|” to specify multiple alternative strings in a regular
expression which are to be searched for a string.

(IM|mIr|IM|mIs] MLa-z1* returns hits with titles of persons whose names begin with M,
e.g. Mr Master, Ms Miller.

Masking special characters

You must mask special characters when you do not intend the special meaning of the
character, but mean its literal, normal meaning, in other words a vertical slash as a vertical
slash or a period as a period. The mask character is in all cases the backslash “\".

(CA-Z1|La-z1)+\.([A-Z]1|[a—z1)+@fujitsu\.com returns hits with all email addresses in
the format: first_name.last_name@fujitsu.com.

[A-Z1+\.[a-z]+@fujitsu\.comreturns the same result if you specify 'i ' in the flag clause,
in other words wish to ignore uppercase/lowercase.

Operators

Letters which are preceded by a backslash “\” indicate special characters or particular
character classes:

\n One of the NEWLINE characters, see page 166

\t Tabulator character

\f FORM FEED character

\r CARRIAGE RETURN character

\s Blanks, tabulator characters, NEWLINE characters, CARRIAGE RETURN
characters, FORM FEED characters

\S All characters except blanks, tabulator characters, NEWLINE characters,
CARRIAGE RETURN characters, FORM FEED characters

\d A digit

\D Any character which is not a digit

\w A logographic character, i.e. A through Z, a through z, and the underscore “_”

\W Any character which is not a logographic character
\A Start of a string
\Z End of a string

\b Word boundary, i.e. when \b... or ...\b is specified, a pattern returns a hit only if it is
at the start or end of the word.
\B Negative word boundary, i.e. when \b... or ...\b is specified, a pattern returns a hit

only if it is not at the start or end of the word.

For example, \d{3,4} returns hits with all 3- or 4- digit numbers and \w{5} returns hits with
all 5-character words

U22420-J-2125-12-76 239

LIKE_REGEX predicate Predicates

Priority in regular expressions

The special characters in regular expressions are evaluated according to a particular
priority.

1st priority: () (bracketing)

2nd priority: + * ? {m,n} (repeat operators)

3rd priority: abc ~ $ \b \B (characters/strings, start/end of line, start/end of word)
4. 4th priority: | (alternatives)

This enables every regular expression to be evaluated unambiguously. However, if you
want the evaluation to be different in the expression from the priority, you can insert
parentheses in the expression to force a different evaluation.

For example a|bc|d returns hits with 'a' or 'bc' or 'd'.
(alb)(c|d) returns hits with 'ac' or 'ad' or 'bc' or 'bd".

Notes

e Leading or trailing blanks may need to be dealt with using \s* in the pattern. In
particular when $ (end of the search area) is specified) hits that would otherwise be
possible are not detected.

Example

With the data type CHAR(n), for instance, the string Berta......(. represents a blank)
with the pattern B.*ta$ is not recognized as blanks follow it.

e With the LIKE predicate a Ber% pattern means that a hit value also really begins with
Ber, while the same pattern in the LIKE REGEX predicate may also begin at any
position in the record. The "Ber.* pattern means that the pattern is contained at the
start of the record.

240 U22420-J-2125-12-76

Predicates NULL predicate

5.3.8 NULL predicate (comparison with the NULL value)

A comparison is performed to check whether an expression contains the NULL value.

operand 1S [NOTI NULL

operand ::= expression

operand
Operand for the comparison. The value of operand must either be atomic or the name
of a multiple column. If the operand is a multiple column, the entry for the column cannot
be an external reference (i.e. the column of a superordinate query expression).

Result

operand is an atomic value:

Without NOT:
True if the value of operand is the NULL value.

False in all other cases.

With NOT:
True if the value in operand is not the NULL value.

False in all other cases.
operand is a multiple column:

Without NOT:
True if at least one occurrence the multiple column is the NULL value.

False in all other cases.

With NOT:
True if at least one occurrence of the multiple column is not the NULL value.

False in all other cases.

U22420-J-2125-12-76 241

NULL predicate Predicates

Examples
Tanguagel IS NOT NULL

In the example, LANGUAGE1 is a single column. If LANGUAGE1 does not contain the null
value, the comparison is true. The comparison NOT Tanguagel IS NULL would also
return the same truth value.

LANGUAGE2(1..5) is a multiple column containing the null value in some, but not all of
the columns. The comparison Tanguage2(1..5) IS NOT NULL returns true in this case
and NOT (language(1..5) IS NULL) returns the truth value false.

column 1S NOT NULL and NOT (column IS NULL) are thus not equivalent if column is a
multiple column. This becomes clear if Tanguage2(1..5) IS NOT NULL is represented
as:

Tanguage2(1) IS NOT NULL OR Tanguagez2(2) IS NOT NULL OR ...
Tanguage2(5) IS NOT NULL

The comparison returns true if at least one occurrence of LANGUAGEZ is non-null.
NOT (language(1..5) IS NULL) on the other hand, can be represented as:

NOT (Tanguage(l) IS NULL OR Tanguage(2) IS NULL ... OR language(b) IS
NULL)

This comparison returns true if the comparisons with the null value in the parentheses
following NOT return false. i.e. if all the occurrences of LANGUAGE2 are non-NULL.

Select the orders from the ORDERS table that have not yet been dealt with completely, i.e.
for which the actual date is the NULL value.

SELECT order_num, order_text, target FROM orders WHERE actual IS NULL

order_num order_text target
250 Mailmerge intro <date>
251 Customer administration <date>
300 Network test/comparison

305 Staff training <date>

242 U22420-J-2125-12-76

Predicates EXISTS predicate

5.3.9 EXISTS predicate (existence query)

An existence query checks whether a derived table is empty.

EXISTS subquery

subquery

Subquery that returns a derived table.
Result
True if the derived table is not empty.

False if the derived table is empty.

Example
Select the customers that have not placed an order from the CUSTOMERS table:

SELECT company FROM customers
WHERE NOT EXISTS (SELECT order_num FROM orders
WHERE orders.cust_num = customers.cust_num)

company
Siemens AG

Plenzer Trading
Freddys Fishery
Externa & Co Kg

U22420-J-2125-12-76 243

Search condition Compound language constructs

5.4 Search conditions

Search conditions are used to restrict the number of rows affected by a table operation or
SQL statement of a routine. Only the rows that satisfy the specified search condition are
taken into account. You may specify search conditions for DELETE, MERGE, UPDATE and
SELECT, when joining tables (join expression) and in a conditional expression (CASE
expression). You can specify search conditions in table and column constraints in order to
formulate integrity constraints. Search conditions also occur in the case of statements in
routines.

You define a search condition in a WHERE, HAVING, ON, CHECK or WHEN clause or in
a control statement of a routine, and it may be used in the following statements and
expressions or query expressions:

e WHERE clause

DELETE statement

SELECT statement

SELECT expression for CREATE VIEW, DECLARE, INSERT
UPDATE statement

e HAVING clause
— SELECT statement
— SELECT expression for CREATE VIEW, DECLARE, INSERT

e ON clause
— MERGE statement
— Join expression

e CHECK condition in the CREATE TABLE or ALTER TABLE statement
e WHEN clause in a CASE-expression with search condition
e |F, CASE, REPEAT, or WHILE statement in a routine

A search condition consists of predicates and can include logical operators. The predicates
are the operands of the logical operators.

A search condition is evaluated by applying the operators to the results of the operands.
The result is one of the truth values true, false or unknown.

The operands are not evaluated in a predefined order. In certain cases, an operand is not
calculated if it is not required for calculating the total result.

244

U22420-J-2125-12-76

Compound language constructs

Search condition

predicate

search_condition : :=
NOT search_condition
(search_condition)

search_condition {ggD } search_condition

predicate
Predicate
AND
Logical AND
Result
Op1 AND Op2 Op1
true false unknown
true true false unknown
Op2 |false false false false
unknown unknown false unknown
Table 20: Logical operator AND
OR
Logical OR
Result
Op1 OR Op2 Op1
true false unknown
true true true true
Op2 |false true false unknown
unknown true unknown unknown

Table 21: Logical operator OR

U22420-J-2125-12-76

245

Search condition Compound language constructs

NOT
Negation
Result
NOT Op
true false
Op |false true
unknown unknown

Table 22: Logical operator NOT

Precedence

e Expressions enclosed in parentheses have highest precedence.
e NOT takes precedence over AND and OR.

e AND takes precedence over OR.

e Operators with the same precedence level are applied from left to right.

246 U22420-J-2125-12-76

Compound language constructs Search condition

Examples

Select all orders with company placed after the specified date in the tables ORDERS and
CUSTOMERS.

SELECT o.order_num, c.company, o.order_text, o.order_date
FROM orders o, customers c
WHERE o.order_date > DATE '<date>' AND o.cust_num = c.cust_num

N
order_ company order_text order_date
num

250 The Poodle Parlor Mailmerge intro 20010-03-03
251 The Poodle Parlor Customer administration 2010-05-02
300 Login GmbH Network test/comparison 2010-02-14
305 The Poodle Parlor Staff training 2010-05-02

Delete all the items from the ITEMS table whose price is less than 500.00 and whose item
name starts with the letter H:

Ega DELETE FROM items WHERE price < 500.00 AND item_name LIKE 'H%'

Select all the orders from the SERVICE table that were filled in the specified period or for
which no training was given or no training documentation or manual created.

SELECT order_num, service_date, service_text FROM service
WHERE service_date BETWEEN DATE '2013-04-01' AND DATE '2013-04-30'
OR service_text NOT IN('Training','Training documentation', 'Manual')

service_ order_ service_date service_text
num num

1 200 2013-04-19 Training documentation
2 200 2013-04-22 Training

3 200 2013-04-23 Training

4 211 2013-01-20 Systems analysis

5 211 2013-01-28 Database design

6 211 2013-02-15 Copies/transparencies
10 250 2013-02-21 Travel expenses

U22420-J-2125-12-76 247

CASE expression Compound language constructs

5.5 CASE expression

A CASE expression is a conditional expression, i.e. an expression that contains conditions.
Each condition is assigned an expression or the NULL value.

When the CASE expression is evaluated, the assigned expression value or NULL value is
returned to whichever condition is true.

There are different types of CASE expression:
e CASE expression with search condition

e Simple CASE expression

e CASE expression with NULLIF

e CASE expression with COALESCE

o CASE expression with MIN or MAX

The syntax of the various types of expression is shown in the following overview:

CASE expression
WHEN search_condition THEN { 4 }

NULL
. expression
[ELSE {NULL }]

END
CASE expressionx expression
WHEN expressionl [, expression2] ... THEN {NUPLL }
case_expression ::= < " °° ; -
_exp [CELSE {E)Lp[e'_sswn }]
END —

NULLIF (expressionl, expression2)

COALESCE (expressionl, expression2, ..., expressionn)
MIN . . .
MAX (expressionl , expression2, ..., expressionn)

The types of CASE expression are described below.

The SQL statement CASE also exists in routines, see section “CASE - Execute
SQL statements conditionally” on page 391.

248

U22420-J-2125-12-76

Compound language constructs CASE expression

5.5.1 CASE expression with search condition

A CASE expression with a search condition has the following syntax:

CASE expression
WHEN search_condition THEN { p }

NULL
case_expression : :=< [E|SE {expr esszon}]
NULL

END

search_condition
Search condition that returns a truth value when evaluated

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.
It cannot be a multiple value with a dimension greater than 1.

expression must be contained in the THEN clause, the ELSE clause or in both.

The data types of the values of expression in the THEN clauses and in the ELSE clause
must be compatible (see section “Compatibility between data types” on page 99).

Result

The result of the CASE expression is contained in the THEN clause whose associated
search_condition is the first to return the truth value. The THEN clause contains the value of
the expression assigned to the THEN clause or the NULL value. The WHEN clauses are
processed from left to right.

If no search_condition returns the truth value true, the result is the contents of the ELSE
clause, i.e. the value of the expression assigned to the ELSE clause or the NULL value. If
you do not specify the ELSE clause, the default applies (NULL).

U22420-J-2125-12-76 249

CASE expression Compound language constructs

The data type of a CASE expression with a search condition is derived from the data types
of the values of expression contained in the THEN clauses and the ELSE clause, as follows:

e Each expression has the data type CHAR or NCHAR respectively:

The value of the CASE expression is that with the data type CHAR or NCHAR

respectively and the greatest length.

e At least one value of expression has the data type VARCHAR or NVARCHAR
respectively:

The value of the CASE expression is that with the data type VARCHAR or NVARCHAR

respectively and the greatest or greatest maximum length.

e Each expression is of the type integer or fixed-point number (INT, SMALLINT,

NUMERIC, DEC):

The value of the CASE expression has the data type integer or fixed-point number.

— The number of decimal places is the greatest number of decimal places among the
various values of expression.

— The total number of places is the greatest number of places before the decimal
point plus the greatest number of decimal places among the different values of
expression, but not more than 31.

e At least one value of expression is of the type floating-point number (REAL, DOUBLE

PRECISION, FLOAT); the others have any other numeric data type:

The value of the CASE expression has the data type DOUBLE PRECISION.

e Each expression has the time data type:
All values must have the same time data type, and the value of the CASE expression
also has this data type.
Example
Sort the items in the ITEMS table in accordance with the urgency with which they need to
be ordered.
SELECT item_num, item_name,
CASE
WHEN stock > min_stock THEN 'O.K.'
WHEN stock = min_stock THEN 'order soon'
WHEN stock > min_stock * 0.5 THEN 'order now'
ELSE 'order urgently'
END
FROM items

250

U22420-J-2125-12-76

Compound language constructs CASE expression

5.5.2 Simple CASE expression

A simple CASE expression has the following syntax:

CASE expressionx

WHEN expressionl [, expression2] ... THEN {E)Lp[’issmn}
e = . expression
case_expression ::
[ELSE {NULL } 1
END
expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.

It cannot be a multiple value with a dimension greater than 1.

The values of expressionx and expressionl... expressionn must have compatible data types
(see section “Compatibility between data types” on page 99).

expression must be contained in the THEN clause, the ELSE clause or both clauses.

The data types of the values of expression in the THEN clauses and in the ELSE clause
must be compatible (see section “Compatibility between data types” on page 99).

Result

The value of expressionx after CASE is compared (from left to right) with the values of the
expressions expressionl, expression2, contained in the WHEN clause. The first time a
match is found, the result of the CASE expression if the contents of the associated THEN
clause, i.e. the value of the associated expression or the NULL value. If the CASE expression
contains several WHEN clauses, the result is the contents of the first THEN clause in whose
associated WHEN clause an expression was found found which was identical to
expressionx. The WHEN clauses are processed from top to bottom.

If none of the expressions (expressionl... expressionn) in the WHEN clauses are identical to
expressionx, the result is the contents of the ELSE clause, i.e. the value of the expression
assigned to the ELSE clause or the NULL value. If you do not specify the ELSE clause, the
default applies (NULL).

The data type of a simple CASE expression is derived from the data types of the values of
expression that are contained in the THEN clauses and the ELSE clause. The same rules
apply that apply to the data type of a CASE expression with a search condition (see

page 250).

U22420-J-2125-12-76 251

CASE expression

Compound language constructs

A simple CASE expression corresponds to a CASE expression with a search condition of
the following form:

CASE

WHEN expressionx=expressionl THEN {expression|NULL}
WHEN expressionx=expression2 THEN {expression|NULL}

WHEN expressionx=expressionn THEN {expression|NULL}
ELSE {expression|NULL}
END

Examples

Sort the companies in the CUSTOMERS table in accordance with their location. Here the
country codes should be replaced by the names of the countries.

SELECT company,
CASE country
WHEN ' D' THEN 'Germany'
WHEN 'USA' THEN 'America'
WHEN ' CH' THEN 'Switzerland’
END
FROM customers

For payroll accounting, a distinction is to be made according to workday and weekend.

CASE EXTRACT(DAY_OF_WEEK FROM CURRENT_DATE)
WHEN 1,2,3,4,5 THEN 'workday'
WHEN 6.7 THEN 'weekend'
ELSE '?272727272"
END

252

U22420-J-2125-12-76

Compound language constructs CASE expression

5.5.3 CASE expression with NULLIF

A CASE expression with NULLIF has the following syntax:

case_expression ::= NULLIF C(expressionl,expression2)

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.

It cannot be a multiple value with a dimension greater than 1.

Result

The result of the CASE expression is NULL when expressionl and expression2 are identical.
If they are different, the result is expressionl.

A CASE expression with NULLIF corresponds to a CASE expression with a search
condition of the following form:

CASE
WHEN expressionl=expression2 THEN NULL
ELSE expressionl

END

Example
Using the SERVICE table, determine the VAT calculated at rates other than 0.07.
SELECT service_price * NULLIF (vat,0.07) AS tax FROM service

U22420-J-2125-12-76 253

CASE expression Compound language constructs

5.5.4 CASE expression with COALESCE

A CASE expression with COALESCE has the following syntax:

case_expression ::= COALESCE (expressionl, expression2, ... ,expressionn)

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.

It cannot be a multiple value with a dimension greater than 1.

Result

The result of the CASE expression is NULL if all the expressions contained in the
parentheses (expressionl... expressionn) return NULL. If at least one expression returns a
value other than the NULL value, the result of the CASE expression is the value of the first
expression that does not return the NULL value.

The CASE expression COALESCE (expressionl,expression2) corresponds to a CASE
expression with a search condition of the following form:

CASE
WHEN expressionl IS NOT NULL THEN expressionl
ELSE expression?

