
Edition July 2016

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

4_
16

01
2

00
\0

2_
K

D
C

S
\e

n\
kp

ro
g

_e
.v

or

English

openUTM V6.4
Programming Applications with KDCS for COBOL, C and C++

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2016 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Programming Applications with KDCS

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

li
20

16
 S

ta
nd

 1
3:

00
.0

2
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
4_

16
0

12
0

0\
02

_K
D

C
S

\e
n

\k
pr

og
_

e.
iv

z

Contents

1 Preface . 11

1.1 Summary of contents and target group . 13

1.2 Summary of contents of the openUTM documentation 14
1.2.1 openUTM documentation . 14
1.2.2 Documentation for the openSEAS product environment 19
1.2.3 Readme files . 20

1.3 Innovations in openUTM V6.4 . 21
1.3.1 New server functions . 21
1.3.2 New client functions . 24
1.3.3 New and modified functions for openUTM WinAdmin 25
1.3.4 New functions for openUTM WebAdmin . 25

1.4 Notational conventions . 27

2 Structure and use of UTM programs . 29

2.1 The openUTM service concept . 32

2.2 Structure of a program unit . 35
2.2.1 Program framework . 35
2.2.2 Structure of a dialog program unit . 37
2.2.3 Reentrant capability of program units . 39

2.3 Structuring services . 40
2.3.1 Multi-step services . 40
2.3.2 Multiple program units in one processing step . 44
2.3.3 Multiple processing steps in a single program unit 46
2.3.4 Subprogram calls from program units . 47
2.3.5 Chaining services . 47
2.3.6 Stacking services . 48

2.4 Message Queuing (asynchronous processing) 50
2.4.1 Messages to UTM-controlled queues . 51

Contents

 Programming Applications with KDCS

2.4.1.1 Output jobs . 51
2.4.1.2 Background jobs . 52
2.4.1.3 MQ calls of the KDCS interface . 52
2.4.1.4 Structure of an asynchronous service . 53
2.4.1.5 Redelivery with background jobs . 60
2.4.1.6 Saving incorrectly processed messages in the dead letter queue 60
2.4.2 Messages to service-controlled queues . 61
2.4.2.1 USER queues . 61
2.4.2.2 TAC queues . 62
2.4.2.3 Temporary queues . 63
2.4.2.4 MQ calls of the KDCS interface . 64
2.4.2.5 Lifetime of queues and queue messages . 64
2.4.2.6 Deleting USER and TAC queues by means of programmed administration 65
2.4.2.7 Examples . 66

2.5 KDCS storage areas in openUTM . 74
2.5.1 Standard primary working area (SPAB) . 78
2.5.2 Communication area (KB) . 80
2.5.3 Local secondary storage area (LSSB) . 82
2.5.4 Global secondary storage area (GSSB) . 83
2.5.5 Terminal-specific long-term storage area (TLS) . 84
2.5.6 User-specific long-term storage area (ULS) . 85
2.5.7 User log file . 86
2.5.8 Other areas . 87
2.5.9 Action with locked storage areas (TLS, ULS and GSSB) 88

2.6 Programming error routines . 89

2.7 Message segments . 90

2.8 Communication partners of a UTM application 92

2.9 Output to printers . 94
2.9.1 Hardcopy mode with openUTM . 94
2.9.2 Print jobs . 95

2.10 Support for ID card readers . 97
2.10.1 Signing on to the application via ID card reader . 97
2.10.2 Data input via ID card . 98

Contents

Programming Applications with KDCS

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.iv
z

3 Interaction with databases . 99

3.1 UTM transaction and DB transaction . 101

3.2 Programming ESQL program units . 103

3.3 Error processing with connected databases . 104

4 Screen functions . 105

4.1 Use of formats in openUTM on BS2000 systems 105
4.1.1 Screen output functions in format mode . 108
4.1.2 Starting services using basic formats . 109
4.1.3 Using partial formats . 111
4.1.3.1 Output formatting with partial formats . 111
4.1.3.2 Input formatting with partial formats . 112
4.1.4 Message flow for formatted messages . 114
4.1.5 Outputs on printers in format mode . 115

4.2 Controlling the output in line mode (BS2000 systems) 116

4.3 Output on printers in line mode . 118

4.4 Screen restart . 119

4.5 Format names for message exchange with UPIC clients 120

5 Program structure in distributed processing . 121

5.1 Addressing remote services . 122

5.2 Distributed dialogs . 124
5.2.1 Controlling communication in the program . 124
5.2.2 Error handling by the program unit . 125
5.2.2.1 Programmed rollback . 125
5.2.2.2 Error handling after service restart . 128
5.2.3 Load distribution using LPAP bundles . 131

5.3 Distributed dialogs via LU6.1 . 132
5.3.1 Programming aids . 132
5.3.2 Programming rules and recommendations . 134
5.3.3 Existing program units as LU6.1 job receivers . 141
5.3.4 Example: distributed dialog via LU6.1 . 143

Contents

 Programming Applications with KDCS

5.4 Distributed dialogs via OSI TP . 147
5.4.1 Functional units . 147
5.4.2 Programming aids . 149
5.4.3 Programming rules for dialogs without the functional unit commit 154
5.4.4 Programming rules with the functional unit commit 154
5.4.5 Programming rules for communications with BeanConnect 157
5.4.6 Particularities of rollback and restart . 158
5.4.7 Using existing program units for OSI TP communication 160
5.4.8 Particularities with heterogeneous coupling . 162
5.4.9 Examples: distributed dialogs via OSI TP . 164
5.4.9.1 One job receiver . 165
5.4.9.2 Multiple job receivers . 178
5.4.9.3 More complex dialog trees . 180
5.4.9.4 Using CTRL AB to terminate a job receiver . 189

5.5 UTM-controlled queues in distributed processing 191
5.5.1 Job submitter side . 192
5.5.2 Job receiver side . 193

5.6 Service-controlled queues in distributed processing 194

6 Program structure in communication with transport system applications . . . 195

6.1 Communication with TS applications of the type APPLI 195

6.2 Communication via socket connections . 196
6.2.1 Input messages for openUTM . 196
6.2.2 Output messages of openUTM . 198
6.2.3 Structure of the socket protocol header . 199

7 KDCS calls . 201

Complete overview of KDCS calls . 202
Comments on the description of the KDCS calls 205
APRO Address job-receiving service . 206
CTRL Control OSI TP Dialog . 216
DADM Administer message queues . 221
DGET Read a message from a service-controlled queue 230
DPUT Generate time-driven asynchronous messages 241
DPUT call without job complex . 242
DPUT call in a job complex . 255
FGET Receive asynchronous message . 263
FPUT Generating asynchronous messages . 269

Contents

Programming Applications with KDCS

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.iv
z

GTDA Read from TLS . 279
INFO Request information . 283
INFO CK call . 295
INIT Initialize program unit . 298
LPUT Write to log file . 322
MCOM Define job complex . 325
MGET Receive dialog message . 330
MPUT Send dialog message . 347
PADM Administer printouts and printers . 359
PEND Terminate program unit . 367
PGWT Set wait point in program without terminating program unit 380
PTDA Write to TLS . 390
QCRE Create temporary queue . 394
QREL Delete temporary queue . 399
RSET Roll back transaction . 402
SGET Read from secondary storage area . 406
SIGN Control sign-on and sign-off, check authorization data, change passwords . . 412
SIGN CL - Change locale of user ID . 423
SPUT Write to secondary storage area . 427
SREL Delete secondary storage area . 433
UNLK Unlock TLS, ULS or GSSB . 437

8 Event functions . 441

8.1 Event exits . 443
8.1.1 Event exit INPUT . 443
8.1.2 Event exit START . 451
8.1.3 Event exit SHUT . 452
8.1.4 Event exit VORGANG . 453
8.1.5 Event exit FORMAT (BS2000 systems) . 455

8.2 STXIT routines (BS2000 systems) . 463

8.3 Event handling in ILCS programs (BS2000 systems) 464

8.4 Event services . 466
8.4.1 Dialog service BADTACS . 466
8.4.2 Asynchronous service MSGTAC . 467
8.4.3 The SIGNON service . 470
8.4.3.1 Programming notes . 471
8.4.3.2 Sign-on service for terminals . 472
8.4.3.3 Sign-on service for UPIC clients or transport system applications 475

Contents

 Programming Applications with KDCS

9 Additional information for C/C++ . 479

9.1 Program structure for C/C++ program units . 479
9.1.1 C/C++ program units as subroutines . 479
9.1.2 Parameters of a C/C++ program unit . 481
9.1.3 Declaring data . 482
9.1.3.1 Communication area . 482
9.1.3.2 Standard primary working area . 482
9.1.3.3 Other data areas (AREAs) . 483
9.1.4 Data structures for C/C++ program units . 488
9.1.5 Command section of a C/C++ program unit . 490
9.1.6 C/C++ macro interface . 491
9.1.7 Event exits . 496
9.1.8 Programming the KDCS error handling routines 497
9.1.9 Modifying KDCS attributes . 498
9.1.10 Platform-specific characteristics on BS2000 systems 499
9.1.11 Platform-specific characteristics on Unix and Linux systems 501
9.1.12 Platform-specific characteristics on Windows systems 501

9.2 Programming examples in C/C++ . 502
9.2.1 Examples of individual KDCS calls . 502
9.2.2 Example of a complete C program unit . 507
9.2.3 Example: INPUT exit . 508
9.2.4 Example: MSGTAC event service . 511
9.2.5 Example of a complete UTM application . 516

10 Additional information for COBOL . 535

10.1 Structure of COBOL program units . 535
10.1.1 COBOL program units as subroutines . 535
10.1.2 Data structures for COBOL program units . 541
10.1.3 KDCS calls in COBOL program units . 544
10.1.4 Platform-specific features on BS2000 systems . 546
10.1.5 Platform-specific features on Unix and Linux systems 550
10.1.6 Platform-specific features on Windows systems 553

10.2 Programming examples in COBOL . 557
10.2.1 Examples of individual KDCS calls . 557
10.2.2 Example of an INPUT exit . 564
10.2.3 Example of an asynchronous MSGTAC program unit 566
10.2.4 Example of a complete UTM application . 571

Contents

Programming Applications with KDCS

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.iv
z

11 Appendix . 587

11.1 Overview of all KDCS calls . 587

11.2 Different field names for C/C++ and COBOL . 596

11.3 ASCII-EBCDIC code conversion . 601
11.3.1 BS2000 systems . 601
11.3.2 Unix, Linux and Windows systems . 601
11.3.2.1 Modifying the code table on Unix and Linux systems 602
11.3.2.2 Modifying the code table on Windows systems 602

Glossary . 605

Abbreviations . 641

Related publications . 647

Index . 657

Contents

 Programming Applications with KDCS

Programming Applications with KDCS 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

1 Preface

Modern enterprise-wide IT environments are subjected to many challenges of rapidly
increasing importance. This is the result of:

● heterogeneous system landscapes

● different hardware platforms

● different networks and different types of network access (TCP/IP, SNA, ...)

● the applications used by companies

Consequently, problems arise – whether as a result of mergers, joint ventures or labor-
saving measures. Companies are demanding flexible, scalable applications, as well as
transaction processing capability for processes and data, while business processes are
becoming more and more complex. The growth of globalization means, of course, that
applications are expected to run 24 hours a day, seven days a week, and must offer high
availability in order to enable Internet access to existing applications across time zones.

openUTM is a high-end platform for transaction processing that offers a runtime
environment that meets all these requirements of modern, business-critical applications,
because openUTM combines all the standards and advantages of transaction monitor
middleware platforms and message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

An UTM application can be run as a standalone UTM application or sumultanously on
several different computers as a UTM cluster application.

Preface

12 Programming Applications with KDCS

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the
Oracle Fusion middleware, openSEAS delivers all the functions required for application
innovation and modern application development. Innovative products use the sophisticated
technology of openUTM in the context of the openSEAS product offering:

● BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA)
and supports standardized connection of UTM applications to Java EE application
servers. This makes it possible to integrate tried-and-tested legacy applications in new
business processes.

● The WebTransactions member of the openSEAS family is a product that allows tried-
and-tested host applications to be used flexibly in new business processes and modern
application scenarios. Existing UTM applications can be migrated to the Web without
modification.

Preface Summary of contents and target group

Programming Applications with KDCS 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

1.1 Summary of contents and target group

The openUTM manual „Programming Applications with KDCS” is intended for anyone who
wants to use the KDCS programming interface to program UTM applications.

The vast majority of the information presented in this manual is operating system-
independent, i.e. it applies to both Unix, Linux and Windows systems, as well as to BS2000
systems. In addition, descriptions of platform-specific features are also provided. Any such
platform-specific information is clearly indicated by means of markings in the margins. As a
result you can, if you so desire, write applications that can run on Unix and Linux systems,
Windows systems and BS2000 systems. The form of presentation used throughout this
manual will also simplify matters if you are wanting to port existing UTM(BS2000) applica-
tions to Unix systems, Linux systems or Windows systems, or vice versa.

The chapters in this manual can be subdivided into three blocks:

● Chapter 2 - 6 contain introductory information. They explain basic concepts, such as the
way program units are structured into processing step modules, message queuing
functionality and distributed processing in their respective contexts.

● Chapters 7 and 8 provide reference materials in which you can look things up.
Chapter 7 lists the KDCS calls in alphabetical order, and chapter 8 lists the event
functions.

● Chapters 9 and 10 contain programming language-specific information - chapter 9 for
C/C++, and chapter 10 for COBOL.

The appendix includes a series of tables which provide overviews of the entries that must
be made in the parameter area for the individual KDCS calls, for example, or of the values
returned to the communication area.

The detailed reference section at the back of the manual – including a glossary, abbrevia-
tions, a list of related publications and a keyword index – is intended to help you get the
most out of this manual.

i Wherever the term Unix system is used in the following, then this should be under-
stood to mean a Unix-based operating system such as Solaris or HP-UX.

Wherever the term Linux system is used in the following, then this should be under-
stood to mean a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is used below, this should
be understood to mean all the variants of Windows under which openUTM runs.

Summary of contents of the openUTM documentation Preface

14 Programming Applications with KDCS

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various
related products.

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help systems for the
graphical administration workstation openUTM WinAdmin and the graphical administration
tool WebAdmin, and a release note for each platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000 systems
or to Unix, Linux and Windows systems.

All the manuals are available as PDF files on the internet at

http://manuals.ts.fujitsu.com

On this site, enter the search term “openUTM V6.4“ in the Search by product field to
display all openUTM manuals of version 6.4.

The manuals are included on the Enterprise DVD with open platforms and are available on
the WinAdmin DVD for BS2000 systems.

The following sections provide a task-oriented overview of the openUTM V6.4 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related
publications at the back of the manual.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential
functions, features and areas of application of openUTM. It contains all the information
required to plan a UTM operation and to design an UTM application. The manual explains
what openUTM is, how it is used, and how it is integrated in the BS2000, Unix, Linux and
Windows based platforms.

http://manuals.ts.fujitsu.com

Preface Summary of contents of the openUTM documentation

Programming Applications with KDCS 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++
manual to create server applications via the KDCS interface. This manual describes the
KDCS interface as used for COBOL, C and C++. This interface provides the basic
functions of the universal transaction monitor, as well as the calls for distributed
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want
to use the X/Open interface. This manual contains descriptions of the UTM-specific
extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as notes on
configuring and operating UTM applications which use X/Open interfaces. In addition,
you will require the X/Open-CAE specification for the corresponding X/Open interface.

● If you want to interchange data on the basis of XML, you will need the document entitled
openUTM XML for openUTM. This describes the C and COBOL calls required to work
with XML documents.

● For BS2000 systems there is supplementary documentation on the programming
languages Assembler, Fortran, Pascal-XT and PL/1.

Configuration

The Generating Applications manual is available to you for defining configurations. This
describes for both standalone UTM applications and UTM cluster applications how to use
the UTM tool KDCDEF to

● define the configuration

● generate the KDCFILE

● and generate the UTM cluster files for UTM cluster applications

In addition, it also shows you how to transfer important administration and user data to a
new KDCFILE using the KDCUPD tool. You do this, for example, when moving to a new
openUTM version or after changes have been made to the configuration. In the case of
UTM cluster applications, it also indicates how you you can use the KDCUPD tool to
transfer this data to the new UTM cluster files.

Summary of contents of the openUTM documentation Preface

16 Programming Applications with KDCS

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using openUTM Applica-
tions manual for the relevant operating system (BS2000 or Unix, Linux and Windows
systems). This describes how to link and start a UTM application program, how to sign on
and off to and from a UTM application and how to replace application programs dynamically
and in a structured manner. It also contains the UTM commands that are available to the
terminal user. Additionally, those issues are described in detail that need to be considered
when operating UTM cluster applications.

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for admin-
istration and the UTM administration commands. It provides information on how to
create your own administration programs for operating a standalone UTM application
or a UTM cluster application and on the facilities for administering several different
applications centrally. It also describes how to administer message queues and printers
using the KDCS calls DADM and PADM.

● If you are using the graphical administration workstation openUTM WinAdmin or the
Web application openUTM WebAdmin, which provides comparable functionality, then
the following documentation is available to you:

– A description of WinAdmin and description of WebAdmin, which provide a
comprehensive overview of the functional scope and handling of
WinAdmin/WebAdmin. These documents are shipped with the associated software
and are also available online as a PDF file.

– The respective online help systems, which provide context-sensitive help infor-
mation on all dialog boxes and associated parameters offered by the graphical user
interface. In addition, it also tells you how to configure WinAdmin or WebAdmin in
order to administer standalone UTM applications and UTM cluster applications.

i For detailed information on the integration of openUTM WebAdmin in SE Server's
SE Manager, see the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are
separate manuals for Unix, Linux and Windows systems and for BS2000 systems) to carry
out the tasks mentioned above. These manuals describe how to debug a UTM application,
the contents and evaluation of a UTM dump, the behavior in the event of an error, and the
openUTM message system, and also lists all messages and return codes output by
openUTM.

Preface Summary of contents of the openUTM documentation

Programming Applications with KDCS 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

Creating openUTM clients

The following manuals are available to you if you want to create client applications for
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and
operation of client applications based on UPIC. In addition to the description of the
CPI-C and XATMI interfaces, you will find information on how you can use the C++
classes to create programs quickly and easily.

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to
install and configure OpenCPIC and configure an OpenCPIC application. It describes
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates
what needs to be taken into account when programming a CPI-C application and what
restrictions apply compared with the X/Open CPI-C interface.

● The documentation for the JUpic-Java classes shipped with BeanConnect is supplied
with the software. This documentation consists of Word and PDF files that describe its
introduction and installation and of Java documentation with a description of the Java
classes.

● The BizXML2Cobol manual describes how you can extend existing COBOL programs
of a UTM application in such a way that they can be used as an XML-based standard
Web service. How to work with the graphical user interface is described in the online
help system.

● If you want to provide UTM services on the Web quickly and easily then you need the
manual WebServices for openUTM. The manual describes how to use the software
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. The use of the graphical user interface is described in
the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the
manual Distributed Transaction Processing between openUTM and CICS, IMS and
LU6.2 Applications. This describes the CICS commands, IMS macros and UTM calls that
are required to link UTM applications to CICS and IMS applications. The link capabilities
are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and
administration.

Summary of contents of the openUTM documentation Preface

18 Programming Applications with KDCS

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix, Linux and
Windows systems. The functions of PCMX are described in the following documents:

● CMX manual “Betrieb und Administration“ (Unix-Systeme) for Unix, Linux and Windows
systems (only available in German)

● PCMX online help system for Windows systems

Preface Summary of contents of the openUTM documentation

Programming Applications with KDCS 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

1.2.2 Documentation for the openSEAS product environment

The Concepts and Functions manual briefly describes how openUTM is connected to the
openSEAS product environment. The following sections indicate which openSEAS
documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect
adapter implements the connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications
in Java applications.

● The manual BeanConnect describes the product BeanConnect, that provides a JCA
1.5- and JCA 1.6-compliant adapter which connects UTM applications with applications
based on Java EE, e.g. the Oracle application server.
The manuals for the Oracle application server can be obtained from Oracle.

Connecting to the web and application integration

You require the WebTransactions manuals to connect new and existing UTM applications
to the Web using the product WebTransactions.

The manuals will also be supplemented by JavaDocs.

Summary of contents of the openUTM documentation Preface

20 Programming Applications with KDCS

1.2.3 Readme files

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. For the BS2000 platform, you will also find
the Readme files on the Softbook DVD.

Information on BS2000 systems

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

Readme files on Unix and Linux systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under /docs/language.

Readme files on Windows systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under \Docs\language.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Innovations in openUTM V6.4

Programming Applications with KDCS 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

1.3 Innovations in openUTM V6.4

The following sections provide more detail on the innovations in the individual function
areas.

1.3.1 New server functions

UTM cache in data spaces (BS2000 systems)

On BS2000 systems the UTM cache can be located on multiple data spaces. This provides
benefits when a UTM application requires a very large cache.

The following interfaces have been changed to support this:

● Generation

KDCDEF statement MAX... CACHE-SIZE=: New values PROGRAM-SPACE and
DATA-SPACE.

● KDCADMI administration interface

– Data structure kc_max_par_str: New field cache_location for the storage location of
the UTM cache.

● KDCADM command interface

– KDCINF SYSPARM: New output field CACHE-LOCATION for the storage location
of the UTM cache.

Saving compressed data

UTM can compress data in secondary storage areas (GSSB, LSSB), long-term storages
(TLS and ULS), and the communication area-program area, and thus reduce resource
consumption. The UTM pages saved on average per data compression can be displayed
using the administration functions.

The following interfaces have been changed to support this:

● Generation

KDCDEF statement MAX: New operand DATA-COMPRESSION with which data
compression is enabled or disabled.

● KDCADMI administration interface

– Data structure kc_curr_par_str: New field data_compression for displaying and
modifying the current compression setting and new field avg_saved_pgs_by_compr
for the UTM pages saved on average per compression.

Innovations in openUTM V6.4 Preface

22 Programming Applications with KDCS

– Data structure kc_max_par_str: New field data_compression for the generated
compression setting.

● KDCADM command interface

– KDCAPPL: New operand DATA-COMPRESSION for modifying the compression
setting.

– KDCINF STAT: Output of the pages saved on average per compression (AVG
COMPRESS PAGES SAVED).

– KDCINF SYSPARAM: Output of the generated compression setting (DATA-
COMPRESSION (GEN)).

Page pool information

UTM outputs the current values for page pool utilization.

The administration interface was extended for this purpose:

● KDCADMI administration interface

– New object type KC_PAGEPOOL for outputting the page pool information

– New data structure kc_pagepool_str for the current utilization of the page pool.

● KDCADM command interface

– KDCINF PAGEPOOL outputs the current utilization of the page pool.

Controlling the number of UTM system processes

The number of UTM system processes can be controlled by means of UTM generation, i.e.
more or also fewer than the current maximum of three UTM system processes can be
started.

The configuration interface was extended for this purpose:

● New KDCDEF operand MAX SYSTEM-TASKS. The default value *STD corresponds to
the former setting.

IP subnets in Unix, Linux, and Windows systems

IP subnets can be defined for UTM applications in Unix, Linux, and Windows systems. IP
subnets are used to enable communication partners access without name resolution using
DNS or to assign a specific address range to LTERM pools.

Preface Innovations in openUTM V6.4

Programming Applications with KDCS 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

The following interfaces have been changed to support this:

● Generation

New KDCDEF statement SUBNET in order to define an IP subnet with the associated
address ranges.

● KDCADMI administration interface

– New object type KC_SUBNET in order to query information on IP subnets.

– New data structure kc_subnet_str for the properties of an IP subnet.

Host name longer than 8 characters in Unix, Linux, and Windows systems

On Unix, Linux, and Windows systems, when a standalone or UTM cluster application is
started, an attempt is also made to map a local host name to a UTM host name via the
conversion file.

For all systems, the names of trace files for the ADMI trace and the traces for the X/Open
interfaces CPI-C, XATMI, and TX have also been modified.

openUTM as 64-bit application on Windows systems

On Windows systems with a 64-bit operating system, openUTM is available as a 64-bit
application.

KDCUPD thus also supports the transition from 32-bit to 64-bit architecture on Windows
systems.

Dynamic XA connection on Windows systems

On Windows systems dynamic XA connection is possible as an alternative. The settings
required for this must be made in the Windows Registry.

Authorization data for Oracle databases

For security reasons, the authorization data for Oracle databases can now only be specified
in the UTM generation. Specification in the start parameters is no longer permitted, and is
rejected with the message K237.

Multi-threaded network connection on Unix, Linux, and Windows systems

Only multi-threaded network connection is now supported on Unix, Linux, and Windows
systems. The generation operand MAX NET-ACCESS is consequently no longer
described.

Innovations in openUTM V6.4 Preface

24 Programming Applications with KDCS

Other changes

● Messages

– New message K167 on Unix, Linux, and Windows systems after successful
switching of stdout and stderr.

– New message K199 when a task or process is terminated.

– New message K237 when a user ID and/or a password was specified in clear text
in the XA open string for an Oracle database.

– Additional insert XPOSAS (OSI-TP ASSOCIATION REFERENCE) in some
XAP-TP-messages.

● Administration commands

– Output values of administration commands are output in floating point presentation
if they require more space than is available.

– KDCINF LTAC: new column D for LTACs which were deleted by means of dynamic
administration.

● Starting a UTM(BS2000) application using the SDF command ENTER-PROCEDURE:

– New start parameter ENTER-PROC-INPUT

– New sample procedure START-APPL-ENTER-PROC

● Trace entries

– When event exits (START, SHUT, etc.) are called, additional trace entries are
written to the UTM-DIAGAREA.

● The PID is always output in its full length on Unix, Linux, and Windows systems.

● The TNS is not supported on Windows-64-bit systems. The address information must
be specified in the UTM generation.

1.3.2 New client functions

There are no functional enhancements in V6.4.

Preface Innovations in openUTM V6.4

Programming Applications with KDCS 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

1.3.3 New and modified functions for openUTM WinAdmin

WinAdmin supports all the new features of UTM V6.4 relating to the administration program
interface. These include:

● The graphical display of the page pool utilization, displays for data compression, display
of the cache location on BS2000 systems, and display of IP subnets on Unix, Linux, and
Windows systems.

● Statistic collectors for the page pool utilization and the UTM pages saved by data
compression.

1.3.4 New functions for openUTM WebAdmin

Support of new features in openUTM V6.4

WebAdmin supports all the new features of UTM V6.4 relating to the administration
program interface. These include:

● The graphical display of the page pool utilization, displays for data compression, display
of the cache location on BS2000 systems, and display of IP subnets on Unix, Linux, and
Windows systems.

● Statistic collectors for the page pool utilization and the UTM pages saved by data
compression.

Logging

In future it will be possible to log the sign-on and sign-off of a WebAdmin user and modifi-
cations to the WebAdmin configuration.

Enhanced integration into the SE Server

● The WebAdmin add-on supports audit logging of the SE Manager, i.e. specific modifi-
cations of the WebAdmin configuration are logged in the SE Manager logging.

i The logging data is also available for standalone WebAdmin.

● The current status of the WebAdmin add-on is displayed in the SE Manager and can be
modified, i.e.:

– whether the add-on is running is displayed

Innovations in openUTM V6.4 Preface

26 Programming Applications with KDCS

– Depending on the current status, the add-on can either be started, terminated, or
terminated and restarted.

i These two functions are available in the SE Manager only in M2000 V6.2A and
higher.

Adaptation to WinAdmin

WebAdmin offers further additional functions which were previously only available in
WinAdmin

● Command mode for direct entry of administration commands or normal UTM TACs.

● Enhanced functionality for statistic collectors:

– The values of any number of statistic collectors can be saved, deleted, or output in
table form simultaneously and copied from there.

– The properties Automatic Wake-Up, Sample Interval, and Statistic Values Lifetime can
be modified simultaneously for any number of statistic collectors.

Preface Notational conventions

Programming Applications with KDCS 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

3.
 J

u
ly

 2
0

16

S
ta

nd
 1

2:
59

.2
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
k0

1

1.4 Notational conventions

This symbol is used in the left-hand margin to indicate BS2000 system specific elements of
a description.

This symbol is used in the left-hand margin to indicate Unix and Linux system specific
elements of a description.

This symbol is used in the left-hand margin to indicate Windows specific elements of a
description.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM on BS2000, Unix and Linux systems.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM on BS2000 and Windows systems.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM on Unix, Linux and Windows systems.

 Indicates references to comprehensive, detailed information on the relevant topic.

i Indicates notes that are of particular importance.

v Indicates warnings.

utmpath
On Unix, Linux and Windows systems, designates the directory under which
openUTM was installed.

$userid
On BS2000 systems, designates the user ID under which openUTM was installed.

B

B

X

X

W

W

B/X

B/X

B/W

B/W

X/W

X/W

X/W

X/W

X/W

BB

BB

Notational conventions Preface

28 Programming Applications with KDCS

Programming Applications with KDCS 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2 Structure and use of UTM programs

In this chapter you will be presented with an initial overview of programming UTM applica-
tions. You will learn what services and program units are and how you can apply the
openUTM concepts to implement the business logic of your applications.

A UTM application provides your users with certain services: it processes service requests
(jobs) which are sent by terminal users, client programs or other applications.

A service serves to process a job from a UTM application. It consists of one or more trans-
actions and one or more program runs. openUTM differentiates between dialog services
and asynchronous services. An openUTM service generally corresponds to a business
transaction of the application logic.

When you design an application you program the business transactions of the application
logic in the form of program units, also called service routines. The program units run as
subprograms and are under the control of the main routine of a UTM application; the main
routine is a component of the openUTM system code.

You specify the task of the service you wish to provide the users of your application with in
the business logic implemented in the program units. The program units can be
programmed in one of the common programming languages (C, C++, COBOL and others).

You can access UTM system functions and external resource managers such as databases
from within the program units. The program units utilize the UTM system functions using
integrated UTM calls, e.g. for transaction management or to send messages to a commu-
nication partner.

You can use various interfaces for these UTM calls: In addition to the KDCS interface
described in this manual you can also use the X/Open interfaces CPI-C, XATMI and TX
(see the openUTM manual “Creating Applications with X/Open Interfaces”).

Overview Structure and use of UTM programs

30 Programming Applications with KDCS

Characteristics of the KDCS interface

The KDCS interface (compatible data communication system) has been defined and
standardized (DIN 66 265) as a manufacturer-independent interface for transaction-
oriented applications. openUTM supports the full extent of this standard and offers signif-
icant extensions, e.g. for distributed processing. For an overview of these extensions refer
to the table on page 202ff.

KDCS possesses the following function characteristics:

– extensive range of function calls for universal use
(e.g. also for pseudo conversations, message queuing or direct communication with
terminals)

– KDCS specific storage area for simple and safe programming

– event functions for event control

KDCS is available for the C, C++ and COBOL programming languages;
on BS2000 systems, it is also available for Assembler, Fortran, PL/I and Pascal-XT.

UTM application program - UTM application

A UTM application program consists of the UTM main routine KDCROOT and the UTM
program units.

The main routine KDCROOT controls the flow of the application as part of the UTM system
code. It is created when the application is generated (see the openUTM manual “Gener-
ating Applications”).

In order to run the UTM program units under openUTM management, you have to link the
compiled service routines, together with other modules (assignment tables, messages,
used libraries, etc.) and the main routine KDCROOT to the UTM application program
(see the openUTM manual “Using openUTM Applications on BS2000 Systems” and the
openUTM manual “Using openUTM Applications on Unix, Linux and Windows Systems”).
The linking can be done statically (i.e. before the application is started) or dynamically (i.e.
when the application is started or during its operation).

At UTM application startup the UTM application is started in a number of processes which
is specified by you. From a technical point of view, the UTM application is therefore a
processing group which constitutes a logical server unit at runtime.

B

Structure and use of UTM programs Overview

Programming Applications with KDCS 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Main routine KDCROOT and multiple program units

The program units and the main routine KDCROOT interact via KDCS calls. In a program
unit, the KDCS calls are used to inform the main routine KDCROOT which function
openUTM is to perform. You use the KDCS parameter area to specify the necessary entries
and pass its address as the first parameter with each KDCS call.

Predefined language-specific data structures enable you to structure the KDCS parameter
area, in COBOL these are located in the KCPAC COPY element and in C/C++ in the
kcmac.h include file. For a language-independent description of the value to be entered in
this area for the individual KDCS calls refer to chapter “KDCS calls” on page 201ff. For
language-specific particularities refer to the chapters “Additional information for C/C++” on
page 479 and “Additional information for COBOL” on page 535.

The sections below explain the way in which you can structure an application program.

i As used in this chapter, the terms "program" and "program unit" refer to the
execution of this program unit, not to the program text. For example, the phrase
"sequence of calls in a program unit" refers to the sequence in which these calls are
run, not the sequence in which they appear in the source program. This is also
referred to as the program unit run.

Main routine KDCROOT

P
ro

g
ra

m
 u

n
it

1

P
ro

g
ra

m
 u

n
it

2

P
ro

g
ra

m
 u

n
it

n

P
ro

g
ra

m
 u

n
it

3

P
ro

g
ra

m
 u

n
it

4

P
ro

g
ra

m
 u

n
it

5

UTM application program

The openUTM service concept Structure and use of UTM programs

32 Programming Applications with KDCS

2.1 The openUTM service concept

Starting a service

One or more transaction codes are assigned to each program unit, either during application
generation or using dynamic configuration.

The transaction code of the first program unit of a service has a special function because it
is used to start this service. This transaction code is also called the service transaction code
or service TAC for short. openUTM sets up a specific context (storage area, etc.) for each
service started.

You can enter the service TAC in a large number of ways, e.g. by entering it at the terminal,
selecting a menu item in an alphanumerical format, mouse clicking on a GUI client or using
a Web browser.

Together with the transaction code you may transfer a message to openUTM containing
necessary data for the required processing.

Dialog step and processing step

In the simplest case, a service consists of a single processing step, i.e. no interactions are
required to process the service request: the result is output following the input of the service
TAC, e.g. "All finished".

However, in many cases this structure is inadequate: you may have to request additional
data, display intermediate results, or take account of individual selection options and
branches in the service sequence. A service therefore often consists of multiple dialog
steps.

A dialog step starts with a dialog message which one communication partner sends to the
UTM application, and terminates with a dialog message which the service sends to the
same communication partner as a response. Between these two points in time, the data is
processed and there is no communication with this communication partner.

In distributed processing, a service does not only communicate with the user who started
the service, but also with one or more partner services. A service started by a user may
therefore not send the next message to the user but to another service application. In this
case, since the message is not a response, it is called a processing step rather than a dialog
step: A processing step starts when a dialog message is received and ends when the next
dialog message is sent. This can be a response to the same partner (in which case the
processing step corresponds to a dialog step) or a message to a third party.

A service may therefore be divided into multiple dialog steps, and a dialog step – in
distributed processing – into multiple processing steps.

Structure and use of UTM programs The openUTM service concept

Programming Applications with KDCS 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Dialog steps and processing steps

Switching between inputs and responses

openUTM requires a "strict dialog" to structure dialog services: i.e. each message must be
followed by an answer. After sending a message to a service, you must receive a response
before you can send another message to this partner.

This sequence - together with the modular service structure for processing steps - enables
openUTM to maximize process utilization (see following two sections).

Modular processing steps in service structure

If a service consists of multiple dialog or processing steps, the service does not usually
consist of only one service routine. Instead, it consists of a sequence of separate service
routines called program units. Normally a program unit is equivalent to a processing step:
i.e. a program unit reads a message and issues a message when it terminates. Subse-
quently the process is automatically released and is available for other jobs. The next
program unit does not start until the next message is received from the communication
partner.

Intermediate result

Message

Result

Service A

Message to service B

Response from service B

Service TAC + message

Processing
step

Processing
step

Dialog
step

Dialog
step

The openUTM service concept Structure and use of UTM programs

34 Programming Applications with KDCS

For example, the service does not occupy a process while a user reads the output and
prepares the next input at a terminal. As soon as the terminal user has finished the input,
another process may, under certain circumstances, continue the dialog without notifying the
user or the program unit.

Hence openUTM optimizes process utilization and this has a positive effect on system
performance. openUTM uses this dialog concept (also called "pseudo-conversational")
for dialogs with terminal users as well as for program-program communication.

In addition, the basic design for the use of modular processing steps simplifies the design
of applications and results in clearly structured programs. However, it is flexible enough not
to limit the programmer and makes a number of variations available to openUTM.

For examples of multi-step services and more information about connections between
program units refer to section “Structuring services” on page 40ff.

Asynchronous services

Using openUTM you can define services which run in the dialog with the user as well as
services which can be started even when disconnected from the user. The message
queuing functionality integrated in openUTM enables you, for example, to disconnect
particularly large and non-time critical jobs - such as long statistical calculations or sorting
tasks - from online dialogs without discontinuing transaction logging. You can use the
message queuing functionality not just to perform processing jobs; it also lets you output
messages, e.g. for print jobs, messages to a terminal or messages to service-controlled
queues (page 61).

The message queuing concept and its scope of application are introduced in the openUTM
manual “Concepts und Functions”, for further information see section “Message Queuing
(asynchronous processing)” on page 50ff of the present manual.

Structure and use of UTM programs Structure of a program unit

Programming Applications with KDCS 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.2 Structure of a program unit

Before we explain the structure of more complex services we will describe the structure of
a single program unit in this section. First the program framework applicable for all types of
program units is explained followed by the structure of a dialog program unit.

The structure of an asynchronous program unit is explained in section “Structure of an
asynchronous service” on page 53.

2.2.1 Program framework

The interaction between the program units and openUTM is implemented using KDCS
calls. With these calls you inform openUTM which functions are to be executed. You pass
the address of the KDCS parameter area in every KDCS call, and in some calls you pass
the address of a message area.

The call parameters are passed to openUTM in the KDCS parameter area. You are
provided with predefined language-specific data structures for the KDCS parameter area,
in COBOL these are located in the KCPAC COPY element and in C/C++ in the kcpa.h
include file. For a language-independent description of the value to be entered in this area
for the individual KDCS calls refer to chapter “KDCS calls” on page 201.

openUTM passes return information after every KDCS call (except for PEND) in the KB
return area. The evaluation of the return codes tells you if the execution was successful or
unsuccessful and can be used to take the appropriate control measures in the program (see
also section “Programming error routines” on page 89).

You will also find the current information on users, services, program units and communi-
cation partners after every KDCS call in the KB header.

The KB header and the KB return area are part of the communication area (KB), see
page 80. openUTM provides a program unit with the address of the KB in a call parameter
when the program unit is called.

You are provided with predefined language-specific data structures - for COBOL in the
COPY element KCKBC and for C/C++ in the kcca.h include file - for the structure of the KB
header and KB return area.

The first UTM call in a program unit run is the INIT call. This call initiates the interoperation
of a program unit and openUTM. Other program code may precede the INIT call. After the
INIT call, openUTM provides current, runtime-specific information in the KB header and in
the message area.

The final call in a program unit run is the PEND call. This call terminates the program unit;
control is not returned to the program unit once this call has been issued.

Structure of a program unit Structure and use of UTM programs

36 Programming Applications with KDCS

The different variants of the PEND call are used to control execution of a UTM service. You
have the following options:

PEND PR ensures that the processing step continues in another program unit without
message exchange with the partner.

PEND PA same as PEND PR.

PEND PS specially for the sign-on service, similar to PEND PR.

PEND KP terminates the processing step but not the transaction.

PEND SP terminates the transaction but not the processing step.

PEND RE simultaneously terminates the processing step and the transaction.

PEND FI terminates dialog step, transaction and service.

PEND FC terminates transaction and service and continues the dialog step in another
service.

PEND RS aborts the processing step and rolls back the transaction to the last synchro-
nization point.

PEND ER aborts the processing step, rolls back the transaction, terminates the
service and generates a UTM dump. On BS2000 systems the application
program is loaded dynamically; on Unix, Linux and Windows systems it is
restarted.

PEND FR same effect as PEND ER but without dynamic loading or restarting of the
application program.

Note that many actions, such as the sending of an output message to the communication
partner of a UTM service, are not executed by openUTM until the PEND call is issued, i.e.
they are not executed during the program unit run. The source of this behavior is the trans-
action-oriented manner in which openUTM functions; you can decide if the action executed
in this transaction by the program unit is to be committed or rolled back up until the end of
the transaction.

If a serious error occurs in a UTM transaction, then openUTM independently rolls back the
entire transaction to the most recent synchronization point and terminates the service (see
also the openUTM manual “Concepts und Functions”).

Structure and use of UTM programs Structure of a program unit

Programming Applications with KDCS 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.2.2 Structure of a dialog program unit

openUTM requires a "strict dialog" for dialog program units, i.e. each message input must
be followed by a message output specifying the result or an error message.

Following INIT, the program unit can use MGET to read the dialog message, which can be
received from a terminal, a client program or from another program.

This message can be:

– a complete message or

– a message segment

– an empty message if, for example, only a TAC has been specified

– a rollback message from a program unit which has been terminated using PEND RS

– a return code if, for example, the user pressed a function key. In this case, the message
must be read with another MGET.

– in the case of distributed processing, status information from, for example, a job
receiver which terminated following an error

– in the case of distributed processing using OSI TP, a handshake request (sent by the
partner using MPUT HM) or a negative handshake confirmation (sent using MPUT EM)

After this input has been processed, you have to use MPUT to answer your partner’s query
(end of dialog step). In the case of distributed processing the message can also be
addressed to a job-receiving service (no end of dialog step, only end of processing step).

The final UTM call in your program unit must be a PEND, as described in section “Program
framework” on page 35.

If the PEND call terminates the processing step, openUTM outputs the message to the
terminal, the client program or another program after PEND processing.

i As a general principle, you have to issue an MPUT call before a PEND call which
terminates a processing step. Exceptions to this rule will be indicated explicitly.

Structure of a program unit Structure and use of UTM programs

38 Programming Applications with KDCS

The diagram below shows the basic structure of a dialog program unit:

Structure of a dialog program

The transaction code "TAC1" is input by the terminal user. TAC1 was assigned to the
program unit at generation time (KDCDEF statement TAC, operand PROGRAM=current
program name).

TAC1 Message from terminal

Application program

Dialog program unit (TAC1)

current program

INIT

MGET MessageopenUTM KDCROOT

Processing

MPUT Response

PEND FI

Response to terminal

Structure and use of UTM programs Structure of a program unit

Programming Applications with KDCS 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.2.3 Reentrant capability of program units

openUTM always uses a transaction code to call a program unit. However, the program unit
is not loaded each time it is called, instead a program copy in virtual memory processes
unrelated jobs in sequence. In practice this means that there may be a switch to another
process following a PEND, with the result that the subsequent program unit runs in another
process and may therefore be confronted by another data environment.

A UTM program unit must therefore be serially reusable, i.e. it must be a reentrant program:

– program-specific data must be set to its initial status at the beginning of the program
unit run

– a program-specific data field may only be read if it has already been written in the same
program unit run.

openUTM simplifies the programming of reentrant programs for you. It provides a special
program unit-specific storage area (SPAB see page 78) which is managed by openUTM. If
you use this storage area for all variable data, openUTM automatically ensures that your
programs are reentrant.

What this means for COBOL program units is that variables in the WORKING STORAGE
SECTION must be installed again when calling the program unit, assuming they have been
defined in an earlier program unit run. For C/C++ this applies to the variables with the
storage class attribute static or extern and to those with an external connection (global
module variables without a storage class attribute). For variables whose scope applies to
more than one process (i.e. which lie in shared memory) at least write access to such
variables must be serialized. However, the variables mentioned above can be used without
restrictions for read-only access.

For C and C++, variables with the storage class attribute auto or register can be used without
problems. They must, however, be defined before reading.

Structuring services Structure and use of UTM programs

40 Programming Applications with KDCS

2.3 Structuring services

A service may consist of one or more program units. The structure of a service consisting
of only one program unit and processing a single processing step (single-step service) is
illustrated in the diagram on page 38:

A single program unit processes the required task entirely in one step and subsequently
terminates it using PEND FI.

For complex tasks which require multiple steps, you can structure a service or transaction
into multiple parts. To do this, you have the following options:

– multi-step services
– multiple program units in one processing step
– multiple processing steps in one program unit
– subprogram calls issued by program units
– chained services
– stacked services

You may also use a combination of these options.

You have considerable freedom when designing your UTM program units: the only oblig-
atory rules are that you use INIT and PEND to establish the program framework and MPUT
for the processing steps.

2.3.1 Multi-step services

Dialogs consisting of multiple processing steps constitute a frequent type of transaction
processing. This technique is designed to simplify the work of application users. They
should be able to formulate jobs interactively step by step and thus be able to evaluate the
interim results at each processing step.

The reservation of train tickets, for example, can be programmed as a service in two steps:

1st step: Query whether seats are still available.
2nd step: Reserve the seat and confirm reservation.

By chaining the programs that implement the individual processing steps, you ensure that
the entire service is processed in the right order. You chain program units via entries in the
PEND call. Here you select the RE operation modifier in the KCOM field if you also want to
set a synchronization point at the end of the processing step and specify the transaction
code of the follow-up program in the KCRN field. If you only want to terminate the
processing step without setting a synchronization point, you have to select the KP operation
modifier instead of RE in the PEND call. The follow-up program is started when openUTM
receives the next input message.

Structure and use of UTM programs Structuring services

Programming Applications with KDCS 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Multi-step service

The service presented in the diagram consists of two program units which perform one
dialog step each. However, there is no limit to the number of program units that you can
combine in a a service. For all program units of a service, openUTM provides service-
specific storage areas which can be used by the program units to transfer information (see
page 74ff). These storage areas are included in transaction logging.

The second program unit contains an FPUT call in addition to the MPUT call. This call does
not create a dialog message. It creates an asynchronous message, in this case an output
message to the printer.

TAC1

Message 1

T D
A S
1 1

Response 1

S .

TAC11 .

Message 2

T D
A S
2 2

Response 2

S

Print job

TAC1

S
e
r
v
i
c
e

TA1,TA2:
DS1,DS2:
S:

Transaction 1,,2
Dialog step 1,2
Synchronization point

Message 1

Response 1

Message 2

Response 2

Dialog program "Show"

INIT

MGET

Processing

MPUT

PEND RE with TAC11

Dialog program "Book"

INIT

MGET

Processing

MPUT

FPUT to printer

PEND FI

Structuring services Structure and use of UTM programs

42 Programming Applications with KDCS

Same processing step for differing actions

If two or more actions of the same type are performed in an application, it is advisable to
handle processing steps that are identical for all actions in a single program unit. This is
demonstrated using multiple step services in the example below:

The data of an insurance policy is to be displayed at the outset of different actions, so that
one of the following steps can be performed:

– modify data
– delete data
– calculate premium
– report a claim

The first step is identical for all four actions, while the subsequent steps are all different
(see diagram below).

First, all four actions are processed in the same program unit. Each action has its own trans-
action code, i.e. four different transaction codes are assigned to the first program unit.
When the program unit is started, openUTM displays the transaction code used for the
service start in the KCTACVG/ kccv_tac field of the KB header. Depending on the trans-
action code the program unit determines which program unit is started as follow-up program
unit, i.e. which follow-up TAC is entered in the KCRN field when calling PEND.

Structure and use of UTM programs Structuring services

Programming Applications with KDCS 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Program unit to which multiple transaction codes are assigned

TAC1, TAC2, TAC3, TAC4

TAC3 Data 1 Dialog program "VDATEN"

INIT
KCTACVG = TAC3

MGET Daten 1

Processing

MPUT Antwort 1

Response 1 PEND RE with TAC31

.

Data 2

TAC11 TAC21 TAC31 TAC41

"MODIFY" "DELETE" "CALCULATE" "REPORT"

INIT INIT INIT INIT

MGET ... MGET ... MGET MGET ...

. . . .

. . . .

Response 1

Data 1

Data 2

Follow-up
TAC in
KCRN:

TAC11 if KCTACVG = TAC1
KCTACVG = TAC2

TAC31 if KCTACVG = TAC3
TAC41 if KCTACVG = TAC4

TAC21 if

Structuring services Structure and use of UTM programs

44 Programming Applications with KDCS

2.3.2 Multiple program units in one processing step

If different processing steps contain identical subtasks, it is advisable to split the individual
processing steps into several parts. You write a separate program unit for each subtask and
this can be used jointly by all processing steps. This is an exception to the basic rule for a
service structure "one processing step = one program unit": here, one processing step is
performed by multiple program units. This is achieved by using the PEND PR/PA/SP calls
which terminate the program unit, but not the processing step. If you use PEND SP, a
synchronization point is set. If you use PEND PA/PR, the transaction remains open.

In the following diagram, the two processes are single-step services, although each of them
consists of three program unit runs:

– The service to which the TAC1 transaction code is assigned changes the data of an
insurance contract.

– The service to which the TAC2 transaction code is assigned deletes the data of an
insurance contract.

What is common to both services is that they have to change the initial data record. In order
to create a separate program unit to perform this common task the processing step is split
into individual parts.

After the INIT call the KCTACVG field contains the TAC which was used to start the service.
The program unit "CENTRAL" then determines which program unit has to be used to
continue the transaction. You have to specify the TAC of this program unit in the KCRN field
for both MPUT as well as PEND PR. The MPUT message is not sent to the communication
partner, but to the follow-up program unit where it is read using MGET. Since the processing
step is not terminated in the program unit "CENTRAL", an MPUT call is not mandatory in
this program unit: you may also transfer the data using service-specific storage areas
instead of MPUT (see also section “KDCS storage areas in openUTM” on page 74ff).

Structure and use of UTM programs Structuring services

Programming Applications with KDCS 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Multiple program units performing one processing step

TAC2

"DELETE1"

INIT

.

.

PEND PR TACZ

TAC1 Data 1 TAC2 Data 2

Entries

TAC1

"MODIFY1"

INIT

MGET
.
.

MPUT

PEND PR TACZ

TACZ

"CENTRAL"

INIT
KCTACVG = TAC1 or TAC2

if KCTACVG = TAC1
MGET

if KCTACVG = TAC2
.

.

for KCRN = TAC11 if KCTACVG = TAC1
MPUT

for KCRN = TAC21 if KCTACVG = TAC2.
.

 TAC11 for KCTACVG = TAC1
PEND PR

 TAC21 for KCTACVG = TAC2

Responses

TAC21

"DELETE2"

INIT

MGET
.
.

MPUT

PEND RE / FI

TAC11

"MODIFY2"

INIT

MGET
.
.

MPUT

PEND RE / FI

MPUT

MGETData 1

Data 3

Data 2

Data 4

Data 3

Data 4

Data 5

Data 6

Data 7 Data 8

Data 6

Data 8

Data 5

Data 7

Structuring services Structure and use of UTM programs

46 Programming Applications with KDCS

2.3.3 Multiple processing steps in a single program unit

A UTM program unit runs in a process between INIT and PEND. Since the process is
released at the end of the program unit, a follow-up program unit may run in a different
process from the first. This means that the follow-up program unit cannot access the
process-specific environment (context), such as resources and program-specific data
areas of the first program unit. Usually this is not necessary, since data can either be trans-
ferred via an MPUT call issued to the follow-up program or via process-specific storage
areas provided by openUTM.

However, openUTM also allows you to retain the process-specific context of a program unit
for multiple processing steps. You use a PGWT (program wait) call with the operation
modifiers KP, PR, CM and RB. This sets a wait point without terminating the program unit,
i.e. the program context is preserved. These variants are used for different purposes.

● PGWT KP terminates the processing step and sends the MPUT message. The program
unit waits until the next message arrives from the partner. PGWT KP corresponds to the
PEND KP call in the previous program unit and the INIT call in the next program unit.

● PGWT PR waits for a message to a queue without terminating the processing step.
PGWT PR corresponds to a PEND PA/PR call in the previous program unit and an INIT
call in the next program unit.

● PGWT CM terminates the transaction without terminating the program unit. However, a
synchronization point set with PGWT CM is not a restart point. The follow-up trans-
action can therefore be rolled back with PGWT RB only and not with PEND RS.

The following also applies:

– If an MPUT call was executed before the PGWT CM, the MPUT message is sent
and the program unit waits until a response is received from the partner. This PGWT
CM corresponds to a PEND RE call in the previous program unit and an INIT call in
the next program unit.

– If no MPUT was executed before the PGWT CM call, the program unit is continued
immediately. A PGWT CM without a preceding MPUT call corresponds to a PEND
SP call in the previous program unit and an INIT call in the next program unit.

● PGWT RB rolls back a transaction.

The functions of two successive program units can therefore be performed by one program
unit. The entire functional sequence then runs under one and the same process. The
process-specific context is available until the end of the program unit run.

During that period, the program unit occupies a process exclusively. As a result, the UTM
application usually requires more resources (processes).

The PGWT call permits the simple integration of program systems which expect a
combined SEND/RECEIVE interface into openUTM.

Structure and use of UTM programs Structuring services

Programming Applications with KDCS 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Alongside the PEND PR/PA/SP calls, the PGWT call represents another way of varying the
modular processing step structure:
While the PEND PR/PA/SP calls enable you to split one processing step over multiple
program units, the PGWT calls make possible multiple processing steps in one program
unit.

Since valuable resources are involved with the PWGT calls, these calls should be used only
sparingly in an application; it should only be used where the other options of the KDCS
interface are inadequate; the frequent use of PGWT calls can have a negative effect on the
performance of a UTM application.

2.3.4 Subprogram calls from program units

In a program unit you can also issue subprogram calls, e.g. C/C++ functions or COBOL
subprograms. These subprograms may contain subprogram calls themselves. Using
subprogram calls you call programs via their program name (in C/C++: function name) and
not via their transaction code.

Subprograms can also be written in a programming language other than that of the calling
program.

The points that then need to be taken into account and the compilers and runtime systems
that are required are described in openUTM manual “Using openUTM Applications on
BS2000 Systems”.

You will find more information on subprogram calls in the section “C/C++ program units as
subroutines” on page 479 and section “COBOL program units as subroutines” on page 535.

The program run must either return to the program unit or be terminated in a subprogram
using the PEND call.

2.3.5 Chaining services

Services are usually terminated by the PEND FI (finish) call. If you call PEND FI a dialog
message is sent to the terminal, a client program or another program. The end of service is
also the end of the processing step.

However, you can use the PEND FC (finish and continue) call to chain another service and
continue the processing step within that service.This is useful, for example, if a dialog
message is not to be output to the client or if the use of TACs is to be hidden from the user.

Like PEND FI, PEND FC terminates both the transaction and the service and releases
service-specific storage areas (LSSBs, KB). Data is transferred to the chained service
using an MPUT call; you cannot use service-specific storage areas to do this.

B

B

B

Structuring services Structure and use of UTM programs

48 Programming Applications with KDCS

The differences in programming to PEND FI are as follows:

– With PEND FC you have to enter the TAC of the chained service in the KCRN field.

– MPUT is not necessary before PEND FC. However, if an MPUT call is issued then the
follow-up TAC must also be entered in KCRN (as in PEND PA/PR).

If the first transaction of the chained service is rolled back, then openUTM restarts at the
synchronization point in PEND FC and restarts the chained service.

2.3.6 Stacking services

A terminal user can stack a service, i.e. he or she can interrupt an already started service,
insert another service and, when this terminates, continue the interrupted service. A service
can only be stacked if it is located at a synchronization point, i.e. directly after a PEND RE.
There are two ways of doing this:

– by pressing a function key generated with SFUNC ...,STACK=...
– by using the event exit INPUT

Continuing a stacked service

A stacked service, also known as a predecessor, is reactivated as soon as the inserted
service is terminated by PEND FI. The terminated service generates an output message.
Since openUTM only permits service stacking at a synchronization point, both the last
output message and the service-specific areas (KB, LSSB) of the predecessor are still
available. You use the (last) MPUT call in the inserted service to determine how the output
messages of the two services are to be processed. You have three options:

– MPUT NE in the inserted service outputs the message of this service on the screen
together with message K096.The terminal user presses Enter to receive the last output
message of the predecessor.

– MPUT PM with KCLM = 0 immediately outputs the last output message of the prede-
cessor (PM stands for "predecessor message").

– MPUT PM with KCLM > 0 (permitted only in format mode) overwrites the output
message of the predecessor with the message of the inserted service to the length
defined in KCLM. openUTM then outputs this revised predecessor message. The
format specified in MPUT PM should be a partial format of the predecessor format.

MPUT PM is only permitted in an inserted service if the program unit is terminated by PEND
FI, i.e. only in the last processing step of the service.

Structure and use of UTM programs Structuring services

Programming Applications with KDCS 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Service stacks

Service batches are formed by stacking services. You can retrieve information about the
current service stack in the following ways:

– the KCHSTA and KCDSTA fields of the KB header show the size of the stack and how
this has changed since the last program unit run

– the INFO call INFO PC (predecessor service) provides information about the direct
predecessor in the batch.

PEND FI in an inserted service always returns you to the immediate predecessor; a stack
is deleted when the last inserted service has terminated.

Message Queuing (asynchronous processing) Structure and use of UTM programs

50 Programming Applications with KDCS

2.4 Message Queuing (asynchronous processing)

Message Queuing (MQ) is a form of communication in which messages are exchanged via
intermediate queues (store and forward) instead of being directly exchanged. Because
there is no synchronization between the sending and receipt of messages, message to
message queues are also called asynchronous messages. Communication takes place
by means of asynchronous jobs. An asynchronous job consists of the asynchronous
message, the recipient of the message and possibly also the desired time of execution.

Message queuing is only supported locally in the node in the UTM cluster applications. This
means that asynchronous messages can only run and be read, displayed or administered
in the node application in which they were created.
The one exception is that you can transfer asynchronous jobs from a terminated node appli-
cation into a running node application using the online import facility.

openUTM provides you with two types of message queues:

● UTM-controlled queues:
In the case of UTM-controlled queues, the interposed queuing mechanism is made
available in its entirety by openUTM. In other words, in addition to pure queuing
functionality, openUTM also takes on the subsequent processing of the message (e.g.
output to a communication partner or startup of a service).

● Service-controlled queues:
In the case of service-controlled queues, a service is responsible for the further
processing of the message. In other words, openUTM provides only the queuing
functionality. The communication partner for whom the message is intended must read
the message from the queue independently (using the KDCS call DGET). If there is no
message in the queue, a service can also wait for the arrival of a message.

i For general information about the message queuing concept and how to use it, refer
to the openUTM manual “Concepts und Functions”.

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.4.1 Messages to UTM-controlled queues

In the case of UTM-controlled queues, openUTM monitors the subsequent processing of
messages written by a program unit to UTM-controlled queues. In other words, when a
message is sent to a UTM-controlled queue, it is specified how the message is to be
processed subsequently. The jobs associated with this message are therefore classified
according to the recipient:

● output jobs

● background jobs

in the case of background jobs we distinguish between:

– local background jobs
i.e. background jobs, which request services from their own application.

– background jobs which request remote services
There is more information on this in the section “UTM-controlled queues in
distributed processing” on page 191ff.

2.4.1.1 Output jobs

Output jobs are asynchronous jobs which output a message, for example a document, to a
printer or a terminal. However, the output target may also be another application connected
via a transport system interface.

Output jobs consist of the target specification together with the asynchronous message to
be output.

Output jobs are initiated by corresponding MQ calls from a program unit of the UTM appli-
cation.

Message Queuing (asynchronous processing) Structure and use of UTM programs

52 Programming Applications with KDCS

2.4.1.2 Background jobs

Background jobs are asynchronous jobs which are addressed to an asynchronous service
of its own or a remote application. Background jobs are particularly suitable for time
consuming or non-time critical processing, in which the result has no direct effect on the
current dialog.

Background jobs consist of the transaction code (TAC) of the program unit used to start the
background job (service TAC) and possibly a message for the program unit. The type of
transaction code determines whether the job is to be processed as an asynchronous job or
as a dialog message.

Background jobs can be created as follows:
– by an input from a terminal
– by an MQ call from a service of the UTM application
– by a message from another application that communicates with the UTM application via

the LU6.1, LU6.2 or OSI TP protocol
– by an input from another application connected via the transport system interface
– by a UTM message when the message is assigned the message destination MSGTAC

(i.e. event-driven, see page 467) or is assigned the TAC of an asynchronous service as
the user-specific message destination

Background jobs can be restarted after abnormal termination of a service (redelivery), see
page 60 or sent to the dead letter queue.

2.4.1.3 MQ calls of the KDCS interface

openUTM provides calls for UTM-controlled queues that are powerful in terms of the
functions they offer but nevertheless easy to program. The "free" element in the call names
reflects that message queuing is a type of communication which is disconnected from the
sender and which is not dependent on the availability of the receiver.

● FPUT (Free message PUT)
You use FPUT calls to send asynchronous messages. The target may be the output
device (output job), an asynchronous service (background job) or an application (see
page 191).
An asynchronous message may also consist of multiple message segments. In this
case you have to use a separate FPUT call for each message segment.

● DPUT (Delayed free message PUT)
The DPUT call can also be used to send an asynchronous message or a message
segment to an output device, an asynchronous service or another application (see
page 191). However, compared to the FPUT call, the DPUT call also allows you to use
time control and confirmation jobs.

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

● FGET (Free message GET)
You use the FGET call to read asynchronous message or message segments within an
asynchronous service.

● MCOM (Message COMplex)
You use the MCOM call to assign confirmation jobs to asynchronous jobs.

● DADM (Delayed free message ADMinistration)
You can use the DADM call to request summary information about the entire contents
of a queue or information about its individual elements. Additionally you can also control
the processing sequence with DADM: you can advance jobs, cancel individual jobs or
delete the entire queue.

For the precise format and further information about these calls refer to the chapter “KDCS
calls” on page 201.

2.4.1.4 Structure of an asynchronous service

An asynchronous service starts with an asynchronous program unit. The program unit is
assigned a transaction code TYPE=A (asynchronous) at generation. An asynchronous
program unit does not only differ from a dialog program unit in its transaction code type, it
is also differently structured.

Structure of an asynchronous program unit

Asynchronous programs do not have to read an input message or create an output
message. In the first program unit of the first processing step you can issue an FGET call
following an INIT. This call makes it possible to read the asynchronous message of the
creator of the background. This may be:

– a complete message

– a message segment or

– an empty message in cases where the job consists of one TAC only (e.g. created via a
function key at the terminal).

These may be followed by any number of KDCS calls, with the exception of MGET.
However, you can use an MGET call in a follow-up program or follow-up processing step.

You cannot use MPUT to send a response to the communication partner from which you
received the asynchronous message. Since the service runs disconnected from the partner,
the partner may no longer be connected to the application at the time of processing.
However, you can send a message to the partner with FPUT or DPUT. This message will
be inserted in the message queue assigned to the partner. An MPUT call is only permitted
if the message is addressed to a follow-up program or a job receiver service.

Message Queuing (asynchronous processing) Structure and use of UTM programs

54 Programming Applications with KDCS

The last UTM call in your program unit must be PEND, as described in section “Program
framework” on page 35ff. An asynchronous program is normally terminated with a PEND FI
call. This also terminates the service. openUTM transfers any unsent messages to the
partner or partners.

Other PEND variants are possible, such as PEND PA/PR/SP for program unit chaining, and
PEND KP and RE for distributed processing. You can also use the PGWT KP, CM and RP
calls in an asynchronous program unit (e.g. PGWT KP) if you want to terminate the
processing step without terminating the program unit or the transaction in distributed
processing.

An asynchronous service may be split into multiple program unit runs, and also into multiple
processing steps in the case of distributed processing (see page 56 or page 57).

Structure of an asynchronous program unit

UTM application

Asynchronous program unit (TAC5)

current program

INIT

FGET

Processing

FPUT to client A

PEND FI

/DPUT

FPUT to printer B
/DPUT

TAC5 queue

LTERM A queue

LTERM B queue

Message

Data 1

Message

TAC5 +

Data 2

Data 1

Data 2

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Combined dialog and asynchronous program

You can assign multiple transaction codes to a program unit. It is also possible to assign a
dialog TAC and an asynchronous TAC to the same program unit. This means that you can
start the program in dialog mode or asynchronously. openUTM indicates the way the
program unit was started in the KCPRIND field of the KB header: "A" for asynchronous, "D"
for dialog. The program unit can evaluate this field and branches accordingly.

Dialog and asynchronous processing in a program

If the program in the diagram is started with TACD, FPUT is executed after PEND. This
means that the same program unit is called again to process an independent second
service. The processing of an asynchronous service outside the dialog program may lead
to better response times in the dialog with the client.

TACD (for dialog routine)
TACA (for asynchronous routine)

Program unit "RESERVT"

INIT

Dialog routine Asynchronous routine
TACD TACA

MGET FGET

MPUT FPUT to printer

FPUT with TACA

PEND FI

PEND FI

Message Data 2

Response

Result

Data 2

Message Queuing (asynchronous processing) Structure and use of UTM programs

56 Programming Applications with KDCS

Asynchronous service with multiple program units

An asynchronous service may be structured into multiple program units and transactions.
The last program unit is terminated with PEND FI. In the preceding program units the PEND
variants SP or PA/PA are possible.

PEND variants such as PEND KP or PEND RE which terminate a processing step are only
possible within an asynchronous service if distributed processing is used (see diagram on
next page).

Structure of an asynchronous service split into three program units

In the depicted example a background job is issued to an asynchronous job of the same
application from a terminal. To do this, you have to enter the transaction code of this service
and, if necessary, a message at the terminal. openUTM automatically places the job in the
relevant queue and starts the asynchronous service disconnected from the job submitter as
soon as the necessary resources are available. The first program unit reads the data with
FGET and terminates with PEND SP. A synchronization point is set and the follow-up
program specified in KCRN is started.

Queue

TAC2

UTM application

INIT
FGET (Data from client)

Processing
PEND SP (KCRN=TAC2)

INIT
MGET (Data from prog-

ram unit TAC2)
Processing
PEND FI

INIT
Processing

MPUT (KCRN=TAC3)
PEND PA (KCRN=TAC3)

TAC1

TAC2

TAC3 TAC3
+Data

Trans-
actions

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

The TAC1 program has not transferred an MPUT to the TAC2 program. However infor-
mation can be forwarded in the service-specific storage areas. The TAC2 program selects
an MPUT call for the transfer of information to TAC3 and terminates with PEND PA. This
means that no synchronization point is set. In the TAC3 program the service is terminated
with PEND FI.

Asynchronous services which also issue jobs

An asynchronous service may in its turn create asynchronous jobs. These may be output
jobs or further background jobs. In distributed processing, you can also issue dialog jobs to
partner applications from an asynchronous service, i.e. the asynchronous service commu-
nicates with remote dialog services.

Asynchronous services which also issue jobs

In the first program unit of the TAC 1 asynchronous service, a job is issued to the TAC2
asynchronous service. To do this, you have to specify the TAC2 transaction code in the
KCRN field when you call FPUT. Since the program unit terminates at a synchronization
point, the job is already inserted in the relevant queue at the end of the program unit.

Queue TAC1
Asynchronous
service TAC1

UTM application

Queue LTERM

Asynchronous
service TAC2

Queue TAC2

Remote
dialog
service

INIT
FGET

FPUT KCRN=TAC2
PEND SP

INIT
FPUT KCRN=LTERM

PEND FI INIT
APRO DM

MPUT
FPUT

KCRN=LTERM

INIT
MGET

PEND FI

Message Queuing (asynchronous processing) Structure and use of UTM programs

58 Programming Applications with KDCS

An asynchronous job is also issued in the TAC2 service of the first program unit. This is an
output job to the printer. You have to specify the LTERM name of the printer in the KCRN
field when you call FPUT. Since this program unit does not terminate at a synchronization
point the job is inserted into the LTERM queue at the end of the service (next synchroni-
zation point).

The TAC 2 service is divided into two processing steps. The first program unit uses MPUT
to send a message to a remote dialog service. The second program unit is started when the
response is received from the remote service. This is read using MGET.

Job complexes

Together with the asynchronous job ("basic job") you can describe up to two more confir-
mation jobs which are associated with the positive or negative result of job processing.
These confirmation jobs are processed after the basic job is processed. The job submitter
can use the confirmation jobs to react to a positive or negative job result. A confirmation job
which is not used, e.g. a negative confirmation job for a positive result, is deleted. The entity
formed by a basic job and its associated confirmation jobs is called a job complex.

The following table shows some of the possible events which may occur during
asynchronous processing and the effects of these events on the confirmation jobs.

The beginning and the end of a job complex are defined by means of separate KDCS calls,
the MCOM BC (begin of complex) call and the MCOM EC (end of complex) call. With the
MCOM BC call you define the complex identifier (complex ID), the destination of the
asynchronous job and the TACs of the asynchronous programs which are to process the
positive or negative confirmation. All the jobs generated within the complex are described
using DPUT calls. You must specify the complex ID as the target.

A job complex can be defined both in dialog and in asynchronous programs.

If the basic job of an job complex is addressed to a remote asynchronous service, then the
service identifier must be assigned (via APRO AM) before the beginning of the job complex.
With MCOM BC you define the service ID in KCRN; the confirmation jobs have to be
processed by the local application.

Event Effect on confirmation job

PEND FI in the local asynchronous service

Start of positive confirmation job
 and
deletion of negative confirmation job

For background job, successful transfer to
asynchronous service

Positive print confirmation from printer or print
administration

Processing a message of a TAC queue and
termination of the transaction

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

PEND ER/FR in local asynchronous service
without redelivery

Start of negative confirmation job
 and
deletion of positive confirmation job

Error while preparing the output message by
VTSU-B on BS2000 systems

Error while formatting the output message

Processing a message of a TAC queue and
rollback of the transaction without redelivery

For background job to asynchronous service,
rejection of the job

Deletion of a job by administration

Delete the output job when establishing or
clearing down the connection of a
RESTART=NO client.

PEND ER/FR in the local asynchronous service
with redelivery

Without effect, since basic job is still present
Negative print confirmation from printer or
timeout waiting for a confirmation

Sequence of jobs changed by
administration

Repetition of a print job

Processing a message of a TAC queue and
rollback of the transaction with redelivery

Deletion of a job with confirmation jobs by print
administration

Confirmation jobs are deleted;
logged in SYSLOG

KDCUPD does not accept a job Confirmation jobs are also not
accepted (see KDCUPD log)

Event Effect on confirmation job

B
B

B

Message Queuing (asynchronous processing) Structure and use of UTM programs

60 Programming Applications with KDCS

This diagram illustrates a job complex, taking a print job as an example.

Job complex for a print job

2.4.1.5 Redelivery with background jobs

If an asynchronous service is terminated abnormally by PEND ER/FR or by a system PEND
ER before a transaction was completed with Commit, the service is restarted and the FGET
message is redelivered, providing this functionality has not been deactivated at generation.

Whether redelivery is possible and how often redelivery is attempted can be defined at
generation (REDELIVERY operand in the MAX statement).

When the FGET call is executed, the number of redeliveries is output in the KB return area.

2.4.1.6 Saving incorrectly processed messages in the dead letter queue

At generation time, it is possible to define whether, as an alternative to redelivery or as the
last fallback stage after the maximum permitted number of redelivery attempts, messages
relating to asynchronous transaction codes with CALL=BOTH/FIRST and TAC queues are
to be stored in the global dead letter queue. The dead letter queue therefore collects letters
which could not be processed.
In the event of persistent errors, the dead letter queue makes it possible to prevent
message loss without entering an endless loop.

INIT

MCOM BC KCCOMID = *COMP-ID
KCRN = PRINTER
KCPOS = ATAC1
KCNEG = ATAC2

DPUT NE KCRN = *COMP-ID

DPUT +T KCRN = *COMP-ID

DPUT -T KCRN = *COMP-ID

.
MCOM EC KCCOMID = *COMP-ID

.

.

Data 1 for printer

Data 2 for ATAC1

Data 3 for ATAC 2

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.4.2 Messages to service-controlled queues

In the case of service-controlled queues, the subsequent processing of messages sent by
a program unit to a service-controlled queue is dealt with by the services of the application.
openUTM merely ensures that the messages in the queues are saved. The application
programs must themselves read the messages saved in these queues; if there are no
messages in a queue, an application program unit can also wait for a message to arrive in
a queue.

openUTM distinguishes between USER queues, TAC queues and temporary queues. The
properties of these queues are described in sections “USER queues” on page 61 to
“Temporary queues” on page 63. The associated MQ calls are listed in section “MQ calls of
the KDCS interface” on page 64. For more information on the lifetime of queues and
messages in queues, refer to section “Lifetime of queues and queue messages” on
page 64.

Service-controlled queues offer new communication opportunities in a large number of
cases; it is possible, for example, to use message queues to implement the following
scenarios:

– communication between independent services in an application
– “pseudo dialogs” with remote transport system or socket applications
– parallel processing of database accesses in (read) transactions
– sending of messages to UTM users (mailbox functionality)
– sending of asynchronous messages to UPIC clients
– sending of messages to queues in other applications (remote queues: see section

“Service-controlled queues in distributed processing” on page 194)
– outputting of UTM messages at the UTM administration workstation WinAdmin
– implementation of user-controlled processing of asynchronous messages
– serialization of program units (running in the dialog and asynchronously)
– output of the data of other TLS blocks to the data station in the dialog
– as global storage areas of unlimited size

The queues can be administered with the DADM call.

2.4.2.1 USER queues

USER queues are permanent, service-controlled message queues. A USER queue is
available to every generated UTM user at all times. USER queues can be accessed by any
service by means of a program call, provided it knows the name of the user.

By means of this queue, messages can be sent to the user at the terminal, for example, or
to a UPIC user. The USER queue is used as a mailbox in this case. The queue can also be
used for communication between the dialog service of the user and asynchronous services
that run under the same user ID.

Message Queuing (asynchronous processing) Structure and use of UTM programs

62 Programming Applications with KDCS

In this way, you can, for example, distribute multiprocessor-capable, parallel database infor-
mation across a number of asynchronous services and “collect” the results in the dialog
service.

At generation, read and write protection can be assigned for the USER queue in the
KDCDEF statement USER (Q-READ-ACL and Q-WRITE-ACL parameters). You will find
more information on the generation of data access control in the openUTM manual “Gener-
ating Applications” under the KDCDEF statement USER. Regardless of the data access
control in existence, a user can always read messages from and send messages to his or
her own user queue.

Time-controlled messages cannot be sent to USER queues.

By means of the KDCS call INIT PU, a program unit can query how many messages there
are for the user ID under which it is running.

2.4.2.2 TAC queues

TAC queues are permanent, service-controlled message queues. Each TAC queue has a
fixed name that is generated with the KDCDEF statement TAC ... TYPE=Q. TAC queues
can be accessed by any service by means of a program call, provided it knows the name
of the queue.

Remote message queues, for example, can be implemented with the help of TAC queues.
These remote queues are addressed in the local application by means of the LTAC name
(see also page 194).

TAC queues can also be used in job complexes. Both the basic job and the confirmation
jobs can be directed at TAC queues.

Messages can also be sent to TAC queues with time control.

At generation, read and write protection can be assigned for the TAC queue in the KDCDEF
statement (READ-ACL and WRITE-ACL parameters). By means of dynamic administration
(STATUS attribute), TAC queues can be locked completely for read and/or write access.

For more information on the generation of TAC queues, refer to the section on the KDCDEF
statement TAC in the openUTM manual “Generating Applications”.

Dead Letter Queue

The dead letter queue plays a special role here. The dead letter queue is a TAC queue
with the fixed name KDCDLETQ. It is always available to save queued messages sent to
transaction codes or TAC queues but which could not be processed. During generation, the
saving of queued messages in the dead letter queue can be activated or deactivated for
each message destination individually using the TAC statement's DEAD-LETTER-Q
parameter.

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

To be able to process the messages in the dead letter queue, for example after eliminating
an error, you must either reassign them to their original destination or assign them to an
new destination. You can use DADM MV to move an individual message and DADM MA to
move all the messages in the dead letter queue to a specified or to the original queues.

The K134 message makes it possible to monitor the message volume arriving in the dead
letter queue (see openUTM manual “Generating Applications”, DEAD-LETTER-Q-ALARM
operand in the MAX statement).

2.4.2.3 Temporary queues

Temporary queues can be created dynamically in the program unit run by means of the
KDCS call QCRE and deleted by means of the QREL call. No administration authorization
is necessary for these calls.

Temporary queues are particularly suitable for communication between services: a service
creates a temporary queue and passes the name of this queue with the asynchronous
services it creates. The service subsequently reads the messages that these asynchronous
services send to the temporary queue or waits for these messages. The temporary queue
is then deleted again. When a new temporary queue is created, messages can be written
to this queue in the same transaction. However, these messages cannot be read and
administered until after the transaction is successfully completed.

The name of the temporary queue can either be freely selected or created automatically by
openUTM. The advantage of having names created automatically by openUTM is that the
names assigned are always new. Only after 100 million calls is the same name assigned
again.

A temporary queue can be deleted at any time by means of the QREL call. On the
successful completion of the transaction, all the messages in the queue are deleted and the
name and table space of the queue are released. All services waiting for messages of the
deleted queue are continued.

Time-controlled messages cannot be sent to temporary queues.

The maximum number of temporary queues that can be created is specified at the gener-
ation of the application (QUEUE statement, NUMBER operand: see also the openUTM
manual “Generating Applications”). In the QUEUE statement it is also possible to limit the
number of messages stored in the queue using the QLEV (queue level) operand; this allows
you to limit the utilization of the page pool. However, you can also specify the queue level
dynamically in the QCRE call. If you do this, anything specified at generation is overwritten.

A program unit can obtain the names of all the temporary queues and their properties by
means of the KDCADMI call KC_GET_OBJECT (object type: KC_QUEUE).

Message Queuing (asynchronous processing) Structure and use of UTM programs

64 Programming Applications with KDCS

2.4.2.4 MQ calls of the KDCS interface

The KDCS interface provides the following calls for service-controlled queues:

● DGET (Delayed free message GET)
The DGET call is used to read messages or message segments from USER, TAC or
temporary queues and to wait for a message of a service-controlled queue. Read with
subsequent deletion ("processing") and read without deletion ("browse") are possible.

● FPUT (Free message PUT)
FPUT calls are used to send messages to TAC queues. A message can consist of
several message segments. A separate FPUT call is required for each message
segment.

● DPUT (Delayed free message PUT)
The DPUT call sends a message or message segment to a USER, TAC or temporary
queue. Time control and basic and confirmation jobs are only possible for TAC queues.

● QCRE (Queue CREate)
The QCRE call is used to create a temporary queue.

● QREL ((Queue RELease)
The QREL call is used to delete a temporary queue.

● DADM (Delayed free message ADMinistration)
You can use DADM to obtain an overview of the entire contents of a queue or of specific
elements in it. In addition, DADM also allows you to control the order in which messages
are processed: you can bring messages forward or delete individual messages or the
contents of the entire queue.

You will find the exact format of these calls and further information on them in chapter
“KDCS calls” on page 201.

2.4.2.5 Lifetime of queues and queue messages

In UTM-S, all queues and all messages in these queues are preserved after the end of the
application. In other words, the messages in the queues are stored safely (failsafe) and are
still available after a restart. In the event of regeneration, the messages can be transferred
using the KDCUPD utility.

In UTM-F, the USER and TAC queues are preserved after the end of the application, but
the temporary queues are lost. The messages stored in all three types of queue are lost.

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Redelivery of queue messages

If queue messages were processed and if the transaction is then rolled back, the messages
are placed back in the queue. They can be read with DGET. The maximum number of
redeliveries can be set at generation (REDELIVERY operand in the MAX statement).
Redelivery can also be deactivated using this operand.

When the DGET call is executed, the number of redeliveries is output in the KB return area.

Alternatively, such messages can also be saved in the dead letter queue.

2.4.2.6 Deleting USER and TAC queues by means of programmed administration

USER and TAC queues can be deleted by means of programmed administration.

A USER queue is deleted when the associated user ID is deleted. The deletion can take
effect either immediately or at the next generation. However, the immediate deletion of
USER queues is only possible for standalone applications.

The dead letter queue cannot be deleted.

The deletion of TAC queues does not take effect until the next generation.

Message Queuing (asynchronous processing) Structure and use of UTM programs

66 Programming Applications with KDCS

2.4.2.7 Examples

The following sections describe typical application examples and show how you can use
service-controlled queues and create the associated program units.

Example 1: Communication between two services in an application

The diagram shows the evaluation of a background job with the help of a temporary queue.
The main service “Customer” in a call center searches for the required data by means of a
background job and reads the results from a temporary queue or waits for the corre-
sponding message if it is not yet available at the time of the DGET.

Communication between two independent services with the help of a temporary queue

A temporary queue is created by means of QCRE NN. The name of the queue is returned
in KCRQN. The background job “Search” is then created with FPUT, and the transaction is
terminated immediately with PEND SP. The name of the queue is passed with FPUT.

UTM "Call center" application

INIT

QCRE NN

FPUT KCRN=search

PEND SP with TAC2

INIT

DGET “queue”

Message not yet there

PEND PA with TAC2

INIT

DGET “queue”

MPUT

QREL “queue”

PEND FI

"Customer" service

INIT

FGET

Search for data

...

Data found

DPUT “queue”

PEND FI

"Search" service

Temp. queue

Temp. queue

TAC1

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

The “Search” service reads the message with the name of the temporary queue and
searches for the required data. Meanwhile, the main service, “Customer”, queries the result
of background processing with DGET. Since the result is not yet available in this case, the
current program unit of the main service terminates; openUTM waits for the arrival of the
message. The function is implemented in such a way that there is no program unit active
and no process linked for the main service in the wait time.

