
Edition October 2016

©
 S

ie
m

e
ns

 N
ix

do
rf

 I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5
P

fa
d:

 P
:\F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

50
24

0
0_

S
e

sa
m

90
\1

50
24

0
3_

sb
t1

\e
n\

se
ss

b
t1

.v
or

English

SESAM/SQL-Server V9.0
SQL Reference Manual Part 1

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2016 Fujitsu Technology Solutions GmbH.

All rights reserved. Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U22420-J-Z125-12-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

kt
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.iv
z

Content

1 Preface . 15

1.1 Objectives and target groups of this manual . 15

1.2 Summary of contents . 16

1.3 Notational conventions . 16

2 Embedding of SQL in programs . 19

2.1 Program structure . 20

2.2 Host variables . 21
2.2.1 Defining host variables . 21
2.2.2 Using host variables . 21
2.2.3 Indicator variables . 22
2.2.3.1 Defining indicator variables . 22
2.2.3.2 Using indicator variables . 22

2.3 Monitoring success and error handling . 24
2.3.1 Monitoring success . 24
2.3.2 Error handling . 24

2.4 Cursor . 25
2.4.1 Read-only cursors . 26
2.4.2 Updatable cursors . 26
2.4.3 Defining a cursor . 27
2.4.4 Opening a cursor . 28
2.4.5 Position cursor and read row . 28
2.4.6 Updating or deleting a row . 29
2.4.7 Storing a cursor . 29
2.4.8 Close a cursor . 29
2.4.9 Restore a cursor . 29
2.4.10 Cursor examples . 30

2.5 Dynamic SQL . 32

Content

 U22420-J-Z125-12-76

2.5.1 Dynamic statement . 32
2.5.1.1 Prepare a dynamic statement . 33
2.5.1.2 Querying the data types of the placeholders and values 33
2.5.1.3 Execute a dynamic statement . 34
2.5.2 Dynamic cursor descriptions . 34
2.5.2.1 Preparing dynamic cursor descriptions . 34
2.5.2.2 Determining the SQL data types of the placeholders 35
2.5.2.3 Determining the SQL data types of the derived columns 35
2.5.2.4 Evaluating dynamic cursor descriptions . 35
2.5.2.5 Storing results . 35
2.5.3 Descriptor area . 36
2.5.3.1 Creating a descriptor area . 37
2.5.3.2 Structure of a descriptor area . 37
2.5.3.3 Descriptor area fields . 37
2.5.3.4 Assigning values to the descriptor area . 43
2.5.3.5 Querying the descriptor area . 44
2.5.3.6 Using values from the descriptor area . 44
2.5.3.7 Releasing the descriptor area . 44

2.6 SQL statements in CALL DML transactions . 45
2.6.1 Step-by-step conversion of CALL DML statements 46
2.6.2 Using User-Close and release session resources 47
2.6.3 Setting the isolation level . 47

3 Lexical elements and names . 49

3.1 SESAM/SQL character repertoire . 49

3.2 Lexical units . 50
3.2.1 Strings . 50
3.2.2 Numerics . 51
3.2.3 Delimiter symbols . 51
3.2.4 Separators . 52
3.2.5 Comments . 52

3.3 Pragmas and annotations . 53
3.3.1 AUTONOMOUS TRANSACTION pragma . 56
3.3.2 DATA TYPE pragma . 57
3.3.3 DEBUG ROUTINE pragma . 58
3.3.4 DEBUG VALUE pragma . 59
3.3.5 EXPLAIN pragma . 61
3.3.6 ISOLATION LEVEL pragma . 63
3.3.7 LIMIT ABORT_EXECUTION pragma . 64
3.3.8 LOCK MODE pragma . 65

Content

U22420-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
50

24
00

_
S

es
am

9
0\

15
0

24
03

_
sb

t1
\e

n\
se

ss
b

t1
.iv

z

3.3.9 LOOP LIMIT pragma . 65
3.3.10 PREFETCH pragma . 66
3.3.11 UTILITY MODE pragma . 68

3.4 Names . 69
3.4.1 Unqualified names . 70
3.4.2 Qualified names . 75
3.4.3 Defining names . 78

4 Data types and values . 79

4.1 Overview of data types and the associated value ranges 80
4.1.1 Data type groups . 80
4.1.2 Range of values . 81
4.1.3 Column . 81
4.1.4 Parameters of routines and local variables . 81

4.2 Data types . 82
4.2.1 Overview of SQL data types . 83
4.2.2 Alphanumeric and national data types . 84

CHARACTER - String with a fixed length . 84
CHARACTER VARYING - String with a variable length 86
NATIONAL CHARACTER - Strings with a fixed length 87
NATIONAL CHARACTER VARYING - Strings with a variable length 88

4.2.3 Numeric data types . 89
SMALLINT - Small integer . 89
INTEGER - Integers . 90
NUMERIC - Fixed-point numbers . 91
DECIMAL - Fixed-point numbers . 92
REAL- Single-precision floating-point numbers . 93
DOUBLE PRECISION - Double-precision floating-point numbers 94
FLOAT - Floating-point numbers . 95

4.2.4 Time data types . 96
DATE . 96
TIME . 97
TIMESTAMP . 98

4.2.5 Compatibility between data types . 99

4.3 Values . 100
4.3.1 Literals . 101
4.3.2 Specifying values . 102
4.3.3 Values for multiple columns . 103
4.3.4 NULL value . 104
4.3.4.1 Keyword for the NULL value . 104

Content

 U22420-J-Z125-12-76

4.3.4.2 NULL value in table columns . 104
4.3.4.3 NULL value in functions, expressions and predicates 105
4.3.4.4 NULL value in GROUP BY . 105
4.3.4.5 NULL value in ORDER BY . 105
4.3.5 Strings . 106
4.3.5.1 Alphanumeric literals . 106
4.3.5.2 National literals . 108
4.3.5.3 Special literals . 110
4.3.5.4 Using strings . 112
4.3.6 Numeric values . 115
4.3.6.1 Numeric literals . 115
4.3.6.2 Using numeric values . 116
4.3.7 Time values . 117
4.3.7.1 Time literals . 117
4.3.7.2 Using time values . 119

4.4 Assignment rules . 121
4.4.1 Entering values in table columns . 121
4.4.2 Default values for table columns . 123
4.4.3 Values for placeholders . 124
4.4.4 Reading values into host variables or a descriptor area 125
4.4.5 Transferring values between host variables and a descriptor area 127
4.4.6 Modifying the target data type by means of the CAST operator 129
4.4.7 Supplying input parameters for routines . 129
4.4.8 Entering values in a procedure parameter (output) or local variable 130

5 Compound language constructs . 133

5.1 Expression . 134

5.2 Function . 140
5.2.1 Time functions . 141
5.2.2 String functions . 142
5.2.3 Numeric functions . 144
5.2.4 Aggregate functions . 145
5.2.5 Table functions . 148
5.2.6 Cryptographic functions . 149
5.2.7 User Defined Functions (UDFs) . 151
5.2.8 Alphabetical reference section: Functions . 152

ABS() - Absolute value . 152
AVG() - Arithmetic average . 153
CEILING() - Smallest integer greater than the value 155
CHAR_LENGTH() - Determine string length . 156

Content

U22420-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
50

24
00

_
S

es
am

9
0\

15
0

24
03

_
sb

t1
\e

n\
se

ss
b

t1
.iv

z

COLLATE() - Determine collation element for national strings 158
COUNT(*) - Count table rows . 160
COUNT() - Count elements . 161
CSV() - Reading a BS2000 file as a table . 163
CURRENT_DATE - Current date . 167
CURRENT_TIME(3) - Current time . 168
CURRENT_TIMESTAMP(3) - Current time stamp 168
DATE_OF_JULIAN_DAY() - Convert Julian day number 169
DECRYPT() - Decrypt data . 170
DEE() - Table without columns . 173
ENCRYPT() - Encrypt data . 174
EXTRACT() - Extract components of a time value 176
FLOOR() - Largest integer less than the value . 178
HEX_OF_VALUE() - Present any value in hexadecimal format 179
JULIAN_DAY_OF_DATE() - Convert date . 182
LOCALTIME(3) - Current local time . 184
LOCALTIMESTAMP(3) - Current local time stamp 184
LOWER() - Convert uppercase characters . 185
MAX() - Determine largest value . 186
MIN() - Determine lowest value . 188
MOD() - Remainder of an integer division (modulo) 190
NORMALIZE() - Convert national string to normal form 191
OCTET_LENGTH() - Determine string length . 193
POSITION() - Determine string position . 194
REP_OF_VALUE() - Present any value as a string 195
SIGN() - Determine sign . 197
SUBSTRING() - Extract substring . 198
SUM() - Calculate sum . 201
TRANSLATE() - Transliterate / transcode string . 203
TRIM() - Remove characters . 206
TRUNC() - Remove decimal places . 208
UPPER() - Convert lowercase characters . 209
VALUE_OF_HEX() - Present hexadecimal format as a value 210
VALUE_OF_REP() - Present a string as a value . 212

5.3 Predicates . 214
5.3.1 Comparison of two rows . 216
5.3.1.1 Comparison rules . 217
5.3.2 Quantified comparison (comparison with the rows of a table) 222
5.3.3 BETWEEN predicate (range query) . 224
5.3.4 CASTABLE predicate (convertibility check) . 226
5.3.5 IN predicate (elementary query) . 227
5.3.6 LIKE predicate (simple pattern comparison) . 230
5.3.7 LIKE_REGEX predicate (pattern comparison with regular expressions) 233

Content

 U22420-J-Z125-12-76

5.3.8 NULL predicate (comparison with the NULL value) 241
5.3.9 EXISTS predicate (existence query) . 243

5.4 Search conditions . 244

5.5 CASE expression . 248
5.5.1 CASE expression with search condition . 249
5.5.2 Simple CASE expression . 251
5.5.3 CASE expression with NULLIF . 253
5.5.4 CASE expression with COALESCE . 254
5.5.5 CASE expression with MIN / MAX . 257

5.6 CAST expression . 258

5.7 Integrity constraint . 264
5.7.1 Column constraints . 266
5.7.2 Table constraints . 269

5.8 Column definitions . 272

6 Query expression . 277

6.1 Table specifications . 279

6.2 SELECT expression . 282
6.2.1 SELECT list - Select derived columns . 284
6.2.2 SELECT...FROM - Specify table . 288
6.2.3 SELECT...WHERE - Select derived columns . 290
6.2.4 SELECT...GROUP BY - Group derived rows . 292
6.2.5 SELECT...HAVING - Select groups . 294

6.3 TABLE - Table query . 295

6.4 Joins . 296
6.4.1 Join expression . 297
6.4.2 Joins without join expression . 299
6.4.3 Join types . 299
6.4.3.1 Cross joins . 299
6.4.3.2 Inner joins . 301
6.4.3.3 Outer joins . 303
6.4.3.4 Union joins . 304
6.4.3.5 Compound joins . 305

6.5 Subquery . 310
6.5.1 Correlated subqueries . 311

6.6 Combining query expressions with UNION . 313

Content

U22420-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
50

24
00

_
S

es
am

9
0\

15
0

24
03

_
sb

t1
\e

n\
se

ss
b

t1
.iv

z

6.7 Combining query expressions with EXCEPT . 316

6.8 Updatability of query expressions . 318
6.8.1 Rules for updatable query expressions . 318
6.8.2 Updatable view . 318
6.8.3 Update via cursor . 319

7 Routines . 321

7.1 Procedures (Stored Procedures) . 323
7.1.1 Creating a procedure . 323
7.1.2 Execute a procedure . 325
7.1.3 Delete a procedure . 325
7.1.4 Examples of procedures . 326

7.2 User Defined Functions (UDFs) . 332
7.2.1 Creating a UDF . 332
7.2.2 Executing a UDF . 333
7.2.3 Deleting a UDF . 333
7.2.4 Uncorrelated function calls . 334
7.2.5 Examples of UDFs . 336

7.3 EXECUTE privilege for routines . 337

7.4 Information on routines . 338

7.5 Pragmas in routines . 339

7.6 Control statements in routines . 342

7.7 COMPOUND statement in routines . 342

7.8 Diagnostic information in routines . 344

8 SQL statements . 353

8.1 Summary of contents . 353
8.1.1 SQL statements for schema definition and administration 353
8.1.2 SQL statements for querying and updating data . 355
8.1.3 SQL statements for transaction management . 356
8.1.4 SQL statements for session control . 356
8.1.5 SQL statements for dynamic SQL . 357
8.1.6 WHENEVER statement for ESQL error handling 357
8.1.7 SQL statements for managing the storage structure 358
8.1.8 SQL statements for managing user entries . 358

Content

 U22420-J-Z125-12-76

8.1.9 Utility statements . 359
8.1.10 Control statements . 359
8.1.11 Diagnostic statements . 359

8.2 Descriptions in alphabetical order . 360
8.2.1 Description format . 360
8.2.2 SQL statements in routines . 361
8.2.3 SQL statement descriptions . 365

ALLOCATE DESCRIPTOR - Request SQL descriptor area 365
ALTER SPACE - Modify space parameters . 367
ALTER STOGROUP - Modify storage group . 369
ALTER TABLE - Modify base table . 371
CALL - Execute procedure . 388
CASE - Execute SQL statements conditionally . 391
CLOSE - Close cursor . 395
COMMIT WORK - Terminate transaction . 396
COMPOUND - Execute SQL statements in a common context 399
CREATE FUNCTION - Create User Defined Function (UDF) 409
CREATE INDEX - Create index . 413
CREATE PROCEDURE - Create procedure . 416
CREATE SCHEMA - Create schema . 420
CREATE SPACE - Create space . 422
CREATE STOGROUP - Create storage group . 425
CREATE SYSTEM_USER - Create system entry 427
CREATE TABLE - Create base table . 430
CREATE USER - Create authorization identifier 441
CREATE VIEW - Create view . 442
DEALLOCATE DESCRIPTOR - Release SQL descriptor area 446
DECLARE CURSOR - Declare cursor . 447
DELETE - Delete rows . 453
DESCRIBE - Query data type of input and output values 456
DROP FUNCTION - Delete User Defined Function (UDF) 459
DROP INDEX - Delete index . 460
DROP PROCEDURE - Delete procedure . 462
DROP SCHEMA - Delete schema . 463
DROP SPACE - Delete space . 464
DROP STOGROUP - Delete storage group . 466
DROP SYSTEM_USER - Delete system entry . 467
DROP TABLE - Delete base table . 470
DROP USER - Delete authorization identifier . 472
DROP VIEW - Delete view . 473
EXECUTE - Execute prepared statement . 474
EXECUTE IMMEDIATE - Execute dynamic statement 478
FETCH - Position cursor and read row . 481

Content

U22420-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
50

24
00

_
S

es
am

9
0\

15
0

24
03

_
sb

t1
\e

n\
se

ss
b

t1
.iv

z

FOR - Execute SQL statements in a loop . 486
GET DIAGNOSTICS - Output diagnostic information 489
GET DESCRIPTOR - Read SQL descriptor area 492
GRANT - Grant privileges . 495
IF - Execute SQL statements conditionally . 503
INCLUDE - Insert program text into ESQL programs 505
INSERT - Insert rows in table . 506
ITERATE - Switch to the next loop pass . 514
LEAVE - Terminate a loop or COMPOUND statement 515
LOOP - Execute SQL statements in a loop . 516
MERGE - Insert rows in a table or update column values 518
OPEN - Open cursor . 524
PERMIT - Specify user identification for SESAM/SQL V1.x 526
PREPARE - Prepare dynamic statement . 527
REORG STATISTICS - Re-generate global statistics 537
REPEAT - Execute SQL statements in a loop . 538
RESIGNAL - Report exception in local exception routine 540
RESTORE - Restore cursor . 542
RETURN - Supply the return value of a User Defined Function (UDF) 544
REVOKE - Revoke privileges . 545
ROLLBACK WORK - Roll back transaction . 553
SELECT - Read individual rows . 555
SET - Assign value . 558
SET CATALOG - Set default database name . 559
SET DESCRIPTOR - Update SQL descriptor area 560
SET SCHEMA - Specify default schema name . 565
SET SESSION AUTHORIZATION - Set authorization identifier 567
SET TRANSACTION - Define transaction attributes 569
SIGNAL - Report exception in routine . 574
STORE - Save cursor position . 576
UPDATE - Update column values . 577
WHENEVER - Define error handling . 582
WHILE - Execute SQL statements in a loop . 584

9 SESAM-CLI . 587

9.1 Concept of the SESAM CLI . 587
9.1.1 Structure of SESAM CLI calls . 589
9.1.2 Statements that initiate transactions in CLI calls . 594

9.2 SESAM CLI calls . 596
9.2.1 Overview . 596
9.2.2 Alphabetical reference section . 599

Content

 U22420-J-Z125-12-76

SQL_BLOB_CLS_ISBTAB - SQLbcis . 600
SQL_BLOB_CLS_REF - SQLbcre . 602
SQL_BLOB_OBJ_CLONE - SQLbocl . 604
SQL_BLOB_OBJ_CREATE - SQLbocr . 606
SQL_BLOB_OBJ_CREAT2 - SQLboc2 . 608
SQL_BLOB_OBJ_DROP - SQLbodr . 610
SQL_BLOB_TAG_GET - SQLbtge . 612
SQL_BLOB_TAG_PUT - SQLbtpu . 615
SQL_BLOB_VAL_CLOSE - SQLbvcl . 617
SQL_BLOB_VAL_FETCH - SQLbvfe . 618
SQL_BLOB_VAL_GET - SQLbvge . 620
SQL_BLOB_VAL_LEN - SQLbvle . 622
SQL_BLOB_VAL_OPEN - SQLbvop . 624
SQL_BLOB_VAL_PUT - SQLbvpu . 627
SQL_BLOB_VAL_STOW - SQLbvst . 629
SQL_DIAG_SEQ_GET - SQLdsg . 631

10 Information schemas . 633

10.1 Views of the INFORMATION_SCHEMA . 634
BASE_TABLES . 636
BASE_TABLE_COLUMNS . 637
CATALOG_PRIVILEGES . 641
CHARACTER_SETS . 642
CHECK_CONSTRAINTS . 642
COLLATIONS . 643
COLUMNS . 644
COLUMN_PRIVILEGES . 648
CONSTRAINT_COLUMN_USAGE . 649
CONSTRAINT_TABLE_USAGE . 650
DA_LOGS . 650
INDEXES . 651
INDEX_COLUMN_USAGE . 652
KEY_COLUMN_USAGE . 653
MEDIA_DESCRIPTIONS . 654
MEDIA_RECORDS . 655
PARAMETERS . 656
PARTITIONS . 659
RECOVERY_UNITS . 660
REFERENTIAL_CONSTRAINTS . 662
ROUTINES . 663
ROUTINE_COLUMN_USAGE . 668

Content

U22420-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
50

24
00

_
S

es
am

9
0\

15
0

24
03

_
sb

t1
\e

n\
se

ss
b

t1
.iv

z

ROUTINE_PRIVILEGES . 669
ROUTINE_ROUTINE_USAGE . 670
ROUTINE_TABLE_USAGE . 671
SCHEMATA . 672
SPACES . 672
SQL_FEATURES . 673
SQL_IMPL_INFO . 674
SQL_LANGUAGES_S . 675
SQL_SIZING . 676
STOGROUPS . 676
STOGROUP_VOLUME_USAGE . 677
SYSTEM_ENTRIES . 678
TABLES . 678
TABLE_CONSTRAINTS . 679
TABLE_PRIVILEGES . 680
TRANSLATIONS . 681
USAGE_PRIVILEGES . 682
USERS . 683
VIEWS . 683
VIEW_COLUMN_USAGE . 684
VIEW_ROUTINE_USAGE . 684
VIEW_TABLE_USAGE . 685

10.2 Views of the SYS_INFO_SCHEMA . 686
SYS_CATALOGS . 688
SYS_CHECK_CONSTRAINTS . 688
SYS_CHECK_USAGE . 689
SYS_COLUMNS . 690
SYS_DA_LOGS . 694
SYS_DBC_ENTRIES . 695
SYS_DML_RESOURCES . 697
SYS_ENVIRONMENT . 698
SYS_INDEXES . 699
SYS_LOCK_CONFLICTS . 701
SYS_MEDIA_DESCRIPTIONS . 705
SYS_PARAMETERS . 706
SYS_PARTITIONS . 707
SYS_PRIVILEGES . 709
SYS_RECOVERY_UNITS . 710
SYS_REFERENTIAL_CONSTRAINTS . 713
SYS_ROUTINES . 714
SYS_ROUTINE_ERRORS . 716
SYS_ROUTINE_PRIVILEGES . 718
SYS_ROUTINE_ROUTINE_USAGE . 718

Content

 U22420-J-Z125-12-76

SYS_ROUTINE_USAGE . 719
SYS_SCHEMATA . 719
SYS_SPACES . 720
SYS_SPACE_PROPERTIES . 721
SYS_SPECIAL_PRIVILEGES . 723
SYS_STOGROUPS . 724
SYS_SYSTEM_ENTRIES . 724
SYS_TABLES . 725
SYS_TABLE_CONSTRAINTS . 726
SYS_UNIQUE_CONSTRAINTS . 727
SYS_USAGE_PRIVILEGES . 728
SYS_USERS . 728
SYS_VIEW_USAGE . 729
SYS_VIEW_ROUTINE_USAGE . 730

11 Appendix . 731

11.1 Syntax elements of SESAM/SQL . 731

11.2 Syntax overview of the CSV file . 743

11.3 SQL keywords . 745

Related publications . 755

Index . 757

U22420-J-Z125-12-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
1

1 Preface

The functions and architectural features of the SESAM/SQL-Server database system meet
all the demands placed on a powerful database server in today’s world. These
characteristics are reflected in its name: SESAM/SQL-Server.

SESAM/SQL-Server is available in a standard edition for single-task operation and in an
enterprise edition for multitask operation.

For the sake of simplicity, we shall use the name SESAM/SQL throughout this manual to
refer to SESAM/SQL-Server.

The following introductory descriptions are contained centrally in the “Core manual”:

● Brief product description

● Structure of the SESAM/SQL server documentation

● Demonstration database

● Readme file

● Changes since the last editions of the manuals

1.1 Objectives and target groups of this manual

This manual is intended for all SESAM/SQL users working with SQL.

It is assumed that you are already familiar with the “Core manual”, in particular with the
SESAM/SQL objects and concepts upon which SQL statements are based. It is also
assumed that you have a basic knowledge of relational databases.

If you want to call SQL statements interactively via the utility monitor, you must be familiar
with the utility monitor (see the “Utility Monitor” manual).

If you plan on embedding SQL statements in a program, you must be familiar with the
COBOL programming language and the ESQL precompiler (see the “ESQL-COBOL for
SESAM/SQL-Server” manual.)

Summary of contents Preface

16 U22420-J-Z125-12-76

1.2 Summary of contents

This manual contains a complete description of the SQL database language as used in the
database system SESAM/SQL. Specific reference is made to any differences to or
extensions of the SQL standard.

The chapter “Embedding of SQL in programs” describes SQL-specific concepts for using
SQL statements in a host language (COBOL). The remaining chapters describe SQL
language constructs in logical sequence. In each chapter, it is assumed that you are familiar
with the language constructs dealt with in the previous chapters and are not described
again.

The chapter “SQL statements” includes an alphabetical reference section containing all the
SQL statements.

The chapter “SESAM-CLI” describes the structure of the SESAM-CLI interface. This
interface is used to create and edit BLOB objects. It also includes an alphabetical reference
section which explains the individual CLI calls in detail.

The chapter “Information schemas” describes the views of the INFORMATION_SCHEMA
and SYS_INFO_SCHEMA schemas.

The appendix is an alphabetical reference section for the syntaxes used and reserved
keywords of SESAM/SQL.

A list of references and an index is provided at the end of the manual.

The manual contains a large number of examples. These refer in each case to the content
of the preceding description. Some of the examples for SQL language constructs,
particularly those for expressions and query expressions, run only in a superordinate
statement and are not executable independently.

1.3 Notational conventions

The following notational conventions are used in this manual:

Syntax definitions

UPPERCASE SQL keywords

underscored Default values

bold Used for emphasis in running text

italics Variables in syntax definitions and running text

Preface Notational conventions

U22420-J-Z125-12-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
1

The strings <date>, <time> and <ver> in examples indicate the current displays for date,
time and version when the examples are otherwise independent of date, time and version.

Fixed-space font Program text in syntax definitions and examples

::= Definition character
The specification to the right of ::= defines the syntax of
the element on the left.

| In unqualified syntax definitions this character separates
the alternative specifications.

[] May be omitted
The brackets are metacharacters and must not be entered
in an SQL statement.

Alternative specifications in syntax definitions (over
several lines). Each line contains one alternative.
The braces are metacharacters and must not be entered
in an SQL statement.

{ } Encloses clauses in syntax definitions that can be
repeated (on a single line).
The braces are metacharacters and must not be entered
in an SQL statement.

,... In syntax definitions, a comma followed by three dots
means that you can repeat the preceding specification any
number of times, separating each specification with a
comma. If you do not repeat a specification, you must omit
the comma.

... In syntax definitions, an ellipsis means that you can repeat
the preceding specification any number of times. In
examples, the ellipsis means that the rest of the statement
is of no significance to the example.
The ellipsis is a metacharacter and must not be entered in
an SQL statement.

i Indicates notes that are of particular importance.

v Indicates warnings.

Notational conventions Preface

18 U22420-J-Z125-12-76

U22420-J-Z125-12-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

2 Embedding of SQL in programs

Programming language-specific interfaces that allow you to incorporate SQL statements in
a program are available, thus allowing you to access a database from a program.
SESAM/SQL provides an interface for the programming language COBOL.

The concepts involved in embedding SQL statements in a program are the same for all
programming languages and are referred to as ESQL (Embedded SQL). Programs that
include embedded SQL statements are called ESQL programs.

This chapter explains the concepts involved in embedding SQL statements in a program.
It covers the following topics:

● Program structure

● Host variables

● Monitoring success and error handling

● cursor

● Dynamic SQL

You will find language-specific details in the “ESQL-COBOL for SESAM/SQL-Server”
manual.

Program structure Embedding of SQL in programs

20 U22420-J-Z125-12-76

2.1 Program structure

An ESQL program consists of program text in the relevant programming language, also
referred to as the host language, and SQL statements. SQL statements may be included
wherever host language statements are permitted. The beginning and end of an SQL
statement are marked so that they can be distinguished from the statements in the host
language. The way in which the statements are marked depends on the programming
language involved.

If host language variables (host variables) are used in the SQL statements, the program
includes additional sections (DECLARE SECTION) in which these variables are defined.
DECLARE SECTIONs may be included wherever variable definitions in the host language
are allowed. The beginning and end of a DECLARE SECTION are marked by EXEC SQL
BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION respectively (the
exact syntax is language-specific and is described in the “ESQL-COBOL for SESAM/SQL-
Server” manual. An ESQL program may include any number of DECLARE SECTIONs.

 ESQL COBOL programs with executable examples of database statements can be
found in the demonstration database of SESAM/SQL (see the “Core manual”).

Embedding of SQL in programs Host variables

U22420-J-Z125-12-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

2.2 Host variables

A host variable is a host language variable that can be used in an embedded SQL
statement. A host variable is used to transfer values from the database to the program in
the host language for further processing or to transfer data to the database and provide
values required for certain calculations.

2.2.1 Defining host variables

A host variable must be defined in the program in a DECLARE SECTION in accordance
with programming language conventions. The location of the definition and use of a host
variable must satisfy the following conditions:

● In the program text, a variable must be defined before it is used in an SQL statement.

● The definition must be valid, with regard to programming language conventions, for any
use to which the variable may be put in an SQL or host language statement.

● The definition of a variable that is used in a DECLARE CURSOR statement defining a
cursor must be valid for all OPEN statements of the defined cursor.

The data type of the host variable depends on the data type of the SESAM/SQL values for
which this host variable is to be used. The ESQL language interface provides predefined
data types that must be used for host variables. The assigned COBOL data type is specified
for each SESAM/SQL data type in the “ESQL-COBOL for SESAM/SQL-Server” manual.

2.2.2 Using host variables

In SQL statements that query data in the database, the values read can be stored in host
variables.

In SQL statements that insert values into the database, update values in the database or in
which calculations are performed (functions, expressions, predicates, search conditions),
the values can be made available via host variables.

Other instances in which values in SQL statements can or must be provided via host
variables are described in the chapter “SQL statements” on page 353 as part of the
description of the individual SQL statements.

A host variable is preceded in an SQL statement by a colon:
:host-variable

Host variables Embedding of SQL in programs

22 U22420-J-Z125-12-76

Host variables can also be vectors containing several values of the same data type. This
allows you to assign aggregates to multiple columns or to transfer aggregates from multiple
columns to a host variable. The syntax for vectors is language-specific and is described in
the “ESQL-COBOL for SESAM/SQL-Server” manual.

2.2.3 Indicator variables

A host variable can be combined with another host variable known as an indicator variable.
An indicator variable is used to express the NULL value, which does not exist in
programming languages, and to monitor the transfer of alphanumeric and national values
from the database.

2.2.3.1 Defining indicator variables

When you define a host variable that you want to use as an indicator variable, you must
assign it the host language data type that corresponds to the SQL data type SMALLINT.
The exact data type is specified in the “ESQL-COBOL for SESAM/SQL-Server” manual.

2.2.3.2 Using indicator variables

A host variable can only be combined with an indicator variable for the purpose of querying
data in the database, inserting values in the database, updating values in the database or
for use in calculations (functions, expressions, predicates, search conditions).

You specify an indicator variable after the host variable. They may be separated by the
keyword INDICATOR, although this is not necessary:
:host-variable [INDICATOR] :indicator-variable

If the host variable is a vector, the associated indicator variable must also be a vector with
the same number of elements. Each element in the host variable is assigned the
corresponding element in the indicator variable. The syntax for vectors is language-specific
and is described in thel “ESQL-COBOL for SESAM/SQL-Server” manual.

Embedding of SQL in programs Host variables

U22420-J-Z125-12-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

Querying values

SESAM/SQL assigns one of the following values to the indicator variable when you query
a value in the database and subsequently assign it to a host variable:

0 The host variable contains the value read.
The assignment was error free.

-1 The value to be assigned is the NULL value.

> 0 For alphanumeric or national values:
The host variable was assigned a truncated string.
The value of the indicator variable indicates the original length in code units.

Inserting or updating values

If you specify values in SQL statements via host variables, you can use the indicator
variable to specify a NULL value. To do this, you must assign the indicator variable a
negative value before the SQL statement is called. When the SQL statement is executed,
the NULL value is used instead of the value of the host variable.

Monitoring success and error handling Embedding of SQL in programs

24 U22420-J-Z125-12-76

2.3 Monitoring success and error handling

Once an SQL statement has been executed, the ESQL program should check whether
execution was successful so that appropriate action can be taken in the event of an error.

2.3.1 Monitoring success

Use the host variable SQLSTATE, which SESAM/SQL supports in the ESQL interface, to
check whether a statement was successful.

You must define SQLSTATE in your program in a DECLARE SECTION with the SQL data
type CHAR(5). This definition must be located before the first SQL statement in the program
text and must be valid, with regard to programming language conventions, for all the
statements that use it.

After an SQL statement has been executed, SQLSTATE is assigned an SQL status code.
The possible values for SQLSTATE are described in the “Messages” manual.

For reasons of compatibility with SESAM/SQL V1.x, the host variable SQLCODE for
monitoring the success of SQL statements is supported. You should not, however, use this
host variable in new applications.

2.3.2 Error handling

There are two ways of taking appropriate action if an SQL statement was unsuccessful:

● Query SQLSTATE and branch according to the status code

● Use the WHENEVER statement

You can use WHENEVER to specify that, after execution of an SQL statement with an
SQLSTATE î '00xxx' and î '01xxx', the program is to continue executing or is to branch
to a certain part of the program where error handling is performed. You can specify
branching within the program for two error classes:

– NOT FOUND: no data available, e.g. when the end of a table is reached

– SQLERROR: other errors that result in abortion of SQL statements

You can specify the WHENEVER statement more than once in a program. The
specifications made in a WHENEVER statement are valid for all subsequent SQL
statements in the program text up to the next WHENEVER statement for the same error
class.

Embedding of SQL in programs Cursor

U22420-J-Z125-12-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

2.4 Cursor

Because many programming languages do not provide an equivalent of the type “table”, the
concept of the cursor is used when SQL statements are embedded in programs. A cursor
enables you to process the rows of a table individually one after the other.

A cursor is assigned to a table referred to as the cursor table. This table is the derived table
of the query expression that defined the cursor.

There are a number of SQL statements that can be used with cursors:

DECLARE CURSOR Declare a cursor

OPEN Opening a cursor

CLOSE Close a cursor

FETCH Position cursor and read row

DELETE ... WHERE CURRENT OF ...
Delete current row

UPDATE ... WHERE CURRENT OF ...
Update current row

STORE Save cursor position

RESTORE Restore cursor position

A cursor must be defined, be opened before it is used, and be closed after it has been used.
The SQL statements must be used in a predefined order.

There are two types of cursors: cursors that can be updated (updatable cursor) and cursors
that cannot be updated.

i In routines, local cursors which can only be addressed within the COMPOUND
statement are defined with the DECLARE CURSOR statement, see section “Local
cursors” on page 404.

A local cursor differs from a normal cursor only in its limited area of validity.

Cursor Embedding of SQL in programs

26 U22420-J-Z125-12-76

2.4.1 Read-only cursors

A cursor that cannot be updated can only be used for reading rows from the cursor table
and is therefore referred to as a read-only cursor.

The diagram below indicates the SQL statements that can be used for a non-dynamic read-
only cursor and the order in which they are used:

RESTORE can only be used to open a cursor after a STORE statement. If a cursor position
has been stored, FETCH cannot be used.

Other statements that can be used with dynamic cursors are described in the section
“Dynamic cursor descriptions” on page 34.

2.4.2 Updatable cursors

An updatable cursor can be used to delete or update rows in a table in addition to reading
rows.

The diagram below indicates the SQL statements that can be used for a non-dynamic
updatable cursor and the order in which they are used:

RESTORE
STORE

OPEN CLOSE

FETCH

RESTORE
STORE

OPEN CLOSE

FETCH

STORE

UPDATE

DELETE

Embedding of SQL in programs Cursor

U22420-J-Z125-12-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

RESTORE can only be used to open a cursor after a STORE statement. If a cursor position
has been stored, FETCH cannot be used.

Other statements that can be used with dynamic cursors are described in the section
“Dynamic cursor descriptions” on page 34.

2.4.3 Defining a cursor

A cursor is defined with a DECLARE CURSOR statement. During definition, the cursor is
assigned a cursor description. The cursor description is the query expression that defines
the cursor table.

The query expression is specified directly in the DECLARE CURSOR statement for static
cursors and local cursors (in routines). In the case of dynamic cursors, it is created when
the program is executed (see section “Dynamic cursor descriptions” on page 34).

The following characteristics of the cursor can be specified in the definition:

Positioning

There are two kinds of cursors: scrollable cursors and sequential cursors.

A scrollable cursor can be positioned freely on any row in the cursor table. It is defined by
specifying the keyword SCROLL.

A cursor defined with NO SCROLL can only be positioned on the next row in the cursor
table.

Lifetime

If a cursor is to remain open after the end of a transaction, this can be specified using the
WITH HOLD clause. The only prerequisite is that the cursor must be open prior to
completion of the transaction. The WITH HOLD clause is not permitted for local cursors (in
routines).

A cursor defined with WITHOUT HOLD is closed implicitly once the transaction has
completed. WITHOUT HOLD is the default value.

Sorting

An ORDER BY clause can be specified in the cursor description indicating that the rows in
the cursor table are to be sorted.

Cursor Embedding of SQL in programs

28 U22420-J-Z125-12-76

Number of hits

A FETCH FIRST max ROWS ONLY clause for limiting the number of hits supplied can only be
specified in the cursor description.

Updatability

A cursor is updatable if the query expression used to define the cursor is updatable (see
section “Updatability of query expressions” on page 318), and neither SCROLL nor ORDER
BY nor the FOR READ ONLY clause was specified in the cursor declaration.

An updatable cursor references exactly one base table. Individual rows in this table can be
deleted or updated using the cursor position to indicate the appropriate row. The FOR
UPDATE clause in the cursor description can be used for updatable cursors to specify the
columns whose values can be updated.

If a cursor is not updatable, it can only be used to read rows from the relevant cursor table.
A cursor cannot be updated in the case of FETCH FIRST max ROWS ONLY, either.

2.4.4 Opening a cursor

A cursor must be opened before it can be used.

The OPEN statement is used to open a cursor. The values for host variables in the cursor
description and for special literals (see page 110) and time functions (CURRENT_DATE,
CURRENT_TIME(3), CURRENT_TIMESTAMP(3), etc.) are determined. After a cursor is
opened, it is positioned before the first row of the corresponding cursor table (see section
“OPEN - Open cursor” on page 524).

2.4.5 Position cursor and read row

If you want to read a row in the cursor table, you must position the cursor on this row with
FETCH. The column values of the current row are fetched into host variables or into a
descriptor area (see section “Descriptor area” on page 36).

In order to read the next row, the cursor must be repositioned. A cursor declared with
SCROLL can be positioned freely. A cursor defined without SCROLL or with NO SCROLL
can only be positioned on the next row.

Embedding of SQL in programs Cursor

U22420-J-Z125-12-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

2.4.6 Updating or deleting a row

If you are using an updatable cursor, you can update or delete a row in the base table upon
which the cursor description is based after you have positioned the cursor. To do this, use
the UPDATE...WHERE CURRENT OF or DELETE...WHERE CURRENT OF statement.

The update or delete operation refers to the row in the cursor table on which the cursor is
currently positioned. The position of the cursor is not changed by an update operation. After
a delete operation, the cursor is positioned on the next row in the cursor table (or after the
last row, if the end of the table has been reached. You must reposition the cursor with
FETCH before you can perform another update or delete operation.

2.4.7 Storing a cursor

If you want to retain the cursor table and the cursor position beyond the end of the current
transaction, you can save the cursor with the STORE statement. Please note, however, that
between STORE and the subsequent closure of the cursor, the cursor table can no longer
be read with FETCH. STORE is not permitted for local cursors (in routines).

Another simpler option for keeping a cursor open across several transactions is to use the
WITH HOLD clause in the cursor definition. The WITH HOLD clause is not permitted for
local cursors (in routines).

2.4.8 Close a cursor

You close a cursor with the CLOSE statement.

In addition, a cursor is closed when the transaction in which the cursor was opened is
terminated. However, this does not apply if the cursor was specified with WITH HOLD and
the transaction is not reset.

2.4.9 Restore a cursor

A cursor saved with STORE can be restored with the RESTORE statement. The cursor is
opened and the cursor table can again be accessed. RESTORE is not permitted for local
cursors (in routines).

The information that has been stored can be lost under certain circumstances. These
circumstances are described in the section “RESTORE - Restore cursor” on page 542.

Cursor Embedding of SQL in programs

30 U22420-J-Z125-12-76

2.4.10 Cursor examples

Example of a cursor with ORDER BY

The cursor CUR_CONTACTS defines a section of the CONTACTS table containing the
last name, first name and department for all customers with customer numbers greater
than 103. The rows are to be sorted in ascending sequence by department and, within
the departments in descending sequence by last name.

 DECLARE cur_contacts CURSOR FOR
SELECT lname, fname, department
FROM contacts WHERE cust_num > 103
ORDER BY department ASC, lname DESC

The cursor is opened with the OPEN statement

OPEN cur_contacts

At this point, the cursor table includes the following rows:

Null values are shown in the table above as empty fields. When rows are sorted using
ORDER BY in SESAM/SQL, null values are regarded as being less than any non-null
value.

In an ESQL program, the cursor table can be read row by row in a loop. The column
values are passed to the host variables NAME, FIRSTNAME and DEPT.

 FETCH cur_contacts INTO :LNAME,
:FIRSTNAME INDICATOR :IND_FIRSTNAME,
:DEPT INDICATOR :IND_DEPT

lname fname department

Buschmann Anke

Bauer Xaver

Heinlein Robert Purchasing

Davis Mary Purchasing

Embedding of SQL in programs Cursor

U22420-J-Z125-12-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

Example of SQL data manipulation using a cursor

Use the cursor CUR_VAT to select all services for which no VAT is calculated. It is
specified with WITH HOLD so that it remains open even after a COMMIT WORK
provided that it was open at the end of the transaction:

 DECLARE CUR_VAT CURSOR WITH HOLD FOR
SELECT service_num, service_text, vat
FROM service WHERE vat=0.00

OPEN cur_vat

The following cursor table is produced when the cursor is opened:

A VAT rate of 15% is to be charged for these services. A sequence of FETCH and
UPDATE statements allows the rows of the SERVICE table to be updated. FETCH
NEXT positions the cursor on the next row.

 FETCH NEXT cur_vat INTO :SERVICE_NUM,
:SERVICE_TEXT INDICATOR :IND_SERVICE_TEXT
:VAT INDICATOR :IND_VAT

UPDATE service SET vat=0.15 WHERE CURRENT OF cur_vat

The cursor is then positioned on the second row of the cursor table:

 FETCH NEXT cur_vat INTO :SERVICE_NUM,
:SERVICE_TEXT INDICATOR :IND_SERVICE_TEXT
:VAT INDICATOR :IND_VAT

UPDATE service SET vat=0.15 WHERE CURRENT OF cur_vat

The transaction is closed with COMMIT WORK. Because of the WITH HOLD clause,
the cursor can be positioned on the third row of the cursor table by issuing a FETCH
statement immediately after COMMIT WORK.

service_nu
m

service_text vat

4 Systems analysis 0.00

5 Database design 0.00

10 Travel expenses 0.00

Dynamic SQL Embedding of SQL in programs

32 U22420-J-Z125-12-76

2.5 Dynamic SQL

SESAM/SQL allows you to generate SQL statements and cursor descriptions dynamically
during execution of an ESQL program. The concepts and language resources involved in
this are referred to by the term dynamic SQL and are described in this section.

A dynamic statement (or cursor description) does not have to be known when a program is
compiled. Instead, it can be constructed dynamically when the program is executed and is
made available in a host variable.

A routine (see chapter “Routines” on page 323) may not contain any dynamic SQL
statements or cursor descriptions.

Placeholder

You cannot use host variables in a dynamic SQL statement (or cursor description). Instead,
you use question marks as placeholders for unknown input values. The rules governing
placeholders are described in the “PREPARE - Prepare dynamic statement” on page 527.

2.5.1 Dynamic statement

A dynamic statement can either be executed directly once, or it can be prepared. A
prepared statement can be executed any number of times.

You cannot use any placeholders in a statement that is executed directly, and it must not
return any values.

A prepared statement remains prepared for execution for at least the duration of the current
transaction.

The diagram below provides you with an overview of the SQL statements that can be used
in dynamic statements:

A descriptor area must be created with ALLOCATE DESCRIPTOR before it is used in
DESCRIBE and GET/SET DESCRIPTOR (see section “Descriptor area” on page 36).

 EXECUTE IMMEDIATE

PREPARE

DESCRIBE
INPUT/OUTPUT

GET/SET
DESCRIPTOR

EXECUTE
[USING]
[INTO]

GET
DESCRIPTOR

Embedding of SQL in programs Dynamic SQL

U22420-J-Z125-12-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

2.5.1.1 Prepare a dynamic statement

You prepare a dynamic statement with PREPARE. You define a name, or statement
identifier, that is used to refer to the dynamic statement in subsequent statements and in
the EXECUTE statement in particular. All SQL statements that can be prepared are listed
in the section “Assignments for PREPARE” on page 535.

You specify an alphanumeric host variable for the as yet unknown SQL statement
represented by the statement identifier. The length of the variable must not exceed 32000
characters. You cannot specify an indicator variable.

In the program, you assign the host variable the desired SQL statement as an alphanumeric
string. You can, for example, read in the SQL statement via an interactive program and then
use it to construct the string that is transferred to the host variable.

When the PREPARE statement is executed, the dynamic statement must be known with
the exception of the values of the placeholders. If the statement is not correct, the
PREPARE statement is aborted with errors.

2.5.1.2 Querying the data types of the placeholders and values

If a dynamic statement contains placeholders, you can query the number and SQL data
types of the placeholders with DESCRIBE INPUT after you have prepared the statement
with PREPARE. To do this, you must specify a descriptor area to which the description of
the SQL data types is returned.

You can query the number and data types of the values returned by the prepared statement
with DESCRIBE OUTPUT and store the information in a previously requested descriptor
area. The number is 0 if the prepared statement is not a SELECT statement or cursor
description.

You can read the item descriptors in the descriptor area with GET DESCRIPTOR (see
section “Descriptor area” on page 36).

Dynamic SQL Embedding of SQL in programs

34 U22420-J-Z125-12-76

2.5.1.3 Execute a dynamic statement

You can prepare and execute a dynamic statement directly with EXECUTE IMMEDIATE.
In this case, however, the statement cannot include any placeholders or return any values.
All the SQL statements that can be executed with EXECUTE IMMEDIATE are listed in the
description of the EXECUTE IMMEDIATE statement, page 478.

You execute a statement prepared with PREPARE with the EXECUTE statement. If the
statement includes placeholders, the corresponding values can be made available via host
variables or via a descriptor area that has already been supplied with values in the USING
clause of the EXECUTE statement.

In a dynamic SELECT statement, the INTO clause can be used to store the results in host
variables or in a previously created descriptor area.

2.5.2 Dynamic cursor descriptions

A cursor can also be assigned a dynamic cursor description in the DECLARE CURSOR
statement. The cursor is then referred to as a dynamic cursor. A non-dynamic cursor is also
referred to as a static cursor. A dynamic cursor description is prepared with the PREPARE
statement.

The figure below provides you with an overview of the SQL statements for dynamic cursor
descriptions:

The other SQL statements relevant to cursors are described in the sections “Read-only
cursors” on page 26 and “Updatable cursors” on page 26.

2.5.2.1 Preparing dynamic cursor descriptions

You prepare a dynamic cursor description with the PREPARE statement. You define a
name, or statement identifier, for the cursor description. Each cursor declared with this
statement identifier is assigned the corresponding cursor description.

You specify an alphanumeric host variable for the as yet unknown query expression. The
length of the variable must not exceed 32000 characters. You cannot specify an indicator
variable.

DESCRIBE GET/SET
INPUT/OUTPUT DESCRIPTOR

PREPARE OPEN FETCH
[USING] INTO

GET
DESCRIPTOR

Embedding of SQL in programs Dynamic SQL

U22420-J-Z125-12-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

When the program is executed, you assign the host variable the desired query expression
as an alphanumeric string.

Except for the values of the placeholders, the query expression must be known when the
PREPARE statement is executed. If the query expression is not correct, the PREPARE
statement is aborted with errors.

2.5.2.2 Determining the SQL data types of the placeholders

If a dynamic cursor description includes placeholders, you can query the number and SQL
data types of the placeholders with DESCRIBE INPUT after the cursor description has been
prepared with the PREPARE statement.

To do this, you must specify a descriptor area to which the description of the data types is
returned. You can read the item descriptors in the descriptor area with GET DESCRIPTOR
(see section “Descriptor area” on page 36).

2.5.2.3 Determining the SQL data types of the derived columns

You can query the number and SQL data types of the derived columns of a dynamic cursor
description with DESCRIBE OUTPUT and store the information in a previously created
descriptor area.

2.5.2.4 Evaluating dynamic cursor descriptions

A dynamic cursor description is evaluated when the cursor is opened with the OPEN
statement.

If a dynamic cursor description includes placeholders, the associated values can be made
available in the USING clause of the OPEN statement via host variables or a descriptor
area that has already been supplied with values. Otherwise, the same rules apply to the
evaluation of a dynamic cursor as apply to a static cursor.

2.5.2.5 Storing results

The rows of the cursor table are read with FETCH, just as they are for a static cursor. Unlike
a static cursor, the column values of a row that are read can be stored not only in host
variables but also in a previously created descriptor area.

Dynamic SQL Embedding of SQL in programs

36 U22420-J-Z125-12-76

2.5.3 Descriptor area

A descriptor area is a storage area that you use to store values or information about the
SQL data types for dynamic statements or cursor descriptions.

A descriptor area can be used in the following cases:

● The SQL data types of the placeholders in a prepared statement or cursor description
can be queried and stored in a descriptor area (DESCRIBE INPUT).

● The SQL data types of the derived columns of a prepared SELECT statement or cursor
description can be queried and stored in a descriptor area (DESCRIBE OUTPUT).

● The values for the placeholders in a dynamic statement or cursor description can be
transferred from a descriptor area upon execution (USING clause of EXECUTE or
OPEN).

● The values returned by a dynamic statement or cursor description can be stored in a
descriptor area (INTO clause of EXECUTE or FETCH).

There are a number of SQL statements that use descriptor areas. These statements must
be called in a predefined order.
The figure below provides you with an overview of these statements and indicates the order
in which the statements can be called (GET/SET DESCRIPTOR can be a series of
GET/SET DESCRIPTOR statements).

GET
DESCRIPTOR EXECUTE

USING

ALLOCATE DESCRIBE SET DEALLOCATE

DESCRIPTOR INPUT DESCRIPTOR DESCRIPTOR
OPEN
USING

EXECUTE
INTO

ALLOCATE DESCRIBE GET DEALLOCATE
DESCRIPTOR OUTPUT DESCRIPTOR DESCRIPTOR

FETCH
INTO

Embedding of SQL in programs Dynamic SQL

U22420-J-Z125-12-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

2.5.3.1 Creating a descriptor area

You create a descriptor area with ALLOCATE DESCRIPTOR. You must specify the
maximum number of items that this descriptor area can hold.

The items themselves are still undefined after ALLOCATE DESCRIPTOR.

2.5.3.2 Structure of a descriptor area

A descriptor area consists of a COUNT field and a number of items (item descriptors).

Each item in the descriptor area consists of a number of fields that describe an SQL data
type and which may contain a value of this type.

One item descriptor is used for an atomic column or value. In the case of a multiple column
or aggregate, one item descriptor is used for each column element or occurrence.

2.5.3.3 Descriptor area fields

The descriptor area fields include the COUNT field, which exists once for each descriptor
area, and the fields of the various items.

Each descriptor item consists of the following fields:

● REPETITIONS

● TYPE

● DATETIME_INTERVAL_CODE

● PRECISION

● SCALE

● LENGTH

● INDICATOR

● DATA

● OCTET_LENGTH

● NULLABLE

● NAME

● UNNAMED

You will find detailed descriptions of the various fields below.

Dynamic SQL Embedding of SQL in programs

38 U22420-J-Z125-12-76

COUNT

The COUNT descriptor area field contains a value for the number of item descriptors used
or required.

If the number of item descriptors specified in a DESCRIBE statement is greater than the
defined maximum number of items, only the COUNT field is set to the specified number. All
other fields are not assigned a value.

SQL data type: SMALLINT

Item descriptor fields

Not all the fields are supplied with a value for each item descriptor. Fields that have not been
supplied with a value have an undefined value.

The fields are described in alphabetical order below.

DATA

Is only defined if the value in the INDICATOR field is greater than or equal to 0: Value
of the item descriptor.

SQL data type: determined by the fields TYPE, LENGTH, PRECISION, SCALE and
DATETIME_INTERVAL_CODE

DATETIME_INTERVAL_CODE

Only for date and time data types:

Data type of the item descriptor.

SQL data type: SMALLINT

DATETIME_INTERVAL_CODE SQL data type

1 DATE

2 TIME

3 TIMESTAMP

Table 1: Descriptor area field DATETIME_INTERVAL_CODE

Embedding of SQL in programs Dynamic SQL

U22420-J-Z125-12-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

INDICATOR

Information on the value of the item descriptor:

SQL data type: SMALLINT

LENGTH

Only for alphanumeric, national and time data types:

Length of the SQL data type in characters or code units for national data types.

SQL data type: SMALLINT

NAME

Column name if the item refers to a column, otherwise a column name that is used
internally.

SQL data type: CHAR(n) or VARCHAR(n), where n Ï 128

< 0 Value is the NULL value

> 0 Original length of an alphanumeric or national string that was truncated during
transfer from the database

0 else

LENGTH For SQL data type

length CHAR(length)

max VARCHAR(max)

cu_length NCHAR(cu_length)

cu_max NVARCHAR(cu_max)

10 DATE

12 TIME(3)

23 TIMESTAMP(3)

Table 2: Descriptor area field LENGTH

Dynamic SQL Embedding of SQL in programs

40 U22420-J-Z125-12-76

NULLABLE

Specification of whether the value of the item descriptor can be the NULL value.

SQL data type: SMALLINT

OCTET_LENGTH

Maximum memory requirements of the data type indicated by the fields TYPE,
LENGTH, PRECISION, SCALE and DATETIME_INTERVAL_CODE in bytes. If these
fields do not specify a correct SQL data type, the value of OCTET_LENGTH is
undefined.

The value of OCTET_LENGTH is implementation-dependent for numeric and time data
types and may change in future versions of SESAM/SQL.

SQL data type: SMALLINT

1 Value can be the NULL value

0 else

OCTET_LENGTH For SQL data type

length CHAR(length)

max+2 VARCHAR(max)

2*cu_length NCHAR(cu_length)

2*cu_max+2 NVARCHAR(cu_max)

precision+1 NUMERIC(precision,scale)

precision/2+1, if precision even
(precision-1)/2+1, else

DECIMAL(precision,scale)

4 INTEGER

2 SMALLINT

4, if precision<22
8, else

FLOAT(precision)

4 REAL

8 DOUBLE PRECISION

6 DATE

8 TIME(3)

14 TIMESTAMP(3)

Table 3: Descriptor area field OCTET_LENGTH

Embedding of SQL in programs Dynamic SQL

U22420-J-Z125-12-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

PRECISION

Only for numeric data types and TIME and TIMESTAMP:

number of decimal or binary digits of the SQL data type.

SQL data type: SMALLINT

REPETITIONS

Dimension of a multiple column or aggregate.

A separate item in the descriptor area is used for each occurrence of a multiple column
or aggregate. The REPETITIONS field of the first item descriptor contains the number
of occurrences or column elements. The REPETITIONS field of all subsequent item
descriptors is set to 1.

REPETITIONS is set to 1 for atomic values.

SQL data type: SMALLINT

PRECISION For SQL data type

precision NUMERIC(precision,scale)

precision DECIMAL(precision,scale)

31 INTEGER

15 SMALLINT

precision FLOAT(precision)

21 REAL

53 DOUBLE PRECISION

3 TIME(3)

3 TIMESTAMP(3)

Table 4: Descriptor area field PRECISION

Dynamic SQL Embedding of SQL in programs

42 U22420-J-Z125-12-76

SCALE

Only for integer and fixed-point number data types:

number of places to the right of the decimal point for the SQL data type.

SQL data type: SMALLINT

TYPE

SQL data type of the item descriptor:

SQL data type: SMALLINT

SCALE For SQL data type

scale NUMERIC(precision,scale)

scale DECIMAL(precision,scale)

0 INTEGER

0 SMALLINT

Table 5: Descriptor area field SCALE

TYPE SQL data type

-42 NVARCHAR

-31 NCHAR

1 CHAR

2 NUMERIC

3 DECIMAL

4 INTEGER

5 SMALLINT

6 FLOAT

7 REAL

8 DOUBLE PRECISION

9 DATE, TIME or TIMESTAMP

12 VARCHAR

Table 6: Descriptor area field TYPE

Embedding of SQL in programs Dynamic SQL

U22420-J-Z125-12-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

UNNAMED

Specification of whether the NAME field contains a valid column name.

SQL data type: SMALLINT

2.5.3.4 Assigning values to the descriptor area

Once you have created a descriptor area, you can assign values to this area in a number
of ways:

● Data type descriptions:
You can use DESCRIBE to place the description of the SQL data types of the
placeholders or derived values of a prepared statement or cursor description in the
descriptor area.

● Values:
You can use EXECUTE ... INTO or FETCH ... INTO to place queried values in the
descriptor area.

● Data type descriptions and values:
You can use SET DESCRIPTOR to set the items in the descriptor area. The values
assigned to the item descriptor fields are described in the section “SET DESCRIPTOR
- Update SQL descriptor area” on page 560.

The fields NAME, UNNAMED and NULLABLE are only set for DESCRIBE.

The fields TYPE, DATETIME_INTERVAL_CODE, LENGTH, PRECISION, SCALE,
REPETITIONS can be set with SET DESCRIPTOR and DESCRIBE.

The fields INDICATOR and DATA can be set with SET DESCRIPTOR or with EXECUTE
INTO and FETCH INTO if an SQL descriptor area is used.

If a value is transferred from a host variable to a descriptor area field, the SQL data type of
the host variable must satisfy the conditions described for SET DESCRIPTOR, page 560,
and in the section “Transferring values between host variables and a descriptor area” on
page 127.

0 NAME contains a column name

1 else

Dynamic SQL Embedding of SQL in programs

44 U22420-J-Z125-12-76

2.5.3.5 Querying the descriptor area

You can query the value of the COUNT field and the fields of individual item descriptors with
GET DESCRIPTOR.

To query an item, enter the number of the item descriptor and the fields whose values you
wish to query. The item descriptor fields are described in section “Descriptor area fields” on
page 37.

When transferring a value from an item descriptor field to a host variable, the SQL data type
of the host variable must satisfy the conditions described for GET DESCRIPTOR on
page 492 and in the section “Transferring values between host variables and a descriptor
area” on page 127.

2.5.3.6 Using values from the descriptor area

The fields TYPE, DATETIME_INTERVAL_CODE, LENGTH, PRECISION, SCALE,
REPETITIONS are read for EXECUTE, OPEN and FETCH if an SQL descriptor area is
used for the input or output values.

The fields INDICATOR and DATA are read for EXECUTE USING and OPEN USING if an
SQL descriptor area is used for the input values.

2.5.3.7 Releasing the descriptor area

If you no longer need a descriptor area, you release the memory used by the descriptor
area with DEALLOCATE DESCRIPTOR.

Embedding of SQL in programs SQL statements in CALL DML transactions

U22420-J-Z125-12-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

2.6 SQL statements in CALL DML transactions

SESAM/SQL supports the SQL and CALL DML interfaces.
In mixed mode operation, both interfaces can be used together in an ESQL COBOL
application (see the “CALL-DM Applications” manual).
You can use SQL and CALL DML interfaces together within the same transaction: In order
to simplify the step-by-step conversion to the SQL environment, it is possible to issue SQL
statements within CALL DML transactions in existing CALL DML applications.

CALL DML transaction

A CALL DML transaction starts with the CALL DML statement BTA and ends with a roll
forward or rollback of the transaction.
You use the CALL DML statement ETA to roll a CALL DML transaction forward. A
transaction is rolled back either by means of the statement RTA or internally by
SESAM/SQL DBH when, for example, a deadlock is resolved.
Under openUTM, a transaction is rolled forward by the PEND variable which ends the
transaction and rolled back by rolling back the UTM transaction.

Permitted SQL statements in a CALL DML transaction

Within a CALL DML transaction you can execute all SQL statements which are used to
query and change data, SQL statements for dynamic SQL, some SQL statements for
session control, the CALL statement, and the WHENEVER statement (for the initiation of
the SQL statements, see section “Summary of contents” on page 353).

The following SQL statements are not permitted within a CALL DML transaction:

● COMMIT WORK

● ROLLBACK WORK

Any statements which are not permitted in a SQL-DML transaction are also not permitted:

● SET TRANSACTION

● SET SESSION AUTHORIZATION

● SQL statements for schema definition and administration

● SQL statements for managing the storage structure

● SQL statements for managing user entries

● Utility statements

i If the SET TRANSACTION statement is issued before a CALL DML transaction, the
settings are only valid for existing SQL statements within the following (CALL DML)
transaction. After the transaction is finished the defaults are valid again.

SQL statements in CALL DML transactions Embedding of SQL in programs

46 U22420-J-Z125-12-76

2.6.1 Step-by-step conversion of CALL DML statements

In order to convert existing CALL DML statements to work with the SQL interface, it is
advisable to perform the steps in a given order. Below you can find a brief summary of the
most important steps listed in accordance with the type of application or statement.

TIAM application

If you want to convert a CALL DML transaction into a TIAM statement for use with the SQL
interface, proceed as follows:

1. One at a time, replace all CALL DML statements other than BTA, ETA and RTA with
SQL statements

2. Then replace the BTA, ETA and RTA statements:
– delete BTA without replacement
– replace ETA with COMMIT WORK
– replace RTA with ROLLBACK WORK

openUTM application

If you want to convert a CALL DML transaction into an openUTM application for use with
the SQL interface, proceed as follows:

1. One at a time, replace all CALL DML statements other than BTA, ETA and RTA with
SQL statements

2. Then replace the BTA, ETA and RTA statements:
– delete BTA without replacement
– delete ETA without replacement
– replace RTA with RSET (RSET is a function at the openUTM KDCS interface)

Embedding of SQL in programs SQL statements in CALL DML transactions

U22420-J-Z125-12-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
2

CALL SQL statements outside a CALL DML transaction

In order to convert CALL DML statements which are issued outside of CALL DML
transactions for use at the SQL interface, you must replace them by the corresponding SQL
statements. In this case, there are no restrictions concerning permitted SQL statements.
Note that most SQL statements implicitly open a transaction. This must be closed before
the next CALL DML statement.

2.6.2 Using User-Close and release session resources

The User-Close in a CALL DML application closes all the requesting user’s logical files.
After the successful execution of User-Close, all resources of the logical files of this user
are released.
Within an SQL application it is not possible to terminate an SQL conversation explicitly. The
resources of an SQL conversation are not released until the associated TIAM application
has terminated. Under openUTM, the resources of an SQL conversation are released when
the associated UTM conversation terminates.

There is no statement in SQL which is equivalent to a User-Close in a CALL DML
application. If a CALL DML statement contains multiple User-Close statements you should
therefore increase the DBH option USERS before you switch to the SQL interface. In this
way, you can avoid resource bottlenecks.

2.6.3 Setting the isolation level

The locking concept which ensures data consistency is implemented in CALL DML
applications in the following way: if a retrieval statement accesses the user data in a CALL
DML table, SESAM/SQL DBH locks the relevant record against access by other
transactions until the executing transaction is either terminated or rolled back. Depending
on the Open mode a shared or exclusive lock is set. In addition, SESAM/SQL permits the
following modifications of the locking concept for individual CALL DML statements:

– reading without a lock (Read No Lock)
– ignoring the lock (Read No Wait)
– reading without a lock and ignoring the lock

When a CALL DML transaction is converted it is advisable to change the locking behavior
as little as possible. If a shared or exclusive lock is set for a CALL DML transaction, you
should use the SQL statement SET TRANSACTION to set the isolation level
REPEATABLE READ prior to the transaction.

SQL statements in CALL DML transactions Embedding of SQL in programs

48 U22420-J-Z125-12-76

If the locking behavior for individual CALL DML applications has been changed, it is
advisable to use the pragma ISOLATION LEVEL. You can use this to define a specific
isolation level for the corresponding SQL statement which is equivalent to the locking
behavior of the associated CALL DML statement:

● replace “Read No Lock“ with READ COMMITED

● replace “Read No Lock and Read No Wait“ with READ UNCOMMITED

Only in the case of “Read No Lock“ SESAM/SQL ignorant of the corresponding isolation
level. Here, you should decide on a case-by-case basis whether the isolation level READ
COMMITED or READ UNCOMMITED is more suitable.

U22420-J-Z125-12-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3 Lexical elements and names

This chapter describes the following:

● SESAM/SQL character repertoire

● Lexical units

● Pragmas and annotations

● Names

3.1 SESAM/SQL character repertoire

The SESAM/SQL character repertoire consists of letters, digits and special characters.

Letters are uppercase letters A-Z and lowercase letters a-z (without umlauts and ß).

Digits are the characters 0-9.

The following are special characters:

" ’ : ; , . - & | () = + * / < > ? % _ [] Ë(space)

Lexical units Lexical elements and names

50 U22420-J-Z125-12-76

3.2 Lexical units

The text sequences formed from the SQL character repertoire are divided into lexical units.
An SQL statement consists of the following lexical units:

● strings

● numerics

● delimiter symbols

● Separators

● Comments

3.2.1 Strings

Examples of character strings are the SQL keywords and names, as well as alphanumeric
literals, national literals and time literals.

Strings for SQL keywords

An SQL keyword is a sequence of uppercase or lowercase letters. An SQL keyword is not
enclosed in double or single quotes. You will find a list of all SQL keywords in the section
“SQL keywords” on page 745.

Example: SELECT

In this manual, all SQL keywords appear in uppercase letters to distinguish them from the
rest of the text.

Strings for names

The syntax for names is described in the section “Names” on page 69.

 String Delimiter Numeric

SELECT onum , order_text FROM orders WHERE order_num = 10001

 Separator

symbol

Lexical elements and names Lexical units

U22420-J-Z125-12-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

Strings for literals

Strings for alphanumeric literals, national literals and time literals are enclosed in single
quotes (see section “Alphanumeric literals” on page 106, section “National literals” on
page 108 and section “Time literals” on page 117).

Example: 'Miller'

3.2.2 Numerics

A numeric is a sequence made up of the digits 0-9. Numeric literals are constructed from
numerics and the characters + - . E.

Example: 314

The syntax for numeric literals is described in section “Numeric literals” on page 115.

3.2.3 Delimiter symbols

Examples of the delimiter symbols are the operators and the following special characters:

: ; , . () [] ?

Lexical units Lexical elements and names

52 U22420-J-Z125-12-76

Operators

Operators are used to create expressions and predicates. The following table provides an
overview of the operators defined in SESAM/SQL:

The meaning of the operators is explained in detail in the chapter “Compound language
constructs” on page 133.

3.2.4 Separators

You use separators to separate lexical units. Separators are blanks, newline markers and
comments.

3.2.5 Comments

SQL allows you to add comments for the purpose of documenting SQL statements.
Comments start with the character string -- and end with the end of the line. There are also
parenthesized comments which start with /* and end with */ and which can also be nested.

Pragmas and annotations are also considered comments (see section “Pragmas and
annotations” on page 53).

In dynamic SQL statements, no other comments which start with -- are allowed beside
pragmas.

Operator Meaning

* Multiplication

/ Division

+ Addition

- Minus sign

= Equal to

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

|| Concatenation

Table 7: Operators

Lexical elements and names Pragmas and annotations

U22420-J-Z125-12-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.3 Pragmas and annotations

Pragmas and annotations are special SQL comments which are interpreted by
SESAM/SQL. You can use them to provide information for the execution of SQL or utility
statements. Pragmas and annotations containing syntax errors are treated as comments
and ignored by SESAM/SQL.

A pragma can only be contained at the start of an SQL or utility statement. They may be
preceded only by comments (including further pragmas) and delimiters. Pragmas have an
effect on the entire statement, including the views used. The PREFETCH pragma even has
an effect on all operators with a cursor.

An annotation can only be contained at certain positions in the text of a statement.
Irrespective of its position, it has an effect only on one particular operation in the statement.
Only one annotation can ever be contained at each of these positions. However, a
statement can contain multiple annotations and also the views used.

Pragmas and annotations have an effect only in the case of particular sets of statements,
otherwise they are ignored. For information on using pragmas in routines, see section
“Pragmas in routines” on page 339.

Pragmas and annotations are used for different purposes. They are described in various
SESAM/SQL manuals, see the tables on the following pages.

Format

pragma ::= --%PRAGMA pragma_text,... end_of_line

annotation ::= /*% annotation_text %*/

Pragmas and annotations Lexical elements and names

54 U22420-J-Z125-12-76

pragma_text
A string of keywords, literals and names.
The string may contain blanks but no other delimiters.

The formats for pragma_text and its effect are described in the places specified in the
table below:

When you specify more than one pragma beginning with the same keyword in a
statement, the last one specified is used. However, regardless of their order the
IGNORE and USE pragmas are interpreted according to special rules.

pragma_text begins with Meaning For description see

AUTONOMOUS
TRANSACTION

Write data independently of the
surrounding transaction

page 56

CHECK Observe integrity constraints “SQL Reference Manual Part
2: Utilities” manual

DATA TYPE Use old CALL-DML types page 57

DEBUG ROUTINE Receive error information for
routines

page 58

DEBUG VALUE Receive information for
assignments in routines

page 59

EXPLAIN Output access plan page 61

IGNORE Ignore index “Performance” manual

ISOLATION LEVEL Define isolation level page 63

JOIN Select join method “Performance” manual

KEEP JOIN ORDER Retain join order “Performance” manual

LIMIT
ABORT_EXECUTION

Limit resource utilization page 64

LOCK MODE Set lock mode page 65

LOOP LIMIT Limit number of loop passes page 65

OPTIMIZATION Restrict access planning “Performance” manual

PREFETCH Control block mode page 66

SIMPLIFICATION Control optimization techniques “Performance” manual

USE Use index “Performance” manual

UTILITY MODE Control transaction management page 68

Table 8: pragmas

Lexical elements and names Pragmas and annotations

U22420-J-Z125-12-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

end_of_line
New line in the SQL source text.
When the SQL text is specified as a string in a PREPARE or EXECUTE IMMEDIATE
statement, the alphanumeric character X'15' in this string means new line.

annotation_text
A string of keywords.
The string may contain blanks and new lines, but no comments.

An annotation must follow a keyword. Only blanks and new lines may be contained
between these, but no comments. The preceding keyword determines the permitted
format of annotation_text and the effect of the annotation. An annotation which does not
comply with these rules is regarded as a comment and ignored.

The formats for annotation_text and its effects are described in the place specified in the
table below:

If a pragma and an annotation would have different effects on an operation in a statement
(e.g. selection of different Join algorithm), the annotation normally has priority. The
description of the annotation contains the details.

Annotation after keyword Meaning For description see

JOIN Select join algorithm “Performance” manual

CACHE Cache CSV file in
temporary file

“Performance” manual

VOLATILE Always calculate function
value anew

page 335

IMMUTABLE Do not calculate function
value anew in
uncorrelated function calls

page 335

Table 9: Annotations

Pragmas and annotations Lexical elements and names

56 U22420-J-Z125-12-76

3.3.1 AUTONOMOUS TRANSACTION pragma

The pragma AUTONOMOUS TRANSACTION enables data to be written to a database
irrespective of the surrounding transaction.
In particular, the data is written persistently to the database before the SQL statement
ROLLBACK WORK has possibly executed the transaction.

The pragma may only be specified in SQL statements for modifying data, i.e. in INSERT,
UPDATE (search condition satisfied), DELETE (search condition satisfied), MERGE, and
CALL. If the pragma is specified in statements for querying data, the statement is rejected
with SQLSTATE.

The pragma may not be used in routines.

AUTONOMOUS TRANSACTION

Notes

● The SQL statement after the pragma AUTONOMOUS TRANSACTION is executed in
the user’s current transaction, but in a separate runtime environment (own thread, own
transaction context). The user’s transaction-control statements have no effect.

The internal user identification (APPLICATION-NAME=AUTTRAN) is used, see the
“Database Operation” manual. It is visible in information outputs while the autonomous
transaction is executing. However, an autonomous transaction cannot be administered.

● Lock conflicts
The transaction context of the autonomous transaction is independent of the
application’s surrounding transaction and of other transactions.
On the one hand, this can lead to a deadlock between the autonomous transaction and
the surrounding transaction. This deadlock is resolved by resetting the autonomous
transaction. The autonomous transaction is reported to the SQLSTATE 81SAT.
On the other hand, this can lead to a deadlock between the autonomous transaction
and other transactions. Such deadlocks are resolved by resetting the “least costly”
transaction. When the autonomous transaction is affected by this, the SQLSTATE
81SAT is reported to it.

● Canceling the application
When the application which triggered thr autonomous transaction aborts, first the
autonomous transaction is canceled, and then the current transaction or the
application.

Lexical elements and names Pragmas and annotations

U22420-J-Z125-12-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.3.2 DATA TYPE pragma

The DATA TYPE pragma indicates that a column can only be created in the attribute format
for CALL DML tables.

This pragma only takes effect if it is specified in the ALTER TABLE ... ADD COLUMN
statement and the table is a CALL DML table.

DATA TYPE OLDEST

Pragmas and annotations Lexical elements and names

58 U22420-J-Z125-12-76

3.3.3 DEBUG ROUTINE pragma

The DEBUG ROUTINE pragma provides additional information on an execution of a routine
which is possibly errored. This information can be read using the
SYS_ROUTINE_ERRORS view of the SYS_INFO_SCHEMA, see page 716.

The DEBUG ROUTINE pragma is effective only outside routines. It is only effective ahead
of the SQL statement CALL and ahead of the DML statements DECLARE CURSOR,
DELETE, INSERT, MERGE, SELECT, and UPDATE. When specified ahead of DML
statements, the pragma has an effect on all User Defined Functions (UDFs) and the
routines of the DML statement these contain.

i The pragma has been renamed SESAM/SQL V9.0. For compatibility reasons,
DEBUG PROCEDURE can also still be specified.

DEBUG ROUTINE [] [LEVEL unsigned_integer]

unsigned_integer
When unsigned_integer > 0, additional information is collected for the executed SQL
statements of the current routine.

unsigned_integer = 1 is the default value when the LEVEL clause is not specified.

When unsigned_integer = 0, the pragma is ignored.

The following approach makes sense:
The pragma is initially active in an application with a value > 0 in, and then later (without
changing the text length) disabled by the value 0.

USER
Depending on the LEVEL set, information is collected for the SQL statements which are
prefixed by the DEBUG VALUE pragma (see page 59).

ALL
In addition to the DEBUG information mentioned under USER, general DEBUG
information is also created (irrespective of the LEVEL set).
For example, every SQLSTATE or SQLrowcount reported by an errored SQL statement
is recorded. Internal calls of routines are also recorded. The position of an SQL
statement within the text of a routine is normally also recorded.

ALL
USER

Lexical elements and names Pragmas and annotations

U22420-J-Z125-12-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.3.4 DEBUG VALUE pragma

The DEBUG VALUE pragma provides additional information for the following SQL
statements.

● SET in routines (procedures and User Defined Functions (UDFs))

● RETURN in User Defined Functions (UDFs)

This information can be read using the SYS_ROUTINE_ERRORS view of the
SYS_INFO_SCHEMA, see page 716.

The DEBUG VALUE pragma is currently only effective before these SQL statements.

DEBUG VALUE [LEVEL unsigned_integer]

unsigned_integer
When unsigned_integer > 0, additional information is collected for the aforementioned
statements when the DEBUG ROUTINE pragma is positioned ahead of the SQL
statement CALL or ahead of a DML statement (for routines contained in this). In
addition, unsigned_integer for DEBUG ROUTINE must be greater than or equal to
unsigned_integer for DEBUG VALUE.

The following information is then collected:

● In the case of SET, the assigned value and the name of the target field (parameter
or local variable)

● In the case of RETURN, the value returned

In the case of strings, long values are, if required, truncated.

unsigned_integer = 1 is the default value when the LEVEL clause is not specified.

When unsigned_integer = 0, the pragma has no effect.

The following approach makes sense:
The pragma is initially active in an application with a value > 0 in, and then later (without
changing the text length) disabled by the value 0.

i The DEBUG VALUE pragma can also remain in the text of a routine after the
end of a test or debugging phase provided the calling SQL statements do not
use the corresponding DEBUG ROUTINE pragma.

Pragmas and annotations Lexical elements and names

60 U22420-J-Z125-12-76

Example

The SET statements of a procedure can be prefixed with the DEBUG VALUE pragma with
various values for unsigned_integer . Calling the routine with the DEBUG ROUTINE pragma
and different values for unsigned_integer causes information to be collected in various
scopes.

CREATE PROCEDURE P (OUT par1 INTEGER,OUT par2 INTEGER)
 MODIFIES SQL DATA
 BEGIN
 --%PRAGMA DEBUG VALUE LEVEL 3
 SET par1 = 42;
 --%PRAGMA DEBUG VALUE LEVEL 10
 SET par2 = 43;
 END

With the procedure call below, only the first assignment (par1=42) is recorded:
-- %PRAGMA DEBUG ROUTINE LEVEL 5
CALL P(mypar1, mypar2)

Both assignments are recorded in the case of the procedure call below:
-- %PRAGMA DEBUG ROUTINE LEVEL 20
CALL P(mypar1, mypar2)

The DEBUG VALUE pragmas can remain unchanged in the text of the routine. They only
have an effect when there is a corresponding unsigned_integer in the DEBUG ROUTINE
pragma.

Lexical elements and names Pragmas and annotations

U22420-J-Z125-12-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.3.5 EXPLAIN pragma

The EXPLAIN pragma is used to output the access plan selected by the optimizer. You can
only use this pragma if the current authorization identifier has the special privilege UTILITY.

This pragma is only effective in the following SQL statements:
– CALL
– cursor description (for dynamic cursors)
– DECLARE CURSOR (for a static cursor)
– DELETE
– INSERT
– MERGE
– SELECT
– UPDATE

In routines, the pragma is ignored, see section “Pragmas in routines” on page 339.

This pragma is only effective in a static statement if you precompile the program while the
database is online.

EXPLAIN INTO file

file
Name of the SAM file into which the explanation is to be output. If the file already exists,
the explanation is appended to the file.

If file includes a BS2000 user ID, this user ID is used. If not, the ID of the Data Base
Handler for the database referenced in the SQL statement is used. In both cases the
DBH must have write permission for the file. You specify an alphanumeric literal for file.
No lowercase letters should be contained in this.

In the case of dynamic statements, the explanation is output when the PREPARE statement
or EXECUTE IMMEDIATE statement is executed. For static statements, the explanation is
output during precompilation.

The explanation comprises the SQL statement and an edited representation of the access
plan. The representation of access plans is described in the “Performance” manual.

You can display the contents of the file with SHOW-FILE. If you want to read the file with
EDT, you must enter the following command:
ADD-FILE-LINK LINK-NAME=EDTSAM,FILE-NAME=file,...,BUFFER-LENGTH=(STD,2),...

In the EDT you can also enter: @OPEN F=file,TYPE=CATALOG

Pragmas and annotations Lexical elements and names

62 U22420-J-Z125-12-76

3.3.6 ISOLATION LEVEL pragma

The ISOLATION LEVEL pragma determines the isolation level for database accesses
performed by an SQL or utility statement.

This pragma is only effective in the following SQL statements:

– CALL and in routines (see section “Pragmas in routines” on page 339)
– cursor description (for dynamic cursors)
– DECLARE CURSOR (for a static cursor)
– DELETE
– INSERT
– MERGE
– SELECT
– UPDATE

ISOLATION LEVEL

v CAUTION!
The ISOLATION LEVEL READ NOWAIT can only be set by Pragma but not within
the SET TRANSACTION Statement. If you have specified the ISOLATION LEVEL
pragma, any database access performed in connection with this statement takes
place under CONSISTENCY LEVEL 1, see page 571.

If you specify a lower isolation level than specified for the transaction, the isolation
level defined for the transaction is no longer guaranteed.

The isolation levels are described in the section “SET TRANSACTION - Define transaction
attributes” on page 569.

If you have specified the ISOLATION LEVEL pragma, any database access performed in
connection with this statement takes place under this isolation level.

READ UNCOMMITTED
READ NOWAIT
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

Lexical elements and names Pragmas and annotations

U22420-J-Z125-12-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.3.7 LIMIT ABORT_EXECUTION pragma

The LIMIT ABORT_EXECUTION pragma controls the use of resources during the
processing of an SQL statement. This pragma allows you to systematically provide
statements with a local stop criterion. This local stop criterion is more restrictive than the
global stop criterion ABORT-EXECUTION required for complex batch programs. ABORT-
EXECUTION is set using RETRIEVAL-CONTROL or MODIFY-RETRIEVAL-CONTROL.

The local stop criterion set using LIMIT ABORT_EXECUTION

● is only valid for the current request.

● cannot be overridden by MODIFY-RETRIEVAL-CONTROL.

● has no effect if the pragma is not in a “searching“ statement.

● has no effect if the value has been specified as 0 or the specified value is greater than
that of the global stop criterion. In this case the value of the global stop criterion applies.

If several LIMIT ABORT_EXECUTION pragmas are specified in one request, the last valid
pragma value will apply. If no LIMIT ABORT_EXECUTION pragma is specified, the global
stop criterion will apply.

In a sequence of DECLARE CURSOR, OPEN and FETCH statements, the pragma must
be specified in the DECLARE CURSOR statement. Its effect depends on the search path
selected, but only when the OPEN or FETCH statement is executed.

The pragma can also be used in CALL and in routines, see section “Pragmas in routines”
on page 339.

LIMIT ABORT_EXECUTION block_access

block_access
This argument allows you to specify the number of logical block access instances. Once
this number has been reached, no more hits will be detected and the statement will be
terminated. The number of block access instances should be specified as an unsigned
integer ranging from 0 to 2147483647.

Pragmas and annotations Lexical elements and names

64 U22420-J-Z125-12-76

3.3.8 LOCK MODE pragma

The LOCK MODE pragma sets the lock mode. It is only effective in SQL-DML statements.

The pragma can be used in CALL and in routines, see section “Pragmas in routines” on
page 339.

LOCK MODE EXCLUSIVE

If LOCK MODE EXCLUSIVE is specified, every access to the database connected directly
or indirectly with this SQL statement involves exclusive locks. Otherwise the lock mode is
defined by the system.

3.3.9 LOOP LIMIT pragma

The LOOP LIMIT pragma enables you to limit the number of loop passes in a routine.

The LOOP LIMIT pragma is effective ahead of the SQL statement CALL and ahead of other
DML statements. When specified ahead of DML statements, the pragma has an effect on
all User Defined Functions (UDFs) and the routines of the DML statement these contain.
When placed ahead of SQL statements, the pragma has no effect in a routine.

LOOP LIMIT unsigned_integer

unsigned_integer
Specifies the maximum number of passes for a loop.

When unsigned_integer=0, the number of loop passes is unlimited.
unsigned_integer=0 is also the default value when the pragma is not specified.

When this pragma is specified, the loop body is canceled after the specified number of
passes has been executed for each called loop of the routine concerned, and an
SQLSTATE is reported. This enables endless loops to be avoided.

Lexical elements and names Pragmas and annotations

U22420-J-Z125-12-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.3.10 PREFETCH pragma

The PREFETCH pragma controls the block mode of the SQL statement FETCH (for
positioning the cursor). Block mode accelerates the execution of the FETCH statement. It
is effective only when FETCH positions the cursor on the next record in the cursor table
(FETCH NEXT...).

The PREFETCH pragma allows you to activate block mode and specify a blocking
factor (n). When the first FETCH NEXT... statement is executed, the column values of the
current record are read, and the next n -1 records of the associated cursor table are stored
in a buffer. When the next n-1 FETCH NEXT... statements that specify the same cursor are
executed, the next record can be accessed directly without involving the DBH.

The PREFETCH pragma is effective only in the following SQL statements:

● DECLARE CURSOR (for a static cursor)

● cursor description (for dynamic cursors)

If the cursor description of the DECLARE CURSOR statement or the cursor description for
dynamic cursors contains a FOR UPDATE clause, the PREFETCH pragma is ignored and
block mode is not activated.

When block mode is activated, it makes the cursor defined in the DECLARE CURSOR
statement or the cursor description the prefetch cursor.

Block mode cursors are not supported in linked-in mode.

PREFETCH blocking_factor

blocking_factor
You must enter an integer without a preceding sign as the blocking factor (data type
SMALLINT).

If the blocking factor (n) is greater than 0, up to n-1 records of the specified cursor table
are stored in a buffer.

If the blocking factor is 0, the PREFETCH pragma has no effect.

You can enable/disable the pragma and thus activate/deactivate block mode by
specifying either a value greater than 0 or the value 0 itself for n.

Pragmas and annotations Lexical elements and names

66 U22420-J-Z125-12-76

When block mode is activated, the following restrictions apply:

● Only the FETCH NEXT statement is permitted for the prefetch cursor cursor in the same
compilation unit. The following SQL statements can no longer be executed:

– UPDATE ... WHERE CURRENT of cursor

– DELETE ... WHERE CURRENT of cursor

– STORE cursor

– FETCH cursor with a cursor position other than NEXT or with a different INTO
clause to the first FETCH NEXT statement.

● After the execution of a FETCH NEXT statement whose INTO clause contains the
name of an SQL descriptor area, this SQL descriptor area must not be modified by a
SET DESCRIPTOR, DESCRIBE or DEALLOCATE DESCRIPTOR statement.

● The prefetch cursor must always be addressed by the same FETCH NEXT statement,
i.e. by the same statement in a loop or subroutine.

Lexical elements and names Pragmas and annotations

U22420-J-Z125-12-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.3.11 UTILITY MODE pragma

The UTILITY MODE pragma determines whether transaction logging is effective in the SQL
statement in which this pragma is specified. Transaction logging makes it possible to roll a
transaction back to a consistent state.

The UTILITY MODE pragma is only effective in the SQL statement ALTER TABLE:

It only works if the ALTER TABLE statement adds, changes or deletes columns in a base
table. In an ALTER TABLE statement which adds or deletes integrity constraints, the
UTILITY MODE pragma has no effect.

UTILITY MODE

ON Transaction logging is deactivated during the execution of the SQL statement. The
associated ALTER TABLE statement does not open a transaction.
No save data for the ALTER TABLE statement is stored. If an error occurs which
results in an interruption of the statement, the transaction cannot be rolled back to
a consistent state. When an error occurs, the space containing the base table is
damaged and must be repaired using the RECOVER utility statement (see the
“SQL Reference Manual Part 2: Utilities”).

OFF The pragma has no effect.
The transaction logging remains active.

An ALTER TABLE statement, for which the UTILITY MODE pragma is switched ON and is
effective, is aborted with an error message in the following cases:
– when a transaction is active
– when the ALTER TABLE statement deletes a column, i.e. using DROP COLUMN

column CASCADE
– when the ALTER TABLE statement deletes a column and an index for this column is

still defined
– when the ALTER TABLE statement adds a column with an index definition for this

column

If no UTILITY MODE pragma is specified for an ALTER TABLE statement then the default
setting, UTILITY MODE OFF, is effective.

v CAUTION!
If you use the UTILITY MODE ON pragma then, after an error or consistency check,
the space containing the base table to be changed is defective. To avoid data loss,
you should save the space before issuing the ALTER TABLE statement. The save
is necessary if you want to use the utility statement RECOVER to repair it.

ON
OFF

Names Lexical elements and names

68 U22420-J-Z125-12-76

3.4 Names

Names are strings used to identify objects.

In SESAM/SQL, there are names for the following SQL objects:

– database (catalog)

– Schema

– Space

– Storage group

– table (base table, view, correlation)

– Column

– Index

– Integrity constraint

– Authorization identifier

– cursor

– Routine (routine parameter, local variable, error)

– label

– dynamic statement:
The name of a dynamic statement is referred to in this manual as the statement
identifier to distinguish it from the actual name of the statement, such as SELECT, for
example.

– symbolic attribute name of a CALL DML column:
The syntax for the symbolic attribute name of a column is the same as the syntax for
symbolic attribute names in SESAM/SQL Version 1.x.

– host variable:
The name of a host variable must observe the conventions of the programming
language involved. These conventions are described in the manuals for the relevant
programming language and they are not explained here.

Lexical elements and names Names

U22420-J-Z125-12-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.4.1 Unqualified names

Unqualified names are either regular names consisting of letters, digits and the underscore
character that are not enclosed in double quotes, or special names, which must be
enclosed in double quotes.

unqual_name ::=

regular_name ::= letter [] ...

special_name ::= "character..."

letter ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|
A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

digit ::= 0|1|2|3|4|5|6|7|8|9

regular_name
Regular name, which is not enclosed in double quotes. A regular name cannot be a
reserved SQL keyword (see section “SQL keywords” on page 745).

letter
Lowercase letter between a and z or uppercase letter between A and Z of the
SESAM/SQL character repertoire. Lowercase letters are automatically converted
into uppercase letters. Umlauts cannot be used.

digit
Digit between 0 and 9.

_ Underscore character.

special_name
Special name, which must be enclosed in double quotes. A special name can be a
reserved SQL keyword and can include special characters.

character
The first character cannot be the underscore character. Otherwise, you can use any
printable character (i.e. ÏX'40') in the SESAM/SQL character repertoire for character. A
distinction is made between uppercase and lowercase letters. If character is the double
quote character itself (X'7F'), it must be represented by two immediately adjacent
double quotes. The pair of double quote characters is considered a single character.

regular_name
special_name

letter
digit
_

Names Lexical elements and names

70 U22420-J-Z125-12-76

Identical unqualified names

Two regular names are considered identical if, after the letters have been converted into
uppercase letters, the characters at the corresponding positions in each name are identical.

A regular name and a special name are considered identical if, after the letters in the regular
name have been converted into uppercase letters and the quotations have been removed
from the special name, the characters at the corresponding positions in each name are
identical. If the strings have different lengths, the shorter one is padded with blanks.

Two special names are considered identical if, after the quotations have been removed, the
characters at the corresponding positions in each name are identical. If the strings have
different lengths, the shorter one is padded with blanks.

Example

The following unqualified names are considered identical:

ABc
abc
"ABC"
"ABC "

The following unqualified names are different:

Abc and "Abc"
"ABC" and "abc"

Identical names can be used interchangeably any time they occur.

Lexical elements and names Names

U22420-J-Z125-12-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

The following names of database objects are unqualified names:

::= unqual_name

statement_id
Name of a dynamic statement. The statement identifier must be unique within the
compilation unit.
The statement identifier can be up to 18 characters long.

authorization_identifier
Name of an authorization identifier. The first 10 characters of the authorization identifier
must be unique within the database.

If the name of the authorization identifier is specified without double quotes, it can
include only letters and digits. If it is enclosed in double quotes, it must start with an
uppercase letter and can only include uppercase letters, digits and the special
characters “-” and “.”. The special characters cannot occur at the end of the significant
part of the authorization identifier (the first 10 characters).
The strings “..”, “.-” and “-.” are not permitted.
The string “--” is permitted.
The authorization identifier can be up to 18 characters long.

catalog
Name of a database. If the name of the database is specified without double quotes, it
can include only letters and digits. If it is enclosed in double quotes, it must start with an
uppercase letter and can only include uppercase letters, digits and the special
characters “-” and “.”. The special characters cannot occur at the end of the database
name. The strings “..”, “.-” and “-.” are not permitted. The string “--” is permitted.
The database name may be up to 18 characters long.

statement_id
authorization_identifier
catalog
cursor
unqual_base_table_name
unqual_constraint_name
unqual_index_name
unqual_routine_name
unqual_schema_name
unqual_space_name
unqual_stogroup_name
unqual_view_name
error_name
correlation_name
local_variable
label
routine_parameter
column

Names Lexical elements and names

72 U22420-J-Z125-12-76

cursor
Name of a cursor. A cursor name can only occur once in a DECLARE CURSOR
statement within a compilation unit.
The cursor name may be up to 18 characters long.

unqual_base_table_name
Name of a base table. The unqualified name of a base table must be different from the
other base table names and view names in the schema.
The unqualified base table name may be up to 31 characters long.

unqual_constraint_name
Name of an integrity constraint. The name must be different from the other integrity
constraint names in the schema.
The unqualified name of an integrity constraint can be up to 31 characters long.

unqual_index_name
Name of an index. The unqualified index name must be unique within the index names
of the schema.
The unqualified index name may be up to 18 characters long.

unqual_routine_name
Name of a routine. The unqualified routine name must be different from the other
routine names in the schema.
The unqualified routine name may be up to 31 characters long.

unqual_schema_name
Name of a schema. The unqualified schema name must be unique within the schema
names of a database.
The unqualified schema name may be up to 31 characters long.

unqual_space_name
Name of a space. The first 12 characters of the unqualified space name must be unique
within the space names of a database. If the space name is specified without double
quotes, it can include only letters and digits. If it is enclosed in double quotes, it must
start with an uppercase letter and can only include uppercase letters, digits and the
special characters “-” and “.”. The special characters cannot occur at the end of the
significant part of the space name (the first 12 characters).
The strings “..”, “.-” and “-.” are not permitted.
The string “--” is permitted.
The unqualified space name may be up to 18 characters long.

Lexical elements and names Names

U22420-J-Z125-12-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

unqual_stogroup_name
Name of a storage group. The unqualified name of the storage group must be unique
within the storage group of a database.
The unqualified name of a storage group can be up to 18 characters long.

unqual_view_name
Name of a view. The unqualified name of a the view must be different from the other
base table names and view names in the schema.
The unqualified view name may be up to 31 characters long.

exception_name
Name of an exception or SQLSTATE in a COMPOUND statement.
All exception names in the COMPOUND statement must differ from each other.
The exception name may be up to 31 characters long.

correlation_name
Rename a table.
The correlation name may be up to 31 characters long.

local_variable
Name of a local variable in a COMPOUND statement. The variable name must be
unique in the COMPOUND statement and differ from all parameter names in the
routine.
The variable name may be up to 31 characters long.

label
Name of a label in a routine. The label may not be identical to another label in the body
statement.
Reserved keywords and the following names are not permitted as label names:
ATOMIC, DO, ELSEIF, ITERATE, IF, LEAVE, LOOP, REPEAT, RESIGNAL, SIGNAL,
UNTIL, WHILE.
The label name may be up to 31 characters long.

routine_parameter
Name of a routine parameter. The parameter name must be unique within the routine.
The parameter name may be up to 31 characters long.

column
Name of a column. The column name must be unique within the table.
The unqualified column name may be up to 31 characters long.

Names Lexical elements and names

74 U22420-J-Z125-12-76

3.4.2 Qualified names

You can qualify the names of objects in an SQL statement in order to uniquely identify
different objects that have the same name. The following qualifications are possible:

● qualification with the database name for:
schema, space, storage group, table, index, integrity constraint and routine

● qualification with the schema name for:
table, index, integrity constraint and routine

● qualification with the table name or the correlation name for:
column (see page 279)

The syntax overview below illustrates these possibilities:

qualified_name ::=

index ::= [[catalog.]unqual_schema_name.]unqual_index_name

integrity_constraint_name::= [[catalog.]unqual_schema_name.]unqual_constraint_name

routine::= [[catalog.]unqual_schema_name.]unqual_routine_name

schema ::= [catalog.]unqual_schema_name

space ::= [catalog.]unqual_space_name

stogroup ::= [catalog.]unqual_stogroup_name

table ::=

index
integrity_constraint_name
routine
schema
space
stogroup
table

[[catalog.]unqual_schema_name.]unqual_basis_table_name
[[catalog.]unqual_schema_name.]unqual_view_name
correlation_name

Lexical elements and names Names

U22420-J-Z125-12-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

Implicit qualification

The following implicit qualification is valid:

● If no schema qualification is specified, the name refers to the default schema.

● If no catalog qualification is specified, the name refers to the default database.

The default schema and database are set with the precompiler option SOURCE-
PROPERTIES (see the “ESQL-COBOL for SESAM/SQL-Server” manual). The default
database and schema names can be redefined with SET CATALOG and SET SCHEMA
respectively. The redefined default values are valid for all statements prepared with
PREPARE or executed with EXECUTE IMMEDIATE from the time redefinition is performed
up until the defaults are redefined again or until the end of the SQL session.

i Other rules for implicit qualification apply to CREATE and GRANT statements within
a CREATE SCHEMA statement (see section “CREATE SCHEMA - Create schema”
on page 420).

Example

Qualifying a table name indicates the schema and database to which the table belongs:

ordercust.orderproc.customers:
CUSTOMERS table in the ORDERPROC schema of the ORDERCUST database

orderproc.customers:
CUSTOMERS table in the ORDERPROC schema of the default database.

customers:
CUSTOMERS table in the default schema

Names Lexical elements and names

76 U22420-J-Z125-12-76

Overview

Name type Examples Meaning

Regular name Customers
customers

“Customers” and “customers” are
equivalent

job_2 Numerics and the underscore
character are permitted

Special name "TAB-ELLE"
";$&%!"

Special characters are permitted

"with_2_quotes:""""" Quotes must be entered twice

Unqualified name orderproc Schema ORDERPROC

Qualified name ordercust.orderproc.View1 Table VIEW1 in the schema
ORDERPROC of the database
ORDERCUST

"View"."SELECT(5)" Single column SELECT(5) in the
table View

"VIEW"."SELECT"(5) Occurrence of the multiple column
SELECT of the table VIEW

A.order_num Column name ORDER_NUM
qualified by the correlation name A

Table 10: Names in SESAM/SQL

Lexical elements and names Names

U22420-J-Z125-12-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
3

3.4.3 Defining names

The name of an object is usually defined when the object itself is defined using the
appropriate SQL statement. The name has then been introduced and the object can be
referenced using this name in any subsequent statements.

The table below illustrated how the various names can be defined or declared:

SQL object SQL statement or part of statement

database (catalog) CREATE CATALOG (utility statement)

Schema CREATE SCHEMA

TABLE
Base table
View
Correlation

CREATE TABLE
CREATE VIEW
Table specification in query expression

Column CREATE TABLE, ALTER TABLE
CREATE VIEW, query expression

Integrity constraint CONSTRAINT clause in
CREATE TABLE, ALTER TABLE

Index CREATE INDEX

Routine
Procedure
User Defined Function (UDF)

CREATE PROCEDURE
CREATE FUNCTION

Storage group CREATE STOGROUP

Space CREATE SPACE

Authorization identifier CREATE USER

cursor DECLARE CURSOR

statement identifier PREPARE

Table 11: Defining names

Names Lexical elements and names

78 U22420-J-Z125-12-76

U22420-J-Z125-12-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4 Data types and values

This chapter is subdivided into the following sections:

● Overview

● Data types

● Values

● Assignment rules

It has two parts. After an overview of the SESAM/SQL data types and their corresponding
range of values, the first part provides you with all the information you need to know about
data types with regard to defining table columns:

● syntax

● range of values defined by the data type

● Compatibility between data types

i In routines, the routine parameters and the local variables also have a data type.

The second part provides you with all the information you need for using the values of a
data type:

● syntax of the literals

● rules for entering the values in table columns, routine parameters, and local variables

● rules for using values in expressions and search conditions

● rules governing data type compatibility and conversion during assignment

Overview Data types and values

80 U22420-J-Z125-12-76

4.1 Overview of data types and the associated value ranges

The values, or data, that a table contains must lie within a specific range of values. The
range of values is determined by the data type.

4.1.1 Data type groups

SESAM/SQL supports the following data types:

● Strings:

– Alphanumeric data types:
– CHARACTER
– CHARACTER VARYING

i In the SESAM/SQL suite of manuals the term “alphanumeric” expresses the
affiliation to an EBCDIC character set, e.g. alphanumeric data type,
alphanumeric value, alphanumeric literal. The short forms CHAR and
VARCHAR are used in this manual for the alphanumeric data types.

– National data types:
– NATIONAL CHARACTER
– NATIONAL CHARACTER VARYING

i In the SESAM/SQL suite of manuals the term “national” expresses the affiliation
to a Unicode character set, e.g. national data type, national value, national
literal. The short forms NCHAR and NVARCHAR are used in this manual for the
national data types.

● Numeric data types

– Integer data types:
– SMALLINT
– INTEGER

– Fixed-point number data types:
– NUMERIC
– DECIMAL

– Floating-point number data types:
– REAL
– DOUBLE PRECISION
– FLOAT

Data types and values Overview

U22420-J-Z125-12-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

● Time data types:
– DATE
– TIME
– TIMESTAMP

4.1.2 Range of values

Each data type defines a corresponding range of values. Like the data type groups, there
are alphanumeric values, national values, numeric values and time values. There are also
NULL values (see section “NULL value” on page 104).

Appropriate literals and rules on how the values can be used exist for these values. These
are described in the section “Values” on page 100.

4.1.3 Column

The rows in a table are divided into columns. Each column has a name and data type.

SESAM/SQL distinguishes between atomic and multiple columns.

In an atomic column, exactly one value can be stored in each row.

In a multiple column, several values of the same type can be stored in each row. A multiple
column is made up of a number of column elements. In the case of a single column, a single
value is stored for each row. The value of a column element is called an occurrence. The
value of a multiple column is called an aggregate. An aggregate is made up of the
occurrences of the individual column elements.

A column element is referenced within the multiple column using its position number.
Contiguous subareas of a multiple column are specified using the position numbers of the
first and last column elements in the subarea.

Example

X[2] or X(2)
Second column element of the multiple column X

X[4..7] or X(4..7)
Subarea consisting of column elements 4, 5, 6, and 7 of the multiple column X

4.1.4 Parameters of routines and local variables

In routines, parameters and local variables can be used. Parameters and local variables
have a name and a data type. In contrast to columns, they cannot be multiple.

Data types Data types and values

82 U22420-J-Z125-12-76

4.2 Data types

You must specify a data type for each column in a table when you define the columns with
CREATE TABLE or ALTER TABLE. The data type defines the type of values that you can
enter in the column. After you have defined a table, you can use ALTER TABLE to a certain
extent to change the existing data type.

BLOBs (Binary Large Objects) are based on existing data types in SESAM/SQL and are
therefore not a new data type in themselves. Information on their structure and how to use
them can be found in the chapter “SESAM-CLI” on page 587 and in the “Core manual”.

Excluding the NULL value

If you want to exclude the NULL value for a column, you must specify this when you define
the table with CREATE TABLE or ALTER TABLE by including a NOT NULL constraint (see
section “Column constraints” on page 266).

Multiple columns

All the elements in a multiple column have the same data type. You can use any data type
except VARCHAR and NVARCHAR for a multiple column. The dimension of a multiple
column indicates the number of elements; it is specified when the data type is assigned and
must be between 1 and 255.

Data types and values Data types

U22420-J-Z125-12-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.2.1 Overview of SQL data types

The following overview indicates the syntax for all SQL data types used in column
definitions:

data_type ::=

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

The data types are described in the order in which they are listed in the overview.

[]CHAR[ACTER][(length)]

[] [(cu_length [CODE_UNITS])]

(cu_max [CODE_UNITS])

[]

[dimension]
(dimension)

CHAR[ACTER] VARYING(max)
VARCHAR(max)

[dimension]
(dimension)

NATIONAL CHAR[ACTER]
NCHAR

NATIONAL CHAR[ACTER] VARYING
NCHAR VARYING
NVARCHAR

[dimension]
(dimension)

SMALLINT
INT[EGER]
NUMERIC[(precision[,scale])]
DEC[IMAL][(precision[,scale])]
REAL
DOUBLE PRECISION
FLOAT[(precision)]
DATE
TIME(3)
TIMESTAMP(3)

CHARACTER Alphanumeric data types

84 U22420-J-Z125-12-76

4.2.2 Alphanumeric and national data types

The alphanumeric and national data types are described in the following sections.

CHARACTER - String with a fixed length

You use the data type CHARACTER or CHAR for columns that can store alphanumeric
values of a fixed length (see section “Alphanumeric literals” on page 106).

[] CHAR[ACTER][(length)]

dimension
Unsigned integer between 1 and 255. The column is a multiple column; dimension
indicates the number of column elements. dimension can be enclosed in square
brackets or parentheses.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

length
Unsigned integer between 1 and 256 that indicates the length of the CHAR column.

length omitted:
length=1.

Range of values for CHAR columns

A CHAR column can contain alpnanumeric values of the length specified for the column.

[dimension]
(dimension)

Alphanumeric data types CHARACTER

U22420-J-Z125-12-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

Example

 The CUSTOMERS table contains 6 CHAR columns of varying lengths.
The values that the columns can store are alphanumeric strings with a length of 3,
25, 40 and 50 respectively:

company CHAR(40) NOT NULL

street CHAR(40)

city CHAR(40)

country CHAR(3)

cust_tel CHAR(25)

cust_info CHAR(50)

CHARACTER VARYING Alphanumeric data types

86 U22420-J-Z125-12-76

CHARACTER VARYING - String with a variable length

You use the data type CHARACTER VARYING or VARCHAR for columns that can store
alphanumeric values of a variable length (see section “Alphanumeric literals” on page 106).

max
Unsigned integer between 1 and 32 000 that defines the maximum length of the
VARCHAR column.

Range of values for VARCHAR columns

A VARCHAR column can contain alphanumeric values of any length that are less than or
equal to the specified maximum length.

Example

You define a VARCHAR column description that can store alphanumeric values with a
maximum length of 1000 characters as follows:

description VARCHAR(1000)

CHAR[ACTER] VARYING(max)
VARCHAR(max)

Alphanumeric data types NATIONAL CHARACTER

U22420-J-Z125-12-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

NATIONAL CHARACTER - Strings with a fixed length

The data type NATIONAL CHARACTER or NCHAR is used for columns which can contain
fixed-length national values (see the section “National literals” on page 108).

[] [(cu_length [CODE_UNITS])]

dimension
Unsigned integer between 1 and 255. The column is a multiple column; dimension
indicates the number of column elements. dimension can be enclosed in square
brackets or parentheses.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

cu_length
Unsigned integer between 1 and 128 that defines the length of the NCHAR column in
code units.

cu_length omitted:
cu_length=1.

i In SESAM/SQL the encoding form UTF-16 in which each code unit consists of
2 bytes is used for Unicode strings.

Range of values for NCHAR columns

An NCHAR column can contain national values of the length specified for the column.

Example

 The MANUALS table contains one INTEGER and two NCHAR columns of fixed
length. The values which the NCHAR columns can contain are national strings of
the length 20 or 30:

ord_num INTEGER

language NCHAR(20)

title NCHAR(30)

[dimension]
(dimension)

NATIONAL CHAR[ACTER]
NCHAR

NATIONAL CHARACTER VARYING Alphanumeric data types

88 U22420-J-Z125-12-76

NATIONAL CHARACTER VARYING - Strings with a variable length

The data type NATIONAL CHARACTER VARYING or NVARCHAR is used for columns
which can contain national values (see the section “National literals” on page 108) with a
variable length.

(cu_max [CODE_UNITS])

cu_max
Unsigned integer between 1 and 16000 that defines the maximum length of the
NVARCHAR columns in code units.

i In SESAM/SQL the encoding form UTF-16 in which each code unit consists of
2 bytes is used for Unicode strings.

Range of values for NVARCHAR columns

An NVARCHAR column can contain national values of any length which are less than or
equal to the specified maximum length.

Example

You define an NVARCHAR column description_in_Greek which can contain national
values with a maximum length of 1000 characters as follows:

description_in_Greek NVARCHAR(1000)

NATIONAL CHAR[ACTER] VARYING
NCHAR VARYING
NVARCHAR

Numeric data types SMALLINT

U22420-J-Z125-12-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.2.3 Numeric data types

The numeric data types are described in the following sections.

SMALLINT - Small integer

You use the data type SMALLINT for columns that can store small integers (see section
“Numeric values” on page 115).

[] SMALLINT

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

Range of values for SMALLINT columns

The range of values for a SMALLINT column is -215 to 215-1.

Example

You define a SMALLINT columns quantity as follows:

quantity SMALLINT

[dimension]
(dimension)

INTEGER Numeric data types

90 U22420-J-Z125-12-76

INTEGER - Integers

You use the data type INTEGER for columns that can store large integers (see section
“Numeric values” on page 115).

[] INT[EGER

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

Range of values for INTEGER columns

The range of values for an INTEGER column is -231 to 231-1.

Example

 The SERVICE table has three INTEGER columns:

service_num INTEGER

order_num INTEGER NOT NULL

service_total INTEGER CHECK (service_total > 0)

[dimension]
(dimension)

Numeric data types NUMERIC

U22420-J-Z125-12-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

NUMERIC - Fixed-point numbers

You use the data type NUMERIC for columns that can store fixed-point numbers (see
section “Numeric values” on page 115). Unlike DECIMAL, the internal representation of
NUMERIC is more efficient with regard to output to the screen.

[] NUMERIC[(precision[,scale])]

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

precision
Unsigned integer between 1 and 31 that indicates the total number of significant digits.

precision omitted:
precision=1.

scale
Unsigned integer between 0 and precision that indicates the number of digits to the right
of the decimal point.

scale omitted:
scale=0.

Range of values for NUMERIC fixed-point columns

A NUMERIC fixed-point column can store fixed-point numbers whose value is 0 or ranges
from 10-scale to 10precision-scale-10-scale.

Example

 The SERVICE table has three NUMERIC fixed-point columns:

The vat column contains fixed-point numbers with two digits to the right of the
decimal point and no digits (that are not equal to null) to the left of the decimal point.

service_price NUMERIC(5,0)

vat NUMERIC(2,2)

inv_num NUMERIC(4,0)

[dimension]
(dimension)

DECIMAL Numeric data types

92 U22420-J-Z125-12-76

DECIMAL - Fixed-point numbers

You use the data type DECIMAL for columns that can store fixed-point numbers (see
section “Numeric values” on page 115).

Unlike NUMERIC, the internal representation of DECIMAL is shorter and more efficient for
calculation purposes.

[] DEC[IMAL][(precision[,scale])]

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

precision
Unsigned integer between 1 and 31 that indicates the total number of significant digits.

precision omitted:
precision=1.

scale
Unsigned integer between 0 and precision that indicates the number of digits to the right
of the decimal point.

scale omitted:
scale=0.

Range of values for DECIMAL fixed-point columns

A DECIMAL fixed-point column can contain fixed-point numbers whose value is 0 or ranges
from 10-scale to 10precision-scale-10-scale.

Example

You define a DECIMAL column weight with six digits to the left of the decimal point and
two digits to the right of the decimal point as follows:

weight DECIMAL(8,2)

[dimension]
(dimension)

Numeric data types REAL

U22420-J-Z125-12-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

REAL- Single-precision floating-point numbers

You use the data type REAL for columns that can store single-precision floating-point
numbers (see section “Numeric values” on page 115).

[] REAL

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

Range of values for REAL columns

A REAL column can contain floating-point numbers whose value is 0 or ranges from 5.4E-

79 to 7.2E+75.

The precision of REAL floating-point numbers is 21 binary digits, which is approximately
6 decimal digits.

Example

You define a REAL column weight as follows:

weight REAL

[dimension]
(dimension)

DOUBLE PRECISION Numeric data types

94 U22420-J-Z125-12-76

DOUBLE PRECISION - Double-precision floating-point numbers

You use the data type DOUBLE PRECISION for columns that can store double-precision
floating-point numbers (see section “Numeric values” on page 115).

[] DOUBLE PRECISION

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

Range of values for DOUBLE PRECISION columns

A DOUBLE PRECISION column can contain floating-point numbers whose value is 0 or
ranges from 5.4E-79 to 7.2E+75.

The precision of DOUBLE PRECISION floating-point numbers is 53 binary digits or
approximately 16 decimal digits.

Example

You define a DOUBLE PRECISION column weight as follows:

weight DOUBLE PRECISION

[dimension]
(dimension)

Numeric data types FLOAT

U22420-J-Z125-12-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

FLOAT - Floating-point numbers

You use the data type FLOAT for columns that can store floating-point numbers (see
section “Numeric values” on page 115). The precision can be specified.

[] FLOAT[(precision)]

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

precision
Unsigned integer between 1 and 53 that indicates the minimum number of binary digits
for the mantissa.

precision omitted:
precision=1.

Range of values for FLOAT columns

A FLOAT column can contain a floating-point number whose value is 0 or ranges from
5.4E-79 to 7.2E+75.

In SESAM/SQL, the precision of FLOAT floating-point numbers is 53 binary digits if precision
is greater than 21, otherwise it is 21 binary digits.

Example

You define a FLOAT column test_value with a precision of at least 30 binary digits as
follows:

test_value FLOAT(30)

[dimension]
(dimension)

DATE Time data types

96 U22420-J-Z125-12-76

4.2.4 Time data types

The date and time data types are described in the following sections.

DATE

You use the data type DATE for columns that can store a date (see section “Time values”
on page 117).

[] DATE

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

Range of values for DATE columns

A DATE column can contain date specifications lying in the range 0001-01-01 to
9999-12-31. The date specification must observe the rules of the Gregorian calendar even
if the date involved is before the introduction of the Gregorian calendar.

Example

 The ORDERS table contains three DATE columns:

order_date DATE DEFAULT CURRENT_DATE

actual DATE

target DATE

[dimension]
(dimension)

Time data types TIME

U22420-J-Z125-12-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

TIME

You use the data type TIME for columns that can store a time (see section “Time values”
on page 117).

[] TIME(3)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

Range of values for TIME columns

A TIME column can contain times that lie within the range 00:00:00.000 to 23:59:61.999.
The range for seconds (00.000 to 61.999) allows you to specify up to two leap seconds.

Example

You define a TIME column wakeup_time as follows:

wakeup_time TIME(3)

[dimension]
(dimension)

TIMESTAMP Time data types

98 U22420-J-Z125-12-76

TIMESTAMP

You use the data type TIMESTAMP for columns that can store a time stamp (see section
“Time values” on page 117).

[] TIMESTAMP(3)

dimension
Unsigned integer between 1 and 255. The column is a multiple column;
dimension indicates the number of column elements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

dimension omitted:
The column is an atomic column.

Range of values for TIMESTAMP columns

A TIMESTAMP column can contain dates that lie within the range 0001-01-01 to
9999-12-31 and times that lie within in the range 00:00:00.000 to 23:59:61.999.

The range for seconds (00.000 to 61.999) allows you to specify up to two leap seconds. The
date specification must observe the rules of the Gregorian calendar even if the date
involved is before the introduction of the Gregorian calendar.

Example

You define a TIMESTAMP column appointment as follows:

appointment TIMESTAMP(3)

[dimension]
(dimension)

Data types Compatibility

U22420-J-Z125-12-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.2.5 Compatibility between data types

If values are used in calculations, predicates and assignments, the data types of the
operands involved must be compatible.

Two data types are compatible if they fulfill the following conditions:

● Both data types are CHAR or VARCHAR.

● Both data types are NCHAR or NVARCHAR.

● Both data types are numeric (SMALLINT, INTEGER, NUMERIC, DECIMAL, REAL,
DOUBLE PRECISION or FLOAT).

● Both data types are DATE.

● Both data types are TIME.

● Both data types are TIMESTAMP.

Values from various character sets are not converted implicitly in SESAM/SQL to make
them compatible.
Transliteration of strings is possible with the TRANSLATE function, see the section
“TRANSLATE() - Transliterate / transcode string” on page 203.

Values Data types and values

100 U22420-J-Z125-12-76

4.3 Values

Values are specified in SESAM/SQL statements for the following purpose:

● insert or update column values (INSERT, MERGE, UPDATE)

● perform calculations and comparisons (e.g. SELECT column selection, HAVING, ON
and WHERE search conditions)

SESAM/SQL makes a distinction between NULL values and non-NULL values. Non-NULL
values are grouped according to data type.

Therefore, there are the following groups of values:

● NULL values (see section “NULL value” on page 104)

● alphanumeric values (see section “Strings” on page 106)

● national values (see section “Strings” on page 106)

● numeric values (see section “Numeric values” on page 115)

● time values (see section “Time values” on page 117)

REF values, which occur in conjunction with BLOBs (Binary Large Objects), are special
alphanumeric values used to reference BLOBs in base tables. Information on defining REF
values in base tables can be found in the section “Column definitions” on page 272.
Information on their structure and how to use them can be found in the chapter “SESAM-
CLI” on page 587 and in the “Core manual”.

Values Literals

U22420-J-Z125-12-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.3.1 Literals

With the exception of NULL values, there are corresponding literals for each group of
values:

literal ::=

alphanumeric_literal
Alphanumeric literal (see section “Alphanumeric literals” on page 106).

national_literal
National literal (see section “National literals” on page 108).

special_literal
Special literal (see section “Special literals” on page 110).

numeric_literal
Numeric literal (see section “Numeric literals” on page 115).

time_literal
Time value (see section “Time literals” on page 117).

alphanumeric_literal
national_literal
special_literal
numeric_literal
time_literal

Specifying values Values

102 U22420-J-Z125-12-76

4.3.2 Specifying values

A value can be specified in the following ways:

● as a literal

● with a user variable when the statement is not part of a routine (see section “Host
variables” on page 21)

● with a parameter (see page 416) or a local variable (see page 402) when the statement
is part of a routine

● with a placeholder "?" for values which are not yet known
(in a dynamic statement or cursor description, see section “Dynamic SQL” on page 32)

value ::=

literal
Alphanumeric literal, national literal, special literal, numeric literal or time literal.

host_variable
Name of the host variable that contains the value.