END
The CASE expression COALESCE (expressionl,expression2,..., expressionn)
corresponds to the following CASE expression with a search condition:
CASE
WHEN expressionl IS NOT NULL THEN expressionl
ELSE COALESCE (expression2 ...,expressionn)
END

254 U22420-J-2125-12-76

Compound language constructs

CASE expression

Examples

A list of contacts is to be created for specific customer contacts. In addition to the title, last
name, telephone number and position, either the department or, if this is not known, the
reason for the previous contact is to be determined.

SELECT title, Tname, contact_tel, position,
COALESCE(department, contact_info) AS info FROM contacts WHERE

contact_num < 30

Derived table
title Iname contact_tel position info
Dr. Kuehne 089/6361896 CEO Personnel
Mr. Walkers 089/63640182 Secretary Sales
Mr. Loetzerich 089/4488870 Manager Networks
Mr. Schmidt 0551/123873 Training
Ms. Kredler 089/923764 Organization SQL course

After the title, last name,

telephone number and function, the department of the
customer is determined. If this information is missing (NULL), the column value for the
CONTACT_INFO column is determined for INFO. If both the DEPARTMENT and
CONTACT_INFO columns contain NULL, INFO will also contain NULL.

U22420-J-2125-12-76

255

CASE expression Compound language constructs

A list of order completion dates is to be generated from the ORDERS table. The list is to
contain the date when the order was made, the order description and its completion date.
If the actual completion date is not known, the target completion date is to be entered.

SELECT order_date, order_text,
COALESCE (actual, target) AS completion_date FROM orders

order_date order_text completion_date
<date> Staff training <date>

<date> Customer administration <date>

<date> Database design customers <date>

<date> Mailmerge intro <date>

<date> Customer administration <date>

<date> Network test/ comparison

<date> Staff training <date>

To determine the values for COMPLETION_DATE, the ACTUAL column is evaluated.
If there is a date in the column, this is accepted. If ACTUAL contains the NULL value,
the corresponding column value in the TARGET column is determined and entered in
the COMPLETION_DATE column. If both ACTUAL and TARGET contain the NULL
value, the NULL value is entered in the COMPLETION_DATE column.

256 U22420-J-2125-12-76

Compound language constructs CASE expression

5.5.5 CASE expression with MIN / MAX

A CASE expression with MIN / MAX has the following syntax:

MIN
case_expression : := {M AX } (expressionl, expression?, ..., expressionn)
expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.

It cannot be a multiple value with a dimension greater than 1.

The values of expressionl,expression?,...,expressionn must have compatible data types
(see section “Compatibility between data types” on page 99).

A CASE expression with MIN or MAX references different expressions. In this way
it differs from the aggregate functions MIN() and MAX() (see page 145) which
reference the set of all values in a column in a table.

Result

The result of the CASE expression is NULL if at least one of the expressions contained in
the parentheses (expressionl,expression?,...,expressionn) returns NULL.

If no expression returns NULL, the result of the CASE expression is the value of the smallest
expression when MIN is specified, the value of the largest expression when MAX is specified.

The CASE expression MIN(expressionl,expression2) corresponds to a CASE
expression with a search condition in the following form:
CASE
WHEN expressionl <= expression2 THEN expressionl
ELSE expression?
END

The CASE expression MIN(expressionl,expression?2,..., expressionn) corresponds to
the CASE expression MIN(MIN(expressionl,expression2,...),expressionn).

The CASE expression MAX (expressionl,expression2) corresponds to a CASE
expression with a search condition in the following form:
CASE

WHEN expressionl >= expression2 THEN expressionl

ELSE expression2

END
The CASE expression MAX (expressionl,expression2,..., expressionn) corresponds to
the CASE expression MAX(MIN(expressionl,expression2,...),expressionn).

U22420-J-2125-12-76 257

CAST expression Compound language constructs

5.6

Example

The example below selects all entries in the turnover table since the date entered with the
user variable input_date, but at most for the last 90 says.

SELECT * FROM turnover WHERE turnover.date >= MAX(:input_date,
DATE_OF_JULTIAN_DAY (JULIAN_DAY_OF_DATE(CURRENT_DATE) — 90))

CAST expression

The CAST expression converts a value of a data type to a value of a different data type.

cast_expression ::= CAST ({ETJPE isszon} AS data_type)

expression | NULL
CAST operand. It contains the keyword NULL or an expression expression.
The value of expression may not be a multiple value with a dimension > 1.

data_type
Target data type for the result of the CAST expression.
The target data type data_type cannot contain a dimension for a multiple column.

Result

The result of the CAST expression is an atomic value of the target data type data_type.
Which value is returned depends, on the one hand, on the value of the CAST operand and,
on the other, on its data type.

If expression returns the NULL value or if the CAST operand contains the keyword NULL,
the result of the CAST expression is the NULL value.

Apart from that, the rules for the conversion of a value to a different data type described as
of page 259 apply.

258

U22420-J-2125-12-76

Compound language constructs CAST expression

Combinations of initial and target data types

The data type of expression, referred to here as the initial data type, can only be combined
with certain target data types. The table 23 shows which initial data types you can combine
with which target data types, and which combinations are impermissible

Target data type
INTEGER |REAL CHAR NCHAR DATE | TIME(3) |TIMESTA
Initial data | SMALLINT | DOUBLE VARCHAR | NVARCHA MP(3)
type DECIMAL |PRECISION R
NUMERIC | FLOAT
INTEGER yes yes yes yes no no no
SMALLINT
DECIMAL
NUMERIC
REAL yes yes yes yes no no no
DOUBLE
PRECISION
FLOAT
CHAR yes yes yes no yes yes yes
VARCHAR
NCHAR yes yes no yes yes yes yes
NVARCHAR
DATE no no yes yes yes no yes
TIME(3) no no yes yes no yes yes
TIMESTAM | no no yes yes yes yes yes
P(3)

Table 23: Permissible and impermissible combinations of initial and target data types for the CAST expression

Rules for converting a value to a different data type

In addition to the permitted combinations of initial and target data type (see table 23), the
rules described below also apply to the conversion of a value to a different data type. The
description is subdivided into three groups, depending on the target data type:

e The target data type is a data type for integers, fixed-point numbers or floating-point
numbers

e The target data type is a data type for strings of fixed or variable length

e The target data type is a time data type.

U22420-J-2125-12-76 259

CAST expression Compound language constructs

The target data type is a data type for integers, fixed-point numbers or floating-point numbers

e Numeric values are rounded up or down when they have too many decimal places for
the target data type. If the numeric value is too high for the target data type, you receive
an error message.

Examples

CAST (4502.9267 AS DECIMAL(6,2))
The value 4502.9267 is rounded down to 4502.93.

CAST (-115.05 AS DECIMAL(2,0))
The value -115.05 is rounded down to -115. However, since the value is too high for
the target data type, an error message appears.

CAST (2450.43 AS REAL)
The value 2450.43 is represented as the floating-point number of the value
2.45043E3.

e It must be possible to represent alphanumeric and national values without any loss of
value as a value of the assigned target data type. Leading or trailing blanks are
removed.

Examples

CAST ('512." AS SMALLINT) / CAST (N'512.' AS SMALLINT)
The blank at the end of the string is removed. The string '512' is represented as the
small integer 512.

CAST ('sum' AS NUMERIC)
This is an error: The string 'sum' cannot be represented as a numeric value,
because numeric literals can only contain digits.

CAST ('255....' AS REAL) / CAST (N'255....' AS REAL)
The blanks at the end of the string are removed, and the string '255' is represented
as the floating-point number 2.55000E2.

260 U22420-J-2125-12-76

Compound language constructs CAST expression

The target data type is a data type for strings of fixed or variable length

It must be possible to represent numeric values of the data type integer, fixed-point
number or floating-point number without any loss as a string of fixed or variable length.
In addition, it must be possible to represent values of the data type floating-point
number that are not equal to 0 in the standard form, and otherwise in the form 0E®.
The following applies to all numeric values: if the length of the value is less than the
fixed length of the target data type CHAR or NCHAR, blanks are added to the end of
the value; if the length of the value is less than the maximum length of the target data
type VARCHAR or NVARCHAR, it is retained. If the length of the value is greater than
the fixed or maximum length of the target data type, you receive an error message.

Examples

CAST (1234 AS CHAR(5)) / CAST (1234 AS NCHAR(5))
The value of the integer 1234 returns the alphanumeric string '1234.. or the national
string N'1234._' respectively.'

CAST (25.95 AS VARCHAR(5)) / CAST (25.95 AS NVARCHAR(5))
The value of the fixed-point number 25.95 returns the alphanumeric string '25.95'
or the national string N'25.95' respectively.

CAST (45.5E2 AS CHAR(7)) / CAST (45.5E2 AS NCHAR(7))
The value of the floating-point number 45.5E2 returns the alphanumeric string
'4 55E3." or the national string N'4.55E3.' respectively.

Blanks are added to the end of alphanumeric and national values whose length is less
than the fixed length of the target data type CHAR or NCHAR. If the length of the value
is less than the maximum length of the target data type VARCHAR or NVARCHAR, it
is retained. If the length of the value is greater than the fixed or maximum length of the
target data type, the value is truncated to the length of the target data type. If characters
other than blanks are removed, you receive a warning.

Examples

CAST ('Weekend' AS VARCHAR(5)) / CAST (N'Weekend' AS NCHAR(5))
The string 'Weekend' is too long for the data type CHAR(5) or NCHAR(5)
respectively. It is truncated to the length of the string 'Weeke', and SESAM/SQL
issues a warning.

CAST ('Weekouooowo " AS VARCHAR(15)) / CAST (N'Weekcwcwoww " AS NVARCHAR(15))
The result is the alphanumeric string 'Week..... ' or the national string
N'Week..... ' respectively. The string is not padded with blanks to the maximum

length of 15 characters.

U22420-J-2125-12-76 261

CAST expression Compound language constructs

e It must be possible to represent time values as a string. If the length of the time value
is less than the fixed length of the target data type CHAR or NCHAR, blanks are added
at the end of the value. If the length of the time value is less than the maximum length
of the target data type VARCHAR or NVARCHAR, it is retained. If it is greater than the
fixed or variable length of the target data type, you receive an error message.

Examples

CAST (DATE'2013-08-11' AS VARCHAR(20))

CAST (DATE'2013-08-11' AS NVARCHAR(20))
The result is the alphanumeric string '2013-08-11" or the national string N'2013-08-
11' respectively.

CAST (DATE'2013-08-11"' AS VARCHAR(5))
The time value is too long for a string with a maximum variable length of 5. The time
value is not converted and an error message appears.

The target data type is a time data type.

e It must be possible to represent alphanumeric and national values without any loss of
value as a value of the assigned target data type. Leading or trailing blanks are
removed.

Examples

CAST ('.2013-08-11" AS DATE)

CAST (N'.2013-08-11"' AS DATE)
The leading blank of the string is removed, and the string is converted to the data
type DATE.

CAST ('2013-08-11 17:57:35:000"' AS TIMESTAMP(3))
This is an error: The string cannot be represented as a time stamp. The separator
between the components seconds and fractions of a second must be a period (.) in
time stamp values.

262 U22420-J-2125-12-76

Compound language constructs CAST expression

e The following rules apply to the conversion of time values:

If the target data type is DATE and the initial data type TIMESTAMP, the result value
contains the date (year-month-day) of the initial value.

If the target data type is DATE and the initial data type TIME, you receive an error
message.

If the target data type is TIME and the initial data type TIMESTAMP, the result value
contains the time (hour:minute:second) of the initial value.

If the target data type is TIME and the initial data type DATE, you receive an error
message.

If the target data type is TIMESTAMP and the initial data type DATE, the result value
contains the date entry (year-month-day) of the initial value and the fields
hour:minute:second set to O for the time.

If the target data type is TIMESTAMP and the initial data type TIME, the result value
contains the date (year-month-day) of the current date (CURRENT_DATE) and the
time (hour:minute:second) of the initial value.

Examples

CAST (TIMESTAMP '2013-08-11 17:57:35.000' AS DATE)

The result value is the date '8/11/2013'".

SELECT order_text, CAST (actual AS TIMESTAMP(3))

FROM orders WHERE cust_num=106

order_text actual
Customer administration 2010-04-17 00:00:00.000
Database design customers 2010-04-10 00:00:00.000

The derived table contains the column actual with the data type TIMESTAMP. The
time stamp fields for the time are set to 0.

U22420-J-2125-12-76

263

Integrity constraint Compound language constructs

5.7 Integrity constraint

An integrity constraint is a rule governing the permitted contents of the rows in a table. A
row can only be inserted into a table (INSERT, MERGE) or deleted from a table (DELETE)
and a column value can only be updated (MERGE, UPDATE) if, afterwards, all integrity
constraints are satisfied.

Integrity constraints cannot be defined for multiple columns.

Integrity constraints can be defined for individual columns or for a table. A column constraint
is an integrity constraint on a single column. A table constraint is an integrity constraint
which can refer to more than one column in the base table.

NOT NULL constraint

The NOT NULL constraint requires that a column contain no NULL values. The NOT NULL
constraint can only be specified as a column constraint.

UNIQUE constraint

The UNIQUE constraint requires that the specified column or set of columns accept only
unique values or sets of values.

PRIMARY KEY constraint

The PRIMARY KEY constraint defines a column or set of columns as the primary key of a
table. The PRIMARY KEY constraint requires that the column or set of columns satisfy the
UNIQUE and NOT NULL constraints. A table can have a maximum of one primary key.

Check constraint

A check constraint requires that every row in a table, the search condition entered accepts
the truth value true or unknown, but not, however, the truth value false.

The search condition can only reference the table for which the check constraint was
defined.

264

U22420-J-2125-12-76

Compound language constructs Integrity constraint

Referential constraint

A referential constraint ((FOREIGN KEY]..REFERENCES) defines a column or a
combination of columns as a foreign key for a table. The columns for the foreign key are
assigned to one or more columns in a single table or in two tables. These columns are
called the referenced columns. The UNIQUE constraint must be valid for the referenced
columns. The table containing the foreign key is called the referencing table. The table to
which the referenced columns belong is called the referenced table. If no columns are
specified for the referenced table, the primary key of the referenced table is used.

SESAM/SQL rejects a table operation after checking the referential constraint

e if, when a row is inserted or column values are updated in the referencing table, no
appropriate values would exist in the referenced columns.

e if, when deleting or updating rows or columns in the referenced tables, foreign key
values would remain in the referencing tables for which appropriate values in the
referenced columns or the corresponding column would no longer exist.

In the case of single-column foreign keys, the referential constraint requires that every non-
NULL value of the foreign key for a table match a value in the referenced column.

In the case of multiple-column foreign keys, each set of values that does notinclude a NULL
value must occur in the referenced columns. This means that in SESAM/SQL, a row
satisfies the referential constraint if a NULL value occurs in at least one column of a
multiple-column foreign key.

U22420-J-2125-12-76 265

Integrity constraint Compound language constructs

5.71

Column constraints

When a base table is created or updated (CREATE TABLE, ALTER TABLE), column
constraints can be specified in the column definitions for the individual columns. The
column cannot be a multiple column.

A column constraint is an integrity constraint on a single column. All the values in the
column must satisfy the integrity constraint.

For CALL DML tables, only the integrity constraint PRIMARY KEY can be defined.

NOT NULL
UNIQUE
col_constraint : := < PRIMARY KEY
REFERENCES table [(column)]
CHECK (search_condition)

NOT NULL
NOT NULL constraint.
The column cannot contain any NULL values.

The NOT NULL constraint is stored as a check constraint (column IS NOT NULL).

UNIQUE
UNIQUE constraint.
Non-null column values must be unique.

The column length must observe the restrictions that apply to an index (see CREATE
INDEX statement, page 413).

PRIMARY KEY
PRIMARY KEY constraint.
The column is the primary key of the table. The values in the column must be unique.
Only one primary key can be defined for each table.

The column cannot have the data type VARCHAR or NVARCHAR. In a CALL DML
table, the column length must be between 4 and 256 characters. In an SQL table, there
is no minimum column length.

The NOT NULL constraint applies implicitly to a primary key column.

REFERENCES
Referential constraint.
The column of the referencing table can only contain a non-NULL value if the same
value is included in the referenced column of the referenced table.

The current authorization identifier must have the REFERENCES privilege for the
referenced column.

266

U22420-J-2125-12-76

Compound language constructs Integrity constraint

table

Name of the referenced base table.

The referenced base table must be an SQL table. The name of the referenced base
table can be qualified by a database or schema name. The database name must
be the same as the database name of the referencing table.

(column)

Name of the referenced column.

The referenced column must be defined with UNIQUE or PRIMARY KEY.

The referenced column cannot be a multiple column. The referencing column and
referenced column must have exactly the same data type.

(column) omitted:
The primary key of the referenced table is used as the referenced column. The
referencing column and referenced column must have exactly the same data type.

CHECK (search_condition)
Check constraint.
Each value in the column must accept the truth value true or unknown, but not,
however, the truth value false for the search condition search_condition.

The following restrictions apply to search_condition:

search_condition cannot contain any host variables.
search_condition cannot contain any aggregate functions.

search_condition cannot contain any subqueries, i.e. it can only reference the
column of the table to which the column constraint belongs.

search_condition cannot contain a time function.
search_condition cannot contain special variables.
search_condition cannot contain any transliteration between EBCDIC and Unicode.

search_condition cannot contain any conversion of uppercase letters to lowercase
letters or of lowercase letters to uppercase letters if the string to be converted is a
Unicode string.

search_condition cannot be a multiple column.

search_condition may not contain a User Defined Function (UDF).