When the “Search” auxiliary service has obtained the required data, it creates a message
for the temporary queue and terminates. The DPUT job is thus executed.

The main service is continued when the message arrives. It reads the result from the
temporary queue and sends it to the client. It then deletes the temporary queue and termi-
nates (the deletion does not take effect until the successful completion of the transaction).

To control the sequences executed in the program units, an auxiliary field called
WaitForMsg must be created in the KB communication area so that it can be accessed by
all the service’s program units. If the return code 08Z is obtained repeatedly, superfluous
waiting is avoided by means of a RSET call.

Program unit TAC1:
...
QCRE NN
FPUT with KCRN=search
kb.WaitForMsg = 0
PEND SP with TAC2

Program unit TAC2 for evaluating the result:
...
DGET queue
if (KCRCCC = "08Z")
then if kb.WaitForMsg = 0

 then kb.WaitForMsg = 1
 PEND PA,<tac2>

 else RSET
else processing
QREL queue
...
PEND FI

Message Queuing (asynchronous processing) Structure and use of UTM programs

68 Programming Applications with KDCS

Example 2: “Pseudo dialogs” with remote transport system applications

Another application example is obtained by carrying out a simple modification of
example 1: a dialog or asynchronous service wants read access to a database in another
application.

A communication partner of the type APPLI or socket replaces the auxiliary service of
example 1. The FPUT call in the main service addresses the LTERM name of the remote
application instead of an asynchronous TAC; apart from this change, the calls and
processes involved in the two services remain unchanged. If the remote application is a
UTM application, the TAC to be called in the remote application must be at the beginning
of the FPUT message. The remote application must begin its reply message with the name
of the queue in which the main service expects the reply.

openUTM determines the destination of the messages from the name of the queue alone.
The name of the temporary queue must therefore not be the same as a TAC or LTERM
name of the local application. Name clashes are avoided because the name of the
temporary queue is assigned by openUTM (QCRE NN), and neither TAC nor LTERM
names begin with a digit.

Example 3: Communication with more than one service

If a service wants to communicate with more than one auxiliary service simultaneously,
what happens is similar to what happens in communication with only one auxiliary service.
When the replies are read, however, it is important that all the replies are read; it may
therefore be necessary to wait for all of these. You must ensure that each message is
waited for no more than once.
To control the processes in the program units, auxiliary fields are created in the KB commu-
nication area in this example so that all the program units of the service can access them.
As it is possible that not all the replies can be read in a program unit run, the browse function
is used to implement a wait loop. The replies are not processed until the last message has
arrived.

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Communication of a main service with two auxiliary services by means of temporary queues

Auxiliary fields must be used for this communication, and loops must be programmed. The
various steps are explained in the following table:

UTM application

INIT

QCRE NN

FPUT KCRN=HTAC1

FPUT KCRN=HTAC2

PEND SP with TAC2

INIT

Wait loop

DGET BF “queue”

If message(s) not yet all

there

PEND PA with TAC2

Read loop

{ DGET FT „queue“

 Loop for partial messages

{ DGET NT } }

processing

MPUT NE

RSET (at timeout)

QREL “queue”

PEND FI

Main service

Auxiliary services

Temp. queue

Temp. queue

TAC1

HTAC1

INIT

PEND

DPUT
...

...

HTAC2

INIT

PEND

DPUT
"queu2"

...

...

"queue"

Message Queuing (asynchronous processing) Structure and use of UTM programs

70 Programming Applications with KDCS

TAC1 program Explanation

INIT

QCRE NN Create temporary queue. The name of the queue is
returned in KCRQN.

FPUT KCRN=HTAC1
FPUT KCRN=HTAC2

Create messages for the auxiliary services. The name of
the queue is passed in the message.

kb.NrMsgs = 2
kb.WaitForMsg = 0
kb.i = 0
kb.kcgtm = spaces
kb.kcdpid = spaces

Initialize fields in the KB program area. These fields
control the sequence of execution in the follow-up
programs.

PEND SP KCRN=TAC2 Terminate transaction. The asynchronous jobs are
started.

TAC2 program Explanation

INIT

Timeout = 0 Initialize timeout field.

for (kb.i < kb.NrMsgs AND Timeout = 0
 DGET BF with
 length 0
 kb.kcgtm
 kb.kcdpid

In a loop an attempt is made using DGET BF with
waiting to wait for all replies without reading or deleting
data; in other words, all messages are retained. Make
sure that each message is not waited for more than
once.

 if (KCRCCC = "08Z")
 then if kb.WaitForMsg = 1
 then Timeout = 1
 else kb.WaitForMsg = 1
 PEND PA KCRN=TAC2
 else kb.i = kb.i +1
 kb.WaitForMsg = 0
 kb.gtm = KCRGTM
 kb.kcdpid = KCRDPID

There must be a wait. The program run is then termi-
nated with PEND PA; the current TAC is specified as the
follow-up TAC.

The counter is incremented when a reply arrives. The
creation time and DPUT ID of the message are buffered.

if Timeout = 0
then for (i < kb.NrMsgs)
 DGET FT
 for (KCRCCC != "10Z")
 DGET NT

processing
 MPUT NE

All replies are read in full in two nested loops.
Processing of the replies then begins. The result is sent
to the client using MPUT.

else RSET
 MPUT

At timeout, superfluous waiting is avoided by means of
an RSET.

QREL “queue”
PEND FI

Before the service terminates, the temporary queue is
deleted again.

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Example 4: Sending asynchronous messages to UPIC clients

Asynchronous messages must not be directed at UPIC LTERMs; with the help of service-
controlled queues, however, asynchronous events or messages can also be delivered to a
UPIC client. To do this, you either direct the asynchronous messages to the USER queue
of the UPIC client or you generate a TAC queue additionally for each UPIC client. The UPIC
client starts another dialog service in parallel with its normal dialog services. This dialog
service assumes the task of waiting at this queue until a message arrives, reading it out and
forwarding it to the UPIC client.

The following diagram shows how this is implemented using USER queues:

Sending of asynchronous messages to UPIC clients using USER queues

USER queueMessages

UTM application

Poll service (TAC1)
Start

to UPIC
client

Message

INIT

DGET FT KCRN=upicuser
 KCTYPE=U
 KCWTIME > 0

if message there
 MPUT message
 PEND RE KCRN=TAC1
else
 PEND PA KCRN=TAC1

UPIC client

poll service

Message Queuing (asynchronous processing) Structure and use of UTM programs

72 Programming Applications with KDCS

Example 5: Serialization of program units

If a program (segment) that is executed in both dialog and asynchronous services is to be
serialized, you can use a TAC queue for serialization. TAC queues have an advantage over
GSSBs (global secondary storage areas) in that waiting takes place outside the program
unit context and the process is thus free for other things.

In the following example, a segment of a program unit that can run both in the dialog and
asynchronously is secured against parallel processing by means of a TAC queue.

Generation:

TAC tacqueue,TYPE=Q

Serialization of program units using TAC queues

A message is sent to the TAC queue by means of DPUT for the next service to execute the
critical program segment. Only on successful completion of the transaction does the DPUT
call take effect.

The mechanism described here must be initialized so that the critical program unit segment
can be executed. This can be implemented at application startup, for example, by means
of an MSGTAC program that responds to a start message (K050, K051) and creates a
message for the TAC queue.

INIT

DGET FT KCRN=tacqueue
 KCTYPE=T
 KCWTIME > 0

if (KCRCCC = „08Z“)
 PEND PA KCRN=TAC1

DPUT QE KCRN=tacqueue

...

Actions to be serialized

...

PEND FI/SP

TAC queue

TAC queue

TAC1 program unit

No message
in TAC
queue

Message

Message

Structure and use of UTM programs Message Queuing (asynchronous processing)

Programming Applications with KDCS 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Example 6: Output of other TLS blocks in the dialog service

Accesses to TLS blocks of a different data station are only permitted in asynchronous
services. The output of data from other TLS blocks from a dialog service to the data station
is possible if example 1 is slightly modified:

The dialog service passes to the auxiliary service the name of the TLS block and of the
LTERM. The auxiliary service reads the required data with a GTDA call and sends it to the
temporary queue.

The dialog service reads the TLS data from the temporary queue and outputs it at the data
station.

Example 7: Service-controlled queues as global storage areas

Only serial access to application-global storage areas (GSSBs, see page 83) is possible,
i.e. areas of this kind are locked during read/write. If, instead of a GSSB, a temporary queue
is used with the "browse" function, several services can then access the storage area in
parallel.

Also, fewer restrictions apply to temporary queues than to GSSBs. The storage area of a
temporary queue is not limited (GSSB: 32,767 bytes) and more queues than GSSBs are
permitted (500,000 as opposed to 32,767).

Using a temporary queue it is possible, for example, to implement an online auction:

● DPUT QT/QE puts the descriptions of the objects into a temporary queue one after the
other. A fixed name is given to the queue. Later additions can be made to the queue.

● DGET BF/BN allows those interested to read these descriptions; this can also be done
in parallel by several services.

● DGET PF/PN processes a description and therefore removes it from the queue, e.g.
once an object has been sold in the auction.

● The temporary queue is deleted with QREL at the end of the auction.

The number of messages in a temporary queue can be limited at generation time (KDCDEF
QUEUE statement, QLEV operand). If only the latest messages are of interest, wrap mode
can be selected (QUEUE statement, QMODE=WRAP-AROUND operand). Once the
maximum number of messages has been reached, each new message causes the oldest
message to be deleted.

KDCS storage areas in openUTM Stucture and use of UTM programs

74 Programming Applications with KDCS

2.5 KDCS storage areas in openUTM

Under openUTM, program units can use various storage areas for the reading and writing
of user data. These storage areas ensure a clear distinction possible between program and
data areas and ensure that programs are reentrant. Additionally, these areas also enable
the transaction-logged, high-performance exchange of information between programs and
guarantee the efficient usage of working memory. Some memory areas are specially
designed for statistical purposes and for logging.

In addition to the storage areas shown here, openUTM also offers you the chance to use
service-controlled queues for communication between program units (see section
“Messages to service-controlled queues” on page 61).

The following storage areas are available:

– standard primary working area (SPAB)
– communication area (KB))
– local secondary storage area (LSSB)
– global secondary storage area (GSSB)
– terminal-specific long-term storage (TLS)
– user-specific long-term storage (ULS)
– user log file (for writing only)
– areas (AREA)

The number of GSSBs, LSSBs, TLS blocks and ULS blocks available in a UTM application
is specified during generation; names are also assigned for the TLS and ULS blocks at this
time; the names of the GSSBs and LSSBs are specified when programming the application.

Storage location for user data

In the case of standalone applications, the user data in the KB, GSSBs, LSSBs, TLS and
ULS blocks is stored in the KDCFILE.

In a UTM cluster application, each node application possesses a separate KDCFILE. The
fact that some data is valid at local node level whereas other data is valid globally
throughout the cluster results in a number of peculiarities compared to standalone applica-
tions:

● Data that is local to the node is stored only in the KDCFILE file of the relevant node
application. Data that is local to the node includes, for example,TLS, asynchronous
messages, background jobs and data relating to other node-bound services. The
KDCFILEs of the individual node applications are not identical at runtime.

● Data that applies globally in the cluster is stored in UTM cluster files such as the cluster
page pool or the cluster user file, see the openUTM manual “Concepts und Functions”.
This includes user data such as GSSB, ULS, the service data of users and passwords.

Stucture and use of UTM programs KDCS storage areas in openUTM

Programming Applications with KDCS 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Storage concept

The storage concept supports the following functions:

– reentrant capability of program units (SPAB)

– application data can be accessed by two or more services running in parallel (GSSB,
TLS, AREA)

– protection of user-specific data against access by foreign login names (ULS)

– transaction-oriented storage of logging data (user log file)

– independence of program units running in parallel (KB, LSSB).

openUTM provides two types of storage area:

– working memory areas (KB, SPAB)
These are storage areas which are available for the program units in the working
memory. You can address them directly.

– secondary storage areas (GSSB, LSSB, TLS, ULS, log files)
openUTM sets up these storage areas in background storage areas and uses special
KDCS calls to write to and read from them.

Depending on their function these areas are assigned to:

– a program unit (SPAB)
– a service (KB and LSSB)
– an LTERM, LPAP or OSI-LPAP partner (TLS)
– a user ID, USER/ LSES or ASSOCIATION (ULS)
– the application (log file, AREAs, GSSB).

If a service is processed in two or more processing steps or in two or more program units,
the data has to be stored and passed on. For this you use:

– the communication area (KB) and the

– local secondary storage area (LSSB).

You should use the KB for data required in each processing step.

LSSBs are to be used either when the data is not required in each program unit run of a
service or when there is more than 32 Kbytes of data, which means that it will not fit in the
KB.

KDCS storage areas in openUTM Stucture and use of UTM programs

76 Programming Applications with KDCS

Function and lifetime of the storage areas

The following table provides a summary of the lifetimes and functions of the KDCS storage
areas. The diagram on the next page also shows the KDCS calls you can use for storage
processing and illustrates the assignment of the individual storage areas.

Abbrevi-
ation

Area type Lifetime Function

KB Communication area Start of service to
end of service

Accesses current information
provided by openUTM;
exchanges data between
program units of a service

SPAB Standard primary
working area

Start of program unit to
end of program unit

Transfers parameters for KDCS
calls; message buffers

AREA Additional storage
area, declared for
each generation

Duration of application Accepts global data of an appli-
cation; preferably used for read
access only.
You should note that AREAs in a
UTM cluster are always node-
specific, i.e. one node cannot
access the AREAs in another
node.

LSSB Local secondary
storage area

From first write call to
explicit release or deletion
of user ID

Exchanges data between the
program units of a service

GSSB Global secondary
storage area

From first write call to
explicit release or end of
service

Exchanges data across services

ULS User-specific
long-term storage

Generation until
generation modification

E.g. statistics which are specific to
particular users
(USER, LSES, ASSOCIATION)

TLS Terminal-specific
long-term storage

Generation until
generation modification

Statistics which are specific to
particular connection points
(LTERMs, LPAPs, OSI LPAPs)

USLOG User log file Individually defined Logging

Stucture and use of UTM programs KDCS storage areas in openUTM

Programming Applications with KDCS 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Assignment of the KDCS storage areas and KCDS calls for storage processing

Log fileKB SPAB Program units LSSB GSSB TLS ULS

read TLS
GTDA

.

SPUT DL

PEND PR

read ULS
SGET US

SPUT GB
.

PEND FI

E n d of s e r v i c e
.
.
.

.
SPUT DL
SREL GB
.

PEND KP

.
SREL LB
.
.

PEND SP

. write to
LPUT
. log file
.

PEND FI

E n d of s e r v i c e End of
application run

.

.

KDCS storage areas in openUTM Stucture and use of UTM programs

78 Programming Applications with KDCS

2.5.1 Standard primary working area (SPAB)

By default openUTM assigns a SPAB to each program unit, the maximum length of which
is defined when the application is generated (see the openUTM manual “Generating Appli-
cations”). It is available to the program unit from the program start until the PEND call.

No data can be stored or transferred using this area beyond the end of the program unit
run. Since the SPAB serves only as a program unit-specific working area, it is not included
in the transaction and is not rolled back by a RSET call.

The SPAB may contain the following:

– the KDCS parameter area for call execution.

In the parameter area the program transfer the data which is necessary for a KDCS call.
The entries in the fields of the KDCS parameter depend on the call in question (see
chapter “KDCS calls” on page 201ff). Language-specific data structures are available
to structure the parameter area: for COBOL in the KCPAC COPY element and for
C/C++ in the kcmac.h include file.

– the message area (NB) for provision of the input/output data.

Messages read using MGET, DGET, FGET, SGET or GTDA are entered in the message
area. Here, openUTM also presents information which you can request with any of the
INIT, DADM, INFO and PADM call variants. When performing output, you also use the
message area to make available the data transferred with MPUT, FPUT, DPUT, SPUT,
PTDA or LPUT.

For each call you have to specify the address of the message area.

– further areas with variable data specific for the program run.

Freely selectable fill characters

When you generate a UTM application you can specify a fill character of your choice (in the
CLRCH operand of the KDCDEF statement MAX). openUTM then overwrites the SPAB
with this character at the end of each processing step. After the start of the application
program the area is filled with the specified character in the generated length.

This function is important for program testing because it facilitates the discovery of certain
errors in single-process mode. Additionally, you can use this function for data protection.

Stucture and use of UTM programs KDCS storage areas in openUTM

Programming Applications with KDCS 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Use of primary storage areas (SPAB, KB)

Process

UTM application program

Declare
Program unit 1

address
Current program name

KB, SPAB
available

.

.

.
Direct

addressing

Main routine

KDCROOT

Teilprogramm nProgram unit

INIT

Statements

PEND

KB

SPAB

KDCS storage areas in openUTM Stucture and use of UTM programs

80 Programming Applications with KDCS

2.5.2 Communication area (KB)

openUTM creates the KB when a new service is started. The KB is retained until the service
is terminated. The contents of the KB are transferred to the program currently being
executed. The size of the KB can be adapted to the data to be transferred, i.e. it can be
increased or decreased for individual processing steps.

There are two areas of fixed lengths at the beginning of each KB. These are used for
communication between openUTM and the program:

– the KB header
– the KB return area.

Language-specific data structures are available for structuring these areas: for COBOL in
the KCKBC COPY element, and for C/C++ in the kcca.h include file.

In the KB header you can find current information about the service, program unit and
communication partner after calling INIT, and after each subsequent call.

In the KB return area, openUTM transfers its return data to the program after each call
(except PEND). The evaluation, in particular of the return code, provides information about
whether or not a call has been executed successfully and can be used for specific control
measures in the program (see also section “Programming error routines” on page 89).

Additionally, you can define an area of variable length in the KB, the KB program area,
whose structure you can determine freely. While the KB header and the KB return area are
always present, you can select whether or not you want to use a KB program area. It can
be used to transfer and store service-specific data of any type.

The maximum length of this area is specified when the application is generated (KB
operand in the MAX statement). In the program, you use INIT to specify the length which
the program currently expects. This length may not be longer than the value you generated
with the KB operand. When the next synchronization point is reached the KB is saved in the
length specified by INIT. Therefore only enter the absolutely necessary minimum length for
the KB when calling INIT. In this way you avoid unnecessary information being saved.

If multiple programs with KB program areas of differing length process the same service,
length conflicts may occur during data transfer between programs. A program always
receives data in the length specified in the KCLKBPRGE field by the predecessor program
when INIT was called. If the receiving program provides longer data fields, then the
remaining area is undefined. If the receiving program defines a shorter KB, it nevertheless
receives the data in its full length. The truncation only takes effect when the data is passed
on again (see diagram next page).

Stucture and use of UTM programs KDCS storage areas in openUTM

Programming Applications with KDCS 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Freely selectable fill characters

When you generate a UTM application you can specify a fill character of your choice (in the
CLRCH operand of the KDCDEF statement MAX). openUTM then overwrites the SPAB
with this character at the end of the service. After the start of the application program the
area is filled with the specified character in the generated length.

This function is important for program testing because it facilitates the discovery of certain
errors in single-process mode; additionally, you can use this function for data protection.

KB program area for data transfer

Program unit 1

KB program unit with
INIT with KCLKBPRG = 50

.

KB program area
with PEND RE Program unit 2

KB program area with
INIT with KCLKBPRG = 75

The dollar rate will soon
rise.xxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

.

Program unit 3
KB program area
with PEND RE

KB program area with So the government will be
INIT with KCLKBPRG = 50 taking the necessary counter

measures.xxxxxxxxxxxxx
So the government will be
taking the necessary counter
measures.xxxxxxxxxxxxx

.

KB program area
with PEND RE

This is why you are urged
to trust in our shares !!

xxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxx

The dollar rate will soon
rise.xxxxxxxxxxxxxxxxxxxx

KDCS storage areas in openUTM Stucture and use of UTM programs

82 Programming Applications with KDCS

2.5.3 Local secondary storage area (LSSB)

LSSBs are service-specific background storage areas which are used to forward data
between program units within a service. Their contents are stored externally in the
KDCFILE or, in the case of UTM cluster applications, in the cluster page pool, see “Storage
location for user data” on page 74. While openUTM automatically makes the communi-
cation area available for each program unit and then saves it, the LSSB is only accessed
when necessary. It is therefore particularly useful for data which is accessed for reading
only or if multiple program units are present which do not require the data between the point
when the data is written and the time it is read.

For example, you can use LSSBs in the following cases:

– creation of a ”browse function" for dialog outputs
– "temporary" data storage

You can use the SPUT call to write to a LSSB. To do this, enter the name of the area you
want to write to. This name is only valid for the local service; if two services have the same
name, then the names designate two different LSSBs. The LSSB is set up on the first write
access within a service. Here the programmer defines the length of the LSSB. An LSSB can
have a maximum length of 32767 bytes.

You use the SGET call to read from the area. If the storage is not required after the SGET
call, it can be simultaneously released. You can also use the SREL call to release an LSSB.
As soon as the associated services has terminated, any unreleased LSSBs are released.

The maximum number of LSSBs that you can create within a service is determined when
the application is generated (MAX statement, LSSBS operand, see also the openUTM
manual “Generating Applications”).

Stucture and use of UTM programs KDCS storage areas in openUTM

Programming Applications with KDCS 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.5.4 Global secondary storage area (GSSB)

GSSBs are background storage areas just like LSSBs. The GSSB differs from the LSSB in
its function, lifetime and application. The GSSB permits the transfer of data from one
service to another. Data transfer is also possible after the end of an application in UTM-S,
i.e. data remains available to the application after restart.

In UTM cluster applications, GSSBs are supported throughout the cluster. I.e. they are
stored in the cluster page pool and are therefore available for all users in all node applica-
tions. This means that all the node applications have the same view of the data in the
storage area, see also “Storage location for user data” on page 74.

You can, for example, use a GSSP to transfer data between dialog and asynchronous
services if you do not use service-controlled queues (see page 61).

It is open to all services. You must therefore define an unambiguous name in all the program
units of an application. A GSSB is reserved for a service from an SPUT, SGET or SREL call
until the end of the transaction. This prevents multiple accesses. A call from another service
to the reserved GSSB waits until this is free again. openUTM locks the GSSB from the time
of access to the end of a transaction (see also the section “Action with locked storage
areas” on page 88).
You define the maximum wait period at generation time (KDCDEF statement MAX, operand
RESWAIT, value time1). The UNLK call explicitly unlocks a GSSB, i.e. releases it prema-
turely for a waiting service, provided that the GSSB has only been read.

You call SPUT to create a GSSB (and its name).
The contents of a GSSB are maintained until it is released in a program unit by means of
the SREL call. Its life is not limited. It is thus again made available to a UTM application after
an interruption of operation provided that, in the case of a standalone application, the same
KDCFILE or, in the case of a UTM cluster application, the same cluster page pool is used
as before the interruption or if the user data has been transferred to a new KDCFILE or the
new cluster page pool using the KDCUPD tool.

In a program unit, you can use the KDCADMI call KC_GET_OBJECT (object type:
KC_GSSB) to ascertain the names of all currently existing GSSBs.

You define the maximum number of GSSBs which can be generated when you generate
the application (MAX statement, operand GSSBS=, see also the openUTM manual “Gener-
ating Applications”).

KDCS storage areas in openUTM Stucture and use of UTM programs

84 Programming Applications with KDCS

2.5.5 Terminal-specific long-term storage area (TLS)

The TLS is assigned to a connection point (LTERM, LPAP or OSI-LPAP partner) and is used
to store information that is to be available independently of the life of the services and the
operating time of the application. This long-term storage may consist of multiple blocks
whose names you define in the TLS statements. A separate TLS statement is used to define
each TLS block name. You can specify multiple TLS statements. The defined block names
are the same for all LTERM/LPAP/OSI-LPAP partners. A particular block can be identified
by its block name and the names of its LTERM/LPAP/OSI-LPAP partners (see the
openUTM manual “Generating Applications”).

TLSs are only supported locally in the nodes in UTM cluster applications, i.e. each node
application has its own TLSs.

For example, you can use a TLS

– to generate statistics for an LTERM, LPAP or OSI-LPAP partner or

– to log access violations, for a example for an MSGTAC exit, see “Example of a
MSGTAC program unit” on page 469.

A program unit of a dialog service can only access blocks belonging to its "own" TLS, i.e.
only the TLS of the LTERM, LPAP or OSI-LPAP partner via which the service was started.

A program unit run of an asynchronous service can read blocks from all the LTERM, LPAP
or OSI-LPAP partners of the UTM application.

You use GTDA to read and PTDA to write a TLS block. openUTM locks a TLS block from
the time of access to the end of the transaction. You can specify the maximum wait period
at generation (KDCDEF statement MAX, Operand RESWAIT, value time1). If a TLS has
only been read, you can use the UNLK call to explicitly unlock the TLS (see also the section
“Action with locked storage areas” on page 88).

The TLS is used to store information that has to be available independently of the life of the
services and the operating time of the application. It is thus again made available to the
UTM application after an interruption of operation provided that the same KDCFILE as
before is used or if the KDCUPD tool is used to transfer the user data to a new KDCFILE.

Stucture and use of UTM programs KDCS storage areas in openUTM

Programming Applications with KDCS 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.5.6 User-specific long-term storage area (ULS)

You can assign a user-specific long-term storage area (ULS) to the user IDs
(USER/LSES/ASSOCIATION) when you configure the UTM application. This long-term
storage may consist of multiple blocks whose names you define in the ULS statements. A
separate ULS statement is used to define each ULS block name. The defined block names
are the same for all user IDs. A particular block can be identified by its block name and the
name of the associated user ID (see the openUTM manual “Generating Applications”).

In UTM cluster applications, user-specific, long-term storage is supported throughout the
cluster. I.e. the data is stored in the cluster page pool and is therefore available for all users
in all node applications. This means that all the node applications have the same view of
the data in the storage area, see also “Storage location for user data” on page 74.

The ULS blocks defined for the application are also set up for LU6.1 sessions and OSI TP
associations.

You can, for example, use the ULS to record statistics about user IDs.

Without administrator privileges, a program unit can only access the ULS blocks of the user
ID under which it was started. To access ULS blocks of other user IDs, the program unit
must have administrator privileges.

You use the SGET call to read and the SPUT call to write a ULS block. openUTM locks a
ULS bock from the time of access to the end of a transaction. You can specify the maximum
wait period at generation (KDCDEF statement MAX, Operand RESWAIT, value time1). If a
ULS block has only been read, you can use the UNLK call to unlock the block explicitly (see
also section “Action with locked storage areas (TLS, ULS and GSSB)” on page 88).

The ULS is used for storing information that has to be available independently of the life of
the services and the operating time of the application. It is thus again made available to a
UTM application after an interruption of operation, provided that, in the case of a standalone
application, the same KDCFILE or, in the case of a UTM cluster application, the same
cluster page pool is used as before the interruption or if the user data has been transferred
to a new KDCFILE or the new cluster page pool using the KDCUPD tool.

KDCS storage areas in openUTM Stucture and use of UTM programs

86 Programming Applications with KDCS

2.5.7 User log file

The user log file (USLOG file) is used for recording user-specific data.

User log files are only supported locally in a node in a UTM cluster application, i.e. every
node application writes to its own USLOG file.

It has the following record structure:

Record structure of the user log file

Each data record is generated with an LPUT call. openUTM additionally enters the contents
of the KB header in the prefix of the data record. These contents are the same as at the
time of the INIT call. You simply have to provide the data area containing the data which
you want to log.

For more details on the user log file see the corresponding openUTM manual “Using
openUTM Applications”.

SL xx KL xx DL xx KB Data
header

2 4 6 8 10 12 12+KL 12+KL+DL

KL DL

SL

The separate bytes are set as follows:

SL record length, 2 bytes binary
KL KB header length, 2 bytes binary
DL length of net data as defined in KCLA, 2 bytes binary
xx reserved

. . .

.

Stucture and use of UTM programs KDCS storage areas in openUTM

Programming Applications with KDCS 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.5.8 Other areas

A program unit can use up to 99 other areas, which you define with the KDCDEF statement
AREA (see the openUTM manual “Generating Applications”). AREAs are shared storage
areas available to the UTM application. The structure of these areas is not predefined by
openUTM and you can define them as you wish.

The addresses of such storage areas are passed along with SPAB and KB as additional
parameters at the start of the program. These areas are not subject to the transaction
concept: openUTM does not save these areas, nor does it roll back them with an RSET or
lock them. This means that the application program alone is responsible for managing
these storage areas.

For information about how you define such an area in your programming language, refer to
page 483 for C/C++ and page 538 for COBOL.

i When program units which use AREAs are transferred from one application to
another, the use of AREAs may cause problems, for example because of differ-
ences in parameters. Alternatives to the use of AREAs are described on page 485
for the C/C++ programming language and page 540 for COBOL.

● AREAs in a UTM cluster application are always node-specific, i.e. one node
cannot access the AREAs in another node.

KDCS storage areas in openUTM Stucture and use of UTM programs

88 Programming Applications with KDCS

2.5.9 Action with locked storage areas (TLS, ULS and GSSB)

If multiple UTM transactions attempt to access GSSB, TLS or ULS storage areas simulta-
neously, openUTM synchronizes these accesses.

Each access (for reading, writing or deleting) to a TLS, ULS or GSSB causes openUTM to
lock this area for other transactions:

– until the next synchronization point (PGWT CM, PEND RE, FI, SP or FC) or

– until the next roll back operation (PGWT RB, RSET, PEND RS or PEND ER/FR) or

– until release with the UNLK call if the area has only been read.

If a transaction attempts to access the locked area, openUTM places it in a queue until

– the lock has been released
– or the maximum wait period has elapsed.
– or the transaction responsible for the locking of the area uses PEND KP or PEND

PA/PR with TAC class change or wait for DGET message or with PGWT KP/PR to set
itself to a wait state of undefined length.

The process remains blocked and cannot take on other tasks during the wait period.

This maximum wait period is defined by the value time1 of the RESWAIT operand in the
KDCDEF statement MAX (default: 60 seconds, see also the openUTM manual “Generating
Applications”). If a transaction waits longer than the time defined by RESWAIT (time1),
openUTM rejects the access attempt with the return codes KCRCCC = 40Z and KCRCDC
= K810.

UTM rejects such an access attempt immediately

– if the area has been locked by another transaction which has just used PEND KP or
PEND PA/PR with TAC class change or wait for DGET message or PGWT KP/PR to
set itself to a wait state of undefined length
(KCRCCC = 40Z and KCRCDC = K810), or

– if waiting would lead to a deadlock in GSSB, TLS and ULS areas (KCRCCC = 40Z and
KCRCDC = K820). For this to be possible, deadlock detection must be explicitly
enabled in cluster applications (see also KDCDEF statement CLUSTER DEADLOCK-
PREVENTION in the openUTM manual “Generating Applications”).

If a transaction accesses a GSSB, ULS or TLS for reading only, it is advisable to release
this area again as quickly as possible - in particular before database calls or PEND PA/PR
with TAC class change or wait for DGET message or before PGWT KP/PR - in order to
shorten the waiting times of other transactions.

No such locks can occur during access to LSSBs, since it is not possible to access LSSBs
across services.

Structure and use of UTM programs Programming error routines

Programming Applications with KDCS 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.6 Programming error routines

openUTM returns the following return codes in the return area of the communication area
after KDCS calls: in the KCRCCC field, after each call a KDCS return code in accordance
with DIN 66 265 (compatible return code) and possibly a UTM-specific return code in the
KCRCDC field (KCRCDC). These return codes inform you whether openUTM was able to
execute the KDCS call or why openUTM could not execute it.

For each KDCS call there is a description of the error codes that may occur with that call.
For a list of error codes refer to the openUTM manual ”Messages, Debugging and
Diagnostics”.

If control is returned to the program unit after a call, it therefore has to check:

– whether the call was executed without errors; this is the case if the program unit recog-
nizes that the KDCS return code has the value "000" (in the KCRCCC field).

– which errors have occurred on the basis of the specified error code.

Additional information that may be relevant for the measures which are to be implemented
include the actual transferred length (KCRLM field) and the employed format character
(KCRMF/kcrfn field) etc.

In the event of serious errors, the program unit does not get control back. In such cases,
openUTM rolls back the transaction, terminates the service and creates a PEND ER dump;
the error code that led to the abortion of the service can be obtained from the UTM-
DIAGAREA of the PEND ER dump. You will find more information on the analysis of a
PEND ER dump in the openUTM manual ”Messages, Debugging and Diagnostics”.

i Control is not returned to the program unit after a PEND call. The return area cannot
therefore be subsequently evaluated in the program unit. If errors occur during
PEND processing, UTM responds as described above.

The program unit can use RSET, PGWT RB or PEND RS/ER/FR to roll back the trans-
action: a PEND ER causes a dump to be requested.

It might also happen that openUTM returns an error message because it has received an
error message from one of the components involved (e.g. the formatting system).

In the case of such errors openUTM executes an internal error handling routine, thus
relieving the program unit of this task. Where possible, openUTM corrects the error,
otherwise the service is aborted by PEND ER and the appropriate UTM error code is set.

For examples of error routines, refer to the sample programs, for C/C++ page 502ff, for
COBOL page 557ff.

Message segments Structure and use of UTM programs

90 Programming Applications with KDCS

2.7 Message segments

The KDCS interface enables you to process message segments. In this way, you can
combine message components in order to forward them to the communication partner as a
complete message.

The use of message segments has the following advantages:

– message areas only have to be as large as the largest message segment

– message segments can be processed separately

– formats can be made up of partial formats.

You use the MPUT NT, FPUT NT, DPUT NT or DPUT QT call to send message segments
to openUTM.

Message segments may be addressed to a terminal, a client program, a queue, a printer, a
follow-up program unit, a local asynchronous service or, with distributed processing, a
remote partner.

In all cases where multiple message segments are addressed to a program unit, you must
read each of these message segments with a separate DGET, MGET or FGET.

If you use formats then you can send formatted message segments in messages to
terminals and printers. In the case of dialog messages to terminals you must then use
partial formats (see page 111). In the case of formatted asynchronous messages to
terminals, each message segment is treated as a separate message. In the case of
formatted asynchronous messages to printers, the message segments are combined to
form a logical unit.

Messages with format identifiers can also be sent to UPIC clients as well as to LU6.1
partners. Formats are not used to prepare the messages for these partners, but more
precisely to describe the structure of the user data. openUTM does not call a formatting
routine when sending formatted messages to these partners, rather the format name is sent
to the UPIC client or LU6.1 partner instead.

Note on the diagram below

If, in the first program unit (TAC1), FPUT is written as FPUT NT, it will again produce an
asynchronous message of its own since openUTM terminated the message with PEND PR.

B

B

B

B

B

B

Structure and use of UTM programs Message segments

Programming Applications with KDCS 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

Message segments

1) If message segments are sent from one program unit to another, each message
segment must be read with its own MGET NT or FGET.

2) Message segments to a terminal are combined by openUTM into a single message.

TAC1Entries from terminal

INIT

MGET

MPUT NT with TAC2
1)

MPUT NE with TAC2
1)

FPUT NE with TAC3
TAC3 (asynchronous)

PEND SP with TAC2 INIT

TAC2 Processing

INIT PEND FI

MGET

MPUT NT 2)

MGET

MPUT NE 2)

FPUT NT with TAC3 1)

FPUT NE with TAC3 1)

TAC3 (asynchronous)

PEND RE with TAC4 INIT

FGET

Output to terminal

Processing

Response 1 Response 2

FGET

PEND FI

FGET

TAC1 Data 1

INIT
MGET

Entries from terminal

Data 4

TAC4

Result 2

Data 13

Data 13

Result 1

Response 1

Result 2

Response 2

Data 21

Data 22

Data 21

Data 22

Data 1

Result 1

Data 4

Communication partners of a UTM application Structure and use of UTM programs

92 Programming Applications with KDCS

2.8 Communication partners of a UTM application

A UTM application can communicate with a variety of partners. Communication partners of
an openUTM application are for example:

● Terminals

The KDCS interface enables you to connect character-oriented terminals directly. You
can use these terminals in line mode or - in openUTM on BS2000 systems - you can
use screen forms (masks).

● UPIC clients

UPIC clients are programs that use the UPIC interface to communicate with the UTM
application.

● Transport system (TS) application

Transport system applications are programs that use the transport system interface
directly to communicate with the UTM application, e.g. sockets. TS applications can
also be other UTM applications.

● Printers

You can create output jobs for printers from openUTM services (see section
“Programming error routines” on page 89). Print jobs are also part of the transaction
concept.

● OSI TP, LU6.2 or LU6.1 partners

The partner may be another openUTM or OpenCPIC application, or it may be an appli-
cation that uses a transaction system from a different manufacturer.

● Message queues

In UTM services, messages can be written to message queues, from where they can
be retrieved by the recipient at any time. These queues are also included in the trans-
action concept.

Structure and use of UTM programs Communication partners of a UTM application

Programming Applications with KDCS 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

You use the same KDCS calls for communication with all these partners:

MPUT to send a dialog message to the partner
FPUT/DPUT to send an asynchronous message to the partner or a message queue

MGET to receive a dialog message from the partner
DGET to read an asynchronous message from a message queue
FGET to receive an asynchronous message from the partner

The following calls can also be used for communication within a UTM application:

– You can use MPUT to send a message to a follow-up program unit which then can use
MGET to read this message. However, you can also use service-specific storage areas
to exchange information between program units of a service (KB and LSSB, page 74).

– You can use FPUT/DPUT to send asynchronous messages to local asynchronous
services or message queues. The messages can then be read with FGET/DGET.

Output to printers Structure and use of UTM programs

94 Programming Applications with KDCS

2.9 Output to printers

You can output to printers in two different ways:

– hardcopy to a central or local printer
– output jobs to printers (print jobs), also called spooling

Transaction-oriented output to printers is not supported on Windows systems.

2.9.1 Hardcopy mode with openUTM

You can activate automatic hardcopy mode using the screen function KCREPR in the
KCDF field of the KDCS parameter area. If you use #formats control is performed via global
attributes.

You can also activate the hardcopy function using edit profiles (specifications in
KCMF/kcfn). To do this, you have to set the operand HCOPY=Y in the KDCDEF statement
EDIT when you define the edit profile (see the openUTM manual “Generating Applica-
tions”).

In hardcopy mode you have to use MPUT, FPUT or DPUT to send the message to the
terminal. This initiates the printout, i.e. if you use MPUT, blanks are entered in KCRN and
if you use FPUT/DPUT, the LTERM name of the terminal is used.

The terminal user can also press the key to print the current screen contents to the
selected, assigned printer.

W

B

B

B

B

B

B

B

B

B

B

B

B

Structure and use of UTM programs Output to printers

Programming Applications with KDCS 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.9.2 Print jobs

You use the FPUT or DPUT message queuing calls to create print jobs (see section
“Messages to UTM-controlled queues” on page 51 and chapter “KDCS calls” on page 201).
Here you have to specify the LTERM name of the printer in the KCRN field. openUTM
enters the job in the corresponding queue.

You can

– use a single FPUT or DPUT call (NE in KCOM field) to generate a print job or

– construct print jobs using multiple FPUT or DPUT calls (for message segments): NT in
KCOM field and NE for the last FPUT or DPUT call.

openUTM handles the message segments of a print job as one entity when determining
print sequences or for error handling. With printer pools, openUTM sends all the message
segments of a job to one printer.

You can either print out in line mode.

On BS2000 systems you can output print jobs in format mode.

On BS2000 systems it is also possible with RSO printers to pass a parameter list to RSO
using FPUT RP or DPUT RP. RSO changes the parameter settings depending on the
particular printer type.

Administering message queues and printer control

You use the KDCS call DADM (see page 221ff) to administer the UTM-controlled message
queues which contain the print jobs and are assigned to the LTERM partner.

With the DADM (delayed free message administration) call, you can:

– read information about jobs of a message queue into the message area
– change the processing sequence of jobs of a message queue
– delete individual jobs or an entire message queue
– move defective messages from the dead letter queue

You can use the KDCS call PADM for printer control.
With PADM (printer administration) you can:

– activate or deactivate the confirmation mode for a printer control LTERM
– confirm or repeat a print out
– modify the assignment of the printer to an LTERM partner
– change the printer status, i.e. lock and release the printer, establish or cancel

connection to a printer
– read information about a printer into the message area
– read information about print outs to be confirmed

B

B

B

B

Output to printers Structure and use of UTM programs

96 Programming Applications with KDCS

For detailed information about the administration of message queues, the execution of print
outs and printer control options refer to the openUTM manual “Administering Applications”.

Avoiding bottlenecks during high volume printing

The message queues are stored in the Pagepool of the KDCFILE. To avoid bottleneck
situations when printing high volumes and to avoid a Pagepool overflow, you can make the
following provisions in the program unit or at generation.

● In the program unit:

Evaluate the return code 40Z/K701 after FPUT/DPUT calls to printers or the "K041
warning level # for PAGEPOOL exceeded" message in an MSGTAC program unit and,
for example:

– establish a connection to the printer for which there are many messages available
so that the messages can be printed and then deleted by openUTM

– or delete FPUT via the DADM administration, or block TACs that send FPUTs to the
printer.

● For each generation:

– use QLEV= (LTERM statement) to establish the maximum number of messages
which openUTM can temporarily store in a message queue. Print jobs are not taken
into account until end of transaction. openUTM rejects further messages to this
printer with 40Z.

– use QAMSG= (LTERM statement) to determine whether messages to a printer
which is not connected to the application are to be buffered.

– estimate the necessary, additional space for printer messages in Pagepool and
enter a sufficiently high value in the PGPOOL operand of the MAX statement, for
recommendations see the openUTM manual “Generating Applications”.

i The output of UTM message K022 at a printer always results in a separate print job.

Structure and use of UTM programs Support for ID card readers

Programming Applications with KDCS 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

05
.4

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
2

2.10 Support for ID card readers

UTM supports ID card readers at data display terminals.

You can use the ID card reader in two ways:

– access protection through ID card control at sign-on
– data input via ID card

You cannot use the ID card reader both ways simultaneously: after signing on with the ID
card reader, the terminal user cannot then use the ID card to enter data.

2.10.1 Signing on to the application via ID card reader

You can configure user IDs for a UTM application in such a way that access to the appli-
cation via a user ID is only possible with a special ID card (magnetic strip card): This can
be done either via the KDCDEF statement USER Operand CARD at generation or through
dynamic configuration (KC_CREATE_OBJECT, object type KC_USER).

If a user signs on via a user ID for which an ID card check is configured, the user is
requested to insert the ID card in the reader. openUTM checks the ID card information. If
this information agrees with the information generated in the configuration for this user ID,
the user is allowed to work with this application
If an ID card is in the reader during dialog input, openUTM enters the identifier "A" in the
KCAUSWEIS/kccard field of the KB header.

The user must leave the ID card in the reader until he or she has signed off from the appli-
cation with KDCOFF, otherwise openUTM disconnects the connection to the terminal.

You can call the ID card information in the program units, for example using the KDCS call
INFO with the "CD" (CARD) operation modifier.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Support for ID card readers Structure and use of UTM programs

98 Programming Applications with KDCS

2.10.2 Data input via ID card

If you do not use the card reader for sign-on check, you can enter data via the card reader
in the following way on BS2000 systems:

If you use the screen function KCCARD or an edit profile with SPECIN=I to output a dialog
message (MPUT), the keyboard is locked and the user is requested to insert the magnetic
strip card into the ID card reader (this should be made clear in the text for the dialog
message).

The follow-up program unit can then use MGET to read the data of the magnetic strip card
like a normal screen input.

If no magnetic strip card is available to the user, he or she can unlock the keyboard by
pressing either the key (or together with). In this case, when MGET is called, the follow-
up program receives the return code which you assigned to the key with the KDCDEF
statement SFUNC during generation.

If you remove the magnetic strip card from the card reader, openUTM repeats the last dialog
output (internal KDCDISP).

Checking availability

– You can check whether the ID card is available in the KCAUSWEIS/kccard field in the
KB header. In this case openUTM sets the character "A" if the ID card was inserted at
the last input.

– You can check the availability of an IID card reader by means of an INFO CK call: the
return code of the INFO CK call tells you whether or not there is an ID card reader at
the terminal. It makes sense to call INFO CK before an MPUT call with KCCARD. In the
case of an MPUT with KCCARD to a terminal which does not have a card reader, UTM
terminates the service abnormally.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Programming Applications with KDCS 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

3
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
3

3 Interaction with databases

openUTM supports coordinated interaction with database systems. openUTM uses two-
phase-commits to synchronize the UTM transactions and the transactions of the database
system (see the openUTM manual “Concepts und Functions”).

A UTM application can interact in coordination with multiple database systems. This means
that a UTM transaction can contain calls to different database systems. KDCS calls to
terminate a dialog step (PEND KP or PEND PA/PR) within a transaction usually result in a
change of task or process. In OSI TP applications with Commit, this also applies to PEND
SP, RE, FI, PGWT CM calls in the job-submitting service. If it is necessary to work together
with one or more database systems in this type of environment then the task change must
be supported by each of these.

Furthermore, it is possible in distributed processing to process data from a number of
different database systems on different computers in a single transaction.

Rolling back transactions

If an errors occurs, openUTM rolls back all the databases of an transaction to a common
synchronization point. There is no need for the programmer to coordinate openUTM and
the database systems.

The database system can also roll back DB transactions itself, e.g. to release long-term
locks. In this case the transactions are again synchronized and the program unit is informed
by the corresponding DB system return code.

Internal interface between openUTM and database systems

openUTM employs a uniform and neutral interface to control the interaction with database
systems. In this way openUTM is independent of any implementation-specific features of
the various database systems.

On Unix, Linux and Windows systems, this is the XA interface standardized by X/Open, on
BS2000 systems the XA interface is offered and the functionally equivalent IUTMDB
interface.

Supported database systems Interaction with databases

100 Programming Applications with KDCS

Supported database systems

openUTM on BS2000 systems supports coordination with the following database systems:

– UDS/SQL
– SESAM/SQL
– Oracle
– LEASY (the LEASY file system behaves like a database system with openUTM).

Because it is not possible to use LEASY from multiple computers, LEASY cannot be
used in UTM cluster applications.

On Unix, Linux and Windows systems openUTM supports coordination with the following
database systems:

– Oracle
– INFORMIX

Connecting openUTM with database systems

The database systems with which a UTM application is to coordinate and interact are
specified in the KDCDEF statement during generation of the UTM application: on Unix,
Linux and Windows systems you use the RMXA statement, for BS2000 systems the
DATABASE statement (see the openUTM manual “Generating Applications”).

Note for BS2000 systems

Some database systems provide various call interfaces for the application program. These
may be implemented as CALL interfaces or language elements in the programming
language (e.g. in COBOL). You use the KDCDEF statement DATABASE to specify the inter-
faces which the program units of a UTM application use for communication.

Note for Unix, Linux and Windows systems and for XA-capable databases on BS2000 systems

No interface is specified for the application program at generation of a XA-capable
database. The interface depends on the resource manager used.

Note on using XA

As a rule, there is a static and dynamic XA switch. A database can provide one or both
variants. If the database provides a dynamic XA switch, you should use this. This minimizes
the resources occupied in the database system.

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

B

B

B

B

B

Interaction with databases UTM transaction and DB transaction

Programming Applications with KDCS 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

3
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
3

3.1 UTM transaction and DB transaction

A service is constructed of one or more UTM transactions. The structure is determined by
the program units of the service. A program unit opens a DB transaction when required, i.e.
if it is necessary to read or modify the database.

UTM transactions and DB transactions in a service

i With regard to database transactions the PGWT CM call behaves in the same way
as PEND SP or PEND RE.

INIT

PEND RE

INIT

Start DB-TA

End DB-TA
PEND RE

INIT

Start DB-TA

PEND KP

INIT

End DB-TA
PEND RE

INIT

PEND FI

Dialog step UTM -TA DB-TA Service TAC message

Message

Message

Message

Message

Message

TAC

TAC

TAC

TAC

= Synchronization point

*

*

*

*

UTM transaction and DB transaction Interaction with databases

102 Programming Applications with KDCS

Multi-step transactions

A multi-step transaction consists of several UTM dialog steps within a transaction. It is often
impossible to modify the data records of a dialog in a single processing step. You need a
first processing step to display the data and a second to enter the modifications. By locking
the data records for both processing steps you can extend the lock to a multi-step trans-
action.

The time between the processing steps is monitored by a timer which you specify with the
KDCDEF generation tool at generation. After the timer has expired the transaction is rolled
back and the locked data released.

The database systems also manage the locking period themselves and roll back the DB
transactions to release the locks. The service is informed at the next DB call.

When using multi-step transactions you should note that each rollback may result in the
repetition of multiple processing steps, depending on how recent the last synchronization
point is.

Interaction with databases Programming ESQL program units

Programming Applications with KDCS 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

3
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
3

3.2 Programming ESQL program units

A UTM-ESQL program unit is structured like a normal UTM program unit.

To communicate with databases you can use all the facilities of the ESQL interface.

However, for transaction logging you may only use KDCS calls.
ESQL calls such as BEGIN WORK, COMMIT WORK and ROLLBACK WORK are not
permitted during the coordinated interaction of openUTM with databases. For further details
refer to the manual for your database system.

Note

Currently, Oracle cannot migrate open cursors when connected via XA, i.e. you have to
open them explicitly at the start of every program unit and close them explicitly at the end
of every program unit. If you require this position in a follow-up program unit, you must
program your application to save its value (e.g. in the KB or LSSB) an then set it in the
follow-up program unit.

Example for use of CLOSE CURSOR

TAC1 DB-TA UTM-TA

INIT
MGET

DECLARE CURSOR
LOCK TABLE
OPEN CURSOR

.
DB call

FETCH
permitted

.
CLOSE CURSOR

MPUT
PEND KP (TAC2)

TAC2

INIT
MGET

DECLARE CURSOR
OPEN CURSOR

. DB call
UPDATE permitted

.
CLOSE CURSOR

MPUT
PEND RE/FI/FC

. DB transaction

. can still be rolled back
.... Synchronization

point

Error processing with connected databases Interaction with databases

104 Programming Applications with KDCS

3.3 Error processing with connected databases

If errors occur in the interaction with database systems, openUTM processes the errors -
the programmer does not need to take any special precautions.

BS2000 databases without XA

The database system informs openUTM about whether it has been able to execute a call
successfully. If an error has occurred, openUTM checks the severity of the error and reacts
accordingly: openUTM rolls back the transactions to the last synchronization point and
outputs messages that contain information on the causes of the error.If a serious error
occurs as a result of interaction with the database then openUTM generates the message
K071. This message contains database status information together with a specific return
code, see openUTM manual ”Messages, Debugging and Diagnostics”.

Database connection via XA

openUTM uses XA messages (K201 - K232) to provide additional information about the
status of the connection, irregular rollbacks, commits and errors when using XA calls (see
also the openUTM manual ”Messages, Debugging and Diagnostics”.

A special area for further diagnosis is available in the UTM dump, the UTM-DIAGAREA.
openUTM enters trace information in this area. Alongside the KDCS calls, this area also
logs all the calls to the database system. These calls can be seen after the DBCL string
(see the openUTM manual ”Messages, Debugging and Diagnostics”).

Behavior after a system crash

After an operating system crash and abortion of the UTM application, the database should
be started before the UTM application at restart. If the UTM application was generated for
the UTM-S variant (default setting), then openUTM executes a joint recovery phase with the
database system/database systems at the start of the application.

B

B

B

B

B

B

B

B

Programming Applications with KDCS 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
4

4 Screen functions

In this chapter, you will find all the required information about the screen functions made
available by openUTM. These include the use of formats as well as the possibility of influ-
encing screen output in line mode. The chapter also describes the cases in which openUTM
performs an automatic screen restart for terminals and how format names are handled
during message exchange with UPIC clients.

Note on programming

In order to simplify programming, when INIT is called, openUTM indicates the name of the
format or edit profile that must be specified when reading the message with MGET or FGET
in the KCRMF/kcrfn.

If a format consists of multiple partial formats you have to read each partial format with a
separate MGET/FGET. Here the preceding MGET/FGET provides the format identifier in
KCRMF/kcrfn. This format identifier must be entered in KCMF/kcfn in the following
MGET/FGET call.

4.1 Use of formats in openUTM on BS2000 systems

A format (also called a mask) is simply a form displayed at a terminal or output to a printer.
Like any other form, a format consists of fields which you can fill in (input fields) and texts
belonging to the form (text fields). This means that formats are forms which are stored in a
computer and output at a terminal or printer when necessary (see also section “Output to
printers” on page 94).

A format also contains information on how a field is represented on the screen (e.g.
flashing), what you can enter in a field (e.g. numeric values only), or where the cursor
should be found in the format display.

A formatting system is not supported on Unix, Linux and Windows systems, although format
names can still be sent to UPIC clients and LU6.1 partners.

B

B

B

B

B

B

B

B

X/W

X/W

Use of formats in openUTM on BS2000 systems Screen functions

106 Programming Applications with KDCS

Interaction with the formatting system

openUTM cooperates with the format handler FHS (format handling system) via
IUTMFORM interface.

You can use the format generator IFG (Interactive Format Generator) to create FHS formats
simply and quickly within a guided dialog. Addressing aids are automatically generated
which you can use in the program units to structure the message areas. The finished
formats are stored in under in libraries.

If you want to perform input/output in program units, you have to set the required format
identifier in the KCMF/kcfn field. Interacting with the format handling system, openUTM
then automatically formats the messages.

The format identifier consists of:
– the prefix (*, + or #) which determines the type of the format (see next section).

You can also use the "-" character.
– the format name (up to a maximum of 7 characters).

Format types

openUTM distinguishes between *formats, +formats and #formats:

*formats use these formats if you do not want to change the attributes of the format
fields (e.g. display attributes) in the program. If you use *formats only the
data fields are transferred in inputs/outputs.

+formats are formats in which you are allowed to change the attributes of individual
format fields in the program. For example, you can return an incorrect entry
back to the terminal in flashing mode. Each data field is prefixed with a
2-byte attribute field which you can use to insert the required attribute
combination in the program. If you enter binary zero, the attribute combi-
nation which was defined when the format was generated applies.
openUTM provides you with all the permissible attribute combinations in
language-specific data structures, in the KCATC element in COBOL and in
the kcat.c include file in C/C++.

#formats are formats in which you are allowed to change both the attributes of the
format fields and the global attributes of the format in the program. For
input/output, the attribute fields and data fields are divided into separate
blocks. For further information refer to the formatting system manual.

You can also use -formats. -formats are not formatted by the formatting system, but by the
event exit FORMAT, see page 455. If the format identifier starts with the "-" character,
openUTM branches to this user-defined formatting routine.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Screen functions Use of formats in openUTM on BS2000 systems

Programming Applications with KDCS 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
4

Positioning the cursor

When formatting output with +formats and *formats, it is possible to control the position of
the cursor in a program (function KDSCUR).

When setting the cursor, you have to specify the address of either the attribute field or the
data field. Which is required depends on what is specified in the FHS start parameter ATTR
or NOATTR:
– ATTR (only permissible with +formats): the address of the attribute field is specified
– NOATTR (for *formats and +formats): the address of the data field is specified

The cursor can be placed at the beginning of the assigned data field by correspondingly
marking the attribute field. The position of the corresponding screen field is known from the
format description. If several attribute fields of an output message are marked at the same
time in the program run, then only the first entry is used.

The cursor can be placed on a specific field by calling the KDCSCUR() function. The field
at which the cursor is to be placed the next time something is output is specified in the
message area as an argument of the function.

Setting the cursor in COBOL program units:
CALL "KDCSCUR" USING FNAME.

Setting the cursor in C/C++ program units:
KDCSCUR (field name); (The result of the function is of type void)

The following arrangement is valid regarding the KDCS attribute functions (+formats and
*formats):
The cursor can be positioned at the beginning of a message field F(i) by calling the
"KDCSCUR" subroutine with the i-th attribute field AF(i) as a parameter. The subroutine
contains the cursor identifier as a constant and adds this constant to the attributes already
specified in the attribute field passed as a parameter.

Example:

CALL "KDCSCUR" USING AF1.

The program unit run would like to place the cursor at the beginning of the message
field F1 in addition to the field attribute already defined.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B
B

B

B

B

B

B

B

B

B

B

B

Use of formats in openUTM on BS2000 systems Screen functions

108 Programming Applications with KDCS

Changing format between input and output

If openUTM outputs a message with a particular format identifier, you have to specify the
same format name in the KCMF/kcfn field with MGET for the next input.

Exception:
If you do not use partial formats, openUTM tolerates for MGET an incorrect format identifier
in KCMF/kcfn: the message is nevertheless formatted in accordance with the last screen
format, the 05Z return code is set and the format identifier of the last employed format is
displayed in KCRMF/kcrfn.

If an incorrect format identifier is specified in the KCMF/kcfn field when reading partial
formats, openUTM sets return code 03Z, returns the correct format identifier in
KCRMF/kcrfn and sets KCRLM to 0. There is no entry in the message area.

4.1.1 Screen output functions in format mode

openUTM enables you to request specific screen functions together with the message
output when using +formats and *formats. To do this, you enter one of the predefined values
for your programming language in the KCDF (device function) field in the KDCS parameter
area. For C/C++ these values are in the kcdf.h include file and for COBOL in the COPY
element KCDFC.
With "#" formats, KDCF must be set to binary zero. The screen functions are controlled
using global attributes.

You can use the following functions in +formats and *formats:

KCREPL (replace)
Clear and rewrite screen

KCERAS (erase)
If KCLM = 0, all variable fields are erased, the format is retained. If KCLM >
0, new field contents are output in the same format, other variable fields are
erased

KCALARM (alarm)
An audible alarm sounds at output

KCREPR (reproduce)
Screen output to printer

KCRESTRT (restart)
screen restart after PEND RS

KCNODF (no device feature)
No screen function, KCDF is set to binary zero

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

BB

B

B

B

BB

B

BB

B

BB

B

BB

B

Screen functions Use of formats in openUTM on BS2000 systems

Programming Applications with KDCS 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
4

If you are working with message segments, only the entry for the first message segment
applies. All subsequent message segments must have binary zero in the KCDF field.

You can combine two or more screen output functions, for example with the statement:

COBOL: KCDF = KCREPL + KCREPR + KCALARM
C/C++: kcdf = KCREPL | KCREPR | KCALARM

For performance reasons, however, you should use the KCREPL function sparingly.

The effect of KCERAS and KCREPL depends on the selection of the FHS start parameters,
see the "FHS User Guide".

For information on error processing when formatting errors occur, refer to the openUTM
manual ”Messages, Debugging and Diagnostics”.

4.1.2 Starting services using basic formats

If necessary, you can make formats available before service start in order to simplify the
entry of the data required by the service.
These formats are called basis formats. You can use basic formats in the following ways:

● Define start formats
In the configuration of the UTM application you can define a specific start format for
each LTERM partner. In applications with the SIGNON event exit (see page 470) the
exit can read this start format if no user is logged on to this LTERM. In applications
without the SIGNON event exit and without user IDs, this start format is output after the
terminal connection is established through this LTERM partner.

In the configuration of the UTM application, you can define a user-specific start format
for each user ID. After the user has signed on to UTM under this user ID, UTM outputs
this format on screen. In applications without a SIGNON event exit, openUTM outputs
this format after the user has signed on to openUTM under this user ID. In applications
with a SIGNON event exit, the exit can read this start format if a user has signed on
under this user ID. *formats, +formats and #formats can be used as start formats.
#formats can only be used as start formats, however, when the SIGNON event service
is used.

● Format output at end of service
At the end of a dialog service you can output a format from a program unit This format
can be used by the terminal user at the start of the next service.

● Format request using KDCFOR
The user at the terminal can use the KDCFOR user command to request a basic format.
openUTM will then output the desired format. You cannot use KDCFOR for #formats.

In order to start a service by entering a format you have to transfer the desired transaction
code together with the message. You can do this in the following ways:

B
B

B

BB

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Use of formats in openUTM on BS2000 systems Screen functions

110 Programming Applications with KDCS

● In the format, the first input field is an 8-character field into which the user enters the
desired transaction code.
Note that this field (in +formats including attributes) is not transferred to the message
area. (Exceptions: #formats, BADTACS event service or if the INPUT exit was used to
make other specifications). If the transaction code field contains blanks, the string up to
the first blank is interpreted as the transaction code. If you use addressing aids to
structure the input area, you must take account of this truncation of the transaction
code.

● The format permits the transaction code to be entered at any other specified location.
The input is evaluated using the input exit and the transaction code is extracted.

● The transaction code is assigned to a function key at generation, see KDCDEF
statement SFUNC in the openUTM manual “Generating Applications”, and the user
presses this function key.

● The function key must be an F-key because messages are not passed when the K-keys
are used (see also the KDCDEF statement SFUNC).

● The format contains one or more UTM control fields. In a control field, the transaction
code is either entered by the user or is already preset. The "UTM control field" attribute
is assigned when the format is created.

i If you use basic formats to start the service, you must always check the
KCRMF/kcrfn field in the first program unit in order to determine whether the
intended format was used to start the service.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Screen functions Use of formats in openUTM on BS2000 systems

Programming Applications with KDCS 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
4

4.1.3 Using partial formats

A screen display may consist of multiple partial formats. A partial format normally occupies
a part of the screen only. You must enter a separate MPUT NT call for each partial format.
If the screen is to be read again, a separate MGET call is required for each partial format.

4.1.3.1 Output formatting with partial formats

If a new screen is constructed of two or more partial formats, you must also specify the
value KCREPL in the KCDF field of the first MPUT NT. In all subsequent MPUT calls KCDF
must contain a binary zero. Otherwise, openUTM terminates the conversation abnormally,
setting KCRCCC = 70Z and KCRCDC = K606.

You cannot mix format mode and line mode within a dialog message: If the format changes
from line mode to format mode or vice versa within a partial message, the service is termi-
nated with KCRCCC=75Z.

You may switch between *formats and +formats.

Updating a screen

You can update a screen with one or more MPUT NT calls. In the first MPUT call you can
specify any value except KCREPL in the KCDF field since KCREPL is used to erase the
entire screen. In subsequent MPUT NT calls KCDF must be set to binary zero as for setting
up a new screen.

If the format is changed, openUTM only erases those old partial formats which are
overlapped by new ones.

You can use the screen output function KCERAS to erase the variable fields when
outputting a partial format.

Outputting partial formats with FPUT/DPUT NT

You can use FPUT/DPUT NT to output individual partial formats. However, you cannot
construct a screen with multiple FPUT/DPUT NT calls, since openUTM transfers each
partial format sent using FPUT/DPUT NT as a separate message when outputting to the
screen. You may switch between format mode and line mode.

Before a formatted asynchronous message is output the screen is automatically cleared. It
is therefore not possible to use FPUT/DPUT NT to update the displayed format.

openUTM responds with an automatic screen restart to inputs from asynchronously output
formats - with the exception of command entries (see section “Screen restart” on page 119).

If you output to printers, all message segments sent with FPUT/DPUT NT are combined
and output as one message, even when you change between format mode and line mode.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Use of formats in openUTM on BS2000 systems Screen functions

112 Programming Applications with KDCS

4.1.3.2 Input formatting with partial formats

The terminal user can enter data in the partial formats, but is not required to enter data in
every one.

Since openUTM passes all variable fields, after the INIT call the KCRMF/kcrfn field contains
the name of the first partial format containing variable fields. After the MGET call
KCRMF/kcrfn contains the name of the next partial format with variable fields. After the last
partial format with variable fields has been read KCMF = KCRMF (kcfn=kcrfn). If you try to
read another partial format, although the message has already been entirely read,
openUTM responds with the return code 10Z.

Example

In the preceding program unit run there was an MPUT output with the three partial
formats: PARFOR1, PARFOR2, PARFOR3;
variable fields are present only in PARFOR1, PARFOR2

KDCS call: Returned by openUTM:

INIT KCRMF = PARFOR1

MGET KCMF =
PARFOR1
KCLA = ...

KCRMF = PARFOR2
KCRCCC = 000
KCRLM = ...
Data in message area

MGET KCMF =
PARFOR3
KCLA = ...

KCRMF = PARFOR2
KCRCCC = 03Z (as KCMF contains a value other than that returned
in KCRMF by the preceding MGET
KCRLM = 0

MGET KCMF = KCMF
= PARFOR2
KCLA = ...

KCRMF = KCMF = PARFOR2
KCRCCC = 000
KCRLM = ...
Data in message area

MGET KCMF = ...
KCLA = ...

KCRMF = KCMF = PARFORF2
KCRCCC = 10Z
KCRLM = 0

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B
B
B
B

B
B
B
B

B
B
B
B

B
B
B

Screen functions Use of formats in openUTM on BS2000 systems

Programming Applications with KDCS 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
4

Entering a format consisting of multiple partial formats to start a service

If you want to start a service by entering a format consisting of multiple partial formats you
can use the first variable field of the first partial format to specify the transaction code (for
other options, see page 111ff).
openUTM then automatically separates the field with the transaction code from the
message: for *formats the first 8 characters (transaction code) are removed in the first
partial format, for +formats the first 10 characters (attribute field and transaction code). The
other partial formats remain unchanged.

An asynchronous service can also be started using a format consisting of multiple partial
formats which was output at the end of a dialog service. The asynchronous program must
be written in the same way as the dialog version: the INIT call provides the name of the first
partial formats with variable fields in KCRMF/kcrfn. Using FGET the program can retrieve
the input data from this partial format. In the case of an empty input message (transaction
code without data), the FGET call returns 10Z to the program unit.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Use of formats in openUTM on BS2000 systems Screen functions

114 Programming Applications with KDCS

4.1.4 Message flow for formatted messages

The following diagram displays the message flow in the event of an MPUT call to a terminal:

Message flow for MPUT to terminal

The messages from the program units enter the FORMUSR area via UTM buffers at MPUT
time. The size of this area, which must be able to contain the entire logical message, is
defined in the NB parameter of the MAX statement (see the openUTM manual “Generating
Applications”). This message is formatted by the FHS formatting system MFHSROUT and
stored in the FORMIO area. The size of this area is defined in the TRMSGLTH operand of
the MAX statement. The message is sent from this area to VTSU-B before it is sent to the
terminal via BCAM.

If partial formats are used, you have to make sure that the FORMUSER and FORMIO areas
are always able to store the entire message.

B

B

Message area(s) in
program unit(s)

MPUT

FORMUsr area

IUTMFORM

Internal formatting
by MFHSROUT

FORMIO area

Restart area

Output to terminal

(TRMSGLTH)

(NB)

B

B

B

B

B

B

B

B

B

B

Screen functions Use of formats in openUTM on BS2000 systems

Programming Applications with KDCS 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
4

Input formatting

With input formatting, the message stream runs in the opposite direction, using the same
areas.

4.1.5 Outputs on printers in format mode

Formats can also be output at printers. Refer to the manual for your formatting system for
information about the supported printer functions.

In the KCMF/kcfn field of the KDCS parameter area, you enter for the FPUT/DPUT call:

*format_name | +format_name | #format_name

where:

* Formatting without the option of changing the attribute

+ Formatting with the option of changing the attributes of individual format fields

Formatting with the option of both changing the characteristics of individual format
fields and changing the global characteristics of the format fields

The formatting system must support the printer models as they are known in the VTSU-B
or as they were generated for RSO (for PTYPE=*RSO).

If you use the FORMAT event exit for printouts, you have to consider the following:

– you do not have to set the restart area

– you have to request the print out confirmation in the message header

– you have to enter the confirmation bytes transferred by openUTM in the message
header

– you ascertain the formatting specifications, such as format name, device type, etc. from
the KB header and the parameter area of the FORMAT event service.

For the structure of the message header, refer to your printer manual.

Form feed

Whenever FPUT/DPUT is called, including in the case of message segments with
FPUT/DPUT NT, the form feed depends on the contents of the KCDF field in the KDCS
parameter area (exception: when #Formats are used):

KCREPL Form feed before printing, i.e. the format is printed starting at the basic form
setting specified at the printer.

other No form feed, i.e. the format is printed starting at the next line (also for the
first FPUT/DPUT).

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Controlling the output in line mode (BS2000 systems) Screen functions

116 Programming Applications with KDCS

This allows you to concatenate formats in order to print large forms, independent of any
length limitations. However, the physical message segment must be shorter than:

– the BCAM letter length (see TRANSDATA manual "Generating a Data Communication
System")

– the TRMSGLTH specification (MAX statement for KDCDEF)

– the device-specific length that is supplied by VTSU-B when a connection is established.

The length is only limited by TRMSGLTH for RSO printers (PTYPE=*RSO).

4.2 Controlling the output in line mode (BS2000 systems)

openUTM operates in line mode whenever the name specified in KCMF/kcfn starts with a
blank. In line mode, openUTM also enables you to use the following options to control the
screen output:

– use logical control codes to structure the output

– In addition to the screen output functions KCALARM, KCREPR and KCRESTRT that
can be used in format mode (see page 108), in line mode it is also possible to use the
screen output functions KCCARD and KCEXTEND (extended line mode).

– use of edit profiles

For a description of how to prepare messages for printing, refer to section “Output to
printers” on page 94.

Using logical control codes for structuring

In line mode you can use logical control codes to structure the output. The VTSU (Virtual
Terminal Support) terminal support facility then converts the control codes into the physical
control codes necessary for the addressed device. You can use all logical control codes
permitted by the TIAM access method, see the "TIAM User Guide". In some programming
languages data structures are available which you can copy into the program (see the
"TIAM User Guide).

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Screen functions Controlling the output in line mode (BS2000 systems)

Programming Applications with KDCS 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
4

KCCARD screen function

You can use the KCCARD screen function to input data via magnetic strip cards:
If you use the KCCARD screen function to output a dialog message, the keyboard is locked
and the terminal user is requested to insert a magnetic strip card into the ID card reader.

KCEXTEND screen function

If you use this screen function the output fields are set to a particular, predefined value
which is equivalent to the macro WRTRD, ... EXTEND=YES. All output fields are displayed
in half video and protected by default, see the "TIAM User Guide" for further information.

Edit profiles

An edit profile is a set of attributes used for output in line mode. Using edit profiles you can,
for example, specify that characters entered at the terminal are not to be displayed
(password entry) or request lower case to upper case conversion. Alongside the KCCARD
screen function edit profiles are another way of requesting input from ID card readers. You
can also perform other screen functions such as, for example, KCREPR.

You use the KDCDEF statement EDIT to specify the name and attributes of edit profiles at
generation (see the openUTM manual “Generating Applications”). The length of the name
can be up to 7 characters. You can use the MPUT/FPUT/DPUT calls to address an edit
profile in a program unit. To do this, enter a blank in the first byte of the KCMF/kcfn field and
the name of the edit profile in the remaining seven bytes.
Edit profiles are handled like format names, i.e. the name of the edit profile of the last output
message is returned in the KCRMF/kcrfn field after INIT (as with format identifiers). If you
use MGET/FGET calls the name is entered in the KCMF/kcfn field.

Note the following points when edit profiles:

● When using MPUT, FPUT or DPUT calls with edit profiles, no screen function may be
specified (KCDF must be set to binary zero) as otherwise openUTM responds to MPUT
with 70Z or to FPUT/DPUT with 40Z.

● As soon as edit profiles are generated for an application, you must use 8 blanks in
KCMF/kcfn to identify messages in line mode (without edit profile); it is not sufficient to
fill set the first byte with blanks, since openUTM interprets this as an incorrect format
identifier and sets the corresponding error code in KCRCCC.

● If you use MPUT NT, FPUT NT or DPUT NT to issue multiple message segments to a
terminal, the name of the edit profile must not change, otherwise openUTM responds
to MPUT with 75Z and to FPUT/DPUT with 45Z. When issuing partial messages to
printers edit profile names may change.

● If the screen was overwritten by the output of an asynchronous message, openUTM
performs an automatic KDCDISP on the next input when using edit profiles.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Output on printers in line mode Screen functions

118 Programming Applications with KDCS

● For messages to UPIC clients the names of the edit profiles are treated like format
identifiers, i.e. they are also passed (therefore they also appear in the UTM program
unit in KCRMF/kcrfn), although they do not have any effect.

● For messages via distributed processing the names of the edit profiles are processed
like format identifiers:

– In distributed processing via LU6.1 the names of the edit profiles are transferred
(i.e. they appear in KCRMF/kcfn). However, they have no effect.

– In distributed processing using OSI TP, no edit profile must be specified in
KCMF/kcfn, since openUTM uses field of the the format identifier to transfer the
abstract syntax.

4.3 Output on printers in line mode

If you want to output in line mode, the first byte in the KCMF/kcfn field of the KDCS
parameter area must be a blank.

In line mode, the message may contain all logical control characters, e.g. for form feed or
line feed. You can define these control characters yourself in the program unit and in this
way structure the text for the print-out yourself.

On BS2000 systems you can also use edit profiles to present/prepare the messages (see
also section “Controlling the output in line mode (BS2000 systems)” on page 117). You
enter the name of the edit profile in KCMF/kcfn starting at the second byte.

i A message terminated by FPUT/DPUT NE is always printed as a separate
message. In the case of cut sheet printers, the program must allow users to change
sheets themselves for output in line mode (form feed) since the device cannot
recognize the end of sheet itself.

B
B

B

B

B

B

B

B

B

B

B

B

B

Screen functions Screen restart

Programming Applications with KDCS 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
4

4.4 Screen restart

openUTM automatically restarts the screen for terminals in the following cases:

● If a screen output took place at the last synchronization point in a service and the user
has signed on at the application again following the interruption to the service, e.g. after:

– the application has been terminated normally without terminating the service
– the application has terminated abnormally
– KDCOFF within a service
– connection loss

This screen restart is only performed when the user signs on again if the user ID or, in
applications without user IDs, the LTERM partner, was generated with restart.

To do this, you set the operand RESTART=YES in the USER or LTERM statements at
generation (see openUTM manual “Generating Applications”).

Following the end of an application then, in the case of standalone UTM applica-
tions, a screen restart is only possible in UTM-S applications.

● during a service, an asynchronous message was output to the screen and the user did
not issue a KDCDISP command to continue the dialog, i.e. the user attempts to input
the message into the asynchronously output screen content (only command entries are
possible).

● within a service, after a follow-up transaction has been rolled back by MPUT RM, KCDF
= KCRESTRT and PEND RS and screen output has taken place at the last synchroni-
zation point in the service.

● when certain operating errors occur (e.g. terminal switched on or off, AM key).

Screen restart is only possible because openUTM stores the data on the last screen
structure, initially in a buffer in the process-specific system storage area. At the end of the
transaction, openUTM writes this information to the restart area in the page pool of the
KDCFILE, see also the openUTM manual “Generating Applications”.

When formatting output, openUTM writes the entire screen contents to the restart area if
the entire screen is to be restructured (KCDF= REPLACE, change of format). During a
screen update, only the fields which are also overwritten at the terminal are updated in the
restart area. Similarly, during input formatting nly the fields received from the terminal are
updated in the restart area.

If you use a formatting system, openUTM automatically performs the setup, modification
and storage of the restart area in interaction with the formatting system.
However, if you use -formats and write the formatting routine yourself, openUTM will save
the restart area, but the setup and modification of the area are the responsibility of the
formatting routine programmed by you (see event exit FORMAT, page 455).

B

B

B

B

B

B

B

B

B

B

B

Format names for message exchange with UPIC clients Screen functions

120 Programming Applications with KDCS

4.5 Format names for message exchange with UPIC clients

Program units that are written for the formatted dialog with terminals can also be used for
the dialog with UPIC clients without any changes. In this case, however, a formatting
system is not called. Net messages or message segments and format names are
exchanged between openUTM and the UPIC client. openUTM functions in the same
manner when reading the message as when reading segment formats, i.e. if an incorrect
format identifier was specified for MGET, then openUTM sets the return code to 03Z,
returns the correct format identifier in KCRMF/kcrfn and sets KCRLM to 0. Nothing is
entered in the message area.
The UPIC client can then set up the screen interface based, for example, on the format
name.

It is also possible to position the cursor in a program using "KDCSCUR" when outputting a
message to the UPIC client.

A UPIC client can pass the value of a function key to a UTM application so that the return
code generated for this function key is triggered when an MGET is executed in the program
unit (see the SFUNC statement generation, RET parameter).

See the manual „openUTM-Client for the UPIC Carrier System” for more detailed infor-
mation.

Programming Applications with KDCS 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5 Program structure in distributed processing

The term "distributed processing" applies to all types of processing where server applica-
tions with the same authorization levels interact (server/server communication). openUTM
supports distributed processing via the LU6.1, LU6.2 and OSI TP protocols. Partners of a
UTM application for distributed processing can be other UTM applications, OpenCPIC
applications or applications that are based on transaction systems from other manufac-
turers.

The program interfaces for the communication via LU6.2 are identical to those for the
communication via OSI TP. You will need the openUTM-LU6.2 product to communicate via
the LU6.2 protocol; .

When using the OSI TP protocol you can decide whether or not openUTM is to operate with
global transaction management.

openUTM is designed to operate with global transaction management when the LU6.1 is
used, i.e. the transactions of all participating partners are synchronized.

Client/server communication is not regarded as distributed processing, despite the fact that
the client performs processing tasks in client/server communication, e.g. plausibility
checks. However, fixed client and server roles are assigned. The client does not make
services available which could be used by other applications.

Communication with OpenCPIC partners is done via the OSI TP protocol; this means that
all statements and rules that are agreed upon in this manual for the communication with
OSI TP partners are valid for these partners, even when a client of a UTM application is
implemented with an OpenCPIC application.

Addressing remote services Program structure in distributed processing

122 Programming Applications with KDCS

5.1 Addressing remote services

Before you can send a message to a remote service, you must first address this remote
service. To do this, use the APRO (Address PROgram) call.

In distributed processing you can use the functions of both remote services and, by using
openUTM’s message queuing functionality, asynchronous services. You use APRO DM
(Dialog Message) to address remote dialog services. and APRO AM (Asynchronous
Message) to address asynchronous services.

If a remote service is addressed in a transaction with APRO AM/DM, then a message must
also be sent to the remote service in the same transaction.

Under certain circumstances you can also use APRO AM to address a dialog service via
OSI TP, i.e. to address an asynchronous job to a dialog service (see page 193).

The following APRO call parameters are of relevance when a remote service is addressed:

● In the KCRN (Referenced Name) field, enter the LTAC name of the remote service. The
LTAC name (Local TransAction Code) is the name under which the remote service is
known in the configuration of the local application. The LTAC name is assigned at
generation.

If this LTAC name is already associated with a fixed partner application in the configu-
ration you only have to specify the name for the APRO call to unambiguously determine
the remote service. This is called single-step addressing. Single-step addressing is
always advisable in cases where there are no alternative partner applications, e.g.
because the requested service is only available from one partner application.

In two-step addressing, the partner application is specified explicitly when calling APRO:

● The KCPA (Partner Application) field is used to specify the (OSI-)LPAP name of the
partner application in two-step addressing. The (OSI-)LPAP (Logical Partner
APplication) name is the name by which the partner application is known in the config-
uration of the local application. The (OSI-)LPAP name is assigned at generation. A
MASTER-OSI-LPAP can also be specified as the LPAP name.

Two-step addressing is always advisable in cases when the requested service is
available from multiple partner applications. Which partner application is selected
depends on the particular situation.

If you specify the (OSI-)LPAP name of a partner application in KCPA, although the LTAC
name specified in KCRN is already assigned to a partner application in the configu-
ration, then the specification in KCPA takes precedence over the configuration
assignment.

Program structure in distributed processing Addressing remote services

Programming Applications with KDCS 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

● In the KCPI (Partner Identification) field, you assign an identification to the remote
service for the duration of the interaction. This identification, also called the service ID,
is freely selectable. However, the first character must be ">". The scope of the validity
of the service ID is the local service; in other words, if two services use the same service
ID at the same time, they are thus addressing different remote services. You have to
specify this identification in the KCRN field for all communication calls to the addressed
service. When interaction with the remote service terminates, you can use the service
ID in further APRO calls to identify the same service or other services.

For the following calls you have to specify the service ID in the KCRN field:

– MPUT calls to send dialog messages to the remote service

– FPUT/DPUT calls to send asynchronous messages to the remote service

– MGET calls to read dialog messages or status information from the remote service

– MCOM BC calls to start a job complex whose basic job is directed to the remote
service

– CTRL calls to control OSI TP dialogs

Distributed dialogs Program structure in distributed processing

124 Programming Applications with KDCS

5.2 Distributed dialogs

The rule of strict dialog also applies to distributed processing, i.e. in communications
between two partners, after a message to the partner you have to receive a response
before you can send another message to this partner.

The period between receiving a dialog message and sending the next dialog message is
called a processing step. The next message may either be a response, in which case the
processing step is equivalent to a dialog step, or a message to another partner.

A job submitter can simultaneously interact with multiple job receivers. The next
programming step in the job submitter only starts when all the responses have been
received from the job receivers. A separate program unit run is generally started for each
processing step (exception: PGWT).

The job-submitting service can be either a dialog service or an asynchronous service.

Exchange of dialog messages

You use MPUT to send and MGET to receive dialog messages between partner services
in the same way as with dialog messages without distributed processing.

If a job-receiving service exchanges messages with a job submitter it behaves as if it were
communicating with a terminal: you have to enter blanks in the KCRN field when using
MGET and MPUT.

When exchanging messages with a job receiver, a job-submitter service must specify the
service ID of the job receiver in the KCRN field (see page 122).

5.2.1 Controlling communication in the program

In distributed processing, multiple program units in various UTM applications are used to
process a job. A program unit can be addressed by a client (terminals or client programs),
from the application’s own programs or from other applications. The program unit has
therefore to decide independently from the partner which task to process, to whom it sends
a message, and whether or not it has to terminate a distributed processing.