If you have specified an indicator variable and the value of the indicator variable is
negative, the NULL value is used instead of the value of the host variable.

indicator_variable
Name of an indicator variable for the preceding host variable. The data type of
indicator_variable is SMALLINT.

routine_parameter
Name of a routine's parameter which contains the value.

local_variable
Name of a routine's local variable which contains the value.

? Placeholder in a dynamic SQL statement.

literal
:host_variable [[INDICATOR] :indicator_variable]
routine_parameter
local_variable
?

Values Values for multiple columns

U22420-J-Z125-12-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.3.3 Values for multiple columns

The value for a multiple column is an aggregate. An aggregate consists of one or more
elements called occurrences. The number of occurrences must be between 1 and 255 and
must correspond to the dimension of the multiple column. Values in multiple columns are
referred to as multiple values; values in atomic columns are referred to as atomic values (or
simply as values).

aggregate ::= < , . . . >

value
Value of the occurrence.

NULL
NULL value for the occurrence.

If you set elements of the multiple column to the NULL value with INSERT or UPDATE and
the subsequent elements are not null, the non-NULL values in the multiple columns are
moved to smaller position numbers and the NULL values are entered after all the non-NULL
values.

Example

You can use INSERT to assign values to the numeric multiple column COLOR_TAB
with three elements:

INSERT INTO color_tab (rgb(1..3)) VALUES (<0.88,NULL,0.77>)

The multiple column then contains the multiple value:

<0.88,0.77,NULL>

value
NULL

NULL value Values

104 U22420-J-Z125-12-76

4.3.4 NULL value

NULL values are a special feature of relational databases. A NULL value means a value is
undefined or unknown.

The NULL value is different to all other values. Do not confuse it with a string with the length
0, the blank or numeric 0.

4.3.4.1 Keyword for the NULL value

The keyword for the NULL value is NULL. NULL can only be specified during INSERT,
MERGE and UPDATE operations, in a CAST expression, in a CASE expression and as the
DEFAULT in column definitions to set a column value to the NULL value.

Example

You enter an item whose color is unknown into the ITEMS table as follows:

 INSERT INTO items VALUES (5, 'Valve', NULL, 1.00, 350, 100)

NULL can also be specified in predicates (search queries, IF statement), as the default
value of local variables (in routines), and in SET and RETURN statements.

4.3.4.2 NULL value in table columns

You can prohibit use of the NULL value in a column in a base table by specifying one of the
following column constraints in the column definition:

● NOT NULL constraint

● PRIMARY KEY constraint

● check constraint that prohibits use of the NULL value

If use of the NULL value is not prohibited, a column can contain the NULL value.

Values NULL value

U22420-J-Z125-12-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.3.4.3 NULL value in functions, expressions and predicates

The keyword NULL cannot be specified for values in expressions (except in CASE and
CAST expressions), functions and predicates. You can, however, specify subexpressions
(for example, a column name) whose result is the NULL value.

If the NULL value occurs in an expression, the result of the expression is also the NULL
value.

If the NULL value occurs in a predicate, the result is usually the truth value unknown. There
are, however, exceptions such as the predicate IS [NOT] NULL, for example. The result of
each function, operator and predicate if an operand is the NULL value can be found in the
chapter “Compound language constructs” on page 133.

4.3.4.4 NULL value in GROUP BY

If you specify the GROUP BY clause in a SELECT statement, all the rows that contain the
NULL value in the same grouping columns and identical values in the rest of the grouping
columns are grouped together.

4.3.4.5 NULL value in ORDER BY

If you specify the ORDER BY clause in a cursor description, indicating that a cursor table
is to be sorted, NULL values are smaller than all non-NULL values.

Strings Values

106 U22420-J-Z125-12-76

4.3.5 Strings

Strings are sequences of any characters in EBCDIC or Unicode. EBCDIC strings are
termed “alphanumeric values”, Unicode strings are termed “national values”.

In SESAM/SQL, alphanumeric literals, national literals and special literals are used to
represent strings.

4.3.5.1 Alphanumeric literals

The syntax for an alphanumeric literal is defined as follows:

alphanumeric_literal ::=

character
Any EBCDIC character. If a string contains a single quote ('), you must duplicate this
single quote. The pair of single quote characters is considered a single character (e.g.
'Variable length strings are of the type ''CHARACTER VARYING''').

hex
A hexadecimal character from the range 0-9, A-F or a-f

The data type of an alphanumeric literal is CHAR(length). length is the number of characters
or pairs of hexadecimal numbers. Alphanumeric literals can be up to 256 characters long.
Strings with the length 0 are permitted as literals although it is not possible to define a data
type CHAR(0) (see section “Alphanumeric and national data types” on page 84). The data
type is then VARCHAR(0).

The two forms of alphanumeric literal, character and hex, may be concatenated, as for
instance in the German number “fünfzig” (50, 'f'||x'FD'||'nfzig') or in a concatenation
with a special literal ('User:'||CURRENT_USER).

“||” must be used as the operator for the concatenation.

i When strings are concatenated, either both operands must be alphanumeric
(CHAR or VARCHAR) or both must be of the national type (NCHAR or
NVARCHAR), see the section “Compatibility between data types” on page 99.

'[character...]'[{separator...'[character...]'}...]
X'[hex hex]...'[{separator...'[hex hex]...'}...]

Values Strings

U22420-J-Z125-12-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

separator
Separator that separates two substrings from each other (see section “Separators” on
page 52). If an alphanumeric literal consists of two or more substrings, adjacent
substrings must be separated by one or more separators. At least one of the separators
must be a transition point to the next row.

The result of an alphanumeric literal comprising substrings is the concatenation of the
substrings involved without the operator for concatenation having to be written for this
purpose.

Example

The following alphanumeric literal consists of three substrings:

'Separated ' -- First substring
'by table ' -- Second substring
'and bed' -- Third substring

The result is the string 'Separated by table and bed'.

Strings Values

108 U22420-J-Z125-12-76

4.3.5.2 National literals

The syntax for a national literal is defined as follows:

national_literal ::=

character
A Unicode character which is also contained in the EDF03IRV character set. If a string
contains a single quote ('), you must duplicate this single quote. The duplicated single
quote counts as one character.

4hex
4hex is a group of 4 consecutive hexadecimal characters and constitutes a UTF-16 code
unit which must be in the range 0000 through FFFF. (However, the UTF-16 code units
FFFE and FFFF and the code units in the range FDD0 - FDEF are so-called
noncharacters and may not be used in literals in SESAM/SQL, see the Unicode concept
in SESAM/SQL in the “Core Manual”.) When 4hex is specified, lower case is permitted
for the hexadecimal characters A through F.

Example

NX'004100420043' for the string 'ABC'.

esc 4hex
Hexadecimal representation of a code point through the escape character esc and
(without any intervening blank) a 4-digit hexadecimal value 4hex which must be in the
range 0000 through FFFD. The specification esc must be written exactly as specified in
the UESCAPE clause. When esc4hex is specified, lower case is permitted for the
hexadecimal characters A through F.

Example

U&'\00DF' for the character 'ß’

U&'\0395\03BB\03BB\03B7\03BD\03B9\03BA\03AC means Greek’
returns the string “Ελληνικά means Greek”

N'[character...]'[{separator...'[character...]'}...]
NX'[4hex...]'[{separator...'[4hex...]'}...]

U&'[...]'[{separator...'['}...][UESCAPE'esc']

character
esc 4hex
esc+ 6hex
esc esc

character
esc 4hex
esc+ 6hex
esc esc

Values Strings

U22420-J-Z125-12-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

esc+ 6hex
Hexadecimal representation of a code point through the escape character esc followed
by „+“ and (without any intervening blank) a 6-digit hexadecimal value 6hex which
must be in the range 000000 through 10FFFD. (The code points 10FFFE and 10FFFF
and also the code points from the ranges 0xFFFE and 0xFFFF (where x is a
hexadecimal number) are so-called noncharacters and may not be used in literals in
SESAM/SQL, see the Unicode concept in SESAM/SQL in the “Core manual”). The
specification esc must be written exactly as specified in the UESCAPE clause. When
esc+ 6hex is specified, lower case is permitted for the hexadecimal characters A through
F.

Example

U&'\+0000DF’ for the character 'ß'.

esc esc
With esc esc (without any intervening blank) you can invalidate the esc character, as a
result of which this string represents an esc character.

Example

U&'\\’ for the character '\'

UESCAPE 'esc'
Specification of an escape character. esc can be any alphanumeric character with the
exception of the plus character, double quotes ("), single quote (') and blank.

If UESCAPE 'esc' is not specified, the backslash (\) is used as the default.

The data type of a national literal is NCHAR(cu_length). cu_length is the number of code units
(1 code unit in UTF-16 = 2 bytes). The strings may be up to 128 code units long. Strings of
which are 0 characters long are permitted as literals, although it is not possible to define a
data type NCHAR(0) (see the section “Strings” on page 106). The data type is then
NVARCHAR(0).

1 code unit is required to represent a code point in UTF-16, except in the case of code
points which are contained in the range 010000 through 10FFFD. These code points
require two code units.

Strings Values

110 U22420-J-Z125-12-76

The various forms of national data type can be concatenated as, for example, in “Price in €”:

N'Price in '||NX'20AC'
N'Price in '||U&'\20AC'

“||” must be used as the operator for the concatenation.

i When strings are concatenated, either both operands must be alphanumeric
(CHAR or VARCHAR) or both must be of the national type (NCHAR or
NVARCHAR), see the section “Compatibility between data types” on page 99.

separator
Separator that separates two substrings from each other (see section “Separators” on
page 52). If a national literal consists of two or more substrings, adjacent substrings
must be separated by one or more separators. At least one of the separators must be
a transition point to the next row.

The result of a string literal consisting of substrings is the concatenation of the
substrings involved without the operator for concatenation having to be written for this
purpose.

4.3.5.3 Special literals

The syntax for special literals is as follows:

special_literal::=

CURRENT_CATALOG
Name of the database preset with the SQL statement SET CATALOG or SET SCHEMA
or the *IMPLICIT string if no database is preset.
The result is a string of the type CHAR(18).

CURRENT_CATALOG
CURRENT_ISOLATION_LEVEL
CURRENT_REFERENCED_CATALOG
CURRENT_SCHEMA
[CURRENT_]USER
SYSTEM_USER

Values Strings

U22420-J-Z125-12-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

CURRENT_ISOLATION_LEVEL
Isolation level of the current transaction (defined implicitly by the user configuration or
explicitly by the SQL statement SET TRANSACTION level at the beginning of a
transaction). It does not specify the isolation level which is defined on a statement-
specific basis with the pragma ISOLATION LEVEL.
The result is a value of the type INTEGER in accordance with the table below: .

CURRENT_REFERENCED_CATALOG
Name of the database to which the current statement refers.
The result is a string of the type CHAR(18).

CURRENT_SCHEMA
Name of the schema preset with the SQL statement SET SCHEMA or the *IMPLICIT
string if no schema is preset.
The result is an alphanumeric string of the type VARCHAR(31).

[CURRENT_]USER
Name of the current authorization identifier.
The result is a string of the type CHAR(18).

SYSTEM_USER
Name of the current system user. The name is made up of the host name, the UTM
application name (or blanks) and the UTM or BS2000 user ID.
The result is a string of the type CHAR(24).

Result Isolation level Consistency
levels

8 SERIALIZABLE 4

4 REPEATABLE READ 3

5 READ NO WAIT 1

2 READ COMMITTED 2

1 READ UNCOMMITTED 0

Strings Values

112 U22420-J-Z125-12-76

4.3.5.4 Using strings

An alphanumeric or a national value can be used in:

● Assignments:
(see section “Assignment rules” on page 121)

● Functions:
An alphanumeric or a national value can be used in the aggregate functions COUNT(),
MIN() and MAX(), in numeric functions and in string functions.

● Concatenation:
Two alphanumeric values can be concatenated to create a single alphanumeric value;
two national values can be concatenated to create a single national value. See section
“Compatibility between data types” on page 99.

● Predicates:
An alphanumeric or a national value can be used in comparisons with another value or
with a derived column, in range queries, in element queries and in pattern comparisons.
All the values concerned must be either alphanumeric values or national values, see
the section “Compatibility between data types” on page 99. The rules governing
comparisons are described in the section “Comparison of two rows” on page 216.

Functions, expressions and predicates are described in detail in the chapter “Compound
language constructs” on page 133.

Alphanumeric literals in the form X'...' must not be used in SET CATALOG, SET SCHEMA,
SET SESSION AUTHORIZATION statements or in the GLOBAL descriptor.

Values Strings

U22420-J-Z125-12-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

Examples

Enter first and last name in the CUSTOMERS table:

 INSERT INTO customers (cust_num, company, street, zip)
VALUES (100,'Siemens AG','Otto-Hahn-Ring 6',81739)

INSERT INTO customers (cust_num, company, street, zip)
VALUES (100,Siemens AG,"Otto-Hahn-Ring 6",81739)

This is an error: strings must be enclosed in single quotes.

Search for the names of the tables, the authorization identifiers and the privileges for which
the current authorization identifier has a table privilege:

CREATE VIEW privileged AS SELECT TABLE_NAME, GRANTEE, PRIVILEGE_TYPE
FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES WHERE GRANTOR = UTIUNIV

Define the table BOOKS with the VARCHAR column TITLE and enter values:

CREATE TABLE books (order_number INTEGER, title VARCHAR(50))
COMMIT WORK

INSERT INTO books VALUES (3456, 'Not Now Bernard')
INSERT INTO books VALUES (5777, 'Lullabies')
INSERT INTO books VALUES (7888,
'This is a very long title with more than fifty characters')

The last title is not entered. An error message is issued.

Enter additional information on the contact person Mary Davis in the CONTACTS table:

UPDATE contacts set contact_info=('Ms. Davis is '
'on leave from ’
'1.8 to 31.10') where contact_num=40

The following is incorrect:

UPDATE contacts set contact_info=
('Ms. Davis is ' 'on leave ' 'from 1.8 to 31.10')
where contact_num=40

At least one of the separators between the substrings must be a transition to the next
line.

Comparing strings

' Mai' < ' Maier' is true

' Majer' < ' Maier' is false

Strings Values

114 U22420-J-Z125-12-76

Define the MANUALS table with the NCHAR columns LANGUAGE and TITLE and enter
values:

 CREATE TABLE manuals
(ord_num INTEGER, language NCHAR(20), title NCHAR(30))
COMMIT WORK

INSERT INTO manuals
VALUES (1001, N'Deutsch', N'Betriebsanleitung'),
 (1002, N'English', N'Operating Manual'),
 (1003, U&'Fran\00E7ais', N'Manuel d''utilisation'),
 (1004, U&'Espa\00F1ol', N'Manual de instrucciones'),
 (1005, N'Italiano', N'Istruzioni per l''uso'),
 (1006, NX'039503BB03BB03B703BD03B903BA03AC',
 NX'039F03B403B703B303AF03B503C2002003BB'
 '03B503B903C403BF03C503C103B303AF03B103C2')

The LANGUAGE and TITLE titles then contain the following national values:

LANGUAGE TITLE

Deutsch Betriebsanleitung

English Operating Manual

Français Manuel d'utilisation

Español Manual de instrucciones

Italiano Istruzioni per l'uso

Ελληνικά Οδηγίες λειτουργίας

Values Numeric values

U22420-J-Z125-12-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.3.6 Numeric values

Numeric values are integers, fixed-point numbers and floating-point numbers.

4.3.6.1 Numeric literals

The syntax for numeric literals is defined as follows:

numeric_literal ::=

integer ::=[] unsigned_ integer[.]

fixed_pt_number ::=[]

floating_pt_number ::= fixed_pt_numberE[] unsigned_ integer

unsigned_ integer ::= digit...

digit
Decimal digit 0 to 9.
Integers and fixed-point literals can have up to 31 digits.

The data type of the literal is integer, fixed-point number or floating-point number with
the specified number of digits to the right and left of the decimal point.

 integer
fixed_pt_number
floating_pt_number

+
-

+
-

 unsigned_ integer[. unsigned_ integer]
 unsigned_ integer.
. unsigned_ integer

+
-

Numeric values Values

116 U22420-J-Z125-12-76

4.3.6.2 Using numeric values

A numeric value can be used in:

● Assignments:
(see section “Assignment rules” on page 121)

● Aggregate functions:
A numeric value can be used in the aggregate functions AVG(), COUNT(), MIN(), MAX()
and SUM().

● Time functions:
A numeric value can be used in the time function DATE_OF_JULIAN_DAY()

● Expressions:
A numeric value can be used in calculations with the operators +, -, * and /. All the
values in the expression must be numeric.

● Predicates:
A numeric value can be used in comparisons with another value or with a derived
column, in range queries and in element queries.
All the values in the expression must be numeric. The rules governing comparisons are
described in the section “Comparison of two rows” on page 216.

Functions, expressions and predicates are described in detail in the chapter “Compound
language constructs” on page 133.

Examples

The following examples refer to the SERVICE table.

Enter an order number as follows:

INSERT INTO service (service_num, order_num, service_total, service_price)
VALUES (5000, 250, 1, NULL)

Update the order quantity:

UPDATE service SET service_total=34.75 WHERE service_num=5000

The specified value is converted into an integer.

UPDATE service SET service_total='lots' WHERE service_num=5000

This is an error: The specified value is not numeric.

Values Time values

U22420-J-Z125-12-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.3.7 Time values

SESAM/SQL makes a distinction between the following types of time values:

● Date A date consists of the specifications: year, month and day.

● Time A time consists of the specifications: hours, minutes, seconds and fractions of a
second.

● Timestamp A time stamp contains a date and time.

4.3.7.1 Time literals

The syntax for time literals is defined as follows:

time_literal ::=

DATE
Date. The data type of the time literal is DATE.

TIME
Time. The data type of the time literal is TIME(3).

TIMESTAMP
Time stamp. The data type of the time literal is TIMESTAMP(3).

year
Four-digit unsigned integer between 0001 and 9999 indicating the year.

month
Two-digit unsigned integer between 01 and 12 indicating the month.

day
Two-digit unsigned integer between 01 and 31 (corresponding to the month and year)
indicating the day.

hour
Two-digit unsigned integer between 00 and 23 indicating the hour.

minute
Two-digit unsigned integer between 00 and 59 indicating the minute.

second
Unsigned fixed-point number between 00.000 and 60.999 that indicates the seconds
and fractions of a second. A two-digit specification must be made for the seconds and
a three-digit specification for the fractions of a second.
The range of values allows specification of one leap second.

DATE 'year-month-day'
TIME 'hour:minute:second'
TIMESTAMP'year-month-day hour:minute:second'

Time values Values

118 U22420-J-Z125-12-76

A date specification must observe the rules of the Gregorian calendar even if the date
involved is before the introduction of the Gregorian calendar.

In SESAM/SQL, you can use an abbreviated notation without an introductory time keyword
if it is clear from the context that you are dealing with a time literal and not an alphanumeric
literal.

Examples

To output, from the ORDERS table, all orders which were completed before the specified
date.

SELECT * FROM orders WHERE actual < '2013-01-01'

The actual column was defined with the DATE data type during table creation. It is
therefore immediately obvious from the left-hand comparison operand that the specified
literal is a time literal. The keyword DATE can therefore be omitted on the right-hand
side.

Literal in the SELECT list.

SELECT COUNT(*) AS number, '2013-05-01' AS date FROM orders

The derived table contains a row with the number of orders and with the DATE column.
The data type results from the specified expression. The data type for the DATE column
is therefore CHAR(10).

To avoid possible sources of error, you are recommended to always specify time literals
with an introductory time keyword (DATE, TIME, TIMESTAMP).

v CAUTION!
The separators between the component values must be specified exactly as stated
below:
hyphen “-” between year, month and day
blank “ ” between day and hour
colon “:” between hour, minutes and seconds
period “.” between seconds and fractions of a second.

Values Time values

U22420-J-Z125-12-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.3.7.2 Using time values

A time value can be used in:

● Assignments:
(see section “Assignment rules” on page 121)

● Aggregate functions:
A time value can be used in the aggregate functions COUNT(), MIN() and MAX().

● Numeric functions:
A time value can be used in the numeric function JULIAN_DAY_OF_DATE().

● Predicates:
A time value can be used in comparisons with another value or with a derived column,
in range queries and in element queries. All the values involved must be of the same
time data type. The rules governing comparisons are described in the section
“Comparison of two rows” on page 216.

● CAST expressions:
A time value can be converted to a value of a different data type.

Functions and predicates are described in detail in the chapter “Compound language
constructs” on page 133.

Time values Values

120 U22420-J-Z125-12-76

Examples

The following examples refer to the ORDERS table and the fictitious table EXAMPLE.

Update the delivery date for order 300:

UPDATE orders SET order_date=DATE'2013-10-06' WHERE order_num=300

UPDATE orders SET order_date=DATE'2013-10-06' WHERE order_num=300
The following is incorrect: Since the single-digit value 6 for a day is not permitted. The
correct specification would be 06.

In the column wakeup_time, the time 7:51 hours and 19.77 seconds is entered:

CREATE TABLE example (wakeup_time TIME (3), appointment TIMESTAMP (3))

INSERT INTO example (wakeup_time) VALUES (TIME'07:51:19.770')

In the column appointment, the time stamp 16:00 hours on November 24th, 2010 is
entered:

INSERT INTO example (appointment)
VALUES (TIMESTAMP'2013-10-06 16:00:00.000', ...)

INSERT INTO example (appointment)
VALUES (TIMESTAMP'2013-10-06 16:00')

The following is incorrect: As the seconds have not been specified.

Data types and values Assignment rules

U22420-J-Z125-12-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.4 Assignment rules

When values are assigned or transferred, the source data type and the target data type
must be compatible (see section “Compatibility between data types” on page 99).

Other rules depend on where the values are being transferred to or from.

A distinction is made between the following:

● Entering values in table columns

● Default values for table columns

● Values for placeholders

● Storing values in host variables or a descriptor area

● Transferring values between host variables and a descriptor area

● Modifying the target data type by means of the CAST operator

● Supplying input parameters for routines

● Entering values in a procedure parameter (output) or local variable

The following sections provide you with an overview of the assignment rules for the above-
mentioned cases.

4.4.1 Entering values in table columns

The following rules apply when inserting or updating values into table columns with
INSERT, MERGE or UPDATE:

● Atomic values and multiple values with the dimension 1 can be entered in atomic
columns and in multiple columns (or subareas) with the dimension 1.

● Multiple values with a dimension greater than 1 can be entered in multiple columns (or
subareas) with the same dimension.

● Additional data-type-specific rules, which depend on the data type involved, also apply.
These are described below.

Assignment rules Data types and values

122 U22420-J-Z125-12-76

Strings

You can enter an alphanumeric value in a column with an alphanumeric data type or a
national value in a column with a national data type. The following rules apply:

● If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

● If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type. If characters are removed that are not blanks, the value is not
entered and an error message is issued.

● If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type. If characters are removed that are
not blanks, the value is not entered and an error message is issued.

Numeric values

You can enter a numeric value in a column with a numeric data type. If the numeric data
types are not the same, the value is converted to the data type of the column. The following
rules apply:

● If the number of digits to the right of the decimal point of the value is too large for the
data type of the column, the value is rounded.

● If the value is too large for the data type of the column, the value is not entered and an
error message is issued.

Time values

You can only enter a time value in a column with the same data type:

● a date in a DATE column

● a time in a TIME column

● a time stamp in a TIMESTAMP column

Data types and values Assignment rules

U22420-J-Z125-12-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.4.2 Default values for table columns

The rules that apply to the default value for a column that you can specify with the DEFAULT
clause of the CREATE TABLE or ALTER TABLE statement are more strict than those for
entering values in table columns. The rules also apply for the definition of local variables (in
routines). They are contained in the table below:

SQL data type of the
column

Possible SQL default value

CHAR(length)
VARCHAR(max)

– Alphanumeric literal with length Î length or max
– Special literal ([CURRENT_]USER and

SYSTEM_USER only (only recommended for length or
max Î 128))

– NULL

NCHAR(cu_length)
NVARCHAR(cu_max

– National literal with length Ï cu_length or cu_max
– NULL

REF(table) – As for CHAR(237)

DECIMAL(precision,scale)
NUMERIC(precision,scale)
 INTEGER
SMALLINT

– Fixed-point or floating-point number belonging to the
range of values for the column

– NULL

REAL, DOUBLE PRECISION
FLOAT(precision)

– Numeric literal
(the number is rounded off if necessary)

– NULL

DATE – Literal of the type DATE
– CURRENT_DATE
– NULL

TIME(3) – Literal of the type TIME(3)
– CURRENT_TIME
– NULL

TIMESTAMP(3) – Literal of the type TIMESTAMP(3)
– CURRENT_TIMESTAMP
– NULL

Table 12: Default values for table columns

Assignment rules Data types and values

124 U22420-J-Z125-12-76

4.4.3 Values for placeholders

The following rules apply if values are made available for placeholders in host variables or
in a descriptor area (EXECUTE...USING, OPEN...USING):

● The data type of the input value must be compatible with the data type of the
placeholder, which is indicated by the position of the placeholder (see “Rules for
placeholders” on page 527).

● Values for atomic placeholders and multiple placeholders with the dimension 1 can be
made available via an atomic host variable, a vector with one element, or via an item
descriptor.

● Placeholders for aggregates with a dimension d > 1 can be made available via a vector
with d elements or via d sequential item descriptors.

● Additional data-type-specific rules, which depend on the data type involved, also apply.
These are described below.

Strings

You can use the value of a host variable or item descriptor with an alphanumeric data type
for an alphanumeric placeholder. For a placeholder with a national data type you can use
the value from a user variable or a descriptor area entry with a national data type. The
following rules apply:

● If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

● If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type. If characters are removed that are not blanks, the value is not
entered and a warning is issued.

● If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type. If characters are removed that are
not blanks, the value is not entered and a warning is issued.

Data types and values Assignment rules

U22420-J-Z125-12-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

Numeric values

You can use a value from a host variable or an item descriptor with a numeric data type for
a numeric placeholder. If the numeric data types are not the same, the value is converted
to the target data type. The following rules apply:

● If the number of digits to the right of the decimal point of the value is too large for the
target data type, the value is rounded.

● If the value is too large for the target data type, the value is not entered and an error
message is issued.

Time values

In the case of a placeholder with a date or time data type, you can only use a value from a
host variable or item descriptor of the same data type:

● a date for a DATE placeholder

● a time for a TIME placeholder

● a time stamp for a TIMESTAMP placeholder

4.4.4 Reading values into host variables or a descriptor area

The following rules apply if values from table columns or output parameters of a routine are
stored in a host variable or in a descriptor area (SELECT...INTO, EXECUTE...INTO,
FETCH...INTO, INSERT...RETURN INTO, CALL):

● Values from atomic columns, multiple columns with the dimension 1 or output
parameters of a procedure can be stored in an atomic host variable, a vector with one
element, or in an item descriptor.

● Aggregates from multiple columns with a dimension d > 1 can be stored in a vector with
d elements or in d sequential item descriptors.

● If the value to be transferred is a NULL value, the indicator variable or item descriptor
field INDICATOR, as appropriate, is set to -1. If no indicator variable has been specified
for a host variable, an error message is issued.

● Depending on the data type, data-type-specific rules which are contained below also
apply.

Assignment rules Data types and values

126 U22420-J-Z125-12-76

Strings

You can read an alphanumeric column value or an alphanumeric output parameter of a
procedure into an alphanumeric host variable or item descriptor. You can read a national
column value or a national output parameter of a procedure into a national host variable or
item descriptor with a national data type. The following rules apply:

● If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

● If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type and a warning is issued. The indicator variable (if specified) or item
descriptor field INDICATOR, as appropriate, is set to the original length of the column
value.

● If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type and a warning is issued. The
indicator variable (if specified) or item descriptor field INDICATOR, as appropriate, is
set to the original length of the column value.

Numeric values

You can read a numeric column value or a numeric output parameter of a procedure into a
numeric host variable or item descriptor. If the numeric data types are not the same, the
value is converted to the target data type. The following rules apply:

● If the number of digits to the right of the decimal point of the value is too large for the
target data type, the value is rounded.

● If the value is too large for the target data type, the value is not entered and an error
message is issued.

Time values

You can only read a column value with a time data type or an output parameter of a
procedure with a time data type into a host variable or item descriptor of the same data type:

● a date into a DATE host variable or item descriptor

● a time into a TIME host variable or item descriptor

● a time stamp into a TIMESTAMP host variable or item descriptor

Data types and values Assignment rules

U22420-J-Z125-12-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.4.5 Transferring values between host variables and a descriptor area

The rules governing the transfer of values between host variables an a descriptor area are
more strict than those for transferring values between host variables (or descriptor area)
and table columns:

● The following applies to all fields except NAME and DATA: The SQL data type of the
host variable in which the value of a field is stored or from which a value is read must
be SMALLINT.

● If the value of the NAME field is read, the host variable must be of the type CHAR(n) or
VARCHAR(n) where n Ï 128.

● If the value of the DATA field is stored in a host variable or read from a host variable,
the SQL data type of the host variable must match the data type described by the fields
TYPE, DATETIME_INTERVAL_CODE, LENGTH, PRECISION and SCALE of the
same item descriptor. The rules are contained below in accordance with the data type.

Strings

The length of the host variable must be the same as the value in the item descriptor field
LENGTH for the SQL data types CHAR and NCHAR.

In the case of the SQL data types VARCHAR and NVARCHAR, the maximum length of the
host variable must be the same as the value of the item descriptor field LENGTH if the value
is to be transferred from the host variable to the descriptor area. If the value is transferred
from the descriptor area to the host variable, the maximum length of the host variable must
be at least as big as the value of the item descriptor field LENGTH.

Numeric values

For the SQL data type NUMERIC or DECIMAL, the total number of significant digits of the
host variable must be the same as the value of the item descriptor field PRECISION and
the number of digits to the right of the decimal point the same as the value of the item
descriptor field SCALE.

Time values

The SQL data type of the host variable must correspond to the data type of the item
descriptor field DATETIME_INTERVAL_CODE.
In the case of the SQL data types TIME and TIMESTAMP, the item descriptor field
PRECISION must contain the value 3.

Assignment rules Data types and values

128 U22420-J-Z125-12-76

Recommended procedure

The following procedure is recommended if you do not want to have to define host variables
for every possible data type:

1. Use DESCRIBE to store the data type description for the value in the DATA field of the
item descriptor.

2. Query the data type of the item descriptor with GET DESCRIPTOR.

3. Change the data type of the item descriptor to match the data type of the host variable
with SET DESCRIPTOR.

4. Transfer the value from DATA to or from the host variable.

Example

You want to prepare the following dynamic statement:

SELECT street, country, zip, city FROM customers WHERE company='Siemens'

After executing DESCRIBE OUTPUT, GET DESCRIPTOR will provide you with the
following data type descriptions:

If you want to use host variables of the type CHAR(100) and NUMERIC(15,5) for storing
values, use SET DESCRIPTOR to set the item descriptor fields to the following values:

You can now execute the prepared statement with EXECUTE. The values are stored in
the descriptor area. STREET, COUNTRY and CITY are padded on the right with blanks
until their length is 100. Five leading zeros and five zeros after the decimal point are
added to ZIP.
You can use GET DESCRIPTOR to transfer the values to the appropriate host variables
and process them.

VALUE REPETITIONS TYPE LENGTH PRECISION SCALE Corresponding
data type

1 1 1 40 0 0 CHAR(40)

2 1 1 3 0 0 CHAR(3)

3 1 2 5 0 NUMERIC(5,0)

4 1 1 40 0 0 CHAR(40)

VALUE REPETITIONS TYPE LENGTH PRECISION SCALE

1 1 1 100

2 1 1 100

3 1 2 15 5

4 1 1 100

Data types and values Assignment rules

U22420-J-Z125-12-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

4.4.6 Modifying the target data type by means of the CAST operator

In some cases, you can use the CAST operator (see section “CAST expression” on
page 258) to specify an appropriate target data type, even if SESAM/SQL determines a
different data type internally.

Example

The following dynamic statement contains a two-digit operator with a placeholder (?).

UPDATE service SET vat=0.15+?

SESAM/SQL determines the data type of the placeholder for this two-digit operator
from the data type of the other operator with NUMERIC(3,2). If the user wants a
different data type, such as NUMERIC(4,2), he or she can use the CAST operator to
specify this:

UPDATE service SET vat=CAST(? AS NUMERIC(4,2))

4.4.7 Supplying input parameters for routines

When you assign values to the input parameters for the routine in a CALL statement
(procedure call) or when a User Defined Function (UDF) is called, data-type-specific rules
apply. These are described below.

Strings

You can assign an alphanumeric value to an input parameter with the alphanumeric data
type or a national value to an input parameter with a national data type. The following rules
apply:

● If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

● If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type. If characters are removed that are not blanks, the value is not
entered and an error message is issued.

● If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type. If characters are removed that are
not blanks, the value is not entered and an error message is issued.

Assignment rules Data types and values

130 U22420-J-Z125-12-76

Numeric values

You can assign a numeric value to an input parameter with a numeric data type. If the
numeric data types are not the same, the value is converted to the data type of the input
parameter. The following rules apply:

● If the number of digits to the right of the decimal point of the value is too large for the
data type of the input parameter, the value is rounded.

● If the value is too large for the data type of the input parameter, the value is not entered
and an error message is issued.

Time values

You can only assign a time value to an input parameter with the same data type:

● a date in an input parameter with the data type DATE

● a time for an input parameter with the data type TIME

● a time stamp in an input parameter with the data type TIMESTAMP

4.4.8 Entering values in a procedure parameter (output) or local variable

When you assign values to the output parameters in a procedure or to the local variables
or the function value of a UDF in a routine (SET, RETURN, SELECT...INTO,
FETCH...INTO, INSERT...RETURN INTO), data-type-specific rules apply. These are
described below.

Strings

You can enter an alphanumeric value in an output parameter or a local variable with an
alphanumeric data type. You can enter a national value in an output parameter or local
variable with a national data type. The following rules apply:

● If the target data type is CHAR or NCHAR and the length of the value is smaller than
the length of the target data type, the value is padded on the right with blanks.

● If the target data type is CHAR or NCHAR and the length of the value is greater than
the length of the target data type, the value is truncated from the right to the length of
the target data type and a warning is issued.

● If the target data type is VARCHAR or NVARCHAR and the length of the value is
greater than the maximum length of the target data type, the value is truncated from the
right to the maximum length of the target data type and a warning is issued.

Data types and values Assignment rules

U22420-J-Z125-12-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
4

Numeric values

You can enter a numeric value in an output parameter or local variable with a numeric data
type. If the numeric data types are not the same, the value is converted to the target data
type. The following rules apply:

● If the number of digits to the right of the decimal point of the value is too large for the
target data type, the value is rounded.

● If the value is too large for the target data type, the value is not entered and an error
message is issued.

Time values

You can only enter a value with time data type in an output parameter or local variable with
the same data type:

● A date in an output parameter or local variable with the data type DATE

● A time in an output parameter or local variable with the data type TIME

● A time stamp in an output parameter or local variable with the data type TIMESTAMP

Assignment rules Data types and values

132 U22420-J-Z125-12-76

U22420-J-Z125-12-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5 Compound language constructs

This chapter describes the compound language constructs that can occur in SESAM/SQL
statements. It is subdivided into the following sections:

● Expression

● Function

● Predicates

● Search condition

● CASE expression

● CAST expression

● Integrity constraint

● Column definitions

These language constructs are made up of basic elements, such as names, literals and
other language constructs. They are described in logical sequence.

Expression Compound language constructs

134 U22420-J-Z125-12-76

5.1 Expression

The evaluation of an expression returns a value or supplies a table (table functions).

Expressions can occur in:

● Column selection (SELECT expression, SELECT expression)

● predicates in search conditions (e.g. WHERE clause, HAVING clause)

● assignments (INSERT, MERGE or UPDATE statement)

● SQL statements which are used in routines (e.g. CASE statement)

An expression consists of operands and can include operators. The operators are used on
the results of the operands.

The result of the evaluation is an alphanumeric, national, numeric or time value.

A table function returns a table as a result.

The operands are not evaluated in a predefined order. In certain cases, a partial expression
is not calculated if it is not required for calculating the total result.

When an operand is evaluated with a function call, the function is first performed and then
the function call replaced by the resulting value or the table which is returned.

Compound language constructs Expression

U22420-J-Z125-12-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Syntax diagram of an expression:

expression ::=

column ::= unqual_name
pos_no ::= unsigned_integer
min ::= unsigned_integer
max ::= unsigned integer

monadic_op ::=

dyadic_op ::=

value

[table.]

function
subquery
monadic_op expression
expression dyadic_op expression
case_expression
cast_expression
(expression)

column
column(pos_no)
column[pos_no]

column(min..max)
column[min..max]

+
-

*
/
+
-
| |

Expression Compound language constructs

136 U22420-J-Z125-12-76

value
Alphanumeric value, national value, numeric value or time value (see section “Values”
on page 100).

table
Name of the table containing column. If a correlation name has been defined for the
table, specify the correlation name instead of the table name.

column
Name of the column from which the values are to be taken.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

pos_no
Unsigned integer

The value is taken from the (pos_no-colmin+1)th column element of the multiple
column column and can be used as an atomic value.

If column is not a multiple column, pos_no is smaller than colmin or pos_no is greater
than colmax, an error message is issued.

colmin and colmax are the smallest and largest position numbers of the multiple
column.

min..max
Unsigned integers

The value is the aggregate from the column elements (min-colmin+1) to (max-
colmin+1) of the multiple column column.

If column is not a multiple column, min is not smaller than max, min is smaller than
colmin or max is greater than colmax, an error message is issued.

colmin and colmax are the smallest and largest position numbers of the multiple
column.

pos_no or min..max omitted:
column cannot be a multiple column.

position
Function (see section “Function” on page 140).

subquery
Subquery (see section “Subquery” on page 310) that returns exactly one value.

Compound language constructs Expression

U22420-J-Z125-12-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

monadic_op
Monadic operator that sets the sign. expression must be numeric and cannot be a
multiple value with a dimension > 1.
+ The value remains as it is.
- The value is negated.

dyadic_op
Dyadic operator. Neither of the operand expressions can be a multiple value with a
dimension > 1.

a * b
Multiply a with b.
The expressions a and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with ta+tb significant digits with a maximum number of 31 digits. The
number of digits to the right of the decimal point is ra+rb, with a maximum number
of 31 digits.
ta and tb are the total number of significant digits for a and b.
ra and rb are the number of digits to the right of the decimal point for a and b
respectively.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, an error message is issued.
If the total number of significant digits is too big, the number is rounded.

a / b
Divide a by b.
The expressions a and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with 31 significant digits. The number of digits to the right of the decimal
point is 31-la-rb, at least however 0.
la is the number of digits to the left of the decimal point for a.
rb is the number of digits to the right of the decimal point for b.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type or the value of b is 0, an error
message is issued. If the total number of significant digits is too big, the number is
rounded.

Expression Compound language constructs

138 U22420-J-Z125-12-76

a + b
Add a and b.
The expressions a and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with lmax+rmax+1 significant digits with a maximum number of 31 digits. The
number of digits to the right of the decimal point is rmax.
lmax is the larger of the two numbers of digits to the left of the decimal point for a and
b.
rmax is the larger of the two numbers of digits to the right of the decimal point for a
and b.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, an error message is issued.
If the total number of significant digits is too big, the number is rounded.

a - b
Subtract b from a.
The expressions a and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with lmax+rmax+1 significant digits with a maximum number of 31 digits. The
number of digits to the right of the decimal point is rmax.
lmax is the larger of the two numbers of digits to the left of the decimal point for a and
b.
rmax is the larger of the two numbers of digits to the right of the decimal point for a
and b.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, an error message is issued.
If the total number of significant digits is too big, the number is rounded.

a || b
Concatenate a and b.
The expressions a and b must result in alphanumeric or national values.

If a and b are of the data type CHAR, the result is of the data type CHAR with a
length of la+lb (in characters), and this sum may not be greater than 256.
If a and b are of the data type NCHAR, the result is of the data type NCHAR with a
length of la+lb (in code units), and this sum may not be greater than 128.

If a or b is of the data type VARCHAR, the result is of the data type VARCHAR with
a length of la+lb (in characters), but at most 32 000.

Compound language constructs Expression

U22420-J-Z125-12-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

If a or b is of the data type NVARCHAR, the result is of the data type NVARCHAR
with a length of la+lb (in code units), but at most 16 000.
la and lb are the lengths of a and b.

If a result of the type CHAR is longer than 256 characters or the result of the type
NCHAR is longer than 128 characters, an error message is issued.

If a result of the type VARCHAR is longer than 32 000 characters, the string is
truncated from the right to a length of 32 000 characters and if a result of the type
NVARCHAR is longer than 16 000 characters, the string is truncated from the right
to a length of 16 000 characters. If characters are removed that are not blanks, an
error message is issued.

case_expression
CASE expression (see section “CASE expression” on page 248).

cast_expression
CAST expression (see section “CAST expression” on page 258).

Precedence

● Expressions enclosed in parentheses have highest precedence.

● Monadic operators take precedence over dyadic operators.

● The operators for multiplication (*) and division (/) take precedence over the operators
for addition (+) and subtraction (-).

● Operators for multiplication all have the same precedence level.

● Operators for addition all have the same precedence level.

● Operators with the same precedence level are applied from left to right.

● When expression is an unqualified name unqual_name for which there is both a column
and a routine parameter or a local variable with this name in the area of validity, the
routine parameter or the local variable is used.

i Recommendation
The names of routine parameters and local variables should differ from column
names (e.g. by assigning a prefix such as par_ or var_).

Function Compound language constructs

140 U22420-J-Z125-12-76

5.2 Function

A function calculates a value or returns a table (table function). Functions can be called from
within expressions. When an operand is evaluated with a function call, the function is first
performed and then the function call replaced by the resulting value or the table which is
returned. SESAM/SQL functions fall into two groups:

● Time functions

● String functions

● Numeric functions

● Aggregate functions

● Table functions

● Cryptographic functions

● User Defined Functions (UDFs)

function ::=

time_function
Time function (see section “Time functions” on page 141).

string_function
String function (see section “String functions” on page 142).

numeric_function
Numeric function (see section “Numeric functions” on page 144).

aggregate_function
Aggregate function (see section “Aggregate functions” on page 145).

table_function
Table function (see section “Table functions” on page 148).

crypto_function
Cryptographic function (see section “Cryptographic functions” on page 149).

user_defined_function
User Defined Function (see section “User Defined Functions (UDFs)” on page 151).

time_function
string_function
string_function
aggregate_function
table_function
crypto_function
user_defined_function

Compound language constructs Function

U22420-J-Z125-12-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.2.1 Time functions

Time functions determine following data

● current date (CURRENT_DATE)

● current time (CURRENT_TIME(3) or LOCALTIME(3))

● time stamp with the current date and current time (CURRENT_TIMESTAMP(3) or
LOCALTIMESTAMP(3))

● date corresponding to an integer value (DATE_OF_JULIAN_DAY) (see also the inverse
function JULIAN_DAY_OF_DATE on page 182).

LOCALTIMESTAMP(3) and CURRENT_TIMESTAMP(3) are equivalent in SESAM/SQL,
as are LOCALTIME(3) and CURRENT_TIME(3).

time_function ::=

expression
Numeric integer value which SESAM/SQL interprets as a Julian day number. expression
may not be a multiple value with dimension > 1.

If the time functions CURRENT_DATE, CURRENT_TIME(3), LOCALTIME(3),
CURRENT_TIMESTAMP(3) and LOCALTIMESTAMP(3) are included in a statement
multiple times, they are executed simultaneously. This also applies for all time functions that
are evaluated as the result of the statement:

● time functions in the DEFAULT clause of the column definition if the default value is
used

● time functions that occur in the SELECT expression of a view or temporary view if the
view or temporary view is referenced

All the values that are returned have the same data and/or time. Therefore, you cannot use
time functions to determine execution times within a statement.

Time functions in dynamic statements and in cursor descriptions are evaluated when the
EXECUTE, EXECUTE IMMEDIATE or OPEN statement is performed.

CURRENT_DATE
CURRENT_TIME(3)
LOCALTIME(3)
CURRENT_TIMESTAMP(3)
LOCALTIMESTAMP(3)
DATE_OF_JULIAN_DAY (expression)

Function Compound language constructs

142 U22420-J-Z125-12-76

5.2.2 String functions

String functions perform the following tasks:

● extract substrings (SUBSTRING)

● transliterate alphanumeric strings to national strings or vice versa (TRANSLATE)

● transcode national strings from UTFE to UTF-16 or vice versa (TRANSLATE)

● remove leading or trailing characters of strings (TRIM)

● convert uppercase letters to lowercase letters or lowercase letters to uppercase letters
(LOWER, UPPER)

● convert a value of any data type to the internal presentation (as an alphanumeric string
or in hexadecimal format) and vice versa (HEX_OF_VALUE, VALUE_OF_HEX,
REP_OF_VALUE, VALUE_OF_REP)

● for national strings, supply the collation element in accordance with the Default Unicode
Translation Table (COLLATE)

● convert national strings to normal form (NORMALIZE)

string_function ::=

character::= expression
length::= unsigned_integer

SUBSTRING (expression FROM startposition [FOR substring_length][USING CODE_UNITS])
TRANSLATE (expression USING [[catalog.]INFORMATION_SCHEMA.] transname

[DEFAULT character] [, length])

TRIM ([[][character] FROM] expression)

LOWER (expression)
UPPER (expression)
HEX_OF_VALUE (expression2)
VALUE_OF_HEX (expression3, data_type)
REP_OF_VALUE (expression2)
VALUE_OF_REP (expression3, data_type)

COLLATE (expression USING [, length])

NORMALIZE(expression [, [, length]])

LEADING
TRAILING
BOTH

DUCET_WITH_VARS
DUCET_NO_VARS

NFC
NFD

Compound language constructs Function

U22420-J-Z125-12-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR). expression may not be a multiple value with dimension > 1.
See also section “Compatibility between data types” on page 99.

Restrictions that apply to a function are described in the description of the relevant
function.

expression2
Expression of any data type. The internal presentation of this value is returned as an
alphanumeric string or in hexadecimal format.
expression2 may not be a multiple value with dimension > 1.

expression3
Alphanumeric expression which is the internal presentation of a value of the type
data_type. This value is the result.
 expression3 may not be a multiple value with dimension > 1.

startposition
Integral numeric expression for the position of the start of the substring.

substring_length
Integral numeric expression for the length of the substring.

data_type
Data type of the result.

length
Maximum length of the result string.

Function Compound language constructs

144 U22420-J-Z125-12-76

5.2.3 Numeric functions

Numeric functions achieve various purposes:

● ABS(), CEILING(), FLOOR(), MOD(), SIGN() and TRUNC() execute the corresponding
mathematical functions on the specified numeric expressions.

● CHARACTER_LENGTH(), OCTET_LENGTH() and POSITION() calculate the
number of bytes or code units in a string or the position of a string in another string.

● JULIAN_DAY_OF_DATE() converts a date into an integer value.

● EXTRACT() extracts specific components of a time value.

When a numeric function is evaluated, a numeric value is returned.

numeric_function ::=

expression
In ABS(), CEILING(), FLOOR(), MOD(), SIGN() and TRUNC(): numeric expression.
In EXTRACT() and JULIAN_DAY_OF_DATE(): time value expression.
Otherwise: alphanumeric expression or national expression.

expression may not be a multiple value with dimension > 1.

ABS (expression)
CEIL[ING] (expression)
FLOOR (expression)
MOD (dividend,divisor)
SIGN (expression)
TRUNC (expression)

(expression[USING])

OCTET_LENGTH (expression)
POSITION (expression IN expression [USING CODE_UNITS])

JULIAN_DAY_OF_DATE (expression)
EXTRACT (part FROM expression)

CHAR_LENGTH
CHARACTER_LENGTH

CODE_UNITS
OCTETS

Compound language constructs Function

U22420-J-Z125-12-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.2.4 Aggregate functions

Aggregate functions return the average, count, maximum value, minimum value or sum of
a set of values or the number of rows in a derived table.

aggregate_function::=

expression
Expression determining the values in the set (see section “Expression” on page 134).

The expression for each aggregate function except for COUNT(*) can have a certain
data type. The permitted data type(s) for each function is specified in the function
description.

The following restrictions apply to expression:

● expression cannot include any multiple columns.

● expression cannot include any aggregate functions.

● expression cannot include any subqueries.

● If a column name in expression specifies a column of a higher-level query expression
(external reference), expression may only include this column name.

In this case, the aggregate function must satisfy one of the following conditions:

– The aggregate function is included in a SELECT list.

– The aggregate function is included in a subquery of a HAVING clause. The
column name must indicate a column of the SELECT expression that contains
a HAVING clause.

i The aggregate functions MIN() and MAX() reference the set of all values in a
column in a table. They differ in this way from a CASE expression with MIN / MAX
(see page 257), which references different expressions.

 ([]expression)

COUNT(*)

AVG
COUNT
MAX
MIN
SUM

ALL
DISTINCT

Function Compound language constructs

146 U22420-J-Z125-12-76

Calculating aggregate functions

In all the aggregate functions except COUNT(*), the expression specified as the function
argument determines the set of values used in the aggregate function.

If the SELECT expression or SELECT statement in which the aggregate function occurs
does not include a GROUP BY clause, the argument expression is used on all the rows in
the table (or the rows that satisfy the WHERE clause) referenced by the column
specifications in the argument expression. If the argument expression does not contain a
column specification, the argument expression is used on all the rows in the table of the
SELECT expression. The result is a single-column table.

If this table contains NULL values, these are removed before the aggregate function is
performed. A warning is issued.
If DISTINCT is specified in the aggregate function, only unique values are taken into
account, i.e. if a value occurs more than once in a table, the duplicates are removed before
the aggregate function is performed.
The aggregate function is then used on the remaining values of the single-column table and
returns exactly one value.

If the corresponding SELECT expression (or SELECT statement) includes a GROUP BY
clause, the aggregate function is calculated as described for each group separately and
returns exactly one value per group.

Examples

Without GROUP BY: The following expression calculates the sum of the trebled price of the
items from the ITEMS table:

SELECT SUM (3*price) FROM items

In order to calculate the expression, the argument expression 3*price is used on all the
rows of the ITEMS table. This returns the following derived column:

The sum of the values is 41880.05.

2101.50
690,00

 450.00
 450.00
 120.00
 120.00
 180.00
 15.00
 15.00
 30.00
 3.00
 3.30
 2.25

Compound language constructs Function

U22420-J-Z125-12-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

With GROUP BY: The following expression calculates the total stock per location from the
WAREHOUSE table.

SELECT location, SUM (stock) FROM warehouse GROUP BY location

In order to calculate the expression the stock per location is grouped together first:

Subsequently, the stock is added together for each warehouse.

location stock
Main warehouse 2

1
10
10
3
3
1
15
8
6
11

120
248

Parts warehouse 9
6
3

200
180
47

location
Main warehouse 438
Parts warehouse 445

Function Compound language constructs

148 U22420-J-Z125-12-76

5.2.5 Table functions

Table functions generate tables whose content depends on the call parameters or is
derived from external data sources, e.g. files.

table_function ::=

The table functions are described on page 163 and page 173.

CSV ([FILE] file DELIMITER delimiter [QUOTE quote]
[ESCAPE escape], data_type,...)

DEE [()]

Compound language constructs Function

U22420-J-Z125-12-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.2.6 Cryptographic functions

The ENCRYPT() and DECRYPT() functions are used to encrypt and decrypt individual
values. Sensitive data is protected against unauthorized access by encryption. Only the
users who know the “key” can decrypt the data.

The REP_OF_VALUE() and VALUE_OF_REP() functions can be used to jointly encrypt
multiple values and to decrypt them again.

Introductory information on access control by means of data encryption in SESAM/SQL is
provided in the “Core manual”.

crypto_function ::=

key ::= expression

 expression
Expression whose value is to be encrypted.
expression may not be a multiple value with dimension > 1.

expression2
Alphanumeric expression whose value is to be encrypted.
expression2 may not be a multiple value with dimension > 1.

key
Key for encryption and decryption.

data_type
Data type of the decrypted value.
data_type may not be an aggregate (see page 103).

ENCRYPT (expression, key)
DECRYPT (expression2, key, data_type)

Function Compound language constructs

150 U22420-J-Z125-12-76

Application information

Since the encryption algorithm AES (see the “Core manual”) - as it is used in SESAM/SQL
- processes blocks of 16 characters, the length of the output value is always a multiple of
16 characters. If two input values differ in only one bit, all the characters in their encrypted
values will differ.

Encrypted values can be compared to see whether they are identical or not identical. They
are identical or not identical precisely when the unencrypted values are identical or not
identical. The unencrypted values must have the same data type here. In the case of strings
the unencrypted values must also have the same length.

i However, the comparisons 01 = 1.0 and 'abc' = 'abcË' each returns the truth value
TRUE although the encryptions of these four values are all different.

Other comparisons (e.g. with < or Î) of encrypted values return results which have nothing
to do with the corresponding comparisons of the unencrypted values. The predicates
BETWEEN and LIKE do not make sense for encrypted data, either. The same applies for
sorting by means of ORDER BY.

The encryption of a NULL value returns the NULL value of the corresponding data type.
Whether or not a value is a NULL value is therefore not confidential information when
encryption takes place. The encryption of a string with the length 0, on the other hand,
returns a string with the length 16. Without knowing the key no distinction can be made from
the encryptions of strings with 1 to 14 alphanumeric characters.

i CAUTION!
Encrypted values can normally not be encrypted if they are truncated or extended
(even if the new length is a multiple of 16). A column with encrypted values should
therefore, for example, not have the data type CHAR(20) because then 4 blanks
would be added to each encrypted value. These blanks would have to be removed
again before encryption could take place.

Compound language constructs Function

U22420-J-Z125-12-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.2.7 User Defined Functions (UDFs)

UDFs have an almost identical function scope to procedures. They are described in detail
in the chapter “Routines” on page 321.

The current authorization identifier must have the EXECUTE privilege for the UDF.

CHECK constraints may not contain a UDF.

user_defined_function ::= unqual_routine_name arguments

arguments ::= ([expression [{,expression}...]])

unqual_routine_name
Name of the UDF to be executed. You can qualify the unqualified UDF name with a
database and schema name.

([expression [{,expression}...]])
List of arguments. The number of arguments must be the same as the number of UDF
parameters in the UDF definition. The order of the arguments must correspond to that
of the parameters. If no parameter is defined for the UDF, the list consists only of the
parentheses.

The nth parameter is assigned the value of the nth argument before the UDF is
executed.

The data type of the nth argument must be compatible with the data type of the nth
parameter. For input parameters, see the information in section “Supplying input
parameters for routines” on page 129.

ABS() Alphabetical reference section: Functions

152 U22420-J-Z125-12-76

5.2.8 Alphabetical reference section: Functions

The functions are described in alphabetical order in the following sections.

ABS() - Absolute value

Function group: numeric function

ABS() determines the absolute value of a numeric value.

ABS (expression)

expression
Numeric expression.
expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise: the absolute value of expression. In other words the value of expression when
expression is positive, otherwise the value of -(expression).

Data type: like expression

Examples

ABS (3,14) returns the value 3,14.

ABS (-3,14) returns the value 3,14.

Alphabetical reference section: Functions AVG()

U22420-J-Z125-12-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

AVG() - Arithmetic average

Function group: aggregate function

AVG() calculates the average of a set of numeric values. NULL values are ignored.

AVG ([] expression)

ALL
All values are taken into account, including duplicate values.

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

expression
Numeric expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

If the set of values returned by expression is empty, the result or the result for this group is
the NULL value.

Otherwise:

Without GROUP BY clause:
Returns the arithmetic average of all the values in the specified expression (see
“Calculating aggregate functions” on page 146).

With GROUP BY clause:
Returns the arithmetic average per group of all the values in the derived column for this
group.

ALL
DISTINCT

AVG() Alphabetical reference section: Functions

154 U22420-J-Z125-12-76

Data type: like expression with the following number of digits:

● Integer or fixed-point number:

The total number of significant digits is 31, the number of digits to the right of the
decimal point is 31-t+r. t and r are the total number of significant digits and the number
of digits after the decimal point, respectively, in expression.

● Floating-point number:

The total number of significant digits corresponds to 21 binary digits for REAL numbers
and 53 for DOUBLE PRECISION.

Examples

SELECT without GROUP BY:
Calculate the average price of the services in the SERVICE table of the demonstration
database (result: 783.33):

SELECT AVG(service_price) FROM service

If you enter a row in the table that contains the NULL value in the column service_price,
the result does not change.

SELECT with GROUP BY:
The average price is calculated for each order number:

SELECT order_num, AVG(service_price) FROM service GROUP BY order_num

order_num
200 1025
211 662.5
250 662.5

Alphabetical reference section: Functions CEILING()

U22420-J-Z125-12-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

CEILING() - Smallest integer greater than the value

Function group: numeric function

CEILING() (“round up to the ceiling”) determines the smallest integer which is greater than
or equal to the specified numeric value. In the case of non-integer numeric values,
CEILING() always rounds up.

CEIL[ING] (expression)

expression
Fixed-point value of the type NUMERIC(p,s) or DECIMAL(p,s) if the number of decimal
places s is greater than 0, otherwise a numeric expression.
expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

The smallest integer which is greater than the specified numeric value.

Data type: NUMERIC(q+1,0) or DECIMAL(q+1,0) where q=MIN(31,p+1) if the number of
decimal places s is greater than 0, otherwise like expression.

Examples

CEILING (3,14) returns the value 4.

CEILING (-3,14) returns the value -3.

CEILING (10,14) returns the value 11.

CHAR_LENGTH() Alphabetical reference section: Functions

156 U22420-J-Z125-12-76

CHAR_LENGTH() - Determine string length

Function group: numeric function

CHAR_LENGTH() or CHARACTER_LENGTH() determines the number of bytes or code
units in a string.

 (expression [USING])

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR).

In the case of the alphanumeric data types CHAR and VARCHAR, CHAR_LENGTH()
and OCTET_LENGTH() (see section “OCTET_LENGTH() - Determine string length”
on page 193) return the same values because each character is represented in
precisely one byte (octet).

In the case of the national data types NCHAR and NVARCHAR the length can be
determined either in bytes (OCTET_LENGTH and CHAR_LENGTH ... USING
OCTETS functions) or in UTF-16 code units (CHAR_LENGTH ... USING
CODE_UNITS function). A code unit in UTF-16 = 2 bytes. The number of Unicode
characters in a national string can be less than the number of code units in UTF-16 as
some Unicode characters are represented by two consecutive code units in UTF-16
(surrogate pairs).

expression may not be a multiple value with dimension > 1. See also section
“Compatibility between data types” on page 99.

USING CODE_UNITS
The length is to be output in code units.
In the data types CHAR and VARCHAR, 1 code unit = 1 byte.
In the data types NCHAR and NVARCHAR, 1 code unit = 2 bytes.

USING OCTETS
The length is to be output in bytes.
In the data types CHAR and VARCHAR, 1 character = 1 byte.
In the data types NCHAR and NVARCHAR, 1 character = 1 or 2 code units = 2 or 4
bytes respectively.

CHAR_LENGTH
CHARACTER_LENGTH

CODE_UNITS
OCTETS

Alphabetical reference section: Functions CHAR_LENGTH()

U22420-J-Z125-12-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Result

If the string contains the NULL value, the result is the NULL value.

Otherwise:

The result is the number of bytes or code units in the string.

Data type: INTEGER

Examples

Determine the number of bytes (characters) contained in the alphanumeric string 'only'
(result: 4).

CHAR_LENGTH ('only') USING OCTETS

Determine the number of bytes contained in the national string 'for' (result: 6).

CHAR_LENGTH (N'for') USING OCTETS

Determine the number of code units contained in the national string 'for' (result: 3).

CHAR_LENGTH (N'for') USING CODE_UNITS

Determine the number of code units contained in the national string 'München' (result: 7).

CHAR_LENGTH (U&'M\00FCnchen')

COLLATE() Alphabetical reference section: Functions

158 U22420-J-Z125-12-76

COLLATE() - Determine collation element for national strings

Function group: string function

COLLATE() supplies, for national strings, the collation element in accordance with the
Default Unicode Collation Table (DUCET), see the “Core manual”.

Code points which are not assigned and code points > U+2FFF are ignored.
Collation elements extend to comparison level 3; level 4 is ignored.

COLLATE
(expression USING [[catalog.]INFORMATION_SCHEMA.] [, length])

length ::= unsigned_integer

expression
National expression.

Name of the collation (sort sequence) to be used.
In SESAM/SQL all collation names are predefined. These are the names which are also
defined in the BS2000 software product SORT for sorting strings.

In the case of DUCET_NO_VARS, the variable collation elements, e.g. blanks,
punctuation marks and continuation characters, are ignored.

In the case of DUCET_WITH_VARS, they are taken into account.
The strings U&'cannot' and U&'can not' are sorted in this order with
DUCET_NO_VARS, and in the opposite order with DUCET_WITH_VARS.

The collation can be qualified by a database name and the schema name
INFORMATION_SCHEMA, otherwise the INFORMATION_SCHEMA is taken as the
predefined database.

length
Maximum length of the collation element where 1 Î length Î 32000.

Length not specified:
The result can have a length length of 32000 bytes, depending on expression.

DUCET_WITH_VARS
DUCET_NO_VARS

DUCET_WITH_VARS
DUCET_NO_VARS

Alphabetical reference section: Functions COLLATE()

U22420-J-Z125-12-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

The result is the collation element for expression in accordance with the Default Unicode
Collation Table (DUCET) with the length n = 4 + 6 * (length of expression in code units),
where n Î 32000.

If the length of the collation clement is greater than the specified or maximum length, the
function is aborted with SQLSTATE.

Data type: VARCHAR(n)

Examples

Output of a list of customer contacts sorted according to the Default Unicode Collation
Table taking into account the variable collation elements:

UNLOAD ONLINE DATA CONTACTS (LNAME,FNAME,TITLE,CONTACT_TEL,POSITION) -
 INTO FILE 'DAT.070.C.DUCETWITHVARS' -
 CSV_FORMAT DELIMITER ';' QUOTE '"' ESCAPE '\' EBCDIC -
 ORDER BY COLLATE(TRANSLATE(LNAME USING EDF041 DEFAULT N'?') -
 USING DUCET_WITH_VARS,200) -
 ASC, -
 COLLATE(TRANSLATE(FNAME USING EDF041 DEFAULT N'?') -
 USING DUCET_WITH_VARS,200) -
 ASC

Output of the collation element for a letter:

HEX_OF_VALUE(COLLATE(TRANSLATE ('A' USING EDF041) USING DUCET_NO_VARS))

0E33000020000800

COUNT(*) Alphabetical reference section: Functions

160 U22420-J-Z125-12-76

COUNT(*) - Count table rows

Function group: aggregate function

COUNT(*) counts the rows in a table. Rows containing NULL values are included in the
count.

COUNT (*)

Result

Without GROUP BY clause:
Returns the number of rows in the derived table of the corresponding SELECT
expression (or corresponding SELECT statement). Duplicate rows and rows containing
only NULL values are included.

With GROUP BY clause:
Returns the number of rows per group for each group in the derived table.

Data type: DECIMAL(31,0)

Examples

SELECT without GROUP BY:
Query the number of customers living in Munich in the CUSTOMERS table (result: 3):

SELECT COUNT(*) FROM customers WHERE city='Munich'

SELECT with GROUP BY:
Count the customers for each city:

SELECT city, COUNT(*) FROM customers GROUP BY city

city
Berlin 1
Bern 33 1
Hanover 1
Moenchengladbach 1
Munich 3
New York, NY 1

Alphabetical reference section: Functions COUNT()

U22420-J-Z125-12-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

COUNT() - Count elements

Function group: aggregate function

COUNT() counts the elements in a set of values. NULL values are not included in the count.

COUNT ([] expression)

ALL
All values are taken into account, including duplicate value.

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

expression
Numeric expression, alphanumeric expression, national expression or time value
expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

Without GROUP BY clause:
Number of values in the set returned by expression (see “Calculating aggregate
functions” on page 146).

With GROUP BY clause:
Returns the number of values in each group.

Data type: DECIMAL (31, 0)

ALL
DISTINCT

COUNT() Alphabetical reference section: Functions

162 U22420-J-Z125-12-76

Examples

SELECT without GROUP BY:
Determine the number of different service descriptions in the SERVICE table (result: 7):

SELECT COUNT(DISTINCT service_text) FROM service

SELECT with GROUP BY:
Count the number of different services for each order number:

SELECT order_num, COUNT(DISTINCT service_text) FROM service
GROUP BY order_num

order_num
200 2
211 4
260 2

Alphabetical reference section: Functions CSV()

U22420-J-Z125-12-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

CSV() - Reading a BS2000 file as a table

Function group: table function

The table function CSV() enables you to use the content of a BS2000 file as a “read-only”
table in any SQL statements.

CSV format (CSV: Comma Separated Values) is used to display SQL tables in files here.
This is a standardized format for the platform-independent exchange of table data, see
“Format of CSV files” on page 165. The file contains the sequence of table rows, each row
containing its column values sequentially as a string. Such files can be generated with a
large number of software products (e.g. with Microsoft EXCEL).

CSV ([FILE] file DELIMITER delimiter [QUOTE quote] [ESCAPE escape], data_type,...)

FILE file
Name of the input file. You must specify file as an alphanumeric literal.

The input file must be a SAM file.
If the input file is not located in the ID of the DBH, the DBH ID must have read
authorization for this file. Otherwise the DBH cannot access the input file.

If a read password is required for the file, this must be added to the BS2000 file in the
form ?PASSWORD=<password>, e.g. ':8OSH:$ABC.MYFILE?PASSWORD=C''ABCD'''.

password can be specified in several different ways:

– C''string''
 string contains four printable characters.

– X''hex_string'’
hex_string contains eight hexadecimal characters.

– n
n identifies an integer from - 2147483648 to + 2147483647.

DELIMITER delimiter
Delimiters (DELIMITER characters) between the column values of the CSV file.
A DELIMITER character can also be part of a value, see the descriptions of quote and
escape below.
delimiter must be specified as an alphanumeric literal with the length 1.

CSV() Alphabetical reference section: Functions

164 U22420-J-Z125-12-76

QUOTE quote
QUOTE characters in which the column values in the CSV file can be enclosed. These
QUOTE characters are not part of the column value. A QUOTE character in the column
value must be entered twice in the CSV file.
When a value is enclosed in QUOTE characters, it can also contain NEWLINE
characters (which are not interpreted as a line break) or DELIMITER characters. A
value consisting only of an opening and a closing QUOTE character is interpreted as a
value with the length 0.
quote must be specified as an alphanumeric literal with the length 1.
When QUOTE is not specified, the column values in the CSV file cannot be enclosed
in QUOTE characters.

ESCAPE escape
ESCAPE character with which ESCAPE sequences consisting of two characters in the
input file begin.
ESCAPE sequences enable DELIMITER characters, QUOTE characters and ESCAPE
characters to be written as part of a column value and NEWLINE characters to be
ignored as a delimiter between two input lines.
escape must be specified as an alphanumeric literal with the length 1.
When ESCAPE is not specified, no ESCAPE sequences can be used in the CSV file.

i The characters specified for DELIMITER, QUOTE and ESCAPE must all be
different.

data_type,...
Data types of the various columns in the table which is read from the CSV file.
Every data_type must be data type CHARACTER(n) (where 1 Î n Î 256) or
CHARACTER VARYING(n) (where 1 Î n Î 32000).

Result

A table with as many columns as data types which are specified, each with the specified
data type.

Example

 A new SERVICE_ENCR base table is set up. Its contents are taken from a CSV file.

INSERT INTO service_encr (setext, seprice_encr) SELECT a,b
FROM TABLE(CSV(FILE 'out.service.070' DELIMITER ':',

CHAR(25),VARCHAR(16)))
AS t(a,b)

Alphabetical reference section: Functions CSV()

U22420-J-Z125-12-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Format of CSV files

The CSV format (CSV: Comma Separated Values) is a standardized format for the
platform-independent exchange of table data. Such files can be generated and edited with
a large number of software products (e.g. with Microsoft EXCEL).

Tables are presented in CSV files as a sequence of lines, the lines in a file being separated
by (one or more) NEWLINE characters (line breaks). The transition to the next record in a
SAM file is also such a new line, although this is not an EBCDIC character. A record in a
SAM file can contain multiple lines, separated by a NEWLINE character. New line
characters may also occur before the first and after the last line.

The various column values in a line are separated by a single DELIMITER character. A
DELIMITER character may also occur after the last column value of a line.

There are two ways of presenting the various column values in each line:
The individual characters in a column can be enclosed in QUOTE characters or not. In the
first case the column values can also contain the NEWLINE and the DELIMITER
characters. However, a QUOTE character in the column value must be entered twice
(otherwise it terminates the column value). Column values in QUOTE characters can only
be used if the QUOTE operand is specified in the CSV function.
If a column value does not begin with the QUOTE character (or if the QUOTE operand is
not specified in the CSV function), the column value will end before the next DELIMITER or
NEWLINE character.

In SESAM/SQL you can also define an ESCAPE character. The ESCAPE character
enables you to use ESCAPE sequences in the column value, which are interpreted as
follows:

ESCAPE sequences are also permitted in column values which are enclosed in QUOTE
characters. ESCAPE NEWLINE in particular is useful, because when an ESCAPE
character is contained at the end of a SAM record, the line is regarded as not yet completed
and is continued with the following SAM record. The lines in a CSV file can thus be longer
than one record in a SAM file of BS2000.

If errors occur when the CSV file is read or an infringement of the CSV format is detected
(e.g. in the case of end of file in a column value which begins with a QUOTE character but
does not end with one), this is indicated with an error code.

Escape sequence Interpreted as

escape newline “no character”

escape delimiter a DELIMITER character

escape quote a QUOTE character

escape escape an ESCAPE character

CSV() Alphabetical reference section: Functions

166 U22420-J-Z125-12-76

Note on NEWLINE characters

In CSV format four EBCDIC control characters are interpreted as a NEWLINE characters:

X'04' is the NEXT LINE character

X'0D' is the CARRIAGE RETURN character. Its ASCII equivalent is used as the newline
character in some Macintosh systems.

X'15' is the LINE FEED character. Its ASCII equivalent is used as the newline character
in POSIX and LINUX systems. In EBCDIC systems from IBM it is used as NEXT
LINE or LINE FEED. The ASCII equivalent of X'0D15' is used as a string for (one)
newline character in Windows systems.

X'25' is the PRIVATE USE TWO character. However, in EBCDIC systems from IBM it is
used as LINE FEED or NEXT LINE, and in the IBM z/OS Unix System Services as
a newline character.

The CSV format accepts all these control characters (like the transition to the next record
of a SAM file) as newline characters.

Syntax of a CSV file

A syntactical presentation of the format of a CSV file is provided on page 743.

Interpreting CSV files as an SQL table

In the CSV function the number of columns to be read and their data types are specified.
These columns correspond to the column values in the CSV file in the same order. If a line
in the CSV file contains fewer column values, NULL values are added. If a line in the CSV
file contains more column values, the surplus column values are ignored.

A line in a CSV file must contain at least one character. Multiple consecutive newline
characters are treated as one newline character.

An empty column value (e.g. between two consecutive DELIMITER characters) is
interpreted as a NULL value.

A column value which is longer than the (maximum) length of the column’s data type is
truncated. A warning is issued.

If the data type of the column is CHARACTER(n) but the column value is shorter than n, the
column value is padded at the end with blanks (X'40').

A column value with the length 0 can be written with QUOTE characters, e.g. as "" if
DELIMITER ';' QUOTE '"' is specified in the CSV function.

Alphabetical reference section: Functions CURRENT_DATE

U22420-J-Z125-12-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Restrictions in the use of CSV files

The BS2000 file is opened exclusively. It can therefore not be used simultaneously by the
same or another SQL transaction in another CSV function. A remedy is offered by the
CACHE annotation, in which the CSV is cached temporarily, see the “Performance”
manual.

If the file cannot be opened, an error message is issued and processing is terminated.

The file is closed only when the query containing it has been analyzed fully or when the
query is no longer required (e.g. because the cursor which used the file is closed) or when
the CSV file is cached.

In addition, there is a maximum number of CSV files (currently 4) which may be opened
simultaneously. If this maximum number is exceeded, a corresponding error message is
issued.

When one coded character set (CODE_TABLE not equal to _NONE_or CODED-CHARACTER-SET
not equal to *NONE) each is defined for the database used and for the CSV file, the two
names specified must be the same.

CURRENT_DATE - Current date

Function group: time function

CURRENT_DATE returns the current date.

CURRENT_DATE

Result

Current date

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: DATE

CURRENT_TIME(3) Alphabetical reference section: Functions

168 U22420-J-Z125-12-76

CURRENT_TIME(3) - Current time

Function group: time function

CURRENT_TIME(3) returns the current time.

CURRENT_TIME(3)

Result

Current time

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: TIME

CURRENT_TIMESTAMP(3) - Current time stamp

Function group: time function

CURRENT_TIMESTAMP(3) returns the current time stamp.

CURRENT_TIMESTAMP(3)

Result

Current time stamp

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: TIMESTAMP

Alphabetical reference section: Functions DATE_OF_JULIAN_DAY()

U22420-J-Z125-12-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

DATE_OF_JULIAN_DAY() - Convert Julian day number

Function group: time function

DATE_OF_JULIAN_DAY() returns the corresponding date in the Gregorian calendar for a
given Julian day number (see also the inverse function JULIAN_DAY_OF_DATE() on
page 182).

The Julian day number of a date is the number of days which have passed since the 24th
November, 4714 BC (in accordance with the Gregorian calendar).

i DATE_OF_JULIAN_DAY() and JULIAN_DAY_OF_DATE() are inverse functions.
When, for example, a constraint exists in the form JULIAN_DAY_OF_DATE(column)
< :user_variable, the SQL Optimizer can then convert this constraint internally to the
constraint column < DATE_OF_JULIAN_DAY(:user_variable) in order to permit the
use of indexes on column. Consequently :user_variable may only contain values
which are permitted as an argument of DATE_OF_JULIAN_DAY(). This also
applies for any constant expressions in place of :user_variable.

DATE_OF_JULIAN_DAY (expression)

expression
Numeric integer expression. Its value represents the number of days which have
passed since the 24th November 4714 B.C. Its value must lie between 1721426 and
5373484.
expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

SESAM/SQL interprets the value of expression as a Julian day number. The result of the
function is the date which corresponds to this Julian day number.

Data type: DATE

Example

DATE_OF_JULIAN_DAY (2451545)

2000-01-01

DECRYPT() Alphabetical reference section: Functions

170 U22420-J-Z125-12-76

DECRYPT() - Decrypt data

Functon group: cryptographic function

DECRYPT() decrypts strings in accordance with the AES algorithm and using a key of
128 bits (16 bytes) in Electronic Codebook Mode (ECM) to the corresponding value of a
specified data type.

DECRYPT (expression, key, data_type)

expression
Specifies the value which is to be decrypted.
The value must be of the alphanumeric data type CHARACTER or CHARACTER
VARYING.
expression may not be a multiple value with dimension > 1.
The length of expression must be an integral multiple of 16 and greater than 0. A NULL
value is also permitted.

key
Key with which the value of expression is to be decrypted.
Alphanumeric string with a length of 16 characters, i.e. of the data type
CHARACTER(16) or CHARACTER VARYING(n) where n Ï16.
A NULL value of one of these data types is also permissible.
To obtain a correct result, the key must be the same as that which was used for
encryption with ENCRYPT().

data_type
Data type of the decrypted value (without dimension specification). The data types
permitted depend on the (maximum) length of the data type of expression, see the table
on the next page.

Result

If the value of expression or key is the NULL value, the result is the NULL value.

Otherwise:

For the decrypted value of expression in the specified data type, see the table on the next
page. For possible errors, see “Error cases” on page 172.

Data type: the specified data_type

Data type of expression data_type and data type of the result

CHAR(m), VARCHAR(Ï m) 1 CHAR(n) if n Î 256 2

Table 13: Permitted combinations in the case of DECRYPT()

Alphabetical reference section: Functions DECRYPT()

U22420-J-Z125-12-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

Decryption in a SELECT expression:

SELECT DECRYPT(sprice_encr,'0123456789ABCDEF',NUMERIC(5,0))
AS test_decr FROM service

The VALUE_OF_REP function also enables individual values of a jointly encoded string to
be decrypted (see also page 175):

VALUE_OF_REP (SUBSTRING (DECRYPT (wagesandbonus, :key, CHAR(12))
FROM 7 FOR 6), NUMERIC(6))
AS bonus

CHAR(m), VARCHAR(Ï m) 1 VARCHAR(n) 2

CHAR(m), VARCHAR(Ï m) 1 NCHAR(n) 3

CHAR(m), VARCHAR(Ï m) 1 NVARCHAR(n) 3

CHAR(16), VARCHAR(Ï 16) SMALLINT, INTEGER

CHAR(16), VARCHAR(Ï 16) NUMERIC (up to 14 characters)

CHAR(32), VARCHAR(Ï 32) NUMERIC (15 to 30 characters)

CHAR(48), VARCHAR(Ï 48) NUMERIC (31 characters)

CHAR(16), VARCHAR(Ï 16) DECIMAL (up to 27 characters)

CHAR(32), VARCHAR(Ï 32) DECIMAL (28 to 31 characters)

CHAR(16), VARCHAR(Ï 16) FLOAT, REAL, DOUBLE PRECISION

CHAR(16), VARCHAR(Ï 16) DATE, TIME(3), TIMESTAMP(3)

1 m must beÏ 16 and an integral multiple of 16
2 Length n must be Ï 1 and between (m - 17) and (m -2) (inclusive)
3 Length n must be Ï 1 and between (m/2 - 1) and (m/2 - 8) (inclusive)

Data type of expression data_type and data type of the result

Table 13: Permitted combinations in the case of DECRYPT()

DECRYPT() Alphabetical reference section: Functions

172 U22420-J-Z125-12-76

Error cases

The following errors can occur when the DECRYPT function is executed:

● The length of the encrypted string is 0 or not an integral multiple of 16.

● The key key is a string with a length which is not 16 or it is not the key that was used for
encryption.

● The decrypted value does not match the data type specified in the result (when, for
example, a SMALLINT value is encrypted, but INTEGER was specified as the result
type in the DECRYPT function (or vice versa)).

However, when the DECRYPT function is executed no check is made to see whether the
decrypted result is assigned precisely the same data type as the encrypted value. Only the
internal presentation of values is encrypted and decrypted, but no additional information.

Thus, for example, in SESAM/SQL the values of the data types INTEGER,
CHARACTER(4), NUMERIC(4,0), DECIMAL(7,2) and REAL which are not equal to NULL
all have an internal presentation with precisely 4 bytes. Consequently a value of the data
type INTEGER can be encrypted and decrypted to a value of the type CHAR(4) or REAL.
The DECRYPT function does not return an error even if decryption is to the type
NUMERIC(4,0). Depending on the decrypted value, however, an error can occur in a
subsequent arithmetic operation.

Alphabetical reference section: Functions DEE()

U22420-J-Z125-12-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

DEE() - Table without columns

Function group: table function

The table function DEE() returns a table without columns with one row.

In SESAM/SQL there are no other tables of this kind. They can, for example, be used to
analyze an expression without reference to a base table. No SQL privilege is required for
reading with DEE().

DEE [()]

Result

The table without columns with one row.

Examples

This query returns details of SQL mode:

SELECT CURRENT_USER AS "Who am I",
LOCALTIMESTAMP(3) AS "and what time is it, anyway"

FROM TABLE(DEE())

The following query is executed for database k9 and could return a different time:

SELECT LOCALTIMESTAMP(3) AS "local time on catalog K9"
FROM TABLE(K9.DEE())

The following query expands table T by one row with NULL values:

SELECT * FROM T UNION JOIN TABLE(DEE())

ENCRYPT() Alphabetical reference section: Functions

174 U22420-J-Z125-12-76

ENCRYPT() - Encrypt data

Functon group: cryptographic function

ENCRYPT() encrypts values of any data type using the AES algorithm and a key of 128 bits
(16 bytes) in Electronic Codebook Mode (ECM).

ENCRYPT (expression, key)

expression
Expression whose value is to be encrypted.
The value may be of any data type, but not CHARACTER VARYING (Ï 31998) or
NATIONAL CHARACTER VARYING (16000).
expression may not be a multiple value with dimension > 1.

key
Key with which the value of expression is to be encrypted.
Alphanumeric string with a length of 16 characters, i.e. of the data type
CHARACTER(16) or CHARACTER VARYING(n) where n Ï16.
A NULL value of one of these data types is also permissible.

Result

If the value of expression or key is the NULL value, the result is the NULL value.

Otherwise:

The encrypted value of expression.

Data type: CHARACTER VARYING with a maximum length in accordance with the table
on the next page.

Alphabetical reference section: Functions ENCRYPT()

U22420-J-Z125-12-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

i If expression has a data type whose values can have different lengths (i.e.
(NATIONAL) CHARACTER VARYING), the encrypted values can also have
different lengths. However, the length of the encrypted value is always a multiple of
16 characters, see the table above.
If, for example, expression has the data type VARCHAR(20), the result ENCRYPT()
will have the data type VARCHAR(32); strings with 0 to 14 characters are encrypted
in strings with 16 characters, strings with 15 to 20 characters in strings with 32
characters. The precise length of the unencrypted value cannot be determined from
the encrypted value without knowledge of the key (it is encrypted together with the
value).

Examples

 The values of the SERVICE_PRICE column are encrypted in the SREC_ENCR
column; the unencrypted values of the SERVICE_PRICE column are converted to
NULL:
UPDATE service SET

srec_encr=ENCRYPT(service_price,'0123456789ABCDEF'),
service_price = NULL WHERE service_price IS NOT NULL

The REP_OF_VALUE function also enables multiple values to be encrypted in a
string (see also page 171):

ENCRYPT (REP_OF_VALUE(wages) || REP_OF_VALUE(bonus), :key)

Data type of expression Data type of the result

CHAR(m) VARCHAR(n) 1

1 Where n is the lowest integral multiple of 16 which isÏ m + 2

VARCHAR(m) where m Î 31998 VARCHAR(n) 1

NCHAR(m) VARCHAR(n) 2

2 Where n is the lowest integral multiple of 16 which is Ï 2*m + 2

NVARCHAR(m) where m Î 15999 VARCHAR(n) 2

SMALLINT, INTEGER VARCHAR(16)

NUMERIC (up to 14 characters) VARCHAR(16)

NUMERIC (15 to 30 characters) VARCHAR(32)

NUMERIC (31 characters) VARCHAR(48)

DECIMAL (up to 27 characters) VARCHAR(16)

DECIMAL (28 to 31 characters) VARCHAR(32)

FLOAT, REAL, DOUBLE PRECISION VARCHAR(16)

DATE, TIME(3), TIMESTAMP(3) VARCHAR(16)

Table 14: Data type of the result of ENCRYPT()

EXTRACT() Alphabetical reference section: Functions

176 U22420-J-Z125-12-76

EXTRACT() - Extract components of a time value

Function group: numeric function

EXTRACT() selects the specified component from a time value.
EXTRACT() uses the Gregorian calendar to do this, including the dates before its
introduction on 10/15/1582.

EXTRACT (component FROM expression)

component ::=

part
Specification of the component. Permissible entries:

YEAR selects the year of timestamp or date, e.g. 2013
MONTH selects the month of the year of a timestamp or date, e.g. 2 for February
DAY selects the day of the month of a timestamp or date, e.g. 25
HOUR selects the hour of the day of a timestamp or of a time, e.g. 23
MINUTE selects the minute of the hour of a timestamp or of a time, e.g. 58
SECOND selects the second of the minute of a timestamp or of a time, e.g. 35.765
YEAR_OF_WEEK determines the year in which the week of a timestamp or day lies,

e.g. 2013
WEEK_OF_YEAR determines the week of the year of a timestamp or date, e.g. 52
DAY_OF_WEEK determines the day of the week of a timestamp or date, e.g. 3 for

Wednesday
DAY_OF_YEAR determines the day of the year of a timestamp or date, e.g. 365

YEAR
MONTH
DAY
HOUR
MINUTE
SECOND
YEAR_OF_WEEK
WEEK_OF_YEAR
DAY_OF_WEEK
DAY_OF_YEAR

Alphabetical reference section: Functions EXTRACT()

U22420-J-Z125-12-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

expression
Time value expression. Permissible types are:
– TIMESTAMP is permissible for every component
– TIME with component HOUR, MINUTE or SECOND
– DATE with component YEAR, MONTH, DAY, YEAR_OF_WEEK, WEEK_OF_YEAR, DAY_OF_WEEK

or DAY_OF_YEAR

expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

The corresponding numeric value.

Examples

Determining the current year number.

EXTRACT (YEAR FROM CURRENT_DATE)

Determining the day in the year.

EXTRACT (DAY_OF_YEAR FROM DATE '<date>')

Determining the current second.

EXTRACT (SECOND FROM CURRENT_TIME(3))

Data type: DECIMAL(1,0) with component DAY_OF_WEEK

DECIMAL(2,0) with component MONTH, DAY, HOUR, MINUTE, WEEK_OF_YEAR

DECIMAL(3,0) with component DAY_OF_YEAR

DECIMAL(4,0) with component YEAR und YEAR_OF_WEEK

DECIMAL(5,3) with component SECOND

FLOOR() Alphabetical reference section: Functions

178 U22420-J-Z125-12-76

FLOOR() - Largest integer less than the value

Function group: numeric function

FLOOR() (“round down to the floor”) determines the largest integer which is less than or
equal to the specified numeric value. In the case of non-integer numeric values, FLOOR()
always rounds down.

FLOOR (expression)

expression
Fixed-point value of the type NUMERIC(p,s) or DECIMAL(p,s) if the number of decimal
places s is greater than 0, otherwise a numeric expression.
expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

The largest integer which is less than the specified numeric value.

Data type: NUMERIC(q+1,0) or DECIMAL(q+1,0) where q=MIN(31,p+1) if the number of
decimal places s is greater than 0, otherwise like expression.

Examples

FLOOR (3,14) returns the value 3.

FLOOR (-3,14) returns the value -4.

FLOOR (10,54) returns the value 10.

Alphabetical reference section: Functions HEX_OF_VALUE()

U22420-J-Z125-12-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

HEX_OF_VALUE() - Present any value in hexadecimal format

Function group: string function

HEX_OF_VALUE() presents a value of any data type in hexadecimal format, i.e. in a string
consisting of the hexadecimal characters 0,1,2,...,9,a,b,...,f.

This enables any bit patterns to be output in readable format.

HEX_OF_VALUE (expression)

expression
Expression whose value is to be presented in hexadecimal format.
The data type may not be CHARACTER VARYING(n) with a maximum length of n >
16000 and not NATIONAL CHARACTER VARYING(n) with a maximum length of n >
8000.
expression may not be a multiple value with dimension > 1.

Result

If the value of expression is the NULL value, the result is the NULL value.

Otherwise:

The internal presentation of the value of expression in hexadecimal format as an
alphanumeric string. Its length is specified in the table on the next page.

Data type: CHARACTER VARYING with a maximum length in accordance with the table
on the next page.

HEX_OF_VALUE() Alphabetical reference section: Functions

180 U22420-J-Z125-12-76

Examples

HEX_OF_VALUE (CAST (254 AS SMALLINT))

HEX_OF_VALUE ('ABC')

Data type of expression Data type of the result Length of the result
if not NULL

CHAR(n) VARCHAR(2*n) 2*n

VARCHAR(n) where n Î 16000 VARCHAR(2*n) 0 to 2*n, even

NCHAR(n) VARCHAR(4*n) 4*n

NVARCHAR(n) where n Î 8000 VARCHAR(4*n) 0 to 4*n, divisible by 4

SMALLINT VARCHAR(4) 4

INTEGER VARCHAR(8) 8

NUMERIC(p,s) VARCHAR(2*p) 2*p

DECIMAL(p,s) VARCHAR(q 1)

1 q=p+2 if p is even; q=p+1 if p is odd.

q 1

REAL, FLOAT (Î 21 characters) VARCHAR(8) 8

DOUBLE PRECISION,
FLOAT (Ï 22 characters)

VARCHAR(16) 16

DATE VARCHAR(12) 12

TIME(3) VARCHAR(16) 16

TIMESTAMP(3) VARCHAR(28) 28

Table 15: Data types and lengths in the case of HEX_OF_VALUE()

00fe

c1c2c3

Alphabetical reference section: Functions HEX_OF_VALUE()

U22420-J-Z125-12-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Internal presentation of values in SESAM/SQL

The internal presentation of values which are not equal to NULL in SESAM/SQL as
returned by the REP_OF_VALUE() and HEX_OF_VALUE() functions is similar to the
internal presentation of corresponding values in other programming languages (e.g.
COBOL, C).

SQL data_type Sample value internal presentation
(hexadecimal format)

CHAR, VARCHAR
EBCDIC string

'ABC' c1c2c3

NCHAR, NVARCHAR
UTF16 string

N'ABC' 004100420043

SMALLINT
2 bytes with binary presentation of value
(2 Excess Code)

+300
-300

012C
fed4

INTEGER
4 bytes with binary presentation of value
(2 Excess Code)

+300
-300

0000012c
fffffed4

NUMERIC(p,s)
 p bytes with EBCDIC characters for digits,
 sign in the last byte

+123.5
-123.5

f1f2f3f5
f1f2f3d5

DECIMAL(p,s)
 FLOOR(p/2)1 bytes with 2 digits each,

last byte with 1 digit and sign

1 FLOOR(p/2) is the largest whole numberÎ p/2

+123.5
-123.5

01235c
01235d

REAL, FLOAT (Î 21 characters)
 1 byte for sign and exponent,
 3 bytes mantissa

+2.550625e+2
(=255 + 1/16)

45ff1000

DOUBLE PRECISION,
FLOAT (Ï22 characters)
 1 byte for sign and exponent for
 base 16, 7 bytes mantissa

+2.5506250000e+2 c5ff100000000000

DATE
2 bytes each with year, month, day in

 binary format

DATE'2000-08-11' 07d800008000b

TIME(3)
2 bytes each with hours, minutes, seconds

 and milliseconds in binary format

TIME'12:34:56.123' 000c00220038007b

TIMESTAMP(3)
Like DATE and TIME(3)

TIMESTAMP
 '2000-08-11 12:34:56.123'

07d800008000b000c00
220038007b

Table 16: Overview of the internal presentation of values in SESAM/SQL

JULIAN_DAY_OF_DATE() Alphabetical reference section: Functions

182 U22420-J-Z125-12-76

JULIAN_DAY_OF_DATE() - Convert date

Function group: numeric function

JULIAN_DAY_OF_DATE() returns the Julian day number which corresponds to a given
date time value (see also the inverse function “DATE_OF_JULIAN_DAY()” on page 169).

The Julian day number for the 24th November 4714 B.C. (in accordance with the Gregorian
calendar) is “0”.

The Julian day number for a later date is the number of days which have passed between
the 24th November 4714 B.C. and the later date. For example, the DATE '0001-01-01'
corresponds to the Julian day number “1721426”, the DATE '9999-12-31' corresponds to
the Julian day number “5373484”.

i DATE_OF_JULIAN_DAY() and JULIAN_DAY_OF_DATE() are inverse functions.
When, for example, a constraint exists in the form JULIAN_DAY_OF_DATE(column)
< :user_variable, the SQL Optimizer can then convert this constraint internally to the
constraint column < DATE_OF_JULIAN_DAY(:user_variable) in order to permit the
use of indexes on column. Consequently :user_variable may only contain values
which are permitted as an argument of DATE_OF_JULIAN_DAY(). This also
applies for any constant expressions in place of :user_variable.

JULIAN_DAY_OF_DATE (expression)

expression
Time value expression whose evaluation gives a value of the DATE data type;
value is between 0001-01-01 and 9999-12-31.
expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

the result is the Julian day number which represents the date which results from expression.

Data type: INTEGER

Alphabetical reference section: Functions JULIAN_DAY_OF_DATE()

U22420-J-Z125-12-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

JULIAN_DAY_OF_DATE(DATE'2000-01-01')

To create a view which outputs the orders for the last two weeks:

CREATE VIEW orders AS SELECT * FROM job
WHERE todate >= DATE_OF_JULIAN_DAY(JULIAN_DAY_OF_DATE(CURRENT_DATE)-14)

2451545

LOCALTIME(3) Alphabetical reference section: Functions

184 U22420-J-Z125-12-76

LOCALTIME(3) - Current local time

Function group: time function

LOCALTIME(3) returns the current local time.

LOCALTIME(3)

Result

Current local time

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: TIME

LOCALTIMESTAMP(3) - Current local time stamp

Function group: time function

LOCALTIMESTAMP(3) returns the current local time stamp.

LOCALTIMESTAMP(3)

Result

Current local time stamp

If several time functions are included in a statement, they are all executed simultaneously
(see section “Time functions” on page 141).

Data type: TIMESTAMP

Alphabetical reference section: Functions LOWER()

U22420-J-Z125-12-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

LOWER() - Convert uppercase characters

Function group: string function

LOWER() converts uppercase characters in a string to lowercase characters.

LOWER (expression)

expression
Alphanumeric expression or national expression.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

● If expression is an alphanumeric expression, the result is a copy of the string which
results from the evaluation of expression, uppercase letters of the SESAM/SQL
character repertoire (see page 49) being replaced by equivalent lowercase letters (A-Z
without umlauts and ß).

● If expression is a national expression, uppercase letters are replaced by equivalent
lowercase letters in accordance with the Unicode rules (as with the XHCS function
tolower).

Data type: like expression

Examples

SELECT LOWER(strasse) FROM kunde WHERE knr=100

LOWER('Ä') returns the value 'Ä'.

LOWER(NX'00C4') returns the value NX'00E4' (which corresponds to 'ä') because the
Unicode rules are used.

otto-hahn-ring 6

MAX() Alphabetical reference section: Functions

186 U22420-J-Z125-12-76

MAX() - Determine largest value

Function group: aggregate function

MAX() determines the largest value in a set of values. NULL values are ignored. Comparing
alphanumeric values, national values, numeric values and time values is described in
section “Comparison of two rows” on page 216.

MAX ([] expression)

ALL / DISTINCT
ALL or DISTINCT can be specified but has no effect on the result.

expression
Numeric expression, alphanumeric expression, national expression or time value
expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

If the set of values returned by expression is empty, the result or the result for this group is
the NULL value.

Otherwise:

Without GROUP BY clause:
Determines the largest value in the set of values returned by expression (see
“Calculating aggregate functions” on page 146).

With GROUP BY clause:
Returns the largest value of each group.

Data type: like expression

ALL
DISTINCT

Alphabetical reference section: Functions MAX()

U22420-J-Z125-12-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

SELECT without GROUP BY:
Query the highest service price for order 211 in the SERVICE table (result: 1200):

SELECT MAX(service_price) FROM service WHERE order_num=211

SELECT with GROUP BY:
Determine the highest service price for each order number:

SELECT order_num, MAX(service_price) FROM service GROUP BY order_num

order_num
200 1500
211 1200
250 1200

MIN() Alphabetical reference section: Functions

188 U22420-J-Z125-12-76

MIN() - Determine lowest value

Function group: aggregate function

MIN() determines the smallest element in a set of values. NULL values are ignored.
Comparing alphanumeric values, national values, numeric values and time values is
described in section “Comparison of two rows” on page 216.

MIN ([] expression)

ALL / DISTINCT
ALL or DISTINCT can be specified but has no effect on the result.

expression
Numeric expression, alphanumeric expression, national expression or time value
expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

If the set of values returned by expression is empty, the result or the result for this group is
the NULL value.

Otherwise:

Without GROUP BY clause:
Determines the lowest value in the set of values returned by expression (see “Calculating
aggregate functions” on page 146).

With GROUP BY clause:
Returns the lowest value of each group.

Data type: like expression

ALL
DISTINCT

Alphabetical reference section: Functions MIN()

U22420-J-Z125-12-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

SELECT without GROUP BY:
Query the lowest service price for order 211 in the SERVICE table (result: 50):

SELECT MIN(service_price) FROM service WHERE order_num=211

SELECT with GROUP BY:
Determine the lowest service price for each order number:

SELECT order_num, MIN(service_price) FROM service GROUP BY order_num

order_num
200 75
211 50
250 125

MOD() Alphabetical reference section: Functions

190 U22420-J-Z125-12-76

MOD() - Remainder of an integer division (modulo)

Function group: numeric function

MOD() determines the remainder of a division of two integers.

MOD (dividend, divisor)

dividend ::= expression
divisor ::= expression

dividend
Integer numeric expression (SMALLINT, INTEGER, NUMERIC(p,0), DECIMAL(p,0))
for the dividend of the division.

divisor
Integer numeric expression (SMALLINT, INTEGER, NUMERIC(q,0), DECIMAL(q,0))
for the divisor of the division. divisor may not be 0.

dividend and divisor may not be multiple values with a dimension > 1.

Result

When dividend or divisor returns the NULL value, the result is the NULL value.

When dividend returns the value 0, the result is 0.

Otherwise:

The result is the integer remainder of the division dividend / divisor with the same sign as
dividend.

Data type: like divisor.

Examples

MOD (3,2) returns the value 1.

MOD (-3,-2) returns the value -1.

Alphabetical reference section: Functions NORMALIZE()

U22420-J-Z125-12-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

NORMALIZE() - Convert national string to normal form

Function group: string function

The encoding of a character in Unicode is not unambiguous, i.e. more than one coding can
exist for a character, see the “Core manual”.

A typical example of this is provided by the German umlauts. For example, the character Ä
has both the code point U+00C4 (composed form) and the code point combination U+0041
and U+0308 (decomposed form). In normalized presentation forms these differences do not
occur. If two normalized strings differ, it is in their different code point presentations.

NORMALIZE() converts a national string with national characters which have code points
in the range U+0000 through U+2FFF to a normalized form. Other characters, e.g. surrogates,
remain unchanged.

NORMALIZE (expression [, [, length]])

length ::= unsigned_integer

expression
National-expression. Its evaluation returns a national string (data type NCHAR or
NVARCHAR) in normalized form.
expression may not be a multiple value with dimension > 1.

NFC / NFD
Normalization forms C (“Canonical Decomposition followed by Canonical
Composition”) and D (“Canonical Decomposition”) of the Unicode standard.

NFC maps all code points which together result in a character to the corresponding
code point. NFD breaks down each “compound” character into its component parts, to
the basic characters and the diacritical characters linked to these. The order of the
linked diacritical characters is strictly defined here.

length
Maximum length of the normalized presentation in code units.

Length not specified:
The result can have a length of up to 16000 code units, depending on expression.

Result

If the value of expression is the NULL value, the result is the NULL value.

NFC
NFD

NORMALIZE() Alphabetical reference section: Functions

192 U22420-J-Z125-12-76

Otherwise:

The normalized presentation of the value of expression.
The following applies: length of the normalized presentation (NFC) Î length of the non-
normalized presentation Î length of the normalized presentation (NFD).
If the length of the normalized presentation is greater than the specified length, the function
is aborted with SQLSTATE.

Data typ: NVARCHAR(MIN(2*n,16000)),
where n is the length of the argument data type NCHAR(n) or NVARCHAR(n). For an
argument of type NCHAR the data type is NVARCHAR too.

Example

The following search condition normalizes a user name in order to detect unwanted users
who can log in various presentation forms.

... WHERE NORMALIZE(:customer,NFC)
NOT IN (SELECT name FROM unwanted_customers)

Alphabetical reference section: Functions OCTET_LENGTH()

U22420-J-Z125-12-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

OCTET_LENGTH() - Determine string length

Function group: numeric function

OCTET_LENGTH() determines the number of bytes in a string.

OCTET_LENGTH (expression)

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR). expression may not be a multiple value with dimension > 1.
See also section “Compatibility between data types” on page 99.

Result

If the string contains the NULL value, the result is the NULL value.

Otherwise:

The result is the number of bytes in the string.

Data type: INTEGER

Examples

Determine the number of bytes in the alphanumeric string 'only' (result: 4).

OCTET_LENGTH ('only')

Determine the number of bytes in the national string 'An evening in old München' (result:
16).

OCTET_LENGTH (U&'An evening in old M\00FCnchen')

POSITION() Alphabetical reference section: Functions

194 U22420-J-Z125-12-76

POSITION() - Determine string position

Function group: numeric function

POSITION() determines the position of a string in another string.

POSITION (expression IN expression[USING CODE_UNITS])

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR). expression may not be a multiple value with dimension > 1.
See also section “Compatibility between data types” on page 99.

Result

In the following description of the possible results, string1 is the string whose position is to
be determined, and string2 is the other string.

string1 and/or string2 contains the NULL value:
The result is the NULL value.

string1 has the length 0:
The result is 1.

string1 is in string2:
The result is 1 greater than the number of characters (for CHAR/VARCHAR) or code
units (for NCHAR/NVARCHAR) of string2 which precede the first character or the first
code unit of string1.

Otherwise: The result is 0.

Data type: INTEGER

Examples

Determine the position of the string 'nett' in the string 'annette' (result: 3):

POSITION ('nett' IN 'annette')

Determine the position of the string 'Vogue' (result: 26):

POSITION('Vogue' IN 'If it''s in vogue it''s in Vogue.')

Determine the position of the string 'Puss' in the string 'boots' (result: 0):

POSITION ('Puss' IN 'boots')

Alphabetical reference section: Functions REP_OF_VALUE()

U22420-J-Z125-12-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

REP_OF_VALUE() - Present any value as a string

Function group: string function

REP_OF_VALUE() presents a value of any data type as a alphanumeric string (sequence
of bytes).

REP_OF_VALUE (expression)

expression
Expression whose value is to be presented as a string.
expression may not be a multiple value with dimension > 1.

Result

If the value of expression is the NULL value, the result is the NULL value.

Otherwise:

The internal presentation of the value of expression as a sequence of bytes in an
alphanumeric string. For the internal presentation of the various data types, see table 16 on
page 181.

Data type: CHARACTER VARYING(n), where the maximum length n of the data type
expression is dependent on the values shown in the table on the next page.

REP_OF_VALUE() Alphabetical reference section: Functions

196 U22420-J-Z125-12-76

Examples

REP_OF_VALUE (CAST (254 AS SMALLINT))

254 is presented in binary format as X'00fe' (2 bytes).
These 2 bytes (not printable) are also the result of the expression.

REP_OF_VALUE ('ABC')

The result is the string 'ABC'.

Data type of expression Data type of the result Length of the result
if not NULL

CHAR(n) VARCHAR(n) n

VARCHAR(n) VARCHAR(n) 0 to n

NCHAR(n) VARCHAR(2*n) 2*n

NVARCHAR(n) VARCHAR(2*n) 0 to 2*n, even

SMALLINT VARCHAR(2) 2

INTEGER VARCHAR(4) 4

NUMERIC(p,s) VARCHAR(n) p

DECIMAL(p,s) VARCHAR(q 1)

1 q=(p + 2)/2 if p is even; q=(p + 1)/2 is p is odd.

q 1

REAL, FLOAT (Î 21 characters) VARCHAR(4) 4

DOUBLE PRECISION,
FLOAT (Ï 22 characters)

VARCHAR(8) 8

DATE VARCHAR(6) 6

TIME(3) VARCHAR(8) 8

TIMESTAMP(3) VARCHAR(14) 14

Table 17: Data types and lengths in the case of REP_OF_VALUE

Alphabetical reference section: Functions SIGN()

U22420-J-Z125-12-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

SIGN() - Determine sign

Function group: numeric function

SIGN() determines the sign of a numeric value.

SIGN (expression)

expression
Numeric expression.
expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

When expression returns the value 0, the result is 0.

When expression is > 0, the result is 1.

When expression is < 0, the result is -1.

Data type: DECIMAL(1,0)

Examples

SIGN (3,14) returns the value 1.

SIGN (-3,14) returns the value -1.

SUBSTRING() Alphabetical reference section: Functions

198 U22420-J-Z125-12-76

SUBSTRING() - Extract substring

Function group: string function

SUBSTRING() extracts a substring from a string.

SUBSTRING (expression FROM startposition [FOR substring_length][USING CODE_UNITS])

expression
Alphanumeric expression or national expression. Its evaluation must return either an
alphanumeric string (data type CHAR or VARCHAR) or a national string (data type
NCHAR or NVARCHAR). See also section “Compatibility between data types” on
page 99.

startposition
Numeric expression whose data type is DECIMAL or NUMERIC without decimal places
(SCALE 0), SMALLINT or INTEGER. The evaluation of startposition returns an integer
or a fixed-point number without decimal places.
It cannot be a multiple value with a dimension greater than 1.

startposition specifies the position of a character in or outside the string returned when
expression is evaluated. startposition specifies the character as of which the substring is
to be extracted.

substring_length
Numeric expression whose data type is DECIMAL or NUMERIC without decimal places
(SCALE 0), SMALLINT or INTEGER. The evaluation of substring_length returns an
integer or a fixed-point number without decimal places. The value of substring_length
cannot be less than 0.
It cannot be a multiple value with a dimension greater than 1.

substring_length specifies the maximum length of the substring.

Result

In the following description of the possible results, string is the string returned when
expression is evaluated.

The result is the NULL value when expression, startposition and/or substring have the NULL
value.

Alphabetical reference section: Functions SUBSTRING()

U22420-J-Z125-12-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

The result is a string with a length of 0 when any of the following conditions are fulfilled:

● startposition is greater than the number of characters in string.

● string has the length 0.

● substring_length is 0.

● The sum of startposition and substring_length is Î 1.

Otherwise:

The result is a substring of string. The order in which the characters occur corresponds to
the order of the characters in string. The substring contains the number of characters
specified by startposition and substring_length:

substring_length is specified and startposition Ï1:
The substring contains substring_length characters (but not beyond the last character of
string), beginning with the character of string specified by startposition.

substring_length is specified and startposition < 1:
The substring contains (startposition + substring_length-1) characters (but not beyond the
last character of string), beginning with the first character of string.

substring_length is not specified and startposition Ï 1
The substring contains, as of startposition, all the characters in the string up to the last
character.

substring_length is not specified and startposition < 1
The whole string is extracted.

Data type: If expression has the alphanumeric data type CHAR(n) or VARCHAR(n), the
result has the alphanumeric data type VARCHAR(n).

If expression has the national data type NCHAR(n) or NVARCHAR(n), the result has the
national data type NVARCHAR(n).

SUBSTRING() Alphabetical reference section: Functions

200 U22420-J-Z125-12-76

Examples

A substring is to be extracted from the string 'The Poodle Parlor'.
'The Poodle Parlor' is the company name of a customer in the CUSTOMERS table.

startposition is > 1, substring_length is specified:

SELECT SUBSTRING (company FROM 6 FOR 4) FROM customers WHERE cust_num=105

The result is the string 'Poodle'.

startposition is 0, substring_length is specified:

SELECT SUBSTRING (company FROM 0 FOR 5) FROM customers WHERE cust_num=105

The result is the string 'The' with a length of (0+4-1) = 3.

startposition is <0 and (startposition + substring_length -1) is greater than the length of string:

SELECT SUBSTRING (company FROM -2 FOR 20) FROM customers WHERE
cust_num=105

The result is the string 'The Poodle Parlor'.

startposition is > 1, substring_length is not specified:

SELECT SUBSTRING (company FROM 6) FROM customers WHERE cust_num=105

The result is the string 'Poodle Parlor'.

startposition is greater than the number of characters in string:

SELECT SUBSTRING (company FROM 15 FOR 5) FROM customers WHERE cust_num=105

The result is a string with a length of 0.

Alphabetical reference section: Functions SUM()

U22420-J-Z125-12-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

SUM() - Calculate sum

Function group: aggregate function

SUM() calculates the sum of all the values in a set. NULL values are ignored.

SUM ([] expression)

ALL
All values are taken into account, including duplicate value.

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

expression
Numeric expression (see section “Aggregate functions” on page 145 for information on
restrictions).

Result

If the set of values returned by expression is empty, the result or the result for this group is
the NULL value.

Otherwise:

Without GROUP BY clause:
Calculates the sum of the values returned by expression(see “Calculating aggregate
functions” on page 146).

With GROUP BY clause:
Returns the sum of the values in the derived column of each group.

Data type: like expression with the following number of digits:

Integer or fixed-point number:
The total number of significant digits is 31, the number of digits to the right of the
decimal point remains the same.

Floating-point number:
The total number of significant digits corresponds to 21 binary digits for REAL numbers
and 53 for DOUBLE PRECISION.

If the sum of the values is too large for this data type, an error message is issued.

ALL
DISTINCT

SUM() Alphabetical reference section: Functions

202 U22420-J-Z125-12-76

Example

Calculate the sum of the parts for each item number in the PURPOSE table:

SELECT item_num, SUM(number) FROM purpose GROUP BY item_num

item_num
 1 4
120 27
200 20

Alphabetical reference section: Functions TRANSLATE()

U22420-J-Z125-12-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

TRANSLATE() - Transliterate / transcode string

Function group: string function

TRANSLATE() transliterates, i.e. converts, an alphanumeric string into a national string or
vice versa, see the “Core manual”.

TRANSLATE() transcodes, i.e. converts, a string in the character set UTFE to a national
string in the character set UTF-16 or vice versa, see the “Core manual”.

TRANSLATE (expression USING [[catalog.]INFORMATION_SCHEMA.]transname
[DEFAULT character] [,length])

character::= expression
length::= unsigned_integer

expression
Alphanumeric expression or national expression.
Its evaluation returns either an alphanumeric string or a national string. See also section
“Compatibility between data types” on page 99.
expression may not be a multiple value with dimension > 1.

transname
Unqualified Name for a transliteration of EBCDIC to Unicode (character set UTF-16)
and vice versa or for a transcoding of UTF-EBCDIC to UTF-16 and vice versa.

In SESAM/SQL all transliteration names are predefined. They are either the CCS
names which are defined in the BS2000 subsystem XHCS for transliteration between
EBCDIC and UTF-16 or CATALOG_DEFAULT for transliteration in the preselected
database if CODE_TABLE is not set to _NONE_ for the latter (see CREATE/ALTER
CATALOG statements in the “SQL Reference Manual Part 2: Utilities”). The CCS name
can be up to 8 characters long.

When expression is an alphanumeric expression and the transliteration name UTFE (!) is
specified, expression is transcoded from UTF-EBCDIC (character set UTFE) to the
character set UTF-16.

When expression is a national expression (i.e. the character set is UTF-16) and the
transliteration name UTFE is specified, expression is transcoded from UTF-16 to the
character set UTFE.

Transliteration and transcoding can be qualified by a database name and the schema
name INFORMATION_SCHEMA, otherwise the INFORMATION_SCHEMA of the
predefined database is assumed.

character

TRANSLATE() Alphabetical reference section: Functions

204 U22420-J-Z125-12-76

With character you can define a substitute character which is to be output in place of
characters which cannot be processed with the specified transname. If you have not
specified DEFAULT character and expression contains a character that cannot be
processed with the specified transname, the containing SQL statement is aborted with
SQLSTATE.
If expression has the alphanumeric data type CHAR or VARCHAR, the substitute
character must have the national data type NCHAR(1) or NVARCHAR(n) with nÏ1.
If expression has the national data type NCHAR or NVARCHAR, the substitute character
must have the alphanumeric data type CHAR(1) or VARCHAR(n) with nÏ1.

length
Maximum length of the transliterated or transcoded string in code units.

1 Î length Î 16000 when expression is an alphanumeric string
(transliteration name is an EBCDIC character set or UTFE).

1 Î length Î 32000 when expression is a national string
(transliteration name is an EBCDIC character set).

Length not specified:
The result has the maximum possible length (see above).

Result

If expression and/or character return NULL, the result is NULL.

Otherwise:

The result is the string with the specified or maximum length which results from the
transliteration or transcoding of expression.

If the substitute character had to be used in the transliteration, the warning SQLSTATE
'01SBB' is issued.

When the length of the transliterated or transcoded string is greater than the specified or
maximum length, the function is aborted with SQLSTATE.

Alphabetical reference section: Functions TRANSLATE()

U22420-J-Z125-12-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Data type:
If expression has the alphanumeric data type CHAR(n) or VARCHAR(n), the result has the
national data type NVARCHAR(n).

If expression has the national data type NCHAR or NVARCHAR, the result of the
transliteration has the alphanumeric data type VARCHAR(n) and, in the case of
transcoding, the national data type NVARCHAR(n) .

Examples

The specified national string is to be transliterated by transliterating EDF03IRV to the
standard BS2000 character set. Non-displayable characters are represented as question
marks.

TRANSLATE (NX'0041004200430308' USING
WORLD_CUST.INFORMATION_SCHEMA.EDF03IRV DEFAULT '?')

The result ist the string 'ABC?'.

The specified alphanumeric string is to be interpreted as a string with the character set UTF-
EBCDIC and to be transcoded to the Unicode character set UTF-16.

TRANSLATE ('ABC' USING UTFE)

Interprets a file NAMETITEL.TXT in the character set UTFE (created, e.g., with UNLOAD) as
a CSV file.

CREATE VIEW MYVIEW(x,y) AS
SELECT TRANSLATE(name USING UTFE), TRANSLATE(titel USING UTFE)
FROM TABLE(CSV(FILE 'NAMETITEL.TXT' DELIMITER ';',CHAR(25),VARCHAR(16)))
AS T(name,titel)

004100420043

TRIM() Alphabetical reference section: Functions

206 U22420-J-Z125-12-76

TRIM() - Remove characters

Function group: string function

TRIM() removes leading and/or trailing characters of a string.

TRIM ([[] [character] FROM] expression)

character ::= expression

character / expression
character and expression are either both alphanumeric expressions (data type CHAR or
VARCHAR) or both national expressions (data type NCHAR or NVARCHAR).
Neither of the operands may be a multiple value with a dimension greater than 1.
The value of character has the length 1. If you do not specify character, the default is a
blank (Ë).

FROM
FROM operator; you can only specify FROM is you also specify LEADING, TRAILING
or BOTH and/or character.

Result

If character and/or expression returns the NULL value, the result is the NULL value.

Otherwise:

The result is a copy of the string returned when expression is evaluated, except that leading
and/or trailing characters that correspond to the value of character are removed. Whether
leading or trailing characters are removed depends on whether you specify LEADING,
TRAILING or BOTH:

LEADING Leading characters are removed.

TRAILING Trailing characters are removed.

BOTH Leading and trailing characters are removed. BOTH is the default.

LEADING
TRAILING
BOTH

Alphabetical reference section: Functions TRIM()

U22420-J-Z125-12-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Data type:
If expression has the alphanumeric data type CHAR(n) or VARCHAR(n), the result has the
alphanumeric data type VARCHAR(n).

If expression has the national data type NCHAR(n) or NVARCHAR(n), the result has the
national data type NVARCHAR(n).

Examples

The following examples are equivalent and return 'ABC'.

TRIM(' ABC ')

TRIM (BOTH ' ' FROM ' ABC ')

The following example returns 'BLE WAS I ERE I SAW ELB'.

TRIM (BOTH N'N' FROM N'NURDUGUDRUN')

A record is inserted in the table PROFESSORS. The form_of_address column in the table
has the data type VARCHAR(50). It is to receive the value 'Professor'.
The corresponding COBOL user variable has the data type PIC X(50). To ensure that only
the value 'Professor' rather than the value 'Professor...' with 36 trailing characters is
transferred, you use the TRIM string function:

INSERT INTO professors (..., form_of_address, ...)
VALUES (..., TRIM (TRAILING FROM :FORM_OF_ADDRESS), ...)

TRUNC() Alphabetical reference section: Functions

208 U22420-J-Z125-12-76

TRUNC() - Remove decimal places

Function group: numeric function

TRUNC() determines the integer share of a numeric value.

TRUNC() performs no rounding in the case of non-integer values.

TRUNC (expression)

expression
Numeric expression.
expression may not be a multiple value with dimension > 1.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

expression Ï 0: the largest integer which is less than or equal to the specified numeric
value, i.e. FLOOR(expression).

expression < 0: the smallest integer which is greater than or equal to the specified numeric
value, i.e. CEILING(expression).