U22420-J-2125-12-76

267

Integrity constraint Compound language constructs

Special considerations for CALL DML tables

The following restrictions must be taken into account for column constraints in CALL DML
tables:

e A CALL DML table must contain exactly one primary key as a column or table
constraint.

e Only PRIMARY KEY is permitted as a column constraint.

e The data type of the column with PRIMARY KEY must be CHAR with a length of at least
4 characters.

Column constraints and indexes

If you define a UNIQUE constraint, an index with the column specified for UNIQUE is used:

e If you have already defined an index with CREATE INDEX that contains this column,
this index is also used for the UNIQUE constraint.

e Otherwise, the required index is generated implicitly. The name of the implicitly
generated index starts with Ul and is followed by a 16-digit number.
The index is stored in the space for the base table. In the case of a partitioned table the
index is stored in the space of the table’s first partition.

Examples of column constraints

The example shows part of the CREATE TABLE statement used to create the SERVICE
table in the ORDERCUST database. A check constraint is defined for the column
service_total.

E%a CREATE TABLE service (...,
service_total INTEGER CONSTRAINT service_total_pos
CHECK (service_total > 0)

A Non-NULL constraint with an explicitly specified name is defined for the COMPANY
column. CUST_NUM is defined as the primary key in the column constraint
CUST_NUM_PRIMARY.

E§3 CREATE TABLE customers
(cust_num INTEGER CONSTRAINT cust_num_primary PRIMARY KEY,
company CHAR(40) CONSTRAINT company_notnull NOT NULL)

A referential constraint FOREIGN1 is defined for the ORDERS table. The foreign key
ORDERS.CUST_NUM references the column CUSTOMERS.CUST.NUM.

é%ﬁ ALTER TABLE orders
ADD CONSTRAINT foreignl FOREIGN KEY(cust_num)
REFERENCES customers(cust_num)

268

U22420-J-2125-12-76

Compound language constructs Integrity constraint

5.7.2 Table constraints

When a base table is created or updated (CREATE TABLE, ALTER TABLE), table
constraints can be specified. A table constraint is an integrity constraint which can refer to
more than one column in the base table. None of the columns can be a multiple column.

For CALL DML tables, only the integrity constraint PRIMARY KEY can be defined.

UNIQUE (column, ...)
PRIMARY KEY (column, . ..)

table_constraint : 1= FOREIGN KEY (column. . ..) REFERENCES table (column, . ..)]
CHECK (search_condition)

UNIQUE (column,...)
UNIQUE constraint.
The combination of values for the columns specified must be unique within the table in
the case that none of the values is equal to the NULL value.

The length of the columns must observe the restrictions that apply to an index (see the
CREATE INDEX statement, page 413).

A column cannot be specified more than once in the column list.

The sequence of columns specified with the column list must differ from the sequence
of columns specified with the column list of another UNIQUE constraint or of a
PRIMARY KEY constraint for the same table.

PRIMARY KEY (column,...)
PRIMARY KEY constraint.
The specified columns together constitute the primary key of the table.
The set of column values must be unique. Only one primary key can be defined for each
table.

None of the columns can be VARCHAR or NVARCHAR columns. The sum of the
column lengths must not exceed 256 characters.

A column cannot be specified more than once in the column list.

The sequence of columns specified with the column list must differ from the sequence
of columns specified with the column list of any UNIQUE constraint for the same table.

The NOT NULL constraint applies implicitly to the primary key columns.

U22420-J-2125-12-76 269

Integrity constraint Compound language constructs

FOREIGN KEY ... REFERENCES

Referential constraint.

The referencing columns can only contain a set of values that does not include any
NULL values if the set of values also occurs in the referenced columns.

You must specify the same number of columns in the referencing and referenced table.
The data types of the corresponding columns must be exactly the same.

The current authorization identifier must have the REFERENCES privilege for the
referenced column.

FOREIGN KEY (column,...)
Columns of the referencing table whose sets of values should be contained in the
referenced base table.
A column cannot be specified more than once in the column list.

REFERENCES table
Name of the referenced base table.
The referenced base table must be an SQL table. The name of the referenced base
table can be qualified by a database or schema name. The catalog name must be
the same as the catalog name of the referencing table.

(column,...)
Names of the referenced columns.
A UNIQUE or primary key constraint that uses the same columns and the same
order must be defined for these columns. None of the columns can be a multiple
column.
A column cannot be specified more than once in the column list.

(column,...) omitted:
The primary key of the referenced table is used as the referenced column.

CHECK (search_condition)

Check constraint.

The search condition search_condition must return the truth value true or undefined (but

not the truth value false) for each row in the table.

The following restrictions apply to search_condition:

— search_condition cannot contain any host variables.

— search_condition cannot contain any aggregate functions.

— search_condition cannot include any subqueries, i.e. search_condition can only
reference columns of the table to which the column constraint belongs.

— search_condition cannot contain a time function.

— search_condition cannot contain special variables.

— search_condition cannot contain any transliteration between EBCDIC and Unicode.

— search_condition cannot contain any conversion of uppercase letters to lowercase
letters or of lowercase letters to uppercase letters if the string to be converted is a
Unicode string.

— search_condition may not contain a User Defined Function (UDF).

270

U22420-J-2125-12-76

Compound language constructs Integrity constraint

Special considerations for CALL DML tables

The following restrictions must be taken into account for table constraints in CALL DML
tables:

A CALL DML table must contain exactly one primary key as a column or table
constraint.

Only PRIMARY KEY is permitted as the table constraint.

The data type of the column with PRIMARY KEY must be CHAR, NUMERIC, INTEGER
or SMALLINT. In the case of NUMERIC, decimal places are not permitted.

The sum of the column lengths must be between 4 and 256 characters.

The table constraint defines a compound primary key. The name corresponds to the
verbal attribute name of the compound primary key in SESAM/SQL V1.x.

Table constraints and indexes

If you define a UNIQUE constraint, an index with the columns specified for UNIQUE is used:

If you have already defined an index with CREATE INDEX that contains these columns,
this index is also used for the UNIQUE constraint.

Otherwise, the required index is generated implicitly. The name of the implicitly
generated index starts with Ul and is followed by a 16-digit number.

The index is stored in the space for the base table. In the case of a partitioned table the
index is stored in the space of the table’s first partition.

Example of a table constraint

The example shows part of the CREATE TABLE statement used to create the
CUSTOMERS table of the ORDERCUST database.

@ CREATE TABLE customers

CONSTRAINT PlausZip CHECK ((country = 'D' AND zip >= 00000) OR
(country <> 'D"))

U22420-J-2125-12-76 271

Column definitions Compound language constructs

5.8 Column definitions

When a base table is created or modified (CREATE TABLE, ALTER TABLE), the column
definition defines the name and the attributes of a column.

SESAM/SQL distinguishes between atomic and multiple columns. In an atomic column,
exactly one value can be stored in each row. In a multiple column, several values of the
same type can be stored in each row. A multiple column is made up of a number of column
elements. In the case of a single column, a single value is stored for each row.

To incorporate BLOBs in base tables, you will need REF columns. These are defined using
the FOR REF clause.

A base table can contain a maximum of 26134 columns of any data type except VARCHAR
and NVARCHAR. It can contain up to 1000 VARCHAR and/or NVARCHAR columns. The
restrictions that apply to CALL DML tables are described on page 275.

column_definition : :=

data_typeldefault]
column { FOR REF (able)

LLCONSTRAINT integrity constraint_namel column_constraint] ...

Lcall_dml_clause]

alphanumeric_literal
national_literal
numeric_literal
time_literal
CURRENT_DATE
CURRENT_TIME(3)
LOCALTIME(3)
default ::= DEFAULT) CURRENT_TIMESTAMP(3)
LOCALTIMESTAMP(3)
USER
CURRENT_USER
SYSTEM_USER

NULL

REF (table)

~

call dml clause : := CALL DML call dml default [call dml symb _name]

272 U22420-J-2125-12-76

Compound language constructs Column definitions

column
Name of the column. The column name must be unique within the base table.

data_type
Data type of the column.

FOR REF(table)
Defines a column containing references to BLOB values. This clause allows you to
incorporate BLOBs in “normal” base tables. BLOB values are stored in BLOB tables.
Information on defining a BLOB table can be found in the section “CREATE TABLE -
Create base table” on page 430. BLOB objects, tables and REF values are explained
briefly in the section “Concept of the SESAM CLI” on page 587. Detailed information on
their structure can be found in the “Core manual”.

— The column is assigned the data type CHAR(237).

— Its default value is the class REF value. The structure of REF values is described
below.

— table must not contain the database name (catalog).

REF (table)
Class REF value which identifies the overall class of the BLOB values of a BLOB table.
When a REF column is created, it is assigned this value as the default. This is
determined by specifying the name of the BLOB table. Due to the syntax of the column
definition, therefore, it is neither practical nor possible to specify a default value for the
REF column at this point.
A REF value essentially has the following structure:

ss/tt?UID=uuuu&OID=nn

— ss is the unqualified name of the BLOB table's schema, excluding the database
name.

— tis the unqualified name of the BLOB table, excluding the schema and database
name.

— uuu is the unique BLOB ID consisting of 32 hexadecimal digits. In the case of the
class REF value, all the digits are 0.

— nnis the number of the BLOB in the BLOB table. In the case of the class REF value,
this number is 0.

U22420-J-2125-12-76 273

Column definitions Compound language constructs

default
Defines an SQL default value that is entered in the column if a row is inserted or
updated and no value or the default value is specified for the column.

— column cannot be a multiple column.
— column cannot be a CALL DML column.

— default must conform to the assignment rules for default values (see section “Default
values for table columns” on page 123).

The default is evaluated when a row is inserted or updated and the default value is used
for column.

default omitted:
There is no SQL default value.
The NULL value is entered in columns without a NOT NULL constraint.

[CONSTRAINT integrity_constraint_name] column_constraint
Defines an integrity constraint for the column. Integrity constraints cannot be specified
for multiple columns.

[CONSTRAINT integrity_constraint_name] column_constraint omitted:
No column constraint defined.

CONSTRAINT integrity _constraint_name
Assigns a name to the integrity constraint. The unqualified name of the integrity
constraint must be unique within the schema. You can qualify the name of the
integrity constraint with a database and schema name. The database and schema
name must be the same as the database and schema name of the base table for
which the integrity condition is defined.

CONSTRAINT integrity_constraint_name omitted:
The integrity constraint is assigned a name according to the following pattern:

UN integrity constraint_number

PK integrity constraint_number

FK integrity _constraint_number

CH integrity_constraint_number

where UN stands for UNIQUE, PK for PRIMARY KEY, FK for FOREIGN KEY and
CH for CHECK. integrity_constraint_number is a 16-digit number. The NOT NULL
constraint is stored as a check constraint.

column_constraint
Indicates an integrity constraint that the column must satisfy.

274 U22420-J-2125-12-76

Compound language constructs Column definitions

call dml _clause

The CALL DML clause ensures compatibility with SESAM/SQL V1.x. The CALL DML
clause can only be specified for CALL DML tables, but not for columns used for the
primary key. In this case, SESAM/SQL assigns both the call dml_default and the

call dml_symb_name

call dml_clause omitted:

The column definition is valid for either an SQL table or for the primary key of a CALL
DML table. In the case of an SQL table, the CREATE TABLE or ALTER TABLE
statement in which the column definition occurs cannot include a CALL DML clause.

call dml_default
Indicates the non-significant value of a column as an alphanumeric literal.

call_dml_default corresponds to the non-significant value in
SESAM/SQL Version 1.x.

call dml_symb_name
Symbolic name of the column.

call dml_symb _name corresponds to the symbolic attribute name in
SESAM/SQL Version 1.x.

call dml_symb _name omitted:
call dml symb_name is assigned by the system.

Special considerations for CALL DML tables

The following restrictions must be observed when creating column definitions for CALL
DML tables:

Only the data types CHAR, NUMERIC, DECIMAL, INTEGER and SMALLINT are
permitted.

No default value can be defined for the column with DEFAULT. The default value FOR
REF is not permitted either.

The table must contain exactly one primary key restraint as the column or table
constraint.

The table constraint defines a compound primary key and must be given a name that
corresponds to the name of the compound primary key in SESAM/SQL V1.x.

The column name must be different to the integrity constraint name of the table
constraint since this name is used as the name of the compound primary key.

A column that is not a primary key must have a CALL DML clause.

U22420-J-2125-12-76 275

Column definitions Compound language constructs

Examples of column definitions

This example shows part of the CREATE TABLE statement used to create the ORDERS
table of the ORDERCUST database.

E%a CREATE TABLE orders
(order_num INTEGER,
cust_num INTEGER NOT NULL,
contact_num INTEGER,
order_date DATE DEFAULT CURRENT_DATE,
order_text CHARACTER (30),
actual DATE,
target DATE,
order_stat INTEGER DEFAULT 1 NOT NULL,
)

This example shows the CREATE TABLE statement used to create the ITEM_CAT table of
the ORDERCUST database. This table contains two REF columns.

Ega CREATE TABLE item_cat
(item_num INTEGER NOT NULL,
image FOR REF(addons.images),
desc FOR REF(addons.descriptions))

276 U22420-J-2125-12-76

6 Query expression

In SESAM/SQL, query expressions are the most important means of querying data.

This chapter describes the syntax of query expressions and provides you with an
explanation of the various joins. It is subdivided into the following sections:

Table specifications

SELECT expression

Table queries

Joins

Subquery

Combining query expressions with UNION

Combining query expressions with EXCEPT DISTINCT

Updatability of query expressions

U22420-J-2125-12-76

277

Query expression

Overview

You use query expressions to select rows and columns from base tables and views. The
rows found constitute the derived table.

A query expression is part of an SQL statement. A query expression can occur in
subqueries or in any of the following SQL statements:

CREATE VIEW Define a view
DECLARE CURSOR Declare a cursor
INSERT Insert rows in table

The examples in this chapter only show the relevant query expression. Without the
associated subquery or SQL statement, the examples are of course not executable.

If you want to use a subquery in an SQL statement, you must own the table referenced in
the subquery or have SELECT privilege for the table involved.

ALL select_expression
S i UNION [{DISTINCT}] TABLE table
query_expression : := [query_expression OloTINLT Jjoin_expression
EXCEPT [DISTINCT] (query_expression)

select_expression
SELECT expression (see section “SELECT expression” on page 282)

TABLE rable
Table query, see section “TABLE - Table query” on page 295.

join_expression
Join expression (see section “Join expression” on page 297)

(query_expression)
Subquery, see section “Subquery” on page 310.

UNION
Combine two query expressions with UNION, see section “Combining query
expressions with UNION” on page 313.

EXCEPT DISTINCT
Combine two query expressions with EXCEPT, see section “Combining query
expressions with EXCEPT” on page 316.

278 U22420-J-2125-12-76

Query expression Table specifications

6.1 Table specifications

table [LAS] correlation_name [(column, ...)]1]
unterabfrage [AS] correlation_name [(column, ...)]
table_specification : := < TABLE([catalog. Jtable_function) [WITH ORDINALITY]
LLAS] correlation_name [(column, ...)]1]
join_expression

table
Name of a base table or view.

The same table can occur several times in a table specification in the query expression.
Correlation names are used to distinguish between different instances of the same
table.

subquery
The table is the derived table that results from evaluating subquery.

Lcatalog . 1table_function
The (“read-only”) table (see the “Core manual”) is the result of the table function
table_function.

If table function DEE() is specified, no column names may be specified.

The database name catalog must be specified if the containing statement is not to be
executed on the database set implicitly (see page 75) (and consequently possibly with
another SQL server).

WITH ORDINALITY
Definition of a counting column in the derived table. This specification may only be
entered for the table function CSV(), but not for DEE().

The derived table must “at the end” contain one column more than the column

specification in each line of the CSV file. The data type of the last column of the derived
table must be DECIMAL(31,0). This column is used as the counting column. Beginning
with 1 and in ascending order, it is assigned the ordinal number of the line which was
read in from the CSV file. The WHERE clause also enables derived rows of particular
ordinal numbers to be ignored in a SELECT expression, see the example on the next

page.

The data types of each column of the derived table (with the exception of the last
column) must match the data types of the column specifications in the CSV file.

WITH ORDINALITY not specified:
The number of columns in the derived table must be the same as the number of column
specifications in the CSV file, and the data types of each column must match.

U22420-J-2125-12-76 279

Table specifications Query expression

Example

with.3.headers is a CSV file with exactly 3 headers which are not evaluated or are
skipped:
SELECT cl, c2,..., cn

FROM TABLE(CSV('with.3.headers' DELIMITER ',' QUOTE '?'

ESCAPE '=', CHAR(20), CHAR(20),..., CHAR(20)))
WITH ORDINALITY
AS T(cl, c2,....,cn, counter)

WHERE counter > 3

correlation_name
Table name used in the query expression as a new name for the table.

The correlation_name must be used to qualify the column name in every column
specification that references this instance of the table if the column name is not
unambiguous.

The new name must be unique, i.e. correlation_name can only occur once in a table
specification of this query expression.

You must give a table a new name if the columns in the table cannot otherwise be
identified uniquely in the query expression.
correlation_name must be specified in the case of table_function (exception: DEE()).

In addition, you may give a table a new name in order to formulate the query expression
so that it is more easily understood or to abbreviate long names.