For this reason, openUTM provides a range of information about the communication partner
and the current communication status. This information can be evaluated and used for
communication control. For a description of this information refer to the sections
"Programming aids", for LU6.1 page 132ff, and page 149ff for OSI TP.

Program structure in distributed processing Distributed dialogs

Programming Applications with KDCS 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.2.2 Error handling by the program unit

There are two situations in which a program unit can respond to errors:

● In the case of less serious errors:
The program unit retains control and can react with a programmed rollback (see below).

● After a service restart:
The program unit is restarted, receives status information and possibly a rollback
message and can respond to the error situation.

5.2.2.1 Programmed rollback

If less serious errors occur, the program unit retains control and can roll back the distributed
transaction with PEND RS or PEND ER/FR, or the local transaction with RSET. If commu-
nication is via OSI TP transactions can also be rolled back using PGWT RB, see page 158.

The comments below apply to distributed processing with global transaction management,
i.e. for LU 6.1 and for OSI TP with functional unit commit. The effect of these calls in the
case of OSI TP without functional unit commit is described on page 158.

PEND RS

PEND RS can be called in a job-submitting or job-receiving service.

In a distributed transaction, a PEND RS has the following effect:

With PEND RS, all the services participating in a distributed transaction are rolled back to
the last synchronization point. As opposed to the PEND ER/FR call, with PEND RS a
service remains open if it has already reached a synchronization point. Services which have
not yet reached a synchronization point are terminated.

The following situations are possible:

● PEND RS in the first transaction of the uppermost job-submitting service.

All participating services are terminated without any service restart. Chained services
are restarted after the rollback.

● PEND RS in the first transaction of a job-receiving service

The job-receiving service is terminated. If the uppermost job-submitting service has
already reached a synchronization point, openUTM executes a service restart (with the
message K034 to the terminal). The job-submitting service receives status information
(service status "R" / "Z" and transaction status "R") which you read using MGET NT.

Distributed dialogs Program structure in distributed processing

126 Programming Applications with KDCS

● PEND RS in a follow-up transaction of the job-submitting service or job-receiving
service.

In this case a rollback message has to be sent with MPUT RM prior to the PEND RS,
otherwise openUTM aborts the service with KCRCCC = 83Z. The rollback message
goes to the follow-up program unit specified at the last synchronization point of the
(local) service. After the rollback openUTM executes a service restart. The form this
takes depends on the destination of the output message at the last synchronization
point and on who called PEND RS:

– In the case of an output message to the client the service restart begins in the
job-submitting service.

– If PEND RS was issued in the uppermost job-submitting service, then a screen
restart is executed (as without distributed processing).

– If PEND RS was issued in a job-receiving service, then a screen restart is
executed and the message K034 output. The next entry from the client is read
by the follow-up program unit of the last synchronization point. If a follow-up
program unit sends a new message to the job receiver (which executed PEND
RS), then this job receiver first reads the rollback message and then the
message sent to it. If job-receiving services are terminated by the rollback (i.e.
the job receiver was also a job submitter), then you also have to read the
associated status information using MGET NT.

In the case of LU6.1, follow-up processing in the job-receiving service does not
start until a message is present for this service. If the job receiver is not included
in the next transaction after the rollback, this may not take place until a later
follow-up transaction.

In the case of OSI TP, the follow-up program unit runs from the last synchroni-
zation point in the job-receiving service which called PEND RS and always runs
in the next transaction: The program is started if a message is received from the
job submitter or if the job submitter has requested end of transaction.

– With an output message to a service, openUTM starts the follow-up program unit
specified at the last synchronization point. This program unit has to read the
rollback message; subsequently the output message can be read; status infor-
mation from the job-receiving services may be present, too. If the (uppermost) job-
submitting service participated in the rolled back transaction, then openUTM issues
message K034.

Program structure in distributed processing Distributed dialogs

Programming Applications with KDCS 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Programmed PEND ER/FR

In distributed transactions, the effects of the PEND ER and PEND FR calls are identical;
however PEND FR does not, in contrast to PEND ER, generate a DUMP. PEND FR enables
you to respond to errors other than programming errors (e.g. meaningless data).

The effect of PEND ER or PEND FR differs in the job-submitting and the job-receiving
services:

● If PEND ER/FR is issued in the job-submitting service, this and all job-receiving
services are terminated with PEND ER/FR.

● If issued in the job-receiving service, only this service is terminated and the distributed
transaction is rolled back to the last synchronization point. The service restart then
begins at this synchronization point and the next program started receives status infor-
mation from the job-receiving service which called PEND ER/FR. If the job-submitting
service has not yet reached a synchronization point, it is also terminated by a PEND
ER/FR.

If the preceding distributed transaction was terminated in the job-receiving service, the
follow-up program unit specified at the last synchronization point is started in the job-
submitting service.

If the job-receiving service wishes to terminate with PEND ER/FR, it first has to execute
an MPUT, otherwise PEND causes it to be terminated by the system with
KCRCCC = 83Z (service status Z instead of E). Exceptions to this rule are dialogs via
OSI TP in which an MPUT to the job submitter is not permitted (KCSEND=N).
The job-submitting service always receives status information which has to be read with
MGET NT.

RSET

The effect of the RSET call is the same in job-submitting and job-receiving service.

After a RSET call in a program unit run belonging to a distributed transaction, the behavior
of openUTM depends on the RSET generation parameter of the UTMD statement.

● If RSET = LOCAL is generated, openUTM allows the RSET call merely to roll back the
local transaction. Please note that the data environment (GSSBs, LSSBs, TLSs,
ULS,...), with the exception of the SPAB, is rolled back to the last synchronization point.
The following applies to job-receiving services addressed within the transaction: if a
message was sent to a job-receiving service in a preceding dialog step terminated with
PEND KP or PGWT KP, then this service remains addressed, otherwise the service
identifier is deleted.

● If RSET = GLOBAL is generated, the program unit run must be terminated with PEND
FR/ER/RS. This then causes the distributed transaction to be rolled back.

Distributed dialogs Program structure in distributed processing

128 Programming Applications with KDCS

5.2.2.2 Error handling after service restart

If the distributed transaction has to be rolled back, service restart tries as far as possible to
restart the program for which there was a message at the end of the last distributed trans-
action, or to which the next input from the client is directed. The programming rules (see
134ff for LU6.1, page 154ff for OSI TP) ensure that one and only one message exists for
the client or for a program in a service at the end of a distributed transaction.

The program unit can tell from the service ID in the KCKNZVG/ kccv_status field in the KB
header if a service restart has occurred: after a service restart this field has the value "R".

If the service restart occurs in the job-submitting service, the program unit normally receives
status information from the job-receiving service if the job-receiving service caused the
rollback and is or was consequently terminated. Such status information is read with MGET
NT; it is a message of length 0 and provides the service and transaction status of the job-
receiving service in the KCVGST/kcpcv_state and KCTAST/kcpta_state fields in the KB
return area (see page 132ff).

There are 3 different cases with service restart:

1. There was a message for the client at the last synchronization point.

The follow-up program unit in the job-submitting service can now read the new input
from the client with MGET and receives as status information the service status O and
the transaction status C.

If the rollback of the transaction was caused by an error in a job-receiving service and
the job-receiving service was subsequently terminated, the KCRPI field receives the
service ID of the service which caused the rollback. Status information from this service
can then be read with MGET NT and KCRN = service ID.

2. There was a message at the last synchronization point from a job-receiving service to
a job-submitting service.

The follow-up program unit in the job-submitting service can now use MGET as usual
to read the message, and additionally receives the service and transaction status of this
job-receiving service.

If this job-receiving service was rolled back and terminated by an error, you only receive
the corresponding status information. If the rollback was caused by another job-
receiving service, you receive the transaction status C as status information with the
first MGET. Subsequently more status information can be read, as in case 1.

If the message cannot be sent by the job-receiver (see next section), then you just
receive status information from the job-receiving service.

Program structure in distributed processing Distributed dialogs

Programming Applications with KDCS 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

3. There was a message at the last synchronization point from a job-submitting service to
a job-receiving service. If possible, the follow-up program unit is then started in the job-
receiving service.

If the follow-up program unit cannot be started (e.g. because the application was termi-
nated and not restarted within the generated wait time or because the service termi-
nated with PEND ER), then the follow-up program unit in the job-submitting service is
started and receives status information.

There is status information from all job-receiving services which caused rollback of the
distributed transaction and which were or are being terminated.

If, after a service restart of the job-submitting service, a job-receiving service is addressed
again and an error recurs, the job-submitting service can be rolled back more than once to
the same synchronization point. Since the status information from the preceding rollback is
retained, it is possible to have multiple status information.

If there is multiple status information, then with each MGET you receive the service ID of
the next service with status information. Status information from several job-receiving
services has to be read in the order proposed by openUTM (KCRPI). The KCMF/kcfn field
is to be set with blanks when reading the status information.

If a remote service in the rolled back transaction is newly created by the APRO call, then
there is likely to be status information from it although this service does not actually exist at
the synchronization point from which the restart begins.

Distributed dialogs Program structure in distributed processing

130 Programming Applications with KDCS

No message from job receiver

There are two reasons why a job-receiving service cannot send a result to the job submitter
service:

1. The job receiver was not started for one of the following reasons:
– no logical connection to the application of the job receiver exists and no connection

could be established during the generated wait period
– no session or association to the japplication of the job receiver could be reserved

during the generated wait period
– the job was sent to the application of the job receiver. However, the transmitted

transaction code is unknown or locked
– The application of the job submitter is terminated using KDCSHUT W

2. The job-receiving service was started, but errors have occurred during processing of
the job-receiving service or the communication path was disturbed. For this reason the
transaction was rolled back in the job-receiving service and the job-receiving service
has been terminated. Additionally, the session/association to the job-receiving service
which terminated through error has been released. The following error situations can
occur:
– no response has been received by the application of the job submitter from the job-

receiving service within the generated wait period
– the application of the job receiver has been terminated abnormally because of a

severe error
– the job-receiving service has terminated using PEND ER or was terminated

because of a severe program error.

Program structure in distributed processing Distributed dialogs

Programming Applications with KDCS 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.2.3 Load distribution using LPAP bundles

openUTM provides the LPAP bundle function for the OSI TP and the LU6.1 protocols.

LPAP bundles allow load distribution and the use of alternative connections to a partner
application. If a UTM application has to exchange a very large number of messages with a
partner application then load distribution may be improved by starting multiple instances of
the partner application and distributing the messages across the individual instances. In an
LPAP bundle, openUTM is responsible for distributing the messages to the partner appli-
cation instances. An LPAP bundle consists of a master LPAP and multiple slave LPAPs.

The slave LPAPs are assigned to the master LPAP on generation. In normal circumstances,
the physical connections (CONs) of the individual slave LPAPs address different partner
applications.

Operating an application

To allow openUTM to distribute the messages to the slave LPAPs, you address the
messages to the master LPAP in the program units.

openUTM distributes these messages to the slave LPAPs in sequence. The system always
attempts to find a slave LPAP via which the message can also be sent, i.e. to which a
connection is established and for which, for instance, the queue level has not yet been
exceeded.

For more details on this, refer to the description of the APRO call on page 206ff.

Administration

The "Master LPAP" and "Slave LPAP" properties are displayed via the administration
interface.

All the slave LPAPs are displayed for a master LPAP and the master LPAP is displayed for
a slave LPAP.

Using the administration facilities, you can set the status of master LPAPs to ON or OFF. If
you change the status of a Master LPAP, this causes the status to be changed accordingly
on all slave LPAPs.

Distributed dialogs via LU6.1 Program structure in distributed processing

132 Programming Applications with KDCS

5.3 Distributed dialogs via LU6.1

The LU6.1 protocol (Logical Unit 6.1) is a SNA protocol defined by IBM. It has been contin-
uously developed and has become the industry standard. Communication is performed with
transaction management over multiple applications.

In addition to using LU6.1 to connect UTM applications, you can also connect UTM appli-
cations with CICS and IMS applications running on IBM computers.

The sections below explain the programming aids provided by openUTM for distributed
processing, the rules for these dialogs and how you can use existing program units as an
LU6.1- job submitter.

5.3.1 Programming aids

openUTM makes a range of information available to program units. You can evaluate and
use this for communication control:

– after the INIT call

– after using MGET to read the dialog message

After the INIT call, you can ascertain the following from the communication area:

– the user ID or session name under which the program unit was started
(KCBENID/kcuserid field)

– the communication protocol used by the partner (1 is entered in KCVGST/kcpcv if
LU6.1 is used)

– whether it is a service restart (KCKNZVG/kccv_status is then set to "R").

After the MGET call, openUTM returns the status of the partner service in the
KCVGST/kcpcv_state field and the status of the partner transaction in the
KCTAST/kcpta_state field.

For COBOL, a higher-ranking status field KCRST is defined which contains the KCVGST
and KCTAST fields.

Using these stati you can, for example, ascertain whether the partner service has already
requested end of transaction and is waiting for the termination of distributed processing.
This feature can be used to control the program run and ensure that the programming rules
are observed, even in situations where the exact security processes used by the partner
are not known. On the other hand, it also allows the job-submitting service to react to errors
in the job-receiving services.

Program structure in distributed processing Distributed dialogs via LU6.1

Programming Applications with KDCS 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Service status of the partner

Transaction status of the partners

KCVGST/
kcpcv_state

Meaning

I (inactive):
The service is inactive, i.e. it has not yet been started or it has not been possible to
start it, e.g. because the TAC is unknown in the partner application.

O (open):
The service is open.

C (closed):
The service terminated with PEND FI.

R (rolled back):
The service has been terminated by the program with PEND RS.

E (error):
The service has been terminated by the program with PEND ER/FR.

Z The service has been terminated by openUTM because of an error.

T (timeout):
The service has been or is terminated incorrectly, as no response has been received
within the specified wait period or it has not been possible to reserve a free session
within the specified wait period.

KCTAST/
kcpta_state

Meaning

I (inactive):
There is no transaction because no service exists.

O (open):
The transaction is open; the last dialog step has been terminated with PEND KP.

P (prepare to commit):
The service has requested end of transaction, but the distributed transaction has not
yet terminated. In this situation the service waits for an acknowledgment which it
receives as soon as the distributed transaction is terminated. Just as with PEND KP,
the resources (GSSB, TLS) remain locked until that point.

C (closed):
The last distributed transaction in which the service participated is terminated.

R (rolled back):
The distributed transaction and thus also the local transaction have been rolled back.

M (mismatch):
The services participating in a distributed transaction cannot agree on a common
synchronization point for service restart. This can only occur with a timeout or after
termination and start of a UTM-F application.

Distributed dialogs via LU6.1 Program structure in distributed processing

134 Programming Applications with KDCS

5.3.2 Programming rules and recommendations

The following sections explain the rules which have to be observed when using distributed
dialogs via LU6.1. If you follow the suggested programming recommendations in the final
section (see page 137) the presented rules are automatically observed.

i Note that PGWT CM and PGWT RB calls are not permitted in distributed dialogs
via LU6.1.

Effect of PEND calls and rules for usage

The PEND calls in job-submitting and job-receiving services control the distributed trans-
action, i.e. they decide when the common synchronization point of the two transactions is
to be set.

Which PEND calls a service may use and their effect depends on the service and trans-
action status of the partner service.
The following table describes the effect of the PEND calls in the job-receiving and job-
submitting services and the rules for how to use them:

Variant Effect/rule of usage

PEND KP
PGWT KP

No synchronization point is requested and no synchronization point is set.
The service remains in transaction status "0" and in service status "0". An open DB
transaction remains open. The follow-up program unit specified in KCRN is started in
the job-submitting service as soon as all results from the job-receiving services have
been received.

This is permissible if the program unit sends a message to the terminal or the client
(LTERM partner) or if the message is addressed to a partner service and this does not
have transaction status "P".

PEND RE End of transaction (synchronization point) is requested.
End of transaction (synchronization point) is requested. If all partner services already
have transaction status "P" (i.e. they have already requested end of transaction), then
the end of transaction is executed by all participating services, i.e. a common synchro-
nization point is set. If a partner service is not in transaction status "P", the local service
passes to transaction status "P" and waits for the partner service to request end of trans-
action, too. The follow-up program unit specified in KCRN is started in the job-submitting
service as soon as all results have been received from the job-receiving services.

Permissible in the two cases below:
– no partner service with an open transaction exists.
– there is exactly one partner service with an open transaction. The program unit

sends a message to this partner.
If multiple partner services with open transactions exist then PEND RE is forbidden.

Program structure in distributed processing Distributed dialogs via LU6.1

Programming Applications with KDCS 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Programming rules

A set of rules has to be adhered to when programming distributed transactions. Violation of
these rules leads to abortion of the service with (internal) PEND ER and KCRCCC=87Z.

These rules determine:

– how transactions and services have to be terminated when using distributed processing
and

– where the output message may be sent.

Program unit runs, transactions and services are terminated as usual via the various PEND
variants; of particular importance here are the PEND variants KP, RE, SP, FI and FC, and
for error handling RS, ER and FR.

Using the variants KP, RE and SP you have to specify the follow-up program unit in KCRN,
which is used to continue the service. You start this follow-up program unit with PEND
KP/RE after all results from the job receivers have been received, or, if the message was
addressed to the job submitter, after the next message is received from the job submitter.
If you use PEND SP the follow-up program unit is started immediately.

The PGWT KP call may be used whenever a PEND KP is allowed.

PEND FI The effect is the same as with PEND RE, except that end of service is requested simul-
taneously. The service is terminated at the next synchronization point.

This is permissible if no job-receiving services are open any longer, i.e. all job receivers
must have issued PEND FI before the job submitter is permitted to issue PEND FI.

PEND FC The effect is the same as with PEND FI, except that after end of service, the chained
follow-up service is started immediately.

This is permissible in job-submitting services only (never permitted in job receivers),
and only if no further job-receiving services are open, i.e. all job receivers must have
issued PEND FI before the job submitter is permitted to issue PEND FC.

PEND PR
PEND PA

No effect on the transaction.

PEND SP The transaction is closed, i.e. a synchronization point is set and the dialog step is
continued. Not allowed if there are partner services with open transactions.

PEND RS With PEND RS all the services participating in the distributed transaction are rolled back
to the last synchronization point. All services created in the distributed transaction are
terminated by the rollback. Services which have reached at least one synchronization
point remain open.

Variant Effect/rule of usage

Distributed dialogs via LU6.1 Program structure in distributed processing

136 Programming Applications with KDCS

The following rules hold for correct programming of a distributed transaction:

● Service rule:
a job-submitting service may only be terminated once all the associated job-receiving
services have been terminated (with PEND FI). PEND FC is prohibited in job-receiving
services.

After the PEND FI of the job-receiving service, the job-submitting service can terminate the
subsequent dialog step with PEND KP, RE, SP, FI or FC. It may not send any more
messages to this job-receiver service.

● Transaction rule (single-level):
a job-submitting or job-receiving service can terminate a dialog step either with or
without end of transaction subject to the following restrictions:

– a job-submitting service may not request end of transaction if the transaction is
open in the job-receiving service, and the output message is directed to the client

– a service must request end of transaction if the output message is directed to a
partner service which has requested end of transaction.

With multi-level distributed transactions, i.e. when a job-receiving service is itself a job-
submitting service or when a job-submitting service addresses several job-receiving
services in one transaction, then the transaction rule is generalized as follows:

● Transaction rule (multi-level):
a service can terminate a processing step either with or without end of transaction
subject to the following restrictions:

– a service may not request end of transaction if there is a partner service with an
open transaction and the output message is not directed to this partner service. If
multiple partner services with open transactions exist, it is never permitted to
request end of transaction.

– a service must request end of transaction if the output message is directed to a
partner service which has requested end of transaction

If a service has multiple partner services with open transactions, PEND RE, PEND FI and
PEND SP are never permitted.

The tables on pages 134, 137 and 139 illustrate the situations when you can use the PEND
call.

If you follow the "bottom-up strategy" described below, then the programming rules are
adhered to automatically.

Program structure in distributed processing Distributed dialogs via LU6.1

Programming Applications with KDCS 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Programming recommendation: Bottom-up strategy

The bottom-up strategy is such that distributed transactions are always terminated from the
bottom up, i.e.

– a job-receiving service always requests end of transaction before its job-submitting
service and sends its output message to its job-submitting service, and

– a job-submitting service only requests end of transaction once all its job-receiving
services have requested end of transaction. The output message then goes to its own
job submitter.

PEND variants depending on the partner status

When using the PEND call must always consider the service status and transaction status
of the partner service. Following MGET, openUTM returns the status information in the
KCVGST/kcpcv_state and KCTAST/kcpta_state fields.

The cases illustrated in the following tables contain no new rules. They illustrate the rules
described in the preceding sections.

PEND variants in the job submitter

The calls PEND PA and PEND PR are not included because they have no special features
for distributed processing.

Partner status PEND variants in the job-submitting service

KCVGST /
kcpcv_state

KCTAST /
kcpta_state

permitted variants and their effect and limitations

"O" "O" KP:

RE:

RS:

ER/FR:

transactions in the job-receiving and job-submitting services
remain open - default.
requests end of transaction. Only permitted if the output
message is addressed to this job receiver and no further
partner with open transactions exist.
rolls back the job-submitting and job-receiving transaction to
the last synchronization point. Services in this transaction
are terminated.
rolls back the distributed transaction; the job-receiving
service is terminated.

Distributed dialogs via LU6.1 Program structure in distributed processing

138 Programming Applications with KDCS

"O" "P" KP:

RE:
SP:
RS:

ER/FR:

only permitted if the output message is addressed to another
partner service or another client; the transactions remain
open (not recommended because of PTC state)
terminates the distributed transaction.
terminates the distributed transaction.
rolls back the job submitter and job receiver transaction to
the last synchronization point. Services in this transaction
are terminated.
rolls back the distributed transaction; the job-receiving and
job-submitting service are terminated

"O" "C" KP:
RE:

SP:
RS:

ER/FR:

transaction in job-submitting service remains open.
transaction in job-submitting service is terminated if the
output message is addressed to the client, otherwise the
service passes to transaction status "P".
terminates the job submitter transaction.
rolls back the transaction in the job-submitting service to the
last synchronization point; services which started in this
transaction are terminated.
terminates job-submitting and job-receiving service and rolls
back the local transaction.

"C" "P"

KP:

RE:

SP:
FI:

FC:
RS:

ER/FR:

The output message must be addressed to another partner
or the client or (with PEND SP/FC) to a follow-up program
unit!
not recommended, since the job-receiving service waits in
state PTC.
terminates the distributed transaction and the job-receiving
service.
as RE
terminates the distributed transaction as well as the job-
receiving service and job-submitting service.
as FI
rolls back job-submitting and job-receiving service to the last
synchronization point. Services which started in this trans-
action are terminated.
terminates job-submitting and job-receiving service and rolls
back the distributed transaction.

Partner status PEND variants in the job-submitting service

KCVGST /
kcpcv_state

KCTAST /
kcpta_state

permitted variants and their effect and limitations

Program structure in distributed processing Distributed dialogs via LU6.1

Programming Applications with KDCS 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

The combinations "KCVGST=O, KCTAST=C" and "KCVGST=C, KCTAST=C" cannot occur
if you follow the bottom-up strategy (see page 137).

PEND variants in job-receiving service

The calls PEND PA and PEND PR are not included because they have no special features
for distributed processing. The variant PEND FC is not permitted in job-receiving services.

"C" "C"

KP:
RE:
SP:
FI:
FC:
RS:

ER/FR:

the output message must be addressed to another partner or
to the client or (with PEND SP/FC) to the follow-up program
unit!
keep transaction in job submitter open.
terminates the transaction in the job submitter.
terminates the transaction in the job submitter.
terminates transaction and job-submitting service.
terminates transaction and job-submitting service.
rolls back the job submitter transaction to the last synchroni-
zation point.
rolls back the transaction in the job-submitting service and
terminates the job-submitting service. the job-receiving
service is already terminated.

Partner status PEND variants in job-receiving service

KCVGST /
kcpcv_state

KCTAST /
kcpta_state

permitted variants and their effects and limitations

"O" "O" KP:

RE:
FI:

RS:

ER/FR:

transactions in the job-receiving and job-submitting services
remain open.
job-receiving services passes to transaction status P.
the job-receiving service changes to transaction status P. The
service is terminated at the next synchronization point (=end
of the distributed transaction).
rolls back the distributed transaction to the last synchroni-
zation point. Services in this transaction are terminated.
rolls back the distributed transaction; the job-receiving
service is terminated.

Partner status PEND variants in the job-submitting service

KCVGST /
kcpcv_state

KCTAST /
kcpta_state

permitted variants and their effect and limitations

Distributed dialogs via LU6.1 Program structure in distributed processing

140 Programming Applications with KDCS

If the bottom-up strategy is adhered to, only the combination "O"/"O" can occur, see
page 137.

Prior to a PEND RS in a follow-up transaction, you have to send a rollback message with
MPUT RM, otherwise openUTM aborts the job-receiving service with 83Z.

"O" "P" RE:
SP:
FI:

RS:

ER/FR:

terminates the distributed transaction.
terminates the distributed transaction.
terminates the distributed transaction and the job-receiving
service.
rolls back the distributed transaction to the last synchroni-
zation point. Services in this transaction are terminated.
rolls back the distributed transaction; the job-receiving
service is terminated.

"O" "C" KP:
RE:
SP:
FI:

RS:

ER/FR:

permitted
job-receiving service passes to transaction status P.
job-receiving service passes to transaction status P. The
service is terminated at the next synchronization point (= end
of the distributed transaction).
rolls back the distributed transaction to the last synchroni-
zation point.
rolls back the distributed transaction; the job-receiving
service is terminated.

Partner status PEND variants in job-receiving service

KCVGST /
kcpcv_state

KCTAST /
kcpta_state

permitted variants and their effects and limitations

Program structure in distributed processing Distributed dialogs via LU6.1

Programming Applications with KDCS 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.3.3 Existing program units as LU6.1 job receivers

Provided that certain conditions are satisfied, you can use UTM program units, which were
designed to communicate with terminals, unchanged as program units in a job-receiving
service (see list below). Existing asynchronous programs can also be used as job receivers
without any adaptations.

The same service can thus be used by terminals and client programs as well as by other
services. In this way openUTM gives you considerable flexibility in application distribution.

If you want to use existing program units as job-receiving program units unchanged, or want
to develop program units which can be used by terminals and client programs as well as by
other services, you have to take account of the following points:

● Different return information in KB header

The communication partner of the job-receiving service is not the user at the terminal,
but the job-submitting service. This is why the job-receiving service receives neither the
ID of the terminal user nor the name of the LTERM partner in the KB header. (It is
possible that neither are even generated in the application of the job-receiving service).
Instead it receives the local session name (LSES name) and the local name of the
partner application (LPAP name).

● Different assignments of TLS and ULS

Write and read calls for TLS in the job-receiving service refer to the TLS of the LPAP
partner and not to a TLS of an LTERM partner. Similarly, calls for a ULS refer to the ULS
of the session.

● Function keys are not supported in distributed processing

The job-submitting service cannot send a message corresponding to the function key
to the job-receiving service. When using MGET the job-receiving service can therefore
never receive the corresponding KDCS return code (19Z to 39Z).

● The card reader is not supported in distributed processing.

In a job-receiving service, the KCAUSWEIS/kccard field always contains blanks.

Distributed dialogs via LU6.1 Program structure in distributed processing

142 Programming Applications with KDCS

● No formatting in distributed processing via LU6.1

It is usually unimportant to a service whether it receives the dialog message from a
terminal, an openUTM client program or from an LU6.1 partner. In the case of
distributed processing via LU6.1, openUTM transfers the format ID specified in the job-
submitting service with the MPUT call, but does not perform any formatting. The format
identifier is also transferred with all message segments.

If you specify an incorrect format identifier in MGET, then openUTM operates when
distributed processing via LU6.1 is used just like it does when segment formats are
used for terminals: openUTM acknowledges an incorrect format identifier in MGET with
the KDCS return code 03Z, and no messages or message segments are passed in the
message area.

● Special structure of the job-submitting service (with distributed dialogs)

If existing program units of an application are to be used as program units in a job-
receiving service, or if the job-receiving programs are programmed in such a way that
they cannot evaluate the status indicators in the MGET call, the job-submitting service
has to let itself be controlled by the job-receiving service with regard to transaction
management. This means the bottom up strategy (see page 137) must be observed. To
ensure this the job-submitting service must take account of the transaction status of the
job-receiving service: end of transaction (PEND RE/SP) may not be set in the job
submitter until all job receivers have transaction status "P".

Program structure in distributed processing Distributed dialogs via LU6.1

Programming Applications with KDCS 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.3.4 Example: distributed dialog via LU6.1

The following simple example shows the sequence of calls in distributed dialogs via LU6.1.
In each case there are indications as to which fields can or have to be set or evaluated. The
field names are specified using COBOL notation.

In this example the job-submitting program consists of two program units: in the first unit,
the subjob is submitted to the job-receiving service; in the second unit, the response of the
job-receiving service is read and the response is output to the terminal, if necessary.

As explained in section “Error handling by the program unit” on page 125 a job-submitting
program unit which follows after a synchronization point is started not only in a normal run,
but also after rolling back a distributed transaction with service restart. This is why a check
is made in the first unit of the job-submitting program whether status information is
available. Such a service restart only occurs, however, if the job-submitting service has set
a synchronization point prior to the start of this program unit (with or without participation of
a job-receiving service).

1. Job-submitting program, first unit

 INIT
 Evaluate:
 KCKNZVG . R service restart,
 status information might be available.

 MGET Input message from terminal. If the job-submitting
 service has already reached a synchronization point,
 status information may be present as well.
 Evaluate:
 KCRPI . Return information from the job receiver
 blanks there is no status information present
 >coid there is status information from the
 job-receiving service with the specified
 service ID. In this case the status
 information is to be read with a 2nd MGET.

 2. MGET
 Read the status information after which error handling is necessary.
 Set:
 KCOM , with NT
 KCLA , with the length 0
 KCRN , with the service ID (>vgid)
 KCMF , with blanks

 Evaluate:
 KCVGST . service status:
 I job-receiving service inactive
 E job-receiving service terminated with
 PEND ER/FR
 Z job-receiving service terminated by openUTM
 with PEND ER
 R job-receiving service terminated
 with PEND RS
 T time has expired (timer)

Distributed dialogs via LU6.1 Program structure in distributed processing

144 Programming Applications with KDCS

 KCTAST . transaction status:
 I transaction in job-receiving service
 inactive
 R transaction in job-receiving service rolled back
 M mismatch
 If there is no status information present:

 APRO Address the job-receiving service (if not already done)
 Set:
 KCOM , with DM for dialog service
 KCRN , with the LTAC of the job-receiving service
 KCPA , with double-step addressing:
 with the name of the partner application
 KCPI , with a self-selected service ID
 (>coid)
 KCLM , 0

 MPUT to job-receiving service
 Set:
 KCOM , NT or NE
 KCRN , with the service ID (>coid)
 KCMF , possible format ID for job-receiver
 KCDF , binary 0
 KCLM , length

 PEND (end of first unit)
 Set:
 KCOM , PEND call variant:
 KP normally recommended in the job-submitting
 service
 RE end of transaction is requested
 FI not allowed because job-receiver still open
 ER/FR also aborts job-receiving service
 PA prohibited after MPUT to job-receiving
 service
 PR prohibited after MPUT to job-receiving
 service
 SP prohibited after MPUT to job-receiving
 service
 FC prohibited after MPUT to job-receiving
 service
 KCRN , name of follow-up program unit of job submitter
 (second unit of the job-submitting program)

Program structure in distributed processing Distributed dialogs via LU6.1

Programming Applications with KDCS 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

2. Job-receiving program

INIT
 Evaluate:
 KCBENID . name of the session
 KCLOGTER . name of the partner application
 KCTERMN . ID of the partner application
 KCCP . ID of the protocol used, ’1’ is entered for LU6.1

 KCRMF . format ID from first MPUT of the job submitter

 MGET Read message from job-submitting service
 Evaluate:
 KCRCCC . KDCS error code 19Z through 39Z cannot occur
 KCRLM . length from MPUT of the job submitter (KCLM)
 KCRST Byte1 . service status of job-submitting service:
 O job-submitting service is open
 KCRST Byte2 . transaction status of job-submitting service
 O transaction is open (PEND KP for job submitter)
 P end of transaction initiated (PEND RE)
 C transaction with job submitter terminated
 KCRMF if more message segments still present:
 format ID of the next segment, otherwise:
 format ID of segment read.

 MPUT unchanged
 Set:
 KCOM , with NT or NE
 KCMF , format ID or blanks
 KCLM , length of the message
 KCRN , with blanks to send the message to the job submitter
 KCDF , any value which the job submitter receives
 with MGET

 PEND End of job-receiving program unit
 Set:
 KCOM , depending on the transaction status:
 KP only allowed with KCTAST=O or C
 RE terminates the transaction with KCTAST=P or
 initiates end of transaction with KCTAST=O or C
 FI end of the job-receiving service, otherwise
 as PEND RE
 ER/FR end of the job-receiving service,
 transaction is rolled back, job submitter
 is informed
 PA/PR no special points, cannot be used to send
 a message to the job submitter
 KCRN , if necessary (with PEND KP or PEND RE), name of the
 follow-up program unit of job-receiving service

Distributed dialogs via LU6.1 Program structure in distributed processing

146 Programming Applications with KDCS

3. Follow-up program unit of the job-submitting program (second unit)

INIT
 Evaluate:
 KCRPI , service ID of the job-receiving service
 KCRMF , format ID from 1st MPUT of the job receiver

 MGET Read message from the job receiver
 Set:
 KCOM , NT
 KCLA , length of the message area
 KCRN , service ID from KCRPI of the INIT call
 KCMF , format ID from KCRMF of the INIT call
 Evaluate:
 KCRLM . actual length of the input message
 KCRMF . if more message segments present:
 format ID of next segment, otherwise:
 format ID of segment read.
 KCRDF . value from the relevant MPUT of the
 job-receiving service.
 KCRPI . service ID if further message
 segments present
 KCRST Byte1 . service status of job-receiving service:
 O job-receiving service is open
 C job-receiving service is terminated
 (PEND FI)
 KCRST Byte2 . transaction status of job-receiving service:
 O transaction is open (PEND KP)
 P job receiver has requested end of transaction
 (with PEND RE or FI, PTC status)
 C transaction is terminated (PEND RE or FI)

 MPUT to the terminal
 Set:
 KCRN , with blanks
 KCOM , with NT or NE
 KCLM , with the length of the message
 KCMF , with the format ID or blanks
 KCDF , if necessary, with a screen function

 PEND end of the follow-up program unit of the job-receiving service
 Set:
 KCOM , depending on status indicators in KCRST
 FI only allowed with KCVGST=C, terminates
 service and transaction
 RE terminates the transaction with KCTAST=P,
 not allowed with KCTAST=O (because message
 directed to terminal)
 ER/FR rolls back transaction, job-receiving service
 is also rolled back and terminated;
 only exception: KCTAST=C and KCVGST=C.
 KP not recommended if KCTAST=P
 PA/PR prohibited since message was sent to
 terminal.
 KCRN , if necessary (with PEND KP or PEND RE), name of the
 follow-up program unit of
 the job-submitting service

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.4 Distributed dialogs via OSI TP

The ISO (International Organization for Standardization) defined the OSI TP protocol (Open
Systems Interconnection Transaction Processing) for distributed processing between appli-
cations.

OSI TP is part of level 7 of the OSI reference model and was accepted as an international
standard under the identification ISO/IEC 10026 in July 1992. In articular, OSI TP allows
you to control the processing of distributed, i.e inter-system, transactions. However, you
can also use this protocol in cases where two applications simply exchange data without
any transaction management. These types of application are often used in client/server
communication.

5.4.1 Functional units

The OSI TP functions are divided into so called functional units (FU). Depending on the
requirements placed on communication with a partner application, individual functions can
be selected for the communication. openUTM supports the following functional units:

Dialogue

The functional unit Dialogue is required whenever you communicate via the OSI TP
protocol. It contains functions for the establishment and disconnection of dialogs and as
well as for sending error messages.

You use the KDCS call APRO to establish dialogs. In the APRO call you select the OSI TP
function combinations which are used for the dialog. Dialogs are normally terminated with
a PEND FI call. Dialogs are abnormally terminated by the PEND ER or CTRL AB call.
MPUT EM triggers the protocol element TP-U-ERROR, CTRL AB or PEND ER the protocol
element TP-ABORT.

Polarized Control

You use the functional unit Polarized Control to manage the send authorization for a dialog.
Each dialog is assigned a send authorization which only one of the communication partners
can possess at any one time.

In UTM services, send authorization for a dialog changes at the end of the processing step
when a message is sent to the dialog partner: openUTM creates the protocol element TP-
GRANT-CONTROL implicitly.

Distributed dialogs via OSI TP Program structure in distributed processing

148 Programming Applications with KDCS

Handshake

The handshake functions can be used by the communication partners to coordinate the
processing of a dialog at application level. This function makes it possible to request
processing confirmations and send positive or negative confirmations. No inter-application
transaction management is linked to this function.

You can create a handshake request by calling MPUT HM. Handshake requests from the
partner application are displayed by calling MGET. When the KDCS interface is used the
messages are not sent until the send authorization is transferred. For this reason openUTM
only creates the OSI TP protocol element TP-HANDSHAKE-AND-GRANT-CONTROL, and
not TP-HANDSHAKE.

UTM implicitly sends a positive confirmation of a handshake request before the next
message to the partner from which the request has been received. However, the confir-
mation is sent at the next end of transaction at the latest.

You use MPUT EM to send a negative confirmation of a handshake request.
The requesting service can read the result of a handshake request with an MGET call.

Commit and Chained Transactions

The Commit functional unit provides the functions necessary to create distributed transac-
tions. These are, in particular, functions to commit or roll back distributed transactions. If
you use these functions you must always select the functional unit Chained Transactions.
If processing is to be performed with global transaction management, then only distributed
transactions are processed for this dialog.

The MPUT, CTRL and PEND/PGWT calls are used in connection with these function
groups.

The operation modifiers of the PEND/PGWT calls, in combination with the target of the
MPUT messages created during the last processing step, determine whether a TP-
PREPARE is sent and, if this is the case, whether it is sent with DATA-PERMITTED=TRUE
or FALSE. However, you can also use the CTRL PR call to create a TP-PREPARE.

The OSI TP protocol elements TP-DEFER(GRANT-CONTROL) and TP-DEFER(END-
DIALOGUE) are triggered in the same way. The latter can also be created on its own using
the CTRL PE call.

You use the PEND call with the appropriate operation modifiers or the PGWT CM call to
request an end of transaction. openUTM negotiates the protocol for the processing of the
two-phase commit without the participation of the application program unit. A distributed
transaction can be rolled back using PEND RS or PGWT RB. PGWT RB must be used if
the previous transaction was terminated with PGWT CM. openUTM handles the protocol
for rolling back the distributed transaction without the participation of the application
program unit.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Following an MGET call, heuristic decisions by communication partners are shown in the
transaction status.

Recovery

The Recovery functional unit provides the services which are necessary for resychroni-
zation of the interrupted transaction after a communication failure. This functional unit
ensures global data consistency in such cases. However, OSI TP does not permit the
continuation of an interrupted connection (dialog restart).

UTM uses the services of the Recovery functional unit internally. They cannot be directly
accessed by the application program.

5.4.2 Programming aids

A program unit receives information about its communication partners via different displays.
This information enables the program unit to react selectively to special situations.
openUTM makes the information available after an INIT or MGET call.

After INIT, the job receiver is informed about being called by an OSI TP partner and the OSI
TP functions used by the job submitter for the dialog. Further displays after the INIT call
inform the job receiver of whether the job submitter has requested end of transaction or
dialog and whether another message has to be sent to the job submitter in the current trans-
action.

After an INIT or MGET call, the program unit run is informed about the communication
partner for which a message is present for reading and about the abstract syntax which was
used when sending the message. When receiving the messages, the program unit has to
adhere to the predefined order of messages specified by openUTM.
Through the MGET call, the program unit is informed of the type of message received and
receives information about the service and transaction status of the communication partner.

The information available after INIT or MGET is explained in more detail below.

Distributed dialogs via OSI TP Program structure in distributed processing

150 Programming Applications with KDCS

Displaying the selected OSI TP functions for the dialog

After the INIT call, important information is entered in the KCCP and KCOF1 fields in
KBKOPF (the KB header).

KCCP contains the communication protocol used by the partner: in the case of OSI TP, ’2’
is entered here. This tells the program unit that it has been called by an OSI TP job
submitter.

KCOF1 contains information about the OSI TP functions available for the dialog with the job
submitter. The values in the KCOF1 field have the following meanings:

B Basic functions
The functional units Dialogue and Polarized Control are selected for the dialog with
the job submitter.

H Basic and handshake functions
The functional units Dialogue, Polarized Control and Handshake are selected for
the dialog with the job submitter.

C Basic and Commit functions with Chained Transactions
The functional units Dialogue, Polarized Control, Commit and Chained Transac-
tions are selected for the dialog with the job submitter.

O (other combination)
A standard combination was not selected for the dialog with the job submitter. If INIT
PU was called and OSI TP information requested, the available OSI TPI functions
are displayed in the message area.

Requesting end of transaction or service by job submitter

After an INIT PU call, the KCENDTA field in the message area for the job-receiving service
indicates whether the local service has been requested by its job submitter to terminate the
transaction and which variant of the PEND call is to be used. The local service must
respond to the request to terminate the transaction or dialog at the latest by the end of the
processing step in which it next sends a message to the job submitter.

The following values are possible:

Ë no instructions concerning the termination of the processing step.

O no end of transaction may be requested at the end of the processing step.

R the transaction and the dialog step must be concluded, the service may not be
terminated (PEND RE or PGWT CM with a preceding MPUT to the job submitter).
At the end of transaction, the job submitter possesses the send authorization in the
job submitter dialog. The local service possesses the end-of-transaction send
authorization in all other dialogs.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

S the transaction must be concluded, the dialog step must not be terminated (PEND
SP or PGWT CM without a preceding MPUT to the job submitter).
The local service possesses the send authorization in the dialog with the job
submitter at the end of the transaction.

C the transaction must be concluded, the service may not be terminated (PEND
RE/SP or PGWT CM). The local service has end-of-transaction send authorization
for the dialog to the job submitter. In another dialog, end-of-transaction send autho-
rization may be passed to the job receiver. This is performed by issuing an MPUT
to a job receiver, followed by PEND RE or PGWT CM.

F both the transaction and the service must be concluded (PEND FI).

Displaying the send authorization for the dialog with the job submitter

After an INIT PU call, the KCSEND field indicates in the message area in the local service
whether the local service may send a message to the job submitter in the current
processing step. The following values are possible.

Y It is necessary to send a message to the job submitter at the end of the dialog step.

If KCENDTA has the value "S", in this case it is also necessary to send a message
to the job submitter at the end of transaction. This combination (KCENDTA=S and
KCSEND=Y) can only occur in the case of heterogeneous coupling.

N No messages are permitted to be sent to the job submitter. However, messages
may be sent to job receivers in which case the transaction must remain open after
the end of the processing step.

Displaying the type of message received

After an MGET call, the type of message received is displayed in the KCRMGT field of the
return area. The following values are possible:

C (confirm)
A positive handshake confirmation has been received.

E (error)
An error message or negative handshake confirmation has been received.

H (handshake)
A handshake request has been received.

M (message)
A normal user message has been received.

Distributed dialogs via OSI TP Program structure in distributed processing

152 Programming Applications with KDCS

Service status

Following an MGET call, the service status of the communication partner from which a
message has been received is displayed in the KCVGST/kcpcv_state field of the return
area. The local service can use this display to draw conclusions about the dialog with this
partner.

The following values are possible:

C (closed)
The job submitter has terminated the service.

D (disconnected)
The communication with the job submitter has been terminated because of loss of
connection.

I (inactive)
The job-receiving service could not be started because, for example, the TAC is
unknown.

O (open)
The partner service is open, i.e. end of dialog has not yet been requested.

P (pending end dialogue)
This status can only occur in the case of heterogeneous links and in dialogs for
which the Commit functionality has not been selected.
The job receiver wants to end the communication. If the job submitter does not
agree, it can continue the communication using MPUT EM.

T (time out)
No connection could be utilized in the generated wait time or the job receiver sent
no message in the generated wait time; the dialog with the job receiver is termi-
nated.

Z (error)
The dialog with the job receiver has been terminated because of an error.

In the case of the service stati D, I, and T no message is transferred. The service status in
the job-receiving service is always O.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Transaction status

Following an MGET call, the transaction status of the communication partner from which a
message has been received is indicated in the KCVGST/kcpta_state field of the return area.
The local service can use this display to draw conclusions about the dialog with this partner.

The following values are possible:

H (heuristic hazard)
The result of a transaction is undetermined since communication with at least one
communication partner has been interrupted. The possibility that one of the commu-
nication partners involved in the last transaction has made a heuristic decision
which conflicts with the actual result of the last transaction cannot be excluded.

I (inactive)
The transaction is inactive at the job receiver, e.g. because the TAC is invalid or no
connection could be established in the generated wait period.

M (mismatch)
It was not possible to synchronize the transaction in the remote service with the
transaction in the local service. This may occur after a timeout.
A mismatch can also occur if at least one of the communication partners involved
in the transaction has made a heuristic decision which conflicts with the actual result
of the transaction.

O (open)
The transaction is open in the remote service.

P (prepare to commit)
The partner service has either initiated the end of transaction itself or is requesting
the local service to initiate the end of transaction.

R (rolled back)
The transaction in the remote service has been rolled back.

U (unknown)
The transaction status is unknown. This value is only possible in dialogs for which
the Commit functionality has not been selected.

In the job-receiving service, only the following transaction stati are possible:
with functional unit commit: O, P
without functional unit commit: U

Distributed dialogs via OSI TP Program structure in distributed processing

154 Programming Applications with KDCS

5.4.3 Programming rules for dialogs without the functional unit commit

End of transaction

In a communication which complies with Cooperative Processing, the communication
partners may request end of transaction independently of each other. In this type of
processing only local transactions occur, i.e. end of transaction in a service has no effect
on the transaction in the partner service.

End of service

A job-receiving service may terminate its service at any time.

A job-submitting service may not terminate until all dialogs with its job-receiving services
are terminated.

PEND FC (chained services) in job-receiving services is not permitted.

5.4.4 Programming rules with the functional unit commit

Before explaining the rules which a service must respect in a distributed transaction, it is
first necessary to explain certain terms.

Explanation of terms

Data transfer phase

A service is in the data transfer phase until it has either been requested to end the trans-
action or has requested its job receivers to end the transaction.

Send authorization

During the data transfer phase, a send authorization exists for each dialog. This is assigned
to one or other of the communication partners at any given time.
The service which has send authorization in a dialog may use MPUT to send a message to
the partner service. When the message is sent, the send authorization passes to the
communication partner unless the partner has explicitly prohibited this with a CTRL call
(CTRL PR or PE and KCNORPLY=Y).
In a processing step, a service can pass the send authorization for the dialog with the job
submitter or pass one or more send authorizations for dialogs with job receivers.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

End-of-transaction send authorization

The end-of-transaction send authorization controls which of the communication partners
owns the send authorization after the current transaction is finished.
Usually the job-submitting service owns the end-of-transaction send authorization.
However, the job-submitting service can use an MPUT message followed by PEND RE to
pass this send authorization to the job-receiving service.
Here you have to remember that a service can only pass on send authorization for a
maximum of one dialog at the end of the transaction.

End of transaction

A service may request end of transaction if it has been requested to do so by its job-
submitting service, and it does not possess end-of-transaction send authorization for more
than one dialog.

End of service

A service may request end of service if it has been requested to do so by its job-submitting
service, and the service has not sent a message to a job receiver in the current processing
step.

Other programming rules

● In the data transfer phase, the local service possesses the send authorization for all
dialogs during a program unit run.

● In a processing step, a service cannot simultaneously send messages to its job
submitter and to job receivers.

● If the transaction remains open at the end of the processing step, then the local service
may send messages to multiple job receivers simultaneously in this processing step.

● A service may pass the end-of-transaction send authorization to no more than one
partner. The consequences of this rule are:

– In a processing step which is terminated by a request to end a transaction, a
message may be sent to only one partner.

– An intermediate node may only transfer the end-of-transaction send authorization
in a dialog with a job receiver if it possesses the end-of-transaction send authori-
zation in the dialog with the job submitter.

● A job receiver may only request end of transaction if it has been requested to do so by
its job submitter.

Distributed dialogs via OSI TP Program structure in distributed processing

156 Programming Applications with KDCS

Rules for using the different PEND variants

● You can use PEND KP if, in the processing step, messages are only sent to partners
which have not yet requested end of transaction.

● You can use PEND RE if, in the processing step,

– messages have been sent to no more than one partner.

– no request for end of transaction or dialog has simultaneously been sent to this
partner.

– the local service has already received a request for end of transaction or the local
service itself is the root in the transaction tree.

● You can use PEND SP if, in the processing step,

– the local service has already received a request for end of transaction or the local
service itself is the root in the transaction tree and

– the local service possesses the end-of-transaction send authorization for the dialog
with the job submitter and

– no message has been sent to a job receiver and

– no message has been sent to the client.

● You can use PEND FI if, in the processing step,

– the local service has already received a request for end of dialog or the local service
itself is the root of the transaction tree and

– no job receiver has received a request (using CTRL PR) for end of transaction, but
not for end of service.

– no message has been sent to a job receiver.

Rules for using PGWT variants

● A PGWT KP is possible if PEND KP is allowed.

● A PGWT CM is possible

– with output of a dialog message if PEND RE is allowed.

– without output of a dialog message if PEND SP is allowed.

● PGWT RB must be used if a transaction in which the last synchronization point was set
with PGWT CM is to be rolled back without terminating the OSI TP dialog.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Programming recommendations

In distributed transaction processing via OSI TP protocol, you should preferably terminate
the distributed transaction in the following way:

If the uppermost job submitter in the transaction tree wants to terminate the distributed
transaction, it issues a CTRL PR and an MPUT call to each of its job receivers and subse-
quently uses PEND/PGWT KP to terminate the processing step. The uppermost job
submitter terminates the transaction after the responses from its job receivers have been
received.

If an intermediate node in the transaction tree receives a request to end the transaction, it
issues a CTRL PR and an MPUT call to each of its job receivers and subsequently uses
PEND/PGWT KP to terminate the processing step. After the responses from its job
receivers have been received, the intermediate node sends a response to its job submitter
and terminates the dialog step and the transaction.

If the lowest job receiver in the transaction tree receives a request to end the transaction, it
sends a response to its job submitter and terminates the dialog step and the transaction.

If you follow this rule, the next transaction starts at the uppermost job-submitting service in
a program unit run.

5.4.5 Programming rules for communications with BeanConnect

If openUTM calls an OLTP message driven bean via BeanConnect at an J2EE server, then
you should note the following:

– The handshake functional units must not be selected.

– Only single-step dialogs are permitted, i.e. in the case of dialogs without functional unit
commit, the job receiver terminates the dialog after sending the response.

– In the case of dialogs with functional unit commit, the job submitter must request the
receiver to terminate the dialog either immediately on sending the message or on
receiving the response. If the job submitter does not request dialog termination until
receiving the response then, if an error occurs, the job receiver is still able to send an
(error) message to the submitter and the submitter itself can roll back the transaction.

Distributed dialogs via OSI TP Program structure in distributed processing

158 Programming Applications with KDCS

5.4.6 Particularities of rollback and restart

The OSI TP protocol enables you to work either with global transaction management
(functional unit commit) or without global transaction management (Cooperative
Processing).

OSI TP with functional unit commit

If you select the functional unit commit for OSI TP, the rollback of transactions with PEND
RS is performed in the same way as in LU6.1.

When a service is restarted after PEND RS, the behavior is the same as with LU6.1, with
one exception: when using the OSI TP protocol it is not possible to restart an interrupted
dialog.

A synchronization point can also be set with PGWT CM when using OSI TP. The next trans-
action may then be rolled back with PGWT RB only. In this case a return is always made to
the program unit that issued the PGWT RB. No service restart is performed.

OSI TP without functional unit commit

If you do not select this functional unit, the job-submitting service is not automatically rolled
back when an error occurs in the job-receiver service or if the connection is lost. The job-
submitting service is continued with the program unit specified in the last PEND. However,
if it waits for a result from the job receiver, it receives an error message (with service status
"Z" and transaction status "U") and can also react with a rollback.

If an error occurs in the job-submitter service, openUTM rolls back the transactions in the
job-submitting service and job receiving services and terminates the job-receiving service.
If the job-submitting service has already reached a synchronization point, a service restart
is performed after the rollback of the transaction. The follow-up program unit receives an
error message with service status "Z" and transaction status "U".

A global service restart is not possible, since no common synchronization points exist.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

If you use calls for programmed rollbacks, you have to take the following into account:

● PEND RS

For a call in the job-submitting service:
All job-receiving services with which the job-submitting service communicates without
functional unit commit are terminated.

For a call in the job-receiving service:

– If PEND SP has been used to terminate the preceding transaction, then PEND RS
rolls back the local transaction and the service is continued with the follow-up
program unit specified with PEND SP.

– If PEND SP has not been used to terminate the preceding transaction and the
service is running under a user ID without the restart property, then the service is
rolled back to the last synchronization point and the dialog with the job submitter is
terminated.

– In all other cases, openUTM terminates the service with PEND FR.

● PGWT RB

PGWT RB rolls back the current transaction and the program unit continues.

● PEND ER/FR

No special considerations apply when this call is used in the job-submitter service: The
transactions in the job submitter and all its job receivers are rolled back and the job
receivers terminated.

If called in the job-receiver service, the job receiver is rolled back and terminated.
However, the job-submitter service is continued in the program unit specified with the
last PEND. The job-submitter service can read the messages which have been sent by
the job receiver with MPUT.

i To ensure consistent operation even when a transaction is rolled back, it is
advisable to use only PGWT or only PEND calls within a distributed transaction.

● RSET

The RSET call always applies only to the local service. The RSET=GLOBAL setting in
the KDCDEF statement UTMD has no effect. This setting only has an effect in
distributed processing with global transaction management (see page 127).

Distributed dialogs via OSI TP Program structure in distributed processing

160 Programming Applications with KDCS

5.4.7 Using existing program units for OSI TP communication

Existing UTM program units which were not specifically designed for communication via
OSI TP can be used unchanged for OSI TP communication given certain restrictions (see
below). The same service can, for example, be used by clients as well as other services. In
this way openUTM gives you considerable flexibility when distributing applications.

The various cases which may arise when using existing program units for OSI TP commu-
nication are identified and described in the following sections.

Program units for communication with clients as OSI TP job receiver

Program units which have been designed for communication with clients can be used
unchanged by the job receiver for communication with an OSI TP partner. You must
observe the following points:

● Different return information in KB header

The communication partner of the job-receiving service is the job-submitting service,
not the user at the terminal. This is why the job-receiving service does not receive the
name of the LTERM partner in the KB header. Instead, it receives the name of the OSI-
LPAP partner. The entry in the KCBENID/kcuserid field depends on the security type
used. You use the APRO call to select the security type in the job submitter (in the
KCSECTYP field):

– With security type "N" (None), no user ID is transferred to the job receiver.
KCBENID/kcuserid contains the name of the association instead of the user ID.

– With security type "P" (Program), KCBENID/kcuserid contains the user ID which
was specified through APRO in the job submitter.

– With security type "S" (Same), KCBENID/kcuserid contains the user ID under which
the job submitter was started.

● Different TLS and ULS assignments

Write and read calls for TLS in the job-receiving service refer to the TLS of the OSI-
LPAP partner and not to a TLS of an LTERM partner. Similarly, calls for a ULS refer to
the ULS of the user ID only if security type P/S is present. If security type N is present
it refers to the ULS of the association.

● Function keys are not supported in distributed processing

The job-submitting service cannot send a message corresponding to the function key
to the job-receiving service. When MGET is used, the job-receiving service can
therefore never receive the corresponding KDCS return code (19Z to 39Z).

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

● The card reader cannot be used in the job-receiving service.

In a job-receiving service, the KCAUSWEIS/kccard field always contains blanks.

● Abstract syntax for distributed processing via OSI TP

In distributed processing via OSI TP, the format identifier is used to transfer the name
of the abstract syntax.

Job receiver programs designed for communication with clients can only be used
unchanged for distributed processing via OSI TP if you use UDT Octet String Mapping
exclusively as the abstract syntax. Using any other abstract syntax you would have to
perform adaptations for the encoding or decoding of messages. The KCMF/kcfn field
must therefore always contain blanks.

LU6.1 job receiver as OSI TP job receiver

Job receiver program units written for communication via LU6.1 can only be used
unchanged as OSI TP job receivers when the commit functional unit has not been selected
and the when the following conditions are fulfilled:

– You use UDT Octet String Mapping exclusively as abstract syntax for communication
via OSI TP. The KCMF/kcfn field must therefore always contain blanks when
exchanging messages.

– The transaction and service status in the job receiver programs are not evaluated.

If the commit functional unit is selected, then the job submitter must be the first to request
the end of the transaction and the end of the service, and must also always issue the
request when the job receiver expects it.

LU6.1 job submitter as OSI TP job submitter

Job submitter program units written for communication via LU6.1 cannot be used as OSI
TP job submitters unchanged. At the very minimum, you will have to adapt the APRO call
(selection of OSI function in KCOF field and possible changes in the 2nd parameter area).
No adaptations are necessary for distributed processing without global transaction
management (Cooperative Processing).

In distributed processing with global transaction management, i.e. when the functional unit
commit is selected, the programs must always be extended to take account of end-of-dialog
requests (e.g. by inserting CTRL PE).

Distributed dialogs via OSI TP Program structure in distributed processing

162 Programming Applications with KDCS

5.4.8 Particularities with heterogeneous coupling

If you want to use OSI TP to connect your UTM applications with transaction applications
of other manufacturers you have to consider the following points:

● User data when establishing associations:
When the connection is being established, only the user data necessary for OSI TP and
CCR is exchanged. Other user data is not sent and is ignored when received.

● User syntaxes and CCR association setup:
openUTM does not permit syntaxes generated by openUTM to be rejected by the
Additionally, these syntaxes must be offered with the association setup request. In such
cases, openUTM rejects the association setup.

● Disconnection with A-ABORT:
openUTM uses A-ABORT to disconnect, not A-RELEASE.

● Channels:
"Two-way-recovery" channels are not supported by openUTM.

● User data for TP-BEGIN-DIALOGUE-RI:
You can only use TP-BEGIN-DIALOGUE-RI to exchange user data necessary for
UTMSEC. Application programs have no direct access to this user data. Other user
data is not sent and is ignored when received.

● No user data for TP-BEGIN-DIALOGUE-RC, TP-ABORT-RI:
openUTM does not send user data with the protocol elements. Received user data is
ignored.

● No Shared Control functional unit:
openUTM does not support the Shared Control functional unit (i.e. does not support the
profiles ATP12, ATP22, ATP32).

● Unchained Transactions functional unit:
openUTM does not support this functional unit as a job submitter. Conversely, you can
select the functional unit in a partner application if the partner application acts as job
submitter. However, the partner application has to start the distributed transaction
before the first send authorization transfer in the dialog. The dialog must terminate with
the first transaction, as otherwise openUTM terminates the dialog abnormally.

● Recipient TPSU-Title:
A Recipient TPSU-Title is always necessary when using TP-BEGIN-DIALOGUE-RI. If
openUTM is the receiver, the title must not exceed 8 characters in length and cannot be
of the type "integer".

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

● REQUEST-CONTROL-RI, HANDSHAKE-RI:
openUTM does not send the protocol elements. If a dialog service receives TP-
HANDSHAKE-RI it is terminated abnormally.

● maximum user data length: 32767 octets:
openUTM sends a maximum of 32767 octets of user data in a protocol element. If user
data with a length of more than 32767 octets is received, openUTM disconnects the link.

● End of dialog without Commit:
No TP-END-DIALOGUE-RI should be sent to a dialog job-receiving service (end of
dialog from "above"), as otherwise openUTM terminates the service abnormally.
openUTM only uses "Confirmed End Dialogue" for the transfer of asynchronous
messages.

Distributed dialogs via OSI TP Program structure in distributed processing

164 Programming Applications with KDCS

5.4.9 Examples: distributed dialogs via OSI TP

This section contains examples describing the different programming interface possibilities
when you use the Commit functionality and Chained Transactions.

First the simplest case is considered. Here, a job submitter communicates with a job
receiver. Secondly, the scenario is extended to describe communication with multiple job
receivers and finally the more complicated cases are illustrated in which a service commu-
nicates with both a job receiver and a job receiver via the OSI TP protocol.

The data transfer phase, end of transaction, and end of dialog are considered separately.

At the end of the section (page 189ff) you can find examples which illustrate the abnormal
termination of job-receiving services with CTRL AB.

Comments on the following diagrams

The following diagrams illustrate the communication flow in distributed OSI TP dialogs. In
these services, only those KDCS calls which are relevant for communication are shown,
other KDCS calls and processing statements are omitted.

The service and transaction stati, displayed to the program unit after the MGET call, are
shown to the right of the MGET calls. In the examples, the COBOL field names are used,
i.e. KCVGST for the service status and KCTAST for the transaction status. For C/C++ the
corresponding fields are called kcpcv_state and kcpta_state.

In the job-receiving services, the KCENDTA and KCSEND are shown to the right of the INIT
calls. These can be evaluated by a program unit after an INIT PU call.

In the case of MPUT calls addressed to a job receiver and CRTL calls, the name of the
addressed job-receiving service is shown. The format used is ">x", where x represents the
job receiver. MPUT calls without this specification are always addressed to either the job
submitter or the client.

The arrows between job submitters and job receivers symbolize for the message exchange
and protocol flow.

Synchronization points are represented by bold, unbroken lines.

Any PEND KP calls shown in these examples can be replaced by PGWT KP calls. Similarly,
a PGWT CM with a preceding MPUT message can be used instead of PEND RE, and a
PGWT CM without a preceding MPUT message can be used instead of PEND SP.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.4.9.1 One job receiver

The simplest case possible is where one job submitter (A) has exactly one job receiver (B).
This section explains all possible uses for this type of application.

Data transfer phase

The message transfer phase is the period in which neither of the two partners requests an
end of transaction. For the job receiver, this option is only available if it has been requested
explicitly by the job submitter.

Send authorization changes with each message sent to the partner. Displaying the service
status "O" and transaction status "O" informs the job receiver that neither end of transaction
nor end of service has been requested.

Example 1: Message to job receiver and PEND KP

MPUT
PEND KP

>B

MPUT message
TP-GRANT-CONTROL

INIT
MGET
MPUT
PEND KP

KCENDTA:"0", KCSEND:"Y"
KCVGST: "O", KCTAST:"O"

MPUT message
TP-GRANT-CONTROL

Distributed dialogs via OSI TP Program structure in distributed processing

166 Programming Applications with KDCS

End of transaction

A job receiver may only issue an end of transaction call if this has been requested to do so
by the job submitter. The job receiver can read this information from the transaction status
after the MGET call.

Example 2: Message and Prepare to job receiver and PEND KP

This should be regarded as the normal case when communicating via the OSI TP protocol,
since the order of KDCS calls best corresponds to the protocol flow. Additionally, the job-
submitting service has control after end of transaction and this simplifies service restart.

MPUT
CTRL PR

>B

PEND KP

>B

MPUT message
TP-PREPARE (TRUE)

INIT
MGET
MPUT
PEND RE

KCENDTA:"R", KCSEND:"Y"
KCVGST: "O", KCTAST:"P"

MPUT message

INIT

PEND SP
MGET >B KCVGST:"O", KCTAST:"P"

Commit protocol

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

In the second job submitter program unit run you can also issue an MPUT to the client and
a PEND RE in a dialog service instead of PEND SP. In this case, the command sequence
is as follows:

MPUT
CTRL PR

>B

PEND KP

>B

MPUT message
TP-PREPARE(TRUE)

INIT
MGET
MPUT
PEND RE

KCENDTA:"R", KCSEND:"Y"
KCVGST: "O", KCTAST:"P"

MPUT message

INIT
 MGET >B KCVGST:"O", KCTAST:"P"

Commit protocol

MPUT
PEND RE

Distributed dialogs via OSI TP Program structure in distributed processing

168 Programming Applications with KDCS

Example 3: No message to the job receiver and CTRL PR

In this case the job receiver simply receives a request for end of transaction, but no
message from the job submitter. Send authorization therefore does not pass to the job
receiver (DATA-PERMITTED=FALSE). The job submitter possesses the send authorization
at end of transaction - as in example 2.

It is also only possible to issue a PEND PA/PR in place of the MPUT, PEND KP the first time
the program unit is run. If the job-submitting service is an asynchronous service, only this
second variant is possible.

You should note that at the start of the program unit run, after the PEND KP, the system
waits only for the message from the client but not for the TP-READY from the job receiver.
I.e., after a PEND PA/PR the follow-up program unit is started immediately unless the
system is waiting for a DGET message.

It is also only possible to issue a PEND SP in place of the MPUT, PEND KP the second time
the program unit is run. If the job-submitting service is an asynchronous service, only this
second variant is possible.

MPUT
CTRL PR
PEND KP

>B

message (FALSE)

INIT
MGET
PEND RE

KCENDTA:"R", KCSEND:"N"
KCVGST: "O", KCTAST:"P"

TP-READY

INIT

MPUT
MGET

PEND RE

MPUT TP-PREPARE

Commit

protocol

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Example 4: Message to job receiver and PEND RE

This case most closely resembles the situation when using the LU6.1 protocol. In particular,
the service and transaction stati are identical to those for communication via the LU6.1
protocol. This means that you can reuse these programs unchanged. However, you should
remember that these programs to not adhere to the bottom up strategy recommended for
LU6.1 communication.
In this example, the job receiver possesses control of end-of-transaction send authori-
zation.

MPUT
PEND RE

>B

MPUT message
TP-DEFER(GRANT-CONTROL)
TP-PREPARE(FALSE)

INIT
MGET
MPUT
PEND RE

KCENDTA:"C", KCSEND:"Y"
KCVGST: "O", KCTAST:"P"

Commit protocol

MPUT message
TP-GRANT-CONTROL

INIT
MGET >B KCVGST: "O", KCTAST: "O"

Distributed dialogs via OSI TP Program structure in distributed processing

170 Programming Applications with KDCS

In this case, the job receiver can also use a PEND SP instead of the PEND RE call. The
command sequence is then as follows:

MPUT
PEND RE

>B

MPUT message
TP-DEFER(GRANT-CONTROL)
TP-PREPARE(FALSE)

INIT
MGET
PEND SP

KCENDTA:"C", KCSEND:"Y"
KCVGST: "O", KCTAST:"P"

Commit protocol

MPUT message
TP-GRANT-CONTROL

INIT
MGET >B KCVGST: "O", KCTAST: "O"

INIT

PEND KP
MPUT

KCENDTA:"O", KCSEND:"Y"

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Example 5: No message to job receiver and PEND SP/RE

This example illustrates that the job-receiving services are included in all transactions, even
if the job submitter and job receiver have not communicated in the last transaction.
There are no so-called local transactions when using the OSI TP protocol with Chained
Transactions. This has to be taken into account when you design your distributed applica-
tions.

The job submitter can issue an MPUT to the client and a PEND RE instead of PEND SP.
The command sequence is then as follows:

PEND SP

TP-PREPARE(FALSE)

INIT
MGET
PEND RE

KCENDTA:"R", KCSEND: "N"
KCVGST: "O", KCTAST: "P"

Commit protocol

PEND RE

TP-PREPARE(FALSE)

INIT
MGET
PEND RE

KCENDTA:"R", KCSEND: "N"
KCVGST: "O", KCTAST: "P"

Commit protocol

MPUT

Distributed dialogs via OSI TP Program structure in distributed processing

172 Programming Applications with KDCS

Example 6: Defer-Grant-Control and Prepare(True)

This is an ‘exotic’ case which can only occur with heterogeneous coupling. The job receiver
has to send two messages in sequence to the job submitter. The first message has to be
sent within the first current transaction. Send authorization remains with the job receiver
after the end of transaction, which means that the job receiver issues the first message in
the follow-up transaction.

Message
TP-DEFER(GRANT-CONTROL)
TP-PREPARE(TRUE)

KCENDTA:"S", KCSEND:"Y"
KCVGST: "O", KCTAST:"P"

MPUT message

Commit protocol

INIT
MGET
MPUT
PEND SP

KCENDTA:"O", KCSEND:"Y"

MPUT message
TP-GRANT-CONTROL

INIT
MPUT
PEND KP

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

End of dialog

If the Commit functionality is used, the job receiver can only terminate the service if
requested to do so by the job submitter.
Normally the job-receiving services are terminated first and the job-submitting service can
terminate afterwards. It is also possible to terminate the job-submitting and job-receiving
service simultaneously.
If the job-submitting service is to be continued, then the job receiver must use the CTRL PE
call to request the job receiver to end the service.

Example 7: Message and end dialog to job receiver and PEND KP

In this example, the job receiver can send a last message to the job submitter before the
job receiver terminates the service.

MPUT
CTRL PE >B
PEND KP

>B

MPUT message
TP-DEFER(END-DIALOGUE)
TP-PREPARE(TRUE)

INIT
MGET
MPUT
PEND FI

KCENDTA:"F", KCSEND:"Y"
KCVGST: "O", KCTAST:"P"

MPUT message

INIT
MGET >B
PEND SP

KCVGST: "C", KCTAST:"P"

Commit protocol

Distributed dialogs via OSI TP Program structure in distributed processing

174 Programming Applications with KDCS

In the second job submitter program unit run, instead of PEND SP, you can issue an MPUT
to the client and another PEND call to request end of service or end of transaction. The
command sequence is then as follows:

MPUT
CTRL PE >B
PEND KP

>B

MPUT message
TP-DEFER(END-DIALOGUE)
TP-PREPARE(TRUE)

INIT
MGET
MPUT
PEND FI

KCENDTA:"F", KCSEND:"Y"
KCVGST: "O", KCTAST:"P"

MPUT message

INIT
MGET >B

PEND RE/FI

KCVGST: "C", KCTAST:"P"

Commit protocol

MPUT

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Example 8: No message to the job receiver and PEND SP/RE

In the first job submitter program unit run, instead of PEND SP, you can issue an MPUT to
the client, and another PEND call to request end of service or end of transaction. This
results in the following command sequence:

CTRL PE >B
PEND SP

TP-DEFER(END-DIALOGUE)
TP-PREPARE(FALSE)

INIT
MGET
PEND FI

KCENDTA:"F", KCSEND:"N"
KCVGST: "O", KCTAST:"P"

Commit protocol

MPUT
PEND RE

TP-DEFER(END-DIALOGUE)
TP-PREPARE(FALSE)

INIT
MGET
PEND FI

KCENDTA:"F", KCSEND:"N"
KCVGST: "O", KCTAST:"P"

Commit protocol

Distributed dialogs via OSI TP Program structure in distributed processing

176 Programming Applications with KDCS

Example 9: No message to the job receiver and PEND FC/FI

In the example above, the job-submitting service is not to be continued as in examples 6
and 7. Instead, it terminates at the same time as the job receiver. If PEND FC (service
chaining) is used, the dialog step is continued in a follow-up service.

In the first job submitter program unit run, instead of PEND FC, you can issue an MPUT to
the terminal and a PEND FI. In this case no follow-up service is performed in the job
submitter. The command sequence is then as follows:

PEND FC

TP-DEFER(END-DIALOGUE)
TP-PREPARE(FALSE)

INIT KCENDTA:"F", KCSEND:"N"
KCVGST: "O", KCTAST:"P"

Commit protocol

MGET
PEND FI

MPUT
PEND FI

TP-DEFER(END-DIALOGUE)
TP-PREPARE(FALSE)

INIT
MGET
PEND FI

KCENDTA:"F", KCSEND:"N"
KCVGST: "O", KCTAST:"P"

Commit protocol

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Example 10: Message to job receiver and CTRL PR, KCNORPLY=Y

In this case, the job receiver receives an end-of-transaction request and a message from
the job submitter without, however, the job submitter passing the send authorization to the
job receiver (DATA-PERMITTED=FALSE). The job receiver cannot send any more
messages. When the follow-up program unit starts, the job submitter waits after the
PEND KP for the receipt of TP-READY.

MPUT >B

PEND FI
MPUT message
TP-PREPARE(FALSE)

INIT
MGET
PEND RE

KCENDTA:"R", KCSEND:"N"
KCVGST: "O", KCTAST:"P"

Commit protocol

CTRL PR >B

,KCNORPLY=Y

TP-READY

INIT

MPUT
MGET

PEND RE

Distributed dialogs via OSI TP Program structure in distributed processing

178 Programming Applications with KDCS

5.4.9.2 Multiple job receivers

When communicating with more than one job receiver, the situation of the job submitter is
essentially the same whatever the physical number of job receivers. It is therefore sufficient
to consider a configuration involving one job submitter (A) and two job receivers (B and C).

From the job receiver’s point of view, this case is identical to the situations illustrated in the
previous section, since the only communication partner known to the job receivers is the job
submitter.

However, this scenario is also not very different for the job submitter. There is simply an
increase in the number of possible combinations.

The job submitter can communicate with each individual job receiver as described in the
previous section. Additionally, the job submitter can communicate either with one or with
multiple job receivers in a single processing step. The follow-up program unit run in the job-
submitting service is not started until responses have been received from all the job
receivers to which messages were sent in the last processing step.

The job submitter can either use the CTRL call to request individual job receivers to request
end of transaction or end of dialog or issue an appropriate PEND call to inform all job
receivers of the situation simultaneously.

Since the situation has not changed greatly compared to communication with a single job
receiver, a single example will suffice here. For reasons of space, the protocol flow is not
illustrated.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Example 11: Multiple job receivers

In this example, job submitter A communicates with job receivers B and C. The dialog with
C is to be terminated. However, C has to send a final message to A before terminating. To
make this possible, A issues an MPUT and a CTRL PE to partner C. The dialog with partner
B is not to be terminated yet. A therefore simply sends a message to B and keeps the trans-
action open by using PEND KP to terminate the program run.

The "F,Y" specifications inform C that it still has to send a message to A and that the trans-
action has to be terminated with PEND FI. For B, the transaction and dialog remain open.
This is indicated by "O,Y".

In the second program unit run, A now uses CTRL PR to request B to end the transaction.
However, A wants to receive the response from B in the current transaction and therefore
uses PEND KP to terminate the program run. The stati "R,Y" signal the end of transaction
request to B. B then sends a response to A and uses PEND RE to terminate the transaction.

MGET
MPUT
PEND RE

INIT

MPUT
MPUT
CTRL PE
PEND KP

>B
>C
>C

"R","Y"
"O","P"

INIT
MGET
MGET
MPUT
CTRL PR
PEND KP

>B
>C
>B
>B

"O","O"
"C","P"

MGET
MPUT
PEND FI

INIT "F","Y"
"O","P"

MGET
MPUT
PEND KP

INIT "O","Y"
"O","O"

MGET
PEND SP

INIT
>B "O","P"

Commit protocol

B C

Distributed dialogs via OSI TP Program structure in distributed processing

180 Programming Applications with KDCS

Since both C and B have now requested end of transaction, A can finally terminate the
distributed transaction. At the end of transaction the dialog with C is simultaneously termi-
nated, whereas the dialog with B remains open.

5.4.9.3 More complex dialog trees

Finally we shall look at cases in which a service (B) communicates with a job submitter (A)
and a job receiver (C) via the OSI TP protocol using Chained Transactions. Compared to
the previous cases, only the intermediate node B is in a new situation since it possesses
both a job submitter A and a job receiver C.

When the OSI TP protocol is used, an intermediate node is not free to decide when an end
of transaction or end of dialog is to occur. This also applies to dialogs with its job receiver.
The intermediate node B cannot request end of transaction or end of service from job
receiver C until B itself has received an end-of-transaction request from its job submitter.

The following examples depict individual, characteristic situations. There are numerous
other possibilities which can be constructed by combining the cases described in the
sections above.

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Data transfer phase

The data transfer phase is the period in which no CTRL calls are issued by any of the
partners, and the program runs are terminated exclusively by PEND KP.

Example 12: Data transfer phase in multi-step transfer trees.

B need not always communicate with A and C in alternation, as is the case in this example.
B can also conduct multiple dialog steps consecutively with C or communicate exclusively
with A before reintegrating C into the communication.

However, it is important to note that B may not send messages to A and C simultaneously.
An intermediate node may pass the send authorization either to the job submitter or to one
or more job receivers, but not to the job submitter and a job receiver at the same time.

A service may transfer the end-of-transaction send authorization for a maximum of one
dialog.

MGET
MPUT
PEND KP

INIT

MGET
MPUT
PEND KP

INIT
>C

MPUT >B

"O","Y"
"O","O"

MGET
MPUT
PEND KP

INIT "O","Y"
"O","O"

MGET
INIT

>B "O","O"

B C

>C

"O","Y"
"O","O"

PEND KP

Distributed dialogs via OSI TP Program structure in distributed processing

182 Programming Applications with KDCS

End of transaction

After B has received the end-of-transaction request from A, it has 3 options:

– B can send a message to C and simultaneously request C to terminate the transaction
(see also examples 12, 14, 15)

– B can continue the data transfer phase with C and request C to terminate the
transaction in a later processing step. (see also example 13)

– B can refrain from further communicating with C in the current transaction and itself
request end of transaction. (see also example 16)

A, B or C may own the end-of-transaction send authorization.

Example 13: End-of-transaction send authorization is owned by A

In the example above, B cannot pass the end-of-transaction send authorization to C since
A has not yet passed the end-of-transaction send authorization to B.

MPUT >B

MGET
MPUT
PEND RE

INIT "R","Y"
"O","P"

MGET
MPUT

INIT "R","Y"
"O","P"

MGET
INIT

>B "O","P"

B C

>C

MGET
MPUT
PEND RE

INIT "R","Y"
"O","P">C

CTRL PR
PEND KP

>B

CTRL PR
PEND KP

>C

PEND SP

Commit protocol

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Example 14: B continues the dialog with C - end-of-transaction send authorization is owned by A

In this example, B does not initially request C to terminate the transaction and, instead,
continues the data transfer phase with C. In this example only one more dialog message is
exchanged. However, it would be possible to continue the data transfer phase beyond this.
In this case, B and C can only use PEND KP to terminate the program runs. At some time
B must request C to end the transaction.

In this example, again, B cannot pass the end-of-transaction send authorization to C since
A has not yet transferred the end-of-transaction send authorization to B.

MGET
MPUT
PEND RE

INIT

MGET
MPUT
PEND KP

INIT

MGET
MPUT

INIT

>C
CTRL PR
PEND KP

>C

MPUT >B

"R","Y"
"O","P"

MGET
MPUT

INIT "R","Y"
"O","P"

MGET
INIT

>B "O","P"

B C

>C

MGET
MPUT
PEND RE

INIT "R","Y"
"O","P">C

CTRL PR
PEND KP

>B

PEND KP

PEND SP

Commit protocol

"O","Y"
"O","O"

"R","Y"
"O","P"

Distributed dialogs via OSI TP Program structure in distributed processing

184 Programming Applications with KDCS

Example 15: End-of-transaction send authorization is owned by B

MGET
MPUT
PEND RE

INIT

MGET
MPUT

INIT

>C

MGET
PEND SP

INIT "C","Y"
"O","P">C

CTRL PR
PEND KP

>C

MPUT
PEND KP

INIT

MPUT >B

"R","Y"
"O","P"

"C","Y"
"O","P"

B C

PEND RE

Commit protocol

"O","Y"

INIT
MGET "O","O"

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

Example 16: End-of-transaction send authorization is owned by C

MGET
INIT

PEND KP

MGET
MPUT

INIT

>C

MPUT
PEND KP

INIT

PEND RE

MPUT
<C

MPUT >B

MGET
PEND SP

INIT "C","Y"
"O","P"

"C","Y"
"O","P"

B C

"O","Y"

PEND RE

Commit protocol

"O","Y"

INIT
MGET "O","O"

"O","O"

Distributed dialogs via OSI TP Program structure in distributed processing

186 Programming Applications with KDCS

Example 17: No message to job receiver before end of transaction

In this example, B refrains from sending another message to C in the current transaction,
and requests end of transaction immediately.

After PEND RE from node B, an MPUT message is sent to A and a PREPARE protocol
element is sent to C. This requests C to terminate the transaction. C does not then receive
any further user messages. The MGET call at C simply reads the status of the dialog with
B. This call can be omitted.

MGET
MPUT

INIT

MPUT >B

MGET
PEND RE

INIT
"R","N"
"O","P"

"R","Y"
"O","P"

B C

MGET
PEND SP

INIT
>B

Commit protocol

PEND RE

CTRL PR >B
PEND KP

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

End of dialog

An intermediate node can bring about the job-submitter-based end of dialog in the same
way as an end of transaction. These possibilities are depicted in the two examples below.

Example 18: B first terminates the dialog with the job receiver.

MPUT >B

MGET

INIT
"F","Y"
"O","P"

MGET
MPUT

INIT "R","Y"
"O","P"

B C

>C

CTRL PR

Commit protocol

MGET
INIT "R","Y"

INIT
MGET "O","P"

CTRL PE

MPUT
PEND RE

"O","P"

PEND KP
>B

PEND KP
>C

MPUT
PEND FI

>C

PEND SP
>B

Distributed dialogs via OSI TP Program structure in distributed processing

188 Programming Applications with KDCS

Example 19: Simultaneous end of dialog with job receiver and job submitter.