Examples

TRUNC (3,14) returns the value 3.

TRUNC (-3,14) returns the value -3.

Data type: NUMERIC(p-s,0)
DECIMAL(q-s,0)

for data type of expression NUMERIC(p,s) or
DECIMAL(q,s) where p,q > s

like expression for data type of expression integer numeric (SMALLINT,
INTEGER, NUMERIC(p,0), DECIMAL(q,0) or REAL,
DOUBLE PRECISION, FLOAT

Alphabetical reference section: Functions UPPER()

U22420-J-Z125-12-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

UPPER() - Convert lowercase characters

Function group: string function

UPPER() converts the lowercase characters in a string to uppercase characters.

UPPER (expression)

expression
Alphanumeric expression or national expression.

Result

When expression returns the NULL value, the result is the NULL value.

Otherwise:

– If expression is an alphanumeric expression, the result is a copy of the string which
results from the evaluation of expression, lowercase letters of the SESAM/SQL character
repertoire (see page 49) being replaced by equivalent uppercase letters (a-z without
umlauts and ß).

– If expression is a national expression, lowercase letters are replaced by equivalent
uppercase letters in accordance with the Unicode rules (as with the XHCS function
toupper).

Data type: like expression

Examples

SELECT UPPER(city) FROM customers WHERE cust_num=100

Returns the string 'MUNICH'.

UPPER('ä')

Returns the value 'ä'.

UPPER(NX'00E4')

Returns the value NX'00C4' (which corresponds to 'Ä') because the Unicode rules are
used.

VALUE_OF_HEX() Alphabetical reference section: Functions

210 U22420-J-Z125-12-76

VALUE_OF_HEX() - Present hexadecimal format as a value

Function group: string function

The VALUE_OF_HEX() function returns a value of the specified data type from the internal
presentation provided in hexadecimal format.
It is the inverse function of HEX_OF_VALUE().

VALUE_OF_HEX (expression, data_type)

expression
The internal presentation of the result value in hexadecimal format.
The value of expression may only contain the characters '0' through '9', 'a' through 'f' and
'A' through 'F'.
expression must have the data type CHARACTER(n) (n even) or CHARACTER
VARYING(n).
Its value must either be the NULL value or have a length which suits the data type
data_type (see the table on the next page). The data type of expression must permit values
of this length or of the maximum length.
expression may not be a multiple value with dimension > 1.

data_type
Data type of the value (without dimension specification), expression being the
presentation in hexadecimal format.
The data type may not be CHARACTER VARYING(n) with a maximum length of n >
16000 and not NATIONAL CHARACTER VARYING(n) with a maximum length of n >
8000.

Result

If the value of expression is the NULL value, the result is the NULL value.

Otherwise:

The value of the specified data_type whose internal presentation in hexadecimal format is the
value of expression. For the internal presentation of the various data types, see table 16 on
page 181.

Data type: the specified data_type

i When this function is executed, no check is made to see whether data_type is the
same data type which was used beforehand for the corresponding presentation in
internal formal using HEX_OF_VALUE().

Alphabetical reference section: Functions VALUE_OF_HEX()

U22420-J-Z125-12-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

VALUE_OF_HEX ('00fe', SMALLINT)

VALUE_OF_HEX ('c1c2c3', CHAR(3))

Length of expression in characters data_type

2*n CHAR(n)

0 to 2*n VARCHAR(n)

4*n NCHAR(n)

0 to 4*n, divisible by 4 NVARCHAR(n)

4 SMALLINT

8 INTEGER

2*p NUMERIC(p,s)

q 1

1 q=p+2 if p is even; q=p+1 if p is odd.

DECIMAL(p,s)

8 REAL, FLOAT (Î 21 characters)

16 DOUBLE PRECISION, FLOAT (Ï 22 characters)

12 DATE

16 TIME(3)

28 TIMESTAMP(3)

Table 18: Data types and lengths in the case of VALUE_OF_HEX

254

ABC

VALUE_OF_REP() Alphabetical reference section: Functions

212 U22420-J-Z125-12-76

VALUE_OF_REP() - Present a string as a value

Function group: string function

The VALUE_OF_REP() function returns a value of the specified data type from the internal
presentation provided (sequence of bytes).
It is the inverse function of REP_OF_VALUE().

VALUE_OF_REP (expression, data_type)

expression
The internal presentation of the result value. For the internal presentation of the various
data types, see table 16 on page 181.
expression must have the data type CHARACTER(n) (n even) or CHARACTER
VARYING(n).
Its value must either be the NULL value or have a length which suits the data type
data_type (see the table on the next page). The data type of expression must permit values
of this length or of the maximum length.
expression may not be a multiple value with dimension > 1.

data_type
Data type of the value (without dimension specification), expression being the internal
presentation.

Result

If the value of expression is the NULL value, the result is the NULL value.

Otherwise:

The value of the specified data_type whose internal presentation is the value of expression.

Data type: the specified data_type

i When this function is executed, no check is made to see whether data_type is the
same data type which was used beforehand for the corresponding presentation in
internal formal using REP_OF_VALUE().

Alphabetical reference section: Functions VALUE_OF_REP()

U22420-J-Z125-12-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

VALUE_OF_REP (X'00fe', SMALLINT)

VALUE_OF_REP ('ABC', CHAR(3))

Length of expression in characters data_type

n CHAR(n)

0 to n VARCHAR(n)

2*n NCHAR(n)

0 to 2*n, even NVARCHAR(n)

2 SMALLINT

4 INTEGER

p NUMERIC(p,s)

q 1

1 q=(p + 2)/2 if p is even; q=(p + 1)/2 if p is odd

DECIMAL(p,s)

4 REAL, FLOAT (Î 21 characters)

8 DOUBLE PRECISION, FLOAT (Ï 22 characters)

6 DATE

8 TIME(3)

14 TIMESTAMP(3)

Table 19: Data types and lengths in the case of VALUE_OF_REP

254

ABC

Predicates Compound language constructs

214 U22420-J-Z125-12-76

5.3 Predicates

Predicates are components of search conditions (see section “Search conditions” on
page 244).

A predicate consists of operands and operators. Predicates can be grouped together as
follows according to the operator involved:

● Comparison of two rows

● Quantified comparison (comparison with the rows of a table)

● BETWEEN predicate (range query)

● CASTABLE predicate (convertibility check)

● IN predicate (elementary query)

● LIKE predicate (simple pattern comparison)

● LIKE_REGEX predicate (pattern comparison with regular expressions)

● NULL predicate (comparison with the NULL value)

● EXISTS predicate (existence query)

The individual groups are described below in the above order.

A predicate returns the truth value true, false or unknown. The value of a predicate is
calculated by calculating the values of the operands and applying the appropriate operators
to the calculated values. In certain cases an operand is not calculated at all, or is only
partially calculated, if this is enough to determine the result.

Compound language constructs Predicates

U22420-J-Z125-12-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

The diagram below provides a simplified overview of the syntax of all predicates:

praedicate ::=

row ::=

vector_column ::= [table.]

comparison_op ::=

operand ::= expression
pattern ::= expression
character ::= expression
regular_expression ::= expression
flag ::= expression

row comparison_op row

vector_column comparison_op expression

row comparison_op subquery

row [NOT] BETWEEN row AND row

vector_column [NOT] BETWEEN expression AND expression

expression IS [NOT] CASTABLE AS data_type

row [NOT] IN

vector_column [NOT] IN (expression , expression ,...)

operand [NOT] LIKE pattern [ESCAPE character...]

operand [NOT] LIKE_REGEX regular_expression [FLAG flag]

expression IS [NOT] NULL

EXISTS subquery

ALL
SOME
ANY

subquery
(row, ...)

(expression ,...)
expression
subquery

column[min..max]
column(min..max

=
<
>
<=
>=
<>

Comparison of two rows Predicates

216 U22420-J-Z125-12-76

5.3.1 Comparison of two rows

Two rows are compared lexicographically according to a comparison operator. If both rows
only have one column, you will obtain the normal comparison of two values.

row ::=

vector_column ::= [table.]

comparison_op ::=

row
Operands for comparison.

Each expression in row must be atomic. The row consists of the expression values in the
order specified. A single expression therefore returns a row with one column.

subquery must return a table without multiple columns, and with at most one row. This
row is the comparison operand. If the table returned is empty, the comparison operand
is a row with the NULL value in each column.

The rows to be compared must have the same number of columns and the
corresponding columns of the left and right rows must have compatible data types
(see section “Compatibility between data types” on page 99).

vector_column
A multiple column, which is compared according to special rules. The column
specification may not be an external reference.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

row comparison_op row

vector_column comparison_op expression

(expression ,...)
expression
subquery

column[min..max]
column(min..max)

=
<
>
<=
>=
<>

Predicates Comparison of two rows

U22420-J-Z125-12-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

expression
The expression value must be atomic and its data type must be compatible with the data
type of the vector_column occurrences (see section “Compatibility between data types”
on page 99).

comparison_op
Comparison operator.

Result

row comparison_op row
If rows with more than one column are compared , the lexicographical comparison rules
for rows will apply (see section “Comparison rules”.

If single-column rows are compared, the comparison rules will depend on the data type
of the columns (see section “Comparison rules”).

vector_column comparison_op expression
Each occurrence of vector_column is compared with expression according to the
comparision rules for the data type (see section “Comparison rules” below). The
comparison results are combined with OR.

Example

If X is a multiple column with 3 elements, the comparison

X[1..3] >= 13

is equivalent to the following comparisons:

X[1] >= 13 OR X[2] >= 13 OR X[3] >= 13

5.3.1.1 Comparison rules

The way in which a comparison operation is performed depends on the operands.
Lexicographical comparison rules apply to the comparison of rows with more than one
column; in the case of comparisons of single-column rows and values, the comparison rules
are based on the data types. These rules are collected in the following paragraphs.

= Compare whether two values are the same

< Compare whether one value is smaller than the other

> Compare whether one value is greater than the other

<= Compare whether one value is smaller than or equal to the other

>= Compare whether one value is greater than or equal to the other

<> Compare whether two values are not equal

Comparison of two rows Predicates

218 U22420-J-Z125-12-76

Lexicographical comparison

The result of the comparison is derived from the comparison of the values in corresponding
columns of the two rows. The values in columns situated further to the right are only
significant if the values in all the previous columns are the same for both operands (sorting
in the lexicon also occurs according to these comparison rules).

In formal terms this means:
For a comparison of two rows with the comparison operator OP that is either “<” or “>”, with
column values L1,L2,...,Ln in the left-hand operand and with column values
R1,R2,...,Rn in the right-hand operand, the result is the truth value true or false or
unknown respectively, if there is an i index between 1 and n , so that all the comparisons

L1 = R1
L2 = R2
. . .
. . .
. . .

L(i-1) = R(i-1)

return the truth value true, and the comparison

Li OP Ri

returns the truth value true, or false, or unknown, respectively.

The individual comparisons are carried out as described below, depending on the data type.

Please note the following:

● The value in one of the columns may well be NULL without the result of the whole
comparison being unknown.

For example the comparison (1,CAST(NULL AS INT)) < (2,0) the truth value true as
a result. The second column is ignored in the comparison because the values of the first
columns are already different.

● Not all columns need to be relevant for the comparison result. You should not,
therefore, rely on all of the columns in both rows always being evaluated.

● The comparison (L1, L2, ..., Ln) = (R1, R2, ..., Rn) is equivalent to the
comparison L1 = R1 AND L2 = R2 ... AND Ln = Rn.

In the case of the comparison operators “<”, “<=”, “>=”, and “>”, however, there is no
straightforward correspondence.

Predicates Comparison of two rows

U22420-J-Z125-12-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Comparing two values

If one or both of the operands are the NULL value, all comparison operators return the truth
value unknown (see also section “NULL value” on page 104).

Alphanumeric values

Two alphanumeric values are compared from left to right character by character. If the two
values have different lengths, the shorter string is padded on the right with blanks (X'40') so
that both values have the same length.

Two strings are identical if each has the same character at the same position.

If two strings are not identical, the EBCDIC code of the first two differing characters
determines which string is greater or smaller.

National values

Two national values are compared from left to right code unit by code unit. If the two values
have different lengths, the shorter string is padded on the right with blanks (NX'0020')so that
both values have the same length.

Two strings are identical if each has the same code unit at the same position.

If two strings are not identical, the binary value of the first two differing UTF-16 code units
determines which string is greater or smaller.

Numeric values

Values of numeric data types are compared in accordance with their arithmetic value. Two
numeric values are the same if they are both 0, or if they have the same sign and the same
amount.

Time values

Dates, times and time stamps can be compared. The data type of both operands must be
the same.

● One date is greater than another if it is a later date.

● One time is greater than another if it is a later point in time.

● One time stamp is greater than another if either the date is later or, if the date is the
same, the time is later.

Comparison of two rows Predicates

220 U22420-J-Z125-12-76

Examples

1. 1 <= 1 is always true.

2. Comparing alphanumeric values:
Select the customers from the CUSTOMERS table that come from Munich, and include
the customer information:

SELECT company, cust_info, city FROM customers WHERE city = 'Munich'

3. Comparing with a subquery that returns an atomic value:
Select the items that need the greatest number of part 501 from the PURPOSE table:

SELECT item_num FROM purpose
WHERE part = 501 AND number = (SELECT MAX(number)
FROM purpose WHERE part = 501)

The subquery returns one row exactly, as the maximum is determined for a single
group.

You can also write the example with the comparison of two rows each with two columns:

SELECT item_num FROM purpose
WHERE (part, number) = (SELECT 501, MAX(number)
FROM purpose WHERE part = 501)

company cust_info city

Siemens AG Electrical Munich
Login GmbH PC networks Munich
Plenzer Trading Fruit market Munich

item_num
 200

Predicates Comparison of two rows

U22420-J-Z125-12-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

4. In this example a cursor table is defined with ORDER BY.
The WHERE clause selects those rows that come after the rows with cust_num 012 and
target DATE'<date>'' in the order stipulated by ORDER BY:

DECLARE cur_order CURSOR FOR
SELECT order_num, cust_num, atext, target FROM orders
WHERE (cust_num, target) > (012, DATE'<date>')

ORDER BY cust_num, target

You will only receive orders which are to be finished after the specified date from a
customer with customer number 012, and all orders from customers with a greater
customer number.

The lexicographical comparison rules differ from the comparison rules for ORDER BY
only in the case of NULL values.

5. Lexicographical comparison of rows

DECLARE rest_purpose CURSOR FOR
SELECT item_num, part, SUM(number) FROM purpose
WHERE (item_num, part) > (:last_item_num, :last_part)
GROUP BY item_num, part
HAVING SUM(number) > 0
ORDER BY item_num, part

This cursor reads how many exemplars of each part are contained in the various items.
Items are read in ascending order by their item number; items with identical item
numbers are read in ascending order by part number.

The WHERE clause allows for reading the cursor table piecemeal (FETCH).
For example, if you have read up to item 120 and up to part 230 and if you have opened
the cursor again with the user variables :last_item_num = 120 and :last_part = 230,
the cursor table will only contain entries for item 120 and parts with numbers > 230 and
entries for items with numbers > 120 (and any parts).

Quantified comparison Predicates

222 U22420-J-Z125-12-76

5.3.2 Quantified comparison (comparison with the rows of a table)

The value of a row is compared with the rows of a table. It is determined whether the
comparison holds true either for all the rows of the table, or else for at least one row.

row comparison_op subquery_1

row ::=

comparison_op ::=

row
Left operand for the comparison.

Each expression in row must be an atomic value. The row consists of the expression
values in the order specified. A single expression therefore returns a row with one
column.

subquery_2 must return a table without multiple columns and with at most one row. This
row is the left comparison operand. If the table returned is empty, the comparison
operand is a row with the NULL value in each column.

comparison_op
Comparison operator.

= Compare whether two values are the same

< Compare whether one value is smaller than the other

> Compare whether one value is greater than the other

<= Compare whether one value is smaller than or equal to the other

>= Compare whether one value is greater than or equal to the other

<> Compare whether two values are not equal

ALL
SOME
ANY

(expression ,...)
expression
subquery_2

=
<
>
<=
>=
<>

Predicates Quantified comparison

U22420-J-Z125-12-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

subquery_1
The number of columns must equal the number of columns of row; corresponding
columns of row and subquery_1 must have compatible data types (see section
“Compatibility between data types” on page 99).

Result

ALL
True if the right-hand operand is an empty table or if the results of the comparisons of
the left-hand operand with each row of the right-hand operand are all true.

False if the result of the comparison of the left-hand operand with at least one row of
the right-hand operand is false.

Unknown in all other cases.

SOME / ANY
True if the result of the comparison of the left-hand operand with at least one row of the
right-hand operand is true.

False if the right-hand operand is an empty table or if the results of the comparisons of
the left-hand operand with each row of the right-hand operand are all false.

Unknown in all other cases.

All comparisons are carried out according to the comparison rules in section “Comparison
rules” on page 217.

Examples

This returns true if the current date is later than all the dates in the derived column and all
of these dates are non-null. It returns false if the current date is earlier than at least one date
or is the same as at least one date other than NULL in the derived column. In all other
cases, the comparison returns unknown.

CURRENT_DATE > ALL (SELECT target FROM orders)

From the PURPOSE table, select the items that have a part the total number of which is
greater than the total number of all the parts of the item with the item number 1.

SELECT item_num FROM purpose
WHERE number > ALL (SELECT number FROM purpose WHERE item_num = 1)

BETWEEN predicate Predicates

224 U22420-J-Z125-12-76

5.3.3 BETWEEN predicate (range query)

It is determined whether the row lies within a range specified its lower and upper limits.

row ::=

vector_column ::= [table.]

row
Each expression in row must be atomic. The row consists of the expression values in the
order specified. A single expression therefore returns a row with one column.

subquery must return a table without multiple columns and with at most one row. This
row is the operand. If the table returned is empty, the operand is a row with the NULL
value in each column.

All three rows must have the same number of columns; corresponding columns must
have compatible data types (see section “Compatibility between data types” on
page 99).

vector_column
A multiple column with special rules for the result. The column specification may not be
an external reference.

expression
The values must be atomic and their data types must be compatible with the data type
of the vector_column occurrences (section “Compatibility between data types” on
page 99).

Result

row_1 BETWEEN row_2 AND row_3 is identical to:
(row_1 >= row_2) AND (row_1 <= row_3)

row_1 NOT BETWEEN row_2 AND row_3is identical to:
NOT (row_1 BETWEEN row_2 AND row_3)

row_1 [NOT] BETWEEN row_2 AND row_3
vector_column [NOT] BETWEEN expression AND expression

(expression ,...)
expression
subquery

column[min..max]
column(min..max)

Predicates BETWEEN predicate

U22420-J-Z125-12-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

vector_column [NOT] BETWEEN expression AND expression

– The range query is performed for each occurrence of vector_column.
– The individual results are combined with OR.

Example

If X is a multiple column with 3 elements, the range query X[1..3] BETWEEN 13 AND 20
is equivalent to the following range queries:
X[1] BETWEEN 13 AND 20 OR X[2] BETWEEN 13 AND 20 OR X[3] BETWEEN 13 AND 20

Examples

BETWEEN predicate with numeric range:
Select all the items from the ITEMS table whose price is between 0 and 10 Euros, which
include the item name in the output.

 SELECT item_num, item_name, price FROM items
WHERE price BETWEEN 0.00 AND 10.00

BETWEEN predicate with range of dates:
Select all the orders placed in December 2013 from the ORDERS table, which include
the order number, customer number, order date and order text in the output:

SELECT order_num, cust_num, order_text, order_date FROM orders
WHERE order_date BETWEEN DATE'2013-12-01' AND DATE'2013-12-31'

BETWEEN predicate with a host variable: :
MINIMUM is a host variable. The comparison returns true if the product of
SERVICE_PRICE*SERVICE_TOTAL (price per service unit times number of service
units) is outside the specified range. It returns false if the product is within the range.
The comparison returns unknown if the value of SERVICE_PRICE or
SERVICE_TOTAL is unknown.

service_price*service_total NOT BETWEEN :MINIMUM AND 2000

item_num item_name price
210 Front hub 5.00
220 Back hub 5.00
230 Rim 10.00
240 Spoke 1.00
500 Screw M5 1.10
501 Nut M5 0.75

order_ cust_ order_text order_date
num num
210 106 Customer administration 2013-12-13
211 106 Database design customers 2013-12-30

CASTABLE predicate Predicates

226 U22420-J-Z125-12-76

5.3.4 CASTABLE predicate (convertibility check)

This checks whether an expression can be converted to a particular data type.

The CASTABLE predicate enables you to check whether a corresponding CAST
expression (see section “CAST expression” on page 258) can be executed before it is
executed and to react appropriately.

expression IS [NOT] CASTABLE AS data_type

expression
CAST operand. The value of expression may not be a multiple value with a dimension >
1.

data_type
Target data type for the result of the corresponding CAST expression.
data_type may not contain a dimension for a multiple column.

i It must be possible to combine the data type of expression with data_type, see the
table 23 on page 259.

Result

Without NOT:

True if expression can be converted to the specified data type.
False if expression cannot be converted to the specified data type.

With NOT:

True if expression cannot be converted to the specified data type.
False if expression can be converted to the specified data type.

Example

Check whether an entry can be converted to a numeric data type with a particular length.

CASE WHEN :input IS CASTABLE AS NUMERIC(7,2)
THEN CAST :input AS NUMERIC(7,2)
ELSE -1

END

Predicates IN predicate

U22420-J-Z125-12-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.3.5 IN predicate (elementary query)

This determines whether a row occurs in a table.

row_1 ::=

row_2 ::=

vector_column ::= [table.]

row_1
returns one row.

Each expression in row_1 must be atomic. The row consists of the expression values in
the order specified. A single expression therefore returns a row with one column.

subquery_1
must return a table without multiple columns and with at most one row. This row is the
left-hand operand. If the table returned is empty, the operand is a row with the NULL
value in each column.

subquery_2
this table is the right-hand operand.

row_2
The right-hand operand is the table whose individual row(s) are specified with row_2. If
row_2 is specified several times then the data type of each column of the table is
determined by the rules described under “Data type of the derived column for UNION”
on page 314.

row_1, row_2, subquery_1 and subquery_2 must all have the same number of columns; the
data types of the corresponding columns must be compatible (see section “Compatibility
between data types” on page 99).

row_1 [NOT] IN

vector_column [NOT] IN (expression, ...)

subquery_2
(row_2, ...)

(expression ,...)
expression
subquery_1

(expression ,...)
expression

column[min..max]
column(min..max)

IN predicate Predicates

228 U22420-J-Z125-12-76

vector_column
A multiple column with special rules for the result. The column specification may not be
an external reference.

expression
The values must be atomic and their data types must be compatible with the data type
of the vector_column occurrences (section “Compatibility between data types” on
page 99).

Result

row_1 IN subquery_2 or row_1 IN (row_2 ,...):

True if the comparison for equality of row_1 with at least one row of the right-hand
operand yields true.

False if all the comparisons for equality of row_1 with some row of the right-hand
operand yield false, or if the right-hand operand is a subquery which returns an empty
table.

Unknown in all other cases.

row_1 NOT IN subquery_2 or row_1 NOT IN (row_2 ,...):

is identical to:

NOT (row_1 IN subquery_2) or. NOT (row_1 IN (row_2 ,...))

The comparison rules for “=” apply (see also section “Comparison rules” on page 217).

vector_column [NOT] IN (expression, ,...)

The IN predicate is evaluated for each occurrence of vector_column.
The individual results are combined with OR.

Example

If X is a multiple column with 3 elements, the range query X[1..3] BETWEEN 13 AND 30
is equivalent to the following element queries:
X[1] IN (13, 20, 30) OR X[2] IN (13, 20, 30) OR X[3] IN (13, 20, 30)

Predicates IN predicate

U22420-J-Z125-12-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

IN predicate with single rows as right-hand operand:
Select the customers from Munich or Berlin from the CUSTOMERS table.

SELECT company, cust_info, city FROM customer
WHERE city IN ('Munich','Berlin')

IN predicate with subquery as right-hand operand:
Select the orders for which no training was performed from the ORDERS and SERVICE
tables.

SELECT cust_num FROM orders
WHERE order_num NOT IN (SELECT order_num FROM service WHERE
service_text = 'Training')

company cust_info city
Siemens AG Electrical Munich
Login GmbH PC networks Munich
Plenzer Trading Fruit market Munich
Freddys Fishery Unit retail Berlin

LIKE predicate Predicates

230 U22420-J-Z125-12-76

5.3.6 LIKE predicate (simple pattern comparison)

A LIKE predicate determines whether an alphanumeric or a national value matches a
specified pattern. A pattern is a string that, in addition to normal characters, can also include
placeholders and escape characters.

A placeholder represents either one character or else any number of characters. A
placeholder can also be used as a normal character in a pattern if its special meaning is
canceled with the escape character. You can define the escape character with the ESCAPE
clause.

operand [NOT] LIKE pattern [ESCAPE character]

operand ::= expression
pattern::= expression
character::= expression

operand
Alphanumeric or national expression representing the operand for the pattern
comparison.

The value of operand must either be atomic or the name of a multiple column. If the
operand is a multiple column, the entry for the column cannot be an external reference
(i.e. the column of a superordinate query expression).

pattern
Alphanumeric or national expression to which the value from operand is to be matched.
pattern can include the following:

– normal characters (i.e. all except placeholders and escape characters)

– Placeholder

– escape characters (each followed by a placeholder or another escape character)

Blanks in pattern, even at the beginning or end, form part of the pattern.

Placeholder Meaning

_ (underscore) one arbitrary character

% arbitrary (possibly empty) character string

Predicates LIKE predicate

U22420-J-Z125-12-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

ESCAPE clause
You use the ESCAPE clause to define an escape character. If you place an escape
character in front of a placeholder, the placeholder loses its function as a placeholder
and is interpreted instead as a normal character. You can also use the escape character
to cancel the special meaning of the escape character and use it as a normal character.

character
Alphanumeric or national expression whose value has a length of 1. In this
comparison, character acts as an escape character.

ESCAPE omitted:
No escape character is defined.

i The data types of operand, pattern and character must be comparable, i.e. they all
have either one of the data types CHAR and VARCHAR or all have one of the data
types NCHAR and NVARCHAR, see also the section “Compatibility between data
types” on page 99.

Result

operand is an atomic value:

Unknown if the value of operand, pattern or character is the NULL value, otherwise

Without NOT:
True if the placeholders for characters and strings in pattern can be replaced by
characters and strings, respectively, so that the result is equal to the value of
operand, and has the same length.

False in all other cases.

With NOT:
True if the placeholders for characters and strings in pattern cannot be replaced by
characters and strings, respectively, so that the result is equal to the value of
operand, and has the same length.

False in all other cases.

operand is a multiple column:

The pattern comparison is performed for every occurrence in operand.
The individual results are combined with OR.

LIKE predicate Predicates

232 U22420-J-Z125-12-76

Examples

Select all the contact people from the CONTACTS table whose first name starts with Ro:

SELECT fname, lname FROM contacts WHERE fname LIKE 'Ro%'

The following statement selects all the rows from table TAB whose column COL starts with
the underscore character and ends with at least one space:

SELECT * FROM tab WHERE col LIKE '@_% ' ESCAPE '@'

The following predicate returns true for all three-character values for TITLE whose first
character is “M” and whose third character is “.”, i.e. for titles such as “Mr.” or “Ms.”. “_” is a
placeholder which stands for any single character. Since the data type for the Title column
is TITLE CHAR(20), the string must be padded with blanks to a length of exactly
20 characters.

title LIKE 'M_. ’

The escape character “!” cancels the placeholder “%” with the result that the comparison
only returns true for 'Travel expenses%Discount'.

service_text LIKE 'Travel expenses!%Discount ' ESCAPE '!'

fname lname
Roland Loetzerich
Robert Heinlein

Predicates LIKE_REGEX predicate

U22420-J-Z125-12-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.3.7 LIKE_REGEX predicate (pattern comparison with regular expressions)

A check is made to see whether an alphanumeric value matches a specified regular
expression. Regular expressions are precisely defined search patterns which go far beyond
the options of the search patterns in the LIKE predicate. Regular expressions are a
powerful means of searching large data sets for complex search conditions. They have long
been used, for example, in the Perl programming language.

operand [NOT] LIKE_REGEX regular_expression [FLAG modifiers]

operand ::= expression
regular_expression ::= expression
modifiers ::= expression

operand
Alphanumeric expression which presents the operand for the comparison with the
regular expression.
The value of operand may not be a multiple value with a dimension > 1.

regular_expression
Alphanumeric expression whose value is a regular expression which the value of
operand should match. For information on the structure of regular expressions, see
page 237.
You specify modifiers for regular_expression in the FLAG clause.
The value of regular_expression may not be a multiple value with a dimension > 1.

LIKE_REGEX predicate Predicates

234 U22420-J-Z125-12-76

FLAG clause
Alphanumeric expression of the modifiers for regular_expression.
You can specify the following modifiers:

flag must consist of lowercase letters. Each character can be specified multiple times.
No blanks may be specified.

FLAG clause not specified:
No modifiers are defined for regular_expression.

flag Meaning

i
(caseless)

If this modifier is set, letters in the pattern match both upper and lower case
letters.

m
(multiline)

By default, SESAM/SQL treats the subject string as consisting of a single “line”
of characters, even if it actually contains several NEWLINE characters (see
page 166). The “start of line” metacharacter (^) matches only at the start of the
string, while the “end of line” metacharacter ($) matches only at the end of the
string.
When this modifier is set, the “start of line” and “end of line” constructs match
immediately following or immediately before any newline in the subject string,
respectively, as well as at the very start and end.
If there are no NEWLINE characters in a subject string, or no occurrences of ^
or $ in a pattern, setting this modifier has no effect.

s
(dotall)

If this modifier is set, a dot metacharacter in the pattern matches all characters
including NEWLINE characters (see page 166). Without it, newlines are
excluded.
A negative class such as [^a] always matches a newline character, independent
of the setting of this modifier.

x
(extended)

If this modifier is set, whitespace data characters in the pattern are totally
ignored except when escaped or inside a character class; and characters
between an unescaped # outside a character class and the next newline
character, inclusive, are also ignored. This makes it possible to include
comments inside complicated patterns. Note, however, that this applies only to
data characters. Whitespace characters may never appear within special
character sequences in a pattern, for example within the sequence (?(which
introduces a conditional subpattern.

Predicates LIKE_REGEX predicate

U22420-J-Z125-12-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Result

Unknown if the value of operand, regular_expression or flag is the NULL value, otherwise

Without NOT:
True if the placeholders for characters and strings in regular_expression can be replaced
by characters and strings, respectively, so that the result is equal to the value of
operand, and has the same length.

False in all other cases.

With NOT:
True if the placeholders for characters and strings in regular_expression cannot be
replaced by characters and strings, respectively, so that the result is equal to the value
of operand, and has the same length.

False in all other cases.

LIKE_REGEX predicate Predicates

236 U22420-J-Z125-12-76

Examples

Select all the contact people from the CONTACTS table whose last name contains the
string with meier “or something similar”:

SELECT fname, lname FROM contacts
WHERE lname LIKE_REGEX '[a-z]* M [ae]? [iy] [a-z]* r' FLAG 'ix'

In the CONTACTS table find the incorrect ZIP codes in the ZIP column:

SELECT * FROM contacts WHERE zip NOT LIKE_REGEX '\d{5}'

In the CONTACTS table find all the email contacts for Fujitsu:

SELECT address FROM contacts
WHERE address LIKE_REGEX '([A-Za-z])+\.([A-Za-z]+)@fujitsu\.com'

fname lname
Albert Gansmeier
Berta Hintermayr
Thea Mayerer
Herbert Meier
Anton Kusmir

address
Albert.Gansmeier@fujitsu.com
Berta.Hintermayr@fujitsu.com
Thea.Mayerer@fujitsu.com

Predicates LIKE_REGEX predicate

U22420-J-Z125-12-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Reguläre Ausdrücke in SESAM/SQL

The regular expressions in the LIKE_REGEX predicate correspond to the regular
expressions in the Perl programming language with the following exceptions:

● They are not enclosed in delimiters

● There is no “replace” function

● The modifiers are specified in the FLAG clause

Special characters

Special characters in regular expressions have special functions:

Character Meaning Example

. The period stands for any character other
than a period.

en.e
 Hits e.g.: entire, entice, fence

+ The plus sign stands for single or multiple
occurrence of the character preceding it.

e+
 Hits e.g. speaker, feeling, veeery good

* The asterisk stands for no, single or
multiple occurrence of the character
preceding it.

se*
 Hits e.g. storm, very good, feeling

? The question mark stands for no or single
occurrence of the character preceding it.

se?
Hits e.g. storm, seldom
but not: seesaw

^ The circumflex can negate a sign class or,
in the case of strings, specify that the
following search pattern must occur at the
start of the search area.

^Hans
 Hits e.g. Hans Master, Hans Müller
but not: Master Hans
^[^äöüÄÖÜ]*$
 Hits e.g. Master
but not: Müller

$ In the case of strings the dollar sign
specifies that the preceding search pattern
must occur at the end of the search area.

Hans$
Hits e.g. Master Hans
but not: Hans Master

| The vertical slash separates alternative
expressions.

[M|m]aster
 Hits e.g. Master, master
but not: Naster, aster

\ The backslash masks the subsequent
(special) character.

clif\?
Hit with clif?
but not: cliff

[] Square brackets limit a character class. Ma[lns]ter
 Hits e.g. Malter, Manter, Master
but not: Marter

LIKE_REGEX predicate Predicates

238 U22420-J-Z125-12-76

Character repetitions

You check single character repetitions with the special characters +, * or ?, see the table
above.

You can also use braces to check multiple character repetitions: {m,n}. Here m specifies
the minimum number and n the maximum number of repetitions.

The following specifications are permitted:
{m} Repetition exactly m times
{m,} Repetition at least m times
{m,n} Repetition at least m times, but not more than n times

f{1,3} returns, for example, hits with life, cliff and cliffhanger.

Groupings

Groupings are formed using parentheses. The subsequent repetition character the refers
to the entire expression enclosed in parentheses.

h(el)+lo returns, for example, hits with hello, helello, helelello.

Selection of characters

A list of characters if square brackets offers a selection of characters which the regular
expression can match. The expression in square brackets stands only for one character
from the list.

Ma[lns]ter returns, for example, hits with Malter, Manter and Master, but not with Maltner.

In order to specify a selection from a digit range or a section of the alphabet, use the hyphen
“-”.

[A-Z][a-z]+[0-9]{2} returns hits with words which begin with an uppercase letter followed
by one or more lowercase letters and are concluded with precisely two digits, e.g.
Masterson15, Smith01, but not masterson15, Smith1.

- The hyphen separates the limits of a
character class.

Ma[a-z]ter
 Hits e.g. Malter, Manter, Master
but not: Mastner

() Parentheses group partial expressions. (Mr.|Ms.) M[a-z]+
 Hit with Mr. Master, Ms. Müller
but not: Baroness Master

{ } Braces are a repetition specification for
preceding characters.

clif{2,5}
 Hit with cliff, cliffffhanger
but not: clif

Character Meaning Example

Predicates LIKE_REGEX predicate

U22420-J-Z125-12-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Alternatives

You can use the vertical slash “|” to specify multiple alternative strings in a regular
expression which are to be searched for a string.

([M|m]r|[M|m]s] M[a-z]* returns hits with titles of persons whose names begin with M,
e.g. Mr Master, Ms Miller.

Masking special characters

You must mask special characters when you do not intend the special meaning of the
character, but mean its literal, normal meaning, in other words a vertical slash as a vertical
slash or a period as a period. The mask character is in all cases the backslash “\”.

([A-Z]|[a-z])+\.([A-Z]|[a-z])+@fujitsu\.com returns hits with all email addresses in
the format: first_name.last_name@fujitsu.com.

[A-Z]+\.[a-z]+@fujitsu\.com returns the same result if you specify 'i' in the flag clause,
in other words wish to ignore uppercase/lowercase.

Operators

Letters which are preceded by a backslash “\” indicate special characters or particular
character classes:

\n One of the NEWLINE characters, see page 166
\t Tabulator character
\f FORM FEED character
\r CARRIAGE RETURN character
\s Blanks, tabulator characters, NEWLINE characters, CARRIAGE RETURN

characters, FORM FEED characters
\S All characters except blanks, tabulator characters, NEWLINE characters,

CARRIAGE RETURN characters, FORM FEED characters
\d A digit
\D Any character which is not a digit
\w A logographic character, i.e. A through Z, a through z, and the underscore “_”
\W Any character which is not a logographic character
\A Start of a string
\Z End of a string
\b Word boundary, i.e. when \b... or ...\b is specified, a pattern returns a hit only if it is

at the start or end of the word.
\B Negative word boundary, i.e. when \b... or ...\b is specified, a pattern returns a hit

only if it is not at the start or end of the word.

For example, \d{3,4} returns hits with all 3- or 4- digit numbers and \w{5} returns hits with
all 5-character words

LIKE_REGEX predicate Predicates

240 U22420-J-Z125-12-76

Priority in regular expressions

The special characters in regular expressions are evaluated according to a particular
priority.

1st priority: () (bracketing)

2nd priority: + * ? {m,n} (repeat operators)

3rd priority: abc ^ $ \b \B (characters/strings, start/end of line, start/end of word)

4. 4th priority: | (alternatives)

This enables every regular expression to be evaluated unambiguously. However, if you
want the evaluation to be different in the expression from the priority, you can insert
parentheses in the expression to force a different evaluation.

For example a|bc|d returns hits with 'a' or 'bc' or 'd'.
(a|b)(c|d) returns hits with 'ac' or 'ad' or 'bc' or 'bd'.

Notes

● Leading or trailing blanks may need to be dealt with using \s* in the pattern. In
particular when $ (end of the search area) is specified) hits that would otherwise be
possible are not detected.

Example

With the data type CHAR(n), for instance, the string BertaËËËË(Ë represents a blank)
with the pattern B.*ta$ is not recognized as blanks follow it.

● With the LIKE predicate a Ber% pattern means that a hit value also really begins with
Ber, while the same pattern in the LIKE REGEX predicate may also begin at any
position in the record. The ^Ber.* pattern means that the pattern is contained at the
start of the record.

Predicates NULL predicate

U22420-J-Z125-12-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.3.8 NULL predicate (comparison with the NULL value)

A comparison is performed to check whether an expression contains the NULL value.

operand IS [NOT] NULL

operand ::= expression

operand
Operand for the comparison. The value of operand must either be atomic or the name
of a multiple column. If the operand is a multiple column, the entry for the column cannot
be an external reference (i.e. the column of a superordinate query expression).

Result

operand is an atomic value:

Without NOT:
True if the value of operand is the NULL value.

False in all other cases.

With NOT:
True if the value in operand is not the NULL value.

False in all other cases.

operand is a multiple column:

Without NOT:
True if at least one occurrence the multiple column is the NULL value.

False in all other cases.

With NOT:
True if at least one occurrence of the multiple column is not the NULL value.

False in all other cases.

NULL predicate Predicates

242 U22420-J-Z125-12-76

Examples

language1 IS NOT NULL

In the example, LANGUAGE1 is a single column. If LANGUAGE1 does not contain the null
value, the comparison is true. The comparison NOT language1 IS NULL would also
return the same truth value.

LANGUAGE2(1..5) is a multiple column containing the null value in some, but not all of
the columns. The comparison language2(1..5) IS NOT NULL returns true in this case
and NOT (language(1..5) IS NULL) returns the truth value false.

column IS NOT NULL and NOT (column IS NULL) are thus not equivalent if column is a
multiple column. This becomes clear if language2(1..5) IS NOT NULL is represented
as:

language2(1) IS NOT NULL OR language2(2) IS NOT NULL OR ...
language2(5) IS NOT NULL

The comparison returns true if at least one occurrence of LANGUAGE2 is non-null.

NOT (language(1..5) IS NULL) on the other hand, can be represented as:

NOT (language(1) IS NULL OR language(2) IS NULL ... OR language(5) IS
NULL)

This comparison returns true if the comparisons with the null value in the parentheses
following NOT return false. i.e. if all the occurrences of LANGUAGE2 are non-NULL.

Select the orders from the ORDERS table that have not yet been dealt with completely, i.e.
for which the actual date is the NULL value.

SELECT order_num, order_text, target FROM orders WHERE actual IS NULL

order_num order_text target

250 Mailmerge intro <date>
251 Customer administration <date>
300 Network test/comparison
305 Staff training <date>

Predicates EXISTS predicate

U22420-J-Z125-12-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.3.9 EXISTS predicate (existence query)

An existence query checks whether a derived table is empty.

EXISTS subquery

subquery
Subquery that returns a derived table.

Result

True if the derived table is not empty.

False if the derived table is empty.

Example

Select the customers that have not placed an order from the CUSTOMERS table:

SELECT company FROM customers
WHERE NOT EXISTS (SELECT order_num FROM orders

WHERE orders.cust_num = customers.cust_num)

company
Siemens AG
Plenzer Trading
Freddys Fishery
Externa & Co Kg

Search condition Compound language constructs

244 U22420-J-Z125-12-76

5.4 Search conditions

Search conditions are used to restrict the number of rows affected by a table operation or
SQL statement of a routine. Only the rows that satisfy the specified search condition are
taken into account. You may specify search conditions for DELETE, MERGE, UPDATE and
SELECT, when joining tables (join expression) and in a conditional expression (CASE
expression). You can specify search conditions in table and column constraints in order to
formulate integrity constraints. Search conditions also occur in the case of statements in
routines.

You define a search condition in a WHERE, HAVING, ON, CHECK or WHEN clause or in
a control statement of a routine, and it may be used in the following statements and
expressions or query expressions:

● WHERE clause
– DELETE statement
– SELECT statement
– SELECT expression for CREATE VIEW, DECLARE, INSERT
– UPDATE statement

● HAVING clause
– SELECT statement
– SELECT expression for CREATE VIEW, DECLARE, INSERT

● ON clause
– MERGE statement
– Join expression

● CHECK condition in the CREATE TABLE or ALTER TABLE statement

● WHEN clause in a CASE-expression with search condition

● IF, CASE, REPEAT, or WHILE statement in a routine

A search condition consists of predicates and can include logical operators. The predicates
are the operands of the logical operators.

A search condition is evaluated by applying the operators to the results of the operands.
The result is one of the truth values true, false or unknown.

The operands are not evaluated in a predefined order. In certain cases, an operand is not
calculated if it is not required for calculating the total result.

Compound language constructs Search condition

U22420-J-Z125-12-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

search_condition ::=

predicate
Predicate

AND
Logical AND

Result

OR
Logical OR

Result

Op1 AND Op2 Op1

true false unknown

true true false unknown

Op2 false false false false

unknown unknown false unknown

Table 20: Logical operator AND

Op1 OR Op2 Op1

true false unknown

true true true true

Op2 false true false unknown

unknown true unknown unknown

Table 21: Logical operator OR

predicate

search_condition search_condition

NOT search_condition
(search_condition)

AND
OR

Search condition Compound language constructs

246 U22420-J-Z125-12-76

NOT
Negation

Result

Precedence

● Expressions enclosed in parentheses have highest precedence.

● NOT takes precedence over AND and OR.

● AND takes precedence over OR.

● Operators with the same precedence level are applied from left to right.

NOT Op

true false

Op false true

unknown unknown

Table 22: Logical operator NOT

Compound language constructs Search condition

U22420-J-Z125-12-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

Select all orders with company placed after the specified date in the tables ORDERS and
CUSTOMERS.

SELECT o.order_num, c.company, o.order_text, o.order_date
FROM orders o, customers c
WHERE o.order_date > DATE '<date>' AND o.cust_num = c.cust_num

Delete all the items from the ITEMS table whose price is less than 500.00 and whose item
name starts with the letter H:

 DELETE FROM items WHERE price < 500.00 AND item_name LIKE 'H%'

Select all the orders from the SERVICE table that were filled in the specified period or for
which no training was given or no training documentation or manual created.

SELECT order_num, service_date, service_text FROM service
WHERE service_date BETWEEN DATE '2013-04-01' AND DATE '2013-04-30'
OR service_text NOT IN('Training','Training documentation','Manual')

order_ company order_text order_date
num
250 The Poodle Parlor Mailmerge intro 20010-03-03
251 The Poodle Parlor Customer administration 2010-05-02
300 Login GmbH Network test/comparison 2010-02-14
305 The Poodle Parlor Staff training 2010-05-02

service_ order_ service_date service_text
num num
1 200 2013-04-19 Training documentation
2 200 2013-04-22 Training
3 200 2013-04-23 Training
4 211 2013-01-20 Systems analysis
5 211 2013-01-28 Database design
6 211 2013-02-15 Copies/transparencies
10 250 2013-02-21 Travel expenses

CASE expression Compound language constructs

248 U22420-J-Z125-12-76

5.5 CASE expression

A CASE expression is a conditional expression, i.e. an expression that contains conditions.
Each condition is assigned an expression or the NULL value.
When the CASE expression is evaluated, the assigned expression value or NULL value is
returned to whichever condition is true.

There are different types of CASE expression:

● CASE expression with search condition

● Simple CASE expression

● CASE expression with NULLIF

● CASE expression with COALESCE

● CASE expression with MIN or MAX

The syntax of the various types of expression is shown in the following overview:

case_expression ::=

The types of CASE expression are described below.

i The SQL statement CASE also exists in routines, see section “CASE - Execute
SQL statements conditionally” on page 391.

CASE
WHEN search_condition THEN
...
[ELSE]

END

CASE expressionx
WHEN expression1 [, expression2] ... THEN

...
[ELSE]
END

NULLIF (expression1, expression2)

COALESCE (expression1, expression2, ..., expressionn)

(expression1, expression2, ..., expressionn)

expression
NULL

expression
NULL

expression
NULL

expression
NULL

MIN
MAX

Compound language constructs CASE expression

U22420-J-Z125-12-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.5.1 CASE expression with search condition

A CASE expression with a search condition has the following syntax:

case_expression ::=

search_condition
Search condition that returns a truth value when evaluated

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.
It cannot be a multiple value with a dimension greater than 1.

expression must be contained in the THEN clause, the ELSE clause or in both.

The data types of the values of expression in the THEN clauses and in the ELSE clause
must be compatible (see section “Compatibility between data types” on page 99).

Result

The result of the CASE expression is contained in the THEN clause whose associated
search_condition is the first to return the truth value. The THEN clause contains the value of
the expression assigned to the THEN clause or the NULL value. The WHEN clauses are
processed from left to right.

If no search_condition returns the truth value true, the result is the contents of the ELSE
clause, i.e. the value of the expression assigned to the ELSE clause or the NULL value. If
you do not specify the ELSE clause, the default applies (NULL).

CASE
WHEN search_condition THEN
...
[ELSE]

END

expression
NULL

expression
NULL

CASE expression Compound language constructs

250 U22420-J-Z125-12-76

The data type of a CASE expression with a search condition is derived from the data types
of the values of expression contained in the THEN clauses and the ELSE clause, as follows:

● Each expression has the data type CHAR or NCHAR respectively:
The value of the CASE expression is that with the data type CHAR or NCHAR
respectively and the greatest length.

● At least one value of expression has the data type VARCHAR or NVARCHAR
respectively:
The value of the CASE expression is that with the data type VARCHAR or NVARCHAR
respectively and the greatest or greatest maximum length.

● Each expression is of the type integer or fixed-point number (INT, SMALLINT,
NUMERIC, DEC):
The value of the CASE expression has the data type integer or fixed-point number.
– The number of decimal places is the greatest number of decimal places among the

various values of expression.
– The total number of places is the greatest number of places before the decimal

point plus the greatest number of decimal places among the different values of
expression, but not more than 31.

● At least one value of expression is of the type floating-point number (REAL, DOUBLE
PRECISION, FLOAT); the others have any other numeric data type:
The value of the CASE expression has the data type DOUBLE PRECISION.

● Each expression has the time data type:
All values must have the same time data type, and the value of the CASE expression
also has this data type.

Example

Sort the items in the ITEMS table in accordance with the urgency with which they need to
be ordered.

SELECT item_num, item_name,
CASE

WHEN stock > min_stock THEN 'O.K.'
WHEN stock = min_stock THEN 'order soon'
WHEN stock > min_stock * 0.5 THEN 'order now'
ELSE 'order urgently'

END
FROM items

Compound language constructs CASE expression

U22420-J-Z125-12-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.5.2 Simple CASE expression

A simple CASE expression has the following syntax:

case_expression ::=

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.
It cannot be a multiple value with a dimension greater than 1.

The values of expressionx and expression1... expressionn must have compatible data types
(see section “Compatibility between data types” on page 99).

expression must be contained in the THEN clause, the ELSE clause or both clauses.

The data types of the values of expression in the THEN clauses and in the ELSE clause
must be compatible (see section “Compatibility between data types” on page 99).

Result

The value of expressionx after CASE is compared (from left to right) with the values of the
expressions expression1, expression2, contained in the WHEN clause. The first time a
match is found, the result of the CASE expression if the contents of the associated THEN
clause, i.e. the value of the associated expression or the NULL value. If the CASE expression
contains several WHEN clauses, the result is the contents of the first THEN clause in whose
associated WHEN clause an expression was found found which was identical to
expressionx. The WHEN clauses are processed from top to bottom.

If none of the expressions (expression1... expressionn) in the WHEN clauses are identical to
expressionx, the result is the contents of the ELSE clause, i.e. the value of the expression
assigned to the ELSE clause or the NULL value. If you do not specify the ELSE clause, the
default applies (NULL).

The data type of a simple CASE expression is derived from the data types of the values of
expression that are contained in the THEN clauses and the ELSE clause. The same rules
apply that apply to the data type of a CASE expression with a search condition (see
page 250).

CASE expressionx
WHEN expression1 [, expression2] ... THEN
...
[ELSE]
END

expression
NULL

expression
NULL

CASE expression Compound language constructs

252 U22420-J-Z125-12-76

A simple CASE expression corresponds to a CASE expression with a search condition of
the following form:

CASE
WHEN expressionx=expression1 THEN {expression|NULL}
WHEN expressionx=expression2 THEN {expression|NULL}
...
WHEN expressionx=expressionn THEN {expression|NULL}
ELSE {expression|NULL}

END

 Examples

Sort the companies in the CUSTOMERS table in accordance with their location. Here the
country codes should be replaced by the names of the countries.

SELECT company,
CASE country

WHEN ' D' THEN 'Germany'
WHEN 'USA' THEN 'America'
WHEN ' CH' THEN 'Switzerland’

END
FROM customers

For payroll accounting, a distinction is to be made according to workday and weekend.

CASE EXTRACT(DAY_OF_WEEK FROM CURRENT_DATE)
 WHEN 1,2,3,4,5 THEN 'workday'
 WHEN 6.7 THEN 'weekend'
 ELSE '?????'
END

Compound language constructs CASE expression

U22420-J-Z125-12-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.5.3 CASE expression with NULLIF

A CASE expression with NULLIF has the following syntax:

case_expression ::= NULLIF (expression1,expression2)

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.
It cannot be a multiple value with a dimension greater than 1.

Result

The result of the CASE expression is NULL when expression1 and expression2 are identical.
If they are different, the result is expression1.

A CASE expression with NULLIF corresponds to a CASE expression with a search
condition of the following form:

CASE
WHEN expression1=expression2 THEN NULL
ELSE expression1

END

Example

Using the SERVICE table, determine the VAT calculated at rates other than 0.07.

SELECT service_price * NULLIF (vat,0.07) AS tax FROM service

CASE expression Compound language constructs

254 U22420-J-Z125-12-76

5.5.4 CASE expression with COALESCE

A CASE expression with COALESCE has the following syntax:

case_expression ::= COALESCE (expression1, expression2, ...,expressionn)

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.
It cannot be a multiple value with a dimension greater than 1.

Result

The result of the CASE expression is NULL if all the expressions contained in the
parentheses (expression1... expressionn) return NULL. If at least one expression returns a
value other than the NULL value, the result of the CASE expression is the value of the first
expression that does not return the NULL value.

The CASE expression COALESCE (expression1,expression2) corresponds to a CASE
expression with a search condition of the following form:

CASE
WHEN expression1 IS NOT NULL THEN expression1
ELSE expression2

END

The CASE expression COALESCE (expression1,expression2,...,expressionn)
corresponds to the following CASE expression with a search condition:

CASE
WHEN expression1 IS NOT NULL THEN expression1
ELSE COALESCE (expression2 ...,expressionn)

END

Compound language constructs CASE expression

U22420-J-Z125-12-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Examples

A list of contacts is to be created for specific customer contacts. In addition to the title, last
name, telephone number and position, either the department or, if this is not known, the
reason for the previous contact is to be determined.

SELECT title, lname, contact_tel, position,
COALESCE(department, contact_info) AS info FROM contacts WHERE
contact_num < 30

Derived table

After the title, last name, telephone number and function, the department of the
customer is determined. If this information is missing (NULL), the column value for the
CONTACT_INFO column is determined for INFO. If both the DEPARTMENT and
CONTACT_INFO columns contain NULL, INFO will also contain NULL.

title lname contact_tel position info

Dr. Kuehne 089/6361896 CEO Personnel

Mr. Walkers 089/63640182 Secretary Sales

Mr. Loetzerich 089/4488870 Manager Networks

Mr. Schmidt 0551/123873 Training

Ms. Kredler 089/923764 Organization SQL course

CASE expression Compound language constructs

256 U22420-J-Z125-12-76

A list of order completion dates is to be generated from the ORDERS table. The list is to
contain the date when the order was made, the order description and its completion date.
If the actual completion date is not known, the target completion date is to be entered.

SELECT order_date, order_text,
COALESCE (actual, target) AS completion_date FROM orders

To determine the values for COMPLETION_DATE, the ACTUAL column is evaluated.
If there is a date in the column, this is accepted. If ACTUAL contains the NULL value,
the corresponding column value in the TARGET column is determined and entered in
the COMPLETION_DATE column. If both ACTUAL and TARGET contain the NULL
value, the NULL value is entered in the COMPLETION_DATE column.

order_date order_text completion_date
<date> Staff training <date>
<date> Customer administration <date>
<date> Database design customers <date>
<date> Mailmerge intro <date>
<date> Customer administration <date>
<date> Network test/ comparison
<date> Staff training <date>

Compound language constructs CASE expression

U22420-J-Z125-12-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.5.5 CASE expression with MIN / MAX

A CASE expression with MIN / MAX has the following syntax:

case_expression ::= (expression1, expression2, ..., expressionn)

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.
It cannot be a multiple value with a dimension greater than 1.

The values of expression1,expression2,...,expressionn must have compatible data types
(see section “Compatibility between data types” on page 99).

i A CASE expression with MIN or MAX references different expressions. In this way
it differs from the aggregate functions MIN() and MAX() (see page 145) which
reference the set of all values in a column in a table.

Result

The result of the CASE expression is NULL if at least one of the expressions contained in
the parentheses (expression1,expression2,...,expressionn) returns NULL.

If no expression returns NULL, the result of the CASE expression is the value of the smallest
expression when MIN is specified, the value of the largest expression when MAX is specified.

The CASE expression MIN(expression1,expression2) corresponds to a CASE
expression with a search condition in the following form:
CASE

WHEN expression1 <= expression2 THEN expression1
ELSE expression2

END

The CASE expression MIN(expression1,expression2,...,expressionn) corresponds to
the CASE expression MIN(MIN(expression1,expression2,...),expressionn).

The CASE expression MAX(expression1,expression2) corresponds to a CASE
expression with a search condition in the following form:
CASE

WHEN expression1 >= expression2 THEN expression1
ELSE expression2

END

The CASE expression MAX(expression1,expression2,...,expressionn) corresponds to
the CASE expression MAX(MIN(expression1,expression2,...),expressionn).

MIN
MAX

CAST expression Compound language constructs

258 U22420-J-Z125-12-76

Example

The example below selects all entries in the turnover table since the date entered with the
user variable input_date, but at most for the last 90 says.

SELECT * FROM turnover WHERE turnover.date >= MAX(:input_date,
DATE_OF_JULIAN_DAY(JULIAN_DAY_OF_DATE(CURRENT_DATE) - 90))

5.6 CAST expression

The CAST expression converts a value of a data type to a value of a different data type.

cast_expression ::= CAST (AS data_type)

expression / NULL
CAST operand. It contains the keyword NULL or an expression expression.
The value of expression may not be a multiple value with a dimension > 1.

data_type
Target data type for the result of the CAST expression.
The target data type data_type cannot contain a dimension for a multiple column.

Result

The result of the CAST expression is an atomic value of the target data type data_type.
Which value is returned depends, on the one hand, on the value of the CAST operand and,
on the other, on its data type.

If expression returns the NULL value or if the CAST operand contains the keyword NULL,
the result of the CAST expression is the NULL value.

Apart from that, the rules for the conversion of a value to a different data type described as
of page 259 apply.

expression
NULL

Compound language constructs CAST expression

U22420-J-Z125-12-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Combinations of initial and target data types

The data type of expression, referred to here as the initial data type, can only be combined
with certain target data types. The table 23 shows which initial data types you can combine
with which target data types, and which combinations are impermissible

Rules for converting a value to a different data type

In addition to the permitted combinations of initial and target data type (see table 23), the
rules described below also apply to the conversion of a value to a different data type. The
description is subdivided into three groups, depending on the target data type:

● The target data type is a data type for integers, fixed-point numbers or floating-point
numbers

● The target data type is a data type for strings of fixed or variable length

● The target data type is a time data type.

Target data type

Initial data
type

INTEGER
SMALLINT
DECIMAL
NUMERIC

REAL
DOUBLE
PRECISION
FLOAT

CHAR
VARCHAR

NCHAR
NVARCHA
R

DATE TIME(3) TIMESTA
MP(3)

INTEGER
SMALLINT
DECIMAL
NUMERIC

yes yes yes yes no no no

REAL
DOUBLE
PRECISION
FLOAT

yes yes yes yes no no no

CHAR
VARCHAR

yes yes yes no yes yes yes

NCHAR
NVARCHAR

yes yes no yes yes yes yes

DATE no no yes yes yes no yes

TIME(3) no no yes yes no yes yes

TIMESTAM
P(3)

no no yes yes yes yes yes

Table 23: Permissible and impermissible combinations of initial and target data types for the CAST expression

CAST expression Compound language constructs

260 U22420-J-Z125-12-76

The target data type is a data type for integers, fixed-point numbers or floating-point numbers

● Numeric values are rounded up or down when they have too many decimal places for
the target data type. If the numeric value is too high for the target data type, you receive
an error message.

Examples

CAST (4502.9267 AS DECIMAL(6,2))
The value 4502.9267 is rounded down to 4502.93.

CAST (-115.05 AS DECIMAL(2,0))
The value -115.05 is rounded down to -115. However, since the value is too high for
the target data type, an error message appears.

CAST (2450.43 AS REAL)
The value 2450.43 is represented as the floating-point number of the value
2.45043E3.

● It must be possible to represent alphanumeric and national values without any loss of
value as a value of the assigned target data type. Leading or trailing blanks are
removed.

Examples

CAST ('512Ë' AS SMALLINT) / CAST (N'512Ë' AS SMALLINT)
The blank at the end of the string is removed. The string '512' is represented as the
small integer 512.

CAST ('sum' AS NUMERIC)
This is an error: The string 'sum' cannot be represented as a numeric value,
because numeric literals can only contain digits.

CAST ('255ËËËË' AS REAL) / CAST (N'255ËËËË' AS REAL)
The blanks at the end of the string are removed, and the string '255' is represented
as the floating-point number 2.55000E2.

Compound language constructs CAST expression

U22420-J-Z125-12-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

The target data type is a data type for strings of fixed or variable length

● It must be possible to represent numeric values of the data type integer, fixed-point
number or floating-point number without any loss as a string of fixed or variable length.
In addition, it must be possible to represent values of the data type floating-point
number that are not equal to 0 in the standard form, and otherwise in the form 0E0.
The following applies to all numeric values: if the length of the value is less than the
fixed length of the target data type CHAR or NCHAR, blanks are added to the end of
the value; if the length of the value is less than the maximum length of the target data
type VARCHAR or NVARCHAR, it is retained. If the length of the value is greater than
the fixed or maximum length of the target data type, you receive an error message.

Examples

CAST (1234 AS CHAR(5)) / CAST (1234 AS NCHAR(5))
The value of the integer 1234 returns the alphanumeric string '1234Ë or the national
string N'1234Ë' respectively.'

CAST (25.95 AS VARCHAR(5)) / CAST (25.95 AS NVARCHAR(5))
The value of the fixed-point number 25.95 returns the alphanumeric string '25.95'
or the national string N'25.95' respectively.

CAST (45.5E2 AS CHAR(7)) / CAST (45.5E2 AS NCHAR(7))
The value of the floating-point number 45.5E2 returns the alphanumeric string
'4.55E3Ë' or the national string N'4.55E3Ë' respectively.

● Blanks are added to the end of alphanumeric and national values whose length is less
than the fixed length of the target data type CHAR or NCHAR. If the length of the value
is less than the maximum length of the target data type VARCHAR or NVARCHAR, it
is retained. If the length of the value is greater than the fixed or maximum length of the
target data type, the value is truncated to the length of the target data type. If characters
other than blanks are removed, you receive a warning.

Examples

CAST ('Weekend' AS VARCHAR(5)) / CAST (N'Weekend' AS NCHAR(5))
The string 'Weekend' is too long for the data type CHAR(5) or NCHAR(5)
respectively. It is truncated to the length of the string 'Weeke', and SESAM/SQL
issues a warning.

CAST ('WeekËËËËË' AS VARCHAR(15)) / CAST (N'WeekËËËËË' AS NVARCHAR(15))
The result is the alphanumeric string 'WeekËËËËË' or the national string
N'WeekËËËËË' respectively. The string is not padded with blanks to the maximum
length of 15 characters.

CAST expression Compound language constructs

262 U22420-J-Z125-12-76

● It must be possible to represent time values as a string. If the length of the time value
is less than the fixed length of the target data type CHAR or NCHAR, blanks are added
at the end of the value. If the length of the time value is less than the maximum length
of the target data type VARCHAR or NVARCHAR, it is retained. If it is greater than the
fixed or variable length of the target data type, you receive an error message.

Examples

CAST (DATE'2013-08-11' AS VARCHAR(20))
CAST (DATE'2013-08-11' AS NVARCHAR(20))

The result is the alphanumeric string '2013-08-11' or the national string N'2013-08-
11' respectively.

CAST (DATE'2013-08-11' AS VARCHAR(5))
The time value is too long for a string with a maximum variable length of 5. The time
value is not converted and an error message appears.

The target data type is a time data type.

● It must be possible to represent alphanumeric and national values without any loss of
value as a value of the assigned target data type. Leading or trailing blanks are
removed.

Examples

CAST ('Ë2013-08-11' AS DATE)
CAST (N'Ë2013-08-11' AS DATE)

The leading blank of the string is removed, and the string is converted to the data
type DATE.

CAST ('2013-08-11 17:57:35:000' AS TIMESTAMP(3))
This is an error: The string cannot be represented as a time stamp. The separator
between the components seconds and fractions of a second must be a period (.) in
time stamp values.

Compound language constructs CAST expression

U22420-J-Z125-12-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

● The following rules apply to the conversion of time values:

– If the target data type is DATE and the initial data type TIMESTAMP, the result value
contains the date (year-month-day) of the initial value.

– If the target data type is DATE and the initial data type TIME, you receive an error
message.

– If the target data type is TIME and the initial data type TIMESTAMP, the result value
contains the time (hour:minute:second) of the initial value.

– If the target data type is TIME and the initial data type DATE, you receive an error
message.

– If the target data type is TIMESTAMP and the initial data type DATE, the result value
contains the date entry (year-month-day) of the initial value and the fields
hour:minute:second set to 0 for the time.

– If the target data type is TIMESTAMP and the initial data type TIME, the result value
contains the date (year-month-day) of the current date (CURRENT_DATE) and the
time (hour:minute:second) of the initial value.

Examples

CAST (TIMESTAMP '2013-08-11 17:57:35.000' AS DATE)
The result value is the date '8/11/2013'.

SELECT order_text, CAST (actual AS TIMESTAMP(3))
FROM orders WHERE cust_num=106

The derived table contains the column actual with the data type TIMESTAMP. The
time stamp fields for the time are set to 0.

order_text actual
Customer administration 2010-04-17 00:00:00.000
Database design customers 2010-04-10 00:00:00.000

Integrity constraint Compound language constructs

264 U22420-J-Z125-12-76

5.7 Integrity constraint

An integrity constraint is a rule governing the permitted contents of the rows in a table. A
row can only be inserted into a table (INSERT, MERGE) or deleted from a table (DELETE)
and a column value can only be updated (MERGE, UPDATE) if, afterwards, all integrity
constraints are satisfied.

Integrity constraints cannot be defined for multiple columns.

Integrity constraints can be defined for individual columns or for a table. A column constraint
is an integrity constraint on a single column. A table constraint is an integrity constraint
which can refer to more than one column in the base table.

NOT NULL constraint

The NOT NULL constraint requires that a column contain no NULL values. The NOT NULL
constraint can only be specified as a column constraint.

UNIQUE constraint

The UNIQUE constraint requires that the specified column or set of columns accept only
unique values or sets of values.

PRIMARY KEY constraint

The PRIMARY KEY constraint defines a column or set of columns as the primary key of a
table. The PRIMARY KEY constraint requires that the column or set of columns satisfy the
UNIQUE and NOT NULL constraints. A table can have a maximum of one primary key.

Check constraint

A check constraint requires that every row in a table, the search condition entered accepts
the truth value true or unknown, but not, however, the truth value false.

The search condition can only reference the table for which the check constraint was
defined.

Compound language constructs Integrity constraint

U22420-J-Z125-12-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Referential constraint

A referential constraint ([FOREIGN KEY]..REFERENCES) defines a column or a
combination of columns as a foreign key for a table. The columns for the foreign key are
assigned to one or more columns in a single table or in two tables. These columns are
called the referenced columns. The UNIQUE constraint must be valid for the referenced
columns. The table containing the foreign key is called the referencing table. The table to
which the referenced columns belong is called the referenced table. If no columns are
specified for the referenced table, the primary key of the referenced table is used.

SESAM/SQL rejects a table operation after checking the referential constraint

● if, when a row is inserted or column values are updated in the referencing table, no
appropriate values would exist in the referenced columns.

● if, when deleting or updating rows or columns in the referenced tables, foreign key
values would remain in the referencing tables for which appropriate values in the
referenced columns or the corresponding column would no longer exist.

In the case of single-column foreign keys, the referential constraint requires that every non-
NULL value of the foreign key for a table match a value in the referenced column.

In the case of multiple-column foreign keys, each set of values that does not include a NULL
value must occur in the referenced columns. This means that in SESAM/SQL, a row
satisfies the referential constraint if a NULL value occurs in at least one column of a
multiple-column foreign key.

Integrity constraint Compound language constructs

266 U22420-J-Z125-12-76

5.7.1 Column constraints

When a base table is created or updated (CREATE TABLE, ALTER TABLE), column
constraints can be specified in the column definitions for the individual columns. The
column cannot be a multiple column.

A column constraint is an integrity constraint on a single column. All the values in the
column must satisfy the integrity constraint.

For CALL DML tables, only the integrity constraint PRIMARY KEY can be defined.

col_constraint ::=

NOT NULL
NOT NULL constraint.
The column cannot contain any NULL values.

The NOT NULL constraint is stored as a check constraint (column IS NOT NULL).

UNIQUE
UNIQUE constraint.
Non-null column values must be unique.

The column length must observe the restrictions that apply to an index (see CREATE
INDEX statement, page 413).

PRIMARY KEY
PRIMARY KEY constraint.
The column is the primary key of the table. The values in the column must be unique.
Only one primary key can be defined for each table.

The column cannot have the data type VARCHAR or NVARCHAR. In a CALL DML
table, the column length must be between 4 and 256 characters. In an SQL table, there
is no minimum column length.

The NOT NULL constraint applies implicitly to a primary key column.

REFERENCES
Referential constraint.
The column of the referencing table can only contain a non-NULL value if the same
value is included in the referenced column of the referenced table.

The current authorization identifier must have the REFERENCES privilege for the
referenced column.

NOT NULL
UNIQUE
PRIMARY KEY
REFERENCES table [(column)]
CHECK (search_condition)

Compound language constructs Integrity constraint

U22420-J-Z125-12-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

table
Name of the referenced base table.
The referenced base table must be an SQL table. The name of the referenced base
table can be qualified by a database or schema name. The database name must
be the same as the database name of the referencing table.

(column)
Name of the referenced column.
The referenced column must be defined with UNIQUE or PRIMARY KEY.
The referenced column cannot be a multiple column. The referencing column and
referenced column must have exactly the same data type.

(column) omitted:
The primary key of the referenced table is used as the referenced column. The
referencing column and referenced column must have exactly the same data type.

CHECK (search_condition)
Check constraint.
Each value in the column must accept the truth value true or unknown, but not,
however, the truth value false for the search condition search_condition.

The following restrictions apply to search_condition:

– search_condition cannot contain any host variables.

– search_condition cannot contain any aggregate functions.

– search_condition cannot contain any subqueries, i.e. it can only reference the
column of the table to which the column constraint belongs.

– search_condition cannot contain a time function.

– search_condition cannot contain special variables.

– search_condition cannot contain any transliteration between EBCDIC and Unicode.

– search_condition cannot contain any conversion of uppercase letters to lowercase
letters or of lowercase letters to uppercase letters if the string to be converted is a
Unicode string.

– search_condition cannot be a multiple column.

– search_condition may not contain a User Defined Function (UDF).

Integrity constraint Compound language constructs

268 U22420-J-Z125-12-76

Special considerations for CALL DML tables

The following restrictions must be taken into account for column constraints in CALL DML
tables:

● A CALL DML table must contain exactly one primary key as a column or table
constraint.

● Only PRIMARY KEY is permitted as a column constraint.

● The data type of the column with PRIMARY KEY must be CHAR with a length of at least
4 characters.

Column constraints and indexes

If you define a UNIQUE constraint, an index with the column specified for UNIQUE is used:

● If you have already defined an index with CREATE INDEX that contains this column,
this index is also used for the UNIQUE constraint.

● Otherwise, the required index is generated implicitly. The name of the implicitly
generated index starts with UI and is followed by a 16-digit number.
The index is stored in the space for the base table. In the case of a partitioned table the
index is stored in the space of the table’s first partition.

Examples of column constraints

The example shows part of the CREATE TABLE statement used to create the SERVICE
table in the ORDERCUST database. A check constraint is defined for the column
service_total.

 CREATE TABLE service (...,
service_total INTEGER CONSTRAINT service_total_pos

CHECK (service_total > 0)

A Non-NULL constraint with an explicitly specified name is defined for the COMPANY
column. CUST_NUM is defined as the primary key in the column constraint
CUST_NUM_PRIMARY.

 CREATE TABLE customers
(cust_num INTEGER CONSTRAINT cust_num_primary PRIMARY KEY,
company CHAR(40) CONSTRAINT company_notnull NOT NULL)

A referential constraint FOREIGN1 is defined for the ORDERS table. The foreign key
ORDERS.CUST_NUM references the column CUSTOMERS.CUST.NUM.

 ALTER TABLE orders
ADD CONSTRAINT foreign1 FOREIGN KEY(cust_num)
REFERENCES customers(cust_num)

Compound language constructs Integrity constraint

U22420-J-Z125-12-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

5.7.2 Table constraints

When a base table is created or updated (CREATE TABLE, ALTER TABLE), table
constraints can be specified. A table constraint is an integrity constraint which can refer to
more than one column in the base table. None of the columns can be a multiple column.

For CALL DML tables, only the integrity constraint PRIMARY KEY can be defined.

table_constraint ::=

UNIQUE (column,...)
UNIQUE constraint.
The combination of values for the columns specified must be unique within the table in
the case that none of the values is equal to the NULL value.

The length of the columns must observe the restrictions that apply to an index (see the
CREATE INDEX statement, page 413).

A column cannot be specified more than once in the column list.

The sequence of columns specified with the column list must differ from the sequence
of columns specified with the column list of another UNIQUE constraint or of a
PRIMARY KEY constraint for the same table.

PRIMARY KEY (column,...)
PRIMARY KEY constraint.
The specified columns together constitute the primary key of the table.
The set of column values must be unique. Only one primary key can be defined for each
table.

None of the columns can be VARCHAR or NVARCHAR columns. The sum of the
column lengths must not exceed 256 characters.

A column cannot be specified more than once in the column list.

The sequence of columns specified with the column list must differ from the sequence
of columns specified with the column list of any UNIQUE constraint for the same table.

The NOT NULL constraint applies implicitly to the primary key columns.

UNIQUE (column, ...)
PRIMARY KEY (column,...)
FOREIGN KEY (column, ...) REFERENCES table (column, ...)]
CHECK (search_condition)

Integrity constraint Compound language constructs

270 U22420-J-Z125-12-76

FOREIGN KEY ... REFERENCES
Referential constraint.
The referencing columns can only contain a set of values that does not include any
NULL values if the set of values also occurs in the referenced columns.
You must specify the same number of columns in the referencing and referenced table.
The data types of the corresponding columns must be exactly the same.

The current authorization identifier must have the REFERENCES privilege for the
referenced column.

FOREIGN KEY (column,...)
Columns of the referencing table whose sets of values should be contained in the
referenced base table.
A column cannot be specified more than once in the column list.

REFERENCES table
Name of the referenced base table.
The referenced base table must be an SQL table. The name of the referenced base
table can be qualified by a database or schema name. The catalog name must be
the same as the catalog name of the referencing table.

(column,...)
Names of the referenced columns.
A UNIQUE or primary key constraint that uses the same columns and the same
order must be defined for these columns. None of the columns can be a multiple
column.
A column cannot be specified more than once in the column list.

(column,...) omitted:
The primary key of the referenced table is used as the referenced column.

CHECK (search_condition)
Check constraint.
The search condition search_condition must return the truth value true or undefined (but
not the truth value false) for each row in the table.
The following restrictions apply to search_condition:
– search_condition cannot contain any host variables.
– search_condition cannot contain any aggregate functions.
– search_condition cannot include any subqueries, i.e. search_condition can only

reference columns of the table to which the column constraint belongs.
– search_condition cannot contain a time function.
– search_condition cannot contain special variables.
– search_condition cannot contain any transliteration between EBCDIC and Unicode.
– search_condition cannot contain any conversion of uppercase letters to lowercase

letters or of lowercase letters to uppercase letters if the string to be converted is a
Unicode string.

– search_condition may not contain a User Defined Function (UDF).

Compound language constructs Integrity constraint

U22420-J-Z125-12-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

Special considerations for CALL DML tables

The following restrictions must be taken into account for table constraints in CALL DML
tables:

● A CALL DML table must contain exactly one primary key as a column or table
constraint.

● Only PRIMARY KEY is permitted as the table constraint.

● The data type of the column with PRIMARY KEY must be CHAR, NUMERIC, INTEGER
or SMALLINT. In the case of NUMERIC, decimal places are not permitted.

● The sum of the column lengths must be between 4 and 256 characters.

● The table constraint defines a compound primary key. The name corresponds to the
verbal attribute name of the compound primary key in SESAM/SQL V1.x.

Table constraints and indexes

If you define a UNIQUE constraint, an index with the columns specified for UNIQUE is used:

● If you have already defined an index with CREATE INDEX that contains these columns,
this index is also used for the UNIQUE constraint.

● Otherwise, the required index is generated implicitly. The name of the implicitly
generated index starts with UI and is followed by a 16-digit number.
The index is stored in the space for the base table. In the case of a partitioned table the
index is stored in the space of the table’s first partition.

Example of a table constraint

The example shows part of the CREATE TABLE statement used to create the
CUSTOMERS table of the ORDERCUST database.

 CREATE TABLE customers
...
CONSTRAINT PlausZip CHECK ((country = 'D' AND zip >= 00000) OR
(country <> 'D'))
...

Column definitions Compound language constructs

272 U22420-J-Z125-12-76

5.8 Column definitions

When a base table is created or modified (CREATE TABLE, ALTER TABLE), the column
definition defines the name and the attributes of a column.

SESAM/SQL distinguishes between atomic and multiple columns. In an atomic column,
exactly one value can be stored in each row. In a multiple column, several values of the
same type can be stored in each row. A multiple column is made up of a number of column
elements. In the case of a single column, a single value is stored for each row.

To incorporate BLOBs in base tables, you will need REF columns. These are defined using
the FOR REF clause.

A base table can contain a maximum of 26134 columns of any data type except VARCHAR
and NVARCHAR. It can contain up to 1000 VARCHAR and/or NVARCHAR columns. The
restrictions that apply to CALL DML tables are described on page 275.

column_definition ::=

 column

 [[CONSTRAINT integrity_constraint_name] column_constraint] ...

 [call_dml_clause]

default ::= DEFAULT

call_dml_clause ::= CALL DML call_dml_default [call_dml_symb_name]

data_type[default]
FOR REF(table)

alphanumeric_literal
national_literal
numeric_literal
time_literal
CURRENT_DATE
CURRENT_TIME(3)
LOCALTIME(3)
CURRENT_TIMESTAMP(3)
LOCALTIMESTAMP(3)
USER
CURRENT_USER
SYSTEM_USER
NULL
REF(table)

Compound language constructs Column definitions

U22420-J-Z125-12-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

column
Name of the column. The column name must be unique within the base table.

data_type
Data type of the column.

FOR REF(table)
Defines a column containing references to BLOB values. This clause allows you to
incorporate BLOBs in “normal” base tables. BLOB values are stored in BLOB tables.
Information on defining a BLOB table can be found in the section “CREATE TABLE -
Create base table” on page 430. BLOB objects, tables and REF values are explained
briefly in the section “Concept of the SESAM CLI” on page 587. Detailed information on
their structure can be found in the “Core manual”.

– The column is assigned the data type CHAR(237).

– Its default value is the class REF value. The structure of REF values is described
below.

– table must not contain the database name (catalog).

REF(table)
Class REF value which identifies the overall class of the BLOB values of a BLOB table.
When a REF column is created, it is assigned this value as the default. This is
determined by specifying the name of the BLOB table. Due to the syntax of the column
definition, therefore, it is neither practical nor possible to specify a default value for the
REF column at this point.
A REF value essentially has the following structure:

ss/tt?UID=uuuu&OID=nn

– ss is the unqualified name of the BLOB table's schema, excluding the database
name.

– tt is the unqualified name of the BLOB table, excluding the schema and database
name.

– uuu is the unique BLOB ID consisting of 32 hexadecimal digits. In the case of the
class REF value, all the digits are 0.

– nn is the number of the BLOB in the BLOB table. In the case of the class REF value,
this number is 0.

Column definitions Compound language constructs

274 U22420-J-Z125-12-76

default
Defines an SQL default value that is entered in the column if a row is inserted or
updated and no value or the default value is specified for the column.

– column cannot be a multiple column.

– column cannot be a CALL DML column.

– default must conform to the assignment rules for default values (see section “Default
values for table columns” on page 123).

The default is evaluated when a row is inserted or updated and the default value is used
for column.

default omitted:
There is no SQL default value.
The NULL value is entered in columns without a NOT NULL constraint.

[CONSTRAINT integrity_constraint_name] column_constraint
Defines an integrity constraint for the column. Integrity constraints cannot be specified
for multiple columns.

[CONSTRAINT integrity_constraint_name] column_constraint omitted:
No column constraint defined.

CONSTRAINT integrity_constraint_name
Assigns a name to the integrity constraint. The unqualified name of the integrity
constraint must be unique within the schema. You can qualify the name of the
integrity constraint with a database and schema name. The database and schema
name must be the same as the database and schema name of the base table for
which the integrity condition is defined.

CONSTRAINT integrity_constraint_name omitted:
The integrity constraint is assigned a name according to the following pattern:

UN integrity_constraint_number
PK integrity_constraint_number
FK integrity_constraint_number
CH integrity_constraint_number
where UN stands for UNIQUE, PK for PRIMARY KEY, FK for FOREIGN KEY and
CH for CHECK. integrity_constraint_number is a 16-digit number. The NOT NULL
constraint is stored as a check constraint.

column_constraint
Indicates an integrity constraint that the column must satisfy.

Compound language constructs Column definitions

U22420-J-Z125-12-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
5

call_dml_clause
The CALL DML clause ensures compatibility with SESAM/SQL V1.x. The CALL DML
clause can only be specified for CALL DML tables, but not for columns used for the
primary key. In this case, SESAM/SQL assigns both the call_dml_default and the
call_dml_symb_name

call_dml_clause omitted:
The column definition is valid for either an SQL table or for the primary key of a CALL
DML table. In the case of an SQL table, the CREATE TABLE or ALTER TABLE
statement in which the column definition occurs cannot include a CALL DML clause.

call_dml_default
Indicates the non-significant value of a column as an alphanumeric literal.

call_dml_default corresponds to the non-significant value in
SESAM/SQL Version 1.x.

call_dml_symb_name
Symbolic name of the column.

call_dml_symb_name corresponds to the symbolic attribute name in
SESAM/SQL Version 1.x.

call_dml_symb_name omitted:
call_dml_symb_name is assigned by the system.

Special considerations for CALL DML tables

The following restrictions must be observed when creating column definitions for CALL
DML tables:

● Only the data types CHAR, NUMERIC, DECIMAL, INTEGER and SMALLINT are
permitted.

● No default value can be defined for the column with DEFAULT. The default value FOR
REF is not permitted either.

● The table must contain exactly one primary key restraint as the column or table
constraint.

● The table constraint defines a compound primary key and must be given a name that
corresponds to the name of the compound primary key in SESAM/SQL V1.x.

● The column name must be different to the integrity constraint name of the table
constraint since this name is used as the name of the compound primary key.

● A column that is not a primary key must have a CALL DML clause.

Column definitions Compound language constructs

276 U22420-J-Z125-12-76

Examples of column definitions

This example shows part of the CREATE TABLE statement used to create the ORDERS
table of the ORDERCUST database.

 CREATE TABLE orders
 (order_num INTEGER,
 cust_num INTEGER NOT NULL,
 contact_num INTEGER,
 order_date DATE DEFAULT CURRENT_DATE,
 order_text CHARACTER (30),
 actual DATE,
 target DATE,
 order_stat INTEGER DEFAULT 1 NOT NULL,
 ...)

This example shows the CREATE TABLE statement used to create the ITEM_CAT table of
the ORDERCUST database. This table contains two REF columns.

 CREATE TABLE item_cat
 (item_num INTEGER NOT NULL,
 image FOR REF(addons.images),
 desc FOR REF(addons.descriptions))

U22420-J-Z125-12-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6 Query expression

In SESAM/SQL, query expressions are the most important means of querying data.

This chapter describes the syntax of query expressions and provides you with an
explanation of the various joins. It is subdivided into the following sections:

● Table specifications

● SELECT expression

● Table queries

● Joins

● Subquery

● Combining query expressions with UNION

● Combining query expressions with EXCEPT DISTINCT

● Updatability of query expressions

Query expression

278 U22420-J-Z125-12-76

Overview

You use query expressions to select rows and columns from base tables and views. The
rows found constitute the derived table.

A query expression is part of an SQL statement. A query expression can occur in
subqueries or in any of the following SQL statements:

CREATE VIEW Define a view

DECLARE CURSOR Declare a cursor

INSERT Insert rows in table

The examples in this chapter only show the relevant query expression. Without the
associated subquery or SQL statement, the examples are of course not executable.

If you want to use a subquery in an SQL statement, you must own the table referenced in
the subquery or have SELECT privilege for the table involved.

query_expression ::= [query_expression]

select_expression
SELECT expression (see section “SELECT expression” on page 282)

TABLE table
Table query, see section “TABLE - Table query” on page 295.

join_expression
Join expression (see section “Join expression” on page 297)

(query_expression)
Subquery, see section “Subquery” on page 310.

UNION
Combine two query expressions with UNION, see section “Combining query
expressions with UNION” on page 313.

EXCEPT DISTINCT
Combine two query expressions with EXCEPT, see section “Combining query
expressions with EXCEPT” on page 316.

UNION []

EXCEPT [DISTINCT]

ALL
DISTINCT

select_expression
TABLE table
join_expression
(query_expression)

Query expression Table specifications

U22420-J-Z125-12-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.1 Table specifications

table_specification ::=

table
Name of a base table or view.

The same table can occur several times in a table specification in the query expression.
Correlation names are used to distinguish between different instances of the same
table.

subquery
The table is the derived table that results from evaluating subquery.

[catalog.]table_function
The (“read-only”) table (see the “Core manual”) is the result of the table function
table_function.

If table function DEE() is specified, no column names may be specified.

The database name catalog must be specified if the containing statement is not to be
executed on the database set implicitly (see page 75) (and consequently possibly with
another SQL server).

WITH ORDINALITY
Definition of a counting column in the derived table. This specification may only be
entered for the table function CSV(), but not for DEE().

The derived table must “at the end” contain one column more than the column
specification in each line of the CSV file. The data type of the last column of the derived
table must be DECIMAL(31,0). This column is used as the counting column. Beginning
with 1 and in ascending order, it is assigned the ordinal number of the line which was
read in from the CSV file. The WHERE clause also enables derived rows of particular
ordinal numbers to be ignored in a SELECT expression, see the example on the next
page.

The data types of each column of the derived table (with the exception of the last
column) must match the data types of the column specifications in the CSV file.

WITH ORDINALITY not specified:
The number of columns in the derived table must be the same as the number of column
specifications in the CSV file, and the data types of each column must match.

table [[AS] correlation_name [(column, ...)]]
unterabfrage [AS] correlation_name [(column, ...)]
TABLE([catalog.]table_function) [WITH ORDINALITY]

[[AS] correlation_name [(column, ...)]]
join_expression

Table specifications Query expression

280 U22420-J-Z125-12-76

Example

with.3.headers is a CSV file with exactly 3 headers which are not evaluated or are
skipped:

SELECT c1, c2,...,cn
FROM TABLE(CSV('with.3.headers' DELIMITER ',' QUOTE '?'

ESCAPE '-', CHAR(20), CHAR(20),..., CHAR(20)))
WITH ORDINALITY
AS T(c1, c2,....,cn, counter)

WHERE counter > 3

correlation_name
Table name used in the query expression as a new name for the table.

The correlation_name must be used to qualify the column name in every column
specification that references this instance of the table if the column name is not
unambiguous.

The new name must be unique, i.e. correlation_name can only occur once in a table
specification of this query expression.

You must give a table a new name if the columns in the table cannot otherwise be
identified uniquely in the query expression.
correlation_name must be specified in the case of table_function (exception: DEE()).

In addition, you may give a table a new name in order to formulate the query expression
so that it is more easily understood or to abbreviate long names.

Example

Join a table with itself:

SELECT a.company, b.company -- Query customer

FROM customers AS a,
customers AS b

WHERE a.city = b.city -- who lives in the same city

AND a.cust_num < b.cust_num -- but avoid duplicates

Query expression Table specifications

U22420-J-Z125-12-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

column
Column name that is used within the query expression as the new name for the column
of the corresponding table.

If you rename a column, you must give all the columns in the table a new name.

column is the new name of the column and must be unique within the table specified by
correlation name. In this query expression the column may only be addressed with the
new name.

The columns of a derived table must be renamed if the column names of the table upon
which it is based are not unique, or if the derived columns are to be referenced using
names that have been assigned internally.

Example

Give the columns in the WAREHOUSE table new, more informative names:

SELECT * FROM warehouse w (item_number, current_stock, location)
WHERE location = 'Parts warehouse'

column,... omitted:
The column names of the associated table are valid. These could be names that are
assigned internally, which cannot be referenced in the query expression.

join_expression
Join expression that determines the tables from which the data is to be selected.
Join expressions are described in the section “Join expression” on page 297.

Underlying base tables

Depending on the specification made in the table specification, the underlying base tables
are defined as follows:

Specification in table
specification

Underlying base table

Base table the base table

View all the base tables which the view references directly or
indirectly

Subquery Base table upon which the subquery is based

TABLE([catalog.]table_function) no base table

Table 24: Underlying base tables

SELECT expression Query expression

282 U22420-J-Z125-12-76

6.2 SELECT expression

select_expression ::=

 SELECT [] select_list

 FROM table_specification,...

 [WHERE search_condition]

 [GROUP BY column,...]

 [HAVING search_condition]

 select_list ::=

The following applies to all clauses:

● The clauses must be specified in the given order.

● Column names must be unique. If a column name occurs in several tables, you must
qualify the column name with the table name. If you rename a table using a correlation
name for the duration of the SELECT statement (see section “Table specifications” on
page 279), you must use only the correlation name.

Example

SELECT o.cust_num, s.service_price
FROM orders o, service s WHERE o.order_num=s.order_num

ALL
DISTINCT

*

 ,...
table.*
expression [[AS] column]

Query expression SELECT expression

U22420-J-Z125-12-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

Evaluation of SELECT expressions

SELECT expressions are evaluated in the following order:

1. The Cartesian product from all the table specifications in the FROM clause is created.

2. If a WHERE clause is specified, the WHERE search condition is applied to all the rows
of the Cartesian product. The rows for which the search condition returns the value true
are selected.

3. If a GROUP BY clause is specified, the rows determined in point 2 are combined into
groups.

4. If a HAVING clause is specified, the HAVING search condition is applied to all the
groups. The groups that satisfy the search condition are selected.

5. If the SELECT list includes an aggregate function and the derived table has not yet
been divided into groups, all the rows in the derived table are combined to form a group.

6. If the derived table has been divided into (one or more) groups, the SELECT list is
evaluated for each group.

If the derived table has not been divided into groups, the SELECT list is evaluated for
each derived row.

The resulting rows then form the derived table of the SELECT expression.

SELECT list SELECT expression

284 U22420-J-Z125-12-76

6.2.1 SELECT list - Select derived columns

You determine the columns in the derived table with the SELECT list.

SELECT [] select_list ...

 select_list ::=

ALL
Duplicate rows in the derived table are retained.

DISTINCT
Duplicate rows are removed.

* Select all columns. The order and the names of the columns in the table specified in the
FROM clause are used. If several tables are involved, the order of the tables in the
FROM clause is used. At least one column must exist.

table.*
All the columns in table are selected. table must be included in the FROM clause. The
order and the names of the columns in table are used. table may not be the correlation
name for a DEE() table function.

expression
Expression denoting a derived column. If expression contains a column specification, the
table to which the column belongs must be included in the FROM clause of this
SELECT expression.

The names of the columns in the SELECT list must be unique. If you join tables and
these base tables have columns with identical names, you must insert the appropriate
table or correlation name in front of the column names in order to ensure unique
identification.

If SELECT DISTINCT is specified, expression cannot consist of a multiple column
specification.

ALL
DISTINCT

*

 ,...
table.*
expression [[AS] column]

SELECT expression SELECT list

U22420-J-Z125-12-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

If an aggregate function (AVG, COUNT, MAX, MIN, SUM) occurs in a column selection,
the following restrictions apply:

– Only column names that are specified in the GROUP BY clause or which are
arguments in the aggregate function can be included in the SELECT list.

– Only one aggregate function can be used with DISTINCT on the same level of a
SELECT query. For example, you must not enter:

SELECT COUNT(DISTINCT ...) ... SUM(DISTINCT ...) ...

[AS] column
Name of the derived column specified with expression.

Example

SELECT order_num AS order_no, COUNT(*) AS total FROM orders GROUP BY
order_num

column omitted:
If expression is a column name, the derived column is assigned this name, otherwise,
the column name is not defined.

Example

SELECT order_num, COUNT(*) FROM orders GROUP BY order_num

order_no total
... ...

order_num
... ...

SELECT list SELECT expression

286 U22420-J-Z125-12-76

Columns in the derived table

The order of the columns in the derived table corresponds to the order of the columns in the
SELECT list.

The attributes of a derived column (data type, length, precision, digits to the right of the
decimal point) are either taken from the underlying column or result from the specified
expression.

A result column can return the NULL value if one of the following conditions is satisfied:

● One of the columns used can return the NULL value.
This is always the case for columns of table functions. This is only the case for columns
of base tables if a NOT NULL condition applies for the column.

● The expression that describes the result column contains at least one of the following
operands or elements:

– an indicator variable

– a subquery

– the aggregate function AVG, MAX, MIN or SUM

– a CAST expression of the form CAST (NULL AS data_type)

– a CASE containing the NULL value in at least one THEN or ELSE clause

– a CASE expression with NULLIF

– a CASE expression with COALESCE, where at least one operand of COALESCE
(expression1 ... expressionn) contains one of the operands or elements listed above

SELECT expression SELECT list

U22420-J-Z125-12-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

Examples

“*” selects all the columns of the tables specified in the FROM clause. The sequence of the
columns in the derived table is determined by the sequence of the tables in the from clause
and by the defined sequence of columns within the tables.

SELECT * FROM orders, customers

CUSTMERS.* selects all columns from the CUSTOMERS table. DISTINCT specifies that
duplicate rows are not to be included in the derived table.

SELECT DISTINCT order_num, customers.* FROM orders, customers

This selects the order numbers from the SERVICE and ORDERS tables. The column
names must be unique. If tables with identical column names are linked, the column names
must be qualified by the table name or correlation name. If you specify ALL (default),
duplicate rows are included in the derived table.

SELECT ALL S.order_num, O.order_num FROM service S, orders O

This selects the name of the service and the price per service unit including VAT. If
expression without the [AS] column specification is a column name, the column in the derived
table is assigned this name (SERVICE_TEXT in the example).
[AS] column can be used to assign a name for the derived column, which is then referenced
by expression (in the example this is GROSS_PRICE). The properties of a column in the
derived table (data type, length, precision and scale) are either taken from the underlying
column (SERVICE_TEXT) or are derived from the specified expression
(service_price*(1.0+vat)).

SELECT service_text, service_price*(1.0+vat) AS gross_price

The derived table contains a single row. There is one column only in this row, which
contains the sum of all the non-NULL values in SERVICE.SERVICE_PRICE, or NULL if
there is no row matching this criterion. If the SELECT list includes an aggregate function,
the list may only contain column names which occur within the argument of an aggregate
function.

SELECT SUM(service_price) FROM service

The derived table contains a row with a single column containing the number of rows in
CONTACTS. If expression without the AS clause does not identify a column, the column
name is not defined.

SELECT COUNT(*) FROM contacts

SELECT ... FROM SELECT expression

288 U22420-J-Z125-12-76

6.2.2 SELECT...FROM - Specify table

You use the FROM clause to specify the tables from which data is to be selected.

In order to read rows in the specified tables, you must either own these tables or have
SELECT permission.

SELECT ...

FROM table_specification,...

table_specification
Specification of a table from which data is to be read. You can only specify tables
located in the same database.

Examples

The columns CUST_NUM from the CUSTOMERS table and ORDER_NUM from the
ORDERS table are selected on the basis of the Cartesian product of the CUSTOMERS and
ORDERS tables. The CUSTOMERS and ORDERS tables are renamed within the SELECT
expression by assigning correlation names. Every column specification within the SELECT
expression which references the CUSTOMERS or ORDERS table must then be qualified
with the correlation name. Correlation names can be used to qualify columns uniquely, to
abbreviate long table names or to specify the appropriate table name in SELECT
expressions. The columns A.CUST_NUM and B.ORDER_NUM are selected from the
Cartesian product of the CUSTOMERS and ORDERS tables.

SELECT A.cust_num, B.order_num FROM customers A, orders B

Derived table

cust_num order_num

100 200

100 210

100 211

etc. etc.

107 300

107 305

SELECT expression SELECT ... FROM

U22420-J-Z125-12-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

The table ORDSTAT is renamed as ORDERSTATUS and the columns ORD_STAT_NUM
and ORD_STAT_TEXT are selected using the new names ORDERSTATUSNUMBER and
ORDERSTATUSTEXT. If all columns are selected by specifying “*” in the SELECT list, it is
possible to assign new column names using “(column, ...)” in table_specification. Unlike the
AS clause in the SELECT list, it is not possible to rename individual columns. It is only
possible to rename all columns. The new names must be used in place of the old names in
the WHERE, GROUP BY and HAVING clauses in the SELECT list.

SELECT * FROM ordstat
AS orderstatus (orderstatusnumber, orderstatustext)

If a table is specified more than once in the FROM clause, as is the case when a table is
joined to itself, correlation names must be defined to allow unique identification of columns.
References in the SELECT list and in the WHERE, GROUP BY and HAVING clauses must
use these correlation names instead of the original table names.

SELECT A.cust_num, B.cust_num FROM customers A, customers B

SELECT ... WHERE SELECT expression

290 U22420-J-Z125-12-76

6.2.3 SELECT...WHERE - Select derived columns

You use the WHERE clause to specify a search condition for selecting the rows for the
derived table. The derived table contains only the rows that satisfy the search condition (i.e.
the search condition is true). Rows for which the search condition returns the value false or
unknown are not included in the derived table.

SELECT ...

WHERE search_condition

search_condition
Condition that the selected rows must satisfy.

Examples

The predicates are described in detail in chapter “Compound language constructs” on
page 133. Here, the most important types of search condition are illustrated using simple
examples.

Comparison with constants: =, <, <=, >, > =, <>

SELECT cust_num, company FROM customers WHERE zip = 81739

Comparison with string pattern: [NOT] LIKE

SELECT * FROM customers WHERE company LIKE 'Sie%'

Range query: [NOT] BETWEEN

SELECT cust_num, company FROM customers WHERE zip BETWEEN 80000 AND 89999

Comparison with NULL value: IS [NOT] NULL

SELECT service_num, order_num, service_text FROM service WHERE inv_num IS
NULL

Comparison with several values: [NOT] IN

SELECT cust_num, company FROM customers WHERE zip IN (81739, 80469)

SELECT expression SELECT ... WHERE

U22420-J-Z125-12-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

Inner SELECT statement: [NOT] EXISTS

SELECT company FROM customers
WHERE NOT EXISTS (SELECT * FROM orders WHERE customers.cust_num =
orders.cust_num)

Subquery (see section “Subquery” on page 310):

Subquery that returns a derived column: ALL, ANY, SOME, [NOT] IN

SELECT company FROM customers WHERE customers.cust_num =
SOME (SELECT cust_num FROM orders WHERE order_date = DATE '<date>')

Correlated subquery:

Select for each order, the service that is at least double the average service price for
this order:

SELECT s1.service_num, s1.order_num, s1.service_text FROM service s1
WHERE s1.service_total * s1.service_price > 2 *
(SELECT AVG (s2.service_total*s2.service_price) FROM service s2 WHERE
s2.order_num = s1.order_num)

Condition: AND, OR, NOT

SELECT service_num, order_num, service_date, service_text FROM service
WHERE service_text = 'Training' AND service_date > = DATE '<date>'

SELECT ... GROUP BY SELECT expression

292 U22420-J-Z125-12-76

6.2.4 SELECT...GROUP BY - Group derived rows

You use the GROUP BY clause to combine table rows into groups. Two rows belong to the
same group if, for each grouping column, the values in both rows are the same with regard
to the comparison rules (see section “Comparison of two rows” on page 216), or both
values are the NULL value.

The derived table contains a row for each group.

SELECT ...

GROUP BY column,...

column
Grouping column. column must be part of a table that was specified in the FROM clause.
Ambiguous column names must be qualified with the table name. If you declared a
correlation name for the table involved in the FROM clause, you must use this name to
qualify the column names.

Multiple columns cannot be used as the grouping column.

Effect of the GROUP BY clause

If you specify the GROUP BY clause, only columns listed in GROUP BY or which are
arguments in an aggregate function can be included in the SELECT list.

Aggregate functions for columns of a grouped table are evaluated for each group.

How are groups created?

● A group is a set of rows that all have the same values in each specified grouping column
according to the comparison rules.

● Rows that have the NULL value in the same column and the same values in the other
columns also constitute a group.

SELECT expression SELECT ... GROUP BY

U22420-J-Z125-12-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

Examples

List the average amount of VAT for each order number:

SELECT order_num, AVG(vat) FROM service GROUP BY order_num

The number of contacts is determined for all customers outside the USA and grouped by
customer number. If the GROUP BY clause is specified, only those columns may occur in
the select list which are specified in the GROUP BY clause or which are arguments of an
aggregate function. The derived table for the SELECT expression contains one row for
each group.

SELECT contacts.cust_num, COUNT(*) AS total FROM contacts, customers
WHERE contacts.cust_num = customers.cust_num AND customers.country
<>'USA'
GROUP BY contacts.cust_num

Derived table

When the SELECT expression is supplemented by the HAVING clause below (see the
next section), the derived table only contains the first row.

HAVING COUNT(*) > 1

cust_num number

100 2

101 1

102 1

103 1

104 1

105 1

order_num
200 0.14
211 0.06
250 0.07

SELECT ... HAVING SELECT expression

294 U22420-J-Z125-12-76

6.2.5 SELECT...HAVING - Select groups

You use the HAVING clause to specify search conditions for selecting groups. If a group
satisfies the specified search condition, the row for that group is included in the derived
table. If no GROUP BY clause is specified, all the rows are considered one group.

SELECT ...

HAVING search_condition

search_condition
Search condition to be satisfied by a group.

Unlike a WHERE search condition, which is evaluated for each row in a table, the
HAVING search condition is evaluated once for each group.

A column name in search_condition must satisfy one of the following conditions:

– The column is included in the GROUP BY clause.

– The column name is an argument of an aggregate function (AVG(), SUM(), ...). If
the column name also appears in the SELECT list, it may also only appear there as
the as an argument of an aggregate function.

– The column occurs in a subquery. If the column name references the table in the
FROM clause, it must be included in the GROUP BY clause or be the argument in
an aggregate function.

– The column is part of a table from a higher-level SELECT expression.

Example

Display the latest service provided for each order, but only if it was provided after the
specified date:

SELECT order_num, MAX(service_date) FROM service GROUP BY order_num
HAVING MAX(service_date) > DATE'<date>'

Query expression TABLE

U22420-J-Z125-12-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.3 TABLE - Table query

You use a table query to select all the columns of a table.

In order to read rows in the specified tables, you must either own these tables or have
SELECT permission.

TABLE table

table
Name of the table (base table or view) all of whose columns are selected. The
sequence, names and attributes (data type, length, precision, decimal places) of the
columns of table are accepted.

The query expression TABLE table corresponds to the SELECT expression (SELECT
* FROM table) (see section “SELECT expression” on page 282).

Example

Display all columns in the SERVICE table:

 TABLE service

Joins Query expression

296 U22420-J-Z125-12-76

6.4 Joins

A join links the data from two or more tables. A table can also be joined to itself.

Which records of the tables involved are included in the derived table depends on the join
type and any join conditions that exist.

There are two ways of creating a join:

● with a join expression

● without a join expression: in a SELECT expression or SELECT statement using the
FROM clause and, if necessary, the WHERE clause.

Joins Join expression

U22420-J-Z125-12-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.4.1 Join expression

A join expression consists of the tables to be joined, the desired join operation and possibly
a join condition.

A join expression can be specified

● as a query expression in an SQL statement

● in the FROM clause of a SELECT expression or SELECT statement

● in a subquery in the SELECT list and HAVING clause

The derived table of a join expression cannot be updated.

join_expression ::=

table_specification
Specification of a table from which data is to be read (see section “Table specifications”
on page 279).

CROSS
CROSS operator for forming a cross join. A cross join corresponds to the Cartesian
product of the tables involved (see section “Cross joins” on page 299).

INNER
INNER operator for creating an inner join. In an inner join, the derived table only
contains the rows that satisfy the join condition (see section “Inner joins” on page 301).

table_spec CROSS JOIN table_spec

table_spec[] JOIN table_spec ON search_condition

table_spec UNION JOIN table_spec

(join_expression)

INNER

[OUTER]
LEFT
RIGHT
FULL

Join expression Joins

298 U22420-J-Z125-12-76

LEFT, RIGHT, FULL
Operators for creating an outer join. A table that is part of an outer join cannot include
multiple columns.

In an outer join, the type of outer join defines the dominant table(s) (see section “Outer
joins” on page 303).

If a row in the dominant table does not satisfy the join condition, the row is nevertheless
included in the derived table. The derived column that references the other table is set
to NULL values.

LEFT The table to the left of the LEFT operator is the dominant table.

RIGHT The table to the right of the RIGHT operator is the dominant table.

FULL The table to the left and the right of the FULL operator are both dominant
tables. FULL joins the tables created with LEFT and RIGHT.

search_condition
Search condition to be used as the join condition for joining the specified tables.

The following applies to any column specified in search_condition:

The column must either be part of one of the tables to be joined or, in the case of
subqueries, part of one of the tables from a higher-level SELECT expression.

If an aggregate function occurs in search_condition, one of the following conditions must
be satisfied:

– The aggregate function is part of a subquery.
– The join expression is in a SELECT list or HAVING clause, and the column specified

in the argument of the aggregate function is an external reference.

UNION
UNION operator for forming a union join. A table that is part of a union join cannot
contain any multiple columns.

The derived table of a union join contains both the records of the table to the left of the
UNION operator and the records of the table to the right of the UNION operator,
including in each case the columns of the other table set to NULL values (see section
“Union joins” on page 304).

join_expression
Nested join expression for creating a join from more than two tables.

Joins Join types

U22420-J-Z125-12-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.4.2 Joins without join expression

In SESAM/SQL, an inner join or a cross join can also be created without a join expression.
The tables to be joined are listed in the FROM clause of a SELECT expression, and the join
search condition is formulated in the corresponding WHERE clause.

SELECT ...
FROM table_specification, table_specification[,...] WHERE search_condition_with_join_column

Example

Select customer names and the associated order numbers from the CUSTOMERS and
ORDERS tables:

 SELECT company, order_num FROM customers, orders
WHERE customers.cust_num= orders.cust_num

6.4.3 Join types

SESAM/SQL supports cross joins, inner joins, outer joins and union joins. These are
explained below and illustrated using examples.

6.4.3.1 Cross joins

The derived table of a cross join is the Cartesian product of the tables involved. Each record
in the table to the left of the CROSS operator is linked to each record in the table to the right
of the CROSS operator.

Example

Form the Cartesian product of the CUSTOMERS and ORDERS tables:

SELECT * or SELECT *

FROM customers,
orders

FROM customers CROSS JOIN
orders

Join types Joins

300 U22420-J-Z125-12-76

Cartesian product of the CUSTOMERS and ORDERS tables

ORDERS table

order_
num

cust_
num

...

200 102

210 106

211 106

... ...

300 101

305 105

CUSTOMERS table

cust_num company ...

100 Siemens AG

101 Login GmbH

102 JIKO GmbH

... ...

106 Foreign Ltd.

107 Externa & Co KG

Derived table

cust_
num

company ... order_
num

cust_
num

...

100 Siemens AG 200 102

101 Login GmbH 200 102

102 JIKO GmbH 200 102

...

106 Foreign Ltd. 200 102

107 Externa & Co KG 200 102

100 Siemens AG 210 106

101 Login GmbH 210 106

102 JIKO GmbH 210 106

...

106 Foreign Ltd. 210 106

107 Externa & Co KG 210 106

...

100 Siemens AG 305 105

101 Login GmbH 305 105

102 JIKO GmbH 305 105

...

106 Foreign Ltd. 305 105

107 Externa & Co KG 305 105

Joins Join types

U22420-J-Z125-12-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.4.3.2 Inner joins

In an inner join, the derived tables contain only rows that satisfy the join condition.

Simple inner joins

A simple inner join selects rows from the Cartesian product of two tables.

Example

Select customer names and the associated order numbers from the CUSTOMERS and
ORDERS tables:

Customers who have not placed an order, e.g. Freddy’s Fishery with the customer
number 104, are not included in the derived table.

SELECT company, order_num or SELECT company, order_num

FROM customers, orders FROM customers JOIN orders

WHERE customers.cust_num=
orders.cust_num

ON customers.cust_num=
orders.cust_num

company order_num
Login GmbH 300
JIKO GmbH 200
The Poodle Parlor 250
The Poodle Parlor 251
The Poodle Parlor 305
Foreign Ltd. 210
Foreign Ltd. 211

Join types Joins

302 U22420-J-Z125-12-76

Example

Select the service associated with each order.

 SELECT o.order_num, o.order_text, o.order_stat, s.service_num,
s.service_text FROM orders o

INNER JOIN service s ON o.order_num = s.order_num

Multiple inner joins

A multiple inner join selects columns from the Cartesian product of more than two tables.

Example

Select the service provided for each customer who has placed an order from the
CUSTOMERS, ORDERS and SERVICE:

SELECT c.company, o.order_num,
s.service_num

or SELECT c.company, o.order_num,
s.service_num

FROM customers c, orders o,
service s

FROM customers c JOIN orders o

WHERE c.cust_num=o.cust_num ON c.cust_num=o.cust_num

AND o.order_num=s.order_num JOIN service s ON
o.order_num=s.order_num

order_ order_ order_ service_ service_
num text stat num text
200 Staff training 5 1 Training

documentation
200 Staff training 5 2 Training
200 Staff training 5 3 Training
211 Database design customers 4 4 Systems analysis
211 Database design customers 4 5 Database design
211 Database design customers 4 6 Copies/

transparencies
211 Database design customers 4 7 Manual
250 Mailmerge intro 2 10 Travel expenses
250 Mailmerge intro 2 11 Training

Joins Join types

U22420-J-Z125-12-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.4.3.3 Outer joins

Another type of join is the outer join. It is created by using the keyword LEFT, RIGHT or
FULL in the join expression. Unlike an inner join, the following applies to an outer join:

There are one (LEFT, RIGHT) or two (FULL) dominant tables. If a row in a dominant table
does not satisfy the join condition, the row is nevertheless included in the derived table. The
derived column that references the other table is set to NULL values.

Example

As in the first join example, select customer names and the associated order numbers from
the CUSTOMERS and ORDERS tables. In this case, however, list all customers, even
those who have not yet placed an order. To do this, you create the following outer join:

SELECT company, order_num FROM customers
LEFT OUTER JOIN orders ON customers.cust_num=orders.cust_num

Customers who have not placed an order, like Freddy’s Fishery with the customer
number 104, are now included in the derived table. The NULL value is entered for the
missing order number.

company order_num service_num
JIKO GmbH 200 1
JIKO GmbH 200 2
JIKO GmbH 200 3
Foreign Ltd. 211 4
Foreign Ltd. 211 5
Foreign Ltd. 211 6
Foreign Ltd. 211 7
The Poodle Parlor 250 10
The Poodle Parlor 250 11

company order_num
Siemens AG
Login GmbH 300
JIKO GmbH 200
Plenzer Trading
Freddy’s Fishery
The Poodle Parlor 250
The Poodle Parlor 251
The Poodle Parlor 305
Foreign Ltd. 210
Foreign Ltd. 211
Externa & Co KG

Join types Joins

304 U22420-J-Z125-12-76

6.4.3.4 Union joins

Another type of join is the union join. The derived table of a union join is formed as follows:

● The table to the left of the UNION operator is extended on the right by having the
columns of the other table added to it. The added columns are set to the NULL value.

● The table to the right of the UNION operator is extended on the left by having the
columns of the other table added to it. The added columns are set to the NULL value.

● The derived table represents the set union of the two extended tables.

Example

Link the ITEMS and PURPOSE tables by means of a union join.

SELECT items.item_num, items.item_name, purpose. *
FROM items UNION JOIN purpose

item_num item_name item_num part number
1 Bicycle
2 Bicycle
10 Frame
11 Frame
120 Front wheel
130 Back wheel
200 Handlebars
...
501 Nut M5
 1 10 1
 1 120 1
 1 130 1
 1 200 1
 120 210 1
 ...
 200 501 10

Joins Join types

U22420-J-Z125-12-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.4.3.5 Compound joins

If you join more than two tables, you can nest several join expressions.

This allows you to combine inner and outer joins in a single SQL statement.

Examples

The following three examples select the customer number, order number and service
number from the CUSTOMERS, ORDERS and SERVICE tables. The results depend on
the joins used.

1. Take into account only those customers for whom orders with associated services exist.

SELECT c.cust_num, o.order_num, s.service_num
FROM (customers c INNER JOIN orders o ON c.cust_num = o.cust_num)
INNER JOIN service s ON o.order_num = s.order_num
WHERE c.cust_num BETWEEN 100 AND 107

cust_num order_num service_num
102 200 1
102 200 2
102 200 3
105 250 10
105 250 11
106 211 4
106 211 5
106 211 6
106 211 7

Join types Joins

306 U22420-J-Z125-12-76

2. Take into account all the customers from the CUSTOMERS table for whom orders exist,
regardless of whether these orders have services associated with them. The join
expression enclosed in parentheses is the dominant table for the outer join. The NULL
value is entered for missing service numbers.

SELECT c.cust_num, o.order_num, s.service_num
FROM (customers c INNER JOIN orders o ON c.cust_num = o.cust_num)
LEFT OUTER JOIN service s ON o.order_num = s.order_num
WHERE c.cust_num BETWEEN 100 AND 107

cust_num order_num service_num
101 300
102 200 1
102 200 2
102 200 3
105 250 10
105 250 11
105 251
105 305
106 210
106 211 4
106 211 5
106 211 6
106 211 7

Joins Join types

U22420-J-Z125-12-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

3. Take into account all the customers in the CUSTOMERS table, regardless of whether
they have placed orders or not. Orders are included in the derived table even if they are
not yet associated with a service.

SELECT c.cust_num, o.order_num, s.service_num
FROM (customers c LEFT OUTER JOIN orders o ON c.cust_num = o.cust_num)
LEFT OUTER JOIN service s ON o.order_num = s.order_num
WHERE c.cust_num BETWEEN 100 AND 107

CUSTOMERS is the dominant table in the outer join that is enclosed in parentheses.
The expression in parentheses is the dominant table of the outermost outer join. The
NULL value is entered for missing item and service numbers.

cust_num order_num service_num
100
101 300
102 200 1
102 200 2
102 200 3
103
104
105 250 10
105 250 11
105 251
105 305
106 211 4
106 211 5
106 211 6
106 211 7
106 210
107

Join types Joins

308 U22420-J-Z125-12-76

The following three examples refer to the CUSTOMERS and ORDERS tables. In order to
better illustrate the possibilities of an outer join, orders without customers are also
permitted. This means that the foreign key definition for the ORDERS table is ignored here.
We shall assume that an order with the number 400 is in the ORDERS table and is not yet
associated with a customer.

4. Select customer names and the associated order numbers from the CUSTOMERS and
ORDERS tables and include customers who have not currently placed an order.

SELECT customers.company, orders.order_num FROM customers
LEFT OUTER JOIN orders ON customers.cust_num=orders.cust_num

Customers who have not placed an order, like Freddy’s Fishery with the customer
number 104, are included in the derived table. The NULL value is entered for the
missing order number.

 company order_num
 Siemens AG
 Login GmbH 300
 JIKO Gmbh 200
 Plenzer Trading
 Freddy’s Fishery
 The Poodle Parlor 250
 The Poodle Parlor 251
 The Poodle Parlor 305
 Foreign Ltd. 210
 Foreign Ltd. 211
 Externa & Co KG

Joins Join types

U22420-J-Z125-12-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

5. Select customer names and order numbers from the CUSTOMERS and ORDERS
tables and include orders that are not associated with a customer.

SELECT customers.company, orders.order_num FROM customers
RIGHT OUTER JOIN orders ON customers.cust_num=orders.cust_num

The order number 400 is also included in the derived table. The NULL value is entered
for the missing customer name.

6. Select customer names and the associated order numbers from the CUSTOMERS and
ORDERS tables while taking customers without orders and orders without customers
into account.

SELECT customers.company, orders.order_num FROM customers
FULL OUTER JOIN orders ON customers.cust_num=orders.cust_num

A fictitious order with the order number 400, which is not yet associated with a
customer, is also included in the derived tables, as is the customer Freddy’s Fishery
who has not currently placed an order. NULL values are entered in place of the missing
column values.

 company order_num
 JIKO Gmbh 200
 Foreign Ltd. 210
 Foreign Ltd. 211
 The Poodle Parlor 250
 The Poodle Parlor 251
 Login GmbH 300
 The Poodle Parlor 305
 400

 company order_num
Siemens AG
Login GmbH 300
JIKO Gmbh 200
Plenzer Trading
Freddy’s Fishery
The Poodle Parlor 250
The Poodle Parlor 251
The Poodle Parlor 305
Foreign Ltd. 210
Foreign Ltd. 211
Externa & Co KG

400

Subquery Query expression

310 U22420-J-Z125-12-76

6.5 Subquery

A subquery is a query expression that can be used in

● As an expression:
The subquery must return a single-column derived table with a maximum of one row.
The value of the subquery is then the value in the derived table or the NULL value if the
derived table is empty.