Example

Join a table with itself:

SELECT a.company, b.company —— Query customer

FROM customers AS a,
customers AS b

WHERE a.city = b.city —— who Tives in the same city

AND a.cust_num < b.cust_num —— but avoid duplicates

280 U22420-J-2125-12-76

Query expression Table specifications

column

Column name that is used within the query expression as the new name for the column
of the corresponding table.

If you rename a column, you must give all the columns in the table a new name.

column is the new name of the column and must be unique within the table specified by
correlation name. In this query expression the column may only be addressed with the
new name.

The columns of a derived table must be renamed if the column names of the table upon
which it is based are not unique, or if the derived columns are to be referenced using

names that have been assigned internally.

Example

Give the columns in the WAREHOUSE table new, more informative names:

SELECT * FROM warehouse w (item_number, current_stock, location)

WHERE Tocation =

column,... omitted:

'"Parts warehouse'

The column names of the associated table are valid. These could be names that are
assigned internally, which cannot be referenced in the query expression.

join_expression

Join expression that determines the tables from which the data is to be selected.
Join expressions are described in the section “Join expression” on page 297.

Underlying base tables

Depending on the specification made in the table specification, the underlying base tables

are defined as follows:

Specification in table
specification

Underlying base table

Base table the base table

View all the base tables which the view references directly or
indirectly

Subquery Base table upon which the subquery is based

TABLE (Lcatalog . 1table function)

no base table

Table 24: Underlying base tables

U22420-J-2125-12-76

281

SELECT expression Query expression

6.2 SELECT expression

select_expression : :=

SELECT [ALL }] select_list

DISTINCT
FROM table_specification, . . .
LWHERE search_condition]
LGROUP BY column, .. .]

[HAVING search_condition]

*

select list ::=< Jtable.*
expression [LAS] column] e

The following applies to all clauses:

e The clauses must be specified in the given order.

e Column names must be unique. If a column name occurs in several tables, you must
qualify the column name with the table name. If you rename a table using a correlation
name for the duration of the SELECT statement (see section “Table specifications” on
page 279), you must use only the correlation name.

Example

SELECT o.cust_num, s.service_price
FROM orders o, service s WHERE o.order_num=s.order_num

282 U22420-J-2125-12-76

Query expression SELECT expression

Evaluation of SELECT expressions

SELECT expressions are evaluated in the following order:

1.
2.

The Cartesian product from all the table specifications in the FROM clause is created.

If a WHERE clause is specified, the WHERE search condition is applied to all the rows
of the Cartesian product. The rows for which the search condition returns the value true
are selected.

If a GROUP BY clause is specified, the rows determined in point 2 are combined into
groups.

If a HAVING clause is specified, the HAVING search condition is applied to all the
groups. The groups that satisfy the search condition are selected.

If the SELECT list includes an aggregate function and the derived table has not yet
been divided into groups, all the rows in the derived table are combined to form a group.

If the derived table has been divided into (one or more) groups, the SELECT list is
evaluated for each group.

If the derived table has not been divided into groups, the SELECT list is evaluated for
each derived row.

The resulting rows then form the derived table of the SELECT expression.

U22420-J-2125-12-76 283

SELECT list SELECT expression

6.2.1 SELECT list - Select derived columns

You determine the columns in the derived table with the SELECT list.

ALL .
SELECT [DISTINCT }] select_list ...
*
select list ::=< Jtable.*
expression [[AS] column] s
LL

Duplicate rows in the derived table are retained.

DISTINCT

Duplicate rows are removed.

* Select all columns. The order and the names of the columns in the table specified in the
FROM clause are used. If several tables are involved, the order of the tables in the
FROM clause is used. At least one column must exist.

table.*
All the columns in table are selected. table must be included in the FROM clause. The
order and the names of the columns in table are used. table may not be the correlation
name for a DEE() table function.

expression
Expression denoting a derived column. If expression contains a column specification, the
table to which the column belongs must be included in the FROM clause of this
SELECT expression.

The names of the columns in the SELECT list must be unique. If you join tables and
these base tables have columns with identical names, you must insert the appropriate
table or correlation name in front of the column names in order to ensure unique
identification.

If SELECT DISTINCT is specified, expression cannot consist of a multiple column
specification.

284 U22420-J-2125-12-76

SELECT expression SELECT list

If an aggregate function (AVG, COUNT, MAX, MIN, SUM) occurs in a column selection,
the following restrictions apply:

— Only column names that are specified in the GROUP BY clause or which are
arguments in the aggregate function can be included in the SELECT list.

— Only one aggregate function can be used with DISTINCT on the same level of a
SELECT query. For example, you must not enter:

SELECT COUNT(DISTINCT ...)... SUM(DISTINCT ...) ...

[AS] column
Name of the derived column specified with expression.

Example
SELECT order_num AS order_no, COUNT(*) AS total FROM orders GROUP BY
order_num

(order_no total 1

column omitted:
If expression is a column name, the derived column is assigned this name, otherwise,

the column name is not defined.

Example
SELECT order_num, COUNT(*) FROM orders GROUP BY order_num

order_num

U22420-J-2125-12-76 285

SELECT list

SELECT expression

Columns in the derived table

The order of the columns in the derived table corresponds to the order of the columns in the
SELECT list.

The attributes of a derived column (data type, length, precision, digits to the right of the
decimal point) are either taken from the underlying column or result from the specified
expression.

A result column can return the NULL value if one of the following conditions is satisfied:

o One of the columns used can return the NULL value.
This is always the case for columns of table functions. This is only the case for columns
of base tables if a NOT NULL condition applies for the column.

e The expression that describes the result column contains at least one of the following
operands or elements:

an indicator variable

a subquery

the aggregate function AVG, MAX, MIN or SUM

a CAST expression of the form CAST (NULL AS data_type)

a CASE containing the NULL value in at least one THEN or ELSE clause
a CASE expression with NULLIF

a CASE expression with COALESCE, where at least one operand of COALESCE
(expressionl ... expressionn) contains one of the operands or elements listed above

286

U22420-J-2125-12-76

SELECT expression SELECT list

Examples

“*” selects all the columns of the tables specified in the FROM clause. The sequence of the
columns in the derived table is determined by the sequence of the tables in the from clause
and by the defined sequence of columns within the tables.

SELECT * FROM orders, customers

CUSTMERS.* selects all columns from the CUSTOMERS table. DISTINCT specifies that
duplicate rows are not to be included in the derived table.

SELECT DISTINCT order_num, customers.* FROM orders, customers

This selects the order numbers from the SERVICE and ORDERS tables. The column
names must be unique. If tables with identical column names are linked, the column names
must be qualified by the table name or correlation name. If you specify ALL (default),
duplicate rows are included in the derived table.

SELECT ALL S.order_num, O.order_num FROM service S, orders 0O

This selects the name of the service and the price per service unit including VAT. If
expression without the [AS] column specification is a column name, the column in the derived
table is assigned this name (SERVICE_TEXT in the example).

[AS] column can be used to assign a name for the derived column, which is then referenced
by expression (in the example this is GROSS_PRICE). The properties of a column in the
derived table (data type, length, precision and scale) are either taken from the underlying
column (SERVICE_TEXT) or are derived from the specified expression
(service_price*(1.0+vat)).

SELECT service_text, service_price*(1.0+vat) AS gross_price

The derived table contains a single row. There is one column only in this row, which
contains the sum of all the non-NULL values in SERVICE.SERVICE_PRICE, or NULL if
there is no row matching this criterion. If the SELECT list includes an aggregate function,
the list may only contain column names which occur within the argument of an aggregate
function.

SELECT SUM(service_price) FROM service

The derived table contains a row with a single column containing the number of rows in
CONTACTS. If expression without the AS clause does not identify a column, the column
name is not defined.

SELECT COUNT(*) FROM contacts

U22420-J-2125-12-76 287

SELECT ... FROM SELECT expression

6.2.2 SELECT...FROM - Specify table

You use the FROM clause to specify the tables from which data is to be selected.

In order to read rows in the specified tables, you must either own these tables or have
SELECT permission.

SELECT ...

FROM table specification, . . .

table_specification
Specification of a table from which data is to be read. You can only specify tables
located in the same database.

Examples

The columns CUST_NUM from the CUSTOMERS table and ORDER_NUM from the
ORDERS table are selected on the basis of the Cartesian product of the CUSTOMERS and
ORDERS tables. The CUSTOMERS and ORDERS tables are renamed within the SELECT
expression by assigning correlation names. Every column specification within the SELECT
expression which references the CUSTOMERS or ORDERS table must then be qualified
with the correlation name. Correlation names can be used to qualify columns uniquely, to
abbreviate long table names or to specify the appropriate table name in SELECT
expressions. The columns A.CUST_NUM and B.ORDER_NUM are selected from the
Cartesian product of the CUSTOMERS and ORDERS tables.

SELECT A.cust_num, B.order_num FROM customers A, orders B

Derived table
cust_num |order_num
100 200
100 210
100 211
etc. etc.
107 300
107 305

288 U22420-J-2125-12-76

SELECT expression SELECT ... FROM

The table ORDSTAT is renamed as ORDERSTATUS and the columns ORD_STAT_NUM
and ORD_STAT_TEXT are selected using the new names ORDERSTATUSNUMBER and
ORDERSTATUSTEXT. If all columns are selected by specifying “*” in the SELECT list, it is
possible to assign new column names using “(column, ...)" in table_specification. Unlike the
AS clause in the SELECT list, it is not possible to rename individual columns. It is only
possible to rename all columns. The new names must be used in place of the old names in
the WHERE, GROUP BY and HAVING clauses in the SELECT list.

SELECT * FROM ordstat
AS orderstatus (orderstatusnumber, orderstatustext)

If a table is specified more than once in the FROM clause, as is the case when a table is
joined to itself, correlation names must be defined to allow unique identification of columns.
References in the SELECT list and in the WHERE, GROUP BY and HAVING clauses must
use these correlation names instead of the original table names.

SELECT A.cust_num, B.cust_num FROM customers A, customers B

U22420-J-2125-12-76 289

SELECT ... WHERE SELECT expression

6.2.3 SELECT...WHERE - Select derived columns

You use the WHERE clause to specify a search condition for selecting the rows for the
derived table. The derived table contains only the rows that satisfy the search condition (i.e.
the search condition is true). Rows for which the search condition returns the value false or
unknown are not included in the derived table.

SELECT ...

WHERE search_condition

search_condition
Condition that the selected rows must satisfy.
Examples

The predicates are described in detail in chapter “Compound language constructs” on
page 133. Here, the most important types of search condition are illustrated using simple
examples.

Comparison with constants: =, <, <=, >, > = <>

SELECT cust_num, company FROM customers WHERE zip = 81739

Comparison with string pattern: [NOT] LIKE
SELECT * FROM customers WHERE company LIKE 'Sie%'

Range query: [NOT] BETWEEN
SELECT cust_num, company FROM customers WHERE zip BETWEEN 80000 AND 89999

Comparison with NULL value: IS [NOT] NULL

SELECT service_num, order_num, service_text FROM service WHERE inv_num IS
NULL

Comparison with several values: [NOT] IN
SELECT cust_num, company FROM customers WHERE zip IN (81739, 80469)

290

U22420-J-2125-12-76

SELECT expression SELECT ... WHERE

Inner SELECT statement: [NOT] EXISTS

SELECT company FROM customers
WHERE NOT EXISTS (SELECT * FROM orders WHERE customers.cust_num =
orders.cust_num)

Subquery (see section “Subquery” on page 310):
Subquery that returns a derived column: ALL, ANY, SOME, [NOT] IN

SELECT company FROM customers WHERE customers.cust_num =
SOME (SELECT cust_num FROM orders WHERE order_date = DATE '<date>')

Correlated subquery:

Select for each order, the service that is at least double the average service price for
this order:

SELECT sl.service_num, sl.order_num, sl.service_text FROM service sl
WHERE sl.service_total * sl.service_price > 2 *
(SELECT AVG (s2.service_total*sZ2.service_price) FROM service s2 WHERE
s2.order_num = sl.order_num)

Condition: AND, OR, NOT

SELECT service_num, order_num, service_date, service_text FROM service
WHERE service_text = 'Training' AND service_date > = DATE '<date>'

U22420-J-2125-12-76 291

SELECT ... GROUP BY SELECT expression

6.2.4 SELECT...GROUP BY - Group derived rows

You use the GROUP BY clause to combine table rows into groups. Two rows belong to the
same group if, for each grouping column, the values in both rows are the same with regard
to the comparison rules (see section “Comparison of two rows” on page 216), or both
values are the NULL value.

The derived table contains a row for each group.

SELECT ...
GROUP BY column, . ..

column
Grouping column. column must be part of a table that was specified in the FROM clause.
Ambiguous column names must be qualified with the table name. If you declared a
correlation name for the table involved in the FROM clause, you must use this name to
qualify the column names.

Multiple columns cannot be used as the grouping column.

Effect of the GROUP BY clause

If you specify the GROUP BY clause, only columns listed in GROUP BY or which are
arguments in an aggregate function can be included in the SELECT list.

Aggregate functions for columns of a grouped table are evaluated for each group.

How are groups created?

e Agroupis a set of rows that all have the same values in each specified grouping column
according to the comparison rules.

e Rows that have the NULL value in the same column and the same values in the other
columns also constitute a group.

202

U22420-J-2125-12-76

SELECT expression SELECT ... GROUP BY

Examples
List the average amount of VAT for each order number:

SELECT order_num, AVG(vat) FROM service GROUP BY order_num

order_num

200 0.14
211 0.06
250 0.07

The number of contacts is determined for all customers outside the USA and grouped by
customer number. If the GROUP BY clause is specified, only those columns may occur in
the select list which are specified in the GROUP BY clause or which are arguments of an
aggregate function. The derived table for the SELECT expression contains one row for
each group.

SELECT contacts.cust_num, COUNT(*) AS total FROM contacts, customers
WHERE contacts.cust_num = customers.cust_num AND customers.country
<>'USA'

GROUP BY contacts.cust_num

Derived table

cust_num | number
100
101
102
103
104
105

PR N N = =N)

When the SELECT expression is supplemented by the HAVING clause below (see the
next section), the derived table only contains the first row.

HAVING COUNT(*) > 1

U22420-J-2125-12-76 293

SELECT ... HAVING SELECT expression

6.2.5 SELECT...HAVING - Select groups

You use the HAVING clause to specify search conditions for selecting groups. If a group
satisfies the specified search condition, the row for that group is included in the derived
table. If no GROUP BY clause is specified, all the rows are considered one group.

SELECT ...
HAVING search_condition

search_condition
Search condition to be satisfied by a group.

Unlike a WHERE search condition, which is evaluated for each row in a table, the
HAVING search condition is evaluated once for each group.

A column name in search_condition must satisfy one of the following conditions:
— The column is included in the GROUP BY clause.

— The column name is an argument of an aggregate function (AVG(), SUM(), ...). If
the column name also appears in the SELECT list, it may also only appear there as
the as an argument of an aggregate function.

— The column occurs in a subquery. If the column name references the table in the
FROM clause, it must be included in the GROUP BY clause or be the argument in
an aggregate function.

— The column is part of a table from a higher-level SELECT expression.

Example

Display the latest service provided for each order, but only if it was provided after the
specified date:

SELECT order_num, MAX(service_date) FROM service GROUP BY order_num
HAVING MAX(service_date) > DATE'<date>'

294 U22420-J-2125-12-76

Query expression TABLE

6.3 TABLE - Table query

You use a table query to select all the columns of a table.

In order to read rows in the specified tables, you must either own these tables or have
SELECT permission.

TABLE table

table
Name of the table (base table or view) all of whose columns are selected. The
sequence, names and attributes (data type, length, precision, decimal places) of the
columns of table are accepted.

The query expression TABLE table corresponds to the SELECT expression (SELECT
* FROM table) (see section “SELECT expression” on page 282).

Example

Display all columns in the SERVICE table:

@ TABLE service

U22420-J-2125-12-76 295

Joins Query expression

6.4 Joins

A join links the data from two or more tables. A table can also be joined to itself.

Which records of the tables involved are included in the derived table depends on the join
type and any join conditions that exist.

There are two ways of creating a join:
e with a join expression

e without a join expression: in a SELECT expression or SELECT statement using the
FROM clause and, if necessary, the WHERE clause.

296 U22420-J-2125-12-76

Joins Join expression

6.4.1 Join expression

A join expression consists of the tables to be joined, the desired join operation and possibly
a join condition.

A join expression can be specified

e® as a query expression in an SQL statement

e inthe FROM clause of a SELECT expression or SELECT statement

e in asubquery in the SELECT list and HAVING clause

The derived table of a join expression cannot be updated.

join_expression : :=
table_spec CROSS JOIN table spec
INNER

LEFT
table_specl { RIG HT} [OUTER] 1 JOIN table_spec ON search_condition
FULL

A

table_spec UNION JOIN table spec

(join_expression)

table_specification
Specification of a table from which data is to be read (see section “Table specifications”
on page 279).

CROSS
CROSS operator for forming a cross join. A cross join corresponds to the Cartesian
product of the tables involved (see section “Cross joins” on page 299).

INNER
INNER operator for creating an inner join. In an inner join, the derived table only
contains the rows that satisfy the join condition (see section “Inner joins” on page 301).

U22420-J-2125-12-76 297

Join expression Joins

LEFT, RIGHT, FULL
Operators for creating an outer join. A table that is part of an outer join cannot include
multiple columns.

In an outer join, the type of outer join defines the dominant table(s) (see section “Outer
joins” on page 303).