MPUT >B

MGET

INIT "F","N"
"O","P"

MGET
MPUT

INIT "F","Y"
"O","P"

B C

CTRL PE

Commit protocol

INIT
MGET

PEND FI

PEND KP
>B

PEND FIPEND SP
>B

Program structure in distributed processing Distributed dialogs via OSI TP

Programming Applications with KDCS 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.4.9.4 Using CTRL AB to terminate a job receiver

CTRL AB terminates a job-receiving service abnormally. The job submitter must roll back
the distributed transaction after a CTRL AB for a job receiver for which the functional unit
Commit is selected. No rollback is necessary for a job receiver dialog without Commit.

Example 20:Terminating a dialog for which the Commit FU is selected.

MPUT
PEND RE

TP-DEFER(GRANT-CONTROL)
TP-PREPARE(FALSE)

INIT
MGET
MPUT

KCENDTA:"C", KCSEND:"Y"
KCVGST: "O", KCTAST:"P"

Commit protocol

>B

MPUT message

PEND RE

INIT
MGET
CTRL AB >B
MPUT RM
PEND RS

MPUT message
TP-GRANT-CONTROL

KCVGST: "O", KCTAST: "O"

TP-U-ABORT
UTM terminates the job-submitting
service with PEND FR

Distributed dialogs via OSI TP Program structure in distributed processing

190 Programming Applications with KDCS

Example 21: Terminating a dialog for which Commit FU is not selected

MPUT
PEND RE

INIT
MGET
MPUT

KCENDTA:"?ã", KCSEND:"Y
KCVGST: "O", KCTAST:"U"

>B

MPUT message

PEND RE

INIT
MGET
CTRL AB >B
MPUT
PEND RE

MPUT message
TP-GRANT-CONTROL

KCVGST: "O", KCTAST: "U"

TP-U-ABORT
UTM terminates the job-submitting
service with PEND FR

Program structure in distributed processing UTM-controlled queues

Programming Applications with KDCS 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.5 UTM-controlled queues in distributed processing

A job-submitting service can use the FPUT or DPUT call to send an asynchronous job to a
remote asynchronous service (Remote Queuing). The job-submitting service may either be
a dialog or an asynchronous service.

openUTM uses two local queues for asynchronous jobs to a remote applications: one
queue is located in the sending application, the other in the receiver. This deferred delivery
principle makes sure that distributed message queuing under openUTM is entirely
independent of whether or not a connection is currently established. If no connection can
be established, the job remains in the local send queue until the connection is established.
The following applies once the connection has been established.

– With LU6.1, the jobs are transmitted to the partner immediately.

– With OSI TP, it may be some time before the jobs are transmitted. This time is limited
by the value generated in MAX CONRTIME. Note that the time is set to 10 minutes if
CONRTIME=0.

If a serious error occurs while transmitting a job, i.e. while the connection is open, then the
job is deleted from the local send queue but is not entered in the corresponding message
queue of the partner application. A serious error that results in the loss of the job may occur,
for example, if the job is sent to a TAC which is locked in the partner application. The exact
cause can be identified from the K086 (LU6.1) or K119 (OSI TP) message which is output
in the partner application:

Remote queuing with openUTM

UTM application A

service 1
local queue

 UTM application B

asynchronouslocal queue

Computer 1

Network

Computer 2

service 2

UTM-controlled queues Program structure in distributed processing

192 Programming Applications with KDCS

5.5.1 Job submitter side

You use an APRO AM call to address the job-receiving service. Enter the service ID in the
KCPI field.

In the case of distributed processing via OSI TP you can use the APRO call to select
whether or not to transfer an asynchronous job with global transaction management. If
global transaction management is used, openUTM ensures that the job is transferred
precisely once as long as it is not lost during transmission due to a serious error (see
page 191).

In the event of a connection failure, asynchronous jobs without global transaction
management are may sometimes be transferred more than once.

After an APRO AM call, the job-submitting service can:

– enter a service identification as the destination in KCRN and use FPUT to send an
asynchronous job or DPUT to send a time-driven asynchronous job to the corre-
sponding remote service.

– use MCOM BC to define the start of a job complex and use DPUT to send an
asynchronous job (basic job) to the partner application within the complex and to create
the associated positive or negative confirmation jobs. The confirmation jobs are
processed by the local application.

– use MCOM BC to define the complex ID and enter the service Id in KCRN. For DPUT,
you must then enter the complex ID in KCRN.

You must issue an FPUT or DPUT call with this service ID within the program unit which
addresses the remote service with APRO AM, otherwise openUTM aborts the service with
KCRCCC=86Z and releases the service ID when PEND is called.

The service ID is released in the job-submitting service in the following cases:

– after a successful FPUT NE or DPUT NE call
– on the next PEND call (also PEND KP and PEND PA/PR)
– after a RSET call
– after the return code 40Z following an FPUT or DPUT call
– in job complexes with this service ID: When calling MCOM EC or after a return code

40Z following MCOM BC or after calling DPUT

Once released, this service ID can be used for another job submitter/job receiver
relationship in the job-submitting service.

The job entry in the job submitter is deleted from the message queue as soon as it has been
successfully transferred and inserted into the corresponding message queue of the partner
application. Depending on the processing result, the positive or negative confirmation job
is then started when message complexes are used.

Program structure in distributed processing UTM-controlled queues

Programming Applications with KDCS 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
3:

00
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
5

5.5.2 Job receiver side

Here an asynchronous job for a partner application is handled as if it had been created by
a service in your own application. Asynchronous jobs from services in the local application
and asynchronous jobs issued by remote services are located in a shared message queue
assigned to the asynchronous TAC. An asynchronous service is started for each job in turn,
as resources become available. The asynchronous service uses the entry in the KCTERMN
field of the KB header to identify whether or not the job submitter is a remote service.

Asynchronous services for remote queuing are structured in exactly the same way as for
local queuing (see page 53ff). However, in distributed processing via OSI TP another possi-
bility exists: asynchronous jobs to dialog services.

Asynchronous jobs to remote dialog services (only via OSI TP)

When using the OSI TP protocol for an asynchronous job for which APRO was used to
specify global transaction management, the job receiver may be a dialog service.

After receipt of an asynchronous job for a dialog service, the service is immediately started
in the partner application rather than being inserted into a message queue like a job to an
asynchronous service. In the application of the job submitter, the job is not deleted from the
message queue until the dialog service is terminated. Depending on the processing result,
the positive or negative confirmation job is then started when message complexes are
used.

A dialog service which is started by an asynchronous job must use PEND FI to terminate
the transaction and may not contain an MPUT to the job submitter (KCENDTA=F and
KCSEND=N).

Service-controlled queues Program structure in distributed processing

194 Programming Applications with KDCS

5.6 Service-controlled queues in distributed processing

Messages to can also be transferred to TAC queues of remote applications with fail safety
by means of LU6.1 and OSI TP. Generation and programming are similar to when you send
jobs to dialog or asynchronous TACs in remote applications (see page 122).

Generation

In an LTAC statement, the name of a TAC queue in the remote application is assigned to a
local LTAC name as the RTAC name.

LTAC REMOTEQ, RTAC=name-of-TAC-queue-in-remote-application

Programming

The message is addressed by means of an APRO AM call and sent by means of a subse-
quent FPUT call.

INIT
...
APRO AM, KCPI=>VGID, KCRN=REMOTEQ
FPUT NE, KCRN=>VGID
...
PEND FI

Programming Applications with KDCS 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
6

6 Program structure in communication with
transport system applications

This chapter describes the points you have to take into account when programming
communication with transport system applications (= TS applications).

6.1 Communication with TS applications of the type APPLI

From a TS application of the type APPLI it is possible in the UTM application to:

– start a service

– create a message for a TAC queue or temporary queue

The TAC or name of the queue must be at the beginning of the message. If the TAC or the
name of the queue is shorter than eight characters, it must be separated from the rest of
the message by at least one blank. If a message to a temporary queue is created, there
must not be a TAC, LTERM, LPAP or OSI-LPAP in the application under the name of the
temporary queue.

If the specified TAC or the name of the queue is invalid, the BADTACS event service is
started (provided it has been generated). If not, message K009 is sent to the TS application,
unless a separate message module in used in which PARTNER has not been generated as
the message destination for message K009.

If the TS application starts a service then this service can read the message with the KDCS
call MGET or FGET. If the TS application sends a message to a service-controlled queue
then any service can read the message with the KDCS call DGET. If, during a read call, the
KCLA length is shorter than the length of the message segment, only the requested part is
read; the rest of the message is lost. The return code 01Z indicates that the message has
not been read in its entirety.

At generation you must define the TS application as follows:

PTERM/TPOOL ...,PTYPE=APPLI

You will find information on generating TS applications in the openUTM manual “Generating
Applications”.

Communication via socket connections Communication with TS applications

196 Programming Applications with KDCS

6.2 Communication via socket connections

openUTM works on a message-oriented basis and does not start a program unit until a
complete message has been received for the program unit. The socket interface is a byte-
stream interface.

openUTM therefore requires a communication protocol above and in addition to TCP/IP in
order to detect message limits. For this purpose, openUTM provides its own protocol
(openUTM Socket Protocol, USP), which enables the byte streams received via the socket
interface to be converted to messages (see page 199 for the structure of the USP header).
TCP/IP is required as the transport protocol.

Generating socket partners

Socket partners are generated as follows:

PTERM/TPOOL ... PTYPE=SOCKET,BCAMAPPL=socket-appliname
BCAMAPPL socket-appliname,T-PROT=SOCKET

On Unix, Linux and Windows systems, T-PROT=SOCKET must also be specified for
PTERM/TPOOL.

Sample programs

The socket-client sample program SOCBSP and a program unit SOCMIRR for socket
partners are supplied with openUTM. SOCMIRR ("socket mirror") returns the received
messages to the socket client.

On BS2000 systems, you can find the sources and the object module for the sample
programs in the library SYSLIB.UTM.064.EXAMPLE.

On Unix and Linux systems, SOCBSP (module socbsp.c) and SOCMIRR (module
socmirr.c) form part of the sample application. You will find the modules under
utmsample/soc-c or utmsample/utm-c (utmsample = directory containing the sample appli-
cation).

On Windows systems, SOCBSP (module socbsp.c) and SOCMIRR (module socmirr.c)
are components of the Quick Start Kit . The modules are located in the directory
utmpath\utmsample\soc-c or utmpath\utmsample\utm-c.

6.2.1 Input messages for openUTM

In the case of input messages of socket applications, a corresponding protocol header must
be set up in the partner application, and this must precede each message segment or
fragment. The protocol header is truncated and not transferred to the program unit.

X/W

X/W

B

B

X

X

X

X

W

W

W

Communication with TS applications Communication via socket connections

Programming Applications with KDCS 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
6

The following applies to the data that comes after the protocol header:

– If a service is to be started with a message sent to openUTM, the TAC must be at the
beginning of the message.

– If the message is to be inserted in the message queue of a TAC queue or of a temporary
queue, the name of the queue must be at the beginning of the message. If the message
goes to a temporary queue, there must be no TAC, LTERM, LPAP or OSI-LPAP in the
application under the name of the temporary queue.

– If the TAC is shorter than eight characters, it must be separated from the rest of the
message by at least one blank.

– If the specified TAC or the name of the queue is invalid, the BADTACS event service is
started (provided it has been generated). If not, message K009 is sent to the socket
application, unless a separate message module in used in which PARTNER has not
been generated as the message destination for message K009.

If the TS application starts a service then this service can read the message (segments) or
messages with the KDCS call MGET or FGET. If the TS application sends one or more
messages to a service-controlled queue then any service can read the message
(segments) or messages with the KDCS call DGET. The following then applies.

● If the KCLA length is shorter than the length of the message segment at the MGET call,
only the requested part is read; the rest of the message is not lost, however. The return
code 02Z indicates that the message segment has not been read in its entirety. The rest
of the message segment can be read with the next read call, another message segment
with the next read call but one, and so on.

● If the KCLA length is shorter than the length of the message segment at the
DGET/FGET call, only the requested part is read; the rest of the message is lost. The
return code 01Z indicates that the message segment has not been read in its entirety.
A further message segment is read with the next read call.

If all the message segments are read, this is indicated by the return code 10Z.

If no code conversion has been generated for the connection to the socket partner (PTERM
or TPOOL statement, operand MAP=USER), then the socket application must supply the
name of the queue or queues in the "correct" code for the UTM application, i.e. in EBCDIC
for a UTM(BS2000) application and in ASCII for a UTM application on Unix, Linux or
Windows systems.

Communication via socket connections Communication with TS applications

198 Programming Applications with KDCS

6.2.2 Output messages of openUTM

When messages are sent to socket partners, each message segment or fragment must be
sent by means of a separate MPUT NT/NE call. At each MPUT call, a separate message
segment is created, even if zero is specified as the length. A message with a length of zero
is only sent, however, if a USP header is created automatically for the message to be sent
and is placed in front of it (see the table below). The exception is that if the program unit
contains only one MPUT call, no message is sent, regardless of the value of the USP-HDR
parameter.

If the socket partner expects a USP header when it receives a message then you can define
during generation that openUTM should automatically create a USP header for messages
to the socket partner and precede them with this header.

This is specified at generation using the USP-HDR= operand in the PTERM or TPOOL
statement:

– for all messages, i.e. K messages + MPUT/FPUT messages (USP-HDR=ALL)
– for K messages only (USP-HDR=MSG)
– no header (USP-HDR = NO)

If no code conversion has been generated for the socket partner (MAP=USER operand in
the PTERM or TPOOL statement), you can also generate the USP header in the program
unit itself and prefix it to the message.

For information on generating sockets applications, please refer to the openUTM manual
“Generating Applications”

Exchanging long messages

Input messages and dialog output messages of any length can be exchanged with socket
partners. If an entire message is longer than 32767 bytes (output) or 32000 bytes (input),
the message must be fragmented (i.e. it must consist of several message segments). The
maximum length of each message segment is 32767 bytes (including the USP header) at
output and 32000 bytes at input.

Message segments can be identified by the fact that the relevant flag field and the corre-
sponding message type in the USP header are set (see below). In the case of outputs, the
program must set these values.

Fragmented input messages must be read using a corresponding number of
MGET/FGET/DGET NT calls (see page 196). Fragmented dialog output messages must be
sent using a corresponding number of MPUT NT calls.

Asynchronous output messages (FPUT/DPUT) cannot be fragmented. Their total length is
limited by the value generated in MAX TRMSGLTH=.

Communication with TS applications Communication via socket connections

Programming Applications with KDCS 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
6

6.2.3 Structure of the socket protocol header

The header contains the identifier, two version fields, a flag field, a type field and a length
field. openUTM expects the protocol described on the input side. This has the following
structure:

Explanation

Identifier
The identification field must always the contain the ASCII string "UTMS"
(=0x55544D53) for openUTM.

Major version
The major version field must always contain the value 0x01.

Minor version
The minor version field must always contain the value 0x01.

Flags The flag field is an information field. Only bit 0x02 is evaluated: if it is set, the
message is followed by another fragment. If it is not set, it is not followed by a
fragment. All the other bits are reserved for future versions.

MsgType
The type field can contain the values 0x00, 0x01 or 0x07:

– Receive messages from the client:
In the case of unfragmented messages, the client sets the value 0x00 for
MsgType. In the case of fragmented messages, the client sets the value 0x00 for
MsgTyp when the first fragment is received (bit 0x02 is set in the flag field). For
the fragments that follow, the value 0x07 is set for MsgType (bit 0x02 remains
set). Bit 0x02 is not set for the last of these fragments.

– Send messages to the client:
In the case a USP header is created (e.g. with USP-HDR=ALL), openUTM sets
the value 0x01 for MsgType when the first fragment is sent and the value 0x07
for fragments that follow.

MsgSize
The length field MsgSize contains the length of the message or message segment,
including the header. This length must not exceed 32000 bytes on the input side
and 32767 bytes on the output side. The message length is transferred in network

Identifier
ASCII,
4 bytes

Major
version
1 byte

Minor
version
1 byte

Flags

1 byte

MsgType

1 byte

MsgSize

4 bytes

Data

Max. 31988 bytes

|
UTMS(55544D53)

|
01

|
01

|
Message

type

|
0000xxxx

|
Data

Communication via socket connections Communication with TS applications

200 Programming Applications with KDCS

byte order (big endian). The C functions htonl (host to network long) and ntohl
(network to host long) can be used to carry out conversions between the local view
and the network view.

Examples

1. The client sends messages to openUTM, see the sample source file SOCBSP.C
shipped with the product:
– The client sends one message (without fragmentation)
– The client sends two message segments
– The client sends three message segments

2. The server sends messages to the client (USP header is created):
– one whole message (without fragmentation)
– three message segments

kkkk, nnnn, mmmm are the lengths of the different message segments.

Number of
message
segments

Identifier Major
version

Minor
version

Flag MsgType Size

1 whole
message

55544D53 01 01 00 00 0000nnnn

2 segments
– segment 1
– segment 2

55544D53
55544D53

01
01

01
01

02
00

00
07

0000nnnn
0000mmmm

3 segments
– segment 1
– segment 2
– segment 3

55544D53
55544D53
55544D53

01
01
01

01
01
01

02
02
00

00
07
07

0000kkkk
0000nnnn
0000mmmm

Number of
message
segments

Identifier Major
version

Minor
version

Flag MsgType Size

1 whole
message

55544D53 01 01 00 01 0000nnnn

3 segments
– segment 1
– segment 2
– segment 3

55544D53
55544D53
55544D53

01
01
01

01
01
01

02
02
00

01
07
07

0000kkkk
0000nnnn
0000mmmm

Programming Applications with KDCS 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

7 KDCS calls

This chapter gives you all the information you need to use the KDCS program interface in
your program. You call the openUTM linkage program with the KDCS call. On the basis of
the entries in the KDCS parameter area, openUTM recognizes and performs the desired
function.

Complete overview of KDCS calls KDCS calls

202 Programming Applications with KDCS

Complete overview of KDCS calls

UTM calls implement the KDCS interface as standardized under DIN 66 265 ("Interfaces of
a Kernel for Transaction-oriented Application Systems"). The UTM program interface is an
upward-compatible extension to this DIN standard. The table below lists these extensions.

CALL Included in
DIN 66 265

Extensions to DIN 66 265

APRO no Distributed processing

CTRL no Distributed processing (only for OSI TP)

DADM no Administration of message queues (asynchronous jobs)

DGET no Read from service-controlled message queues

DPUT yes Confirmation jobs and user information

FGET yes Distributed processing

FPUT yes Distributed processing

GTDA yes none

INFO no Information services

INIT yes Distributed processing

LPUT yes none

MCOM no Definition of job complexes

MGET yes Distributed processing

MPUT yes Distributed processing

QCRE no Create temporary queue

QREL no Delete temporary queue

PADM no Administration of printers and printer output

PEND yes Distributed processing,
PEND KP/PS/FC/SP/RS/FR not contained in DIN 66 265

PGWT no Program management

PTDA yes none

RSET no Rollback operation

SGET yes none

SIGN no Signing on and off, changing password, checking authorization
data

SPUT yes none

SREL yes none

UNLK no Unlocking storage areas

KDCS calls Complete overview of KDCS calls

Programming Applications with KDCS 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

The table below shows the KDCS calls and their functions.

CALL Function Function group

APRO Address job-receiving service Message communication
(with distributed processing)

CTRL Control OSI TP dialogs Message communication
(with distributed processing)

DADM Administer asynchronous jobs Management of message
queues and printers

DGET Read messages from a service-controlled message
queue

Message communication-
message queuing

DPUT Generate time-driven asynchronous job
and confirmation jobs

Message communication-
message queuing

FGET Receive asynchronous message Message communication-
message queuing

FPUT Generate asynchronous job Message communication-
message queuing

GTDA Read from TLS Memory management

INFO Request information Information services

INIT Signing on a program to openUTM Program management

LPUT Write to log file Logging facility

MCOM Define job complex Message communication

MGET Receive dialog message Message communication
dialog

MPUT Send dialog message Message communication
dialog

QCRE Create temporary message queues Management of temporary
message queues

QREL Delete temporary message queues Management of temporary
message queues

PADM Control printers and printer outputs Management of message
queues and printers

PEND Terminate program Program management

PGWT Set wait point in a program unit run Program management

PTDA Write to TLS Memory management

RSET Roll back requested changes and operations Program management

SGET Read from secondary storage area Memory management

SIGN Sign on and off, change password, check authori-
zation data

Sign-on management

Complete overview of KDCS calls KDCS calls

204 Programming Applications with KDCS

The next table lists the function groups and the calls associated with them.

After each call (except PEND) openUTM returns information in the KDCS communication
area.

The fields of the KDCS parameter area set prior to a call or returned after its execution have
particular names. These are meant to help you deal with the KDCS interface and its
description. Their use also enhances the maintenance and transferability of programs. The
appendix gives an overview of all operand fields and their use in the various calls.

SPUT Write to secondary storage area Memory management

SREL Release secondary storage area Memory management

UNLK Unlock TLS, ULS or GSSB Memory management

Function group Associated UTM calls

Sign-on management SIGN

Program management INIT, RSET, PEND, PGWT

Message communication-
dialog

MGET, MPUT

Message communication
message queuing

MCOM, DGET, DPUT, FGET, FPUT

Management of message
queues and printers

DADM, PADM

Management of temporary
message queues

QCRE, QREL

Memory management GTDA, PTDA, SGET, SPUT, SREL, UNLK

Information services INFO

Logging facility LPUT

Distributed processing APRO, CTRL, DPUT, FPUT, INIT, MCOM, MGET, MPUT, PEND,
RSET, PGWT

CALL Function Function group

KDCS calls Comments on the description

Programming Applications with KDCS 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Comments on the description of the KDCS calls

This section describes all the KDCS calls in alphabetical order. This makes it easier for you
to look them up.

Every call description consists of 4 parts:

● First, the functions of the call are described.

● Then there is a schematic diagram of the call with all necessary entries. The fields to
which you have to assign a value before the call are grayed:

The corresponding C/C++ macros are also listed for each call. For a detailed
description of these macros refer to section “C/C++ macro interface” on page 491.

● This diagram is followed by the description of the statements in the KDCS parameter
area and in the 2nd parameter, as well as the return information from openUTM.

● Finally the particularities of the call are explained.

If "—" is entered in a table, then the entry is irrelevant for the function concerned.

i The field names of the KDCS interface for COBOL and C/C++ are mostly identical
and differ only in the rules for lower case/upper case specification. In cases where
further differences exist, the field name for C/C++ is printed after the COBOL field
name (separated by a slash), e.g. "KCTAG/kcday".

i The return code 79Z is a general error code which indicates that the value in the
field KCOP=operation code has an invalid value. It cannot therefore be assigned to
any operation code.

gray you must assign a value to this field before the call

APRO KDCS calls

206 Programming Applications with KDCS

APRO Address job-receiving service

The APRO call (address program) enables you to address a job-receiving service or a TAC
queue in the job-submitting service. The APRO call is only applicable with distributed
processing with UTM-D. Data is sent to the job-receiving service using either MPUT or
FPUT/DPUT. In these calls the receiver is specified by means of the service identifier
defined in the APRO call.

Setting the 1st parameter (KDCS parameter area)

The following table shows the various options and the necessary entries in the KDCS
parameter area.

The entry in the KCPA field depends on the type of addressing involved:

– for single-step addressing the field must contain blanks

– for double-step addressing the field must contain the name of the partner application
((OSI-)LPAP name or Master-LPAP name).

Further information on single and double-step addressing of job-receiving service with
distributed processing can be found in the openUTM manual “Concepts und Functions”.

Function of the
call

Entries in the KDCS parameter area

KCOP KCO
M

KCLM KCRN KCPA KCPI KCOF

Address a
dialog service

"APRO" "DM" 0/19/58 LTAC
name

(OSI-)LPAP
name /
Master-LPAP
name /
blanks

service ID Permitted
OSI function

Address an
asynchronous
service or a TAC
queue

"APRO" "AM" 0/19/58 LTAC
name

(OSI-)LPAP
name /
Master-LPAP
name /
blanks

service ID Permitted
OSI function

KDCS calls APRO

Programming Applications with KDCS 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the 2nd parameter (selecting special OSI TP function combinations)

The second parameter area is only used for communication via the OSI TP protocol. It
allows you to specify function combinations other than those available via the standard
selection using the KDCS KOCF parameters. It also allows you to select whether SIGNON
data should be transferred to the job-receiving service. A language-specific data structure
is available for the second parameter area: for COBOL in the KCAPROC COPY element,
for C/C++ in the kcapro.h include file.

If the second parameter area is used, you must specify the values 19 or 58 in the field KCLM
for the length of the data structure and the field KCDF must contain the value "O".

Setting the parameters in the KDCS parameter area

Field name in the KDCS parameter area Contents

1. KCOP "APRO"

2. KCOM "DM"/"AM"

3. KCLM 0/19/58

4. KCRN LTAC name

5. KCPA (OSI-)LPAP name/Master-LPAP name /
blanks

6. KCPI service ID

7. KCOF OSI functions

APRO KDCS calls

208 Programming Applications with KDCS

Setting the parameters in the second parameter area (only for KCOF=O)

Field name in the 2nd parameter area Contents

8. KCVERS Version number of data structure

9. KCFUPOL Polarized FU (Y)

10. KCFUHSH Handshake FU (Y/N)

11. KCFUCOM Commit FU (Y/N)

12. KCFUCHN Chained FU (Y/blanks)

KCFUFILL empty - for future extensions

13. KCSECTYP Security type (N/S/P)

14. KCUIDTYP Data type of user ID (P/T/O)

15. KCUIDLTH Length of user ID

16. KCUSERID User ID

KCSECFIL empty - for future extensions

17. KCPWDTYP Data type of the password (P/T/O)

18. KCPWDLTH Length of the password

19. KCPSWORD Password

KDCS call

1st parameter 2nd parameter

20. KDCS parameter area Second parameter area

21. C/C++ macro calls

Macro name Parameters

KDCS_APRODM / KDCS_APROAM (kcrn,kcpa,kcpi)

KDCS_APRODM_OSI /
KDCS_APROAM_OSI

(kcrn,kcpa,kcpi,kcof)

KDCS_APRODM_OSI_O /
KDCS_APROAM_OSI_O

(nb,kclm,kcrn,kcpa,kcpi)

openUTM return information

Field name in the KB return area Contents

22. KCRCCC Return code

23. KCRCDC Internal return code

KDCS calls APRO

Programming Applications with KDCS 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

You can enter the following information for the APRO call in the KDCS parameter area:

1. In the KCOP field, enter the APRO operation code.

2. In the KCOM field, enter the operation modifier:

DM (Dialog message) for addressing a dialog service
AM (asynchronous message) for addressing an asynchronous service or a TAC

queue.

3. In the KCLM field, enter the length of the 2nd parameter area:
– length zero, if no second parameter area is used
– length 19, if a second parameter area is used and the “N" or “S" security type is

selected
– length 58, if a second parameter area is used and “P" security type is selected.

4. In the KCRN field, enter the logical transaction code (LTAC name) of the job-submitting
service.

5. In the KCPA field, you may have to identify a partner application depending on the type
of addressing:

– enter the logical name of the partner application in the case of double-step
addressing, i.e. the LPAP name, OSI-LPAP name or master LPAP name of an OSI-
LPAP or LU6.1-LPAP bundle.

– enter blanks for single-step addressing (the name of the partner application is in this
case taken from the generation statement LTAC).

The partner application entry in KCPA has priority over the partner application specified
in the LTAC statement at generation.

6. In the KCPI field, assign the service ID to be used by the job-submitting service in the
MPUT, MCOM, FPUT, DPUT or MGET calls to address the job-receiving service. The
service ID must begin with the character ">".

7. The KCOF field contains the functions permitted for communication with an OSI TP
partner (irrelevant for communication via LU6.1 protocol).
Possible values:

– B (basic functions)
Basic functions

– H (handshake functions)
Basic and handshake functions (only possible with APRO DM)

– C (chained transactions)
Basic and commit functions with chained transactions

APRO KDCS calls

210 Programming Applications with KDCS

– O (other combination)
The functions are selected via the second parameter area, i.e. if KCOF=O is
specified, a second parameter area must be passed during the KDCS call.

i When addressing an OSI TP job receiver, you must specify binary zero for all
unused fields of the KDCS parameter area.

You specify the following in the second parameter area:

8. In the KCVERS field, enter the version number of the data structure: this is 1 in this
openUTM version.

9. In the KCFUPOL field, specify whether the “polarized control" functional unit should be
selected. Since “shared control" is not supported in this version, the only permitted entry
is “Y“.

10. In the KCFUHSH field, specify whether the “Handshake" functional unit should be
selected (Y/N).

If an asynchronous service is addressed (APRO AM), then "N" must be specified for
KCFUHSH.

11. In the KCFUCOM field, specify whether the "Commit" functional unit should be selected
(Y/N). The "Commit" functional unit can only be selected if the addressed OSI-LPAP
partner contains the abstract syntax CCR in the application context (Commitment,
Concurrency and Recovery).

12. In the KCFUCHN field, specify whether the "Chained Transactions" functional unit
should be selected. This field is only relevant if the "Commit" functional unit has also
been selected, i.e. if KCFUCOM=Y is set.

Since "Unchained Transactions" are not supported in this version, the only permitted
entry here is “Y” if the "Commit" functional unit was selected.

If the "Commit" functional unit was not selected, the KCFUCHN field is irrelevant. In this
case, enter a blank.

13. In the KCSECTYP field, enter the security type.
The security type controls whether SIGNON data (user ID and password) is transferred
to the job-receiving service:

N (none)
No SIGNON data is transferred to the job-receiving service.

S (same)
The user ID under which the local service runs, is transferred to the job-
receiving service.

KDCS calls APRO

Programming Applications with KDCS 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

P (program)
The values specified in the KCUSERID and KCPSWORD fields are transferred
to the job-receiving service as the user ID and password.

You can only select the security types "S" or "P", if the addressed OSI-LPAP partner in
the application context contains the abstract syntax UTMSEC.

14. In the KCUIDTYP field, you enter the data type of the user ID specified in the
KCUSERID field:

P The string entered in KCUSERID is a "printable string" type.

T The string entered in KCUSERID is a "T61 string" type.

O The string entered in KCUSERID is an "octet string" type.
An octet string is a hexadecimal string. No code conversion is performed

For the range of values for these data types refer to the openUTM manual “Generating
Applications”, KDCDEF statement LTAC.

15. In the KCUIDLTH field, you enter the length of the user ID specified in the KCUSERID
field (in bytes, 16 maximum).

16. In the KCUSERID field, you specify the user ID which, if KCSECTYP=P is set, will be
transferred to the job-receiving service.

17. In the KCPWDTYP field, you enter the data type of the password specified in the
KCPSWORD field:

P The string entered in KCPSWORD is a "printable string" type.

T The string entered in KCPSWORD is a "T61 string" type.

O The string entered in KCPSWORD is an "octet string" type (see also the
KCUIDTYP field on page 211)

For the range of values for these data types refer to the openUTM manual “Generating
Applications”, KDCDEF statement LTAC.

18. In the KCPWDLTH field, you enter the length of the password specified in the
KCPSWORD field (in bytes, 16 maximum).If no password is to be transferred, enter
zero.

19. In the KCPSWORD field, you enter the password which, if KCSECTYP=P is set, will be
transferred to the job-receiving service.

i Any field of the 2nd parameter area which is not used must be filled with blanks.
Exception: Any length field which is not used must be filled with zeroes.

APRO KDCS calls

212 Programming Applications with KDCS

For the KDCS call you enter:

20. As 1st parameter: the address of the KDCS parameter area.

As 2nd parameter (if required): the address of the second parameter area (selection of
special OSI TP function combinations).

21. The use of C/C++ calls is described in detail in section “C/C++ macro interface” on
page 491.

openUTM returns:

22. in the KCRCCC field: the KDCS return code, see next page.

23. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Function carried out.

40Z UTM cannot perform the function. There is a generation error or a system error, or
the APRO function was called although the application was generated without
distributed processing, or no connection to the partner application possible at the
moment (see value of KCRCDC).

41Z Impermissible APRO call. This can be, for example, for one of the following
reasons:

– APRO call was issued in a sign-on service.

– In a service, communication with certain partners is to be performed via LU6.1
and with others via the OSI TP protocol using the "Commit" functional unit.

– In a distributed transaction using the OSI TP protocol, associations are to be
established via more than one local ACCESS-POINT.

– An association with a "Commit" functional unit is to be established. However,
the abstract syntax CCR (commitment, concurrency and recovery) is not
present in the application context of the associated OSI-LPAP partner.

– An "S" or "P" security type association is to be established. However, the
abstract syntax UTMSEC is not present in the application context of the
associated OSI-LPAP partner.

42Z Entry in KCOM invalid

43Z Entry in KCLM invalid.

KDCS calls APRO

Programming Applications with KDCS 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

44Z Value in KCRN does not identify a valid LTAC of a job-receiving service. Possible
reasons:

– configuration does not recognize the associated LTAC
– LTAC is locked
– user ID has no keycode for the LTAC
– entry in KCOM does not match the specified LTAC (value DM in KCOM and LTAC

of an asynchronous service or a TAC queue; or value AM in KCOM and LTAC of a
dialog service).

46Z Entry in KCPA invalid, i.e. no partner application is generated under the specified
name, or blanks were entered in KCPA and there is no application name defined in
the LTAC generation statement.

47Z KCOF=O was specified. However the 2nd parameter area is missing or invalid.

48Z Invalid data structure version.

55Z Entry in KCPI invalid (does not begin with ">"), or service ID already assigned by
job-submitting service.

58Z Value in KCOF invalid

Additional error codes can be found in the dump:

71Z INIT call missing or was given the form DM in the MSGTAC program.

89Z When addressing an OSI TP job receiver, unused fields of the KDCS parameter
area were not specified binary zero.

Features of the APRO call

● A service which communicates with a partner application via OSI TP protocol using the
"Commit" functional unit cannot communicate with another partner application via
LU6.1.

● If the OSI TP protocol is used in a service which takes part in a distributed transaction
part, all job receivers must be allocated to the same local ACCESS-POINT and, if
necessary, this ACCESS-POINT must be identical to the ACCESS-POINT used for the
communication with a job-submitting service.

● Security types P and S can be selected both with APRO DM and with APRO AM. In the
case of dialog services, the job submitter is signed on by means of the transferred user
ID when the service is started and signed off again when it terminates. In the case of
asynchronous services, the transferred user ID remains active only until the job has
been entered in the appropriate queue.
For dialog services, the job submitter is rejected when there is already an OSI TP dialog
service running under this name, when a user is logged on through an LTERM partner
and it is prohibited for users to sign on to the application more than once (SIGNON
statement, MULTI-SIGNON=NO) or when the user ID has been configured with

APRO KDCS calls

214 Programming Applications with KDCS

RESTART=YES and the functional unit commit has not been selected.
The job submitter can always sign on under the user ID passed in order to be able to
place a job in a queue for asynchronous services.

If security type "P" is selected in the 2nd parameter area, you must specify user ID and
password. Additionally, the data type of user ID and password must also be specified.
Possible data types are Printable String, T61 String and Octet String. For the range of
values for these data types, refer to the openUTM manual “Generating Applications”,
KDCDEF statement LTAC.

If Octet String is specified, no code conversion is performed. The Octet String type is
necessary when you transfer passwords which were generated in Hex-String
(PASSWORD=X'aabbcc..') format.

If security type "S" is selected, openUTM transfers the user ID under which the local
service is running, to the job-receiving service. It is assumed that T61 String is used.

● A successful APRO DM call means that a virtual connection has been established with
the partner application.
A successful APRO call does not mean that it is possible to exchange messages with
the job-receiving service. A session or association is not reserved until the end of the
program unit run in which the first message was sent to the job-receiving service.

● If at the time of the APRO call no connection to the remote application has been estab-
lished, UTM initiates the connection setup.

● If openUTM returns a KDCS error code ≠ 000 as a result of an APRO DM call no
message should be sent with MPUT to the job receiver, because the service would then
be aborted with KCRCCC=74Z.

● A message has to be sent to a job-receiving service addressed by APRO DM in the
same transaction, otherwise openUTM aborts the service with KCRCCC=87Z at PEND.

● An asynchronous job must be associated with an asynchronous service addressed by
APRO AM before the next PEND call, otherwise openUTM aborts the service with 86Z
at PEND.

● A RSET call only rolls back the address of a dialog service if the APRO DM occurred in
the same processing step, i.e. no dialog message has as yet been sent to the job-
receiving service (MPUT with following PEND/PGWT).

● If multiple job-submitting services exist simultaneously in one application, these may
use identical service identifiers. These may also be used for addressing differing job-
receiving services.

● If a job complex is to be sent to the remote application, the APRO AM call must precede
the MCOM BC call and the service identifier for the MCOM BC call must be entered in
the KCRN field.

B

B

B

KDCS calls APRO

Programming Applications with KDCS 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● Life of a service ID

A service ID created with APRO DM is relevant for transaction security, i.e. it forms part
of transaction-logged security. It is present until the job-receiving service is terminated
and is not released until the end of the transaction in which the job submitter has read
the message from the job receiver.

A service identifier created by APRO AM is released

– after a successful FPUT/DPUT NE call,
– at the next RSET or PEND call,
– after 40Z has been returned by an FPUT/DPUT call, or
– with job complexes with that service identifier: following an MCOM EC call or after

40Z has been returned by an MCOM BC or DPUT call.

Once a service ID has been released, it can be used for the next job receiver/submitter
relationship.

● Addressing a Master LPAP

If a master LPAP is addressed with the APRO call, a slave LPAP from the LPAP bundle
is selected if this is the first APRO call of the current transaction for this master LPAP.

– With an APRO DM call, the first slave LPAP is selected to which a logical connection
has been established. If no logical connection has been established to any slave
LPAP, the return value is 40Z/KD10.

– With an APRO AM call, the first slave LPAP is selected to which a logical connection
has been established. If no logical connection has been established to any slave
LPAP, one of the slave LPAPs is selected.

For every slave LPAP checked during selection, and to which no association or session
is established, establishment of an association or session is initiated.

If a slave LPAP has been selected, the same slave LPAP is used for every additional
APRO call in this transaction addressed to the master LPAP.

A subsequent APRO DM call can return 40Z/KD10 if the first APRO call was APRO AM
and no association or session had previously been established to any of the slave
LPAPs or if the logical connection has been cleared again in the interim.

i For more detailed information on message distribution, see the openUTM manual
“Generating Applications”.

CTRL KDCS calls

216 Programming Applications with KDCS

CTRL Control OSI TP Dialog

The CTRL (control) function call is used for distributed processing via the OSI TP protocol.
It allows you to explicitly control a dialog with an OSI TP partner.

The CTRL PR and CTRL PE calls may only be addressed to job-receiving services for
which the "Commit" functional unit was selected.

There are a number of variants of the CTRL call:

● CTRL PR (Prepare to Commit)
CTRL PR requests the job-receiving service to initiate the end of transaction. If the local
service also sends data to the partner with an MPUT call, then it can use the CTRL call
to specify whether or not the remote service is still permitted to send data.

● CTRL PE (Prepare End Dialogue)
CTRL PE requests the job-receiving service to initiate the end of dialog. If the local
service also sends data to the partner with an MPUT call, then it can use the CTRL call
to specify whether or not the remote service is still permitted to send data.

● CTRL AB (Abort Dialogue)
CTRL AB initiates an abnormal termination of the current dialog with the job-receiving
service. MPUT calls to this job receiver are deleted and not sent. If the Commit function-
ality is selected for the dialog, openUTM ensures that the distributed transaction is
rolled back to the last consistency point before the dialog is terminated. A separate
CTRL call must be issued for each dialog which is to be terminated abnormally.

Setting the 1st parameter

The table below shows the various options and associated specifications in the KDCS
parameter area.

Function of the call Entries in the KDCS parameter area

KCOM KCLA KCLM KCRN KCMF/kcfn KCNORPLY

Prepare to Commit "PR" 0 0 service ID blanks "Y" / 0

Prepare End Dialogue "PE" 0 0 service ID blanks "Y" / 0

Abort Dialogue "AB" 0 0 service ID blanks 0

KDCS calls CTRL

Programming Applications with KDCS 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the 2nd parameter

Here you have to specify the address of the message area. The message area is not used
in this version of openUTM. It is intended for future extensions.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "CTRL"

2. KCOM "PR" / "PE" / "AB"

3. KCLA 0

4. KCLM 0

5. KCRN Service ID

6. KCMF / kcfn Blanks

7. KCNORPLY "Y" / 0

KDCS call

1st parameter 2nd parameter

7. KDCS parameter area Message area

8. C/C++ macro calls

Macro names Parameter

KDCS_CTRLPR / KDCS_CTRLPE /
KDCS_CTRLAB

(kcrn)

 openUTM return information

Field name in KB return area Contents

9. KCRCCC Return code

10. KCRCDC Internal return code

CTRL KDCS calls

218 Programming Applications with KDCS

For the CTRL call the following entries are required in the KDCS parameter area:

1. In the KCOP field, you must enter the CTRL operation code.

2. The KCOM field must contain one of the following operation modifiers:

– PR (PRepare to commit)
This variant requests the job-receiving service to initiate the end of transaction. The
following also applies:

– If the local service also sends data to the job-receiving service with an MPUT
call, then it can use the KCNORPLY field to specify whether or not the job-
receiving service is still permitted to send data in the current transaction. The
local service is then only continued after completion of the processing step if the
remote service has initiated an end-of-transaction.

– If the local service does not send any data to the job-receiving service then the
job-receiving service may also not send any more data in this transaction. The
local service then does not wait for the job-receiving service to initiate an end-
of-transaction following completion of the processing step.

– PE (Prepare End dialogue)
This variant requests the job-receiving service to initiate the end of dialog. The
following also applies:

– If the local service also sends data to the job-receiving service with an MPUT
call, then it can use the KCNORPLY field to specify whether or not the job-
receiving service is still permitted to send data in the current dialog. The local
service is then only continued after completion of the processing step if the
remote service has initiated an end-of-dialog.

– If the local service does not send any data to the job-receiving service then the
job-receiving service may also not send any more data in this dialog. The local
service then does not wait for the job-receiving service to initiate an end-of-
dialog following completion of the processing step.

– AB (ABort dialogue)
This variant initiates an abnormal termination for the current dialog with a job-
receiving service. If the Commit functionality is selected for the dialog, openUTM
ensures that the distributed transaction is rolled back to the last synchronization
point using an appropriate PEND call before the dialog is terminated. A separate
CTRL call must be issued for each dialog which is to be terminated abnormally. With
CTRL AB, messages sent to the partner using MPUT are deleted.

3. The KCLA field must be set to zero.

4. The KCLM field must be set to zero.

5. In the KCRN field, specify the service ID (VGID) of the partner service to which the
CTRL call refers.

KDCS calls CTRL

Programming Applications with KDCS 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

6. In the KCMF/kcfn field, enter blanks.

7. If KCOM=PR/PE, the value Y can be entered in the KCNORPLY field. This value
informs the job-receiving service that it cannot send any more data in this transaction
or this dialog, even if the local service continues to send data to the job-receiving
service with MPUT.

You must specify binary zero for all unused fields.

For the KDCS call you enter:

8. As 1st parameter: the address of the KDCS parameter area.

As 2nd parameter: the address of the message area. This address must be specified
for all CTRL calls even though CTRL calls do not currently use the message area.

9. The use of C/C++ calls is described in detail in section “C/C++ macro interface” on
page 491ff.

openUTM returns:

10. in the KCRCCC field: the KDCS return code.

11. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Function carried out successfully.

40Z The application was generated without distributed processing.

41Z CTRL call is impermissible at this point. Possible reasons are:

– The call was issued for an asynchronous service, i.e. the specified service ID
was defined using an APRO AM call.

– The call is addressed to a partner to which an MPUT HM has already been sent.

– A CTRL PE or PR is addressed to a partner for which FU commit has not been
selected.

– A CTRL PE or PR is addressed to a partner to which no MPUT has as yet been
sent following an APRO.

42Z The function variant in KCOM is invalid.

43Z The value specified in KCLA or KCLM is invalid.

CTRL KDCS calls

220 Programming Applications with KDCS

44Z The service ID specified in KCRN is invalid or no service ID has been specified.

45Z The KCMF/kcfn field is not filled with blanks.

49Z The content of unused fields in the KDCS parameter area is not equal to binary
zero.

54Z The KCNORPLY field in CTRL PR or PE has a value other than Y or binary 0.

71Z No INIT call has been issued in the program unit run.

77Z Invalid area address.

Features of the CTRL calls

● No end of transaction may be requested at the end of a processing step in which a
CTRL PR or PE call and an MPUT call have been addressed to the same partner.

● You may address the CTRL PR / PE / AB call only to those job-receiving services which
are currently involved in a distributed dialog, i.e. which were addressed with an
APRO DM.

● You may address CTRL PR and CTRL PE calls only to those job-receiving services for
which the Commit functional unit has been selected and for which an MPUT has already
been issued after APRO.

● You can issue CTRL calls for multiple partners in a single processing step or program
unit run.

● Only those PEND calls with the operation modifiers RS, FR and ER are allowed after a
CTRL AB call for a dialog with an AN service in which the commit functionality has been
selected.

KDCS calls DADM

Programming Applications with KDCS 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

DADM Administer message queues

The DADM (delayed free message administration) call provides the following functions for
administering message queues that enable you:

– to read summary information about messages in a message queue into the message
area (user identification, job identification (job ID), creation time, starting time and
existing confirmation jobs, original destination ...)

– to read user information into the message area that has been generated with DPUT
NI/QI/+I/-I. The user information can only be read if the confirmation job becomes the
main job.

– to change the processing order of messages in a message queue

– to delete individual messages or all the messages from the message queue

– to assign either selected messages or all messages in the dead letter queue each to
their original destination or to a new destination

You can only administer message queues of the local node application with a UTM cluster
application.

The format of the DADM call is discussed in detail below. For further information on the
administration of the message queue refer to the openUTM manual “Administering Appli-
cations”.

DADM KDCS calls

222 Programming Applications with KDCS

Setting the KDCS parameter area (1st parameter)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

All fields of the parameter areas not in use must be assigned the value binary zero.

Setting the 2nd parameter

Here you have to supply the address of the message area into which openUTM is to read
the message. A language-specific data structure enables you to structure the message
area when calling DADM RQ, in COBOL this is the KCDADC COPY element and in C/C++
the kcdad.h include file.

Function of
the call

Entries in the KDCS parameter area

KCOP KCOM KCLA KCRN KCLT KCQTYP KCMOD Time1

1 The time point is specified in the fields KCTAG/kcday, KCSTD/kchour and KCMIN.

Read overview
information

"DADM" "RQ" 53 Job ID/
blank

LTERM/
(OSI-)
LPAP/
TAC/
Queue

Binary
zero

"Q"/"U"

Binary
zero

Binary
zero

Read user
information

"DADM" "UI" Lengt
h

Job ID Binary
zero

Binary
zero

Binary
zero

Time point
(absolute)

Change order "DADM" "CS" 0 Job ID Binary
zero

Binary
zero

Binary
zero

Time point
(absolute)

Delete
individual
message from
a queue

"DADM" "DL" 0 Job ID LTERM/
(OSI-)
LPAP/
TAC/
Queue

Binary
zero

"Q"/"U"

"C"/"N" Time point
(absolute)

Delete all
messages
from a queue

"DADM" "DA" 0 Blank LTERM/
(OSI-)
LPAP/
TAC/
Queue

Binary
zero

"Q"/"U"

Binary
zero

Binary
zero

Move single
message

"DADM" "MV" 0 Job ID TAC/
Blank

Binary
zero

Binary
zero

Time point
(absolute)

Move all
messages

"DADM" "MA" 0 Blank TAC/
Blank

Binary
zero

Binary
zero

Binary
zero

KDCS calls DADM

Programming Applications with KDCS 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the parameters

Field name in the KDCS parameter
area

Contents

1. KCOP "DADM"

2. KCOM "RQ"/"UI"/"CS"/"DL"/"DA"/"MV"/"MA"

3. KCLA Length in bytes/0

4. KCRN Job ID/blanks

5. KCLT LTERM name/TAC/queue/binary zero/
Blank

6. KCQTYP Destination type:"Q"/"U"/binary zero

7. KCMOD "C"/"N"/binary zero

8. KCTAG/kcday Day (absolute)/binary zero

8. KCSTD/kchour Hour (absolute)/binary zero

8. KCMIN Minute (absolute)/binary zero

8. KCSEK/kcsec Second (absolute)/binary zero

KDCS call

1st parameter 2nd parameter

9. KDCS parameter area Message area

10. C/C++ macro calls

Macro name Parameters

KDCS_DADMRQ (nb,kcla,kcrn,kclt)

KDCS_QADMRQ (nb,kcla,kcrn,kclt,kcqtyp)

KDCS_DADMUI (nb,kcla,kcrn,kcday,kchour,kcmin,kcsec)

KDCS_DADMCS (nb,kcrn,kcday,kchour,kcmin,kcsec)

KDCS_DADMDL (nb,kcrn,kclt,kcmod,kcday,kchour,
kcmin,kcsec)

KDCS_QADMDL (nb,kcrn,kclt,kcmod,kcday,kchour,kcmin,
kcsec,kcqtyp)

KDCS_DADMDA (nb,kclt)

DADM KDCS calls

224 Programming Applications with KDCS

For the DADM call you make the following entries in the appropriate fields of the KDCS
parameter area:

1. In the KCOP field, enter the DADM operation code.

2. In the KCOM field, select the operation modifier:

RQ to read the overview information on a message queue

UI to read the user information of a main job created by means of DPUT NI/QI

CS to give preference to a specific message

DL to delete a single message

DA to delete all messages in the message queue

MV to move a single message from the dead letter queue into either the original
message queue, any asynchronous TAC or any TAC queue

MA to move each message from the dead letter queue either into their original
queues, any asynchronous TAC or any TAC queue

3. In the KCLA field, enter the length of the data to be transferred to the message area.
For KCOM = RQ enter 45, for KCOM = CS/DL/DA/MV/MA enter 0.

KDCS_QADMDA (nb,kclt,kcqtyp)

KDCS_DADMMV (nb,kcrn,kclt,kcday,kchour,kcmin,kcsec,
kcqtyp)

KDCS_DADMMA (nb,kclt,kcqtyp)

openUTM return information

Message area Contents

11.

Field name in the KB return area

12. KCRLM Actual length

13. KCRCCC Return code

14. KCRCDC Internal return code

15. KCRMF/kcrfn Job ID/blanks

10. C/C++ macro calls

Macro name Parameters

KDCS calls DADM

Programming Applications with KDCS 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

4. In the KCRN field, specify the message in the queue to be administered. The following
specifications are required:

– blanks
if KCOM = DA/MA or if KCOM = RQ and the call refers to the first message in the
queue

– the job ID
if KCOM = UI/CS/DL/MV or if KCOM = RQ and the call refers to the subsequent
messages in the queue. The job ID is always returned to the KCRMF/kcrfn field in
the preceding DADM RQ.

5. In the KCLT field, identify the queue. That means:
– If KCOM = RQ/DL/DA, specify:

– the LTERM name if the message was for an LTERM partner
– the (MASTER-)(OSI-)LPAP name if the messages was for an (OSI-)LPAP

partner
– the TAC if the message was for an asynchronous program
– the name of the queue if you want to administer messages of a USER queue,

a TAC queue or a temporary queue
– If KCOM = UI/CS, specify binary zero.
– If KCOM = MV/MA, specify the following:

– the TAC, if the single message or all messages are to be directed to an
asynchronous program,

– the name of a TAC queue, if the single message or all messages are to be
directed to a service-controlled queue,

– blank, if the single message or all messages are each to be assigned back to
their original destination.

6. In the KCTYP field, specify the type of the queue:
– If KCOM = RQ/DL/DA, specify:

– binary zero, if the queue belongs to an LTERM, an (OSI-)LPAP or a TAC, or if it
is a TAC queue,

– Q in the case of a temporary queue created with QCRE,
– U in the case of a USER queue.

– If KCOM=UI/CS/MV/MA enter binary zero.

7. In the KCMOD field, specify whether openUTM should activate the negative confir-
mation job when a job complex is deleted. The following values are possible:

binary zero
if KCOM = RQ/UI/CS/DA/MV/MA,

C to delete the complete job if KCOM = DL; in the case of job complexes all the
confirmation jobs are deleted also,

N to activate the negative confirmation job if KCOM = DL; the message itself is
deleted.

DADM KDCS calls

226 Programming Applications with KDCS

8. If KCOM = UI/CS/DL/MV, enter the time the message was generated as follows: in the
KCTAG/kcday field, the day in the year (working day, value 001 to 366), in
KCSTD/kchour the hour, in the KCMIN field the minute and in KCSEK/ kcsec the
second. This time can be ascertained before with DADM RQ.

If KCOM = RQ/DA/MA enter binary zero.

For the KDCS call you enter:

9. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area into which openUTM is to read the
message. You have to enter the address even if you have entered 0 in KCLA.

10. The use of C/C++ calls is described in detail in section “C/C++ macro interface” on
page 491ff.

openUTM returns:

11. If KCOM = RQ/UI: the message in its actual or at most in its desired length in the
specified message area.

12. In the KCRLM field: the actual length of the message, possibly deviating from the length
requested in KCLA of the parameter area.

13. In the KCRCCC field: the KDCS return code.

14. In the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

15. In the KCRMF/kcrfn field: if KCOM = RQ the job ID of the next message in the queue
(see KCLT) or blanks for the last message in the queue.

KDCS calls DADM

Programming Applications with KDCS 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS error codes for the DADM call

The following codes can be analyzed in the program:

000 Operation executed (if KCOM = RQ/UI) or the administration job accepted
(if KCOM = CS/DL/DA/MV/MA). The real execution is not determined until the end
of the transaction.

A decision about actual execution is not made until the end of the transaction (see
“Features of the DADM call” on page 229).

01Z Length conflict: KCLA < KCRLM, the message is truncated.

40Z The system cannot perform the operation (generation error or system error, original
destination no longer exists, no administration privileges, locked by another
service), see KCRCDC.

42Z Entry in KCOM invalid.

43Z Length specified in KCLA is negative or invalid.

44Z Job ID specified in KCRN is invalid.

46Z Entry in KCLT is invalid. Possible causes:
– The specified LTERM or (MASTER-)(OSI-)LPAP name does not exist.
– The TAC is invalid or locked.
– The TAC is not a process TAC or a dialog TAC.
– There is no USER queue or temporary queue with the specified name, or the

type specified in KCTYP does not fit the queue name.
– with KCOM=MV/MA: an LTERM, (OSI-)LPAP or maste LPAP name was

specified, the specified TAC has been deleted or KDCMSGTC or KDCDLETQ
was specified.

– with KCOM=MV: a blank was specified but the original destination of the
message has been deleted.

47Z Message area missing or cannot be written in the specified length.

49Z Contents of unused fields of KDCS parameter area not equal to binary zero.

56Z Value in KCMOD or time entry in KCTAG/kcday, KCSTD/kchour, KCMIN or
KCSEK/ksec is invalid.

An additional return code can be found in the dump:

71Z INIT missing in this program.

DADM KDCS calls

228 Programming Applications with KDCS

Return information in the message area for DADM RQ

There is a data structure available for the return information for the DADM RQ call, for
COBOL the KCDADC COPY element and for C/C++ the kcdad.h include file. This data
structure can be used to define the message area and has the following structure:

Byte Field name
COBOL/C/C++

Meaning

1 - 8 KCDAGUS UTM user ID of the job submitter

9 - 16 KCDADPID Job ID (assigned by UTM)

17 - 25 KCDAGTIM1

1 For C/C++, the KCDAGTIM and KCDASTIM summary fields are not defined. However the specific fields for
day/hour/minute/second are defined.

Time of the FPUT/DPUT call in the form dddhhmmss:

17 - 19
20 - 21
22 - 23
24 - 25

KCDAGDOY
KCDAGHR
KCDAGMIN
KCDAGSEC

ddd
hh
mm
ss

Day in the year (value range 000 - 366)
Hour (value range 00 - 23)
Minute (value range 00 - 59)
Second (value range 00 - 59)

26 - 34 KCDASTIM1 For time-delayed jobs enter the desired starting time in the form
dddhhmmss:

26 - 28
29 - 30
31 - 32
33 - 34

KCDASDOY
KCDASHR
KCDASMIN
KCDASSEC

ddd
hh
mm
ss

Day in the year (value range 000 - 366)
Hour (value range 00 - 23)
Minute (value range 00 - 59)
Second (value range 00 - 59))

For a job without time delay you enter blanks.

35 KCDAPMSG Y
N

positive confirmation job exists
no positive confirmation job exists

36 KCDANMSG Y
N

negative confirmation job exists
no negative confirmation job exists

37 - 44 KCDADEST Destination of the message or the original destination for dead letter
queue

45 KCDATYPE Type of the message destination or type of original destination for dead
letter queue

Q
U
T
A
L

for temporary queue
for USER queue
for TAC queue
for asynchronous TAC
for LTERM

46 - 53 KCDAFCTM Generation time or time DPUT converted to FPUT in the message. In
the case of service-driven queues, the messages displayed with
DADM RQ can be unambiguously assigned to the messages read with
DGET BF. KCDADPID or KCDAFCTM must correspond to the return
values KCRDPID or KCRGTM of the corresponding DGET BF call.

KDCS calls DADM

Programming Applications with KDCS 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Features of the DADM call

● Ascertaining the job ID

The job ID is assigned internally by UTM. It can be ascertained in the program unit as
follows with a DADM RQ call: for the first DADM RQ call (with KCRN = blanks)
openUTM supplies information on the first message in the queue. On this occasion
openUTM writes the job ID amongst other things to the message area. If there are more
messages for the queue in the message queue, openUTM in each case returns the job
ID of the next message to KCRMF/kcrfn. When the last message in the queue is
reached, openUTM enters blanks in the KCRMF/kcrfn field.

● DADM CS/DL/DA/MV/MA calls (change order, delete or move) are transaction-logged
and are not executed until the end of the transaction. After such a call, therefore,
KCRCCC = 000 does not necessarily guarantee that the call can be executed success-
fully, because the message in the queue could be deleted in the meantime by another
DADM call. You can check whether a DADM CS/DL/DA/MV/MA call has been
successful by issuing a DADM RQ call in a subsequent transaction.

● The DADM CS call puts the relevant message in first position in the queue. In the case
of time-driven messages whose starting point has not yet been reached, the call is
rejected with 40Z.

● After a delete job with DADM DL/DA no more delete jobs can be submitted within the
same transaction and no DADM CS call; openUTM rejects this with 40Z.

● Jobs that are currently being processed cannot be administered. This applies, for
example, if messages in a USER queue or a temporary queue are currently being read.
If these jobs are destined for printers, printing can be stopped by means of a PADM call.

● A program unit which issues a DADM call must be running under a user ID with admin-
istration privileges, otherwise openUTM acknowledges the DADM call with 40Z.
There is the following exception:
If a service is started from a printer control LTERM and if only such jobs are adminis-
tered which are directed to printers of the printer control LTERM, then neither the
program unit nor the user need the administration privileges.

● The dead letter queue consists of messages that could not be processed. To be able to
process these messages, possibly after eliminating the error, they must either be
assigned to their original destination or to a new destination.
You can use DADM MV to move a single message or DADM MA to move all messages
from the dead letter queue into a specific queue or the original queue. A previously
defined QLEV and the STATUS of the recipient queue is thereby ignored.
With DADM MA and KCLT= blank, messages whose original destination no longer
exists stay in the dead letter queue. However, this is not indicated by a return code.

DGET KDCS calls

230 Programming Applications with KDCS

DGET Read a message from a service-controlled queue

The call DGET (data GET) is used to read a message or message segment into the
message area from a service-controlled queue. The following are service-controlled
queues: TAC queues, USER queues and temporary queues

DGET provides several ways of reading the messages of a queue:

– sequential processing (DGET FT/NT)

– browsing (DGET BF/BN)

– selective processing (DGET PF/PN)

With sequential or selective processing the message is read and then deleted from the
queue, whereas with browsing the message remains in the queue. For the dead letter
queue only browsing (read without delete) is allowed.

Each variant also allows several message segments to be read. The first segment is read
using DGET FT/BF/PF (first). Subsequent segments are read within the same program unit
run using DGET NT/BN/PN (next) without an intervening PGWT call.

In this way, as many message segments as have been sent with DPUT QT can be read.
Each message segment sent with DPUT QT must be read using a separate DGET.

Message segments that have not been read are lost
– when a new message is read with DGET FT,
– when PGWT is called,
– when the program unit run is terminated.

If the transaction is rolled back, processed messages are placed back in the queue
(redelivery) and can then be read and processed again using DGET. The maximum number
of redeliveries can be set in the generation (MAX REDELIVERY=). Once this limit has been
reached, then, depending on the TAC statement’s DEAD-LETTER-Q parameter for the
generation, the processed message is either deleted at the end of the transaction or is
saved in the dead letter queue unless (in the case of message complexes) no negative
acknowledgment job has been defined.
Messages from USER or temporary queues cannot be saved in the dead letter queue. They
are therefore lost after the maximum number of redeliveries.

The format of the DGET call is described in detail in the following. You will find more infor-
mation on the subject of message queues in section “Message Queuing (asynchronous
processing)” on page 50.

KDCS calls DGET

Programming Applications with KDCS 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the KDCS parameter area (1st parameter)

The following tables show the different options and the entries that have to be made in the
KDCS parameter area.

Sequential processing

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLA KCMF/
kcfn

KCRN KCQTYP KCWTIME KCQRC KCDPID

Read new message
or first message
segment from queue

"DGET" "FT" Length Blank Queue
name

Type of
the
queue

Wait time
in seconds

0 Binary
zero

Read next message
segment from queue

"DGET" "NT" Length Blank Queue
name

Type of
the
queue

0 0 Binary
zero

Browsing

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLA KCGTM KCRN KCQTYP KCWTIME KCQRC KCDPID

Read first message
segment of the first
or next message

"DGET" "BF" Length Blank/
creation
time*

Queue
name

Type of
the
queue

Wait time
in seconds

-1 /
redeliver
y
counter

Blank/
DPUT ID

Read next message
segment

"DGET" "BN" Length Creation
time*

Queue
name

Type of
the
queue

0 0 DPUT ID

Selective processing

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLA KCGTM KCRN KCQTYP KCWTIME KCQRC KCDPID

Process first
message segment of
a specific message

"DGET" "PF" Length Creation
time*

Queue
name

Type of
the
queue

0 0 DPUT-ID

Process next
message segment

"DGET" "PN" Length Creation
time*

Queue
name

Type of
the
queue

0 0 DPUT-ID

* Value in the KB return area KCRGTM of the preceding DGET BF

DGET KDCS calls

232 Programming Applications with KDCS

Setting the 2nd parameter

Here you have to make available the address of the message area to which openUTM is to
read the message.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "DGET"

2. KCOM "FT"/"NT"/"BF"/"BN"/"PF"/"PN"

3. KCLA Length in bytes

4. KCMF/kcfn/
KCGTM

Blanks
Blanks/creation time

5. KCRN Name of the queue

6. KCQTYP "T"/"U"/"Q“

7. KCWTIME Wait time in seconds/0

8. KCQRC 0/-1/redelivery counter

9. KCDPID Binary zero/blank/DPUT ID

KDCS call

1st parameter 2nd parameter

10. KDCS parameter area Message area

11. C/C++ macro call

Macro name Parameter

KDCS_DGETFT / KDCS_DGETNT (nb,kcla,kcfn,kcrn,kcqtyp,kcwtime,kcfkt1,
kcfkt2)

KDCS_DGETBF / KDCS_DGETBN /
KDCS_DGETPF / KDCS_DGETPN

(nb,kcla,kcrn,kcqtyp,kcwtime,kcqrc,kcgtm,
kcdpid)

KDCS calls DGET

Programming Applications with KDCS 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

In the KDCS parameter area you make the following entries for the DGET call:

1. In the KCOP field, enter the DGET operation code.

2. In the KCOM field, enter:

FT to process the first message segment of the first/new message

NT to process a further message segment of the first/new message

BF to read the first message segment of a message (browse without deleting)

BN to read a further message segment of the message (browse without deleting)

PF to process the first message segment of a specific message

PN to process a further message segment of a specific message

3. In the KCLA field, specify the length of the message area to which the message is to
be read. openUTM enters the length of the message segment that has actually been
read in the KCRLM return field.

If the message and all its message segments is not to be read, you can specify the
value 0 here for DGET FT. A subsequent DGET NT is then rejected with the return code
10Z.

Returns from openUTM

Message area Contents

12. Data

Field name in KB return area

13. KCRLM Actual length

14. KCRMF (DGET FT/NT only) In the case of OSI TP partner: name of
the abstract syntax

15. KCRWVG (DGET FT only) Number of services that are waiting

16. KCRUS (DGET FT only) UTM user ID of the message creator

17. KCRQRC (DGET BF only) Queue-specific redelivery counter

18. KCRGTM (DGET BF only) Creation time of the message read

19 KCRDPID (DGET BF only) DPUT ID of the message read

20. KCRRC (DGET FT/BF/BN/PF only) Redelivery counter of the message read

21. KCRCCC Return code

22. KCRCDC Internal return code

DGET KDCS calls

234 Programming Applications with KDCS

4. The KCGTM or KCMF/kcfn field must be supplied as follows:

– with blank for KCOM = FT/NT.

– with blank for KCOM = BF if the first segment of the first message of the queue is
to be read.

– with the creation time of the message for KCOM = BN/PF/PN or if, for KCOM = BF,
the next message is to be read. The creation time is returned in the KCRGTM field
for the last DGET BF call.

5. In the KCRN field, specify the name of the queue from which the message is to be read.

6. In the KCQTYP field, specify the type of the queue:

T for a TAQ queue

U for a USER queue

Q for a temporary queue

7. In the KCWTIME field, specify for DGET FT/BF the maximum number of seconds to be
waited for the arrival of a message. If you specify 0, there will be no wait. If a wait time
is specified, the subsequent program unit when PEND is specified must be assigned to
a TAC class.

In the case of DGET NT/BN/PF/PN you must specify 0.

8. In the KCQRC field, specify for DGET BF the behavior after a transaction has been
processed and rolled back. You can specify:

– either the value returned in the KCRQRC field for the previous DGET BF call. This
ensures that all messages of the queue are always read. A message that has
already been processed may be read again after the transaction has been rolled
back.

– or the value -1 or the constant KDCS_NO_QRC. This may mean that not all
messages of the queue are read.

You must specify 0 for DGET FT/NT/BN/PF/PN.

9. In the KCDPID field, specify:

– binary zero for KCOM = FT/NT

– blank if, for KCOM = BF, the first segment of the first message is to be read.

– the DPUT ID for KCOM = PF/PN or if, for KCOM = BF/BN, the next
message/message segment is to be read. The DPUT ID is returned in the
KCRDPID field in the previous DGET BF call.

KDCS calls DGET

Programming Applications with KDCS 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

In the KDCS call you specify:

10. As the 1st parameter: the address of the KDCS parameter area.

As the 2nd parameter: the address of the message area to which openUTM is to read
the message. You also specify the address of the message area when you enter a
length of 0 in KCLA.

11. The section “C/C++ macro interface” on page 491 describes in detail how to use macro
calls for C/C++.

openUTM returns:

12. In the specified message area the message segment in its actual length or, at most, the
length of the message area.

13. In the KCRLM field the actual length of the message segment read providing a value
> 0 was specified in KCLA.

For KCOM = FT/NT:

14. In the KCRMF field the name of the abstract syntax of the message segment read,
provided the message originates from an OSI TP partner. Otherwise, it returns blanks.

15. In the KCRWVG field the number of services that are already waiting for messages
from the specified queue (the current service is not counted). KCRWVG is only supplied
in the case of DGET FT.

16. In the KCRUS field the UTM user ID under which the DGET message was created.
KCRUS is only supplied in the case of DGET FT.

For KCOM = BF:

17. In the KCRQRC field, the queue-specific redelivery counter. This value is needed to
supply the KCQRC field in the next DGET BF call.

18. In the KCRGTM field, the creation time (binary) of the message read. This value is
needed to supply the KCGTM field in the next DGET BF/BN/PF/PN call.

19. In the KCRDPID field, the DPUT ID of the message read. This value is needed to supply
the KCDPID field in the next DGET BF/BN/PF/PN call.

For KCOM = BF/BN/PF:

20. In the KCRRC field, the redelivery counter of the message read. This indicates how
often the message was redelivered after the transaction was processed and rolled
back. KCRRC can accept a maximum value of 254. If this value has been reached and
if the number of redeliveries was not limited at generation, the value 254 is always
returned after each additional DGET BF/BN/PF call.

DGET KDCS calls

236 Programming Applications with KDCS

For all variants:

21. In the KCRCCC field the KDCS return code (see next page).

22. In the KCRCDC field, the internal return code of openUTM (see openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes for the DGET call

The following can be evaluated in the program:

000 The operation was executed.

01Z Length conflict: KCLA < KCRLM; the message was truncated because the
message segment is longer than the message area.

04Z Not all of the message segments were read at the previous DGET call; as a result
of the current DGET FT/BF/PF call, the message segments that have not yet been
read are lost.

08Z In the case of reading with waiting (KCWTIME>0): there is currently no message.

In this case, no more DGET calls are permitted and the program unit must be termi-
nated with PEND PA/PR or a wait point must be set with PGWT PR. As soon as a
message arrives, the maximum wait time elapses or the queue is deleted,
openUTM continues the service with the next program unit or openUTM continues
the service after the PGWT PR. A follow-up program unit must be assigned to a
TAC class.

10Z In the case of DGET NT/BN/PN: all the message segments of the message have
been read.

11Z In the case of reading without waiting (KCWTIME=0): there is no message.

40Z In the case of DGET NT/BN/PN: the name or type of the specified queue does not
match the previous DGET call of the current program unit run. Message segments
may have been lost. No message has been read.

In the case of DGET FT/PF: there is a generation error (the value MAX
...,RECBUF=... is too low).

41Z The DGET call is made in the first part of the sign-on, which is impermissible, or the
previous DGET call produced the return code 08Z. This means it is necessary to
wait, and no further DGET calls are permitted in this program unit.

42Z Possible causes:
– The value in KCOM is invalid or does not match the previous DGET call

(e.g. DGET PN after DGET BF)
– or the first message segment was not read in this program unit run,
– or a PGWT call was issued in the meantime.

KDCS calls DGET

Programming Applications with KDCS 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

43Z The value in KCLA or KCWTIME is negative or invalid, or KCWTIME was not
supplied with 0 for DGET NT/BN/PF/PN.

44Z The value in KCRN is invalid. This means one of the following things:
– There is no queue with the specified name and type.
– The queue was deleted.
– The USER that started the service or the user’s LTERM has no authorization

(KSET) to read the queue.
– The specified TAC is not generated with TYPE=Q.
– The dead letter queue has been read in another way than with Browse (read

without delete, i.e. DGET BF/BN).

45Z The value in KCMF/KCGTM is invalid:
– For DGET FT/NT: KCMF was not supplied with blanks.
– For DGET BN/PF: there is no message with the specified DPUT ID and creation

time, or the message was deleted in the meantime.

47Z The message area is missing, or the specified area address is invalid.

49Z Unused fields have a value that is not equal to binary zero.

53Z For DGET BF/PF: the value in KCDPID is not a valid DPUT ID or does not match
the entries in KCRN and KCQTYP.

For DGET BN/PN: the value in KCDPID or KCGTM does not match the corre-
sponding value of the last DGET BF/PF call.

71Z An INIT has not yet been called in the program unit run.

DGET KDCS calls

238 Programming Applications with KDCS

Features of the DGET call

● Message length

The actual message length is returned in the KCRLM field. The following applies:

– When KCRLM ≤ KCLA, only KCRLM characters (bytes) are transferred to the
message area. The contents of the rest of the message area are undefined.

– When KCRLM > KCLA, only KCLA characters are transferred to the message area.
The rest (KCRLM - KCLA) are lost and can no longer be read by means of a subse-
quent DGET.

In the description of the MGET call you will find an example that indicates what
openUTM does when there are length conflicts.

● Browsing and processing

– During browsing (DGET BF/BN) messages can be read in parallel by several
services.

– During message processing (DGET FT/NT/PF/PN) each message segment can be
read once only. All message segments are deleted as soon as the transaction is
terminated.

– If a message is to be read (DGET BF/BN) and then processed with DGET PF, the
DPUT ID and creation time returned for DGET BF must be specified in the DGET
PF call.

● Waiting for messages

In a dialog or asynchronous service DGET calls may be issued for different queues until
it is necessary to wait for a message. In other words, if there is no message for a DGET
call with waiting, this is indicated in the program by KCRCCC = 08Z (KCWTIME > 0).

The following KDCS calls should be programmed, depending on whether a wait is
required for a message.

– If a wait is required, the program unit must be terminated with PEND PA/PR so that
it is possible to wait for the arrival of the message outside the program context, or
a wait point must be set in the program unit using PGWT PR.

– If no wait is required, the transaction must be rolled back (RSET, PEND RS or
PGWT RB) or the service must be terminated with PEND ER/FR.

Otherwise, the error code 72Z is returned for the PEND call.

KDCS calls DGET

Programming Applications with KDCS 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● Continuing the program

If there is a wait for a DGET message, openUTM starts the next program unit or
continues the program after the PGWT PR:

a) as soon as a message arrives

b) when the maximum wait time elapses or

c) when the queue is deleted

d) as soon as the processed message is redelivered (redelivery after transaction
rollback), providing DGET FT is used for waiting or KCQRC was supplied with the
value of the KB return field KCRQRC by the previous browse call.

In a) to c) above all services waiting for messages in the queue are continued (not just
the first waiting service).

In the case of redelivery (d)) only the services that are able to read redelivered
messages are continued. This ensures that arriving or redelivered messages can be
read in parallel by the services.

If the program is continued in a PEND PA/PR follow-up program unit, it must be
assigned to a TAC class. In other words, TAC classes must have been generated if this
functionality is to be available. If they have not been, the PEND call is rejected with
KCRCCC=74Z.

● Redelivery

If a transaction is rolled back, any processed message is placed back in the queue and
can be read again. The application must have been generated accordingly and the
generated maximum number of redeliveries must not have been reached. For more
information refer to the openUTM manual “Generating Applications”, REDELIVERY
operand in the MAX statement.

● In the KDCMSGTC service and in the KDCSGNTC sign-on service, the DGET call can
only be used without specifying a wait time.

● If the main message of a job complex is read, and a positive or negative confirmation
job is defined for it (only possible in the case of TAC queues),
– the positive confirmation job is started once the transaction containing the DGET

call has been successfully terminated,
– the negative confirmation job is started once the transaction containing the DGET

call has been rolled back without delivery of the main message again, i.e. there is
no redelivery.

DGET KDCS calls

240 Programming Applications with KDCS

● If DGET is used to read from a queue for which there is data access control, the user
ID under which the service is running and the LTERM partner must have access autho-
rization (KSET) for the corresponding queue. Users are however always allowed to
access their own USER queue. In the case of applications without explicitly generated
user IDs, no data access control can be assigned for the queues assigned to the
USERs.

● Saving faulty messages into the dead letter queue

If an error occurs, messages from TAC queues can be saved into the global dead letter
queue as a last fallback stage. The queue must be generated with
DEAD-LETTER-Q=YES for this. A processed message is then placed into the dead
letter queue when the transaction is rolled back, if it cannot be redelivered (see
redelivery) and if no negative acknowledgement job was defined.

When a message is saved into the dead letter queue, the number of redeliveries for this
message is rolled back to zero if necessary.

KDCS calls DPUT

Programming Applications with KDCS 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

DPUT Generate time-driven asynchronous messages

The DPUT (delayed free message PUT) call enables you:

– to send messages to USER queues, TAC queues or temporary queues. The messages
to TAC queues can also be time-driven.

– to enter time-driven asynchronous jobs with their messages or message segments in a
message queue (output jobs to LTERM partner, background jobs to local asynchronous
services, background jobs to remote asynchronous services which were previously
addressed using an APRO AM call)

– to log user information concerning these jobs

– to create confirmation jobs within a job complex plus the associated user information

– to pass print options (= RSO parameter list) for RSO printers

You enter the desired point in time in the KDCS parameter area (see table on page 243).
At the given time, the job is entered in the queue of jobs to be executed. In other words, the
time-driven job is not executed exactly at the specified time, but at this time at the earliest.

The message segments generated using DPUT are collected by openUTM and are termi-
nated at the next PEND call. Following the end of a transaction, the message segments are
sent as a single message to the appropriate queue. Exception: If formatted message
segments are sent to terminals, each of these segments forms a separate message.

Because of the various functions, the DPUT call has two formats:

– DPUT call without job complex, and

– DPUT call within a job complex.

The format of the DPUT call is described in detail below. For further information on message
queuing refer to section “Message Queuing (asynchronous processing)” on page 50ff.

B

DPUT (without job complex) KDCS calls

242 Programming Applications with KDCS

DPUT call without job complex

Setting the KDCS parameter area (1st parameter)

The following two tables show the various options and entries in the KDCS parameter area.

NT, QT Message segment for job

NE, QE Last message segment or entire message for job

NI, QI User information for a subsequent message

RP RSO parameters

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLM KCRN KCMF/ kcfn KCDF

Output job in format
mode

"DPUT" "NT"/
"NE"

Length LTERM name Format identifier Screen
function

Output job in line mode "DPUT" "NT"/
"NE"

Length LTERM name Blanks —

Output job in line mode "DPUT" "NT"/
"NE"

Length LTERM name Blanks/
edit profile

Screen
function/
binary zero

Background job for
asynchronous program
in the same application

"DPUT" "NT"/
"NE"

Length TAC — —

Message for service-
controlled queue

"DPUT" "QT"/
"QE"

Length Name of the
queue

—— ——

Job for transport system
application

"DPUT" "NT"/
"NE"

Length LTERM name
of application

Blanks Binary zero

Background job for
job-receiving service via
LU6.1

"DPUT" "NT"/
"NE"

Length service -ID — —

Background job for
job-receiving service via
OSI TP

"DPUT" "NT"/
"NE"

Length service-ID Blanks/name of
abstract syntax

—

Log user
information

"DPUT" "NI"/
"QI"

Length as for
applicable
DPUT NT/NE
DPUT QT/QE

Blanks Binary zero

Pass parameter list for
RSO printers

"DPUT" "RP" Length LTERM name Blank Binary zero

X/WX/WX/W
X/W
X/WX/WX/WX/W

BBB
B
BBB
B
B
B
B

B
B
BBBBBB

B

KDCS calls DPUT (without job complex)

Programming Applications with KDCS 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

A absolute time
R relative time (= time interval)

In the case of DPUT NT/NE or DPUT QT/QE you have to specify the same times as for the
associated DPUT NI or DPUT QI.

Setting the 2nd parameter

Here you have to supply the address of the message area from which openUTM is to read
the message or user information or the RSO parameter list.

Entry in
KCOM field

Additional entries in the KDCS parameter area (KCPUT/kc_dput)

KCMOD KCTAG/
kcday

KCSTD/
kchour

KCMIN KCSEK/
kcsec

KCQTYP Other
fields

"NT"/"NE" "A" 001 - 365/366 00 - 23 00 - 59 00 - 59 ——
——"R" 000 - 364/365 ——

Blanks —— —— ——

"QT"/"QE" "A" 001 - 365/366 00 - 23 00 - 59 00 - 59 Binary zero

Binary zero
"R" 000 - 364/365

Blanks Binary zero Binary zero "U"/"Q"/
binary zero

"NI" "A" 001 - 365/366 00 - 23 00 - 59 00 - 59 Binary zero

Binary zero
"R" 000 - 364/365

Blanks Binary zero Binary zero "U"/"Q"/
binary zero

"QI" "A" 001 - 365/366 00 - 23 00 - 59 00 - 59 Binary zero

Binary zero
"R" 000 - 364/365

Blanks Binary zero Binary zero "U"/"Q"/
binary zero

"RP" "A" 001 - 365/366 00 - 23 00 - 59 00 - 59 Binary zero
Binary zero"R" 000 - 364/365

Blank Binary zero

BBBBBBB

BB

BB

DPUT (without job complex) KDCS calls

244 Programming Applications with KDCS

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "DPUT"

2. KCOM "NT"/"NE"/"QT"/"QE"/"NI"/"QI"/"RP"

3. KCLM Length in bytes

4. KCRN LTERM name/TAC/service ID/
queue name

5. KCMF/kcfn Format ID/blanks/
Name of abstract syntax/
Additionally available on BS2000
systems: edit profile

6. KCDF Screen function/binary zero

7. KCMOD "R"/"A"/Ë

8. KCTAG/kcday Day (rel./abs.)/binary zero

8. KCSTD/kchour Hour (rel./abs.)/binary zero

8. KCMIN Minute (rel./abs.)/binary zero

8. KCSEK/kcsec Second (rel./abs.)/binary zero

9. KCQTYP "U"/"Q"/binary zero

Message area

10. Data

KDCS call

1st parameter 2nd parameter

11. KDCS parameter area Message area

12. C/C++ macro calls

Macro name Parameters

KDCS_DPUTNT / KDCS_DPUTNE (nb,kclm,kcrn,kcfn,kcdf,kcmod,kcday,
kchour,kcmin,kcsec)

KDCS_DPUTQT / KDCS_DPUTQE (nb,kclm,kcrn,kcfn,kcdf,kcmod,kcday,
kchour,kcmin,kcsec,kcqtyp)

B
B

KDCS calls DPUT (without job complex)

Programming Applications with KDCS 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the DPUT call you make the following entries in the KDCS parameter area:

1. In the KCOP field, enter the DPUT operation code.

2. In the KCOM field, enter the required operation modifier:

NT for the message segment of the job

NE for the total message or last message segment of the job

NI for the user information associated with the job.