● predicates:
In the predicates ANY, SOME, ALL, IN and EXISTS the subquery returns a derived
table.

● In the FROM clause of SELECT expressions:
The subquery returns a derived table.

● In join expressions:
The subquery returns a derived table.

A subquery is always enclosed in parentheses.

subquery ::= (query_expression)

query_expression
Query expression that returns the derived table.

In subqueries that are not specified in the predicate EXISTS or in a FROM clause,
the derived table can only contain an atomic column or multiple columns with the
dimension 1.

Query expression Subquery

U22420-J-Z125-12-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.5.1 Correlated subqueries

In a nested query expression, an inner subquery is called a correlated subquery if it
references columns of an outer table, i.e. a table that is used in one of the outer query
expressions.

You can use correlated subqueries to determine the relationships between the values in a
column.

Example

In a personnel table with a column for the age of each person, you can determine which
people are exactly the average age (see example below).

Uncorrelated subqueries only need be evaluated once. Correlated subqueries must be
evaluated several times for the various rows of the outer table. If the subquery is nested,
the innermost subquery is evaluated first, etc.

Examples

The following query is a correlated subquery:

SELECT DISTINCT order_text FROM orders WHERE EXISTS
(SELECT * FROM service WHERE service.order_num = orders.order_num)

The inner subquery in the WHERE clause references the column ORDER_NUM in the
ORDERS table of the outer query. ORDERS.ORDER_NUM is also known as an outer
reference, since the column references a table in the outer query. The query is
evaluated by determining the value of ORDERS.ORDER_NUM in the first row of the
ORDERS table, evaluating the subquery on the basis of this value and using this result
in the outer query. This is then repeated for the second value of
ORDERS.ORDER_NUM and so on. The query returns a derived table:

order_text

Staff training

Database draft customers

Instruction concerning mail merge

Subquery Query expression

312 U22420-J-Z125-12-76

For each order in the SERVICE table, you want to select the services whose price is above
the average service price for this order:

SELECT s1.service_num, s1.order_num, s1.service_total*s1.service_price
FROM service s1
WHERE s1.service_total*s1.service_price >
(SELECT AVG (s2.service_total*s2.service_price) FROM service s2 WHERE
s1.order_num=s2.order_num)

Query expressions can be nested to any depth:

SELECT company, cust_num FROM customers WHERE cust_num IN

(SELECT cust_num FROM orders WHERE order_num IN

(SELECT order_num FROM service WHERE (service_price*service_total)
IN

 (SELECT MAX(service_price*service_total) FROM service)))

Since these are not correlated subqueries, each subquery is evaluated once and the
result is then used in the outer query.

Derived table

company cust_num

Foreign Ltd. 106

Query expression UNION

U22420-J-Z125-12-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.6 Combining query expressions with UNION

query_expression ::= [UNION [] query_expression]

select_expression
SELECT expression (see section “SELECT expression” on page 282)

TABLE table
Table query, see section “TABLE - Table query” on page 295.

join_expression
Join expression (see section “Join expression” on page 297)

(query_expression)
Subquery, see section “Subquery” on page 310.

UNION
The UNION clause combines two query expressions. The derived table contains all the
rows that occur in the first or second derived table. You can combine more than two
derived tables if you use the UNION clause several times.

If you want to combine query expressions with UNION, the following conditions must be
met:

– The derived tables of both UNION operands must have the same number of
columns and the data types of corresponding columns must be compatible (see
section “Compatibility between data types” on page 99). The data type of a derived
column is determined by applying the rules described in the “Data type of the
derived column for UNION” on page 314.

– If the corresponding columns in both source tables have the same names, the
derived column is given this name. Otherwise, the name of the derived column is
undefined.

– Only atomic columns may be selected.

Query expressions combined with the UNION clause cannot be updated.

ALL
Duplicate rows in the derived table are retained.

DISTINCT
Duplicate rows are removed. If you do not specify ALL or DISTINCT, the default value
is DISTINCT.

select_expression
TABLE table
join_expression
(query_expression)

ALL
DISTINCT

UNION Query expression

314 U22420-J-Z125-12-76

i In contrast to the SELECT expression, the default value for UNION is DISTINCT.
As it can be complicated to remove duplicate rows, the setting ALL is recommended
for UNION if the application can dispense with removing duplicate rows.

Data type of the derived column for UNION

If two query expressions are combined with UNION, the data type of the derived column is
determined by applying the following rules:

● Both source columns are of the type NCHAR:
The derived column is of the type NCHAR with the longer of the two lengths.

● One source column is of the type VARCHAR and the other source column is of the type
CHAR or VARCHAR:
The derived column is of the type NVARCHAR with the greater length or greater
maximum length.

● Both source columns are of the type NCHAR:
The derived column is of the type NCHAR with the longer of the two lengths.

● One source column is of the type NVARCHAR and the other source column is of the
type NCHAR or NVARCHAR:
The derived column is of the type NVARCHAR with the greater length or greater
maximum length.

● Both source columns are an integer or fixed-point type (INT, SMALLINT, NUMERIC,
DEC):
The derived column is of type integer or fixed-point.
– The number of digits to the right of the decimal point is the greater of the two values

of the source columns.
– The total number of significant digits is the greater of the two values plus the greater

of the two values for the number of digits after the decimal point of the source
column with a maximum number of 31 digits.

● One source column is of a floating-point type (REAL, DOUBLE, FLOAT), the other is of
any numeric data type:
The derived column is of the type DOUBLE PRECISION.

● Both source columns have a date and time data type:
Both columns must have the same date and time data type and the derived column also
has this data type.

Query expression UNION

U22420-J-Z125-12-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

Examples

Determine all order numbers whose associated order value is at least 10,000 euros or
whose target date is before the specified date.

SELECT order_num FROM service GROUP BY order_num
HAVING SUM(service_total * service_price * (1 + vat)) > = 10000.00
UNION DISTINCT
SELECT order_num FROM orders WHERE target <= DATE '<date>'

The names of those companies are to be determined for which order documentation has
already been archived or services have already been provided prior to the specified date:

SELECT c.company FROM customers c, orders o WHERE c.cust_num = o.cust_num
AND o.order_num IN
(SELECT o.order_num FROM orders o WHERE o.order_status > 4

UNION
SELECT DISTINCT s.order_num FROM service s

WHERE s.service_date < DATE'<date>')

The UNION expression in the subquery produces a derived table containing the order
numbers 200 and 211. The derived table is thus:

company

JIKO GmbH

Foreign Ltd

EXCEPT Query expression

316 U22420-J-Z125-12-76

6.7 Combining query expressions with EXCEPT

query_expression ::= [EXCEPT [DISTINCT] query_expression]

select_expression
SELECT expression (see section “SELECT expression” on page 282)

TABLE table
Table query, see section “TABLE - Table query” on page 295.

join_expression
Join expression (see section “Join expression” on page 297)

(query_expression)
Subquery, see section “Subquery” on page 310.

EXCEPT
The EXCEPT operation is similar to the difference between two sets in set theory. The
derived table contains all rows from the first table which do not exist in the second table.

If you want to combine query expressions with EXCEPT, the following conditions must
be met:

– The derived tables of both EXCEPT operands must have the same number of
columns.

– The data types of the corresponding columns must be compatible (see section
“Compatibility between data types” on page 99).
The data type of a derived column is determined by applying the rules described in
the “Data type of the derived column for EXCEPT” on page 317.

DISTINCT
Duplicate rows are removed from the derived table. DISTINCT is the default value.

select_expression
TABLE table
join_expression
(query_expression)

Query expression EXCEPT

U22420-J-Z125-12-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

Data type of the derived column for EXCEPT

If two query expressions are combined with EXCEPT, the data type of the derived column
is determined by applying the following rules (as with UNION).

● Both source columns are of the type NCHAR:
The derived column is of the type NCHAR with the longer of the two lengths.

● One source column is of the type VARCHAR and the other source column is of the type
CHAR or VARCHAR:
The derived column is of the type NVARCHAR with the greater length or greater
maximum length.

● Both source columns are of the type NCHAR:
The derived column is of the type NCHAR with the longer of the two lengths.

● One source column is of the type NVARCHAR and the other source column is of the
type NCHAR or NVARCHAR:
The derived column is of the type NVARCHAR with the greater length or greater
maximum length.

● Both source columns are an integer or fixed-point type (INT, SMALLINT, NUMERIC,
DEC):
The derived column is of type integer or fixed-point.
– The number of digits to the right of the decimal point is the greater of the two values

of the source columns.
– The total number of significant digits is the greater of the two values plus the greater

of the two values for the number of digits after the decimal point of the source
column with a maximum number of 31 digits.

● One source column is of a floating-point type (REAL, DOUBLE, FLOAT), the other is of
any numeric data type:
The derived column is of the type DOUBLE PRECISION.

● Both source columns have a date and time data type:
Both columns must have the same date and time data type and the derived column also
has this data type.

Example

Determine all customer numbers from which orders are currently planned or agreed
contractually.

SELECT cust_num FROM customers
EXCEPT DISTINCT
SELECT cust_num FROM orders WHERE order_stat < 3

Updatability of query expressions Query expression

318 U22420-J-Z125-12-76

6.8 Updatability of query expressions

The following is defined regarding the updatability of query expressions:

● Whether a view can be updated

● Whether a base table or updatable view can be updated via a cursor

A base table is updatable.
A table function returns an unchangeable (“read-only”) table.

6.8.1 Rules for updatable query expressions

A query expression is updatable if the following conditions are fulfilled:

● The query expression does not contain a join expression.

● The query expression does not contain a UNION or EXCEPT operation.

● Only column names can be specified in the SELECT list. Other elements of an
expression, e.g. subqueries, function calls or literals, are not permitted. Atomic columns
cannot be specified more than once. Subareas from multiple columns cannot overlap.

● Only a table or updatable subquery can be specified in the FROM clause. If a table is
specified, it must be a base table or an updatable view.

● No subquery can occur in the WHERE clause.

● The keyword DISTINCT cannot be specified.

● The SELECT expression cannot include a GROUP BY or HAVING clause.

6.8.2 Updatable view

A view is updatable if the query expression with which the view was defined is updatable.
An updatable view can be specified in INSERT, MERGE, UPDATE and DELETE.

Query expression Updatability of query expressions

U22420-J-Z125-12-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
6

6.8.3 Update via cursor

A table can be updated via a cursor if the cursor description is updatable, i.e. the underlying
query expression is updatable and no ORDER BY clause is specified. In addition, no
SCROLL clause or FOR READ ONLY clause can be specified in the cursor declaration.

Use DELETE...WHERE CURRENT OF to delete rows in the updatable table via the cursor.

Use UPDATE...WHERE CURRENT OF to update rows in the updatable table via the cursor.

Updatability of query expressions Query expression

320 U22420-J-Z125-12-76

U22420-J-Z125-12-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

7 Routines

SESAM/SQL distinguishes between the following routines:

● Procedures (Stored Procedure)

● User Defined Functions (UDFs).

i In SESAM/SQL, the generic term routine is used for procedures and User Defined
Functions (UDFs) if the information applies both for procedures and for UDFs.

The generic term “SQL-invoked routine” from the SQL standard is not used in
SESAM/SQL.

This chapter first describes common features and differences between procedures and
UDFs.

It then includes a number of sections providing detailed descriptions of Procedures (Stored
Procedures) and User Defined Functions (UDFs).

These are followed by information on the topics in which procedures and UDFs do not differ
or differ only slightly:

● EXECUTE privilege for routines

● Information on routines

● Pragmas in routines

● Control statements in routines

● COMPOUND statement in routines

● Diagnostic information in routines

Routines

322 U22420-J-Z125-12-76

Common features of routines

A routine is used to store and manage sequences of SQL statements in the database which
can be executed later with a single call. A routine is comparable to a subroutine which runs
entirely in the DBH, in other words without exchanging data with the application program.

In contrast to a subroutine (in ESQL-COBOL), a routine can be used on different clients with
different programming languages (e.g. via JDBC).

All database accesses can be centralized and controlled using routines. Individual SQL
statements can also be activated in this way. They can then also be integrated into other
routines and SQL statements according to the “modular design principle”.

Routines can also be used to facilitate writing.

The application programmer needs no knowledge of the structure of the database. The
routine can be created by a database specialist, who (except for SQL) requires no
programming knowledge.

Changes to the database structure do not necessarily affect the application programs. It
may be sufficient to modify routines. Recompiling and relinking programs is unnecessary in
such cases.

For safety's sake, only the EXECUTE privilege is required to execute the routine
concerned. Global table and column privileges are no longer required.

Routines are stored directly in the database (with a complete audit trail). Separate
management to manage routines outside the database is not required.

Differences between procedures and User Defined Functions

Procedures and UDFs have an identical range of functions. However, in UDFs of
SESAM/SQL, SQL statements are not permitted for modifying data.

Procedures and UDFs also differ in how they are called and in their return information:

● Procedures are called using the SQL statement CALL.
They have any number of output parameters but no return value.

● UDFs are called by means of their function call in an expression.
They have precisely one return value.

UDFs can be called in views. Procedures cannot.

Routines Procedures (Stored Procedures)

U22420-J-Z125-12-76 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

7.1 Procedures (Stored Procedures)

In SESAM/SQL the term procedure is used to refer to a "Stored Procedure".

7.1.1 Creating a procedure

A procedure is created using the SQL statement CREATE PROCEDURE, see page 416.
A procedure can also be created using the SQL statement CREATE SCHEMA, see
page 420.

Procedures can be defined with input, input/output, and output parameters.

i Recommendation
Parameter names should differ from column names (e.g. by assigning a prefix such
as par_).

When a procedure is created, the current authorization identifier must have the EXECUTE
privilege for the routines called directly in the procedure. It must also, for all tables and
columns which are addressed in the procedure, have the privileges which are required to
execute the DML statements contained in the procedure.

The procedure text in SESAM/SQL is written entirely in the SQL programming language.
The following SQL statements for data searching and data manipulation are permitted in
procedures, see section “CREATE PROCEDURE - Create procedure” on page 416:

SQL statement
without a cursor

Function in the procedure see

SELECT Reads a single row page 555

INSERT Insert rows in a table page 506

UPDATE Changes the columns of the rows in a table
which satisfy a particular search condition

page 577

DELETE Deletes the rows in a table
which satisfy a particular search condition

page 453

MERGE Depending on a particular condition, changes
rows in a table or enters rows in a table

page 518

SQL statement
with a cursor

Function in the procedure see

OPEN Opens a local cursor page 524

FETCH Positions a local cursor and, if necessary, reads the current row page 481

Table 25: SQL statements for data manipulation in procedures (part 1 of 2)

Procedures (Stored Procedures) Routines

324 U22420-J-Z125-12-76

In addition to the SQL statements mentioned above, a procedure can also contain control
statements (see section “Control statements in routines” on page 342) and diagnostic
statements (see section “Diagnostic information in routines” on page 344).

A procedure may not contain any dynamic SQL statements or cursor descriptions, see
section “Dynamic SQL” on page 32.

The current authorization identifier automatically obtains the EXECUTE privilege for the
procedure created. If it even has authorization to pass on the relevant privileges, it may also
pass on the EXECUTE privilege to other authorization identifiers.

An SQL statement in a procedure may access the parameters of the procedure and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

comments

Descriptive comments (see page 52) can be inserted in a procedure as required.

UPDATE Changes the columns of the row in a table
to which the cursor is positioned

page 577

DELETE Deletes the row in a table to which the cursor is positioned page 453

CLOSE Closes a local cursor page 395

Table 25: SQL statements for data manipulation in procedures (part 2 of 2)

Routines Procedures (Stored Procedures)

U22420-J-Z125-12-76 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

7.1.2 Execute a procedure

A procedure is executed using the SQL statement CALL, see page 388. A procedure can
also be called using a dynamic CALL statement.

When a procedure expects input parameters, the corresponding values (arguments) must
be transferred to the procedure in the CALL statement.

Output values of procedures which are called outside a routine care stored in
corresponding host variables or in the SQL descriptor area. Output values of procedures
which are called in a higher-level routine are entered in output parameters or in local
variables of the higher-ranking procedure.

In order to execute a procedure, the current authorization identifier requires the EXECUTE
privilege for the procedure to be executed, but not the privileges which are required to
execute the DML statements contained in the procedure. In addition, the SELECT
privileges for the tables which are addressed in the routine’s call parameters by means of
subqueries are required.

7.1.3 Delete a procedure

A procedure is deleted using the SQL statement DROP PROCEDURE, see page 462.

Procedures (Stored Procedures) Routines

326 U22420-J-Z125-12-76

7.1.4 Examples of procedures

Example 1: Access check

The CUSTOMERS_LOGIN procedure below implements a simple form of access check for
customers. It belongs to the sample procedures in the demonstration database of
SESAM/SQL (see the “Core manual”).

i In the demonstration database you will find further, detailed examples of sample
procedures embedded in an order system.

 The CUSTOMERS_LOGIN procedure uses only the CONTACTS table from the
demonstration database. A check is made to see whether the customer is already
stored in the table.

* Define CUSTOMERS_LOGIN procedure

SQL CREATE PROCEDURE CUSTOMERS_LOGIN —————————————————————————————————— (1)
(-
 IN PAR_CUST_NUM INTEGER, —————————————————————————————————————— (2)
 IN PAR_CONTACT_NUM INTEGER,
 OUT PAR_STATUS CHAR(40),
 OUT PAR_TITLE CHAR(20),
 OUT PAR_LNAME CHAR(25)
)
READS SQL DATA —— (3)
BEGIN ——— (4)
 /* Variables definition */ ————————————————————————————————————— (5)
 DECLARE VAR_EOD SMALLINT DEFAULT 0;
 /* Handler definition */ ————————————————————————————————————— (6)
 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET VAR_EOD = 1; —— (7)
 /* Statements */ —————————————————————————————————————— (8)
 SET PAR_TITLE = ' ';
 SET PAR_LNAME = ' ';
 /* Check whether customer is already known */
 SELECT TITLE, LNAME INTO PAR_TITLE, PAR_LNAME
 FROM CONTACTS
 WHERE CONTACT_NUM = PAR_CONTACT_NUM
 AND CUST_NUM = PAR_CUST_NUM;
 IF VAR_EOD = 1 THEN —— (9)
 SET PAR_STATUS = 'Customer unknown';
 ELSE
 SET PAR_STATUS = 'Login successful';
 END IF;
END ——— (10)

Routines Procedures (Stored Procedures)

U22420-J-Z125-12-76 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

(1) Procedure header with details of the procedure name (the database and schema
names are predefined).

(2) List of the procedure parameters.

(3) The procedure can contain SQL statements for reading data, but no SQL
statements for updating data.

(4) The (only) procedure statement is a (non-atomic) COMPOUND statement. This
executes further procedure statements in a common context.

(5) Definition of local procedure variables.

(6) Definition of exception handling in accordance with the SQLSTATE.
In this case the procedure is continued if an SQLSTATE of class 02xxx (no data)
occurs.

(7) In the event of an exception, the local variable VAR_EOD is set.

(8) The procedure statements will follow.

(9) The procedure's output fields are supplied with values in accordance with the result
of the query statement.

(10) End of the COMPOUND statement and procedure.

Procedures (Stored Procedures) Routines

328 U22420-J-Z125-12-76

Example 2: Complex COMPOUND statement

The MyTables procedure below consists of a complex COMPOUND statement and shows
the various methods of exception handling. In the central base table mySchema.myTabs it
stores the names of the tables which the current authorization identifier may access.

The input parameter par_type specifies whether base tables or views must taken into
account. In the case of par_type='B' the names of the base tables are stored, and in the
case of par_type='V' the names of the views. The following output parameters are
returned:

par_nbr_tables
Total number of table names of the table type concerned (base table or view) which is
stored for the current user

par_nbr_new_tables
Number of table names stored in addition for the current user by the procedure call

par_message
Message text (OK or error message)

-- Procedure header
CREATE PROCEDURE ProcSchema.MyTables
 (IN par_type CHAR(1), OUT par_message CHAR(80),
 OUT par_nbr_tables INTEGER, OUT par_nbr_new_tables INTEGER)
 MODIFIES SQL DATA

-- Procedure body, COMPOUND statement, declaration section
myTab: BEGIN ATOMIC
 DECLARE var_table_type CHAR(18);
 DECLARE var_schema_name,var_table_name CHAR(31);
 DECLARE var_eot SMALLINT DEFAULT 0;
 DECLARE var_nbr_old_tables INTEGER DEFAULT 0;
 DECLARE myCursor CURSOR FOR
 SELECT table_schema, table_name
 FROM information_schema.tables
 WHERE table_type = var_table_type;

-- Error routines
 DECLARE EXIT HANDLER FOR SQLSTATE '42SND'
 SET par_message = 'catalog ' || CURRENT_REFERENCED_CATALOG
 || ' not accessible';

 DECLARE CONTINUE HANDLER FOR SQLSTATE '23SA5'
 -- Primary key not unique
 SET var_nbr_old_tables = var_nbr_old_tables + 1;

Routines Procedures (Stored Procedures)

U22420-J-Z125-12-76 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

 DECLARE EXIT HANDLER FOR SQLSTATE '42SQK'
 SET par_message = 'table MyTabs not accessible';

 DECLARE UNDO HANDLER FOR SQLEXCEPTION
 BEGIN -- COMPOUND statement
 SET par_message = 'unexpected error';
 SET par_nbr_tables = 0;
 SET par_nbr_new_tables = 0;
 END;

 DECLARE CONTINUE HANDLER FOR SQLWARNING
 SET par_message = 'warning ignored';

 DECLARE CONTINUE HANDLER FOR NOT FOUND
 SET var_eot = 1;

-- Set initial values
 SET par_message = 'OK';
 SET par_nbr_tables = 0;
 SET par_nbr_new_tables = 0;
 IF par_type = 'V' THEN SET var_table_type = 'VIEW';
 ELSEIF par_type = 'B' THEN SET var_table_type = 'BASE TABLE';
 ELSE SET par_message = 'wrong input parameter par_type';
 LEAVE myTab;
 END IF;

-- Procedure statements

 OPEN myCursor;
 loop1: LOOP
 FETCH myCursor INTO var_schema_name, var_table_name;
 IF var_eot = 1 -- Set by error handler for error class 'not found'
 THEN LEAVE loop1; -- End of tables reached
 END IF;

 INSERT INTO mySchema.myTabs VALUES
 (var_schema_name, var_table_name, var_table_type,
 current_user, current_date);
 SET par_nbr_tables = par_nbr_tables + 1;
 END LOOP loop1;

 CLOSE myCursor;
 SET par_nbr_new_tables = par_nbr_tables - var_nbr_old_tables;
 -- var_nbr_old_tables set by error handler for SQLSTATE '23SA5'
END myTab

Procedures (Stored Procedures) Routines

330 U22420-J-Z125-12-76

Example 3: Different CALLs

The min_service_price procedure returns the lowest service record for this order on the
basis of the order number transferred.
If the NULL value was transferred as the order number, the value -999 is returned as the
service record.
If the order number exists but the service record is not significant in any of the rows
concerned, the NULL value is returned.
If the order number does not exist, the CALL statement is terminated with SQLSTATE ("no
data").

-- Procedure header
 CREATE PROCEDURE min_service_price
 (IN in_anr CHAR(8), OUT out_service_price NUMERIC(6))
 READS SQL DATA

-- Procedure body
 IF in_anr IS NULL THEN out_service_price = -999;
 ELSE SELECT MIN(service_price) INTO out_service_price FROM service
 WHERE anr = in_anr;
 END IF

The reactions to various CALLs of the procedure are illustrated using this procedure.

It must be noted that the in_anr and out_service_price parameters have no indicators
(not permitted). The significance of in_anr is checked directly via IS NULL. Output
parameter out_srec can be assigned the NULL value directly in the INTO clause.

Various static CALL statements will now be examined. The argument for the input value can
be presented in very different ways. On the other hand a host variable must always be
specified as an argument for the output value. It must have a numeric data type (compatible
with NUMERIC(6)). It also makes sense to use an indicator variable which must be
initialized with -1 before the CALL. Otherwise the host variable itself must have been
initialized with a correct value (according to its data type).

CALL min_service_record(:anr, :service_price INDICATOR :ind-service_price)
The input value is transferred as a host variable. As the NULL value can be returned, it
makes sense to specify an indicator variable for the output value.

CALL min_service_record(:anr :ind-anr, :service_price :ind-service_price)
As above, but setting :ind-anr to -1 means that the NULL value can also be
transferred.

CALL min_service_record('A#123456', :service_price)
The specific input value is A#123456. If the NULL value is to be returned for this, the
specification of an indicator variable is missing, which results in an SQLSTATE
SEW2202.

Routines Procedures (Stored Procedures)

U22420-J-Z125-12-76 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

CALL min_service_record(CAST(NULL AS CHAR (8)), :service_price)
As the input value is NULL, the value -999 is returned. As the host variable
:service_price has no indicator, it must have been initialized with the correct value
(according to its data type) before the call.

CALL min_service_record((SELECT MAX(anr) FROM leistung),:service_price :ind-
service_price)

The input value is the highest order number. As the NULL value can be returned, it
makes sense to specify an indicator variable for the output value. If the service table
is empty, the NULL value is then returned.

User Defined Functions (UDFs) Routines

332 U22420-J-Z125-12-76

7.2 User Defined Functions (UDFs)

In SESAM/SQL, the abbreviation UDF is used for “User Defined Function”.

i UDFs can be used in almost all expressions by means of their function call. They
can occur in the DML statements and in the utility statements EXPORT ... WHERE
and UNLOAD ONLINE.

7.2.1 Creating a UDF

A UDF is created using the SQL statement CREATE FUNCTION, see page 409.
A UDF can also be created using the SQL statement CREATE SCHEMA, see page 420.

UDFs can be defined with input parameters.

i Recommendation
Parameter names should differ from column names (e.g. by assigning a prefix such
as par_).

When a UDF is created, the current authorization identifier must have the EXECUTE
privilege for the routines called directly in the UDF. It must also, for all tables and columns
which are addressed in the UDF, have the (SELECT) privileges which are required to
execute the DML statements contained in the routine.

The text of the UDF in SESAM/SQL is written entirely in the SQL programming language.
The following SQL statements for data searching are permitted in UDFs, see section
“CREATE FUNCTION - Create User Defined Function (UDF)” on page 409:

SQL statements for modifying data (INSERT, UPDATE, DELETE, MERGE) are not
permitted in the UDFs of SESAM/SQL.

SQL statement
without a cursor

Function in the UDF see

SELECT Reads a single row page 555

SQL statement
with a cursor

OPEN Opens a local cursor page 524

FETCH Positions a local cursor and, if necessary, reads the current row page 481

CLOSE Closes a local cursor page 395

Table 26: SQL statements for data manipulation in UDFs

Routines User Defined Functions (UDFs)

U22420-J-Z125-12-76 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

In addition to the SQL statements mentioned above, a procedure can also contain control
statements (see section “Control statements in routines” on page 342) and diagnostic
statements (see section “Diagnostic information in routines” on page 344).

A UDF may not contain any dynamic SQL statements or cursor descriptions, see section
“Dynamic SQL” on page 32.

The current authorization identifier automatically obtains the EXECUTE privilege for the
UDF created. If it even has authorization to pass on the relevant privileges, it may also pass
on the EXECUTE privilege to other authorization identifiers.

An SQL statement in a UDF may access the parameters of the UDF and (if the statement
is part of a COMPOUND statement) local variables, but not host variables.

comments

Descriptive comments (see page 52) can be inserted in a UDF as required.

7.2.2 Executing a UDF

A UDF is called by means of its function call in an expression, see page 151.

When a UDF expects input parameters, the corresponding values (arguments) must be
transferred to the UDF in the function call.

The (only) return value of a UDF is determined by the RETURN statement, see page 544.

The EXECUTE privilege for the UDF to be executed is required to execute a UDF, but not
the privileges which are required to execute the DML statements contained in the UDF. In
addition, the SELECT privileges for the tables which are addressed in the routine’s call
parameters by means of subqueries are required.

When an expression is evaluated, the function contained in it is performed and then the
replaced by the calculated return value.

UDFs can be called in views.

7.2.3 Deleting a UDF

A UDF is deleted using the SQL statement DROP FUNCTION, see page 459.

User Defined Functions (UDFs) Routines

334 U22420-J-Z125-12-76

7.2.4 Uncorrelated function calls

Function calls of a UDF with constant input values are referred to as uncorrelated function
calls. Constant input values do not refer to the SQL statement which contains the function
call,

Uncorrelated function calls are handled by SESAM/SQL as follows when the statement is
executed:

● Function values of uncorrelated function calls are calculated once only to evaluate
conditions.

● However, they are recalculated every time for the following output values:

– in SELECT lists

– for ORDER BY values

– for values in INSERT rows

– for UPDATE... SET ... values

– for the INSERT- / UPDATE values in a MERGE statement

Example

SELECT f(1,2) FROM t WHERE col < g(5+4,8,9)

The function calls f(1,2) and g(5+4,8,9) of this SQL statement are uncorrelated.

The function g is calculated once only in order to evaluate the records of t. The set of
hits of the query is then determined with this constant result. This also enable indexes
to be used in the condition evaluation.

In the SELECT list, on the other hand, the f function is recalculated for each set of hits.

Routines User Defined Functions (UDFs)

U22420-J-Z125-12-76 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

VOLATILE / IMMUTABLE annotations

The /*% VOLATILE %*/ and /*% IMMUTABLE %*/ annotations control the execution of
uncorrelated function calls. In a function call, they are accepted only between the name of
the function and the opening parenthesis for the function parameters. In any other position
these annotations lead to a syntax error for the statement.

When /*% VOLATILE %*/ is specified, the function value is always recalculated.

When /*% IMMUTABLE %*/ is specified in an uncorrelated function call, the function value
is not calculated again. The function value calculated beforehand is used. The function
value is recalculated when the first function call takes place.

When these annotations are not specified, the SESAM/SQL procedure described above is
used.

Example

SELECT f /*% VOLATILE %*/ (1,2)
FROM t WHERE col < g /*% IMMUTABLE %*/ (5+4,8,9)

These function calls map the existing SESAM/SQL procedure with annotations.

SELECT f /*% IMMUTABLE %*/ (1,2)
FROM t WHERE col < g /*% VOLATILE %*/ (5+4,8,9)

Specifying the annotations always causes the g function to be recalculated.
The f function is only calculated once.

User Defined Functions (UDFs) Routines

336 U22420-J-Z125-12-76

7.2.5 Examples of UDFs

Example 1: Determining the year number

The GetCurrentYear UDF below returns the current year as a number. It contains no SQL
statements for reading or updating data.

CREATE FUNCTION GetCurrentYear (IN time TIMESTAMP(3))
RETURNS DECIMAL(4)
CONTAINS SQL
RETURN EXTRACT (YEAR FROM time)

The GetCurrentYear UDF in the schema FuncSchema is used:

● Determining all orders of the year 2014:

DECLARE cursor_1 CURSOR FOR
SELECT order_number, customer_name FROM orders
WHERE FuncSchema.GetCurrentYear(order_completion_date) = 2014

● Set expiration year to the year after next (schema FuncSchema is preset):

UPDATE model.exemplar
SET expiration_year = GetCurrentYear(CURRENT_TIMESTAMP(3)) + 2

Example 2: Determining the price of an item

CREATE FUNCTION ITEM_PRICE (IN P_ITEMNUM INTEGER)
RETURNS NUMERIC(8,2)
READS SQL DATA
BEGIN
 RETURN (SELECT PRICE FROM PARTS.ITEM WHERE ITEMNUM= P_ITEMNUM);
END

Example 3: Anonymizing a credit card number

The UDF mask_credit_card_number below anonymizes a credit card number by masking
the last four digits:

CREATE FUNCTION mask_credit_card_number(IN card_no CHAR(16))
RETURNS CHAR(16)
CONTAINS SQL
RETURN SUBSTRING(card_no FROM 1 FOR 12) || '****'

A notification could thus be structured as follows:

Select surname, first_name, mask_credit_card_number(credit_card_number)
from ...

Routines EXECUTE privilege for routines

U22420-J-Z125-12-76 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

7.3 EXECUTE privilege for routines

SESAM/SQL provides the EXECUTE privilege for routines. It is assigned using the SQL
statement GRANT and revoked using the SQL statement REVOKE.

When a routine is created, the current authorization identifier must have the EXECUTE
privilege for the routines called directly in the routine. It must also, for all tables and columns
which are addressed in the routine, have the privileges which are required to execute the
DML statements contained in the routine.

When a view is created, the current authorization identifier must have the EXECUTE
privilege for the UDFs called directly in the view.

The EXECUTE privilege for the routine to be executed is required to execute a routine (with
the SQL statement CALL or using a function call), but not the privileges which are required
to execute the DML statements contained in the routine. In addition, the SELECT privileges
for the tables which are addressed in the routine’s call parameters by means of subqueries
are required.

Information on routines Routines

338 U22420-J-Z125-12-76

7.4 Information on routines

Information on routines is provided in the information schemas, see chapter “Information
schemas” on page 633.

Information schema View Information on

INFORMATION_SCHEMA PARAMETERS Parameters of routines

INFORMATION_SCHEMA ROUTINES Routines

INFORMATION_SCHEMA ROUTINE_PRIVILEGES Privileges for routines

INFORMATION_SCHEMA ROUTINE_TABLE_USAGE Tables in routines

INFORMATION_SCHEMA ROUTINE_COLUMN_USAGE Columns in routines

INFORMATION_SCHEMA ROUTINE_ROUTINE_USAGE Routines in other routines

INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Routines in views

SYS_INFO_SCHEMA SYS_PARAMETERS Parameters of routines

SYS_INFO_SCHEMA SYS_ROUTINES Routines

SYS_INFO_SCHEMA SYS_ROUTINE_PRIVILEGES Privileges for routines

SYS_INFO_SCHEMA SYS_ROUTINE_USAGE Tables and columns in routines

SYS_INFO_SCHEMA SYS_ROUTINE_ERRORS Error events in routines

SYS_INFO_SCHEMA SYS_ROUTINE_ROUTINE_USAGE Routines in other routines

SYS_INFO_SCHEMA SYS_VIEW_ROUTINE_USAGE Routines in views

Table 27: Routines in the information schemas

Routines Pragmas in routines

U22420-J-Z125-12-76 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

7.5 Pragmas in routines

The following pragmas are provided specifically for routines:

● DEBUG ROUTINE to output additional information or error information

● DEBUG VALUE to output additional information for the SQL statements SET in routines
and RETURN in UDFs

● LOOP LIMIT to limit the number of loop passes

See section “Pragmas and annotations” on page 53.

The DEBUG ROUTINE and LOOP LIMIT pragmas are only effective ahead of the SQL
statement CALL and ahead of the DML statements DECLARE CURSOR, DELETE,
INSERT, MERGE, SELECT, and UPDATE. When specified ahead of DML statements,
these pragmas have an effect on all UDFs and the routines of the DML statement these
contain. When placed ahead of SQL statements, these pragmas have no effect in a routine.

Other pragmas can also be used in the CALL statement and in routines.

Pragmas EXPLAIN, CHECK, LIMIT ABORT_EXECUTION

These pragmas are effective ahead of the SQL statement CALL and ahead of the DML
statements DECLARE CURSOR, DELETE, INSERT, MERGE, SELECT, and UPDATE.
When specified ahead of DML statements, they have an effect on all UDFs and the routines
of the DML statement these contain. When one of these pragmas precedes an SQL
statement in a routine, it is ignored.

Pragmas ISOLATION LEVEL, LOCK MODE

When these pragmas precede a CALL statement, they only influence the possibly complex
call values of the CALL statement.

These pragmas can also precede SQL statements in routines. They then have the effect
described under DECLARE CURSOR, DELETE, INSERT, MERGE, SELECT, and
UPDATE.

When these pragmas precede an IF statement, they only influence the conditions of the IF
statement. These pragmas can also be specified ahead of the statements contained in the
IF statement.

In the case of the SET statement, these pragmas influence the evaluation of the expression
on the right-hand side of the assignment.

When these pragmas precede a LOOP, LEAVE, or ITERATE statement, they are ignored.

Pragmas in routines Routines

340 U22420-J-Z125-12-76

When these pragmas precede a FOR statement, they only influence the cursor definition of
the FOR statement. These pragmas can also be specified ahead of the SQL statements
contained in the FOR statement.

When these pragmas precede a WHILE statement, they only influence the condition of the
WHILE loop. These pragmas can also be specified ahead of the SQL statements contained
in the WHILE statement.

When these pragmas are to influence the UNTIL condition of a REPEAT statement, they
must be specified immediately ahead of UNTIL (not ahead of REPEAT). These pragmas
can also be specified ahead of the SQL statements contained in the REPEAT statement.

When these pragmas precede a CASE statement, they only influence the expressions
outside of the THEN and ELSE statement blocks. These pragmas can also be specified
ahead of the SQL statements contained in the CASE statement.

In the case of the RETURN statement, these pragmas have an effect on the evaluation of
the RETURN value.

In the case of all other statements in routines, these pragmas have no effect.

Pragmas IGNORE, JOIN, KEEP JOIN ORDER, OPTIMIZATION, SIMPLIFICATION, USE

When one of these optimization pragmas precedes a CALL statement, it only influences the
optimization of the possibly complex call values of the CALL statement.

These pragmas can also precede SQL statements of a routine. They then implement the
optimization described under DECLARE CURSOR, DELETE, INSERT, MERGE, SELECT,
and UPDATE.

When these pragmas precede an IF statement, they only influence the optimization of the
IF statement's conditions. These pragmas can also be specified ahead of the statements
contained in the IF statement.

In the case of the SET statement, these pragmas influence the optimization of the
expression on the right-hand side of the assignment.

When these pragmas precede a LOOP, LEAVE, or ITERATE statement, they are ignored.

When these pragmas precede a FOR statement, they only influence the cursor definition of
the FOR statement. These pragmas can also be specified ahead of the SQL statements
contained in the FOR statement.

When these pragmas precede a WHILE statement, they only influence the condition of the
WHILE loop. These pragmas can also be specified ahead of the SQL statements contained
in the WHILE statement.

When these pragmas are to influence the UNTIL condition of a REPEAT statement, they
must be specified immediately ahead of UNTIL (not ahead of REPEAT). These pragmas
can also be specified ahead of the SQL statements contained in the REPEAT statement.

Routines Pragmas in routines

U22420-J-Z125-12-76 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

When these pragmas precede a CASE statement, they only influence the expressions
outside of the THEN and ELSE statement blocks. These pragmas can also be specified
ahead of the SQL statements contained in the CASE statement.

In the case of the RETURN statement, these pragmas have an effect on the evaluation of
the RETURN value.

In the case of all other statements in routines, these pragmas have no effect.

Pragmas DATA TYPE, PREFETCH, UTILITY MODE

These pragmas are ignored when they precede a CALL statement or an SQL statement of
a routine.

Control statements in routines Routines

342 U22420-J-Z125-12-76

7.6 Control statements in routines

Control statements may only be specified in routines. They control execution of a
routine,e.g. by means of loops or conditions. They can become extensive and in turn
contain sequences of SQL statements themselves.

In SESAM/SQL V9.0 and higher, nested calls of routines are permitted. The CALL
statement is therefore one of the SQL statements permitted in a routine.

7.7 COMPOUND statement in routines

The COMPOUND statement is one of the control statements in routines. It executes further
SQL statements in a common context. Common local data, common local cursors, and
common exception routines apply for these SQL statements.

A detailed description of the COMPOUND statement is provided on page 399.

SQL statement Function see

COMPOUND Executes SQL statements in a common context page 399

CALL Call a procedure page 388

CASE Executes SQL statements conditionally page 391

FOR Executes SQL statements in a loop page 486

IF Executes SQL statements conditionally page 503

ITERATE Switches to the next loop pass page 514

LEAVE Terminates loop or COMPOUND statement page 515

LOOP Executes SQL statements in a loop page 516

REPEAT Executes SQL statements in a loop page 538

RETURN 1

1 For UDFs only

Supplies the return value of a User Defined Function (UDF) page 544

SET Assigns a value page 558

WHILE Executes SQL statements in a loop page 584

Table 28: Control and diagnostic statements of routines

Routines COMPOUND statement in routines

U22420-J-Z125-12-76 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

Local data

Local data comprises variables or exception names which can only be addressed in the
COMPOUND statement.
The names of the local data must differ from each other.

A data type and, if required, a default value is defined for variables. They have no indicator
variable. They can be used in local cursor definitions, local exception routines, and the SQL
statements of the COMPOUND statement.

To facilitate understanding, exception names define a name for an exception (without
specifying an associated SQLSTATE) or a name for an SQLSTATE. They can be used in
local exception routines, see page 405.

Local cursors

With the definition of local cursors, cursors are defined which can only be addressed in the
COMPOUND statement.
The names of the local cursors must differ from each other.

Local cursors can be used in local exception routines and the SQL statements of the
COMPOUND statement.

Local cursors are defined without the WITH HOLD clause. The SQL statements STORE
and RESTORE may not be applied to local cursors.

Common exception routines

The definition of exception routines determines what response is made when, during
processing of an SQL statement in the context of the COMPOUND statement, an
SQLSTATE î '00000' is reported.

When an SQLSTATE occurs which was specified in an exception routine, the exception
routine for the SQLSTATE is executed. For other SQLSTATEs, SESAM/SQL automatically
performs exception handling.

The type of exception handling is defined in the exception routines in accordance with the
SQLSTATE. When an exception occurs, further SQL statements there decide whether the
routine should be continued or terminated. Changes which were made in the context of the
COMPOUND statement can be undone.

Diagnostic information in routines Routines

344 U22420-J-Z125-12-76

7.8 Diagnostic information in routines

SESAM/SQL provides diagnostic information in routines. The SQL standard uses the term
“diagnostics management” for this.

Diagnostic information is provided in a diagnostics area for an SQL statement executed
beforehand. In the case of routines in SESAM/SQL, multiple diagnostics areas can exist at
one time (for an SQL statement, for calling an (exception) routine), in particular for nested
routines.

i At the ESQL-Cobol interface, in other words in the application program, the
diagnostics area is named “SQLda”.

The following SQL statements, which may only be used in routines, enable a diagnostics
area to be accessed in read and/or write mode:

You can improve the programming of routines using these diagnostic statements and the
self-defined SQLSTATEs described below. You can analyze exceptions which occur more
precisely and respond to these in a differentiated manner.

Success of an SQL statement in a routine

To simplify the description, the success of an SQL statement in a routine is defined as
follows in this manual:

● The SQL statement was successful if it was terminated with SQLSTATE '00000'.

● The SQL statement was error-free if it was terminated with SQLSTATE '00000', an
SQLSTATE of the classes '01xxx' (warning) or '02xxx' (no data).

● The SQL statement in a routine was errored if it was not terminated error-free.

i A routine is continued after an error-free SQL statement if no exception routines are
defined for the SQLSTATEs of the classes '01000' and '02000'. If, for instance, a
warning occurs for an SQL statement in a procedure, the corresponding CALL
statement is terminated with SQLSTATE '00000'.

SQL statement Function see

GET DIAGNOSTICS Outputs diagnostic information about a statement page 489

SIGNAL Reports exception in routine page 574

RESIGNAL Reports exception in local exception routine page 540

Table 29: Control and diagnostic statements of routines

Routines Diagnostic information in routines

U22420-J-Z125-12-76 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

Self-defined SQLSTATEs

SESAM/SQL V9.0 and higher enables you to define SQLSTATEs yourself. The class
'46Sxx' (where x is a number or an uppercase letter) is reserved. In this class you can define
up to 1296 SQLSTATEs yourself. This class is used neither by the SQL standard nor by
SESAM/SQL.

You can specify self-defined SQLSTATEs in the diagnostic statements SIGNAL and
RESIGNAL.
You can call a specific exception routine on a targeted basis in the SIGNAL diagnostic
routine using a self-defined SQLSTATE. In the exception routine you can use the
RESIGNAL diagnostic statements to abort the routine specifically. In both statements you
can also enter additional diagnostic information in the diagnostics area.

There are no ready-made SESAM message texts for self-defined SQLSTATEs. When a
self-defined SQLSTATE occurs in the application program as an unspecified SQLSTATE,
SESAM/SQL generates the message SEW46xx (&00) from it. The MESSAGE_TEXT from the
diagnostics area then appears as insert (&00).
This enables you to generate a message text of your own (without an accompanying help
text) indirectly in the diagnostic statements SIGNAL and RESIGNAL.

SQLSTATE '45000' (unspecified SQLSTATE)

With SESAM/SQL you can define a local exception name for an SQLSTATE in a
COMPOUND statement, see section “Local data” on page 402.

However, you can also define an exception name with no link to an SQLSTATE.

With this exception name you can call a specific exception routine in the SIGNAL diagnostic
routine. If this exception routine does not exist or is exited with RESIGNAL (without
specifying an SQLSTATE), the routine is terminated with the SQLSTATE '45000'.

SESAM/SQL then generates the following message:
SEW4500 UNHANDLED USER DEFINED EXCEPTION (&00). (&01)

Insert (&00) contains the exception name. If a MESSAGE_TEXT was specified for SIGNAL or
RESIGNAL, (&01) appears as an insert.

When an appropriate exception name and possibly a corresponding MESSAGE_TEXT is
selected, the user then receives an informative message.

Diagnostic information in routines Routines

346 U22420-J-Z125-12-76

GET DIAGNOSTICS

GET DIAGNOSTICS ascertains information on an SQL statement executed beforehand in
a routine and enters this in a procedure parameter (output) or a local variable. The
information relates to the statement itself or to the database objects affected by it.

GET DIAGNOSTICS changes neither the content nor the sequence of diagnostics areas.
In other words GET DIAGNOSTICS statements which follow each other directly evaluate
the same diagnostic information.

A detailed description of the GET DIAGNOSTICS statement is provided on page 489.

SIGNAL

SIGNAL reports, in a routine, am exception or a self-defined SQLSTATE.

A detailed description of the SIGNAL statement is provided on page 574.

SIGNAL deletes the current diagnostics area and optionally enters the following diagnostic
information into the current diagnostics area:

● When an exception name is specified, it is entered as CONDITION_IDENTIFIER.
Otherwise a string with the length 0 is assigned.

● The RETURNED_SQLSTATE is supplied:

– When an SQLSTATE is specified, it is entered as RETURNED_SQLSTATE.

– When an SQLSTATE is defined for the specified exception name, the defined
SQLSTATE is entered for RETURNED_SQLSTATE.

– Otherwise SQLSTATE '45000' is entered.

● When MESSAGE_TEXT is specified, MESSAGE_TEXT, MESSAGE_LENGTH, and
MESSAGE_OCTET_LENGTH are supplied accordingly. Otherwise MESSAGE_TEXT
is assigned a string with the length 0.

The routine is continued or terminated with an exception routine:

● When RETURNED_SQLSTATE î '45000' and a local exception routine is defined for
the RETURNED_SQLSTATE, this exception routine is executed.

● When RETURNED_SQLSTATE = '45000' and a local exception routine is defined for
the exception name entered CONDITION_IDENTIFIER, this exception routine is
executed.

● Otherwise an unspecified SQLSTATE exists. The routine is terminated with the
SQLSTATE entered in RETURNED_SQLSTATE.

Routines Diagnostic information in routines

U22420-J-Z125-12-76 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

Further information:

● Execution of a specific exception routine can be achieved with SIGNAL.

● An SQL statement immediately after the SIGNAL statement is then executed only if the
exception routine called by SIGNAL is defined with CONTINUE and was terminated
without error.

● If the values (e.g. MESSAGE_TEXT) entered in the diagnostics area for SIGNAL are to
be read, GET CURRENT DIAGNOSTICS must be located either immediately after
SIGNAL (see preceding note) or it must be used in the exception routine GET
STACKED DIAGNOSTICS which is called.
This exception routine need not necessarily be part of the current COMPOUND
statement. It can also be an exception routine of a higher-ranking routine which has
used the routine with the SIGNAL statement. In the latter case, the diagnostics area of
the calling statement is then evaluated.

● A routine is continued after an SQL statement which is error-free but not successful.
Even if an exception routine was executed with EXIT or UNDO in such a case, the
routine terminates with SQLSTATE '00000’ unless an SQL statement terminated with
an error in the exception routine itself. In such a case, the SIGNAL statement enables
the routine to be terminated with a self-defined SQLSTATE.

Diagnostic information in routines Routines

348 U22420-J-Z125-12-76

RESIGNAL

RESIGNAL reports a condition or an SQLSTATE in a local exception routine. In contrast to
SIGNAL, the specification of an exception name or SQLSTATE is optional.

A detailed description of the RESIGNAL statement is provided on page 540.

RESIGNAL uses the diagnostics area of the SQL statement which has activated the
exception routine, and if necessary modifies the following diagnostic information:

● If neither an exception name nor SQLSTATE was specified, CONDITION_IDENTIFIER
and RETURNED_SQLSTATE remain unchanged. The following applies:

– RETURNED_SQLSTATE may not contain an SQLSTATE of class '01xxx' or
'02xxx'. Otherwise RESIGNAL is terminated with an error.

– When MESSAGE_TEXT= is specified, RETURNED_SQLSTATE must contain
either a self-defined SQLSTATE or the value '45000'. Otherwise RESIGNAL is
terminated with an error.

● The current diagnostics area will possibly be modified:

– When an exception name is specified, it is entered as CONDITION_IDENTIFIER.
Otherwise a string with the length 0 is assigned.

– When an SQLSTATE is specified, it is entered as RETURNED_SQLSTATE.

– When an SQLSTATE is defined for the specified exception name, the defined
SQLSTATE is entered for RETURNED_SQLSTATE. Otherwise SQLSTATE '45000'
is entered.

● When MESSAGE_TEXT is specified, MESSAGE_TEXT, MESSAGE_LENGTH, and
MESSAGE_OCTET_LENGTH are supplied accordingly. Otherwise MESSAGE_TEXT
is assigned a string with the length 0.

The routine in which the local exception routine of the RESIGNAL statement was executed
is terminated with the SQLSTATE entered in RETURNED_SQLSTATE.

Further information:

● Even after an exception routine defined with EXIT or UNDO has been executed, a
routine is terminated with SQLSTATE '00000’ unless an SQL statement terminated with
an error in the exception routine itself. RESIGNAL enables you to return the SQLSTATE
which triggered the exception routine.

● A SIGNAL statement which is called in an exception routine has the same effect as a
RESIGNAL statement with explicitly specified exception name or SQLSTATE.

Routines Diagnostic information in routines

U22420-J-Z125-12-76 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

Examples of the use of diagnostic statements

Different situations when querying the SQLSTATE

CREATE PROCEDURE proc1() MODIFIES SQL DATA
 BEGIN ATOMIC
 DECLARE state1, state2, state3 CHAR(5);
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 DELETE FROM tab1; --- (3)
 GET STACKED DIAGNOSTICS CONDITION state2 = RETURNED_SQLSTATE;
 GET CURRENT DIAGNOSTICS CONDITION state3 = RETURNED_SQLSTATE;
 ... --- (2)
 END;
 ...
 UPDATE tab2 SET ...;
 GET CURRENT DIAGNOSTICS CONDITION state1 = RETURNED_SQLSTATE; ----- (1)
 ...
 END

(1) The local variable state1 is supplied only when the UPDATE statement has been
executed successfully or error-free. It then contains either the SQLSTATE '00000',
a warning, or the SQLSTATE '02000' (no data). The exception routine is not
executed.

(2) If the UPDATE statement was executed with an error and the DELETE statement
was executed without an error, state2 contains the SQLSTATE of the UPDATE
statement which caused the error.
state3 contains the SQLSTATE of the DELETE statement ('00000', a warning, or
'02000' (no data)).
state1 is not supplied as the procedure was aborted because of an exception
routine (EXIT).

(3) If the DELETE statement of the exception routine was also executed with an error,
the procedure is immediately aborted because of the unspecified SQLSTATE.
None of the GET DIAGNOSTICS statements is executed.

If the exception routine is defined with CONTINUE (instead of with EXIT) and is executed
without error, state1 is also supplied after an UPDATE statement which was executed with
an error. state1 is then assigned the SQLSTATE of the UPDATE statement which caused
the error.

Diagnostic information in routines Routines

350 U22420-J-Z125-12-76

Special handling of the SQLSTATE '02000'

After SQLSTATE '02000' (no data), a routine is normally continued.
In the example below, this is accepted in one case and is intended to lead to an error in
another.

CREATE PROCEDURE proc2(OUT par1 INTEGER, OUT par2 INTEGER) MODIFIES SQL DATA
 BEGIN ATOMIC
 DELETE FROM tab1;
 GET DIAGNOSTICS par1 = ROW_COUNT;
 DELETE FROM tab2;
 GET DIAGNOSTICS par2 = ROW_COUNT;
 IF par2 = 0
 THEN SIGNAL SQLSTATE '46SA1'
 SET MESSAGE_TEXT = 'tab2 must contain at least one record';
 END IF;
 END

If the DELETE statement was executed without error, the relevant number of deleted
records is entered in the two output parameters. In table tab1, the number may also be 0.
However, when table tab2 is empty, the procedure is aborted. Because of the ATOMIC
clause, the deletions in table tab1 are also undone. SESAM/SQL generates the message:
SEW46A1 TAB2 MUST CONTAIN AT LEAST ONE RECORD

Noting the SQLSTATE which occurred

After an unspecified SQLSTATE, a procedure is aborted and precisely this SQLSTATE is
reported. If you also wish to log this event in a table, define, for example, the following
exception routine. The RESIGNAL statement returns the SQLSTATE which occurred.
Without the RESIGNAL statement, the procedure terminates with SQLSTATE '00000'.

CREATE PROCEDURE proc3() MODIFIES SQL DATA
 BEGIN ATOMIC
 DECLARE error CHAR(5);
 DECLARE UNDO HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS CONDITION error = RETURNED_SQLSTATE;
 INSERT INTO logging_tab
 VALUES (CURRENT_TIMESTAMP(3),'SQLSTATE ' || error || ' occurred');
 RESIGNAL;
 END;
 -- procedure body
 ...
 END

Routines Diagnostic information in routines

U22420-J-Z125-12-76 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
7

Search for empty tables

The number of empty tables is to be determined by means of a User Defined Function. If
the number of empty tables exceeds the number entered, the search should be aborted
with an error.

CREATE FUNCTION check_tables(IN max_nbr INTEGER)
 RETURNS INTEGER READS SQL DATA
 BEGIN
 DECLARE "TABLE ERROR" CONDITION;
 DECLARE nbr_empty_tables integer DEFAULT 0;
 DECLARE CONTINUE HANDLER FOR "TABLE ERROR"
 BEGIN
 nbr_empty_tables = nbr_empty_tables + 1;
 IF nbr_empty_tables > max_nbr
 THEN RESIGNAL SET MESSAGE_TEXT = 'TOO MANY EMPTY TABLES';
 END IF;
 END;

 IF (SELECT COUNT(*) FROM tab1) = 0 THEN SIGNAL "TABLE ERROR";
 END IF;

 IF (SELECT COUNT(*) FROM tab2) = 0 THEN SIGNAL "TABLE ERROR";
 END IF;

 IF (SELECT COUNT(*) FROM tab3) = 0 THEN SIGNAL "TABLE ERROR";
 END IF;

 RETURN nbr_empty_tables;
 END

SELECT check_tables(2) INTO :NBR-EMPTY-TABLES FROM TABLE(DEE)

If the number of empty tables does not exceed the number entered, the number of empty
tables is stored in the user variable :NBR-EMPTY-TABLES.

However, if more than two tables exist, the search is terminated with SQLSTATE '45000'.
SESAM/SQL then generates the following message:
SEW4500 UNHANDLED USER DEFINED EXCEPTION (TABLE ERROR). TOO MANY EMPTY TABLES

Diagnostic information in routines Routines

352 U22420-J-Z125-12-76

U22420-J-Z125-12-76 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

8 SQL statements

This chapter describes the SQL statements. It is subdivided into two parts:

● Summary of contents

● Alphabetical reference section

8.1 Summary of contents

In this section, the SQL statements are grouped together according to function. This
grouping of the statements is oriented to the SQL standard.

SESAM/SQL-specific statements are printed against a gray background.

8.1.1 SQL statements for schema definition and administration

Schema

Base table

SQL statement Function

CREATE SCHEMA Create a schema

DROP SCHEMA Delete a schema

Table 30: SQL statements for schemas

SQL statement Function

ALTER TABLE Modify a base table

CREATE TABLE Create a base table

DROP TABLE Delete a base table

Table 31: SQL statements for base tables

Summary of contents SQL statements

354 U22420-J-Z125-12-76

View

Privileges

Procedure (Stored Procedure)

User Defined Function (UDF)

SQL statement Function

CREATE VIEW Create a view

DROP VIEW Delete a view

Table 32: SQL statements for views

SQL statement Function

GRANT Grant privileges

REVOKE Revoke privileges

Table 33: SQL statements for privileges

SQL statement Function

CREATE PROCEDURE create procedure

DROP PROCEDURE Delete a procedure

Table 34: SQL statements for procedures

SQL statement Function

CREATE FUNCTION Create UDF

DROP FUNCTION Delete UDF

Table 35: SQL statements for User Defined Functions

SQL statements Summary of contents

U22420-J-Z125-12-76 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

8.1.2 SQL statements for querying and updating data

Without cursor

With cursor

The following SQL statements can be used with a static or dynamic cursor.

If an executable statement contains a dynamic cursor, the corresponding cursor description
must be prepared before the statement is executed.

In some statements there are certain deviations or restrictions if a dynamic cursor is used.
This fact is mentioned in the table.

SQL statement Function

DELETE Delete rows

INSERT Insert rows in table

MERGE Insert rows in table or change column values

SELECT...INTO Read individual rows (static SELECT statement)

SELECT (without INTO) Read individual rows (dynamic SELECT statement)

UPDATE Update column values

Table 36: SQL statements for querying and updating data without a cursor

SQL statement Function

CLOSE Close a cursor

DECLARE...CURSOR Declare a cursor (not executable)
Dynamic cursor: the statement identifier for the cursor description
is specified instead of the cursor description

DELETE...CURRENT Delete current row

FETCH Position cursor and read column value

OPEN Open a cursor
Dynamic cursor: includes USING clause

RESTORE Restore a cursor

STORE Save cursor position

UPDATE...CURRENT Update the current row

Table 37: SQL statements for querying and updating data with cursor

Summary of contents SQL statements

356 U22420-J-Z125-12-76

8.1.3 SQL statements for transaction management

8.1.4 SQL statements for session control

SQL statement Function

SET TRANSACTION Define the characteristics of an SQL transaction

COMMIT WORK Commit SQL transaction

ROLLBACK WORK Roll back SQL transaction.

Table 38: SQL statements for transaction management

SQL statement Function

SET CATALOG Set default database name

SET SCHEMA Set default schema name

SET SESSION
AUTHORIZATION

Define authorization identifier

PERMIT Specify a user identification for SESAM/SQL V1

Table 39: SQL statements for session control

SQL statements Summary of contents

U22420-J-Z125-12-76 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

8.1.5 SQL statements for dynamic SQL

Dynamic statement

Descriptor

8.1.6 WHENEVER statement for ESQL error handling

SQL statement Function

EXECUTE Execute a prepared statement

EXECUTE IMMEDIATE Execute a dynamic statement

PREPARE Prepare a dynamic statement

Table 40: SQL statements for dynamic statements

SQL statement Function

ALLOCATE DESCRIPTOR Request SQL descriptor area

DEALLOCATE DESCRIPTOR Release SQL descriptor area

DESCRIBE Query data types of input or output values

GET DESCRIPTOR Read SQL descriptor area

SET DESCRIPTOR Modify SQL descriptor area

Table 41: SQL statements for descriptors

SQL statement Function

WHENEVER Define error handling (not executable)

Table 42: WHENEVER statement for ESQL error handling

Summary of contents SQL statements

358 U22420-J-Z125-12-76

8.1.7 SQL statements for managing the storage structure

Storage group

Space

Index

8.1.8 SQL statements for managing user entries

SQL statement Function

ALTER STOGROUP Modify a storage group

CREATE STOGROUP Create a storage group

DROP STOGROUP Drop a storage group

Table 43: SQL statements for storage groups

SQL statement Function

ALTER SPACE Modify space parameter

CREATE SPACE Create a space

DROP SPACE Delete a space

Table 44: SQL statements for spaces

SQL statement Function

CREATE INDEX Create an index

DROP INDEX Delete an index

REORG STATISTICS Re-generate global statistics

Table 45: SQL statements for indexes

SQL statement Function

CREATE SYSTEM_USER Create a system entry

CREATE USER Create an authorization identifier

DROP USER Delete an authorization identifier

DROP SYSTEM_USER Delete a system entry

Table 46: SQL statements for managing user entries

SQL statements Summary of contents

U22420-J-Z125-12-76 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

8.1.9 Utility statements

Utility statements are statements in SQL syntax for database management.

They are described in the “SQL Reference Manual Part 2: Utilities”.

8.1.10 Control statements

Routine (Stored Procedure and UDF)

8.1.11 Diagnostic statements

Routine (Stored Procedure and UDF)

SQL statement 1

1 Only inn a CREATE PROCEDURE or CREATE FUNCTION statement

Function

COMPOUND Statements in the context

CALL Call a procedure

CASE Execute statements conditionally

FOR Execute statements in a loop

IF Execute statements conditionally

ITERATE Switch to the next loop pass

LEAVE Terminate loop or COMPOUND statement

LOOP Execute statements in a loop

REPEAT Execute statements in a loop

RETURN Supply the return value of a User Defined Function (UDF)

SET Assigns a value

WHILE Execute statements in a loop

Table 47: SQL statements for procedures

SQL statement Function

GET DIAGNOSTICS Output diagnostic information about a statement

SIGNAL Report exception in routine

RESIGNAL Report exception in local exception routine

Table 48: SQL statements for procedures

Descriptions in alphabetical order SQL statements

360 U22420-J-Z125-12-76

8.2 Descriptions in alphabetical order

This section describes the syntax and functions of the SQL statements in detail.

8.2.1 Description format

In this section, the SQL statements are described using a uniform syntax. The statements
are in alphabetical order. There is one entry per statement, which has the name of the
statement as its header.

Structure of an entry

Each entry consists of several parts.
An entry may not include all the parts if some have no meaning for that statement. An entry
may also include additional information after the syntax diagram that describes special
features or characteristics of the statement involved. The most important parts of each entry
are described below.

Statement name - Brief description

A brief description of the function of the statement follows the heading.
This section also describes the prerequisites for successfully executing the statement. In
particular, the required access permissions are mentioned.

STATEMENT_NAME CLAUSE parameter ...

parameter
Explanation of the parameter.

The clauses and parameters are described in the order in which they appear in the syntax
diagram.

Examples

This section includes one or more examples illustrating how the statement is used. Most of
these are based on the sample database ORDERCUST.

 If an example in the manual is accompanied by the symbol on the left, this means
that it is present as a component in an instruction file or an ESQL COBOL program
in the demonstration database of SESAM/SQL (see the “Core manual”).

SQL statements Descriptions in alphabetical order

U22420-J-Z125-12-76 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

See also

Related statements

8.2.2 SQL statements in routines

In the SQL statements for creating and designing routines below, other SQL statements can
also be used:

● CREATE FUNCTION, CREATE PROCEDURE

● CASE, COMPOUND (there also in exception routines), FOR, IF, LOOP, REPEAT,
WHILE

Restrictions must be borne in mind for some of these statements.

To make these statements easier to read, the syntax element routine_sql_statement is
described centrally here for these other SQL statements.

routine_sql_statement ::=

case_statement
for_statement
if_statement
iterate_statement
leave_statement
loop_statement
repeat_statement
set_statement
while_statement
return_statement
call_statement
single_row_select_statement
insert_statement
update_searched_statement
delete_searched_statement
merge_statement
open_statement
fetch_statement
update_positioned_statement
delete_positioned_statement
close_statement
get_diagnostics_statement
signal_statement
resignal_statement

Descriptions in alphabetical order SQL statements

362 U22420-J-Z125-12-76

routine_sql_statement
routine_sql_statement has a maximum length of 32000 characters.

The permitted SQL statements are presented in the following groups:

● Control statements

case_statement
CASE statement which conditionally executes further SQL statements, see
section “CASE - Execute SQL statements conditionally” on page 391.

for_statement
FOR statement which executes further SQL statements in a loop, see section
“FOR - Execute SQL statements in a loop” on page 486.

if_statement
IF statement which conditionally executes further SQL statements. see section
“IF - Execute SQL statements conditionally” on page 503.

iterate_statement
ITERATE statement which switches to the next loop pass, see section
“ITERATE - Switch to the next loop pass” on page 514.

leave_statement
LEAVE statement which aborts loops or COMPOUND statements, see section
“LEAVE - Terminate a loop or COMPOUND statement” on page 515.

loop_statement
LOOP statement which executes further SQL statements in a loop, see section
“LOOP - Execute SQL statements in a loop” on page 516.

repeat_statement
REPEAT statement which executes further SQL statements in a loop, see
section “REPEAT - Execute SQL statements in a loop” on page 538.

set_statement
SET statement which assigns a value to a procedure parameter or a local
procedure variable, see section “SET - Assign value” on page 558.

while_statement
WHILE statement which executes further SQL statements in a loop, see section
“WHILE - Execute SQL statements in a loop” on page 584.

SQL statements Descriptions in alphabetical order

U22420-J-Z125-12-76 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

return_statement
RETURN statement which returns a return value for the UDF, see section
“RETURN - Supply the return value of a User Defined Function (UDF)” on
page 544. This statement may not be used in procedures.

call_statement
CALL statement which another procedure calls, see section “CALL - Execute
procedure” on page 388.

i The DEBUG ROUTINE and LOOP LIMIT pragmas have no effect
ahead of a CALL statement in a procedure, see section “CALL -
Execute procedure” on page 388.

Pragmas for optimization can also be specified in a procedure in the
case of a CALL statement. They then have an effect on optimizing the
call values.

● SQL statements for querying and updating data without a cursor

single_row_select_statement
SELECT statement which reads a single row, see section “SELECT - Read
individual rows” on page 555.

insert_statement
INSERT statement which inserts rows into an existing table, see section
“INSERT - Insert rows in table” on page 506. This statement may not be used
in UDFs.

update_searched_statement
UPDATE statement which updates the columns of the rows in a table which
satisfy a particular search condition, see section “UPDATE - Update column
values” on page 577. This statement may not be used in UDFs.

delete_searched_statement
DELETE statement which deletes the rows in a table which satisfy a particular
search condition, see section “DELETE - Delete rows” on page 453. This
statement may not be used in UDFs.

merge_statement
MERGE statement which, depending on a particular condition, updates rows in
a table or inserts rows in a table, see section “MERGE - Insert rows in a table
or update column values” on page 518. This statement may not be used in
UDFs.

Descriptions in alphabetical order SQL statements

364 U22420-J-Z125-12-76

● SQL statements for querying and updating data with a cursor:

These statements are only permitted for a local cursor which is defined in a
COMPOUND statement.

open_statement
OPEN statement which opens a cursor, see section “OPEN - Open cursor” on
page 524.

fetch_statement
FETCH statement which positions a cursor and possibly reads the current row,
see section “FETCH - Position cursor and read row” on page 481.

update_positioned_statement
UPDATE statement which updates the columns of the row in a table to which
the cursor is positioned, see section “UPDATE - Update column values” on
page 577. This statement may not be used in UDFs.

delete_positioned_statement
DELETE statement which deletes the row in a table to which the cursor is
positioned, see section “DELETE - Delete rows” on page 453. This statement
may not be used in UDFs.

close_statement
CLOSE statement which closes a cursor. see section “CLOSE - Close cursor”
on page 395.

● Diagnostic statements

get_diagnostics_statement
GET DIAGNOSTICS statement for outputting diagnostic information, see
section “GET DIAGNOSTICS - Output diagnostic information” on page 489.

signal_statement
SIGNAL statement which reports an error in the routine, see section “SIGNAL -
Report exception in routine” on page 574.

resignal_statement
RESIGNAL statement which reports an error in the exception routine, see
section “RESIGNAL - Report exception in local exception routine” on page 540.

SQL statements ALLOCATE DESCRIPTOR

U22420-J-Z125-12-76 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

8.2.3 SQL statement descriptions

ALLOCATE DESCRIPTOR - Request SQL descriptor area

You use ALLOCATE DESCRIPTOR to create an SQL descriptor area. The descriptor area
is used in dynamic statements and cursor descriptions as the interface between the
application program and the SQL database.

The structure of an item descriptor and how they are used is described in section
“Descriptor area” on page 36. ALLOCATE DESCRIPTOR creates the descriptor area but
does not define its contents.

ALLOCATE DESCRIPTOR GLOBAL descriptor [WITH MAX number]

descriptor::=

number::=

GLOBAL
The descriptor area you create can be used in any compilation unit of the current SQL
session.

descriptor
String containing the name of the SQL descriptor area. For descriptor you can specify
an alphanumeric literal (not in hexadecimal format) or an alphanumeric host variable of
the SQL data type CHAR(n), where 1 Î n Î 18.

The descriptor area name can start and end with one or more blanks. Once leading or
trailing blanks have been removed, the remaining string must be an unqualified name
(see section “Unqualified names” on page 69).

Two descriptor are names are considered identical if, once the blanks have been
removed, the remaining unqualified names are identical (see “Identical unqualified
names” on page 70).

alphanumeric_literal
:host_variable

integer
:host_variable

ALLOCATE DESCRIPTOR SQL statements

366 U22420-J-Z125-12-76

number
Maximum number of item descriptors in the SQL descriptor area.

For number you can specify an integer or a host variable of the SQL data type
SMALLINT, where 1 Î number Î 1000.

number determines the size of the reserved SQL descriptor area.
If you store longer alphanumeric values in the descriptor area, the space in the
descriptor area may be insufficient and an appropriate SQLSTATE is returned. In this
case, you must increase the value of number (see example).

In UTM applications, the “UTM conversation memory” is used to store SQL descriptor
areas. If this memory is insufficient, an error message is issued.

WITH MAX number omitted:
20 is the default value for number.

Examples

Create an SQL descriptor area for up to 100 item descriptors:

ALLOCATE DESCRIPTOR GLOBAL :demo_desc WITH MAX 100

Create an SQL descriptor area for 100 item descriptors. The descriptor area should be
large enough for the item descriptors to be able to store values of the type CHAR(80).

ALLOCATE DESCRIPTOR GLOBAL :demo_desc WITH MAX 200

See also

DEALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, SET DESCRIPTOR

SQL statements ALTER SPACE

U22420-J-Z125-12-76 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

ALTER SPACE - Modify space parameters

You use ALTER SPACE to modify the parameters of the catalog space or of a user space.

The SPACE view of the INFORMATION_SCHEMA provides you with information on which
user spaces have been defined (see chapter “Information schemas” on page 633).

The current authorization identifier must own the space. If the storage group is modified,
the current authorization identifier must have the special privilege USAGE for the new
storage group.

ALTER SPACE space

[] ...

[USING STOGROUP stogroup]

You must specify at least one of the parameters PCTFREE, NO LOG or USING
STOGROUP, and each parameter may only be specified once.

space
Name of the space for which parameters are to be modified.

You can qualify the space name with a database name.

The universal user may specify the space name "CATALOG" (in double quotes) even if
he/she is not the owner of the space. The NO LOG parameter may not be specified
here.

PCTFREE percent
Free space reservation in the space file expressed as a percentage. percent must be an
unsigned integer between 0 and 70. The modified free space reservation is not
evaluated until the next time the database is reorganized with the REORG utility
statement.

PCTFREE percent omitted:
The setting for the free space reservation remains unchanged.

NO LOG
Deactivate logging.

Logging is deactivated immediately after the current transaction is terminated with the
COMMIT statement.

NO LOG omitted:
The logging setting remains unchanged.

PCTFREE percent
NO LOG

ALTER SPACE SQL statements

368 U22420-J-Z125-12-76

USING STOGROUP stogroup
The name of the storage group containing the volumes to be used for the space file.
The new storage group is not evaluated until the next time the database is recovered
or reorganized with the utility statements RECOVER and REORG respectively.

You can qualify the name of the storage group with a database name. This database
name must be the same as the database name of the space.

USING STOGROUP stogroup omitted:
The storage group for the space remains unchanged.

Example

This example shows how to modify the free space reservation and the storage group for a
space.

 ALTER SPACE indexspace PCTFREE 20 USING STOGROUP stogroup3

See also

CREATE SPACE, CREATE STOGROUP

SQL statements ALTER STOGROUP

U22420-J-Z125-12-76 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

ALTER STOGROUP - Modify storage group

You use ALTER STOGROUP to modify the definition of a storage group.

Please note, however, that the definition of a storage group cannot be modified if the
storage group is entered in the media table.

The STOGROUPS view of the INFORMATION_SCHEMA provides you with information on
which storage groups have been defined (see chapter “Information schemas” on
page 633).

The current authorization identifier must have the special privilege CREATE STOGROUP
and must own the storage group.

ALTER STOGROUP stogroup

stogroup
Name of the storage group for which the definition is to be updated. You can qualify the
name of the storage group with a database name.

ADD VOLUMES (volume_name,...)
Adds new private volumes to the storage group. volume_name is an alphanumeric literal
indicating the VSN of the volumes. Each VSN can only be specified once for a storage
group.

If the storage group previously consisted of private volumes, the new volumes being
added must have the same device type.

A storage group can comprise up to 100 volumes.

ON dev_type
Alphanumeric literal indicating the device type of the private volumes.
You must specify the device type if the storage group was previously set up on
public volumes (PUBLIC).
If the storage group previously consisted of private volumes, you can omit ON
dev_type. If you do specify ON dev_type, you must specify the same device as before.

ON dev_type omitted:
The storage group consists of private volumes which all have the same device type
as before.

ADD VOLUMES (volume_name,... [ON dev_type]
DROP VOLUMES (volume_name,...)
PUBLIC
TO catid

ALTER STOGROUP SQL statements

370 U22420-J-Z125-12-76

DROP VOLUMES (volume_name,...)
Deletes individual private volumes from the definition of the storage group. volume_name
is an alphanumeric literal indicating the VSN of the volume.

You cannot delete the last volume in a storage group.

PUBLIC
The storage group is set to the default pubset of the BS2000 user ID under which the
DBH is running. All private volumes are deleted from the definition of the storage group.

TO catid
The new catalog identifier for the volumes is entered in the definition of the storage
group. catid is an alphanumeric literal indicating the new catalog ID.

In the case of private volumes, the new catalog ID is only used for catalogging the files.
The files themselves are still stored on the private volumes. In the case of a pubset, the
catalog ID of the pubset on which the storage group is located is changed.

Effect of ALTER STOGROUP

The ALTER STOGROUP statement only modifies the definition of the storage group. It
does not affect existing spaces that the volumes in the storage group use.

Volumes deleted from the storage group are not, however, used for new storage space
assignments for the spaces. Volumes can be deleted from the storage group explicitly with
DROP VOLUME or implicitly by changing from public volumes (PUBLIC) to private volumes
or vice versa.
The new definition of the storage group takes effect when files (spaces or backups) are
created in the storage group.

Examples

The example below changes the storage group from private volumes to the pubset with the
catalog ID O. This is done in two steps.

ALTER STOGROUP stogroup4 PUBLIC
ALTER STOGROUP stogroup4 TO 'O'

The example below changes the storage group STOGROUP5 from PUBLIC to private
volumes. The catalog ID for the files in the storage group remains unchanged.

ALTER STOGROUP ordercust.stogroup5
ADD VOLUMES ('DX017A','DX017B') ON 'D3435'

See also

CREATE STOGROUP

SQL statements ALTER TABLE

U22420-J-Z125-12-76 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

ALTER TABLE - Modify base table

You use ALTER TABLE to modify an existing base table. You can add columns and their
associated indexes, update or delete columns, and add or delete integrity constraints.
The value for the reservation of free space which is defined using CREATE SPACE ..
PCTFREE is taken into account.

If you are using a CALL DML table, you can only add, update or delete columns and their
associated indexes, and update ir delete columns. The restrictions that apply to CALL DML
tables are described in the section “Special considerations for CALL DML tables” on
“Special considerations for CALL DML tables” on page 382.

You can also use ALTER TABLE to modify a BLOB table. The restrictions that apply in this
case are described in the section “Special considerations for BLOB tables” on “Special
considerations for BLOB tables” on page 383.

You can use the UTILITY MODE pragma to add, change or delete a column in a table (ADD
without ADD INDEX, ALTER, DROP). When you activate the pragma (UTILITY MODE ON),
the associated statement is performed outside a transaction like a utility statement. This
suppresses normal transaction logging for the corresponding statement and thus makes it
possible to accelerate performance considerably when modifying large data volumes.
However, if an error occurs, it is not possible to roll back the statement. The space
containing the base table to be changed is defective and must be repaired (see section
“UTILITY MODE pragma” on page 67).

You cannot use ALTER TABLE to change the table type. You can change the table type by
means of the UTILITY statement MIGRATE (see the “SQL Reference Manual Part 2:
Utilities”).

The BASE_TABLES view in the INFORMATION_SCHEMA provides you with information
on which base tables have been defined (see chapter “Information schemas” on page 633).

The current authorization identifier must own the schema to which the base table belongs.

ALTER TABLE SQL statements

372 U22420-J-Z125-12-76

ALTER TABLE table

default ::= DEFAULT

ADD [COLUMN] column_definition,...

ALTER [COLUMN] {column },...

 [USING FILE exception_file [PASSWORD password]]

DROP [COLUMN] column,...

ADD {[CONSTRAINT integrity_constraint_name] table_constraint},...

DROP CONSTRAINT integrity_constraint_name

DROP DEFAULT
SET data_type [CALL DML call_dml_default]
SET default

CASCADE
RESTRICT

CASCADE
RESTRICT

alphanumeric_literal
national_literal
numeric_literal
time_literal
CURRENT_DATE
CURRENT_TIME(3)
LOCALTIME(3)
CURRENT_TIMESTAMP(3)
LOCALTIMESTAMP(3)
USER
CURRENT_USER
SYSTEM_USER
NULL
REF(table)

SQL statements ALTER TABLE

U22420-J-Z125-12-76 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

table
Name of a base table.

ADD [COLUMN] column_definition,...
Adds new columns to the base table. The new columns are added after the existing
columns. column_definition defines the columns, see section “Column definitions” on
page 272.

No primary key must be defined in column_definition.

An authorization identifier which possesses table privileges for the underlying base
table automatically obtains the corresponding privileges for the newly added columns.

If you wish to add a FOR REF column, it does not make sense to use the FOR REF
clause for the initial column definition, since this would cause the default value for the
REF column to be entered in each row. A more efficient option, particularly with respect
to memory requirements, would be to define the column initially with the data type
CHAR(237). In this case each row will be assigned the NULL value. The column can
then be modified using ALTER COLUMN column SET DEFAULT REF(table). This does
not affect any row entries made up to this point.

ADD INDEX index_definition
Definition of one or more indexes for the newly inserted columns.

The rules and referential constraints of the CREATE INDEX statement apply for the
index definition, see section “CREATE INDEX - Create index” on page 413.

i The UTILITY MODE ON pragma may not be used together with ADD
INDEX.

index
Name of the new index.

column
Name of the column in the base table you want to index. Only columns which
are specified in the ADD COLUMN clause may be specified.

LENGTH length
Indicates the length up to which the column is to be indexed.

LENGTH length omitted:
The column in its entirety in bytes is indexed.

ALTER TABLE SQL statements

374 U22420-J-Z125-12-76

USING SPACE space
Name of the space in which the index or indexes is/are to be stored.

The space must already be defined for the database to which the table belongs. The
current authorization identifier must own the space.

USING SPACE space omitted:
The index is stored in the space for the base table. In the case of a partitioned table,
the index is stored in the space for the first partition.

ALTER [COLUMN] column
column is the name of the column to be modified.

Modifications of the column are performed in the following order:

– DROP DEFAULT

– SET data_type

– SET default

You can use one and the same modification type only once for a column.

DROP DEFAULT
Deletes the default (SQL default value) for the column.

The underlying base table must not be a CALL DML table.

SET data_type
New data type of the column.

The column whose data type is to be changed must not be column of a primary key.
In CALL DML only tables, the column of a primary key can also be specified.

The column may not be used in views, indexes, integrity constraints, and routines.

You can also change the data type of a multiple column. The data type may not be
VARCHAR or NVARCHAR. When a data type is changed to a multiple column data
type, SESAM/SQL assigns the position number 1 to the first column element. The
number of column elements corresponds to the dimension of the new data type.

An atomic column can contain the multiple column data type and vice versa. In this
case, SESAM/SQL considers the atomic value to be the same as the value of a
multiple column with dimension 1.

SQL statements ALTER TABLE

U22420-J-Z125-12-76 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

The original column data type can only be modified to certain target data types. The
table below illustrates which original data types can be combined with which new
data types, and which combinations are not, or are only partially, permitted:

New data type

Original
data type

INTEGER
SMALLINT
DECIMAL
NUMERIC

REAL
DOUBLE
PRECISION
FLOAT

VAR
CHAR

CHAR NVAR
CHAR

NCHAR DATE TIME(3) TIME-
STAMP(3)

INTEGER
SMALLINT
DECIMAL
NUMERIC

yes yes 1

1 A column may be changed to the numeric data types REAL, DOUBLE PRECISION, and FLOAT or to the time data types
DATE, TIME, and TIMESTAMP if the fundamental base table is an SQL table

no yes no yes 1 no no no

REAL
DOUBLE
PRECISION
FLOAT

yes yes no yes no yes no no no

VARCHAR no no yes 2

2 A column of the data type VARCHAR may only be changed to the new data type with
new_length Ï old_length.
The other data types may not be changed to the data type VARCHAR and vice versa.

3) A column of the data type NVARCHAR may only be changed to the new data type NVARCHAR with
new_length Ï old_length.
The other data types may not be changed to the data type NVARCHAR and vice versa.

4) A code table not equal to _NONE_ must be defined for the database.

no no no no no no

CHAR yes yes 1 no yes no yes4 yes 1 yes 1 yes 1

NVARCHAR no no no no yes 3 no no no no

NCHAR yes yes no yes4 no yes yes yes yes

DATE no no no yes no yes yes no no

TIME(3) no no no yes no yes no yes no

TIME-
STAMP(3)

no no no yes no yes no no yes

Table 49: Permitted and prohibited combinations for data type modifications

ALTER TABLE SQL statements

376 U22420-J-Z125-12-76

SESAM/SQL converts all values in column to the new data type row by row. In the
case of multiple columns, SESAM/SQL converts the significant values of all
variants whose position number is smaller than or equal to the new data type
dimension. This means that it is possible that an element’s position may change
within the multiple column: If the result of converting a column is the NULL value,
all following elements whose position number is smaller than or equal to the new
data type dimension are shifted to the left and the NULL value is appended after
them.
The same rules apply (except for CHAR <-> NCHAR) when converting a column
value as when converting a value by means of the CAST expression (see section
“Rules for converting a value to a different data type” on page 259). When a column
value is converted from CHAR to NCHAR and vice versa, the same rules apply as
for the transliteration of a value by the TRANSLATE expression,
CATALOG_DEFAULT being used in the USING clause (see the section
“TRANSLATE() - Transliterate / transcode string” on page 203).
These rules also apply for the conversion of the column element value of a multiple
column.

If a conversion error occurs, an error message or alert is issued.

The rounding of a value does not represent a conversion error.

Example
A column of NUMERIC data type is changed to the data type INTEGER.
SESAM/SQL converts the original column value 450.25 to 450 without issuing
an alert.

When conversion errors occur, SESAM/SQL differentiates between truncated
strings, truncated column elements and non-convertible values:

● truncated strings
A column with CHAR or NCHAR data type is to be changed to a new CHAR or
NCHAR data type respectively with shorter length. Affected column values
which are longer than the new value are truncated to the length of the new data
type. If characters which are not spaces are removed, SESAM/SQL issues an
alert.

Example
The value 'cust_service' in a column which is of alphanumeric data type
CHAR(12) or national data type NCHAR(12) is to be converted to data type
CHAR(6) or NCHAR(6) respectively. The original column value is replaced
by the value 'cust_s'. SESAM/SQL issues an alert.

SQL statements ALTER TABLE

U22420-J-Z125-12-76 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

● truncated column elements
A multiple column contains at least one column element whose position number
is greater than the dimension of the new data type and which contains a
significant value not equal to NULL.

Example
A multiple column of alphanumeric data type (7) CHAR (20) or national data
type (7) NCHAR (20) is to be converted to the data type (5) CHAR (20) or
(5) NCHAR (20) respectively. In some table rows, all 7 elements of the
multiple row contain an alphanumeric value.

● Non-convertible values
For certain column values, a change of data type results in the loss of values
with an error message (data exception).

Examples

– The value of an original column of numeric data type is too large for the
target numeric data type.

Example
The value 9999 in an INTEGER column is to be converted to the data
type NUMERIC(2,0).

– A column of alphanumeric data type CHAR or national data type NCHAR is
converted to a numeric data type. The original value of the column cannot
be represented as numeric value.

Example
The value 'Otto' in a column with alphanumeric data type CHAR(4)or
national data type NCHAR(4) is to be converted to the data type
INTEGER.

– The length of the value in an originally numeric column or in a column with
a time data type is too large for the alphanumeric target data type CHAR or
the national target data type NCHAR respectively.

Example
The value 9999 in a column of data type INTEGER is to be converted
to the alphanumeric data type CHAR(2) or national data type
NCHAR(2) respectively.

ALTER TABLE SQL statements

378 U22420-J-Z125-12-76

If the column definition for column contains a default, the new data type may not
contain a dimensional specification.
If the specified SQL default value is an alphanumeric, national, numeric or time
literal, it is converted to the new data type. The conversion must not result in a
conversion error. If the specified SQL default value is a time function, a iteral or the
NULL value, it is not changed.
After conversion, the SQL default value for the new data type must conform to the
assignment rules for default values (see section “Default values for table columns”
on page 123).

CALL DML call_dml_default
Changes the non-significant value of column in a CALL DML table. May only be
specified for CALL DML tables
call_dml_default corresponds to the non-significant attribut value in
SESAM/SQL Version 1.x.
You specify call_dml_default as an alphanumeric literal.

CALL DML call_dml_default not specified:
If the data type modification applies to the column in a CALL DML/SQL table,
column retains the non-significant attribute value which was assigned to it during
column definition.
If the data type modification applies to a column of a CALL DML only table, i.e.
a table with “old“ attribute formats from SESAM versions < V13.1, column is
assigned the following non-significant attribute value:
– space if the column data type is alphanumeric
– digit 0 if the column data type is numeric

SET default
Defines a new SQL default value for the column.

The underlying base table must not be a CALL DML table.

column cannot be a multiple column.

default must conform to the assignment rules for default values (see section “Default
values for table columns” on page 123).

The default is evaluated when a row is inserted or updated and the default value is
used for column.

USING FILE exception_file [PASSWORD password]
Defines the name of the exception file. exception_file must be specified as an
alphanumeric literal.
SESAM/SQL creates or uses the exception file only if a column conversion
performed using SET data_type results in one or more conversion errors (see
page 376).

SQL statements ALTER TABLE

U22420-J-Z125-12-76 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

If an exception file is specified, a statement which results in a conversion error is
continued. SESAM/SQL issues an alert and replaces the original column values by
new values in the affected base table:

– truncated strings are replaced by the corresponding truncated value.

– non-convertible values are replaced by the NULL value.

– column items in a multiple column whose position number is larger than the new
data type dimension are truncated.

SESAM/SQL logs the original column values and truncated column elements
together with the associated alert or error message in the exception file.

Even when UTILITY MODE is switched ON, a statement which results in a
conversion error is not interrupted. The space which contains the base table to be
updated remains intact.

For a detailed description of the exception file and its contents, see section
“Exception file of SQL statement ALTER TABLE” on page 384.

PASSWORD password
BS2000 password for the error file. You must specify password as an
alphanumeric literal.

password can be specified in several different ways:

– 'C''string''' string contains four printable characters.

– 'X''hex_string''' hex_string contains eight hexadecimal characters.

– 'n' n is an integer from - 2147483648 through + 2147483647.

USING FILE exception_file not specified:
If a column conversion performed using SET data_type results in a conversion error,
SESAM/SQL does not log the affected column values or column elements in an
exception file.
Strings are truncated to the length of the new data type and SESAM/SQL issues an
alert.
If conversion errors occur because values cannot be converted or column elements
have to be truncated, SESAM/SQL aborts the associated statement and issues an
error message.

ALTER TABLE SQL statements

380 U22420-J-Z125-12-76

DROP [COLUMN] column,... {CASCADE, RESTRICT}

Deletes one or more columns and associated indices in the base table.
column is the name of the column to be deleted. You can only specify each column
name once.

No primary key may be defined for column.

You must not specify all columns in the base table.

Deleting a column revokes the column privileges UPDATE and FOREIGN KEY...
REFERENCES for this column from the current authorization key. If these privileges
have been passed on, then the passed on privileges are also withdrawn.
In addition, deleting the column also deletes all views where column was used in the
view definition as well as all views whose definitions contain the name of such a “higher
level“ view.

The arrangement of the remaining columns in a table can change: if deleting a column
results in a gap, all following columns are shifted to the left.

CASCADE
Deletes the specified column(s) and associated indices.
The integrity constraints of other tables or columns which use column are also
deleted. All routines which reference this column directly or indirectly are deleted.

You cannot use the UTILITY MODE pragma. If you activate the UTILITY MODE, an
error message is output and the statement is aborted.

RESTRICT
Deletion of a column is restricted:
The column cannot be deleted if it is used in a view definition or a routine. You may
only define an index for the column to be deleted if none of the remaining columns
in the base table is named in the affected index definition. The same applies to the
integrity constraints.

The UTILITY MODE pragma can be activated when no index is defined for the
column.

SQL statements ALTER TABLE

U22420-J-Z125-12-76 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

ADD CONSTRAINT clause
Adds integrity constraints to the base table.

i Adding multiple integrity restraints in an ALTER TABLE statement is more
efficient than adding one integrity restraint in each of a correspondingly large
number of ALTER TABLE statements.

CONSTRAINT integrity_constraint_name
Assigns a name to the integrity constraint. You can qualify the name of the integrity
constraint with a database and schema name. The database and schema name
must be the same as the database and schema name of the base table.

CONSTRAINT integrity_constraint_name omitted:
The integrity constraint is assigned a name according to the following pattern:

UN integrity_constraint_number
FK integrity_constraint_number
CH integrity_constraint_number
where UN stands for UNIQUE, FK for FOREIGN KEY and CH for CHECK.
integrity_constraint_number is a 16-digit number.

table_constraint
Specifies an integrity constraint for the table. table_constraint cannot define a
primary key constraint.

DROP CONSTRAINT integrity_constraint_number {CASCADE, RESTRICT}

Deletes the integrity constraint integrity_constraint_name.
integrity_constraint_number may not name a primary key constraint.

CASCADE
If integrity_constraint_name is a uniqueness constraint, and if the referential
constraint of another table references the column(s) for which
integrity_constraint_name was defined, the referential constraint of the other table is
also implicitly deleted.

RESTRICT
You must not delete a uniqueness constraint on a column if a referential constraint
on another table references this column(s).

ALTER TABLE SQL statements

382 U22420-J-Z125-12-76

Special considerations for CALL DML tables

The ALTER TABLE statement for CALL DML tables must take the following restrictions into
account:

● Only the ADD [COLUMN], DROP [COLUMN] and ALTER [COLUMN] clause are
permitted with SET data_type.

● A newly inserted column must include a CALL DML clause.

● Only the data types CHAR, NUMERIC, DECIMAL, INTEGER and SMALLINT are
permitted.

● No integrity constraint or default value (DEFAULT) can be defined for the column.

● The column name must be different to the integrity constraint name of the table
constraint since this name is used as the name of the compound primary key.

● A column’s data type in a CALL DML table may only be changed to the data type of a
CALL DML/SQL table. In particular, a CALL DML table’s data type must not be changed
to an “old attribute format”, i.e. to an attribute format of SESAM version <13.1.

● An “old attribute format” in a CALL DML only table can be changed to the following data
types:
– CHAR with new_length Ï old_length
– NUMERIC with old_fraction=new_fraction
– DECIMAL with old_fraction=new_fraction
– INTEGER
– SMALLINT

● You can assign a new non-significant attribute value for columns in a CALL DML table.
You may not change the symbolic attribute name.

● If a data type modification results in a value in a CALL DML column receiving the non-
significant attribute value, the value of the column in question is considered to be non-
convertible. If no exception file was specified, SESAM/SQL issues an error message
and aborts the statement. If an exception file is specified, SESAM/SQL reacts as in the
case of non-convertible values in an SQL table (see page 378).

● You can neither use the ALTER [COLUMN] clause nor the DROP [COLUMN] clause to
change the table type. Even if the columns in a CALL DML only table have been
changed or deleted so that none of the columns contains an “old attribute format”, the
“CALL DML only” table type remains unchanged. You can change the table type by
means of the UTILITY statement MIGRATE (see the “SQL Reference Manual Part 2:
Utilities”).

SQL statements ALTER TABLE

U22420-J-Z125-12-76 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Converting “old” attributes in a CALL DML only table

The attribute of a CALL DML only table has no explicit type: the type is simply specified by
the way the table is saved. The user must interpret the values correctly.

You cannot use ALTER COLUMN to change the type, but only to transfer it to the specified
type. When you do this, values of the corresponding type are transferred and those of
different types are rejected (SQLSTATE 22SA5).
You should therefore only specify the appropriate type. Conversion to another type is only
possible if you use a second ALTER COLUMN and specify the new data type.
For example, a binary value can only be changed to INTEGER, SMALLINT. After a second
ALTER COLUMN you can also convert it to NUMERIC, DECIMAL and CHAR.

ALTER COLUMN reads each value and prepares it in accordance with its definition in the
CALL DML table. Alignment, fill bytes etc. are not taken into account. However, no
conversion is performed. After that, a check is performed to determine whether the read
value corresponds to the specified format or not.

Since the attributes of the CALL DML only table also contain values of different types, it is
advisable to always specify USING FILE exception_file for “old” attributes when using
ALTER COLUMN. All inappropriate values are then entered in the exception file.

If no exception file is present, ALTER COLUMN aborts when the first inappropriate value is
encountered.

Special considerations for BLOB tables

You can also use ALTER TABLE to modify a BLOB table. However, certain types of
changes may result in the BLOB table becoming inaccessible to CLI calls. The permitted
changes and their effects are described below:

● Inserting a new column in a BLOB table does not affect the execution of CLI calls.

● Additional integrity constraints on BLOB tables can be defined using the ADD
CONSTRAINT clause without any negative repercussions.

● If one of the columns OBJ_NR, SLICE_NR, SLICE_VAL or OBJ_REF is deleted or its
type is changed, it will no longer be possible to process BLOB values in CLI functions.

ALTER TABLE SQL statements

384 U22420-J-Z125-12-76

Exception file of SQL statement ALTER TABLE

When you modify a column (ALTER COLUMN), you can specify the name of an exception
file. If necessary, you can protect the exception file using a BS2000 password. The
exception file is used to store column values for which conversion errors resulted in data
loss because of a change of data type.
If you have specified an exception file and conversion errors occur during the modification
of the data type, SESAM/SQL sets up the exception file as a SAM file under the DBH user
ID if this does not yet exist.

If the exception file is not to be stored on the DBH user ID, preparations must have been
made, see section “Database files and job variables on foreign user IDs” in the “Core
manual”.

If an exception file is specified, statements which result in a conversion error are not
aborted. SESAM/SQL issues an alert and replaces the original column value by a new
value in the affected base table. Depending on the error type, the value is replaced by a
truncated value or the NULL value.

SESAM/SQL logs the original column values together with the associated error message
or alert in the exception file. If an exception file exists, its contents are not overwritten.
SESAM/SQL appends the new entries to the existing entries.
The exception file is not subject to transaction logging. It remains intact, even if the
transaction which SESAM/SQL uses to write entries to the exception file is implicitly or
explicitly rolled back.
You can display the contents of the exception file using the SHOW-FILE command.

Contents of the exception file

The exception file contains an entry for each logged column value. The entry consists of the
corresponding SQL status code and the components which identify the column value within
the associated base table.

entry :: =

row_id
column_name [posno]
sql_state
column_value

row_id ::=

primary_key
row_counter

SQL statements ALTER TABLE

U22420-J-Z125-12-76 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

row_id
Identifies the table rows which contains the column_value.
In tables with primary keys, row_id is the primary key value which uniquely identifies the
corresponding row. Its representation in the error file corresponds to the representation
of column_value (see under the appropriate information). The same applies to the
compound keys.

In tables without primary key, row_id is the counter of the row containing column_value.
SESAM/SQL numbers all table rows sequentially. The first row in the table contains the
value 1 as row_counter.
row_counter is an unsigned integer.

column_name
Name of the column containing to the column_value. In multiple columns, column_name
also contains the position number, in unsigned integer format, of the affected column
element. The first element of the multiple column has the position number 1.

sql_state
SQLSTATE of the associated error message or alert.

column_value
Original column value for which the ALTER TABLE statement resulted in a conversion
error.
Depending on the data type of the associated, column_value is represented in the
following ways in the exception file:

Strings are represented without surrounding single quotes in the exception file.

Data type of column
containing the original value

Representation of column_value in the exception file

Data type of a CALL DML table
column of SESAM up to V13.1

string with a maximum length of
54 characters

CHAR
VARCHAR

string with a maximum length of
54 characters

NCHAR
NVARCHAR

string with a maximum length of
27 code units

INTEGER, SMALLINT,
NUMERIC, DECIMAL,

corresponding numeric literal
(integer or fixed-point number)

FLOAT, REAL,
DOUBLE PRECISION

corresponding numeric literal
(floating point number)

DATE Date time literal

TIME Time time literal

TIMESTAMP Timestamp time literal

Table 50: Representation of column_value data types

ALTER TABLE SQL statements

386 U22420-J-Z125-12-76

If the original value is a string which contains double quotes, these are represented as
single quotes in the exception file.

Example

The following example shows an exception file which contains the original column
values of the base table SERVICE.

The base table SERVICE has the following structure:

SQL CREATE TABLE service
(service_num INTEGER CONSTRAINT service_num_primary PRIMARY KEY,
order_num INTEGER CONSTRAINT s_order_num_notnull NOT NULL,
service_date DATE, ...)

Its entries are the result of conversion errors which were caused by the following
statements:

ALTER TABLE service ALTER COLUMN service_price SET NUMERIC(5,2)
USING FILE 'ERR.SERVICE'

Excerpt from the exception file ERR.SERVICE:

When converting SERVICE_PRICE from NUMERIC (5,0) to NUMERIC(5,2), any
rows containing the specified primary key will be ignored.

row_id column_name sql_state column_value

2 SERVICE_PRICE 22SA4 1500

3 SERVICE_PRICE 22SA4 1500

4 SERVICE_PRICE 22SA4 1200

5 SERVICE_PRICE 22SA4 1200

.

.

11 SERVICE_PRICE 22SA4 1200

SQL statements ALTER TABLE

U22420-J-Z125-12-76 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Examples

The following examples demonstrate how to modify various properties of the CUSTOMERS
and ORDERS tables:

Add two new columns, CUST_TEL and CUST_INFO, to the CUSTOMERS table.

 ALTER TABLE customers
ADD COLUMN cust_tel CHARACTER(25), cust_info CHARACTER(50)

In the CUSTOMERS table, change the data type of the CUST_NUM column.
The original data type was NUMERIC, the new data type is INTEGER.

 ALTER TABLE customers ALTER COLUMN cust_num SET INTEGER

Delete the CUST_INFO column from the CUSTOMERS table.
This is possible only if the CUST_INFO column is not used in any view definition. An index
or an integrity constraint can then only be defined for the CUST_INFO column if none of the
remaining columns of the base table is specified in the definition.

 ALTER TABLE customers DROP COLUMN cust_info RESTRICT

Add a uniqueness constraint on the CUST_NUM column of the CUSTOMERS table.

 ALTER TABLE customers ADD CONSTRAINT cust_num_unique UNIQUE
(cust_num)

Delete the referential constraint between the CUST_NUM column of the ORDERS table
and the CUST_NUM column of the CUSTOMERS table. You can look up the names of the
integrity constraints used in the TABLE_CONSTRAINTS, REFERENTIAL_CONSTRAINTS
and CHECK_CONSTRAINTS views of the INFORMATION-SCHEMA.

 ALTER TABLE orders DROP CONSTRAINT o_cust_num_ref_customers CASCADE

See also

CREATE TABLE

CALL SQL statements

388 U22420-J-Z125-12-76

CALL - Execute procedure

CALL executes a procedure CALL can also be used in a routine to execute another
procedure (nested calls of routines).

The CALL statement is a non-atomic SQL statement, as non-atomic statements can be
contained in the called procedure.

Procedures and their use in SESAM/SQL are described in detail in chapter “Routines” on
page 323.

You can ascertain which routines are defined and which routines use each other in the
views for routines of the INFORMATION_SCHEMA (see chapter “Information schemas” on
page 633).

When a procedure expects input parameters, the corresponding values (arguments) must
be transferred to the procedure in the CALL statement.

Output values of procedures which are called outside a routine are stored in corresponding
host variables or in the SQL descriptor area. Output values of procedures which are called
in a higher-level routine are entered in output parameters or in local variables of the higher-
ranking procedure.

The DEBUG ROUTINE, DEBUG VALUE, and LOOP LIMIT pragmas can also be used. See
section “Pragmas and annotations” on page 53.
They are interpreted only when they are located ahead of a CALL statement which is called
externally (in other words from an application), and they then propagate their effect to all
directly or indirectly contained CALL statements and User Defined Functions. They have
no effect ahead of a CALL statement in a procedure.

Pragmas for optimization can also be specified in a procedure in the case of a CALL
statement. They then have an effect on optimizing the call values.

In order to execute a procedure, the current authorization identifier requires the EXECUTE
privilege for the procedure to be executed, but not the privileges which are required to
execute the DML statements contained in the procedure. In addition, the SELECT
privileges for the tables which are addressed in the routine’s call parameters by means of
subqueries are required.

CALL procedure arguments

procedure ::= routine

arguments ::= ([expression [{,expression}...]])

procedure
Name of the procedure to be executed. You can qualify the procedure name with a
database and schema name.

SQL statements CALL

U22420-J-Z125-12-76 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

([expression [{,expression}...]])
List of arguments. The number of arguments must be the same as the number of
parameters in the procedure definition. The order of the arguments must correspond to
that of the parameters. If no parameter is defined for the procedure, the list consists
only of the parentheses.

If the nth parameter is of the type IN or INOUT, it is assigned the value of the nth
argument before the procedure is executed.

If the nth parameter is of the type OUT or INOUT, the following applies:

– If the CALL statement is static, the nth argument must be a host variable (possibly
with indicator variable).
The same host variable may not be used as an argument for more than one
parameter of the type OUT or INOUT.

– If the CALL statement is dynamic, the nth argument must be a placeholder ("?").

After the procedure has been executed, the values for the parameters of the type OUT
or INOUT are transferred to the corresponding host variables or to an SQL descriptor
area.

The data type of the nth argument must be compatible with the data type of the nth
parameter. For input parameters, see the information in section “Supplying input
parameters for routines” on page 129. For output parameters, see section “Entering
values in a procedure parameter (output) or local variable” on page 130.

When, in the case of a static SQL statement, a parameter is specified as a host variable,
while pre-assembling (without database contact) SESAM/SQL assumes that a
parameter of the type IN or INOUT is concerned and transfers this value to the DBH.
Even if a pure output parameter is concerned, the value must therefore either be
correctly initialized according to the data type or the host variable will be assigned an
indicator variable which must then be supplied with the value -1.

CALL and transaction management

CALL introduces an SQL transaction for procedures which are called outside a routine
when no transaction is open. As a procedures contains only DML statements, CALL
initiates an SQL transaction for data manipulation.

The procedure statements run at the same isolation level and in the same transaction mode
as the CALL statement (see section “SET TRANSACTION - Define transaction attributes”
on page 569).

When the transaction mode READ ONLY is set, the procedure may not contain any SQL
statements for updating data.

CALL SQL statements

390 U22420-J-Z125-12-76

CALL and time functions

If the time functions CURRENT_DATE, CURRENT_TIME(3), LOCALTIME(3),
CURRENT_TIMESTAMP(3) and LOCALTIMESTAMP(3) are included in a statement
multiple times, they are avaluated simultaneously, see section “Time functions” on
page 141. This information also applies for procedure statements. However, this does not
mean that the time functions of all statements of a procedure run are evaluated
simultaneously:

– The time functions of the CALL statement are evaluated simultaneously if they occur as
a value in input parameters.

– The time functions of each procedure statement are evaluated simultaneously and
separately. Different procedure statements consequently generally return different time
values.

– The time functions of the COMPOUND statement are evaluated simultaneously when
they occur as a default value in variable definitions.

– The time functions of an IF statement are evaluated simultaneously for all search
conditions, both in the IF and in the ELSIF branch. However, the time functions of the
procedure statements in the THEN and ELSE branches of the IF statement are once
again evaluated simultaneously and separately.

– The time functions in cursor descriptions of local cursors are evaluated simultaneously
in the OPEN statement for the cursor.

Example

The GetCurrentYear procedure (see page 419) is called.

CALL ProcSchema.GetCurrentYear (OUT myvar)

See also

CREATE PROCEDURE, DROP PROCEDURE

SQL statements CASE

U22420-J-Z125-12-76 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CASE - Execute SQL statements conditionally

The CASE statement executes SQL statements depending on specific values (unqualified
CASE statement) or conditions (CASE statement with search condition).

The CASE statement may only be specified in a routine, i.e. in the context of a CREATE
PROCEDURE or CREATE FUNCTION statement. Routines and their use in SESAM/SQL
are described in detail in chapter “Routines” on page 323.

The CASE statement is a non-atomic SQL statement, i.e. further (atomic or non-atomic)
SQL statements can occur in it.

If the search_condition or an expression of a CASE statement corresponds to a table, the
authorization identifier which creates the routine using CREATE PROCEDURE or CREATE
FUNCTION must have the SELECT privilege for this table.

Execution information

The CASE statement is a non-atomic statement:

● If the CASE statement is part of a COMPOUND statement, the rules described there
apply, in particular the exception routines defined there.

● If the CASE statement is not part of a COMPOUND statement and one of the SQL
statements reports an SQLSTATE, it is possible that only the updates of this SQL
statement will be undone. The CASE statement and the routine in which it is contained
are aborted. The SQL statement in which the routine was used returns the SQLSTATE
concerned.

See also

CREATE PROCEDURE, CREATE FUNCTION

CASE SQL statements

392 U22420-J-Z125-12-76

Format of the simple CASE statement

CASE expressionx
 WHEN expression1, ... THEN {routine_sql_statement;} ...
 ...
 [ELSE {routine_sql_statement;} ...]
END CASE

expression
Expression that returns an alphanumeric, national, numeric or time value when
evaluated.
It cannot be a multiple value with a dimension greater than 1.

expression may not include host variables.
A column may only be specified in a subquery.

The values of expressionx and expression1, ... must have compatible data types (see
section “Compatibility between data types” on page 99).

routine_sql_statement
SQL statement which is to be executed in the THEN or ELSE clause depending on the
values of expressionx and expression1,
An SQL statement is concluded with a ";" (semicolon).
Multiple SQL statements can be specified one after the other. They are executed in the
order specified.
No privileges are checked before an SQL statement is executed.
An SQL statement in a routine may access the parameters of the routine and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there may not be
used.

SQL statements CASE

U22420-J-Z125-12-76 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Execution information

expressionx of the CASE statement is calculated.

The WHEN clauses are evaluated from top to bottom.
The expressions expression1,... of the WHEN clauses are calculated from left to right.

When a value of an expression calculated in this way corresponds to the value of
expressionx, the associated THEN branch is executed, and the CASE statement is
subsequently terminated.

If none of the calculated values corresponds to expressionx but an ELSE branch exists, the
ELSE branch of the CASE statement is executed, and the CASE statement is subsequently
terminated.

If none of the calculated values corresponds to expressionx and no ELSE branch exists, the
CASE statement is terminated with SQLSTATE '20000'.

Example

Simple CASE statement for calculating the public holiday allowance in wages.

CASE MOD(JULIAN_DAY_OF_DATE(CURRENT_DATE),7)
 WHEN 0,1,2,3,4 /* today is a normal workday */
 THEN UPDATE pay_scale SET pay = time_pay;
 WHEN 5 /* today is Saturday, 25% supplement */
 THEN UPDATE pay_scale SET pay = time_pay * 1.25;
 WHEN 6 /* today is Sunday, 50% supplement */
 THEN UPDATE pay_scale SET pay = time_pay * 1.50;
END CASE

The CASE statement above could also be replaced by an UPDATE statement with an
appropriate case_expression.

UPDATE pay-scale
 SET pay = time_pay * CASE MOD(JULIAN_DAY_OF_DATE(CURRENT_DATE),7)
 WHEN 0,1,2,3,4 /* today is a normal workday */
 THEN 1.00
 WHEN 5 /* today is Saturday, 25% supplement */
 THEN 1.25
 WHEN 6 /* today is Sunday, 50% supplement */
 THEN 1.50
 END

CASE SQL statements

394 U22420-J-Z125-12-76

Format of the CASE statement with search condition

CASE
 WHEN search_condition THEN {routine_sql_statement;} ...
 ...
 [ELSE {routine_sql_statement;} ...]
END CASE

search_condition
Search condition that returns a truth value when evaluated
If the result of the search condition is “unknown”, no SQL statement is executed in the
THEN clause.

routine_sql_statement
See “Format of the simple CASE statement” on page 392.

Execution information

The WHEN clauses are evaluated from top to bottom.
The search_condition of the WHEN clause is evaluated.

When such a calculated search condition returns the truth value TRUE, the
associated THEN branch is executed, and the CASE statement is subsequently
terminated.

If none of the calculated search conditions returns the truth value TRUE but an ELSE
branch exists, the ELSE branch of the CASE statement is executed, and the CASE
statement is subsequently terminated.

If none of the calculated search conditions returns the truth value TRUE and no ELSE
branch exists, the CASE statement is terminated with SQLSTATE '20000'.

Example

CASE statement with search condition.

CASE
 WHEN (EXISTS(select * from T1 where cola = 17))
 THEN update T1 set colb = colb * 1.05;
 WHEN (EXISTS(select * from T2 where colx = 27))
 THEN insert into T2 (pk, coly) values (*, 423);
END CASE

SQL statements CLOSE

U22420-J-Z125-12-76 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CLOSE - Close cursor

You use CLOSE to close a cursor you declared with the DECLARE CURSOR statement
and opened with OPEN or RESTORE.

The cursor description is retained. The current cursor position can be saved before closing
with STORE (not applicable for local cursors in procedures).

You can close a cursor any number of times and, if desired, open it again with new variable
values.

CLOSE cursor

cursor
Name of the cursor to be closed.

Example

Close the cursor CUR_CONTACTS.

 CLOSE cur_contacts

See also

DECLARE CURSOR, FETCH, OPEN, RESTORE, STORE

COMMIT WORK SQL statements

396 U22420-J-Z125-12-76

COMMIT WORK - Terminate transaction

You use COMMIT WORK to terminate an SQL transaction and commit the modifications
made to the database during that transaction. The updated SQL data is then available to
all other transactions.

A new transaction is started by the first SQL statement after COMMIT WORK that initiates
an SQL transaction.

COMMIT [WORK]

SQL transaction

You start an SQL transaction with any SQL statement that initiates a transaction. All
subsequent SQL statements up to the next COMMIT WORK or ROLLBACK WORK
statement are part of one transaction. COMMIT WORK or ROLLBACK WORK terminates
the transaction.

Transaction under openUTM

You cannot use the COMMIT WORK statement if you are working with openUTM. In this
case, transaction management is performed using only UTM language resources.
openUTM ensures the synchronization of SESAM/SQL and UTM transactions. A UTM
transaction ends when the next synchronization point is set.

Initiating a transaction

The following SQL statements do not initiate a transaction:

– DECLARE CURSOR (not executable)
– PERMIT
– SET CATALOG
– SET SCHEMA
– SET SESSION AUTHORIZATION
– SET TRANSACTION
– WHENEVER (not executable)
– Utility statements

The statements EXECUTE and EXECUTE IMMEDIATE only initiate an SQL transaction if
the dynamic statement to be executed initiates a transaction.

All other SQL statements initiate an SQL transaction if no transaction is open when they are
executed.

SQL statements COMMIT WORK

U22420-J-Z125-12-76 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Statements within a transaction

The following statements cannot be executed within a transaction:

– SET SESSION AUTHORIZATION
– SET TRANSACTION
– Utility statements

You may not execute or prepare an SQL statement that manipulates data (query, update)
in a transaction in which an SQL statement for defining or managing schemas, storage
structures or user entries is executed.

CALL DML transaction

The SQL statement COMMIT WORK is not permitted within a CALL DML transaction (see
section “SQL statements in CALL DML transactions” on page 45).

Effects of COMMIT WORK

COMMIT WORK affects the subsequent transactions, as well as the open cursors and the
defaults in the transaction.

Effect on subsequent transactions

COMMIT WORK work sets the isolation or consistency level and the transaction mode,
which were set for the transaction with the SET TRANSACTION statement, back to their
default values. Any subsequent transaction therefore works the default isolation or
consistency level and transaction mode if they are not changed again with SET
TRANSACTION.

Repercussions on cursors (not applicable for local cursors in procedures)

COMMIT WORK closes all the cursors opened in the transaction. If you want to save the
cursor position beyond the end of the transaction, you can save the position with the
STORE statement and restore it later with RESTORE.

It is possible to define a cursor using the WITH HOLD clause. A cursor defined in this way
will remain open even after COMMIT WORK is executed (successfully). It can then be
positioned in a follow-up transaction using FETCH.

Effect on defaults

Default values defined with SET CATALOG, SET SCHEMA and SESSION
AUTHORIZATION are committed after COMMIT WORK.

COMMIT WORK SQL statements

398 U22420-J-Z125-12-76

Behavior of SESAM/SQL in the event of an error

If an SQL transaction cannot be completed normally because of an error, SESAM/SQL rolls
back the complete transaction. Refer to ROLLBACK WORK for information on which
database objects are affected.

See also

ROLLBACK WORK, SET TRANSACTION

SQL statements COMPOUND

U22420-J-Z125-12-76 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

COMPOUND - Execute SQL statements in a common context

The COMPOUND statement executes other SQL statements of a routine in a common
context. Common local data (variables and exception names), common local cursors, and
common local exception routines apply for these SQL statements.

i The spelling "COMPOUND" (uppercase) was chosen merely by analogy to the
existing notation in the SQL statements for this SQL statement.
There is no SQL keyword "COMPOUND".

The COMPOUND statement may only be specified in a routine, i.e. in the context of a
CREATE PROCEDURE or CREATE FUNCTION statement. It is then the only statement in
the routine. Routines and their use in SESAM/SQL are described in detail in chapter
“Routines” on page 323.

[label:]
BEGIN [[NOT] ATOMIC]

[local_data]
[local_cursor]
[local_exception_handling]
[{routine_sql_statement;}...]

END [label]

label
The label in front of the COMPOUND statement (start label) indicates the start of the
COMPOUND statement. It may not be identical to another label in the COMPOUND
statement.

The start label need only be specified when the COMPOUND statement is to be
terminated by means of a LEAVE statement

The label at the end of the COMPOUND statement (end label) indicates the end of the
COMPOUND statement. If the end label is specified, the start label must also be
specified. Both labels must be identical.

[NOT] ATOMIC
Determines whether the COMPOUND statement is atomic or non-atomic.
This specification influences local exception handling, see page 405.
If nothing is specified, NOT ATOMIC applies.