If a row in the dominant table does not satisfy the join condition, the row is nevertheless
included in the derived table. The derived column that references the other table is set
to NULL values.

LEFT The table to the left of the LEFT operator is the dominant table.
RIGHT The table to the right of the RIGHT operator is the dominant table.

FULL The table to the left and the right of the FULL operator are both dominant
tables. FULL joins the tables created with LEFT and RIGHT.

search_condition
Search condition to be used as the join condition for joining the specified tables.

The following applies to any column specified in search_condition:

The column must either be part of one of the tables to be joined or, in the case of
subqueries, part of one of the tables from a higher-level SELECT expression.

If an aggregate function occurs in search_condition, one of the following conditions must
be satisfied:

— The aggregate function is part of a subquery.
— Thejoinexpressionisina SELECT list or HAVING clause, and the column specified
in the argument of the aggregate function is an external reference.

UNION
UNION operator for forming a union join. A table that is part of a union join cannot
contain any multiple columns.

The derived table of a union join contains both the records of the table to the left of the
UNION operator and the records of the table to the right of the UNION operator,
including in each case the columns of the other table set to NULL values (see section
“Union joins” on page 304).

join_expression
Nested join expression for creating a join from more than two tables.

298 U22420-J-2125-12-76

Joins Join types

6.4.2 Joins without join expression

In SESAM/SQL, an inner join or a cross join can also be created without a join expression.
The tables to be joined are listed in the FROM clause of a SELECT expression, and the join
search condition is formulated in the corresponding WHERE clause.

SELECT ...
FROM table specification, table specificationl , . ..1 WHERE search_condition with_join_column

Example

Select customer names and the associated order numbers from the CUSTOMERS and
ORDERS tables:

Egﬁ SELECT company, order_num FROM customers, orders
WHERE customers.cust_num= orders.cust_num

6.4.3 Join types

SESAM/SQL supports cross joins, inner joins, outer joins and union joins. These are
explained below and illustrated using examples.
6.4.3.1 Cross joins

The derived table of a cross join is the Cartesian product of the tables involved. Each record
in the table to the left of the CROSS operator is linked to each record in the table to the right
of the CROSS operator.

Example
Form the Cartesian product of the CUSTOMERS and ORDERS tables:

SELECT * or SELECT *
FROM customers, FROM customers CROSS JOIN
orders orders

U22420-J-2125-12-76 299

Join types

Joins

CUSTOMERS table
cust_num | company

100 Siemens AG

101 Login GmbH

102 JIKO GmbH

106 Foreign Ltd.

107 Externa & Co KG

Derived table

cust_ |company

num

100 Siemens AG

101 Login GmbH

102 JIKO GmbH

106 Foreign Ltd.

107 Externa & Co KG
100 Siemens AG

101 Login GmbH

102 JIKO GmbH

106 Foreign Ltd.

107 Externa & Co KG
100 Siemens AG

101 Login GmbH

102 JIKO GmbH

106 Foreign Ltd.

107 Externa & Co KG

ORDERS table
order_ |cust_
num num
200 102
210 106
211 106
300 101
305 105

order_ |cust_ |...
num num
200 102
200 102
200 102
200 102
200 102
210 106
210 106
210 106
210 106
210 106
305 105
305 105
305 105
305 105
305 105

Cartesian product of the CUSTOMERS and ORDERS tables

300

U22420-J-2125-12-76

Joins Join types

6.4.3.2 Inner joins

In an inner join, the derived tables contain only rows that satisfy the join condition.

Simple inner joins

A simple inner join selects rows from the Cartesian product of two tables.

Example
Select customer names and the associated order numbers from the CUSTOMERS and
ORDERS tables:
SELECT company, order_num or SELECT company, order_num
FROM customers, orders FROM customers JOIN orders
WHERE customers.cust_num= ON customers.cust_num=
orders.cust_num orders.cust_num

Customers who have not placed an order, e.g. Freddy’s Fishery with the customer
number 104, are not included in the derived table.

company order_num)
Login GmbH 300
JIKO GmbH 200

The Poodle Parlor 250
The Poodle Parlor 251
The Poodle Parlor 305
Foreign Ltd. 210
Foreign Ltd. 211

U22420-J-2125-12-76 301

Join types Joins

Example

Select the service associated with each order.

é§3 SELECT o.order_num, o.order_text, o.order_stat, s.service_num,
s.service_text FROM orders o
INNER JOIN service s ON o.order_num = s.order_num

. . . A

order_ order_ order_ service_ service_

num text stat num text

200 Staff training 5 1 Training
documentation

200 Staff training 5 2 Training

200 Staff training 5 3 Training

211 Database design customers 4 4 Systems analysis

211 Database design customers 4 5 Database design

211 Database design customers 4 6 Copies/
transparencies

211 Database design customers 4 7 Manual

250 Mailmerge intro 2 10 Travel expenses

250 Mailmerge intro 2 11 Training

Multiple inner joins

A multiple inner join selects columns from the Cartesian product of more than two tables.

Example

Select the service provided for each customer who has placed an order from the
CUSTOMERS, ORDERS and SERVICE:

SELECT c.company, o.order_num, or SELECT c.company, o.order_num,
s.service_num s.service_num
FROM customers c, orders o, FROM customers c JOIN orders o
service s
WHERE c.cust_num=o0.cust_num ON c.cust_num=o0.cust_num
AND o.order_num=s.order_num JOIN service s ON

o.order_num=s.order_num

302 U22420-J-2125-12-76

Joins

Join types

company
JIKO GmbH

JIKO GmbH

JIKO GmbH

Foreign Ltd.
Foreign Ltd.
Foreign Ltd.
Foreign Ltd.

The Poodle Parlor
The Poodle Parlor

6.4.3.3 Outer joins

order_num
200
200
200
211
211
211
211
250
250

service_num

R O ~NOYO B~ WwN

—_

Another type of join is the outer join. It is created by using the keyword LEFT, RIGHT or
FULL in the join expression. Unlike an inner join, the following applies to an outer join:

There are one (LEFT, RIGHT) or two (FULL) dominant tables. If a row in a dominant table
does not satisfy the join condition, the row is nevertheless included in the derived table. The

derived column that references the other table is set to NULL values.

Example

As in the first join example, select customer names and the associated order numbers from
the CUSTOMERS and ORDERS tables. In this case, however, list all customers, even
those who have not yet placed an order. To do this, you create the following outer join:

SELECT company, order_num FROM customers

LEFT OUTER JOIN orders ON customers.cust_num=orders.cust_num

Customers who have not placed an order, like Freddy’s Fishery with the customer
number 104, are now included in the derived table. The NULL value is entered for the

missing order number.

company
Siemens AG

Login GmbH

JIKO GmbH

Plenzer Trading
Freddy’s Fishery
The Poodle Parlor
The Poodle Parlor
The Poodle Parlor
Foreign Ltd.
Foreign Ltd.
Externa & Co KG

order_num

300
200

250
251
305
210
211

U22420-J-2125-12-76

303

Join types Joins

6.4.3.4 Union joins
Another type of join is the union join. The derived table of a union join is formed as follows:

e The table to the left of the UNION operator is extended on the right by having the
columns of the other table added to it. The added columns are set to the NULL value.

e The table to the right of the UNION operator is extended on the left by having the
columns of the other table added to it. The added columns are set to the NULL value.

e The derived table represents the set union of the two extended tables.

Example
Link the ITEMS and PURPOSE tables by means of a union join.

SELECT items.item_num, items.item_name, purpose. *
FROM items UNION JOIN purpose

item_num item_name item_num part number
1 Bicycle
2 Bicycle
10 Frame
11 Frame
120 Front wheel
130 Back wheel
200 Handlebars
501 Nut M5
1 10 1
1 120 1
1 130 1
1 200 1
120 210 1
200 501 10

304 U22420-J-2125-12-76

Joins

Join types

6.4.3.5 Compound joins

If you join more than two tables, you can nest several join expressions.

This allows you to combine inner and outer joins in a single SQL statement.

Examples

The following three examples select the customer number, order number and service

number from the CUSTOMERS, ORDERS and SERVICE tables. The results depend on

the joins used.

1. Take into account only those customers for whom orders with associated services exist.

SELECT c.cust_num, o.order_num, s.service_num
FROM (customers ¢ INNER JOIN orders o ON c.cust_num
INNER JOIN service s ON o.order_num

WHERE c.cust_num BETWEEN 100 AND 107

o.cust_num)

s.order_num

cust_num
102
102
102
105
105
106
106
106
106

order_num
200
200
200
250
250
211
211
211
211

service_num
1
2
3
10
11
4

5
6
7

U22420-J-2125-12-76

305

Join types Joins

2. Take into account all the customers from the CUSTOMERS table for whom orders exist,
regardless of whether these orders have services associated with them. The join
expression enclosed in parentheses is the dominant table for the outer join. The NULL
value is entered for missing service numbers.

SELECT c.cust_num, o.order_num, s.service_num
FROM (customers c INNER JOIN orders o ON c.cust_num = o.cust_num)
LEFT OUTER JOIN service s ON o.order_num = s.order_num
WHERE c.cust_num BETWEEN 100 AND 107

R A
cust_num order_num service_num
101 300
102 200 1
102 200 2
102 200 3
105 250 10
105 250 11
105 251
105 305
106 210
106 211 4
106 211 5
106 211 6
106 211 7

306 U22420-J-2125-12-76

Joins

Join types

3. Take into account all the customers in the CUSTOMERS table, regardless of whether

they have placed orders or not. Orders are included in the derived table even if they are
not yet associated with a service.

SELECT c.cust_num, o.order_num, s.service_num
FROM (customers c LEFT OUTER JOIN orders o ON c.cust_num = o.cust_num)
LEFT OUTER JOIN service s ON o.order_num = s.order_num
WHERE c.cust_num BETWEEN 100 AND 107

CUSTOMERS is the dominant table in the outer join that is enclosed in parentheses.
The expression in parentheses is the dominant table of the outermost outer join. The
NULL value is entered for missing item and service numbers.

. A
cust_num order_num service_num
100
101 300
102 200 1
102 200 2
102 200 3
103
104
105 250 10
105 250 11
105 251
105 305
106 211 4
106 211 5
106 211 6
106 211 7
106 210
107

U22420-J-2125-12-76 307

Join types

Joins

SELECT customers.company, orders.order_num FROM customers
LEFT OUTER JOIN orders ON customers.cust_num=orders.cust_num

The following three examples refer to the CUSTOMERS and ORDERS tables. In order to
better illustrate the possibilities of an outer join, orders without customers are also

permitted. This means that the foreign key definition for the ORDERS table is ignored here.
We shall assume that an order with the number 400 is in the ORDERS table and is not yet
associated with a customer.

4. Select customer names and the associated order numbers from the CUSTOMERS and
ORDERS tables and include customers who have not currently placed an order.

Customers who have not placed an order, like Freddy’s Fishery with the customer
number 104, are included in the derived table. The NULL value is entered for the
missing order number.

company

Siemens AG

Login GmbH

JIKO Gmbh

Plenzer Trading
Freddy’s Fishery
The Poodle Parlor
The Poodle Parlor
The Poodle Parlor
Foreign Ltd.
Foreign Ltd.
Externa & Co KG

order_num

300
200

250
251
305
210
211

308

U22420-J-2125-12-76

Joins

Join types

5. Select customer names and order numbers from the CUSTOMERS and ORDERS

tables and include orders that are not associated with a customer.

SELECT customers.company, orders.order_num FROM customers
RIGHT OUTER JOIN orders ON customers.cust_num=orders.cust_num

The order number 400 is also included in the derived table. The NULL value is entered
for the missing customer name.

company order_num
JIKO Gmbh 200
Foreign Ltd. 210
Foreign Ltd. 211

The Poodle Parlor 250
The Poodle Parlor 251

Login GmbH 300
The Poodle Parlor 305
400

Select customer names and the associated order numbers from the CUSTOMERS and
ORDERS tables while taking customers without orders and orders without customers
into account.

SELECT customers.company, orders.order_num FROM customers
FULL OUTER JOIN orders ON customers.cust_num=orders.cust_num

A fictitious order with the order number 400, which is not yet associated with a
customer, is also included in the derived tables, as is the customer Freddy’s Fishery
who has not currently placed an order. NULL values are entered in place of the missing
column values.

company order_num
Siemens AG

Login GmbH 300

JIKO Gmbh 200

Plenzer Trading
Freddy’s Fishery

The Poodle Parlor 250
The Poodle Parlor 251
The Poodle Parlor 305
Foreign Ltd. 210
Foreign Ltd. 211

Externa & Co KG
400

U22420-J-2125-12-76 309

Subquery

Query expression

6.5 Subquery

A subquery is a query expression that can be used in

As an expression:

The subquery must return a single-column derived table with a maximum of one row.
The value of the subquery is then the value in the derived table or the NULL value if the
derived table is empty.

predicates:
In the predicates ANY, SOME, ALL, IN and EXISTS the subquery returns a derived
table.

In the FROM clause of SELECT expressions:
The subquery returns a derived table.

In join expressions:
The subquery returns a derived table.

A subquery is always enclosed in parentheses.

subquery : := (query_expression)

query_expression

Query expression that returns the derived table.

In subqueries that are not specified in the predicate EXISTS or in a FROM clause,
the derived table can only contain an atomic column or multiple columns with the
dimension 1.

310

U22420-J-2125-12-76

Query expression Subquery

6.5.1

Correlated subqueries

In a nested query expression, an inner subquery is called a correlated subquery if it
references columns of an outer table, i.e. a table that is used in one of the outer query
expressions.

You can use correlated subqueries to determine the relationships between the values in a
column.

Example

In a personnel table with a column for the age of each person, you can determine which
people are exactly the average age (see example below).

Uncorrelated subqueries only need be evaluated once. Correlated subqueries must be
evaluated several times for the various rows of the outer table. If the subquery is nested,
the innermost subquery is evaluated first, etc.

Examples
The following query is a correlated subquery:

SELECT DISTINCT order_text FROM orders WHERE EXISTS
(SELECT * FROM service WHERE service.order_num = orders.order_num)

The inner subquery in the WHERE clause references the column ORDER_NUM in the
ORDERS table of the outer query. ORDERS.ORDER_NUM is also known as an outer
reference, since the column references a table in the outer query. The query is
evaluated by determining the value of ORDERS.ORDER_NUM in the first row of the
ORDERS table, evaluating the subquery on the basis of this value and using this result
in the outer query. This is then repeated for the second value of
ORDERS.ORDER_NUM and so on. The query returns a derived table:

order_text

Staff training

Database draft customers

Instruction concerning mail merge

U22420-J-2125-12-76 311

Subquery Query expression

For each order in the SERVICE table, you want to select the services whose price is above
the average service price for this order:

SELECT sl.service_num, sl.order_num, sl.service_total*sl.service_price
FROM service sl
WHERE sl.service_total*sl.service_price >
(SELECT AVG (s2.service_total*s2.service_price) FROM service s2 WHERE
sl.order_num=s2.order_num)

Query expressions can be nested to any depth:
SELECT company, cust_num FROM customers WHERE cust_num IN
(SELECT cust_num FROM orders WHERE order_num IN

(SELECT order_num FROM service WHERE (service_price*service_total)
IN

(SELECT MAX(service_price*service_total) FROM service)))

Since these are not correlated subqueries, each subquery is evaluated once and the
result is then used in the outer query.

Derived table
company cust_num
Foreign Ltd. 106

312 U22420-J-2125-12-76

Query expression UNION

6.6 Combining query expressions with UNION

select_expression

join_expression DISTINCT

TABLE table ALL
query_expression : := CUNION [1 query_expression]
(query expression)

select_expression
SELECT expression (see section “SELECT expression” on page 282)

TABLE rable
Table query, see section “TABLE - Table query” on page 295.

join_expression
Join expression (see section “Join expression” on page 297)

(query_expression)
Subquery, see section “Subquery” on page 310.

UNION
The UNION clause combines two query expressions. The derived table contains all the
rows that occur in the first or second derived table. You can combine more than two
derived tables if you use the UNION clause several times.

If you want to combine query expressions with UNION, the following conditions must be
met:

— The derived tables of both UNION operands must have the same number of
columns and the data types of corresponding columns must be compatible (see
section “Compatibility between data types” on page 99). The data type of a derived
column is determined by applying the rules described in the “Data type of the
derived column for UNION” on page 314.

— If the corresponding columns in both source tables have the same names, the
derived column is given this name. Otherwise, the name of the derived column is
undefined.

— Only atomic columns may be selected.

Query expressions combined with the UNION clause cannot be updated.

ALL
Duplicate rows in the derived table are retained.

DISTINCT
Duplicate rows are removed. If you do not specify ALL or DISTINCT, the default value
is DISTINCT.

U22420-J-2125-12-76 313

UNION

Query expression

In contrast to the SELECT expression, the default value for UNION is DISTINCT.
As it can be complicated to remove duplicate rows, the setting ALL is recommended
for UNION if the application can dispense with removing duplicate rows.

Data type of the derived column for UNION

If two query expressions are combined with UNION, the data type of the derived column is
determined by applying the following rules:

Both source columns are of the type NCHAR:
The derived column is of the type NCHAR with the longer of the two lengths.

One source column is of the type VARCHAR and the other source column is of the type
CHAR or VARCHAR:

The derived column is of the type NVARCHAR with the greater length or greater
maximum length.

Both source columns are of the type NCHAR:
The derived column is of the type NCHAR with the longer of the two lengths.