QT for the message segment for a service-controlled queue

QE for the entire message or last message segment for a service-controlled queue

QI for the user information associated with the message for a service-controlled
queue

RP for the parameter list of an RSO printer.

3. In the KCLM field, specify the length of the message to be sent (length zero is permis-
sible).

For KCOM = RP, this is the length of the RSO parameter list.

KDCS_DPUTNI (nb,kclm,kcrn,kcmod,kcday,kchour,kcmin,
kcsec)

KDCS_DPUTQI (nb,kclm,kcrn,kcmod,kcday,kchour,kcmin,
kcsec,kcqtyp)

KDCS_DPUTRP (nb,kclm,kcrn,kcmod,kcday,kchour,kcmin,
kcsec,)

openUTM return information

Field name in KB return area Contents

13. KCRCCC Return code

14. KCRCDC Internal return code

12. C/C++ macro calls

Macro name Parameters

BB

B

DPUT (without job complex) KDCS calls

246 Programming Applications with KDCS

4. In the KCRN field, enter the destination of the message:

– the name of the LTERM partner if this DPUT call generates an output job or passes
an RSO parameter list

– the name of the USER queue, TAC queue or temporary queue, if this DPUT call
creates a message to a service-controlled queue (KCOM=QT/QE/QI).

– the transaction code of an asynchronous program if this DPUT call generates a
background job (without distributed processing)

– the service ID of a job-receiving service if this background job is directed to a job-
receiving service.

5. In the KCMF/kcfn field:

– A format identifier (in format mode)

In the case of messages to RSO printers:

If a format has been specifically created for RSO printers then the FHS formatting
system does not need to know the printer type because FHS generates a logical
message which is then converted into the physical message by RSO.

If not, FHS must support the printer type as generated in RSO as otherwise
formatting errors will occur.

– Blanks in line mode or for a job sent to another application without distributed
processing.

– When passing an RSO parameter list.

– Edit profile (for line mode or an RSO printer)
If the message is to be sent to an RSO printer, then only the CCSNAME parameter
of an edit profile is evaluated. The name of the character set is passed to RSO. All
other parameters of the edit profile are ignored because these options are VTSU-B
edit options, and the message is being prepared by RSO.

– In the case of messages to OSI TP partners:
The name of the abstract syntax of the message. Space characters stand for the
abstract syntax of UDT; in this case, BER is used as the transfer syntax and the
message is encoded by openUTM. If you enter a value other than blanks, the
message must be transferred to openUTM in encoded format, i.e. in the transfer
syntax corresponding to this abstract syntax.

In the case of messages to an asynchronous service of the same application, to USER,
TAC or temporary queues or to an LU6.1 partner, this field is irrelevant.

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCS calls DPUT (without job complex)

Programming Applications with KDCS 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

6. In the KCDF field, enter the screen function for output jobs to terminals. Enter binary
zero for user information (KCOM = NI/QI), RSO parameter lists or jobs for transport
system applications.

In the case of background jobs, messages to LU6.1 partners and messages to USER,
TAC and temporary queues, this field is irrelevant.

You also have to specify binary zero if an edit profile or a #format is entered in
KCMF/kcfn.

7. In the KCMOD field, select the type of time entry:
– A for absolute
– R for relative
– blanks, if the job is to be executed without a wait time.

messages to USER and temporary queues cannot be sent on a time-driven basis,
which is why blanks must be specified in KCMOD

8. Here you enter the necessary time specifications for the call, absolute or relative
depending on the entry in KCMOD:

– for absolute time entry: desired time with day of the year in KCTAG/kcday (working
day), hour in KCSTD/kchour, minute in KCMIN and second in KCSEK/kcsec.

– for relative time entry: interval to desired execution time with number of days in
KCTAG/kcday, number of hours in KCSTD/kchour, number of minutes in KCMIN
and the number of seconds in KCSEK/kcsec.

– for KCMOD = blanks:
binary zero if user information is to be logged with KCOM = NI/QI or when a
message is to be sent to a USER or temporary queue (KCOM= QE/QT)
(otherwise irrelevant)

9. In the KCQTYP field, specify in the case of messages to a queue the type of the queue
(only in conjunction with KCOM=QT/QE/QI):
– Q for a temporary queue created with QCRE
– U for a queue assigned to a user ID (USER queue)
– binary zero in all other cases

You enter in the message area:

10. The message or user information you want to output or the RSO parameter list you want
to pass.

B

B

DPUT (without job complex) KDCS calls

248 Programming Applications with KDCS

You enter the following for the KDCS call:

11. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area from which UTM is to read the
message or user information or RSO parameter list. You enter the address of the
message area even if you have entered the length 0 in KCLM.

12. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

13. In the KCRCCC field, the KDCS return code.

14. In the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Function carried out

06Z Time entry changed without preceding DPUT NE, i.e. at least one of the fields
KCMOD, KCTAG/kcday, KCSTD/kchour, KCMIN or KCSEK/kcsec has a value
differing from that in the first message segment (for KCMOD=A/R). openUTM takes
the time entry from the first DPUT call and continues the message.

40Z openUTM cannot perform the function, see entry in KCRCDC.
Possible causes:
– KCDF does not contain binary zero although this is required in this particular

situation
– in the case of jobs without distributed processing, the name changes in KCRN

and the type changes in KCQTYP, without the preceding DPUT job being termi-
nated.

– in the case of distributed processing: there is no logical connection to the
partner application and KCMOD = “Ë“.

41Z The call is not allowed at this location:
– the call was initiated in the first part of the sign-on service or
– the call was initiated in the sign-on service after a SIGNON call and before the

PEND PS call.

42Z The entry in KCOM is invalid.

43Z The length entry in KCLM is negative or invalid.

KDCS calls DPUT (without job complex)

Programming Applications with KDCS 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

44Z The value in KCRN or KCQTYP is invalid. Possible causes:
– the value is neither the transaction code of an asynchronous program nor the

name of a LTERM partner and it is also not a valid service ID.
– although the value is the transaction code of an asynchronous programs, the

transaction code is locked or access protected.
– KCQTYP=U: the value in KCRN does not specify a user or a user with access

authorization.
– KCQTYP=Q: the value in KCRN does not specify a temporary queue.
– No queued messages can be generated for the dead letter queue (KDCDLETQ).
– for KCOM = RP: the value is not an RSO printer or the current RSO version does not

support this function.

No asynchronous messages are allowed for the dead letter queue
(KDCDLETQ).

45Z The entry in KCMF/kcfn is invalid.
Possible causes:

– the format identifier in KCMF/kcfn is not valid
– if the message destination is a partner to which communication is established using the

OSI TP protocol, this return code indicates that the abstract syntax in the KCMF/kcfn
field has not been generated for the partner application.

– for KCOM = RP: no blank entered
– the edit profile has not been generated
– the edit profile changes in message segments

47Z The address of the message area is invalid.

49Z The contents of unused fields of the KDCS parameter area are not equal to binary
zero.

51Z After a DPUT NI/QI there is no DPUT NT/NE/QT/QE to the same destination.

52Z An attempt was made to send a time-driven message to a USER queue or
temporary queue.

56Z The entry in KCMOD is invalid or the time entry in KCTAG/kcday, KCSTD/kchour,
KCMIN or KCSEK/kcsec is invalid or is outside the generated time span.

An additional return code can be found in the dump:

71Z INIT was not issued in this program.

B

B

B

B

B

DPUT (without job complex) KDCS calls

250 Programming Applications with KDCS

Features of the DPUT call

● The message area is not changed when the call is executed by UTM.

● More than one job can be generated in one program unit; the corresponding messages
can each comprise more than one segment.

● You can also use screen functions when you output +formats, *formats or messages in
line mode, see the section “Screen output functions” on page 105.
If you use #formats, you have to specify binary zero for KCDF, otherwise openUTM
returns 40Z.
If you use edit profiles, (BS2000 systems) openUTM also returns 40Z if you have not
specified binary zero for KCDF.

● Jobs generated with DPUT are discarded as a result of PEND ER/FR, PEND RS or
RSET.

● The TAC must be located at the beginning of the message area for DPUT calls to
another UTM application that is generated as a transport system application.

● The message is also formatted before it is output.

● Messages are kept until:

– the referenced program unit or the printout is terminated, or
– the transfer has succeeded for jobs to remote asynchronous services, or
– the message is read at the terminal using KDCOUT and a new input has been made

(except for the KDCLAST command).
– the message to a queue is read by means of a DGET call, and the corresponding

transaction is successfully completed.

● Jobs with messages of length 0

If you generate a message with a length of 0 (so-called "dummy message"), the
following applies:

– a background job is executed, i.e. the asynchronous service is started without
receiving a message

– an empty format is output if the job is an output job in format mode
– an output job for a transport system application is accepted, but will later be

discarded by openUTM.

B

B

KDCS calls DPUT (without job complex)

Programming Applications with KDCS 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● Output jobs that are for one specific terminal are placed in the terminal message queue
and can be read by the user with the KDCOUT command. Exactly one message is read
per KDCOUT command. Each message can only be read once. If the KDCOUT
command is entered more than once, then the next message is read from the terminal
queue.

The user is informed at the end of a transaction that there are asynchronous messages
available for a terminal through a message in the system status line.

This announcement can be suppressed on BS2000 systems if ANNOAMSG=N was
specified in the configuration for the affected LTERM partner (default value:
ANNOAMSG=Y). Asynchronous messages are then displayed immediately on the
screen. This can disturb the dialog flow. The terminal user can, however, re-display the
last screen using the KDCDISP command.

● There is no interaction between FPUT and DPUT calls, i.e. you can send DPUT calls
with KCMOD = "Ë" and FPUT calls to the same destination independently of each other.

● Print options for RSO printers

If you use print options for jobs to RSO printers, you should first pass the list with the
print options using DPUT RP, see RSO manual. Then submit the actual print job using
DPUT NT/NE. The time specifications in DPUT RP and DPUT NT/NE must match.

● Handling message segments

– message segments in line mode are combined and output as one message to the
LTERM partner. The message segments generated with DPUT are gathered by
openUTM and terminated by the next PEND call, provided they have not yet been
terminated by the program unit run with DPUT NE. When the transaction ends, the
message segments are sent as a single message to the LTERM partner or to the
other application.

– with formatted message segments to terminals, each segment generates a new
format. The format name in KCMF may change. At a terminal, each format (each
message segment) must be fetched with a KDCOUT command. Each DPUT NT
call generates its own message. It is therefore not possible to structure the screen
with different partial formats using DPUT NT calls. The formats arrive in the order
in which they were sent.

– with message segments to printer, it is possible to switch between formatted
message segments and unformatted message segments (in line mode). With
message segments to terminals, this switch causes the old message to terminate
and a new one to start.

– with DPUT NT calls to a local or asynchronous service each message segment
must be read with a separate FGET.

B

B

B

B

B

B

B

B

B

DPUT (without job complex) KDCS calls

252 Programming Applications with KDCS

– with DPUT QT calls to a service-controlled queue, each message segment must be
read by means of a separate DGET.

– with PEND, the message segment most recently generated with DPUT is always
assumed to be the final message segment, even if it was output with NT.

– In a sequence of message segments, a change of the destination specified in
KCRN with no preceding DPUT NE/QE is only permissible in certain cases (see
next point).

– if the edit profile changes within a sequence of message segments addressed to a
terminal, openUTM reacts with 45Z.

● The maximum possible number of DPUT NT/QE calls in a transaction depends on the
RECBUF generation parameter in the KDCDEF statement MAX. 30 bytes per DPUT
NE are occupied in this buffer. If the buffer is full, DPUT NE is rejected with
KCRCDC=K704.

● Parallel messages

Parallel messages (i.e. change of destination before DPUT NE/NQ) are permissible if
the destinations belong to different categories. There are three categories:

– LTERM partners, local asynchronous programs and service-controlled queues
(KCRN=LTERM/TAC/queue name)

– job complexes (KCRN = complex ID)

– remote asynchronous services (KCRN = service ID) or remote TAC queues

Within these categories, parallel asynchronous jobs are only permitted if they are jobs
for remote asynchronous services.

Apart from that, parallel job complexes are not supported, and the change of the
LTERM/TAC/queue name requires the message to be concluded by means of DPUT
NE/QE.

● Influence of generation parameters on the DPUT call

The following notes concern the generation of the UTM application. Further information
on the individual generation parameters can be found in the openUTM manual “Gener-
ating Applications”.

Limits for the time entry in the DPUT call are defined with the operands DPUTLIMIT1
and DPUTLIMIT2 in the MAX statement. The interval between the desired execution
time and the DPUT call must not be greater than the time entry in DPUTLIMIT2 if before
the time of the DPUT call, nor greater than the time entry in DPUTLIMIT1 if after the
time of the DPUT call:

Current time - DPUTLIMIT2 < execution time < current time + DPUTLIMIT1

The time of the DPUT call is taken as the current time.

B

B

KDCS calls DPUT (without job complex)

Programming Applications with KDCS 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

In the case of DPUT calls with KCMOD = A or R to LTERM partners generated with
LTERM ..., QAMSG=N, openUTM does not check at the time of the DPUT call to see
whether a client or printer is connected to the LTERM partner. It only does this once the
time specified in the DPUT call has arrived. If there is then no connection, openUTM
will store the message until a connection is set up.

In the case of DPUT calls with KCMOD = "Ë" to LTERM partners generated with
LTERM ..., QAMSG=N, openUTM checks at the time of the DPUT call whether a
client/printer is connected to this LTERM partner. If not, UTM rejects the call with
KCRCCC = 44Z, KCRCDC= K705.

For all messages to terminals and transport system applications generated with DPUT
the following holds: the entire message must not exceed the maximum length defined
at generation time with the TRMSGLTH operand of the MAX control statement.

When the KDCFILE is regenerated with the UTM tool KDCUPD, you can specify in the
TRANSFER statement precisely which messages you wish to transfer to the new
KDCFILE (see also openUTM manual “Generating Applications”).

● The UTM administrator can use the administration call KDCINF STAT to query the
number of waiting time-driven jobs (see the openUTM manual “Administering Applica-
tions”, Administration commands, KDCINF).

● DPUT calls with distributed processing

– Prior to the DPUT call, the KDCS parameter area in the job-submitting service must
be given the same values as for sending messages to a TAC queue or for gener-
ating background jobs to an asynchronous program in its own application. The only
thing that has to be specified as name in the KCRN field is the service ID which was
assigned to the job-receiving service in the APRO call.

– Once the DPUT NE/QE call has terminated (final message segment or complete
message) or after the KDCS return code 40Z, the service ID in the job-submitting
service is released. This ID can now be used to address another job-receiving
service.

– Only after the specified time has elapsed will the job generated with DPUT be sent
to the partner application (if a free session or association is available).

– Parallel asynchronous jobs to different job-receiving services are permissible.

DPUT (without job complex) KDCS calls

254 Programming Applications with KDCS

● User information (DPUT NI/QI)

User information is always associated with a job generated by a DPUT call. The user
information must be generated before the job itself. The addressee (entry in KCRN) and
the time entry in the user information and in the job must agree. If this is not sequence
is not adhered to, error 51Z occurs. If the associated job for an item of user information
does not exist (i.e. if there is user information but no job), openUTM aborts the service
at the PEND call with KCRCCC = 86Z.

User information can only be read with a DADM call; it is a type of "log information" and
is not transferred to the addressee. The user information of a confirmation job can not
be read until the confirmation job has been activated.

● Background jobs for an asynchronous program in the same application

Each background job starts an asynchronous service at the time specified.

Asynchronous programs which run in time-driven mode should check whether their
work is still relevant, or whether they should terminate immediately. The program can
ascertain the current time and date, as well as the time and date of application start-up,
via the INFO call.
If the program needs the time of the DPUT call, it must be contained in the message.

DPUT calls can also be used to implement periodically recurring asynchronous jobs.
This is done with an asynchronous program containing the periodically recurring action
as well as a DPUT call to the program itself. The time can be specified as relative or
absolute.

KDCS calls DPUT (job complex)

Programming Applications with KDCS 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

DPUT call in a job complex

A DPUT call within a job complex enables you to

– send time-driven messages (so-called basic jobs) and the associated
messages/message segments (output jobs for LTERM partners or for asynchronous
services, messages to TAC queues or background jobs to asynchronous services or
TAC queues previously addressed with an APRO AM call)

– have user information associated with these jobs logged

– generate confirmation jobs and associated user information.

Setting the KDCS parameter area (1st parameter)

The table below shows the various options and corresponding entries in the KDCS
parameter area.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLM KCRN KCMF KCDF

Basic job for LTERM
partner or for local
asynchronous service
or local TAC queue

"DPUT" "NT"/
"NE"

Length Complex ID Format ID /
blanks/ name of
abstract syntax

also possible on
BS2000
systems: edit
profile

Screen
function/
binary zero

Basic job for TAC
queue

"DPUT" "QT"/
"QE"

Length Complex ID ——

Basic job for remote
asynchronous service
or remote TAC queue

"DPUT" "NT"/
"NE"

Length Complex ID ——

User information for a
job

"DPUT" "NI"/
"QI"

Length Complex ID Blanks binary zero

Create confirmation
job

"DPUT" "+T"/
"-T"

Length Complex ID Blanks binary zero

User information for
confirmation job

"DPUT" "+I"/
"-I"

Length Complex ID Blanks binary zero

B
B
B
B

DPUT (job complex) KDCS calls

256 Programming Applications with KDCS

The operation modifiers in the KCOP field have the following significance:

NT/QT message segment of a basic job

NE/QE last message segment or total message of a basic job

NI/QI user information associated with basic job

+T/-T positive or negative confirmation job

+I/-I user information associated with positive or negative confirmation job

The QE/QT/QI operation modifiers refer to a basic job with a TAC queue as the destination.
It is not possible to specify a USER or temporary queue as the destination in the DPUT call
in the job complex, because KCQTYP is not evaluated here and the destination is specified
for the associated MCOM call.

The time entries for DPUT NT/NE/NI or DPUT QT/QE/QI are made as for the DPUT call
without job complex. For DPUT NI/QI/+T/-T/+I/-I you have to set binary zero in all the
unused fields of the KDCS parameter area.

Setting the 2nd parameter

Here you have to supply the address of the message area from which openUTM is to read
the message or user information.

KDCS calls DPUT (job complex)

Programming Applications with KDCS 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the parameters

Field name in KDCS parameter area Contents

1. KCOP "DPUT"

2. KCOM "NT" / "NE" / "NI" /"QT" / "QE" / "QI" /
"+T" / "-T" / "+I" / "-I"

3. KCLM Length in bytes

4. KCRN Complex identifier

5. KCMF/kcfn Format ID/blanks/
name of abstract syntax/
also possible on BS2000 systems :
edit profile

6. KCDF Screen function/binary zero

7. KCMOD ""R"/"A"/"?"/binary zero

8. KCTAG/kcday Day (rel./abs.)/"?"/binary zero

8. KCSTD/kchour Hour (r./a.)/"?"/binary zero

8. KCMIN Minute (r./a.)/"?"/binary zero

8. KCSEK/kcsec Second (r./a.)/"?"/binary zero

9. KCQTYP irrelevant (not evaluated)

Message area

10. Data

KDCS call

1st parameter 2nd parameter

11. KDCS parameter area Message area

12. C/C++ macro calls

Macro name Parameters

KDCS_DPUTNT / KDCS_DPUTNE (nb,kclm,kcrn,kcfn,kcdf,kcmod,kcday,
kchour,kcmin,kcsec)

KDCS_DPUTQT / KDCS_DPUTQE (nb,kclm,kcrn,kcfn,kcdf,kcmod,kcday,
kchour,kcmin,kcsec,kcqtyp)

KDCS_DPUTNI (nb,kclm,kcrn,kcmod,kcday,kchour,kcmin,
kcsec)

B
B

DPUT (job complex) KDCS calls

258 Programming Applications with KDCS

For the DPUT call within a job complex you make the following entries in the KDCS
parameter area:

1. In the KCOP field, enter the DPUT operation code.

2. In the KCOM field, enter the required operation modifier:

NT/QT for message segment of the basic job

NE/QE for total message or last message segment of the basic job

NI/QI for user information associated with the basic job

+T for a positive confirmation job

–T for a negative confirmation job

+I for user information relating to the positive confirmation job

–I for user information relating to the negative confirmation job

The QE/QT/QI operation modifiers refer to a basic job with a TAC queue as the desti-
nation.

3. In the KCLM field, specify the length of the message to be sent (length zero is permis-
sible).

4. In the KCRN field, enter the complex identifier (complex ID) assigned to the job complex
(assigned in the MCOM call).

KDCS_DPUTQI (nb,kclm,kcrn,kcmod,kcday,kchour,kcmin,
kcsec,kcqtyp

KDCS_DPUTPT / KDCS_DPUTMT /
KDCS_DPUTPI / KDCS_DPUTMI

(nb,kclm,kcrn)

openUTM return information

Field name in the KB return area Contents

13. KCRCCC Return code

14. KCRCDC Internal return code

12. C/C++ macro calls

Macro name Parameters

KDCS calls DPUT (job complex)

Programming Applications with KDCS 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

5. In the KCMF/kcfn (irrelevant for messages sent to an asynchronous service of the
same application or to an LU6.1 partner):

– Blanks in line mode or for a job sent to another application without distributed
processing.

– A format identifier (in format mode)

In the case of messages to RSO printers:

If a format has been specifically created for RSO printers then the FHS formatting
system does not need to know the printer type because FHS generates a logical
message which is then converted into the physical message by RSO.

If not, FHS must support the printer type as generated in RSO as otherwise
formatting errors will occur.

– Edit profile (for line mode or an RSO printer)
If the message is to be sent to an RSO printer, then only the CCSNAME parameter
of an edit profile is evaluated. The name of the character set is passed to RSO. All
other parameters of the edit profile are ignored because these options are VTSU-B
edit options, and the message is being prepared by RSO.

In messages to OSI TP partners:

– The name of the abstract syntax of the message. Space characters stand for the
abstract syntax of UDT; in this case, BER is used as the transfer syntax and the
message is encoded by openUTM.
If you enter a value other than blanks, the message must be transferred to
openUTM in encoded format, i.e. in the transfer syntax corresponding to this
abstract syntax.

6. In the KCDF field, enter the screen function for output jobs to terminals. Enter binary
zero for user information (KCOM = NI/QI) or jobs for transport system applications.

This field is irrelevant for background jobs and messages to TAC queues.

You must also specify binary zero if an edit profile or a #format is entered in KCMF/kcfn.

7. In the KCMOD field, you select the type of time entry for messages to the basic job
(KCOM=NT/NE/NI or QT/QE/QI):
– A for absolute
– R for relative
– blanks, if the job is to be executed without wait time

Binary zero must be entered for messages to confirmation jobs (KCOM = +T/-T/+I/-I).

8. For KCOM = NT/NE/NI or QT/QE/QI enter the necessary time specifications as for the
DPUT call without job complex in these fields. For KCOM = +T/-T/+I/-I enter binary zero.

9. The KCQTYP field is not evaluated.

B

B

B

B

B

B

B

B

B

B

B

B

B

DPUT (job complex) KDCS calls

260 Programming Applications with KDCS

Make the following entry in the message area:

10. the message or user information you want to output.

You enter the following for the KDCS call:

11. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area from which openUTM is to read the
message (or user information). You enter the address of the message area even if you
have entered the length 0 in KCLM.

12. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

13. In the KCRCCC field, the KDCS return code.

14. In the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS calls DPUT (job complex)

Programming Applications with KDCS 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Function carried out.

06Z Time entry changed without preceding DPUT NE, i.e. at least one of the fields
KCMOD, KCTAG/kcday, KCSTD/kchour, KCMIN or KCSEK/kcsec has a value
differing from that in the first message segment (for KCMOD=A/R). openUTM takes
the time entry from the first DPUT call and continues the message

40Z openUTM cannot perform the function, see entry in KCRCDC. For distributed
processing: there is no logical connection to the partner applic. and KCMOD = "Ë".

41Z The call is not allowed at this location:
– an additional basic job is to be issued or user information is to be logged after

a basic job (DPUT NE/QE) has been completed or
– the format identifier changes due to several DPUT NTs or
– the call was initiated in the first part of the sign-on service or
– the call was initiated in the sign-on service after a SIGNON call and before the

PEND PS call.

42Z The entry in KCOM is invalid or KCOM = +T/-T was specified without defining a job
complex or destination for the confirmation job

43Z The length entry in KCLM is negative or invalid.

44Z The complex identifier given in KCRN is invalid.

45Z The entry in KCMF/kcfn is invalid. Possible causes:
– the format identifier in KCMF/kcfn is invalid
– if the message destination is a partner with which communication is performed

using the OSI TP protocol, this return code indicates that the abstract syntax
specified in the KCMF/kcfn field has not been generated for the partner appli-
cation.

– the edit profile has not been generated
– the edit profile changes in message segments

47Z The address of the message area is invalid.

49Z The contents of unused fields of the KDCS parameter area are not equal to binary
zero.

51Z Incorrect DPUT call sequence (see below).

56Z The entry in KCMOD is invalid or the time entry in KCTAG/kcday, KCSTD/kchour,
KCMIN or KCSEK/kcsec is invalid or is outside the generated timespan.

An additional return code can be found in the dump:

71Z INIT call missing in this program.

B

B

DPUT (job complex) KDCS calls

262 Programming Applications with KDCS

Features of the DPUT call within a job complex

● The following rules hold for the order of the DPUT calls:

– the user information has to be written before the associated (confirmation) job:
DPUT NI before DPUT NT/NE or DPUT QI before DPUT QT/QE, DPUT +I before
DPUT +T and DPUT -I before DPUT -T. Only one DPUT +I/-I per DPUT +T/-T is
permitted. The user information of a confirmation job cannot be read until the confir-
mation job has been activated.

– the basic job must be started before the first confirmation job: DPUT NT/NE or
DPUT QT/QE before the first DPUT +T/-T. Two or more DPUT +T or DPUT -T are
permissible; these are considered in each case as one positive confirmation job
(with +T) and one negative confirmation job (with -T).

● Changing the format identifier if there are more than one message segments
(DPUT NT) is not permissible.

● If a DPUT call has return code 40Z all the messages and information associated with
the job complex are lost; the complex ID is released.

For DPUT messages via distributed processing the service ID is also released with 40Z.

For all other return codes smaller than 70Z all the data of the complex is kept including
the complex ID.

● Parallel asynchronous jobs (i.e. change of destination before DPUT NE/QE) are
permitted if the destinations belong to different categories, i.e. it is possible to have a
DPUT with KCRN = LTERM/TAC/Queue or KCRN = VGID before the DPUT NE.

Example for parallel asynchronous jobs

KDCS call Destination and identifier Remarks

MCOM BC KCRN = PRINTER1
KCCOMID = *COMPLEX
KCPOS = ATAC5

Define start of a job complex and
destinations of the job

DPUT NT KCRN = *COMPLEX 1st message segment of basic job

DPUT NE KCRN = ATAC1 Background job for a program

APRO AM KCRN = LTAC
KCPA = APPL1
KCPI = > VGID

Address job-receiving service

DPUT NE KCRN = > VGID Background job for job-receiving service

DPUT NE KCRN = *COMPLEX 2nd message segment of basic job

DPUT +T KCRN = *COMPLEX Positive confirmation job

MCOM EC KCRN = binary zero
KCCOMID = *COMPLEX

End of job complex

KDCS calls FGET

Programming Applications with KDCS 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

FGET Receive asynchronous message

The FGET (free message GET) call enables you to read an asynchronous message or
message segment into the message area from the message queue allocated to the service.

The FGET call is only permitted in the first program unit run and processing step of an
asynchronous service. Each message can only be read once. Each message segment
must be read with its own FGET. The message (message segment) can be read again
following an RSET call.

The format of the FGET call is described in detail below. For further information on message
queuing refer to section 2.4 on page 50.

Setting the KDCS parameter area (1st parameter)

The table below shows the necessary entries in the KDCS parameter area.

Setting the 2nd parameter

Here you have to supply the address of the message area into which openUTM is to read
the message.

Function of the call Entries in the KDCS parameter area

KCOP KCLA KCMF/kcfn

Read asynchronous message "FGET" Desired length Format identifier/
blanks/
name of abstract syntax
also possible on BS2000 systems:
edit profile

B
B

FGET KDCS calls

264 Programming Applications with KDCS

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "FGET"

2. KCLA Length in bytes

3. KCMF/kcfn Format identifier/blanks/
name of abstract syntax/
edit profile

KDCS call

1st parameter 2nd parameter

4. KDCS parameter area Message area

5. C/C++ macro calls

Macro name Parameters

KDCS_FGET (nb,kcla,kcfn)

openUTM return information

Message area Contents

6. Data

Field name in the KB return area

7. KCRLM Actual length

8. KCRCCC Return code

9. KCRCDC Internal return code

10. KCRMF/kcrfn Format identifier/blanks

11. KCRRC Redelivery counter

B

KDCS calls FGET

Programming Applications with KDCS 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the FGET call you make the following entries in the KDCS parameter area:

1. In the KCOP field, enter the FGET operation code.

2. In the KCOM field, specify the length in which the message is to be read. This length
must not exceed the message area into which the message is to be read. Length zero
means no receiving of messages. Any existing messages are lost.

3. In the KCMF/kcfn field, enter the format of the message to be read:

– in line mode: blanks

or name of the edit profile (returned in the KCRMF/kcrfn field in the case of INIT).
This name starts with a blank.

– in format mode: format identifier of the expected (partial) format. This is returned in
the KCRMF/kcrfn field in the case of INIT or a preceding FGET call.

– for a message from a program unit of the same application or from an LU6.1
partner: irrelevant.

in messages to an OSI TP partner:

– name of the abstract syntax of the message.
This name was returned in the KCRMF/kcrfn field in the preceding INIT call. Here,
blanks represent the abstract UDT syntax encoded in accordance with BER (Basic
Encoding Rules); only in this case does openUTM transfer the message to the
program unit decoded.
If you enter a value other than blanks, openUTM transfers the message to the
program unit in encoded format (i.e. in the transfer syntax corresponding to this
abstract syntax) and the program unit itself must convert the message into the local
representation. This is possible, for example, using an ASN.1 compiler.

You specify the following for the KDCS call:

4. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area into which openUTM is to read the
message. You enter the address of the message area even if you have entered the
length 0 in KCLM.

5. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491ff.

B

B

FGET KDCS calls

266 Programming Applications with KDCS

openUTM returns:

6. in the specified message area, the message (segment) in its actual or at most in its
desired length.

7. in the KCRLM field, the actual length of the message (segment), possibly deviating
from the length requested in the KCLA of the parameter area.

8. in the KCRCCC field the KDCS return code (see next page).

9. In the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

10. In the KCRMF/kcrfn field:

– After reading an entire format: ID of most recently read format (always identical to
ID of last output format).

– After reading a partial format: Identifier of the next format with input data.

– After reading final partial format: ID of most recently read partial format. In this case
KCRMF = KCMF (or: kcrfn=kcfn).

– After reading in line mode: blanks

or name of the edit profile of the last output message.

– After reading a partner service:
name of the format identifier or abstract syntax of the next message (segment).

11. in the KCRRC field, the redelivery counter of the message read. This contains the
number of redeliveries of the FGET message after abnormal termination of the
asynchronous services in the first transaction.

Sender information, etc. is located in the KB header (entered by openUTM during INIT).

B

KDCS calls FGET

Programming Applications with KDCS 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS error codes for the FGET call

The following codes can be analyzed in the program:

000 Operation carried out.

01Z Length conflict: KCLA<KCRLM; message was truncated.

03Z With partial formats: KCMF/kcfn does not contain the name of the next returned
partial format; the message area is unchanged and KCRLM = 0 (see also 5. and 6.).

Entry message from a OSI TP partner:
KCMF/kcfn does not contain the abstract syntax of the next message to be read.
No message is transferred to the message area.

05Z With individual formats: format in screen display different from format entered in
KCMF/kcfn.

In line mode: edit profile in screen display different from edit profile entered in
KCMF/kcfn.

10Z Message or all message segments already completely read.

Additional error codes to be taken from the dump:

70Z System could not perform the operation (system or generation error).

71Z Function called in a follow-up program unit or following a PGWT call of an
asynchronous service or in a dialog service or still no INIT issued in program unit
run.

73Z Length entry in KCLA negative or invalid.

77Z The message area is missing or cannot be accessed in the specified length.

Features of the FGET call

● The actual message length is returned in the KCRLM field. The following holds:

– When KCRLM ≤ KCLA, only KCRLM characters (bytes) are transferred into the
message area. The contents of the remainder of the message area are undefined.

– When KCRLM > KCLA, only KCLA characters are transferred into the message
area. The remaining bytes (KCRLM-KCLA) are lost. They can no longer be read
with a subsequent FGET.

The description of the MGET call presents an example explaining how openUTM reacts
in case of length conflicts

B

B

FGET KDCS calls

268 Programming Applications with KDCS

● A program unit can also receive asynchronous messages of length 0 when, for
example,

– a function key was pressed, but no message was allocated

– a transaction code was sent without further data

– if a program in the same application sent a background job with a message of
length 0.

● TAC input from the terminal or a transport system application:

– When an asynchronous TAC is entered in line mode and a format ID is entered in
KCMF/kcfn, return code KCRCCC=05Z is not set (as with MGET), but rather
KCRCCC=000, assuming the call is otherwise error-free.

– When partial formats are input, each partial format must be read using a separate
FGET.

– If a message is input together with an asynchronous TAC, the TAC is separated
from the message: the TAC is not read into the message area, but is available in
the KB header after INIT.

– openUTM does not convert from lowercase to uppercase letters.

However, conversion is possible using edit profiles.

● The number of redeliveries is returned in the KCRRC field. A message is always
redelivered if an asynchronous service was terminated abnormally in the first trans-
action. The application must have been generated accordingly and the generated
maximum number of redeliveries must not have been reached. For more information
refer to the openUTM manual “Generating Applications”, REDELIVERY operand in the
MAX statement.

● Saving faulty messages into the dead letter queue:

If an error occurs, asynchronous messages to transaction codes can be saved into the
global dead letter queue as a last fallback stage. The TAC must be generated with
DEAD-LETTER-Q=YES for this. If the asynchronous process terminates abnormally
without successful termination of a transaction, the FGET message is placed in the
dead letter queue if it cannot be redelivered (see redelivery) and no negative
acknowledgement job was defined. As soon as an asynchronous process has reached
a save point, neither redelivery nor saving the FGET message into the dead letter
queue is possible since the message is taken to have been successfully processed.

When a message is saved into the dead letter queue, the number of redeliveries for this
message is rolled back to zero if necessary.

i Each message segment sent with FPUT NT must be read using a separate FGET.

B

KDCS calls FPUT

Programming Applications with KDCS 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

FPUT Generating asynchronous messages

The FPUT (free message PUT) call enables you to create messages or message segments
for message queues, which openUTM enters in receiver-specific queue:

– output jobs for LTERM partners

– background jobs for local asynchronous services

– background jobs for remote asynchronous services previously addressed with APRO
AM calls

– asynchronous messages for local or remote TAC queues

– pass print options (= RSO parameter list) for RSO printers

The message segments generated with FPUT are gathered by openUTM and terminated
with the next PEND call. When the transaction ends the message segments are input as a
single message into the appropriate message queue. Exception: If you send formatted
message segments to terminals, each of these segments forms a separate message.

In the case of TAC queues, the recipient must read the message from the queue in a
separate transaction.

Messages remain in a message queue until they are:
– successfully sent (LTERM partner)
– successfully processed (asynchronous service) or
– successfully read (TAC queue).

The format of the FPUT call is described in detail below. For further information on message
queuing refer to section “Message Queuing (asynchronous processing)” on page 50ff.

B

FPUT KDCS calls

270 Programming Applications with KDCS

Setting the KDCS parameter area (1st parameter)

The table below shows the various options and the necessary entries in the KDCS
parameter area

NT: message segment of the job
NE: last message segment or entire message of the job
RP: RSO parameter list

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLM KCRN KCMF/kcfn KCDF

Output job in format mode "FPUT" "NT"/
"NE"

Length LTERM
name

Format identifier Screen
function

Output job in line mode "FPUT" "NT"/
"NE"

Length LTERM
name

Blanks —

Output job in line mode "FPUT" "NT"/
"NE"

Length LTERM
name

Blanks/
edit profile

Screen
function/
binary zero

Message for asynchr.
program or TAC queue of
the same application

"FPUT" "NT"/
"NE"

Length TAC/
Name of a
TAC queue

— —

Output job for transport
system application

"FPUT" "NT"/
"NE"

Length LTERM
name of
application

Blanks Binary zero

Background job
via LU6.1

"FPUT" "NT"/
"NE"

Length service ID — —

Background job
via OSITP

"FPUT" "NT"/
"NE"

Length service ID Name of abstract
syntax/blanks

—

Pass parameter list for
RSO printers

"FPUT" "RP" Length LTERM
name

Blank Binary zero

X/WX/WX/W
X/W
X/WX/W
X/W
X/WX/W

BBB
B
BB
B
B
B
B
B
B

B
B
BBBB
B
BB

BB

KDCS calls FPUT

Programming Applications with KDCS 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the 2nd parameter

Here you have to supply the address of the message area from which openUTM is to read
the message or the RSO parameter list.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "FPUT"

2. KCOM "NT"/"NE"/"RP"

3. KCLM Length in bytes

4. KCRN LTERM name/TAC queue/service ID

5. KCMF/kcfn Format identifier/blanks/
also available on BS2000 systems:
edit profile

6. KCDF Screen function/binary zero

Message area

7. Data

KDCS call

1st parameter 2nd parameter

8. KDCS parameter area Message area

9. C/C++ macro call

Macro name Parameters

KDCS_FPUTNT / KDCS_FPUTNE (nb,kclm,kcrn,kcfn,kcdf)

KDCS_FPUTRP (nb,kclm,kcrn)

openUTM return information

Field name in the KB return area Contents

10. KCRCCC Return code

11. KCRCDC Internal return code

B
B

FPUT KDCS calls

272 Programming Applications with KDCS

For the FPUT call you make the following entries in the KDCS parameter area:

1. In the KCOP field, enter the FPUT operation code.

2. In the KCOM field, enter either NT or NE for total message or last message segment or
RP for an RSO parameter list.

3. In the KCLM field, specify the length of the message to be sent in the message area
(length zero is permissible).

For KCOM = RP, this is the length of the data structure for the RSO parameter list.

4. In the KCRN field, enter the destination of the message:

– the name of the LTERM partner if this FPUT call generates an output job or passes
an RSO parameter list

– the transaction code of an asynchronous program if this FPUT generates a
background job (without distributed processing)

– the service ID of a job-receiving service if this background job is directed to a job-
receiving service

– the name of the TAC queue if the message is to be sent to a TAC queue

– the service ID of the remote TAC queue if this message is to be sent to a remote
TAC queue

5. In the KCMF/kcfn field (If messages are sent to an asynchronous service or a TAC
queue of the same application or to an LU6.1 partner then this field is irrelevant),
specify:

– Blanks in line mode or for a job sent to another application without distributed
processing or when passing an RSO parameter list.

– A format identifier (in format mode)

In the case of messages to RSO printers:

If a format has been specifically created for RSO printers then the FHS formatting
system does not need to know the printer type because FHS generates a logical
message which is then converted into the physical message by RSO.

If not, FHS must support the printer type as generated in RSO as otherwise
formatting errors will occur.

– Edit profile (for line mode or an RSO printer)
If the message is to be sent to an RSO printer, then only the CCSNAME parameter
of an edit profile is evaluated. The name of the character set is passed to RSO. All
other parameters of the edit profile are ignored because these options are VTSU-B
edit options, and the message is being prepared by RSO.

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCS calls FPUT

Programming Applications with KDCS 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

In messages to an OSI TP partner:

– The name of the abstract syntax of the message. Here, blanks represent the
abstract syntax of UTD. In this case the BER transfer syntax is used and the
message is encoded openUTM.
If you enter a value other than blanks, the message must be transferred to
openUTM in encoded form, i.e. in the transfer syntax corresponding to this abstract
syntax.

6. In the KCDF field (irrelevant for background jobs and TAC queues):
the screen function if the FPUT call is intended for an LTERM partner. Enter binary zero
for jobs to other applications without distributed processing or when passing RSO
parameter lists.

You must also specify binary zero if an edit profile or a #format is specified in
KCMF/kcfn.

In the message area you specify:

7. the message you want to output or the RSO parameter list you want to pass.

You enter the following for the KDCS call:

8. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area from which openUTM is to read the
message or RSO parameter list. You enter the address of the message area even if you
have entered the length 0 in KCLM.

9. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

10. In the KCRCCC field, the KDCS return code (see next page).

11. In the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

B

B

FPUT KDCS calls

274 Programming Applications with KDCS

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Function carried out

04Z The name in KCRN changes, and FPUT NE was not specified before.

40Z openUTM cannot perform the function (system or generation error, deadlock, long-
term locks), see KCRCDC.

41Z KCRN addressed the LTERM partner that started the current service or FPUT was
issued in the first part of the sign-on service or an FPUT call was issued in the sign-
on service after the SIGN ON and before the PEND PS.

42Z Entry in KCOM invalid.

43Z Length entry in KCLM negative or invalid.

44Z Value in KCRN is not a TAC of an asynchronous program or a TAC queue, or the
TAC is locked or prohibited and there is no name of an LTERM partner, or there is
no valid service ID (with distributed processing). See KCRCDC.

No asynchronous messages are allowed for the dead letter queue
(KDCDLETQ).

For KCOM = RP: the value in KCRN is not an RSO printer or the current version
does not support this function.

45Z The entry in KCMF/kcfn is invalid. Possible causes:
– the format identifier in KCMF/kcfn is invalid
– if the message destination is a partner with which communication is performed

using the OSI TP protocol, this return code indicates that the abstract syntax in
the KCMF/kcfn field has not been generated for the partner application.

– for KCOM = RP: no blank entered
– the edit profile has not been generated
– the edit profile changes in message segments to terminals

47Z The message area is missing or not accessible in the specified length.

An additional error code can be found in the dump:

71Z INIT call missing in this program.

B

B

B

B

B

KDCS calls FPUT

Programming Applications with KDCS 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Features of the FPUT/DPUT call

● FPUT and DPUT calls which direct program units to an alias LTERM are processed as
follows:

– In an LTERM group without an LTERM bundle, openUTM sends FPUT/DPUT calls
via the PTERM which is assigned to the primary LTERM.

– In the case of an LTERM group whose primary LTERM is the master LTERM of an
LTERM bundle, openUTM assigns all the queued messages sent to the group’s
alias LTERMs during this transaction to one of the slave LTERMs on transaction
end. This procedure guarantees that the receiver possesses the same message
sequence as was generated for an LTERM group during a transaction.

● FPUT and DPUT calls which direct program units to the master LTERM are assigned
to one of the slave LTERMs at transaction end.

● FPUT and DPUT calls can also direct program units directly to the primary LTERM.

● The message area is not changed when openUTM executes the call

● Several jobs can be created in a program unit; the corresponding messages can consist
of several segments.

● For outputs in +formats, *formats or messages in line mode you can also use the screen
functions, see the section “Screen output functions in format mode” on page 105.
If you use #formats, then the KCDF must be set to binary zero, otherwise openUTM
reacts with 40Z.
Similarly, when working with edit profiles (BS2000 systems) openUTM responds with
40Z if KCDF has not been set to binary zero.

● The jobs created with FPUT are discarded as a result of PEND ER/FR, PEND RS or
RSET.

● No output job to the client with which the program is currently working
(KCRN ≠ KCLOGTER) may be generated in a dialog program.

● With FPUT calls to another UTM application which was generated as a transport
system application, the TAC must be located at the start of the message area.

● If necessary, the message is formatted before being output.

B

B

B

B

FPUT KDCS calls

276 Programming Applications with KDCS

● Asynchronous jobs are kept until:

– the referenced program unit or printout is terminated, or, with jobs to remote
asynchronous services, the transfer has been terminated successfully

– the message is read at the terminal with KDCOUT and a new input has been made
(except for the KDCLAST command) or

– the message is read from a TAC queue by means of a DGET call and the trans-
action containing the DGET is completed successfully.

● Jobs with messages of length 0

If a message with a length of 0 is created (known as a "dummy message"), the following
applies:

– a background job is executed, i.e. the asynchronous service is started without
receiving a message

– an empty format is output if the job is an output job for a format terminal

– in the case of a message for a TAC queue, an empty message is created that can
be read by means of a DGET call

– if the job is an output job for a transport system, it is accepted but will later be
discarded by openUTM.

● Background jobs for an asynchronous program in the same application:
Each background job starts a separate asynchronous service. If several complete
messages are sent to the same TAC in a program unit run, a separate asynchronous
service is started for each message.

● If several complete messages are sent to the same TAC queue in a program unit run,
each message must be read by means of a separate DGET FT call.

● There is no interaction between FPUT and DPUT calls, i.e. DPUT calls with
KCMOD = "Ë" and FPUT calls can be sent at a certain location independent of one
another.

● Output jobs intended for a terminal are inserted into the message queue and can be
retrieved by the user with the KDCOUT command. Each KDCOUT command retrieves
exactly one message. Each message can only be retrieved once. If the KDCOUT
command is repeated the next message is retrieved from the queue.

At the end of transaction, a message in the system line informs the terminal user
whether asynchronous messages are present for the terminal.

KDCS calls FPUT

Programming Applications with KDCS 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

You can suppress this message on BS2000 systems by setting ANNOAMSG=N for the
associated LTERM partner in the configuration (default value: ANNOAMSG=Y).
Asynchronous messages are then displayed immediately on the screen. This may
interrupt the dialog. However, the terminal user can use the KDCDISP command to
display the last screen again.

● Print options for RSO printers

If you use print options for jobs to RSO printers, you should first pass the list with the
print options using FPUT RP, see RSO manual. Then submit the actual print job using
FPUT NT/NE.

● Handling message segments

– Message segments in line mode are combined into one message and sent to the
LTERM partner. The message segments generated with FPUT are gathered by
openUTM and terminated with the next PEND call, provided they have not yet been
terminated in the program unit run with FPUT NE. When the transaction ends, the
message segments are sent as a single message to the LTERM partner or to
another application.

– With formatted message segments to terminals, each segment forms a separate
message. The format name in KCMF/kcfn needs not always stay the same. At a
terminal, each format (message segment) must be fetched with a KDCOUT
command. Each FPUT NT call generates a separate message. It is therefore not
possible to structure a screen with different partial formats using FPUT NT calls.
The formats arrive in the order in which they were sent.

– With message segments to printer, it is possible to switch between formatted
message segments and unformatted message segments (in line mode). With
message segments to terminals, this switch causes the old message to terminate
and a new one to start.

– With FPUT NT calls to local or remote asynchronous services or local or remote
TAC queues, each message segment must be read with a separate FGET NT.

– With PEND, the message segment most recently generated with FPUT is always
assumed to be the final message segment, even if it was output with NT.

– The maximum number of FPUT NE calls which are possible in a transaction
depends on the RECBUF generation parameter in the KDCDEF statement MAX.
Each FPUT NE occupies 30 bytes in this buffer. If the buffer is full, FPUT NE is
rejected with KCRCDC=K704.

B
B

B

B

B

B

B

B

B

FPUT KDCS calls

278 Programming Applications with KDCS

– If, in a sequence of message segments, the name in KCRN (i.e. the message
receiver) changes but no FPUT with "NE" was entered previously, a warning is
issued (04Z) and a new message is started. The previous message (sequence of
message segments) is terminated. This means that if the name in KCRN is changed
back to the first recipient with a subsequent FPUT, the first message is not
continued, but a new message is begun. The message is forwarded to the receiver
when the next synchronization point is reached. Parallel messages, as used in
DPUT, are therefore not possible.

– If the edit profile changes within a sequence of message segments addressed to a
terminal, openUTM reacts with 45Z.

● Influence of generation parameters on the FPUT call

The following notes concern the generation of the UTM application. Further information
on the individual generation parameters can be found in the openUTM manual “Gener-
ating Applications”.

The ANNOAMSG operand in the KDCDEF control statement LTERM defines for each
LTERM partner whether asynchronous messages are to be output immediately to this
terminal or announced with a message. This message appears in the system status
line.

For messages for terminals and transport system applications, the total message may
not exceed the value generated for the NB operand of the control statement MAX. In
the case of messages to other partners the length of a message segment is limited to
32,767 bytes and the length of the total message is unlimited.

When the KDCFILE is regenerated with the UTM tool KDCUPD, you can specify in the
TRANSFER statement precisely which messages you want to include in the new
KDCFILE (see also the openUTM manual “Generating Applications”).

● FPUT calls with distributed processing

– In the job-submitting service, the KDCS parameter area must be given the same
values as for background jobs for an asynchronous program in its own application.
The only thing that has to be specified as name in the KCRN field is the service ID
which was assigned to the job-receiving service in the APRO AM call.

– Once the FPUT NE call has terminated (final message segment or complete
message) or after return of the KDCS error code 40Z, the service ID is released.
This ID can now be used for a new job submitter/receiver relationship in this service.

– If the wait time for using a session or association was set to 0 at generation time,
and if no connection exists with the partner application at the time the FPUT call is
issued, openUTM sets the error codes 40Z in KCRCCC and KD13 in KCRCDC after
the FPUT call.

B

B

B

B

B

B

KDCS calls GTDA

Programming Applications with KDCS 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

GTDA Read from TLS

The GTDA (get data) call enables you to read a TLS block (terminal specific long-term
storage) into the specified message area. The block name is assigned during generation
(TLS statement for KDCDEF).

A program unit of a dialog service can only read blocks from its "own" TLS, i.e. only the TLS
of the LTERM, LPAP or OSI LPAP partner, via which the service was started.

A program unit run of an asynchronous service can read blocks from all the LTERM, LPAP
or OSI LPAP partners of a UTM application.

Setting the KDCS parameter area (1st parameter)

The table below shows the necessary entries in the KDCS parameter area.

Function of the call Entries in the KDCS parameter area

KCOP KCLA KCRN KCLT

Read from TLS
(in dialog program)

"GTDA" Length Block name ——

Read from TLS
(in asynch. program)

"GTDA" Length Block name LTERM name /
(MASTER-)(OSI-) LPAP
name

GTDA KDCS calls

280 Programming Applications with KDCS

Setting the 2nd parameter

Here you have to supply the address of the message area into which openUTM is to read
the message.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "GTDA"

2. KCLA Length in bytes

3. KCRN Block name

4. KCLT LTERM name/ LPAP name/ -

KDCS call

1st parameter 2nd parameter

5. KDCS parameter area Message area

6. C/C++ macro call

Macro name Parameters

KDCS_GTDA (nb,kcla,kcrn,kclt)

openUTM return information

Message area Contents

7. Data

Field name in the KB return area

8. KCRLM Actual block length

9. KCRCCC Return code

10. KCRCDC Internal return code

KDCS calls GTDA

Programming Applications with KDCS 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the GTDA call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the GTDA operation code.

2. In the KCLA field, the length of the data to be transferred from the TLS.

3. In the KCRN field, the name of the TLS block from which openUTM is to transfer data.

4. For asynchronous programs only:
in the KCLT field, the name of LTERM, LPAP or OSI LPAP partner whose TLS is to be
read from (this field is not evaluated by dialog programs).

You enter the following for the KDCS call:

5. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area to which openUTM is to read the
message. You enter the address of the message area even if you have entered the
length 0 in KCLM.

6. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

7. The desired data in the specified message area.

8. In the KCRLM field, the actual length of the data in the TLS so that the program can
detect deviations from the KCLA entry (important if KCLA entry is smaller). Exception:
for KCLA = 0 you always have 0 returned in KCRLM.

9. In the KCRCCC field, the KDCS return code, see next page.

10. In the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

GTDA KDCS calls

282 Programming Applications with KDCS

KDCS return codes for the GTDA call

The following codes can be analyzed in the program:

000 Operation carried out.

40Z System cannot perform operation (generation error or system error, deadlock, time-
out); see KCRCDC.

41Z Call was issued in the first part of the sign-on service although this is not permitted
by the generation.

43Z Length entry in KCLA invalid (e.g. negative).

44Z Block name in KCRN unknown or invalid.

46Z The LTERM name in KCLT invalid (with asynchronous programs only).

47Z Message area missing or cannot be accessed in the specified length.

A further error code can be found in the dump:

71Z INIT missing in this program.

Features of the GTDA call

● A GTDA call locks the referenced TLS block against access for all the competing
program units. All other TLS block of the referenced LTERM, LPAP or OSI LPAP partner
are free
The TLS block can be explicitly unlocked with the UNLK call.
The TLS block is also unlocked by the PEND RE/FI/SP/FC/RS/ER/FR and RSET calls.
With PEND PA/PR/KP and PGWT KP/PR the lock remains in effect.

In the section “Action with locked storage areas (TLS, ULS and GSSB)” on page 88,
there is a description of how openUTM reacts when the desired TLS block is locked.

● The TLS block is transferred in its actual length, but no longer than the length specified
in KCLA. If the contents of KCLA > 0 for the GTDA call, the actual length of the data in
the TLS is returned in the KCRLM field.

KDCS calls INFO

Programming Applications with KDCS 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

INFO Request information

The different variants of the INFO (information) call enable you to obtain the following infor-
mation:

– INFO CD (Card)
the information stored on the user’s ID card (only if terminal users have to prove their
authorization via card reader during sign on) or Kerberos information.

– INFO DT (Date/Time)
date and time of the start of the application and program unit

– INFO SI (System Information)
system information (e.g. the name of the application and the host)

– INFO PC (Predecessor Conversation)
information on a stacked service

– INFO LO (LOcale Information)
Information on the language environment of the LTERM partner

– INFO CK (ChecK)
the KCRCCC return code, normally returned by an MPUT, FPUT or PEND call.

These variants of the INFO call differ in the meaning of the 2nd parameters (message area)
to be specified in the INFO call.

openUTM provides language specific data structures to structure the message area: for
COBOL in the COPY element KCINFC, for C/C++ in the kcinf.h. include file.

B

B

B

INFO format 1 (for CD/DT/SI/PC/LO) KDCS calls

284 Programming Applications with KDCS

Setting the KDCS parameter area (1st parameter) and the 2nd parameter

The table below shows the five types of INFO call and the necessary entries in the KDCS
parameter area.

Due to the different meanings of the 2nd parameter, the INFO call is presented here in two
formats:

Format 1: INFO CD/DT/LO/PC/SI (see next page).

Format 2: INFO CK (see page 295).

Function of the call Entries in the KDCS
parameter area

Meaning of the 2nd
parameter

KCOP KCOM KCLA KCLT

Read ID card or Kerberos
information

"INFO" "CD" Length — Area for ID card or Kerberos
information

Obtain date and time of
application and program
starts

"INFO" "DT" 30 — Area for date and time, see
data structure for INFO DT.

Information about
language environment of
LTERM partner

"INFO" "LO" 68 LTERM
name

Area for requested name,
see data structure for
INFO LO.

Information on a stacked
service

"INFO" "PC" 39 — Area for requested names,
see data structure for
INFO PC.

Obtain system infor-
mation

"INFO" "SI" Unix / Linux /
Windows
system: 52

— Area for requested names,
see data structure for
INFO SI

BS2000
systems:
49

Check UTM call "INFO" "CK" — — Parameter area, to be
checked

B
B
BBBBB
B

X/W
X/W
X/W

B
B
B

KDCS calls INFO format 1 (for CD/DT/SI/PC/LO)

Programming Applications with KDCS 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "INFO"

2. KCOM "CD"/"DT"/""LO"/"PC"/"SI"

3. KCLA Length of message area in bytes

4. KCLT Name of LTERM partner/ —

KDCS call

1st parameter 2nd parameter

5. KDCS parameter area Message area

6. C/C++ macro calls

Macro name Parameters

KDCS_INFOCD / KDCS_INFODT
KDCS_INFOSI / KDCS_INFOPC

(nb,kcla)

KDCS_INFOLO (nb,kcla,kclt)

openUTM return information

Message area Contents

7. Data

Field name in the KB return area

8. KCRLM Actual block length

9. KCRCCC Return code

10. KCRCDC Internal return code

INFO format 1 (for CD/DT/SI/PC/LO) KDCS calls

286 Programming Applications with KDCS

For the INFO call you make the following entries in the KDCS parameter area to read the
ID card information, obtain date and time, obtain system information and obtain information
on the predecessor or on the language environment of the LTERM partner:

1. In the KCOP field, enter the INFO operation code

2. In the KCOM field, enter the desired function of the call:

CD to read ID card or Kerberos information (CARD)

DT to obtain time and date of the start of the application and program unit
(DATE/TIME)

LO to obtain information on the language environment of the LTERM partner

PC to obtain information on the predecessor in the stack

SI to obtain system information

3. In the KCLA field, the length of the message area used in which openUTM is to store
the information. You have to specify the length in bytes. openUTM transfers the infor-
mation up to a maximum length of KCLA.

4. Only with INFO LO:

in the KCLT field, enter the name of the LTERM partner whose language environment
is to be obtained.

If KCLT is set to binary zero before the call, openUTM transfers the data of the LTERM
partner via which the service is to be started.

If the LTERM partner belonging to the program unit run is specified in KCLT, openUTM
transfers additional information about the associated physical terminal (PTERM).

You specify the following for the KDCS call:

5. 1st parameter:
the address of the KDCS parameter area

2nd parameter:
the address of the message area into which openUTM is to write the information.
openUTM transfers the requested information in a fixed structure. For this, language
specific data structures are available: for COBOL in the KCINFC COPY element, for
C/C++ in kcinf.h. include file.

6. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

B

B

B

KDCS calls INFO format 1 (for CD/DT/SI/PC/LO)

Programming Applications with KDCS 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

openUTM returns:

7. The desired data in the specified message area.

8. In the KCRLM field, the actual length of the data transferred. With KCRCCC ≥ 40Z the
length is 0.
With INFO CD, KCRLM specifies the length of the Kerberos information transferred to
the receiving area.

9. In the KCRCCC field, the KDCS return code. 0

10. In the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes for the INFO CD/DT/LO/PC/SI calls

The following codes can be analyzed in the program:

000 The requested information was transferred to the message area in its full length.

01Z Information was transferred. However, the message area is too short and the infor-
mation was truncated.

09Z only for INFO CD:
The Kerberos dialog returned an error or the Kerberos information was returned in
truncated form because it was longer than the value generated with MAX
PRINCIPAL-LTH. KCRLM shows the length in which the Kerberos information was
transferred to the receiving area.

40Z Generation error or system error. See KCRCDC.

41Z INFO call with KCOM = CD/PC not permitted in asynchronous program.

42Z KCOM invalid.

43Z KCLA invalid.

46Z Only with INFO LO:
the LTERM name specified in the KCLT field is invalid.

47Z Message area missing or cannot be accessed in the specified length

49Z Only with INFO LO:
unused parameters were not set to binary zero for the call.

Return code 71Z can be found in the dump:

71Z INIT not yet issued in this program unit

B

B

B

B

B

B

B

INFO format 1 (for CD/DT/SI/PC/LO) KDCS calls

288 Programming Applications with KDCS

Features of the INFO CD call

With this function the INFO call reads the ID card information stored during sign-on to the
specified message area if the user used a magnetic strip card for authentication during sign
on. For more information see also section “Support for ID card readers” on page 97.

The stored Kerberos information can be read if either the user was signed on by means of
Kerberos, or a Kerberos dialog has been executed for the client and afterwards no further
user signed on using a magnetic strip card.

The INFO CD call for reading ID card information or Kerberos information is permitted in
dialog programs only.

In order to be able to call the ID card information in the program, you have to set the
following operands during generation:

– the CARD= operand must be specified for the current user ID in the KDCDEF control
statement USER, and

– the CARDLTH= operand in the KDCDEF control statement MAX.

i openUTM sets the identifier "A" in the KCAUSWEIS/kccard field of the KB header
if the card was inserted during the preceding input.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCS calls INFO format 1 (for CD/DT/SI/PC/LO)

Programming Applications with KDCS 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Features of the INFO DT call

With this function the INFO call writes the start times of the application and program unit to
the specified area, using a length of 30 bytes. The information is structured as follows:

Field name
COBOL

Field name
C/C++

Byte Meaning of the information

KCDATAS

KCTAGAS
KCMONAS
KCJHRAS
KCTJHAS

—

as_day
as_mon
as_year
as_doy

1 - 6

1 - 2
3 - 4
5 - 6
7 - 9

Date of application startup in the form ddmmyy,
where:
dd - day (value range 01 - 31)
mm - month (value range 01 - 12)
yy - year (value range 00 - 99))
Day of application startup
(working day, value range 001 - 366)

KCUHRAS

KCSTDAS
KCMINAS
KCSEKAS

—

as_hour
as_min
as_sec

10 - 15

10 -11
12 - 13
14 - 15

Time of application startup in the form hhmmss,
where:
hh - hour (value range 00 - 23)
mm - minute (value range 00 - 59)
ss - second (value range 00 - 59))

KCDATAK

KCTAGAK
KCMONAK
KCJHRAK
KCTJHAK

—

ps_day
ps_mon
ps_year
ps_doy

16 - 21

16 - 17
18 - 19
20 - 21
22 - 24

Date of program unit startup in the form ddmmyy,
where:
dd - day (value range 01 - 31)
mm - month (value range 01 - 12)
yy - year (value range 00 - 99)
Day of application startup
(working day, value range 001 - 366)

KCUHRAK

KCSTDAK
KCMINAK
KCSEKAK

—

ps_hour
ps_min
ps_sec

25 - 30

25 - 26
27 - 28
29 - 30

Time of program unit start in the form hhmmss,
where:
hh - hour (value range 00 - 23)
mm - minute (value range 00 - 59)
ss - second (value range 00 - 59))

INFO format 1 (for CD/DT/SI/PC/LO) KDCS calls

290 Programming Applications with KDCS

Features of the INFO LO call (BS2000 systems)

Using the INFO LO variant of the INFO call the program unit run can request information
about the location of LTERM partners and application. The location of an LTERM partner
determines the language environment of the client. The location of the application deter-
mines the default setting for the language environment.

The call returns the following data:

– the location of the LTERM partner whose name is specified in the KCLT field

– the location of the application

If KCLT is set to binary zero before the call, openUTM transfers the data of the LTERM
partner via which the service was started.

If the call is executed in a dialog service and the name of the LTERM partner is set in the
KCLT field associated with the program unit run, openUTM also provides the following data
about the associated physical terminal (PTERM):

– number of extended ISO character sets supported by the terminal or printer

– ISO variant numbers of all supported character sets

– default user character set, allocated to the BS2000 user ID under which the UTM appli-
cation is running.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCS calls INFO format 1 (for CD/DT/SI/PC/LO)

Programming Applications with KDCS 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

With the INFO LO call openUTM displays the data in the message area structured as
follows:

Field name Byte Meaning of contents

KCLTLANG 1 - 2 Language identifier of LTERM partner

KCLTTERR 3 - 4 Territory identifier of LTERM-partner

KCLTCCSN 5 - 12 CCS-name of LTERM-partner

13 - 20 Blanks

KCAPLANG 21 - 22 Language identifier of application

KCAPTERR 23 - 24 Territory identifier of application

KCAPCCSN 25 - 32 CCS-name of application

33 - 40 Blanks

KCDEFCCS 41 - 48 User default character set of BS2000 user ID under which the UTM appli-
cation runs

Information about the connected terminal
(only out put in dialog services if KCLT contains the name of the LTERM partner associated with the
service. If the partner is not a terminal the values is X"00").

KCCCSNO 49 Number of the extended ISO-character sets supported by the terminal

KCHSET1 50 Variant number of the first supported ISO character set

KCHSET2,
KCHSET3 ...
to
 KCHSET16

51 - 65 Variant numbers of other ISO character sets supported by the physical
terminal. Length of each field is 1 byte.

65 - 68 Blanks

B
B

BBB

BBB

BBB

BBB

BB

BBB

BBB

BBB

BB

BBB
B

B
B
B

BBB

BBB

B
B
B
B

BB
B

B

INFO format 1 (for CD/DT/SI/PC/LO) KDCS calls

292 Programming Applications with KDCS

Features of the INFO LO call (Unix, Linux and Windows systems)

With the INFO LO variant of the INFO call, the program unit run can request information
about the language currently set for the LTERM partner.

This function enables you to run program units in multiple languages. In the program unit
run, the language set for an LTERM partner can be queried with INFO LO and messages
sent in the same language.

INFO LO returns the following information:

– Language and territory identifiers as well as the $LANG variable of the LTERM partner
specified in KCLT. The cell outputs the currently set $LANG variable of the user ID
under which the associated dialog terminal process was started.

– Language and territory identifiers as well as the $LANG variable of the UTM application.
The cell outputs the currently set $LANG variable of the user ID under which the
associated application was started.

Language and territory identifiers are retrieved from the $LANG variable at program
runtime. Example: From $LANG=En_US.ASCII, openUTM creates the language identifier
En and the territory identifier US.

The INFO LO call provides data structured as follows:

Field name Byte Meaning of the contents

KCLTLANG 1-2 Language identifier of the LTERM partner

KCLTTERR 3-4 Territory identifier of the LTERM partner

KCLTNLSL 5-20 $LANG variable of the specified LTERM partner

KCAPLANG 21-22 Language identifier of the application

KCAPTERR 23-24 Territory identifier of the application

KCAPNLSL 25-40 $LANG variable of the application

41-68 Blanks

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCS calls INFO format 1 (for CD/DT/SI/PC/LO)

Programming Applications with KDCS 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Features of the INFO PC call

With this call you can query information about a stacked service.
If the current service was started by service stacking, the INFO PC call provides, for
example, the following information about the preceding service (that is the service that is
immediately before the current service in the stack):

– date and time of last processing

– format identifier of last screen output

– the next TAC

– the service TAC

openUTM writes this information to the specified area, using a total length of 39 bytes.

If there is no stacking, openUTM returns blanks.

Field name Byte Meaning of the information

KCPFN 1 - 8 Format identifier of the last screen output

KCPNXTAC 9 - 16 Name of the next TAC

KCPCVTAC 17 - 24 Name of the service TAC

KCPLDATE1

KCPLDAY
KCPLMON
KCPLYEAR
KCPLDOY

1 For C/C++ the summary fields KCPLDATE and KCPLTIME are not defined. However, the specific fields for
day/month/year/working day/hour/minute/second are defined.

25 - 33
25 - 26
27 - 28
29 - 30
31 - 33

Date of last processing in the form ddmmyy, where:
dd - day (value range 01 - 31)
mm - month (value range 01 - 12)
yy - year (value range 00 - 99))
Working day of last processing, value range 001 - 366

KCPLTIME1
KCPLHOUR
KCPLMIN
KCPLSEC

34 - 39
34 - 35
36 - 37
38 - 39

Time of last processing in the form hhmmss, where:
hh - hour (value range 00 - 23)
mm - minute (value range 00 - 59)
ss - second (value range 00 - 59

INFO format 1 (for CD/DT/SI/PC/LO) KDCS calls

294 Programming Applications with KDCS

Features of INFO SI call

With this call, you can query information on the application and system, e.g. the name of
the application and the host on which the application is running.
In dialog services INFO SI also provides the PTERM name, host name and application
name of the communication partner.

openUTM writes this information to the specified area as follows - byte 17 - 40 are set to
binary zero in asynchronous services.

Field name Byte Meaning of the information

KCAPPLNM /
applnam

1 - 8 Name of the UTM application

KCHOSTNM /
hostname

9 - 16 Name of the host

KCPTRMNM 17 - 24 In a dialog service
– For distributed processing via LU6.1: CON name of the communi-

cation partner
– For distributed processing via OSI TP: OSI-CON name of the commu-

nication partner
– Otherwise the PTERM name of the communication partner
In an asynchronous service: Blanks

KCPRONM 25 - 32 In a dialog service
– OSI TP job-receiving service: Blanks
– otherwise: Processor name of the partner
In an asynchronous service: Blanks

KCBCAPNM 33 - 40 In a dialog service
– OSI TP job-receiving service: ACCESS-POINT name via which the

association with the partner is established
– otherwise: BCAMAPPL name via which the connection to the partner

is established
In an asynchronous service: Blanks

KCVERS 41 - 46 openUTM version Vnn.nx (e.g. V06.4A)

KCIVER 47 - 48 Version number of the UTM interface 1

1 The version number indicates the version of function extensions available, irrespective of the product variant.
As the functionality of the KDCS interface is extended, the version number is increased by 1 each time. For
openUTM V6.4 it is 8. In this way, UTM application programs can be created to run in different product variants
and UTM versions.

KCIVAR 49 "B" for BS2000 systems, "X" for Unix and Linux system or "N" for Windows
system

KCFILL1 50 Not currently used

KCLANG 51 - 52 Language identifier, e.g: "EN" for English
(The value of this language identifiers corresponds to the value of the first
two bytes of the $LANG variable)

X/WX/WX/W

X/WX/WX/W
X/W
X/W

KDCS calls INFO - format 2 (for CK)

Programming Applications with KDCS 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

INFO CK call

With this function the INFO call checks whether the specifications for an MPUT, FPUT or
PEND call in KCRN are permitted. openUTM transfers the KDCS return code expected for
the checked call to KCRINFCC. INFO CK checks the following calls:

– MPUT NT/NE
– FPUT NT/NE
– PEND PA/PR/KP/SP/RE/FC.

This function enables you, for example, to check prior to a PEND RE call whether the
intended follow-up TAC is permitted for this call. This may, for example, prevent the service
from aborting.

Setting the parameters

Field name in KDCS parameter area Contents

1. KCOP "INFO"

2. KCOM "CK"

Message area

3. KDCS parameter area of the call to be
checked

KDCS call

1st parameter 2nd parameter

4. KDCS parameter area Message area

5. C/C++ macro calls

Macro name Parameter

KDCS_INFOCK (nb)

openUTM return information

Field name in the KB return area Contents

6. KCRINFCC KCRCCC return code of the checked
call

7. KCRCCC Return code

8. KCRCDC Internal return code

INFO - format 2 (for CK) KDCS calls

296 Programming Applications with KDCS

For the INFO call you make the following entries in the KDCS parameter area to check the
KDCS parameter area for a UTM call:

1. In the KCOP field, enter the INFO operation code.

2. In the KCOM field, enter the desired function of the call: CK to check the KDCS
parameter area for an MPUT-, FPUT-, or PEND call.

You also have to

3. Specify the KDCS parameter area to be checked according to the rules valid for the
respective call (MPUT, FPUT, PEND).

You specify the following for the KDCS call:

4. 1st parameter: the address of the KDCS parameter area.

2nd parameter: the address of the area containing the KDCS parameter area of the call
to be checked.

5. The use of C/C++ macro calls is described in detail in the section “C/C++ macro
interface” on page 491.

openUTM returns:

6. in the KCRINFCC field, the return code expected in KCRCCC of the checked call.
openUTM enters this error code only if the INFO call runs according to plan (the return
code for the INFO call has the value 000).
KCRINFCC has the value 78Z if the specified function form of the call to be checked
(KCOP and KCOM entries in the second parameter area) is not supported by the INFO
call.

7. in the KCRCCC field, the KDCS return code.

8. in the KCRCDC field, the internal return code of the checked call (see the openUTM
manual ”Messages, Debugging and Diagnostics”).

KDCS calls INFO - format 2 (for CK)

Programming Applications with KDCS 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS return codes for the INFO CK call

The following codes can be analyzed in the program:

000 The call specified in the 2nd parameter was checked.

40Z Generation error or system error (see KCRCDC).

42Z KCOM of the INFO call invalid.

47Z Address of 2nd parameter omitted or invalid.

Return code 71Z can be found in the dump:

71Z INIT not yet issued in this program unit.

Features of the call INFO CK

If KCCARD was specified, the INFO CK call in MPUT checks whether the terminal for which
the message is destined was generated with an ID card reader or whether the USER is
already signed on with an ID card.

This check is also performed if a corresponding edit profile was specified.B

INIT KDCS calls

298 Programming Applications with KDCS

INIT Initialize program unit

The INIT (initialize program) call is used to sign-on a program unit to openUTM. There are
the following variants.

– INIT (no entry in KCOM)
Initialize program unit

– INIT PU (Program Unit)
Initialize program unit and request additional information.

– INIT MD (Modifiy)
Initialize program unit and change the size of the KB program area.

The following applies for these variants.

– The INIT call initiates cooperation between the program unit run and openUTM. It is the
first KDCS call allowed in a program unit run, i.e. you are not allowed to enter any other
KDCS or database calls prior to the INIT call.

– You are not allowed to enter INIT or INIT PU more than once in a program unit run.

– INIT MD may be specified more than once in a program unit. If you specify the INIT MD
call as the first INIT call in the program unit, it is treated like an INIT without an operation
modifier.

– You may not use the communication area (KB) and the standard primary working area
(SPAB) between start of the program unit run and the first INIT call.

– Following the first INIT, openUTM makes the entire communication area (KB), including
the KB parameter area, available to the program unit run. This area has the length
specified in KCLKBPRG/kclcapa.

– The INIT MD call enables the length of the KB program area to be adjusted during the
program unit run. This may be necessary if, for example, the size of the KB program
area that openUTM is to save with the PEND call is not determined until processing has
started.
Example: Data that is read from a database is to be saved in the KB program area. If
the length of the KB program area is adjusted to the volume of data read by INIT MD,
openUTM need not save more data than necessary or less data than necessary at the
synchronization point.

– If you use the INIT call with the operation modifier PU (Program Unit), openUTM
provides the program unit additional information about application, system and commu-
nication partner in the message area.

KDCS calls INIT

Programming Applications with KDCS 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the 1st parameter (KDCS parameter area)

The following table shows the necessary entries in the KDCS parameter area.

You only have to specify the length of the KB program area if you want to use it in the
program unit run. The specified length must not be greater than the maximum length
defined for this application at generation (operand KB in the MAX statement for KDCDEF).

You only have to specify the length of the SPAB if you want to use it in the program unit run.
It must not be longer than the value defined at generation (operand SPAB in the MAX
statement for KDCDEF).

Setting the 2nd parameter (only necessary with INIT PU)

Here you enter the address of the message area to which openUTM is to write the
requested information.

You can use language-specific data structures to structure the message area. For COBOL,
they are defined in the KCINIC COPY element and for C/C++ in the kcini.h include file.

Specify the version number of the structure and select the return information requested
from openUTM in the header of the data structure. These other fields (return information)
are described on page 312.

Function of the
call

Entries in the KDCS parameter area

KCOP KCOM KCLKBPRG/kclcapa KCLPAB/kclspa KCLI

Initialize program
unit

"INIT" — Length of KB program area
(if used)

Length of SPAB
(if used)

—

Initialize program
unit and request
information

"INIT" "PU" Length of KB program area
(if used)

Length of SPAB
(if used)

Length of
message
area

Change length of
KB program area

"INIT" "MD" Length of KB program area — —

INIT KDCS calls

300 Programming Applications with KDCS

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "INIT"

2. KCOM — / "PU" / "MD“

3. KCLKBPRG/kclcapa Length in bytes

4. KCLPAB/kclspa — /length in bytes

5. KCLI — / Length in bytes (with INIT PU)

Setting the header in the message area (only necessary with INIT PU)

Field name in message area Contents

6. KCVER/if_vers Version number (5)

7. KCDATE/dattim_info Request
date and time (Y/N)

8. KCAPPL/appl_info Request
application information (Y/N)

9. KCLOCALE/locale_info Request
Locale information (Y/N)

10. KCOSITP/ositp_info Request
OSI TP information (Y/N)

11. KCENCR/encr_info Request
encryption information (Y / N)

12. KCMISC/misc_info Request
miscellaneous information (Y / N)

KDCS call

1st parameter 2nd parameter

13. KDCS parameter area — / Message area (with INIT PU)

KDCS calls INIT

Programming Applications with KDCS 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the INIT call you make the following entries in the KDCS parameter area:

1. In the KCOP field, enter the INIT operation code.

2. In the KCOM field, the operation modifier:

PU if openUTM is to make additional information available in the message area

MD if the length of the KB program area is to be changed

3. In the KCLKBPRG/kclcapa field, enter the length of the KB program area in bytes (if
used). It must not exceed the length predefined at generation time (operand KB in the
MAX statement), otherwise the generated value is taken.

4. Only with INIT or INIT PU
In the KCLPAB/kclspa field, enter the length of the standard primary working area
(SPAB) used in the program unit run in bytes. It must not exceed the length predefined
at generation time (operand SPAB in the MAX statement).

14. C/C++ macro calls

Macro name Parameters

KDCS_INIT (kclcapa,kclspa)

KDCS_INITPU (nb,kclcapa,kclspa,kcli)

KDCS_INITMD (kclcapa)

openUTM return information

Message area (only with INIT PU) Contents

15. Additional information

KB header area

16. Current data

Field name in KB return area

17. KCRLM (only with INFO PU) Length of transferred data

18. KCRCCC Return code

19. KCRCDC Internal return code

20. KCRMF/kcrfn Format identifier/blanks

21. KCRPI Service ID/Rollback ID/blanks

KB program area

22. KCKBPRG/kclcapa Data

INIT KDCS calls

302 Programming Applications with KDCS

5. Only with INIT PU:
in the KCLI field, enter the length of the message area to which openUTM is to transfer
the information. Enter the length in bytes. The information transferred to the message
area by openUTM has a maximum length of KCLI.

Setting the header of the message area (only necessary with INIT PU):

6. In the KCVER/if_ver field, enter the version number of the data structure. The current
version is version 5.

7. Enter Y in the KCDATE/dattim_info field if you want information on the date and time
of the start of the application and the program unit run, otherwise enter N.

8. Enter Y in the KCAPPL/appl_info field if you want to request information about the
application, system and communication partner, otherwise enter N.

9. Enter Y in the KCLOCALE/locale_info field if you to want to request information about
the language environment of the user ID, otherwise enter N.

10. Enter Y in the KCOSITP/ositp_info field if you require OSI TP specific information,
otherwise enter N.

11. Enter Y in the KCENCR/encr_info field if you require information on the encryption
methods used to encode between the client and the UTM application, otherwise enter
N. (The encryption mechanism can be coordinated. See the openUTM manual “Gener-
ating Applications”.)

12. Enter Y in the KCMISC/misc_info field if you require miscellaneous information (e.g.
number of queued messages in the user’s queue, password validity, time of last sign-
on), otherwise enter N.

You specify the following for the KDCS call:

13. 1st parameter: the address of the KDCS parameter area.

2nd parameter (only necessary with INIT PU):
the address of the message area to which openUTM is to write information (see
page 299).

14. The use of C/C++ macro calls is described in detail in the section “C/C++ macro
interface” on page 491.

KDCS calls INIT

Programming Applications with KDCS 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

openUTM returns:

15. only with INIT PU:
in the message area, the information transferred by openUTM up to a maximum length
of the value specified in KCLI.

16. in the KB header area the current data of the KB header (see table).

17. only with INIT PU:
in the KCRLM field, the length of the information actually transferred by openUTM,
provided that KCRCCC = 000 or 01Z. If KCRCCC ≥ 40Z, no information is transferred.
Thus, in such cases KCRLM=0.

18. in the KCRCCC field, the KDCS return code, see below

19. in the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

20. only with INIT or INIT PU
in the KCRMF/kcrfn field:

– For a message from a terminal:

Blanks (in line mode) or the format name (in format mode) of the last screen output,
i.e. the name specified in the KCMF/kcfn field with the MPUT of the last dialog step.
If the last output consisted of multiple partial formats, KCRMF/kcrfn contains the
name of the first partial format into which data was entered. If no data was entered
in any of the partial formats, KCRMF/kcrfn contains the name of the first partial
format.

If an edit profile was used in the last screen output, KCRMF/kcrfn contains this edit
profile.

– for a message from a TS application or a program unit of the same application:
blanks.

– if a rollback message exists (after PEND RS): blanks.

– for a message from the LU6.1 partner or UPIC client:

The format identifier of the first message segment specified by the LU6.1 partner or
UPIC client on sending.

Particularity in the job-submitting service:

Blanks if a status flag exists for the service ID specified in KCRPI.

B

B

INIT KDCS calls

304 Programming Applications with KDCS

– for distributed processing via OSI TP:

If the program unit run was started because of a distributed dialog, KCRMF/kcrfn in
the job-submitting service contains the name of the abstract syntax which was
allocated to the message by the job submitter; if the field contains blanks, the
abstract syntax of the UTD syntax is selected.

In the job-receiving service KCRMF/kcrfn contains the name of the abstract syntax
which was allocated to the message by the job-receiving service described in
KCRPI. If the field contains blanks, the abstract syntax of the UTD syntax is
selected or an error message from the partner is present.

21. only with INIT or INIT PU
in the KCRP field:

– For a message from a UPIC client program, terminal, a TS application or a program
unit in the same application: blanks.

– If a rollback message exists: the rollback ID.

– In the job-submitting service with distributed processing:
the service ID of the job-receiving service if a message from the job receiver exists.