COMPOUND SQL statements

400 U22420-J-Z125-12-76

local_data
Defines local variables and exception names for the COMPOUND statement, see
section “Local data” on page 402.

i The SQL statements of the COMPOUND statement can only access local data
which is defined in the COMPOUND statement. They cannot access host
variables.

local_cursor
Defines local cursors for the COMPOUND statement, see section “Local cursors” on
page 404.

i The SQL statements of the COMPOUND statement can only access cursors
which are defined in the COMPOUND statement.

local_exception_handling
Defines local exception routines for the COMPOUND statement, see section “Local
exception routines” on page 405.

SQLSTATEs of classes 40xxx and SQLSTATEs from class '50xxx' cannot be handled
in the local exception routines. When such an SQLSTATE occurs, the routine is
immediately aborted. In the case of an SQLSTATE of class '40xxx', the entire
transaction is also reset.

SQLSTATEs which are not specified explicitly in the exception routines in the form of a
class or explicitly ("unspecified SQLSTATEs") are not handled by any exception routine.
The same applies when no local exception handling is defined. In these cases
SESAM/SQL automatically performs exception handling as follows:

● SQLSTATEs of classes '01xxx’ (warning) or '02xxx’ (no data) are ignored, i.e. the
routine is continued as when the SQL statement is executed successfully
(SQLSTATE = '00000').

● The following actions are performed for SQLSTATEs which are not in class '01xxx',
'02xxx' or '40xxx':

– Open local cursors are closed.

– When ATOMIC is specified in the COMPOUND statement, all updates made in
the context of the COMPOUND statement are undone.

– When NOT ATOMIC (default value) is specified in the COMPOUND statement,
only updates made in the context of the errored SQL statement are undone.

– The COMPOUND statement and with it the routine are aborted. The SQL
statement in which the routine was used returns the SQLSTATE concerned.

SQL statements COMPOUND

U22420-J-Z125-12-76 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

routine_sql_statement
SQL statement which is to be executed in the COMPOUND statement.
An SQL statement is concluded with a ";" (semicolon).
Multiple SQL statements can be specified one after the other. They are executed in the
order specified.
No (further) COMPOUND statement may be specified in the COMPOUND statement.
In other words, no nested COMPOUND statements are permitted (exception: local
exception routines, see page 405.)
No privileges are checked before an SQL statement is executed.
An SQL statement in a routine may access the parameters of the routine and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there may not be
used.

Example

You will find examples in chapter “Routines” on page 323 and in the demonstration
database of SESAM/SQL (see the “Core manual”).

See also

CREATE PROCEDURE, CREATE FUNCTION, CALL, DROP PROCEDURE, DROP
FUNCTION, CASE, FOR, IF, ITERATE, LEAVE, LOOP, REPEAT, SET, WHILE, RETURN,
GET DIAGNOSTICS, SIGNAL, RESIGNAL, SELECT, INSERT, UPDATE, DELETE,
MERGE, OPEN, FETCH, UPDATE, DELETE, CLOSE

COMPOUND SQL statements

402 U22420-J-Z125-12-76

Local data

Local data comprises variables or exception names which can only be addressed in the
COMPOUND statement.

A data type and, if required, a default value is defined for variables. They have no indicator
variable. They can be used in local cursor definitions, local exception routines, and the SQL
statements of the COMPOUND statement.

i Recommendation
The names of and local variables should differ from column names (e.g. by
assigning a prefix such as par_).

To facilitate understanding, exception names define a name for an exception (without
specifying an associated SQLSTATE) or a name for an SQLSTATE. They can be used in
local exception routines, see page 405.

local_data ::= { DECLARE ; }...

sqlstate ::= SQLSTATE [VALUE] alphanumeric_literal

Multiple variables of the same data type with the same SQL default value can be specified
one after another, separated by "," (comma).
The definition of a local date is concluded with “;” (semicilon). Multiple definitions can be
specified one after the other.

local_variable
Name of the local variable.
The names of all local variables must differ from each other, from the local exception
names, and from the names of the routine’s parameters.

data_type
Data type of the local variable.
Only unqualified local variables exist. dimension may not be specified.

default
Specifies the SQL default value for the local variable.
The assignment rules for default values apply, see section “Default values for table
columns” on page 123).

exception_name
Name of an exception or SQLSTATE.
All exception names of all local variables must differ from each other, from the local
variables, and from the names of the routine’s parameters.

{local_variable},... data_type [default]
error_name CONDITION [FOR sqlstate]

SQL statements COMPOUND

U22420-J-Z125-12-76 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

FOR sqlstate
SQLSTATE (alphanumeric literal with the length 5) which is named by exception_name.
The restrictions for the set of SQLSTATEs must be borne in mind, see “Local exception
routines” on page 405.

FOR sqlstate omitted:
Local exception names without FOR clause can be triggered only by a SIGNAL or
RESIGNAL statement. They are mapped to the SQLSTATE '45000' (unspecified user
exception) and reported to the application program. exception_name appears as an
insert in the error message.

Example

Definition of local variables.

DECLARE a,b,c SMALLINT DEFAULT 0;

DECLARE mytim TIME(3) DEFAULT CURRENT_TIME;

Definition of exception names:

DECLARE Tab_not_accessible CONDITION FOR SQLSTATE '42SQK';

DECLARE "CHECK problem" CONDITION FOR SQLSTATE '23SA1';

DECLARE "Unknown problem" CONDITION;

COMPOUND SQL statements

404 U22420-J-Z125-12-76

Local cursors

With the definition of local cursors, cursors are defined which can only be addressed in the
COMPOUND statement.
The names of the local cursors must differ from each other.

Local cursors can be used in local exception routines and the SQL statements of the
COMPOUND statement.

The SQL statements STORE and RESTORE are not permitted for local cursors.

local_cursor ::= { declare_cursor_statement; } ...

A cursor definition is concluded with a ";" (semicolon).
Multiple cursor definitions can be specified one after the other.

declare_cursor_statement
DECLARE CURSOR statement (see section “DECLARE CURSOR - Declare cursor”
on page 447) with which the local cursor is defined. The WITH HOLD clause may not
be specified.
A local cursor differs from a normal cursor only in its limited area of validity.

Example

See section “DECLARE CURSOR - Declare cursor” on page 447.

SQL statements COMPOUND

U22420-J-Z125-12-76 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Local exception routines

local_exception_handling ::= { exception_routine; } ...

exception_routine ::= DECLARE HANDLER FOR error_list

error_list ::=

class_list ::= [{, } ...]

sqlstate_or_error_list ::= [{, } ...]

sqlstate ::= SQLSTATE [VALUE] alphanumeric_literal

The definition of local exception routines determines what response is made when, during
processing of an SQL statement in the context of the COMPOUND statement, an
SQLSTATE î '00000' is reported.

The SQLSTATEs of the classes 0xxxx (with the exception of SQLSTATE = '00000'), '1xxxx',
'2xxxx', '3xxxx', and '4xxxx' (with the exception of class '40xxx') can be handled.

Exception routines are concluded with ";" (semicolon).
Multiple exception routines can be specified one after the other.

When an SQLSTATE î '45000' occurs (defined in the class_list or as sqlstate or
exception_name), the exception routine for the specified SQLSTATE is executed.

If the SQLSTATE '45000' (unspecified user condition) occurs as a result of a SIGNAL or
RESIGNAL statement, the exception_name of the exception information is evaluated, and
the corresponding exception routine is executed.

CONTINUE
EXIT
UNDO

routine_sql_statement
compound_statement

class_list
sqlstate_or_error_list

SQLEXCEPTION
SQLWARNING
NOT FOUND

SQLEXCEPTION
SQLWARNING
NOT FOUND

sqlstate
error_name

sqlstate
alphanumeric_literal
error_name

COMPOUND SQL statements

406 U22420-J-Z125-12-76

DECLARE
Type of exception handling in accordance with the SQLSTATE. See also the section
“Success of an SQL statement in a routine” on page 344

CONTINUE

– The updates which were made in the context of the errored SQL statement are
undone.

– The exception routine's SQL statement is executed.

– If this SQL statement was terminated without success, the routine is aborted,
and this SQLSTATE is returned to the user.

– If this SQL statement was terminated error free, the routine is continued. The
SQL statement which reported the SQLSTATE and consequently triggered
exception handling is regarded as successful.

EXIT

– The updates which were made in the context of the errored SQL statement are
undone.

– The exception routine's SQL statement is executed.
Open local cursors are closed.

– If this SQL statement was terminated without success, the routine is aborted,
and this SQLSTATE is returned to the user.

– If this SQL statement was terminated error free, the routine is terminated. The
COMPOUND statement is regarded as successful (SQLSTATE = '00000' is
returned).

UNDO (permitted only when ATOMIC is specified in the COMPOUND statement)

– All updates which were made in the context of the COMPOUND statement are
undone.

– The exception routine's SQL statement is executed.
Open local cursors are closed.

– If this SQL statement was terminated without success, the routine is aborted,
and this SQLSTATE is returned to the user.

– If this SQL statement was terminated error free, the routine is terminated. The
COMPOUND statement is regarded as successful (SQLSTATE = '00000' is
returned).

SQL statements COMPOUND

U22420-J-Z125-12-76 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

class_list
Specification of SQLSTATE sets:

– SQLWARNING indicates the SQLSTATEs of class 01xxx (warning).

– NOT FOUND indicates the SQLSTATEs of class 02xxx (no data).

– SQLEXCEPTION indicates all other SQLSTATEs of classes 0xxxxx through
4xxxx (with the exception of the SQLSTATE '00000' and class 40xxx) which can
be handled in the context of an exception routine.

sql_state
Explicit specification of SQLSTATEs.
Each alphanumeric literal must represent an SQLSTATE in 5 characters (digits or
uppercase letters).
Only SQLSTATEs which can be handled in the context of an exception routine may
be specified.

i Each SQLSTATE may only occur once in one of the exception routines of
the COMPOUND statement.

The list below shows examples of SQLSTATEs for which separate exception
handling can make sense (see the "Messages" manual):

01004 String data was truncated on the right
20000 CASE statement without hits contains no ELSE clause
21000 Derived table contains more than 1 row
22001 String data was truncated on the right
22003 Numeric value too high or too low
22SA1 Decimal places truncated or rounded
23SA0 Referential constraint violated
23SA1 CHECK constraint violated
23SA2 Unique constraint violated
23SA3 NOT-NULL constraint violated
23SA4 NOT-NULL constraint of the primary key violated
23SA5 Unique constraint of the primary key violated
24SA1 Cursor is not closed
24SA2 Cursor is not open
24SA3 Cursor is not positioned on a row

Other SQLSTATEs, e.g. syntax errors, are best handled via one of the previously
described sets of SQLSTATEs.

COMPOUND SQL statements

408 U22420-J-Z125-12-76

exception_name
Name of an exception or SQLSTATE, see “Local data” on page 402.
Only exception names which can be handled in the context of an exception routine
may be specified.

i Each exception_name SQLSTATE may only occur once in one of the
exception routines of the COMPOUND statement.

routine_sql_statement
SQL statement which is to be executed in the exception routine.

The syntax and meaning of routine_sql_statement are described centrally in section
“SQL statements in routines” on page 361. The SQL statements named there may
not be used.

compound_statement
COMPOUND statement which contains multiple SQL statements, see section
“COMPOUND - Execute SQL statements in a common context” on page 399.
Except for the permissible routine_sql_statements, a COMPOUND statement
specified here may not contain any definitions of local data, cursors, or exception
routines.

Example

Definition of unqualified exception handling with two exception routines.

DECLARE CONTINUE HANDLER FOR SQLWARNING,NOT FOUND
SET eot=1;

DECLARE EXIT HANDLER FOR SQLSTATE '23SA0'
BEGIN END;

SQL statements CREATE FUNCTION

U22420-J-Z125-12-76 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CREATE FUNCTION - Create User Defined Function (UDF)

CREATE FUNCTION creates a UDF and saves its definition in the database.

UDFs and their use in SESAM/SQL are described in detail in chapter “Routines” on
page 323.

Each routine which is called in the UDF must already exist. Nested calls of routines are thus
possible, but rerecursive calls are not.

The current authorization identifier must own the schema to which the UDF belongs. It must
also, for all tables and columns which are addressed in the UDF, have the privileges which
are required to execute the DML statements contained in the UDF.

The current authorization identifier must have the EXECUTE privilege for the routine called
directly in the UDF. It must also, for all tables and columns which are addressed in the UDF,
have the privileges which are required to execute the DML statements contained in the
routine.

The current authorization identifier automatically obtains the EXECUTE privilege for the
UDF created. If it even has authorization to pass on the relevant privileges, it may also pass
on the EXECUTE privilege to other authorization identifiers.

The UDF and the objects which are addressed in the UDF must belong to the same
database. The names of these objects may possibly be complemented by the UDF's
database and schema names.

CREATE FUNCTION

udf ([udf_parameter_definition [{,udf_parameter_definition}...]])

RETURNS data_type

udf ::= routine
udf_parameter_definition ::= [IN] routine_parameter data_type

READS SQL DATA
CONTAINS SQL

routine_sql_statement
compound_statement

CREATE FUNCTION SQL statements

410 U22420-J-Z125-12-76

udf
Name of the UDF (maximum length: 31 characters). The unqualified name of the UDF
must be different from the other routine names in the schema. You can qualify the table
name with a database and schema name.
If the CREATE FUNCTION statement is specified in a CREATE SCHEMA statement,
the UDF name may be qualified only with the database and schema names from the
CREATE SCHEMA statement.

([udf_parameter_definition [{,udf_parameter_definition}...]])
List of the UDF call parameters. Any number of UDF parameters is possible. It is limited
only by the maximum statement length. If no parameter is defined, the list consists only
of the parentheses.

udf_parameter_definition
Definition of a UDF call parameter.
UDF call parameters have no indicator variable.

routine_parameter
Name of the UDF call parameter. The names of the UDF call parameters must differ
from each other.

data_type
Data type of the UDF call parameter.
Only unqualified UDF call parameters are permitted.
dimension may not be specified.

RETURNS data_type
Data type of the UDF return value.
Only unqualified UDF return values are permitted.
dimension may not be specified.

READS SQL DATA
The UDF can contain SQL statements for reading data, but no SQL statements for
updating data. This information is checked. In the event of an error, the statement is
rejected with SQLSTATE.

i Called routines of this UDF may not contain the MODIFIES SQL DATA
specification.

CONTAINS SQL
The UDF contains neither SQL statements for reading data nor for updating data. This
information is checked. In the event of an error, the statement is rejected with
SQLSTATE.

i UDFs always contain SQL statements, i.e. CONTAINS SQL is always present.
The NO SQL case envisaged in the SQL standard does not occur.

Called routines of this procedure may not contain the MODIFIES SQL DATA
and READS SQL DATA specifications.

SQL statements CREATE FUNCTION

U22420-J-Z125-12-76 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

routine_sql_statement
A UDF contains precisely one non-atomic SQL statement or precisely one RETURN
statement. The non-atomic SQL statement must contain at least one RETURN
statement
The non-atomic SQL statements in SESAM/SQL are COMPOUND (without
specification of ATOMIC), CASE, FOR, IF, LOOP, REPEAT, and WHILE. They can
contain other (atomic or non-atomic) SQL statements. Atomic SQL statements are the
other SQL statements permissible in a routine.

No privileges are checked before an SQL statement is executed.
An SQL statement in a UDF may access the parameters of the UDF and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there, with the
exception of the SQL statements for modifying data (INSERT, UPDATE, MERGE,
DELETE), may be used.

compound_statement
COMPOUND statement which contains multiple SQL statements and possibly defines
common local data, cursors, and exception handling routines for these, see section
“COMPOUND - Execute SQL statements in a common context” on page 399.

Conditions

SESAM/SQL offers the SQL statements COMPOUND, CASE, FOR, IF, ITERATE, LEAVE,
LOOP, REPEAT, SET, and WHILE for controlling routines. These SQL statements are also
referred to as control statements.

You obtain diagnostic information in routines with the diagnostic statements GET
DIAGNOSTICS, SIGNAL, and RESIGNAL.

In SESAM/SQL, nested calls of routines are permitted. The CALL statement is therefore
one of the statements permitted in a routine.

A routine may not contain any SQL statements for transaction management (see
page 356). Local cursors can therefore not be accessed on a cross-transaction basis.
STORE or RESTORE statements are not statements which are permitted in a routine; their
use in a routine makes no sense.

A routine may not contain any dynamic SQL statements or cursor descriptions, see section
“Dynamic SQL” on page 32.

A routine can be called in a UDF in a dynamic SQL statement. If a procedure contains
parameters of the type OUT or INOUT, the corresponding arguments must be specified in
a dynamic CALL statement in the form of placeholders.

CREATE FUNCTION SQL statements

412 U22420-J-Z125-12-76

Example

The GetCurrentYear UDF below returns the current year as a number. It contains no SQL
statements for reading or updating data.

CREATE FUNCTION GetCurrentYear (IN time TIMESTAMP(3))
RETURNS DECIMAL(4)
CONTAINS SQL
RETURN EXTRACT (YEAR FROM time)

You will find further examples in chapter “Routines” on page 323 and in the demonstration
database of SESAM/SQL (see the “Core manual”).

See also

DROP FUNCTION, COMPOUND, CASE, FOR, IF, ITERATE, LEAVE, LOOP, REPEAT,
SET, WHILE, CALL, RETURN, SELECT, INSERT, OPEN, FETCH, CLOSE,
GET DIAGNOSTICS, SIGNAL, RESIGNAL

SQL statements CREATE INDEX

U22420-J-Z125-12-76 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CREATE INDEX - Create index

You use CREATE INDEX to generate an index for a base table. SESAM/SQL can use the
index to evaluate constraints on one or more columns of the index without accessing the
base table or to output the rows in the table in the order of the values in the index column(s).

The restrictions and special considerations that apply to CALL DML tables are described in
the section “Special considerations for CALL DML tables” on page 415.

The current authorization identifier must own the schema to which the base table belongs.

If you specify the space for the index, the current authorization identifier must own the
space.

CREATE INDEX

index_definition,...

ON TABLE table

[USING SPACE space]

index_definition ::= index ({column [LENGTH length]},...)

index_definition
Definition of one or more indexes

If you create an index for only one column, the column may not be longer than
256 characters. If you create an index involving several columns, the sum of the column
lengths plus the total number of columns cannot exceed 256.

index
Name of the new index. The unqualified index name must be unique within the schema.
You can qualify the index name with a database and schema name. The database and
schema name must be the same as the database and schema name of the base table
for which you are creating the index.

If you use the CREATE INDEX statement in a CREATE SCHEMA statement, you can
only qualify the index name with the database and schema name from the CREATE
SCHEMA statement.

CREATE INDEX SQL statements

414 U22420-J-Z125-12-76

column
Name of the column in the base table you want to index.

A column cannot occur more than once in an index. You can create an index that
applies to several columns (compound index). In this case, the index cannot apply to
multiple columns.

LENGTH length
Indicates the length up to which the column is to be indexed. length must be an unsigned
integer between 1 and the length of the column. You can only limit the length if the
column is of the following data type: CHAR, VARCHAR, NCHAR and NVARCHAR or
data types from SESAM up to V12.

LENGTH length omitted:
The column in its entirety in bytes is indexed.

ON TABLE table
Name of the base table you are indexing.

If you qualify the table name with a database and schema name, this must be the same
as the database and schema name of the index.

If you use the CREATE INDEX statement in a CREATE SCHEMA statement, you can
only qualify the table name with the database and schema name from the CREATE
SCHEMA statement.

USING SPACE space
Name of the space in which the index is to be stored.

You can qualify the space name with the database name. This database name must be
the same as the database name of the base table.

The space must already be defined for the database to which the table belongs. The
current authorization identifier must own the space.

USING SPACE space omitted:
The index is stored in the space for the base table. In the case of a partitioned table,
the index is stored in the space for the first partition.

SQL statements CREATE INDEX

U22420-J-Z125-12-76 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Special considerations for CALL DML tables

The CREATE INDEX statement for CALL DML tables must take the following restrictions
and special considerations into account:

● Every index can only apply to one column.

● Each column can only occur once in an index.

● You can only specify the name of the primary key constraint of a database with a
compound key as the column name in the index. This means that the primary key is
indexed.

Indexes and integrity constraints

If you define a UNIQUE integrity constraint for a table, the columns specified in the UNIQUE
constraint are implicitly indexed. If you explicitly define an index with CREATE
INDEX that applies to the same columns, the implicitly defined index is deleted. The explicit
index is then also used for the integrity constraint.

Examples

The example below creates a compound index for the columns CUST_NUM and
COMPANY in the CUSTOMERS table. The COMPANY column is included in the index to
a length of 10 characters. Store the index in the INDEXSPACE space.

 CREATE INDEX cust_ind (cust_num,company LENGTH 10)
ON TABLE customers USING SPACE indexspace

In the CREATE INDEX statement, the index NAT_CUST_IND is defined for the
NAT_CUST_NUM and NAT_COMPANY columns of the NAT_CUSTOMERS table. The
NAT_COMPANY column has the national data type NCHAR. The first 5 characters of
values in the NAT_COMPANY column are included when the index is created (1 character
= 2 bytes). The index is to be created on the space with the name NAT_INDEXSPACE.

CREATE INDEX nat_cust_ind(nat_cust_num, nat_company LENGTH 10)
ON TABLE nat_customers USING SPACE nat_indexspace

See also

DROP INDEX

CREATE PROCEDURE SQL statements

416 U22420-J-Z125-12-76

CREATE PROCEDURE - Create procedure

CREATE PROCEDURE creates a procedure and saves its definition in the database.

Procedures and their use in SESAM/SQL are described in detail in chapter “Routines” on
page 323.

Each routine which is called in the procedure must already exist. Nested calls of routines
are thus possible, but rerecursive calls are not.

The current authorization identifier must own the schema to which the procedure belongs.
It must also, for all tables and columns which are addressed in the procedure, have the
privileges which are required to execute the DML statements contained in the procedure.

The current authorization identifier must have the EXECUTE privilege for each routine
called in the procedure. It must also, for all tables and columns which are addressed in the
procedure, have the privileges which are required to execute the DML statements
contained in the procedure.

The current authorization identifier automatically obtains the EXECUTE privilege for the
procedure created. If it even has authorization to pass on the relevant privileges, it may also
pass on the EXECUTE privilege to other authorization identifiers.

The procedure and the objects which are addressed in the procedure must belong to the
same database. The names of these objects may possibly be complemented by the
procedure's database and schema names.

CREATE PROCEDURE

procedure ([procedure_parameter_definition [{,procedure_parameter_definition}...]])

procedure ::= routine

procedure_parameter_definition ::= [] routine_parameter data_type

MODIFIES SQL DATA
READS SQL DATA
CONTAINS SQL

routine_sql_statement
compound_statement

IN
OUT
INOUT

SQL statements CREATE PROCEDURE

U22420-J-Z125-12-76 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

procedure
Name of the procedure (maximum length: 31 characters). The unqualified procedure
name must be unique within the routine names of the schema. You can qualify the table
name with a database and schema name.
If the CREATE PROCEDURE statement is specified in a CREATE SCHEMA statement,
the procedure name may be qualified only with the database and schema names from
the CREATE SCHEMA statement.

([procedure_parameter_definition [{,procedure_parameter_definition}...]])
List of the procedure parameters. Any number of procedure parameters is possible. It
is limited only by the maximum statement length. If no parameter is defined, the list
consists only of the parentheses.

procedure_parameter_definition
Definition of a procedure parameter.
Procedure parameters have no indicator variable.

IN The procedure parameter is an input parameter.

OUT The procedure parameter is an output parameter.

INOUT The procedure parameter is an input and output parameter.

routine_parameter
Name of the procedure parameter. The names of the procedure parameters must
differ from each other.

data_type
Data type of the procedure parameter.
Only unqualified procedure parameters are permitted.
dimension may not be specified.

MODIFIES SQL DATA
The procedure can contain SQL statements for updating data.

READS SQL DATA
The procedure can contain SQL statements for reading data, but no SQL statements
for updating data. This information is checked. In the event of an error, the statement is
rejected with SQLSTATE.

i Called routines of this procedure may not contain the MODIFIES SQL DATA
specification.

CONTAINS SQL
The procedure contains neither SQL statements for reading data nor for updating data.
This information is checked. In the event of an error, the statement is rejected with
SQLSTATE.

CREATE PROCEDURE SQL statements

418 U22420-J-Z125-12-76

i UDFs always contain SQL statements, i.e. CONTAINS SQL is always present.
The NO SQL case envisaged in the SQL standard does not occur.

Called routines of this procedure may not contain the MODIFIES SQL DATA
and READS SQL DATA specifications.

routine_sql_statement
A procedure contains precisely one atomic or non-atomic SQL statement.
The non-atomic SQL statements in SESAM/SQL are COMPOUND (without
specification of ATOMIC), CASE, FOR, IF, LOOP, REPEAT, and WHILE. They can
contain other (atomic or non-atomic) SQL statements. Atomic SQL statements are the
other SQL statements permissible in a routine.

No privileges are checked before an SQL statement is executed.
An SQL statement in a procedure may access the parameters of the procedure and (if
the statement is part of a COMPOUND statement) local variables, but not host
variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there may not be
used with the exception of RETURN.

compound_statement
COMPOUND statement which contains multiple SQL statements and possibly defines
common local data, cursors, and exception handling routines for these, see section
“COMPOUND - Execute SQL statements in a common context” on page 399.

Conditions

SESAM/SQL offers the SQL statements COMPOUND, CASE, FOR, IF, ITERATE, LEAVE,
LOOP, REPEAT, SET, and WHILE for controlling routines. These SQL statements are also
referred to as control statements.

You obtain diagnostic information in routines with the diagnostic statements GET
DIAGNOSTICS, SIGNAL, and RESIGNAL.

In SESAM/SQL, nested calls of routines are permitted. The CALL statement is therefore
one of the statements permitted in a routine.

A routine may not contain any SQL statements for transaction management (see
page 356). Local cursors can therefore not be accessed on a cross-transaction basis.
STORE or RESTORE statements are not statements which are permitted in a routine; their
use in a routine makes no sense.

A routine may not contain any dynamic SQL statements or cursor descriptions, see section
“Dynamic SQL” on page 32.

SQL statements CREATE PROCEDURE

U22420-J-Z125-12-76 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

A routine can be called in a dynamic SQL statement. If a procedure contains parameters of
the type OUT or INOUT, the corresponding arguments must be specified in a dynamic
CALL statement in the form of placeholders.

Example

The GetCurrentYear procedure below returns the current year as a number. It contains no
SQL statements for reading or updating data.

CREATE PROCEDURE ProcSchema.GetCurrentYear (OUT current_year INTEGER)
CONTAINS SQL
SET current_year = EXTRACT (YEAR FROM CURRENT_DATE)

You will find further examples in chapter “Routines” on page 323 and in the demonstration
database of SESAM/SQL (see the “Core manual”).

See also

CALL, DROP PROCEDURE, COMPOUND, CASE, FOR, IF, ITERATE, LEAVE, LOOP,
REPEAT, SET, WHILE, SELECT, INSERT, UPDATE, DELETE, MERGE, OPEN, FETCH,
UPDATE, DELETE, CLOSE, GET DIAGNOSTICS, SIGNAL, RESIGNAL

CREATE SCHEMA SQL statements

420 U22420-J-Z125-12-76

CREATE SCHEMA - Create schema

You use CREATE SCHEMA to create a schema. At the same time you can define tables,
views, routines, privileges and indexes. You can also modify the schema later with the
appropriate CREATE, ALTER and DROP statements.

The current authorization identifier must have the special privilege CREATE SCHEMA.

CREATE SCHEMA

[...]

schema
Name of the schema. The unqualified schema name must be unique within the
database. You can also qualify the schema name with a database name.

schema omitted:
The name of the authorization identifier in the AUTHORIZATION clause is used as the
schema name.

AUTHORIZATION authorization_identifier
The authorization identifier owns the schema.

This authorization identifier is used as the name of the schema if you do not specify a
schema name.

AUTHORIZATION authorization_identifier omitted:
If an authorization identifier has been defined for the compilation unit, it owns the
schema. Otherwise, the current authorization identifier becomes the owner.

create/grant_statements
If you use unqualified table, routine and index names in the CREATE and GRANT
statements, the names are automatically qualified with the database and schema
names of the schema.

create_table_statement
CREATE TABLE statement that creates a base table for the schema.

schema [AUTHORIZATION authorization_identifier]
AUTHORIZATION authorization_identifier

create_table_statement
create_view_statement
create_function_statement
create_procedure_statement
grant_statement
create_index_statement

SQL statements CREATE SCHEMA

U22420-J-Z125-12-76 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

create_view_statement
CREATE VIEW statement that creates a view for the schema.

create_function_statement
CREATE FUNCTION statement that creates a UDF for the schema.

create_procedure_statement
CREATE PROCEDURE statement that creates a procedure for the schema.

grant_statement
GRANT statement that grants privileges for a base table, a view or a routine of this
schema You cannot grant special privileges with the GRANT statement.

create_index_statement
CREATE INDEX statement that creates and index for the schema.

create/grant_statements not specified:
An empty schema is created.

How CREATE SCHEMA functions

The CREATE TABLE, CREATE VIEW, CREATE FUNCTION, CREATE PROCEDURE,
GRANT, and CREATE INDEX statements that are specified in the CREATE SCHEMA
statement are executed in precisely the order in which they are specified. You must
therefore place statements that reference existing tables, routines or views after the
statement that creates these tables, routines or views.

Example

The example below creates the schema ADDONS and the table IMAGES.
The privileges for the IMAGES table are assigned to the authorization identifier utiusr1.

 CREATE SCHEMA addons

CREATE TABLE images OF BLOB
(MIME ('image / gif'),
USAGE ('images for parts.item_cat.image'),
'Photographer: Hans Sesamer')

USING SPACE blobspace

GRANT ALL PRIVILEGES ON images TO utiusr1

See also

CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE FUNCTION, CREATE
PROCEDURE, GRANT, DROP SCHEMA

CREATE SPACE SQL statements

422 U22420-J-Z125-12-76

CREATE SPACE - Create space

You use CREATE SPACE to create a new entry for a new user space in the database
metadata and to generate the corresponding file at operating system level.

You can define up to 999 user spaces for a database.
A user space can be up to 4 TB in size on pubsets with "large files".
Otherwise it can be up to 64 GB in size.

The current authorization identifier must have the special privilege USAGE for the storage
group used.

If the database catalog space is in a DB user ID, preparations must have been made, see
section “Database files and job variables on foreign user IDs” in the “Core manual”.

If the file of the catalog space was created with a password, you must also specify a
password for the user space files. The password must be identical to the BS2000 password
for the catalog space file.

CREATE SPACE space

[AUTHORIZATION authorization_identifier]

[] ...

[USING STOGROUP stogroup]

space
Name of the space. The first 12 characters of the unqualified space name must be
unique within the database. You can qualify the space name with the database name.

AUTHORIZATION authorization_identifier
Name of the authorization identifier to be entered as the owner of the space.

AUTHORIZATION authorization_identifier omitted:
The current authorization identifier is entered as the owner.

PRIMARY allocation
SECONDARY allocation
PCTFREE percent
[NO] SHARE
[NO] DESTROY
NO LOG

SQL statements CREATE SPACE

U22420-J-Z125-12-76 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

You may only specify each of the following parameters once: PRIMARY, SECONDARY,
PCTFREE,
[NO] SHARE, [NO] DESTROY, or NO LOG.

PRIMARY allocation
Primary allocation of the space file in units of 2K (BS2000 halfpage). allocation must be
an unsigned integer between 1 and 2 147 483 640.

PRIMARY allocation omitted:
PRIMARY 24 is used.

SECONDARY allocation
Secondary allocation of the space file in units of 2K (BS2000 halfpage). allocation must
be an unsigned integer between 1 and 32767.

SECONDARY allocation omitted:
SECONDARY 24 is used.

PCTFREE percent
Free space reservation in the space file expressed as a percentage. percent must be an
unsigned integer between 0 and 70.

PCTFREE percent omitted:
PCTFREE 20 is used.

[NO] SHARE
SHARE indicates that the space file is sharable, i.e. that the space file can be accessed
from more than one BS2000 user ID of the DBH.
NO SHARE indicates that the space file is not sharable.

NO SHARE is recommended for security reasons.

[NO] SHARE omitted:
NO SHARE is used.

[NO] DESTROY
DESTROY indicates that when the space file is deleted the storage space is to be
overwritten with binary zeros.
NO DESTROY means that when the space file is deleted, just the storage space is
released.

[NO] DESTROY omitted:
DESTROY is used.

NO LOG
No logging.

NO LOG omitted:
The logging setting for the database is used.

CREATE SPACE SQL statements

424 U22420-J-Z125-12-76

USING STOGROUP stogroup
Name of the storage group containing the volumes to be used for creating the space
file.

If you specify the unqualified name of the storage group, the name is automatically
qualified with the database name of the schema. If you qualify the name of the storage
group with a database name, this name must be the same as the database name of the
space.

USING STOGROUP stogroup omitted:
The default storage group D0STOGROUP is used.

Space file at operating system level

The space file is created either under the BS2000 user ID of the DBH or of the database
with the following name:

:catid:$bk.catalog.unqual_space_name

Only the first 12 characters of the unqualified space name are used for the file name.

Example

Create the space files TABLESPACE and INDEXSPCE with a primary and secondary
allocation of 192 2K-entities each. Both files are to have a free space reservation of 10%.
They must be sharable and are to be overwritten with binary zeros when deleted.

INDEXSPACE is to be used exclusively to store indexes. Since indexes can be restored
from the primary data as part of a media recovery process. Logging is not required and is
disabled with NO LOG.

 CREATE SPACE tablespace PRIMARY 192 SECONDARY 192
PCTFREE 10 SHARE DESTROY USING STOGROUP stogoup1

CREATE SPACE indexspace PRIMARY 192 SECONDARY 192
PCTFREE 10 SHARE DESTROY NO LOG USING STOGOUP stogroup1

See also

ALTER SPACE, CREATE STOGROUP

SQL statements CREATE STOGROUP

U22420-J-Z125-12-76 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CREATE STOGROUP - Create storage group

You use CREATE STOGROUP to create a new storage group. A storage group describes
either a pubset or a set of private volumes. The private volumes in a storage group must all
have the same device type (see also the “Core manual”).

The storage group D0STOGROUP always exists.

The current authorization identifier must have the special privilege CREATE STOGROUP.

CREATE STOGROUP stogroup

[ON catid]

stogroup
Name of the storage group. The unqualified name of the storage group must be unique
within a database. You can qualify the name of the storage group with a database
name.

The current authorization identifier will own the storage group and is granted the special
privilege USAGE for this storage group.

VOLUMES (volume_name,...)
The storage group is created on private volumes. volume_name is an alphanumeric
literal indicating the VSN of the volumes. You can only specify each VSN once. You can
specify up to 100 volumes.

All the volumes in a storage group must have the same device type.

ON dev_type
Device type of the private volumes. dev_type is an alphanumeric literal which can be
specified as a string or in hexadecimal format.

PUBLIC
The storage group comprises a pubset.

VOLUMES (volume_name,...) ON dev_type
PUBLIC

CREATE STOGROUP SQL statements

426 U22420-J-Z125-12-76

ON catid
Alphanumeric literal indicating the catid.

If you specify PUBLIC, this is the catalog ID of the pubset on which the storage group
is defined and on which the files are created. In the case of private volumes
(VOLUMES), this is the pubset on which the files are catalogged. The files themselves
are located on the specified private volumes.

ON catid omitted:
The catalog ID assigned to the BS2000 user ID under which the DBH is running is used.

When defining a storage group on a pubset, it is also possible to specify the VOLUMES
(volume_name,...) ON devicetype parameters instead of the PUBLIC parameter in order to
select individual volumes of a pubset. The ID under which the DBH is running has to be
authorized to physically allocated on the pubset. This is not checked when the storage
group is defined.

Examples

Create the storage group STOGROUP3 on a pubset.

 CREATE STOGROUP stogoup3 PUBLIC

Create a new storage group STOGROUP4 with the specified private volumes. The catalog
ID “P” is used to catalog the space files created on the storage group.

CREATE STOGROUP stogroup4
VOLUMES ('DY130A','DY130B','DY130C','DY130D') ON 'D3435'
ON 'P'

See also

DROP STOGROUP

SQL statements CREATE SYSTEM_USER

U22420-J-Z125-12-76 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CREATE SYSTEM_USER - Create system entry

You use CREATE SYSTEM_USER to define a system entry, i.e. assign authorization
identifiers to the system users. You can assign an authorization identifier to more than one
user, and a single user may have more than one authorization identifier.

A local UTM system user is identified by the local host name, the local UTM application
name and the UTM user ID.

A UTM system user working with SESAM databases via UTM-D is identified by the local
host name, the local UTM application name and the local UTM session name (LSES).

A BS2000 (TIAM) system user is identified by the host name and the BS2000 user ID.

Please note that before you move a database to another system, you must first define a
valid system entry for the new system. If this is not possible for technical reasons, please
contact your service agent.

The current authorization identifier must have the special privilege CREATE USER. If you
want to assign a system user an authorization identifier with the special privilege CREATE
USER and with GRANT authorization (see section “GRANT - Grant privileges” on
page 495), the current authorization identifier must also have GRANT authorization.

CREATE SYSTEM_USER

FOR authorization_identifier AT CATALOG catalog

utm_user ::= (, ,)

bs2000_user ::= (, [*],)

utm_user
Defines a system entry for a UTM system user.

bs2000_user
Defines a system entry for a BS2000 system user.

utm_user
bs2000_user

hostname
*

utm_application_name
*

utm_userid
*

hostname
*

bs2000_userid
*

CREATE SYSTEM_USER SQL statements

428 U22420-J-Z125-12-76

FOR authorization_identifier
Name of the previously defined authorization identifier to be assigned to the system
user.

AT CATALOG catalog
Name of the database for which the assignment of an authorization identifier to a
system user is valid.

utm_user
Specification of the UTM user.

hostname
Alphanumeric literal indicating the symbolic host name.

If DCAM is not available on the host, the host is assigned the name “HOMEPROC”.

For UTM-D: Specification of the local host on which the SESAM/SQL database
connection was generated.

* All hosts.

utm_application_name
Alphanumeric literal indicating the name of the UTM application.

For UTM-D: Name of the local UTM application.

* All UTM applications

utm_userid
You specify the UTM user ID as an alphanumeric literal defined with KDCSIGN for
local UTM system users. For UTM-D, you specify the local UTM session name
(LSES).

* All UTM user IDs.

bs2000_user
Specification of the BS2000 user.

hostname
Alphanumeric literal indicating the symbolic host name.

If DCAM is not available on the host, the host is assigned the name “HOMEPROC”.

* All hosts.

bs2000_userid
Alphanumeric literal indicating the BS2000 user ID.

* All BS2000 user IDs.

SQL statements CREATE SYSTEM_USER

U22420-J-Z125-12-76 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Example

In this example, two previously defined authorization identifiers are assigned to system
users.

 CREATE SYSTEM_USER (*,*,'PHOTO') FOR utiusr1 AT CATALOG ordercust

CREATE SYSTEM_USER (*,*,'TEXT') FOR utiusr2 AT CATALOG ordercust

This enables the authorization identifier UTIUSR1 to access the ORDERCUST database
from the BS2000 user id PHOTO. This enables the authorization identifier UTIANW2 to
access the ORDERCUST database from the BS2000 user id TEXT.

See also

DROP SYSTEM_USER, CREATE USER

CREATE TABLE SQL statements

430 U22420-J-Z125-12-76

CREATE TABLE - Create base table

You use CREATE TABLE to create a base table in which the data is permanently stored.

SESAM/SQL distinguishes between

● SQL tables that can only be processed with SQL

● BLOB tables that only contain BLOBs

● CALL DML/SQL tables that can be processed with CALL DML and to some extent with
SQL

● CALL DML only tables that can only be processed with CALL DML. These CALL DML
tables cannot be created with CREATE TABLE. They are created with the MIGRATE
statement (see the “SQL Reference Manual Part 2: Utilities”).

SQL tables, BLOB tables and CALL-DML/SQL tables can also be created as partitioned
tables. A partitioned table is a base table whose data is stored in a number of spaces. The
table data contained in a single space is referred to as a partition. In SESAM/SQL the data
is distributed row by row to the partitions, and the assignment criterion is the primary key
value. See also the section “Special features for partitioned tables” on page 437.
The partitioning can be changed with the utility statement ALTER PARTITIONING FOR
TABLE, see the “SQL Reference Manual Part 2: Utilities”.

CALL DML only tables and CALL DML/SQL tables are referred to by the term CALL DML
tables.

The restrictions that apply when you use CREATE TABLE to create CALL DML tables are
described in the section “Special considerations for CALL DML tables” on page 435.

The structure of BLOB tables is described in the section “Special considerations for BLOB
tables” on page 436.

The current authorization identifier must own the schema. If you specify the space for the
base table, the current authorization identifier must own the space.

SQL statements CREATE TABLE

U22420-J-Z125-12-76 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CREATE [CALL DML] TABLE table

[USING]

mime_clause ::= MIME(alphanumeric_literal)

usage_clause ::= USAGE(alphanumeric_literal)

partition ::= PARTITION partno VALUE (column_value,...) ON SPACE space

last_partition ::= PARTITION partno [VALUE <=()] ON SPACE space

partno ::= unsigned_integer

column_value ::=

CALL DML
Creates a CALL DML table.
You can only process CALL DML tables with SESAM CALL DML. The column
definitions and integrity conditions must observe certain restrictions (see “Special
considerations for CALL DML tables” on page 435).

CALL DML omitted:
An SQL or BLOB table is created.
SQL tables can only be processed with SQL. BLOB tables can only be processed with
SESAM CLI calls (see chapter “SESAM-CLI” on page 587).

(,...)

OF BLOB ()

column_definition
[CONSTRAINT integrity_constraint_name] table_constraint

mime_clause[,usage_clause][,alphanumeric_literal]
usage_clause[,alphanumeric_literal]
alphanumeric_literal

SPACE space
PARTITION BY RANGE partition,...,last_partition

<
<=

alphanumeric_literal
national_literal
numeric_literal
time_literal

CREATE TABLE SQL statements

432 U22420-J-Z125-12-76

TABLE table
Name of the new base table. The unqualified table name must be different from all the
base table names and view names in the schema. You can qualify the table name with
a database and schema name.

If you use the CREATE TABLE statement in a CREATE SCHEMA statement, you can
only qualify the table name with the database and schema name from the CREATE
SCHEMA statement.

column_definition
Defines columns for the base table.

You must define at least one column. A base table can have
up to 26 134 columns of any data type except VARCHAR and NVARCHAR and
up to 1000 columns of the data type VARCHAR and/or NVARCHAR.

The current authorization identifier is granted all table privileges for the defined
columns.

CONSTRAINT integrity_constraint_name
Assigns an integrity constraint name to the table constraint. The unqualified name of
the integrity constraint must be unique within the schema. You can qualify the name of
the integrity constraint with a database and schema name. The database and schema
name must be the same as the database and schema name of the base table for which
the integrity condition is defined.

CONSTRAINT integrity_constraint_name omitted:
The integrity constraint is assigned a name according to the following pattern:

UN integrity_constraint_number
PK integrity_constraint_number
FK integrity_constraint_number
CH integrity_constraint_number
where UN stands for UNIQUE, PK for PRIMARY KEY, FK for FOREIGN KEY and CH
for CHECK. integrity_constraint_number is a 16-digit number.

table_constraint
Defines an integrity constraint for the base table.

SQL statements CREATE TABLE

U22420-J-Z125-12-76 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

OF BLOB
Creates a BLOB table.

mime_clause
Allows you to define the MIME type. For instance, the MIME type of a MicrosoftTM
Word document is “application/msword”. If the BLOB table is defined without
mime_clause, the default MIME type “application/octet-stream” is set. You must
ensure that only permitted MIME types are specified in mime_clause.
A list of the most important MIME types can be found under
http://www.iana.org/assignments/media-types/index.html.

usage_clause
Allows you to define comments for BLOBs (see example at the end of this section).
The default value is a blank.

alphanumeric_literal
In addition to the format described in the appendix, alphanumeric_literal must be in
XML format (see examples).

USING clause
The USING clause defines whether a non-partitioned (USING SPACE) or a partitioned
(USING PARTITION BY RANGE) table is created.

USING SPACE space
Name of the space in which that table is to be stored. The space must already be
defined for the database to which the table belongs. You can qualify the space
name with the database name. This database name must be the same as the
database name of the base table.

USING PARTITION BY RANGE partition, ... ,last_partition
Specifies that a partitioned table is to be created. The table must consist of at least
2 and at most 16 partitions. All partitions in a table must be located in different
spaces, and all spaces must already be defined for the database. The table must
have a primary key; this can be a single column or a combination of multiple
columns.

partition clause
Defines a partition’s properties.

partno is a an unsigned integer from 1 ... 16 and is the partition’s current number
partno must be assigned in ascending order for the individual partitions. If less
than 16 partitions are defined, the series of numbers can contain gaps, and the
first partition need not begin with 1.

http://www.iana.org/assignments/media-types/index.html

CREATE TABLE SQL statements

434 U22420-J-Z125-12-76

(column_value,....) is a sequence of column values which defines the upper limit
of the primary key interval for the partition concerned. You must always specify
at least one column value, but at most as many column values as columns are
contained in the primary key. The data type and value of column_value must
match the data type of the corresponding column of the primary key; the same
rules apply as for default values (see the section “Default values for table
columns” on page 123).

The upper limit is either included or excluded by the preceding comparison
operator:

The lexicographical rules apply for the comparison, see the section
“Comparison rules” on page 217.

The upper limits specified must be strictly in ascending order for the individual
partitions.

The lower limit for the partition results implicitly from the upper limit of the
preceding partition or from the lowest pimary key value in the table (in the first
partition). All records from the primary key interval defined in this way belong to
this partition.

space specifies the name of the space in which this partition is stored. The space
must exist and the space owner must also be the schema owner. The spaces
of a partitioned table must be disjunctive, i.e. a space may not be used for two
partitions of the same table.

last_partition clause
The same conditions apply for the last partition as for partition.
Only the upper limit may not be specified since it is determined here from the
highest primary key value. The VALUE clause can therefore also be omitted.

USING omitted:
A non-partitioned table is created in the current schema owner’s default space and
stored on the storage group D0STOGROUP.
The default space is D0authorization_identifier with the first 10 characters of the
authorization identifier. If this space does not yet exist, it is created if the current
authorization identifier has been granted the special privilege USAGE for the
storage group D0STOGROUP.

<= Records whose primary key value is column_value,... or whose primary
key value begins with column_value,.. belong to this partition.

< Records whose primary key value is equal to column_value,... or whose
primary key value begins with column_value,.. belong to the next partition.

SQL statements CREATE TABLE

U22420-J-Z125-12-76 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Special considerations for CALL DML tables

The CREATE TABLE statement for CALL DML tables must take the following restrictions
into account:

● Only the data types CHAR, NUMERIC, DECIMAL, INTEGER and SMALLINT are
permitted.

● No default value can be defined for the column with DEFAULT.

● A column that is not a primary key must have a CALL DML clause.

● The table must contain exactly one primary key restraint as the column or table
constraint.

● The table constraint defines a compound primary key and must be given a name that
corresponds to the name of the compound primary key in SESAM/SQL V1.x.

● The column name must be different from the integrity constraint name of the table
constraint since this name is used as the name of the compound primary key.

● The following rules apply for the SAN (symbolic attribute name):

– precisely 3 characters

– first character: alphabetic character; second and third characters: alphabetic or
numeric characters

– not allowed: 0, I, O;
the combinations NAM and END are likewise not allowed.

CREATE TABLE SQL statements

436 U22420-J-Z125-12-76

Special considerations for BLOB tables

In SESAM/SQL, BLOB tables are used as storage locations for BLOBs (Binary Large
Objects). BLOB objects are byte chains of variable length, up to a maximum of 231-1 bytes.
With the help of SESAM CLI calls, BLOB values are stored piecemeal in several rows of
the BLOB table. The structure of this table will have already been defined using the
statement CREATE TABLE table OF BLOB. Columns cannot be defined at this point.

A BLOB table consists of the following columns:

● The OBJ_NR column is of data type INTEGER and contains the serial number of the
BLOB within the table.

● The SLICE_NR column is of data type INTEGER and contains the serial number of a
particular segment.

● The SLICE_VAL column is of type VARCHAR(31000). It contains the individual
components of the BLOB value. Beginning with slice number 1, the BLOB value is
specified in segments of 31 KB in length. Obviously, the last segment may be shorter
than this. The row containing slice number 0 is used to store administrative information
on the BLOB. The default settings for this column are defined in the attributes of the OF
BLOB clause. In addition to these, they also include the CREATED and UPDATED
attributes. This attributes specify the date on which the BLOB was created and last
updated.

● The OBJ_REF column is of type CHAR(237). In the row containing slice number 0, it
specifies the REF value of the BLOB. Otherwise, the column value is NULL. By default,
this column is assigned the REF value for this table’s class and is defined with the
UNIQUE constraint.

The OBJ_NR and SLICE_NR columns together form the primary key of a BLOB table. For
this primary key constraint, names generated internally are assigned as normal and must
not be used elsewhere in the same schema.

It is possible for the user to append columns using ALTER TABLE. (However, it must be
ensured that the default value for these additional columns is the NULL value.)

The mime_clause, usage_clause and alphanumeric_literal in the CREATE TABLE...OF BLOB
statement are used to add attributes that describe the BLOB. The total length of all
attributes must not exceed 256 bytes.

BLOB values can be incorporated in regular base tables with the help of the REF column
(see section “Column definitions” on page 272).

SQL statements CREATE TABLE

U22420-J-Z125-12-76 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Special features for partitioned tables

A partitioned table behaves largely like a non-partitioned table, i.e. the columns,
constraints, indexes, and default values relate to all partitions.

As the partition limits are defined with the aid of the primary key, you should observe the
following when you create the partitioned table:

● You can change the partition limits of a partitioned table after it has been created using
ALTER PARTITIONING FOR TABLE. You can also use the utility statements EXPORT
TABLE and IMPORT TABLE to create a table with modified partition limits.

● After a record has been inserted in a partitioned table it is no longer possible to change
its primary key value with the UPDATE statement. However, the record can be deleted
and reinserted with a new primary key value.

For BLOBs the primary key consists of the OBJ_NR and SLICE_NR columns. The object
number is generated in the CLI call SQL_BLOB_OBJ_CREATE or
SQL_BLOB_OBJ_CREAT2. These two calls have different characteristics:

● With SQL_BLOB_OBJ_CREATE (page 606) the object number is assigned in
ascending serial order.

● With SQL_BLOB_OBJ_CREAT2 (page 608) you specify an object number range. The
BLOB’s object number is then assigned by SESAM/SQL within this range and also
distributed equally within this range. It therefore makes sense to match the partition
limits to the object number ranges.

Further information on partitioned tables and usage scenarios is provided in the “Core
manual”.

CREATE TABLE SQL statements

438 U22420-J-Z125-12-76

Examples

This example shows the CREATE TABLE statement for the non-partitioned
table ORDERS of the demonstration database.

 CREATE TABLE orders
(order_num INTEGER CONSTRAINT order_num_primary PRIMARY KEY,
cust_num INTEGER CONSTRAINT o_cust_num_notnull NOT NULL
 CONSTRAINT o_cust_num_ref_customers

 REFERENCES customers(cust_num),
contact_num INTEGER
 CONSTRAINT contact_num_ref_contacts
 REFERENCES contacts(contact_num),
order_date DATE DEFAULT CURRENT_DATE,
order_text CHARACTER (30),
actual DATE,
target DATE,
order_stat INTEGER DEFAULT 1 CONSTRAINT order_stat_notnull NOT NULL
 CONSTRAINT order_stat_ref_ordstat
 REFERENCES ordstat(ord_stat_num)
)
USING SPACE tablespace

This example shows a corresponding CREATE TABLE statement for the ORDERS table
of the demonstration database as a partitioned table.

CREATE TABLE orders
(order_num INTEGER CONSTRAINT order_num_primary PRIMARY KEY,
cust_num INTEGER CONSTRAINT o_cust_num_notnull NOT NULL
 CONSTRAINT o_cust_num_ref_customers
 REFERENCES customers(cust_num),
contact_num INTEGER
 CONSTRAINT contact_num_ref_contacts
 REFERENCES contacts(contact_num),
order_date DATE DEFAULT CURRENT_DATE,
order_text CHARACTER (30),
actual DATE,
target DATE,
order_stat INTEGER DEFAULT 1 CONSTRAINT order_stat_notnull NOT NULL
 CONSTRAINT order_stat_ref_ordstat
 REFERENCES ordstat(ord_stat_num)
)
USING PARTITION BY RANGE
 PARTITION 02 VALUE <= (299) ON SPACE tablespace,
 PARTITION 03 VALUE <= (399) ON SPACE tablesp002,
 PARTITION 09 ON SPACE tablesp003

SQL statements CREATE TABLE

U22420-J-Z125-12-76 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

This example shows the CREATE TABLE statement for the partitioned table ADDRESS.
The data is split lexicographically into 5 partitions: A through D,
E through K, L through O, P through SCH and SCI through Z. The primary key consists of
three columns, only the first column being used to determine the partition limits.

CREATE TABLE address
(name CHARACTER (40), first_name CHARACTER (40), pers_no INTEGER, ...
PRIMARY KEY (name, first_name, pers_no))
USING PARTITION BY RANGE
 PARTITION 01 VALUE < ('E') ON SPACE adr01,
 PARTITION 02 VALUE < ('L') ON SPACE adr02,
 PARTITION 03 VALUE < ('P') ON SPACE adr03,
 PARTITION 04 VALUE < ('SCI') ON SPACE adr04,
 PARTITION 05 ON SPACE adr05

This example shows the CREATE TABLE statement for the CALL DML table COMPANY in
the COMPANYSCH schema of the CALLCOMPANY database (see the “CALL-DM
Applications” manual).

CREATE CALL DML TABLE callcompany.companysch.company
(pkey CHARACTER(006) PRIMARY KEY,
aname CHARACTER(015) CALL DML ' ' AA8,
aprice NUMERIC(05,02) CALL DML -0 AB6,
astock NUMERIC(04) CALL DML -0 AC4,
clastname CHARACTER(015) CALL DML ' ' AD2,
cfirstname CHARACTER(012) CALL DML ' ' AEZ,
cstreet CHARACTER(015) CALL DML ' ' AFX,
czip CHARACTER(005) CALL DML ' ' AGV,
ccity CHARACTER(015) CALL DML ' ' AHT,
ksince CHARACTER(006) CALL DML ' ' AJR,
krabatt NUMERIC(04,02) CALL DML 0 AKP,
...
psalary(010) NUMERIC(07,02) CALL DML 0 AT5)

USING SPACE CALLCOMPANY.COMPANY

CREATE TABLE SQL statements

440 U22420-J-Z125-12-76

The tables IMAGES and DESCRIPTIONS are defined in the ADDONS schema. Both tables
are stored in the space BLOBSPACE. While the BLOB table contains images in gif format,
the DESCRIPTIONS table contains texts for these images in the form of Word documents.

 CREATE TABLE addons.images OF BLOB
 (MIME ('image / gif'),
 USAGE ('images for parts.item_cat.image'),
 'Photographer: Hans Sesamer')
 USING SPACE blobspace

CREATE TABLE descriptions OF BLOB
 (MIME ('application / msword'),
 USAGE ('word documents for parts.item_cat.desc'),
 '<AUTHOR>Herta Sesamer</AUTHOR>')
 USING SPACE blobspace

This example shows the CREATE TABLE statement for the partitioned BLOB table BILL.
This table contains bills in the form of Word files. The bills are distributed over the individual
partitions according to the quarters of a year.

CREATE TABLE bill OF BLOB (MIME ('application/msword'),
USING PARTITION BY RANGE
 PARTITION 01 VALUE <= (1000000) ON SPACE quarter01,
 PARTITION 02 VALUE <= (2000000) ON SPACE quarter02,
 PARTITION 03 VALUE <= (3000000) ON SPACE quarter03,
 PARTITION 04 ON SPACE quarter04

A bill is generated with the CLI function SQL_BLOB_OBJ_CREAT2. Here the object
number range of the bill (min_no, max_no) is selected in such a way that the bill is stored
in the quarter associated with the partition:

SQL_BLOB_OBJ_CREAT2(&ref, &catalogId, &minObjNr, &MaxObjNr, &SQLdiag);

This example shows the CREATE TABLE statement for the MANUALS table in the sample
database:

 CREATE TABLE manuals
(ord_num INTEGER, language NCHAR(20), title NCHAR(30))

See also

ALTER TABLE, CREATE SCHEMA, CREATE SPACE

SQL statements CREATE USER

U22420-J-Z125-12-76 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CREATE USER - Create authorization identifier

You use CREATE USER to create a new authorization identifier.

The current authorization identifier must have the special privilege CREATE USER.

CREATE USER authorization_identifier

AT CATALOG catalog

authorization_identifier
Name of the authorization identifier. The first 10 characters of the authorization identifier
must be unique within the database.

AT CATALOG catalog
Name of the database for which the authorization identifier is to be valid.

Example

Define the authorization identifiers UTIUSR1 and UTIUSR2 for the ORDERCUST
database.

 CREATE USER utiusr1 AT CATALOG ordercust

CREATE USER utiusr2 AT CATALOG ordercust

See also

DROP USER, CREATE SYSTEM_USER

CREATE VIEW SQL statements

442 U22420-J-Z125-12-76

CREATE VIEW - Create view

You use CREATE VIEW to create a view. A view is a table that is not permanently stored;
its rows are derived only when needed.

The current authorization identifier must own the schema for which the view is created. It
must have the SELECT privilege for the tables used and the EXECUTE privilege for the
UDFs called.

CREATE VIEW table

row ::=

table
Name of the new view. The unqualified view name must be unique within the base
tables and view names of the schema. You can qualify the view name with a database
and schema name.

If you use the CREATE VIEW statement in a CREATE SCHEMA statement, you can
qualify the view name only with the database and schema name from the CREATE
SCHEMA statement.

(column,...)
Name of the columns of the view. If query_expression is specified, you only need to name
the view columns if the column names of the tables resulting from query_expression are
ambiguous or if there are some derived columns without a name.

(column,...) omitted:
The column names of the query_expression are used.

AS query_expression
Query expression that describes how the rows of the view are derived from existing
base tables and views. The columns in the view have the same data type as the
underlying columns in the query expression.

[(column ,...)] AS query_expression [WITH CHECK OPTION]
(column ,...) AS VALUES row ,...

(expression ,...)
expression

SQL statements CREATE VIEW

U22420-J-Z125-12-76 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

AS VALUES row ,...
The specified rows form the new view. All the rows must have the same number of
columns, and corresponding columns must have compatible data types (see section
“Compatibility between data types” on page 99). If several rows are specified, the data
type of the view columns results from the rules described in section “Data type of the
derived column for UNION” on page 314.

expression
Each expression in row must be atomic. The row consists of the expression values in
the order specified. A single expression therefore returns a row with one column.

Any tables named in query_expression and in row must belong to the same database as the
view. You cannot include host variables and question marks as placeholders for unknown
values in the query_expression and in row. If the columns in the view are named, the number
of names must equal the number of columns in the expression or row table.

WITH CHECK OPTION
All rows that you insert or update via the view must satisfy all conditions of the query
expression. The view must be updatable.

The query expression can only include multiple columns and UDFs in the SELECT
clause, not in the WHERE clause.

WITH CHECK OPTION omitted:
If the view is updatable, you can insert or update rows in the view that do not satisfy the
condition in the query expression. Such inserted or changed rows cannot subsequently
be accessed via the view.

Privileges for the view

The current authorization identifier is granted the SELECT privilege for the view. This
privilege includes GRANT authorization for granting this privilege to other users only if it
possesses the SELECT privilege for all the tables used and the GRANT authorization
identifier for the EXECUTE privilege for all UDFs called.

If the view is updatable, the current authorization identifier is granted the privileges INSERT,
UPDATE, and DELETE on the view if it has been granted these privileges on the underlying
base table. Each of these privileges includes the GRANT OPTION if and only if the
corresponding privilege on the underlying base table includes the GRANT OPTION.

Updatable view

A view is updatable if query_expression is specified and the underlying query expression is
updatable (see section “Updatability of query expressions” on page 318).

CREATE VIEW SQL statements

444 U22420-J-Z125-12-76

Examples

Define a view which will contain all completed orders of the ORDERS base table.

CREATE VIEW completed
AS SELECT * FROM orders WHERE actual IS NOT NULL

The example defines the view SUMMARY which will contain the customer names and
associated order numbers from the CUSTOMERS and ORDERS tables.

 CREATE VIEW summary AS SELECT company, order_nu
FROM customers, orders WHERE customers.cust_num=orders.cust_num

The example defines the LOCALEDAYNAMES view, which contains the names of the days
of the week and allocates each day of the week a number.

CREATE VIEW localedaynames (num, name)
AS VALUES (1 , 'Monday')

,(2 , 'Tuesday')
,(3 , 'Wednesday')
,(4 , 'Thursday')
,(5 , 'Friday')
,(6 , 'Saturday')
,(7 , 'Sunday')

You can use this to select the name of the day of the week for a DAY_NUM column.

SELECT ..., (SELECT name FROM localedaynames WHERE num = day_num)

Compared to the version below this not only is shorter but also has another advantage:
If you switch to another language, you only have to change one single view definition
instead of several SELECT expressions.

SELECT ..., CASE day_num WHEN 1 THEN 'Monday'
WHEN 2 THEN 'Tuesday'
WHEN 3 THEN 'Wednesday'
WHEN 4 THEN 'Thursday'
WHEN 5 THEN 'Friday'
WHEN 6 THEN 'Saturday'
WHEN 7 THEN 'Sunday'

END

This is, of course, also an advantage if LOCALEDAYNAMES were a base table with this
content. In that case, however, each use would involve access to persistently stored
data in a file. With the view, this type of access is not necessary (just as with the CASE
expression).

SQL statements CREATE VIEW

U22420-J-Z125-12-76 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

The view VIEW1 selects from the ORDERS table all order numbers, customer numbers,
target completion dates and order status numbers for which the target completion date lies
before the specified date.

CREATE VIEW view1 AS SELECT order_num,cust_num,target,order_status
FROM orders WHERE target < DATE'2014-05-01'

A second view, VIEW2 is defined to reference VIEW1. This contains the order numbers,
customer numbers, target completion dates and order status numbers for target
completion dates later than the specified date:

CREATE VIEW view2 AS SELECT order_num,cust_num,target,order_status
FROM view1 WHERE target > DATE'2013-05-01'

VIEW2 produces the following derived table:

A new row is to be added to VIEW2:

INSERT INTO view2 (order_num,cust_num,target,order_status)
VALUES (310,100,DATE '2014-06-01',5)

The new row is added, but cannot be seen either in VIEW1 or VIEW2. The row complies
with the WHERE condition in the definition of VIEW2, but not with the WHERE condition
in the definition of VIEW1. If we expand the definition of VIEW1 in VIEW2, we see:

CREATE VIEW view2 AS
SELECT view1.order_num, view1.cust_num,view1.target,view1.order_status
FROM

(SELECT orders.order_num, orders.cust_num,orders. target,orders.
order_status
FROM orders
WHERE orders.target < DATE '2014-05-01') AS view1

WHERE view1.target > DATE '2013-05-01'

This makes it clear that the WHERE condition in VIEW1 is “inherited” by the definition
of VIEW2, with the result that the row added to the ORDERS table is not visible in
VIEW2.

If WITH CHECK OPTION is added to the definition of VIEW2, the INSERT statement is
rejected, since only those rows are accepted which fulfill the WHERE condition in
VIEW1.

order_num cust_num target order_status

210 106 4/1/2014 3

211 106 4/1/2014 4

250 105 3/1/2014 2

DEALLOCATE DESCRIPTOR SQL statements

446 U22420-J-Z125-12-76

The INSERT statement is, however, also rejected if WITH CHECK OPTION is added to
the definition of VIEW2 only. Although the row to be inserted fulfils the WHERE
condition in the definition of VIEW2, the INSERT statement is nevertheless rejected
since the row fails to fulfil the WHERE condition of VIEW1.

See also

CREATE SCHEMA, DROP VIEW

DEALLOCATE DESCRIPTOR - Release SQL descriptor area

You use DEALLOCATE DESCRIPTOR to release an SQL descriptor area.

You must have previously created the descriptor area with ALLOCATE DESCRIPTOR.

DEALLOCATE DESCRIPTOR GLOBAL descriptor

descriptor
Name of the SQL descriptor area to be released.
You cannot release the descriptor area if there is an open cursor with block mode
activated in the same compilation unit (see section “PREFETCH pragma” on page 65)
and a FETCH NEXT... statement has been executed for this cursor whose INTO clause
contains the name of the same SQL descriptor area.

Example

Release SQL descriptor area The descriptor area name is contained in the host variable
DEMO_DESC.

DEALLOCATE DESCRIPTOR GLOBAL descriptor :demo_desc

See also

ALLOCATE DESCRIPTOR, DESCRIBE, GET DESCRIPTOR, SET DESCRIPTOR

SQL statements DECLARE CURSOR

U22420-J-Z125-12-76 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DECLARE CURSOR - Declare cursor

You use DECLARE CURSOR to define a cursor. You can use the cursor to access the
individual rows in a derived table. The current row on which the cursor is positioned can be
read. If the cursor is updatable, you can also update and delete rows.

The cursor declaration must physically precede any statement that uses the cursor in the
program text. All the statements that use this cursor must be located in the same
compilation unit. This does not apply for local cursors (in procedures).

DECLARE CURSOR is not an executable statement.

DECLARE cursor [] CURSOR [] FOR

cursor_description ::= query_expression [ORDER BY { []},...]

[FOR]

pos_no ::= unsigned_integer
column_no ::= unsigned_integer

cursor
Name of the cursor.
You cannot define more than one cursor with the same name within a compilation unit.
The scope of validity of the cursor is limited to the compilation unit in which the cursor
is defined. This does not apply for local cursors (in procedures).

SCROLL
You can position the cursor on any row in the derived table and in any order with FETCH
NEXT/PRIOR/FIRST/LAST/RELATIVE/ABSOLUTE.

You can only specify SCROLL if no FOR UPDATE clause was defined in the cursor
description of cursor.

If you specify SCROLL, cursor cannot be changed. The FOR READ ONLY clause
applies implicitly.

SCROLL
NO SCROLL

WITH HOLD
WITHOUT HOLD

cursor_description
statement_id

column

column_no
expression

column(pos_no)
column[pos_no]

ASC
DESC

READ ONLY
UPDATE [OF column,...]

DECLARE CURSOR SQL statements

448 U22420-J-Z125-12-76

NO SCROLL
The derived table can only be read sequentially. The cursor can only be positioned on
the next row. In FETCH, only the position specification NEXT is permitted.

WITH HOLD
A cursor can be defined with WITH HOLD. Keeps such a cursor open at the end of the
transaction, even after COMMIT WORK. WITH HOLD cannot be specified for local
cursors (in procedures), see section “Cursor” on page 25.

Nevertheless, if a cursor defined with WITH HOLD is opened with OPEN or positioned
with FETCH within a transaction and the transaction is terminated with ROLLBACK, the
cursor will be closed regardless. The cursor will also be closed automatically at the end
of the SQL session.

WITHOUT HOLD
Closes any open cursors at the end of the transaction.

cursor_description
Declares a static cursor.

cursor_description defines the derived table and the attributes of the cursor.
The earliest point at which a row in the derived table can be selected is when you open
the cursor with OPEN. The latest point at which a row can be selected is when you
execute a FETCH statement.

statement_id
Declares a dynamic cursor.

statement_id is the name of a dynamic cursor description. You can specify a dynamic
cursor description at program runtime. The same clauses can be used as in a static
cursor description. You must prepare a dynamic cursor description with a PREPARE
statement in which the name statement_id is used.

query_expression
Query expression for selecting rows and column from base tables or views.

In query_expression the value for host variables, procedure parameters and procedure
variables is only determined when the cursor is opened. Special literals and time
functions that are used in query_expression are not evaluated until the cursor is opened.

SQL statements DECLARE CURSOR

U22420-J-Z125-12-76 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

ORDER BY
The ORDER BY clause indicates the columns according to which the derived table is
to be sorted. The rows are sorted according to the values in the column specified first.
If rows occur which have the same values in the first column according to the
comparison rules (see section “Comparison of two rows” on page 216ff), these will be
sorted according to the second column, and so on. In SESAM/SQL, NULL values are
considered smaller than all non-NULL values for sorting purposes.

The order of rows with the same value in all the sort columns is undefined.

You can only specify ORDER BY if no FOR UPDATE clause was declared for the cursor
description of cursor.

If you specify ORDER BY, cursor cannot be changed. The FOR READ ONLY clause
applies implicitly.

ORDER BY omitted:
The order of the rows in the cursor table is undefined.

column
Name of the column in query_expression according to which the table is to be sorted.
column must be an unqualified column name, excluding the table name. It must belong
to the derived table created by query_expression.

{column(pos_no), column[pos_no]}
Element of a multiple column according to which the table is to be sorted. pos_no is an
unsigned integer which indicates the position number of the column element in the
multiple column. Otherwise, the column element must belong to the derived table
created by query_expression.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

column_number
Number of the column to be used as the basis for sorting.

column_number is an unsigned integer where
1 Î column_number Î number of derived columns.

By specifying a column number, you can also use columns that do not have a name, or
which do not have a unique name, as the basis for sorting.

column_number can be an atomic column or a multiple column with the dimension 1.

DECLARE CURSOR SQL statements

450 U22420-J-Z125-12-76

expression
It is also possible to sort a table on the basis of expressions that are not present in the
derived table, e.g. UPPER(column).

The following conditions must be satisfied:

– query_expression must be a simple SELECT expression.

– expression may not consist of just one literal.

– expression must not contain any subqueries or aggregate functions.

– Columns of tables specified in the FROM clause may be used in expression, even if
they are not included in the SELECT list.

ASC
The values in the column involved are sorted in ascending order.

DESC
The values of the column involved are sorted in descending order.

FETCH FIRST max ROWS ONLY
Limits the number of hits returned by a cursor to max (unsigned integer > 0) sets of hits.
If the cursor position is greater than max, an SQLSTATE is returned (no data, class
02xxx). A cursor with this clause is not updatable.

FOR READ ONLY
The FOR READ ONLY clause specifies that cursor can only be used to read the records
of the derived table (read-only cursor).

If the relevant query expression is not updatable, the FOR READ ONLY clause applies
implicitly (see section “Updatability of query expressions” on page 318). It also applies
if SCROLL, ORDER BY or FETCH FIRST max ROWS ONLY was specified in the cursor
declaration.

FOR UPDATE
You can only use the FOR UPDATE clause if the relevant query expression is
updatable (see section “Updatability of query expressions” on page 318) and neither
SCROLL nor ORDER BY nor FETCH FIRST max ROWS ONLY was specified.
You use a FOR UPDATE clause to specify which columns in the underlying table can
be updated via the cursor with UPDATE...WHERE CURRENT OF.

If a PREFETCH pragma has been defined for the cursor concerned, the FOR UPDATE
clause disables this pragma (see section “PREFETCH pragma” on page 65).

SQL statements DECLARE CURSOR

U22420-J-Z125-12-76 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

FOR UPDATE omitted:
If the cursor is updatable (see section “Defining a cursor” on page 28) and the FOR
READ ONLY clause is not specified, you can update all the columns of the underlying
table with UPDATE...WHERE CURRENT.

OF column,...
Only the specified columns can be updated with UPDATE...WHERE CURRENT OF.
For column, specify the name of a column in the table that the updatable cursor
references. column is the unqualified name of the column in the underlying table,
regardless of whether a new column name was defined in the query expression of the
cursor description.

Example

In the example below, an updatable cursor cur is declared. The underlying table is
TAB. Only column col in table TAB can be updated via cursor CUR. To do this, a
FOR UPDATE clause with the column name COL is specified in the cursor
description.

DECLARE cur CURSOR FOR
SELECT corr.col AS column FROM tab AS corr
FOR UPDATE OF col

The unqualified, original column name COL is used in the FOR UPDATE clause
although the column is renamed in the SELECT list and the table is renamed in the
FROM clause.

OF column,... omitted:
Each column in the underlying table can be updated with UPDATE...WHERE
CURRENT OF.

DECLARE CURSOR SQL statements

452 U22420-J-Z125-12-76

Examples

The cursor CUR_ORDER selects ORDER_NUM, CUST_NUM, CONTACT_NUM,
ORDER_TEXT, TARGET and ORDER_STAT for orders numbered between 300 and 500.
The derived table is then sorted on the basis of the order number in ascending order.

 DECLARE cur_order CURSOR FOR
SELECT order_num, cust_num, contact_num, order_text, actual,

order_stat
FROM orders WHERE order_num BETWEEN 300 AND 500
ORDER BY order_num ASC

The cursor CUR_ORDER1 selects ORDER_NUM, ORDER_DATE, ORDER_TEXT and
ORDER_STAT for orders whose customer number is specified in the host variable
CUSTOMER_NO.

DECLARE cur_order1 CURSOR FOR
SELECT order_num, order_date, order_text, order_stat
FROM orders WHERE cust_num= :CUSTOMER_NO

Use the cursor CUR_VAT to select all services for which no VAT is calculated. It is specified
with WITH HOLD so that it remains open even after COMMIT WORK, provided it is open
at the end of the transaction.

 DECLARE CUR_VAT CURSOR WITH HOLD FOR
SELECT service_num, service_text, vat
FROM service WHERE vat=0.00
FOR UPDATE

Block mode for a static cursor is specified as follows:

--%PRAGMA PREFETCH blocking_factor
DECLARE cursor CURSOR FOR cursor_description

See also

CLOSE, DELETE, FETCH, INSERT, OPEN, PREPARE, SELECT, UPDATE

SQL statements DELETE

U22420-J-Z125-12-76 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DELETE - Delete rows

You use DELETE to delete rows from a table.

If you want to delete a row from the specified table, you must own the table or have the
DELETE privilege for this table. Furthermore, the transaction mode of the current
transaction must be READ WRITE.

If integrity constraints have been defined for the table or columns involved, these are
checked after the delete operation has been performed. If the integrity constraint has been
violated, the deletion is cancelled and an appropriate SQLSTATE set.

DELETE FROM table [[AS] correlation_name] [WHERE]

table
Name of the table from which rows are to be deleted. The table can be a base table or
an updatable view.

correlation_name
Table name used in the search_condition as a new name for the table table.

The correlation_name must be used to qualify the column name in every column
specification that references the table table if the column name is not unambiguous.

The new name must be unique, i.e. correlation_name can only occur once in a table
specification of this search condition.

You must give a table a new name if the columns in the table cannot be identified
otherwise uniquely.

In addition, you may give a table a new name in order to formulate an expression so
that it is more easily understood or to abbreviate long names.

WHERE clause
Indicates the rows to be deleted.

WHERE clause omitted:
All the rows in the table are deleted.

search_condition
CURRENT OF cursor

DELETE SQL statements

454 U22420-J-Z125-12-76

search_condition
Condition that the rows to be deleted must satisfy. A row is only deleted if it satisfies the
specified search condition.

Table specification in search_condition that are outside of subqueries can only reference
the specified table.

Subqueries in search_condition cannot reference the base table from which the rows are
to be deleted either directly or indirectly.

CURRENT OF cursor
Name of the cursor used to select the rows to be deleted. The cursor must be updatable
(see section “Defining a cursor” on page 28) and table must be the underlying table.

The cursor must be declared in the same compilation unit. It must be open. It must be
positioned on a row in the derived table with FETCH before the DELETE statement is
issued.

DELETE deletes the row at the current cursor position from table.

After DELETE, the cursor is positioned before the next row in the derived table or after
the last row if the end of the table has been reached. If you want to execute another
DELETE...WHERE CURRENT OF statement, you must first position the cursor on a
row in the derived table with FETCH.

DELETE is not permitted if block mode is activated for the open cursor cursor (see
section “PREFETCH pragma” on page 65).

If a cursor is defined with the WITH HOLD clause, a DELETE statement may not be
issued until a FETCH statement has been executed for this cursor in the same
transaction.

DELETE and transaction management

DELETE initiates an SQL transaction outside routines if no transaction is open. If you define
an isolation level, you can control what effect this DELETE statement has on concurrent
transactions (see section “SET TRANSACTION - Define transaction attributes” on
page 569).

If an error occurs during the DELETE statement, any deletions already performed are
canceled.

SQL statements DELETE

U22420-J-Z125-12-76 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Examples

Delete all customers situated in Hanover from the CUSTOMERS table.

DELETE FROM customers WHERE city = 'Hanover'

All customers for whom USA is entered as the country in the CUSTOMERS table are to be
deleted from the CONTACTS table. The statement is only executed if the referential
constraint CON_REF_CONTACTS in the ORDERS table is not violated.

DELETE FROM contacts
WHERE cust_num = (SELECT cust_num FROM customers WHERE country='USA')

Use a cursor to delete customers situated in Hanover from the CUSTOMERS table.

DECLARE cur_customers CURSOR FOR
SELECT cust_num, company, city FROM customers WHERE city = 'Hanover'
FOR UPDATE

OPEN cur_customers

All the rows found can then be deleted with a series of FETCH and DELETE
statements.

FETCH cur_customers INTO :CUSTNUM, :COMPANY, :CITY

DELETE FROM customers WHERE CURRENT OF cur_customers

Use a cursor to select all cancelled orders (ORDER_STAT = 5) from the ORDERS table.
The entries for these orders are then deleted in the SERVICE and ORDERS tables.

 DECLARE cur_order1 CURSOR FOR
SELECT order_num, order_text FROM orders WHERE order_stat = 5
FOR UPDATE

FETCH cur_order1
INTO :ORDERS.ORDER_NUM

DELETE FROM orders
WHERE CURRENT OF cur_order1

DELETE FROM service
WHERE order_num = :ORDERS.ORDER_NUM

See also

INSERT, UPDATE

DESCRIBE SQL statements

456 U22420-J-Z125-12-76

DESCRIBE - Query data type of input and output values

You use DESCRIBE to write the data type descriptions of input/output values of a dynamic
statement or cursor description to an SQL descriptor area.

The SQL descriptor area must be created beforehand with ALLOCATE DESCRIPTOR.

You must prepare the dynamic statement or cursor description with PREPARE before the
DESCRIBE statement is executed.

DESCRIBE [] statement_id USING SQL DESCRIPTOR GLOBAL descriptor

INPUT
Determines the number of input values of a dynamic statement or cursor description
and describes the data type of the input values.

OUTPUT
Determines the number of output values of a dynamic SELECT statement or cursor
description and describes the data type of the output values.

statement_id
Dynamic statement or cursor description.

descriptor
Name of the SQL descriptor area into which the type descriptions are to be written (see
“Descriptor area field values” on page 457).

You can specify the name as an alphanumeric literal or with an alphanumeric host
variable.

You cannot use this SQL descriptor area if there is an open cursor with block mode
activated (see section “PREFETCH pragma” on page 65) and a FETCH NEXT...
statement whose INTO clause contains the name of the same SQL descriptor area has
been executed for this cursor.

INPUT
OUTPUT

SQL statements DESCRIBE

U22420-J-Z125-12-76 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Descriptor area field values

The fields of the SQL descriptor area are supplied with the following values:

The COUNT field contains the number of input values (DESCRIBE INPUT) or the number
of output values (DESCRIBE OUTPUT).

In the case of DESCRIBE INPUT, the number is calculated from the number of placeholders
in the dynamic statement or cursor description as follows:

Number of placeholders for unqualified values +
Number of aggregate elements of each placeholder for aggregates

For DESCRIBE OUTPUT, the number is calculated from the number of derived columns of
the dynamic SELECT statement or cursor description as follows:

Number of unqualified derived columns +
Number of column elements of each multiple derived column

If the number calculated is 0, no other descriptor area fields are set.

If the number is greater than the maximum number of item descriptors specified for
ALLOCATE DESCRIPTOR, no other descriptor area fields are set and an appropriate
SQLSTATE is set.

Otherwise, the following fields in the SQL descriptor area are supplied with values:

● For each input value for DESCRIBE INPUT:

– TYPE

– LENGTH (for alphanumeric data type, national data type and time data type)

– PRECISION (for numeric data type and for TIME and TIMESTAMP)

– SCALE (for NUMERIC, DECIMAL, INTEGER and SMALLINT)

– DATETIME_INTERVAL_CODE (for time data type)

– OCTET_LENGTH

– NULLABLE with the value 1

– REPETITIONS

– UNNAMED with the value 1

DESCRIBE SQL statements

458 U22420-J-Z125-12-76

● For each output value for DESCRIBE OUTPUT:

– TYPE

– LENGTH (for alphanumeric data type, national data type and time data type)

– PRECISION (for numeric data type and for TIME and TIMESTAMP)

– SCALE (for NUMERIC, DECIMAL, INTEGER and SMALLINT)

– DATETIME_INTERVAL_CODE (for time data type)

– OCTET_LENGTH

– NULLABLE

– REPETITIONS

– NAME

– UNNAMED

The values assigned to the above-mentioned fields are described in section “Descriptor
area fields” on page 37.

All the other fields in the SQL descriptor area are undefined.

Example

DESCRIBE OUTPUT cur_description
USING SQL DESCRIPTOR GLOBAL 'DESCR_AREA'

See also

ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, GET DESCRIPTOR,
SET DESCRIPTOR

SQL statements DROP FUNCTION

U22420-J-Z125-12-76 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DROP FUNCTION - Delete User Defined Function (UDF)

DROP FUNCTION deletes a UDF.

UDFs and their use in SESAM/SQL are described in detail in chapter “Routines” on
page 323.

You can ascertain which routines are defined and which routines use each other in the
views for routines of the INFORMATION_SCHEMA (see chapter “Information schemas” on
page 633).

When a UDF is deleted, the EXECUTE privilege for this UDF is revoked from the current
authorization identifier. EXECUTE privileges which have been passed on are also revoked.

The current authorization identifier must own the schema to which the UDF belongs.

DROP FUNCTION udf

udf ::= routine

udf
Name of the UDF. You can qualify the unqualified UDF name with a database and
schema name.

CASCADE
The UDF udf and each routine which udf calls directly or indirectly are deleted. Views
which udf uses directly or indirectly are also deleted.

RESTRICT
The UDF udf can be deleted only if udf is used by no other routine and by no view.

See also

CREATE FUNCTION, CREATE PROCEDURE

CASCADE
RESTRICT

DROP INDEX SQL statements

460 U22420-J-Z125-12-76

DROP INDEX - Delete index

You use DROP INDEX to delete an index. The index may have been created explicitly with
a CREATE INDEX statement or implicitly by the definition of an integrity constraint
(UNIQUE).

The INDEXES view of the INFORMATION_SCHEMA provides you with information on
which indexes have been defined (see chapter “Information schemas” on page 633).

If an explicitly defined index is also used by an integrity constraint, the index is not deleted
but is renamed as an implicit index. The new index name starts with UI and is followed by
a 16-digit number.

Indexes created implicitly by an integrity constraint (UNIQUE) are not deleted until the
relevant integrity constraint is deleted.

The current authorization identifier must own the schema to which the index belongs.

DROP INDEX index [DEFERRED]

index
Name of the index to be deleted.

You can qualify the name of the index with a database and schema name.

DEFERRED
This clause initiates high-speed deletion in which only the contiguous part of the index
is deleted. Any relocations which exist are retained.
The next time the user space is reorganized using the utility statement REORG SPACE
all the existing tables and indexes are recovered in the user space. The relocations then
also disappear.
Information on the storage structure of indexes is provided in the “Core manual”.

An implicitly generated index (in the case of a UNIQUE integrity constraint) cannot be
deleted explicitly. If necessary, the index must be generated explicitly with CREATE
INDEX. Here the “Generate_Type” is merely changed from “implicit” to “explicit” in the
metadata. The UNIQUE integration constraint can then be deleted. In this case the
index is not deleted and can now be deleted using DROP INDEX ... DEFERRED.

The DEFERRED clause can only be specified in the case of explicit deletion. It cannot
be specified when deletion takes place implicitly, e.g. using DROP SPACE CASCADE.

SQL statements DROP INDEX

U22420-J-Z125-12-76 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DEFERRED omitted:
SESAM/SQL deletes the indexes. This can be time-consuming when indexes are very
large and fragmented.

See also

CREATE INDEX

DROP PROCEDURE SQL statements

462 U22420-J-Z125-12-76

DROP PROCEDURE - Delete procedure

DROP PROCEDURE deletes a procedure.

Procedures and their use in SESAM/SQL are described in detail in chapter “Routines” on
page 323.

You can ascertain which routines are defined and which routines use each other in the
views for routines of the INFORMATION_SCHEMA (see chapter “Information schemas” on
page 633).

When the procedure is deleted, the EXECUTE privilege for this procedure is revoked from
the current authorization identifier. EXECUTE privileges which have been passed on are
also revoked.

The current authorization identifier must own the schema to which the procedure belongs.

DROP PROCEDURE procedure

procedure ::= routine

procedure
Name of the procedure. You can qualify the procedure name with a database and
schema name.

CASCADE
The procedure procedure and each routine which procedure calls directly or indirectly are
deleted. Views which procedure uses indirectly via a UDF are also deleted.

RESTRICT
The procedure procedure can be deleted only if procedure is used by no other routine.

See also

CREATE PROCEDURE, CREATE FUNCTION, CALL

CASCADE
RESTRICT

SQL statements DROP SCHEMA

U22420-J-Z125-12-76 463

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DROP SCHEMA - Delete schema

You use DROP SCHEMA to delete a database schema.

The SCHEMATA view of the INFORMATION_SCHEMA provides you with information on
which schemas have been defined (see chapter “Information schemas” on page 633).

The current authorization identifier must own the schema.

DROP SCHEMA schema

schema
Name of the schema.

You can qualify the name of the schema with a database name.

CASCADE
The schema schema and all the objects of the schema are deleted. Views, routines, and
integrity constraints that reference the base tables, views, and routines in schema
directly or indirectly are also deleted.

RESTRICT
The schema schema can only be deleted when it is empty. All the schema’s base tables,
views, and routines must be deleted beforehand.

Example

The example deletes the ADDONS schema, provided that all base tables, views, and
routines of the schema have already been deleted. The schema was qualified using the
catalog name.

 DROP SCHEMA ordercust.addons RESTRICT

See also

CREATE SCHEMA, DROP TABLE, DROP VIEW, DROP FUNCTION,
DROP PROCEDURE

CASCADE
RESTRICT

DROP SPACE SQL statements

464 U22420-J-Z125-12-76

DROP SPACE - Delete space

You use DROP SPACE to delete a user space.

The SPACE view of the INFORMATION_SCHEMA provides you with information on which
user spaces have been defined (see chapter “Information schemas” on page 633).

The current authorization identifier must own the space.

DROP SPACE space [FORCED]

space
name of the user space
You can qualify the name of the space with a database name.

CASCADE
The space space is deleted even if it is not empty. The base tables and indexes located
in the space are also deleted. This is also the case for the views, routines, and integrity
constraints which refer directly or indirectly to these base tables and indexes.

RESTRICT
The space space is deleted only if it is empty. All the space’s base tables and indexes
must be deleted beforehand.

FORCED
The space space is deleted even if it cannot be opened for update processing, e.g.
because its BS2000 file does no longer exist. The space is then deleted logically in
SESAM/SQL, i.e. removed from the database’s metadata. When CASCADE is also
specified, FORCED also applies for spaces which are affected by the deletion of the
tables and indexes.

FORCED not specified
The space space is deleted only if it can be opened for update processing.

i SESAM/SQL can open the space for update processing if the space’s BS2000 file
can be opened without error, if the space is consistent and if it is not in one of the
following states: ”check pending”, “copy pending”, “load running”, “recover
pending”, “reorg pending” or “space defect” (see the “SQL Reference Manual Part
2: Utilities”).

The space file is overwritten with binary zeros if the DESTROY clause was specified
when the space was created or updated and SESAM/SQL can access the space’s
BS2000 file.

CASCADE
RESTRICT

SQL statements DROP SPACE

U22420-J-Z125-12-76 465

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DROP SPACE and transactions

A DROP SPACE statement cannot be followed by a CREATE SPACE statement within the
same transaction.

See also

CREATE SPACE, ALTER SPACE

DROP STOGROUP SQL statements

466 U22420-J-Z125-12-76

DROP STOGROUP - Delete storage group

You use DROP STOGROUP to delete a storage group. You cannot delete a storage group
if it is being used for spaces or has been entered in the media table
(see the “Core manual”).

The STOGROUPS view of the INFORMATION_SCHEMA provides you with information on
which storage groups have been defined (see chapter “Information schemas” on
page 633).

The current authorization identifier must own the storage group.

DROP STOGROUP stogroup RESTRICT

stogroup
Name of the storage group. The storage group cannot be deleted if it is being used.

You can qualify the name of the storage group with a database name.

See also

CREATE STOGROUP, ALTER STOGROUP

SQL statements DROP SYSTEM_USER

U22420-J-Z125-12-76 467

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DROP SYSTEM_USER - Delete system entry

You use DROP SYSTEM_USER to delete a system entry, i.e. the assignment of an
authorization identifier to a system user. You must specify the combination of system user
and authorization identifier that was defined for a system entry with CREATE
SYSTEM_USER.

You cannot delete a system entry if it is the last assignment of a
system user to the authorization identifier of the universal user.

If an SQL transaction belonging to the system user is currently active, his or her system
entry is only deleted if another system entry exists for the system user.

The SYSTEM_ENTRIES view of the INFORMATION_SCHEMA provides you with
information on which authorization identifiers have been assigned to which system users
(see chapter “Information schemas” on page 633).

The current authorization identifier must have the special privilege CREATE USER. If the
assignment of an authorization identifier with the special privilege CREATE USER and
GRANT authorization (see section “GRANT - Grant privileges” on page 495) to a system
user is to be deleted, the current authorization identifier must also have GRANT
authorization.

DROP SYSTEM_USER

 FOR authorization_identifier AT CATALOG catalog

utm_user ::= (, ,)

bs2000_user ::= (, [*],)

utm_user
Delete a system entry of a UTM system user.

bs2000_user
Delete a system entry of a BS2000 system user.

FOR authorization_identifier
Name of the authorization identifier assigned to the system user.

AT CATALOG catalog
Name of the database for which the assignment of the system user to the authorization
identifier is to be deleted.

utm_user
bs2000_user

hostname
*

utm_application_name
*

utm_userid
*

hostname
*

bs2000_userid
*

DROP SYSTEM_USER SQL statements

468 U22420-J-Z125-12-76

utm_user
Specification of the UTM user.

The UTM user must be specified precisely as defined with CREATE SYSTEM_USER.
* means the system access which was defined with *, not all corresponding system
accesses.

hostname
Alphanumeric literal indicating the symbolic host name.

If DCAM is not available on the host, the host is assigned the name 'HOMEPROC'.

* All hosts.

utm_application_name
Alphanumeric literal indicating the name of the UTM application.

* All UTM applications

utm_userid
You specify the UTM user ID as an alphanumeric literal defined with KDCSIGN for
local UTM system users. For UTM-D, you specify the local UTM session name
(LSES).

* All UTM user IDs.

bs2000_user
Specification of the BS2000 user.

The BS2000 user must be specified precisely as defined with CREATE
SYSTEM_USER. * means the system access which was defined with *, not all
corresponding system accesses.

hostname
Alphanumeric literal indicating the symbolic host name. If DCAM is not available on
the host, the host is assigned the symbolic name 'HOMEPROC'.

* All hosts.

bs2000_userid
Alphanumeric literal indicating the BS2000 user ID.

* All BS2000 user IDs.

SQL statements DROP SYSTEM_USER

U22420-J-Z125-12-76 469

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Example

In the example below, two system entries are deleted. The system entries must be specified
exactly as they were defined with CREATE SYSTEM_USER. The authorization identifiers
UTIUSR1 and UTIUSR2 are not deleted.

DROP SYSTEM_USER (*,*,'PHOTO') FOR utiusr1 AT CATALOG ordercust

DROP SYSTEM_USER (*,*,'TEXT') FOR utiusr2 AT CATALOG ordercust

See also

CREATE SYSTEM_USER, CREATE USER, DROP USER

DROP TABLE SQL statements

470 U22420-J-Z125-12-76

DROP TABLE - Delete base table

You use DROP TABLE to delete a base table and the associated indexes.

When a base table is deleted, all the table and column privileges for this base table are
revoked from the current authorization identifier. Table and column privileges that have
been passed on are also revoked.

The BASE_TABLES view in the INFORMATION_SCHEMA provides you with information
on which base tables have been defined (see chapter “Information schemas” on page 633).

You can also use DROP TABLE to delete BLOB tables. In this case all BLOBs contained
therein will also be deleted.

The current authorization identifier must own the schema to which the table belongs.

DROP TABLE table [DEFERRED]

table
Name of the base table to be deleted.

DEFERRED
This clause initiates high-speed deletion of the table in which only the contiguous part
of the table and of the associated explicit and implicit indexes are deleted. Any
relocations which exist are retained.
The next time the user space is reorganized using the utility statement REORG SPACE
all the existing tables and indexes are recovered in the user space.
The relocations which have not been deleted then also disappear.
Information on the storage structure of base tables is provided in the “Core manual”.

In the case of partitioned tables the DEFERRED clause applies for all partitions; it
cannot be restricted to individual partitions.

The DEFERRED clause can only be specified in the case of explicit deletion. In the
case of implicit deletion, e.g. with DROP SPACE ... CASCADE, it cannot be specified.

When DEFERRED is to apply only for the table but not for the indexes, the indexes
must first be deleted using DROP INDEX (without specifying DEFERRED). The table
can then be deleted using DROP TABLE ... DEFERRED.

DEFERRED omitted:
SESAM/SQL deletes the table and all associated indexes. This can be time-consuming
when indexes are very large and fragmented.

CASCADE
The base table table and all the associated indexes are deleted. All the views,
routines,and integrity constraints that reference table directly or indirectly are also
deleted.

CASCADE
RESTRICT

SQL statements DROP TABLE

U22420-J-Z125-12-76 471

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

RESTRICT
The deletion of the base table table is restricted. The base table table cannot be deleted
if it is used in a view definition, a routine or an integrity constraint of another base table.

Examples

In this example, the CUSTOMERS table is deleted only if all integrity constraints of other
base tables that reference the CUSTOMERS table have been deleted beforehand. In
addition, the CUSTOMERS table must not be used in any view definition.

 ALTER TABLE contacts DROP CONSTRAINT contact_cust_num_ref_customers
CASCADE
ALTER TABLE orders DROP CONSTRAINT o_cust_num_ref_customers CASCADE
SQL DROP TABLE customers RESTRICT

The example deletes the IMAGES and DESCRIPTIONS tables, together with all indexes,
views, and integrity constraints that reference these tables.

 SQL DROP TABLE images CASCADE
SQL DROP TABLE descriptions CASCADE

See also

CREATE TABLE, ALTER TABLE

DROP USER SQL statements

472 U22420-J-Z125-12-76

DROP USER - Delete authorization identifier

You use DROP USER to delete an authorization identifier and the associated system
entries. You cannot delete an authorization identifier if it is the owner of schemas, spaces
or storage groups, if it is the grantor of a privilege, or if an SQL transaction is currently active
for the authorization identifier.

You cannot delete the authorization identifier of the universal user.

The USERS view of the INFORMATION_SCHEMA provides you with information on which
authorization identifiers have been defined. Information on which authorization identifiers
are owners is stored in the SCHEMATA, SPACES and STOGROUPS views. The
TABLE_PRIVILEGES, COLUMN_PRIVILEGES, USAGE_PRIVILEGES,
CATALOG_PRIVILEGES and ROUTINE_PRIVILEGES views provide you with information
on whether the authorization identifier is the grantor of a privilege (see chapter “Information
schemas” on page 633).

The current authorization identifier must have the special privilege CREATE USER. If you
want to delete an authorization identifier that as been granted the special privilege CREATE
USER and GRANT authorization (see section “GRANT - Grant privileges” on page 495),
the current authorization identifier must also have GRANT authorization.

DROP USER authorization_identifier AT CATALOG catalog RESTRICT

authorization_identifier
Name of the authorization identifier to be deleted.

AT CATALOG catalog
Name of the database from which the authorization identifier is to be deleted.

See also

CREATE USER, CREATE SYSTEM_USER, DROP SYSTEM_USER

SQL statements DROP VIEW

U22420-J-Z125-12-76 473

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DROP VIEW - Delete view

You use DROP VIEW to delete the definition of a view.

When a view definition is deleted, all the table and column privileges for this view are
revoked from the current authorization identifier. Table and column privileges of the view
that have been passed on are also revoked.

The VIEWS view of the INFORMATION_SCHEMA provides you with information on which
views have been defined. Information on the tables a view uses is provided in the view
VIEW_TABLE_USAGE (see chapter “Information schemas” on page 633).

The current authorization identifier must own the schema to which the view belongs.

DROP VIEW table

table
Name of the view to be deleted.

CASCADE
The table view and all views and routines which refer directly or indirectly to table are
deleted.

RESTRICT
The deletion of the view table is restricted. The view cannot be deleted if it is used in
another view definition or in a routine.

See also

CREATE VIEW

CASCADE
RESTRICT

EXECUTE SQL statements

474 U22420-J-Z125-12-76

EXECUTE - Execute prepared statement

You use EXECUTE to execute a statement prepared with PREPARE. Placeholders for
input values in the dynamic statement are replaced by specific values.

If the statement is a SELECT statement, the column values of the derived rows are stored
in host variables or in an SQL descriptor area.

If the statement is a CALL statement, values of output parameters are stored in host
variables or in an SQL descriptor area.

You can use EXECUTE to execute a previously prepared statement any number of times.

A statement can only be executed with EXECUTE in the compilation unit in which it was
previously prepared with PREPARE.

EXECUTE statement_id

[INTO]

[USING]

statement_id
Identifier of the dynamic statement that has been prepared with PREPARE.

If the statement text contains a cursor name, the cursor description for this cursor must
be prepared and the cursor opened before the EXECUTE statement is executed.

INTO clause
Indicates where the output values of the dynamic statement specified with statement_id
are to be stored. The INTO clause must be specified in the following cases:

● The prepared statement is a SELECT statement

● The prepared statement is a CALL statement and the procedure called in it has
parameters of the type OUT or INOUT

{:host_variable [[INDICATOR] :indicator_variable]},...
SQL DESCRIPTOR GLOBAL descriptor

{:host_variable [[INDICATOR] :indicator_variable]},...
SQL DESCRIPTOR GLOBAL descriptor

SQL statements EXECUTE

U22420-J-Z125-12-76 475

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

host_variable
Name of a host variable assigned an output value.

The data type of a host variable must be compatible with the data type of the
relevant output value (see section “Reading values into host variables or a
descriptor area” on page 125).

If an output value is an aggregate with several elements (SELECT statement), the
corresponding host variable must be a vector with the same number of elements.
The number of specified host variables must be the same as the number of output
values in the SELECT statement specified with statement_id.

In a procedure call using the CALL statement, the number of host variables
specified must match the number of procedure parameters of the type OUT or
INOUT in the procedure called.

indicator_variable
Name of the indicator variable for the preceding host variable.

If the host variable is a vector (SELECT statement), the indicator variable must also
be a vector with the same number of elements.

The indicator value indicates whether the NULL value was transferred or whether
data was lost:

0 The host variable contains the value read. The assignment was error free.

-1 The value to be assigned is the NULL value.

> 0 For alphanumeric and national values:
The host variable was assigned a truncated string. The value of the
indicator variable indicates the original length in code units.

descriptor
Name of an SQL descriptor area containing the data type description of the output
values and into which the output values (for procedures the procedure parameters
of the type OUT or INOUT) are written when the statement specified by statement_id
is executed.

The SQL descriptor area must be created beforehand and supplied with
appropriate values:

– The value of the COUNT field must be the same as the number of output values
of the statement specified with
statement_id (for aggregates one output value for each element, for procedures
one output value for each procedure parameter of the type OUT or INOUT)
where

0 Î COUNT Î defined maximum number of item descriptors

EXECUTE SQL statements

476 U22420-J-Z125-12-76

– The output values are assigned to the DATA fields of the item descriptors in the
order of the items in the descriptor area. The data type description for an item
must be compatible with the data type of the corresponding output value (see
section “Reading values into host variables or a descriptor area” on page 125).

If the value to be transferred is the NULL value, the appropriate INDICATOR
field is set to the value -1. If a string to be assigned is truncated, the
corresponding INDICATOR field indicates the original length.

USING clause
Specifies where the input values for the dynamic statement statement_id are to be read
from. The INTO clause must be specified in the following cases:

● When the SELECT statement contains question marks as placeholders for values

● When the procedure called in the CALL statement has parameters of the type IN or
INOUT and the corresponding arguments contain question marks as placeholders
for values

host_variable
Name of a host variable containing the value to be assigned to a placeholder in the
dynamic statement statement_id.

The data type of a host variable must be compatible with the data type of the
corresponding placeholder (see section “Values for placeholders” on page 124).

If the placeholder represents an aggregate with several elements (SELECT
statement), the corresponding host variable must be a vector with the same number
of elements.
The number of host variables specified must be the same as the number of
placeholders in the SELECT statement.

In a procedure call using the CALL statement, the number of host variables
specified must match the number of placeholders for parameters of the data type
IN or INOUT.

The user variables are assigned values in the order in which the placeholders are
specified in the dynamic statement.

SQL statements EXECUTE

U22420-J-Z125-12-76 477

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

indicator_variable
Name of the indicator variable for the preceding host variable.

If the host variable is a vector (SELECT statement), the indicator variable must also
be a vector with the same number of elements.

The value of the indicator variable indicates whether the NULL value is to be
transferred:

< 0 The NULL value is to be assigned.

Ï 0 The value of the host variable is to be assigned.

descriptor
Name of an SQL descriptor area containing the data types and values for the
placeholders in the dynamic statement statement_id.

The SQL descriptor area must be created beforehand and supplied with
appropriate values:

– The value of the descriptor area field COUNT must be the same as the number
of input values required (for aggregates one input value for each element, for
procedures one output value for each procedure parameter of the type OUT or
INOUT) where

0 Î COUNT Î defined maximum number of item descriptors

– The values of the DATA fields of the item descriptors (or NULL values if the
INDICATOR is negative) are assigned to the placeholders in the dynamic
statement in the order of the items in the descriptor area. The data type
description of an item must be compatible with the data type of the
corresponding placeholder (see section “Values for placeholders” on
page 124).

Example

EXECUTE dyn_statement
INTO SQL DESCRIPTOR GLOBAL 'DESCR_AREA'

See also

EXECUTE IMMEDIATE, PREPARE, SELECT

EXECUTE IMMEDIATE SQL statements

478 U22420-J-Z125-12-76

EXECUTE IMMEDIATE - Execute dynamic statement

You use the EXECUTE IMMEDIATE statement to prepare and execute a dynamic
statement in one step. In other words, EXECUTE IMMEDIATE corresponds to a PREPARE
statement immediately followed by an EXECUTE statement. The statement does not,
however, remain prepared and cannot be executed again with EXECUTE.

Dynamic CALL statements can be executed with EXECUTE IMMEDIATE if the procedure
to be called has no procedure parameters or only procedure parameters of the type IN.

EXECUTE IMMEDIATE statement_variable

statement_variable::= :host_variable

statement_variable
Alphanumeric host variable containing the statement text. The host variable can also
be of the type CHAR(n), where 256 Î n Î 32000.

The following conditions must be satisfied:

– The statement text cannot include any host variables or question marks as
placeholders for unknown values.

– The statement text cannot contain either SQL comments or comments in the host
language. Pragmas (--%PRAGMA) are exceptions.

– The statement text cannot be a SELECT statement or cursor description.

– The RETURN INTO clause cannot be specified in an INSERT statement.

– If the statement text contains a cursor name (DELETE WHERE CURRENT OF,
UPDATE WHERE CURRENT OF), the cursor description for this cursor must be
prepared and the cursor opened before the EXECUTE IMMEDIATE statement is
executed.

SQL statements EXECUTE IMMEDIATE

U22420-J-Z125-12-76 479

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Statements for EXECUTE IMMEDIATE

The following statements can be executed with EXECUTE IMMEDIATE:

In addition, all utility statements can be executed with EXECUTE IMMEDIATE (see the
“SQL Reference Manual Part 2: Utilities”).

The following statements cannot be executed with EXECUTE IMMEDIATE:

ALTER SPACE DROP SCHEMA

ALTER STOGROUP DROP SPACE

ALTER TABLE DROP STOGROUP

COMMIT DROP SYSTEM_USER

CALL (only input parameters; type IN) DROP TABLE

CREATE INDEX DROP USER

CREATE FUNCTION DROP VIEW

CREATE PROCEDURE GRANT

CREATE SCHEMA INSERT (without RETURN INTO clause)

CREATE SPACE MERGE

CREATE STOGROUP PERMIT

CREATE SYSTEM_USER REORG STATISTICS

CREATE TABLE REVOKE

CREATE USER ROLLBACK

CREATE VIEW SET CATALOG

DELETE SET SCHEMA

DROP FUNCTION SET SESSION AUTHORIZATION

DROP INDEX SET TRANSACTION

DROP PROCEDURE UPDATE

ALLOCATE DESCRIPTOR INCLUDE

CLOSE OPEN

DEALLOCATE DESCRIPTOR PREPARE

DECLARE CURSOR RESTORE

DESCRIBE SELECT

EXECUTE SET DESCRIPTOR

EXECUTE IMMEDIATE STORE

FETCH WHENEVER

GET DESCRIPTOR

EXECUTE IMMEDIATE SQL statements

480 U22420-J-Z125-12-76

Example

An SQL statement is to be compiled and executed at runtime with EXECUTE IMMEDIATE:

The following SQL statement is read into SOURCESTMT as an alphanumeric string:

CREATE TABLE ordercust.orderproc.ordstat
(order_stat_num INTEGER, order_stat_text CHAR(15))

The statement is compiled and executed with:

EXEC SQL EXECUTE IMMEDIATE :SOURCESTMT END-EXEC

See also

EXECUTE, PREPARE

SQL statements FETCH

U22420-J-Z125-12-76 481

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

FETCH - Position cursor and read row

You use FETCH to position a cursor. The new cursor position is either on a row, before the
first row or after the last row of the cursor table. If the new cursor position is on a row in the
cursor table, this row is the current row and the column values of this row can be read.
If no row is read for FETCH because the specified position does not exist, an appropriate
SQLSTATE is set, which can be handled with WHENEVER NOT FOUND.
If you declare a cursor with SCROLL, the cursor can be positioned with FETCH on any row
in the cursor table and in any order. A cursor defined with NO SCROLL can only be
positioned on the next row (FETCH NEXT...).

You can transfer the values of the current row to host variables, procedure parameters of
the type INOUT or OUT, local variables or an SQL descriptor area.

The cursor declaration with DECLARE CURSOR must be located in the same compilation
unit and must physically precede the FETCH statement in the program text.

There must be no backup status of the cursor created with a STORE statement when the
FETCH statement is executed. The cursor must be open.

If the cursor is declared with WITH HOLD, the isolation level or consistency level of the
transaction must be the same as when the cursor was opened.

If block mode is activated for the cursor (see section “PREFETCH pragma” on page 65) and
if a FETCH NEXT... statement has already been executed for the cursor, only this FETCH
NEXT statement is permitted subsequently for this cursor, i.e. the same statement in a loop
or subroutine.

FETCH [FROM] cursor INTO

n ::=

variable ::=

[NEXT]
PRIOR
FIRST
LAST
RELATIVE n
ABSOLUTE n

variable,...
SQL DESCRIPTOR GLOBAL descriptor

integer
:host_variable
routine_parameter
local_variable

:host_variable [[INDICATOR] :indicator_variable]
routine_parameter
local_variable

FETCH SQL statements

482 U22420-J-Z125-12-76

NEXT
Positions the cursor on the next row in the cursor table. If you declared the cursor
without SCROLL, you can only use the NEXT clause.

If the cursor is located on the last row of the cursor table, the cursor is positioned after
the last row. If it is already positioned after the last row, its position remains unchanged.

PRIOR
Positions the cursor on the preceding row of the cursor table.

If the cursor is positioned on the first row of the cursor table, it is positioned before the
first row. If it is already positioned in front of the first row, its position remains
unchanged.
You can only specify PRIOR if you declared the cursor with SCROLL.

FIRST
Positions the cursor on the first row of the cursor table or before the first row if the cursor
table is empty.
You can only specify FIRST if you declared the cursor with SCROLL.

LAST
Positions the cursor on the last row of the cursor table or after the last row if the cursor
table is empty.
You can only specify LAST if you declared the cursor with SCROLL.

ABSOLUTE n
Specify the position of the cursor.
You can only specify ABSOLUTE if you declared the cursor with SCROLL.

You can specify the following for n:
– An integer
– A host variable (if the statement is not part of a procedure) of the SQL data type

INT or SMALLINT
– A routine parameter or a local variable (if the statement is part of a routine) of the

SQL data type INT or SMALLINT

The cursor position is determined by the value of n as follows:

> 0 The cursor is positioned on the nth row of the cursor table or after the last row
if n > number of rows in the cursor table.

0 The cursor is positioned before the first row of the cursor table.

<0 The cursor is positioned on the (N+1-|n|)th row of the cursor table, where N is
the number of rows in the cursor table. If |n| > N, the cursor is positioned before
the first row.

Example

FETCH ABSOLUTE -1 and FETCH LAST are equivalent.

SQL statements FETCH

U22420-J-Z125-12-76 483

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

RELATIVE n
Position of the cursor relative to its current position. You can only specify RELATIVE if
you declared the cursor with SCROLL.

You can specify the following for n:
– An integer literal
– A host variable (if the statement is not part of a procedure) of the SQL data type

INT or SMALLINT
– A routine parameter or a local variable (if the statement is part of a routine) of the

SQL data type INT or SMALLINT

The cursor position is determined by the value of n as follows:

> 0 The cursor is positioned on the row that is n rows after its current position. If the
new position is greater than the number of rows in the cursor table, the cursor
is positioned after the last row.

0 The cursor position remains unchanged.

<0 The cursor is positioned on the row that is n rows in front of its actual position.
If the new position is Î 1, the cursor is positioned before the first row.

FROM cursor
Name of the cursor.

INTO clause
Indicates where the values read are to be stored.

:host_variable, routine_parameter, local_variable
Name of a host variable (if the statement is not part of a procedure) or name of a
procedure parameter of the type INOUT or OUT or of a local variable (if the
statement is part of a routine). The column value of the derived row is assigned to
the specified output destination.

The data type must be compatible with the data type of the relevant output value
(see section “Reading values into host variables or a descriptor area” on page 125).
If an output value is an aggregate with several elements (only in the case of host
variables), the corresponding host variable must be a vector with the same number
of elements.

The number of specified elements must match the number of columns in the
SELECT list of the cursor description. The value of the nth column in the SELECT
list is assigned to the nth output destination in the INTO clause.

FETCH SQL statements

484 U22420-J-Z125-12-76

indicator_variable
Name of the indicator variable for the preceding host variable.
If the host variable is a vector, the indicator variable must also be a vector with the
same number of elements.

The indicator value indicates whether the NULL value was transferred or whether
data was lost:

0 The host variable contains the value read. The assignment was error free.

-1 The value to be assigned is the NULL value.

> 0 For alphanumeric and national values:
The host variable was assigned a truncated string. The value of the
indicator variable indicates the original length in code units.

descriptor
For a dynamic cursor.

Name of an SQL descriptor area containing the data type description of the output
values and into which the output values read with the FETCH statement are written.

The SQL descriptor area must be created beforehand and supplied with
appropriate values:

– The value of the COUNT field must be the same as the number of output values,
which is calculated as follows: Number of atomic derived columns plus number
of column elements of each multiple derived column. The following also applies:

0 Î COUNT Î defined maximum number of item descriptors

– The output values are assigned to the DATA fields of the item descriptors in the
order of the items in the descriptor area. The data type description for an item
must be compatible with the data type of the corresponding output value (see
section “Reading values into host variables or a descriptor area” on page 125).

If the value to be transferred is the NULL value, the appropriate INDICATOR
field is set to the value -1. If a string to be assigned is truncated, the
corresponding INDICATOR field indicates the original length.

If block mode is activated for the open cursor cursor, and if a FETCH NEXT...
statement has been executed whose INTO clause contains the name of another
SQL descriptor area, you receive an error message.

SQL statements FETCH

U22420-J-Z125-12-76 485

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Behavior of SESAM/SQL in the event of an error

If an error occurs when a value is read (e.g. value is the NULL value, but the indicator
variable is not specified; numeric value is too big for the target data type), the cursor is
moved to its new position but the assigned values are undefined.

In the event of other errors (e.g. incompatible data types), the position of the cursor remains
unchanged and no values are read.

Examples

Position the cursor CUR_ORDER on a row in the cursor table and read the column values
of the current row in the host variables ORDER_NUM, CUST_NUM, CONTACT_NUM,
ORDER_TEXT, TARGET and ORDER_STAT.
Using the indicator variables IND_CONTACT_NUM, IND_ORDER_TEXT and
IND_ACTUAL, check whether information has been lost in the transfer of the alphanumeric
values and whether any of the columns contain the NULL value.

 FETCH cur_order INTO
:ORDER_NUM, :CUST_NUM,
:CONTACT_NUM INDICATOR :IND_CONTACT_NUM,
:ORDER_TEXT INDICATOR :IND_ORDER_TEXT,
:ACTUAL INDICATOR :IND_ACTUAL, :ORDER_STAT

Position the cursor CUR_RESULT on a row in the cursor table and read the column values
in the descriptor area DESCR_AREA.

FETCH cur_result INTO SQL DESCRIPTOR GLOBAL 'DESCR_AREA'

See also

CLOSE, DECLARE CURSOR, DELETE, OPEN, STORE, UPDATE

FOR SQL statements

486 U22420-J-Z125-12-76

FOR - Execute SQL statements in a loop

The FOR-statement executes SQL statements in a loop over all records of an implicitly
defined cursor. Cursor operations (e.g. FETCH) are not required here. Nor may they be
used for the implicitly defined cursor. The implicitly defined cursor is automatically closed
when processing has been concluded.

The ITERATE statement enables you to switch immediately to the next loop pass. The loop
can be aborted by means of a LEAVE statement.

The FOR statement may only be specified in a routine, i.e. in the context of a CREATE
PROCEDURE or CREATE FUNCTION statement. Routines and their use in SESAM/SQL
are described in detail in chapter “Routines” on page 323.

The FOR statement is a non-atomic SQL statement, i.e. further (atomic or non-atomic) SQL
statements can occur in it.

If the FOR statement is part of a COMPOUND statement, in the case of corresponding
exception handling routines the loop can also be left when a particular SQLSTATE (e.g. no
data, class '02xxx') occurs.

[label:]
FOR [forloopname AS] [cursor CURSOR FOR] query_expression
DO {routine_sql_statement;}...
END FOR [label]

forloopname ::= unqual_name

label
The label in front of the FOR statement (start label) indicates the start of the loop. It may
not be identical to another label in the loop.

The start label need only be specified when the next loop pass is to be switched to using
ITERATE or when the loop is to be left using a LEAVE statement. However, it should
always be used to permit SESAM/SQL to check that the routine has the correct
structure (e.g. in the case of nested loops).

The label at the end of the FOR statement (end label) indicates the end of the loop. If
the end label is specified, the start label must also be specified. Both labels must be
identical.

forloopname
Name of the FOR loop. It can be used to qualify the names of the columns of the
subsequent cursor description.
forloopname may be up to 31 characters long.