One source column is of the type NVARCHAR and the other source column is of the
type NCHAR or NVARCHAR:

The derived column is of the type NVARCHAR with the greater length or greater
maximum length.

Both source columns are an integer or fixed-point type (INT, SMALLINT, NUMERIC,

DEC):

The derived column is of type integer or fixed-point.

— The number of digits to the right of the decimal point is the greater of the two values
of the source columns.

— The total number of significant digits is the greater of the two values plus the greater
of the two values for the number of digits after the decimal point of the source
column with a maximum number of 31 digits.

One source column is of a floating-point type (REAL, DOUBLE, FLOAT), the other is of
any numeric data type:
The derived column is of the type DOUBLE PRECISION.

Both source columns have a date and time data type:
Both columns must have the same date and time data type and the derived column also
has this data type.

314

U22420-J-2125-12-76

Query expression UNION

Examples

Determine all order numbers whose associated order value is at least 10,000 euros or
whose target date is before the specified date.

SELECT order_num FROM service GROUP BY order_num
HAVING SUM(service_total * service_price * (1 + vat)) > = 10000.00
UNION DISTINCT
SELECT order_num FROM orders WHERE target <= DATE '<date>'

The names of those companies are to be determined for which order documentation has
already been archived or services have already been provided prior to the specified date:

SELECT c.company FROM customers c, orders o WHERE c.cust_num = o.cust_num
AND o.order_num IN
(SELECT o.order_num FROM orders o WHERE o.order_status > 4
UNION
SELECT DISTINCT s.order_num FROM service s
WHERE s.service_date < DATE'<date>")

The UNION expression in the subquery produces a derived table containing the order
numbers 200 and 211. The derived table is thus:

company
JIKO GmbH
Foreign Ltd

U22420-J-2125-12-76 315

EXCEPT

Query expression

6.7 Combining query expressions with EXCEPT

select_expression
TABLE rable

Jjoin_expression
(query_expression)

query_expression : := LEXCEPT [DISTINCT] query_expression]

select_expression
SELECT expression (see section “SELECT expression” on page 282)

TABLE rable
Table query, see section “TABLE - Table query” on page 295.

join_expression
Join expression (see section “Join expression” on page 297)

(query_expression)
Subquery, see section “Subquery” on page 310.

EXCEPT
The EXCEPT operation is similar to the difference between two sets in set theory. The

derived table contains all rows from the first table which do not exist in the second table.

If you want to combine query expressions with EXCEPT, the following conditions must

be met:

— The derived tables of both EXCEPT operands must have the same number of
columns.

— The data types of the corresponding columns must be compatible (see section
“Compatibility between data types” on page 99).

The data type of a derived column is determined by applying the rules described in
the “Data type of the derived column for EXCEPT” on page 317.

DISTINCT
Duplicate rows are removed from the derived table. DISTINCT is the default value.

316

U22420-J-2125-12-76

Query expression EXCEPT

Data type of the derived column for EXCEPT

If two query expressions are combined with EXCEPT, the data type of the derived column
is determined by applying the following rules (as with UNION).

e Both source columns are of the type NCHAR:

The derived column is of the type NCHAR with the longer of the two lengths.

o One source column is of the type VARCHAR and the other source column is of the type

CHAR or VARCHAR:

The derived column is of the type NVARCHAR with the greater length or greater

maximum length.

e Both source columns are of the type NCHAR:

The derived column is of the type NCHAR with the longer of the two lengths.

o One source column is of the type NVARCHAR and the other source column is of the
type NCHAR or NVARCHAR:

The derived column is of the type NVARCHAR with the greater length or greater

maximum length.

e Both source columns are an integer or fixed-point type (INT, SMALLINT, NUMERIC,

DEC):

The derived column is of type integer or fixed-point.

— The number of digits to the right of the decimal point is the greater of the two values
of the source columns.

— The total number of significant digits is the greater of the two values plus the greater
of the two values for the number of digits after the decimal point of the source
column with a maximum number of 31 digits.

e One source column is of a floating-point type (REAL, DOUBLE, FLOAT), the other is of
any numeric data type:

The derived column is of the type DOUBLE PRECISION.

e Both source columns have a date and time data type:
Both columns must have the same date and time data type and the derived column also
has this data type.

Example

Determine all customer numbers from which orders are currently planned or agreed
contractually.

SELECT cust_num FROM customers
EXCEPT DISTINCT
SELECT cust_num FROM orders WHERE order_stat < 3

U22420-J-2125-12-76 317

Updatability of query expressions Query expression

6.8 Updatability of query expressions

The following is defined regarding the updatability of query expressions:

Whether a view can be updated

Whether a base table or updatable view can be updated via a cursor

A base table is updatable.
A table function returns an unchangeable (“read-only”) table.

6.8.1 Rules for updatable query expressions

A query expression is updatable if the following conditions are fulfilled:

The query expression does not contain a join expression.
The query expression does not contain a UNION or EXCEPT operation.

Only column names can be specified in the SELECT list. Other elements of an
expression, e.g. subqueries, function calls or literals, are not permitted. Atomic columns
cannot be specified more than once. Subareas from multiple columns cannot overlap.

Only a table or updatable subquery can be specified in the FROM clause. If a table is
specified, it must be a base table or an updatable view.

No subquery can occur in the WHERE clause.
The keyword DISTINCT cannot be specified.
The SELECT expression cannot include a GROUP BY or HAVING clause.

6.8.2 Updatable view

A view is updatable if the query expression with which the view was defined is updatable.
An updatable view can be specified in INSERT, MERGE, UPDATE and DELETE.

318

U22420-J-2125-12-76

Query expression Updatability of query expressions

6.8.3 Update via cursor

A table can be updated via a cursor if the cursor description is updatable, i.e. the underlying
query expression is updatable and no ORDER BY clause is specified. In addition, no
SCROLL clause or FOR READ ONLY clause can be specified in the cursor declaration.

Use DELETE...WHERE CURRENT OF to delete rows in the updatable table via the cursor.
Use UPDATE.. WHERE CURRENT OF to update rows in the updatable table via the cursor.

U22420-J-2125-12-76 319

Updatability of query expressions Query expression

320 U22420-J-2125-12-76

7 Routines

SESAM/SQL distinguishes between the following routines:
e Procedures (Stored Procedure)
e User Defined Functions (UDFs).

@ In SESAM/SQL, the generic term routine is used for procedures and User Defined
Functions (UDFs) if the information applies both for procedures and for UDFs.

The generic term “SQL-invoked routine” from the SQL standard is not used in
SESAM/SQL.

This chapter first describes common features and differences between procedures and
UDFs.

It then includes a number of sections providing detailed descriptions of Procedures (Stored
Procedures) and User Defined Functions (UDFs).

These are followed by information on the topics in which procedures and UDFs do not differ
or differ only slightly:

e EXECUTE privilege for routines

e Information on routines

e Pragmas in routines

e Control statements in routines

e COMPOUND statement in routines

e Diagnostic information in routines

U22420-J-2125-12-76 321

Routines

Common features of routines

A routine is used to store and manage sequences of SQL statements in the database which
can be executed later with a single call. A routine is comparable to a subroutine which runs
entirely in the DBH, in other words without exchanging data with the application program.

In contrast to a subroutine (in ESQL-COBOL), a routine can be used on different clients with
different programming languages (e.g. via JDBC).

All database accesses can be centralized and controlled using routines. Individual SQL
statements can also be activated in this way. They can then also be integrated into other
routines and SQL statements according to the “modular design principle”.

Routines can also be used to facilitate writing.

The application programmer needs no knowledge of the structure of the database. The
routine can be created by a database specialist, who (except for SQL) requires no
programming knowledge.

Changes to the database structure do not necessarily affect the application programs. It
may be sufficient to modify routines. Recompiling and relinking programs is unnecessary in
such cases.

For safety's sake, only the EXECUTE privilege is required to execute the routine
concerned. Global table and column privileges are no longer required.

Routines are stored directly in the database (with a complete audit trail). Separate
management to manage routines outside the database is not required.

Differences between procedures and User Defined Functions

Procedures and UDFs have an identical range of functions. However, in UDFs of
SESAM/SQL, SQL statements are not permitted for modifying data.

Procedures and UDFs also differ in how they are called and in their return information:

e Procedures are called using the SQL statement CALL.
They have any number of output parameters but no return value.

e UDFs are called by means of their function call in an expression.
They have precisely one return value.

UDFs can be called in views. Procedures cannot.

322

U22420-J-2125-12-76

Routines Procedures (Stored Procedures)
7.1 Procedures (Stored Procedures)
In SESAM/SQL the term procedure is used to refer to a "Stored Procedure”.
7.1.1 Creating a procedure

A procedure is created using the SQL statement CREATE PROCEDURE, see page 416.
A procedure can also be created using the SQL statement CREATE SCHEMA, see
page 420.

Procedures can be defined with input, input/output, and output parameters.

Recommendation
Parameter names should differ from column names (e.g. by assigning a prefix such
as par_).

When a procedure is created, the current authorization identifier must have the EXECUTE
privilege for the routines called directly in the procedure. It must also, for all tables and
columns which are addressed in the procedure, have the privileges which are required to
execute the DML statements contained in the procedure.

The procedure text in SESAM/SQL is written entirely in the SQL programming language.
The following SQL statements for data searching and data manipulation are permitted in
procedures, see section “CREATE PROCEDURE - Create procedure” on page 416:

SQL statement |Function in the procedure see
without a cursor
SELECT Reads a single row page 555
INSERT Insert rows in a table page 506
UPDATE Changes the columns of the rows in a table page 577
which satisfy a particular search condition
DELETE Deletes the rows in a table page 453
which satisfy a particular search condition
MERGE Depending on a particular condition, changes page 518
rows in a table or enters rows in a table
SQL statement |Function in the procedure see
with a cursor
OPEN Opens a local cursor page 524
FETCH Positions a local cursor and, if necessary, reads the current row page 481
Table 25: SQL statements for data manipulation in procedures (part 1 of 2)
U22420-J-2125-12-76 323

Procedures (Stored Procedures) Routines

UPDATE Changes the columns of the row in a table page 577
to which the cursor is positioned

DELETE Deletes the row in a table to which the cursor is positioned page 453

CLOSE Closes a local cursor page 395

Table 25: SQL statements for data manipulation in procedures (part 2 of 2)

In addition to the SQL statements mentioned above, a procedure can also contain control
statements (see section “Control statements in routines” on page 342) and diagnostic
statements (see section “Diagnostic information in routines” on page 344).

A procedure may not contain any dynamic SQL statements or cursor descriptions, see
section “Dynamic SQL” on page 32.

The current authorization identifier automatically obtains the EXECUTE privilege for the
procedure created. If it even has authorization to pass on the relevant privileges, it may also
pass on the EXECUTE privilege to other authorization identifiers.

An SQL statement in a procedure may access the parameters of the procedure and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

comments

Descriptive comments (see page 52) can be inserted in a procedure as required.

324

U22420-J-2125-12-76

Routines

Procedures (Stored Procedures)

7.1.2

713

Execute a procedure

A procedure is executed using the SQL statement CALL, see page 388. A procedure can
also be called using a dynamic CALL statement.

When a procedure expects input parameters, the corresponding values (arguments) must
be transferred to the procedure in the CALL statement.

Output values of procedures which are called outside a routine care stored in
corresponding host variables or in the SQL descriptor area. Output values of procedures
which are called in a higher-level routine are entered in output parameters or in local
variables of the higher-ranking procedure.

In order to execute a procedure, the current authorization identifier requires the EXECUTE
privilege for the procedure to be executed, but not the privileges which are required to
execute the DML statements contained in the procedure. In addition, the SELECT
privileges for the tables which are addressed in the routine’s call parameters by means of
subqueries are required.

Delete a procedure

A procedure is deleted using the SQL statement DROP PROCEDURE, see page 462.

U22420-J-2125-12-76 325

Procedures (Stored Procedures)

Routines

714

Examples of procedures

Example 1: Access check

The CUSTOMERS_LOGIN procedure below implements a simple form of access check for
customers. It belongs to the sample procedures in the demonstration database of
SESAM/SQL (see the “Core manual”).

1

procedures embedded in an order system.

=i

stored in the table.

In the demonstration database you will find further, detailed examples of sample

The CUSTOMERS_LOGIN procedure uses only the CONTACTS table from the
demonstration database. A check is made to see whether the customer is already

R R R R R R R R e e R R R e i R R o e e R R o e R b e S R e R e e R R R S e e Y

* D
* k%
saL
(—

)
REA
BEG

END

efine CUSTOMERS_LOGIN procedure
CREATE PROCEDURE CUSTOMERS_LOGIN (1)
IN PAR_CUST_NUM INTEGER, (2)
IN PAR_CONTACT_NUM INTEGER,
OUT PAR_STATUS CHAR(40),
OUT PAR_TITLE CHAR(20),
OUT PAR_LNAME CHAR(25)
DS SQL DATA (3)
IN (4)
/* Variables definition */ (5)
DECLARE VAR_EOD SMALLINT DEFAULT 0;
/* Handler definition */ (6)
DECLARE CONTINUE HANDLER FOR NOT FOUND
SET VAR_EOD = 1; (7)
/* Statements */ (8)
SET PAR_TITLE ="' 'y
SET PAR_LNAME = ' ';
/* Check whether customer is already known */
SELECT TITLE, LNAME INTO PAR_TITLE, PAR_LNAME
FROM CONTACTS
WHERE CONTACT_NUM = PAR_CONTACT_NUM
AND CUST_NUM = PAR_CUST_NUM;
IF VAR_EOD = 1 THEN (9)
SET PAR_STATUS = 'Customer unknown';
ELSE
SET PAR_STATUS = 'Login successful';
END IF;
(10)

326

U22420-J-2125-12-76

Routines

Procedures (Stored Procedures)

Procedure header with details of the procedure name (the database and schema
names are predefined).

List of the procedure parameters.

The procedure can contain SQL statements for reading data, but no SQL
statements for updating data.

The (only) procedure statement is a (non-atomic) COMPOUND statement. This
executes further procedure statements in a common context.

Definition of local procedure variables.

Definition of exception handling in accordance with the SQLSTATE.
In this case the procedure is continued if an SQLSTATE of class 02xxx (no data)
occurs.

In the event of an exception, the local variable VAR_EQD is set.
The procedure statements will follow.

The procedure's output fields are supplied with values in accordance with the result
of the query statement.

End of the COMPOUND statement and procedure.

U22420-J-2125-12-76

327

Procedures (Stored Procedures) Routines

Example 2: Complex COMPOUND statement

The MyTables procedure below consists of a complex COMPOUND statement and shows
the various methods of exception handling. In the central base table mySchema.myTabs it
stores the names of the tables which the current authorization identifier may access.

The input parameter par_type specifies whether base tables or views must taken into
account. In the case of par_type='B"' the names of the base tables are stored, and in the
case of par_type="V' the names of the views. The following output parameters are
returned:

par_nbr_tables
Total number of table names of the table type concerned (base table or view) which is
stored for the current user

par_nbr_new_tables
Number of table names stored in addition for the current user by the procedure call

par_message
Message text (OK or error message)

—— Procedure header
CREATE PROCEDURE ProcSchema.MyTables
(IN par_type CHAR(1), OUT par_message CHAR(80),
OUT par_nbr_tables INTEGER, OUT par_nbr_new_tables INTEGER)
MODIFIES SQL DATA

—— Procedure body, COMPOUND statement, declaration section
myTab: BEGIN ATOMIC
DECLARE var_table_type CHAR(18);
DECLARE var_schema_name,var_table_name CHAR(31);
DECLARE var_eot SMALLINT DEFAULT 0;
DECLARE var_nbr_old_tables INTEGER DEFAULT O;
DECLARE myCursor CURSOR FOR
SELECT table_schema, table_name
FROM information_schema.tables
WHERE table_type = var_table_type;

—— Error routines
DECLARE EXIT HANDLER FOR SQLSTATE '"42SND'
SET par_message = 'catalog ' || CURRENT_REFERENCED_CATALOG
|l ' not accessible';

DECLARE CONTINUE HANDLER FOR SQLSTATE '23SA5'
—— Primary key not unique
SET var_nbr_old_tables = var_nbr_old_tables + 1;

328

U22420-J-2125-12-76

Routines Procedures (Stored Procedures)

DECLARE EXIT HANDLER FOR SQLSTATE '42SQK'
SET par_message = 'table MyTabs not accessible';

DECLARE UNDO HANDLER FOR SQLEXCEPTION
BEGIN —— COMPOUND statement
SET par_message = 'unexpected error';
SET par_nbr_tables = 0;
SET par_nbr_new_tables = 0;
END;

DECLARE CONTINUE HANDLER FOR SQLWARNING
SET par_message = 'warning ignored';

DECLARE CONTINUE HANDLER FOR NOT FOUND
SET var_eot = 1;

—— Set initial values

SET par_message = 'OK';

SET par_nbr_tables = 0;

SET par_nbr_new_tables = 0;

IF par_type = 'V' THEN SET var_table_type = 'VIEW';
ELSEIF par_type = 'B' THEN SET var_table_type = 'BASE TABLE';
ELSE SET par_message = 'wrong input parameter par_type';

LEAVE myTab;
END IF;

—— Procedure statements

OPEN myCursor;
lToopl: LOOP
FETCH myCursor INTO var_schema_name, var_table_name;
IF var_eot = 1 —— Set by error handler for error class 'not found'
THEN LEAVE Tloopl; —— End of tables reached
END IF;

INSERT INTO mySchema.myTabs VALUES
(var_schema_name, var_table_name, var_table_type,
current_user, current_date);
SET par_nbr_tables = par_nbr_tables + 1;
END LOOP Toopl;

CLOSE myCursor;

SET par_nbr_new_tables = par_nbr_tables — var_nbr_old_tables;

—— var_nbr_old_tables set by error handler for SQLSTATE '23SA5'
END myTab

U22420-J-2125-12-76 329

Procedures (Stored Procedures) Routines

Example 3: Different CALLs

The min_service_price procedure returns the lowest service record for this order on the
basis of the order number transferred.