– In the job-receiving service with distributed processing: blanks

22. In the KCKBPRG/kclcapa (KB program area) field, the data of the service, provided
the program unit run includes service-specific data from another program. If this is the
first program unit run of a service, the area is undefined or set with the generated fill
character. If length zero is specified in KCLKBPRG/kclcapa of the preceding program
unit, no data is transferred to the follow-up program unit run. 5

KDCS calls INIT

Programming Applications with KDCS 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS return code in the KCRCCC field

The following codes can be analyzed in the program:

000 Operation carried out.
with INIT PU: the requested information was transferred to the message area in full
length.

01Z Length specified in KCLKBPRG/kclcapa exceeds value specified when the appli-
cation was generated.

02Z With INIT or INIT PU:
Length specified in KCLPAB/kclspa exceeds value specified when the application
was generated.

07Z With INIT PU:
Function was executed, the available message area is too short (length in KCLI
insufficient). No or incomplete information was returned.

48Z With INIT PU:
Invalid data structure version.

Additional error codes can be found in the dump:

70Z Operation cannot be performed (system or generation error). Further information is
provided by the internal openUTM error code KCRCDC.

71Z With INIT or INIT PU:
INIT call already issued in this program unit run.

73Z Negative length specification. With INIT PU: KCLI is invalid.

77Z Message area is missing or cannot be accessed in the specified length.

88Z Interface version is invalid.

89Z With INIT PUT or INIT MD:
When the function was called, unused parameters were not set to binary zero.

INIT KDCS calls

306 Programming Applications with KDCS

openUTM return information in the header of the KDCS communication area

openUTM returns the following entries among others to the INIT call: the TAC of the service
start, current TAC, date, time and the LTERM partner of the sender .
The generated length of the KB program area is located in the KCLKBPB/kclpa field. The
table below shows which entries openUTM returns in the KB header:

Field name
COBOL

Field name
C/C++

Contents (entered by openUTM)

KCBENID kcuserid UTM user ID under which the client is working.
When working without user IDs: KCBENID/kcuserid=KCLOGTER.
With distributed processing via LU6.1:local session name (LSES).
With distributed processing via OSI TP and Security type “N”: Local
name of the connection (ASSOCIATION), otherwise user ID

Service-specific data:

KCTACVG kccv_tac TAC used to start this service

KCTAGVG
KCMONVG
KCJHRVG
KCTJHVG

kccv_day
kccv_month
kccv_year
kccv_doy

Day of service start
Month of service start
Year of service start
Working day of service start

KCSTDVG
KCMINVG
KCSEKVG

kccv_hour
kccv_minute
kccv_second

Hour of service start
Minute of service start
Second of service start

KCKNZVG kccv_status Service ID

F
A
N
C
R
D

Z
E
L

First program unit run of dialog service
First program unit run of an synchronous service
Follow-up program unit run of service
First program unit of a chained service
Restart of a service
End of service through loss of connection (only with LTERM
partners which have been generated with RESTART=NO)
End of service by abort
Normal end of service
End of last process with normal termination

The service identifiers D, Z, E can only occur in the VORGANG exit,
the service identifier L only in the SHUT exit. All other service identi-
fiers can occur either in the KDCS call INIT or in the exit VORGANG.

KDCS calls INIT

Programming Applications with KDCS 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Program unit-specific data:

KCTACAL kcpr_tac TAC used to address the program

KCSTDAL
KCMINAL
KCSEKAL

kcpr_hour
kcpr_minute
kcpr_second

Hour of program unit start
Minute of program unit start
Second of program unit start

KCAUSWEIS kccard ID card identifier: A (card inserted) or blanks.

KCTAIND kctaind Transaction indicator: F (first) or N (next transaction)

KCLOGTER kclogter LTERM name (sender), for distributed processing: LPAP or
(MASTER-)OSI-LPAP name

KCTERMN kctermn Communication partner identifier,
for distributed processing via LU6.1: CON....,TERMN=,
for distributed processing via OSI TP: OSI-LPAP....,TERMN=
otherwise: PTERM ..., TERMN
(see also the table by PTERM in the openUTM manual “Generating
Applications”)

KCLKBPB kclpa Maximum length of the KB program area as defined at generation
time

Data for service stack:

KCHSTA kchsta Stack height, i.e. the number of stacked services as seen from the
current service (0 through 15).

KCDSTA kcdsta Change of stack height: + (increased), - (decreased) or 0
(unchanged, also in the event of stacking after returning from an
inserted service)

KCPRIND kcprind Program indicator: A =asynchronous service, D = dialog service

KCOF1 kcof1 OSI TP functions in an OSI TP job-receiving service.

KCCP kccp Indicator for the client protocol:
0 Asynchronous processing
1 LU6.1
2 OSI TP
3 UPIC
4 DTP
4 TIAM
5 APPLI
6 SOCKET

KCTARB kctarb Information on rollback of an OSI TP transaction

KCYEARVG kccv_year4 Year of service start (four positions)

Field name
COBOL

Field name
C/C++

Contents (entered by openUTM)

X/W
B

INIT KDCS calls

308 Programming Applications with KDCS

Features of the KB program area and the SPAB

– The KB program area is assigned to a service, the SPAB to a program unit run.

– At the start of the service the contents of the KB program area and the SPAB are
undefined or the areas are preset with the generated fill character.
Such a fill character can be used, for example, to facilitate error location in the test or
for data protection. The SPAB and KB program area are preset with this character at
the start of a process and overwritten with it at the end of a processing step, see
openUTM manual “Generating Applications”.

– If, at the INIT of a program unit, a KB program area is defined with a length of n bytes
and a larger KB program area of m bytes (m > n) is requested in the next program unit
run, the last (m - n) bytes of the KB program area are likewise undefined or padded with
the generated fill character.

KDCS calls INIT

Programming Applications with KDCS 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Particularities of the INIT calls with distributed processing

● INIT call in the job-submitting service

If the distributed transaction is rolled back, openUTM returns the service indicator "R"
at INIT of the first transaction of a follow-up transaction (in the KCKNZVG/kccv_status
field of the KB header). In this case it is usually status information of the job-receiving
service.

In the follow-up program unit the INIT call in the job-submitting service supplies the
following additional information in the KDCS return area:

– KCRPI contains the service identifier of the job-receiving service which started this
program unit.

– KCRMF/kcrfn contains the format identifier which the job-receiving service entered
in the first message segment to the job-submitting service, otherwise blanks.

The first MGET call for reading the results must be issued with KCRN=KCRPI and
KCMF=KCRMF (or: kcfn=kcrfn).

● INIT call in the job-receiving service

There are the following modifications for entries in the KB header:

KCBENID/kcuserid
With LU6 protocol: contains the local session name (LSES name, see the
LSES statement for KDCDEF)
With OSI TP protocol with security type “N”: local connection name
(ASSOCIATION name, see the OSI-LPAP statement for KDCDEF),
otherwise user ID

KCAUSWEIS/kccard
Contains blanks, i.e. ID card reader is not supported.

KCLOGTER
Contains the logical name of the partner application (LPAP name, or
(MASTER-)OSI-LPAP name, see LPAP statement for LU6.1 protocol, or
OSI-LPAP statement for OSI TP protocol: for KDCDEF).

KCTERMN
Contains the identifier (Terminal Mnemonic) of the partner application, (see
operand TERMN= of the CON statement for LU6.1 protocol, or the OSI-
LPAP statement for OSI TP protocol: for KDCDEF).

INIT KDCS calls

310 Programming Applications with KDCS

KCOF1 shows the OSI TP functions in an OSI TP job-receiving service for the dialog
used to select the job submitter. The following values are possible:

Blanks
The current service is not a job-receiving service or the OSI TP protocol is
not used for communication with the job-submitting service.

B Basic functions

H Basis and handshake functions

C Basic and commit functions with chained transactions

O (other combination)
No standard combination of OSI TP functions was selected for the dialog
with the job submitter. The selected OSI TP functions can only be read with
an INIT PU call.

KCCP (client protocol)
shows the protocol used for the communication.

1 LU6.1
2 OSI TP

KCTARB shows in an OSI TP service whether a situation occurred in a previous
PGWT call which requires the rollback of a transaction.

Blanks
a situation has occurred which requires the rollback of the transaction.

Y a situation has occurred in a previous PGWT call which does not permit the
commit of the transaction and the transaction has not been rolled back yet.
Communication with the partner services is permitted. A call to commit the
transaction results in an abnormal end of service.

The KCRMF/kcrfn field in the KB return area provides information about the partner
service.

KDCS calls INIT

Programming Applications with KDCS 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Message area returns with INIT PU

If you use the INIT call with the operation modifier PU, openUTM supplies additional
information for the program unit in the message area about application, system and
communication partner.

You can use language specific data structures to structure the message area. For COBOL,
they are defined in the KCINIC COPY element and for C/C++ in the kcini.h include file. In
the header of the data structure you have to define which information openUTM is to return.

openUTM supplies the following information:

● The generated lengths for the KB program area and the standard primary working area.
Any variant of the INIT PU call supplies this information.

● Date and time of the application starts and the start of the program unit run.

● Information about application and system

● Information about the communication partner:

In a dialog service, this are information about:
– name of the communication partner
– host processor name of the communication partner
– name of the UTM application via which communication with the communication

partner was established (BCAMAPPL name)

In an asynchronous service blanks are transferred.

● Information about the language environment of the user ID who started the service.

This information comprises language and territory identifier as well as $LANG variable.
Language and territory identifier are retrieved from the $LANG variable during the
runtime of the program. Example: From $LANG=En_US.ASCII openUTM creates the
language identifier En and the territory identifier US.

In an asynchronous service, the language of the user who started the service is trans-
ferred.

This information comprises:
– Language and territory identifier and the character set of the user. If no user is

signed on, openUTM transfers the language and territory identifier and the
character set of the LTERM partner.

– Name of the character set of the message.
– Information whether the user is connected to a 7- or 8-bit terminal.

In a locally started asynchronous service, the locale of the user who started the service
is transferred. In such an asynchronous service, the 8-bit terminal information contains
the value "7" and the character set name of the message contains blanks.

X/W

X/W

X/W

X/W

X/W

X/W

B

B

B

B

B

B

B

B

B

INIT KDCS calls

312 Programming Applications with KDCS

● Information about the job-submitting service when communication is carried out via
OSI TP.

● Information about the encryption method used between the UTM application and the
client.

● Miscellaneous information, e.g. the number of queued messages in the user’s queue,
password validity, time the user last signed on, properties of the LTERM and OSI-LPAP
partner which started the service with respect to LTERM groups and LTERM/LPAP
bundles.

● Information about asynchronous messages for the user.

Structure of the message area with INIT PU (with KCINIC or kcini.h)

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

Header - Version number and requested information

KCVER if_ver 2 To be assigned before the call:
Version number of the data structure (5)

KCDATE dattim_info 1 To be assigned before the call:
Request date and time (Y/N)

KCAPPL appl_info 1 To be assigned before the call:
Request application information (Y/N)

KCLOCALE locale_info 1 To be assigned before the call:
Request location information (Y/N)

KCOSITP ositp_info 1 To be assigned before the call:
Request OSI TP information (Y/N)

KCENCR encr_info 1 To be assigned before the call:
encryption information (Y/N)

KCMISC misc_info 1 To be assigned before the call:
miscellaneous information (Y / N)

8 Reserved for future extensions

General information, which is always returned:

KCGPAB gen_spab_lth 2 Generated length of SPAB

KCGNB gen_nb_lth 2 Generated length of message area

Information about date and time of the start of the application and the program unit.
(only if KCDATE=Y)

KCADAY as_dt_day 2 Day of application start

KCAMONTH as_dt_month 2 Month of application start

KCAYEAR as_dt_year 4 Year of application start

KDCS calls INIT

Programming Applications with KDCS 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KCADOY as_dt_doy 3 Day of year of application start

KCAHOUR as_tm_hour 2 Hour of application start

KCAMIN as_tm_minute 2 Minute of application start

KCASEC as_tm_second 2 Second of application start

KCASEAS as_season 1 Time of application start is specified in normal time
(W) or summer time (S). If the operating system does
not supply information about summer/normal time,
blanks are output.

KCPDAY ps_dt_day 2 Day of program start

KCPMONTH ps_dt_month 2 Month of program start

KCPYEAR ps_dt_year 4 Year of program start

KCPDOY ps_dt_doy 3 Day of the year of program start

KCPHOUR ps_tm_hour 2 Hour of program start

KCPMIN ps_tm_minute 2 Minute of program start

KCPSEC ps_tm_second 2 Second of program start

KCPSEAS ps_season 1 Time of application start is specified in normal time
(W) or summer time (S). If the operating system does
not supply information about summer/normal time,
blanks are output.

KCTMZONE time_zone

12 Blanks

12 Time zone in format sHH:MM-hh:mm, where:

s
"+" or "-": sign of time difference between local time
zone and UTC (Universal Time Coordinate, equiv-
alent to Greenwich mean time).

HH:MM
Time difference between local time and UTC in hours
(HH) and minutes (MM).

hh:mm
Time shift in hours (hh) and minutes (mm) between
summer time and normal time in local time zone.

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

X/WX/W

BB
B
B
B
B
B
B
B
B
B
B
B
B
B

INIT KDCS calls

314 Programming Applications with KDCS

Information about application, system and communication partner
(only if KCAPPL=Y)

KCAPPLNM applnm 8 UTM application name

KCHOSTNM hostm 8 Name of host, where the application is running

KCPTRMNM ptrmnm 8 In a dialog service:
– with distributed processing via LU6.1: CON

name of the communication partner;
– with distributed processing via OSI TP: OSI-

CON name of the communication partner;
– otherwise: PTERM name of the communication

partner.
In an asynchronous service: blanks

KCPRONM pronm 8 In a dialog service:
– in the OSI TP job receiving service: blanks;
– otherwise: processor name of the commu-

nicaion partner;
In an asynchronous service: blanks

KCBCAPNM bcapnm 8 In a dialog service:
– in the OSI TP job receiving service: ACCESS-

POINT name via which the association with the
partner is established.

– otherwise: BCAMAPPL name via which the
connection to the partner is established

In an asynchronous service: blanks

KCVERS version 6 openUTM version in form Vnn.nx (e.g. V06.4A)

KCIVER iversion 2 Version number of KDCS interface,
indicates the state of the available function
upgrades; in openUTM V6.4A it has the value 8

KCIVAR ivariant 1 Identifier of product variant of openUTM:
'B' for BS2000 systems or ' X' for Unix and Linux
systems or ’N’ for Windows systems

1 Blank

Information about the location of the user ID which started the service
(only if KCLOCALE=Y)

KCUSLANG us_lang_id 2 Language identifier of the user;
if no user is signed on yet:
language identifier of the LTERM partner

KCUSTERR us_terr_id 2 Territory identifier of the user;
if no user is signed on yet:
territory identifier of the LTERM partner

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

KDCS calls INIT

Programming Applications with KDCS 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KCUSNLSL us_nlslang 16 $LANG variable of the user

10 Blanks

KCUSCCSN us_ccsname 8 Character set of the user;
if no user is signed on yet:
character set of the LTERM partner

8 Blanks

KCCSCURR curr_ccs 8 Character set of the message received from terminal
(CCSN of the character set active at the terminal)

KCDEVCAP dev_cap 1 Information on whether the terminal is a 7- or 8-bit
terminal. The specification is in the form "7" or "8"
(printable)

1 Blanks

OSI TP information
(only with KCOSITP=Y)

KCFUPOL fupol 1 Displays whether the functional unit "Polarized
Control" is selected (Y/N).

KCFUHSH fuhsh 1 Displays whether the functional unit "Handshake" is
selected (Y/N).

KCFUCOM fucom 1 Displays whether the functional unit "Commit" is
selected (Y/N).

KCFUCHN fuchn 1 Displays whether the functional unit "Chained Trans-
actions" is selected (Y/N).

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

X/WX/WX/WX/W

X/WX/W

BBBB
B
B

BB

BBB
B

BBB
B
B

BB

INIT KDCS calls

316 Programming Applications with KDCS

KCENDTA endta 1 This field indicates whether an end of transaction
request is permitted at the end of the current
processing step and, if this is the case, which calls
you have to use.
If messages are sent to job-receiving services only in
this processing step, the transaction can remain
open after the end of the processing step.

Blank
no instruction for the termination of the
processing step

O no end of transaction may be requested at the
end of the processing step.

R the transaction and the dialog step must be
finished, the service may not be terminated.

S the transaction must be finished, the dialog step
may not be terminated.

C the transaction must be finished, the service
may not be terminated.

F the transaction must be finished and the service
terminated.

KCSEND send 1 This field indicates whether a message may be sent
to the job-submitting service in the processing step.

Y You have to send a message to the job submitter
at the end of the dialog step. If KCENDTA is set
to "S", you also have to send a message to the
job submitter at the end of the transaction.

N You cannot send an MPUT to the job submitter;
you may send messages to job-receiving
services. However, in this case the transaction
has to remain open after the processing step.

2 Blanks

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

KDCS calls INIT

Programming Applications with KDCS 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Encryption information
(only with KCENCR=Y)

KCPTERM pterm_enclev 1 Generated minimum encryption level of the client in
the associated PTERM or TPOOL statement:

N No minimum encryption level was generated for
the client.

1 The minimum encryption level 1 was generated
for the client.

2 The minimum encryption level 2 was generated
for the client.

3 The minimum encryption level 3 was generated
for the client.

4 The minimum encryption level 4 was generated
for the client.

T The minimum encryption level TRUSTED was
generated for the client, i.e. the client is trust-
worthy.

KCCLIENT client_enclev 1 Maximum encryption mechanism supported by the
client:

N The client does not support any encryption
mechanism.

1 The maximum encryption mechanism supported
is level 1.

2 The maximum encryption mechanism supported
is level 2.

3 The maximum encryption mechanism supported
is level 3.

4 The maximum encryption mechanism supported
is level 4.

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

INIT KDCS calls

318 Programming Applications with KDCS

KCSESS session_enclev 1 Encryption mechanism defined for the current
session between the client and server:

N No encryption mechanism was defined.

1 An encryption mechanism of level 1 was
defined.

2 An encryption mechanism of level 2 was
defined.

3 An encryption mechanism of level 3 was
defined.

4 An encryption mechanism of level 4 was
defined.

KCCNVTAC convtac_enclev 1 Generated minimum encryption level of the TACs
with which the service was started. There is an entry
in this field even in the case of asynchronous
services:

N No minimum encryption level has been
generated for the TAC.

1 The minimum encryption level 1 has been
generated for the TAC.

2 The minimum encryption level 2 has been
generated for the TAC.

KCCONV conv_enclev 1 This field indicates whether encryption has been
defined for the service. This value is selected by the
UPIC partner or by the encryption level of the trans-
action code of the service, not that of the session.
This field is also supplied with a value in the
asynchronous service:

N No encryption was defined for the service.

1 An encryption mechanism of level 1 was defined
for the service.

2 An encryption mechanism of level 2 was defined
for the service.

3 An encryption mechanism of level 3 was defined
for the service.

4 An encryption mechanism of level 4 was defined
for the service.

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

KDCS calls INIT

Programming Applications with KDCS 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KCINPMSG inputmsg_enclev 1 This field indicates whether or not the dialog input
message was encrypted by the client:

N The input message was not encrypted.

1 The input message was encrypted with an
encryption mechanism of level 1.

2 The input message was encrypted with an
encryption mechanism of level 2.

3 The input message was encrypted with an
encryption mechanism of level 3.

4 The input message was encrypted with an
encryption mechanism of level 4.

2 Reserved for subsequent extensions.

Various information about the user who started the service (KCBENID, kcuserid), the LTERM from
which the service was started (KCLOGTER,kclogter) and the application
(only for KCMISC=Y)

KCUMSGS amsgs_user 10 Number of queued messages in the user’s queue.

KCPWVMAX pw_val_max 2 Number of days for which the user’s password is still
valid.
Values with a special significance:

 0 The password will become invalid within the next
24 hours.

-1 The password was generated without any
limitation to validity. The password has
unrestricted validity.

-2 The password’s period of validity has expired.
This value can only occur in an asynchronous
service or during sign-on.

-3 The complexity or minimum length of the
password has been increased and the password
transferred with the KDCUPD tool may not
satisfy the requirements for the generated
complexity level or may be too short.
This value can only occur in an asynchronous
service or during sign-on.

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

INIT KDCS calls

320 Programming Applications with KDCS

KCPWVMIN pw_val_min 2 Number of days during which the user’s password
can only be modified at the administrative level but,
for example, not via a SIGN CP call (minimum period
of password validity).
Values with a special significance:

 0 The password may be modified.

-1 No password may be set for the user. This may
occur in the following cases:
- Applications without users
- The user is an LU6.1-Session or OSI TP

association
- Connection user (only for TS or UPIC clients)
- internal user KDCMSGUS

- Users generated with Kerberos certification or
 certificate

KCLSTSGN last_sign 14 Date and time of the last sign-on. The date and time
are specified in the form YYYMMDDHHMMSS.
The following cases return zeros:
- During the sign-on operation, after the first

successful sign on after regeneration
- Internal user KDCMSGUS
- User is a LU6.1 session or OSI TP association

KCBNDLMS bundle_master 8 Name of the master of the LTERM-/LPAP bundle if
the LTERM-/(OSI-)LPAP is a slave of this bundle.

KCISGRMS is_group_master 1 The field indicates whether the LTERM (or the
master of the LTERM bundle) is the master of an
LTERM group.

Y (Master) LTERM is a group master.

N (Master) LTERM is not a group master.

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

B
B

KDCS calls INIT

Programming Applications with KDCS 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KCLTCP lterm_client_prot 1 The field indicates the LTERM’s client protocol

0 The service is running for the internal LTERM
KDCMSGLT (only in an asynchronous service)

1 LU6.1

2 OSI TP

3 UPIC

4 Platform-dependent:
 DTP (Unix, Linux and Windows systems)
 TIAM (BS2000 systems)

5 APPLI

6 SOCKET

KCAPPLST application_state 1 The field indicates the status of the application:

N The application is running normally.

G The application has the "Graceful Shutdown"
status.

W The application has the "Shutdown Warn"
status.

S The application is being terminated normally.

T The application is being terminated abnormally.

KCKRBCAP kerberos_
capability

1 In a dialog service, the field indicates whether the
client is Kerberos-capable.

Y The client is Kerberos-capable.

N The client is not Kerberos-capable.

In an asynchronous service: Blank.

KCCDINFO info_cd_
available

1 The following INFO CD information is available in a
dialog service:

C Card information (magnetic stripe card)

K Kerberos information

E Kerberos information, but the Kerberos dialog
returned an error or the information could not be
stored at its full length because it is longer than
the value generated with MAX PRINCIPAL-LTH.

N No INFO CD information

INFO CD is not permitted in an asynchronous
service: Blank.

23 Reserved for extensions.

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

X/W
B

BB
B
B
B

B

B

B
B
B
B

B

B
B

LPUT KDCS calls

322 Programming Applications with KDCS

LPUT Write to log file

You use the LPUT (log file PUT) call to write a record to the user log file. UTM prefixes this
record with the current contents of the KB header. The maximum length of a record is
defined at generation (MAX statement, LPUTLTH operand). The records in the log file are
not in exactly the same sequence as the LPUT calls in the application.

Setting the 1st parameter (KDCS parameter area)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

Setting the 2nd parameter

Here you enter the address of the message area from which openUTM is to read the data
to be logged.

Function of the call Entries in the KDCS parameter area

KCOP KCLA Message area

Write to log file "LPUT" Length Data to be logged

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "LPUT"

2. KCLA Length in bytes

Message area

3. Data

KDCS call

1st parameter 2nd parameter

4. KDCS parameter area Message area

KDCS calls LPUT

Programming Applications with KDCS 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the LPUT call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the LPUT operation code.

2. In the KCLA field, the length of the data to be transferred in bytes. openUTM prefixes
the length to the data record.

In the message area, you specify:

3. the data which you want to write to the user log file.

You specify the following for the KDCS call:

4. 1st parameter: the address of the KDCS parameter area.

2nd parameter: the address of the message area from which UTM is to read the
message. You enter the address of the message area even if you have entered the
length 0 in KCLM.

5. The use of C/C++ macro calls is described in detail in the section “C/C++ macro
interface” on page 491.

openUTM returns:

6. in the KCRCCC field, the KDCS return code, see next section.

7. in the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

5. C/C++ macro call

Macro name Parameters

KDCS_LPUT (nb,kcla)

openUTM return information

Field name in the KB return area Contents

6. KCRCCC Return code

7. KCRCDC Internal return code

LPUT KDCS calls

324 Programming Applications with KDCS

KDCS return code in the KCRCCC field

The following codes can be analyzed in the program:

000 Operation carried out.

01Z Value specified in KCLA too large. It is shortened to the generated maximum length
(LPUTLTH operand in the MAX statement).

40Z System cannot perform the operation (generation error or system error, timeout),
see KCRCDC.

43Z Length entry in KCLA is invalid (e.g. negative).

47Z Message area missing or cannot be accessed in the specified length.

An additional error code can be found in the dump:

71Z INIT call missing in this program.

Features of the LPUT call

● You can still roll back the LPUT operation prior to the next synchronization point.

● The PEND ER/FR/RS and RSET calls roll back the LPUT operation.

The structure of the user log file is described on page 86.

KDCS calls MCOM

Programming Applications with KDCS 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

MCOM Define job complex

You use the MCOM (message complex) call to

– define the beginning of a job complex and set the destinations of the basic job and the
associated confirmation jobs, or

– define the end of a job complex.

Setting the KDCS parameter area (1st parameter)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

All the fields of the parameter area which are not used have to be set with binary zero.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCRN KCPOS KCNEG KCCOMID

Beginning of job
complex

"MCOM" "BC" LTERM/
TAC/
Service ID/
TAC queue

TAC/
blanks,
TAC queue

TAC/
blanks,
TAC queue

Complex ID

End of job complex "MCOM" "EC" Binary
zero

Binary
zero

Binary
zero

Complex ID

MCOM KDCS calls

326 Programming Applications with KDCS

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "MCOM"

2. KCOM "BC"/"EC"

3. KCRN LTERM name/TAC/service ID//
binary zero/TAC queue

4. KCPOS TAC/blanks/binary zero/TAC queue

5. KCNEG TAC/blanks/binary zero/TAC queue

6. KCCOMID Complex ID

KDCS call

1st parameter 2nd parameter

7. KDCS parameter area -

8. C/C++ macro calls

Macro name Parameters

KDCS_MCOMBC (kcrn,kcpos,kcneg,kccomid)

KDCS_MCOMEC (kccomid)

openUTM return information

Field name in the KB return area Contents

9. KCRCCC Return code

10. KCRCDC Internal return code

KDCS calls MCOM

Programming Applications with KDCS 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the MCOM call you make the following entries in the appropriate fields of the KDCS
parameter area:

1. In the KCOP field, the MCOM operation code.

2. In the KCOM field, either "BC" for beginning or "EC" for end of a job complex.

3. In the KCRN field, if KCOM = BC applies:

– the LTERM name of a communication partner if the basic job is an output job,
– the TAC of an asynchronous program if the basic job is a background job (without

distributed processing), or
– the name of the TAC queue when the basic job is an output job in a TAC queue

(without distributed processing).
– the service ID of a job-receiving service if the basic job is directed to a job-receiving

service.

If KCOM = EC applies, you have to enter binary zero.

4. In the KCPOS field, if KCOM = BC is specified as the destination of the positive confir-
mation job, the TAC of an asynchronous program or a TAC queue, or blanks if no
positive confirmation job is to be generated.

If KCOM = EC apples, you enter binary zero.

5. In the KCNEG field, if KCOM = BC is specified as the destination of the negative confir-
mation job, the TAC of an asynchronous program or a TAC queue, or blanks if no
negative confirmation job is to be generated.

If KCOM = EC applies, you enter binary zero.

6. In the KCCOMID field, the complex identifier (complex ID) of the job complex. It is
defined for MCOM BC, may be 2 to 8 characters long and has to be prefixed with the
character "*". It is to be specified for all the DPUT calls of the complex and for MCOM
EC.

You specify the following for the KDCS call:

7. 1st parameter: the address of the KDCS parameter area.

8. The use of C/C++ macro calls is described in detail in the section “C/C++ macro
interface” on page 491.

openUTM returns:

9. in the KCRCCC field, the KDCS return code, see next page.

10. in the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

MCOM KDCS calls

328 Programming Applications with KDCS

KDCS return codes for the MCOM call

The following codes can be analyzed in the program:

000 Function carried out.

40Z openUTM cannot perform the function: generation error or system error, or a job
complex is to be started without previously terminating the preceding job complex.

42Z Entry in KCOM is invalid.

44Z Value in KCRN is invalid:

– no TAC of an asynchronous program or a TAC queue specified, or TAC or TAC
queue inhibited/illegal

– no LTERM name specified

– no valid service ID specified, or the service ID is already occupied by another
message.

– asynchronous messages for the dead letter queue (KDCDLETQ) have been
created.

49Z Contents of unused fields of the KDCS parameter area not equal to binary zero.

51Z For KCOM = EC: no (confirmation) job to which user information can be related.

55Z Entry in KCCOMID is invalid: the name does not begin with "*" or is already
assigned in the program unit or is unknown (for MCOM EC).

57Z Value in KCPOS is invalid:

– no TAC of an asynchronous program or a TAC queue specified, or TAC or TAC
queue inhibited/illegal

– specification is not equal to blanks.

– acknowledgement jobs with the destination dead letter queue (KDCDLETQ)
have been created.

58Z Value in KCNEG is invalid:

– no TAC of an asynchronous program or a TAC queue specified, or TAC or TAC
queue inhibited/illegal, or

– specification is not equal to blanks.

– acknowledgement jobs with the destination dead letter queue (KDCDLETQ)
have been created.

An additional error code can be found in the dump:

71Z INIT missing in this program unit.

KDCS calls MCOM

Programming Applications with KDCS 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Features of the MCOM call

● You have to terminate a job complex with MCOM EC before the PEND call, otherwise
openUTM aborts the service with PEND ER and 86Z.

● The complex identifier has to be unique within a program unit.

● MCOM BC is only allowed after all preceding job complexes have been terminated.

● If a service identifier is occupied by a job complex, it can only be released by MCOM
EC (not as otherwise by DPUT NE).

● Confirmation jobs must be directed to asynchronous program units or TAC queues of
the local application.

● If an error occurs, a message complex’s main job with negative acknowledgment job is
(possibly after redelivery) not saved in the dead letter queue but is deleted. The
negative acknowledgment job is activated.

MGET KDCS calls

330 Programming Applications with KDCS

MGET Receive dialog message

You use the MGET (message GET) call to read messages into the message area in a
program unit run of a dialog service. In an asynchronous service, the MGET call is only
permitted in follow-up program units or a follow-up processing step.

Messages may have the following origins:

– a terminal

– another application (via LU6.1 or OSI TP)

– a transport system application

– a UPIC client

– a previous program unit run of a service of the same service

With message segments, a separate MGET call is necessary for each message segment.

In the case of socket partners, a message segment can be read with several MGET calls.
Using KCRLM and the return code it is possible to determine whether a message segment
has been read in its entirety.

If the message originates from an OSI partner, it can be a message segment, an error
message, a handshake request or a handshake confirmation.

If a function key was pressed, two MGET calls are required: the first provides the return
code, the second the data.
Only terminals or UPIC clients may send function keys.

KDCS calls MGET

Programming Applications with KDCS 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the 1st parameter (KDCS parameter area)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

NT message segment

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLA KCRN KCMF/kcfn

Message in format mode "MGET" — Length - Format identifier

Message in line mode "MGET" — Length - Blanks

also possible on
BS2000 systems:
edit profile

Message from previous
program unit of the same
application

"MGET" — Length — Blanks

Rollback message from a
program unit

"MGET" "NT" Length Rollback-ID Blanks

Dialog message from
job-submitting service

"MGET" — Length — Format identifier/
Blanks/
Name of abstract
syntax

Dialog message from
job-receiving service

"MGET" "NT" Length Service ID Format identifier/
Blanks/
Name of abstract
syntax

Status information from job-
receiving service

"MGET" "NT" 0 Service ID Blanks

B
B
B

MGET KDCS calls

332 Programming Applications with KDCS

Setting the 2nd parameter

Here you have to supply the address of the message area into which openUTM is to read
the message.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "MGET"

2. KCOM "NT"/-

3. KCLA Length in bytes

4. KCRN Service ID/Rollback ID/ -

5. KCMF/kcfn Format identifier/blanks/
also possible on BS2000 systems:
edit profile

KDCS call

1st parameter 2nd parameter

6. KDCS parameter area Message area

7. C/C++ macro calls

Macro name Parameters

KDCS_MGET (nb,kcla,kcfn)

KDCS_MGETNT (nb,kcla,kcrn,kcfn)

B
B

KDCS calls MGET

Programming Applications with KDCS 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the MGET call you make the following entries in the KDCS parameter area:

1. In the KCOP field, enter the FPUT operation code.

2. In the KCOM field,
(need only be specified for messages from a job receiver and for rollback messages)

"NT" modifier (message part).

3. In the KCLA field, specify the length in which the message is to be read. This length
must not exceed the message area into which the message is to be read (length zero
means no message is received. Any existing messages are lost). The actual length of
the message (segment) is returned in the KCRLM field.

4. In the KCRN field,
(need only be specified for messages from a job receiver and for rollback messages)

– for messages from job-receiving services, the service ID of the job-receiving service

– for rollback messages, the rollback ID of the rollback message.

i For the first MGET call of a program unit you can ascertain the rollback ID or
the service ID from the KCRPI field of the INIT call, for subsequent MGET calls
from the KCRPI field of the previous MGET call.

 openUTM return information

Message area Contents

8. Data

Field name in KB return area

9. KCRDF Screen function/0

10. KCRLM Actual length

11. KCRMGT Type of message

12. KCVGST/kcpcv_state Service status

13. KCTAST/kcpta_state Transaction status

14. KCRCCC Return code

15. KCRCDC Internal return code

16. KCRMF Format identifier/ blanks/ -
also possible on BS2000 systems:
edit profile

17. KCRPI Service ID/ Blanks

B
B

MGET KDCS calls

334 Programming Applications with KDCS

5. In the KCMF/kcfn field
(irrelevant for messages from previous program unit runs of the same service)

i The entry in this field will always be correct if, for the first MGET call of the
program unit, you enter the value returned by the INIT call in the KCRMF/kcrfn
field. For subsequent MGET calls, use the value from the KCRMF/kcrfn field of
the preceding MGET call.

– for messages in format mode:
format identifier

– for messages in line mode:
blanks
also possible on BS2000 systems: Edit profile

– when reading rollback messages:
blanks

– Message from a UPIC client:
format identifier that the UPIC client specified for sending

– with distributed processing via LU6.1:
format identifier specified by the partner application in KCMF/kcfn when issuing the
MPUT call

– for messages from OSI TP partners:
Name of the abstract syntax of the message. This name was returned in the
KCRMF/kcrfn field in the preceding INIT or MGET call.
Here, blanks represent the abstract UDT syntax. In this case, BER is used as
transfer syntax and openUTM decodes the message.
If you enter a value other than blanks, openUTM transfers the message to the
program unit in encoded format (i.e. in the transfer syntax corresponding to this
abstract syntax) and the program unit itself must convert the message into the local
representation. This is possible, for example, using an ASN.1 compiler.

You specify the following for the KDCS call:

6. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area into which openUTM is to read the
message. You must enter the address of the message area even if you have entered
the length 0 in KCLM.

7. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

B

KDCS calls MGET

Programming Applications with KDCS 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

openUTM returns:

8. in the specified message area, the message (segment) in its desired length, if
KCRCCC=03Z was not set. If the message was longer than specified in KCLA, the
remainder will be lost.
Exception: the message originates from a socket client. In this case, the return code
02Z is set, and the rest of the message (segment) can be obtained with the next MGET.

9. in the KCRDF field, for the first MGET of a job-receiving service with which communi-
cation was performed using the LU6.1 protocol, the value in the KCDF field of the
associated MPUT call in the job-receiving service. In all other cases this field has the
value zero.

10. in the KCRLM field, the actual length of the message (segment). If KCRLM > KCLA, the
message has been truncated (KCRCCC =01Z). In the case of a socket client, the rest
of the message can still be read (KCRCCC = 02Z); otherwise, the rest of the message
is lost (KCRCCC = 01Z).
KCRLM=0 for empty messages and if KCRCCC=03Z.

When using FHS, the value returned in KCRLM depends on the FHS start parameter
KCRLM=.

11. in the KCRMGT field, the data read by MGET:

"M" ("message)
a message. When using MGET for a partner that does not communicate via the
OSI TP protocol, only the value "M" can be specified.

When using MGET for a partner that communicates via the OSI TP protocol the
following output is also possible:

"C" (confirm)
a positive handshake confirmation.

"E" (error)
an error message or negative handshake confirmation.

"H" (handshake)
a handshake request.

12. in the KCVGST/kcpcv_state field, the service state of the (partner) service, see
page 336.

13. in the KCTAST/kcpta_state field, the transaction state of the partner service, see
page 337.

14. in the KCRCCC field, the KDCS return code, see page 339.

15. in the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

B

B

MGET KDCS calls

336 Programming Applications with KDCS

16. in the KCRMF/kcrfn field

– after reading an entire format: identifier of this format. This is always identical to the
identifier of the last output format.

– after reading a partial format: identifier of the next partial format with input data. If
there is no further partial format with input data, KCRMF/kcrfn contains the identifier
of the most recently read partial format. In this case KCRMF=KCMF (kcrfn=kcfn).

– for a message in line mode: blanks or
name of the edit profile

– for a message from a partner service:
KCRMF/kcrfn contains the format identifier or the name of the abstract syntax of the
next message (segment) which can be read by the service defined in the KCRPI
field. After the MGET call for the last message (segment), this field contains the
format identifier of the last message (segment).

17. in the KCRPI field

– for a message from a job-receiving service:
service ID of a job-receiving service for which message segments or status infor-
mation is present which has not yet been read.

– in all other cases: blanks.

Service status in the KCVGST/kcpcv_state field

Entry for dialogs without distributed processing:

"O" (open)
The local service is open.

Entries with distributed processing after a message from a partner service:

"C" (closed)
The job-receiving service has terminated (PEND FI).

"D" (disconnected)
Communication with a job receiver was terminated as a result of a loss of
connection (only with OSI TP).

"E" (error)
Only when communicating via LU6.1:
The job-receiving service was terminated using PEND ER or PEND FR.

"I" (inactive)
The job-receiving service is inactive, i.e. it could not be started since, for example,
the transaction code was unknown or is locked or no association could be reserved
for OSI TP.

B

KDCS calls MGET

Programming Applications with KDCS 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

"O" (open)
The partner service is open, you may send further messages to the partner service.

"P" (pending end dialogue)
This status can only occur in the case of heterogeneous links and for dialogs for
which the Commit functionality has not been selected:
The job-receiving service wants to end the communication. If the job-submitting
service does not agree, it can continue the service using MPUT EM.

"R" (rollback)
Only when communicating via LU6.1:
The job-receiving service was terminated with PEND RS.

"T" (timeout)
The job-receiving service has been or is being terminated incorrectly, since no
answer has been received from the job-receiving service within the generated wait
time or it has not been possible to seize a session within the generated wait time.

"Z" (error)
The job-receiving service has been terminated by the system using PEND ER. (e.g.
KDCS call in a job-receiving service with error ≥ 70Z). The Z service status is also
set if a program unit run was terminated with PEND ER, FR or RS in an OSI TP job-
receiving service.

If you read a message which originated from a job-submitting service, the service status can
only have the value “O”.

With the service statuses D, E, I, R, T and Z no message is passed, i.e. the KCRLM return
length is 0.

Transaction status in the KCTAST/kcpta_state field

Entries for dialogs without distributed processing:

"O" (open)
The transaction in the local service is open.

"C" (closed)
Either start of service or after a synchronization point.

"R" (rollback)
A rollback message has been read.

MGET KDCS calls

338 Programming Applications with KDCS

Entries for distributed processing after a message from the partner service:

"C" (closed)
Only when communicating via LU6.1:
The transaction is finished in the partner service. This situation occurs if PEND RE
or PEND FI has occurred in the partner service and PEND RE is active in the local
service.

"H" (heuristic hazard)
Only when communicating using the OSI TP protocol:
The result of a transaction is undetermined since communication with at least one
communication partner has been interrupted. The possibility that one of the commu-
nication partners involved in the last transaction has made a heuristic decision
which conflicts with the actual result of the last transaction cannot be excluded.

"I" (inactive)
A job receiver transaction exists because, for example, the transaction code is
unknown or no connection could be reserved during the generated waiting time.

"M" (mismatch)
It was not possible to synchronize the transaction in the remote service with the
transaction in the local service. This may occur after a timeout or after termination
and start of a UTM-F application.
When communicating via the OSI TP protocol, this situation may occur if at least
one of the communication partners involved in the last transaction has made a
heuristic decision which conflicts with the actual result of the transaction.

"O" (open)
The transaction in the partner service is open.

"P" (prepare to commit)
The partner service has either initiated the end of transaction itself or is requesting
the local service to initiate the end of transaction.

"R" (rollback)
The transaction in the partner service has been rolled back.

"U" (unknown)
Only possible when communicating via OSI TP without global transaction logging.
The transaction status is unknown.

When you read a message from a job-submitting service, only the values "C", "O", "P" or
"U" can occur.

KDCS calls MGET

Programming Applications with KDCS 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS return codes in the KCRCCC field

000 Operation carried out.
The message (segment) was read in its entirety.

01Z Length conflict: KCLA < KCRLM. The message area is too short, the message
(segment) has been truncated.

02Z In the case of messages from a socket client:
Length conflict KCLA < KCRLM. The message area is too small; the part of the
message segment that was truncated can be read by means of another MGET call.

03Z For partial formats:
KCMF/kcfn does not contain the name of the next returned partial format.

For distributed processing and messages from UPIC clients:
KCMF/kcfn does not contain the format identifier or the name of the abstract
syntax of the message (segment) which is to be read next.

No message (segment) is transferred to the message area; the KCRPI and
KCRMF/kcrfn fields contain a new proposition for the next message (segment).

05Z With individual formats:
The format displayed on screen differed from the format specified in KCMF/kcfn.
The message was formatted as per the format identifier of the most recent display
and not as specified in KCMF/kcfn.

In line mode:
The first character in KCMF/kcfn is not a blank
or the name of the edit profile is invalid.

10Z Message has already been completely read

12Z (Only possible in the job-submitting service)
No (more) message (segments) are present from the specified service ID. However,
message (segments) are still present from other job-submitting services. The
content of the message area has not been changed. The KCRPI and KCMF/kcfn
fields contain a new proposition about which message (segment) can be read next.

19Z The function key has not been generated or the allocated special function is invalid.

20Z...39Z
The terminal user has pressed a function key to which a return code was assigned
during generation,
or KDCSxx (01 ≤ xx ≤ 20) was entered (function key simulation),
ot the function key was triggered by a UPIC client.

If a function key is triggered by an UPIC partner or a function key to which a
message has been assigned is pressed then this message must be read with a
subsequent MGET call.

B

B

MGET KDCS calls

340 Programming Applications with KDCS

Additional return codes can be found in the dump:

70Z Operation cannot be performed by the system (system or generation error); see
KCRCDC.

71Z An MGET call was entered in the first processing step of the first program unit run
of an asynchronous service, or INIT is missing in this program unit run.

72Z Specification in KCOM is invalid.

73Z Length entry in KCLA is invalid.

77Z The message area is missing or cannot be accessed in the specified length.

78Z The FORMAT event exit reports an error. B

KDCS calls MGET

Programming Applications with KDCS 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Features of the MGET call

● Reaction to length conflicts

The actual message (segment) length is returned in the KCRLM field.

When length conflicts occur, note the following: If KCRLM < KCLA only KCRLM
characters (bytes) are moved to the message area. The contents of the rest of the
message area are undefined. Only one message (possibly consisting of two or more
message segments) can be read in a program unit. If the length entry in KCLA of the
parameter area is shorter than the actual message (segment), the remainder (KCRLM-
KCLA) is lost and can no longer be read with a subsequent MGET.
Exception: if, in the case of messages from a socket client, the message area is too
small (KCLA < KCRLM), the rest of the truncated message segment can be read by
means of another MGET call.

Example

Three message segments, each of 100 bytes, are to be read using MGET calls. The
table below shows the effect of different specifications in the KCLA field.

● Conversion of lower case letters

openUTM does not automatically convert lowercase letters into uppercase letters when
MGET is called. However, you can perform this conversion by using the appropriate
format generation.

On BS2000 systems you can also perform a conversion by using edit profiles.

User specification UTM returns
ExplanationsKCOP KCLA KCRLM Transferred

length in MA
KCRCCC

MGET 100 100 100 000 The message segment
was received successfully

MGET 50 100 50 01Z The message segment
was longer than specified
in KCLA, the remainder is
lost.

MGET 150 100 100 000 The message segment
was received successfully

MGET 100 000 000 10Z No fourth message
segment was present

B

MGET KDCS calls

342 Programming Applications with KDCS

● Messages of length zero

Messages of length zero are, for example, possible in the following cases:

– Only the transaction code (without any further data) was sent at the start of a service

– In a follow-up program unit a message is to be read from the preceding program
unit of the same service and MPUT was specified with length 0 in the previous
program unit or no MPUT was issued.

– A client program or a partner service has sent an empty message.

– The terminal user pressed a function key without assigning a message,
or KDCSxx (01 ≤ xx ≤ 20) was entered (function key simulation).

– The terminal user has sent an empty message (DUE function with empty screen)

● Removing a transaction code

If a transaction code was specified together with a message at service start and no
function key was used, the following is removed from the message

– the transaction code, including trailing blanks, if the entry was unformatted
(MAX statement parameter LEADING-SPACES)

– the first 8 characters of the message (transaction code) if the entry was formatted
with *formats

– the first 10 characters (attribute field plus TAC) if the entry was formatted with
+formats

– the first 8 characters of the message (transaction code) if the entry was formatted
with +formats

– the first eight (with *formats) or ten (with +formats) characters of the first message
if the entry was formatted with partial formats.

The removal of the transaction code can be prevented in an INPUT exit.

If the MGET call is used in the BADTACS event service the invalid transaction code is
not removed from the input message. The entire message is made available. This also
applies if the invalid transaction code is allocated to a function key.

B

B

B

B

B

B

B

B

B

B

KDCS calls MGET

Programming Applications with KDCS 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● Receiving partial formats

Every partial format must be read with a separate MGET.
Following INIT, openUTM supplies, in KCRMF/kcrfn, the name of the first returned
partial format in which data were entered. This name must be specified in KCMF/kcfn
when issuing MGET. MGET supplies, in KCRMF/kcrfn, the name of the next partial
format together with input data, which must be specified in KCMF/kcfn with the following
MGET. With the final partial format with input data, KCRMF/kcrfn again has the name
specified in KCMF/kcfn, see also example. You recognize the last partial format by the
identical entries in KCMF/kcfn and KCRMF/kcrfn or by the return code 10Z in the next
MGET.

If no data was input in any of the partial formats, the first MGET call supplies
KCRCCC=10Z, KCRLM=0, KCRMF=blanks in the return area.

If the name entered in KCMF/kcfn differs from the one previously supplied in
KCRMF/kcrfn then
– openUTM does not write data to the message area
– openUTM sets KCRLM=0
– openUTM sets the return code 03Z in KCRCCC
– openUTM writes the ‘correct’ format name again in KCRMF/kcrfn.

Note that the way in which partial formats are transferred also depends on the FHS start
parameters, see FHS manual. If, for instance, no entry is made in any partial format,
some FHS start parameters cause openUTM to return KCRCCC=10Z and
KCRMF/kcrfn=blanks after the first MGET.

Example

The three partial formats *PART1, *PART2 and *PART3 are to be read using MGET
calls; note the return information in KCMF.

You recognize the last partial format by the identical entries in KCMF/kcfn and
KCRMF/kcrfn or by the return code 10Z in the next MGET.

User entries UTM return info
ExplanationsKCOP KCMF/kcfn KCRMF/kcrfn KCRCCC

INIT
MGET
MGET
MGET
MGET

*PART1
*PART2
*PART3
*PART3

*PART1
*PART2
*PART3
*PART3
*PART3

000
000
000
000
10Z

Read 1st partial format
Read 2nd partial format
Read 3rd partial format
Message already completely
read

B

B

B

B

MGET KDCS calls

344 Programming Applications with KDCS

Features of the MGET call with distributed processing

● When communicating via the OSI TP protocol, the format identifier for the transfer of
the name of the abstract syntax is used. Here, blanks represent the abstract syntax of
UDT. In all cases in which the application program unit does not work with UDT, the
conversion of the message from the local representation to transfer syntax or vice versa
must be performed by the application itself - in accordance with the rules of the abstract
syntax. This process is termed the encoding or decoding of a message. To do this, the
application can use an ASN1 compiler.

openUTM carries out the encoding and decoding of messages in UDT format.

● When communicating via the LU6.1 protocol, openUTM transfers the format identifier.
However, it does not format the message: the partner applications exchange only net
data. When using MPUT, you can specify any name in the KCMF/kcfn field. This name
is indicated to the reading program unit in the KCRMF/kcrfn field after INIT or following
a preceding MGET and must be specified in the KCMF/kcfn field when calling MGET.

● The return codes for the function keys (19Z through 39Z) cannot occur with an MGET
call in the job-receiving service, because the job-submitting service cannot forward any
corresponding special functions to the job-receiving service.

● In the KDCS return area the MGET call provides the service status and the transaction
status of the partner service.

● If you do not adhere to the bottom-up strategy (see page 137) when communicating via
LU6.1, a service restart can nevertheless be initiated by sending a message from the
job-submitting service to the job-receiving service. Then the follow-up program unit in
the job-receiving service is started. This uses MGET to read the message from the last
synchronization point and receives the service status "O" and the transaction status "C"
from the job submitter. After the INIT call it recognizes from the service indicator
KCKNZVG/kccv_status in the KB header that this is a service restart.

Particularities of the MGET call when communicating with a UPIC client

openUTM transfers the format identifier during communication, but it does not format the
message: only net data is exchanged between the UPIC client and the application. When
a message is sent, any name can be specified as the format identifier. This name is
displayed in the reading program after the INIT or after a preceding MGET in the
KCRMF/kcrfn field and must be specified for an MGET call in the KCRMF/kcfn field.

KDCS calls MGET

Programming Applications with KDCS 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Particularities of the MGET call when communicating with a socket partner

A message segment from a socket partner can be read by means of several MGET calls.
Using the return code it is possible to determine whether a message (segment) has been
read. The return code 02Z indicates that a message segment has not yet been read in its
entirety. By comparing KCLA and KCRLM you can determine how large the rest of the
message segment is. The return code 000 indicates that the message (segment) has been
read in its entirety and that the next MGET will read a new message (segment).

Features of a rollback message

A rollback message always originates from a program unit terminated with PEND RS.
Following service restart, it is supplied to the program unit which was started as a follow-up
program unit after the synchronization point. The rollback message must be read with the
first MGET call. It enables the program unit to react appropriately and thus avoids repeated
rollback of the transaction. The program unit recognizes a service restart from the service
indicator which takes the value "R". It is available in the KCKNZVG/kccv_status field after
the INIT call. The rollback message is deleted after processing in the case of a loss of
connection or KDCOFF.

With the MPUT call, you specify in the KDCS parameter area, whether (KCDF =
KCRESTRT) or not (KCDF contains binary zero) a screen restart is performed when the
service is restarted. If no screen restart is requested, openUTM rolls back the transaction
and immediately starts the program unit run specified at the last synchronization point. The
rollback message can be read with MGET.

MGET call for reading status information from the job receiver

Status information takes the form of messages of length 0 which are internally created by
openUTM. Their only purpose is to indicate the status of the job-receiving service when
errors occur in distributed processing. The status information is read unformatted using
MGET calls (blanks in KCMF/kcfn).

If it was necessary to roll back the distributed transaction then, when the service restarts, it
is advisable to restart the program unit for which a message was present at the end of the
last distributed transaction, or for which the next input from the terminal is intended. If a
program unit is started in the job-submitting service, openUTM sends status information to
this program, if necessary. Here you have to consider the following:

– The status information relates to the job receivers which caused the distributed trans-
action to be rolled back and were or are subsequently being terminated.

MGET KDCS calls

346 Programming Applications with KDCS

– If the input message at service restart is for the program unit, then the input message
has to be read with the 1st MGET and the status information with the second MGET. If,
however, the input message originates from the job-receiving service and is not sent by
the job receiver, then you only receive the status information of the job receiving
service.

– If the input message at service restart is for the job-receiving service and if this service
cannot be started within a generated wait time (e.g. because of loss of connection),
openUTM starts the follow-up program unit in the job-submitting service instead and
sends the job-submitting service status information which has to be read with the first
MGET.

– If, after service restart of the job-submitting service, a job-receiving service is addressed
again and if an error reoccurs, then the job-submitting service can be rolled back
several times to the same synchronization point. Since the status information is retained
from the preceding rollback, you may receive two or more bits of status information. In
this case you obtain with each MGET the service ID of a subsequent service for which
there is status information.

– There may be status information available from different job-receiving services. This
status information has to be read in the order suggested by openUTM (KCRPI).

– "Substitute messages" are received with distributed processing via OSI TP, even if
there is no service restart.
If global transaction logging is not active, the transaction in the job-submitting service
is not rolled back if an error occurs in the job-receiving service (e.g. timeout).
If global transaction logging is active, the transaction in the job-submitting service is not
rolled back only if no distributed transaction with the job receiver is open, e.g. if the timer
for the association allocation has expired.

Special KDCS functions:

The KDCS interface provides "special KDCS functions" as a particular way of entering data
at the terminal. The terminal user activates these functions by entering the string

(KDCSxx) xx= 01,...,20

when UTM expects to receive input for a follow-up program unit run. A maximum of
20 special KDCS functions are therefore possible. The special KDCS functions are
intended to be replacement inputs for terminals that do not have the appropriate keys.

B

B

B

B

B

B

B

B

B

KDCS calls MPUT

Programming Applications with KDCS 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

MPUT Send dialog message

You use the MPUT (message put) call:

– to send a dialog message (segment) to a client

– to send a message (segment) to a subsequent program unit in the same dialog step or
in a linked service

– to send a rollback message for the service restart after PEND RS

– to send the last screen output of a stacked service to the terminal

– with distributed processing, in the job-submitting service, to send a message (segment)
to a job-receiving service, or

– with distributed processing, in the job-receiving service, to send a message (segment)
to the job-submitting service

– to request a processing confirmation from an OSI TP partner

– to send a negative processing confirmation or an error message to an OSI TP partner.

– to create an error message that is sent to a UPIC client or a socket application in the
event of abnormal termination of a service (system PEND ER) initiated by openUTM

In an asynchronous service, an MPUT message can only be sent to a job-receiving service
or to a follow-up program unit.

The call cannot be used in an MSGTAC program.

MPUT KDCS calls

348 Programming Applications with KDCS

Setting the KDCS parameter area (1st parameter)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

NT message segment
NE last message segment or complete message.

For KCOM = HM/EM/ES/PM/RM you have to set binary zero for all the fields not used in
the KDCS parameter area.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLM KCRN KCMF/kcfn KCDF

Message in format
mode

"MPUT" "NT"/
"NE"

Length Blanks Format identifier Screen
function

Message in line mode "MPUT" "NT"/
"NE"

Length Blanks Blanks ——

Message in line mode "MPUT" "NT"/
"NE"

Length Blanks Blanks/
edit profile

Screen
function

Message to program
unit

"MPUT" "NT"/
"NE"

Length TAC — —

Last screen output of
stacked service

"MPUT" "PM" Length Blanks Format
identifier/ Blanks

Screen
function

Send rollback
message

"MPUT" "RM" Length Rollback ID binär 0 binary 0/
KCRESTRT

Message to job-
receiving conv.
(LU6.1)

"MPUT" "NT"/
"NE"

Length Service ID Format
identifier/ Blanks

binary 0

Message to job-
sub. conv. (LU6.1)

"MPUT" "NT"/
"NE"

Length Blanks Format
identifier/ Blanks

any value

Message to job-receiv.
service (OSI TP)

"MPUT" "NT"/
"NE"

Length Service ID Blanks/
abstract syntax

0

Message to job-subm.
service (OSI TP)

"MPUT" "NT"/
"NE"

Length Blanks Blanks/
abstract syntax

0

Request a dialog
confirmation

"MPUT" "HM" 0 Service ID/
blanks

Blanks 0

Error message or neg.
confirmation

"MPUT" "EM" 0 Service ID/
blanks

Blanks 0

Error message for
UPIC client or socket
application

"MPUT" "ES" Length Blanks Blanks/
Format identifier

0

X/WX/WX/W
X/W
X/WX/WX/WX/W

BB
B
BB
B
B
B

KDCS calls MPUT

Programming Applications with KDCS 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the 2nd parameter

Here you have to supply the address of the message area from which openUTM is to read
the message.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "MPUT"

2. KCOM "NT"/"NE"/"PM"/"RM"/"HM"/"EM"/"ES"

3. KCLM Length in bytes

4. KCRN Blanks/TAC/Rollback ID/service ID

5. KCMF/kcfn Format identifier/blanks/
Name of abstract syntax/
also possible on BS2000 systems:
edit profile

6. KCDF Screen function/binary zero

Message area

7. Data

KDCS call

1st parameter 2nd parameter

8. KDCS message area Message area

9. C/C++ macro calls

Macro name Parameters

KDCS_MPUTNT / KDCS_MPUTNE (nb,kclm,kcrn,kcfn,kcdf)

KDCS_MPUTPM (nb,kclm,kcfn,kcdf)

KDCS_MPUTRM (nb,kclm,kcfn)

KDCS_MPUTHM / KDCS_MPUTEM (nb,kcrn)

KDCS_MPUTES (nb,kclm,kcfn)

B
B

MPUT KDCS calls

350 Programming Applications with KDCS

For the MPUT call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the "MPUT" operation code.

2. In the KCOM field:

NT for message segment.

NE for complete message or final message segment.

PM or the last screen output of a stacked service or the request for a service restart
in the sign-on service.

RM for a rollback message.

HM for requesting a processing confirmation from OSI partners.

EM for an error message or a negative processing confirmation to OSI partners.

ES for creating an error message to a UPIC client or a socket application.

3. In the KCLM field, the length of the message in the message area which is to be sent
(length zero is also permitted).

4. In the KCRN field, depending on message recipient:

– the transaction code of a follow-up program if this MPUT sends a message to a
follow-up program in the same application (this also applies for a PEND FC call).

– blanks if this MPUT sends a dialog message to a client.

– the rollback identification (rollback ID) if a rollback message is to be sent for the
service restart. The rollback ID must begin with "<" (see “Features of a rollback
message” on page 345 in the description of the MGET call).

– blanks if this MPUT creates an error message for a UPIC client.

– blanks for a response to the job-submitting service.

– the service ID of a job-receiving service if this MPUT call is directed to a job-
receiving service.

openUTM return information

Field name in the KB return area Contents

10. KCRCCC Return code

11. KCRCDC Internal return code

KDCS calls MPUT

Programming Applications with KDCS 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

5. In the KCMF/kcfn field

– a format identifier for a message in format mode or for KCOM = PM with KCLM> 0.
If a screen is to be refreshed, the specified format must be a component of the
screen to be refreshed.

– blanks for a message in line mode

– blanks for KCOM = PM with KCLM = 0

– blanks or format identifier for messages to a UPIC client or a LU6.1 partner.

– Blanks or name of the abstract syntax
The name of the abstract syntax of the message must be specified in the case of
messages to OSI TP partners. Here, blanks represent the abstract syntax of UDT.
In this case, the BER transfer syntax is used and the encoding of the message is
performed by openUTM.
If you enter a value other than blanks, the message must be transferred to
openUTM in encoded format, i.e. in the transfer syntax corresponding to this
abstract syntax.

– in all other cases, irrelevant

– edit profile for a message in line mode

6. In the KCDF field, a screen function, if the receiver is a terminal.

In the following cases you have to set binary zero in the field:
– KCMF/kcfn contains the name of a #format.
– The message is intended for a job-receiving service.
– The message is intended for an OSI TP job-submitting service.
– MPUT PM with KCLM = 0 is used.
– KCMF/kcfn contains the name of the edit profile.

When sending a rollback message (KCOM = RM), you must specify KCRESTRT or
binary zero.

You enter in the message area:

7. The message you want to output.

You enter the following for the KDCS call:

8. 1st parameter: the address of the KDCS parameter area
2nd parameter: the address of the message area from which openUTM is to read the
message (or user information). You enter the address of the message area even if you
have entered the length 0 in KCLM.

B

B

MPUT KDCS calls

352 Programming Applications with KDCS

9. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

10. In the KCRCCC field, the KDCS return code.

11. In the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes at the MPUT call

The following codes can be analyzed in the program:

000 Function carried out

41Z Too many MPUT calls:

– another MPUT NT/NE after MPUT NE/HM

– another MPUT after or before an MPUT PM

– more than one MPUT RM

– MPUT RM in the first transaction of a service or unpermitted change of entry in
KCRN (if there are multiple message segments, the TAC of the follow-up
program must always be the same).

– MPUT HM issued as the first call to an OSI TP partner

– following a CTRL call, an MPUT HM was issued to the same partner

– following a CTRL AB call, an MPUT was issued to the same partner

– only in an OSI TP job-receiving service: an MPUT was issued to the job
submitter and KCSEND has the value N.

45Z The value specified in KCMF/kcfn is invalid. Possible cause:
The specified abstract syntax has not been generated for the OSI-LPAP partner

Additional error codes can be found in the dump:

70Z The system cannot perform the operation (system or generation error), see
KCRCDC.

71Z MPUT call in an MSGTAC program unit or no INIT in program unit.

72Z Entry in KCOM is invalid or MPUT-PM was entered in an asynchronous program
unit.

73Z Length entry in KCLM is invalid.

KDCS calls MPUT

Programming Applications with KDCS 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

74Z Value in KCRN is invalid, because
– in a dialog service KCRN contains a value, which is not a TAC of a dialog

program unit nor a valid service ID
– in an asynchronous service KCRN contains a value, which is not a TAC of an

asynchronous program unit nor a valid service ID
– the user is not entitled to use the program unit run
– in an asynchronous program unit, KCRN is filled with blanks
– with MPUT HM, the destination in KCRN is not an OSI TP partner
– with MPUT EM, the destination in KCRN is not an OSI TP partner.
– with MPUT ES in KCRN, no blanks have been specified.

75Z Value in KCMF/kcfn is invalid. Possible causes:

– Format identifier in KCMF/kcfn changes or is invalid.

– The edit profile has not been generated or the edit profile changes for message
segments (MPUT NT).

77Z The message area is missing or cannot be accessed in the specified length.

89Z Contents of fields not used in the KDCS parameter area are not equal to binary zero
for KCOM PM/RM/HM/EM/ES.

Features of the MPUT call

● The message area is left unchanged when openUTM executes the call.

● Maximum message length for MPUT NT/NE

For messages to terminals, to transport system applications of type APPLI or to a
subsequent program unit, the total message may be no longer than the value generated
in the NB operand of the MAX control statement.

Otherwise, the length of a message segment is limited to 32,767 bytes and the length
of the total message is unlimited.

● You can use screen functions for outputs in format mode (see page 108ff).

If you use edit profiles, KCDF must be set to binary zero, otherwise openUTM returns
70Z.

● You can display multiple messages in a processing step, provided that the messages
are issued to job-receiving services and the transaction remains open at the end of the
processing step. In all other cases a maximum of one message may be displayed.

B

B

B

B

MPUT KDCS calls

354 Programming Applications with KDCS

● A message can consist of two or more message segments, e.g. two or more MPUT NT
followed by an MPUT NE with the same KCRN. You can create messages in parallel
for job-receiving services, i.e. the service ID in KCRN can change. Any other change to
the message destination is not permitted, because it creates an end of message for all
messages not yet terminated. Following an unpermitted change of message destina-
tions, no further MPUT is permitted. After terminating a message with MPUT NE or
MPUT HM, no further MPUT is permitted with KCRN.

● With PEND KP/RE/FI/ER/FR and PGWT KP/CM, the entire message is transmitted to
the communication partner (formatted, if applicable).

● With PEND PA/PR/FC/SP, the message or message segments are passed to the
follow-up program whose TAC was specified in KCRN (PEND and MPUT calls). The
follow-up program must read each message segment with a separate MGET.

● At the end of a processing step all messages not yet terminated are closed implicitly by
openUTM.

● In a program unit run, ending with PEND PA/PR, PS, SP or FC, the MPUT call can be
omitted. In a program unit run ending with PEND KP/RE or PGWT KP, at least one
MPUT must be entered. Equally, in a dialog service, at least one MPUT have been
entered before PEND FI/ER or FR. However, this does not apply, if the KCSEND field
contains the value "N" in an OSI TP server service.
The MPUT is not required in the sign-on service when it is to be followed by a service
restart. openUTM then terminated the service that is ready to be restarted abnormally.

● In an asynchronous service, no MPUT may be issued before a PEND FI/ER or FR.

● Empty messages, i.e. KCLM=0, are permitted.

If the empty message is sent to the terminal in format mode, it causes an empty format
or partial format to be output.
Any dependencies must be taken into account by the FHS start parameters. See the
FHS manual.

Empty messages are also permitted in the case of distributed processing.

● An empty message to a transport system application of the type APPLI will not be sent.

B

B

KDCS calls MPUT

Programming Applications with KDCS 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● In the case of message segments to socket partners, each message segment must be
sent by means of a separate MPUT NT. A separate message segment is created for
each MPUT NT/NE.
In the case of MPUT calls with KCLM=0, no messages are sent unless automatically
created USP headers (see page 198) are used. In this case, the header is also sent in
the case of MPUT NE/NT with a length of zero. Exception: if the program unit contains
only a single MPUT NE/NT and KCLM=0, no header is sent.

● If the receiver is not a terminal, the message is sent transparently, i.e. the message may
contain any bit pattern.

● An empty message to a UPIC application is sent since the permission to send has been
transferred.

● Sending message segments

A message can consist of a number of message segments, e.g. multiple MPUT NT
followed by an MPUT NE with the same KCRN. You can create messages in parallel
for job-receiving services, i.e. the service ID in KCRN can change. Any other change to
the message destination is not permitted, because it creates an end of message for all
messages not yet terminated. If the last message segment is not identified by "NE" in
KCOM, the message terminates automatically when PEND occurs.

If there is a change between line and formatted modes or a change of the edit profile,
openUTM responds with 75Z and aborts the service.

● Sending partial formats

With a terminal in format mode, a screen can be set up from multiple partial formats.
Each of these partial formats must be output with MPUT NT; the last one can be output
with MPUT NE.

● Screen functions (KCDF) can only be specified with the first MPUT NT. For subsequent
MPUT calls, KCDF must contain binary zeros. Otherwise, UTM will terminate the
service with 70Z in KCRCCC and K606 in KCRCDC.

Screen functions permitted with partial formats:

KCREPL Delete screen. This function must be specified when a screen is to be
set up anew. If KCREPL is not set, any partial format existing on the
screen will be overwritten by a new one. If the same partial format is
output again, only the contents of the fields will be replaced (same as
KCERAS).

KCALARM Audible alarm.

KCREPR Print on hardcopy printer.

KCERAS Delete unprotected fields; see section “Using partial formats” on
page 111.

MPUT KDCS calls

356 Programming Applications with KDCS

● Special features of the MPUT RM call

MPUT RM is also permitted if preceded by MPUT NT/NE or MPUT PM calls. The length
of the MPUT-RM message is limited to 32,767 bytes.
Only one rollback message can be output in a program unit run. Other MPUT calls are
permitted before or after MPUT RM. Rollback messages are deleted when the user
signs off. After a service restart, the field KCRPI contains blanks.

● Special features of the MPUT PM call

openUTM uses MPUT PM to output the last output message of a stacked service on
the screen. The following holds:

– for KCLM = 0 the output appears unchanged on the screen, for KCLM > 0 it is
overwritten (not exceeding the specified length), but sent in its entirety. The length
of the MPUT-PM message is limited by the value generated in the NB operand of
the MAX control statement.

– for output messages in line mode you must always specify KCLM = 0 (and
KCMF/kcfn = blanks)

– the program unit must terminate with PEND FI, otherwise UTM aborts the service
with 82Z

– the sign-on service must use this variant at the end of the service if a service restart
is to be executed.

● Abstract syntax with distributed processing via the OSI TP protocol

If you specify a value not equal to blanks in KCMF/kcfn when communicating with a
partner via the OSI TP protocol, then you have to generate this value as the name of
an abstract syntax for the partner. In this case, the application program unit has to
transfer the message to openUTM in encoded form, i.e. the application must convert
the message to the transfer syntax allocated to the abstract syntax. To do this, the appli-
cation can use an ASN1 compiler. Abstract syntaxes with the name "CCR" or "OSITP"
are not permitted.

● When communicating via a UPIC client or the LU6.1 protocol, openUTM transfers the
format identifier. However, it does not format the message: the partner applications
exchange only net data. When using MPUT you can specify any name in the
KCMF/kcfn field. This name is indicated to the reading program unit in the KCRMF/kcrfn
field after INIT or following a preceding MGET and must be specified in the KCMF/kcfn
field when calling MGET.

KDCS calls MPUT

Programming Applications with KDCS 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● MPUT call in the job-submitting service

– An MPUT call can be used by a job-submitting service to start a job-receiving
service in a partner application, or to send a message to a job-receiving service
which has already started.
You have to specify the service ID, which was allocated to the job-receiving service
when APRO DM was called, in the KCRN field as target.

– In a program unit run of the job-submitting service you can only use MPUT to send
messages either to the LTERM partner (KCRN=blanks), to the follow-up program
unit (KCRN=TAC) or to one or more job-receiving services (KCRN=service ID).

– In the job-submitting service KCDF must contain binary 0 for MPUT.

– Each message segment output with MPUT NT to a job-receiving service has to be
read there with a separate MGET.

– In a program unit run, no messages (message segments) may be sent to a job-
receiving service prior to PEND PR or PA, otherwise openUTM aborts the job-
submitting service with the error code KCRCCC=82Z.

● MPUT call in the job-receiving service

– Setting the KDCS parameter area is the same as for the MPUT call for a terminal.

– When communicating via LU6 protocol, the KCDF field may contain any value
which has been passed to the job-submitting service in MGET as screen function.
For message segments, only the KCDF value of the first message segment is trans-
ferred.
You have to set KCDF to binary zero when communicating via the OSI TP protocol.

– Each message segment output with MPUT NT to a partner service has to be read
there with a separate MGET.

● Particularities of the MPUT HM call

With MPUT HM, a program run can request a processing confirmation from an OSI TP
partner. The following rules apply when using MPUT HM:

– The call can only be used, if the handshake function was selected for communi-
cation; otherwise openUTM aborts the service with 72Z. With INIT, the KB header
indicates to the job-receiving service whether the handshake is permitted.

– An MPUT HM to a partner, which does not have O or U transaction status, is
rejected by openUTM with 72Z.

– At least one MPUT NT to the partner must have been entered prior to MPUT HM.

– MPUT HM produces an end of message for the communication partner.

– No data can be passed to the call (KCLM = 0).

MPUT KDCS calls

358 Programming Applications with KDCS

– Following MPUT HM only one PEND KP or one PGWT KP is permitted. With all
other PEND variants, UTM responds with the return code 82Z.

– Following MPUT HM you may not issue a further CTRL PR/PE call to the same
partner.

● Particularities of the MPUT EM call

– Using the MPUT EM call you can report an error to an OSI TP partner. If a
handshake request is confirmed negatively with the call, MPUT EM must be entered
as the first MPUT to the partner that requires a processing confirmation. The call
must be issued in the same transaction in which the handshake request was read.
Otherwise a positive confirmation is sent.

– No data can be passed to the call (KCLM = 0).

– An MPUT EM to a partner, which does not have O or U transaction status, is
rejected by openUTM with 72Z.

● Particularities of the MPUT ES call

– The MPUT ES (error system) call can be used in a dialog program unit to create an
error message for a UPIC client or socket application. This error message is only
sent when the service is terminated abnormally by openUTM (system PEND ER).

– An error message created with MPUT ES remains valid, provided it is not
overwritten with another MPUT ES, until the service is terminated with the output of
a dialog message to the UPIC client or socket application. In the case of service
concatenation (PEND FC), the error message is thus also valid in the concatenated
service.

– Each subsequent MPUT ES overwrites the error message written last. An MPUT
ES with a length of 0 deletes the error message.

– The length of the MPUT ES message is limited by the value generated in the NB
operand of the MAX control statement.

– If the transaction is rolled back, the error message is rolled back to the state of the
last synchronization point.

KDCS calls PADM

Programming Applications with KDCS 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

PADM Administer printouts and printers

The PADM (printer administration) call is used to administer the printers associated with an
LTERM printer control.

PADM provides you with the following functions:

– activate or deactivate confirmation mode for an LTERM printer control.
This function applies globally to the cluster in UTM cluster applications.

– confirm or repeat a printout

– modify the assignment of a printer to an LTERM partner.
This function is not permitted in UTM cluster applications.

– modify the printer status, i.e. lock and release printer, set up or clear connection to a
printer.
Locking and releasing apply globally to the cluster in UTM cluster applications.

– read information about a printer into the message area

– read information about printouts to be confirmed.

i A sample program which you can use here is supplied with openUTM. See the
section dealing with the KDCPADM program unit in the openUTM manual “Admin-
istering Applications” for further details.

PADM KDCS calls

360 Programming Applications with KDCS

Setting the KDCS parameter area (1st parameter)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

You must set binary zero in all the fields not used in the KDCS parameter area

Setting the 2nd parameter

Here you supply the address of the message area to which openUTM is to read the
message.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLA KCRN KCLT KCACT KCADRLT

Confirm printout "PADM" "OK" 0 Control ID LTERM
name

Binary
zero

Binary
zero

Repeat printout "PADM" "PR" 0 Control ID LTERM
name

Binary
zero

Binary
zero

Change confirmation
mode

"PADM" "AT"/
"AC"

0 Control ID/
blanks

LTERM
name

Binary
zero

Binary
zero

Change printer
assignment

"PADM" "CA"; is not
permitted for UTM
cluster applica-
tions.

0 Control ID LTERM
name

Binary
zero

LTERM
name

Change printer
status

"PADM" "CS" 0 Control ID LTERM
name

ON/OFF/
CON/DIS

Binary
zero

Information on
printout

"PADM" "AI" 44 Control ID/
blanks

LTERM
name

Binary
zero

Binary
zero

Information on
printer

"PADM" "PI" 34 Control ID/
blanks

LTERM
name

Binary
zero

Binary
zero

KDCS calls PADM

Programming Applications with KDCS 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "PADM"

2. KCOM "OK"/"PR"/"AT"/"AC"/"CA"/"CS"/"AI"/
"PI"

3. KCLA Length in bytes0

4. KCRN Control ID/blanks

5. KCLT LTERM name of control terminal

6. KCACT "ON"/"OFF"/"CON"/"DIS"/binary zero

7. KCADRLT Binary zero/LTERM name

KDCS call

1st parameter 2nd parameter

8. KDCS parameter area Message area

9. C/C++ macro calls

Macro name Parameters

KDCS_PADMOK / KDCS_PADMPR /
KDCS_PADMAT / KDCS_PADMAC

(nb,kcrn,kclt)

KDCS_PADMCA (nb,kcrn,kclt,kcadrlt)

KDCS_PADMCS (nb,kcrn,kclt,kcact)

KDCS_PADMAI / KDCS_PADMPI (nb,kcla,kcrn,kclt)

PADM KDCS calls

362 Programming Applications with KDCS

For the PDAM call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the PADM operation code.

2. In the KCOM field

OK confirm printout

PR repeat printout

AC activate acknowledgement mode.
AC applies globally to the cluster in UTM cluster applications.

AT deactivate acknowledgement mode, i.e. switch back to automatic mode.
AT applies globally to the cluster in UTM cluster applications.

CA assignment to a different LTERM.
CA is not permitted in UTM cluster applications.

CS change the state of a printer.
CS for locking and releasing applies globally to the cluster in UTM cluster appli-
cations.

AI read information about printouts to be confirmed

PI read information about printer

3. In the KCLA field, the length of the data to be transferred to the message area.
– if KCOM=AI: 44
– if KCOM=PI: 34

and 0 for all other variants.

openUTM return information

Message area Contents

10. Data/-

Field name in the KB return area

11. KCRLM Actual length

12. KCRCCC Return code

13. KCRCDC Internal return code

14. KCRMF/kcrfn Follow-up control ID/blanks

KDCS calls PADM

Programming Applications with KDCS 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

4. In the KCRN field

– for KCOM = OK/PR/CA/CS the control ID of a printer as generated in the
PTERM statement with KDCDEF

– for KCOM = AT/AC/AI/PI the control ID of a printer (as per PTERM statement) or
blanks if the operation is to be valid for all printers assigned to the printer control
terminal.

5. In the KCLT field, the LTERM name of the LTERM printer control. If your own terminal
is not the printer control terminal, your user ID must have administration privileges.

6. In the KCACT field, if KCOM = CS the action to be performed:

ON the printer is unlocked (STATUS = ON);
applies globally to the cluster in UTM cluster applications.

OFF the printer is locked (STATUS = OFF);
applies globally to the cluster in UTM cluster applications.

CON set up virtual connection to printer

DIS clear virtual connection to printer.

Enter binary zero for all other variants.

7. In the KCADRLT field with KCOM = CA, the name of the LTERM partner to which the
printer is to be reassigned. The printer is identified by its control ID specified in KCRN.
For all other variants binary zero is entered.

You specify the following for the KDCS call:

8. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area to which UTM is to read the message.
You enter the address of the message area even if you have entered the length 0 in
KCLA.

9. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

10. For KCOM = AI/PI: in the specified message area the message in its actual length but
not exceeding the desired length.

11. In the KCRLM field, the actual length of the message which may differ from the length
specified in KCLA of the parameter area.

12. In the KCRCCC field, the KDCS return code, see next page.

PADM KDCS calls

364 Programming Applications with KDCS

13. in the KCRCDC field, the internal return ode of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

14. in the KCRMF/kcrfn field, if KCOM = AI/PI, the control ID of the next printer which is
assigned to the printer control LTERM or blanks if it is the last assigned printer.

KDCS error codes for the PADM call

The following codes can be analyzed in the program:

000 Operation carried out (for KCOM = AI/PI) or the administration job is accepted
(for KCOM = OK/PR/CA/CS/AT/AC).

01Z Length conflict: KCLA < KCRLM, the message is truncated.

40Z System cannot perform the operation (generation error or system error, no authori-
zation for this call), see KCRCDC.
The operation is not permitted in a UTM cluster application.

42Z Entry in KCOM is invalid.

43Z Length entry in KCLA is negative or invalid.

44Z Control ID specified in KCRN is invalid or there is no printer with this control ID in
the area of the control terminal.

46Z Entry in KCLT is invalid because no LTERM printer control has been defined for this
name.

47Z Message area missing or cannot be accessed in the specified length.

49Z Contents of fields not used in the KDCS parameter area not equal to binary zero.

55Z Entry in KCACT is invalid.

56Z Entry in KCADRLT is invalid.

An additional error code can be found in the dump:

71Z INIT missing in this program.

KDCS calls PADM

Programming Applications with KDCS 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Return information in the message area for PADM AI

You can use a language-specific data structure to structure the message area when calling
PADM AI. For COBOL this is defined in the KCPADC COPY element and for C/C++ in the
kcpad.h include file. It has the following structure:

If there is no printout to be confirmed, openUTM writes blanks in the message area.

Byte Field name
COBOL/C/C++

Meaning

1 - 8 KCACKCID Control ID of the printer

9 - 16 KCGENUID UTM user ID of the job originator

17 - 24 KCDPUTID Job ID (assigned by openUTM)

25 - 33 KCGENTIM1

1 For C/C++ the summary fields KCGENTIM and KCSTTIM are not defined. However, the specific fields for
day/month/year/working day/hour/minute/second are defined.

Time of the FPUT/DPUT call in the form dddhhmmss:

25 - 27
28 - 29
30 - 31
32 - 33

KCGENDOY
KCGENHR
KCGENMIN
KCGENSEC

ddd
hh
mm
ss

Day of the year (value range 001 - 366)
Hour (value range 00 - 23)
Minute (value range 00 - 59)
Second (value range 00 - 59)

34 - 42 KCSTTIM1 For time-delayed jobs the required start time
dddhhmmss:

34 - 36
37 - 38
39 - 40
41 - 42

KCSTDOY
KCSTHR
KCSTMIN
KCSTSEC

ddd
hh
mm
ss

Day of the year (value range 001 - 366)
Hour (value range 00 - 23)
Minute (value range 00 - 59)
Second (value range 00 - 59)

Blanks are entered for a job without time delay.

43 KCPOSMSG Y
N

Positive confirmation job
No positive confirmation job

44 KCNEGMSG Y
N

Negative confirmation job
No negative confirmation job

PADM KDCS calls

366 Programming Applications with KDCS

Return information in the message area for PADM PI

You can use a language-specific data structure to structure the message area when calling
PADM PI. For COBOL this is defined in the KCPADC COPY element and for C/C++ in the
kcpad.h include file. It has the following structure:

Features of the PADM call

● PADM calls with the modification AT/AC are not executed until the end of the trans-
action. For the calls PADM OK/PR/CS/CA, a check is made only at the end of the trans-
action as to whether the call can be executed at all. Thus KCRCCC = 000 after such a
call does not necessarily guarantee that the call can be successfully executed, because
in the meantime there might be loss of connection to the printer, for example. You can
issue a PADM AI or PADM PI call in a subsequent transaction to check whether a
PADM OK/PR/CS/CA call has been successful.