SQL statements FOR

U22420-J-Z125-12-76 487

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

cursor
Optional name for the cursor defined by query_expression.
This name must be specified if
UPDATE ... WHERE CURRENT OF ... or DELETE ... WHERE CURRENT OF ... is to
be used for the cursor or function.

query_expression
Definition of the cursor which is to be processed by the FOR statement.
The cursor must have unambiguously named columns. This can always be achieved
by using correlation names.
The data types of the cursor’s output values may not be multiple. However, individual
occurrences of a multiple field can be used.

routine_sql_statement
SQL statement which is to be executed in the FOR statement.
An SQL statement is concluded with a ";" (semicolon).
Multiple SQL statements can be specified one after the other. They are executed in the
order specified.
No privileges are checked before an SQL statement is executed.
An SQL statement in a routine may access the parameters of the routine and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there may not be
used.

i The SQL statements update_positioned_statement and delete_positioned_statement
can also be executed for the corresponding cursor if cursor is specified and the
query_expression is updatable (see section “Rules for updatable query
expressions” on page 318).

Execution information

The FOR statement is a non-atomic statement:

● If the FOR statement is part of a COMPOUND statement, the rules described there
apply, in particular the exception routines defined there.

● If the FOR statement is not part of a COMPOUND statement and one of the SQL
statements reports an SQLSTATE, it is possible that only the updates of this statement
will be undone. The FOR statement and the routine in which it is contained are aborted.
The SQL statement in which the routine was used returns the SQLSTATE concerned.

FOR SQL statements

488 U22420-J-Z125-12-76

Areas of validity and precedence rules for names

● In the case of an unqualified name (unqual_name), first an existing routine parameter or
an existing local variable is used with this name. Otherwise the name is searched for in
the current statement. If this name also does not exist there, the name (in the case of
nested FOR statements) is searched for in the higher-ranking FOR statements “from
the inside out”.

● It is recommended that you define a name for the FOR loop (forloopname), see below.
This makes name references within FOR loops clear. Precedence rules need not then
be observed.

Name for a FOR loop:

In the SQL statements of the FOR statement, the current values can be referred to
using the column names of the cursor description.

However, it is clearer if a name is defined for the FOR loop (forloopname). This name
can be used to qualify the columns of the current row:

FOR F1 AS SELECT C001, C002 FROM T1 WHERE P < 127
DO

UPDATE TU
SET COLX = COLX + F1.C001 WHERE COLY = F1.C002;

END FOR

This becomes apparent in a nested FOR statement:

FOR F1 AS SELECT C001 FROM T1 WHERE P < 127
DO
 FOR F2 AS SELECT C001, C002 FROM T2 WHERE Q < 875
 DO
 UPDATE TU
 SET COLX = COLX + F1.C001 + F2.C001
 WHERE COLY < F2.C002;
 END FOR;
END FOR

See also

CREATE PROCEDURE, CREATE FUNCTION, ITERATE, LEAVE

SQL statements GET DIAGNOSTICS

U22420-J-Z125-12-76 489

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

GET DIAGNOSTICS - Output diagnostic information

GET DIAGNOSTICS ascertains information on an SQL statement executed beforehand in
a routine and enters this in a procedure parameter of the type INOUT or OUT or a local
variable. The information relates to the statement itself of to the database objects affected
by it.

GET DIAGNOSTICS changes neither the content nor the sequence of diagnostics areas.
In other words GET DIAGNOSTICS statements which follow each other evaluate the same
diagnostic information.

GET DIAGNOSTICS is one of the diagnostic statements, see “Diagnostic information in
routines” on page 344.

GET [] DIAGNOSTICS

statement_info ::= name1 = ROW_COUNT

condition_info ::= name2 =

name1, name2 ::=

CURRENT
STACKED

statement_info [{, statement_info} ...]
CONDITION condition_info [{, condition_info} ...]

CONDITION_IDENTIFIER
RETURNED_SQLSTATE
MESSAGE_TEXT
MESSAGE_LENGTH
MESSAGE_OCTET_LENGTH

local_variable
routine_parameter

GET DIAGNOSTICS SQL statements

490 U22420-J-Z125-12-76

CURRENT
The diagnostic information for the SQL statement most recently executed is output.

Normally this statement is used to output the diagnostic information of an SQL
statement executed without error.

However, the SQL statement can also have executed an exception routine with
exception handling CONTINUE after an SQLSTATE (see “Local exception routines” on
page 405), and GET DIAGNOSTICS is the next statement in the routine.
A local exception routine has its own diagnostics area. CURRENT outputs the
diagnostic information of the SQL statement executed most recently in the exception
routine. The diagnostic information of the initiating SQL statement is output with
STACKED.

STACKED
The diagnostic information of the SQL statement whose SQLSTATE triggered the
exception routine is output.
STACKED may be specified only in a local exception routine.

name1, name2
name1 and name2 are the names of local variables, or procedure or UDF parameters in
which the information written after the equals sign is entered.
The data type of name1 or name2 must be compatible with the data type of the
information to be entered. The rules in section “Entering values in a procedure
parameter (output) or local variable” on page 130 apply.

name1=ROW_COUNT
name1 is assigned the number of processed rows of the subsequent successfully
executed SQL statement: insert_statement, update_searched_statement,
delete_searched_statement, merge_statement. Otherwise the value is undefined.
Data type: DECIMAL(31)

name2=CONDITION_IDENTIFIER
name2 is, if necessary, assigned the name of the condition reported by a SIGNAL or
RESIGNAL statement. Otherwise a string with the length 0 is assigned.
Data type: VARCHAR(31)

name2=RETURNED_SQLSTATE
name2 is, if necessary, assigned the value of the reported SQLSTATE. Otherwise a
string with the length 0 is assigned.
Data type: VARCHAR(5)

name2=MESSAGE_TEXT
name2 is, if necessary, assigned the message text if MESSAGE_TEXT was specified in
the SIGNAL or RESIGNAL statement. Otherwise a string with the length 0 is assigned.
Data type: VARCHAR(120)

SQL statements GET DIAGNOSTICS

U22420-J-Z125-12-76 491

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

name2=MESSAGE_LENGTH
name2 is, if necessary, assigned the length of the message text if MESSAGE_TEXT was
specified in the SIGNAL or RESIGNAL statement. Otherwise the value 0 is assigned.
Data type: INTEGER

name2=MESSAGE_OCTET_LENGTH
name2 is, if necessary, assigned the length of the message text in bytes if
MESSAGE_TEXT was specified in the SIGNAL or RESIGNAL statement. Otherwise
the value 0 is assigned.
Data type: INTEGER

Examples (see also page 349)

Outputting diagnostic information of the last SQL statement:

GET CURRENT DIAGNOSTICS counter1=ROW_COUNT;

Outputting diagnostic information of the SQL statement which triggered the exception
routine:

GET STACKED DIAGNOSTICS CONDITION
 var1=RETURNED_SQLSTATE,
 var2=MESSAGE_LENGTH, var3=MESSAGE_TEXT;

See also

COMPOUND, CREATE FUNCTION, CREATE PROCEDURE, RESIGNAL, SIGNAL

GET DESCRIPTOR SQL statements

492 U22420-J-Z125-12-76

GET DESCRIPTOR - Read SQL descriptor area

You use GET DESCRIPTOR to read the values from the fields in an SQL descriptor area.

You must create the descriptor with ALLOCATE DESCRIPTOR, and it must be supplied
with values before you call GET DESCRIPTOR.

GET DESCRIPTOR GLOBAL descriptor

item_number ::=

field_id ::=

descriptor
Name of the SQL descriptor area whose item descriptors are to be read.

host_variable=COUNT
Host variable of the type SMALLINT into which the value of the COUNT field is entered.

item_number
Number of the item descriptor in the SQL descriptor area containing the fields to be
read. The items in the descriptor area are numbered sequentially starting with 1. You
can specify an integer or a host variable for item_number, where:
1 Î item_number Î defined maximum number of item descriptors

If item_number > COUNT, an appropriate SQLSTATE is set, which can be handled with
WHENEVER NOT FOUND.

:host_variable=COUNT
VALUE item_number {:host_variable=field_id},...

integer
:host_variable

REPETITIONS
TYPE
DATETIME_INTERVAL_CODE
PRECISION
SCALE
LENGTH
INDICATOR
DATA
OCTET_LENGTH
NULLABLE
NAME
UNNAMED

SQL statements GET DESCRIPTOR

U22420-J-Z125-12-76 493

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

host_variable=field_id
Host variable into which the value of the specified field of the item descriptor
item_number is entered. The SQL data type of the variable depends on the specified field
identifier.

field_id
Field in the item descriptor item_number that is to be read. The descriptor area fields are
described in the section “Descriptor area fields” on page 37. You may specify a field_id
more than once in a GET DESCRIPTOR statement.

If a value is transferred from a descriptor area field to a host variable, the host variable
must be of the type SMALLINT for all of the fields except NAME and DATA.

If the value of the NAME field is to be transferred, the host variable must be of the SQL
data type CHAR(n) or VARCHAR(n), where n Ï 128.
If the value of the DATA field is to be transferred to a host variable, the host variable
must have exactly the same SQL data type indicated by the fields TYPE,
DATETIME_INTERVAL_CODE, LENGTH, PRECISION, SCALE of the same item (see
section “Transferring values between host variables and a descriptor area” on
page 127).

Except for the DATA and INDICATOR fields, no vectors can be specified. If DATA and
INDICATOR are specified, both must be atomic values or vectors with the same number
of elements.

If a vector with several elements is specified, the item numbers for exactly the same
number of subsequent items must be Î the defined maximum number of item
descriptors. If item numbers > COUNT, an appropriate SQLSTATE is set, which can be
handled with WHENEVER NOT FOUND.

GET DESCRIPTOR reads the last value set for the specified field. If the value of the
field is undefined, the value returned is also undefined.

The following applies to the DATA field: If the value of the INDICATOR field of the same
item < 0, the GET DESCRIPTOR statement must also include the INDICATOR field
and only the INDICATOR field is assigned a value.

If vectors are specified, the appropriate number of items are read starting with
item_number.

GET DESCRIPTOR SQL statements

494 U22420-J-Z125-12-76

Examples

Read the name, data type and length in bytes of the third item descriptor in the SQL
descriptor area DEMO_DESC:

GET DESCRIPTOR GLOBAL :demo_desc
VALUE 3 :desc_name = NAME :desc_type = TYPE :desc_len = OCTET_LENGTH

Query the number of item descriptors in the SQL descriptor area:

GET DESCRIPTOR GLOBAL :demo_desc :desc_count = COUNT

See also

ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DESCRIBE,
SET DESCRIPTOR

SQL statements GRANT

U22420-J-Z125-12-76 495

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

GRANT - Grant privileges

GRANT assigns the following privileges:

● Table and column privileges for base tables and views

● Special privileges for databases and storage groups

● EXECUTE privileges for routines

If the GRANT statement is included in a CREATE SCHEMA statement, you cannot grant
special privileges with GRANT.

The current authorization identifier must be authorized to grant the specified privileges:

● It is the authorization identifier of the universal user.

● It is owner of the table, database, storage group or routine.

● It has GRANT authorization for granting the privileges to other users.

Information on which authorization identifiers are owners is stored in the SCHEMATA,
SPACES and STOGROUPS views. The TABLE_PRIVILEGES, COLUMN_PRIVILEGES,
USAGE_PRIVILEGES, CATALOG_PRIVILEGES and ROUTINE_PRIVILEGES views
provide you with information on whether the authorization identifier has GRANT
authorization for a certain privilege (see chapter “Information schemas” on page 633).

Only the authorization identifier that granted a privilege (the “grantor”) can revoke that
privilege.

The GRANT statement has several formats. Examples are provided under the format
concerned.

See also

REVOKE, CREATE SCHEMA

GRANT SQL statements

496 U22420-J-Z125-12-76

GRANT format for table and column privileges.

GRANT

 ON [TABLE] table

TO ,...

[WITH GRANT OPTION]

table_and_column_privilege ::=

ALL PRIVILEGES
All the table and column privileges that the current authorization identifier can grant are
granted. ALL PRIVILEGES comprises the privileges SELECT, DELETE, INSERT,
UPDATE and REFERENCES.

table_and_column_privilege
The table and column privileges are granted individually. You can specify more than
one privilege.

ON [TABLE] rable
Name of the table for which you want to grant privileges.

If you use the GRANT statement in a CREATE SCHEMA statement, you can only
qualify the table name with the database and schema name from the CREATE
SCHEMA statement.

The table can be a base table or a view. You can only grant the SELECT privilege for a
table that cannot be updated.

TO PUBLIC
The privileges are granted to all authorization identifiers. In addition to its own
privileges, each authorization identifier also has those which have been granted to
PUBLIC. Authorization identifiers added later also have these privileges.

TO authorization_identifier
The privileges are granted to authorization_identifier. You may specify more than one
authorization identifier.

ALL PRIVILEGES
table_and_column_privilege,...

PUBLIC
authorization_identifier

SELECT
DELETE
INSERT
UPDATE [(column,...)]
REFERENCES [(column,...)]

SQL statements GRANT

U22420-J-Z125-12-76 497

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

WITH GRANT OPTION
The specified authorization identifiers are granted not only the specified privileges but
also GRANT authorization. This means that the authorization identifier(s) is authorized
to grant the privileges it has been extended to other authorization identifiers. You
cannot specify WITH GRANT OPTION together with PUBLIC.

WITH GRANT OPTION omitted:
The specified authorization identifier(s) cannot grant the privileges it has been extended
to other authorization identifiers.

table_and_column_privilege
Specification of the individual table and column privileges.

SELECT
Privilege that allows rows in the table to be read.

DELETE
Privilege that allows rows to be deleted from the table.

INSERT
Privilege that allows rows to be inserted into the table.

UPDATE [(column,...)]
Privilege that allows rows in the table to be updated.

The update operation can be limited to the specified columns. column must be the
name of a column in the specified table. You can specify more than one column.

(column,...) omitted:
All columns in the table may be updated. Columns added later may also be
updated.

REFERENCES [(column,...)]
Privilege that allows the definition of referential constraints that reference the table.
The reference can be limited to the specified columns. column must be the name of
a column in the specified table. You can specify more than one column.

(column,...) omitted:
All columns in the table may be referenced. Columns added later may also be
referenced.

GRANT SQL statements

498 U22420-J-Z125-12-76

Example

Grant all table privileges for IMAGES to the authorization identifier UTIUSR1, and the table
privileges SELECT, DELETE, INSERT, and UPDATE for DESCRIPTIONS to the
authorization identifier UTIUSR2. The two authorization identifiers must be created
beforehand.

 GRANT ALL PRIVILEGES ON images TO utiusr1

GRANT SELECT, DELETE, INSERT, UPDATE ON descriptions TO utiusr2

SQL statements GRANT

U22420-J-Z125-12-76 499

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

GRANT format for special privileges

GRANT

 ON

TO ,...

[WITH GRANT OPTION]

special_privilege ::=

ALL SPECIAL PRIVILEGES
All the special privileges that the current authorization identifier may grant are granted.
ALL SPECIAL PRIVILEGES comprises the special privileges.

special_privilege
The special privileges are granted individually. You can specify more than one special
privilege.

ON CATALOG catalog
Name of the database for which you are granting special privileges.

ON STOGROUP stogroup
Name of the storage group for which you want to grant the USAGE privilege. You can
qualify the name of the storage group with a database name.

TO
See page 496.

WITH GRANT OPTION
See page 497.

ALL PRIVILEGES
special_privilege,...

CATALOG catalog
STOGROUP stogroup

PUBLIC
authorization_identifier

CREATE USER
CREATE SCHEMA
CREATE STOGROUP
UTILITY
USAGE

GRANT SQL statements

500 U22420-J-Z125-12-76

special_privilege
Specification of the individual special privileges.

CREATE USER
Special privilege that allows you to define and delete authorization identifiers. You
can only grant the CREATE USER privilege for a database.

CREATE SCHEMA
Special privilege that allows you to define database schemas. You can only grant
the CREATE SCHEMA privilege for a database.

CREATE STOGROUP
Special privilege that allows you to define storage groups. You can only grant the
CREATE STOGROUP privilege for a database.

UTILITY
Special privilege that allows you to use utility statements. You can only grant the
UTILITY privilege for a database.

USAGE
Special privilege that allows you to use a storage group. You can only grant the
USAGE privilege for a storage group.

Examples

Grant the special privilege CREATE SCHEMA to the existing authorization identifier
UTIUSR.

GRANT CREATE SCHEMA ON CATALOG ordercust TO utiusr

Grant all special privileges for the database ORDERCUST to the authorization identifier
UTIADM.
In addition, grant UTIADM the special privilege which authorizes use of the storage group
STOGROUP1.

 GRANT ALL SPECIAL PRIVILEGES ON CATALOG ordercust TO utiadm
SQL GRANT USAGE ON STOGROUP stogroup1 TO utiadm

SQL statements GRANT

U22420-J-Z125-12-76 501

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

GRANT format for EXECUTE privileges (procedure)

GRANT

EXECUTE ON SPECIFIC PROCEDURE procedure

TO ,...

[WITH GRANT OPTION]

procedure ::= routine

EXECUTE ON SPECIFIC PROCEDURE procedure
Name of the procedure for which the privilege is to be passed on. You can qualify the
procedure name with a database and schema name.
If you use the GRANT statement in a CREATE SCHEMA statement, you can only
qualify the procedure name with the database and schema name from the CREATE
SCHEMA statement.

TO
See page 496.

WITH GRANT OPTION
See page 497.

Example

The privilege of being entitled to execute the myproc procedure is granted to all
authorization identifiers.

GRANT EXECUTE ON SPECIFIC PROCEDURE myproc TO PUBLIC

PUBLIC
authorization_identifier

GRANT SQL statements

502 U22420-J-Z125-12-76

GRANT format for EXECUTE privileges (UDF)

GRANT

EXECUTE ON SPECIFIC FUNCTION udf

TO ,...

[WITH GRANT OPTION]

udf ::= routine

EXECUTE ON SPECIFIC FUNCTION udf
Name of the UDF for which the privilege is to be passed on. You can qualify the
unqualified UDF name with a database and schema name.
If you use the GRANT statement in a CREATE SCHEMA statement, you may qualify
the UDF name only with the database and schema names from the CREATE SCHEMA
statement.

TO
See page 496.

WITH GRANT OPTION
See page 497.

Example

The privilege of being entitled to execute the myproc UDF is granted to all authorization
identifiers.

GRANT EXECUTE ON SPECIFIC FUNCTION myudf TO PUBLIC

PUBLIC
authorization_identifier

SQL statements IF

U22420-J-Z125-12-76 503

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

IF - Execute SQL statements conditionally

The IF statement executes statements depending on certain conditions.
It may may only be specified in a routine, i.e. in the context of a CREATE PROCEDURE or
CREATE FUNCTION statement. Routines and their use in SESAM/SQL are described in
detail in chapter “Routines” on page 323.

The IF statement is a non-atomic SQL statement, i.e. further (atomic or non-atomic) SQL
statements can occur in it.

IF search_condition
THEN {routine_sql_statement;}...
[{ELSEIF search_condition THEN {routine_sql_statement;}... }...]

[ELSE {routine_sql_statement;}...]
END IF

search_condition
Search condition that returns a truth value when evaluated
The search condition may contain parameters of routines and (if the statement is part
of a COMPOUND statement) local variables, but no host variables.
A column may be specified only if it is part of a subquery

routine_sql_statement
SQLstatement which is to be executed in the THEN or ELSE part of the IF statement.
An SQL statement is concluded with a ";" (semicolon).
Multiple SQL statements can be specified one after the other. They are executed in the
order specified.
No privileges are checked before an SQL statement is executed.
An SQL statement in a routine may access the parameters of the routine and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there may not be
used.

Execution information

The IF and ELSEIF clauses are processed from left to right. The associated SQL
statements are processed for the first THEN clause whose search condition returns the
truth value true. The IF statement is then terminated.

If none of the search conditions returns the truth value true and an ELSE clause exists, the
SQL statements of the ELSE clause are processed.

SQL statements are not processed if the associated search condition returns the truth value
unknown.

IF SQL statements

504 U22420-J-Z125-12-76

The IF statement is a non-atomic statement:

● If the IF statement is part of a COMPOUND statement, the rules described there apply,
in particular the exception routines defined there.

● If the IF statement is not part of a COMPOUND statement and one of the SQL
statements reports an SQLSTATE, it is possible that only the updates of this SQL
statement will be undone. The IF statement and the routine in which it is contained are
aborted. The SQL statement in which the routine was used returns the SQLSTATE
concerned.

Example

The SQL statements are executed only if the tab table is not empty.

IF (SELECT COUNT(*) FROM tab) > 0 THEN routine_sql_statement END IF

See also

CREATE PROCEDURE, CREATE FUNCTION

SQL statements INCLUDE

U22420-J-Z125-12-76 505

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

INCLUDE - Insert program text into ESQL programs

You use INCLUDE to insert program text stored in a PLAM library member into an ESQL
program. The program text can contain embedded SQL statements and utility statements,
as well as statements in the host language. For example, you could use INCLUDE to insert
the communication area between SQL and the host language in an ESQL program,
provided that an appropriate member exists in a BS2000 PLAM library.

During precompilation by the ESQL precompiler, the INCLUDE statement is replaced by the
text in the specified library member. The INCLUDE statements are processed in the order
in which they occur in the program.

INCLUDE library_member

library_member ::=

library_member
Name of a PLAM library member of the type S. The name must be the valid name of a
PLAM library member without a suffix (version specification). If several versions of the
specified library member exist in a PLAM library, SESAM/SQL uses the current version.

Allocating PLAM libraries with ESQL precompiler options

Each PLAM library that contains library members must be made known by means of an
ESQL precompiler option (see the “ESQL-COBOL for SESAM/SQL-Server” manual). You
use these options to determine the order in which PLAM libraries are searched for library
members. If two library members with the same name exist in different PLAM libraries, the
ESQL precompiler always uses the first PLAM library encountered that contains this library
member.

Example

Insert the library element VARIABLES in an ESQL program. VARIABLES could contain
frequently used host variables, for example.

 INCLUDE variables

alphanumeric_literal
regular_name

INSERT SQL statements

506 U22420-J-Z125-12-76

INSERT - Insert rows in table

You use INSERT to insert rows into an existing table.

If you want to insert rows into a table, you must either own the table or have the INSERT
privilege for the table. Furthermore, the transaction mode of the current transaction must
be READ WRITE.

The special literals (see page 110) which occur in the INSERT statement (and in preset
values) and the time functions CURRENT_DATE, CURRENT_TIME and
CURRENT_TIMESTAMP are evaluated once, and the calculated values apply for all
inserts.

If integrity constraints have been defined for the table or the columns involved, these are
checked after the rows have been inserted. If an integrity constraint has been violated, the
insertion is canceled and an appropriate SQLSTATE set.

INSERT INTO table

[RETURN INTO

column_list ::= (,...)

row_2 ::=

row_1 ::=

[column_list] [COUNT INTO column]

DEFAULT VALUES

query_expression:

VALUES
row_2 , row_2 ,...
row_1

:host_variable [[INDICATOR] :indicator_variable]
routine_parameter
local_variable

column
column[pos_no]
column[min..max]
column(pos_no)
column(min..max)

(insert_expression_2 ,...)
insert_expression_2

(insert_expression_1 ,...)
insert_expression_1

SQL statements INSERT

U22420-J-Z125-12-76 507

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

insert_expression_2 ::=

insert_expression_1 ::=

table
Name of the table into which the rows are to be inserted. The table can be a base table
or an updatable view.

column_list
Lists the columns, and the occurrence ranges of multiple columns, for which the
INSERT statement specifies the values in the rows to be inserted, and stipulates the
order for this. The values of the remaining columns in the rows to be inserted are not
specified in the INSERT statement; they are DEFAULT or NULL values or values
defined by SESAM/SQL.

No column_list specified:
The INSERT statement specifies the values in the rows to be inserted for each column
of table (except for the column specified by COUNT INTO), in the order specified with
CREATE TABLE and ALTER TABLE or with CREATE VIEW.

column
Atomic column whose values in the rows to be inserted are specified in the INSERT
statement.

column must be a column of the specified table. The order in which you specify the
columns does not have to be the same as the order of the columns in the table. You
can specify an atomic column only once in the column list.

column(pos_no) /column[pos_no]
Element of a multiple column whose values in the rows to be inserted are specified in
the INSERT statement. The multiple column must be part of the table.

If several elements of a multiple column are specified, the range of indexes specified
must be contiguous. None of the elements of the multiple column may occur more than
once.

pos_no is an unsigned integer Ï 1.

expression
NULL

expression
NULL
DEFAULT
*

< ,...>
value
NULL

INSERT SQL statements

508 U22420-J-Z125-12-76

column(min..max) / column[min..max]
Elements in a multiple column whose values are indicated in the rows to be inserted in
the INSERT statement. The multiple column must be part of the table.

If several elements of a multiple column are specified, the range of indexes specified
must be contiguous. None of the elements of the multiple column may occur more than
once.

min and max are unsigned integers Ï 1; max must be Ï min.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

COUNT INTO column
Atomic column whose values in the rows to be inserted are determined by SESAM/SQL
and must not be specified in the INSERT statement (counting column). column may not
occur in column_list.

The column must be of integer or fixed-point number type (SMALLINT, INT, DECIMAL,
NUMERIC) and must belong to the primary key. The column may not be contained
either in a referential constraint or a check constraint of the table table.

SESAM/SQL determines the values of the respective column in all rows to be inserted
in such a way that the primary key values are unique within the table.

query_expression
query expression is a query expression whose derived table specifies the required
column values of the rows to be inserted. One row is inserted into the table table for
each row of the result table. If query expression returns an empty table, no rows are
inserted and an appropriate SQLSTATE is set, which can be handled with WHENEVER
NOT FOUND.

SQL statements INSERT

U22420-J-Z125-12-76 509

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

VALUES clause
The required column values are specified separately for each row which is to be
inserted using line_2 or line_1. The table consisting of all these rows or of this one row
plays the same role as the result table of the query_expression.

row_2
The number of rows inserted is the number of times row_2 is specified.

All occurrences of row_2 must have the same number of columns. The data type of each
column of the result table follows from the rules described under “Data type of the
derived column for UNION” on page 314. If a column in the result table only contains
NULL, its data type will be that of the corresponding column of table.

insert_expression_2

expression
The expression of insert_expression_2 must be atomic.

NULL
The corresponding column in the rows to be inserted must be atomic. It is set
to the NULL value.

row_1
One row is inserted. The result table with the required values for this row to be inserted
consists of row_1.

insert_expression_1

expression
The expression of insert_expression_1 must be either atomic or a host variable
which is a vector with more than one element. If such a host variable or an
aggregate is specified, the number of vector or aggregate elements must agree
with the number of elements of the respective column in the row to be inserted.

NULL
The respective column in the row to be inserted must be atomic. It is set to the
NULL value.

DEFAULT
The respective column in the row to be inserted must be atomic. It is set to the
default value. The default value is specified in the definition of the column. If
there is no default value defined, the column is set to the NULL value.

INSERT SQL statements

510 U22420-J-Z125-12-76

* The corresponding column in the row to be inserted must be atomic, must be of
integer or fixed-point number type (SMALLINT, INT, DECIMAL, NUMERIC) and
must belong to a primary key. The column may not be contained either in a
referential constraint or a check constraint of the table table.

* may occur only once in the VALUES clause and must not occur together with
COUNT INTO.

The value of the corresponding column in the row to be inserted is determined
by SESAM/SQL in such a way that the primary key values within the table are
unique.

<{value, NULL},...>
Aggregate to be assigned to a multiple column. The number of values must be
the same as the number of column elements.

Query_expression, insert_expression_2 and insert_expression_1 must not reference a table
referring to the underlying base table into which the new rows are inserted. In particular,
you may not reference table.

The number of columns of query_expression, row_2 and row_1 must equal the number of
column values to be specified for each inserted row, as specified with column list and
COUNT INTO. The i-th column of the result table contains the values for the i-th column
in column list (if column list is specified), or for the i-th column of table (where a column
specified with COUNT INTO is skipped).

The assignment rules specified in section “Entering values in table columns” on
page 121 apply to these assignments.

Any remaining columns of the inserted rows are set as follows:

– The column specified by COUNT INTO is set to a value defined by SESAM/SQL.

– Columns with a default value are set to the default value (DEFAULT).

– Columns without a default value are set to the NULL value.

If table is a view, the rows will be inserted into the underlying base table; columns of the
base table not contained in the view will be set in the same way.

SQL statements INSERT

U22420-J-Z125-12-76 511

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DEFAULT VALUES
Inserts one row into the table; the row consists entirely of the column-specific default
values.

Columns with an explicitly defined default value are assigned this default value.
Columns without explicitly defined default are assigned the NULL value.

RETURN INTO
The value determined by SESAM/SQL for the column specified with COUNT INTO or
for * as insert_expression_1 is stored in an output destination. If several rows are inserted,
the last value determined by SESAM/SQL will be stored.

You can only use the RETURN INTO clause, if either COUNT INTO is specified, or a *
is used as insert_expression_1.

:host_variable, routine_parameter, local_variable
Name of a host variable (if the statement is not part of a routine) or name of a
procedure parameter of the type INOUT or OUT or of a local variable (if the
statement is part of a routine). The value of the count column is assigned to the
specified output destination.

The output destination must be of numeric data type.

indicator_variable
Name of the indicator variable for the preceding host variable.

INSERT SQL statements

512 U22420-J-Z125-12-76

Inserting values for multiple columns

In the case of a multiple column, you can insert values for individual column elements or for
ranges of elements.

An element of a multiple column is identified by its position number in the multiple column.

A range of elements in a multiple column is identified by the position numbers of the first
and last element in the range.

v CAUTION!
The position of an element in a multiple column can differ from the position of the
corresponding element as specified in the INSERT statement. If an element of a
multple column is set to the NULL value, all elements with higher position number
are shifted “left” by decreasing their position number by one, and the element set to
NULL gets the highest position number.

INSERT and integrity constraints

By specifying integrity constraints when you define the base table, you can restrict the
range of values for the corresponding columns. The value specified in the INSERT
statement must satisfy the defined integrity constraint.

INSERT and transaction management

INSERT initiates an SQL transaction outside routines if no transaction is open. If you define
an isolation level, you can control how the INSERT statement can be affected by concurrent
transactions (see section “SET TRANSACTION - Define transaction attributes” on
page 569).

If an error occurs during the INSERT statement, any rows that have already been inserted
are removed.

SQL statements INSERT

U22420-J-Z125-12-76 513

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Examples

Each of the following two statements inserts three rows into the ORDERS table.
In the second INSERT statement, the value for the primary key is determined by
SESAM/SQL. The last value assigned is stored in the host variable ORDNUMRET.

 INSERT INTO
orders (order_num,cust_num,contact_num,order_text,actual,orderstat)

VALUES (345, 101, 20, 'Network:installation', DATE'<date>', 1),
(346, 101, 20, 'Network:installation', DATE'<date>', 1),
(347, 101, 20, 'Network:installation', DATE'<date>', 1),

INSERT INTO orders (cust_num,contact_num,order_text,actual,orderstat)
COUNT INTO order_num
VALUES (:CUST_NUM,:CONTACT_NUM,:ORDERTEXT1,:ACTUAL1,:ORDERSTAT),

(:CUST_NUM,:CONTACT_NUM,:ORDERTEXT1,:ACTUAL1,:ORDERSTAT),
(:CUST_NUM,:CONTACT_NUM,:ORDERTEXT1,:ACTUAL1,:ORDERSTAT),

RETURN INTO :ORDNUMRET

In a table with the name WOMEN, the columns FNAME and LNAME are defined in the
same way as in the table CONTACTS. The following INSERT statement adds all female
contacts to the WOMEN table:

INSERT INTO women (fname, lname)
SELECT fname, lname
FROM contacts WHERE title IN ('Frau','Fraeulein','Mrs.','Ms.')

See also

DELETE, MERGE, UPDATE

ITERATE SQL statements

514 U22420-J-Z125-12-76

ITERATE - Switch to the next loop pass

The ITERATE statement switches to the next loop pass.
It may may only be specified in the control statements FOR, LOOP, REPEAT, and WHILE
of a routine, i.e. in the context of a CREATE PROCEDURE or CREATE FUNCTION
statement. Routines and their use in SESAM/SQL are described in detail in chapter
“Routines” on page 323.

ITERATE label

label
Label of the FOR, LOOP, REPEAT, or WHILE statement which contains the ITERATE
statement. The current loop pass is terminated. The next loop pass is switched to.

Specifying label also enables outer loop passes to be terminated. Inner loop passes are
then terminated immediately.

Example

When the value of variable i is divisible by 3, ITERATE causes the next loop pass to be
switched to immediately.

DECLARE i INTEGER DEFAULT 1;
...
label:
REPEAT

SET i = i + 1;
IF MOD(i,3)=0 THEN ITERATE label;
END IF;
...
UNTIL i >100

END REPEAT label;

See also

CREATE PROCEDURE, CREATE FUNCTION, FOR, LOOP, REPEAT, WHILE

SQL statements LEAVE

U22420-J-Z125-12-76 515

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

LEAVE - Terminate a loop or COMPOUND statement

The LEAVE statement terminates a loop or COMPOUND statement.
It may may only be specified in the control statements COMPOUND, FOR, LOOP, REPEAT,
and WHILE of a routine, i.e. in the context of a CREATE PROCEDURE or CREATE
FUNCTION statement. Routines and their use in SESAM/SQL are described in detail in
chapter “Routines” on page 323.

LEAVE label

label
Label of the COMPOUND, FOR, LOOP, REPEAT, or WHILE statement which contains
the LEAVE statement. The statement identified is terminated.

Example

See the LOOP statement example on page 517.

See also

CREATE PROCEDURE, CREATE FUNCTION, FOR, LOOP, REPEAT, WHILE

LOOP SQL statements

516 U22420-J-Z125-12-76

LOOP - Execute SQL statements in a loop

The LOOP statement executes SQL statements in a loop.

The ITERATE statement enables you to switch immediately to the next loop pass. The loop
can be aborted by means of a LEAVE statement.

The LOOP statement may only be specified in a routine, i.e. in the context of a CREATE
PROCEDURE or CREATE FUNCTION statement. Routines and their use in SESAM/SQL
are described in detail in chapter “Routines” on page 323.

The LOOP statement is a non-atomic SQL statement, i.e. further (atomic or non-atomic)
SQL statements can occur in it.

If the LOOP statement is part of a COMPOUND statement, in the case of corresponding
exception routines the loop can also be left when a particular SQLSTATE (e.g. no data,
class 02xxx) occurs.

[label:]
LOOP {routine_sql_statement;}...
END LOOP [label]

label
The label in front of the LOOP statement (start label) indicates the start of the loop. It
may not be identical to another label in the loop.

The start label need only be specified when the next loop pass is to be switched to using
ITERATE or when the loop is to be left using a LEAVE statement. However, it should
always be used to permit SESAM/SQL to check that the procedure has the correct
structure (e.g. in the case of nested loops).

The label at the end of the LOOP statement (end label) indicates the end of the loop. If
the end label is specified, the start label must also be specified. Both labels must be
identical.

routine_sql_statement
SQL statement which is to be executed in the LOOP statement.
An SQL statement is concluded with a ";" (semicolon).
Multiple SQL statements can be specified one after the other. They are executed in the
order specified.
No privileges are checked before an SQL statement is executed.
An SQL statement in a routine may access the parameters of the routine and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there may not be
used.

SQL statements LOOP

U22420-J-Z125-12-76 517

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Execution information

The LOOP statement is a non-atomic statement:

● If the LOOP statement is part of a COMPOUND statement, the rules described there
apply, in particular the exception routines defined there.

● If the LOOP statement is not part of a COMPOUND statement and one of the SQL
statements reports an SQLSTATE, it is possible that only the updates of this statement
will be undone. The LOOP statement and the routine in which it is contained are
aborted. The SQL statement in which the routine was used returns the SQLSTATE
concerned.

Example

A loop is canceled after 1000 passes by means of LEAVE.

DECLARE i INTEGER DEFAULT 0;
...
label:
LOOP

SET i = i+1;
IF i > 1000 THEN LEAVE label;
...

END LOOP label;

See also

CREATE PROCEDURE, CREATE FUNCTION, ITERATE, LEAVE

MERGE SQL statements

518 U22420-J-Z125-12-76

MERGE - Insert rows in a table or update column values

You use MERGE to unite the INSERT and UPDATE functions in one operation.
Depending on the result of the constraint in the ON clause, MERGE updates column values
of rows which already exist (WHEN MATCHED THEN) or inserts new rows into an existing
table (WHEN NOT MATCHED THEN).

This constraint can range from a simple existence query to complex search criteria. Trivial
constraint (e.g. 1 <> 1) are also possible; they lead to it only being possible to update or
insert rows.

The special literals (see page 110) which occur in the INSERT statement (and in preset
values) and the time functions CURRENT_DATE, CURRENT_TIME and
CURRENT_TIMESTAMP are evaluated once, and the calculated values apply for all
inserts.

If integrity constraints are defined for the table or the columns concerned, these are
checked after the insertion or update operation. If an integrity constraint is violated, the
inserts and updates are undone and a corresponding
SQLSTATE is set.

Specific requirements must be satisfied to execute the MERGE statement:

● To insert or update rows in table you must

– be the owner of table or

– at least have the INSERT privilege when insert_row is specified or

– at least have the UPDATE privilege for all columns which are updated in update_row
when update_row is specified.

● You must also have the SELECT privilege for all tables
which are addressed in table_specification.

● The transaction mode of the current transaction must be READ WRITE.

SQL statements MERGE

U22420-J-Z125-12-76 519

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

MERGE INTO table [[AS] correlation_name] USING table_specification ON search_condition

...

update_row ::= UPDATE SET {column = },...

insert_row ::= INSERT [(column,...)][COUNT INTO column] VALUES (,...)

table
Name of the destination table into which rows are to be inserted or in which rows are to
be updated.
The destination table can be a base table or an updatable view.
It may not contain any multiple columns (see note on page 522).

correlation_name
Table name used in the statement as a new name for the table table.

The correlation_name must be used to qualify the column name in every column
specification that references the table table if the column name is not unambiguous.

The new name must be unique, i.e. correlation_name can only occur once in a table
specification of this statement.

You must give a table a new name if the columns in the table cannot be identified
otherwise uniquely.

In addition, you may give a table a new name in order to formulate an expression so
that it is more easily understood or to abbreviate long names.

USING table_specification
Specifies a source table (different from the destination table table) which is to be used
to insert rows into the destination table table or update rows in the destination table
table. It may not contain any multiple columns (see note on page 522).
The destination table table may also be referenced in the table_specification.

WHEN MATCHED THEN update_row
WHEN NOT MATCHED THEN insert_row

expression
DEFAULT
NULL

expression
NULL
DEFAULT
*

MERGE SQL statements

520 U22420-J-Z125-12-76

ON search_condition
Specifies the condition which decides whether the UPDATE clause is to be executed
(result: TRUE) or whether the INSERT clause is to be executed (result: FALSE).

More precisely, each row of the source table is checked to see whether there is a row
in the destination table so that the search_condition is true for the combination of these two
rows.
If no such row exists in the destination table, the INSERT clause is executed, i.e. the
row in the source table is inserted in the destination table.
If one or more such rows exist in the destination table, the UPDATE clause is executed
for each of these rows, i.e. the corresponding rows in the destination table are updated.
Two different rows in the source table may not lead to updates in the destination table
(multiple update), otherwise the MERGE statement is aborted with SQLSTATE.

WHEN MATCHED THEN update_row
A row which is to be updated was found.

UPDATE SET ...
Information for updating the row which is to be updated.
For a description of the column, expression, DEFAULT and NULL parameters, see the
corresponding descriptions in the SQL statement UPDATE on page 578.
A row which is to be updated may only be updated once. Any further attempt to update
it is rejected with SQLSTATE.
The primary key value in a partitioned table may not be modified.

WHEN NOT MATCHED THEN insert_row
No corresponding row was found. The new row is to be inserted.

INSERT ...
Information for inserting the new row.

(column,...)
Lists the columns, for which the INSERT clause of the MERGE statement specifies the
values and stipulates the order for this. The values of the remaining columns in the row
to be inserted are not specified in the MERGE statement; they are DEFAULT or NULL
values or values defined by SESAM/SQL.

For a description of the column parameter, see the corresponding description in the SQL
statement INSERT on page 507.

No column_list specified:
The MERGE statement specifies the values in the row to be inserted for each column
of the target table table (except for the column specified by COUNT INTO), in the order
specified with CREATE TABLE and ALTER TABLE or with CREATE VIEW.

SQL statements MERGE

U22420-J-Z125-12-76 521

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

COUNT INTO column
See the corresponding description in the SQL statement INSERT on page 508.

VALUES (...)
The required column values are specified for the row which is to be inserted.

For a description of expression, NULL, DEFAULT and *, see the description of
insert_expression_1 in the SQL statement INSERT on page 509.

In expression you may not specify a table which references the destination table into
which the new rows are to be inserted.
In particular you may not reference any column of the destination table.

The number of columns of the VALUES clause must equal the number of column values
to be specified for each inserted row, as specified with (column,...) and COUNT INTO.
The nth column of the destination table contains the values for the nth column
specification in (column,...) (if (column,...) is specified), or for the nth column of table,
where any column of table introduced with COUNT INTO is not counted.

The assignment rules specified in section “Entering values in table columns” on
page 121 apply to these assignments.

Any remaining columns of the inserted rows are set as follows:

– The column specified by COUNT INTO is set to a value defined by SESAM/SQL.
– Columns with a default value are set to the default value (DEFAULT).
– Columns without a default value are set to the NULL value.

If the target table table is a view, the rows will be inserted into the underlying base table;
columns of the base table not contained in the view will be set in the same way.

MERGE SQL statements

522 U22420-J-Z125-12-76

Inserting values for multiple columns

Base tables with multiple columns cannot be processed directly in the MERGE statement.

i However, if you specify an (updatable) view with, for example, the query expression
SELECT cloumn_list FROM table defined without multiple columns in cloumn_list,
the MERGE statement can be executed with this.

MERGE and integrity constraints

By specifying integrity constraints when you define the base table, you can restrict the
range of values for the corresponding columns. The value specified in the MERGE
statement must satisfy the defined integrity constraint, otherwise the MERGE statement is
aborted with SQLSTATE.

MERGE and transaction management

MERGE initiates an SQL transaction outside routines if no transaction is open. If you define
an isolation level, you can control how the MERGE statement can be affected by concurrent
transactions (see section “SET TRANSACTION - Define transaction attributes” on
page 569).

If an error occurs during the MERGE statement, any updates already performed by the
MERGE statement are canceled.

Examples

The example below concerns inventory management when a new delivery arrives. In the
case of the existiing articles with the same price the inventory in the base table is updated.
New articles in the delivery table are added to the inventory table.

MERGE INTO inventory AS b USING delivery AS l
ON b.article_no = l.article_no AND b.article_price = l.article_price
WHEN MATCHED THEN

UPDATE SET article_quant = b.article_quant + l.article_quant
WHEN NOT MATCHED THEN

INSERT (article_no,article_price,article_quant)
VALUES (l.article_no,l.article_price,l.article_quant)

SQL statements MERGE

U22420-J-Z125-12-76 523

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

The complex example below also concerns inventory management when a new delivery
arrives. The data for the new delivery is, for example, supplied in the CSV input file
DELIVERY.DATA (with a header):

Article number,Quantity,New price
1, 4, 18.50
2, 11, 19.90
3, 0, 22.95
4, 3, 84.30
5, 7, 25.90

The MERGE statement below updates the inventory table for the articles which already
exist. New articles in the delivery are added to the inventory table. The header of the
CSV file is skipped by means of the WITH ORDINALITY clause in conjunction with
WHERE.

MERGE INTO inventory
USING (SELECT CAST(article number as INT),

CAST(quantity as INT),
CAST(new price as NUMERIC(10,2))

FROM TABLE(CSV('DELIVERY.DATA'
DELIMITER ',' QUOTE '"' ESCAPE '\',
varchar(30), varchar(40), varchar(50)))

WITH ORDINALITY
AS T(article number, quantity, new price, counter)
WHERE counter > 1)
AS delivery(article number, quantity, new price)

ON inventory.article number= delivery.article number
WHEN MATCHED THEN UPDATE SET

quantity = inventory.quantity + delivery.quantity,
price = delivery.new price

WHEN NOT MATCHED THEN INSERT (article number, quantity, price)
VALUES(delivery.article number,

delivery.quantity, delivery.new price)

See also

DELETE, INSERT, UPDATE

OPEN SQL statements

524 U22420-J-Z125-12-76

OPEN - Open cursor

You use OPEN to open a cursor declared with DECLARE CURSOR .

● The host variables in the cursor description or the values for placeholders in a dynamic
cursor description are evaluated.

● The special literals (see page 110), as well as the time functions CURRENT_DATE,
CURRENT_TIME and CURRENT_TIMESTAMP are evaluated.

All the values returned contain the same date and/or time (see section “Time functions”
on page 141). These values are valid for the cursor table as long as the cursor is open
and if the cursor is reopened with RESTORE.

After the OPEN statement, the cursor is positioned before the first row in the derived table,
even if the previous cursor position was saved with STORE. A previously saved cursor
position cannot be restored with RESTORE after an OPEN statement.

A cursor can only be addressed in the compilation unit in which it was declared with
DECLARE CURSOR. The cursor declaration with DECLARE CURSOR must physically
precede the OPEN statement in the program text.

In the case of a dynamic cursor, the cursor must be prepared before the OPEN statement
is executed.

The cursor must be closed.

OPEN cursor [USING]

cursor
Name of the cursor to be opened.

USING clause
For a dynamic cursor.

Specifies where the input values for the dynamic cursor description are to be read from.
You must specify the USING clause if the cursor description includes question marks
as placeholders for values.

{:host_variable [[INDICATOR] :indicator_variable]},...
SQL DESCRIPTOR GLOBAL descriptor

SQL statements OPEN

U22420-J-Z125-12-76 525

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

host_variable
Name of a host variable containing the value to be assigned to a placeholder in the
dynamic cursor description.

The data type of a host variable must be compatible with the data type of the
corresponding placeholder (see section “Values for placeholders” on page 124). If
the placeholder represents an aggregate with several elements, the corresponding
host variable must be a vector with the same number of elements.

The number of host variables specified must be the same as the number of
placeholders in the cursor description. The host variables are assigned values in
the order in which the placeholders are specified in the dynamic cursor description.

indicator_variable
Name of the indicator variable for the preceding host variable. If the host variable is
a vector, the indicator variable must also be a vector with the same number of
elements.

The value of the indicator variable indicates whether the NULL value is to be
transferred:

< 0 The NULL value is to be assigned.

Ï 0 The value of the host variable is to be assigned.

descriptor
Name of an SQL descriptor area containing the data types and values for the
placeholders in the dynamic cursor description.

The SQL descriptor area must be created beforehand and supplied with
appropriate values:

– The value of the COUNT descriptor area feld must be the same as the number
of required input values (for aggregates, one output value for each element)
where

0 Î COUNT Î defined maximum number of item descriptors

– The values of the DATA fields of the item descriptors (or NULL values if the
INDICATOR is negative) are assigned to the placeholders in the dynamic
statement in the order of the items in the descriptor area. The data type
description of an item must be compatible with the data type of the
corresponding placeholder (see section “Values for placeholders” on
page 124).

PERMIT SQL statements

526 U22420-J-Z125-12-76

Example

Open a cursor CUR_CONTACTS. The cursor defines a section of the CONTACTS table
containing the LNAME, FNAME and DEPARTMENT for all customers with customer
numbers greater than 103.

 DECLARE cur_contacts CURSOR FOR
SELECT lname, fname, department
FROM contacts WHERE cust_num > 103
ORDER BY department ASC, lname DESC

OPEN cur_contacts

See also

CLOSE, DECLARE CURSOR, FETCH, PREPARE

PERMIT - Specify user identification for SESAM/SQL V1.x

In order to allow programs created with SESAM/SQL V1.x to run without you having to
make changes to them, the PERMIT statement is still allowed. Execution of a PERMIT
statement does not, however, have any effect. A SESAM/SQL V1.x program can only be
executed successfully under the current version of SESAM/SQL if the appropriate
privileges have been defined with GRANT.

The PERMIT statement does not initiate a transaction.

See also

GRANT, REVOKE

SQL statements PREPARE

U22420-J-Z125-12-76 527

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

PREPARE - Prepare dynamic statement

You use PREPARE to prepare a dynamic statement or the cursor description of a dynamic
cursor for execution at a later time.

You execute a statement prepared with PREPARE with the EXECUTE statement.

The statement identifier used in PREPARE for a cursor description is used to declare a
dynamic cursor with DECLARE CURSOR. You open the dynamic cursor with OPEN.

PREPARE statement_id FROM statement_variable

statement_variable::= :host_variable

statement_id
Name of the dynamic statement or cursor description. You can use this name to
reference the statement or cursor description in the compilation unit.

statement_variable
Alphanumeric host variable containing the statement text. The host variable can also
be of the type CHAR(n), where 256 Î n Î 32000.

The following conditions must be satisfied:

– The statement text cannot include any host variables. Question marks are specified
as placeholders for unknown values (see “Rules for placeholders” on page 528).
The placeholders are supplied with values in the USING clause of an EXECUTE or
OPEN statement.

– The statement text may not contain comments in the host language.
Pragmas (--%PRAGMA) are exceptions.

– A SELECT statement cannot include an INTO clause.

– The RETURN INTO clause cannot be specified in an INSERT statement. The CLI
call SQL_DIAG SEQ_GET is available to allow you to use the function you probably
know from static INSERT statements. It enables you to simulate RETURN INTO
(see page 631).

If statement_id is defined for a dynamic cursor, but the statement is not a cursor
description, an error is reported. The statement is prepared successfully despite this
fact and can be executed with EXECUTE.

PREPARE SQL statements

528 U22420-J-Z125-12-76

Rules for placeholders

A placeholder for an input value in a dynamic statement is represented by a question mark.
You can specify a placeholder if the operands and operators associated with the
placeholder uniquely define the data type of the placeholder.

Below you will find a summary of the positions permitted or not permitted for placeholders
grouped according to whether a monadic or dyadic operator, a range or element query or
a pattern comparison is involved, as well as the positions permitted or not permitted for
CASE expressions, CAST expressions, numeric functions, string functions, SELECT list,
INSERT, UPDATE and MERGE. The data type of a placeholder is also specified for
permitted placeholders.

If a placeholder is not permitted at a certain position, this also applies even if the
placeholder is enclosed in parentheses.

Example

not permitted: (?)+(?)

Monadic operators

No placeholders are permitted for monadic operators. The following cases are therefore not
permitted:

● The operand of a monadic operator cannot be a placeholder (e.g. -?).

● The operand for IS [NOT] NULL cannot be a placeholder (e.g.? IS NULL).

● The argument of an aggregate function cannot be a placeholder (e.g. AVG(?)).

Dyadic operators

In the case of dyadic operators, only one of the operands can be a placeholder.

Example

permitted: ?+1, ?<100, p=?

not permitted: ?=?

Data type of the placeholder

If one of the operands for concatenation is a placeholder (?||“...” or “...”||?), the data type of
the placeholder is VARCHAR(32000) or NVARCHAR(16000).

For all other dyadic operators, the data type of the placeholder is the same as the data type
of the other operand.

SQL statements PREPARE

U22420-J-Z125-12-76 529

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Range query

If the first operand in a range query is a placeholder, neither of the other two operands can
be a placeholder.

Example

permitted: ? BETWEEN 100 AND 500
 50 BETWEEN ? AND ?

not permitted: ? BETWEEN 100 AND ?

Data type of the placeholder

The data type of the placeholder is derived from the data types of the values of the other
operands which are not placeholders (see “Data type of the placeholder in CASE,
BETWEEN and IN” on page 533).

Element query

In an element query, neither the first operand nor any of the elements in the list may be
placeholders.

Example

permitted: ? IN ('Frankfurt','Munich','Hamburg')
 x IN (?,'Munich','Hamburg')
 ? IN ('Frankfurt',?,?)
 x IN (?,?,?)
 ? NOT IN (SELECT order_num FROM service WHERE
order_text='Training')

not permitted: ? IN (?,?,?)

Data type of the placeholder

● If the first operand is a placeholder and the second operand is a subquery, the data type
of the placeholder is the same as the data type of the derived column.

● If the first operand is a placeholder and the second operand is a list of expressions, the
data type of the placeholder is derived from the data types of the elements in the list
that are not placeholders (see “Data type of the placeholder in CASE, BETWEEN and
IN” on page 533).

● If an element in the list is a placeholder and the first element is not a placeholder, the
data type of the placeholder is the same as the data type of the first operand.

PREPARE SQL statements

530 U22420-J-Z125-12-76

Pattern comparison

In a pattern comparison, the second and third operand may be placeholders.

Example

permitted: x LIKE ? ESCAPE ?

not permitted: ? LIKE y ESCAPE ?

Data type of the placeholder

The data type of the placeholder is VARCHAR(32000) or NVARCHAR(16000).

CASE expression

Not all the operands in a CASE expression may be placeholders. If the CASE expression
contains one or more THEN or ELSE clauses, not all the operands in these clauses can be
placeholders. The following cases are therefore not permitted:

● In a simple CASE expression, the first operand (expression after CASE) is a
placeholder and the operand in the WHEN clause is a placeholder or - if there are
several WHEN clauses - all the operands in the WHEN clauses are placeholders.

● In a simple CASE expression, all the THEN clauses and the ELSE clause contain
placeholders.

Example

permitted: CASE ?
WHEN 1 THEN 10
WHEN 2 THEN 20
WHEN ? THEN 30
WHEN ? THEN 30
ELSE 50 END

not permitted: CASE ?
WHEN ? THEN 10
WHEN ? THEN 20
WHEN ? THEN 30
WHEN ? THEN 30
ELSE 50 END

not permitted: CASE x
WHEN 1 THEN ?
WHEN 2 THEN ?
ELSE ? END

● In a CASE expression with a search condition, all the THEN clauses and the ELSE
clause contain placeholders.

SQL statements PREPARE

U22420-J-Z125-12-76 531

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Example

permitted: CASE
WHEN ord_stat_num= 1 THEN ?
WHEN ord_stat_num= 2 THEN ?
WHEN ord_stat_num > 2 AND ord_stat_num < 5 THEN ?
ELSE 50 END

not permitted: CASE
WHEN ord_stat_num= 1 THEN ?
WHEN ord_stat_num= 2 THEN ?
WHEN ord_stat_num > 2 AND ord_stat_num < 5 THEN ?
ELSE ? END

● In a CASE expression with NULLIF, both operands are placeholders
(e.g. NULLIF (?,?))

● In a CASE expression with COALESCE, all the operands are placeholders
(e.g. COALESCE (?,?,?))

Data type of the placeholder

The data type of the placeholder in a CASE expression depends on the data types of the
other operands which are not placeholders.

If an operand of a CASE expression with NULLIF is a placeholder, its data type corresponds
to the data type of the other operand.

If several of the other operands are without placeholders, the following rules apply:

● If the first operand of a simple CASE expression is a placeholder and/or if the CASE
expression contains one or more placeholders as operands in its WHEN clause or
clauses, its data type is derived from the data types of the other operands which are not
placeholders and not operands of the THEN or ELSE clause(s).

● If a CASE expression with a search condition or a simple CASE expression contains
placeholders in the THEN clause(s) and/or the ELSE clause, its data type is derived
from that of the other THEN or ELSE clause operands which are not placeholders.

● If an operand of a CASE expression with COALESCE is a placeholder, its data type is
derived from the data types of the other operands which are not placeholders.

The rules described in “Data type of the placeholder in CASE, BETWEEN and IN” on
page 533 apply to the calculation of the placeholder data type.

CAST expression

No restrictions

PREPARE SQL statements

532 U22420-J-Z125-12-76

Data type of the placeholder

The data type of the placeholder in a CAST expression corresponds to the data type of the
result value of the CAST expression.

Numeric functions

In the numeric function POSITION, both operands cannot be placeholders (e.g. POSITION
(? IN ?)).

Data type of the placeholder

The data type of the placeholders in the numeric functions POSITION, OCTET_LENGTH
and CHAR_LENGTH is VARCHAR(32000) or NVARCHAR(16000).

For the numeric function JULIAN_DAY_OF_DATE, the data type of the placeholder is
DATE.

String functions

The following are not permitted in string functions:

● In the string functions LOWER and UPPER, the operands cannot be placeholders.

● In the string function TRIM, the first operand (character) and/or the second operand
(expression) cannot be placeholders (e.g. TRIM (TRAILING FROM ?)).

● In the string function SUBSTRING, the first operand cannot be a placeholder (e.g.
SUBSTRING ? FROM 1 FOR 5)).

Data type of the placeholder

In the string function SUBSTRING, the data type of the placeholder is
NUMERIC(31,0).

Time functions

No restrictions

Data type of the placeholder

For the time function DATE_OF_JULIAN_DAY the data type of the placeholder is
INTEGER.

SELECT (list)

In a SELECT expression, an element in the SELECT list may not consist of only one
placeholder.

SQL statements PREPARE

U22420-J-Z125-12-76 533

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Example

permitted: SELECT 3+? FROM ...

not permitted: SELECT ?,x,p FROM ...

INSERT, UPDATE, MERGE

You can specify a placeholder as the column value of an atomic column and for an element
in a multiple column.

Example

permitted: INSERT INTO tab (x, ...) VALUES (?, ...)
INSERT INTO t (x) VALUES <..., ?, ...>

UPDATE tab SET x=?
UPDATE t SET x=<..., ?, ...>

Data type of the placeholder

The data type of the placeholder is the data type of the column. In the case of a multiple
column with a dimension > 1, the placeholder is also multiple with the same dimension.
Otherwise, the placeholder is atomic.

Data type of the placeholder in CASE, BETWEEN and IN

In CASE expressions, area queries and element queries, the data type of the placeholder
is derived in some cases from the data types of the other operands or elements which are
not placeholders. In these cases, the following rules apply:

● All the values of the other operands have the data type NCHAR:
The value of the placeholder has the data type NCHAR with the greatest length.

● At least one value of the other operands has the data type VARCHAR:
The value of the placeholder is that with the data type VARCHAR and the greatest or
greatest maximum length.

● All the values of the other operands have the data type NCHAR:
The value of the placeholder has the data type NCHAR with the greatest length.

● At least one value of the other operands has the data type NVARCHAR:
The value of the placeholder is that with the data type NVARCHAR and the greatest or
greatest maximum length.

● All values of the other operands are an integer or fixed-point type (INT, SMALLINT,
NUMERIC, DEC):
The value of the placeholder has the data type integer or fixed-point number.

PREPARE SQL statements

534 U22420-J-Z125-12-76

– The number of decimal places is the greatest number of decimal places among the
different values of the other operands.

– The total number of places is the greatest number of places before the decimal
point plus the greatest number of decimal places among the different values of the
other operands, but not more than 31.

● At least one value of the other operands is of the type floating-point number (REAL,
DOUBLE PRECISION, FLOAT); the others have any other numeric data type:
The value of the placeholder has the data type DOUBLE PRECISION.

● All the values of the other operands have the time data type:
The value of the placeholder also has this data type.

Converting the placeholder data type using CAST

The rules for placeholders sometimes result in an undesired data type for a particular
placeholder. You can avoid undesired data types by using the CAST expression (see
section “CAST expression” on page 258).

Example

In the following dynamic UPDATE statement, the placeholder represents a single-digit
integer:

UPDATE t SET x=?+1

If, in the USING clause of the EXECUTE statement, the value 10 is specified for the
placeholder, execution is not successful.

An UPDATE statement can be formulated to avoid this data type assignment:

UPDATE t SET x=CAST(? AS DEC(5,0))

Procedures

A procedure can be called using a dynamic CALL statement. If a procedure contains
parameters of the type OUT or INOUT, the corresponding arguments must be specified in
a dynamic CALL statement in the form of placeholders.

SQL statements PREPARE

U22420-J-Z125-12-76 535

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Assignments for PREPARE

The following SQL statement can be prepared with PREPARE:

Except for these SQL statements, dynamic cursor descriptions and all the utility statements
can also be prepared with PREPARE (see the “SQL Reference Manual Part 2: Utilities”).

The following statements cannot be prepared with PREPARE:

ALTER SPACE DROP SPACE

ALTER STOGROUP DROP STOGROUP

ALTER TABLE DROP SYSTEM_USER

CALL DROP TABLE

COMMIT DROP USER

CREATE INDEX DROP VIEW

CREATE FUNCTION GRANT

CREATE PROCEDURE INSERT (without RETURN INTO clause)

CREATE SCHEMA MERGE

CREATE SPACE PERMIT

CREATE STOGROUP REORG STATISTICS

CREATE SYSTEM_USER REVOKE

CREATE TABLE ROLLBACK

CREATE USER SELECT (without INTO clause)

CREATE VIEW SET CATALOG

DELETE SET SCHEMA

DROP FUNCTION SET SESSION AUTHORIZATION

DROP INDEX SET TRANSACTION

DROP PROCEDURE UPDATE

DROP SCHEMA

ALLOCATE DESCRIPTOR GET DESCRIPTOR

CLOSE INCLUDE

DEALLOCATE DESCRIPTOR OPEN

DECLARE CURSOR PREPARE

DESCRIBE RESTORE

EXECUTE SET DESCRIPTOR

EXECUTE IMMEDIATE STORE

FETCH WHENEVER

PREPARE SQL statements

536 U22420-J-Z125-12-76

Validity period of a prepared statement

An SQL statement prepared with PREPARE remains prepared for execution at least until
the end of the current transaction. After the end of the transaction, you should prepare the
statement again. If the plan buffer of the DBH still contains the access plan of the SQL
statement contained in statement_variable, SESAM/SQL uses the existing access plan.

A statement prepared with PREPARE is lost if PREPARE is executed using the same
statement_id in the same compilation unit and the same SQL session.

The prepared statement is also lost if the statement contains a reference to a dynamic
cursor and the prepared cursor description for this cursor is lost.

Example

Prepare a description of the dynamic cursor CUR_SERVICE1 for subsequent execution.
The contents of the host variable DESCRIPTION are defined using actions of the ESQL
program host language.

 DECLARE cur_service1 CURSOR FOR cur_description

PREPARE cur_description FROM :DESCRIPTION

See also

DECLARE CURSOR, EXECUTE, FETCH, OPEN

SQL statements REORG STATISTICS

U22420-J-Z125-12-76 537

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

REORG STATISTICS - Re-generate global statistics

You use REORG STATISTICS to re-generate global statistics on the distribution of values
over the columns in an index. These statistics are used to optimize table accesses with
search conditions and should be updated whenever extensive changes are made to the
data.

The current authorization identifier must either be the owner of the schema to which the
index belongs or must have the special privilege UTILITY for the database to which the
index belongs.

REORG STATISTICS FOR INDEX index

index
Name of the index for which the statistics are to be re-generated.

You can qualify the name of the index with a database and schema name.

See also

CREATE INDEX

REPEAT SQL statements

538 U22420-J-Z125-12-76

REPEAT - Execute SQL statements in a loop

The REPEAT statement executes SQL statements in a loop until the specified condition is
satisfied. The loop ends with the condition being checked, i.e. it is executed at least once.

The ITERATE statement enables you to switch immediately to the next loop pass. The loop
can be aborted by means of a LEAVE statement.

The REPEAT statement may only be specified in a routine, i.e. in the context of a CREATE
PROCEDURE or CREATE FUNCTION statement. Routines and their use in SESAM/SQL
are described in detail in chapter “Routines” on page 323.

The REPEAT statement is a non-atomic SQL statement, i.e. further (atomic or non-atomic)
SQL statements can occur in it.

If the REPEAT statement is part of a COMPOUND statement, in the case of corresponding
exception routines the loop can also be left when a particular SQLSTATE (e.g. no data,
class 02xxx) occurs.

[label:]
REPEAT {routine_sql_statement;}...
UNTIL search_condition
END REPEAT [label]

label
The label in front of the REPEAT statement (start label) indicates the start of the loop.
It may not be identical to another label in the loop.

The start label need only be specified when the next loop pass is to be switched to using
ITERATE or when the loop is to be left using a LEAVE statement. However, it should
always be used to permit SESAM/SQL to check that the routine has the correct
structure (e.g. in the case of nested loops).

The label at the end of the REPEAT statement (end label) indicates the end of the loop.
If the end label is specified, the start label must also be specified. Both labels must be
identical.

search_condition
Search condition that returns a truth value when evaluated
The search condition is the stop criterion for the loop.

SQL statements REPEAT

U22420-J-Z125-12-76 539

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

routine_sql_statement
SQL statement which is to be executed in the REPEAT statement.
An SQL statement is concluded with a ";" (semicolon).
Multiple SQL statements can be specified one after the other. They are executed in the
order specified.
No privileges are checked before an SQL statement is executed.
An SQL statement in a routine may access the parameters of the routine and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there may not be
used.

Execution information

The REPEAT statement is a non-atomic statement:

● If the REPEAT statement is part of a COMPOUND statement, the rules described there
apply, in particular the exception routines defined there.

● If the REPEAT statement is not part of a COMPOUND statement and one of the SQL
statements reports an SQLSTATE, it is possible that only the updates of this statement
will be undone. The REPEAT statement and the routine in which it is contained are
aborted. The SQL statement in which the routine was used returns the SQLSTATE
concerned.

Example

The loop is executed until the variable i has the value.

DECLARE i INTEGER DEFAULT 0;
...
label:

REPEAT
SET i= i+2;
...

UNTIL i >1000
END REPEAT

label;

See also

CREATE PROCEDURE, CREATE FUNCTION, ITERATE, LEAVE

RESIGNAL SQL statements

540 U22420-J-Z125-12-76

RESIGNAL - Report exception in local exception routine

RESIGNAL explicitly reports an exception or an SQLSTATE in a local exception routine. In
contrast to SIGNAL, the specification of an exception name or SQLSTATE is optional.

RESIGNAL uses the diagnostics area of the SQL statement which has activated the
exception routine as the current diagnostics area, and enters corresponding diagnostic
information in the current diagnostics area.

RESIGNAL is one of the diagnostic statements. Detailed information on the use and effect
of RESIGNAL can be found in section “Diagnostic information in routines” on page 344.

RESIGNAL [] [SET diagnose_info]

sqlstate ::= SQLSTATE [VALUE] alphanumeric_literal

diagnose_info ::= MESSAGE_TEXT=

exception_name
Name of an exception or SQLSTATE. exception_name is defined in the local data of a
routine, see “Local data” on page 402.

sql_state
Explicit specification of a self-defined SQLSTATE (alphanumeric literal with the length
5), see section “Self-defined SQLSTATEs” on page 345.

exception_name and sql_state not specified:
The diagnostic information CONDITION_IDENTIFIER and RETURNED_SQLSTATE
remains unchanged.

error_name
sqlstate

alphanumeric_literal
local_variable
routine_parameter

SQL statements RESIGNAL

U22420-J-Z125-12-76 541

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

MESSAGE_TEXT=alphanumeric_literal
Any information (maximum length: 120 characters).

MESSAGE_TEXT=local_variable / routine_parameter
The value of the local variable or of the specified routine parameter is entered as
information text.
The data type of local_variable / routine_parameter must be compatible with the data type
VARCHAR(120). The rules in section “Entering values in a procedure parameter
(output) or local variable” on page 130 apply. The text length is entered in
MESSAGE_LENGTH and MESSAGE_OCTET_LENGTH.

SET MESSAGE TEXT omitted:
The diagnostic information MESSAGE_TEXT, MESSAGE_LENGTH and
MESSAGE_OCTET_LENGTH remains unchanged.

Examples (see also page 349)

Reporting a condition with information text:

RESIGNAL SET MESSAGE_TEXT='The end is near!';

See also

COMPOUND, CREATE FUNCTION, CREATE PROCEDURE, GET DIAGNOSTICS,
SIGNAL

RESTORE SQL statements

542 U22420-J-Z125-12-76

RESTORE - Restore cursor

You use RESTORE to open a cursor saved with STORE.

The cursor is opened with the same cursor description as for the last OPEN. If host
variables have been updated in the meantime, this does not have any effect on the resulting
derived table.

If special literals or the time functions CURRENT_DATE, CURRENT_TIME and/or
CURRENT_TIMESTAMP are included in the cursor description, they are not reevaluated.

A cursor position saved with STORE can be lost if, in the same or a different transaction,
rows starting at the stored position have been deleted in the meantime, or the row on which
the cursor was positioned has been updated in such a way that it no longer belongs to the
cursor table.

If no cursor position has been saved for the cursor, the cursor is not opened and an
appropriate SQLSTATE is set.

Otherwise, the cursor is opened and the cursor position restored. If you want to delete
(DELETE ... WHERE CURRENT OF) or update (UPDATE ... WHERE CURRENT OF) a
row, the cursor must be positioned on the row with FETCH.

After the RESTORE statement has been executed, all the information on this cursor that
has been saved with STORE is deleted. You must save the cursor position again with store
before a new RESTORE statement can be executed.

The cursor to be restored must be saved with STORE and must be closed when RESTORE
is executed. The transactions containing the STORE and RESTORE statements must have
the same isolation level.

For a dynamic cursor, the cursor description must be still be prepared when the RESTORE
statement is executed (see also “Validity period of a prepared statement” on page 536).

RESTORE must not be used for cursors defined with WITH HOLD.

RESTORE cursor

cursor
Name of the cursor to be restored.

SQL statements RESTORE

U22420-J-Z125-12-76 543

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Processing the cursor after RESTORE

After a RESTORE statement, you must position the cursor on a row with FETCH.

Example

FETCH NEXT positions to the next row in the cursor table.

Only then can the cursor be accessed with an UPDATE or DELETE statement.

See also

DECLARE CURSOR, OPEN, STORE, FETCH, UPDATE, DELETE

RETURN SQL statements

544 U22420-J-Z125-12-76

RETURN - Supply the return value of a User Defined Function (UDF)

RETURN supplies the return value of a UDF. The data type of the return value is defined
by the RETURNS clause of the CREATE FUNCTION statement.

The RETURN statement may only be specified in the definition of a UDF with CREATE
FUNCTION. UDFs and their use in SESAM/SQL are described in detail in chapter
“Routines” on page 323.

A RETURN statement terminates the execution of a UDF directly.
If a UDF is not terminated with a RETURN statement, this results in an error in the calling
SQL statement.

RETURN

expression
Expression whose value is assigned to the return value of the UDF.
The expression may contain routine parameters and (if the statement is part of a
COMPOUND statement) local variables, but no host variables.
A column may be specified only if it is part of a subquery
The data type of expression must be compatible with the data type of the RETURNS
clause from the CREATE FUNCTION statement.
The rules in section “Entering values in a procedure parameter (output) or local
variable” on page 130 apply.

NULL
The return value of the UDF is the NULL value.

See also

CREATE FUNCTION

expression
NULL

SQL statements REVOKE

U22420-J-Z125-12-76 545

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

REVOKE - Revoke privileges

REVOKE revokes the following privileges from authorization identifiers:

● Table and column privileges

● Special privileges

● EXECUTE privileges for routines

Only the authorization identifier that granted a privilege (the “grantor”) can revoke that
privilege from an authorization identifier (see section “GRANT - Grant privileges” on
page 495).

The TABLE_PRIVILEGES, COLUMN_PRIVILEGES, USAGE_PRIVILEGES,
CATALOG_PRIVILEGES and ROUTINE_PRIVILEGES tables of the
INFORMATION_SCHEMA provide you with information on the privileges assigned to the
authorization identifiers (see chapter “Information schemas” on page 633).

The REVOKE statement has several formats. Examples are provided under the format
concerned.

See also

GRANT

REVOKE SQL statements

546 U22420-J-Z125-12-76

REVOKE format for table and column privileges.

REVOKE

 ON [TABLE] table

FROM ,...

table _and_column_privilege::=

ALL PRIVILEGES
All the table privileges that the current authorization identifier can revoke are revoked.
ALL PRIVILEGES comprises the privileges SELECT, DELETE, INSERT, UPDATE and
REFERENCES.

table_and_column_privilege
The table and column privileges are revoked individually. You can specify more than
one privilege.

ON [TABLE] rable
Name of the table for which you want to revoke privileges.

The table can be a base table or a view. You can only revoke the SELECT privilege for
a table that cannot be updated.

FROM PUBLIC
The privileges are revoked from all authorization identifiers. The individual privileges of
the individual authorization identifiers are not affected.

FROM authorization_identifier
The privileges are revoked from the user with the authorization identifier
authorization_identifier. You may specify more than one authorization identifier.

ALL PRIVILEGES
table_and_column_privilege,...

PUBLIC
authorization_identifier

RESTRICT
CASCADE

SELECT
DELETE
INSERT
UPDATE [(column,...)]
REFERENCES [(column,...)]

SQL statements REVOKE

U22420-J-Z125-12-76 547

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

CASCADE
An authorization identifier can revoke any privileges it has granted:
– All the specified privileges are revoked.
– If a specified privilege has been forwarded to other authorization identifiers, all

privileges forwarded directly or indirectly are deleted.
– Views which were defined either directly or indirectly on the basis of the specified

or forwarded privileges are deleted.
– Referential constraints defined on the basis of the specified and forwarded

privileges are deleted.
– Routines which were defined either directly or indirectly on the basis of the specified

and forwarded privileges are deleted.

RESTRICT
The following restrictions apply to the revoking of privileges:
– A privilege forwarded to other authorization identifiers cannot be revoked for as long

as a forwarded privilege like this still exists.
– A privilege on the basis of which a view or referential constraint has been defined

cannot be revoked if the view or referential constraint still exists.
– A privilege on the basis of which a routine has been defined cannot be revoked if

the routine still exists.

table_and_column_privilege
Specification of the individual table and column privileges.

SELECT
Privilege that allows rows in the table to be read.

DELETE
Privilege that allows rows to be deleted from the table.

INSERT
Privilege that allows rows to be inserted into the table.

UPDATE [(column,...)]
Privilege that allows rows in the table to be updated.

The revoke operation can be limited to the specified columns. column must be the
name of a column in the specified table. You can specify more than one column.

(column,...) omitted:
The privilege for updating all the columns in the table is revoked.

REVOKE SQL statements

548 U22420-J-Z125-12-76

REFERENCES [(column,...)]
Privilege that allows the definition of referential constraints that reference the table.
The revoke operation can be limited to the specified columns. column must be the
name of a column in the specified table. You can specify more than one column.

(column,...) omitted:
The privilege for referencing all the columns in the table is revoked.

SQL statements REVOKE

U22420-J-Z125-12-76 549

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

REVOKE format for special privileges

REVOKE

 ON

FROM ,...

special_privilege::=

ALL SPECIAL PRIVILEGES
All the special privileges that the current authorization identifier may revoke are
revoked. ALL SPECIAL PRIVILEGES revokes the special privileges.

special_privilege
The special privileges are revoked individually. You can specify more than one special
privilege.

ON CATALOG catalog
Name of the database for which you want to revoke special privileges.

ON STOGROUP stogroup
Name of the storage group for which you want to revoke the USAGE privilege. You can
qualify the name of the storage group with a database name.

FROM authorization_identifier
The privileges are revoked from the user with the authorization identifier
authorization_identifier. You may specify more than one authorization identifier.

ALL PRIVILEGES
special_privilege,..

CATALOG catalog
STOGROUP stogroup

PUBLIC
authorization_identifier

RESTRICT
CASCADE

CREATE USER
CREATE SCHEMA
CREATE STOGROUP
UTILITY
USAGE

REVOKE SQL statements

550 U22420-J-Z125-12-76

CASCADE
An authorization identifier can revoke any privileges it has granted:
– All the specified privileges are revoked.
– If a specified privilege has been forwarded to other authorization identifiers, all

forwarded privileges are deleted implicitly.

RESTRICT
The following restrictions apply to the revoking of privileges:
– A privilege forwarded to other authorization identifiers cannot be revoked for as long

as a forwarded privilege like this still exists.

special_privilege
Specification of the individual special privileges.

CREATE USER
Special privilege that allows you to define authorization identifiers. You can only
revoke the CREATE USER privilege for a database.

CREATE SCHEMA
Special privilege that allows you to define database schemas. You can only revoke
the CREATE SCHEMA privilege for a database.

CREATE STOGROUP
Special privilege that allows you to define storage groups. You can only revoke the
CREATE STOGROUP privilege for a database.

UTILITY
Special privilege that allows you to use utility statements. You can only revoke the
UTILITY privilege for a database.

USAGE
Special privilege that allows you to use a storage group. You can only revoke the
USAGE privilege for a storage group.

Example

Revoke the UPDATE privilege for all columns in the table DESCRIPTIONS from the
authorization identifier UTIUSR2.

 REVOKE UPDATE ON TABLE descriptions FROM utiusr2 RESTRICT

SQL statements REVOKE

U22420-J-Z125-12-76 551

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

REVOKE format for EXECUTE privileges (procedure)

REVOKE

EXECUTE ON SPECIFIC PROCEDURE procedure

FROM ,...

procedure ::= routine

EXECUTE ON SPECIFIC PROCEDURE procedure
Name of the procedure for which the privilege is to be revoked. You can qualify the
procedure name with a database and schema name.

FROM authorization_identifier
The privileges are revoked from the user with the authorization identifier
authorization_identifier. You may specify more than one authorization identifier.

CASCADE
An authorization identifier can revoke any privileges it has granted:
– All the specified privileges are revoked.
– If a specified privilege has been forwarded to other authorization identifiers, all

privileges forwarded directly or indirectly are deleted.
– Views which were defined either directly or indirectly on the basis of the specified

or forwarded privileges are deleted.
– Routines which were defined either directly or indirectly on the basis of the specified

or forwarded privileges are deleted.

RESTRICT
The following restrictions apply to the revoking of privileges:
– A privilege forwarded to other authorization identifiers cannot be revoked for as long

as a forwarded privilege like this still exists.
– A privilege on the basis of which a view has been defined cannot be revoked if the

view still exists.
– A privilege on the basis of which a routine has been defined cannot be revoked if

the routine still exists.

PUBLIC
authorization_identifier

RESTRICT
CASCADE

REVOKE SQL statements

552 U22420-J-Z125-12-76

REVOKE format for EXECUTE privileges (UDF)

REVOKE

EXECUTE ON SPECIFIC FUNCTION udf

FROM ,...

udf ::= routine

EXECUTE ON SPECIFIC FUNCTION udf
Name of the UDF for which the privilege is to be revoked. You can qualify the
unqualified UDF name with a database and schema name.

FROM
See page 546.

CASCADE
An authorization identifier can revoke any privileges it has granted:
– All the specified privileges are revoked.
– If a specified privilege has been forwarded to other authorization identifiers, all

forwarded privileges and all routines and views created on the basis of these
privileges are deleted in a cascade.

– Views defined on the basis of the specified privilege are deleted in a cascade.
– Routines defined on the basis of this privilege are deleted in a cascade.

RESTRICT
The following restrictions apply to the revoking of privileges:
– A privilege forwarded to other authorization identifiers cannot be revoked for as long

as a forwarded privilege like this still exists.
– A privilege on the basis of which a view has been defined cannot be revoked if the

view still exists.
– A privilege on the basis of which a routine has been defined cannot be revoked if

the routine still exists.

PUBLIC
authorization_identifier

RESTRICT
CASCADE

SQL statements ROLLBACK WORK

U22420-J-Z125-12-76 553

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

ROLLBACK WORK - Roll back transaction

You use ROLLBACK WORK to terminate an SQL transaction and undo all the updates
performed since the end of the last SQL transaction. Some statements, such as SET
SCHEMA for example, are also rolled back if they were executed before the start of the
current transaction but after the end of the last transaction.

ROLLBACK WORK undoes the following updates:

● updated data in SQL schemas

● cursor positions saved with STORE

● database and schema names set with SET CATALOG and SET SCHEMA

● authorization identifiers defined with SET SESSION AUTHORIZATION

● creation (ALLOCATE) and release (DEALLOCATE) of SQL descriptor areas

● values set in SQL descriptor areas

All the cursors opened in the transaction or positioned with FETCH are closed. Dynamic
statements and cursor descriptions prepared with PREPARE are lost.

The SET TRANSACTION statement and the utility statements cannot be rolled back.

The first error-free SQL statement that initiates a transaction executed after ROLLBACK
WORK starts a new SQL transaction (see section “COMMIT WORK - Terminate
transaction” on page 396).

ROLLBACK [WORK]

Implicit execution of ROLLBACK WORK

SESAM/SQL rolls back an SQL transaction by implicitly executing a ROLLBACK WORK
statement if one of the following situations occur:

● An unrecoverable error occurs in the current transaction.

● The specified isolation level cannot otherwise be ensured for two or more transactions
that access certain SQL data concurrently (see also the “Core manual”).

● A transaction is interrupted for a long time and is using resources required by other
transactions (see also the “Core manual”).

The effect is the same as if ROLLBACK were called explicitly.

ROLLBACK WORK SQL statements

554 U22420-J-Z125-12-76

Transactions under openUTM

You cannot use the ROLLBACK WORK statement if you are working with openUTM. In this
case, transaction management is performed using only UTM language resources. If a UTM
transaction is rolled back, the SQL transaction is also rolled back.

CALL DML transactions

Within a CALL DML transaction, the SQL statement ROLLBACK WORK is not permitted
(see section “SQL statements in CALL DML transactions” on page 45).

See also

COMMIT

SQL statements SELECT

U22420-J-Z125-12-76 555

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

SELECT - Read individual rows

You use SELECT to read precisely one row in a table. The column values read are stored
in the output destination.

If a derived table contains more than one row, the SELECT statement does not read a row
and an appropriate SQLSTATE is set. If you want to read derived tables with more than one
row, you must use a cursor.

In order to execute a SELECT statement, you must own the table in which you are querying
values, or you must have the SELECT privilege for the table involved.

SELECT [] select_list

[INTO { },...]

FROM table_specification,...

[WHERE search_condition]

[GROUP BY column,...]

[HAVING search_condition]

With the exception of the INTO clause, the clauses of the SELECT statement are defined
exactly as they are for the SELECT expression and are described in the section “SELECT
expression” on page 282ff.

ALL
DISTINCT

:host_variable [[INDICATOR] :indicator_variable]
routine_parameter
local_variable

SELECT SQL statements

556 U22420-J-Z125-12-76

INTO
Only for static SELECT statements.

In the case of a static SELECT statement or a SELECT statement in a procedure, you
must specify the output destination that is to be assigned the column values of the
derived row in the INTO clause.
Indicates where the values read are to be stored.

:host_variable, routine_parameter, local_variable
Name of a host variable (if the statement is not part of a routine) or name of a
procedure parameter of the type INOUT or OUT or of a local variable (if the
statement is part of a routine). The column value of the derived row is assigned to
the specified output destination.

The data type must be compatible with the data type of the corresponding derived
column (see section “Reading values into host variables or a descriptor area” on
page 125). If a derived column is an aggregate with several elements, the
corresponding host variable must be a vector with the same number of elements.

The number of specified output destinations must be the same as the number of
columns in the SELECT list of the cursor description. The value of the nth column
in the SELECT list is assigned to the nth output destination in the INTO clause. If
the value to be assigned is the NULL value, the output destination is not set.

If there is no derived row or more than one derived row, no output destination is set.

If there is no derived row, an SQLSTATE is set that can be handled with
WHENEVER NOT FOUND. If there is more than one derived row, an SQLSTATE
is set that can be handled with WHENEVER SQLERROR.

indicator_variable
Name of the indicator variable for the preceding host variable. If the host variable is
a vector, the indicator variable must also be a vector with the same number of
elements.

The indicator value indicates whether the NULL value was transferred or whether
data was lost:

0 The host variable contains the value read. The assignment was error free.

-1 The value to be assigned is the NULL value.

> 0 For alphanumeric or national values:
The host variable was assigned a truncated string. The value of the
indicator variable indicates the original length in code units.

indicator_variable omitted:
If the value to be assigned is the NULL value, an appropriate SQLSTATE is set.

SQL statements SELECT

U22420-J-Z125-12-76 557

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Dynamic SELECT statement

You may not specify an INTO clause in a dynamic SELECT statement. Instead, you specify
the INTO clause with the host variables or SQL descriptor area for receiving the derived
values in the EXECUTE statement with which you execute the dynamic SELECT
statement.

Example

Read the name and VAT rate of the service with the specified service number and store this
information in the host variables SERVICE_TEXT and VAT.

The service number is defined by the host variable SERVICE_NUM. Because the service
number is unique within the SERVICE table, you can be sure that the query will return only
one row.

 SELECT service_text, vat INTO
:SERVICE_TEXT INDICATOR :IND_SERVICE_TEXT :VAT INDICATOR :IND_VAT
FROM service WHERE service_num = :SERVICE_NUM

SET SQL statements

558 U22420-J-Z125-12-76

SET - Assign value

The SET statement assigns a value to a parameter or a local variable of a routine.
It may may only be specified in a routine, i.e. in the context of a CREATE PROCEDURE or
CREATE FUNCTION statement. Routines and their use in SESAM/SQL are described in
detail in chapter “Routines” on page 323.

SET =

routine_parameter
Procedure parameter of the type INOUT or OUT of the current procedure, see
page 417.

local_variable
Local variable of the current COMPOUND statement, see page 402.

expression
Expression whose value is assigned to the procedure parameter or local variable.
The expression may contain routine parameters and (if the statement is part of a
COMPOUND statement) local variables, but no host variables.
A column may be specified only if it is part of a subquery
The data type of the expression must be compatible with the data type of the procedure
parameter or of the local variable. The rules in section “Entering values in a procedure
parameter (output) or local variable” on page 130 apply.

NULL
The procedure parameter or the local variable is assigned the NULL value.

Example

SET number_of_reads = (SELECT COUNT (*) FROM mytable)

See also

COMPOUND, CREATE FUNCTION, CREATE PROCEDURE

routine_parameter
local_variable

expression
NULL

SQL statements SET CATALOG

U22420-J-Z125-12-76 559

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

SET CATALOG - Set default database name

You use SET CATALOG to define the default database name for unqualified schema
names that occur in statements subsequently prepared with PREPARE or EXECUTE
IMMEDIATE. The default database name set with the precomiler option continues to be
used to qualify unqualified schema names for all other statements. Until the time that the
first SET CATALOG (or SET SCHEMA) statement is executed, the database name
specified with the precompiler option is used as the default database name for all
statements.

The defined default determined by SET CATALOG is revoked when the immediately
following transaction - the current UTM transaction in the case of openUTM - is rolled back.
This is also true if the transaction immediately following SET CATALOG only contains CALL
DML statements. Otherwise the default database name you set with SET CATALOG is valid
until a new database name is set with SET CATALOG or SET SCHEMA or until the end of
the SQL session. You will find information on the general rules for implicit database and
schema names in section “Qualified names” on page 74.

The SET CATALOG statement does not initiate a transaction.

SET CATALOG default_catalog

default_catalog::=

default_catalog
Name of the database to act as the default for the current SQL session.

alphanumeric_literal
The database name is specified as an alphanumeric literal (not in the hexadecimal
format).

host_variable
The database name is specified as an alphanumeric host variable of the type CHAR or
VARCHAR. The host variable cannot be a vector and cannot have an associated
indicator variable.

Example

 SET CATALOG 'ordercust'

See also

SET SCHEMA

alphanumeric_literal
:host_variable

SET DESCRIPTOR SQL statements

560 U22420-J-Z125-12-76

SET DESCRIPTOR - Update SQL descriptor area

You use SET DESCRIPTOR to update an SQL descriptor area. You can update the values
for the descriptor area field COUNT or the contents of an item descriptor.

See section “Descriptor area” on page 36 for information on the structure and use of the
descriptor area.

The SQL descriptor area must be created beforehand.

SET DESCRIPTOR GLOBAL descriptor

number::=

item_number::=

field ::=

field_contents::=

descriptor
Name of the SQL descriptor area containing the items to be updated.

You cannot update the items in this descriptor area if there is an open cursor with block
mode activated (see section “PREFETCH pragma” on page 65) and a FETCH NEXT...
statement whose INTO clause contains the name of the same SQL descriptor area has
been executed for this cursor.

COUNT=integer
VALUE item_number {field_id=field_contents},...

integer
host_variable

integer
host_variable

REPETITIONS
TYPE
DATETIME_INTERVAL_CODE
PRECISION
SCALE
LENGTH
INDICATOR
DATA

:host_variable

integer
host_variable

SQL statements SET DESCRIPTOR

U22420-J-Z125-12-76 561

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

COUNT=number
The COUNT field is set to the value of number.

number
For number, specify an integer or a host variable of the SQL data type SMALLINT,
where

0 Î number Î defined maximum number of item descriptors

The contents of item descriptors with an item number greater than number are
undefined.

VALUE clause
The specified field of the item descriptor with the item number item_number are set to
the specified field contents.

If you specify several fields, they are set in the following order regardless of the order
in which you specify them in the SET DESCRIPTOR statement:

REPETITIONS

TYPE

DATETIME_INTERVAL_CODE

PRECISION

SCALE

LENGTH

INDICATOR

DATA

item_number
Number of the item descriptor to be updated.

The items in the descriptor area are numbered sequentially starting with 1.

For item_number you can specify an integer or a host variable of the type SMALLINT,
where

1 Î item_numberÎ COUNT and Î defined maximum number of items

SET DESCRIPTOR SQL statements

562 U22420-J-Z125-12-76

field_id
Field of item descriptor item_number to be updated. You can only specify the same field
identifier once.

field_contents
New value for the field field_id

If field_id is DATA, you must specify a host variable for field_contents. Otherwise you can
specify an integer or a host variable of the SQL data type SMALLINT for field_contents.
You cannot specify an aggregate or vector for any field except DATA and INDICATOR.

REPETITIONS
The value specified for field_contents must be Ï 1 and Î 255.

The fields TYPE, DATETIME_INTERVAL_CODE PRECISION, SCALE, and
LENGTH are set to the same value for the item descriptors with the item numbers
item_number, item_number+1, ..., item_number+REPETITIONS-1,
 provided that the item numbers are Î COUNT and Î defined maximum number of
item descriptors.

The REPETITIONS field is set to the value of field_contents for item_number.
REPETITIONS is set to 1 for the item descriptors with the item numbers
item_number+1, ..., item_number+REPETITIONS-1.

The other fields for the items involved are set to the value specified or are
undefined.

REPETITIONS omitted:
REPETITIONS is set to 1 for item_number.

SQL statements SET DESCRIPTOR

U22420-J-Z125-12-76 563

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

TYPE
Sets the TYPE field. The contents of the DATETIME_INTERVAL_CODE field of the
same item descriptor are undefined. The fields PRECISION, SCALE and LENGTH
of the same item descriptor are set to default values, depending on the value of the
TYPE field:

Values not specified are undefined.

Except for REPETITIONS, the values of all the other fields for this item descriptor
are undefined.

DATETIME_INTERVAL_CODE
Depending on the value of DATETIME_INTERVAL_CODE, the value of the
RECISION field is set as follows:

Except for REPETITIONS and TYPE, the values of all the other fields for this item
descriptor are undefined.

SQL data type TYPE PRECISION SCALE LENGTH

NVARCHAR -42 1

NCHAR -31 1

CHAR 1 1

NUMERIC 2 1 0

DECIMAL 3 1 0

INTEGER 4

SMALLINT 5

FLOAT 6 1

REAL 7

DOUBLE PRECISION 8

DATE, TIME, TIMESTAMP 9 0

VARCHAR 12 1

Table 51: Setting the TYPE field of an item descriptor

DATETIME_INTERVAL_CODE PRECISION

1 0

2 0

3 6

Table 52: Setting the DATETIME_INTERVAL_CODE field of an item descriptor

SET DESCRIPTOR SQL statements

564 U22420-J-Z125-12-76

PRECISION, SCALE, LENGTH
The fields are set in this order.
If the TYPE field is already set and PRECISION, SCALE or LENGTH contain
default values, these are overwritten.

The value of the DATA field for this item descriptor is undefined.

INDICATOR
If you specify a vector with several elements, a corresponding number of
INDICATOR fields for the subsequent item descriptors are set, provided that the
item numbers of these items are Î COUNT and Î defined maximum number of item
descriptors.

DATA
The data type of the host variable must match the data type indicated by the TYPE,
LENGTH, PRECISION, SCALE and DATETIME_INTERVAL_CODE fields of the
same item descriptor (see section “Transferring values between host variables and
a descriptor area” on page 127). If the specified host variable is a vector with
several elements, the TYPE, LENGTH, PRECISION, SCALE and
DATETIME_INTERVAL_CODE fields of exactly the same number of subsequent
item descriptors must specify the same data type, and the item number of these
item descriptors must be Î COUNT and Î defined maximum number of item
descriptors.

If DATA and INDICATOR are specified, both must be atomic values or vectors with
the same number of elements.

The DATA field is set if the associated INDICATOR field is Ï 0. Otherwise the
contents of the DATA field are undefined.

Examples

The type and number of decimal digits and number of digits after the decimal point in the
second item descriptor in the SQL descriptor area :DEMO_DESC are changed:

SET DESCRIPTOR GLOBAL :demo_desc
VALUE 2 TYPE = 2, PRECISIONS = 7, SCALE = 2

Set the number of item descriptors in the SQL descriptor area DEMO_DESC to zero:

SET DESCRIPTOR GLOBAL :demo_desc COUNT = 0

See also

ALLOCATE DESCRIPTOR, DEALLOCATE DESCRIPTOR, DESCRIBE, GET
DESCRIPTOR

SQL statements SET SCHEMA

U22420-J-Z125-12-76 565

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

SET SCHEMA - Specify default schema name

You use SET SCHEMA to define the default schema name for the unqualified name of
integrity constraints, indexes and tables that occur in statements subsequently prepared
with PREPARE or EXECUTE IMMEDIATE. The default schema name set with the
precompiler option continues to be used to qualify the names of integrity constraints,
indexes and tables for all other statements. Until the time that the first SET SCHEMA
statement is executed, the schema name set with the precompiler option is used as the
default schema name for all statements.

The defined default determined by SET SCHEMA is revoked when the immediately
following transaction - the current UTM transaction in the case of openUTM - is rolled back.
This is also true if the transaction immediately following SET SCHEMA only contains CALL
DML statements.
Otherwise the default schema name you set with SET SCHEMA is valid until a new schema
name is set with SET SCHEMA or until the end of the SQL session.

You will find information on the general rules for implicit database and schema names in
section “Qualified names” on page 74.

The SET SCHEMA statement does not initiate a transaction.

SET SCHEMA default_schema

default_schema::=

default_schema
Name of the default schema for the current SQL session. You can qualify the
unqualified schema name with a database name.
If you qualify the schema name with a database name, this database name is used as
the default database name as if it has been set with SET CATALOG.

alphanumeric_literal
The schema name is specified as an alphanumeric literal (not in the hexadecimal
format).

host_variable
The schema name is specified as an alphanumeric host variable of the type CHAR or
VARCHAR. The host variable cannot be a vector and cannot have an associated
indicator variable.

alphanumeric_literal
:host_variable

SET SCHEMA SQL statements

566 U22420-J-Z125-12-76

Examples

Example from the sample database:

 SET SCHEMA 'ordercust.orderproc'

Example from the dynamic SQL:

The host variable SOURCESTMT contains the following statement:

CREATE TABLE ordstat (order_stat_num INTEGER, order_stat_text CHAR(15))

The following statements execute a CREATE TABLE statement for the table ORDSTAT
in the schema ORDERPROC of the database ORDERCUST:

EXEC SQL SET SCHEMA 'ordercust.orderproc' END-EXEC

EXEC SQL EXECUTE IMMEDIATE :SOURCESTMT END-EXEC

See also

SET CATALOG

SQL statements SET SESSION AUTHORIZATION

U22420-J-Z125-12-76 567

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

SET SESSION AUTHORIZATION - Set authorization identifier

You use SET SESSION AUTHORIZATION to define the current authorization identifier for
the SQL session.

The current authorization code of an SQL session is defined either with an ESQL
precompiler option or with the SET SESSION AUTHORIZATION statement. If no
authorization code is defined at either place, the default value D0USER is used as the current
authorization code for the SQL session.

The setting determined by SET SESSION AUTHORIZATION is revoked when the
immediately following transaction - the current UTM transaction in the case of openUTM -
is rolled back. This is also true if the immediately following transaction only contains CALL
DML statements.
Otherwise the authorization key you set with SET SESSION AUTHORIZATION is valid until
a new authorization key is set with SET SESSION AUTHORIZATION or until the end of the
SQL session.

The SET SESSION AUTHORIZATION does not initiate a transaction and can therefore
only be used outside of an SQL transaction.

SET SESSION AUTHORIZATION new_authorization_identifier

new_authorization_identifier::=

new_authorization_identifier
Name of the new authorization identifier that is to be valid for the SQL session. The new
authorization identifier is valid until the next SET SESSION AUTHORIZATION
statement.

alphanumeric_literal
The new authorization identifier is specified as an alphanumeric literal (not in the
hexadecimal format) of the data type CHAR.

host_variable
The new authorization identifier is specified as an alphanumeric host variable of the
type CHAR or VARCHAR. The host variable cannot be a vector and cannot have an
associated indicator variable.

alphanumeric_literal
:host_variable

SET SESSION AUTHORIZATION SQL statements

568 U22420-J-Z125-12-76

Examples

Define a new authorization identifier UTIADM for the current SQL session. The current UTM
or BS2000 user must have a system entry with this authorization identifier.

 SET SESSION AUTHORIZATION 'utiadm'

Specify the authorization identifier for the current SQL session as a host variable.

 SET SESSION AUTHORIZATION :USER-NAME

SQL statements SET TRANSACTION

U22420-J-Z125-12-76 569

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

SET TRANSACTION - Define transaction attributes

You can use SET TRANSACTION to set the isolation or consistency level and transaction
mode for the subsequent SQL transaction.

The isolation or consistency level of a transaction specifies to what degree read operations
on rows in the transaction are affected by simultaneous write accesses in a concurrent
transaction.

The transaction mode allows you to specify whether table rows can only be read or can also
be updated in the subsequent transaction.

v CAUTION!
If you define an isolation or consistency level, you also influence the degree of
concurrency and thus performance: the fewer phenomena you permit, the lesser
the degree of concurrency.

The settings made by SET TRANSACTION are only valid for the SQL statements of the
immediately following transaction. After the transaction has ended or has been rolled back,
the default values remain valid (see “Default values” on page 573). The default settings also
continue to apply after the end of the transaction when the transaction which follows SET
TRANSACTION only contains CALL DML statements, i.e. no SQL statements.

The SET TRANSACTION statement does not initiate a transaction and can only be used
outside an SQL transaction.

SET TRANSACTION

level::=

transaction_mode::=

You can omit the comma between the two specifications. If, however, you want your
application to be portable, you must include the comma.

level [[,]transaction_mode]
transaction_mode[[,] level]

ISOLATION LEVEL

CONSISTENCY LEVEL consistency_level

READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

READ ONLY
READ WRITE

SET TRANSACTION SQL statements

570 U22420-J-Z125-12-76

ISOLATION LEVEL
Sets the isolation level.

If several transactions work with the same tables simultaneously, the following
phenomena can occur in which the read accesses in one transaction are affected by
the simultaneous write access of another transaction. By specifying an isolation level,
you determine which of these phenomena you want to permit in the subsequent SQL
transaction.

The following phenomena are of importance:

– dirty read:
A transaction updates a row or inserts a new row. A second transaction reads this
row before the first transaction has committed the update. If the first transaction is
rolled back, the second transaction has read a row that was never committed.

– non-repeatable read:
A transaction reads a row. Before this transaction is terminated, a second
transaction updates or deletes this row and commits the update. If the first
transaction then tries to read this row again, either different values will be returned,
or an error occurs because the row has been deleted in the meantime. In other
words, the result of the second read operation is different to the result of the first.

– phantom:
A transaction reads rows that satisfy a certain search condition. A second
transaction subsequently inserts rows that also satisfy this search condition. If the
first transaction repeats the query, the derived table includes the new rows.

READ UNCOMMITTED
Isolation level that offers the least protection against concurrent transactions. All the
above-mentioned phenomena are possible. In the subsequent SQL transaction,
rows can be read that have not yet been committed and these rows can be updated
after they have been read.

You cannot specify READ UNCOMMITTED if, at the same time, you specify the
transaction mode READ WRITE.

READ COMMITTED
The phenomena “non-repeatable read” and “phantom” can occur. In the
subsequent SQL transaction, rows that have been read can be updated by other
transaction after they have been read. No rows are read that have not yet been
committed.

SQL statements SET TRANSACTION

U22420-J-Z125-12-76 571

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

REPEATABLE READ
The phenomenon “phantom” can occur. The phenomena “non-repeatable read”
and “dirty read” are not possible.

SERIALIZABLE
Complete protection against concurrent transactions is ensured. The phenomena
dirty read, non-repeatable read,and phantom cannot occur. The subsequent
transaction is unaware of the existence of concurrent transactions.

CONSISTENCY LEVEL
For reasons of upward compatibility with earlier versions, SESAM/SQL provides the
clause CONSISTENCY LEVEL as an alternative to isolation level. This means that you
define a consistency level which, like the isolation level, determines whether the
phenomena “dirty read”, “non-repeatable read” and “phantom” can occur.

consistency_level
Unsigned integer, where 0 Î consistency_level Î 4.

Level Locks set Rows read

0 Rows read are not locked against
updating by other transactions

All rows including those locked
against updating by other
transactions

1 Rows read are locked against
updating by other transactions
(until the end of the transaction)
unless they are already locked

like 0

2 like 0 Only the rows that other
transaction have not locked
against updating

3 Rows read are locked against
updating by other transactions
(until the end of the transaction)

like 2

4 Rows read are locked just as for
level 3. The lock against updating
by other transactions for non-
existent rows ensures that rows
cannot be inserted by other
transactions.

like 2

Table 53: Consistency levels

SET TRANSACTION SQL statements

572 U22420-J-Z125-12-76

The following table indicates the correlation between isolation and consistency level
and which phenomena can occur at the different consistency and isolation levels.

READ ONLY
Sets the transaction mode READ ONLY.

Only read database accesses are permitted within the transaction. READ ONLY is the
default value for the isolation level READ UNCOMMITTED and the consistency levels
0 and 1.

READ WRITE
Sets the transaction mode READ WRITE.

Only read and write database accesses are possible in the transaction. READ WRITE
is the default value for the isolation levels READ COMMITTED, REPEATABLE READ
and SERIALIZABLE and for the consistency levels 2, 3 and 4.

You cannot specify READ WRITE if you specify the isolation level READ
UNCOMMITED.

Isolation level Consistency
level

dirty read non-
repeatable
read

phantom

READ UNCOMMITTED 0 x x x

- 1 x x 1

1 The phenomenon non-repeatable read can only occur for rows which were previously read with dirty
read.

x

READ COMMITTED 2 - x x

REPEATABLE READ 3 - - x

SERIALIZABLE 4 - - -

Table 54: Correlation between isolation level, consistency level and phenomena

SQL statements SET TRANSACTION

U22420-J-Z125-12-76 573

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Default values

If a connection module entry exists for the isolation or consistency level in the user-specific
configuration file (see the “Core manual”), this value is used as the default. If this is not the
case, the isolation level SERIALIZABLE, the consistency level 4 and the transaction mode
READ WRITE are the default values.

You can use the MAX-ISOLATION-LEVEL operand of the DBH option TRANSACTION-
SECURITY to set the isolation level REPEATABLE READ for a DBH. If your SQL statement
works with a DBH set in this way, one of the following constraints must be fulfilled:

– the configuration file must contain the connection module parameter
ISOL-LEVEL=REPEATABLE-READ (or a lower isolation level)
or

– you must limit the isolation level to REPEATABLE READ using the SQL statement SET
TRANSACTION prior to each transaction.

Scope of validity under openUTM

In a UTM application, the statement SET TRANSACTION is no longer valid once the
current UTM transaction terminates. Since only one database transaction can run in a UTM
transaction, SET TRANSACTION and the associated SQL transaction must be performed
in the same UTM transaction.

SIGNAL SQL statements

574 U22420-J-Z125-12-76

SIGNAL - Report exception in routine

SIGNAL explicitly reports, in a routine, anexception or a self-defined SQLSTATE.

SIGNAL deletes the current diagnostics area and enters corresponding diagnostic
information into the current diagnostics area:

SIGNAL is one of the diagnostic statements. Detailed information on the use and effect of
SIGNAL can be found in section “Diagnostic information in routines” on page 344.

SIGNAL [SET diagnose_info]

sqlstate ::= SQLSTATE [VALUE] alphanumeric_literal

diagnose_info ::= MESSAGE_TEXT=

exception_name
Name of an exception or SQLSTATE. exception_name is defined in the local data of a
routine, see “Local data” on page 402.

sql_state
Explicit specification of a self-defined SQLSTATE (alphanumeric literal with the length
5), see section “Self-defined SQLSTATEs” on page 345.

MESSAGE_TEXT=alphanumeric_literal
Any information (maximum length: 120 characters). The text length is entered in
MESSAGE_LENGTH and MESSAGE_OCTET_LENGTH.

MESSAGE_TEXT=local_variable / routine_parameter
The value of the local variable or of the specified routine parameter is entered as
information text.
The data type of local_variable / routine_parameter must be compatible with the data type
VARCHAR(120). The rules in section “Entering values in a procedure parameter
(output) or local variable” on page 130 apply. The text length is entered in
MESSAGE_LENGTH and MESSAGE_OCTET_LENGTH.

SET MESSAGE TEXT omitted:
The diagnostic information MESSAGE_TEXT, MESSAGE_LENGTH, and
MESSAGE_OCTET_LENGTH is supplied with the corresponding NULL values.

error_name
sqlstate

alphanumeric_literal
local_variable
routine_parameter

SQL statements SIGNAL

U22420-J-Z125-12-76 575

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Examples (see also page 349)

Reporting a self-defined SQLSTATE:

SIGNAL SQLSTATE VALUE '46SA5';

Reporting a condition with information text:

SIGNAL end_job SET MESSAGE_TEXT='The end is near!';

See also

COMPOUND, CREATE FUNCTION, CREATE PROCEDURE, GET DIAGNOSTICS,
RESIGNAL

STORE SQL statements

576 U22420-J-Z125-12-76

STORE - Save cursor position

You use STORE to save the current cursor position.

At the end of a transaction, all open cursors are closed. If you want to be able to access the
contents of the derived table in the subsequent transaction, you must save the current
cursor position with STORE before the end of the transaction. A cursor saved with STORE
can be restored with the RESTORE statement.

FETCH cannot be used after STORE.

The cursor must be open.

STORE is not permitted if block mode is activated for the open cursor (see section
“PREFETCH pragma” on page 65).

STORE must not be used with cursors defined with WITH HOLD.

STORE cursor

cursor
Name of the cursor whose position is to be stored.

The call overwrites any cursor position for the same cursor previously saved with
STORE.

See also

DECLARE CURSOR, OPEN, RESTORE

SQL statements UPDATE

U22420-J-Z125-12-76 577

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

UPDATE - Update column values

You use UPDATE to update the column values of rows in a table.
The primary key value in a partitioned table may not be modified.

The special literals (see page 110), as well as the time functions CURRENT_DATE,
CURRENT_TIME and CURRENT_TIMESTAMP in the UPDATE statement (and in default
values) are evaluated once, and the values calculated are valid for all updates.

If you want to update a row in the specified table, you must own the table or have the
UPDATE privilege for each of the columns to be updated. Furthermore, the transaction
mode of the current transaction must be READ WRITE.

If integrity constraints have been defined for the table or the columns involved, these are
checked after the update operation. If an integrity constraint has been violated, the updates
are canceled and an appropriate SQLSTATE set.

UPDATE table [[AS] correlation_name]

SET{ = },... [WHERE]

table
Name of the table containing the rows you want to update. The table can be a base
table or an updatable view.

correlation_name
Table name used in the statement as a new name for the table table.

The correlation_name must be used to qualify the column name in every column
specification that references the table table if the column name is not unambiguous.

The new name must be unique, i.e. correlation_name can only occur once in a table
specification of this statement.

You must give a table a new name if the columns in the table cannot be identified
otherwise uniquely.

In addition, you may give a table a new name in order to formulate an expression so
that it is more easily understood or to abbreviate long names.

column
column(pos_no)
column(min..max)

expression

< ,...>

DEFAULT
NULL

value
NULL search_condition

CURRENT OF cursor

UPDATE SQL statements

578 U22420-J-Z125-12-76

column
Name of an atomic column whose contents you want to update. The column must be
part of the table. You can only specify a column once in an UPDATE statement.

column(pos_no)
Element of a column containing the value you want to update.

The multiple column must be part of the table. If you specify several elements in a
multiple column, the range of elements specified must be contiguous. Each element
can only be specified once.

pos_no is an unsigned integer Ï 1.

column(min..max)
Range of column elements in a multiple column that are to be assigned values. The
multiple column must be part of the table. If you specify several elements in a multiple
column, the range of elements specified must be contiguous.
Each element can only be specified once.

min and max are unsigned integers Ï 1; max must be Ï min.

expression
Expression whose value is to be assigned to the preceding atomic column. The value
of the expression must be compatible with the data type of the column (see section
“Entering values in table columns” on page 121).

If expression is a host variable, you can also specify a vector. If you do so, the column
must be a multiple column and the number of elements in the vector must be the same
as the number of column elements.

The following restrictions apply to expression:
– Neither the underlying base table for table nor a view of this base table can be

included in the FROM clause of a subquery in expression.
– Aggregate functions (AVG, MAX, MIN, SUM, COUNT) are not permitted.

<{value, NULL},...>
Aggregate to be assigned to a multiple column.

The number of occurrences must be the same as the number of column elements. The
data type of value must be compatible with the data type of the target column (see
section “Entering values in table columns” on page 121).

SQL statements UPDATE

U22420-J-Z125-12-76 579

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

DEFAULT
Only for atomic columns.

If a default value is defined for a particular column, this value is entered in that column.
Otherwise, the column is assigned the NULL value.

NULL
The preceding column is assigned the NULL value.

WHERE clause
The WHERE clause indicates the rows to be updated.

WHERE clause omitted:
All the rows in the table are updated.

search_condition
Condition that the rows to be updated must satisfy. A row is only updated if it satisfies
the specified condition.

The following restrictions apply to search_condition:
– Column specifications in search_condition outside of subqueries can only reference

the specified table.
– Neither the underlying base table for table nor a view of this base table can be

included in the FROM clause of a subquery included in search_condition.

If no row satisfies the search condition, no row is updated and an SQLSTATE is set that
can be handled with WHENEVER NOT FOUND.

CURRENT OF cursor
Name of the cursor used to determine the row to be updated. table must be the table
specified in the first FROM clause of the cursor description.

The cursor must satisfy the following conditions:

– The cursor must reference table.

– The cursor must be updatable.

– When the UPDATE statement is executed, the cursor must be open and positioned
on a row in the table with FETCH. In addition, the FETCH statement must be
executed in the same transaction as the UPDATE statement.

UPDATE updates the row indicated by cursor.

UPDATE is not permitted if block mode is activated for cursor (see section “PREFETCH
pragma” on page 65).

If cursor was declared with the FOR UPDATE clause and column specifications, only
the columns specified in that clause can be updated.

UPDATE SQL statements

580 U22420-J-Z125-12-76

The UPDATE statement does not influence the position of the cursor. If you want to
update the next row in the derived table, you must position the cursor on this row with
FETCH.

Updating the values in a multiple column

In the case of a multiple column, you can update values for individual column elements or
for ranges of elements.

An element of a multiple column is identified by its position number in the multiple column.

A range of elements in a multiple column is identified by the position numbers of the first
and last element in the range.

v CAUTION!
The position of an element in a multiple column can change. If an element with a
low position number is set to the NULL value, all subsequent elements are shifted
to the left and the NULL value added to the end.

UPDATE and integrity constraints

By specifying integrity constraints when you define the base table, you can restrict the
possible contents of table. After UPDATE statement has been executed, the contents of
table must satisfy the defined integrity constraints.

UPDATE and updatable view

If CHECK OPTION is specified in the definition of an updatable view, only rows that satisfy
the query expression in the view definition can be inserted in the view.

UPDATE and transaction management

UPDATE initiates a transaction outside routines if no transaction is open. If you define an
isolation level for concurrent transactions, you can control how the UPDATE statement
affects these transactions (see section “SET TRANSACTION - Define transaction
attributes” on page 569).
If an error occurs during an UPDATE statement, any updates that have already been
performed are canceled.

SQL statements UPDATE

U22420-J-Z125-12-76 581

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

Examples

Increase the minimum stock level of all items to 20.

 UPDATE items SET min_stock = 20
WHERE min_stock < 20

Update the minimum stock level using a cursor:

DECLARE cur_items CURSOR FOR
SELECT min_stock FROM items WHERE min_stock < 20
FOR UPDATE

OPEN cur_items

Update the rows involved with a series of FETCH and UPDATE statements.

FETCH cur_items INTO :MIN_STOCK

UPDATE items SET min_stock = 20 WHERE CURRENT OF cur_items

Use the cursor CUR_VAT to select all services for which no VAT is calculated. Update the
rows involved with a series of FETCH and UPDATE statements.

 DECLARE cur_vat CURSOR WITH HOLD FOR
SELECT service_num, service_text, vat
FROM service WHERE vat=0.00
FOR UPDATE

FETCH NEXT cur_vat INTO :SERVICE_NUM,
:SERVICE_TEXT INDICATOR :IND_SERVICE_TEXT :VAT INDICATOR

:IND_VAT

UPDATE service SET vat=0.15 WHERE CURRENT OF cur_vat

...

Update the intensity of the individual color components for the color orange in the
COLOR_TAB table. The column RGB for the color intensity is a multiple column:

UPDATE color_tab SET rgb(1..3) = <0.8, 0.4, 0>
WHERE color_name = 'orange'

See also

DELETE, INSERT, MERGE

WHENEVER SQL statements

582 U22420-J-Z125-12-76

WHENEVER - Define error handling

You use WHENEVER to define the reaction to statements terminated with an
SQLSTATE î '00000' and î '01xxx’.

WHENEVER is not an executable statement.

You can specify the WHENEVER statement more than once in a program.
The specifications made in a WHENEVER statement are valid for all subsequent SQL and
utility statements in the program text (after all includes have been inserted) until the next
WHENEVER statement for the same error class.

WHENEVER...CONTINUE is valid before the first WHENEVER statement.

WHENEVER

SQLERROR
Define handling of:

SQLSTATE î “00000”, “01xxx” and “02xxx”.

NOT FOUND
Define handling of:

SQLSTATE = “02xxx”.

CONTINUE
After SQLERROR or NOT FOUND, the program is continued with the next statement.
You can use CONTINUE to cancel a previously defined action for the same error class.

If the program section for error handling includes SQL statements, this section should
be introduced by a WHENEVER statement with a CONTINUE clause. This avoids
endless loops if the error occurs again.

SQLERROR
NOT FOUND

CONTINUE

 [:]label
GOTO
GO TO

SQL statements WHENEVER

U22420-J-Z125-12-76 583

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

label
Label in an ESQL program.

This clause corresponds to a branch statement in the host language (e.g. GO TO in
COBOL).

label must conform to the naming conventions for labels of the host language involved
(see the “ESQL-COBOL for SESAM/SQL-Server” manual).

After SQLERROR or NOT FOUND, the program is continued at the location indicated
by label.

The colon : is only supported for reasons of upward compatibility.

Examples

Continue the program with the paragraph SQLERR following a statement that ends with an
SQLSTATE î'00000', '01xxx' or '02xxx'.

 WHENEVER SQLERROR GOTO sqlerr

This example demonstrates how to use the WHENEVER statement when reading a cursor
table with FETCH.
Before positioning the cursor, you define a label to cater for situations where the specified
cursor position does not exist.
The cursor is positioned on the next row within a loop.
The program works its way through the cursor table reading each row until it reaches the
end of the table.
If the specified position does not exist, a corresponding SQLSTATE is set and the program
is continued from the label defined in the WHENEVER statement.
The action defined for error handling is cancelled at the label.

 WHENEVER NOT FOUND GOTO F-4

F-2.
FETCH cur_contacts INTO :LNAME,

:FIRSTNAME INDICATOR :IND_FIRSTNAME,
:DEPT INDICATOR :IND_DEPT

F-3.
Output row, go to F-2

F-4.
WHENEVER NOT FOUND CONTINUE

WHILE SQL statements

584 U22420-J-Z125-12-76

WHILE - Execute SQL statements in a loop

The WHILE statement executes SQL statements in a loop until the specified search
condition is satisfied. The loop begins with a check, i.e. it can already be terminated before
the first pass.