If the NULL value was transferred as the order number, the value -999 is returned as the
service record.

If the order number exists but the service record is not significant in any of the rows
concerned, the NULL value is returned.

If the order number does not exist, the CALL statement is terminated with SQLSTATE ("no
data").

—— Procedure header
CREATE PROCEDURE min_service_price
(IN in_anr CHAR(8), OUT out_service_price NUMERIC(6))
READS SQL DATA

—— Procedure body
IF in_anr IS NULL THEN out_service_price = —-999;
ELSE SELECT MIN(service_price) INTO out_service_price FROM service
WHERE anr = in_anr;
END IF

The reactions to various CALLs of the procedure are illustrated using this procedure.

It must be noted that the in_anr and out_service_price parameters have no indicators
(not permitted). The significance of in_anr is checked directly via 1S NULL. Output
parameter out_srec can be assigned the NULL value directly in the INTO clause.

Various static CALL statements will now be examined. The argument for the input value can
be presented in very different ways. On the other hand a host variable must always be
specified as an argument for the output value. It must have a numeric data type (compatible
with NUMERIC(6)). It also makes sense to use an indicator variable which must be
initialized with -1 before the CALL. Otherwise the host variable itself must have been
initialized with a correct value (according to its data type).

CALL min_service_record(:anr, :service_price INDICATOR :ind-service_price)
The input value is transferred as a host variable. As the NULL value can be returned, it
makes sense to specify an indicator variable for the output value.

CALL min_service_record(:anr :ind—anr, :service_price :ind-service_price)
As above, but setting : ind-anr to -1 means that the NULL value can also be
transferred.

CALL min_service_record('A#123456', :service_price)
The specific input value is A#123456. If the NULL value is to be returned for this, the
specification of an indicator variable is missing, which results in an SQLSTATE
SEW2202.

330

U22420-J-2125-12-76

Routines Procedures (Stored Procedures)

CALL min_service_record(CAST(NULL AS CHAR (8)), :service_price)
As the input value is NULL, the value —999 is returned. As the host variable
:service_price has no indicator, it must have been initialized with the correct value
(according to its data type) before the call.

CALL min_service_record((SELECT MAX(Canr) FROM Tleistung),:service_price :ind-
service_price)
The input value is the highest order number. As the NULL value can be returned, it
makes sense to specify an indicator variable for the output value. If the service table
is empty, the NULL value is then returned.

U22420-J-2125-12-76 331

User Defined Functions (UDFs) Routines

7.2 User Defined Functions (UDFs)

7.21

In SESAM/SQL, the abbreviation UDF is used for “User Defined Function”.

UDFs can be used in almost all expressions by means of their function call. They
can occur in the DML statements and in the utility statements EXPORT ... WHERE
and UNLOAD ONLINE.

Creating a UDF

A UDF is created using the SQL statement CREATE FUNCTION, see page 409.
A UDF can also be created using the SQL statement CREATE SCHEMA, see page 420.

UDFs can be defined with input parameters.

Recommendation
Parameter names should differ from column names (e.g. by assigning a prefix such
as par_).

When a UDF is created, the current authorization identifier must have the EXECUTE
privilege for the routines called directly in the UDF. It must also, for all tables and columns
which are addressed in the UDF, have the (SELECT) privileges which are required to
execute the DML statements contained in the routine.

The text of the UDF in SESAM/SQL is written entirely in the SQL programming language.
The following SQL statements for data searching are permitted in UDFs, see section
“CREATE FUNCTION - Create User Defined Function (UDF)” on page 409:

SQL statement | Function in the UDF see
without a cursor

SELECT Reads a single row page 555
SQL statement

with a cursor

OPEN Opens a local cursor page 524
FETCH Positions a local cursor and, if necessary, reads the current row page 481
CLOSE Closes a local cursor page 395

Table 26: SQL statements for data manipulation in UDFs

SQL statements for modifying data (INSERT, UPDATE, DELETE, MERGE) are not
permitted in the UDFs of SESAM/SQL.

332

U22420-J-2125-12-76

Routines User Defined Functions (UDFs)
In addition to the SQL statements mentioned above, a procedure can also contain control
statements (see section “Control statements in routines” on page 342) and diagnostic
statements (see section “Diagnostic information in routines” on page 344).

A UDF may not contain any dynamic SQL statements or cursor descriptions, see section
“Dynamic SQL” on page 32.
The current authorization identifier automatically obtains the EXECUTE privilege for the
UDF created. If it even has authorization to pass on the relevant privileges, it may also pass
on the EXECUTE privilege to other authorization identifiers.
An SQL statement in a UDF may access the parameters of the UDF and (if the statement
is part of a COMPOUND statement) local variables, but not host variables.
comments
Descriptive comments (see page 52) can be inserted in a UDF as required.

7.2.2 Executing a UDF
A UDF is called by means of its function call in an expression, see page 151.
When a UDF expects input parameters, the corresponding values (arguments) must be
transferred to the UDF in the function call.
The (only) return value of a UDF is determined by the RETURN statement, see page 544.
The EXECUTE privilege for the UDF to be executed is required to execute a UDF, but not
the privileges which are required to execute the DML statements contained in the UDF. In
addition, the SELECT privileges for the tables which are addressed in the routine’s call
parameters by means of subqueries are required.
When an expression is evaluated, the function contained in it is performed and then the
replaced by the calculated return value.
UDFs can be called in views.

7.2.3 Deleting a UDF

A UDF is deleted using the SQL statement DROP FUNCTION, see page 459.

U22420-J-2125-12-76 333

User Defined Functions (UDFs) Routines

7.2.4 Uncorrelated function calls

Function calls of a UDF with constant input values are referred to as uncorrelated function
calls. Constant input values do not refer to the SQL statement which contains the function

call,

Uncorrelated function calls are handled by SESAM/SQL as follows when the statement is
executed:

e Function values of uncorrelated function calls are calculated once only to evaluate
conditions.

e However, they are recalculated every time for the following output values:
in SELECT lists

— for ORDER BY values

— for values in INSERT rows

— for UPDATE... SET ... values

— for the INSERT- / UPDATE values in a MERGE statement

Example
SELECT f(1,2) FROM t WHERE col < g(5+4,8,9)
The function calls f(1,2) and g(5+4,8,9) of this SQL statement are uncorrelated.

The function g is calculated once only in order to evaluate the records of t. The set of
hits of the query is then determined with this constant result. This also enable indexes
to be used in the condition evaluation.

In the SELECT list, on the other hand, the f function is recalculated for each set of hits.

334 U22420-J-2125-12-76

Routines User Defined Functions (UDFs)

VOLATILE / IMMUTABLE annotations

The /*% VOLATILE %*/ and /*% IMMUTABLE %*/ annotations control the execution of
uncorrelated function calls. In a function call, they are accepted only between the name of
the function and the opening parenthesis for the function parameters. In any other position
these annotations lead to a syntax error for the statement.

When /*% VOLATILE %*/ is specified, the function value is always recalculated.

When /*% IMMUTABLE %*/ is specified in an uncorrelated function call, the function value
is not calculated again. The function value calculated beforehand is used. The function
value is recalculated when the first function call takes place.

When these annotations are not specified, the SESAM/SQL procedure described above is
used.

Example

SELECT f /*% VOLATILE %*/ (1,2)
FROM t WHERE col < g /*% IMMUTABLE %*/ (5+4,8,9)

These function calls map the existing SESAM/SQL procedure with annotations.

SELECT f /*% IMMUTABLE %*/ (1,2)
FROM t WHERE col < g /*% VOLATILE %*/ (5+4,8,9)

Specifying the annotations always causes the g function to be recalculated.
The f function is only calculated once.

U22420-J-2125-12-76 335

User Defined Functions (UDFs) Routines

7.2.5 Examples of UDFs

Example 1: Determining the year number

The GetCurrentYear UDF below returns the current year as a number. It contains no SQL
statements for reading or updating data.

CREATE FUNCTION GetCurrentYear (IN time TIMESTAMP(3))
RETURNS DECIMAL(4)
CONTAINS SQL
RETURN EXTRACT (YEAR FROM time)

The GetCurrentYear UDF in the schema FuncSchema is used:
e Determining all orders of the year 2014:

DECLARE cursor_1 CURSOR FOR
SELECT order_number, customer_name FROM orders
WHERE FuncSchema.GetCurrentYear(order_completion_date) = 2014

e Set expiration year to the year after next (schema FuncSchema is preset):

UPDATE model .exemplar
SET expiration_year = GetCurrentYear(CURRENT_TIMESTAMP(3)) + 2

Example 2: Determining the price of an item

CREATE FUNCTION ITEM_PRICE (IN P_ITEMNUM INTEGER)
RETURNS NUMERIC(8,2)
READS SQL DATA
BEGIN
RETURN (SELECT PRICE FROM PARTS.ITEM WHERE ITEMNUM= P_ITEMNUM);
END

Example 3: Anonymizing a credit card number

The UDF mask_credit_card_number below anonymizes a credit card number by masking
the last four digits:

CREATE FUNCTION mask_credit_card_number(IN card_no CHAR(16))
RETURNS CHAR(16)
CONTAINS SQL
RETURN SUBSTRING(card_no FROM 1 FOR 12) || ‘'#****!

A notification could thus be structured as follows:

Select surname, first_name, mask_credit_card_number(credit_card_number)
from ...

336

U22420-J-2125-12-76

Routines

EXECUTE privilege for routines

7.3 EXECUTE privilege for routines

SESAM/SQL provides the EXECUTE privilege for routines. It is assigned using the SQL
statement GRANT and revoked using the SQL statement REVOKE.

When a routine is created, the current authorization identifier must have the EXECUTE
privilege for the routines called directly in the routine. It must also, for all tables and columns
which are addressed in the routine, have the privileges which are required to execute the
DML statements contained in the routine.

When a view is created, the current authorization identifier must have the EXECUTE
privilege for the UDFs called directly in the view.

The EXECUTE privilege for the routine to be executed is required to execute a routine (with
the SQL statement CALL or using a function call), but not the privileges which are required
to execute the DML statements contained in the routine. In addition, the SELECT privileges
for the tables which are addressed in the routine’s call parameters by means of subqueries
are required.

U22420-J-2125-12-76 337

Information on routines

Routines

7.4

Information on routines

Information on routines is provided in the information schemas, see chapter “Information

schemas” on page 633.

Information schema View Information on
INFORMATION_SCHEMA | PARAMETERS Parameters of routines
INFORMATION_SCHEMA | ROUTINES Routines

INFORMATION_SCHEMA

ROUTINE_PRIVILEGES

Privileges for routines

INFORMATION_SCHEMA

ROUTINE_TABLE_USAGE

Tables in routines

INFORMATION_SCHEMA

ROUTINE_COLUMN_USAGE

Columns in routines

INFORMATION_SCHEMA

ROUTINE_ROUTINE_USAGE

Routines in other routines

INFORMATION_SCHEMA

VIEW_ROUTINE_USAGE

Routines in views

SYS_INFO_SCHEMA

SYS_PARAMETERS

Parameters of routines

SYS_INFO_SCHEMA

SYS_ROUTINES

Routines

SYS_INFO_SCHEMA

SYS_ROUTINE_PRIVILEGES

Privileges for routines

SYS_INFO_SCHEMA

SYS_ROUTINE_USAGE

Tables and columns in routines

SYS_INFO_SCHEMA

SYS_ROUTINE_ERRORS

Error events in routines

SYS_INFO_SCHEMA

SYS_ROUTINE_ROUTINE_USAGE

Routines in other routines

SYS_INFO_SCHEMA

SYS_VIEW_ROUTINE_USAGE

Routines in views

Table 27: Routines in the information schemas

338

U22420-J-2125-12-76

Routines

Pragmas in routines

7.5 Pragmas in routines

The following pragmas are provided specifically for routines:
e DEBUG ROUTINE to output additional information or error information

e DEBUG VALUE to output additional information for the SQL statements SET in routines
and RETURN in UDFs

e LOOP LIMIT to limit the number of loop passes
See section “Pragmas and annotations” on page 53.

The DEBUG ROUTINE and LOOP LIMIT pragmas are only effective ahead of the SQL
statement CALL and ahead of the DML statements DECLARE CURSOR, DELETE,
INSERT, MERGE, SELECT, and UPDATE. When specified ahead of DML statements,
these pragmas have an effect on all UDFs and the routines of the DML statement these
contain. When placed ahead of SQL statements, these pragmas have no effect in a routine.

Other pragmas can also be used in the CALL statement and in routines.

Pragmas EXPLAIN, CHECK, LIMIT ABORT_EXECUTION

These pragmas are effective ahead of the SQL statement CALL and ahead of the DML
statements DECLARE CURSOR, DELETE, INSERT, MERGE, SELECT, and UPDATE.
When specified ahead of DML statements, they have an effect on all UDFs and the routines
of the DML statement these contain. When one of these pragmas precedes an SQL
statement in a routine, it is ignored.

Pragmas ISOLATION LEVEL, LOCK MODE

When these pragmas precede a CALL statement, they only influence the possibly complex
call values of the CALL statement.

These pragmas can also precede SQL statements in routines. They then have the effect
described under DECLARE CURSOR, DELETE, INSERT, MERGE, SELECT, and
UPDATE.

When these pragmas precede an IF statement, they only influence the conditions of the IF
statement. These pragmas can also be specified ahead of the statements contained in the
IF statement.

In the case of the SET statement, these pragmas influence the evaluation of the expression
on the right-hand side of the assignment.

When these pragmas precede a LOOP, LEAVE, or ITERATE statement, they are ignored.

U22420-J-2125-12-76 339

Pragmas in routines Routines

When these pragmas precede a FOR statement, they only influence the cursor definition of
the FOR statement. These pragmas can also be specified ahead of the SQL statements
contained in the FOR statement.

When these pragmas precede a WHILE statement, they only influence the condition of the
WHILE loop. These pragmas can also be specified ahead of the SQL statements contained
in the WHILE statement.

When these pragmas are to influence the UNTIL condition of a REPEAT statement, they
must be specified immediately ahead of UNTIL (not ahead of REPEAT). These pragmas
can also be specified ahead of the SQL statements contained in the REPEAT statement.

When these pragmas precede a CASE statement, they only influence the expressions
outside of the THEN and ELSE statement blocks. These pragmas can also be specified
ahead of the SQL statements contained in the CASE statement.

In the case of the RETURN statement, these pragmas have an effect on the evaluation of
the RETURN value.

In the case of all other statements in routines, these pragmas have no effect.

Pragmas IGNORE, JOIN, KEEP JOIN ORDER, OPTIMIZATION, SIMPLIFICATION, USE

When one of these optimization pragmas precedes a CALL statement, it only influences the
optimization of the possibly complex call values of the CALL statement.

These pragmas can also precede SQL statements of a routine. They then implement the
optimization described under DECLARE CURSOR, DELETE, INSERT, MERGE, SELECT,
and UPDATE.

When these pragmas precede an IF statement, they only influence the optimization of the
IF statement's conditions. These pragmas can also be specified ahead of the statements
contained in the IF statement.

In the case of the SET statement, these pragmas influence the optimization of the
expression on the right-hand side of the assignment.

When these pragmas precede a LOOP, LEAVE, or ITERATE statement, they are ignored.

When these pragmas precede a FOR statement, they only influence the cursor definition of
the FOR statement. These pragmas can also be specified ahead of the SQL statements
contained in the FOR statement.

When these pragmas precede a WHILE statement, they only influence the condition of the
WHILE loop. These pragmas can also be specified ahead of the SQL statements contained
in the WHILE statement.

When these pragmas are to influence the UNTIL condition of a REPEAT statement, they
must be specified immediately ahead of UNTIL (not ahead of REPEAT). These pragmas
can also be specified ahead of the SQL statements contained in the REPEAT statement.

340

U22420-J-2125-12-76

Routines Pragmas in routines

When these pragmas precede a CASE statement, they only influence the expressions
outside of the THEN and ELSE statement blocks. These pragmas can also be specified
ahead of the SQL statements contained in the CASE statement.

In the case of the RETURN statement, these pragmas have an effect on the evaluation of
the RETURN value.

In the case of all other statements in routines, these pragmas have no effect.

Pragmas DATA TYPE, PREFETCH, UTILITY MODE

These pragmas are ignored when they precede a CALL statement or an SQL statement of
a routine.

U22420-J-2125-12-76 341

Control statements in routines

Routines

7.6 Control statements in routines

1.7

Control statements may only be specified in routines. They control execution of a
routine,e.g. by means of loops or conditions. They can become extensive and in turn
contain sequences of SQL statements themselves.