● If there is no printout to confirm for a PADM OK/PR call, then PADM OK or PADM PR
provides the return code 40Z.

● The printer assignment with PADM CA may only be changed if the two participating
LTERMs are not connected with the application at call time, otherwise openUTM
responds with 40Z.

● When the printer is locked, openUTM responds with 40Z to reject a PADM CS call
designed to set up a connection (KCACT = CON).

Byte Field name
COBOL/C/C++

Meaning

1 - 8 KCPRTCID Control ID of the printer

9 - 11 KCSTATE Status of the printer: ON or OFF

12 KCCON Printer connection:
Y = printer connected
N = printer disconnected

13 - 14 KCPRTMOD Print mode:
AT = automatic mode
AC = confirmation mode

15 - 22 KCLTRMNM LTERM name of the assigned printer

23 - 28 KCFPMSGS Number of output jobs for this printer (without number
in KCDPMSGS)

29 - 34 KCDPMSGS Number of time-driven jobs pending for this printer
whose target time has not yet been reached.

KDCS calls PEND

Programming Applications with KDCS 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

PEND Terminate program unit

You use the PEND (program end) call to terminate a program unit. All UTM program units,
including the event services (BADTACS, MSGTAC, SIGNON) must be exited via the PEND
call (exception: event exits). Depending on the type of program involved one of the variants
of the PEND call is used.

With distributed processing, the PEND calls of job-submitting services and job-receiving
services have to be matched, see also chapter “Program structure in distributed
processing” on page 121ff.

The abbreviations in the KCOM field are derived from the following terms:

PS program and sign(on)

PA/PR program

KP keep

RE return

SP synchronization point

FI finish

FC finish and continue

RS roll back

ER error

FR finish and roll back

PEND KDCS calls

368 Programming Applications with KDCS

Setting the 1st parameter (KDCS parameter area)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

i If KCOM = PS/FC/SP/RS, all fields not used in the KDCS parameter area must be
set to binary zero.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCRN

Continue sign-on service after authori-
zation check in follow-up program unit

"PEND" "PS" TAC of the follow-up program unit

Continue processing step in the
follow-up program unit

"PEND" "PA"/
"PR"

TAC of the follow-up program unit

Terminate processing step
without terminating trans.

"PEND" "KP" TAC of the follow-up program unit

Terminate processing step
and transaction

"PEND" "RE" TAC of the follow-up program unit

Terminate transaction;
continue processing step

"PEND" "SP" TAC of the follow-up program unit

Terminate processing step,
transaction and service

"PEND" "FI" —

Terminate transaction and service;
continue proc. step in concatenated
service

"PEND" "FC" TAC of the follow-up program unit

Roll back transaction "PEND" "RS" Blanks

Abort service, roll back the
transaction, request dump and restart
the application program

"PEND" "ER" —

Abort service and roll back the
transaction no dump and no appli-
cation program restart

"PEND" "FR" Blanks

KDCS calls PEND

Programming Applications with KDCS 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "PEND"

2. KCOM "PS"/"PA"/"PR"/"KP"/"RE"/"FI"/"FC"/
"RS"/"ER"/"FR"/"SP"

3. KCRN Follow-up transaction code/
blank/—

KDCS call

1st parameter 2nd parameter

4. KDCS parameter area message area

5. C/C++ macro calls

Macro name Parameters

KDCS_PENDER / KDCS_PENDFI /
KDCS_PENDFR / KDCS_PENDRS

()

KDCS_PENDFC / KDCS_PENDKP /
KDCS_PENDPA / KDCS_PENDPR /
KDCS_PENDPS / KDCS_PENDRE /
KDCS_PENDSP

(kcrn)

openUTM return information

Field name in the KB return area Contents

6. KCRCCC Return code

7. KCRCDC Internal return code

PEND KDCS calls

370 Programming Applications with KDCS

For the PEND call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the PEND operation code.

2. In the KCOM field, the PEND call variants:

PS continuation of the sign-on service in a follow-up program

PR/PA continuation of the processing step in a follow-up program

KP end of the dialog step without transaction end

RE end of the dialog step with transaction end

SP end of transaction; continuation of the processing step in a follow-up
program

FI end of service

FC end of service with concatenation of services

RS transaction rollback (with subsequent service restart if synchronization point
exists)

ER end of service because of error; the service is terminated abnormally, the
transaction is rolled back and a dump is written

FR end of service because of error. The service is terminated abnormally, the
transaction is rolled back (without dump).

3. In the KCRN field, according to variant

– for PEND KP/RE:
the TAC of the follow-up program unit in which processing should be continued after
receiving the next input message.

– for PEND PA/PR/PS/SP:
the TAC of the follow-up program unit in which processing of the same step should
be continued.

– for PEND RS/FR:
blanks

– for PEND ER/FI: irrelevant.

You specify the following for the KDCS call:

4. 1st parameter: the address of the KDCS parameter area.

5. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

KDCS calls PEND

Programming Applications with KDCS 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

openUTM returns:

6. in the KCRCCC field: the KDCS return code, see below.

7. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes in the KCRCCC field

These error codes are only to be taken from the dump:

000 Operation carried out (with requested PEND ER).

70Z Operation PEND cannot be performed (system or generation error, deadlock,
timeout), see KCRCDC.

71Z No INIT entered in this program unit run.

81Z KCRN entry in PEND PA/PR/FC/SP/PS (TAC of the follow-up program) conflicts
with KCRN in MPUT (e.g. MPUT TAC 1 and PEND xx TAC2).

72Z KCOM contains an invalid operation modifier in a call
– in the MSGTAC program
– in the sign-on service
– outside of the sign-on service
– in the server service
– in the asynchronous service

or the operation modifier conflicts with
– the database transaction
– the communication protocol used
– the status of the sign-on service
– waiting for a DGET message

74Z – the KCRN field contains a value that is not a TAC or a follow-up TAC
– the user is not authorized to use the TAC
– a switch between a dialog TAC and an asynchronous TAC is pending
– a switch between program units with KDCS API and X/OPEN API is pending
– KCRN does not contain SPACES in a PEND RS,FR
– when waiting for a DGET message, the TAC specified in KCRN is not in a TAC

class

PEND KDCS calls

372 Programming Applications with KDCS

82Z KCOM or KCRN entry in PEND conflicts with entries in the preceding MPUT:

– MPUT with KCRN=blanks for PEND PA/PR/PS/FC
– MPUT with KCRN=TAC for PEND KP/RE/FI/ER/FR
– MPUT with KCRN=rollback ID and no PEND RS
– MPUT with KCRN=service ID for PEND PA/PR/FI/ER/FR.

87Z PEND call conflicts with transaction or service status of a remote service.

89Z Contents of fields not used in the KDCS parameter area are not equal to binary zero
(only if KCOM = PS/FC/RS/SP).

83Z – dialog program did not issue an MPUT prior to a PEND KP/RE/FI/ER/FR
– no rollback message was sent with MPUT RM prior to a PEND RS in a follow-

up transaction
– no MPUT PM issued prior to a program unit terminated with PEND FI in a sign-

on service with service restart.

86Z – job complex not terminated at the time of PEND call
– no job associated with DPUT NI call generated
– no asynchronous job sent to a service addressed with APRO AM.

KDCS calls PEND

Programming Applications with KDCS 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

The table below shows the PEND variants and the associated actions.

Variants Meaning openUTM actions

PS Sign-on service
to be continued in
follow-up program

No synchronization point

– Checks authorization data
– Possibly executes intermediate dialog to query

password/ID card information.
– Provides this program unit’s MPUT for the follow-up

program unit or saves it in the page pool if an interme-
diate dialog is required.

– Takes over the follow-up program unit’s TAC from the
KCRN field and starts the follow-up program either
immediately or on termination of the intermediate
dialog.

PA or
PR

Processing step to be
continued in the follow-up
program
The transaction remains
open
No synchronization point

– Provides MPUT of this program unit to the follow-up
program

– Takes TAC of the follow-up program from the KCRN
field. When TAC class control is used the follow-up
program unit is started immediately if it belongs to the
same TAC class, otherwise it is started with delay.
If a DGET message is to be waited for, openUTM
does not start the follow-up program unit until a
message arrives for this queue or is placed back in
the queue (redelivery) or if the maximum wait time
has expired or if the queue was deleted (see DGET
call).

SP Termination of transaction.
However, processing step
should be continued in the
next program unit.

Synchronization point!

– Closes DB transaction
– Executes DPUT, FPUT, LPUT, PTDA, SPUT and

SREL of the transaction.
– Deletes the FGET message in the first transaction of

an asynchronous service.
– Deletes messages processed with DGET from their

queues.
– Executes MPUT of this program unit
– Takes TAC of the follow-up program from KCRN field.

When TAC class control is used the follow-up
program unit is started immediately if it belongs to the
same TAC class, otherwise it is started with delay.

KP End of the processing
step without terminating
the transaction. It is to
be continued in the
next processing step.

No synchronization point

– Executes MPUT of this program unit
(if necessary formats message).

– If necessary, takes data in KB and transfers it to the
follow-up program as soon as it is initialized.

– Takes TAC of the follow-up program from KCRN field
and starts follow-up program as soon as the next
message arrives.

PEND KDCS calls

374 Programming Applications with KDCS

RE End of a processing step
and simultaneous end of
the transaction. The
service is to be continued
in a follow-up program.

Synchronization point

– Closes DB transaction.
– Executes DPUT, FPUT, LPUT, PTDA, SPUT and

SREL of the transaction.
– Deletes the FGET message in the first transaction of

an asynchronous service.
– Deletes messages processed with DGET from their

queues.
– Executes MPUT of this program unit

(formats message if necessary).
– Releases resources.
– Takes TAC of the follow-up program unit from KCRN

field and starts follow-up program unit as soon as the
next message arrives.

– If necessary, fetches data from KB and transfers it to
the follow-up program unit as soon as it is initialized.

FI End of service
and end of the
transaction.

Synchronization point!

– Closes DB transaction.
– Executes DPUT, FPUT, LPUT, PTDA, SPUT and

SREL (for GSSB) of the transaction.
– Deletes the FGET message in the first transaction of

an asynchronous service.
– Deletes messages processed with DGET from their

queues.
– Releases LSSBs of the service.
– Executes MPUT of this program unit

(formats message if necessary).
– Releases resources

FC End of service
and end of the transaction,
the processing step is to
be continued in the
concatenated service

Synchronization point!

– Closes DB transaction.
– Executes DPUT, FPUT, LPUT, PTDA, SPUT and

SREL (for GSSB) of the transaction.
– Deletes messages processed with DGET from their

queues.
– Releases LSSBs of the service.
– Transfers MPUT of this program unit to the first

program unit of the concatenated service.
– Releases resources

Variants Meaning openUTM actions

KDCS calls PEND

Programming Applications with KDCS 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

RS Roll back a transaction to
the last synchronization
point

In the first transaction of a service:
– Rolls back UTM and DB transaction
– Terminates service (with message K034 to the client).
– only for terminals and TS partner:

Outputs last output message of the
preceding service (if available).

– Restart asynchronous services and follow-up
services (if chained services are used) following a
rollback.

In a follow-up transaction of service:
– Rolls back UTM and DB transaction to the

last synchronization point and, if necessary, restarts
screen with message K034.

– Starts the program unit addressed at the
last synchronization point.

– Transfers rollback message to this program unit.
For all the transactions in a service:
– Messages processed with DGET can be processed

again if the maximum number of redeliveries
specified in the generation has not yet been reached.
Otherwise they are deleted or, in the case of TAC
queue messages, may be saved in the dead letter
queue.

ER
(ERror)

End of service
with dump and restart of
the application program

Rollback to last
synchronization point
(exception: MPUT)

– Writes the UTM dump.
– Rolls back the UTM and DB transaction.
– Messages processed with DGET can be processed

again if the maximum number of redeliveries
specified in the generation has not yet been reached.
Otherwise they are deleted or, in the case of TAC
queue messages, may be saved in the dead letter
queue.

– In the first transaction of an asynchronous service:
The FGET message can be processed again if the
maximum number of redeliveries specified in the
generation has not yet been reached. Otherwise it is
deleted or may be saved in the dead letter queue.

– Causes dump of the application program.
– Executes MPUT of this program unit

(formats message if necessary)
– Restarts application program.
– Releases resources.

Variants Meaning openUTM actions

PEND KDCS calls

376 Programming Applications with KDCS

Features of the PEND call

● Following a PEND, no branch is made back to the calling program. Thus, the KDCS
return code cannot be evaluated there.

● In case of error, if PEND executes abnormally, openUTM calls PEND ER internally.

– With dialog processing, an error message is sent to the client. The transaction is
rolled back and the service is terminated. A new service can be started.

– An asynchronous service is aborted and a message is written to the system log file
SYSLOG.

● If another call led to a KDCS return code ≥ 70Z, openUTM calls PEND ER internally.

● If a program unit calls PEND ER/FR in a dialog service, you must first use MPUT to
send a message to the client or the job-submitting service - with one exception: This
does not apply to a OSI TP job-submitting service for which KCSEND contains the
value "N". If openUTM calls PEND ER internally (KCRCCC ≥ 70Z), a default message
is issued. However, if a separate error message was created by means of MPUT ES in
communication with the UPIC client, this error message is sent to the UPIC client
instead.

● A rollback message has to be sent with MPUT RM prior to a PEND RS call in a follow-
up transaction. Thus a PEND RS should not be issued in the first transaction of a
service otherwise no rollback message can be read. Unlike PEND ER, PEND RS does
not cause a dump to be written.

FR End of service,
no dump, the application
program remains loaded

Rollback to last
synchronization point
(exception: MPUT)

– Rolls back the UTM and DB transaction.
– Messages processed with DGET can be processed

again if the maximum number of redeliveries
specified in the generation has not yet been reached.
Otherwise they are deleted or, in the case of TAC
queue messages, may be saved in the dead letter
queue.

– In the first transaction of an asynchronous service:
The FGET message can be processed again if the
maximum number of redeliveries specified in the
generation has not yet been reached. Otherwise it is
deleted or may be saved in the dead letter queue.

– Executes MPUT of this program unit
(formats message if necessary)

– Releases resources.

Variants Meaning openUTM actions

KDCS calls PEND

Programming Applications with KDCS 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● If the PEND RS call is used for communication with a UPIC client, you must note the
following:

If the preceding transaction was terminated with PEND SP or PEND FC, then the local
transaction is rolled back and the service with the follow-up program unit specified in
PEND SP or PEND FC continues execution when PEND RS is called.(local service
restart)
If the preceding transaction was not terminated with PEND SP/FC and the service is
running under a user ID with the restart property, then the service is rolled back to the
last synchronization point and the dialog with the UPIC client is terminated. A new
OSI TP dialog can be started under the user ID and the service restart requested.
In all other cases, openUTM terminates the service with PEND FR.

● If PEND RS is used for distributed processing via the OSI TP protocol without commit
functionality, you must note the following:

– if called in a job-receiving service:
If the preceding transaction was terminated with PEND SP, then the local trans-
action is rolled back and the service with the follow-up program unit specified in
PEND SP continues execution when PEND RS is called (local service restart).
If the preceding transaction was not terminated with PEND SP and the service is
running under a user ID with the restart property, then the service is rolled back to
the last synchronization point and the dialog with the UPIC client is terminated. A
new OSI TP dialog can be started under the user ID and the service restart
requested.
In all other cases, openUTM terminates the service with PEND FR.

– if called in a job-submitting service, all job-receiving services of this service are
terminated using PEND FR.

● If a PEND RS call is issued in a transaction previously terminated with PGWT CM, the
service is terminated with PEND FR.

● Any messages or message segments which openUTM maintained for the program
following INIT, but which were not read in the program with MGET or FGET, are lost with
PEND (likewise with PEND PA or PR).
The same applies when no all of a DGET message is read: the remaining parts of the
message that were not read are lost.

● If a DB transaction was terminated prior to a PEND RE/SP/FI/FC, execution is delayed
until PEND RE/SP/FI/FC.

PEND KDCS calls

378 Programming Applications with KDCS

● PEND KP locks resources (LSSBs, GSSBs, TLS, ULS and, if applicable, database
areas) beyond a dialog step.

Except in the case of distributed processing, it is therefore advisable

– to use the PEND KP sparingly in order to keep global resource occupancy times
short

– not to reserve the global resources until the final dialog step when using PEND KP.

● If the transaction is rolled back then any MPUT output to be performed by a PEND KP
is lost. The service is rolled back to the last synchronization point. A service restart is
performed immediately provided that the user is still signed on.

If the user is signed off, e.g. because the connection to the client has been lost, then a
service restart is performed when the user signs on provided that the user ID (in appli-
cations without user IDs, the LTERM partner) has been generated with the restart
property (generation operand RESTART=YES in the LTERM or USER statement, see
openUTM manual “Generating Applications”).
Following the end of an application then, in the case of standalone UTM applications, a
service restart is only possible in UTM-S applications.

● PEND SP is only permitted in distributed processing via LU6.1 if no partner services
with open transactions are available.

● A PEND PA/PR or SP can cause a task switch in a dialog or asynchronous service if
the follow-up program unit is in a different TAC class than the program unit run calling
PEND (see the openUTM manual “Generating Applications”, TAC classes), or if the
application was generated with the TAC-PRIORITIES statement.

● A PEND PS call may only be specified in the sign-on service and only if the status of
the sign-on service allows this.

● If the PEND PA/PR or PS call is executed without calling MPUT beforehand in the sign-
on service for a UPIC client after receiving a message from the client, then the follow-
up program unit can still read unread message (segments) from the UPIC client.

● PEND FC terminates the UTM service, but not the UPIC conversation.
If the PEND PA/PR or PS call is executed without calling MPUT beforehand in the sign-
on service for a UPIC client after receiving a message from the client, then the follow-
up program unit can still read unread message (segments) from the UPIC client. In this
case the first program unit of the chained service receives the value F (first), and not
C (chained) as its service indicator in the KBKOPF because it contains a message from
the client.

● If an asynchronous service or a follow-up service concatenated with PEND FC is inter-
rupted during the first transaction, then openUTM restarts the service.

● Program unit runs in asynchronous services can only use PEND KP and RE if they have
previously supplied a message for a job-receiving service with MPUT.

KDCS calls PEND

Programming Applications with KDCS 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● Note that, if PEND ER/FR is called in the job-receiving service, you cannot send a
message to the job-submitting service (as with PEND ER/FR to the terminal). Never-
theless, you have to issue an MPUT call before a PEND ER/FR as otherwise openUTM
terminates the service. The job-submitting service then receives status information with
service status Z (instead of E).

● When using distributed processing, you have to take account of the service and trans-
action status of the partner when calling PEND. For further information see chapter
“Program structure in distributed processing” on page 121.

● If a DGET message is to be waited for, PEND PA/PR or PGWT PT must follow.

PGWT KDCS calls

380 Programming Applications with KDCS

PGWT Set wait point in program without terminating
program unit

The PGWT call (program wait) sets the program unit to an internal wait point without termi-
nating the unit. You can

– terminate the processing step without terminating the transaction.

– neither terminate the processing step nor the transaction in order to wait for a message
at a service-controlled message queue (no previous MPUT permitted).

– terminate the transaction. If an MPUT message was sent previously, the processing
step is terminated; otherwise, it is continued.

– roll back the transaction and continue the processing step.

The program unit is always continued by the same process (process ID remains the same).
The PGWT call is comparable to a PEND call followed by an implicit INIT call.

If you enter a value greater than 0 for the parameter KCLI in the KDCS parameter area,
then openUTM supplies information about the application, the system and the communi-
cation partner. The PGWT call is then comparable to a PEND KP call followed by an implicit
INIT PU call.

The following table shows the meaning of the PGWT call and the associated actions:

Variant Meaning openUTM actions

PGWT KP End of processing step
without program unit or
transaction end; if
necessary request infor-
mation (KCLI > 0)

– Send MPUT message
– Continue program as soon as response received
– For KCLI > 0: Make requested information

available in message area

PGWT PR Wait without terminating
processing step, program
unit or transaction; if
necessary request infor-
mation (KCLI > 0)

– Continue program as soon as there is a message
at the queue

– For KCLI > 0: Make requested information
available in message area

PGWT CM Terminate transaction
without terminating the
program unit; if necessary
request information
(KCLI > 0)

– If MPUT was issued: Send MPUT message and
continue program as soon as response received.

– Without MPUT: Continue processing without
waiting, exception for OSI TP see page 389.

– For KCLI > 0: Make requested information
available in message area

PGWT RB Roll back transaction; if
necessary request infor-
mation
(KCLI > 0)

– Roll back transaction
– Continue processing, exception for OSI TP see

page 389.
– For KCLI > 0: Make requested information

available in message area

KDCS calls PGWT

Programming Applications with KDCS 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

i On all PGWT calls, the local process continues to be occupied during the waiting
time or during the communication. In addition, resources continue to be locked on
PGWT KP/PR calls. You should therefore only use PGWT calls sparingly and when
they are genuinely necessary.

Setting the KDCS parameter area (1st parameter)

Setting the 2nd parameter (only necessary if KCLI > 0)

Here you enter the address of the message area into which openUTM is to write the
requested information. To structure the message area you can use the same data structure
as for the INIT PU call, i.e. the KCINIC COPY element for COBOL, the kcini.h. include file
for C/C++.

In the header of the data structure, you specify the version number of the structure and
select which information openUTM is to supply.

For a detailed description of the data structure, see the INIT PU call, page 311ff.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLI

Terminate processing step without
end of program unit or transaction

"PGWT" "KP" 0 / Length of the message area

Wait without terminating
processing step and transaction

"PGWT" "PR" 0 / Length of the message area

Terminate transaction without end
of program unit

"PGWT" "CM" 0 / Length of the message area

Roll back transaction and continue
processing step

"PGWT" "RB" 0 / Length of the message area

PGWT KDCS calls

382 Programming Applications with KDCS

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "PGWT"

2. KCOM "KP"/"PR"/"CM"/"RB"

3. KCLI 0/Length in bytes

Setting the header of the message area
(only necessary if KCLI > 0)

Field name in message area Contents

4. KCVER/if_vers Version number (3)

5. KCDATE/dattim_info Request
date and time (Y/N)

6. KCAPPL/appl_info Request
application information (Y/N)

7. KCLOCALE/locale_info Request
locale information (Y/N)

8. KCOSITP/ositp_info Request
OSI TP information (Y/N)

9. KCENCR/encr_info Request
encryption information (Y/N)

10. KCMISC/misc_info Request
miscellaneous information (Y / N)

KDCS call

1st parameter 2nd parameter

11. KDCS parameter area Message area
(only necessary if KCLI > 0)

KDCS calls PGWT

Programming Applications with KDCS 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the PGWT call you make the following entries in the KDCS parameter area:

1. In the KCOP field, enter the "PGWT" operation name.

2. In the KCOM field, the variant of the PGWT call:

KP End of processing step without transaction end

PR Wait without terminating the processing step and transaction

CM End of the transaction

RB Rollback of the transaction

3. in the KCLI field, enter the length of the message area to which openUTM is to transfer
the information. Enter the length in bytes. The value entered in KCLI specifies the
maximum number of bytes of information that openUTM transfers to the message area.

If KCLI is greater than zero, then you must specify the address of the message area in
the 2nd parameter when you call PGWT. The information is equivalent to that for the
INIT PU call.

All unused fields of the parameter area must contain binary zero.

12. C/C++ macro calls

Macro name Parameters

KDCS_PGWTKP ()

KDCS_PGWTKP_PU / KDCS_PGWTPR/
KDCS_PGWTCM / KDCS_PGWTRB

(nb,kcli)

openUTM return information

Message area Contents

13. Data (only if KCLI > 0)

Field name in KB return area

14. KCRLM Length of transferred data
(only if KCLI > 0)

15. KCRCCC Return code

16. KCRCDC Internal return code

17. KCRMF/kcrfn Format identifier/blanks

18. KCRPI Service ID/Rollback ID/blanks

PGWT KDCS calls

384 Programming Applications with KDCS

Setting the header of the message area (only necessary if KCLI > 0):

4. In the KCVER/if_ver field, enter the version number of the data structure. The current
version is version 3.

5. Enter Y in the KCDATE/dattim_info field if you want information on the date and time
of the start of the application and the program unit run, otherwise enter N.

6. Enter Y in the KCAPPL field if you want to request information about the application,
system and communication partner, otherwise enter N.

7. Enter Y in the KCDATE/dattim_info field if you to want to request information about the
language environment of the LTERM partner, otherwise enter N.

8. Enter Y in the KCOSITP/ositp_info field if you require OSI TP-specific information,
otherwise enter N.

9. Enter Y in the KCENCR/encr_info field if you require information about the encryption
methods used between the client and the UTM application, otherwise enter N. (The
encryption mechanism can be coordinated. See the openUTM manual “Generating
Applications”.)

10. Enter Y in the KCMISC/misc_info field if you require miscellaneous information (e.g.
number of queued messages in the user’s queue, password validity, time of last sign-
on), otherwise enter N.

You specify the following for the KDCS call:

11. 1st parameter: the address of the KDCS parameter area.

2nd parameter (only necessary if KCLI is not equal to 0):
the address of the message area to which openUTM is to write information. For return
information you can use the KCINIC data structure in COBOL and the kcini.h include file
in C/C++ (description see page 312).

12. The use of C/C++ macro calls is described in detail in the section “C/C++ macro
interface” on page 491.

openUTM returns:

13. only if KCLI > 0:
in the message area, the information in its actual length, up to a maximum length of the
value specified in KCLI. The data supplied by the PGWT call corresponds to the return
information of the INIT PU call and is described on page 312.

14. only if KCLI > 0:
in the KCRLM field, the length of the information actually transferred by openUTM,
provided that KCRCCC = 000 or 07Z. If KCRCCC ≥ 40Z then KCRLM = 0.

KDCS calls PGWT

Programming Applications with KDCS 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

15. in the KCRCCC field, the KDCS return code (length 3 bytes).
For possible return codes and their meaning, see below.

16. in the KCRCDC field, the internal return code of openUTM (see openUTM manual
”Messages, Debugging and Diagnostics”).

17. only for PGWT CM with preceding MPUT and PGWT KP
in the KCRMF/kcrfn field (similar to the INIT call):

– for a message from a terminal:

Blanks (in line mode) or the format name (in format mode) of the last screen output,
i.e. the name specified in the KCMF/kcfn field with the MPUT of the last dialog step.
If the last output consisted of multiple partial formats, KCRMF/kcrfn contains the
name of the first partial format into which data was entered. If no data was entered
in any of the partial formats, KCRMF/kcrfn contains the name of the first partial
format.

If an edit profile was used in the last screen output, KCRMF/kcrfn contains this edit
profile.

– for a message from a TS application: Blanks

– for a message from a LU6.1 partner or a UPIC client:

The format identifier of the first message segment specified by the LU6.1 partner or
UPIC client on sending

Particularity in the LU6.1 job submitting service:
Blanks blanks if a status flag exists for the service ID specified in KCRPI.

– for distributed processing via OSI TP:

If the program unit run was started because of a distributed dialog, KCRMF/kcrfn in
the job-submitting service contains the name of the abstract syntax which was
allocated to the message by the job submitter; if the field contains blanks, the UTD
syntax is selected as the abstract syntax.

In the job-receiving service, KCRMF/kcrfn contains the name of the abstract syntax
which was allocated to the message by the job-receiving service described in
KCRPI. If the field contains blanks, the UTD syntax is selected as the abstract
syntax or an error message from the partner is present.

18. only for PGWT CM with preceding MPUT and PGWT KP
in the KCRPI field (similar to the INIT call):

– For a message from a LTERM partner: blanks.

– In the job-submitting service with distributed processing:
the service ID of the job-receiving service if a message from the job receiver exists.

– In the job-receiving service with distributed processing: blanks

B

B

PGWT KDCS calls

386 Programming Applications with KDCS

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Operation carried out successfully. If a message area was specified for the call
(KCLI > 0), the requested information was transferred to the message area in its full
length.

07Z Function was executed, the available message area is too short (Length in KCLI
insufficient). No or incomplete information was returned.

40Z For PGWT CM: The function was not executed. An error that does not permit
continuation of the current transaction has occurred. The transaction is rolled back
implicitly with PGWT RB.

48Z Only when KCLI is greater than zero:
Invalid data structure version.

These return codes can only be found in the dump:

70Z The PGWT operation could not be performed (system or generation error,
deadlock, timeout).

71Z In this program no INIT has yet been issued or the call was issued by an MSGTAC
program.

72Z Entry in KCOM is invalid or KCOM = CM/RB was specified and a partner commu-
nicating with the LU6.1 protocol is involved in the current distributed transaction.

77Z The address of the message area specified when the call was issued is invalid.

82Z An MPUT was issued to a program unit run before a PGWT KP.

83Z The program unit did not issue an MPUT before a PGWT KP or an MPUT was
issued before a PGWT PR.

87Z The PGWT call conflicts with the transaction or service status.

88Z Interface version of the data structure (for KCLI > 0) is invalid.

89Z When the function was called, unused parameters were not set to binary zero.

KDCS calls PGWT

Programming Applications with KDCS 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Features of the PGWT call

● Any messages or message segments which are held by openUTM for the program
following INIT and which are not read by the program using MGET are lost.

● PGWT KP and PR

– A PGWT KP call corresponds to a PEND KP with a following INIT/INIT PU. PGWT
KP is always allowed, if a PEND KP call is allowed.

– A PGWT PR call corresponds to a PEND PA/PR with a following INIT/INIT PU.
PGWT PR is meaningful only if preceded by a DGET call with wait and if it is
necessary to wait for a message for the specified queue. After PGWT PR the
program waits until a message arrives for this queue.

– PGWT KP and PR do not produce a synchronization point! Dialog messages
initiated by MPUT for PGWT KP calls are output. The remaining output operations
LPUT, FPUT, SPUT, PTDA and the release action SREL remain stored until the next
synchronization point.

– PGWT KP and PR lock resources (LSSBs, GSSBs, TLS, ULS, and possibly
database areas) outside the processing dialog step. Calls from other transactions
(SGET, SPUT, SREL, PTDA or GTDA) that wish to access these resources are
rejected with a return code (40Z and KCRCDC code). Therefore, it is recommended
when using PGWT KP/PR to first allocate the global resources before use, and to
release them again immediately afterwards.

– If a DB transaction began prior to a PGWT KP or PR, this transaction is not termi-
nated! The transaction is only terminated if a PEND RE, SP, FI, FC or a PGWT CM
call is issued. RSET, PEND, RS FR, ER or PGWT RB roll back the transaction.

– If the transaction is rolled back then any MPUT output to be performed by a PGWT
KP is lost. The service is rolled back to the last synchronization point. A service
restart is performed immediately provided that the user is still signed on.
If the user is signed off, e.g. because the connection to the client has been lost, then
a service restart is performed when the user signs on provided that the user ID (in
applications without user IDs, the LTERM partner) has been generated with the
restart property (generation operand RESTART=YES in the LTERM or USER
statement, see openUTM manual “Generating Applications”).
Following the end of an application then, in the case of standalone UTM applica-
tions, a service restart is only possible in UTM-S applications.

● PGWT CM and RB

– PGWT CM with an MPUT message is always allowed whenever a PEND RE is
allowed. PGWT CM then corresponds to PEND RE with a following INIT/INIT PU.

– PGWT CM without an MPUT message is always allowed whenever a PEND SP is
allowed. PGWT CM then corresponds to PEND SP with a following INIT/INIT PU.

PGWT KDCS calls

388 Programming Applications with KDCS

– PGWT CM sets a synchronization point while preserving the program context. With
regard to database transactions PGWT CM behaves in the same way as PEND SP
or PEND RE.

– PGWT CM and PGWT RB are not allowed if the LU6.1 protocol is used for commu-
nication with a partner in the current transaction.

– PGWT RB rolls back the transaction. In contrast to RSET or PEND RS the program
context is preserved. The program context includes, for example, the KB program
area, SPAB and local data areas.

– No rollback message may be generated before PGWT RB.

– No service restart is possible at a synchronization point set using PGWT CM. The
follow-up transaction can therefore be rolled back only with PGWT RB without termi-
nating the abnormal service.

● If the PGWT call cannot be executed successfully, openUTM calls PEND ER internally.

● Continuation of processing

– After a PGWT KP call or a PGWT CM call with MPUT a return is made to the calling
program as soon as all responses are available.

– Processing is continued immediately after a PGWT CM without MPUT and after a
PGWT RB, exception see distributed processing with OSI TP on page 389.

– After a PGWT PR call processing is continued as soon as a message arrives in the
queue. A DGET call must be used to read such messages.

i Use this call sparingly, because the task remains occupied and cannot process any
other job during the wait period. This applies especially if the PGWT call is waiting
for an entry from a terminal. In this case, the task is blocked until an entry is input
via the keyboard!

KDCS calls PGWT

Programming Applications with KDCS 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

PGWT call in a distributed OSI TP service with Commit

If the Commit functionality was selected with distributed processing via OSI TP, PGWT CM
without MPUT and PGWT RB always result in a wait point, i.e.:

– for PGWT CM without MPUT, processing is not continued until the transaction end has
been confirmed by all partners or the transaction has been rolled back, e.g. due to an
error.

– for PGWT RB, processing is not continued until rollback has been confirmed by all
partners.

A return is also made to the program unit if

– for an PGWT KP call, a situation is detected which makes it impossible to commit the
transaction.

– for a PGWT CM or RB call, the current transaction was committed or rolled back and
the present situation does not allow the current transaction or the follow-up transaction
to be committed.

This situation is indicated to the program via the KCTARB field in the KB header:

KCTARB In an TP service this indicates whether a situation has occurred which
makes it necessary to roll back the transaction.

Blanks
No situation has occurred which makes it necessary to roll back the trans-
action.

Y A situation has occurred which makes it impossible to commit the trans-
action. Communication with partner services is still permitted. A call to
commit the transaction results in an abnormal end of service.

PTDA KDCS calls

390 Programming Applications with KDCS

PTDA Write to TLS

You use the PTDA (put data) call to write a block from a specified storage area to a terminal-
specific long-term storage area (TLS) of an LTERM/ LPAP/ OSI-LPAP partner.

A program unit run of a dialog service can only write to blocks of its “own” TLS, i.e. blocks
of the LTERM/ LPAP/ OSI-LPAP partner, via which the service was started.

A program unit run of a asynchronous service can write to the blocks of any LTERM/ LPAP/
OSI-LPAP partner of the UTM application.

Setting the 1st parameter (KDCS parameter area)

The table below shows the various options and the necessary entries n the KDCS
parameter area.

Setting the 2nd parameter

Here you have to supply the address of the message area which contains the message to
be written.

Function of the call Entries in the KDCS parameter area

KCOP KCLA KCRN KCLT

Write to a TLS block
(in the dialog program)

"PTDA" Length Block name —

Write to TLS
(in the asynchronous
program)

"PTDA" Length Block name LTERM/ LPAP/
(MASTER-)OSI-LPAP Name

KDCS calls PTDA

Programming Applications with KDCS 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "PTDA"

2. KCLA Length in bytes

3. KCRN Block name

4. KCLT Name of LTERM/ LPAP/ OSI-LPAP
partner

Message area

5. Data

KDCS call

1st parameter 2n parameter

6. KDCS parameter area Message area

7. C/C++ macro call

Macro name Parameters

KDCS_PTDA (nb,kcla,kcrn,kclt)

openUTM return information

Field name in the KB return area Contents

8. KCRCCC Return code

9. KCRCDC Internal return code

PTDA KDCS calls

392 Programming Applications with KDCS

For the PTDA call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the "PTDA" operation code.

2. In the KCLA field, the length of the data which openUTM is to write to the TLS. The
length specified here becomes the new length of the TLS block.

3. In the KCRN field, the name of the TLS block to which openUTM is to write the data.

4. only for asynchronous programs:
in the KCLT field, the name of the LTERM/ LPAP/ OSI-LPAP partner containing the TLS
to which openUTM is to write data (this field is not evaluated by dialog programs).

In the message area you enter:

5. the message which you want to write to the TLS

You specify the following for the KDCS call:

6. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area from which openUTM is to read the
message. You enter the address of the message area even if you have entered the
length 0 in KCLA.

7. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

8. in the KCRCCC field: the KDCS return code, see below.

9. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS calls PTDA

Programming Applications with KDCS 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Function carried out.

40Z System cannot perform the operation (generation error or system error, deadlock,
timeout), see KCRCDC.

41Z Call issued in the first segment of the sign-on service, although this is not allowed
by the generation.

43Z Length entry in KCLA is negative or invalid.

44Z Name of the block in KCRN is unknown or invalid.

46Z LTERM/ LPAP/ (MASTER-)OSI-LPAP name in KCLT is invalid (only for
asynchronous programs).

47Z Message area missing or cannot be accessed in the specified length.

An additional return code can be found in the dump:

71Z No INIT issued in this program.

Features of the PTDA calls

● At the end of transaction (PEND RE/FI/FC/SP), the changes made to the TLS block are
carried out and the block is unlocked. Other transactions can then make use of it again.
With PEND RS/ER/FR or RSET the changes made to the TLS blocks are cancelled and
the blocks are unlocked.

● The lock may apply for a longer period in the following cases:

– PEND KP and PGWT KP

– PEND PA/PR with a task change due to TAC class control

– PEND PA/PR with waiting for a DGET message

● A PTDA call locks access to a TLS block until the next synchronization point. No other
TLS blocks of the addressed LTERM/ LPAP/ OSI-LPAP partner are locked.

Note that the current length of a TLS block is the length in which it was written with the last
PTDA call.

How UTM reacts when the desired TLS block is locked is described in the section “Action
with locked storage areas (TLS, ULS and GSSB)” on page 88.

QCRE KDCS calls

394 Programming Applications with KDCS

QCRE Create temporary queue

The QCRE (queue create) call is used to create a temporary queue dynamically.

The prerequisite for a successful QCRE call is that enough table spaces for QUEUE objects
must have been reserved at generation by means of the QUEUE statement.

In the QCRE call you can either assign a name for the queue to be created or specify that
openUTM assigns a name automatically, which is then entered in the KCRQN (queue
name) return field.

openUTM creates queue names that follow on from each other from printable digits. If the
queue names are assigned by openUTM, the same queue name is not used again for 100
million QCRE calls. This ensures that long-running services for communication do not
inadvertently use a temporary queue whose name has been reassigned after being
deleted.

The format of the QCRE call is described in detail below. You will find more information on
the subject of “message queuing“ in section “Message Queuing (asynchronous
processing)” on page 50.

Setting the KDCS parameter area (1st parameter)

The following table shows the entries required in the KDCS parameter area.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCRN KCLA KCMF/kcfn KCQMODE

Create queue without
name

"QCRE" "NN" Blanks Queue
level

Blanks "S"/"W"/
binary zero

Create queue with
name

"QCRE" "WN" Queue name Queue
level

Blanks "S"/"W/
binary zero

KDCS calls QCRE

Programming Applications with KDCS 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "QCRE"

2. KCOM "NN"/ "WN"

3. KCRN Blanks/name of the queue

4. KCLA Queue level of the queue

5. KCMF/kcfn Blanks

6. KCQMODE "S"/"W"/binary zero

KDCS call

1st parameter

7. KDCS parameter area

8. C/C++ macro call

Macro name Parameters

KDCS_QCRENN (kcla,qmode)

KDCS_QCREWN (kcla,kcrn,qmode)

openUTM return information

Field name in the KB return area

9. KCRQN Name assigned by openUTM

10. KCRCCC Return code

QCRE KDCS calls

396 Programming Applications with KDCS

In the KDCS parameter area you make the following entries for the QCRE call:

1. In the KCOP field, enter the QCRE operation code.

2. In the KCOM field:

NN (no name) if openUTM is to create the name of the queue automatically

WN (with name) if you assign the name yourself

3. In the KCRN field, enter the name of the queue (KCOM=WN) or blanks (KCOM=NN).
A name you assign must not begin with a digit and must adhere to the conventions for
generatable names. In other words, it can consist only of the characters A...Z, a...z,
0...9, $, #, @. If necessary, it must be filled with blanks.

4. In the KCLA field, enter the queue level. In other words, you enter the maximum
number of messages that can be stored in this queue.
If you specify zero, openUTM uses the value or default value of the QLEV parameter
from the QUEUE statement of the generation.

5. The KCMF/kcfn field must be supplied with blanks.

6. In the KCQMODE field:

S (standard) if further messages are to be rejected when the queue level is
reached

W (wrap) if a new message overwrites the oldest existing message when the
queue level is reached

Binary zero
openUTM uses the value or default value of the QMODE parameter from the
QUEUE statement of the generation.

In the KDCS call, specify:

7. as the 1st parameter: the address of the KDCS parameter area.

8. How to use macro calls for C/C++ is described in detail in the section “C/C++ macro
interface” on page 491.

openUTM returns:

9. in the KCRQN field the name generated automatically (when KCOM=NN).

10. in the KCRCCC field the KDCS return code (see next page).

KDCS calls QCRE

Programming Applications with KDCS 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS return codes for the QCRE call

The following can be evaluated in the program:

000 The operation was executed.

16Z KCOM=WN: The queue name already exists.

KCOM=NN: openUTM could not find a free name. In this case, you can try to find a
free queue name with another QCRE NN call.
Note on name assignment:
openUTM assigns names consisting only of digits and remembers the last name it
assigned. When QCRE is specified with KCOM=NN, openUTM searches the next
100 names consisting of digits for a free entry. If these names are all occupied,
openUTM terminates the search with 16Z. At the next QCRE NN call, the next
100 names are searched.

40Z The operation cannot be executed:

– because there is no free table space left for temporary queues
(what to do: increase the value for NUMBER in the QUEUE statement and
regenerate, or use QREL to delete temporary queues that are no longer
required).

– because there is no free table space left in the process-specific buffer for restart
data (what to do: increase the value of MAX RECBUF=(..., length) and regen-
erate).

42Z The value in KCOM is invalid.

43Z The value in KCLA (queue level) is negative or invalid.

44Z The queue name begins with a digit (KCOM=WN), or KCRN does not contain any
blanks (KCOM=NN).

45Z KCMF/kcfn was not supplied with blanks.

46Z The value in KCQMODE is invalid.

49Z Unused fields have a value other than binary zero.

71Z An INIT has not yet been called in the program unit run.

QCRE KDCS calls

398 Programming Applications with KDCS

Features of the QCRE call

● No administration authorization is required to create a temporary queue.

● If the queue names are assigned by openUTM, they are not used again for 100 million
QCRE calls.

● If a temporary queue is created with QCRE, messages can be written in this queue in
the same transaction. However, these messages cannot be read and administered until
the transaction is successfully completed.

● In the case of UTM-S, temporary queues and their messages are preserved after the
end of the application run until they are deleted explicitly by means of a QREL call.
In the case of UTM-F, temporary queues are deleted automatically at the end of the
application run. All the messages still stored in the queue are lost.

KDCS calls QREL

Programming Applications with KDCS 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

QREL Delete temporary queue

The QREL (queue release) call is used to delete a temporary queue dynamically.
All the messages in the queue are deleted, and the name and the table space of the queue
are made available.

Services that wait for DGET messages of this queue are continued.

The format of the QREL call is described in detail in the following. You will find more infor-
mation on the subject of message queuing in section “Message Queuing (asynchronous
processing)” on page 50.

Setting the KDCS parameter area (1st parameter)

The following table shows the entries required in the KDCS parameter area.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCRN KCMF/kcfn

Delete temporary queue "QREL" "RL" Name of the queue Blanks

QREL KDCS calls

400 Programming Applications with KDCS

In the KDCS parameter area, make the following entries for the QREL call:

1. In the KCOP field, enter the QREL operation code.

2. In the KCOM field, enter the RL modifier.

3. In the KCRN field, enter the name of the queue to be deleted.

4. The KCMF/kcfn field must be supplied with blanks.

For the KDCS call, specify:

5. as the 1st parameter: the address of the KDCS parameter area.

6. How to use macro calls for C/C++ is described in detail in the section “C/C++ macro
interface” on page 491.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "QREL"

2. KCOM "RL"

3. KCRN Name of the queue

4. KCMF/kcfn Blanks

KDCS call

1st parameter

5. KDCS parameter area

6. C/C++ macro call

Macro name Parameters

KDCS_QRELRL (kcrn)

openUTM return information

Field name in the KB return area

7. KCRCCC Return code

KDCS calls QREL

Programming Applications with KDCS 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

openUTM returns:

7. in the KCRCCC field the KDCS return code (see below).

KDCS return codes for the QREL call

The following can be evaluated in the program:

000 The operation was executed.

40Z There is no more space in the process-specific buffer for restart data.
Bottlenecks can result because openUTM executes a separate DADM call for each
message read by means of DGET in a transaction that is not yet completed and has
to write a processing item to the buffer.
What to do: Increase the value of MAX RECBUF=(..., length) and regenerate.

42Z The value in KCOM is invalid.

44Z There is no temporary queue with the name specified in KCRN.

45Z KCMF/kcfn was not supplied with blanks.

49Z Unused fields (except KCMF) have a value other than binary zero.

71Z An INIT has not yet been called in the program unit run.

Features of the QREL call

● No administration authorization is required to delete a temporary queue.

● After the QREL call, messages in the deleted queue can no longer be read or adminis-
tered. New messages cannot be created for this queue.

● After a QREL call and the successful conclusion of the transaction, a new temporary
queue can be created with the same name.

RSET KDCS calls

402 Programming Applications with KDCS

RSET Roll back transaction

You use the RSET (roll back transaction) call to roll back changes and operations of local
transactions. Open database transactions are also rolled back. All output operations since
the last local synchronization point are cancelled. Control is returned to the program unit.
The program unit is continued after the RSET call. Further KDCS calls and database calls
are subsequently possible (except INIT).

You can use the RSET call to react to application errors with specific actions. You can roll
back a transaction and at the same time pass control back to the application program.

This approach is useful for errors which are not program errors (e.g. as a response to error
codes ≥ 40Z). You can react specifically in the program unit, e.g. by

– sending a message to the appropriate client or to the administrator (MPUT)

– writing an item of logging information (LPUT)

– sending an output job, e.g. to a printer (FPUT/DPUT)

The RSET call may, for example, also be useful in the event that database accesses yield
unexpected return codes (e.g. “data record does not exist”) and UPDATE operations have
already been performed.

Setting the 1st parameter (KDCS parameter area)

For the RSET call, you only have to enter the “RSET” operation code in the KCOP field.

KDCS calls RSET

Programming Applications with KDCS 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the REST call you make the following entries in the KDCS parameter area:

1. in the KCOP field, the RSET operation code.

openUTM does not evaluate any other operands of the parameter area.

You specify the following for the KDCS call:

2. 1st parameter: the address of the KDCS parameter area.

3. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

4. in the KCRCCC field: the KDCS return code.

5. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "RSET"

KDCS call

1st parameter 2nd parameter

2. KDCS parameter area —

3. C/C++ macro calls

Macro name Parameters

KDCS_RSET ()

openUTM return information

Field name in the KB return area Contents

4. KCRCCC Return code

5. KCRCDC Internal return code

RSET KDCS calls

404 Programming Applications with KDCS

KDCS return codes for the RSET call

The following codes can be analyzed in the program:

000 Operation carried out

Additional return codes can be found in the dump:

70Z System cannot perform the operation (generation error or system error),
see KCRCDC.

71Z INIT missing in this program.

Features of the RSET call

● All resources occupied by this transaction up to the RSET call are released.

● All service-specific data is rolled back to the last synchronization point. In this way, the
KB program area, all LSSBs and GSSBs and TLS and ULS blocks are again made
available with their original contents.

● Data in SPAB and in program-specific working storage areas is not changed.

● An open DB transaction is rolled back.

● Each rollback of a DB transaction has the same effect as an RSET call, and thus
implicitly causes the UTM transaction to be rolled back.

● The program unit again regains control following the RSET call and continues the
program run with the next statement after the RSET call. It is then possible to issue
additional KDCS (except INIT) and DB calls in the program unit.

● After this, it is no longer possible to read a dialog input message which was read prior
to the RSET call, but it is possible to read a dialog input message which was not yet
read prior to the RSET call.

● Input messages read with FGET or DGET can again be read following an RSET. With
DGET messages this is possible only if the maximum number of redeliveries specified
at generation has not been reached. For more information refer to the openUTM
manual “Generating Applications”, REDELIVERY operand in the MAX control
statement.

If the maximum number of redeliveries has been reached then the message is either
deleted or saved in the dead letter queue by UTM (only possible in the case of
messages to a TAC queue), see openUTM manual “Generating Applications”, DEAD-
LETTER-Q operand in the TAC statement.

KDCS calls RSET

Programming Applications with KDCS 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Features of the RSET call with distributed processing

The behavior of openUTM following an RSET call in a program unit run belonging to a
distributed transaction is governed by the RSET generation parameter of the UTMD
statement (see the openUTM manual “Generating Applications”):

● If RSET=LOCAL is generated, then the RSET call has no effect on the distributed trans-
action.
Here, inconsistencies may occur in the distributed databases, if some of the local trans-
actions participating in the distributed transactions are continued and others rolled
back. With this generation, the global data consistency is no longer guaranteed by the
relevant system components, but is the responsibility of the application program units.
These must decide the situations in which it is more practical to terminate the distributed
transaction and the situations in which it must be rolled back.

● If RSET=GLOBAL is generated, then openUTM forces termination of the program unit
run with a PEND variant which causes the distributed transaction to be rolled back (see
also the PEND call, page 367ff).

SGET KDCS calls

406 Programming Applications with KDCS

SGET Read from secondary storage area

You use the SGET (storage get) call to read data from a secondary storage area into a
storage area of the program unit. The following may occur as secondary storage areas:

– the global secondary storage area (GSSB)

– the local secondary storage area (LSSB)

– the user-specific long-term storage area (ULS)

If an LSSB is no longer required, it can be deleted at the same time by entering KCOM=RL.
The contents of a ULS can only be deleted by writing (SPUT) with KCLA=0.

A GSSB must be deleted with a separate call (SREL); it remains locked until the end of the
transaction or service. For further information, see the description of the SREL call.
A GSSB or ULS can be unlocked explicitly with the UNLK call.

In UTM cluster applications, GSSB or ULS areas are available throughout the cluster.

Setting the KDCS parameter area (1st parameter)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

For KCOM = US, all the fields not used in the KDCS parameter area are to be set with
binary zero.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLA KCRN KCUS

Read from LSSB "SGET" "KP" Length Name of the
LSSB

—

Read from LSSB
and delete LSSB

"SGET" "RL" Length Name of the
LSSB

—

Read from GSSB
(and lock GSSB)

"SGET" "GB" Length Name of the
GSSB

—

Read from ULS
(and lock ULS)

"SGET" "US" Length Block name User ID/
LSES name/
association name/
blanks

KDCS calls SGET

Programming Applications with KDCS 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the 2nd parameter

Here you have to supply the address of the message area into which openUTM is to read
the message.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "SGET"

2. KCOM "KP"/"RL"/"GB"/"US"

3. KCLA Length in bytes

4. KCRN Name of the area

5. KCUS User ID/blanks/
LSES name/association name

KDCS call

1st parameter 2nd parameter

6. KDCS parameter area Message area

7. C/C++ macro calls

Macro names Parameters

KDCS_SGETKP / KDCS_SGETRL /
KDCS_SGETGB

(nb,kcla,kcrn)

KDCS_SGETUS (nb,kcla,kcrn,kcus)

openUTM return information

Message area Contents

8. Data

Field name in the KB return area

9. KCRLM Actual block length

10. KCRCCC Return code

11. KCRCDC Internal return code

SGET KDCS calls

408 Programming Applications with KDCS

For the SGET call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the SGET operation code.

2. In the KCOM field:

KP (keep) to read from an LSSB - the area is retained

RL (release) to read from and delete an LSSB

GB to read from a GSSB

US to read a ULS block

3. In the KCLA field, length of data to be transferred to the message area.

4. In the KCRN field, name of the LSSB/GSSB or of the ULS block to be read from.

5. In the KCUS field, user ID if a ULS block of a foreign user ID is to be read, otherwise
blanks (if blanks are specified, the ULS block of the user who started the service is
read). If a foreign user ID is entered in KCUS, your own user ID must have adminis-
tration privileges.

If you want to read a ULS block of a remote session/association, you have to specify its
LSES name or association name.

Irrelevant for KCOM = KP/RL/GB.

You specify the following for the KDCS call:

6. 1st parameter: the address of the KDCS parameter area.

2nd parameter: the address of the message area to which UTM is to read the message.
You enter the address of the message area even if you have entered the length 0 in
KCLA.

7. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

8. the desired data in the specified message area.

9. in KCRLM, the actual length of the data in the LSSB/GSSB/ULS (in bytes). This
enables you to detect deviations from the KCLA entry (important if specified KCLA
value is smaller). Exception: for KCLA = 0 UTM always returns KCRLM = 0.

10. KCRCCC: the KDCS error code, see next page.

11. KCRCKZ and KCRCDC: the identifier and the internal error code of UTM
(see the openUTM manual ”Messages, Debugging and Diagnostics”).

KDCS calls SGET

Programming Applications with KDCS 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS return codes for the SGET call

The following codes can be analyzed in the program:

000 Operation carried out.

14Z No area exists with the name specified in KCRN (only for KP, RL, GB).

40Z System cannot perform the operation (generation error or system error, deadlock,
timeout); see KCRCDC.

41Z The call was issued in the first segment of the sign-on service although this is not
allowed by the generation.
For KCOM=US: The call was issued in the first segment of the sign-on service or in
the sign-on service after a SIGN ON and before the PEND PS call.

42Z Entry in KCOM is invalid.

43Z Length entry in KCLA negative or invalid.

44Z Name in KCRN invalid. It is invalid if it consists solely of blanks or binary zero or has
not been generated (in the case of ULS).

46Z Entry in KCUS is invalid.

47Z Message area missing or cannot be accessed in the specified length.

49Z Contents of fields not used in the KDCS parameter area not equal to binary zero
(only for KCOM = US).

An additional error code can be found in the dump:

71Z INIT missing in this program.

SGET KDCS calls

410 Programming Applications with KDCS

Features of the SGET call

● The area is transferred in its actual length, but at the most in the length specified in
KCLA. The actual length of the data in the GSSB, LSSB or ULS is returned in the
KCRLM field.

– If the length specified in KCLA is smaller than the actual length of the record to be
read, the data is truncated at the right-hand side. You can capture this situation in
a program unit (KCLA < KCRM).

– If the length specified in KCLA is greater than the actual length of the record to be
read (KCLA > KCRLM), the surplus part of the message area is undefined after the
SGET call.

● If an attempt is made in a program unit to perform an SGET read operation on a non-
existent storage area, the program unit will receive the error code 14Z ("No area with
this name exists").

● If SGET is used to access a GSSB or ULS, the following applies:

– An SGET call for a GSSB or ULS locks the GSSB or ULS until the next synchroni-
zation point or rollback point, i.e. until PEND SP/RE/FI/FC/RS/ER/FR or RSET. If,
following SGET, the processing step is terminated in a program unit with a PEND
KP, PGWT KP, PGWT PR or with a PEND PA/PR call with a task change due to TAC
class control or a wait for a DGET message, the access lock remains until the next
synchronization point, unless the lock is cancelled beforehand with an UNLK call.

– Reading from a non-existent GSSB has the same effect as creating a GSSB with
simultaneous deletion (SPUT, SREL sequence).
– The name of this GSSB remains locked until the next synchronization point or

rollback point.
– If the generated maximum number of GSSBs is already reached, the program

unit receives the return code 40Z with KCRCDC K804.
In a UTM cluster application, reading from a non-existent GSSB requires four
additional file accesses (to increment and decrement the GSSB counter). Conse-
quently, in UTM cluster applications, it is advisable for performance reasons not to
use any empty GSSBs but instead, for instance, a GSSB of length 1 for the serial-
ization of program units, for example.

In section “Action with locked storage areas (TLS, ULS and GSSB)” on page 88 there
is a description of how openUTM reacts when the desired GSSB or ULS block is locked.

KDCS calls SGET

Programming Applications with KDCS 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

● When an SGET is used to access an LSSB, the following applies:

– SGET KP causes the LSSB to remain available in the follow-up transaction of the
service, i.e. after the subsequent PEND RE/SP.

– SGET RL reads the LSSB and deletes it at the end of transaction (i.e. with PEND
RE/SP/FI/FC/RS/ER/FR). Attempts to access in the meantime are rejected
with 14Z.
You should always use this variant if the LSSB is no longer needed after reading in
the current service.

SIGN KDCS calls

412 Programming Applications with KDCS

SIGN Control sign-on and sign-off, check authorization
data, change passwords

You use the SIGN (sign on) call to

– query the status of the sign-on service in the sign-on service or transfer the authori-
zation data to openUTM

– change the password for the current user ID

– have the authorization data checked

– initiate in the program the effect of the commands KDCOFF and KDCOFF BUT.

The SIGN call is only allowed in dialog program units (exception: SIGN CK).

On BS2000 systems you can additionally use the SIGN CL (Change Locale) call to change
the location of the current user ID. This call is described as of page 423.

Setting the KDCS parameter area (1st parameter)

The table below shows the necessary entries in the KDCS parameter area.

All the fields not used in the KDCS parameter area have to be set to binary zero.

Setting the 2nd parameter

Here you have to supply the address of the message area from which openUTM is to read
the data.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLA KCUS

Query status of the sign-on service "SIGN" "ST" 64 Binary zero

Transfer authorization data to openUTM "SIGN" "ON" 8 User ID

Change password "SIGN" "CP" 16 Binary zero

Check authorization data (without sign-on) "SIGN" "CK" 8 User ID

Initiate effect of the KDCOFF command "SIGN" "OF" 0 Binary zero

Initiate effect of the KDCOFF BUT
command

"SIGN" "OB" 0 Binary zero

B

B

KDCS calls SIGN

Programming Applications with KDCS 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "SIGN"

2. KCOM "ST"/"ON"/"CP"/"CK"/"OF"/"OB"

3. KCLA 64/8/16/0

4. KCUS User ID/binary 0

Message area

5. Data/ -

KDCS call

1st parameter 2nd parameter

6. KDCS parameter area Message area

7. C/C++ macro calls

Macro names Parameters

KDCS_SIGNST / KDCS_SIGNOF /
KDCS_SIGNOB

(nb)

KDCS_SIGNON / KDCS_SIGNCK (nb,kcla,kcus)

KDCS_SIGNSTLA / KDCS_SIGNCP (nb,kcla)

openUTM return information

Field name in the KB return area Contents

8. KCRSIGN1 Sign-on status

8. KCRSIGN2 Additional information

9. KCRUS Name of user ID

10. KCRCCC Return code

11. KCRCDC Internal return code

12. KCRMF/kcrfn Format identifier of start format/blanks

13. KCRLM Validity period of password

SIGN KDCS calls

414 Programming Applications with KDCS

For the SIGN call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the SIGN operation code.

2. In the KCOM field

ST query status of the sign-on service

ON check authorization data (with sign-on)

CP change password

CK check authorization data (without sign-on)

OF initiate effect of the KDCOFF command

OB initiate effect of the KDCOFF BUT command.

3. In the KCLA field

64 for KCOM=ST:
This is the length of the message area into which openUTM transfers the infor-
mation. openUTM provides a data structure for structuring of the message area,
see description on page 420. Specify the version number of the structure in the
data structure header.

8 for KCOM = ON/CK

16 for KCOM = CP

0 for KCOM = OF/OB

4. In the KCUS field, the user ID if, with KCOM = ON/CK, authorization data is to be trans-
ferred to UTM. Enter binary zero for all other variants.

In the message area you have to enter:

5. the data you wish to transfer to openUTM or receive from openUTM.
The password (8 characters) is made available for KCOM = ON/CK, the old and the new
password (16 characters) are made available for KCOM = CP.
For KCOM = ST, the following information is exchanged when KCLA > 0 (maximum of
64 characters):
– the desired version of the data structure is passed (2 characters)
– data for the sign-on service (e.g. validity period of the password) is returned.

KDCS calls SIGN

Programming Applications with KDCS 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

You specify the following for the KDCS call:

6. 1st parameter: the address of the KDCS parameter area

2nd parameter: the address of the message area from which UTM is to read the data.
You enter the address of the message area even if you have entered the length 0 in
KCLA.

7. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

8. Additional information in the KCRSIGN1 and KCRSIGN2 fields (nothing is entered
unless KCRCCC = 000):

– for KCOM = ST, the current status of the sign-on procedure, see table on page 416.

– for KCOM = CK, the result of the check, see table on page 418.

9. in the KCRUS field, the name of the user ID if:

– KCRSIGN1=U, i.e. it was not possible to sign-on the user ID successfully, or

– KCRSIGN1=I, i.e. sign-on was not terminated successfully, an intermediate dialog
must be performed for the user

10. in the KCRCCC, the KDCS return code, see page 419.

11. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

12. in the KCRMF/kcrfn field, for KCOM = ST the format identifier of the start format or
blanks if no start format was generated. When used with USER and if the sign-on was
successful, the identifier of the user-specific start formats is returned. If sign-on has not
yet been completed successfully or if the application is generated without USER, then
KCRMF/kcrfn contains the identifier of the LTERM-specific start format.

13. in the KCRLM field, for KCOM = ST:

– for KCRCCC < 40Z: KCRLM contains the length of the information actually
available in openUTM.

– for KCRCCC >= 40Z, 0 is returned.

SIGN KDCS calls

416 Programming Applications with KDCS

SIGN ST call return information in the fields KCRSIGN1 and KCRSIGN2

For SIGN ST, openUTM delivers the following information about the current status of the
sign-on procedure in fields KCRSIGN1 and KCRSIGN2:

KCRSIGN1 KCRSIGN2 Meaning

C 01
02
03

Connection established (as K002)
KDCOFF BUT command issued (as K018)
KDCOFF BUT issued from program

U 01 Specified USER not generated (as K004)

02 Specified USER locked (as K005)

03 Someone already signed on with this USER (as K007)

04 Specified old password is invalid (as K006)

U 01 Specified USER not generated (as K004)

02 Specified USER is locked (as K005)

03 Someone already signed on with this USER (as K007)

04 Specified old password is invalid (as K006)

05 Entries for new password unusable

06 The terminal has no card reader (as K030)

07 Card information is invalid (as K031)

08 Sign-on not possible at present because of resource bottleneck or no
further users can sign on at present, since the maximum possible
number of simultaneous users has been reached, or it was not possible
to change the password, since an inverse KDCDEF is currently
running.

09 Sign-on not possible because of missing Kerberos support (as K110).

10 The current LTERM is not authorized to continue the service (as K123)

11 The period of validity for the password has been exceeded (as K120)

12 The new password does not fulfill the requirements of the complexity
level generated (as K097)

13 The new password is too short (as K097)

14 The password transferred by KDCUPD does not fulfill the requirements
of the complexity level generated (as K125)

15 A transaction restart is required for the specified user ID (as K145)

16 The open service cannot be continued from within this LTERM partner
(like K123)

17 The administrator issued a SHUT WARN;
Normal users cannot sign on any more to the application (as K016);
administrators can still sign on.

B

KDCS calls SIGN

Programming Applications with KDCS 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

U 18 The encryption mechanism required for the continuation of the open
service is not available in the connection (as K123)

20 Error in the Kerberos authentication (as K108)

21 Invalid Kerberos principal (as K109)

22 The specified USER does not exist in the cluster user file (as K004).

23 Somebody has already signed onto a different node application under
this USER (as K007).

24 It is currently not possible to sign on because the cluster user file could
not be locked in the generated time (CLUSTER statement, parameter
FILE-LOCK-TIMER-SEC, parameter FILE-LOCK-RETRY) (as K091).

25 It is not possible to sign on at this node application because the user
has a service that is bound to another node application and which may
not be terminated (as K189).

26 Sign-on rejected because the user’s open service has a transaction in
PTC state but no service restart has been requested.

I 01 The USER is known but intermediate dialog is required,
(only for automatic KDCSIGN)

A 01 Sign-on successful because generated without USER (as K001)

02 Sign-on successful (as K008)

03 Sign-on successful (via distributor, only on BS2000 systems)

04 Sign-on successfu l (from the connection user ID, only for TS applica-
tions or UPIC client). It is possible to sign on with a "genuine" user ID
using the SIGN ON call.

05 Sign-on successful, password changed via intermediate dialog

06 Sign-on successful (via distributor, only on BS2000 systems), the
password was changed via distributor

R 01 as A01, but after service restart

02 as A02, but after service restart

03 as A03, but after service restart

04 as A04, but after service restart

05 as A05, but after service restart

06 as A06, but after service restart

KCRSIGN1 KCRSIGN2 Meaning

B

B

B

B
B

B

B

SIGN KDCS calls

418 Programming Applications with KDCS

KCRSIGN1 provides a rough classification

C Connected but not signed on. Status following connection setup or
KDCOFF BUT

U Signon Unsuccessful. A preceding attempt to sign on was rejected.

I Signon Incomplete. Intermediate dialog is required to obtain additional data
(password, ID, chipcard)

A Signon Accepted. Without subsequent service restart

R Signon accepted + Restart. With subsequent service restart.

Return information of the SIGN CK call in the KCRSIGN1 and KCRSIGN2 fields

openUTM returns the following information for SIGN CK in the KCRSIGN1 and KCRSIGN2
fields:

KCRSIGN
1

KCRSIGN
2

Meaning

A 02 Authorization data is correct and complete

U 01
02
04
07
11
14

The specified USER does not exist
The specified USER is locked
The specified old password is incorrect
The card information is not available
The validity period of the password has expired
The password transferred by KDCUPD does not satisfy the complexity
level requirement or is too short

KDCS calls SIGN

Programming Applications with KDCS 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

KDCS return codes for the SIGN call

The following codes can be analyzed in the program:

000 Operation carried out.

01Z The function was executed, the message area provided is too short, though (the
value in KCLA is too small). No information or incomplete information was returned.

40Z System cannot perform the operation (generation error or system error).

41Z Call is not allowed at this point:
– SIGN OF/OB call already issued, or
– SIGN call in an asynchronous service and call is not SIGN CK , or
– SIGN ST/ON call outside a sign-on service, or
– SIGN CP/CK call prior to successful sign-on, or
– SIGN ON/CP/CK call in an application which was generated without user IDs, or
– SIGN OB/OF in a job-receiving service (with distributed transaction

processing).

42Z Entry in KCOM is invalid.

43Z Length entry in KCLA is negative or invalid.

44Z For KCOM=CP: entry for old password incorrect, password not changed

45Z For KCOM=CP: entry for new password incorrect, password not changed. The
more precise cause provides KCRCDC.

47Z Message area missing or cannot be accessed in the specified length.

48Z For KCOM=ST: invalid interface version

49Z Contents of fields not used in the KDCS parameter area not equal to binary zero.

Two additional return codes can be found in the dump:

71Z INIT call still missing in the program unit run.

SIGN KDCS calls

420 Programming Applications with KDCS

Features of the SIGN call

● Message area for SIGN ST with KCLA > 0:

The following mean:

KCVER Version number of the data structure. The number 2 is to be entered
here for this version of openUTM.

KCRPWVAL If the sign-on was successful (KCRSIGN1 = A/R) or has not yet been
successful (KCRSIGN1 = I), then this field contains the number of days
that the password for this user is still valid.
The value -1 means that there was no validity period generated for the
password.
The value 0 means that the password will become invalid within the next
24 hours.
The value -2 means that validity of the password has run out. The
password must be changed if the sign-on service is to terminate
successfully. This values can only be returned if grace sign-ons are
permitted (SIGNON statement in the generation, parameter
GRACE = YES).
In the case of KCRSIGN1 = I, the value -3 means that the complexity
level or minimum length of the password has been increased and that
the password transferred with the KDCUPD tool may possibly no longer
meet the requirements.

Field name
COBOL

Field name
C/C++

Length
in bytes

Description

Call information:

KCVER if_version 2 Version number of the data structure (3)

Return information:

KCRPWVAL rpwval 2 Validity period of the password

KCRPWMIN rminpw 2 Minimum validity period of the password

KCRUSER ruser 8 User ID

KCRTAC rtac 8 Transaction code from the UPIC protocol

KCRPSWRD rpsword 8 Password from the UPIC protocol

KCLSTSGN rlstsgn 14 Date/time of the last sign-on

KCDSPMSG rdispmsg 1 Message present (Y/N)

KCTAPTC rtainptc 1 Transaction in PTC state (Y/N)

KCCLNODE rclusternode 8 Node to which the open service is bound

KCSGRES reserved 10 Reserved for future extensions

KDCS calls SIGN

Programming Applications with KDCS 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

Otherwise the value -3 means that the password passed by the
KDCUPD tool does not meet the complexity level requirements or is too
short. The password must be changed with SIGN CP if the sign-on
service is to terminate successfully.
This values can only be returned if grace sign-ons are permitted
(SIGNON statement in the generation, parameter GRACE = YES).

KCRPWMIN If the sign-on is successful (KCRSIGN1 = A/R) or has not yet been
successful (KCRSIGN1 = I), then this field contains the number of days
that the password for this user may not be changed using a SIGN CP
call. The value 0 means that the password may be changed.

KCRUSER After an unsuccessful or not yet completed sign-on (KCRSIGN1 = U/I),
this field contains the name of the user that was rejected
(KCRSIGN1 = U) or for whom an intermediate dialog must be executed
first (KCRSIGN1 = I), otherwise it contains blanks.

KCRTAC This field contains the name of the transaction code (TP_Name) passed
in the UPIC protocol in the sign-on service for the UPIC partner,
otherwise it contains blanks. openUTM does not check if the transaction
code is valid or not.

KCRPSWRD This field contains the password of a user generated without a
password that was passed in the UPIC protocol in the sign-on service
for the UPIC partner after a successful sign-on (KCRSIGN1 = A/R),
otherwise it contains blanks.

KCLSTSGN This field contains the date and time of the last successful sign-on of this
user to the application after the user has successfully signed on
(KCRSIGN1 = A/R) or has not yet signed on successfully (KCRSIGN1
= I). The date and time are passed in the format
YYYYMMDDHHMMSS. Printable nulls are returned after the first
successful sign-on after a regeneration.

KCDSPMSG After the successful sign-on (KCRSIGN1 = A/R) of a user, the field
contains the following value:

Y If there is an open dialog service for the user (KCRSIGN1=R) or a dialog
message that can be output with MPUT PM

N in all other cases

KCTAPTC When the user has successfully signed on with a subsequent service
restart (KCRSIGN1 = R), the field has the following value:

Y If there is a transaction in the state P(repare) T(o) C(ommit) for the user.
In this case, the service restart cannot be prevented.

N in all other cases.

SIGN KDCS calls

422 Programming Applications with KDCS

KCCLNODE If the sign-on was not successful (KCRSIGN1 = U) due to the existence
of a service bound to another node application (KCRSIGN2 = 25), the
field contains the host name of the node to which the open service is
bound.

● Entries in the message area for SIGN ON and SIGN CP

– For SIGN ON, write an 8 byte password to the message area. Blanks mean "user
ID without password".

– For SIGN CP, write the old and new passwords at 8 byte length to the message area
as follows:

The new password must consist of characters which are allowed in the UTM partner
application, see openUTM manual “Generating Applications”, USER statement.

If the call has the correct syntax, then openUTM overwrites the data area with
blanks.

You do not need administration authorization for this call.

● With SIGN ON openUTM checks whether the user is able to sign on from this client at
this time.

● With SIGN CK openUTM checks whether the authorization data is adequate for
successful sign-on from this client but does not check whether sign-on is possible at this
time.

● SIGN OF and SIGN OB may only be issued in program units terminated with PEND RE
or PEND RE or PEND FI and which issue the dialog message to the terminal, the UPIC
client or the transport system application. Otherwise, openUTM aborts the service with
PEND ER.

SIGN OB to UPIC clients or transport system applications has the same effect as SIGN
OF.
SIGN OF and SIGN OB only take effect at the next input from the terminal. In other
words, the user is not signed off until after the next input (SIGN OB), or the connection
to the terminal is not cleared until after the first input (SIGN OF). In the case of UPIC
clients or transport system applications, the connection cleardown is initiated immedi-
ately.

● SIGN ST and SIGN ON are only allowed in the sign-on service.

i SGN is used as symbolic name instead of the operation code SIGN in the COBOL
data structure because SIGN is a reserved COBOL word.

old password1

1 Blanks mean "user ID without password"

new password1

KDCS calls SIGN CL

Programming Applications with KDCS 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

SIGN CL - Change locale of user ID

SIGN CL (Change Locale) can be used to change the user-specific locale of the current
user ID, i.e. the language identifier, the territory identifier and the name of the employed
character set can be rolled back provided that the current user ID is a genuine user ID (not
a connection user ID).

SIGN CL is only permitted in dialog program units of a UTM application which is configured
using user IDs. Administration privileges is not necessary.

If the call is successful, then the new locale is valid as of the next end of transaction. All
messages in the current transaction are processed using the old character set name. It is
therefore advisable to terminate the program unit at the end of transaction, but without
issuing a dialog message to the terminal if the character set name of the user has changed.

If you only want to change specific components of the location, you have to set binary zero
for the remaining components.

Modifications performed with SIGN CL remain valid after a KDCUPD run. KDCUPD
implicitly transfers the current values of a user location to the new KDCFILE.

SIGN CL is an upwards compatible extension of DIN 66265.

Setting the KDCS parameter area (1st parameter) with SIGN CL

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCLANGID KCTERRID KCCSNAME

Change locale of
user ID

SIGN CL New language
identifier of
user ID

New territory
identifier of
user ID

CCS name of new
character set for user
ID

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

BBBBB

B
B
BBB
B
B

B
B
B

B
B
B

SIGN CL KDCS calls

424 Programming Applications with KDCS

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "SIGN"

2. KCOM "CL"

3. KCLANGID Language identifier of user/
binary zero

4. KCTERRID Territory identifier of user/
binary zero

5. KCCSNAME Character set name of user/
binary zero

KDCS call

1st parameter 2nd parameter

6. KDCS parameter area —

7. C/C++ macro call

Macro name Parameters

KDCS_SIGNCL (nb,kclangid,kcterrid,kcccsname)

openUTM return information

Field name in KB return area Contents

8. KCRCCC Return code

9. KCRCDC Internal return code

B

BB

BBB

BBB

BBB
B

BBB
B

BBB
B

B

BB

BBB

BB

BB

BB

B

BB

BBB

BBB

KDCS calls SIGN CL

Programming Applications with KDCS 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the SIGN call with CL operation modifier you make the following entries in the KDCS
parameter area:

1. In the KCOP field, the SIGN operation name.

2. In the KCOM field, the operation modifier

CL Change locale of user ID.

3. In the KCLANGID field, the new language identifier which is to be assigned to the user
ID from which the service was started. The length of the language identifier is 2 bytes.
Enter binary zero in KCLANGID if you do not want to change the language identifier.

4. In the KCTERRID field, the new territory identifier which is to be assigned to the user
ID from which the service was started. The length of the territory identifier is 2 bytes.
Enter binary zero in KCTERRID if you do not want to change the territory identifier.

5. In the KCCSNAME field, the CCS name of the new character set to be assigned to the
user ID. The length of the CCS name is 8 bytes maximum.
Enter binary zero in KCCSNAME if you do not want to assign a new character set.

You specify the following for the KDCS call:

6. 1st parameter: the address of the KDCS parameter area.

7. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

8. in the KCRCCC field, the KDCS return code (length 3 bytes). See below for possible
return codes and their meaning.

9. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

SIGN CL KDCS calls

426 Programming Applications with KDCS

KDCS return codes in the KCRCCC field

000 Operation carried out, the specified component(s) of the location have been
changed.

40Z The system was not able to perform the operation (generation error).

41Z SIGN CL is not allowed at this point:
– the call was issued before a successful sign-on
– SIGN CL was called in an application without user ID.

46Z Specifications for the new locale are incorrect. The location of the user ID is not
changed. openUTM returns the precise cause in the KCRCDC field.

49Z When the function was called, unused fields in the KDCS parameter area were not
set to binary zero.

71Z No INIT call issued in the program unit.

B

B

B

B

B

B

B

B

B

B

B

B

KDCS calls SPUT

Programming Applications with KDCS 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

SPUT Write to secondary storage area

You use the SPUT (storage put) call to write data from a specified area to a

– global secondary storage area (GSSB) or a

– local secondary storage area (LSSB) or a

– user-specific long-term storage area (ULS).

Note that the name of a ULS block is defined at generation (ULS statement for KDCDEF),
whereas you can select the names of GSSBs and LSSBs arbitrarily when you call SPUT.

In UTM cluster applications, GSSB or ULS areas are available throughout the cluster.

Setting the 1st parameter (KDCS parameter area)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

For KCOM = US all the fields not used in the KDCS parameter area are to be set to binary
zero.

Function of the calls Entries in the KDCS parameter area

KCOP KCOM KCLA KCRN KCUS

Write to LSSB "SPUT" "DL"/ "MS"/
"ES"
(all have same
effect)

Length Name of LSSB —

Write to GSSB "SPUT" "GB" Length Name of GSSB —

Write to ULS "SPUT" "US" Length Block name User ID/
LSES name/
association name/
blanks

SPUT KDCS calls

428 Programming Applications with KDCS

Setting the 2nd parameter

Here you have to supply the address of the message area which contains the message to
be written.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "SPUT"

2. KCOM "GB"/"DL"/"MS"/"ES"/"US"
("DL", "MS" and "ES" have the same
effect)

3. KCLA Length in bytes

4. KCRN Name of the area

5. KCUS User ID/LSES name/association
name/blanks

Message area

6. Data

KDCS call

1st parameter 2nd parameter

7. KDCS parameter area Message area

8. C/C++ macro calls

Macro names Parameters

KDCS_SPUTGB / KDCS_SPUTDL /
KDCS_SPUTMS / KDCS_SPUTES

(nb,kcla,kcrn)

KDCS_SPUTUS (nb,kcla,kcrn,kcus)

openUTM return information

Field name in the KB return area Contents

9. KCRCCC Return code

10. KCRCDC Internal return code

KDCS calls SPUT

Programming Applications with KDCS 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the SPUT call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the SPUT operation code.

2. In the KCOM field, the entry indicating

– whether writing should be to an LSSB ("DL" or "MS" or "ES"), or

– whether writing should be to a GSSB ("GB"), or

– whether writing should be to a ULS block ("US").

The entries "MS" and "ES" have the same effect as "DL" for openUTM.

3. In the KCLA field, the length of the data which you make available in the message area.
The length is not written to the LSSB/GSSB/ULS.

4. In the KCRN field, the name of the LSSB/GSSB or ULS block to be initialized or to which
the data is to be written. Blanks and binary zero are invalid entries.

5. In the KCUS field, the user ID (for KCOM = US), if a ULS block of a foreign user ID is
to be written, otherwise blanks. If you enter a foreign user ID in KCUS, your own user
ID must have administration privileges.

If you want to write to a ULS block of a remote session/association, you have to specify
its LSES name or association name.

For KCOM = DL/MS/ES/GB: irrelevant.

In the message area you have to enter:

6. The message which you want to output.

You specify the following for the KDCS call:

7. 1st parameter: the address of the KDCS parameter area.

2nd parameter: the address of the message area from which openUTM is to read the
message. You enter the address of the message area even if you have entered the
length 0 in KCLA.

8. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

SPUT KDCS calls

430 Programming Applications with KDCS

openUTM returns:

9. in the KCRCCC field: the KDCS return code, see next page.

10. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Operation carried out.

40Z System cannot perform the operation (generation error or system error, deadlock,
timeout), see KCRCDC.

41Z Call issued in the first segment of the sign-on service, although this is not allowed
by the generation.
For KCOM=US: the call was issued in the first segment of the sign-on service or
after a SIGN ON and before the PEND PS call.

42Z Entry in KCOM is invalid.

43Z Length entry in KCLA is negative or invalid.

44Z Name in KCRN invalid if it consists solely of blanks or binary zero or has not been
generated (in the case of ULS).

46Z Entry in KCUS is invalid.

47Z Message area missing or cannot be accessed in the specified length.

49Z Contents of fields not used in the KDCS parameter area not equal to binary zero
(only for KCOM = US).

An additional error code can be found in the dump:

71Z INIT missing in this program

KDCS calls SPUT

Programming Applications with KDCS 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

The following table describes the effect of the call sequences SPUT ... RSET and SPUT ...
PEND/PGWT on GSSBs, ULSs and LSSBs.

Please note the following features of GSSBs, ULSs and LSSBs:

– A GSSB is available to all program units in an application, i.e. it can be overwritten by
all program units. To avoid unintentional overwriting of GSSBs by other program units,
you must ensure that their names are unique.

– In UTM cluster applications, GSSB and ULS areas are available throughout the cluster.
I.e. any GSSB or ULS that you create/write with SPUT exists in all node applications
where it can be read using SGET.

– An LSSB is assigned uniquely to a service.

– GSSBs, LSSBs and ULS blocks always take the length of the last SPUT called. This
length cannot exceed 32767 bytes.

– The name of a ULS block is defined at generation (as a TLS block).

– The maximum number of GSSBs or LSSBs is defined at generation

Call Effect on GSSBs/ULSs Effect on LSSBs

SPUT locks: GSSBs are created if not already
present, existing GSSBs are replaced

creates or replaces

...