The ITERATE statement enables you to switch immediately to the next loop pass. The loop
can be aborted by means of a LEAVE statement.

The WHILE statement may only be specified in a routine, i.e. in the context of a CREATE
PROCEDURE or CREATE FUNCTION statement. Routines and their use in SESAM/SQL
are described in detail in chapter “Routines” on page 323.

The WHILE statement is a non-atomic SQL statement, i.e. further (atomic or non-atomic)
SQL statements can occur in it.

If the WHILE statement is part of a COMPOUND statement, in the case of corresponding
exception routines the loop can also be left when a particular SQLSTATE (e.g. no data,
class 02xxx) occurs.

[label:]
WHILE search_condition
DO {routine_sql_statement;}...
END WHILE [label]

label
The label in front of the WHILE statement (start label) indicates the start of the loop. It
may not be identical to another label in the loop.

The start label need only be specified when the next loop pass is to be switched to using
ITERATE or when the loop is to be left using a LEAVE statement. However, it should
always be used to permit SESAM/SQL to check that the routine has the correct
structure (e.g. in the case of nested loops).

The label at the end of the WHILE statement (end label) indicates the end of the loop.
If the end label is specified, the start label must also be specified. Both labels must be
identical.

search_condition
Search condition that returns a truth value when evaluated

SQL statements WHILE

U22420-J-Z125-12-76 585

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
8

routine_sql_statement
SQL statement which is to be executed in the WHILE statement.
An SQL statement is concluded with a ";" (semicolon).
Multiple SQL statements can be specified one after the other. They are executed in the
order specified.
No privileges are checked before an SQL statement is executed.
An SQL statement in a routine may access the parameters of the routine and (if the
statement is part of a COMPOUND statement) local variables, but not host variables.

The syntax and meaning of routine_sql_statement are described centrally in section “SQL
statements in routines” on page 361. The SQL statements named there may not be
used.

Execution information

The WHILE statement is a non-atomic statement:

● If the WHILE statement is part of a COMPOUND statement, the rules described there
apply, in particular the exception routines defined there.

● If the WHILE statement is not part of a COMPOUND statement and one of the SQL
statements reports an SQLSTATE, it is possible that only the updates of this SQL
statement will be undone. The WHILE statement and the routine in which it is contained
are aborted. The SQL statement in which the routine was used returns the SQLSTATE
concerned.

Example

The loop is executed until the variable i has a value < 100.

DECLARE i INTEGER DEFAULT 0;
label:
WHILE i < 100
DO

SET i = i+1;
...

END WHILE label;

See also

CREATE PROCEDURE, CREATE FUNCTION, ITERATE, LEAVE

WHILE SQL statements

586 U22420-J-Z125-12-76

U22420-J-Z125-12-76 587

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

9 SESAM-CLI

This chapter describes the SESAM CLI (Call Level Interface) and is divided into two parts:

● the section “Concept of the SESAM CLI”, which describes the structure of CLI calls, the
data types used and the handling of transactions

● the section “SESAM CLI calls”, which describes the function and syntax of calls in
alphabetical order

9.1 Concept of the SESAM CLI

The SESAM CLI (Call Level Interface) is a procedural interface which is primarily used to
access BLOBs (Binary Large Objects). There is also another CLI call at present which you
can use to define attribute values for dynamic INSERT statements.

A BLOB is a sequence of bytes of variable length, up to a maximum of 231-1 bytes.
SESAM/SQL allows you to store BLOBs in databases in the form of persistent objects. You
can then display and manipulate them outside SESAM/SQL using special programs, such
as MicrosoftTM Word for example.

The value of a BLOB is referred to simply as a BLOB value. BLOBs can only be stored in
special tables, known as BLOB tables. These are created using the SQL statement
CREATE TABLE table OF BLOB (see page 430). The BLOB values of a BLOB table form
the objects of a particular class.

When a BLOB is created, its value and assigned attributes are written to a BLOB table. In
addition, a unique REF value is created for referencing the BLOB throughout its lifetime.
This REF value can be stored in the REF column of any base table. The BLOB value itself
is stored piecemeal in several rows of the BLOB table. This storage method allows for
efficient sequential access to BLOB values.

The attributes of a particular BLOB consist of properties defined by the user and properties
assigned to the object by SESAM/SQL (see section “CREATE TABLE - Create base table”
on page 430).

The SESAM CLI allows you to address BLOBs, their classes and attributes, BLOB values
and sequences of BLOB values. The individual CLI calls are described in detail in the
section “SESAM CLI calls” on page 596.

Concept of the SESAM CLI SESAM-CLI

588 U22420-J-Z125-12-76

The contents of BLOB values are processed not in SESAM/SQL, but in object-specific
programs, such as MS Word in the case of Word documents. When transferring BLOB
values from SESAM/SQL to a BS2000 file, for instance, you have two options:

● You can use SQL_BLOB_VAL_GET to read the entire BLOB value from a buffer.

● You can use the command sequence SQL_BLOB_VAL_OPEN,
SQL_BLOB_VAL_FETCH and SQL_BLOB_VAL_CLOSE to read out the individual
segments of the BLOB value one by one (see the section “Alphabetical reference
section” on page 599).

i There is a variant with the suffix _STATELESS for each of the functions
SQL_BLOB_VAL_OPEN, SQL_BLOB_VAL_FETCH,
SQL_BLOB_VAL_STOW and SQL_BLOB_VAL_CLOSE. This set of functions
can be used to process BLOBs step-by-step even if UTM dialog step changes
occur. The interfaces of these functions are described in the files sqlblox.h (for
C) and SQLBLOX (for COBOL).

 The demonstration database of SESAM/SQL (see the “Core manual”) contains
tables for managing BLOBs. There you will also find an ESQL program with C
functions for editing these BLOB objects.

SESAM-CLI Concept of the SESAM CLI

U22420-J-Z125-12-76 589

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

9.1.1 Structure of SESAM CLI calls

SESAM CLI calls can be issued from C or COBOL programs.

They all have the following basic structure:

cli_call::= cli_procedure_name(cli_parameters[,cli_parameters]...)

cli_parameters::= cli_parameter_name cli_parameter_data_type

cli_parameter_data_type::=

cli_procedure_name
Name of the calling CLI procedure. Each procedure has a long name and a short name.
The long form should be used in C. The short form should be used in COBOL (see
alphabetical reference section).

cli_parameter_name
Name of the parameter (see alphabetical reference section).

IN, IN OUT or OUT
Indicates whether the parameter is an input parameter or an output parameter. IN OUT
signals an input and output parameter.

cli_parameter_data_type
Name of the parameter data type.

The language-specific C and COBOL syntax of the individual CLI calls can be found in the
section “SESAM CLI calls” on page 596.

IN
IN OUT
OUT

BOOLEAN
INTEGER
CHAR(max)
POINTER
SQLda

Concept of the SESAM CLI SESAM-CLI

590 U22420-J-Z125-12-76

Corresponding data types

The table below shows the C and COBOL data types that correspond to SQL data types of
CLI routines. The “Type” column indicates whether the parameter is an input parameter or
an output parameter. The “Length” column specifies the length of values in bytes.

The value “p” in the data type PIC S9(p) must be between 5 and 9.

The SYNCHRONIZED clause need not be specified in COBOL for arguments of CLI calls.
The data type POINTER is used to transfer the address of a buffer, the length of which is
defined in another parameter.

SQL data type Type COBOL data type C data type Length

BOOLEAN IN PIC S9(p) with the
USAGE clause COMP

long int const * 4

OUT long int *

INTEGER IN PIC S9(p) with the
USAGE clause COMP

long int const * 4

OUT long int *

IN OUT

CHAR(n) IN PIC X(n) char const * n

OUT char *

IN OUT

POINTER IN PIC X(n)
or COBOL group item

char * 4

CHAR(ddd) OUT SQLda SQLda_t * ddd

Table 55: Corresponding data types

SESAM-CLI Concept of the SESAM CLI

U22420-J-Z125-12-76 591

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

The COBOL data type SQLda

SQLda is a diagnostics area in SESAM/SQL. It is structured as follows in COBOL:

SQLda
Diagnostics area for SESAM/SQL.

SQLda01, SQLda02, ... SQLda99
Reserved for internal purposes.

SQLerrline
In the event of an error, this variable contains the line number of the position in the text
of a prepared statement at which the error occurred. If the source of the error cannot be
determined or the specified position makes no sense, this is set to 0 (zero).

SQLerrcol
In the event of an error, this variable contains the column number of the position in the
text of a prepared statement at which the error occurred. If the source of the error
cannot be determined or the specified position makes no sense, this is set to 0 (zero).

01 SQLda.

05 SQLda01 PIC S9(4) BINARY.

88 SQLda01val value 910.

05 SQLda02 PIC S9(4) BINARY.

05 SQLda03 PIC S9(4) BINARY.

05 SQLda04 PIC S9(4) BINARY.

05 SQLerrline PIC S9(4) BINARY.

05 SQLerrcol PIC S9(4) BINARY.

05 SQLda07 PIC S9(4) BINARY.

05 SQLda08 PIC X(5).

05 SQLCLI-SQLSTATE redefines SQLda08 PIC X(5).

05 SQLerrm PIC X(240).

05 SQLda10 PIC X.

05 SQLda21 PIC S9(9) BINARY.

05 SQLda22 PIC X(4).

05 SQLda23 PIC S9(4) BINARY.

05 SQLda24 PIC X(2).

05 SQLrowcount PIC S9(9) BINARY.

05 SQLda99 PIC X(634).

Concept of the SESAM CLI SESAM-CLI

592 U22420-J-Z125-12-76

SQLerrm
Following the execution of an SQL statement, this variable contains a message text if
the SQL statement returned a value other than 00000 in SQLSTATE. This consists of
the error class (W for WARNING or E for ERROR), the message number SQLnnnn and
the message text itself.

SQLrowcount
Following the execution of the corresponding statements, this variable contains the
following information:

– in the case of an INSERT statement, the number of rows inserted

– in the case of an UPDATE or DELETE statement with a search condition, the
number of rows that satisfied the search condition

– in the case of an UPDATE or DELETE statement without a WHERE clause, the
number of rows in the referenced table

– in the case of a MERGE statement, the sum of the number of updated and the
number of inserted rows

– in the case of an UNLOAD statement, the number of rows output

– in the case of a LOAD statement, the number of rows newly loaded

– in the case of an EXPORT statement, the number of rows copied to the export file

– in the case of an IMPORT statement, the number of rows copied from the export file
In all other cases, the contents of this variable are not defined.

SESAM-CLI Concept of the SESAM CLI

U22420-J-Z125-12-76 593

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

The C data type SQLda_t

The SQLda_t data type is the C equivalent of COBOL’s SQLda. The diagnostics area in C
is structured as follows:

The individual parameters are the same as those in the COBOL data type SQLda.

typedef struct {

short SQLda01; /*length*/

short SQLda02; /*reaction_code*/

short SQLda03; /*error_code*/

short SQLda04; /*errm_significant*/

short SQLerrline; /*sqlrow*/

short SQLerrcol; /*sqlcolumn*/

short SQLda07; /*sqlcode*/

char SQLda08[5]; /*sqlstate*/

char SQLerrm[240]; /*sqlerrm*/

signed char SQLda10; /*SQLda10*/

long SQLda21; /*check field*/

char SQLda22[4]; /*tag*/

unsigned short SQLda23; /*internal*/

char SQLda24[2]; /*slack*/

long SQLrowcount; /*row_count*/

char SQLda99[634]; /*internal area*/ }

SQLda_t;

Concept of the SESAM CLI SESAM-CLI

594 U22420-J-Z125-12-76

9.1.2 Statements that initiate transactions in CLI calls

Most CLI calls contain SQL statements that initiate transactions. For instance, with the
exception of SQL_BLOB_CLS_REF, all CLI calls contain SQL statements for manipulating
data (query, update).

i An SQL transaction must consist either of SQL statements for manipulating data or
SQL statements for defining or managing schemas (see “Statements within a
transaction” on page 397). For this reason, it is not possible to successfully execute
CLI calls in an SQL transaction, even if the transaction also consists of SQL
statements for defining or managing schemas.

Isolation level

The isolation level can be used to influence the parallel processing of transactions. The
individual levels and the phenomena that can occur with concurrent transactions are
described in the “SET TRANSACTION - Define transaction attributes” on page 569. The
following effects may be seen when using BLOBs in CLI functions:

● If a BLOB value is to be read in a transaction with the isolation level SERIALIZABLE or
REPEATABLE READ, any attempts on the part of concurrent transactions to update
this value will be delayed until the read process is complete. This means that any
updates to be carried out by concurrent transactions will either be visible in their entirety
or not at all. The “phantom” phenomenon cannot occur here, since REF values are not
reused.

● If a BLOB value is to be read in a transaction with the isolation level READ
COMMITTED or READ UNCOMMITTED, it may be updated within the transaction by
concurrent transactions. As a result, some of values read may be old while others are
new. In the course of reading two segments of a BLOB value, it is even possible for the
BLOB to be deleted and replaced by another BLOB with the same object number. In
such cases, however, you can use the UPDATED attribute to determine when the object
was last updated, and thus ensure that you are actually dealing with one and the same
object.

SESAM-CLI Concept of the SESAM CLI

U22420-J-Z125-12-76 595

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

Consistency in updates

A BLOB value is stored in several rows of the BLOB table. When replacing a BLOB value,
therefore, you generally need more than one DML statement. The updating of a BLOB is
not an atomic operation.

For this reason, it may be possible for an update to be only partially successful. For
instance, the first BLOB_VAL_STOW call (see page 629) for updating a BLOB value may
be successful while the second fails. If this occurs, it is recommended that you reverse all
updates using ROLLBACK.

In contrast, the updating of BLOB attributes and the deletion of BLOBs are atomic
operations. If they fail, all values will be restored to their original status.

SESAM CLI calls SESAM-CLI

596 U22420-J-Z125-12-76

9.2 SESAM CLI calls

9.2.1 Overview

The following SESAM CLI calls are available to users:

Operations involving BLOB classes

Creating and deleting BLOBs

Reading and setting BLOB attributes

Reading and setting BLOB values

CLI call Short form Function

SQL_BLOB_CLS_REF SQLbcre Create and output class REF value

SQL_BLOB_CLS_ISBTAB SQLbcis Check whether BLOB table exists

Table 56: CLI calls for operations involving BLOB classes

CLI call Short form Function

SQL_BLOB_OBJ_CLONE SQLbocl Create a clone of a BLOB

SQL_BLOB_OBJ_CREATE SQLbocr Create a BLOB (object number sequential)

SQL_BLOB_OBJ_CREAT2 SQLboc2 Create a BLOB (object number area-specific)

SQL_BLOB_OBJ_DROP SQLbodr Delete a BLOB

Table 57: CLI calls for BLOB objects

CLI call Short form Function

SQL_BLOB_TAG_GET SQLbtge Read an attribute value

SQL_BLOB_TAG_PUT SQLbtpu Set an attribute value

Table 58: CLI calls for BLOB attributes

CLI call Short form Function

SQL_BLOB_VAL_GET SQLbvge Output BLOB value

SQL_BLOB_VAL_PUT SQLbvpu Set BLOB value

SQL_BLOB_VAL_LEN SQLbvle Output the length of a BLOB value

Table 59: CLI calls for BLOB values

SESAM-CLI SESAM CLI calls

U22420-J-Z125-12-76 597

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

Sequential processing of BLOB values

Defining attribute values for dynamic INSERT statements

CLI call Short form Function

SQL_BLOB_VAL_OPEN SQLbvop Open an access handle

SQL_BLOB_VAL_CLOSE SQLbvcl Close an access handle

SQL_BLOB_VAL_FETCH SQLbvfe Read a BLOB value sequentially

SQL_BLOB_VAL_STOW SQLbvst Set a BLOB value sequentially

Table 60: CLI call for individual sequences of BLOB values

CLI call Short form Function

SQL_DIAG_SEQ_GET SQLdsg The RETURN INTO function of static INSERT
statements is made available for dynamic INSERT
statements

Table 61: CLI call for defining attribute values for dynamic INSERT statements

SESAM CLI calls SESAM-CLI

598 U22420-J-Z125-12-76

Example

 A demonstration program for processing BLOB values by means of SESAM-CLI
can be found in the library SIPANY.SESAM-SQL.090.MAN-DB. This is an ESQL-
COBOL program from which C functions for executing CLI calls can be launched.

Below, we outline the steps required to create a BLOB object.

1. The REF value ref_value is output for the BLOB object class to which the new
BLOB object is to belong. The BLOB object is to be located in the table named
table in the schema named schema.

SQL_BLOB_CLS_REF(table, schema, ref_value, &SQLDA)

2. The BLOB object is created by entering the REF value ref_value of the class and
the name of the database catalog. The REF value ref_value of the new BLOB
object is output.

SQL_BLOB_OBJ_CREATE(ref_value, catalog, &SQLDA)

3. An access handle for writing is opened with ForWriteAccess=1. The REF value
ref_value of the BLOB object and the database name catalog are specified. The
access handle is identified in the following by the return value access_handle.

SQL_BLOB_VAL_OPEN (ref_value, catalog,
(long int const *)&ForWriteAccess,
access_handle, &SQLDA)

4. The BLOB value is set sequentially within the access handle. access_handle is
specified to identify the access handle. This step is repeated until the entire
BLOB value has been read from the buffer.

SQL_BLOB_VAL_STOW (access_handle, input_buffer,
(long int const *)&n, &SQLDA)

5. The access handle is closed. access_handle is specified to identify the access
handle.

SQL_BLOB_VAL_CLOSE (access_handle, &SQLDA)

SESAM-CLI Alphabetical reference section

U22420-J-Z125-12-76 599

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

9.2.2 Alphabetical reference section

In this section, the CLI calls are described using a uniform syntax. The calls are in
alphabetical order. There is only one entry per call, which has the full name of the call and
its short form as its header.

Each entry consists of several parts:

Full call name - short form

The function of the call is described following the heading.

This section also describes the access permissions required to successfully execute the
call.

Function declaration in C

Function declaration in COBOL

parameter
Explanation of the parameter.

The parameters are described in the order in which they appear in the function declaration.

SQL_BLOB_CLS_ISBTAB SESAM-CLI

600 U22420-J-Z125-12-76

SQL_BLOB_CLS_ISBTAB - SQLbcis

SQL_BLOB_CLS_ISBTAB checks whether or not a base table is a BLOB table. When the
database, table and schema names are entered, the value 1 or 0 is output. If the value 1 is
returned, this indicates that the table is a BLOB table. The value 0 signals syntax errors or
indicates that the table is not a BLOB table.

This CLI call requires the SELECT privilege for the BLOB table.

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbcis IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING TableName, SchemaName, CatalogId, IsBLOBtable,
SQLda.

END PROGRAM SQLbcis.

void SQL_BLOB_CLS_ISBTAB (char const * TableName

, char const * SchemaName

, char const * CatalogId

, long int * IsBlobTable

, struct SQLda_t * SQLda);

01 TableName PIC X(31).

01 SchemaName PIC X(31).

01 CatalogId PIC X(31).

01 IsBLOBtable PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SESAM-CLI SQL_BLOB_CLS_ISBTAB

U22420-J-Z125-12-76 601

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

TableName
Name of a base table. TableName must be the unqualified table name without the
database and schema names (see section “Unqualified names” on page 69). This
name is case-sensitive. If necessary, this name must be padded with blanks up to a
length of 31 characters or terminated with a null byte.

SchemaName
Name of the schema in which the base table is located. SchemaName must be the
unqualified name of the schema excluding the database name (see section
“Unqualified names” on page 69). This name is case-sensitive. If necessary, this name
must be padded with blanks up to a length of 31 characters or terminated with a null
byte.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

IsBLOBtable
Boolean value. If the value 1 is returned, this indicates that the table is a BLOB table.
The value 0 signals syntax errors or indicates that the table is not a BLOB table.

SQLda
Diagnostics area.

SQL_BLOB_CLS_REF SESAM-CLI

602 U22420-J-Z125-12-76

SQL_BLOB_CLS_REF - SQLbcre

SQL_BLOB_CLS_REF returns the class REF value for the objects in a BLOB table. Input
is the table and schema name.

This CLI call does not require any privileges.

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbcre IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING BlobTableName, BlobSchemaName, REFvalue, SQLda.

END PROGRAM SQLbcre.

void SQL_BLOB_CLS_REF (char const * BlobTableName

, char const * BlobSchemaName

, char * REFvalue

, struct SQLda_t * SQLda);

01 BlobTableName PIC X(31).

01 BlobSchemaName PIC X(31).

01 REFvalue PIC X(237).

COPY SQLCA. *> for group item SQLda.

SESAM-CLI SQL_BLOB_CLS_REF

U22420-J-Z125-12-76 603

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

BlobTableName
Name of the BLOB table BlobTableName must be the unqualified table name without the
database and schema names (see section “Unqualified names” on page 69). This
name is case-sensitive. If necessary, this name must be padded with blanks up to a
length of 31 characters or terminated with a null byte.

BlobSchemaName
Name of the schema in which the BLOB table is located. BlobSchemaName is the
unqualified name of the schema excluding the database name (see section
“Unqualified names” on page 69). This name is case-sensitive. If necessary, this name
must be padded with blanks up to a length of 31 characters or terminated with a null
byte.

REFvalue
If the CLI call executes successfully, the class REF value is returned. If this REF value
is less than 237 characters in length, it is padded with blanks up to this length. The exact
structure of REF values is described on page 273.

SQLda
Diagnostics area.

SQL_BLOB_OBJ_CLONE SESAM-CLI

604 U22420-J-Z125-12-76

SQL_BLOB_OBJ_CLONE - SQLbocl

The SESAM/SQL CLI call SQL_BLOB_OBJ_CLONE creates a clone of an already existing
BLOB object in another database. The clone has the same REF value as the original BLOB
object and is created in a BLOB table with the same schema name and table name as the
original. The attributes of the clone are set according to the defaults of its BLOB table. The
BLOB value has length 0.

This SQL_BLOB_OBJ_CLONE call can be used to replicate a BLOB table in another
database. If this is done by repeating the SQL_BLOB_OBJ_CREATE call on the other
database. Then the REF values for original and copied objects are different, so that the
references in the two databases are different. The SQL_BLOB_OBJ_CLONE call allows
the creation of a clone with the same REF value as the original object, so that references
in the two databases remain the same.

The SQL_BLOB_OBJ_CLONE call can also be used to recreate a BLOB object that has
been deleted erroneously.

CLI declaration in C:

#define SQL_BLOB_OBJ_CLONE SQLBOCL

extern void SQL_BLOB_OBJ_CLONE (char const * REFvalue /* in */

, char const * CatalogId /* in */

, SQLda_t * sqlda); /* out */

SESAM-CLI SQL_BLOB_OBJ_CLONE

U22420-J-Z125-12-76 605

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbocl IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, SQLda.

END PROGRAM SQLbocl.

REFValue
The entered REFValue must be a correct REF value, and must not refer to a class object.
The BLOB table referenced by the REF value must exist in the given database.
However, it must not contain the BLOB object related by the REF value.
If the CLI call executes successfully, the returned REF value references a new BLOB
object in the CatalogId database. The BLOB value has the length 0. The CREATED
and UPDATED attributes contain the same timestamp, and the other attributes are set
to the default values of the BLOB table.

CatalogID
Unqualified name of the database with the new BLOB table.
CatalogId is an unqualified name (see section “Unqualified names” on page 69).
If necessary, this name must be padded with blanks up to a length of 31 characters or
terminated with a null byte. If you wish to use the default database name, simply enter
a null byte or a string of blanks instead of the database name.

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

COPY SQLCA.

SQL_BLOB_OBJ_CREATE SESAM-CLI

606 U22420-J-Z125-12-76

SQL_BLOB_OBJ_CREATE - SQLbocr

SQL_BLOB_OBJ_CREATE creates a new BLOB and outputs the generated REF value.
The input parameters include the database name and the REF value of the class to which
the new BLOB is to belong. You can also specify the REF value of an existing object of this
class. The following values are entered in the BLOB table when a new object is created:

● The BLOB is assigned an object number that is unique within that class. This object
number is assigned sequentially.

● The BLOB attributes UPDATED and CREATED are assigned the current time stamp.
All other attributes are set in accordance with their default values.

The BLOB value of the newly created BLOB has the length 0.

This CLI call requires the INSERT and SELECT privileges for BLOB tables, as well as the
UPDATE privilege for the obj_ref column of the BLOB table.

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbocr IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, SQLda.

END PROGRAM SQLbocr.

void SQL_BLOB_OBJ_CREATE (char * REFvalue

, char const * CatalogId

, struct SQLda_t * SQLda);

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

COPY SQLCA. *> for group item SQLda.

SESAM-CLI SQL_BLOB_OBJ_CREATE

U22420-J-Z125-12-76 607

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

REFvalue
REF value of the class or of an existing object from the same class. The exact structure
of REF values is described on page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

SQLda
Diagnostics area.

SQL_BLOB_OBJ_CREAT2 SESAM-CLI

608 U22420-J-Z125-12-76

SQL_BLOB_OBJ_CREAT2 - SQLboc2

SQL_BLOB_OBJ_CREATE2 creates a new BLOB and outputs the generated REF value.
The input parameters include the database name, the REF value of the class to which the
new BLOB is to belong, and an interval for the object number. You can also specify the REF
value of an existing object of this class. The following values are entered in the BLOB table
when a new object is created:

● The BLOB is assigned an object number that is unique within that class. This object
number is assigned within the specified interval in accordance with a specific algorithm.
This ensures that the object numbers are distributed equally over the specified interval
when there are multiple SQL_BLOBOBJ_CREAT2 calls.

● The BLOB attributes UPDATED and CREATED are assigned the current time stamp.
All other attributes are set in accordance with their default values.

The BLOB value of the newly created BLOB has the length 0.

This CLI call requires the INSERT and SELECT privileges for BLOB tables, as well as the
UPDATE privilege for the obj_ref column of the BLOB table.

CLI declaration in C:

void SQL_BLOB_OBJ_CREAT2 (char * REFvalue

, char const * CatalogId

, long int * MinObjectNmbr

, long int * MaxObjectNmbr

, struct SQLda_t * SQLda);

SESAM-CLI SQL_BLOB_OBJ_CREAT2

U22420-J-Z125-12-76 609

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLboc2 IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, MinObjectNmbr, MaxObjectNmbr, CatalogId,
SQLda.

END PROGRAM SQLboc2.

REFvalue
REF value of the class or of an existing object from the same class. The exact structure
of REF values is described on page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

MinObjectNmbr
Minimum value for the object number (must be Ï 1).

MaxObjectNmbr
Maximum value for the object number (must be greater than or equal to the minimum
value).

SQLda
Diagnostics area.

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

01 MinObjectNmbr PIC S9(9) COMP.

01 MaxObjectNmbr PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SQL_BLOB_OBJ_DROP SESAM-CLI

610 U22420-J-Z125-12-76

SQL_BLOB_OBJ_DROP - SQLbodr

SQL_BLOB_OBJ_DROP deletes an existing BLOB, together with its BLOB value and all
its attributes. The input parameters include the database name and the REF value of the
BLOB. The deletion of a BLOB actually consists of removing one or more rows from the
BLOB table. If an error occurs in the process, this is reported back to the caller and the
BLOB remains unchanged. (However, the UPDATED attribute can have been changed.)
Concurrent transactions are synchronized as normal in SESAM/SQL.

This CLI call requires the DELETE and SELECT privileges for the BLOB table, as well as
the UPDATE privilege for the slice_val column of the BLOB table.

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbodr IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, SQLda.

END PROGRAM SQLbodr.

void SQL_BLOB_OBJ_DROP (char const * REFvalue

, char const * CatalogId

, struct SQLda_t * SQLda);

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

COPY SQLCA. *> for group item SQLda.

SESAM-CLI SQL_BLOB_OBJ_DROP

U22420-J-Z125-12-76 611

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

REFvalue
The REF value of the BLOB. The exact structure of REF values is described on
page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

SQLda
Diagnostics area.

SQL_BLOB_TAG_GET SESAM-CLI

612 U22420-J-Z125-12-76

SQL_BLOB_TAG_GET - SQLbtge

SQL_BLOB_TAG_GET outputs the current value of an attribute of an existing BLOB. The
input parameters include the REF value of the BLOB, the database name and the name of
the attribute (tag). Possible tags include CREATED, UPDATED, MIME and USAGE. In
addition, you must define a buffer into which the attribute value will be written, and specify
its length. If the BLOB has no attribute with the specified tag, an error message is output.

This CLI call requires the SELECT privilege for the BLOB table.

CLI declaration in C:

void SQL_BLOB_TAG_GET (char const * REFvalue

, char const * CatalogId

, char const * TagName

, char * Buffer

, long int const * BufferLength

, long int * ValueLength

, struct SQLda_t * SQLda);

SESAM-CLI SQL_BLOB_TAG_GET

U22420-J-Z125-12-76 613

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbtge IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, TagName, Buffer, BufferLength,
ValueLength, SQLda.

END PROGRAM SQLbtge.

REFvalue
The REF value of the BLOB. The exact structure of REF values is described on
page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

TagName
Name of the attribute (tag). If necessary, this name must be padded with blanks up to
a length of 31 characters or terminated with a null byte. TagName may not be a blank
string.

Buffer
Buffer to which the attribute value is to be written.

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

01 TagName PIC X(31).

01 Buffer. *> of any length

02 PIC X(1).

01 BufferLength PIC S9(9) COMP.

01 ValueLength PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SQL_BLOB_TAG_GET SESAM-CLI

614 U22420-J-Z125-12-76

BufferLength
Length of the buffer in bytes. BufferLength must be a number Ï 0. If the buffer length
is less than that of the attribute value with trailing blanks removed, the buffer is filled up
as far as its length permits. A message is output in this case.

ValueLength
Length of the attribute value read in bytes. If the length of the attribute value is greater
than the value specified in BufferLength, only part of the attribute value will be
transferred to the buffer.

SQLda
Diagnostics area.

SESAM-CLI SQL_BLOB_TAG_PUT

U22420-J-Z125-12-76 615

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

SQL_BLOB_TAG_PUT - SQLbtpu

SQL_BLOB_TAG_PUT replaces an attribute value of an existing BLOB. The input
parameters include the REF value, the database name and the name of the attribute (tag).
The new attribute value must be located in a buffer. The address of which must be specified
in the input parameters together with the value length.

This CLI call requires the SELECT privilege for the BLOB table, as well as the UPDATE
privilege for the slice_val column of the BLOB table.

CLI declaration in C:

void SQL_BLOB_TAG_PUT (char const * REFvalue

, char const * CatalogId

, char const * TagName

, char * Buffer

, long int const * ValueLength

, struct SQLda_t * SQLda);

SQL_BLOB_TAG_PUT SESAM-CLI

616 U22420-J-Z125-12-76

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbtpu IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, TagName, Buffer, ValueLength,
SQLda.

END PROGRAM SQLbtpu.

REFvalue
The REF value of the BLOB. The exact structure of REF values is described on
page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

TagName
Name of the attribute (tag). If necessary, this name must be padded with blanks up to
a length of 31 characters or terminated with a null byte. TagName may not be a blank
string.

Buffer
Buffer containing the new attribute value.

ValueLength
Length of the new attribute value. ValueLength must be a number Ï 0.

SQLda
Diagnostics area as an output parameter.

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

01 TagName PIC X(31).

01 Buffer. *> of any length

02 PIC X(1).

01 ValueLength PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SESAM-CLI SQL_BLOB_VAL_CLOSE

U22420-J-Z125-12-76 617

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

SQL_BLOB_VAL_CLOSE - SQLbvcl

SQL_BLOB_VAL_CLOSE closes an access handle opened with SQL_BLOB_VAL_OPEN
(see page 624).

An access handle allows you to process BLOB values sequentially. Here the calls
SQL_BLOB_VAL_FETCH (see page 618) for sequential reading and
SQL_BLOB_VAL_STOW (see page 629) for sequential writing are offered.

If you attempt to close an access handle that has already been closed, an error message
is output.
This CLI call may require the INSERT privilege for the BLOB table.

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbvcl IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING AccessHandle, SQLda.

END PROGRAM SQLbvcl.

AccessHandle
The value supplied in SQL_BLOB_VAL_OPEN for the access handle to be terminated
must be entered here. This value must not be modified by the caller.

SQLda
Diagnostics area.

void SQL_BLOB_VAL_CLOSE (char * AccessHandle

, struct SQLda_t * SQLda);

01 AccessHandle PIC X(32).

COPY SQLCA. *> for group item SQLda.

SQL_BLOB_VAL_FETCH SESAM-CLI

618 U22420-J-Z125-12-76

SQL_BLOB_VAL_FETCH - SQLbvfe

SQL_BLOB_VAL_FETCH reads the individual segments of a BLOB value sequentially.
Contrast this with the CLI call SQL_BLOB_VAL_GET (see page 620), which reads the
entire BLOB value in one go. The advantage of SQL_BLOB_VAL_FETCH over
SQL_BLOB_VAL_GET is the fact that it allows the output buffer to be shorter than the
BLOB value itself.

To read a BLOB value sequentially using SQL_BLOB_VAL_FETCH, you will need an
access handle. This is created using the SQL_BLOB_VAL_OPEN call. With the
ForWriteAccess parameter of this call you define that you require this access handle for
reading (see page 624f). Following the SQL_BLOB_VAL_OPEN call, SESAM/SQL returns
a unique ID for the access handle.

This ID must be specified each time SQL_BLOB_VAL_FETCH is called. You must also
define a buffer into which the BLOB value segments are to be written, and the length of this
buffer.

The first time SQL_BLOB_VAL_FETCH is called within an access handle, the buffer is filled
with the first segment of the BLOB value. The next time the call is issued with the same
access handle, the buffer is filled with the next segment of the BLOB value, and so on. Once
the entire BLOB value has been read, a message (SQLSTATE 02000) to this effect is
output.

After the BLOB value has been read in its entirety, it will no longer be possible to call
SQL_BLOB_VAL_FETCH with this access handle. The access handle must be closed
using SQL_BLOB_VAL_CLOSE (see page 617).

The entire sequence of operations (SQL_BLOB_VAL_OPEN, repeated
SQL_BLOB_VAL_FETCH calls, SQL_BLOB_VAL_CLOSE) must be executed within a
transaction.

This CLI call does not require any privileges.

CLI declaration in C:

void SQL_BLOB_VAL_FETCH (char * AccessHandle

, char * Buffer

, long int const * BufferLength

, long int * ValueLength

, struct SQLda_t * SQLda);

SESAM-CLI SQL_BLOB_VAL_FETCH

U22420-J-Z125-12-76 619

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbvfe IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING AccessHandle, Buffer, BufferLength, ValueLength,
SQLda.

END PROGRAM SQLbvfe.

AccessHandle
ID assigned to the access handle in SQL_BLOB_VAL_OPEN. This value must not be
modified by the caller.

Buffer
Buffer to which the BLOB value segment is to be written.

BufferLength
Length of the buffer in bytes. BufferLength must be a number Ï 0.

ValueLength
Length of the BLOB value segment written to the buffer. If this is less than the value
specified in BufferLength, this indicates that the BLOB value has been read in its
entirety.

SQLda
Diagnostics area.

01 AccessHandle PIC X(32).

01 Buffer. *> of any length

02 PIC X(1).

01 BufferLength PIC S9(9) COMP.

01 ValueLength PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SQL_BLOB_VAL_GET SESAM-CLI

620 U22420-J-Z125-12-76

SQL_BLOB_VAL_GET - SQLbvge

SQL_BLOB_VAL_GET reads an entire BLOB value in one go. The input parameters
include the REF value of the BLOB, the database name, the buffer to which the value is to
be written and the length of this buffer.

This CLI call requires the SELECT privilege for the BLOB table.

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbvge IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, Buffer, BufferLength,
ValueLength, SQLda.

END PROGRAM SQLbvge.

void SQL_BLOB_VAL_GET (char const * REFvalue

, char const * CatalogId

, char * Buffer

, long int const * BufferLength

, long int * ValueLength

, struct SQLda_t * SQLda);

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

01 Buffer. *> of any length

02 PIC X(1).

01 BufferLength PIC S9(9) COMP.

01 ValueLength PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SESAM-CLI SQL_BLOB_VAL_GET

U22420-J-Z125-12-76 621

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

REFvalue
The REF value of the BLOB. The exact structure of REF values is described on
page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

Buffer
Buffer to which the BLOB value is written.

BufferLength
Length of the buffer in bytes. BufferLength must be a number Ï 0.

ValueLength
Length of the BLOB value. If this is greater than the value specified in BufferLength,
the buffer will contain only the first few bytes of the BLOB value (up to the length
BufferLength). Otherwise, the first few bytes of the buffer will contain the entire BLOB
value.

SQLda
Diagnostics area.

SQL_BLOB_VAL_LEN SESAM-CLI

622 U22420-J-Z125-12-76

SQL_BLOB_VAL_LEN - SQLbvle

When the REF value and database name are entered, SQL_BLOB_VAL_LEN determines
the length of a BLOB value and displays this.

The SQL_BLOB_VAL_LEN call requires the SELECT privilege for the BLOB table.

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbvle IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, ValueLength, SQLda.

END PROGRAM SQLbvle.

void SQL_BLOB_VAL_LEN (char const * REFvalue

, char const * CatalogId

, long int * ValueLength

, struct SQLda_t * SQLda);

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

01 ValueLength PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SESAM-CLI SQL_BLOB_VAL_LEN

U22420-J-Z125-12-76 623

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

REFvalue
The REF value of the BLOB. The exact structure of REF values is described on
page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

ValueLength
Length of the BLOB value.

SQLda
Diagnostics area.

SQL_BLOB_VAL_OPEN SESAM-CLI

624 U22420-J-Z125-12-76

SQL_BLOB_VAL_OPEN - SQLbvop

SQL_BLOB_VAL_OPEN opens an access handle. Access handles are used in the
sequential processing of BLOB values. In SESAM/SQL you can read BLOB values
sequentially with SQL_BLOB_VAL_FETCH (see page 618) and write them sequentially
with SQL_BLOB_VAL_STOW (see page 629).

Once you have finished processing BLOB values sequentially using an access handle, you
must close the access handle by calling SQL_BLOB_VAL_CLOSE (see page 617). An
access handle must be opened and closed within the same transaction.

By repeating the CLI calls SQL_BLOB_VAL_FETCH and SQL_BLOB_VAL_STOW, you
can read or write BLOB values sequentially. To ensure that this is carried out correctly, you
will require an access handle which manages the following information internally:

● the BLOB value to be addressed

● the progress of the read or write operation (which segment is to be read or written next)

The input parameters include the REF value of the BLOB, the database name and the
ForWriteAccess parameter.
With ForWriteAccess you define whether the access handle is to be used for reading or
writing purposes.
Each access handle is assigned a unique ID by SESAM/SQL, which must be specified each
time SQL_BLOB_VAL_FETCH or SQL_BLOB_VAL_STOW is called.

It is possible to have up to 10 access handles open at any one time, i.e. to have up to 10
sequential processes involving BLOBs running in parallel. If you attempt to initiate an 11th
sequential process, this will be rejected with a corresponding message.

If you fail to issue an SQL_BLOB_VAL_CLOSE call once sequential processing is
complete, the access handle remains reserved. This makes it impossible to optimize the
utilization of the 10 possible access handles.

If you open an access handle for writing purposes and the BLOB to be processed already
has a BLOB value, the old BLOB value will be deleted by the SQL_BLOB_VAL_OPEN call,
i.e. it will have the length 0. The BLOB itself will be retained.

You should avoid subjecting a particular BLOB to several parallel writing sequences, since
these may have conflicting effects on the BLOB value.

If the SQL_BLOB_VAL_OPEN call is issued for reading purposes, you will require the
SELECT privilege for the BLOB table. If it is issued for writing purposes, you will require the
SELECT and DELETE privileges for the BLOB table, as well as the UPDATE privilege for
the slice_val column of the BLOB table.

SESAM-CLI SQL_BLOB_VAL_OPEN

U22420-J-Z125-12-76 625

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbvop IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, ForWriteAccess, AccesHandle,
SQLda.

END PROGRAM SQLbvop.

void SQL_BLOB_VAL_OPEN (char const * REFvalue

, char const * CatalogId

, long int * ForWriteAccess

, char * AccesHandle

, struct SQLda_t * SQLda);

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

01 ForWriteAccess PIC S9(9) COMP.

01 AccesHandle PIC X(32).

COPY SQLCA. *> for group item SQLda.

SQL_BLOB_VAL_OPEN SESAM-CLI

626 U22420-J-Z125-12-76

REFvalue
The REF value of the BLOB. The exact structure of REF values is described on
page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

ForWriteAccess
This can be set to the value 1 (=TRUE) or 0 (=FALSE). The values have the following
meaning:
0: The access handle is intended for reading purposes (with

SQL_BLOB_VAL_FETCH).
1: The access handle is intended for writing purposes (with

SQL_BLOB_VAL_STOW).

AccessHandle
ID of the access handle. This value must not be modified, as it will be used in all
subsequent operations up to the concluding SQL_BLOB_VAL_CLOSE call.

SQLda
Diagnostics area.

SESAM-CLI SQL_BLOB_VAL_PUT

U22420-J-Z125-12-76 627

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

SQL_BLOB_VAL_PUT - SQLbvpu

SQL_BLOB_VAL_PUT replaces one BLOB value with another contained in a buffer. The
input values include the REF value of the BLOB, the database name, the buffer containing
the new value and the length of the new value.

This CLI call requires the INSERT, SELECT and DELETE privileges for the BLOB table.
You also require the UPDATE privilege for the slice_val column in the BLOB table.

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbvpu IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING REFvalue, CatalogId, Buffer, ValueLength, SQLda.

END PROGRAM SQLbvge.

void SQL_BLOB_VAL_PUT (char const * REFvalue

, char const * CatalogId

, char * Buffer

, long int * ValueLength

, struct SQLda_t * SQLda);

01 REFvalue PIC X(237).

01 CatalogId PIC X(31).

01 Buffer. *> of any length

02 PIC X(1).

01 ValueLength PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SQL_BLOB_VAL_PUT SESAM-CLI

628 U22420-J-Z125-12-76

REFvalue
The REF value of the BLOB. The exact structure of REF values is described on
page 273.

CatalogId
Unqualified name of the database in which the table is located. CatalogId is an
unqualified name (see section “Unqualified names” on page 69). If necessary, this
name must be padded with blanks up to a length of 31 characters or terminated with a
null byte. If you wish to use the default database name, simply enter a null byte or a
string of blanks instead of the database name.

Buffer
Buffer containing the new BLOB value.

ValueLength
Length of the BLOB value. ValueLength must be a number Ï 0.

SQLda
Diagnostics area.

SESAM-CLI SQL_BLOB_VAL_STOW

U22420-J-Z125-12-76 629

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

SQL_BLOB_VAL_STOW - SQLbvst

SQL_BLOB_VAL_STOW writes a new BLOB value sequentially to a BLOB. Contrast this
with the CLI call SQL_BLOB_VAL_PUT (see page 627), which writes the entire BLOB
value in one go. The advantage of SQL_BLOB_VAL_STOW over SQL_BLOB_VAL_PUT
is the fact that it allows the buffer to be shorter than the new BLOB value as a whole. The
new BLOB value will be transferred in small segments.

To write a BLOB value sequentially using SQL_BLOB_VAL_STOW, you will need an
access handle. This is created using the SQL_BLOB_VAL_OPEN call. With the
ForWriteAccess parameter of this call you define that you require this access handle for
writing (see page 624f). Following the SQL_BLOB_VAL_OPEN call, SESAM/SQL returns
a unique ID for the access handle.

This ID must be specified each time SQL_BLOB_VAL_STOW is called. You must also
define the buffer in which the new BLOB value segments are located, and the length of this
buffer.

After the BLOB value has been written in its entirety by means of repeated
SQL_BLOB_VAL_STOW calls, the access handle must be closed using
SQL_BLOB_VAL_CLOSE (see page 617). Only then will the final segment of the new
BLOB value be inserted in the BLOB table.

The entire sequence of operations (SQL_BLOB_VAL_OPEN, repeated
SQL_BLOB_VAL_STOW calls, SQL_BLOB_VAL_CLOSE) must be executed within a
transaction.

This CLI call requires the INSERT privilege for the BLOB table.

CLI declaration in C:

void SQL_BLOB_VAL_STOW (char * AccessHandle

, char * Buffer

, long int const * ValueLength

, struct SQLda_t * SQLda);

SQL_BLOB_VAL_STOW SESAM-CLI

630 U22420-J-Z125-12-76

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLbvst IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING AccessHandle, Buffer, ValueLength, SQLda.

END PROGRAM SQLbvst.

AccessHandle
ID assigned to the access handle in SQL_BLOB_VAL_OPEN. This value must not be
modified by the caller.

Buffer
Buffer containing the new value.

ValueLength
Length of the value. ValueLength must be a number Ï 0.

SQLda
Diagnostics area.

01 AccessHandle PIC X(32).

01 Buffer. *> of any length

02 PIC X(1).

01 ValueLength PIC S9(9) COMP.

COPY SQLCA. *> for group item SQLda.

SESAM-CLI SQL_DIAG_SEQ_GET

U22420-J-Z125-12-76 631

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

0
9

SQL_DIAG_SEQ_GET - SQLdsg

SQL_DIAG_SEQ_GET can be used to obtain the function of the RETURN INTO clause of
static INSERT statements for dynamic INSERT statements.

SQL_DIAG SEQ_GET returns the value determined by SESAM/SQL while executing an
INSERT statement with COUNT INTO or with '*' in the VALUES clause.

The function can also be used for static INSERT statements.

It is made available as LLM 'SQLDSG' in the SIPLIB.SESAM-SQL.090.CLI library. If it is to
be used in an application program, this LLM must either be explicitly linked to it or the library
must be specified as BLSLIBxx when the program is executed. The interfaces for this
functions are made available in the library as S type elements sqldsg.h (for C) and sqldsg (for
COBOL).

CLI declaration in C:

CLI declaration in COBOL:

IDENTIFICATION DIVISION.

PROGRAM-ID. SQLdsg IS PROTOTYPE.

DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING SQLda, SQL_SequenceValue, RC.

END PROGRAM SQLdsg.

extern void SQL_DIAG_SEQ_GET (struct SQLda_t * SQLda

, char * SequenceValue

, signed short * RC);

COPY SQLCA . *> for group item SQLda

01 SequenceValue. PIC X(34) .

01 RC PIC S9(4) BINARY.

SQL_DIAG_SEQ_GET SESAM-CLI

632 U22420-J-Z125-12-76

SQLda
SQL diagnostics area with which the INSERT statement was executed.
If the SQLda of a COBOL/ESQL program is to be referenced from a C program, it must
be specified in COBOL as EXTERNAL.

SequenceValue
Storage area into which the result is to be transferred. The area must be at least 34
Bytes in size.

If the transfer is successful (RC=0), 34 characters have been written into
SequenceValue in the following format and with at least one digit: [<space>...]{+|-
}[digit...][.][digit...]<space>

The format is selected in such a way:

– that the numerical value suitable for C variables of integer and floating point types
can be obtained with the C functions strtol(), atol(), srtod(), strtof(), and
atof().

– that the numerical value suitable for any numeric COBOL variable can be obtained
with the COBOL function NUMVAL.

In the case of RC î 0, the contents of SequenceValue are not modified.

RC
Return value:

0 The desired value has been transferred to the storage area to which
SequenceValue refers.

-1 The input parameters were incorrect or the SQLda was not recognized as
diagnostics area.

100 It was not possible to determine a value assigned by SESAM/SQL.
Possible causes:

– The INSERT statement contained no COUNT INTO clause and no '*' in the
VALUES clause.

– Execution of the INSERT statement unsuccessful, with an SQLSTATE of the
category exception condition.

– The SQL statement last executed with the same SQLda was not an INSERT
statement.

U22420-J-Z125-12-76 633

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

10 Information schemas

This chapter describes the information schemas that provide you with information on the
structure of the database.

It describes the views of the INFORMATION_SCHEMA and of the SYS_INFO_SCHEMA.

Views of the INFORMATION_SCHEMA Information schemas

634 U22420-J-Z125-12-76

10.1 Views of the INFORMATION_SCHEMA

In the INFORMATION_SCHEMA, you will find information on database objects. Each
authorization identifier only has access to the objects for which it is authorized. The views
of the INFORMATION_SCHEMA conform to the SQL standard with regard to objects
defined in SESAM/SQL and in the SQL standard. The INFORMATION_SCHEMA includes
additional views for SESAM/SQL extensions.

The table below indicates which view of the INFORMATION_SCHEMA contains
information on which database object.

The views of the INFORMATION_SCHEMA are described in alphabetical order in the
subsequent sections.

Object View name Information on

Schema SCHEMATA Schemas in the database

Table TABLES
BASE_TABLES
PARTITIONS
VIEW_TABLE_USAGE

CONSTRAINT_TABLE_USAGE

Tables in the database
Base tables in the database
Partitions of the base tables
Tables on which the views are
based
Tables on which integrity
constraints are based

View VIEWS Views of the database

Column COLUMNS
BASE_TABLE_COLUMNS
VIEW_COLUMN_USAGE

CONSTRAINT_COLUMN_USAGE

INDEX_COLUMN_USAGE

KEY_COLUMN_USAGE

Columns in the database
Columns in the base tables
Columns on which views are
based
Columns on which integrity
constraints are based
Columns on which indexes are
based
Columns for which a primary key
or UNIQUE constraint is defined

Privilege TABLE_PRIVILEGES
COLUMN_PRIVILEGES
CATALOG_PRIVILEGES
USAGE_PRIVILEGES
ROUTINE_PRIVILEGES

Table privileges
Column privileges
Special privileges
USAGE privileges
Privileges for routines

Index INDEXES Indexes in the database

Table 62: Views of the INFORMATION_SCHEMA (part 1 of 2)

Information schemas Views of the INFORMATION_SCHEMA

U22420-J-Z125-12-76 635

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

Integrity
constraint

TABLE_CONSTRAINTS
REFERENTIAL_CONSTRAINTS
CHECK_CONSTRAINTS

Integrity constraints
Referential constraints
Check constraints

Storage group STOGROUPS Storage groups in the database

Volume STOGROUP_VOLUME_USAGE Volumes used for storage groups

Space SPACES Spaces

Routines PARAMETERS
ROUTINES
ROUTINE_ROUTINE_USAGE
ROUTINE_TABLE_USAGE
ROUTINE_COLUMN_USAGE
VIEW_ROUTINE_USAGE

Parameters of routines
Routines
Routines in other routines
Tables in routines
Columns in routines
Routines in views

User USERS
SYSTEM_ENTRIES

Authorization identifier
System entries

DA-LOG file DA_LOGS DA-LOG files

Media
 table

MEDIA_DESCRIPTIONS
MEDIA_RECORDS

Media records of the database-
specific files

Recovery
unit

RECOVERY_UNITS Recovery units for spaces

Character set CHARACTER_SETS Character set

Sort sequence COLLATIONS Sort sequence

Trans-literation TRANSLATIONS Transliterations

Features and
conformance

SQL_FEATURES
SQL_IMPL_INFO
SQL_LANGUAGES_S
SQL_SIZING

Features, subfeatures,
implementations, implemented
host languages, embedments
and implementation-specific
maximum values

Object View name Information on

Table 62: Views of the INFORMATION_SCHEMA (part 2 of 2)

BASE_TABLES Views of the INFORMATION_SCHEMA

636 U22420-J-Z125-12-76

BASE_TABLES

Information on base tables. The current authorization identifier must have at least one table
privilege for the base table or the UTILITY privilege for the database.

Column name Data type Contents

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
belongs

TABLE_NAME CHAR (31) Name of the base table

SPACE_NAME CHAR (18) Name of the space in which the base
table is stored. If the table is
partitioned, “_PARTITIONS_” is output
as the name of the space.

TABLE_STYLE VARCHAR (6) OLDEST CALL DML only table

OLD CALL DML/SQL table

NEW SQL table

Table 63: BASE_TABLES view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA BASE_TABLE_COLUMNS

U22420-J-Z125-12-76 637

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

BASE_TABLE_COLUMNS

Information on base table columns. The current authorization identifier must have at least
one column privilege for the column or the UTILITY privilege for the database.

Column name Data type Contents

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
belongs

TABLE_NAME CHAR (31) Name of the base table

COLUMN_NAME CHAR (31) Column name

ORDINAL_POSITION SMALLINT Sequence number of the column in the
table

COLUMN_DEFAULT VARCHAR (256) Default value,
as specified in the column definition
(e.g. CHAR literal in single quotes) if
the current authorization identifier
owns the schema

TRUNCATED
if representation of the default value
comprises more than
256 characters and the current
authorization identifier owns the
schema. The default value cannot
be displayed.

NULL value in all other cases

IS_NULLABLE VARCHAR (3) NO Column cannot accept NULL
values under any circumstances

YES else

Table 64: BASE_TABLE_COLUMNS view of the INFORMATION_SCHEMA (part 1 of 4)

BASE_TABLE_COLUMNS Views of the INFORMATION_SCHEMA

638 U22420-J-Z125-12-76

DATA_TYPE VARCHAR (24) Data type of the column:
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP
OLDEST

CHARACTER
 _MAXIMUM_LENGTH

SMALLINT Max. length of the column in code units
if the data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR, NATIONAL
CHAR VARYING or OLDEST

NULL value in all other cases

NUMERIC_PRECISION SMALLINT Total number of significant digits
for numeric data types

NULL value in all other cases

NUMERIC_PRECISION
 _RADIX

SMALLINT Radix
for numeric data types

NULL value in all other cases

NUMERIC_SCALE SMALLINT Number of digits right of the decimal
point

for exact numeric data types

NULL value in all other cases

Column name Data type Contents

Table 64: BASE_TABLE_COLUMNS view of the INFORMATION_SCHEMA (part 2 of 4)

Views of the INFORMATION_SCHEMA BASE_TABLE_COLUMNS

U22420-J-Z125-12-76 639

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

DATETIME_PRECISION SMALLINT Number of digits right of the decimal
point

for the data types TIME and
TIMESTAMP

NULL value in all other cases

The columns OLDEST_DESCRIPTOR* are assigned a value if DATA_TYPE is OLDEST:

OLDEST_DESCRIPTOR1 CHAR (1) Y left-aligned

N not left-aligned

NULL value if DATATYPE is not
OLDEST

OLDEST_DESCRIPTOR2 CHAR (1) Y Fill character

N No fill character

NULL value if DATATYPE is not
OLDEST

OLDEST_DESCRIPTOR3 CHAR (1) Y Null (0) permitted as value

N Null (0) not permitted

NULL value if DATATYPE is not
OLDEST

OLDEST_DESCRIPTOR4 CHAR (1) Y Value has arithmetic result

N Value does not have arithmetic
result

NULL value if DATATYPE is not
OLDEST

COLUMN_DESCRIPTOR1 CHAR (1) Y Column has exactly one single-
column index and is not included in
a compound index

N Column has no index or more than
one single-column index, or is
included in a compound index

Column name Data type Contents

Table 64: BASE_TABLE_COLUMNS view of the INFORMATION_SCHEMA (part 3 of 4)

BASE_TABLE_COLUMNS Views of the INFORMATION_SCHEMA

640 U22420-J-Z125-12-76

COLUMN_DESCRIPTOR2 CHAR (1) Y Column has exactly one compound
index and no single-column index

N Column does not have an index, has
more than one index, or only one
single-column index

COLUMN_DESCRIPTOR3 CHAR (1) Y Column has more than one index

N Column has a maximum of one
index

COLUMN_DESCRIPTOR4 CHAR (1) Y Column has a CALL DML default
value

N Column does not have a CALL DML
default value

COLUMN_DESCRIPTOR5 CHAR (1) Y Column is a multiple column

N Column is an atomic column

PK_DISTANCE SMALLINT Distance of the column to the start of the
primary key

NULL value if the column is not in the
primary key

SESAM_SAN CHAR (3) Symbolic attribute name of the column

NULL value if the column is defined in
the SQL table

SESAM_DEFAULT CHAR (2) CALL DML default (with sign, if
necessary, if numeric data type)

NULL value if the column is defined in
the SQL table

FIRST_OCCURRENCE SMALLINT First possible occurrence of a multiple
column (= 1)

NULL value if the column is not multiple

LAST_OCCURRENCE SMALLINT Last possible occurrence of a multiple
column

NULL value if the column is not multiple

Column name Data type Contents

Table 64: BASE_TABLE_COLUMNS view of the INFORMATION_SCHEMA (part 4 of 4)

Views of the INFORMATION_SCHEMA CATALOG_PRIVILEGES

U22420-J-Z125-12-76 641

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

CATALOG_PRIVILEGES

Information on the database privileges available to the current authorization identifier or
which can be granted by the current authorization identifier.

Column name Data type Contents

GRANTOR CHAR (18) Authorization identifier that granted
the privilege or _SYSTEM

GRANTEE CHAR (18) Authorization identifier granted the
privilege or PUBLIC

CATALOG_NAME CHAR (18) Database name

PRIVILEGE_TYPE CHAR (18) Privilege type:
CREATE USER
CREATE SCHEMA
CREATE STOGROUP
UTILITY

IS_GRANTABLE VARCHAR (3) YES The authorization identifier has
GRANT authorization for the
privilege

NO No GRANT authorization

Table 65: CATALOG_PRIVILEGES view of the INFORMATION_SCHEMA

CHARACTER_SETS Views of the INFORMATION_SCHEMA

642 U22420-J-Z125-12-76

CHARACTER_SETS

Information on character sets available to the current authorization identifier.

CHECK_CONSTRAINTS

Information on check constraints belonging to the current authorization identifier, as well as
the corresponding check search condition.

Column name Data type Contents

CHARACTER_SET_CATALOG CHAR (18) Database name

CHARACTER_SET_SCHEMA CHAR (31) INFORMATION_SCHEMA

CHARACTER_SET_NAME CHAR (18) UTF16, EBCDIC, SQL_TEXT
SQL_CHARACTER,
SQL_IDENTIFIER

FORM_OF_USE CHAR (18) EBCDIC, UTF16

NUMBER_OF_CHARACTERS INTEGER With FORM_OF_USE= EBCDIC
the number of characters in the
character set,
NULL value in all other cases

DEFAULT_COLLATE_CATALOG CHAR (18) Database name

DEFAULT_COLLATE_SCHEMA CHAR (31) INFORMATION_SCHEMA

DEFAULT_COLLATE_NAME CHAR (18) EBCDIC_BINARY
UTF16_BINARY

Table 66: CHARACTER_SETS view of the INFORMATION_SCHEMA

Column name Data type Contents

CONSTRAINT_CATALOG CHAR (18) Database name

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the check constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the check constraint

CHECK_CLAUSE VARCHAR (32000) Search condition

Table 67: CHECK_CONSTRAINTS view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA COLLATIONS

U22420-J-Z125-12-76 643

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

COLLATIONS

Information on the sort sequences available to the current authorization identifier.

Column name Data type Contents

COLLATION_CATALOG CHAR (18) Database name

COLLATION_SCHEMA CHAR (31) INFORMATION_SCHEMA

COLLATION_NAME CHAR (18) DUCET_NO_VARS
DUCET_WITH_VARS

CHARACTER_SET
 _CATALOG

CHAR (18) Database name

CHARACTER_SET
 _SCHEMA

CHAR (31) INFORMATION_SCHEMA

CHARACTER_SET_NAME CHAR (18) UTF16

PAD_ATTRIBUTE CHAR (9) NO PAD

Table 68: COLLATIONS view of the INFORMATION_SCHEMA

COLUMNS Views of the INFORMATION_SCHEMA

644 U22420-J-Z125-12-76

COLUMNS

Information on all the columns for which the current authorization identifier has privileges.

Column name Data type Contents

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
belongs

TABLE_NAME CHAR (31) Name of the base table or view

COLUMN_NAME CHAR (31) Column name

ORDINAL_POSITION SMALLINT Sequence number of the column in the
table

COLUMN_DEFAULT VARCHAR (256) For base tables only:

Default value,
as specified in the column definition
(e.g. CHAR literal in single quotes) if
the current authorization identifier
owns the schema.

TRUNCATED
if representation of the default value
comprises more than 256 characters
and the current authorization identifier
owns the schema. The default value
cannot be displayed.

NULL value in all other cases

IS_NULLABLE VARCHAR (3) NO Column cannot accept NULL
values under any circumstances

YES else

Table 69: COLUMNS view of the INFORMATION_SCHEMA (part 1 of 4)

Views of the INFORMATION_SCHEMA COLUMNS

U22420-J-Z125-12-76 645

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

DATA_TYPE VARCHAR (24) Data type of the column:
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP
OLDEST

CHARACTER
 _MAXIMUM_LENGTH

SMALLINT Max. length of the column in code units
if the data type is CHARACTER,
CHARACTER VARYING, NATIONAL
CHAR, NATIONAL CHAR VARYING
or OLDEST

NULL value in all other cases

CHARACTER_OCTET
 _LENGTH

SMALLINT Max. length of the column in bytes
if the data type is CHARACTER,
CHARACTER VARYING, NATIONAL
CHAR, NATIONAL CHAR VARYING
or OLDEST

NULL value in all other cases

NUMERIC_PRECISION SMALLINT Total number of significant digits
for numeric data types

NULL value in all other cases

NUMERIC_PRECISION
 _RADIX

SMALLINT Radix
for numeric data types

NULL value in all other cases

Column name Data type Contents

Table 69: COLUMNS view of the INFORMATION_SCHEMA (part 2 of 4)

COLUMNS Views of the INFORMATION_SCHEMA

646 U22420-J-Z125-12-76

NUMERIC_SCALE SMALLINT Number of digits right of the decimal point
for exact numeric data types

NULL value in all other cases

DATETIME
 _PRECISION

SMALLINT Number of digits right of the decimal point
for the data types TIME and
TIMESTAMP

NULL value in all other cases

CHARACTER_SET
 _CATALOG

CHAR (18) Database name
if data type is CHARACTER,
CHARACTER VARYING, NATIONAL
CHAR or NATIONAL CHAR VARYING

NULL value in all other cases

CHARACTER_SET
 _SCHEMA

CHAR (31) INFORMATION_SCHEMA
if data type is CHARACTER,
CHARACTER VARYING, NATIONAL
CHAR or NATIONAL CHAR VARYING

NULL value in all other cases

CHARACTER_SET
 _NAME

CHAR (18) EBCDIC
if data type is CHARACTER or
CHARACTER VARYING

UTF16
if data type is NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

COLLATION_
CATALOG

CHAR (18) Database name
if data type is CHARACTER,
CHARACTER VARYING, NATIONAL
CHAR or NATIONAL CHAR VARYING

NULL value in all other cases

COLLATION_SCHEMA CHAR (31) INFORMATION_SCHEMA
if data type is CHARACTER,
CHARACTER VARYING, NATIONAL
CHAR or NATIONAL CHAR VARYING

NULL value in all other cases

Column name Data type Contents

Table 69: COLUMNS view of the INFORMATION_SCHEMA (part 3 of 4)

Views of the INFORMATION_SCHEMA COLUMNS

U22420-J-Z125-12-76 647

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

COLLATION_NAME CHAR (18) EBCDIC_BINARY
if data type is CHARACTER or
CHARACTER VARYING

UTF16_BINARY
if data type is NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

DOMAIN_CATALOG CHAR (18) NULL value

DOMAIN_SCHEMA CHAR (31) NULL value

DOMAIN_NAME CHAR (31) NULL value

FIRST_OCCURRENCE SMALLINT First possible occurrence of a multiple
column (for base table = 1)

NULL value if the column is not multiple

LAST_OCCURRENCE SMALLINT Last possible occurrence of a multiple
column

NULL value if the column is not multiple

Column name Data type Contents

Table 69: COLUMNS view of the INFORMATION_SCHEMA (part 4 of 4)

COLUMN_PRIVILEGES Views of the INFORMATION_SCHEMA

648 U22420-J-Z125-12-76

COLUMN_PRIVILEGES

Information on all column privileges that the current authorization identifier has or which it
has granted.

Column name Data type Contents

GRANTOR CHAR (18) Authorization identifier that granted the privilege
or _SYSTEM

GRANTEE CHAR (18) Authorization identifier granted the privilege or
PUBLIC

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema containing the column to
which the privilege applies

TABLE_NAME CHAR (31) Name of the table for whose column the
privilege applies

COLUMN_NAME CHAR (31) Name of the column to which the privilege was
restricted

PRIVILEGE_TYPE CHAR (18) Privilege type:
SELECT
INSERT
UPDATE
REFERENCES

IS_GRANTABLE VARCHAR (3) YES The authorization identifier has GRANT
authorization for the privilege

NO No GRANT authorization

Table 70: COLUMN_PRIVILEGES view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA CONSTRAINT_COLUMN_USAGE

U22420-J-Z125-12-76 649

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

CONSTRAINT_COLUMN_USAGE

Information on columns that belong to the current authorization identifier and which are
used in integrity constraints (except columns that are referenced in referential constraints).

Column name Data type Contents

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
belongs

TABLE_NAME CHAR (31) Name of the table referenced in the
integrity constraint

COLUMN_NAME CHAR (31) Column name

CONSTRAINT_CATALOG CHAR (18) Database name

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the integrity constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the integrity constraint

Table 71: CONSTRAINT_COLUMN_USAGE view of the INFORMATION_SCHEMA

CONSTRAINT_TABLE_USAGE Views of the INFORMATION_SCHEMA

650 U22420-J-Z125-12-76

CONSTRAINT_TABLE_USAGE

Information on tables that belong to the current authorization identifier and which are
referenced in check or referential constraints. Only the referenced tables are displayed for
referential constraints.

DA_LOGS

Information on the DA-LOG files in a database. The current authorization identifier must
have the UTILITY privilege for the database or must own at least one user space in the
database.

Column name Data type Contents

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
belongs

TABLE_NAME CHAR (31) Name of the table referenced in the
integrity constraint

CONSTRAINT_CATALOG CHAR (18) Database name

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the integrity constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the integrity constraint

Table 72: CONSTRAINT_TABLE_USAGE view of the INFORMATION_SCHEMA

Column name Data type Contents

DALOG_CATALOG CHAR (18) Database name

DALOG_VERSION INTEGER Version number of the DA-LOG file

DALOG_SUBNUMBER INTEGER Sequence number of the DA-LOG file within
the version

DALOG_INIT TIMESTAMP (3) Time of creation

Table 73: DA_LOGS view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA INDEXES

U22420-J-Z125-12-76 651

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

INDEXES

Information on the indexes belonging to the current authorization identifier. The current
authorization identifier must have the UTILITY privilege for the database or must own the
schema in which the index is defined.

Column name Data type Contents

INDEX_CATALOG CHAR (18) Database name

INDEX_SCHEMA CHAR (31) Name of the schema to which the index
belongs

INDEX_NAME CHAR (18) Name of the index

TABLE_NAME CHAR (31) Name of the base table to which the index
belongs

SPACE_NAME CHAR (18) Name of the space in which the index is
stored

LENGTH_I SMALLINT Total length of the index

CONSTRAINT_NAME CHAR (31) Name of the UNIQUE constraint if the index
is used by a UNIQUE constraint.

NULL value in all other cases

STATE VARCHAR (9) Status:
GENERATED
DEFECT

GENERATE_TYPE VARCHAR (8) as generated:
EXPLICIT
IMPLICIT

STATISTICS_INFO VARCHAR (3) YES Statistics information exists

NO Statistics information does not exist

INDEX_TYPE VARCHAR (8) Index type:
SINGLE
COMPOUND

Table 74: INDEXES view of the INFORMATION_SCHEMA

INDEX_COLUMN_USAGE Views of the INFORMATION_SCHEMA

652 U22420-J-Z125-12-76

INDEX_COLUMN_USAGE

Information on the columns in the indexes belonging to the current authorization identifier.

Column name Data type Contents

INDEX_CATALOG CHAR (18) Database name

INDEX_SCHEMA CHAR (31) Name of the schema to which the index
belongs

INDEX_NAME CHAR (18) Name of the index

TABLE_NAME CHAR (31) Name of the base table to which the index
belongs

COLUMN_NAME CHAR (31) Name of the column in the index

ORDINAL_POSITION SMALLINT Position of the column in the index

LENGTH_C SMALLINT Indicates the length (in bytes) to which the
column is included in the index

INDEX_DISTANCE SMALLINT Distance of the column to the index start

DATE_TYPE_C VARCHAR (24) Data type of the column
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP
OLDEST

Table 75: INDEX_COLUMN_USAGE view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA KEY_COLUMN_USAGE

U22420-J-Z125-12-76 653

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

KEY_COLUMN_USAGE

Information on primary key and UNIQUE constraints belonging to the current authorization
identifier, as well as the name of the corresponding columns.

This view also contains information on referential constraints belonging to the current
authorization identifier, as well as the names of the referencing columns.

Column name Data type Contents

CONSTRAINT_CATALOG CHAR (18) Database name

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the integrity constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the integrity constraint

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
belongs

TABLE_NAME CHAR (31) Name of the table to which the integrity
constraint belongs

COLUMN_NAME CHAR (31) Name of a column in the integrity
constraint

ORDINAL_POSITION SMALLINT Position of the column in the integrity
constraint

Table 76: KEY_COLUMN_USAGE view of the INFORMATION_SCHEMA

MEDIA_DESCRIPTIONS Views of the INFORMATION_SCHEMA

654 U22420-J-Z125-12-76

MEDIA_DESCRIPTIONS

Information on file attributes for database-specific files. The current authorization identifier
must have the UTILITY privilege for the database.

Column name Data type Contents

MEDIA_CATALOG CHAR (18) Database name

FILE_TYPE CHAR (6) File type:
DALOG
CATLOG
PBI
CATREC
DDLTA

REQUESTS VARCHAR (3) YES Volume can be requested at console

NO Volume cannot be requested at
console

PRIMARY_ALLOC INTEGER Primary allocation

SECONDARY_ALLOC INTEGER Secondary allocation

SHARABLE VARCHAR (3) File sharable:
YES
NO

Table 77: MEDIA_DESCRIPTIONS view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA MEDIA_RECORDS

U22420-J-Z125-12-76 655

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

MEDIA_RECORDS

Information on volume types for database-specific files. The current authorization identifier
must have the UTILITY privilege for the database.

Column name Data type Contents

MEDIA_CATALOG CHAR (18) Database name

FILE_TYPE CHAR (6) File type:
DALOG
CATLOG
PBI
CATREC
DDLTA

DEVICE_DESCRIPTOR CHAR (18) Device type or name of the storage group
for the file

MEDIUM CHAR (4) DISC

ORDINAL_POSITION SMALLINT Sequence number of the entry in the
media table

Table 78: MEDIA_RECORDS view of the INFORMATION_SCHEMA

PARAMETERS Views of the INFORMATION_SCHEMA

656 U22420-J-Z125-12-76

PARAMETERS

Information on parameters of routines (procedures and UDFs) for which the current
authorization identifier has privileges.

Column name Data type Contents

SPECIFIC_CATALOG CHAR(18) Database name

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

ORDINAL_POSITION SMALLINT Sequence number of the parameter in
the routine

PARAMETER_MODE VARCHAR(5) IN input parameter
OUT output parameter
INOUT input and output parameter

IS_RESULT VARCHAR(3) NO irrelevant for SESAM/SQL

AS_LOCATOR VARCHAR(3) NO irrelevant for SESAM/SQL

PARAMETER_NAME CHAR(31) Name of the parameter

DATA_TYPE VARCHAR(24) Data type of the parameter
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP

Table 79: PARAMETERS view of the INFORMATION_SCHEMA (part 1 of 3)

Views of the INFORMATION_SCHEMA PARAMETERS

U22420-J-Z125-12-76 657

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

CHARACTER_
MAXIMUM_LENGTH

SMALLINT Max. length of the parameter in code
units

if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or NATIONAL
CHAR VARYING

NULL value in all other cases

CHARACTER_OCTET_
LENGTH

SMALLINT Max. length of the parameter in bytes
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or NATIONAL
CHAR VARYING

NULL value in all other cases

CHARACTER_SET_
CATALOG

CHAR(18) Database name
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or NATIONAL
CHAR VARYING

NULL value in all other cases

CHARACTER_SET_
SCHEMA

CHAR(31) INFORMATION_SCHEMA
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or NATIONAL
CHAR VARYING

NULL value in all other cases

CHARACTER_SET_
NAME

CHAR(18) EBCDIC
if data type is CHARACTER or
CHARACTER VARYING

UTF16
if data type is NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

Column name Data type Contents

Table 79: PARAMETERS view of the INFORMATION_SCHEMA (part 2 of 3)

PARAMETERS Views of the INFORMATION_SCHEMA

658 U22420-J-Z125-12-76

COLLATION_CATALOG CHAR(18) Database name
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or NATIONAL
CHAR VARYING

NULL value in all other cases

COLLATION_SCHEMA CHAR(31) INFORMATION_SCHEMA
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or NATIONAL
CHAR VARYING

NULL value in all other cases

COLLATION_NAME CHAR(18) EBCDIC_BINARY,
if data type is CHARACTER or
CHARACTER VARYING

UTF16_BINARY,
if data type is NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

NUMERIC_PRECISION SMALLINT Total number of significant digits
for numeric data types

NULL value in all other cases

NUMERIC_PRECISION_
RADIX

SMALLINT Radix
for numeric data types

NULL value in all other cases

NUMERIC_SCALE SMALLINT Number of digits right of the decimal
point

for exact numeric data types

NULL value in all other cases

DATETIME_PRECISION SMALLINT Number of digits right of the decimal
point

for the data types TIME and
TIMESTAMP

NULL value in all other cases

Column name Data type Contents

Table 79: PARAMETERS view of the INFORMATION_SCHEMA (part 3 of 3)

Views of the INFORMATION_SCHEMA PARTITIONS

U22420-J-Z125-12-76 659

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

PARTITIONS

Information on table partitions. The current authorization identifier must have the UTILITY
privilege for the database or be the owner of the table.

Column name Data type Contents

PARTITION_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the
partitioned table belongs

TABLE_NAME CHAR (31) Name of the partitioned table

SERIAL_NUMBER SMALLINT Sequence number of the partition

MAX_KEY_VALUE VARCHAR
(32000)

Comparison for the upper partition
boundary as specified in the VALUE clause
 (external presentation)

SPACE_NAME CHAR (18) Name of the space in which the partition is
stored

Table 80: PARTITIONS view of the INFORMATION_SCHEMA

RECOVERY_UNITS Views of the INFORMATION_SCHEMA

660 U22420-J-Z125-12-76

RECOVERY_UNITS

Information on recovery units for spaces. The current authorization identifier must have the
UTILITY privilege for the database or must own the space.

Column name Data type Contents

SPACE_CATALOG CHAR (18) Database name

SPACE_NAME CHAR (18) Name of the space

RECOVERY_TIMESTAMP TIMESTAMP (3) Time of the recovery operation

VERSION INTEGER Internal number
if RECOVERY_TYPE is COPY

NULL value in all other cases

VALIDITY VARCHAR (3) YES Recovery unit valid for recovery
operations up to next recovery
unit

NO invalid (may however change to
YES after a RECOVER
statement)

NOT invalid
(cannot change)

RECOVERY_UNIT_NAME VARCHAR (54) File name of the copy
if RECOVERY_TYPE is COPY

Internal number
if RECOVERY_TYPE is RESTART
or REST_TO

NULL value in all other cases

SPACE_OWNER CHAR (18) Authorization identifier that owns the
space

Table 81: RECOVERY_UNITS view of the INFORMATION_SCHEMA (part 1 of 3)

Views of the INFORMATION_SCHEMA RECOVERY_UNITS

U22420-J-Z125-12-76 661

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

MEDIUM CHAR (4) DISC SESAM backup on disk
TAPE SESAM backup

with ARCHIVE
HSMW SESAM backup with HSMS

(work file)
HSMB SESAM backup with HSMS

(additional mirror unit)
SRDF SESAM backup with HSMS

(SRDF target)
if RECOVERY_TYPE is COPY

NULL value in all other cases

RECOVERY_TYPE VARCHAR (7) Values evaluated by the recovery utility:
COPY
CREATE
RESTART
REST_TO (RESTART TO)
MARK

COPY_TYPE VARCHAR (7) ONLINE or OFFLINE
if RECOVERY_TYPE is COPY

NULL value in all other cases

DALOG_VERSION INTEGER Version number of the
DA-LOG file

DA-LOG level
before the
recovery unit
is entered

DALOG_SUBNUMBER INTEGER Sequence number of
the DA-LOG file within
the version

NEXT_DALOG_VERSION INTEGER Version number of the
DA-LOG file

DA-LOG level
after the
recovery unit
is entered

NEXT_DALOG
 _SUBNUMBER

INTEGER Sequence number of
the DA-LOG file within
the version

Column name Data type Contents

Table 81: RECOVERY_UNITS view of the INFORMATION_SCHEMA (part 2 of 3)

REFERENTIAL_CONSTRAINTS Views of the INFORMATION_SCHEMA

662 U22420-J-Z125-12-76

REFERENTIAL_CONSTRAINTS

Information on referential constraints belonging to the current authorization identifier, as
well as the name of the referenced UNIQUE or primary key constraint.

ARCHIVE_DIRECTORY
 _NAME

VARCHAR (54) Name of the ARCHIVE directory,
if MEDIUM = 'TAPE'

Name of the HSMS archive,
if MEDIUM = 'HSMS', 'HSMW',

'HSMB' or 'SRDF'

NULL value in all other cases
PBI_TIMESTAMP TIMESTAMP (3) Time at which the PBI file was

generated

PBI_COUNTER INTEGER undefined

Column name Data type Contents

CONSTRAINT_CATALOG CHAR (18) Database name

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the referential constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the referential constraint

UNIQUE_CONSTRAINT
 _CATALOG

CHAR (18) Database name

UNIQUE_CONSTRAINT
 _SCHEMA

CHAR (31) Name of the schema of the referenced
table

UNIQUE_CONSTRAINT
 _NAME

CHAR (31) Name of the UNIQUE or primary key
constraint of the referenced table

MATCH_OPTION CHAR (7) NONE

UPDATE_RULE CHAR (11) NO ACTION

DELETE_RULE CHAR (11) NO ACTION

Table 82: REFERENTIAL_CONSTRAINTS view of the INFORMATION_SCHEMA

Column name Data type Contents

Table 81: RECOVERY_UNITS view of the INFORMATION_SCHEMA (part 3 of 3)

Views of the INFORMATION_SCHEMA ROUTINES

U22420-J-Z125-12-76 663

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

ROUTINES

Information on routines (procedures and UDFs) for which the current authorization identifier
has privileges.

Column name Data type Contents

SPECIFIC_CATALOG CHAR(18) Database name

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

ROUTINE_CATALOG CHAR(18) Database name

ROUTINE_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

ROUTINE_NAME CHAR(31) Name of the routine.

ROUTINE_TYPE VARCHAR(28) PROCEDURE if a procedure

FUNCTION if a UDF

DATA_TYPE VARCHAR(24) Data type of the return value of a UDF
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP

NULL value,
if a procedure

Table 83: ROUTINES view of the INFORMATION_SCHEMA (part 1 of 5)

ROUTINES Views of the INFORMATION_SCHEMA

664 U22420-J-Z125-12-76

CHARACTER_
MAXIMUM_LENGTH

SMALLINT Max. length of the return value in code
units

if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

CHARACTER_OCTET_
LENGTH

SMALLINT Max. length of the return value in bytes
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

CHARACTER_SET_
CATALOG

CHAR(18) Database name
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

CHARACTER_SET_
SCHEMA

CHAR(31) INFORMATION_SCHEMA
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

CHARACTER_SET_
NAME

CHAR(18) EBCDIC
if data type is CHARACTER or
CHARACTER VARYING

UTF16
if data type is NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

Column name Data type Contents

Table 83: ROUTINES view of the INFORMATION_SCHEMA (part 2 of 5)

Views of the INFORMATION_SCHEMA ROUTINES

U22420-J-Z125-12-76 665

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

COLLATION_CATALOG CHAR(18) Database name
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

COLLATION_SCHEMA CHAR(31) INFORMATION_SCHEMA
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

COLLATION_NAME CHAR(18) EBCDIC_BINARY,
if data type is CHARACTER or
CHARACTER VARYING

UTF16_BINARY,
if data type is NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

NUMERIC_PRECISION SMALLINT Total number of significant digits
for numeric data types

NULL value in all other cases

NUMERIC_PRECISION_
RADIX

SMALLINT Radix
for numeric data types

NULL value in all other cases

NUMERIC_SCALE SMALLINT Number of digits right of the decimal
point

for exact numeric data types

NULL value in all other cases

DATETIME_PRECISION SMALLINT Number of digits right of the decimal
point

for the data types TIME and
TIMESTAMP

NULL value in all other cases

Column name Data type Contents

Table 83: ROUTINES view of the INFORMATION_SCHEMA (part 3 of 5)

ROUTINES Views of the INFORMATION_SCHEMA

666 U22420-J-Z125-12-76

ROUTINE_BODY VARCHAR(8) SQL Programming language in which
the routine was written

ROUTINE_DEFINITION VARCHAR(32000) Text of the routine
if the current authorization identifier
owns the schema

NULL value in all other cases

EXTERNAL_NAME CHAR(31) NULL value, irrelevant for SESAM/SQL

EXTERNAL_LANGUAGE VARCHAR(7) NULL value, irrelevant for SESAM/SQL

PARAMETER_STYLE VARCHAR(7) NULL value, irrelevant for SESAM/SQL

IS_DETERMINISTIC VARCHAR(3) NO irrelevant for SESAM/SQL

SQL_DATA_ACCESS VARCHAR(17) CONTAINS SQL
if CONTAINS SQL was specified in
the definition of the routine

READS SQL DATA
if READS SQL DATA was specified
in the definition of the routine

MODIFIES SQL DATA
if MODIFIES SQL DATA was
specified in the definition of the
routine

IS_NULL_CALL VARCHAR(3) NO if a UDF

NULL value in all other cases

SQL_PATH VARCHAR(256) SQL path
In SESAM/SQL, the same as the
name of the schema in which the
routine is defined

SCHEMA_LEVEL_
ROUTINE

VARCHAR(3) YES Is part of a schema

MAX_DYNAMIC_
RESULT_SETS

SMALLINT 0 irrelevant for SESAM/SQL

IS_USER_DEFINED_
CAST

VARCHAR(3) NO if a UDF

NULL value in all other cases

IS_IMPLICITLY_
INVOCABLE

VARCHAR(3) NULL value, irrelevant for SESAM/SQL

SECURITY_TYPE VARCHAR(22) NULL value, irrelevant for SESAM/SQL

Column name Data type Contents

Table 83: ROUTINES view of the INFORMATION_SCHEMA (part 4 of 5)

Views of the INFORMATION_SCHEMA ROUTINES

U22420-J-Z125-12-76 667

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

AS_LOCATOR VARCHAR(3) NO if a UDF

NULL value in all other cases

NEW_SAVEPOINT_
LEVEL

VARCHAR(3) NULL value, irrelevant for SESAM/SQL

IS_UDT_DEPENDENT VARCHAR(3) NO irrelevant for SESAM/SQL

Column name Data type Contents

Table 83: ROUTINES view of the INFORMATION_SCHEMA (part 5 of 5)

ROUTINE_COLUMN_USAGE Views of the INFORMATION_SCHEMA

668 U22420-J-Z125-12-76

ROUTINE_COLUMN_USAGE

Information on the routines (procedures and UDFs) that reference columns belonging to the
current authorization identifier, as well as the names of the columns.

Column name Data type Contents

SPECIFIC_CATALOG CHAR(18) Database name

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

ROUTINE_CATALOG CHAR(18) Database name

ROUTINE_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

ROUTINE_NAME CHAR(31) Name of the routine.

TABLE_CATALOG CHAR(18) Database name

TABLE_SCHEMA CHAR(31) Name of the schema to which the table
which is addressed in the routine
belongs

TABLE_NAME CHAR(31) Name of the table used in the routine

COLUMN_NAME CHAR(31) Column name

Table 84: ROUTINE_COLUMN_USAGE view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA ROUTINE_PRIVILEGES

U22420-J-Z125-12-76 669

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

ROUTINE_PRIVILEGES

Information on the privileges for routines (procedures and UDFs) which the current
authorization identifier has or which it has granted.

Column name Data type Contents

GRANTOR CHAR(18) Authorization identifier which granted
the privilege or

_SYSTEM

GRANTEE CHAR(18) Authorization identifier
granted the privilege or

PUBLIC

SPECIFIC_CATALOG CHAR(18) Database name

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

ROUTINE_CATALOG CHAR(18) Database name

ROUTINE_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

ROUTINE_NAME CHAR(31) Name of the routine.

PRIVILEGE_TYPE CHAR(18) EXECUTE

IS_GRANTABLE VARCHAR(3) YES The authorization identifier has
GRANT authorization for the
privilege

NO No GRANT authorization

Table 85: ROUTINE_PRIVILEGES view of the INFORMATION_SCHEMA

ROUTINE_ROUTINE_USAGE Views of the INFORMATION_SCHEMA

670 U22420-J-Z125-12-76

ROUTINE_ROUTINE_USAGE

Information on the routines (procedures and UDFs) that belong to the current authorization
identifier and are called in other routines.

Column name Data type Contents

SPECIFIC_CATALOG CHAR(18) Database name

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the calling
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the calling routine

ROUTINE_CATALOG CHAR(18) Database name

ROUTINE_SCHEMA CHAR(31) Name of the schema to which the called
routine belongs

ROUTINE_NAME CHAR(31) Specific name of the called routine

Table 86: ROUTINE_ROUTINE_USAGE view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA ROUTINE_TABLE_USAGE

U22420-J-Z125-12-76 671

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

ROUTINE_TABLE_USAGE

Information on the tables that belong to the current authorization identifier and which are
addressed in routines (procedures and UDFs).

Column name Data type Contents

SPECIFIC_CATALOG CHAR(18) Database name

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

ROUTINE_CATALOG CHAR(18) Database name

ROUTINE_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

ROUTINE_NAME CHAR(31) Name of the routine.

TABLE_CATALOG CHAR(18) Database name

TABLE_SCHEMA CHAR(31) Name of the schema to which the table
which is addressed in the routine
belongs

TABLE_NAME CHAR(31) Name of the table used in the routine

Table 87: View ROUTINE_TABLE_USAGE view of the INFORMATION_SCHEMA

SCHEMATA Views of the INFORMATION_SCHEMA

672 U22420-J-Z125-12-76

SCHEMATA

Information on all the schemas that belong to the current authorization identifier.

SPACES

Information on the spaces that belong to the current authorization identifier, and which the
current authorization identifier can access via utilities.

Column name Data type Contents

CATALOG_NAME CHAR (18) Database name

SCHEMA_NAME CHAR (31) Name of the schema

SCHEMA_OWNER CHAR (18) Authorization identifier of the owner

DEFAULT_CHARACTER_
SET_CATALOG

CHAR (18) Database name

DEFAULT_CHARACTER_
SET_SCHEMA

CHAR (31) INFORMATION_SCHEMA

DEFAULT_CHARACTER_
SET_NAME

CHAR (18) EBCDIC

Table 88: SCHEMATA view of the INFORMATION_SCHEMA

Column name Data type Contents

SPACE_CATALOG CHAR (18) Database name

SPACE_NAME CHAR (18) Name of the space

SPACE_OWNER CHAR (18) Authorization identifier that owns the space

STOGROUP_NAME CHAR (18) Name of the storage group for the space

PCT_FREE SMALLINT Free space reservation in percent

LOGGING VARCHAR (3) YES Logging activated

NO Logging deactivated

The data for STOGROUP_NAME and PCT_FREE can be modified by ALTER SPACE;
this data is not actually taken into account until RECOVER or REORG is executed.

Table 89: SPACES view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA SQL_FEATURES

U22420-J-Z125-12-76 673

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SQL_FEATURES

Information on SQL features and their subfeatures in the implemented language
environment. All designations are defined in the SQL standard.

Column name Data type Contents

FEATURE_ID VARCHAR (256) Feature ID (e.g. F111)

FEATURE_NAME VARCHAR (256) Feature name (e.g. “Isolation levels other
than SERIALIZABLE”)

SUB_FEATURE_ID VARCHAR (256) Subfeature ID (e.g. 02)

SUB_FEATURE_NAME VARCHAR (256) Subfeature name (e.g. “READ COMITTED
isolation level”)

IS_SUPPORTED VARCHAR (3) YES Fully supported

NO Not supported or only partially
supported

IS_VERIFIED_BY VARCHAR (256) NULL value

COMMENTS VARCHAR (256) Comments

Table 90: SQL_FEATURES view of the INFORMATION_SCHEMA

SQL_IMPL_INFO Views of the INFORMATION_SCHEMA

674 U22420-J-Z125-12-76

SQL_IMPL_INFO

Information on the properties of the implementation. All designations are defined in the SQL
standard.

Column name Data type Contents

IMPL_INFO_ID VARCHAR
(256)

ID of an implementation property

IMPL_INFO_NAME VARCHAR
(256)

Name of an implementation property

INTEGER_VALUE INTEGER Numeric value for
an implementation
property

Precisely one of the two
columns
INTEGER_VALUE or
CHARACTER_VALUE
has the NULL value
depending on whether a
numeric or alphanumeric
value is available for the
implementation attribute.

CHARACTER_VALUE VARCHAR
(256)

Alphanumeric
value for an
implementation
property

COMMENTS VARCHAR
(256)

Comments

Table 91: SQL_IMPL_INFO view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA SQL_LANGUAGES_S

U22420-J-Z125-12-76 675

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SQL_LANGUAGES_S

Information on the implemented host languages and embedments. All designations are
defined in the SQL standard.

Column name Data type Contents

SOURCE VARCHAR (256) ISO standard:
'ISO 9075’

SQL_LANGUAGE_YEAR VARCHAR (256) Year in which standard appeared:
'1989'
'1992'
'1999'
'2008'

CONFORMANCE VARCHAR (256) Language scope:
'2'
'ENTRY'
'CORE'

INTEGRITY VARCHAR (256) 'YES' SQL89 “integrity enhancement”
implemented

NULL value
if SQL_LANGUAGE_YEAR î
'1989'

IMPLEMENTATION VARCHAR (256) Specification of an implementation-
defined standard,
if SOURCE î 'ISO 9075'

BINDING_STYLE VARCHAR (256) Type of embedment:
'EMBEDDED'

PROGRAMMING_
LANGUAGE

VARCHAR (256) Supported programming language:
'COBOL'

Table 92: SQL_LANGUAGES_S view of the INFORMATION_SCHEMA

SQL_SIZING Views of the INFORMATION_SCHEMA

676 U22420-J-Z125-12-76

SQL_SIZING

Information on the maximum values of the implementation. All designations are defined in
the SQL standard.

STOGROUPS

Information on the storage groups that the current authorization identifier can access.

Column name Data type Contents

SIZING_ID INTEGER ID of the maximum value

SIZING_NAME VARCHAR (256) Name of the maximum value

SUPPORTED_VALUE INTEGER Maximum size of the value:

Maximum value

0 No maximum value or
maximum value not known
or variable

NULL value Maximum value not
important in SESAM/SQL

COMMENTS VARCHAR (256) Comments

Table 93: SQL_SIZING view of the INFORMATION_SCHEMA

Column name Data type Contents

STOGROUP_CATALOG CHAR (18) Database name

STOGROUP_NAME CHAR (18) Name of the storage group

STOGROUP_OWNER CHAR (18) Authorization identifier that owns the
storage group

CAT_ID VARCHAR (4) BS2000 catalog ID

Table 94: STOGROUPS view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA STOGROUP_VOLUME_USAGE

U22420-J-Z125-12-76 677

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

STOGROUP_VOLUME_USAGE

Information on the volumes of the storage groups belonging to the current authorization
identifier.

Column name Data type Contents

STOGROUP_CATALOG CHAR (18) Database name

STOGROUP_NAME CHAR (18) Name of the storage group

VOLUME_NAME CHAR (6) VSN of the private volumes or PUBLIC

DEVICE_TYPE VARCHAR (8) Device type of the private volumes

NULL value for PUBLIC

ORDINAL_POSITION SMALLINT Sequence number of the private volumes
in the storage group (1 for PUBLIC)

Table 95: STOGROUP_VOLUME_USAGE view of the INFORMATION_SCHEMA

SYSTEM_ENTRIES Views of the INFORMATION_SCHEMA

678 U22420-J-Z125-12-76

SYSTEM_ENTRIES

Information on system entries.

● Current authorization identifier without the CREATE USER privilege:
All system entries to the user´s own authorization identifier in which the authorization
identifier has been entered explicitly.

● Current authorization identifier with CREATE USER privilege but without GRANT
authorization:
All system accesses to authorization identifiers which do not have the CREATE USER
privilege or GRANT authorization.

● Current authorization identifier with CREATE USER privilege and with GRANT
authorization:
All system entries

TABLES

Information on all the tables for which the current authorization identifier has privileges or
is the owner.

Column name Data type Contents

USER_CATALOG CHAR (18) Database name

HOST_NAME CHAR (8) Host name or *

APPLICATION_NAME CHAR (8) Application name or * for UTM system
entry
Blanks for BS2000 system entry

SYSTEM_USER_NAME CHAR (8) BS2000 or UTM user ID

USER_NAME CHAR (18) Authorization identifier

Table 96: SYSTEM_ENTRIES view of the INFORMATION_SCHEMA

Column name Data type Contents

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table belongs

TABLE_NAME CHAR (31) Name of the base table or view

TABLE_TYPE VARCHAR (18) BASE TABLE or VIEW

Table 97: TABLES view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA TABLE_CONSTRAINTS

U22420-J-Z125-12-76 679

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

TABLE_CONSTRAINTS

Information on integrity constraints on the database schemas that belong to the current
authorization identifier.

Column name Data type Contents

CONSTRAINT_CATALOG CHAR (18) Database name

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the integrity constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the integrity constraint

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
referenced in the integrity constraint
belongs

TABLE_NAME CHAR (31) Name of the table referenced in the
integrity constraint

CONSTRAINT_TYPE VARCHAR (11) Type of integrity constraint:
FOREIGN KEY
UNIQUE
PRIMARY KEY
CHECK

IS_DEFERRABLE CHAR (3) NO

INITIALLY_DEFERRED CHAR (3) NO

Table 98: TABLE_CONSTRAINTS view of the INFORMATION_SCHEMA

TABLE_PRIVILEGES Views of the INFORMATION_SCHEMA

680 U22420-J-Z125-12-76

TABLE_PRIVILEGES

Information on all the table privileges that the current authorization identifier has or which it
has granted.

Column name Data type Contents

GRANTOR CHAR (18) Authorization identifier that granted the privilege
or _SYSTEM

GRANTEE CHAR (18) Authorization identifier granted the privilege or
PUBLIC

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema containing the table to
which the privilege applies

TABLE_NAME CHAR (31) Name of the table to which the privilege applies

PRIVILEGE_TYPE CHAR (18) Privilege type:
SELECT
INSERT
DELETE
UPDATE
REFERENCES

IS_GRANTABLE VARCHAR (3) YES The authorization identifier has GRANT
authorization for the privilege

NO No GRANT authorization

Table 99: TABLE_PRIVILEGES view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA TRANSLATIONS

U22420-J-Z125-12-76 681

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

TRANSLATIONS

Information on transliterations which can be executed in the current DBH session.

Column name Data type Contents

TRANSLATION
_CATALOG

CHAR (18) Database name

TRANSLATION
_SCHEMA

CHAR (31) INFORMATION_SCHEMA

TRANSLATION
_NAME

CHAR (31) CCS name

SOURCE
_CHARACTER
_SET_CATALOG

CHAR (18) Database name

SOURCE
_CHARACTER
_SET_SCHEMA

CHAR (31) INFORMATION_SCHEMA

SOURCE
_CHARACTER
_SET_NAME

CHAR (8) EBCDIC
UTF16

TARGET
_CHARACTER
_SET_CATALOG

CHAR (18) Database name

TARGET
_CHARACTER
_SET_SCHEMA

CHAR (31) INFORMATION_SCHEMA

TARGET
_CHARACTER
_SET_NAME

CHAR (8) EBCDIC
UTF16

Table 100: TRANSLATIONS view of the INFORMATION_SCHEMA

USAGE_PRIVILEGES Views of the INFORMATION_SCHEMA

682 U22420-J-Z125-12-76

USAGE_PRIVILEGES

Information on all the USAGE privileges that the current authorization identifier has or which
it has granted.

Column name Data type Contents

GRANTOR CHAR (18) Authorization identifier that granted the
privilege or _SYSTEM

GRANTEE CHAR (18) Authorization identifier granted the privilege or
PUBLIC

OBJECT_CATALOG CHAR (18) Database name

OBJECT_SCHEMA CHAR (31) Name of the schema containing the sort
sequence or character set to which the
privilege applies
Blanks for storage group

OBJECT_NAME CHAR (18) Name of the storage group, sort sequence or
character set to which the privilege applies

OBJECT_TYPE CHAR (18) Object to which the privilege applies:
STOGROUP
CHARACTER SET
COLLATION

PRIVILEGE_TYPE CHAR (18) USAGE

IS_GRANTABLE VARCHAR (3) YES The authorization identifier has
GRANT authorization for the privilege

NO No GRANT authorization

Table 101: USAGE_PRIVILEGES view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA USERS

U22420-J-Z125-12-76 683

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

USERS

Information on authorization identifiers.

● Current authorization identifier without the CREATE USER privilege:
Own authorization identifier

● Current authorization identifier with CREATE USER privilege but without GRANT
authorization:
All authorization identifiers which do not have the CREATE USER privilege or GRANT
authorization.

● Current authorization identifier with CREATE USER privilege and with GRANT
authorization:
All authorization identifiers

VIEWS

Information on all the views for which the current authorization identifier has privileges.

Column name Data type Contents

USER_CATALOG CHAR (18) Database name

USER_NAME CHAR (18) Authorization identifier

Table 102: USERS view of the INFORMATION_SCHEMA

Column name Data type Contents

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the view belongs

TABLE_NAME CHAR (31) Name of the view

VIEW_DEFINITION VARCHAR
(32000)

Query expression that defines the view if the
current authorization identifier owns the
schema

NULL value in all other cases

CHECK_OPTION VARCHAR (8) NONE
No check option set

CASCADED
Check option set

IS_UPDATABLE VARCHAR (3) YES View is updatable

NO View is not updatable

Table 103: VIEWS view of the INFORMATION_SCHEMA

VIEW_COLUMN_USAGE Views of the INFORMATION_SCHEMA

684 U22420-J-Z125-12-76

VIEW_COLUMN_USAGE

Information on views that reference columns belonging to the current authorization
identifier, as well as the names of the corresponding columns.

VIEW_ROUTINE_USAGE

Information on the User Defined Functions (UDFs) that belong to the current authorization
identifier and are called in views.

Column name Data type Contents

VIEW_CATALOG CHAR (18) Database name

VIEW_SCHEMA CHAR (31) Name of the schema to which the view belongs

VIEW_NAME CHAR (31) Name of the view

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table that is
referenced in the view belongs

TABLE_NAME CHAR (31) Name of the table referenced in the view

COLUMN_NAME CHAR (31) Column name

Table 104: VIEW_COLUMN_USAGE view of the INFORMATION_SCHEMA

Column name Data type Contents

TABLE_CATALOG CHAR(18) Database name

TABLE_SCHEMA CHAR(31) Name of the schema to which the view
belongs

TABLE_NAME CHAR(31) Name of the view

SPECIFIC_CATALOG CHAR(18) Database name

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

Table 105: VIEW_ROUTINE_USAGE view of the INFORMATION_SCHEMA

Views of the INFORMATION_SCHEMA VIEW_TABLE_USAGE

U22420-J-Z125-12-76 685

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

VIEW_TABLE_USAGE

Information on the tables that belong to the current authorization identifier and on which
view are based.

Column name Data type Contents

VIEW_CATALOG CHAR (18) Database name

VIEW_SCHEMA CHAR (31) Name of the schema to which the view belongs

VIEW_NAME CHAR (31) Name of the view

TABLE_CATALOG CHAR (18) Database name

TABLE_SCHEMA CHAR (31) Name of the schema to which the table that is
referenced in the view belongs

TABLE_NAME CHAR (31) Name of the table referenced in the view

Table 106: VIEW_TABLE_USAGE view of the INFORMATION_SCHEMA

Information schemas SYS_INFO_SCHEMA

686 U22420-J-Z125-12-76

10.2 Views of the SYS_INFO_SCHEMA

The SYS_INFO_SCHEMA contains system-specific data. It provides complete information
on all SESAM/SQL objects. The SYS_INFO_SCHEMA may be changed in future versions
of SESAM rendering it incompatible.

Only the universal user has access to the views of the SYS_INFO_SCHEMA. The universal
user can pass on the SEELCT privilege to other users.
The following table indicates which views of the SYS_INFO_SCHEMA contain information
on which database objects.

Object View name Information on

Database SYS_CATALOGS
SYS_DBC_ENTRIES

Database
all known databases

Schema SYS_SCHEMATA Schemas in the database

Table SYS_TABLES
SYS_PARTITIONS
SYS_VIEW_USAGE

SYS_CHECK_USAGE

Tables in the database
Partitions in the database
Tables on which the views
are based
Tables for which check
constraints are defined

Column SYS_COLUMNS
SYS_VIEW_USAGE

SYS_CHECK_USAGE

Columns in the database
Columns on which views are
based
Columns for which check
constraints are defined

Privilege SYS_PRIVILEGES
SYS_SPECIAL_PRIVILEGES
SYS_USAGE_PRIVILEGES
SYS_ROUTINE_PRIVILEGES

Table privileges
Special privileges
USAGE privileges
Privileges for routines

Index SYS_INDEXES Indexes in the database

Integrity
constraint

SYS_TABLE_CONSTRAINTS
SYS_REFERENTIAL_CONSTRAINTS
SYS_CHECK_CONSTRAINTS
SYS_UNIQUE_CONSTRAINTS

Integrity constraints
Referential constraints
Check constraints
UNIQUE constraints

Storage group SYS_STOGROUPS Storage groups in the
database

Space SYS_SPACES
SYS_SPACE_PROPERTIES

Spaces
Space properties

Table 107: Views of the SYS_INFO_SCHEMA (part 1 of 2)

SYS_INFO_SCHEMA Information schemas

U22420-J-Z125-12-76 687

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

The views of the SYS_INFO_SCHEMA are described in alphabetical order in the following
sections.

Routines SYS_PARAMETERS
SYS_ROUTINES
SYS_ROUTINE_ROUTINE_USAGE

SYS_ROUTINE_USAGE

SYS_ROUTINE_ERRORS

SYS_VIEW_ROUTINE_USAGE

Parameters of routines
Routines
Routines in other routines
Tables and columns in
routines
Error events in routines
Routines in views

SQL statements SYS_DML_RESOURCES “Costly” DML statements

User SYS_USERS
SYS_SYSTEM_ENTRIES

Authorization identifier
System entries

DA-LOG file SYS_DA_LOGS DA-LOG files

Media table SYS_MEDIA_DESCRIPTIONS Media records of the
database-specific files

Recovery unit SYS_RECOVERY_UNITS Recovery units for spaces

Locks SYS_LOCK_CONFLICTS The lock conflicts which
occurred most recently

System
environment

SYS_ENVIRONMENT SESAM/SQL's operating
system environment

Object View name Information on

Table 107: Views of the SYS_INFO_SCHEMA (part 2 of 2)

SYS_CATALOGS Views of the SYS_INFO_SCHEMA

688 U22420-J-Z125-12-76

SYS_CATALOGS

Information on the database.

SYS_CHECK_CONSTRAINTS

Information on check constraints.

Column name Data type Contents

CHAR_FORM_OF_USE CHAR (18) Name of the coded character set
(also: code table)

NONE
if no coded character set is used.

UNIVERSAL_USER CHAR (18) Authorization identifier of the universal
user

LOGGING VARCHAR (3) Default value for the LOG parameter:
YES
NO

Table 108: SYS_CATALOGS view of the SYS_INFO_SCHEMA

Column name Data type Contents

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the check constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the check constraint

CHECK_CLAUSE VARCHAR
(32000)

Search condition

CHECK_TYPE_IND CHAR (1) Y Check constraint is the
NOT NULL constraint

N else

Table 109: SYS_CHECK_CONSTRAINTS view of the SYS_INFO_SCHEMA

Views of the SYS_INFO_SCHEMA SYS_CHECK_USAGE

U22420-J-Z125-12-76 689

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_CHECK_USAGE

Information on tables and columns of the check constraint.

Column name Data type Contents

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the check
constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the check constraint

TABLE_SCHEMA CHAR (31) Name of the schema to which the table or
column used by the check constraint
belongs

TABLE_NAME CHAR (31) Name of the table used in the check
constraint or to which the column belongs

COLUMN_NAME CHAR (31) Name of the table column used in the
check constraint
Blanks if information on the table

OBJECT_INDICATOR CHAR (1) T Row contains information on table

C Row contains information on column

NOT_NULL_COLUMN CHAR (1) Y Check constraint forces NOT NULL
constraint on the column

N else

Table 110: SYS_CHECK_USAGE view of the SYS_INFO_SCHEMA

SYS_COLUMNS Views of the SYS_INFO_SCHEMA

690 U22420-J-Z125-12-76

SYS_COLUMNS

Information on columns in base tables and views of the database.

Column name Data type Contents

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
belongs

TABLE_NAME CHAR (31) Name of the base table or view

COLUMN_NAME CHAR (31) Column name

ORDINAL_POSITION SMALLINT Sequence number of the column in the
table

COLUMN_DEFAULT VARCHAR (256) For base tables only:

Default value,
as specified in the column definition
(e.g. CHAR literal in single quotes) if
the current authorization identifier
owns the schema

TRUNCATED
if representation of the default value
comprises more than 256 characters
and the current authorization
identifier owns the schema. The
default value cannot be displayed.

NULL value in all other cases

IS_NULLABLE VARCHAR (3) NO Column cannot accept NULL
values under any circumstances

YES else

Table 111: SYS_COLUMNS view of the SYS_INFO_SCHEMA (part 1 of 4)

Views of the SYS_INFO_SCHEMA SYS_COLUMNS

U22420-J-Z125-12-76 691

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

DATA_TYPE VARCHAR (24) Data type of the column:
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP
OLDEST

CHARACTER
 _MAXIMUM_LENGTH

SMALLINT Max. length of the column in code units
if the data type is CHARACTER,
CHARACTER VARYING, NATIONAL
CHAR, NATIONAL CHAR VARYING
or OLDEST

NULL value in all other cases

NUMERIC_PRECISION SMALLINT Total number of significant digits
for numeric data types

NULL value in all other cases

NUMERIC_PRECISION
 _RADIX

SMALLINT Radix
for numeric data types

NULL value in all other cases

NUMERIC_SCALE SMALLINT Number of digits right of the decimal point
for exact numeric data types

NULL value in all other cases

DATETIME_PRECISION SMALLINT Number of digits right of the decimal point
for the data types TIME and
TIMESTAMP

NULL value in all other cases

Column name Data type Contents

Table 111: SYS_COLUMNS view of the SYS_INFO_SCHEMA (part 2 of 4)

SYS_COLUMNS Views of the SYS_INFO_SCHEMA

692 U22420-J-Z125-12-76

The columns OLDEST_DESCRIPTOR* are assigned a value if DATA_TYPE is OLDEST:

OLDEST_DESCRIPTOR1 CHAR (1) Y left-aligned

N not left-aligned

NULL value if DATATYPE is not OLDEST

OLDEST_DESCRIPTOR2 CHAR (1) Y Fill character

N No fill character

NULL value if DATATYPE is not OLDEST

OLDEST_DESCRIPTOR3 CHAR (1) Y Null (0) permitted as value

N Null (0) not permitted

NULL value if DATATYPE is not OLDEST

OLDEST_DESCRIPTOR4 CHAR (1) Y Value has arithmetic result

N Value does not have arithmetic result

NULL value if DATATYPE is not OLDEST

COLUMN_DESCRIPTOR1 CHAR (1) Y Base table column has exactly one
single-column index and is not
included in a compound index

N else

COLUMN_DESCRIPTOR2 CHAR (1) Y Base table column has exactly one
compound index and no single-
column index

N else

COLUMN_DESCRIPTOR3 CHAR (1) Y Base table column has more than
one index

N else

COLUMN_DESCRIPTOR4 CHAR (1) Y Base table column has a CALL DML
default value

N else

COLUMN_DESCRIPTOR5 CHAR (1) Y Base table column is a multiple
column

N else

Column name Data type Contents

Table 111: SYS_COLUMNS view of the SYS_INFO_SCHEMA (part 3 of 4)

Views of the SYS_INFO_SCHEMA SYS_COLUMNS

U22420-J-Z125-12-76 693

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

PK_DISTANCE SMALLINT Distance of the column to the start of the
primary key

NULL value if column is not in the primary
key or is not a base table column

SESAM_SAN CHAR (3) Symbolic attribute name of the column

NULL value if the column is not defined in
the base table or SQL table

SESAM_BAN CHAR (2) Binary attribute name of the column

NULL value if the column is not defined in
the base table

SESAM_DEFAULT CHAR (2) CALL DML default (with sign if numeric
data type)

NULL value if the column is not defined in
the base table or SQL table

FIRST_OCCURRENCE SMALLINT First possible occurrence of a multiple
column (for base table = 1)

NULL value if the column is not multiple

LAST_OCCURRENCE SMALLINT Last possible occurrence of a multiple
column

NULL value if the column is not multiple

Column name Data type Contents

Table 111: SYS_COLUMNS view of the SYS_INFO_SCHEMA (part 4 of 4)

SYS_DA_LOGS Views of the SYS_INFO_SCHEMA

694 U22420-J-Z125-12-76

SYS_DA_LOGS

Information on DA-LOG files and/or DA-LOG units in a database.

Column name Data type Contents

DALOG_VERSION INTEGER Version number of the DA-LOG file

DALOG_SUBNUMBER INTEGER Sequence number of the DA-LOG file
within the version

DALOG_BLOCKNUMBER INTEGER First block in the DA-LOG file for this DA-
LOG unit

DALOG_INIT TIMESTAMP (3) Time of creation

BLOCK_COUNTER INTEGER Last used block in the DA-LOG file

MAX_USER INTEGER Max. number of parallel users in the
corresponding DBH session

Table 112: SYS_DA_LOGS view of the SYS_INFO_SCHEMA

Views of the SYS_INFO_SCHEMA SYS_DBC_ENTRIES

U22420-J-Z125-12-76 695

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_DBC_ENTRIES

Information on all databases which are known to the DBH.

Column name Data type Contents

DBC_NUMBER SMALLINT DBC ID number

CATALOG_NAME CHAR (18) Logical database name

PHYSICAL_NAME CHAR (18) Physical database name

USER_ID CHAR (8) DB user ID of the database

COPY_NUMBER CHAR (6) Version number of the SESAM backup
copy of the catalog space, if the
database is a SESAM backup copy.

ACCESS_MODE VARCHAR (5) Current access mode:
READ

Permits read access to user data
and metadata.

WRITE
Permits read and write access to
user data. Metadata may not be
changed.

ADMIN
Permits read and update access to
user data and metadata.

REPL
A replication is involved. This
replication can be accessed in
read mode.

COPY
Permits read access to user data
and metadata.
The utility statement COPY is
permitted.

Table 113: SYS_DBC_ENTRIES view of the INFORMATION_SCHEMA

SYS_DBC_ENTRIES Views of the SYS_INFO_SCHEMA

696 U22420-J-Z125-12-76

STATUS VARCHAR (7) Database status:
ACTIVE

The database was opened in the
current DBH session.

CLOSED
The database is closed.

FREE
The database is physically closed
and unlocked.

LOCKED
Because of an SQLSTATE the
database is not available in the
current DBH session.

RECOVER
The database is in the state
RECOVER.

REORG
The database is reorganized.

REFRESH
The database is in the state
REFRESH.

STATUS_INFO VARCHAR(21) Information on why the database is not
available
(only when STATUS = LOCKED).

STATUS_TIME TIMESTAMP(3) Time the current status was
determined

Column name Data type Contents

Table 113: SYS_DBC_ENTRIES view of the INFORMATION_SCHEMA

Views of the SYS_INFO_SCHEMA SYS_DML_RESOURCES

U22420-J-Z125-12-76 697

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_DML_RESOURCES

Information on “costly” DML statements (in SQL). A DML statement is regarded as costly
when the number of logical IOs it triggers and/or its activity time in the DBH is very high
compared to other DML statements.

The NUMBER_OF_LOGICAL_IO and ACTIVE_TIME columns in particular contain
information relevant to the costs of a statement.

Column name Data type Contents

CATALOG_NAME CHAR (18) Database name

START_TIME TIMESTAMP (3) Start time of the DML statement

END_TIME TIMESTAMP (3) End time of the DML statement

HOST_NAME CHAR (8) Host name from the identification of the
requesting user

APPLICATION_NAME CHAR (8) Application name from the identification of
the requesting user

CUSTOMER_NAME CHAR (8) Name of the requesting user from the
identification of the requesting user

CONVERSATION_ID CHAR (8) Identification of the requesting user with
respect to UTM and SESAM-DBAccess

TAC_NAME CHAR (8) Job name of the user ID or name of the
program unit which executed the DML
statement

MODULE_NAME CHAR (8) Name of the compilation unit in which the
waiting DML statement was executed

STATEMENT_NAME VARCHAR (18) Internal name of the DML statement

STATEMENT_TYPE VARCHAR (31) <type of statement> (e.g. INSERT)

NUMBER_OF_LOGICAL_
IO

INTEGER Number of logical read and write accesses

NUMBER_OF_PHYSICAL
_IO

INTEGER Number of physical read and write
accesses

ELAPSED_TIME INTEGER Time which has actually elapsed
(milliseconds)

ACTIVE_TIME INTEGER Activity time in the DBH (milliseconds)

ACTIVE_TIME_DBH INTEGER Activity time in DBH tasks (milliseconds)

Table 114: SYS_DML_RESOURCES view of the SYS_INFO_SCHEMA

SYS_ENVIRONMENT Views of the SYS_INFO_SCHEMA

698 U22420-J-Z125-12-76

SYS_ENVIRONMENT

Information on SESAM/SQL's operating system environment Created for maintenance
purposes, specifically after a live migration.

ACTIVE_TIME_SVT INTEGER Activity time in service tasks (milliseconds)

MEASURE_OF_COSTS INTEGER Internal measure of the costs of the
application

Column name Data type Contents

INFO_TIMESTAMP TIMESTAMP (3) Time of the information (after a live
migration, this is the time the live migration
took place, otherwise it is a time in the
initialization phase of the DBH)

HW_TYPE CHAR (8) Hardware type of the current system

OS_VERSION CHAR (12) Name and version of the BS2000 operating
system

MAIN_MEMORY INTEGER Size of the BS2000 main memory in MB

NUMBER_OF_CPU_
MAX

INTEGER Maximum number of BS2000 CPUs

NUMBER_OF_CPU_
ACTIVE

INTEGER Number of active BS2000 CPUs

HOST_NAME CHAR (8) Host name

Table 115: SYS_ENVIRONMENT view of the SYS_INFO_SCHEMA

Table 114: SYS_DML_RESOURCES view of the SYS_INFO_SCHEMA

Views of the SYS_INFO_SCHEMA SYS_INDEXES

U22420-J-Z125-12-76 699

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_INDEXES

Information on indexes in the database that were created with CREATE INDEX or implicitly
with a UNIQUE constraint.