SQL statement Function see

COMPOUND Executes SQL statements in a common context page 399
CALL Call a procedure page 388
CASE Executes SQL statements conditionally page 391
FOR Executes SQL statements in a loop page 486
IF Executes SQL statements conditionally page 503
ITERATE Switches to the next loop pass page 514
LEAVE Terminates loop or COMPOUND statement page 515
LOOP Executes SQL statements in a loop page 516
REPEAT Executes SQL statements in a loop page 538
RETURN ' Supplies the return value of a User Defined Function (UDF) page 544
SET Assigns a value page 558
WHILE Executes SQL statements in a loop page 584

Table 28: Control and diagnostic statements of routines

" For UDFs only

In SESAM/SQL V9.0 and higher, nested calls of routines are permitted. The CALL
statement is therefore one of the SQL statements permitted in a routine.

COMPOUND statement in routines

The COMPOUND statement is one of the control statements in routines. It executes further
SQL statements in a common context. Common local data, common local cursors, and
common exception routines apply for these SQL statements.

A detailed description of the COMPOUND statement is provided on page 399.

342

U22420-J-2125-12-76

Routines

COMPOUND statement in routines

Local data

Local data comprises variables or exception names which can only be addressed in the
COMPOUND statement.
The names of the local data must differ from each other.

A data type and, if required, a default value is defined for variables. They have no indicator
variable. They can be used in local cursor definitions, local exception routines, and the SQL
statements of the COMPOUND statement.

To facilitate understanding, exception names define a name for an exception (without
specifying an associated SQLSTATE) or a name for an SQLSTATE. They can be used in
local exception routines, see page 405.

Local cursors

With the definition of local cursors, cursors are defined which can only be addressed in the
COMPOUND statement.
The names of the local cursors must differ from each other.

Local cursors can be used in local exception routines and the SQL statements of the
COMPOUND statement.

Local cursors are defined without the WITH HOLD clause. The SQL statements STORE
and RESTORE may not be applied to local cursors.

Common exception routines

The definition of exception routines determines what response is made when, during
processing of an SQL statement in the context of the COMPOUND statement, an
SQLSTATE = '00000' is reported.

When an SQLSTATE occurs which was specified in an exception routine, the exception
routine for the SQLSTATE is executed. For other SQLSTATEs, SESAM/SQL automatically
performs exception handling.

The type of exception handling is defined in the exception routines in accordance with the
SQLSTATE. When an exception occurs, further SQL statements there decide whether the
routine should be continued or terminated. Changes which were made in the context of the
COMPOUND statement can be undone.

U22420-J-2125-12-76 343

Diagnostic information in routines Routines

7.8 Diagnostic information in routines

SESAM/SQL provides diagnostic information in routines. The SQL standard uses the term
“diagnostics management” for this.

Diagnostic information is provided in a diagnostics area for an SQL statement executed
beforehand. In the case of routines in SESAM/SQL, multiple diagnostics areas can exist at
one time (for an SQL statement, for calling an (exception) routine), in particular for nested
routines.

At the ESQL-Cobol interface, in other words in the application program, the
diagnostics area is named “SQLda”.

The following SQL statements, which may only be used in routines, enable a diagnostics
area to be accessed in read and/or write mode:

SQL statement Function see

GET DIAGNOSTICS | Outputs diagnostic information about a statement page 489
SIGNAL Reports exception in routine page 574
RESIGNAL Reports exception in local exception routine page 540

Table 29: Control and diagnostic statements of routines

You can improve the programming of routines using these diagnostic statements and the
self-defined SQLSTATESs described below. You can analyze exceptions which occur more
precisely and respond to these in a differentiated manner.

Success of an SQL statement in a routine

To simplify the description, the success of an SQL statement in a routine is defined as
follows in this manual:

e The SQL statement was successful if it was terminated with SQLSTATE '00000".

e The SQL statement was error-free if it was terminated with SQLSTATE '00000', an
SQLSTATE of the classes '01xxx' (warning) or '02xxx' (no data).

e The SQL statement in a routine was errored if it was not terminated error-free.

A routine is continued after an error-free SQL statement if no exception routines are

@ defined for the SQLSTATES of the classes '01000' and '02000'. If, for instance, a
warning occurs for an SQL statement in a procedure, the corresponding CALL
statement is terminated with SQLSTATE '00000'.

344

U22420-J-2125-12-76

Routines

Diagnostic information in routines

Self-defined SQLSTATEs

SESAM/SQL V9.0 and higher enables you to define SQLSTATESs yourself. The class
'46Sxx' (where x is a number or an uppercase letter) is reserved. In this class you can define
up to 1296 SQLSTATESs yourself. This class is used neither by the SQL standard nor by
SESAM/SQL.

You can specify self-defined SQLSTATEs in the diagnostic statements SIGNAL and
RESIGNAL.

You can call a specific exception routine on a targeted basis in the SIGNAL diagnostic
routine using a self-defined SQLSTATE. In the exception routine you can use the
RESIGNAL diagnostic statements to abort the routine specifically. In both statements you
can also enter additional diagnostic information in the diagnostics area.

There are no ready-made SESAM message texts for self-defined SQLSTATEs. When a
self-defined SQLSTATE occurs in the application program as an unspecified SQLSTATE,
SESAM/SQL generates the message SEW46xx (&00) from it. The MESSAGE_TEXT from the
diagnostics area then appears as insert (&00).

This enables you to generate a message text of your own (without an accompanying help
text) indirectly in the diagnostic statements SIGNAL and RESIGNAL.

SQLSTATE '45000' (unspecified SQLSTATE)

With SESAM/SQL you can define a local exception name for an SQLSTATE in a
COMPOUND statement, see section “Local data” on page 402.

However, you can also define an exception name with no link to an SQLSTATE.

With this exception name you can call a specific exception routine in the SIGNAL diagnostic
routine. If this exception routine does not exist or is exited with RESIGNAL (without
specifying an SQLSTATE), the routine is terminated with the SQLSTATE '45000'.

SESAM/SQL then generates the following message:
SEW4500 UNHANDLED USER DEFINED EXCEPTION (&00). (&01)

Insert (&00) contains the exception name. If a MESSAGE_TEXT was specified for SIGNAL or
RESIGNAL, (&01) appears as an insert.

When an appropriate exception name and possibly a corresponding MESSAGE_TEXT is
selected, the user then receives an informative message.

U22420-J-2125-12-76 345

Diagnostic information in routines Routines

GET DIAGNOSTICS

GET DIAGNOSTICS ascertains information on an SQL statement executed beforehand in
a routine and enters this in a procedure parameter (output) or a local variable. The
information relates to the statement itself or to the database objects affected by it.

GET DIAGNOSTICS changes neither the content nor the sequence of diagnostics areas.
In other words GET DIAGNOSTICS statements which follow each other directly evaluate
the same diagnostic information.

A detailed description of the GET DIAGNOSTICS statement is provided on page 489.

SIGNAL

SIGNAL reports, in a routine, am exception or a self-defined SQLSTATE.
A detailed description of the SIGNAL statement is provided on page 574.

SIGNAL deletes the current diagnostics area and optionally enters the following diagnostic
information into the current diagnostics area:

e When an exception name is specified, it is entered as CONDITION_IDENTIFIER.
Otherwise a string with the length 0 is assigned.

e The RETURNED_SQLSTATE is supplied:
— When an SQLSTATE is specified, it is entered as RETURNED_SQLSTATE.

— When an SQLSTATE is defined for the specified exception name, the defined
SQLSTATE is entered for RETURNED_SQLSTATE.

— Otherwise SQLSTATE '45000' is entered.

e When MESSAGE_TEXT is specified, MESSAGE_TEXT, MESSAGE_LENGTH, and
MESSAGE_OCTET_LENGTH are supplied accordingly. Otherwise MESSAGE_TEXT
is assigned a string with the length 0.

The routine is continued or terminated with an exception routine:

e When RETURNED_SQLSTATE = '45000' and a local exception routine is defined for
the RETURNED_SQLSTATE, this exception routine is executed.

e When RETURNED_SQLSTATE = '45000' and a local exception routine is defined for
the exception name entered CONDITION_IDENTIFIER, this exception routine is
executed.

e Otherwise an unspecified SQLSTATE exists. The routine is terminated with the
SQLSTATE entered in RETURNED_SQLSTATE.

346

U22420-J-2125-12-76

Routines Diagnostic information in routines

Further information:
e Execution of a specific exception routine can be achieved with SIGNAL.

e An SQL statement immediately after the SIGNAL statement is then executed only if the
exception routine called by SIGNAL is defined with CONTINUE and was terminated
without error.

e Ifthe values (e.g. MESSAGE_TEXT) entered in the diagnostics area for SIGNAL are to
be read, GET CURRENT DIAGNOSTICS must be located either immediately after
SIGNAL (see preceding note) or it must be used in the exception routine GET
STACKED DIAGNOSTICS which is called.

This exception routine need not necessarily be part of the current COMPOUND
statement. It can also be an exception routine of a higher-ranking routine which has
used the routine with the SIGNAL statement. In the latter case, the diagnostics area of
the calling statement is then evaluated.

o A routine is continued after an SQL statement which is error-free but not successful.
Even if an exception routine was executed with EXIT or UNDO in such a case, the
routine terminates with SQLSTATE '00000’ unless an SQL statement terminated with
an error in the exception routine itself. In such a case, the SIGNAL statement enables
the routine to be terminated with a self-defined SQLSTATE.

U22420-J-2125-12-76 347

Diagnostic information in routines Routines

RESIGNAL

RESIGNAL reports a condition or an SQLSTATE in a local exception routine. In contrast to
SIGNAL, the specification of an exception name or SQLSTATE is optional.

A detailed description of the RESIGNAL statement is provided on page 540.

RESIGNAL uses the diagnostics area of the SQL statement which has activated the
exception routine, and if necessary modifies the following diagnostic information:

If neither an exception name nor SQLSTATE was specified, CONDITION_IDENTIFIER
and RETURNED_SQLSTATE remain unchanged. The following applies:

— RETURNED_SQLSTATE may not contain an SQLSTATE of class '01xxx' or
'02xxx'. Otherwise RESIGNAL is terminated with an error.

— When MESSAGE_TEXT= is specified, RETURNED_SQLSTATE must contain
either a self-defined SQLSTATE or the value '45000'. Otherwise RESIGNAL is
terminated with an error.

The current diagnostics area will possibly be modified:

— When an exception name is specified, it is entered as CONDITION_IDENTIFIER.
Otherwise a string with the length 0 is assigned.

— When an SQLSTATE is specified, it is entered as RETURNED_SQLSTATE.

— When an SQLSTATE is defined for the specified exception name, the defined
SQLSTATE is entered for RETURNED_SQLSTATE. Otherwise SQLSTATE '45000'
is entered.

When MESSAGE_TEXT is specified, MESSAGE_TEXT, MESSAGE_LENGTH, and
MESSAGE_OCTET_LENGTH are supplied accordingly. Otherwise MESSAGE_TEXT
is assigned a string with the length 0.

The routine in which the local exception routine of the RESIGNAL statement was executed
is terminated with the SQLSTATE entered in RETURNED_SQLSTATE.

Further information:

e Even after an exception routine defined with EXIT or UNDO has been executed, a

routine is terminated with SQLSTATE '00000’ unless an SQL statement terminated with
an error in the exception routine itself. RESIGNAL enables you to return the SQLSTATE
which triggered the exception routine.

A SIGNAL statement which is called in an exception routine has the same effect as a
RESIGNAL statement with explicitly specified exception name or SQLSTATE.

348

U22420-J-2125-12-76

Routines Diagnostic information in routines

Examples of the use of diagnostic statements

Different situations when querying the SOLSTATE

CREATE PROCEDURE procl() MODIFIES SQL DATA
BEGIN ATOMIC
DECLARE statel, state2, state3 CHAR(5);
DECLARE EXIT HANDLER FOR SQLEXCEPTION
BEGIN
DELETE FROM tabl; (3)
GET STACKED DIAGNOSTICS CONDITION state? RETURNED_SQLSTATE;
GET CURRENT DIAGNOSTICS CONDITION state3 RETURNED_SQLSTATE;

(2)
END;

UPDATE tab2 SET ...;
GET CURRENT DIAGNOSTICS CONDITION statel = RETURNED_SQLSTATE; ————— (1)

END

(1) The local variable statel is supplied only when the UPDATE statement has been
executed successfully or error-free. It then contains either the SQLSTATE '00000',
a warning, or the SQLSTATE '02000' (no data). The exception routine is not
executed.

(2) If the UPDATE statement was executed with an error and the DELETE statement
was executed without an error, state2 contains the SQLSTATE of the UPDATE
statement which caused the error.
state3 contains the SQLSTATE of the DELETE statement ('00000', a warning, or
'02000' (no data)).
statel is not supplied as the procedure was aborted because of an exception
routine (EXIT).

(3) If the DELETE statement of the exception routine was also executed with an error,
the procedure is immediately aborted because of the unspecified SQLSTATE.
None of the GET DIAGNOSTICS statements is executed.

If the exception routine is defined with CONTINUE (instead of with EXIT) and is executed
without error, statel is also supplied after an UPDATE statement which was executed with
an error. statel is then assigned the SQLSTATE of the UPDATE statement which caused
the error.

U22420-J-2125-12-76 349

Diagnostic information in routines Routines

Special handling of the SOLSTATE '02000'

After SQLSTATE '02000' (no data), a routine is normally continued.
In the example below, this is accepted in one case and is intended to lead to an error in
another.

CREATE PROCEDURE proc2(0OUT parl INTEGER, OUT par2 INTEGER) MODIFIES SQL DATA
BEGIN ATOMIC
DELETE FROM tabl;
GET DIAGNOSTICS parl
DELETE FROM tab2;
GET DIAGNOSTICS par2 = ROW_COUNT;
IF par2 =0
THEN SIGNAL SQLSTATE '46SAl'
SET MESSAGE_TEXT = 'tab2 must contain at Teast one record';

ROW_COUNT;

END IF;
END

If the DELETE statement was executed without error, the relevant number of deleted
records is entered in the two output parameters. In table tab1, the number may also be 0.
However, when table tab2 is empty, the procedure is aborted. Because of the ATOMIC
clause, the deletions in table tabl are also undone. SESAM/SQL generates the message:
SEW46A1 TAB2 MUST CONTAIN AT LEAST ONE RECORD

Noting the SOLSTATE which occurred

After an unspecified SQLSTATE, a procedure is aborted and precisely this SQLSTATE is
reported. If you also wish to log this event in a table, define, for example, the following
exception routine. The RESIGNAL statement returns the SQLSTATE which occurred.
Without the RESIGNAL statement, the procedure terminates with SQLSTATE '00000'.

CREATE PROCEDURE proc3() MODIFIES SQL DATA
BEGIN ATOMIC
DECLARE error CHAR(5);
DECLARE UNDO HANDLER FOR SQLEXCEPTION
BEGIN
GET DIAGNOSTICS CONDITION error = RETURNED_SQLSTATE;
INSERT INTO logging_tab
VALUES (CURRENT_TIMESTAMP(3),'SQLSTATE ' || error || ' occurred');
RESIGNAL;
END;
—— procedure body

END

350

U22420-J-2125-12-76

Routines Diagnostic information in routines

Search for empty tables

The number of empty tables is to be determined by means of a User Defined Function. If
the number of empty tables exceeds the number entered, the search should be aborted
with an error.

CREATE FUNCTION check_tables(IN max_nbr INTEGER)
RETURNS INTEGER READS SQL DATA
BEGIN
DECLARE "TABLE ERROR" CONDITION;
DECLARE nbr_empty_tables integer DEFAULT 0O;
DECLARE CONTINUE HANDLER FOR "TABLE ERROR"
BEGIN
nbr_empty_tables = nbr_empty_tables + 1;
IF nbr_empty_tables > max_nbr
THEN RESIGNAL SET MESSAGE_TEXT = 'TOO MANY EMPTY TABLES';

END IF;
END;
IF (SELECT COUNT(*) FROM tabl) = 0 THEN SIGNAL "TABLE ERROR";
END IF;
IF (SELECT COUNT(*) FROM tab2) = 0 THEN SIGNAL "TABLE ERROR";
END IF;
IF (SELECT COUNT(*) FROM tab3) = 0 THEN SIGNAL "TABLE ERROR";
END IF;

RETURN nbr_empty_tables;
END

SELECT check_tables(2) INTO :NBR-EMPTY-TABLES FROM TABLE(DEE)

If the number of empty tables does not exceed the number entered, the number of empty
tables is stored in the user variable :NBR-EMPTY-TABLES.

However, if more than two tables exist, the search is terminated with SQLSTATE '45000'.
SESAM/SQL then generates the following message:
SEW4500 UNHANDLED USER DEFINED EXCEPTION (TABLE ERROR). TOO MANY EMPTY TABLES

U22420-J-2125-12-76 351

Diagnostic information in routines Routines

352 U22420-J-2125-12-76

8 SAQL statements

This chapter describes the SQL statements. It is subdivided into two parts:

e Summary of contents

e Alphabetical reference section

8.1 Summary of contents

In this section, the SQL statements are grouped together according to function. This
grouping of the statements is oriented to the SQL standard.

SESAM/SQL-specific statements are printed against a gray background.

8.1.1 SAQL statements for schema definition and administration

Schema

SQL statement

Function

CREATE SCHEMA

Create a schema

DROP SCHEMA

Delete a schema

Table 30: SQL statements for schemas

Base table

SQL statement Function

ALTER TABLE Modify a base table
CREATE TABLE Create a base table
DROP TABLE Delete a base table

Table 31: SQL statements for base tables

U22420-J-2125-12-76

353

Summary of contents

SQL statements

View
SQL statement Function
CREATE VIEW Create a view
DRO