Column name Data type Contents

INDEX_SCHEMA CHAR (31) Name of the schema to which the index
belongs

TABLE_NAME CHAR (31) Name of the base table to which the index
belongs

COLUMN_NAME CHAR (31) Name of the column in the index

INDEX_NAME CHAR (18) Name of the index

INDEX_ID SMALLINT Identification number of the index

SPACE_NAME CHAR (18) Name of the space in which the index is
stored

SPACE_ID SMALLINT Identification number of the space in which
the index is stored

ORDINAL_POSITION SMALLINT Position of the column in the index

LENGTH_I SMALLINT Total length of the index (in bytes)

LENGTH_C SMALLINT Indicates the length (in bytes) to which the
column is included in the index

INDEX_DISTANCE SMALLINT Distance of the column to the index start

DATA_TYPE_C VARCHAR (24) Data type of the column:
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP
OLDEST

Table 116: SYS_INDEXES view of the SYS_INFO_SCHEMA (part 1 of 2)

SYS_INDEXES Views of the SYS_INFO_SCHEMA

700 U22420-J-Z125-12-76

CONSTRAINT_NAME CHAR (31) Name of the UNIQUE constraint if the
index is used by a UNIQUE constraint.

NULL value in all other cases

STATE VARCHAR (9) Status:
GENERATED
DEFECT

GENERATE_TYPE VARCHAR (8) as generated:
EXPLICIT
IMPLICIT

STATISTICS_INFO VARCHAR (3) YES Statistics information exists

NO Statistics information does not
exist

INDEX_TYPE VARCHAR (8) Index type:
SINGLE
COMPOUND

INDEX_DATE TIMESTAMP (3) Time of generation

INDEX_PRIMARY_KEY CHAR (1) Y Index is used for the compound key of
CALL DML tables

N else

TABLE_ID SMALLINT Identification number of the base table.
When TABLE_ID Ï 30720 the table is a
partitioned table.

Column name Data type Contents

Table 116: SYS_INDEXES view of the SYS_INFO_SCHEMA (part 2 of 2)

Views of the SYS_INFO_SCHEMA SYS_LOCK_CONFLICTS

U22420-J-Z125-12-76 701

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_LOCK_CONFLICTS

Information on the lock conflicts which occurred most recently (in chronological order).

Column name Data type Contents

TIME_OF_CONFLICT TIMESTAMP (3) Time at which the conflict occurred

OBJECT_TYPE VARCHAR (6) Type of object to be locked:
DBC Database catalog
SPACE Space
TABLE Base table
INDEX Index
ROW Row of a base table
SI-VAL Value of a secondary index
PLAN SQL plan
META Metadata area

DBC_NUMBER SMALLINT Identification number of the database of
the object to be locked
(for OBJECT_TYPE not equal to PLAN)

NULL value in all other cases

SPACE_ID SMALLINT Identification number of the space of the
object to be locked (for OBJECT_TYPE=
SPACE / TABLE / INDEX / ROW / SI-VAL)

NULL value in all other cases

TABLE_ID SMALLINT Identification number of the base table of
the object to be locked
(for OBJECT_TYPE = TABLE / ROW)

NULL value in all other cases

INDEX_ID SMALLINT Identification number of the index of the
object to be locked (
for OBJECT_TYPE = INDEX / SI-VAL)

NULL value in all other cases

ROW_ID CHAR (8) Internal number of the row to be locked
(for OBJECT_TYPE = ROW)

NULL value in all other cases

Table 117: SYS_LOCK_CONFLICTS view of the SYS_INFO_SCHEMA (part 1 of 4)

SYS_LOCK_CONFLICTS Views of the SYS_INFO_SCHEMA

702 U22420-J-Z125-12-76

SI_VALUE CHAR (8) Internal presentation of the key value to
be locked
(for OBJECT_TYPE = SI-VAL)

NULL value in all other cases

PLAN_ID INTEGER Internal number of the SQL plan to be
locked (for OBJECT_TYPE = PLAN)

NULL value in all other cases

META_SCHEMA CHAR (8) Internal number of the schema in the
metadata area which is to be locked
(for OBJECT_TYPE = META)

NULL value in all other cases

META_TABLE CHAR (8) Internal number of the base table in the
metadata area which is to be locked
(for OBJECT_TYPE = META)

NULL value in all other cases

HOST_NAME CHAR (8) Host name from the identification of the
waiting requesting user

APPLICATION_NAME CHAR (8) Application name from the identification of
the waiting requesting user

CUSTOMER_NAME CHAR (8) Name of the requesting user from the
identification of the waiting requesting
user

CONVERSATION_ID CHAR (8) Identification of the waiting requesting
user with respect to UTM and SESAM-
DBAccess

TAC_NAME CHAR (8) Job name of the user ID or name of the
program unit which requested the lock

MODULE_NAME CHAR (8) Name of the compilation unit
(SQL only) in which the waiting
SQL statement was executed

NULL value in all other cases

STATEMENT_NAME VARCHAR (18) Internal name of the SQL statement which
is waiting for the lock

NULL value in all other cases

Column name Data type Contents

Table 117: SYS_LOCK_CONFLICTS view of the SYS_INFO_SCHEMA (part 2 of 4)

Views of the SYS_INFO_SCHEMA SYS_LOCK_CONFLICTS

U22420-J-Z125-12-76 703

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

STATEMENT_TYPE VARCHAR (31) <type of statement> (e.g. INSERT)
In the case of SQL statements

CALL DML: <operation code>
In the case of CALL DML statements

SYSTEM
in the case of system jobs (e.g.
administration commands via SEND-
MSG)

LOCK_MODE VARCHAR (31) Level of the lock request:
NO-UPDATE/SHARED-READ,
SHARED-UPDATE/SHARED-READ,
EXCLUSIVE-UPDATE/SHARED-READ,
EXCLUSIVE-UPDATE/EXCLUSIVE-

READ
for OBJECT_TYPE = SPACE

SHARED,
EXCLUSIVE

else

LOCK_TYPE VARCHAR (8) Value of the lock request:
OBJECT

for object lock
ADJACENT

for environment lock

REQUEST_ANNOUNCED CHAR (1) Lock request is to be requested:
Y
N

LOCKING_OBJECT_TYPE VARCHAR (6) Type of object which prevents the lock:
DBC Database catalog
SPACE Space
TABLE Base table
INDEX Index
ROW Row of a base table
SI-VAL Value of a secondary index
PLAN SQL plan
META Metadata area

LOCKING_HOST_NAME CHAR (8) Host name from the identification of the
locking requesting user

Column name Data type Contents

Table 117: SYS_LOCK_CONFLICTS view of the SYS_INFO_SCHEMA (part 3 of 4)

SYS_LOCK_CONFLICTS Views of the SYS_INFO_SCHEMA

704 U22420-J-Z125-12-76

LOCKING_
APPLICATION_NAME

CHAR (8) Application name from the identification of
the locking requesting user

LOCKING_
CUSTOMER_NAME

CHAR (8) Name of the requesting user from the
identification of the locking requesting
user

LOCKING_
CONVERSATION_ID

CHAR (8) Identification of the locking requesting
user with respect to UTM and SESAM-
DBAccess

LOCKING_LOCK_MODE VARCHAR (31) Level of the object on which the lock
failed:
NO-UPDATE/SHARED-READ,
SHARED-UPDATE/SHARED-READ,
EXCLUSIVE-UPDATE/SHARED-READ,
EXCLUSIVE-UPDATE/EXCLUSIVE-

READ
for OBJECT_TYPE = SPACE

SHARED,
EXCLUSIVE

else

Column name Data type Contents

Table 117: SYS_LOCK_CONFLICTS view of the SYS_INFO_SCHEMA (part 4 of 4)

Views of the SYS_INFO_SCHEMA SYS_MEDIA_DESCRIPTIONS

U22420-J-Z125-12-76 705

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_MEDIA_DESCRIPTIONS

Information on file attributes and media types for database-specific files.

Column name Data type Contents

FILE_TYPE CHAR (6) File type:
DALOG
CATLOG
PBI
CATREC
DDLTA

DEVICE_DESCRIPTOR CHAR (18) Device type or name of the storage group
for the file

MEDIUM CHAR (4) DISC

ORDINAL_POSITION SMALLINT Sequence number of the entry in the
media table

REQUESTS VARCHAR (3) YES Volume can be requested at
console

NO Volume cannot be requested at
console

PRIMARY_ALLOC INTEGER Primary allocation

SECONDARY_ALLOC INTEGER Secondary allocation

SHARABLE VARCHAR (3) File sharable:
YES
NO

Table 118: SYS_MEDIA_DESCRIPTIONS view of the SYS_INFO_SCHEMA

SYS_PARAMETERS Views of the SYS_INFO_SCHEMA

706 U22420-J-Z125-12-76

SYS_PARAMETERS

Information on parameters of routines (procedures and UDFs)

Column name Data type Contents

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

ORDINAL_POSITION SMALLINT Sequence number of the parameter in
the routine

PARAMETER_MODE VARCHAR(5) IN input parameter
OUT output parameter
INOUT input and output parameter

PARAMETER_NAME CHAR(31) Name of the parameter

DATA_TYPE VARCHAR(24) Data type of the column:
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP

CHARACTER_
MAXIMUM_LENGTH

SMALLINT Max. length of the column in code units
if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or NATIONAL
CHAR VARYING

NULL value in all other cases

NUMERIC_PRECISION SMALLINT Total number of significant digits
for numeric data types

NULL value in all other cases

Table 119: SYS_PARAMETERS view of the SYS_INFO_SCHEMA (part 1 of 2)

Views of the SYS_INFO_SCHEMA SYS_PARTITIONS

U22420-J-Z125-12-76 707

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_PARTITIONS

Information on table partitions.

NUMERIC_PRECISION_
RADIX

SMALLINT Radix
for numeric data types

NULL value in all other cases

NUMERIC_SCALE SMALLINT Number of digits right of the dec. point
for exact numeric data types

NULL value in all other cases

DATETIME_PRECISION SMALLINT Number of digits right of the decimal
point

for the data types TIME and
TIMESTAMP

NULL value in all other cases

Column name Data type Contents

TABLE_SCHEMA CHAR (31) Name of the schema to which the
partitioned table belongs

TABLE_NAME CHAR (31) Name of the partitioned table

SERIAL_NUMBER SMALLINT Sequence number of the partition

MAX_KEY_VALUE VARCHAR
(32000)

Comparison for the upper partition
boundary as specified in the VALUE clause
 (external presentation)

MAX_NUMBER_
OF_ROWS

INTEGER Maximum possible number of records in
the partition

SPACE_NAME CHAR (18) Name of the space in which the partition is
stored

SPACE_ID SMALLINT Identification number of the space in which
the partition is stored

TABLE_ID SMALLINT Space-related identification number of the
partitioned table

ROW_ID_PREFIX SMALLINT Prefix to determine the row number

Table 120: SYS_PARTITIONS view of the SYS_INFO_SCHEMA

Column name Data type Contents

Table 119: SYS_PARAMETERS view of the SYS_INFO_SCHEMA (part 2 of 2)

SYS_PRIVILEGES Views of the SYS_INFO_SCHEMA

708 U22420-J-Z125-12-76

SYS_PRIVILEGES

Information on table and column privileges.

Column name Data type Contents

GRANTEE CHAR (18) Authorization identifier granted the privilege
or PUBLIC

TABLE_SCHEMA CHAR (31) Name of the schema containing the table or
column to which the privilege applies

TABLE_NAME CHAR (31) Name of the table to which the privilege
applies or for whose column the privilege
applies

COLUMN_NAME CHAR (31) Name of the column to which the privilege
was restricted
Blanks if the privilege applies to the whole
table

OBJECT_INDICATOR CHAR (1) T Row contains information on table

C Row contains information on column

PRIVILEGE_TYPE CHAR (18) Privilege type:
SELECT
INSERT
DELETE
UPDATE
REFERENCES

GRANTOR CHAR (18) Authorization identifier that granted the
privilege or _SYSTEM

IS_GRANTABLE VARCHAR (3) YES The authorization identifier has
GRANT authorization for the
privilege

NO No GRANT authorization

Table 121: SYS_PRIVILEGES view of the SYS_INFO_SCHEMA

Views of the SYS_INFO_SCHEMA SYS_RECOVERY_UNITS

U22420-J-Z125-12-76 709

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_RECOVERY_UNITS

Information on recovery units.

Column name Data type Contents

SPACE_NAME CHAR (18) Name of the space

RECOVERY_TIMESTAMP TIMESTAMP (3) Time at which the backup was created

VERSION INTEGER Internal number
if RECOVERY_TYPE = 'COPY'

NULL value in all other cases

VALIDITY VARCHAR (3) YES Recovery unit valid for recovery
operations up to next recovery
unit

NO invalid (may however change to
YES after a RECOVER
statement)

NOT invalid
(cannot change)

RECOVERY_UNIT_NAME VARCHAR (54) File name of the copy
if RECOVERY_TYPE = 'COPY'

internal number,
RECOVERY_TYPE = 'RESTART'

or 'REST_TO'

NULL value in all other cases

ARCHIVE_COPY
 _VERSION

VARCHAR (15) Time of ARCHIVE backup,
if MEDIUM = 'TAPE'

Time of HSMS backup,
if MEDIUM = 'HSMS', 'HSMW'

or 'HSMB'

NULL value in all other cases

Table 122: SYS_RECOVERY_UNITS view of the SYS_INFO_SCHEMA (part 1 of 3)

SYS_RECOVERY_UNITS Views of the SYS_INFO_SCHEMA

710 U22420-J-Z125-12-76

MEDIUM CHAR (4) DISC SESAM backup on disk
TAPE SESAM backup

with ARCHIVE
HSMW SESAM backup with HSMS

(work file)
HSMB SESAM backup with HSMS

(additional mirror unit)
SRDF SESAM backup with HSMS

(SRDF target)
if RECOVERY_TYPE = 'COPY'

NULL value in all other cases

RECOVERY_TYPE VARCHAR (7) Values evaluated by the recovery utility:
COPY
CREATE
RESTART
REST_TO (RESTART TO)
MARK

COPY_TYPE VARCHAR (7) ONLINE or OFFLINE
if RECOVERY_TYPE = 'COPY'

NULL value in all other cases

DALOG_VERSION INTEGER Version number of the
DA-LOG file DA-LOG level

before the
recovery unit is
entered

DALOG_SUBNUMBER INTEGER Sequence number of
the DA-LOG file within
the version

DALOG_BLOCKNUMBER INTEGER First block in the DA-
LOG file for this DA-
LOG unit

NEXT_DALOG_VERSION INTEGER Version number of the
DA-LOG file DA-LOG level

after the
recovery unit is
entered

NEXT_DALOG
 _SUBNUMBER

INTEGER Sequence number of
the DA-LOG file within
the version

NEXT_DALOG
 _BLOCKNUMBER

INTEGER First block in the DA-
LOG file for this DA-
LOG unit

Column name Data type Contents

Table 122: SYS_RECOVERY_UNITS view of the SYS_INFO_SCHEMA (part 2 of 3)

Views of the SYS_INFO_SCHEMA SYS_RECOVERY_UNITS

U22420-J-Z125-12-76 711

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

LOG_COUNTER INTEGER Not currently used

ARCHIVE_DIRECTORY
 _NAME

VARCHAR (54) Name of the ARCHIVE directory,
if MEDIUM = 'TAPE'

Name of the HSMS archive,
if MEDIUM = 'HSMS', 'HSMW',

'HSMB' or 'SRDF'

NULL value in all other cases

ARCHIVE_PBI_VERSION VARCHAR (15) Time of ARCHIVE the backup of the PBI
file

if MEDIUM = 'TAPE'
and COPY_TYPE = 'ONLINE'

NULL value in all other cases

PBI_TIMESTAMP TIMESTAMP (3) Time at which the PBI file was
generated

PBI_COUNTER INTEGER undefined

Column name Data type Contents

Table 122: SYS_RECOVERY_UNITS view of the SYS_INFO_SCHEMA (part 3 of 3)

SYS_REFERENTIAL_CONSTRAINTS Views of the SYS_INFO_SCHEMA

712 U22420-J-Z125-12-76

SYS_REFERENTIAL_CONSTRAINTS

Information on referential constraints. The referencing and referenced columns are listed.

Column name Data type Contents

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which
the table with the referential
constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the referential
constraint

TABLE_NAME CHAR (31) Name of the table to which the
referential constraint belongs

COLUMN_NAME CHAR (31) Name of a referencing column

UNIQUE_CONSTRAINT_SCHEMA CHAR (31) Name of the schema of the
referenced table

UNIQUE_CONSTRAINT_NAME CHAR (31) Name of the UNIQUE or
primary key constraint of the
referenced table

UNIQUE_CONSTRAINT_TABLE CHAR (31) Name of the referenced table

UNIQUE_CONSTRAINT_COLUMN CHAR (31) Name of a referenced column

ORDINAL_POSITION SMALLINT Position of the column in the
referential constraint

Table 123: SYS_REFERENTIAL_CONSTRAINTS view of the SYS_INFO_SCHEMA

Views of the SYS_INFO_SCHEMA SYS_ROUTINES

U22420-J-Z125-12-76 713

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_ROUTINES

Information on routines (procedures and UDFs)

Column name Data type Contents

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

ROUTINE_TYPE VARCHAR(28) PROCEDURE if a procedure

FUNCTION if a UDF

DATA_TYPE VARCHAR(24) Data type of the return value of a UDF
CHARACTER
CHARACTER VARYING
NATIONAL CHAR
NATIONAL CHAR VARYING
REAL
DOUBLE PRECISION
FLOAT
INTEGER
SMALLINT
NUMERIC
DECIMAL
DATE
TIME
TIMESTAMP

NULL value,
if a procedure

CHARACTER_
MAXIMUM_LENGTH

SMALLINT Max. length of the return value in code
units

if data type is CHARACTER,
CHARACTER VARYING,
NATIONAL CHAR or
NATIONAL CHAR VARYING

NULL value in all other cases

NUMERIC_PRECISION SMALLINT Total number of significant digits
for numeric data types

NULL value in all other cases

Table 124: SYS_ROUTINES view of the SYS_INFO_SCHEMA (part 1 of 2)

SYS_ROUTINES Views of the SYS_INFO_SCHEMA

714 U22420-J-Z125-12-76

NUMERIC_PRECISION_
RADIX

SMALLINT Radix
for numeric data types

NULL value in all other cases

NUMERIC_SCALE SMALLINT Number of digits right of the decimal
point

for exact numeric data types

NULL value in all other cases

DATETIME_PRECISION SMALLINT Number of digits right of the decimal
point

for the data types TIME and
TIMESTAMP

NULL value in all other cases

ROUTINE_DEFINITION VARCHAR(32000) Text of the routine

SQL_DATA_ACCESS VARCHAR(17) CONTAINS SQL
if CONTAINS SQL was specified in
the definition of the routine

READS SQL DATA
if READS SQL DATA was specified
in the definition of the routine

MODIFIES SQL DATA
if MODIFIES SQL DATA was
specified in the definition of the
routine

IS_NULL_CALL VARCHAR(3) NO if a UDF

NULL value in all other cases

IS_USER_DEFINED_
CAST

VARCHAR(3) NO if a UDF
NULL value in all other cases

AS_LOCATOR VARCHAR(3) NO if a UDF
NULL value in all other cases

Column name Data type Contents

Table 124: SYS_ROUTINES view of the SYS_INFO_SCHEMA (part 2 of 2)

Views of the SYS_INFO_SCHEMA SYS_ROUTINE_ERRORS

U22420-J-Z125-12-76 715

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_ROUTINE_ERRORS

Information on the the most recent events which were errored or suspected of being errored
when routines (procedures and UDFs) were executed. The DEBUG ROUTINE pragma can
also result in additional information being logged.

Column name Data type Contents

SPECIFIC_CATALOG CHAR(18) Name of the database to which the
routine belongs

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

START_TIME TIMESTAMP(3) Start time of the routine

ERROR_TIME TIMESTAMP(3) Time the error event occurred

ERROR_STATE CHAR(5) SQLSTATE,
if an exception condition occurred

Blank, otherwise

ERROR_TEXT VARCHAR(256) Message text

LINE_NUMBER INTEGER Line number of the errored statement in
the text of the routine

0 if the place could not be determined

COLUMN_NUMBER INTEGER Column number of the errored
statement in the text of the routine

0 if the place could not be determined

HOST_NAME CHAR(8) Host name from the identification of the
requesting user

APPLICATION_NAME CHAR(8) Application name from the identification
of the requesting user

CUSTOMER_NAME CHAR(8) Name of the requesting user from the
identification of the requesting user

CONVERSATION_ID CHAR(8) Identification of the requesting user with
respect to UTM and SESAM-DBAccess

TAC_NAME CHAR(8) Job name of the user ID or name of the
program unit which called the routine

MODULE_NAME CHAR(8) Name of the compilation unit in which
the routine was called

Table 125: SYS_ROUTINE_ERRORS view of the SYS_INFO_SCHEMA (part 1 of 2)

SYS_ROUTINE_ERRORS Views of the SYS_INFO_SCHEMA

716 U22420-J-Z125-12-76

STATEMENT_NAME VARCHAR(18) Internal name of the SQL statement
which called the routine

Column name Data type Contents

Table 125: SYS_ROUTINE_ERRORS view of the SYS_INFO_SCHEMA (part 2 of 2)

Views of the SYS_INFO_SCHEMA SYS_ROUTINE_PRIVILEGES

U22420-J-Z125-12-76 717

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_ROUTINE_PRIVILEGES

Information on parameters for routines (procedures and UDFs)

SYS_ROUTINE_ROUTINE_USAGE

Information on the routines (procedures and UDFs) that are called in other routines.

Column name Data type Contents

GRANTEE CHAR(18) Authorization identifier granted the
privilege or

PUBLIC

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

GRANTOR CHAR(18) Authorization identifier which granted
the privilege or

_SYSTEM

IS_GRANTABLE VARCHAR(3) YES The authorization identifier has
GRANT authorization for the
privilege

NO No GRANT authorization

Table 126: SYS_ROUTINE_PRIVILEGES view of the SYS_INFO_SCHEMA

Column name Data type Contents

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the calling
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the calling routine

ROUTINE_SCHEMA CHAR(31) Name of the schema to which the called
routine belongs

ROUTINE_NAME CHAR(31) Specific name of the called routine

Table 127: SYS_ROUTINE_ROUTINE_USAGE view of the SYS_INFO_SCHEMA

SYS_ROUTINE_USAGE Views of the SYS_INFO_SCHEMA

718 U22420-J-Z125-12-76

SYS_ROUTINE_USAGE

Information on the tables and columns which are addressed in routines (procedures and
UDFs).

SYS_SCHEMATA

Information on the schemas in the database.

Column name Data type Contents

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

TABLE_SCHEMA CHAR(31) Name of the schema to which the table
which is addressed in the routine
belongs

TABLE_NAME CHAR(31) Name of the table used in the routine

COLUMN_NAME CHAR(31) Column name
used in the routine

Blanks
if information on the table

OBJECT_INDICATOR CHAR(1) T Row contains informations on table

C Row contains informations on
column

Table 128: SYS_ROUTINE_USAGE view of the SYS_INFO_SCHEMA

Column name Data type Contents

SCHEMA_NAME CHAR (31) Name of the schema

SCHEMA_OWNER CHAR (18) Authorization identifier of the owner

Table 129: SYS_SCHEMATA view of the SYS_INFO_SCHEMA

Views of the SYS_INFO_SCHEMA SYS_SPACES

U22420-J-Z125-12-76 719

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_SPACES

Information on spaces.

Column name Data type Contents

SPACE_NAME CHAR (18) Name of the space

SPACE_NAME_SHORT CHAR (12) First 12 characters of the space name

SPACE_ID SMALLINT Identification number of the space

SPACE_OWNER CHAR (18) Authorization identifier that owns the
space

STOGROUP_NAME CHAR (18) Name of the storage group for the space

PCT_FREE SMALLINT Free space reservation in percent

DELTA_STOGROUP CHAR (1) Y Space stored on storage group
STOGROUP_NAME

N Space not yet stored on the storage
group STOGROUP_NAME newly
assigned with ALTER SPACE

SPACE_DATE TIMESTAMP (3) Time of creation or time at which the
definition of the tables and indexes on the
space were last updated

LOGGING VARCHAR (3) YES Logging activated

NO Logging deactivated

The data for STOGROUP_NAME and PCT_FREE can be modified with ALTER SPACE;
this data is not actually taken into account until RECOVER or REORG is executed.

Table 130: SYS_SPACES view of the SYS_INFO_SCHEMA

SYS_SPACE_PROPERTIES Views of the SYS_INFO_SCHEMA

720 U22420-J-Z125-12-76

SYS_SPACE_PROPERTIES

Information on space properties. In the case of spaces that are not currently open, only
some of the properties will be output.

Column name Data type Contents

SPACE_NAME CHAR (18) Name of the space

PROPERTY_NAME CHAR (31) Name of the space property
The following properties are output:

– SPACE_ID is the space number
determined from the catalog.

– SPACE_TIMESTAMP specifies the
time at which the space was last
modified.

– CHECK_TIMESTAMP specifies the
time against which the consistency of
the space is checked.

– MAX_POSSIBLE_PAGE is the highest
possible page number of the space
1.073.741.822 (X'3FFFFFFE')

for spaces up to 4 TB
16.777.214 (X'00FFFFFE')

for spaces up to 64 GB

– LAST_USED_PAGE is the last
logically occupied 4K-page of the
space.

– SPACE_LOCK_RECOVER_PENDING
specifies whether or not the space
could be restored during the repair

– SPACE_LOCK_LOAD_RUNNING
specifies whether or not the loading of
data into a base table of the space
using LOAD or IMPORT TABLE has
completed.

– SPACE_LOCK_IS_COPY specifies
whether the space’s backup copy is
mounted and therefore only read
access is permitted.

Table 131: SYS_SPACE_PROPERTIES view of the SYS_INFO_SCHEMA (part 1 of 3)

Views of the SYS_INFO_SCHEMA SYS_SPACE_PROPERTIES

U22420-J-Z125-12-76 721

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

PROPERTY_NAME
(cont.)

CHAR (31) – SPACE_LOCK_IS_REPLICATE
specifies whether the space’s replicate
is mounted and therefore only read
access is permitted.

– SPACE_LOCK_COPY_PENDING
specifies whether the space is locked
against updates due to a pending
COPY cmd.

– SPACE_LOCK_CHECK_PENDING
specifies whether the integrity
constraints have been checked
following the loading of data into a base
table using LOAD.

– SPACE_LOCK_REORG_PENDING
specifies that the maximum space size
has been reached. Only read accesses
and DELETE and REORG SPACE are
therefore permitted.

– SPACE_FLAG_OPENED specifies
whether the space is open.

– SPACE_FLAG_MODIFIED specifies
whether the space has been modified.

– SPACE_FLAG_DEFECT specifies
whether the space is defective.

– OPEN_TIMESTAMP specifies the time
at which the space was last physically
opened.

The BLOCK_DENSITY_xx fields describe
the number of blocks whose density factor
was found to be greater than (xx-10)% and
less than or equal to xx% since
OPEN_TIMESTAMP:
– BLOCK_DENSITY_10
– BLOCK_DENSITY_20
– . . .
– BLOCK_DENSITY_90
– BLOCK_DENSITY_100

Column name Data type Contents

Table 131: SYS_SPACE_PROPERTIES view of the SYS_INFO_SCHEMA (part 2 of 3)

SYS_SPECIAL_PRIVILEGES Views of the SYS_INFO_SCHEMA

722 U22420-J-Z125-12-76

SYS_SPECIAL_PRIVILEGES

Information on special privileges.

CHARACTER_VALUE VARCHAR (256) Value of the space property

NULL value If INTEGER_VALUE is a
value other than NULL

INTEGER_VALUE INTEGER Value of the space property
The following property is output:

NULL value If
CHARACTERER_VALUE
is a value other than NULL

Column name Data type Contents

GRANTEE CHAR (18) Authorization identifier granted the privilege or
PUBLIC

PRIVILEGE_TYPE CHAR (18) Privilege type:
CREATE USER
CREATE SCHEMA
CREATE STOGROUP
UTILITY

GRANTOR CHAR (18) Authorization identifier that granted the privilege
or _SYSTEM

IS_GRANTABLE VARCHAR (3) YES The authorization identifier has GRANT
authorization for the privilege

NO No GRANT authorization

Table 132: SYS_SPECIAL_PRIVILEGES view of the SYS_INFO_SCHEMA

Column name Data type Contents

Table 131: SYS_SPACE_PROPERTIES view of the SYS_INFO_SCHEMA (part 3 of 3)

Views of the SYS_INFO_SCHEMA SYS_STOGROUPS

U22420-J-Z125-12-76 723

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_STOGROUPS

Information on the storage groups in the database.

SYS_SYSTEM_ENTRIES

Information on the system entries in the database.

Column name Data type Contents

STOGROUP_NAME CHAR (18) Name of the storage group

VOLUME_NAME CHAR (6) VSN of the private volumes or PUBLIC

STOGROUP_OWNER CHAR (18) Authorization identifier that owns the storage
group

CAT_ID VARCHAR (4) BS2000 catalog ID

DEVICE_TYPE VARCHAR (8) Device type of the private volumes

NULL value for PUBLIC

ORDINAL_POSITION SMALLINT Sequence number of the private volumes in
the storage group;
1 for PUBLIC

Table 133: SYS_STOGROUPS view of the SYS_INFO_SCHEMA

Column name Data type Contents

HOST_NAME CHAR (8) Host name or *

APPLICATION_NAME CHAR (8) Application name or * for UTM system
entry
Blanks for BS2000 system entry

SYSTEM_USER_NAME CHAR (8) BS2000 or UTM user ID

USER_NAME CHAR (18) Authorization identifier or PUBLIC

Table 134: SYS_SYSTEM_ENTRIES view of the SYS_INFO_SCHEMA

SYS_TABLES Views of the SYS_INFO_SCHEMA

724 U22420-J-Z125-12-76

SYS_TABLES

Information on base tables and views in the database.

Column name Data type Contents

TABLE_SCHEMA CHAR (31) Name of the schema to which the table
belongs

TABLE_NAME CHAR (31) Table name

TABLE_TYPE VARCHAR (18) BASE TABLE, VIEW or
ABSTRACT TABLE

TABLE_ID SMALLINT Identification number
of the base table or of the abstract
table When TABLE_ID Ï 30720 the
table is a partitioned table.

NULL value for views

SPACE_NAME CHAR (18) Name of the space
in which the (non-partitioned) table is
stored

PARTITIONS
in the case of a partitioned table

NULL value in all other cases

SPACE_ID SMALLINT Identification number
of the space. In the case of a
partitioned table 32767 is output

NULL value in all other cases

TABLE_STYLE VARCHAR (6) OLDEST CALL DML only table

OLD CALL DML/SQL table

NEW SQL table

NULL value in all other cases

TABLE_DATE TIMESTAMP (3) Time of creation or time of last ALTER
TABLE

VIEW_DEFINITION VARCHAR
(32000)

Query expression
that defines the view for views

NULL value in all other cases

Table 135: SYS_TABLES view of the SYS_INFO_SCHEMA (part 1 of 2)

Views of the SYS_INFO_SCHEMA SYS_TABLE_CONSTRAINTS

U22420-J-Z125-12-76 725

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_TABLE_CONSTRAINTS

Information on all integrity constraints on the tables in the database

TABLE_PRIMARY_KEY CHAR (1) S Single primary key

C Compound primary key

NULL value else

CHECK_OPTION VARCHAR (8) NONE
No check option set

CASCADED
Check option set

NULL value in all other cases

IS_UPDATABLE VARCHAR (3) YES View is updatable

NO View is not updatable

NULL value in all other cases

TEMPORARY_VIEW VARCHAR (3) YES View is temporary

NO View is permanent

NULL value in all other cases

Column name Data type Contents

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the integrity constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the integrity constraint

CONSTRAINT_TYPE VARCHAR (11) Type of integrity constraint:
FOREIGN KEY
UNIQUE
PRIMARY KEY
CHECK

TABLE_NAME CHAR (31) Name of the table to which the integrity
constraint belongs

Table 136: SYS_TABLE_CONSTRAINTS view of the SYS_INFO_SCHEMA

Column name Data type Contents

Table 135: SYS_TABLES view of the SYS_INFO_SCHEMA (part 2 of 2)

SYS_UNIQUE_CONSTRAINTS Views of the SYS_INFO_SCHEMA

726 U22420-J-Z125-12-76

SYS_UNIQUE_CONSTRAINTS

Information on primary key and UNIQUE constraints.

Column name Data type Contents

CONSTRAINT_SCHEMA CHAR (31) Name of the schema to which the table
with the integrity constraint belongs

CONSTRAINT_NAME CHAR (31) Name of the integrity constraint

TABLE_NAME CHAR (31) Name of the table to which the integrity
constraint belongs

COLUMN_NAME CHAR (31) Name of a column in the integrity
constraint

ORDINAL_POSITION SMALLINT Position of the column in the integrity
constraint

CONST_TYPE_ID CHAR (1) P PRIMARY KEY constraint

U UNIQUE constraint

INDEX_NAME CHAR (18) Name of the index for the UNIQUE
constraint

NULL value for primary key constraints

Table 137: SYS_UNIQUE_CONSTRAINTS view of the SYS_INFO_SCHEMA

Views of the SYS_INFO_SCHEMA SYS_USAGE_PRIVILEGES

U22420-J-Z125-12-76 727

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_USAGE_PRIVILEGES

Information on the USAGE privilege.

SYS_USERS

Information on all the authorization identifiers in the database.

Column name Data type Contents

GRANTEE CHAR (18) Authorization identifier granted the privilege or
PUBLIC

OBJECT_SCHEMA CHAR (31) Name of the schema containing the sort
sequence or character set to which the privilege
applies
Blanks for storage group

OBJECT_NAME CHAR (18) Name of the storage group, sort sequence or
character set to which the privilege applies

OBJECT_TYPE CHAR (18) Object to which the privilege applies:
STOGROUP
CHARACTER SET
COLLATION

GRANTOR CHAR (18) Authorization identifier that granted the
privilege or _SYSTEM

IS_GRANTABLE VARCHAR (3) YES The authorization identifier has GRANT
authorization for the privilege

NO No GRANT authorization

Table 138: SYS_USAGE_PRIVILEGES view of the SYS_INFO_SCHEMA

Column name Data type Contents

USER_NAME CHAR (18) Authorization identifier

USER_NAME_SHORT CHAR (10) First 10 characters of the authorization
identifier

Table 139: SYS_USERS view of the SYS_INFO_SCHEMA

SYS_VIEW_USAGE Views of the SYS_INFO_SCHEMA

728 U22420-J-Z125-12-76

SYS_VIEW_USAGE

Information on the tables and columns used by views and temporary views.

Column name Data type Contents

VIEW_SCHEMA CHAR (31) Name of the schema to which the view
belongs

VIEW_NAME CHAR (31) Name of the view

TABLE_SCHEMA CHAR (31) Name of the schema to which the table or
column used by the view belongs

TABLE_NAME CHAR (31) Name of the table used in the view or to
which the column belongs

COLUMN_NAME CHAR (31) Name of the table column used in the view
Blanks if information on the table

OBJECT_INDICATOR CHAR (1) T Row contains information on table

C Row contains information on column

VIEW_COLUMN CHAR (31) Name of the view column,
if the view is updatable,
OBJECT_INDICATOR has the value C
and the view column is derived from a
table column (in COLUMN_NAME)

NULL value in all other cases

Table 140: SYS_VIEW_USAGE view of the SYS_INFO_SCHEMA

Views of the SYS_INFO_SCHEMA VIEW_ROUTINE_USAGE

U22420-J-Z125-12-76 729

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

4
00

_S
es

am
9

0\
15

02
4

03
_s

bt
1\

en
\s

es
sb

t1
.k

1
0

SYS_VIEW_ROUTINE_USAGE

Information on the User Defined Functions (UDFs) that are used in views.

Column name Data type Contents

TABLE_SCHEMA CHAR(31) Name of the schema to which the view
belongs

TABLE_NAME CHAR(31) Name of the view

SPECIFIC_SCHEMA CHAR(31) Name of the schema to which the
routine belongs

SPECIFIC_NAME CHAR(31) Specific name of the routine

Table 141: SYS_VIEW_ROUTINE_USAGE view of the SYS_INFO_SCHEMA

VIEW_ROUTINE_USAGE Views of the SYS_INFO_SCHEMA

730 U22420-J-Z125-12-76

U22420-J-Z125-12-76 731

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

11 Appendix

This chapter is subdivided into the following parts:

● Overview of the basic syntax elements of SESAM/SQL

● Syntax overview of the CSV file

● SQL keywords

11.1 Syntax elements of SESAM/SQL

The basic syntax elements defined in chapters 3 to 6 of the manual are listed in alphabetical
order below.
For these syntax elements, only their name (the name to the left of the definition character
"::=") is specified in the syntax of the SQL statements.

i Any square brackets shown here in italics are special characters, and must be
specified in the statement.

aggregate ::= < , . . . >

aggregate_function::=

alphanumeric_literal ::=

annotation ::= /*% annotation_text %*/

arguments ::= see user_defined_function

authorization_identifier ::= unqual_name

value
NULL

 ([]expression)

COUNT(*)

AVG
COUNT
MAX
MIN
SUM

ALL
DISTINCT

'[character...]'[{separator...'[character...]'}...]
X'[hex hex]...'[{separator...'[hex hex]...'}...]

Syntax elements of SESAM/SQL Appendix

732 U22420-J-Z125-12-76

case_expression ::=

cast_expression ::= CAST (AS data_type)

catalog ::= unqual_name

character ::= see predicate

column ::= see expression

col_constraint ::=

CASE
WHEN search_condition THEN
...
[ELSE]

END

CASE expressionx
WHEN expression1 [, expression2] ... THEN

...
[ELSE]
END

NULLIF (expression1, expression2)

COALESCE (expression1, expression2, ..., expressionn)

(expression1, expression2, ..., expressionn)

expression
NULL

expression
NULL

expression
NULL

expression
NULL

MIN
MAX

expression
NULL

NOT NULL
UNIQUE
PRIMARY KEY
REFERENCES table [(column)]
CHECK (search_condition)

Appendix Syntax elements of SESAM/SQL

U22420-J-Z125-12-76 733

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

column_definition ::=

 column

 [[CONSTRAINT integrity_constraint_name] column_constraint] ...

 [call_dml_clause]

default ::= DEFAULT

call_dml_clause ::= CALL DML call_dml_default [call_dml_symb_name]

comparison_op ::= see predicate

correlation_name ::= unqual_name

crypto_function ::=

key ::= expression

cursor ::= unqual_name

data_type[default]
FOR REF(table)

alphanumeric_literal
national_literal
numeric_literal
time_literal
CURRENT_DATE
CURRENT_TIME(3)
LOCALTIME(3)
CURRENT_TIMESTAMP(3)
LOCALTIMESTAMP(3)
USER
CURRENT_USER
SYSTEM_USER
NULL
REF(table)

ENCRYPT (expression, key)
DECRYPT (expression2, key, data_type)

Syntax elements of SESAM/SQL Appendix

734 U22420-J-Z125-12-76

data_type ::=

digit ::= see unqual_name

expression ::=

column ::= unqual_name
pos_no ::= unsigned_integer

[]CHAR[ACTER][(length)]

[] [(cu_length [CODE_UNITS])]

(cu_max [CODE_UNITS])

[]

[dimension]
(dimension)

CHAR[ACTER] VARYING(max)
VARCHAR(max)

[dimension]
(dimension)

NATIONAL CHAR[ACTER]
NCHAR

NATIONAL CHAR[ACTER] VARYING
NCHAR VARYING
NVARCHAR

[dimension]
(dimension)

SMALLINT
INT[EGER]
NUMERIC[(precision[,scale])]
DEC[IMAL][(precision[,scale])]
REAL
DOUBLE PRECISION
FLOAT[(precision)]
DATE
TIME(3)
TIMESTAMP(3)

value

[table.]

function
subquery
monadic_op expression
expression dyadic_op expression
case_expression
cast_expression
(expression)

column
column(pos_no)
column[pos_no]

column(min..max)
column[min..max]

Appendix Syntax elements of SESAM/SQL

U22420-J-Z125-12-76 735

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

min ::= unsigned_integer
max ::= unsigned integer

monadic_op ::=

dyadic_op ::=

flag ::= see predicate

fixed_pt_number ::= see numeric_literal

floating_pt_number ::= see numeric_literal

function ::=

hex ::= see alphanumeric_literal

integer ::= see numeric_literal

integrity_constraint_name ::= see qualified_name

index ::= see qualified_name

join_expression ::=

key ::= see crypto_function

label ::= unqual_name

+
-

*
/
+
-
| |

time_function
string_function
string_function
aggregate_function
table_function
crypto_function
user_defined_function

table_spec CROSS JOIN table_spec

table_spec[] JOIN table_spec ON search_condition

table_spec UNION JOIN table_spec

(join_expression)

INNER

[OUTER]
LEFT
RIGHT
FULL

Syntax elements of SESAM/SQL Appendix

736 U22420-J-Z125-12-76

letter ::= see unqual_name

literal ::=

local_variable ::= unqual_name

max ::= unsigned_integer

min ::= unsigned_integer

national_literal ::=

numeric_function ::=

alphanumeric_literal
national_literal
special_literal
numeric_literal
time_literal

N'[character...]'[{separator...'[character...]'}...]
NX'[4hex...]'[{separator...'[4hex...]'}...]

U&'[...]'[{separator...'['}...][UESCAPE'esc']

character
esc 4hex
esc+ 6hex
esc esc

character
esc 4hex
esc+ 6hex
esc esc

ABS (expression)
CEIL[ING] (expression)
FLOOR (expression)
MOD (dividend,divisor)
SIGN (expression)
TRUNC (expression)

(expression[USING])

OCTET_LENGTH (expression)
POSITION (expression IN expression [USING CODE_UNITS])

JULIAN_DAY_OF_DATE (expression)
EXTRACT (part FROM expression)

CHAR_LENGTH
CHARACTER_LENGTH

CODE_UNITS
OCTETS

Appendix Syntax elements of SESAM/SQL

U22420-J-Z125-12-76 737

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

numeric_literal ::=

integer ::=[] unsigned_ integer[.]

fixed_pt_number ::=[]

floating_pt_number ::= fixed_pt_numberE[] unsigned_ integer

unsigned_ integer ::= digit...

operand ::= see predicate

pattern ::= see predicate

praedicate ::=

row ::=

 integer
fixed_pt_number
floating_pt_number

+
-

+
-

 unsigned_ integer[. unsigned_ integer]
 unsigned_ integer.
. unsigned_ integer

+
-

row comparison_op row

vector_column comparison_op expression

row comparison_op subquery

row [NOT] BETWEEN row AND row

vector_column [NOT] BETWEEN expression AND expression

expression IS [NOT] CASTABLE AS data_type

row [NOT] IN

vector_column [NOT] IN (expression , expression ,...)

operand [NOT] LIKE pattern [ESCAPE character...]

operand [NOT] LIKE_REGEX regular_expression [FLAG flag]

expression IS [NOT] NULL

EXISTS subquery

ALL
SOME
ANY

subquery
(row, ...)

(expression ,...)
expression
subquery

Syntax elements of SESAM/SQL Appendix

738 U22420-J-Z125-12-76

vector_column ::= [table.]

comparison_op ::=

operand ::= expression
pattern ::= expression
character ::= expression
regular_expression ::= expression
flag ::= expression

pragma ::= --%PRAGMA pragma_text,... end_of_line

procedure_parameter ::= unqual_name

procedure_variable ::= unqual_name

qualified_name ::=

index ::= [[catalog.]unqual_schema_name.]unqual_index_name

integrity_constraint_name::= [[catalog.]unqual_schema_name.]unqual_constraint_name

routine::= [[catalog.]unqual_schema_name.]unqual_routine_name

schema ::= [catalog.]unqual_schema_name

space ::= [catalog.]unqual_space_name

stogroup ::= [catalog.]unqual_stogroup_name

table ::=

column[min..max]
column(min..max

=
<
>
<=
>=
<>

index
integrity_constraint_name
routine
schema
space
stogroup
table

[[catalog.]unqual_schema_name.]unqual_basis_table_name
[[catalog.]unqual_schema_name.]unqual_view_name
correlation_name

Appendix Syntax elements of SESAM/SQL

U22420-J-Z125-12-76 739

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

query_expression ::= [query_expression]

regular_expression::= see predicate

regular_name ::= see unqual_name

row ::= see predicate

schema ::= see qualified_name

search_condition ::=

select_expression ::=

 SELECT [] select_list

 FROM table_specification,...

 [WHERE search_condition]

 [GROUP BY column,...]

 [HAVING search_condition]

 select_list ::=

statement_id ::= unqual_name

space ::= see qualified_name

special_literal::=

special_name ::= see unqual_name

UNION []

EXCEPT [DISTINCT]

ALL
DISTINCT

select_expression
TABLE table
join_expression
(query_expression)

predicate

search_condition search_condition

NOT search_condition
(search_condition)

AND
OR

ALL
DISTINCT

*

 ,...
table.*
expression [[AS] column]

CURRENT_CATALOG
CURRENT_ISOLATION_LEVEL
CURRENT_REFERENCED_CATALOG
CURRENT_SCHEMA
[CURRENT_]USER
SYSTEM_USER

Syntax elements of SESAM/SQL Appendix

740 U22420-J-Z125-12-76

string_function ::=

character::= expression
length::= unsigned_integer

stogroup ::= see qualified_name

subquery ::= (query_expression)

table ::= see qualified_name

table_constraint ::=

table_function ::=

table_specification ::=

SUBSTRING (expression FROM startposition [FOR substring_length][USING CODE_UNITS])
TRANSLATE (expression USING [[catalog.]INFORMATION_SCHEMA.] transname

[DEFAULT character] [, length])

TRIM ([[][character] FROM] expression)

LOWER (expression)
UPPER (expression)
HEX_OF_VALUE (expression2)
VALUE_OF_HEX (expression3, data_type)
REP_OF_VALUE (expression2)
VALUE_OF_REP (expression3, data_type)

COLLATE (expression USING [, length])

NORMALIZE(expression [, [, length]])

LEADING
TRAILING
BOTH

DUCET_WITH_VARS
DUCET_NO_VARS

NFC
NFD

UNIQUE (column, ...)
PRIMARY KEY (column,...)
FOREIGN KEY (column, ...) REFERENCES table (column, ...)]
CHECK (search_condition)

CSV ([FILE] file DELIMITER delimiter [QUOTE quote]
[ESCAPE escape], data_type,...)

DEE [()]

table [[AS] correlation_name [(column, ...)]]
unterabfrage [AS] correlation_name [(column, ...)]
TABLE([catalog.]table_function) [WITH ORDINALITY]

[[AS] correlation_name [(column, ...)]]
join_expression

Appendix Syntax elements of SESAM/SQL

U22420-J-Z125-12-76 741

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

time_function ::=

time_literal ::=

udf ::= see qualified_name

udf_name ::= see user_defined_function

udf_parameter ::= unqual_name

unqual_base_table_name ::= unqual_name

unqual_constraint_name ::= unqual_name

unqual_index_name ::= unqual_name

unqual_name ::=

regular_name ::= letter [] ...

special_name ::= "character..."

letter ::= a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z|
A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z

digit ::= 0|1|2|3|4|5|6|7|8|9

unqual_procedure_name ::= unqual_name

unqual_schema_name ::= unqual_name

unqual_space_name ::= unqual_name

unqual_stogroup_name ::= unqual_name

unqual_udf_name ::= unqual_name

unqual_view_name ::= unqual_name

unsigned_integer ::= see numeric_literal

CURRENT_DATE
CURRENT_TIME(3)
LOCALTIME(3)
CURRENT_TIMESTAMP(3)
LOCALTIMESTAMP(3)
DATE_OF_JULIAN_DAY (expression)

DATE 'year-month-day'
TIME 'hour:minute:second'
TIMESTAMP'year-month-day hour:minute:second'

regular_name
special_name

letter
digit
_

Syntax elements of SESAM/SQL Appendix

742 U22420-J-Z125-12-76

user_defined_function ::= unqual_routine_name arguments

arguments ::= ([expression [{,expression}...]])

value ::=

vector_column ::= see predicate

literal
:host_variable [[INDICATOR] :indicator_variable]
routine_parameter
local_variable
?

Appendix Syntax overview of the CSV file

U22420-J-Z125-12-76 743

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

11.2 Syntax overview of the CSV file

Comments in this syntax presentation are enclosed in double quotes ".

CSV_file_format ::= [{ [CSV_record] CSV_record_separator }...] [CSV_record]

CSV_record ::=

CSV_record_separator ::=

CSV_field ::=

CSV_non-empty_field ::=

CSV_plain_field ::= CSV_plain_intro [{ CSV_plain_part }...]

CSV_plain_intro ::=

CSV_plain_part ::=

CSV_quoted_field ::= CSV_quote [{ CSV_quoted part }...] CSV_quote

CSV_quoted_part ::=

CSV_escape_sequence ::=

[{ CSV_field CSV_delimiter }...] CSV_non-empty_field
 { CSV_field CSV_delimiter }...

X'04' "(EBCDIC control character NEL)"
X'0D' "(EBCDIC control character CR)"
X'15' "(EBCDIC control character LF)"
X'25' "(EBCDIC control character)"
"Satzende in einer BS2000-SAM-Datei"

CSV non-empty field
Ë "(leer)"

CSV plain field
CSV quoted field

CSV_escape_sequence
"alle Zeichen mit Ausnahme von CSV_record_separator, CSV_delimiter,
 CSV_escape und CSV_quote"

CSV_escape_sequence
"alle Zeichen mit Ausnahme von CSV_record_separator, CSV_delimiter
 und CSV_escape"

CSV_quote CSV_quote
CSV_escape_sequence
"Satzende in einer BS2000-SAM-Datei"
"alle Zeichen mit Ausnahme von CSV_quote und CSV_escape"

CSV_escape CSV_record_separator
CSV_escape CSV_delimiter
CSV_escape CSV_quote
CSV_escape CSV_escape

Syntax overview of the CSV file Appendix

744 U22420-J-Z125-12-76

CSV_delimiter ::= zeichen

CSV_quote ::= zeichen

CSV_escape ::= zeichen

For details of CSV_delimiter, CSV_quote, and CSV_escape, see also the syntax description of the
CSV function on page 163.

Appendix SQL keywords

U22420-J-Z125-12-76 745

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

11.3 SQL keywords

In SESAM/SQL there are words that are reserved as keywords for SQL and utility
statements. These keywords cannot be used as the names of views, tables, columns, etc.
in SQL or utility statements or when working with the utility monitor, unless you specify the
keyword in the form of a special name.

The synonym processing feature provided by the ESQL precompiler is a convenient way of
replacing keywords or of redefining names.

You can use the precompiler option SOURCE-PROPERTIES to set the ESQL-DIALECT
parameter to ISO, OLD or ALL-FEATURES. This determines whether the SQL dialect ISO,
OLD or FILL has to be used.

The table below lists the reserved keywords and indicates the SQL dialect in which they are
valid.

Keyword ISO OLD FULL

ABS X X

ABSOLUTE X X

ACTION X X

ADD X X

ALL X X X

ALLOCATE X X

ALTER X X

AND X X X

ANY X X X

ARE X X

AS X X X

ASC X X X

ASSERTION X X

AT X X

AUTHORIZATION X X X

AVG X X X

BEGIN X X X

BETWEEN X X X

BIT X X

Table 142: SESAM/SQL keywords (part 1 of 10)

SQL keywords Appendix

746 U22420-J-Z125-12-76

BIT_LENGTH X X

BLOB X X

BOTH X X

BY X X X

CALL X X

CASCADE X X

CASCADED X X

CASE X X

CAST X X

CATALOG X X

CEIL X X

CEILING X X

CHAR X X X

CHARACTER X X X

CHARACTER_LENGTH X X

CHAR_LENGTH X X

CHECK X X X

CLOSE X X X

COALESCE X X

COLLATE X X

COLLATION X X

COLUMN X X

COMMIT X X X

CONNECT X X

CONNECTION X X

CONSTRAINT X X

CONSTRAINTS X X

CONTINUE X X X

CONVERT X X

COPY X

CORRESPONDING X X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 2 of 10)

Appendix SQL keywords

U22420-J-Z125-12-76 747

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

COUNT X X X

CREATE X X X

CROSS X X

CURRENT X X X

CURRENT_CATALOG X X

CURRENT_DATE X X

CURRENT_ISOLATION_LEVEL X

CURRENT_REFERENCED_CATALOG X

CURRENT_SCHEMA X X

CURRENT_TIME X X

CURRENT_TIMESTAMP X X

CURRENT_USER X X

CURSOR X X X

DATA X X

DATE X X

DATE_OF_JULIAN_DAY X

DAY X X

DEALLOCATE X X

DEC X X X

DECIMAL X X X

DECLARE X X X

DECRYPT X

DEFAULT X X X

DEFERRABLE X X

DEFERRED X X

DELETE X X X

DESC X X X

DESCRIBE X X

DESCRIPTOR X X

DIAGNOSTICS X X

DIRECTORY X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 3 of 10)

SQL keywords Appendix

748 U22420-J-Z125-12-76

DISCONNECT X X

DISTINCT X X X

DOMAIN X X

DOUBLE X X X

DROP X X

ELSE X X

ENCRYPT X

END X X X

END-EXEC X

ESCAPE X X X

EXCEPT X X

EXCEPTION X X

EXEC X X X

EXECUTE X X X

EXISTS X X X

EXP X X

EXPORT X

EXTERNAL X X

EXTRACT X X

FALSE X X

FETCH X X X

FIRST X X X

FLOAT X X X

FLOOR X X

FOR X X X

FORCED X

FOREIGN X X X

FOUND X X X

FROM X X X

FULL X X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 4 of 10)

Appendix SQL keywords

U22420-J-Z125-12-76 749

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

GET X X

GLOBAL X X

GO X X X

GOTO X X X

GRANT X X X

GROUP X X X

HAVING X X X

HEX_OF_VALUE X

HOLD X X

HOUR X X

IDENTITY X X

IMMEDIATE X X X

IMPORT X

IN X X X

INDICATOR X X X

INITIALLY X X

INNER X X

INPUT X X

INSERT X X X

INT X X X

INTEGER X X X

INTERSECT X X

INTERVAL X X

INTO X X X

IS X X X

ISOLATION X X

JOIN X X

JULIAN_DAY_OF_DATE X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 5 of 10)

SQL keywords Appendix

750 U22420-J-Z125-12-76

KEY X X X

LANGUAGE X X X

LAST X X X

LEADING X X

LEFT X X

LEVEL X X X

LIKE X X X

LIKE_REGEX X X

LN X X

LOAD X

LOCAL X X

LOCALTIME X X

LOCALTIMESTAMP X X

LOWER X X

MATCH X X

MATCHED X X

MAX X X X

MERGE X X

MIGRATE X

MIN X X X

MINUTE X X

MOD X X

MODIFY X

MODULE X X X

MONTH X X

NAMES X X

NATIONAL X X

NATURAL X X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 6 of 10)

Appendix SQL keywords

U22420-J-Z125-12-76 751

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

NCHAR X X

NEW X X

NEXT X X X

NO X X

NORMALIZE X X

NOT X X X

NULL X X X

NULLIF X X

NUMERIC X X X

NVARCHAR X

OCTET_LENGTH X X

OF X X X

OLD X X

ON X X X

ONLY X X X

OPEN X X X

OPTION X X X

OR X X X

ORDER X X X

OUTER X X

OUTPUT X X

OVERLAPS X X

PARTIAL X X

PERMIT X X

POSITION X X

POWER X X

PRECISION X X X

PREPARE X X X

PRESERVE X X

PRIMARY X X X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 7 of 10)

SQL keywords Appendix

752 U22420-J-Z125-12-76

PRIOR X X X

PRIVILEGES X X X

PROCEDURE X X X

PUBLIC X X X

READ X X X

REAL X X X

RECOVER X

REF X X

REFERENCES X X X

REFRESH X

RELATIVE X X

REORG X

REP_OF_VALUE X

RESTORE X X

RESTRICT X X

RETURN X X X

REVOKE X X

RIGHT X X

ROLLBACK X X X

ROWS X X

SCHEMA X X X

SCOPE X X

SCROLL X X X

SECOND X X

SECTION X X X

SELECT X X X

SESSION X X

SESSION_USER X X

SET X X X

SIGN X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 8 of 10)

Appendix SQL keywords

U22420-J-Z125-12-76 753

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
o

be
r

2
01

6
 S

ta
n

d
11

:1
8

.0
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

5
02

40
0

_S
es

a
m

90
\1

5
02

40
3

_s
bt

1\
en

\s
e

ss
bt

1.
an

h

SIZE X X

SMALLINT X X X

SOME X X X

SORTED X

SQL X X X

SQLCODE X X

SQLERROR X X X

SQLSTATE X X

SQRT X X

STORE X X

SUBSTRING X X

SUM X X X

SYSTEM X X

SYSTEM_USER X X

TABLE X X X

TEMPORARY X X X

THEN X X

TIME X X

TIMESTAMP X X

TIMEZONE_HOUR X X

TIMEZONE_MINUTE X X

TO X X X

TRAILING X X

TRANSACTION X X X

TRANSLATE X X

TRANSLATION X X

TRIM X X

TRUE X X

TRUNC X

UESCAPE X X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 9 of 10)

SQL keywords Appendix

754 U22420-J-Z125-12-76

UNION X X X

UNIQUE X X X

UNKNOWN X X

UNLOAD X

UPDATE X X X

UPPER X X

USAGE X X

USER X X X

USING X X X

VALUE X X

VALUES X X X

VALUE_OF_HEX X

VALUE_OF_REP X

VARCHAR X X

VARYING X X

VIEW X X X

WHEN X X

WHENEVER X X X

WHERE X X X

WITH X X X

WITHOUT X X

WORK X X X

WRITE X X X

YEAR X X

ZONE X X

Keyword ISO OLD FULL

Table 142: SESAM/SQL keywords (part 10 of 10)

U22420-J-Z125-12-76 755

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
31

. O
ct

ob
er

 2
0

16
 S

ta
nd

 1
1:

18
.0

2
P

fa
d

: P
:\F

T
S

-B
S

\D
B

\S
E

S
A

M
\1

50
24

00
_

S
es

am
9

0\
15

0
24

03
_

sb
t1

\e
n\

se
ss

b
t1

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
versions of manuals which are displayed with the order number.

SESAM/SQL-Server (BS2000)
Core manual
User Guide

SESAM/SQL-Server (BS2000)
SQL Reference Manual Part 2: Utilities
User Guide

SESAM/SQL-Server (BS2000)
CALL-DM Applications
User Guide

SESAM/SQL-Server (BS2000)
Database Operation
User Guide

SESAM/SQL-Server (BS2000)
Utility Monitor
User Guide

SESAM/SQL-Server (BS2000)
Messages
User Guide

SESAM/SQL-Server (BS2000)
Performance
User Guide

ESQL-COBOL (BS2000)
ESQL-COBOL for SESAM/SQL-Server
User Guide

http://manuals.ts.fujitsu.com

Related publications

756 U22420-J-Z125-12-76

SESAM-DBAccess
Server-Installation, Administration (available on the manual server only)

U22420-J-Z125-12-76 757

In the index, bold page numbers refer to the main sources of the index entries, while italicized page numbers refer to examples.
The collation sequence is a follows: symbols come before digits which come before letters. A punctuation mark is a symbol.

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

Index

A
ABS() 152
ABSOLUTE (clause) 482
access handle 624
actions for error handling

defining 582
ADD COLUMN (clause) 373
ADD CONSTRAINT (clause) 381
ADD INDEX (clause) 373
ADD VOLUMES (clause) 369
addition, expression 138
AES, encryption algorithm 150
aggregate function 145

AVG() 153
calculate 146
COUNT() 160, 161
in column selection 285
MAX() 186
MIN() 158, 188, 191
SUM() 201
time value 119
with DISTINCT 285

ALL (clause)
AVG() 153
COUNT() 161
MAX() 186
MIN() 188
SELECT 284
SUM() 201
UNION (clause) 313

ALL (predicate) 223
ALL PRIVILEGES (clause) 496, 546
ALL SPECIAL PRIVILEGES (clause) 499, 549

ALLOCATE DESCRIPTOR 365
alphanumeric

data type 84, 87
literal 106, 123
literal. 433
special literal 110, 123

alphanumeric string
transliteration 142, 203

alphanumeric value 106
comparison 219
concatenation 112
enter 112, 122, 129
functions 112
placeholder 124
predicate 112
read 126, 130
transfer 127
use 112

ALTER COLUMN (clause) 374
CALL DML table 383

ALTER COLUMN, exception file 383
ALTER SPACE 367
ALTER STOGROUP 369
ALTER TABLE 68, 371

BLOB table 383
CALL DML table 382

AND (operator) 245
annotation 53

CACHE 55
format 53
IMMUTABLE 55, 335
JOIN 55
VOLATILE 55, 335

Index

758 U22420-J-Z125-12-76

ANY (predicate) 223
argument, function 145
AS (clause) 442, 443
assigning

value 558
assignment

expression 134
assignment rules 121
AT CATALOG (clause) 428, 441, 467, 472
atomic value 103
attribute format 382
AUTHORIZATION (clause) 420, 422
Authorization identifier 467
authorization identifier

creating 441
deleting 472

AUTONOMOUS TRANSACTION (pragma) 54,
56

AVG() 153

B
base table

creating 430
deleting 470
modify 371

BASE_TABLE_COLUMNS 637
BASE_TABLES 636
batch cursor 66
BETWEEN (predicate) 224, 225
BLOB 82, 587

clone create 604
close sequential access 617
create 606, 608
delete 610
object 587
output class REF value 602
read attribute 612
REF value 587
sequential reading 618
SESAM CLI 587
set attribute 615

BLOB table 587
attributes 436
check existence of 600
columns 436
creating 436
deleting 470
MIME (clause) 433
modify 383
structure 436
USAGE (clause) 433

block mode 66, 67
cursor 452
DEALLOCATE DESCRIPTOR 446
DELETE 454
FETCH 481
SET DESCRIPTOR 560
SQL descriptor area 456, 484
STORE 576

blocking factor 66
BS2000 password 379, 384, 422
BS2000 system user 467

C
CACHE (annotation) 55
calculate sum, SUM() 201
CALL 45, 58, 59, 65, 339, 388

time functions 390
transaction logging 389

CALL (SQL statement) 325, 388
CALL DML application

switching 46
CALL DML interface 45
CALL DML only table

conversion 383
CALL DML table 382, 415, 435
CALL DML transaction 45, 397, 554
CALL-DML (clause) 275, 431
calls, SESAM CLI 587
CARE expression

placeholder 530
Cartesian product 299

Index

U22420-J-Z125-12-76 759

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

CASCADE
DROP COLUMN (ALTER TABLE) 380
DROP CONSTRAINT (ALTER TABLE) 381
DROP SCHEMA 459, 462, 463
DROP SPACE 464
DROP TABLE 470
DROP VIEW 473
REVOKE 547, 550, 551, 552

CASE 391
CASE expression 248

simple 251, 252
THEN clause 249, 251
variants 248
with COALESCE 254, 258
with MIN / MAX 257
with NULLIF 253, 253
with search condition 249, 250
withMIN / MAX 255

CAST expression 258, 260, 261, 262
placeholder 532, 534

CASTABLE (predicate) 226
catalog ID, modify 370
catalog space

foreign user ID 422
CATALOG_PRIVILEGES 641
CEILING() 155
CHAR_LENGTH() 156
CHARACTER 84
character

DELIMITER 163
diacritical 191
ESCAPE 164, 231
NEWLINE 166
QUOTE 164
remove 206
remove leading 206

character string
keyword 50
name 50

CHARACTER VARYING 86
CHARACTER_LENGTH() 156
CHARACTER_SETS 642
CHECK (clause) 267, 270
CHECK (pragma) 54

check constraint 264
CHECK_CONSTRAINTS 642
CLI call

data types 590
CLI calls 587

overview 596
SQL_BLOB_CLS_ISBTAB 600
SQL_BLOB_CLS_REF 602
SQL_BLOB_OBJ_CLONE 604
SQL_BLOB_OBJ_CREAT2 608
SQL_BLOB_OBJ_CREATE 606
SQL_BLOB_OBJ_DROP 610
SQL_BLOB_TAG_GET 612
SQL_BLOB_TAG_PUT 615
SQL_BLOB_VAL_CLOSE 617
SQL_BLOB_VAL_FETCH 618
SQL_BLOB_VAL_GET 620
SQL_BLOB_VAL_LEN 622
SQL_BLOB_VAL_OPEN 624
SQL_BLOB_VAL_PUT 627
SQL_BLOB_VAL_STOW 629
SQL_DIAG_SEQ_GET 631

clone create (BLOB) 604
CLOSE 395
closing

Cursor 395
COALESCE (CASE expression) 254
COLLATE() 158
COLLATIONS 643
column 81

add 371
delete 371, 380
expression 136
FOR REF clause 273
multiple 82
NULL value 104
update 371
updating contents 577

column constraint 266, 268
CALL DML table 268
index 268

column definition 272, 276
CALL DML table 275

column element, truncated 377, 379

Index

760 U22420-J-Z125-12-76

column number 449
column privilege

granting 495
revoking 545

COLUMN_PRIVILEGES 648
COLUMNS 644
combination

original and target data type 259, 375
comment 52

in procedure 324
in UDF 333

comments
UDF 333

COMMIT WORK 396
effects 397
in CALL DML transaction 45
in the event of an error 398

compare
two rows 216
two values 220
with derived column 223
with the NULL value 241, 242
with the rows of a table 222

comparison operation 217
comparison operator 216
comparison rules 217

alphanumeric value 219
national value 219
NULL value 218
numeric value 219
time value 219

comparison, quantified 222
COMPOUND 399

exception routine 343
COMPOUND (SQL statement) 328, 399

exception routine 400
in routines 342, 399
terminating 515

compound join 305–??
compound outer join 305, 309
concatenation 107, 110, 138
conditional expression, see CASE expression
CONSISTENCY LEVEL (clause) 571
constraint reporting 574

CONSTRAINT (clause) 274, 432
CONSTRAINT_COLUMN_USAGE 649
CONSTRAINT_TABLE_USAGE 650
content, exception file 384
CONTINUE (WHENEVER) 582
CONTINUE HANDLER 406
control statement

procedure 324, 333, 362
conversion 259, 376

CALL DML only table 383
error file 383

conversion error 376, 379, 384
convert

data type (CAST expression) 258
date 182
Julian day number 169
lowercase characters 142, 209
uppercase characters 142, 185

convertibility query 226
correlated subquery 311, 311
correlation

table 282
correlation name

table 453, 519, 577
correlation name, table 280
count elements, COUNT() 161
COUNT INTO (clause) 508
count table rows

COUNT(*) 160
count table rows, COUNT(*) 160
COUNT, descriptor area field 38
COUNT() 161

NULL value 161
COUNT(*) 160
counting column 508
CREATE FUNCTION 409
CREATE FUNCTION (SQL statement) 332, 409
CREATE INDEX 413
CREATE PROCEDURE 416
CREATE PROCEDURE (SQL statement) 323,

416
CREATE SCHEMA 420
CREATE SCHEMA privilege 500, 550
CREATE SPACE 422

Index

U22420-J-Z125-12-76 761

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

CREATE STOGROUP 425
CREATE STOGROUP privilege 500, 550
CREATE SYSTEM_USER 427
CREATE TABLE 430

BLOB table 436
CALL DML table 435

CREATE USER 441
CREATE USER privilege 500, 550
CREATE VIEW 442
creating

authorization identifier 441
base table 430
index 413
procedure 323, 416
schema 420
space 422
storage group 425
system entry 427
UDF 332, 409
view 442

CROSS (clause) 297
cross join 299, 299
cryptographic function 149

DECRYPT() 170
ENCRYPT() 174

CSV file 163, 164
in temporary file 55
syntax 743

CSV format 163, 165
CSV() 163
current

CURRENT_DATE 167
CURRENT_TIME(3) 168
local time LOCALTIME(3) 184
local time LOCALTIMESTAMP(3) 184
row (FETCH) 481
timestamp CURRENT_TIMESTAMP(3) 168

CURRENT OF (clause) 454, 579
CURRENT_CATALOG 110
CURRENT_DATE 141, 167
CURRENT_ISOLATION_LEVEL 111
CURRENT_REFERENCED_CATALOG 111
CURRENT_SCHEMA 111
CURRENT_TIME(3) 141, 168, 184

CURRENT_TIMESTAMP(3) 141, 168, 184
CURRENT_USER 111
cursor 25

block mode 452
close 29
closing 395
data manipulation 31
declaring 447
define 27
defining 447
dynamic 324, 333, 411, 418
in routine 400
lifetime 27
local in routines 343
NO SCROLL 448
open 28
opening 524
ORDER BY 449
position (FETCH) 27, 28
positioning 481
query expression 448
read-only 26, 28
restore 29
restoring 542
SCROLL 447
store 29
updatable 26, 28, 319
use 28
WITH HOLD 448
with ORDER BY 30
WITHOUT HOLD 448

cursor description
DECLARE 448
dynamic 34

cursor description, PREFETCH pragma 66
cursor position

saving 576
cursor table 25

delete row 29
read row 28
sort rows 27
update row 29

Index

762 U22420-J-Z125-12-76

D
DA_LOGS 650
data

decrypting 149
encryption 149
local in routines 343, 400
sensitive 149

DATA (clause) 564
data access control 149
data type

alphanumeric 84, 87
CHARACTER 84
CHARACTER VARYING 86
combinations 375
compatibility 99
conversion rules 259
convert 258, 376
DATE 96
DECIMAL 92
define 82
DOUBLE PRECISION 94
EXCEPT (clause) 317
fixed-point 91, 92
FLOAT 95
floating-point number 93, 94, 95
grouping 81
groups 80
INTEGER 90
integer 89, 90
modify 374
NATIONAL CHARACTER 87
NATIONAL CHARACTER VARYING 88
NCHAR 87
NUMERIC 91
numeric 89
NVARCHAR 88
overview 83
placeholder 533
querying 456
range of values 81
REAL 93
rules for CASE expression 250
SMALLINT 89
TIME 97

time 96
TIMESTAMP 98
UNION (clause) 314
VARCHAR 86

DATA TYPE (pragma) 54, 57
database

moving 427
routine 322

database (catalog) 72
database file

foreign user ID 384, 422
database name 72
database user ID 422, 424
DATE 96
date

convert 182
time value 117

DATE_OF_JULIAN_DAY 141
DATE_OF_JULIAN_DAY() 169
DATETIME_INTERVAL_CODE

descriptor area field 38
DATETIME_INTERVAL_CODE (clause) 563
DBH option

USERS 47
deactivate logging 367
DEALLOCATE DESCRIPTOR 446
DEBUG ROUTINE (pragma) 54, 58, 339, 363,

388
DEBUG VALUE (pragma) 54, 59, 339
DECIMAL 92
DECLARE CURSOR 447
DECLARE SECTION 20
declaring

cursor 447
DECRYPT() 149, 170
decryption 149
DEE() 173
DEFAULT (clause) 274, 509, 579
default value 123, 274

define 378
defining 402
REF column 273
table column 123

DEFAULT VALUES (clause) 511

Index

U22420-J-Z125-12-76 763

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

define
data type 82
default value 378

defining
cursor 447
default value 402
isolation level 569
transaction mode 569

DELETE 453
block mode 454
transaction management 454

delete
procedure 325

DELETE privilege 497, 547
deleting

authorization identifier 472
base table 470
index 460
procedure 462
row 453
schema 463
space 464
storage group 466
system entry 467
UDF 333, 459
view 473

DELIMITER 163
delimiter (DELIMITER) 163
delimiter symbols 51

operators 52
derived column

dynamic cursor description 35
SELECT list 286

derived columns
data type for EXCEPT 317
data type for UNION 314
select 284

derived rows
grouping 292
select 290

derived table 278
DESCRIBE 456
description format

SQL statements 360

descriptor area 33, 36
assign values 43
create 37
modifying 560
query 44
reading 492
release 44
releasing 446
requesting 365
structure of 37
use values 44

descriptor area field
COUNT 38
DATETIME_INTERVAL_CODE 38
INDICATOR 39
LENGTH 39
NAME 39
NULLABLE 40
OCTET_LENGTH 40
PRECISION 41
REPETITIONS 41
SCALE 42
TYPE 42
UNNAMED 43

DESTROY (clause) 423
determine maximum, MAX() 186
diacritical character 191
diagnostic information 344

outputting 489
diagnostic statement

example 349
procedure 324, 333

diagnostic statements 345
diagnostics management 344
DISTINCT (clause)

AVG 153
COUNT() 161
EXCEPT (clause) 316
MAX() 186
MIN() 188
SELECT 284
SUM() 201
UNION (clause) 313

distribution rule 153

Index

764 U22420-J-Z125-12-76

division, expression 137
DML statement 389, 409, 416
dominant table 298, 303
DOUBLE PRECISION 94
DROP COLUMN (clause) 380
DROP CONSTRAINT (clause) 381
DROP DEFAULT (clause) 374
DROP FUNCTION 459
DROP FUNCTION (SQL statement) 333, 459
DROP INDEX 460
DROP PROCEDURE 462
DROP PROCEDURE (SQL statement) 325, 462
DROP SCHEMA 463
DROP SPACE 464
DROP STOGROUP 466
DROP SYSTEM_USER 467
DROP TABLE 470
DROP USER 472
DROP VIEW 473
DROP VOLUMES (clause) 370
dyadic operator 137, 528
dynamic

cursor 324, 333, 411, 418
SQL statement 324, 333, 411, 418

dynamic cursor description 34
derived column 35
evaluate 35
placeholder 35
prepare 34
read row 35

dynamic statement 32, 478, 527
execute 34
executing 478
prepare 33
SELECT 557

E
Electronic Codebook Mode (ECM) 170, 174
element query 226, 227, 229

placeholder 529
embedding SQL statements in programs

cursor 25
host variable 21
indicator variable 22

ENCRYPT() 149, 174
encryption 149
encryption algorithm AES 150
error file 378, 384

CALL DML only table 383
foreign user ID 384

error handling 24
defining 582

ESCAPE 164, 231
ESCAPE (clause) 231
escape character 230
escape character (ESCAPE) 164, 231
evaluation expression 134
example

cursor (SQL data manipulation) 31
cursor (with ORDER BY) 30
diagnostic statement 349
procedures 326
SQL data manipulation using cursors 31
UDF 336

EXCEPT (clause) 278
exception file

ALTER COLUMN 383
content 384

exception handling
in routines 343
routine 400

exception name 345
exception routine

in COMPOUND 343
in routines 343, 400, 405

EXECUTE 474
execute

dynamic statement 34
procedure 325, 388
statement, conditionally 391

Index

U22420-J-Z125-12-76 765

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

EXECUTE IMMEDIATE 478
statements 479

EXECUTE ON SPECIFIC FUNCTION
(clause) 502, 552

EXECUTE ON SPECIFIC PROCEDURE
(clause) 501, 551

EXECUTE privilege 337
granting 495
revoking 545

executing
prepared statement 474
statement 474, 478
statement, conditionally 503
statement, in loop 486, 516, 538, 584
statements in context 399

existence query 243
EXISTS (predicate) 243
EXIT HANDLER 406
EXPLAIN (pragma) 54, 61
expression 134

addition 138
assignment 134
calculate 134
CASE 139
CAST 139, 258
column 134, 136
concatenation 138
conditional 248
division 137
function 136
multiplication 137
NULL value 105
operand 134
operator 134
precedence 139
predicate 134
subquery 136
subtraction 138
value 136

external reference 145, 230, 241
EXTRACT() 176

F
FETCH 481

block mode 481
in the event of an error 485

Field id 493
FILL (SQL dialect) 745
FIRST (clause) 482
fixed-point number 91, 92, 115, 260
FLAG (clause) 234
FLOAT data type 95
floating-point number 93, 94, 95, 115, 260
FLOOR() 178
FOR 486
FOR READ ONLY (clause) 450
FOR REF (clause) 273
FOR UPDATE (clause)

block mode 66
cursor (DECLARE) 450
PREFETCH pragma 450

FORCED
DROP SPACE 464

foreign key 265
FOREIGN KEY (clause) 270
foreign user ID

catalog space 422
error file 384

format
CSV file 165

free space reservation, modify 367
FROM (clause)

SELECT 288
FROM clause 483
FROM PUBLIC (clause) 546
FULL OUTER (clause) 298
function 140

ABS() 152
aggregate 145
AVG() 153
CEILING() 155
CHAR_LENGTH() 156
COUNT() 161
COUNT(*) 160
cryptographic 149, 170, 174
CSV() 163

Index

766 U22420-J-Z125-12-76

function
CURRENT_DATE 167
CURRENT_TIME(3) 168, 184
CURRENT_TIMESTAMP(3) 168, 184
DATE_OF_JULIAN_DAY() 169
DECRYPT() 149, 170
DEE() 173
ENCRYPT() 149, 174
EXTRACT() 176
FLOOR() 178
HEX_OF_VALUE() 179
LOCALTIME(3) 184
LOCALTIMESTAMP(3) 184
MAX() 186
MIN() 158, 188, 191
MOD() 190
NULL value 105
numeric 144, 182
OCTET_LENGTH() 193
POSITION() 194
REP_OF_VALUE() 195
SIGN() 197
string 142, 158, 179, 185, 191, 195, 198,

203, 206, 209, 210, 212
SUM() 201
table 148, 163, 173
time 169
TRUNC() 208
User Defined Function 151
VALUE_OF_HEX() 210
VALUE_OF_REP() 212

function argument 145
NULL value 146

function call, execute 140

G
GET DESCRIPTOR 492
GET DIAGNOSTICS 489
GET DIAGNOSTICS (SQL statement) 346
GLOBAL (clause) 365
GRANT 495
granting

column privilege 495
EXECUTE privilege 495
special privilege 495
table privilege 495

GROUP BY (clause) 292
aggregate function 292
NULL value 105

grouping, derived rows 292
groups 292

select 294

H
HANDLER

CONTINUE 406
EXIT 406
UNDO 406

HAVING (clause) 294
HEX_OF_VALUE() 179
host language 20
host variable 21

define 21
use 21

I
IF 503
IGNORE (pragma) 54
IMMUTABLE (annotation) 55, 335
IN (predicate) 226, 227, 229
in routines 344
INCLUDE 505
index

add 371
creating 413
deleting 460
integrity constraint 415

INDEX_COLUMN_USAGE 652
INDEXES 651

Index

U22420-J-Z125-12-76 767

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

INDICATOR
descriptor area field 39

INDICATOR (clause) 564
indicator variable

define 22
use 22

information
on routines 338

INFORMATION_SCHEMA, views 634–685
INNER (clause) 297
inner join 299, 301

multiple 302
simple 301

INPUT (clause) 456
INSERT 506, 518

placeholder 533
INSERT (clause) 520
INSERT (table privilege) 518
INSERT privilege 497, 547
insert program text into ESQL programs 505
inserting

program text into ESQL programs 505
row 506, 518

INTEGER 90
integer 89, 90, 115, 260
integrity constraint 264

add 371, 381
delete 371, 381
index 415
INSERT 512
MERGE 522
UPDATE 580

INTO (clause) 474, 483, 556
INTO SQL DESCRIPTOR (FETCH) 484
IS NOT NULL

with multiple columns 242
IS NULL (predicate) 241, 242
ISO (SQL dialect) 745
isolation level 47

defining 569
ISOLATION LEVEL (clause 570
ISOLATION LEVEL (pragma) 48, 54, 63
Item number 492
ITERATE 514

J
join 296

cross 299
inner 299, 301
nested 305
outer 299, 303
type 299
union 304

JOIN (annotation) 55
JOIN (pragma) 54
join algorithm 55
join condition 298
join expression 297
joining

query expressions 278
Julian day number, convert 169
JULIAN_DAY_OF_DATE() 182

K
key 149
KEY_COLUMN_USAGE 653
keyword

character string 50
SQL 745

Index

768 U22420-J-Z125-12-76

L
label

COMPOUND statement 399
FOR statement 486, 538, 584
LOOP statement 516

LAST (clause) 482
LEAVE 515
LEFT OUTER (clause) 298
LENGTH (clause) 373, 414, 564
LENGTH, descriptor area field 39
lexical units 50
LIKE (predicate) 230, 232, 233, 236
LIMIT ABORT_EXECUTION (pragma) 54, 64
literal 101

alphanumeric 106
date 117
national literal 108
numeric 115
special literal 110
string 51
time 117
timestamp 117

local cursors
in routines 343, 400

local data
in routines 343

LOCALTIME(3) 141, 184
LOCALTIMESTAMP(3) 141, 184
LOCK MODE (pragma) 54, 65
locking concept

CALL DML 47
logging, deactivate 367
logical operator 244

AND 245
NOT 246
OR 245

LOOP 516
loop

next loop pass 514
terminating 515

LOOP LIMIT (pragma) 54, 65, 339, 363, 388
loop pass 514
LOWER() 185
lowercase, convert 142, 209

M
MAX() 186
MEDIA_DESCRIPTIONS 654
MEDIA_RECORDS 655
MERGE 518

placeholder 533
requirements 518

merging
CALL DML and SQL statements 45

MIME (clause) 433
MIN / MAX (CASE expression) 257
MIN() 188
MOD() 190
modify

base table 371
catalog identifier 370
data type 374
free space reservation 367
storage group 368, 369

modifying
SQL descriptor area 560

monadic operator 137, 528
moving

database 427
moving a database 427
Multiple column

INSERT 512
multiple column 82

comparison with null value 242
MERGE 522
updating values 580

multiple join 302
multiple value 103
multiplication, expression 137

Index

U22420-J-Z125-12-76 769

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

N
name

defining 78
implicit qualification 76
qualified 75, 77
unqualified 70, 77

name of SQL objects 69
NAME, descriptor area field 39
NATIONAL CHARACTER 87
NATIONAL CHARACTER VARYING 88
national literal 108, 123
national string transliteration 142, 203
national strings transcoding 142
national value 106

concatenation 112
enter 112, 122, 129
functions 112
predicate 112
read 126, 130
use 112

national value transfer 127
NCHAR 87
nested outer join 305
NEWLINE 166
NEWLINE character 166
NEXT (clause) 482
NO DESTROY (clause) 423
NO LOG (clause) 367, 423
NO SCROLL (clause) 448
NO SHARE (clause) 423
non-convertible value 377, 379
non-significant attribute value 378
NORMALIZE() 191
NOT (operator) 246
NOT FOUND (WHENEVER) 582
NOT NULL (clause) 266
NOT NULL constraint 264
notational conventions 16
NULL

(INSERT) 509
(UPDATE) 579

NULL value 104, 150
and encryption 150
CASE 248

column 104
comparison 218
COUNT() 161
expression 105
function 105
function argument 146
GROUP BY clause 105
ORDER BY clause 105
predicate 105
result column with SELECT 286

null value comparison 242
NULLABLE, descriptor area field 40
NULLIF (CASE expression) 253
NUMERIC 91
numeric

data type 89
literal 115

numeric function 144
ABS() 152
CEILING() 155
CHAR_LENGTH() 156
CHARACTER_LENGTH() 156
EXTRACT() 176
FLOOR() 178
JULIAN_DAY_OF_DATE() 182
MOD() 190
OCTET_LENGTH() 193
placeholder 532
POSITION() 194
SIGN() 197
TRUNC() 208

numeric string 51
numeric value

aggregate function 116
comparison 219
enter 116, 122, 130
expression 116
placeholder 125
predicate 116
read 126, 131
time function 116
transfer 127
use 116

NVARCHAR 88

Index

770 U22420-J-Z125-12-76

O
OCTET_LENGTH, descriptor area field 40
OCTET_LENGTH() 193
OF BLOB (clause) 433
OLD (SQL dialect) 745
ON (clause) 520
ON CATALOG (clause) 499, 549
ON STOGROUP (clause) 499, 549
ON TABLE (clause) 414, 496, 546
OPEN 524
opening

cursor 524
openUTM

ROLLBACK WORK 554
system user 467

operand, expression 134
operator

AND 245
comparison 216
expression 134
logical 244
monadic 137
NOT 246
OR 245
predicate 214
search condition 244

OPTIMIZATION (pragma) 54
OR (operator) 245
ORDER BY

cursor 449
NULL value 105

ORDER BY (clause) 30, 449
original data type (CAST expression) 259
OUTER (clause) 298
outer join 299, 303

compound 305
Outer joins 303
OUTPUT

(clause) 456
outputting

diagnostic information 489

P
PARAMETERS 656
Partitioned table 430
PARTITIONS 659
password (BS2000) 379, 422
PASSWORD (clause) 379
password see password (BS2000)
pattern comparison 230, 232, 233, 236

placeholder 530
PCTFREE (clause) 367, 423
performance 371
PERMIT 526
permitted SQL statements in CALL DML

transaction 45
piority, expression 139
placeholder 32

alphanumeric value 124
dynamic cursor description 35
national value 124
numeric value 125
pattern comparison 230
rules with PREPARE 527–533
time value 125

PLAM library 505
POSITION() 194
positioning

cursor 481
pragma 53

AUTONOMOUS TRANSACTION 54, 56
CHECK 54
DATA TYPE 54, 57
DEBUG ROUTINE 54, 58, 339, 363, 388
DEBUG VALUE 54, 59, 339
EXPLAIN 54, 61
format 53
IGNORE 54
in routines 339
ISOLATION LEVEL 48, 54, 63
JOIN 54
LIMIT ABORT_EXECUTION 54, 64
LOCK MODE 54, 65
LOOP LIMIT 54, 65, 339, 363, 388
OPTIMIZATION 54
PREFETCH 53, 54, 66, 450

Index

U22420-J-Z125-12-76 771

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

pragma
SIMPLIFICATION 54
USE 54
UTILITY MODE 54, 68, 371

PRECISION
descriptor area field 41

PRECISION (clause) 564
precompiler options

SOURCE-PROPERTIES 745
predicate 134, 214

ALL 223
ANY 223
BETWEEN 224, 225
calculate 214
CASTABLE 226, 226
compare two rows 216
comparison with derived column 222, 223
comparison with the NULL value 241, 242
convertibility query 226
element query 226, 227, 229
existence query 243
EXISTS 243
IN 227, 229
IS NULL 241, 242
LIKE 230, 232
LIKE_REGEX 233, 236
NULL value 105
operator 214
overview 215
pattern comparison 230, 232, 233, 236
range query 224, 225
search condition 244
SOME 223
truth value 214

PREFETCH (pragma) 53, 54, 66
PREPARE 527

placeholder 527–533
statements 535
validity period 536

prepared statement 474
executing 474

PRIMARY (clause) 423
PRIMARY KEY (clause) 266, 269
PRIMARY KEY constraint 264

PRIOR (clause) 482
priority

search condition 246
private volume

add 369
delete 370

Privilege
view 443

privilege
EXECUTE 337
granting 495
revoking 545

procedure 321, 323
authorization identifier 323, 324, 333, 409,

416
comments 324
control statements 324, 333, 362
creating 323, 416
deleting 325, 462
diagnostic statements 324, 333
examples 326
EXECUTE privilege 337
executing 325, 388
host variables 324
information 338
input and output parameters 323, 417
nested 342, 388, 416
pragmas 339
recursive 416
statements 323, 418
text 323

PUBLIC (clause) 370, 425

Q
qualified name 75, 77
quantified comparison 222
query expression 278

joining 278
updatable 318

QUOTE 164
quote character (QUOTE) 164
quotes, special name 77

Index

772 U22420-J-Z125-12-76

R
range of values 81

CHARACTER 84
CHARACTER VARYING 86
DATE 96
DECIMAL 92
DOUBLE PRECISION 94
FLOAT 95
INTEGER 90
NATIONAL CHARACTER 87
NATIONAL CHARACTER VARYING 88
NUMERIC 91
REAL 93
SMALLINT 89
TIME 97
TIMESTAMP 98

range query 224, 225
placeholder 528

READ COMMITTED (clause) 570
READ ONLY (clause) 572
READ UNCOMMITTED (clause) 570
READ WRITE 518
READ WRITE (clause) 572
reading

descriptor area 492
row 481

REAL 93
RECOVERY_UNITS 660
REF column, definition 273
REF value 100, 273, 587

class 273
class, output 602
structure 273

REF(table) 273
REFERENCES (clause) 266
REFERENCES privilege 497, 548
references to BLOB values 273
Referential constraint 497, 548
referential constraint 265
REFERENTIAL_CONSTRAINTS 662
regular name (SQL) 77
RELATIVE (clause) 483
releasing, descriptor area 446
rename table 280, 282

renaming
table 453, 519, 577

REORG STATISTICS 537
REP_OF_VALUE() 195
REPEAT 538
REPEATABLE READ (clause) 571
REPETITIONS (clause) 562
REPETITIONS, descriptor area field 41
reporting

constraint 574
SQLSTATE 540

RESIGNAL 540
RESIGNAL (SQL statement) 348
RESTORE 542
restoring

cursor 542
RESTRICT

DROP COLUMN (ALTER TABLE) 380
DROP CONSTRAINT (ALTER TABLE) 381
DROP PROCEDURE 459, 462
DROP SCHEMA 463
DROP SPACE 464
DROP TABLE 471
DROP VIEW 473
REVOKE 547, 550, 551, 552

RETURN 544
RETURN (SQL statement) 544
RETURN INTO (clause) 511
return value

UDF 544
REVOKE 545
revoking

column privilege 545
EXECUTE privileges 545
Special privileges 545
table privilege 545

RIGHT OUTER (clause) 298
ROLLBACK WORK 553

in CALL DML transaction 45
rolling back

transaction 553

Index

U22420-J-Z125-12-76 773

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

routine 321
exception routines 400
EXECUTE privilege 337
local cursors 400
local variables 400
nested 411, 418
pragmas 339

ROUTINE_COLUMN_USAGE 668
ROUTINE_PRIVILEGES 669, 718
ROUTINE_ROUTINE_USAGE 670
ROUTINE_TABLE_USAGE 671
ROUTINES 663
row

current (FETCH) 481
deleting 453
inserting 506, 518
reading 481
updating 518

S
SAN, symbolic attribute name 435
saving

cursor position 576
SCALE (clause) 564
SCALE, descriptor area field 42
schema

creating 420
deleting 463

schema name 73
SCHEMATA 672
SCROLL (clause) 447
search condition 244, 247

CASE expression 249
CHECK (clause) 244
evaluate 244
HAVING (clause) 244, 294
ON (clause) 244, 298
operator 244
predicate 244
priority 246
truth value 244
WHERE (clause) 244, 290

SECONDARY (clause) 423
SELECT 555

dynamic statement 557
INTO 556
reading individual rows 555

SELECT ... FROM 288, 288
SELECT ... GROUP BY 293
SELECT ... HAVING 294, 294
SELECT (table privilege) 518
SELECT expression 282
SELECT list 284, 287

placeholder 532
SELECT privilege 497, 547
SELECT/GROUP BY 292
SELECT/WHERE 290, 290
self-defined SQLSTATE 345
sensitive data 149
separator 52, 107, 110
SERIALIZABLE (clause) 571
SESAM CLI 587

calls 587
calls (overview) 596

SESAM/SQL character repertoire 49
SESAM/SQL-Server 15
SET 558
SET CATALOG 559
SET DESCRIPTOR 560
SET SCHEMA 565
SET SESSION AUTHORIZATION 567

in CALL DML transaction 45
SET TRANSACTION 569

in CALL DML transaction 45
SHARE (clause) 423
SIGN() 197
SIGNAL 574
SIGNAL (SQL statement) 346
simple CASE expression 251
SIMPLIFICATION (pragma) 54
SMALLINT 89
SOME (predicate) 223
SOURCE-PROPERTIES (precompiler

option) 745
space

creating 422
deleting 464

space file 424

Index

774 U22420-J-Z125-12-76

space name 73
space parameter

updating 367
SPACES 672
special name 71, 745
special name (SQL) 77
special privilege

granting 495
revoking 545, 549

SQL conversation 47
SQL default value 123, 274, 378, 402
SQL descriptor area

block mode 446, 456, 484, 560
field values 457
modifying 560
releasing 446
requesting 365

SQL dialect 745
SQL keyword 745
SQL statement 353

dynamic 324, 333, 411, 418
dynamic SQL 45, 357
error-free 344
errored 344
executing in routine 322
for data manipulation 397, 594
for management of memory structures 45,

358
for management of user entries 45, 358
for querying and updating data 45, 355
for schema definition and administration 397
for schema definition and management 45,

353, 594
in CALL DML transaction 45
session control 45, 356
successful 344
transaction management 356

SQL statements 360
SQL transaction 396, 569
SQL_BLOB_CLS_ISBTAB 600
SQL_BLOB_CLS_REF 602
SQL_BLOB_OBJ_CLONE 604
SQL_BLOB_OBJ_CREAT2 608
SQL_BLOB_OBJ_CREATE 606

SQL_BLOB_OBJ_DROP 610
SQL_BLOB_TAG_GET 612
SQL_BLOB_TAG_PUT 615
SQL_BLOB_VAL_CLOSE 617, 624
SQL_BLOB_VAL_FETCH 617, 618, 624
SQL_BLOB_VAL_GET 620
SQL_BLOB_VAL_LEN 622
SQL_BLOB_VAL_OPEN 624
SQL_BLOB_VAL_PUT 627
SQL_BLOB_VAL_STOW 617, 624, 629
SQL_DIAG_SEQ_GET 631
SQL_FEATURES 673
SQL_IMPL_INFO 674
SQL_LANGUAGES_S 675
SQL_SIZING 676
SQL-DML transaction 45
SQL-invoked routine 321
SQLda (variable) 591
SQLda_t (variable) 593
SQLerrcol (variable) 591
SQLerrline (variable) 591
SQLerrm (variable) 592
SQLERROR (WHENEVER) 582
SQLrowcount (variable) 592
SQLSTATE

exception handling in routines 343, 400
reporting 540
self-defined 345
unspecified 345, 400

statement
description format 360
dynamic 474, 478, 527
dynamic (PREPARE) 32
executing 474, 478
executing conditionally 391, 503
executing in loop 486, 516, 538, 584
multiple in context 399
prepare (PREPARE) 33
preparing 527
procedure 323, 418
SQL 353
UDF 332, 411

statement identifier 448
STOGROUP_VOLUME_USAGE 677

Index

U22420-J-Z125-12-76 775

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

STOGROUPS 673, 674, 675, 676
storage group

creating 425
deleting 466
modifying 368, 369

STORE 576
block mode 576

stored procedure 321, 323
string 106

alphanumeric literal 51
determine length 144, 156, 193
determine position 144, 194
enter 122, 129
extract substring 198
national literal 51
placeholder 124
read 126, 130
remove characters 206
target data type 261
transfer 127
truncated 376, 379

string function 142, 198
HEX_OF_VALUE() 179
LOWER() 185
placeholder 532
REP_OF_VALUE() 195
TRANSLATE() 203
TRIM() 206
UPPER() 209
VALUE_OF_HEX() 210
VALUE_OF_REP() 212

strings 106
subquery 310

correlated 311
expression 310
FROM (clause) 310
join expression 310
predicate 310

substring 107, 110, 142, 198
SUBSTRING() 198
subtraction, expression 138
success, monitor 24
SUM() 201
switching CALL DML application 46

symbolic attribute name (SAN) 435
syntax

CSV file 743
SESAM/SQL 731

SYS_CATALOGS 688
SYS_CHECK_USAGE 689
SYS_COLUMNS 690
SYS_DA_LOGS 694
SYS_DBC_ENTRIES 695
SYS_DML_RESOURCES 697
SYS_ENVIRONMENT 698
SYS_INDEXES 699
SYS_INFO_SCHEMA 686, 688

views 686–729
SYS_LOCK_CONFLICTS 701
SYS_MEDIA_DESCRIPTIONS 705
SYS_PARAMETERS 706
SYS_PARTITIONS 707
SYS_PRIVILEGES 709
SYS_RECOVERY_UNITS 710
SYS_REFERENTIAL_CONSTRAINTS 713
SYS_ROUTINE_ERRORS 716
SYS_ROUTINE_ROUTINE_USAGE 718
SYS_ROUTINE_USAGE 719
SYS_ROUTINES 714
SYS_SCHEMATA 719
SYS_SPACE_PROPERTIES 721
SYS_SPACES 720
SYS_SPECIAL_PRIVILEGES 723
SYS_STOGROUPS 724
SYS_TABLE_CONSTRAINTS 725
SYS_TABLES 724
SYS_UNIQUE_CONSTRAINTS 726, 727
SYS_USAGE_PRIVILEGES 728
SYS_USERS 728
SYS_VIEW_USAGE 729
System entry 472
system entry

creating 427
deleting 467

system user 467
SYSTEM_ENTRIES 678
SYSTEM_USER 111

Index

776 U22420-J-Z125-12-76

T
table

correlation name 280, 282, 453, 519, 577
dominant 298, 303
partitioned 430
reading a BS2000 file 163
rename 282
specifying (SELECT...FROM) 288
without columns 173

TABLE (clause) 432
TABLE (table query) 295
table constraint 269, 271

CALL DML table 271
index 271

Table function 148
table function

CSV() 163
DEE() 173

table name 76
table privilege

granting 495
revoking 545

table query 295
table specification 279
table type 371, 382
TABLE_CONSTRAINTS 679
TABLE_PRIVILEGES 680
TABLES 678
target data type (CAST expression) 259, 260,

261, 262
temporary file

for CSV file 55
terminating

COMPOUND statement 515
loop 515
transaction 396

time
time value 117

TIME data type 97
time data type

96, 262
time function 141

CALL 390
CURRENT_DATE 167

CURRENT_TIME(3) 168, 184
CURRENT_TIMESTAMP(3) 168, 184
DATE_OF_JULIAN_DAY() 169
LOCALTIME(3) 184
LOCALTIMESTAMP(3) 184

time value 117
aggregate function 119
compare 119
comparison 219
date 117
enter 119, 122, 130
in CAST expressions 119
numeric function 119
placeholder 125
separators 118
time 117
timestamp 117
use 119

timestamp
time value 117

TIMESTAMP data type 98
TO PUBLIC (clause) 496
transaction

initiate 594
rolling back 553
terminating 396

transaction logging 68, 371, 384
CALL 389

transaction management
DELETE 454
INSERT 512, 522
UPDATE 580

transaction mode
defining 569

transcoding 142
transfer

read 126, 131
transfer 127

TRANSLATE() 203
transliteration

alphanumeric string 203
national string 203

transliteration name 203
TRIM() 206

Index

U22420-J-Z125-12-76 777

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
3

1.
 O

ct
ob

er
 2

01
6

 S
ta

n
d

11
:1

8
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\S

E
S

A
M

\1
5

02
40

0
_S

es
am

90
\1

5
02

40
3

_s
bt

1\
en

\s
es

sb
t1

.s
ix

TRUNC() 208
truncated

column element 377, 379
string 376, 379

truth value
predicate 214
search condition 244

TYPE (clause) 563
TYPE, descriptor area field 42
type, join 299

U
UDF 321, 332

authorization identifier 332
comments 333
creating 332, 409
deleting 333, 459
example 336
EXECUTE privilege 337
executing 333
host variables 333
information 338
input parameters 332
nested 409
parameters 410
pragmas 339
recursive 409
return value 544
statements 332, 411
text 332

UNDO HANDLER 406
UNION (clause) 278, 313
UNION (join operator) 298, 304
union join 304, 304
UNIQUE (clause) 266, 269
UNIQUE constraint 264
UNNAMED, descriptor area field 43
unqualified name 70, 77

identical 71
unspecified SQLSTATE 345, 400
updatable

cursor 26, 28, 319
query expression 318
view 318, 443, 580

UPDATE 518, 577
multiple column 580
placeholder 533

UPDATE (clause) 520
UPDATE (table privilege) 518
UPDATE privilege 497, 547
updating

column value 577
row 518
space parameters 367

UPPER() 209
uppercase, convert 142, 185
USAGE (clause) 433
USAGE privilege 500, 550
USAGE_PRIVILEGES 681, 682
USE (pragma) 54
USER 111
User Defined Function 151, 321, 332
user space

creating 422
maximum size 422

user space.
deleting 464

User-Close
CALL DML 47

USERS 683
USING (clause) 476, 519, 524
USING DESCRIPTOR (clause) 477
USING DESCRIPTOR (OPEN) 525
USING FILE (clause) 378
USING PARTITION BY RANGE (clause) 433
USING SPACE (clause) 374, 414, 433
USING STOGROUP (clause) 368, 424
UTILITY MODE (pragma) 54, 68, 371, 379
UTILITY privilege 500, 550

Index

778 U22420-J-Z125-12-76

V
value 100

alphanumeric 106
assigning 558
atomic 103
date 117
enter in table column 121
expression 136
for placeholder 124
grouping 100
input parameter for routine 129
local variable 130
multiple 103
multiple column 103
national value 106
non-convertible 377, 379
NULL value 104
numeric 115
output parameter for procedure 130
read into descriptor area 125
read into host variable 125
REF value 273
specifying 102
table column 123
time 117
timestamp 117
transfer 127

VALUE (clause) 561
VALUE_OF_HEX() 210
VALUE_OF_REP() 212
VALUES (clause) 509, 521
VARCHAR 86
view

creating 442
deleting 473
INFORMATION_SCHEMA 634–685
privileges 443
SYS_INFO_SCHEMA 686–729
updatable 318, 443

VIEW_COLUMN_USAGE 684
VIEW_ROUTINE_USAGE 684, 730
VIEW_TABLE_USAGE 685
VOLATILE (annotation) 55, 335
VOLUMES (clause) 425

W
WHENEVER 24, 45, 582
WHERE (clause) 453, 579

SELECT 290
WHILE 584
WITH CHECK OPTION (clause) 443
WITH GRANT OPTION (clause) 497
WITH HOLD (clause) 448
WITH ORDINALITY 279
WITHOUT HOLD (clause) 448

	Content
	Preface
	Objectives and target groups of this manual
	Summary of contents
	Notational conventions

	Embedding of SQL in programs
	Program structure
	Host variables
	Defining host variables
	Using host variables
	Indicator variables
	Defining indicator variables
	Using indicator variables

	Monitoring success and error handling
	Monitoring success
	Error handling

	Cursor
	Read-only cursors
	Updatable cursors
	Defining a cursor
	Opening a cursor
	Position cursor and read row
	Updating or deleting a row
	Storing a cursor
	Close a cursor
	Restore a cursor
	Cursor examples

	Dynamic SQL
	Dynamic statement
	Prepare a dynamic statement
	Querying the data types of the placeholders and values
	Execute a dynamic statement

	Dynamic cursor descriptions
	Preparing dynamic cursor descriptions
	Determining the SQL data types of the placeholders
	Determining the SQL data types of the derived columns
	Evaluating dynamic cursor descriptions
	Storing results

	Descriptor area
	Creating a descriptor area
	Structure of a descriptor area
	Descriptor area fields
	Assigning values to the descriptor area
	Querying the descriptor area
	Using values from the descriptor area
	Releasing the descriptor area

	SQL statements in CALL DML transactions
	Step-by-step conversion of CALL DML statements
	Using User-Close and release session resources
	Setting the isolation level

	Lexical elements and names
	SESAM/SQL character repertoire
	Lexical units
	Strings
	Numerics
	Delimiter symbols
	Separators
	Comments

	Pragmas and annotations
	AUTONOMOUS TRANSACTION pragma
	DATA TYPE pragma
	DEBUG ROUTINE pragma
	DEBUG VALUE pragma
	EXPLAIN pragma
	ISOLATION LEVEL pragma
	LIMIT ABORT_EXECUTION pragma
	LOCK MODE pragma
	LOOP LIMIT pragma
	PREFETCH pragma
	UTILITY MODE pragma

	Names
	Unqualified names
	Qualified names
	Defining names

	Data types and values
	Overview of data types and the associated value ranges
	Data type groups
	Range of values
	Column
	Parameters of routines and local variables

	Data types
	Overview of SQL data types
	Alphanumeric and national data types
	CHARACTER - String with a fixed length
	CHARACTER VARYING - String with a variable length
	NATIONAL CHARACTER - Strings with a fixed length
	NATIONAL CHARACTER VARYING - Strings with a variable length

	Numeric data types
	SMALLINT - Small integer
	INTEGER - Integers
	NUMERIC - Fixed-point numbers
	DECIMAL - Fixed-point numbers
	REAL- Single-precision floating-point numbers
	DOUBLE PRECISION - Double-precision floating-point numbers
	FLOAT - Floating-point numbers

	Time data types
	DATE
	TIME
	TIMESTAMP

	Compatibility between data types

	Values
	Literals
	Specifying values
	Values for multiple columns
	NULL value
	Keyword for the NULL value
	NULL value in table columns
	NULL value in functions, expressions and predicates
	NULL value in GROUP BY
	NULL value in ORDER BY

	Strings
	Alphanumeric literals
	National literals
	Special literals
	Using strings

	Numeric values
	Numeric literals
	Using numeric values

	Time values
	Time literals
	Using time values

	Assignment rules
	Entering values in table columns
	Default values for table columns
	Values for placeholders
	Reading values into host variables or a descriptor area
	Transferring values between host variables and a descriptor area
	Modifying the target data type by means of the CAST operator
	Supplying input parameters for routines
	Entering values in a procedure parameter (output) or local variable

	Compound language constructs
	Expression
	Function
	Time functions
	String functions
	Numeric functions
	Aggregate functions
	Table functions
	Cryptographic functions
	User Defined Functions (UDFs)
	Alphabetical reference section: Functions
	ABS() - Absolute value
	AVG() - Arithmetic average
	CEILING() - Smallest integer greater than the value
	CHAR_LENGTH() - Determine string length
	COLLATE() - Determine collation element for national strings
	COUNT(*) - Count table rows
	COUNT() - Count elements
	CSV() - Reading a BS2000 file as a table
	CURRENT_DATE - Current date
	CURRENT_TIME(3) - Current time
	CURRENT_TIMESTAMP(3) - Current time stamp
	DATE_OF_JULIAN_DAY() - Convert Julian day number
	DECRYPT() - Decrypt data
	DEE() - Table without columns
	ENCRYPT() - Encrypt data
	EXTRACT() - Extract components of a time value
	FLOOR() - Largest integer less than the value
	HEX_OF_VALUE() - Present any value in hexadecimal format
	JULIAN_DAY_OF_DATE() - Convert date
	LOCALTIME(3) - Current local time
	LOCALTIMESTAMP(3) - Current local time stamp
	LOWER() - Convert uppercase characters
	MAX() - Determine largest value
	MIN() - Determine lowest value
	MOD() - Remainder of an integer division (modulo)
	NORMALIZE() - Convert national string to normal form
	OCTET_LENGTH() - Determine string length
	POSITION() - Determine string position
	REP_OF_VALUE() - Present any value as a string
	SIGN() - Determine sign
	SUBSTRING() - Extract substring
	SUM() - Calculate sum
	TRANSLATE() - Transliterate / transcode string
	TRIM() - Remove characters
	TRUNC() - Remove decimal places
	UPPER() - Convert lowercase characters
	VALUE_OF_HEX() - Present hexadecimal format as a value
	VALUE_OF_REP() - Present a string as a value

	Predicates
	Comparison of two rows
	Comparison rules

	Quantified comparison (comparison with the rows of a table)
	BETWEEN predicate (range query)
	CASTABLE predicate (convertibility check)
	IN predicate (elementary query)
	LIKE predicate (simple pattern comparison)
	LIKE_REGEX predicate (pattern comparison with regular expressions)
	NULL predicate (comparison with the NULL value)
	EXISTS predicate (existence query)

	Search conditions
	CASE expression
	CASE expression with search condition
	Simple CASE expression
	CASE expression with NULLIF
	CASE expression with COALESCE
	CASE expression with MIN / MAX

	CAST expression
	Integrity constraint
	Column constraints
	Table constraints

	Column definitions

	Query expression
	Table specifications
	SELECT expression
	SELECT list - Select derived columns
	SELECT...FROM - Specify table
	SELECT...WHERE - Select derived columns
	SELECT...GROUP BY - Group derived rows
	SELECT...HAVING - Select groups

	TABLE - Table query
	Joins
	Join expression
	Joins without join expression
	Join types
	Cross joins
	Inner joins
	Outer joins
	Union joins
	Compound joins

	Subquery
	Correlated subqueries

	Combining query expressions with UNION
	Combining query expressions with EXCEPT
	Updatability of query expressions
	Rules for updatable query expressions
	Updatable view
	Update via cursor

	Routines
	Procedures (Stored Procedures)
	Creating a procedure
	Execute a procedure
	Delete a procedure
	Examples of procedures

	User Defined Functions (UDFs)
	Creating a UDF
	Executing a UDF
	Deleting a UDF
	Uncorrelated function calls
	Examples of UDFs

	EXECUTE privilege for routines
	Information on routines
	Pragmas in routines
	Control statements in routines
	COMPOUND statement in routines
	Diagnostic information in routines

	SQL statements
	Summary of contents
	SQL statements for schema definition and administration
	SQL statements for querying and updating data
	SQL statements for transaction management
	SQL statements for session control
	SQL statements for dynamic SQL
	WHENEVER statement for ESQL error handling
	SQL statements for managing the storage structure
	SQL statements for managing user entries
	Utility statements
	Control statements
	Diagnostic statements

	Descriptions in alphabetical order
	Description format
	SQL statements in routines
	SQL statement descriptions
	ALLOCATE DESCRIPTOR - Request SQL descriptor area
	ALTER SPACE - Modify space parameters
	ALTER STOGROUP - Modify storage group
	ALTER TABLE - Modify base table
	CALL - Execute procedure
	CASE - Execute SQL statements conditionally
	CLOSE - Close cursor
	COMMIT WORK - Terminate transaction
	COMPOUND - Execute SQL statements in a common context
	CREATE FUNCTION - Create User Defined Function (UDF)
	CREATE INDEX - Create index
	CREATE PROCEDURE - Create procedure
	CREATE SCHEMA - Create schema
	CREATE SPACE - Create space
	CREATE STOGROUP - Create storage group
	CREATE SYSTEM_USER - Create system entry
	CREATE TABLE - Create base table
	CREATE USER - Create authorization identifier
	CREATE VIEW - Create view
	DEALLOCATE DESCRIPTOR - Release SQL descriptor area
	DECLARE CURSOR - Declare cursor
	DELETE - Delete rows
	DESCRIBE - Query data type of input and output values
	DROP FUNCTION - Delete User Defined Function (UDF)
	DROP INDEX - Delete index
	DROP PROCEDURE - Delete procedure
	DROP SCHEMA - Delete schema
	DROP SPACE - Delete space
	DROP STOGROUP - Delete storage group
	DROP SYSTEM_USER - Delete system entry
	DROP TABLE - Delete base table
	DROP USER - Delete authorization identifier
	DROP VIEW - Delete view
	EXECUTE - Execute prepared statement
	EXECUTE IMMEDIATE - Execute dynamic statement
	FETCH - Position cursor and read row
	FOR - Execute SQL statements in a loop
	GET DIAGNOSTICS - Output diagnostic information
	GET DESCRIPTOR - Read SQL descriptor area
	GRANT - Grant privileges
	IF - Execute SQL statements conditionally
	INCLUDE - Insert program text into ESQL programs
	INSERT - Insert rows in table
	ITERATE - Switch to the next loop pass
	LEAVE - Terminate a loop or COMPOUND statement
	LOOP - Execute SQL statements in a loop
	MERGE - Insert rows in a table or update column values
	OPEN - Open cursor
	PERMIT - Specify user identification for SESAM/SQL V1.x
	PREPARE - Prepare dynamic statement
	REORG STATISTICS - Re-generate global statistics
	REPEAT - Execute SQL statements in a loop
	RESIGNAL - Report exception in local exception routine
	RESTORE - Restore cursor
	RETURN - Supply the return value of a User Defined Function (UDF)
	REVOKE - Revoke privileges
	ROLLBACK WORK - Roll back transaction
	SELECT - Read individual rows
	SET - Assign value
	SET CATALOG - Set default database name
	SET DESCRIPTOR - Update SQL descriptor area
	SET SCHEMA - Specify default schema name
	SET SESSION AUTHORIZATION - Set authorization identifier
	SET TRANSACTION - Define transaction attributes
	SIGNAL - Report exception in routine
	STORE - Save cursor position
	UPDATE - Update column values
	WHENEVER - Define error handling
	WHILE - Execute SQL statements in a loop

	SESAM-CLI
	Concept of the SESAM CLI
	Structure of SESAM CLI calls
	Statements that initiate transactions in CLI calls

	SESAM CLI calls
	Overview
	Alphabetical reference section
	SQL_BLOB_CLS_ISBTAB - SQLbcis
	SQL_BLOB_CLS_REF - SQLbcre
	SQL_BLOB_OBJ_CLONE - SQLbocl
	SQL_BLOB_OBJ_CREATE - SQLbocr
	SQL_BLOB_OBJ_CREAT2 - SQLboc2
	SQL_BLOB_OBJ_DROP - SQLbodr
	SQL_BLOB_TAG_GET - SQLbtge
	SQL_BLOB_TAG_PUT - SQLbtpu
	SQL_BLOB_VAL_CLOSE - SQLbvcl
	SQL_BLOB_VAL_FETCH - SQLbvfe
	SQL_BLOB_VAL_GET - SQLbvge
	SQL_BLOB_VAL_LEN - SQLbvle
	SQL_BLOB_VAL_OPEN - SQLbvop
	SQL_BLOB_VAL_PUT - SQLbvpu
	SQL_BLOB_VAL_STOW - SQLbvst
	SQL_DIAG_SEQ_GET - SQLdsg

	Information schemas
	Views of the INFORMATION_SCHEMA
	BASE_TABLES
	BASE_TABLE_COLUMNS
	CATALOG_PRIVILEGES
	CHARACTER_SETS
	CHECK_CONSTRAINTS
	COLLATIONS
	COLUMNS
	COLUMN_PRIVILEGES
	CONSTRAINT_COLUMN_USAGE
	CONSTRAINT_TABLE_USAGE
	DA_LOGS
	INDEXES
	INDEX_COLUMN_USAGE
	KEY_COLUMN_USAGE
	MEDIA_DESCRIPTIONS
	MEDIA_RECORDS
	PARAMETERS
	PARTITIONS
	RECOVERY_UNITS
	REFERENTIAL_CONSTRAINTS
	ROUTINES
	ROUTINE_COLUMN_USAGE
	ROUTINE_PRIVILEGES
	ROUTINE_ROUTINE_USAGE
	ROUTINE_TABLE_USAGE
	SCHEMATA
	SPACES
	SQL_FEATURES
	SQL_IMPL_INFO
	SQL_LANGUAGES_S
	SQL_SIZING
	STOGROUPS
	STOGROUP_VOLUME_USAGE
	SYSTEM_ENTRIES
	TABLES
	TABLE_CONSTRAINTS
	TABLE_PRIVILEGES
	TRANSLATIONS
	USAGE_PRIVILEGES
	USERS
	VIEWS
	VIEW_COLUMN_USAGE
	VIEW_ROUTINE_USAGE
	VIEW_TABLE_USAGE

	Views of the SYS_INFO_SCHEMA
	SYS_CATALOGS
	SYS_CHECK_CONSTRAINTS
	SYS_CHECK_USAGE
	SYS_COLUMNS
	SYS_DA_LOGS
	SYS_DBC_ENTRIES
	SYS_DML_RESOURCES
	SYS_ENVIRONMENT
	SYS_INDEXES
	SYS_LOCK_CONFLICTS
	SYS_MEDIA_DESCRIPTIONS
	SYS_PARAMETERS
	SYS_PARTITIONS
	SYS_PRIVILEGES
	SYS_RECOVERY_UNITS
	SYS_REFERENTIAL_CONSTRAINTS
	SYS_ROUTINES
	SYS_ROUTINE_ERRORS
	SYS_ROUTINE_PRIVILEGES
	SYS_ROUTINE_ROUTINE_USAGE
	SYS_ROUTINE_USAGE
	SYS_SCHEMATA
	SYS_SPACES
	SYS_SPACE_PROPERTIES
	SYS_SPECIAL_PRIVILEGES
	SYS_STOGROUPS
	SYS_SYSTEM_ENTRIES
	SYS_TABLES
	SYS_TABLE_CONSTRAINTS
	SYS_UNIQUE_CONSTRAINTS
	SYS_USAGE_PRIVILEGES
	SYS_USERS
	SYS_VIEW_USAGE
	SYS_VIEW_ROUTINE_USAGE

	Appendix
	Syntax elements of SESAM/SQL
	Syntax overview of the CSV file
	SQL keywords

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