...
PEND KP
PGWT KP/PR

leaves resettable and locked leaves resettable

... PEND RE/SP/
PGWT CM

sets valid (they are then no longer resettable)
and unlocks (i.e. other transactions can use
them)

sets valid (they are then no
longer resettable)

... PEND FI/FC deletes (they are no longer
available)

... RSET/
PEND RS/
PGWT RB

cancels changes and unlocks;
a GSSB is deleted if created in this trans-
action

cancels changes

... PEND ER/FR deletes

SPUT KDCS calls

432 Programming Applications with KDCS

Features of the SPUT call

● The SPUT call for a GSSB/ULS locks this GSSB or ULS block until the end of the trans-
action, i.e. until PEND RE, SP, FI, FC, RS or ER/FR.

Following an SPUT call, a GSSB/ULS block remains locked by this transaction; a
subsequent PEND KP or PGWT KP call or a PEND PA/PR or PGWT PR (in the case
of a wait for a DGET message) retains the lock beyond the end of the processing/dialog
step.
Another transaction that wants to process this GSSB/ULS block with SGET, SPUT or
SREL will be rejected in the following cases.
– PEND KP and PGWT KP
– PEND PA/PR with a task change due to TAC class control
– PEND PA/PR or PGWT PR with waiting for a DGET message

At the end of a transaction or when there is a rollback operation, all locked GSSBs and
ULS blocks are released.

In the section “Action with locked storage areas (TLS, ULS and GSSB)” on page 88
there is a description of how openUTM reacts when the desired GSSB or ULS block is
locked.

● GSSB areas are permitted with length 0 in KCLA. These GSSBs can be used for
communication between application programs; all that is evaluated is whether the
GSSB is locked or not. However, openUTM deletes a GSSB with length 0 the next time
the application is started. KDCUPD likewise does not transfer GSSBs with length 0 to
a new KDCFILE (see the openUTM manual “Generating Applications”, changing
KDCFILE).

● You can also use a SPUT call with KCLA=0 to delete the contents of ULS blocks.

KDCS calls SREL

Programming Applications with KDCS 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

SREL Delete secondary storage area

You use the SREL (storage release) call to delete a secondary storage area. A secondary
storage area can be

– the global secondary storage area (GSSB

– the local secondary storage area (LSSB)

Blocks of a ULS (user-specific long-term storage) cannot be deleted using SREL, since
their names are specified when the application is generated. If you want to delete the
contents of a ULS block, you have to overwrite the block with length zero.

In UTM cluster applications, a GSSB is valid throughout the cluster. Its deletion with
SREL therefore also applies throughout the cluster.

Setting the 1st parameter (KDCS parameter area)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCRN

Delete LSSB "SREL" "LB" Name of the LSSB

Delete GSSB "SREL" "GB" Name of the GSSB

SREL KDCS calls

434 Programming Applications with KDCS

For the SREL call you make the following entries in the KDCS parameter area:

1. In the KCOP field, the SREL operation code.

2. In the KCOM field

LB to delete an LSSB, or

GB to delete a GSSB

3. In the KCRN field, the name of the LSSB/GSSB to be deleted

You specify the following for the KDCS call:

4. 1st parameter: the address of the KDCS parameter area.

5. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "SREL"

2. KCOM "LB"/"GB"

3. KCRN Name of the area

KDCS call

1st parameter 2nd parameter

4. KDCS parameter area Message area

5. C/C++ macro call

Macro names Parameters

KDCS_SRELGB / KDCS_SRELLB (kcrn)

openUTM return information

Field name in the KB return are Contents

6. KCRCCC Return code

7. KCRCDC Internal return code

KDCS calls SREL

Programming Applications with KDCS 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

openUTM returns:

6. in the KCRCCC field: the KDCS return code.

7. in the KCRCDC field: the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Operation carried out.

14Z No area exists with the name specified in KCRN.

40Z System cannot perform the operation (generation error or system error, deadlock,
timeout), see KCRCDC.

42Z Entry in KCOM is invalid.

44Z Name in KCRN invalid (if it consists solely of blanks or binary zero).

An additional error code can be found in the dump:

71Z INIT missing in this program.

Features of the SREL call

● openUTM does not execute SREL until the end of the current transaction.

● SREL is not executed

– for service interrupt via PEND ER/FR, or

– if there is a subsequent PEND RS or RSET call.

● An SREL call locks the area called until the end of the transaction or UNLK or until the
next rollback operation. In other words, openUTM rejects subsequent SGET calls to this
area with the return code 14Z. However, if an SREL call is followed by an SPUT call
with the same area name, this area (LSSB or GSSB) is set up anew.

The lock continues to apply after the end of a processing/dialog step when the program
unit run is terminated or interrupted with:
– PEND KP and PGWT KP
– PEND PA/PR with a task change due to TAC class control
– PEND PA/PR or PGWT PR with waiting for a DGET message

If this area is a GSSB, then other services cannot access this GSSB either with SGET
or with SPUT until the end of the transaction. The section “Action with locked storage
areas (TLS, ULS and GSSB)” on page 88 describes how openUTM reacts in this case

SREL KDCS calls

436 Programming Applications with KDCS

● At the end of a service (PEND FI/FC) or service interrupt (PEND ER/FR, possibly also
PEND RS), openUTM automatically deletes all LSSBs. SREL calls to LSSBs are
therefore superfluous in transactions which terminate services.

● In UTM cluster applications, an SREL call deletes a GSSB throughout the entire cluster,
i.e. as soon as the SREL call takes effect, the GSSB can no longer be read in any of
the node applications.

The following table describes the effect of the call sequences SREL ... RSET and
SREL ... PEND on GSSBs and LSSBs.

Call Effect on GSSB Effect on LSSB

SREL deletes and locks
(operation remains resettable)

deletes (operation remains reset-
table)

... RSET/
PEND RS
PGWT RB

resets and unlocks resets

... PEND KP
PGWT KP

leaves the operation resettable leaves the operation resettable

... PEND RE
PEND SP
PGWT CM

deletes and unlocks
(operation not resettable)

deletes (operation not resettable)

... PEND FI
PEND FC

deletes all LSSBs

... PEND ER
PEND FR

resets and unlocks deletes all LSSBs

. . . PEND PA /
PEND PR 1/
PGWT PR

1 With a task change due to TAC class control or with waiting for a DGET message

lock remains, operation reset-
table

lock remains, operation resettable

KDCS calls UNLK

Programming Applications with KDCS 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

UNLK Unlock TLS, ULS or GSSB

You use the UNLK (unlock) call to unlock one of the following storage areas:

– the global secondary storage area (GSSB).

– a block of the terminal-specific long-term storage area (TLS).

– a block of the user-specific long-term storage area (ULS).

The area is not unlocked unless it was only read in the current transaction

In UTM cluster applications, GSSB and ULS areas are valid throughout the cluster. As a
result, unlocking a GSSB or ULS with UNLK is effective throughout the cluster.

Setting the 1st parameter (KDCS parameter area)

The table below shows the various options and the necessary entries in the KDCS
parameter area.

For KCOM = US, all the fields not used in the KDCS parameter area are to be set to binary
zero.

Function of the call Entries in the KDCS parameter area

KCOP KCOM KCRN KCLT or KCUS

Unlock TLS
(in dialog programs)

"UNLK" "DA" Block name —

Unlock TLS
(in asynchronous programs)

"UNLK" "DA" Block name LTERM name/
LPAP name

Unlock GSSB "UNLK" "GB" Name of GSSB —

Unlock ULS "UNLK" "US" Block name User ID/
blanks/
LSES name/
association name

UNLK KDCS calls

438 Programming Applications with KDCS

Setting the parameters

Field name in the KDCS parameter area Contents

1. KCOP "UNLK"

2. KCOM "GB"/"DA"/"US"

3. KCRN Name of the area/block name

4. KCLT or.
KCUS

LTERM name/LPAP name or
user ID/LSES name/association
name/blanks

KDCS call

1st parameter 2nd parameter

5. KDCS parameter area Message area

6. C/C++ macro calls

Macro name Parameters

KDCS_UNLKGB (kcrn)

KDCS_UNLKDA (kcrn,kclt)

KDCS_UNLKUS (kcrn,kcus)

openUTM return information

Field name in the KB return area Contents

7. KCRCCC Return code

8. KCRCDC Internal return code

KDCS calls UNLK

Programming Applications with KDCS 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
7

For the UNLK call you make the following entries in the KDCS parameter area:

1. In the KCOP field, UNLK operation code.

2. In the KCOM field, the type of storage to be unlocked:

GB for a global secondary storage area (GSSB).

DA for terminal-specific long-term storage area (TLS).

US for a user-specific long-term storage area (ULS).

3. In the KCRN field, the name of the storage area to be unlocked.

4. Depending on the type of storage:

– for unlocking a TLS in an asynchronous program:
in the KCLT field, the name of the LTERM or (OSI) LPAP partner, whose TLS is to
be unlocked.

– for unlocking a TLS in a dialog program:
irrelevant, the corresponding block of the associated TLS is always accessed.

– for unlocking a ULS block:
in the KCUS field, the user ID if a ULS block of a foreign user ID is to be unlocked
or blanks for a ULS block of your own user ID. If you enter a foreign user ID in
KCUS, your own user ID must have administration privileges.

If you want to unlock a ULS block of a remote session/association, you have to
specify its name.

– for unlocking a GSSB:
irrelevant.

You specify the following for the KDCS call:

5. 1st parameter: the address of the KDCS parameter area.

6. The use of C/C++ calls is described in detail in the section “C/C++ macro interface” on
page 491.

openUTM returns:

7. in the KCRCCC field, the KDCS return code.

8. in the KCRCDC field, the internal return code of openUTM (see the openUTM manual
”Messages, Debugging and Diagnostics”).

UNLK KDCS calls

440 Programming Applications with KDCS

KDCS return codes in the KCRCCC field

The following codes can be analyzed in the program:

000 Operation carried out.

14Z No GSSB/TLS exists with the name specified in KCRN.

16Z GSSB/TLS/ULS not locked by your own transaction or GSSB created or changed
in same transaction or TLS changed in same transaction.

40Z System cannot perform the operation (generation error or system error, deadlock,
timeout).

42Z Entry in KCOM is invalid.

44Z For GSSB: entry in KCRN is invalid (blanks or binary zero).

For TLS and ULS: name of the block in KCRN is unknown or invalid.

46Z LTERM or LPAP partner in KCLT is invalid (only for asynchronous programs and
TLS) or the user ID is unknown (only for ULS).

49Z Contents of fields not used in the KDCS parameter area not equal to binary zero
(only for KCOM = US)

An additional error code can be found in the dump:

71Z INIT missing in this program.

Features of the UNLK call

● An UNLK call to a TLS/ULS/GSSB is only useful after a read call (GTDA or SGET). If
the area is changed in the current transaction with PTDA, SPUT or SREL (with GSSBs),
openUTM rejects the call with KCRCCC = 16Z; the area remains locked until the end
of transaction.

● An UNLK call is useful, for example, before entering PEND KP or PGWT KP/PR. This
causes TLS/ULS blocks and GSSBs to be released prior to the next synchronization
point. This makes them available to the other transactions.

● An UNLK call for an area not locked by your own transaction is rejected
(return code 16Z).

● In UTM cluster applications, an UNLK call unlocks a GSSB or ULS throughout the
cluster, i.e. as soon as the UNLK call takes effect, transactions in other node applica-
tions are again able to access the unlocked area.

Programming Applications with KDCS 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

8 Event functions

In order to be able to react to certain events in a program, openUTM permits the use of what
are known as event functions. Unlike “normal” program units which are called by specifying
a transaction code, openUTM starts these program units when certain events occur.

There are two different types of event functions:

● event exits, which must not contain any KDCS calls and

● event services, which must contain KDCS calls.

Since STXIT routines such as those used on BS2000 systems are also event-driven, a
description of these routines has also been included in this manual in section “STXIT
routines (BS2000 systems)” on page 463. The section “Event handling in ILCS programs
(BS2000 systems)” on page 464 deals with event handling in ILCS programs.

Event exits:

INPUT This event exit is called with input from a data display terminal.

START These event exits (up to 8) are called at each start of the application
program.

SHUT These event exits (up to 8) are called at each termination of an application
work process, including at PEND ER.

VORGANG This program unit is called at the start and the end of a service, and also in
the case of incorrect termination or termination caused by loss of
connection or in the case of a service restart.

FORMAT This event exit is called if a message is entered or output which you then
want to format using a formatting routine of your own (-format).

B

B

B

B

B

B

Event functions

442 Programming Applications with KDCS

Event services:

BADTACS This dialog service is called whenever an invalid transaction code is entered
at a terminal or a TS application or data protection is violated.

MSGTAC This asynchronous service is called whenever openUTM outputs a
message with MSGTAC defined as its destination (see the openUTM
manual ”Messages, Debugging and Diagnostics”, the section describing
the modification of output messages).

SIGNON This dialog service is called whenever a terminal user, a TS application or
a UPIC client signs on to the application. The prerequisite for this is that a
sign-on service must be generated for the transport system access point via
which the client signs on; in addition, UPIC= YES must be generated in the
SIGNON statement for UPIC clients.
For each transport system access point of a UTM application (generated
with MAX APPLINAME or BCAMAPPL), a separate sign-on service can be
generated (see the SIGNON-TAC parameter of the BCAMAPPL statement
in the openUTM manual “Generating Applications”).

Database calls are only allowed in the program units for VORGANG, BADTACS, MSGTAC
and SIGNON, and not in the case of program units for INPUT, START and SHUT.

Database calls are not permitted in FORMAT program units.B

Event functions Event exits

Programming Applications with KDCS 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

8.1 Event exits

Event exits are created as subroutines without KDCS calls. This section describes the
following event exits:

INPUT
START
SHUT
VORGANG
FORMAT

The event exits INPUT, START and SHUT are defined with the KDCDEF statement EXIT.
You can define the event exit VORGANG with the TAC and PROGRAM statement.

The event exit FORMAT is also defined with the KDCDEF statement EXIT.

Of these five event exits, database calls are permitted only in the VORGANG exit.

Reading the application name

An event exit is able to read the name of the own application by calling the KDCAPLI entry,
see the following example:

Assembler program:

 EXTRN KDCAPLI
AKDCAPLI DC A(KDCAPLI)

C program:

extern char KDCAPLI[8];

8.1.1 Event exit INPUT

You can use this event exit to determine the effect of terminal input.

openUTM calls the event exit INPUT - with a few exceptions - every time input is made at
a terminal. The exceptions are as follows:
– input if no user is as yet signed on
– input in the event service SIGNON
– input using a function key generated with
– input after a program has issued the call SIGN OB/OF.

openUTM passes the address of the parameter area, comprising an input area and an
output area, to the program unit for an INPUT exit.

B

B

Event exits Event functions

444 Programming Applications with KDCS

Programming language-specific data structures are available for declarations in the
parameter area: COBOL uses the COPY member KCINPC, whereas C/C++ use the header
file kcinp.h. For an explanation of the individual fields in the parameter area and the
meanings of these fields, see pages 445 - 447.

On BS2000 systems, openUTM also passes a second parameter to the input exit
containing additional input fields. Once again, a programming language-specific data
structure is available for the structure of the second parameter as well: the COBOL
structure is the COPY member KCCFC; the C/C++ structure is the header file kccf.h. The
second parameter area is described on pages 448 - 450.

The program unit analyzes the values entered in the input area and sets the output area
accordingly. Depending on the values entered in the output area, openUTM decides which
of the following actions is to be executed:

– continue the service or

– start a new service or

– stack a service and start a new service or

– execute a user command, e.g. KDCOFF or

– send a message with error information to the terminal.

Possible applications

The input exit provides the terminal interface with greater freedom regarding the layout of
the user interface.

– Position of transaction codes or KDC commands in the message:
transaction codes or KDC commands do not have to appear at the start of a message.

– Visibility of transaction codes on screen:
The Transaction code has not to be visible on screen if you want to start a service.
For example, a menu might offer a number of activities. The terminal user enters a text
or a number to choose one of them. This input itself does not have to be a transaction
code: it is only the INPUT exit which converts it to a transaction code (a service TAC).
In this way transaction codes, which are an element of generation information, become
independent of the dialog interface.

– Representation of command names:
There is no need to specify “KDC...” in order to issue a KDC command.
If it is felt to be useful, commands can be represented in some other form, e.g. “/”
instead of “KDC”.

B

B

B

B

B

Event functions Event exits

Programming Applications with KDCS 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

openUTM enters the following values in the appropriate fields of the input area:

1. KCIFCH: the first 8 characters of the input, at most, however, up to the first blank.

2. KCIMF/kcifn: the format identifier:
– Blanks in line mode or
– the format identifier of the format on the screen.

The field KCIMF/kcifn can also contain the format identifier #!POPUP. #!POPUP
indicates that a box “pops up” on screen. You can use the FHS service function
KDCFHS with the user code INFD to display the names of all formats on the screen.

Parameter area KDCINPC / kdcinp.h

Input area (supplied by openUTM)

Field name Contents

1. KCIFCH First 8 characters of the input

2. KCIMF/kcifn Format identifier

3. KCICVTAC Service transaction code

4. KCICVST Service status

5. KCIFKEY Value of F key: 1,...,20 / binary zero

6. KCIKKEY Binary zero/
value of K key: 1,...,20

7. KCICFINF: "NO"
/"MO"/"ON"/"UN"

Formatting information

8. KCILTERM Current LTERM partner

9. KCIUSER Current user ID

Output area (supplied by the INPUT exit)

Field name Contents

10. KCINTAC or KCINCMD Next service TAC or
next user command

11. KCICCD Code for the effect of the input:
"ER"/"CC"/"SC"/"ST"/"CD"

12. KCICUT Truncate TAC: "Y"/"N"

13. KCIERRCD Error info for terminal (4 bytes)

B

B

B

B

B

B

Event exits Event functions

446 Programming Applications with KDCS

3. KCICVTAC: the transaction code used to start the current service (if any).

4. KCICVST: the service status:

ES (End of dialog Step)
End of the dialog step with PEND KP or PGWT KP

ET (End of Transaction)
End of the transaction with PEND RE

RS (Return from Stack)
End of the inserted service; the input is intended for the stacked service.

EC (End of Conversation)
The last dialog step was terminated with PEND FI; the input is intended for
a new service.

5. KCIFKEY: the value of the F key (1 - 20, on BS2000 systems: 1 - 24) if pressed,
otherwise binary zero.

6. KCIKKEY: binary zero
or (on BS2000 systems) the value of the K key (1 - 14), if pressed

7. KCICFINF Information of the formatting system:

NO (NO control field)
The input does not contain any control fields; either the input was in line
mode
or the format does not contain any control fields or one of the control fields
was empty.

MO (MOre control fields)
The input contains several control fields.

ON (ONe control field)
The input contains exactly one control field.

UN (UNsuccessful)
Input could not be formatted.
Therefore no control field specifications were possible; this entry is made,
for instance, after input in a format fetched with KDCOUT

8. KCILTERM: name of the LTERM partner via which the terminal is connected.

9. KCIUSER: the current user ID.

B

B

B

B

B

B

B

B

B

B

B

Event functions Event exits

Programming Applications with KDCS 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

You input the following in the fields of the output area:

10. KCINTAC, if a new service is to be started:
the TAC of the program unit which starts the next service.

KCINCMD, if a user command is to be executed:
the user command (KDC command).

Blanks have to be entered in the case of an error message (KCICCD = ER) or continu-
ation of the service (KCICCD = CC, follow-up TAC is entered with PEND!).

11. KCICCD, depending on the required effect of the input:

ER (ERror indication)
for an error message to the data display terminal. You can then enter an
insert in the KCIERRCD field for this message.

CC (Continue Conversation)
for continuing the service. This must not be specified after end of service
(KCICVST = EC).

SC (Start new Conversation)
if a new service is to be started; only allowed after end of service
(KCICVST = EC).

ST (STack Conversation)
if the current service is to be stacked and a new service is to be started;
allowed only at end of transaction (KCICVST = ET/RS).

CD (process CommanD)
if openUTM is to execute a user command.

12. KCICUT: the value Y if the TAC is to be truncated at the start of a service (permissible
only where KCICCD = SC/ST), otherwise N.

13. KCIERRCD: a character string of up to 4 bytes to be sent to the terminal with the UTM
message K098 if KCICCD=ER. Otherwise (KCICCD ≠ ER) blank.

Event exits Event functions

448 Programming Applications with KDCS

Second parameter area KCCFC / kccf.h (for BS2000 systems)

openUTM uses the second parameter to pass the contents of the control fields from the
screen formats to the program unit - which is why this second parameter area is also
referred to as the control field area. openUTM can use the field KCCFS to pass input made
in various control fields for a format (and even in different subformats of a format).

The first two fields, KCCFCREM and KCCFCFLD, correspond to the control field area in
earlier openUTM versions. They have been kept for compatibility reasons. The fields
KCCFNOCF and KCCFS are relevant.

The table below illustrates the structure of the control field area in which openUTM makes
the input parameters available:

Second parameter area (supplied by openUTM)

Field name Contents

1. KCCFCREM (bytes 1 - 8) First 8 characters of the input

2. KCCFCFLD (bytes 9 - 140) Format identifier

3. KCCFNOCF (bytes 141 - 144) Service transaction code

4. KCCFS (bytes 145 - 7744) Table (array) of control field information:
each array element contains the infor-
mation for one control field. There can
be up to 50 elements. The elements are
structured as follows:

– KCCFFNAM (8 bytes)
Name of the format or subformat
containing the control field

– KCCFREM (8 bytes)
Remark defined as with IFG

– KCFLOFL (4 bytes)
Length of the control field

– KCCFFLD (132 bytes)
Contents of the control field

B

B

B

B

B

B

B

B

B

BB

B

BB

BB

BB

BB

B
B
B
B
B
B

B
B
B
B
B

B
B
B

B
B

B
B

B
B

Event functions Event exits

Programming Applications with KDCS 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

In the second parameter area, openUTM supplies the following values:

1. KCCFCREM contains the remark defined for the control field when the format was
generated with IFG and whose contents are included in KCCFCFLC. If no remark was
created when the format was generated, or if no entry was made in the control field, the
8 bytes in this field are filled with blanks.

2. KCCFCFLD contains the entry for a control field in the format, provided that at least one
control field is defined in the format and that an entry has been made in it. KCCFCFLD
contains this entry with the length permitted by the control field. The remainder of the
KCCFCFLD field is padded with blanks.
If no entry has been made in a control field, or if the format does not have any control
fields, then both KCCFCREM and KCCFCFLD will contain blanks and KCCFNOCF will
have the value null.
If the format has several control fields which, in some cases, will be in different
subformats, then both the remark and the contents of the control field will refer to a
control field in which an entry has been made. If entries were made in more than one
control field, KCCDCFLD will assume the entry made in the first control field in the
uppermost subformat on the screen. KDDFCRREM will then contain the corresponding
remark.

3. KCCFNOCF contains the number of control fields in the format in which entries have
been made.

4. KCCFS contains an array which covers all the control fields passed by FHS, including
the control field whose data is already entered in the fields KCCFCFLD and
KCCFCREM. The number of valid array elements is stored in the field KCCFNOCF.
Each array element consists of a structure containing the following fields:

KCCFFNAM
contains (in 8 bytes) the (sub-) format name of the format to which the control field
belongs. If the name is less than 8 characters long, the rest of the field is padded
with blanks.

KCCFREM
contains the remark defined for this control field when the format was generated
with IFG. If no remark was created when the format was generated, or if no entry
was made in the control field, the 8 bytes in this field are filled with blanks.

KCCFLOFL
length of the control field.

KCCFFLD
contains the entry for a control field in the format. KCCFFLD contains this entry with
the length permitted by the control field. The remainder of the KCCFCFLD field is
padded with blanks.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event exits Event functions

450 Programming Applications with KDCS

Input in control fields

Input can be made in a control field from a variety of sources:
– Terminal users can make entries in the control field.
– The field may have been defined with the property “automatic input” during format

generation with IFG.
– In the case of ∗formats or +formats: The field has the property “unprotected” and the

FHS start parameter ISTD=RUNP (read unprotected) is set.

Errors with INPUT exit

If there are errors in the INPUT exit, an open service is not terminated; however, the
terminal user is informed of the error with message K098 if
– the entry in KCICCD (effect of the input) is invalid or
– the entry in KCICCD does not match the values of the other output fields.

In both cases, a UTM dump with REASON=INPERR is supplied for error diagnosis.
On BS2000 systems, a USERDUMP is also generated in such cases.

Database calls are not permitted in the INPUT exit.
If database calls are nevertheless included, a USERDUMP is generated on BS2000
systems with the error code KDCDB10.

Generation notes

The event exit INPUT must be defined during generation with the EXIT statement and the
operand USAGE=(INPUT,...). You can also defined several INPUT exits for a variety of
purposes. The following options are available:

● An application contains just one universal INPUT exit which is called with inputs in
formatted mode and with inputs in line mode. This universal exit is generated with
USAGE=(INPUT,ALL). Other INPUT exits are not allowed in this case.

● A special INPUT can be generated for each type of format identifier. There are two
possible types; no more than one of each type may be defined:

– With USAGE=(INPUT,FORMMODE) an INPUT exit is defined for +fomrats and
*formats. An INPUT exit generated in this way will also be called for the #formats.

– With USAGE=(INPUT,USERFORM), an INPUT exit is defined for the user’s own
formatting routines (-formats).

– With USAGE=(INPUT,LINEMODE), an INPUT exit is defined for input in line mode.

If special INPUT exits are used in an application, then it is not allowed to define a universal
type with USAGE=(INPUT,ALL).

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event functions Event exits

Programming Applications with KDCS 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

8.1.2 Event exit START

START exits are called when the application program is started, when the program is
reloaded after a PEND ER or when the entire application program is replaced.

The START event exits are called in the order of the corresponding EXIT statements in the
KDCDEF file.

You can use START exits, for example, in order to open files in order to work with them.

Programming notes

– You can access the KB header and SPAB in this event exit, but the KB program area
and the SPAB do not contain any relevant data. openUTM enters the transaction code
"STARTUP" for this program unit in the KCTACVG/kccv_tac and KCTACAL/kcpr_tac
fields of the KB header.

– When the first process of the application is started, openUTM enters the service ID "F"
in the KCKNZVG/kccv_status field, otherwise a blank.

– If you use other shared storage areas (AREAs), you can access them in the START exit.
For more information refer to the following sections: “Other data areas (AREAs)” on
page 483 and “Extending the LINKAGE SECTION” on page 538.

– You are not allowed to use KDCS calls in this program unit.

– You can exit the event exit START with a return statement.

– The additional processes (if there are any) are only started after the first process of an
application is started.

– If an error occurs in the START program unit (e.g. because of an attempt to open a non-
existent file), the event exit START CAN ensure that the current process is terminated.
An error message must, however, always be written beforehand.

– Should irrecoverable errors occur during the start exit for the first process in the UTM
application and thus prevent the UTM application from running, the start exit routine can
only be terminated with exit(-1) (with COBOL85: set RETURN-CODE to -1 and after-
wards STOP RUN). The START program unit which starts the UTM application is then
aborted.

– If the start exit for a follow-up process in a UTM application is terminated with exit(-1)
(COBOL85: RETURN-CODE to -1 and STOP RUN), the UTM application loses a
process. For this reason, the start exit for a follow-up process must never be terminated
with exit(-1). Instead, this status must be handled by other program units - if necessary
by shutting the process down from the administration interface.

X/W

X/W

X/W

X/W

X/W

Event exits Event functions

452 Programming Applications with KDCS

– If the application program is to be terminated and a USERDUMP is to be written you
can, for example, call a short Assembler program in which you first call the CDUMP
macro and then call TERM with the operand UNIT=STEP.

Generation notes

– The program unit for the event exit START has to be defined at generation with the EXIT
statement and the operand USAGE=START.

– A maximum of 8 event-driven START program units are allowed per application.

This version enables you to use several START exits and thus allows you to work better
with preconfigured or purchased application components, which often have their own
START and SHUT exits. These can now be processed one after the other. In addition, as
an application operator, you can also add your own START exits.

8.1.3 Event exit SHUT

SHUT exits are called when the application program is terminated (e.g. as a result of PEND
ER). You can use SHUT exits, for example, to close your own files.

The SHUT event exits are called in the order of the corresponding EXIT statements in the
KDCDEF file.

Programming notes

– You can access the KB header and SPAB in this event exit, but the KB program area
and the SPAB do not contain any relevant data. openUTM enters the transaction code
"SHUTDOWN" for this program unit in the KCTACVG/kccv_tac and KCTACAL/kcpr_tac
fields of the KB header.

– If you use other shared storage areas (AREAs), you can access them in the SHUT exit.
For more information refer to the following sections: “Other data areas (AREAs)” on
page 483 and “Extending the LINKAGE SECTION” on page 538.

– If the application terminates normally, openUTM enters the service indicator "L" in the
KCKNZVG/kccv_status field for the final process of the application, otherwise a blank.

– You are not allowed to use KDCS calls in this program unit.

– You can exit the event exit SHUT with a return statement.

B
B

B

Event functions Event exits

Programming Applications with KDCS 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

– If an error occurs in the SHUT program unit (e.g. because of an attempt to open a non-
existent file), the event exit SHUT can be terminated. Before doing so, however, you
should first issue a message that you are going to terminate the program. If the appli-
cation program is to be terminated and a USERDUMP is to be written you can, for
example, call a short Assembler program in which you first call the CDUMP macro and
then call TERM with the operand UNIT=STEP.

Generation notes

– The program units for the SHUT event exits must be defined at generation with the EXIT
statement using the operand USAGE=SHUT.

– A maximum of 8 event-driven SHUT program units are allowed per application.

This version enables you to use several SHUT exits and thus allows you to work better with
preconfigured or purchased application components, which often have their own START
and SHUT exits. These can now be processed one after the other. In addition, as an appli-
cation operator, you can also add your own SHUT exits.

For an example of how an event exit SHUT can be used in C or COBOL, see page 525 and
page 578.

8.1.4 Event exit VORGANG

openUTM calls the VORGANG event exit when a service is started or terminated, including
incorrect termination and restart.

Even if a service consists of two or more transactions processed in different program units,
the same VORGANG event exit which was called at the start of the service is called again
at the end of the service.

If VORGANG is called at the end of a service, but an error occurs at this time, the last trans-
action of the service is not rolled back.

Programming notes

– You are not allowed to use KDCS calls in this program unit.

– The longest processing time of the event exit VORGANG should be less than the
maximum time in seconds for which a resource locked by another process is to be
waited (KDCDEF statement MAX, RESWAIT operand, value time2) since UTM locked
resources during the event exit VORGANG at the end of the service.

– You can exit the event exit VORGANG with a return statement.

– You can access the KB header and SPAB but the KB program area and the SPAB do
not contain any relevant data.

B
B

B

B

B

B

Event exits Event functions

454 Programming Applications with KDCS

openUTM enters the service indicator for this program unit in the
KCKNZVG/kccv_status field of the KB header. The service indicator can assume one
of the following values:

The program indicator (field KCPRIND) shows whether a program is running in a dialog
service or in an asynchronous service:

Note that in distributed transaction processing, after the end of the service, the VORGANG
event exit may be processed by a process other than the one which processed the last
program unit in the service.

Generation notes

– There can be more than one VORGANG program unit for a single application.

– Which event exit VORGANG is called for which service is defined with the TAC
statement, operand EXIT=TAC of the service. In particular, the event-driven services
BADTACS, MSGTAC and SIGNON can have an event exit VORGANG.

– A PROGRAM statement is also required for an event exit VORGANG.

F First program unit run of a dialog service

C First program unit run of a concatenated service

A Restart of a service

R Errored end of service

Z End of service

E End of service

D Termination of the service due to connection cleardown or loss of connection if
RESTART=NO is generated for the UTM user id.

A The program unit is running in an asynchronous service.

D The program unit is running in a dialog service.

Event functions Event exits

Programming Applications with KDCS 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

8.1.5 Event exit FORMAT (BS2000 systems)

If you use the event exit FORMAT, you are implicitly doing without the output support
provided by the system components FHS and VTSU. You will therefore need to write your
own formatting and may need to handle screen restarts manually. openUTM recognizes the
event exit FORMAT by means of the “-” prefix to the format identifier in KCMF/kcfn.

The event exit FORMAT must be generated in the EXIT statement with the operand
USAGE=FORMAT. Only one event exit FORMAT is permitted per application. Subformats
must not be used.

i The event exit FORMAT is a program which implements system software functions.
The code it contains must therefore be written very carefully: no exits should be left
open or paths uncoded etc., as errors can cause the service, and possibly even the
application, to crash. If in doubt, terminate the event exit FORMAT with formatting
errors.

The event exit FORMAT can be written in any of the programming languages supported by
openUTM. The programming languages Assembler and C/C++ are, however, particularly
well suited to this purpose. The description of the FORMAT exit provided in the remainder
of this section is based on the Assembler language. Nevertheless, here is a brief example
of the prototype of a FORMAT exit in C:

Prototype of a FORMAT exit in C (ANSI)

void FORMATEX(struct kc_ca * const pKB
,char * const pSPAB
,char * const pFormatName
,char * const pDevice
,char * const pFormatArea
,char * const pPhysicallyInOutArea
,char * const pRestartArea
,char * const pFormatControlArea
,char * const pInOutIndicator
,char * const pSecondaryReturnCode
);

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B

Event exits Event functions

456 Programming Applications with KDCS

Address list

When the event exit is called, openUTM provides the following address list:

openUTM calls the formatting routine whenever one of the KDCS calls MPUT, FPUT, DPUT,
MGET or FGET is used in a -format.

A dialog output message (MPUT) is not formatted until after the PEND or PGWT call. The
contents of KB and SPAB are identical to those of the PEND or PGWT call. An
asynchronous output message is not formatted until it is sent. The contents of KB and SPAB
are undefined in this case, i.e. they no longer relate to the program unit which called FPUT
or DPUT.

A dialog input message is formatted during MGET handling. KB and SPAB have the
contents of the MGET call. This applies only for the event exit FORMAT: normally,
openUTM formats messages before the INIT.
An asynchronous input message is formatted when the message is received, not when the
FGET occurs. The contents of KB and SPAB are therefore undefined.

Please ensure that there are no fields that precede the transaction code, since openUTM
identifies the TAC without calling the format exit.

Format name (address in word 3)

– In the case of input formatting: The format name used for this terminal during the
previous output formatting operation (calls: MPUT, FPUT, DPUT or the command
KDCFOR).

– In the case of output formatting: The specification made in KCMF/kcfn in the parameter
area for the MPUT or FPUT call.

Sequence of
word addresses

Contents

1. Address of the KB

2. Address of the SPAB

3. Address of the format name

4. Address of the terminal type

5. Address of the formatting user area

6. Address of the physical input/output area

7. Address of a restart area

8. Address of the formatting control area

9. Address of the input/output indicator

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event functions Event exits

Programming Applications with KDCS 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

Terminal type and additional information (address in word 4)

t is the physical device type which can be queried by means of a TSTAT macro with
TCHAR. The codes can be looked up in the DCSTA macro (see the BS2000 manual
“Executive Macros”).
If the specified terminal type is not supported by the event exit FORMAT, a
formatting error must be forced.

z is an item of additional information:

X’00’ = delete screen.
X’01’ = do not delete screen.

ba is the screen output function:

qa is an identifier which indicates whether confirmation must be requested - applies to
output to printers only.

X’00’ = request confirmation
X’01’ = do not request confirmation

q1,q2 If qa = X’01’, then these two bytes will contain the confirmation numbers in EBCDIC
code. If you are using a message header, both of these bytes must be converted to
ASCII and entered in the return bytes RB1 and RB2 (see the manuals for your
terminal).

dc device characteristics; contains 8 bytes of information on the device type and
configuration, in the format that would be generated in PDN with XSTAT and
XOPCH. Refer to the DCSTA macro for information on the significance of the first
8 bytes (see the BS2000 manual “Executive Macros”).

X’0001’
X’0001’
X’0002’
X’0004’
X’0008’
X’2000’
X’4000’

KCRESTRT
KCREPL
KCERAS
KCALARM
KCREPR
KCEXTEND
KCCARD

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event exits Event functions

458 Programming Applications with KDCS

Formatting user area (address in word 5)

Input formatting:

Once the format exit has been called, openUTM expects the logical message here in the
input format (see “Message formats” on page 459). The maximum length is determined by
the generated value (see MAX statement, operand NB, in the openUTM manual “Gener-
ating Applications”). openUTM enters this maximum length in the length field of the
formatting user area before the call is made.
If conversion of the logical message to a physical message causes it to exceed the length
of this area, a formatting error must be forced.

Output formatting:

The area contains the message to be formatted in the form in which it was made available
in the message area with MPUT or FPUT. The message is structured in input format.
Subformats are not permitted.

Physical input/output area (address in word 6)

Input formatting:
openUTM passes the message as it is received from the terminal in the input format.

Output formatting:
Once the format exit has been called, openUTM expects to find the formatted message
here in output format.

The maximum length is determined by the maximum message length allowed on the
connection to the client. openUTM enters this maximum length in the length field of the
physical input/output area before the call is made.
If conversion of the logical message to a physical message causes it to exceed the length
of this area, a formatting error must be forced or an alternative message must be
generated.

Restart area (address in word 7)

The restart area must be used to reconstruct screen formats where necessary, which can
arise in three different situations, for example:

– with the KDCDISP command (display last screen)

– if the terminal user wants to continue an interrupted service with the most recently
entered format (e.g. after a connection has been lost or after the command KDCOFF
has been issued while a service was still running).

– if the screen is destroyed by an asynchronous output and is to be restored again.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event functions Event exits

Programming Applications with KDCS 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

You must ensure that the restart area always contains the current logical message so that
this can be output if the need arises.

If you first want to delete the old screen when formatting output, you must refresh the restart
area.

If you do not want the old screen to be deleted in this case, you need only modify (overwrite)
those fields in the restart area that are also modified at the terminal.

After input has been made at the terminal, the restart area must be updated accordingly.

In the case of a PEND, the restart area is backed up to the length specified for the user area
for this format when the output was last formatted (KCLM for MPUT).

In the event of a restart, output formatting takes place. The address of the formatting user
area is the same as that of the restart area (i.e. there is only a restart area).

Formatting control area (address in word 8)

As of address + 1 in this area, you must store in the event exit FORMAT a (hexadecimal)
return code which indicates whether formatting was successful.

The return code must be one of the following:

X’00’ Output formatting was successful.

X’xy’ User error messages were passed in the form of UTM return code "FRxy" in the field
KCRCDC (formatting errors). The entries X’01’, X’02’, X’03’, X’04’, X’08’, X’10’ and
X’99’ are not permitted: these return codes are reserved for cooperation between
openUTM and FHS.

Input/output indicator (address in word 9)

The first byte of the indicator contains the value:

In the case of a restart, the addresses of the formatting and restart areas are identical.

Message formats

Two different message formats are used in the event exit FORMAT (see previous section).
These formats do not necessarily adhere to the half-word boundary.

X'00'
X'01'
X'02'
X'03'

for input formatting
for output formatting
for a restart
for KDCFOR

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event exits Event functions

460 Programming Applications with KDCS

input format ---
 | length | b | b | (partial) message |

 0 2 4

output format --
 | length | b | b | b | (partial) message |
 --
 0 2 5

length is the length of the entire message (binary), including the prefix, which accounts for
4 bytes in input formatting and 5 bytes in output formatting.

b is a blank (X’40’)

For more information on the structure of physical messages, refer to the manuals for your
terminal.

Example

FEXIT CSECT
 STM 14,12,12(13)
 BALR 12,0
 USING *,12
 USING KB,2
 USING SPAB,3
 USING DFORMNAM,4
 USING DFORMSDE,5
 USING DADUSERA,6
 USING DAREAFMI,7
 USING DADRSRTA,8
 USING DMDCBUSE,9
 USING DFORMMOD,10
 LM 2,10,0(1)
*
* INPUT OR OUTPUT FORMATTING, RESTART OR KDCFOR ?
*
 CLI FORM#IND,X'00' 00=INPUT, 01=OUTPUT
 BE EINFORM 02=RESTART, 03=KDCFOR
 CLI FORM#IND,X'01'
 BE AUSFORM
 CLI FORM#IND,X'02'
 BE RESTFORM
 CLI FORM#IND,X'03'
 BE FORFORM
*
* SET FORMATTING ERROR: INVALID OPCODE !
*

B
B
B
B
B
B
B
B
B

B

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Event functions Event exits

Programming Applications with KDCS 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

*** K D C F O R
*
FORFORM DS 0H
*
* A) SET UP PHYSICAL MESSAGE AS PER FORMAT NAME
* AND PREASSIGN WITH "STD." VALUES
* B) ANALYZE CONFIRMATION REQUEST ('FORMQA')
* AND SUPPLY MESSAGE HEADER
* C) SET UP RESTART AREA
* D) SET RETURN CODE IN FORMATTING CONTROL AREA
*
END#EXIT LM 14,12,12(13)
 BR 14
*
*** INPUT FORMATTING
*
EINFORM CNOP 0,4
*
* A) ANALYZE PHYSICAL NAME AS PER FORMAT NAME AND
* SET UP FORMATTING USER AREA ('DADUSERA') AS PER
* MESSAGE FORMAT FOR INPUT
* B) SUPPLY RESTART AREA
* C) SET RETURN CODE IN FORMATTING CONTROL AREA
*
 B END#EXIT
 EJECT
** OUTPUT FORMATTING
*
AUSFORM CNOP 0,4
*
* A) SET UP PHYSICAL MESSAGE
* THE FOLLOWING ELEMENTS ARE ANALYZED:
* - FORMATTING USER AREA
* - FORMAT NAME
* - STATION TYPE AND ADDITIONAL INFORMATION
* WITH
* 1) 'FORMCLMO' (DELETE SCREEN?
* I.E. "FORMAT OLD" = "FORMAT NEW" ?)
* 2) 'FORMBA' (SCREEN OUTPUT FUNCTION)
* 3) 'FORMQA' AND GGF. 'FORMRB'
* B) SUPPLY RESTART AREA
* C) SET RETURN CODE IN FORMATTING CONTROL AREA
*
 B END#EXIT
*** R E S T A R T
*
RESTFORM CNOP 0,4
*

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Event exits Event functions

462 Programming Applications with KDCS

* A) ANALYZE RESTART AREA
* AND SET UP PHYSICAL MESSAGE
* B) SET RETURN CODE IN FORMATTING CONTROL AREA
*
 B END#EXIT
*
 EJECT
*
* DSECTS FOR PARAMETERS PASSED BY UTM
* >>>>>>>>>>>>>>>>>> DEFINITION INCOMPLETE
*
KB KCKBA D
*
 SPACE 5
SPAB KCPAA D
*
 EJECT
DFORMNAM DSECT
FORMNAME DS CL8
*
DFORMSDE DSECT
FORMSDEV DS C
FORMCLMO DS C
FORMBA DS CL2
FORMQA DS C
FORMRB DS CL2
*
DADUSERA DSECT
 DS 0H
*
DAREAFMI DSECT
 DS 0H
*
DADRSRTA DSECT
 DS 0H
*
DMDCBUSE DSECT
 DS 0H
*
DFORMMOD DSECT
FORM#IND DS X
 END

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Event functions STXIT routines (BS2000 systems)

Programming Applications with KDCS 463

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

8.2 STXIT routines (BS2000 systems)

On BS2000 systems it is possible to define STXIT routines for certain events (e.g. address
errors, program end). These routines are activated by the operating system (not by
openUTM) if one of the specified events occurs (see the BS2000 manual "Executive
Macros").

openUTM provides STXIT routines of its own which are opened before the START exit is
called. Exception: TIMER/RTIMER, which are opened immediately after the START exit
and are used by openUTM to check the program unit runtime (see the TIME parameter for
the TAC statement).

You can define your own parallel STXIT routines which are then activated in addition to the
ones defined by openUTM. If you specify the start parameter STXIT=OFF, only those
STXIT routines that you have defined are activated (UTM STXIT routines are not activated).
The latter is only possible if the application was started in the dialog.

The STXIT routines that you have created are always activated before the UTM STXIT
routines (with the exception of RUNOUT).

i If programs are loaded dynamically with associated runtime systems after the start
phase, and if these programs initiate their own STXIT routines, the sequence in
which the STXIT routines are activated may differ from the one described here.

The STXIT routines that you have created must be terminated with EXIT CONTINU=YES.
Otherwise, openUTM cannot guarantee that errors will be handled correctly (e.g. PEND ER
in certain situations). The openUTM STXIT routines are terminated with EXIT
CONTINU=NO.

i For STXIT processing in ILCS programs, please refer to the description in section
“Event handling in ILCS programs (BS2000 systems)” on page 464.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event handling in ILCS programs (BS2000 systems) Event functions

464 Programming Applications with KDCS

8.3 Event handling in ILCS programs (BS2000 systems)

In an ILCS application, all interruptions are first rerouted to the ILCS event routines.
Whether and how an event is handled depends on:

– the event itself

– the programming language in which the most recent active program is written

– the event handling routines in the programs involved

– the call sequence, if this contains different ILCS programming languages

Event handling variants:

1. The program unit (i.e. a program within the call sequence) or a runtime system incor-
porated in its call sequence handles the event and continues processing.

2. Within the framework of the program unit as described above, the event is not handled
but is passed on to openUTM together with its context and event code.

Two distinctions must be drawn in this case:

a) It is an event of the class PROCHK or ERROR:

openUTM prepares the message K102 together with the context and IW passed to
it. In this case, the IW is additional control element for the following PEND handling.

b) It is any OTHER EVENT:

If the event ’Other Event’ occurs, openUTM can only offer a stereotypical response
and has to prevent the task from being terminated abnormally. The event code that
is passed is not an IW in the sense used in STXIT - its value is of no significance to
openUTM. In particular, it is important to prevent this event code, in its role as a
control element in UTM PEND handling, from leading to incorrect interpretations.
To enable UTM error handling to run correctly, the event code is therefore set to the
value X’FF’. During continued processing, openUTM interprets this value as a
(simulated) IW. In other words, if an OTHER EVENT is passed to openUTM, then
openUTM behaves as though an STXIT event had occurred with IW=X’FF’.

In such cases, diagnosis has to based on the message that was output when the
OTHER EVENT occurred by the corresponding language, the program unit or
ILCS. If no such message is output, the STXIT event X’FF’ is displayed together
with the UTM message K102...KDCIWFF.
The resulting user-dump contains the code KDCIWFF.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event functions Event handling in ILCS programs (BS2000 systems)

Programming Applications with KDCS 465

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

3. Within the framework of the program unit as described above, the event is interpreted,
a message is output (if necessary) and the ILCS entry IT0TERM is called. This entry
activates openUTM and simulates the event handling of a TERM UNIT=PROG. In this
case, the event data for the primary interruption could only be derived from the UTM
message issued by the program unit or from the corresponding language. openUTM
issues the message K102... KDCIW90 (TERM), together with all register states up to
the time of the IT0TERM call.
The resulting user-dump contains the code KDCIW90.

4. An ILCS-internal error occurs:

ILCS branches to a defined UTM entry; openUTM sets an internal event code,
IW=X’00’, which can have one of two meanings:
– an ILCS-internal error occurred
– the ILCS stacking chain has been interrupted.

openUTM outputs this IW=X’00’ in the message K102. In its function as a control
element, this IW=X’00’ is interpreted by openUTM during further execution of the
program as an IW=X’88’, i.e. the task is terminated with TERM UNIT=STEP.

STXIT events - how ILCS behaves if an error occurs

After STXIT events which ILCS or the EHL routines that were called are unable to process,
ILCS closes its own STXIT and terminates the routine with EXIT CONTINUE=NO. In most
cases, the same error will occur again immediately, whereupon other STXIT routines (e.g.
those controlled by UTM) can handle the error. In isolated cases, such as an exponential
overflow, the program environment (register states etc.) at the start of the ILCS STXIT
routine will already have been modified in such a way that it is now no longer possible to
reconstruct the error environment. Before the STXIT is terminated, ILCS uses the IW to
check whether it is possible for the error to recur. If not, ILCS calls its program termination
routine IT0TERM.

User-specific STXIT routines in an ILCS environment:

To ensure that STXIT routines are executed in the correct sequence in an ILCS program
environment, you should register user-specific STXITs directly with ILCS by means of
special assembler macros or C functions For details, see the relevant user manual for
CRTE, ASSEMH and C.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Event services Event functions

466 Programming Applications with KDCS

8.4 Event services

Event services are dialog or asynchronous services which are started as a result of a
certain event, i.e. they are event-driven services. The program units in these services must
contain KDCS calls and adhere to the rules described in chapter “Structure and use of UTM
programs” on page 29.

Event services are generated with a privileged transaction code which openUTM uses inter-
nally. The following event-driven services are possible:

BADTACS with the TAC KDCBADTC
MSGTAC with the TAC KDCMSGTC
SIGNON with the TAC KDCSGNTC or specified as SIGNON-TAC in the BCAMAPPL
statement

The transaction codes for these event-driven services are defined with the KDCDEF
statement TAC.

Database calls are permitted, but (in the case of SIGNON event service) only if this was
permitted explicitly during generation (SIGNON ...,RESTRICTED=NO).

8.4.1 Dialog service BADTACS

If it has been generated, the dialog service BADTACS is started whenever a terminal or a
transport system application has entered an invalid transaction code. This can have any of
the following reasons:

– The transaction code has not been generated.

– The transaction code is not assigned to any program unit.

– The transaction code is an administrator TAC but the user did not sign on with admin-
istrator privileges.

– A lock code is assigned to the transaction code but the user or LTERM partner does not
have the corresponding keycode.

Programming notes

– The dialog service BADTACS must issue an MPUT call in accordance with the rules
described in the chapter “Structure and use of UTM programs”. This MPUT call then
replaces error message K009, which openUTM would generate in the absence of a
BADTACS service.

– At the start of a service, after the INIT call, the invalid TAC is located in the KB header,
in both the KCTACAL/kcpr_tac and KCTACVG/kccv_tac fields.

Event functions Event services

Programming Applications with KDCS 467

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

– If the BADTACS service is called in line mode, it will receive the full message including
the first 8 bytes. If it is called in format mode, the first 8 bytes (for *formats) or 10 bytes
(for +formats) are removed from the message.

– Outside of a service, BADTACS can also be started with a function key if one has been
generated with a return code (20Z-39Z) but no TAC (SFUNC statement, operand
RET=), or if the function key has not been generated (return code 19Z). The return code
is then passed with the first MGET; a message (including the first 8 bytes) can be read
with the second MGET. No entry is made in the KCTACAL/kcpr_tac and
KCTACVG/kccv_tac fields.

Generation notes

– There must be no more than one BADTACS service per application.

– The first program unit in the dialog service BADTACS must be defined during gener-
ation with the TAC statement TAC KDCBADTC, PROGRAM=....

Examples of BADTACS event services in C and COBOL are given on page 523 and
page 582 respectively.

8.4.2 Asynchronous service MSGTAC

The asynchronous program unit MSGTAC is called:

– if openUTM outputs a Knnn or Pnnn message

– if MSGTAC is entered as the destination for this message.

How you enter MSGTAC as the message destination and how the messages that are
passed are structured is described in the openUTM manual ”Messages, Debugging and
Diagnostics”.

The MSGTAC service is given administration authorization and all keys of the application
by openUTM , i.e. with the maximum authorization allowed.

If the MSGTAC program unit aborts with KCRCCC ≥ 70Z, openUTM locks it for the
remainder of the application run (STATUS=OFF). It then needs to be released explicitly by
the administrator (STATUS=ON). This rule does not apply if a program is aborted by a
programmed PEND ER/FR.

openUTM writes messages for the message destination MSGTAC to the page pool. As long
as warning level 2 for this page pool is not exceeded, you can be sure that none of these
UTM messages will be lost.
Exception: The messages indicating that the warning level has been exceeded or not
reached cannot always be sent to the MSGTAC program unit.

Event services Event functions

468 Programming Applications with KDCS

Programming notes

– The asynchronous program MSGTAC reads the message to the message area for the
program unit with an FGET call. In this context, FGET calls should be repeated as often
as necessary until the return code 10Z is set, to ensure that all pending UTM messages
are read in a single program unit run.

– For each UTM message, there is a data structure available which can be used in the
program unit to interpret the message contents. For C/C++, these structures are
contained in the header file kcmsg.h; for COBOL they are contained in the COPY
member KCMSGC.

– The MSGTAC program unit runs as an asynchronous service under the internal UTM
user ID KDCMSGUS with KSET=MASTER and PERMIT=ADMIN.

– The MSGTAC service can only consist of one program unit run.

– In a program unit run, at least one message must be read with FGET as otherwise the
program unit will be terminated abnormally.

– The service is started internally with the administrator TAC KDCMSGTC.

openUTM supplies the KB header as follows:

– The MSGTAC program unit can use the administration program interface and it can
issue administration commands. In particular, the MSGTAC program unit can issue the
KDCS calls DADM and PADM to administer DPUT messages and printers; see the
openUTM manual “Administering Applications”.

Generation notes

– There can be only one MSGTAC program unit per application.

– The MSGTAC program unit must be defined in the TAC statement with
TAC KDCMSGTC,PROGRAM=... .

Fields in the KB header Entries for MSGTAC

COBOL C/C++

KCBENID kcuserid KDCMSGUS

KCTACVG kccv_tac KDCMSGTC

KCTACAL kcpr_tac KDCMSGTC

KCLOGTER kclogter KDCMSGLT

KCTERMN kctermn MT

Event functions Event services

Programming Applications with KDCS 469

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

Example of a MSGTAC program unit

The MSGTAC program unit NOHACK is designed to prevent unauthorized users from
gaining access to a UTM application. If more than three invalid attempts are made to sign
on via an LTERM partner (with an invalid user ID, an incorrect password or the wrong ID
card), the connection to the terminal is to be aborted. This will require additional preparatory
measures (see also the openUTM manual ”Messages, Debugging and Diagnostics”).

● Preparations:

1. Call the UTM tool KDCMMOD.

2. Issue the GEN command, specifying the name of the message module.

3. Use MODMSG commands to define MSGTAC as an additional destination for the
messages K008, K033 and K094.

4. Compile the source program written so far and link it to the application.

5. Define the KDCDEF statement MESSAGE in the message module.

6. Define KDCPTRMA in the TAC statement.

A more elegant solution would be to write the specifications for points 2 and 3 to a file
and then to use this as an input file for point 1.

● Implementing the MSGTAC program unit:

The MSGTAC program unit NOHACK counts the number of incorrect attempts in a TLS.
If openUTM accepts a sign-on attempt to the application (message K008 or K033), this
TLS is deleted again.
If three consecutive incorrect attempts are followed by a fourth incorrect attempt, the
corresponding terminal is to be released by means of "asynchronous administration".
This happens with an FPUT call with KCRN = "KDCPTRMA" and a message area with
the contents PTERM=pterm, ACT=DIS (see also the openUTM manual “Administering
Applications”).
The administration command is then written with LPUT to the user log file and the TLS
is deleted. Examples in C and COBOL are given on pages 511 and 566 respectively.

Each K message is read with FGET by the MSGTAC program unit. After one K
message has been “processed”, FGET immediately reads the next K message within
the same program unit run. A list of all the K messages is provided in the openUTM
manual ”Messages, Debugging and Diagnostics”.

Event services Event functions

470 Programming Applications with KDCS

8.4.3 The SIGNON service

The SIGNON sign-on service is a dialog service that is started

– after the connection to a terminal or a transport system client has been established by
means of a transport system application, provided a sign-on service has been
generated for this access point, or

– before the start of every conversation initiated by the UPIC client, provided a sign-on
service has been generated for this access point and sign-on services were released
for UPIC clients at generation.

A separate sign-on service can be generated for each transport system access point of a
UTM application, see the SIGNON-TAC operand of the BCAMAPPL statement and the TAC
statement with the KDCSGNTC transaction code in the openUTM manual “Generating
Applications”.

Generation notes

● The sign-on service for a transport system access point defined with MAX APPLINAME
is generated with TAC KDCSGNTC,PROGRAM=... This sign-on service thus becomes the
default for all the transport system access points of the application.

● The SIGNON-TAC parameter of the BCAMAPPL statement can be used to generate
another sign-on service for a transport system access point. If a sign-on service is not
to be used for a transport system access point, the value *NONE must be specified for
the SIGNON-TAC parameter.

● Sign-on services are enabled for UPIC clients as follows:
SIGNON ...,UPIC=YES.

● In the SIGNON statement in the generation you can specify that a user can still tempo-
rarily sign on to the UTM application if the validity period of his or her password has run
out (operand GRACE = YES). In this case, the password of the user must be changed
if the sign-on service is to end successfully.

● The maximum number of failed sign-on attempts from a client can be monitored as
follows:
SIGNON ,SILENT-ALARM=number

When this value is reached, message K094 is output to SYSLOG. This message can
also be processed by an MSGTAC program (see page 467).

You will find a detailed description in the openUTM manual “Generating Applications”.

Event functions Event services

Programming Applications with KDCS 471

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

8.4.3.1 Programming notes

The SIGNON service controls the sign-on procedure by means of a program. The sign-on
service is controlled, above all, by the following KDCS calls (see page 367 and page 412):

openUTM is shipped with an appropriate sample program. The openUTM manual “Using
openUTM Applications” contains a description of this sample program and additional infor-
mation on the concept behind the sign-on service and typical applications.

Notes

● In the first part of the sign-on procedure the KCBENID/kcuserid field in the KB header
only contains blanks.

● If the sign-on is not completed successfully before PEND FI is executed, then openUTM
clears the connection to the terminal or the TS application, or it ends the UPIC conver-
sation. In this manner, you can handle several unsuccessful attempts to sign on, e.g.
because the user is not authorized, in a simple manner using PEND FI after
KCRSIGN1 = U.

● If the sign-on service violates the rules applicable to it, then openUTM aborts the
service with PEND ER. The connection to the terminal or to the TS application is
cleared, and the connection to the UPIC client remains.

● If the UTM application is generated without user IDs (i.e. without USERs), the sign-on
service can terminate immediately because the sign-on has been successful.
The sign-on service receives the corresponding information at the SIGN ST call.
However, an application-specific authorization check can also be carried out in the sign-
on service (using a database with authorization data, for example).

● Restrictions in the sign-on service

– The KDCS calls PEND RE/RS/SP are prohibited.
– FPUT/DPUT calls and accesses to a ULS are not allowed before the sign-on is

successful. Database calls and accesses to GSSBs and TLSs are only allowed
before the sign-on is successful if the SIGNON statement explicitly allow this. You
should therefore query the sign-on status (returned in KCRSIGN1) with SIGN ST to
see if it contains the value A or R before you execute the accesses stated above.

– You are not allowed to initiate calls for distributed processing.

SIGN ST Queries the status of the sign-on service. The call also returns the result of the previous
SIGN ON.

SIGN ON Transfers authorization data to openUTM for checking. The call returns only whether
the call was syntactically correct, not whether the sign-on was successful.

PEND PS Terminate program unit so that openUTM can verify the authorization data and insert
the intermediate dialog if necessary. The sign-on service then continues in the follow-
up program unit. Not until this call does a provisional sign-on take place provided the
data transferred with SIGN ON were correct.

Event services Event functions

472 Programming Applications with KDCS

8.4.3.2 Sign-on service for terminals

The sign-on service for terminals consists of two parts:

1st part: Read authorization from terminal and transfer to openUTM.

2nd part: Send confirmation (message and USER-specific start format for the terminal,
for example) in the event of a correct sign-on.

Between the first and the second part, openUTM may conduct an intermediate dialog with
the terminal in order to query further authorization data such as identification information or
the password.

openUTM returns the status of the sign-on procedure in the KCRSIGN1 field for SIGN ST.
The program unit decides on how to proceed after this point based on this status indicator.
The following values are possible:

– KCRSIGN1 = C (connected)
The terminal is connected to the application, but there is no user signed on yet.
The user on the terminal is requested to enter his or her authorization data via an MPUT
call. The program unit terminates itself with PEND KP. The follow-up program unit reads
the authorization data with MGET, passes the data with SIGN ON to openUTM and
terminates itself with PEND PS.

– KCRSIGN1 = I (incomplete)
openUTM already knows the user ID, but still requires additional information (password,
ID card). This information is queried in an intermediate dialog. The program unit must
terminate itself with PEND PS (specify the follow-up TAC!), and then openUTM
executes the intermediate dialog.

– KCRSIGN1 = A (accepted)
The sign-on is correct. The user ID is entered in the KB header. If so desired, additional
dialog steps can be inserted before the end of the service. The sign-on service is termi-
nated with PEND FI or PEND FC. The final message is created by the service itself and
is output using MPUT. If the message is directed to a terminal, then it can be created
from the user-specific start format. The name of the start format is returned by
openUTM when SIGN ST is called in the KCRMF/kcrfn field.
When MPUT PM is called, and then PEND FI, the last dialog message of the last
service is output, if such a message is available.

Event functions Event services

Programming Applications with KDCS 473

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

– KCRSIGN1 = R (restart)
The sign-on is correct and a service restart is pending. The user ID is entered in the KB
header.
If desired, additional dialog steps can be inserted before the end of the service. The
sign-on service must terminate itself with PEND FI. The service restart is initiated by
calling MPUT PM, KCLM=0, KCMF/kcfn=blanks. In this case, openUTM outputs the
last saved message of the interrupted service (screen restart on the terminal), or it starts
the follow-up program unit or follow-up service when there is a local synchronization
point after PEND SP/FC. The service that is open can be terminated abnormally by
terminating it without using an MPUT call. A K017 message is sent to a TS or terminal
partner.

– KCRSIGN1 = U (unsuccessful)
openUTM did not accept the authorization data. A terminal sign-on service is still in the
1st part and must request the user to re-enter the authorization data. If the sign-on
service terminates in this state, the connection to the terminal is cleared.

LTERM partner with automatic KDCSIGN

At the SIGN ST call, the sign-on service receives the information that the user ID is already
known. Depending on the generation, an intermediate dialog can be conducted to request
a magnetic strip card or a password.

Sign-on via router

If the router itself carries out a sign-on procedure, it forwards the authorization data to
openUTM by means of the PUTMMUX protocol for checking. If the data is correct,
openUTM starts the sign-on service, which receives corresponding information with the
SIGN ST call. If the data is not correct, the sign-on service is not started and the router must
inform the terminal at the terminal.

B

B

B

B

B

B

Event services Event functions

474 Programming Applications with KDCS

The following diagram shows the sequence of execution of a sign-on service at the
terminal:

Processing of a sign-on service for terminals

Program unit 1 (TAC=KDCSGNTC)

INIT
SIGN ST...

...Query state of sign-on
dialog

MPUT...
"Please legitimize!"

PEND KP...

Follow-up TAC
Program unit 2

INIT
MGET

...Read authorization data

SIGN ON...
...Give authorization data to

UTM for checking

PEND PS...

Program unit 3

INIT
SIGN ST...

...Query state of the sign-on
dialog

MPUT

...

.

PEND FI...

"Sign-on successful..."

P
ar

t 1
P

ar
t 2

S
ig

n-
on

 s
er

vi
ce

.....Optional intermediate dialog.....

Follow-up TAC

Follow-up TAC

Event functions Event services

Programming Applications with KDCS 475

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

8.4.3.3 Sign-on service for UPIC clients or transport system applications

If the sign-on service is running for a UPIC client or a transport system application, then the
sign-on service will never be located in the first part because, at a minimum, the
connection user ID is assigned as the user ID. The following applies:

– In the case of TS applications, the user is signed on under the connection user ID or a
user ID passed by means of a SIGN ON call. If the user is signed on under the
connection user ID, the sign-on service can still sign the user on under a real user ID
by means of the SIGN ON call when there is no service open for the connection user
ID (KCRSIGN1=R).

– In the case of UPIC partners, the user is signed on under the connection user ID, the
user ID passed in the UPIC protocol or the user ID passed by means of a SIGN ON call.
If the user is signed on under the connection user ID, the sign-on service can still pass
a real user ID in the SIGN ON call.

The second part of the sign-on service

You can use the SIGN ST call to query the status.

1. KCRSIGN1= A or R

The sign-on was successful. The service is now assigned a user ID.
When a sign-on service starts for a transport system application, the connection user
ID is signed on.
When a sign-on service starts for a UPIC client, either the connection user ID or a real
user ID passed by the client in the UPIC protocol is signed on.
If the client is signed on under the connection user ID, the sign-on service can now pass
a real user ID by means of the SIGN ON call.

For KCRSIGN1 = A
The sign-on service can terminate with PEND FI or PEND FC. The final message is
created by the service itself and is output with MPUT.
If the sign-on service terminates with MPUT PM, KCLM=0, KCMF=SPACE and
PEND FI, then openUTM outputs the last dialog message and terminates the conver-
sation. If no message is available, then a "NULL message" is output and the conver-
sation is terminated abnormally.

For KCRSIGN1 = R
The sign-on is correct, and there is no service restart. If desired, other dialog steps can
be inserted before the end of the service. The sign-on service must terminate with
PEND FI. The service restart is initiated by the call MPUT PM, KCLM=0,
KCMF/kcfn=blanks. In this case, openUTM outputs the last saved message of the inter-
rupted service (screen restart) or, in the case of a local synchronization point, starts the
follow-up program unit or the follow-up service after PEND SP/FC.

Event services Event functions

476 Programming Applications with KDCS

If terminated without an MPUT call, the open service can be terminated abnormally. A
UPIC client receives a CM_DEALLOCATED_ABEND, and message K017 is sent to a
TS partner.

2. KCRSIGN1= U

The sign-on attempt was not successful, i.e. openUTM has not accepted the authori-
zation data. If a sign-on service for a UPIC partner terminates in this state, then the
conversation is terminated. If a sign-on service for a transport system application termi-
nates itself in this state, then the connection is cleared.

Particularities of the sign-on service for UPIC clients

The sign-on service is started before the beginning of every conversation.

A PEND FI in the sign-on service after a successful sign-on terminates the sign-on service
but not the conversation.

If a program unit of the sign-on service terminates after receiving a message from the UPIC
client with PEND PA/PR, PS or FC without a preceding MPUT, the follow-up program unit
specified in the KCRN field can read messages or message segments that have not yet
been read. If the sign-on service is terminated with PEND FC without a preceding MPUT,
the first program unit of the concatenated service receives the value F (first) rather than C
(chained) as the service identifier in KBKOPF because it receives a message from the
client.

Event functions Event services

Programming Applications with KDCS 477

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
8

The following diagram shows an example of the processing of a successful sign-on service
via a UPIC client that passes the authorization data of a real user idea in the protocol field.

Processing of a sign-on service for UPIC clients

The sign-on service is terminated with PEND FC in program unit 1. The transaction code
passed with SIGN ST is taken from the UPIC protocol as a follow-up TAC.

The concatenated service can then read the message from the client in program unit 2. In
this way, UPIC clients can use the sign-on service without any need for reprogramming.

Program unit 1 (TAC=KDCSGNTC)

INIT
SIGN ST...

...Query state of the sign-on dialog

PEND FC...

Concatenated service

Program unit 2 (service start)

INIT
MGET

...Read message from client

PEND ...

.. User-specific logging.

 (KBKOPF contains the passed user ID)

 ...End of service

Event services Event functions

478 Programming Applications with KDCS

Example of a sign-on service for TS applications

The following diagram shows the processing of a sign-on service via a TS application when
the sign-on is successful under a real user ID:

Processing of a sign-on service for TS applications

Sample programs for sign-on service

openUTM is shipped with program units as source programs that implement a complete
sign-on service with a formatted interface to the terminal. This sign-on service is suitable
for all generation variants. The format used contains English text.

The user can adapt this template to suit his or her requirements. A sign-on procedure with
a formatted interface to the user is thus easily obtained. It is thus not necessary to start
programming from scratch.

Program unit 1 (TAC=KDCSGNTC)

INIT
SIGN ST...

...Query state of the sign-on dialog

PEND PS...

Follow-up TAC

Program unit 2

INIT
SIGN ST

...Query state of the sign-on dialog

MPUT KCLM=0...
...No message to transport system partner

PEND FI...

.. Read SIGN ON data from the database

SIGN ON...
...Pass authorization data to openUTM for checking

(KBKOPF contains explicit user ID)

 ...End of sign-on service

 (KBKOPF contains connection user ID)

Programming Applications with KDCS 479

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

9 Additional information for C/C++

This chapter contains programming language-specific information as a supplement to the
general information in chapters 2 to 8. You will need the information provided here when
writing C or C++ program units:

In the first section you will learn about the structure of C/C++ program units. The second
section contains sample programs. The third section contains a list of the data structures in
kcca.h, kcmac.h and kcpa.h.

9.1 Program structure for C/C++ program units

In this section you will learn:

– how to create a UTM program unit as a subroutine

– how you must declare the data

– what the command should look like and how a KDCS call is programmed

– what kind of special platform-specific characteristics exist (for example, format system
or compiler-specific dependencies).

9.1.1 C/C++ program units as subroutines

UTM program units and event exits are subroutines of the UTM main routine.
This has the following consequences:

– The program name defines the start address.

– A C/C++ program unit is defined as a function of type void.

– All formal parameters must be declared explicitly.

– The program unit is terminated dynamically with a PEND call; the event exits are an
exception to this rule. They can be exited using the return statement. The exit statement
must never be used.

Program structure Additional information for C/C++

480 Programming Applications with KDCS

A set of header files is provided for compatibility and to ensure that you are working with
correct data structures. You use the same header files for C and C++ program units. The
use of these header files is described in section “Data structures for C/C++ program units”
on page 488.
The include files kcca.h, kcmac.h and kcpa.h are located:

– on BS2000 systems in the library SYSLIB.UTM.064.C

– on Unix, Linux and Windows systems, in the include subdirectory of the UTM utmpath
directory

i If you cannot compile C programs because the first KDCS call parameter has the
type struct kc_pa * instead of the type union kc_paa * then you should set the
UTM_OLDANSI option for the C precompiler in order to prevent checking.

Program unit names

The name of a C program unit is also its start address.

This name is freely definable. It must be unique within an application program. Some
names have already been reserved and for that reason may not be used.

You should observe the following points when choosing a name:

● For BS2000 systems:

– All names beginning with KDC, KC and I are reserved and should be avoided.

● For Unix, Linux and Windows systems:

– All names beginning with KDC, KC, x or ITS are reserved.

– Names beginning with t_ are reserved for PCMX.

– Names beginning with a_, o_ and s_ are reserved for OSS.

● The name must conform to the C/C++ conventions.

You must also specify the program names (start address names) when generating the UTM
application in the PROGRAM KDCDEF application for each name
(see the openUTM manual “Generating Applications”).

B

X/W

X/W

B

B

X/W

X/W

X/W

X/W

Additional information for C/C++ Program structure

Programming Applications with KDCS 481

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

9.1.2 Parameters of a C/C++ program unit

A C/C++ program unit contains at least one (but usually several) parameters that are
passed in the form of addresses as follows.

[extern "C"] void cprog (kb [,spab] [,param_1][,param_n])

extern "C" is only necessary for C++ program units:
You must identify C++ program units as external "C" links in your source
code for openUTM, otherwise errors will occur during linking.

void A C/C++ program unit is defined as a function of type void.

cprog The name of the program unit. The name must be specified during the
generation in the PROGRAM statement; see the openUTM manual “Gener-
ating Applications”.

kb The name of the communication area (KB). You may choose any name, but
the communication area must then be declared under this name. The
header file kcca.h is provided for use with the communication area.

spab The name of the standard primary working area. You may choose any
name, but the standard primary working area must then be declared under
this name. The header file kcpa.h is provided for use with the KDCS
parameter area.

param_1 ... param_n

These are the names of additional objects (AREAs) that must also be declared.
In particular, these objects could be storage areas that serve to expand the
standard primary working area.
If these objects are not used, then this data does not have to be specified.

The kcca.h, kcpa.h, kcapro.h and kcdf.h header files are included implicitly when the kcmac.h
header file is used. This means that you no longer have to explicitly specify these files as
header files in the actual program. The definitions contained in these files are available at
all times to the programmer.

The value KDCS_SPACES is defined in the include file kcmac.h for the transfer of blanks to
Char arrays. The value KDCS_NULL is available for the transfer of the value “binary zero”
to Char parameters.

Program structure Additional information for C/C++

482 Programming Applications with KDCS

9.1.3 Declaring data

You must explicitly declare all formal parameters. Please note the points described below
when doing so.

9.1.3.1 Communication area

Each program unit, including the event exits (exception: INPUT exit), must contain a data
structure that describes the KDCS communication area. Use the kcca.h header file for this
purpose.

9.1.3.2 Standard primary working area

A C/C++ program unit generally also contains a data structure for the standard primary
working area. If the standard primary working area is used by the program unit, then it
should include the KDCS parameter area (kcpa.h header file). You should also store the
KDCS message areas and other variable data in the standard primary working area.

If you do not store variable data in the standard primary working area, then you must make
sure that the program unit is reentrant by storing it in the automatic area of the function, for
example.

You must define the KDCS message areas yourself. For calls that request information from
openUTM (KDCS_INFO, KDCS_INITPU, for example) there are specific data structures
provided in the header files. If you are working with a formatting system, you can use
automatically generated address assistants to format the KDCS message area (see the
formatting system manual).

Additional information for C/C++ Program structure

Programming Applications with KDCS 483

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

Example 1

The communication area also possesses a KB program area for data transfer to follow-
up program units. The message area is located in the SPAB.

 #include <kcmac.h> /* UTM data structures */

 #include <forma3a.h> /* Structure of the addressing */
 /* assistant for +format forma3 */

 struct ca_area
 { struct ca_hdr ca_head; /* KB header */
 struct ca_rti ca_return; /* KB return area */
 struct ca_prog_area
 { char ca_info[22]; /* Application-specific */
 char ca_start[2]; /* declaration of the KB */
 char ca_dest[2]; /* program area */
 char ca_fl_day[5];
 char ca_fl_nr1[5];
 char ca_fl_nr2[5];
 } ca_prg;
 };

 struct work
 { union kc_paa param; /* KDCS parameter area */
 struct msg_area
 { forma3a std_mask; /* Declaration +format forma3 */
 ...
 } msg_a; /* KDCS message area */
 };

 void cprog (struct ca_area *ca, struct work *spab)

 {.../* Start of the function area of the program unit */ ...

9.1.3.3 Other data areas (AREAs)

In addition to the communication area and SPAB, you can also pass other areas as param-
eters (see page 87). You create such an area in C/C++ as a source code file that only
contains data definitions but no executable statements.

The following examples will demonstrate how you define such areas in C/C++ and how to
use them in your C/C++ programs.

Program structure Additional information for C/C++

484 Programming Applications with KDCS

Example with AREAs (Unix, Linux and Windows systems)

In the following, two areas are generated, defined in a C source and passed to a program
unit. The following are defined:

– the area area for direct access (i.e. the data area is passed directly to the program unit)
– the area areaind for indirect access

KDCDEF generation

AREA area,ACCESS=DIRECT
AREA areaind,ACCESS=INDIRET

Creating a C/C++ source to supply the additional data areas

You define the data structures belonging to the areas in a C/C++ source as follows. In this
example, the address of the area is set for areaind (i.e. for the area with indirect access) at
compilation time.

char area[20] = "Area direct ";
static char area_ind[30] = "Area indirect ";
char *areaind = &area_ind[0];

You have to compile the C/C++ source with the C/C++ compiler and link the created object
module to the program units.

If you want to set the address of the area areaind during the application run, you have to
define areaind in the C/C++ source as follows:

char *areaind:

During the application run (typically in the START event exit) you then have to supply
areaind with the address of the area that you want to pass to the program units as a
parameter – by means of the following statement, for example:

static char area_ind[30] = "Area indirect ";
areaind = &area_ind[0];

This makes it possible, for example, to open a shared memory in the START event exit and
store the address of the shared memory in the pointer variable areaind. The program units
are thus able to access the shared memory.

Access to the areas in the program units on Unix, Linux and Windows systems

A program unit in which you use the areas or one of the areas must be as below. Note that
the order of the areas in the parameter list has to be the same as the order of the AREA
statements at KDCDEF generation.

X/W

X/W

X/W

X/W

X/W

X/W

X/W
X/W

X/W

X/W

X/W

X/W

X/W
X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Additional information for C/C++ Program structure

Programming Applications with KDCS 485

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

● Program unit in C:

void areaprg (
struct spab *spab ,
struct kc_ca *kb ,
char area1 [20] ,
char area2 [30])

{
sprintf (BUFFER
, "Hello world from UTM (Lterm = %.8s)\n"
"Area is ’%s’ \n"
"Area (indirect) is ’%s’ \n"
, kb -> kopf.kclogter
, area1
, area2
);
.
.
.

Alternatives to AREAs

If program units that use AREAs are to be transferred from one application to another appli-
cation, then the use of AREAs can lead to problems due to possible differences in the
parameter lists.

The following alternatives are available for C/C++ programs. You must determine whether
the data area is stored in memory local to the process or in shared memory on Unix and
Linux systems or in the memory mapped file on Windows systems.

– Data areas in local process memory
To use this option, it is necessary to provide a global C/C++ structure which other
modules can then access with the same definition and with the 'external' storage class
attribute.

– For Unix and Linux systems in shared memory and for Windows systems in the memory
mapped file:

In the start exit you must provide a data structure (see example 3):

static DataAreas struct {
struct table *TABLE1;
struct table *TABLE2;
struct table *TABLE3;
};
:

struct DataAreas ExternDataAreas;

X/W

X/W
X/W
X/W
X/W
X/W

X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W

B

B

B

B

X/W

X/W

X/W

X/W
X/W
X/W
X/W
X/W
X/W
X/W

Program structure Additional information for C/C++

486 Programming Applications with KDCS

The shared memory area will then be requested in the start exit and the addresses will
be set in the ExternDataAreas data structure. Other program units will access the data
structure with:

extern struct DataAreas ExternDataAreas;

Example with ARESs

You must provide a data area (see the example) which has been written in Assembler, for
example:

TABLE1 CSECT PUBLIC
DS CL64
END

This CSECT is compiled and may be linked with other modules. The module (without an
additional module that has code linked to it) should be named MTABLE1; you should then
generate it as a load module:

LOAD-MODULE MTABLE1
,LOAD-MODE = (POOL , poolname , NO-PRIVATE-SLICE) -
, ...

You then make it possible for a program unit or event exit to access the data area with:

extern struct table TABLE1;

This program unit or event exit must then be linked dynamically afterwards.

X/W
X/W

X/W

X/W

B

B

B

B
B
B

B

B

B

B
B
B

B

B

B

Additional information for C/C++ Program structure

Programming Applications with KDCS 487

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

Example

The areas TABLE1, TABLE2 and TABLE3 have been defined in this order with the
AREA statement. TABLE3 is required in a program unit. TABLE1, TABLE2 and TABLE3
have the same structure and are defined as follows:

 struct TABLE
 { int no;
 int tag;
 char name[20];
 char company[20];
 int order_no;
 int quantity;
 float price;
 int discount;
 };

The addresses of these areas are passed as follows:

 .
 .
 #include <kcmac.h> /* UTM data structures */
 .
 struct ca_area
 {....};
 struct work
 {....};
 struct TABLE
 {... };
 .
 .

 void cprog (struct ca_area *ca, struct work *spab, struct TABLE *TABLE1,
 struct TABLE *TABLE2, struct TABLE *TABLE3)
 { ...
 .

Program structure Additional information for C/C++

488 Programming Applications with KDCS

9.1.4 Data structures for C/C++ program units

In order to structure the data areas, the following header files containing predefined data
structures are supplied with openUTM.

On BS2000 systems, the data structures are present in the library SYSLIB.UTM.064.C.

On Unix, Linux and Windows systems, the data structures are present in the include
directory in the UTM directory utmpath.

Name Contents and meaning

kcapro.h Optional second parameter area for the APRO call:
This area is used to select special combinations of OSI TP functions and the type of
security.
kcapro.h is included by kcmac.h.

kcat.h KDCS attribute functions:
When using +formats, you can change the attribute field formats with the symbolic
names for attribute functions.

kcca.h The data structure for the KDCS communication area; this area contains:
– current service and program data,
– return data from a UTM call and
– if desired, the communication area program area for passing data between

programs in a service. You must also define the fields of the communication area
program area.

kcca.h is included by kcmac.h.

kccf.h Defines the second parameter passed by openUTM during the INPUT event exit.
In this parameter openUTM passes the contents of the control fields of screen formats
to the program unit. This second parameter is also called the control field area for this
reason.

kcdad.h Data structure for the DADM call:
You should place this data structure in the KDCS message area during a DADM RQ
KDCS call.

kcdf.h KDCS screen functions:
Using these symbolic names, you can influence the screen output by placing the name
of the desired function in the KCDF field of the KDCS parameter area.
kcdf.h is included by kcmac.h.

kcinf.h Data structure for the INFO call:
You should place this data structure in the KDCS message area during a INFO DT/SI/PC
KDCS call.

kcini.h Defines a second parameter area for the INIT call (only required for INIT PU): openUTM
returns the information queried with the INIT PU call in this parameter area.

kcinp.h Data structure for the INPUT exit:
This data structure contains the input and output parameters of the INPUT exit.

B

X/W

X/W

BB
B
B

BB
B
B
B

Additional information for C/C++ Program structure

Programming Applications with KDCS 489

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

Insert the data structures you will use with #include before the call to the program unit. You
must explicitly declare the corresponding areas (communication area, KDCS parameter
area,...) in the program unit.

Example 3

 /* insert constants and data structures */

 #include <kcmac.h> /* UTM data structures */
 #include <kcinf.h>

 struct ca_area {...};

 struct work
 { union kc_paa param;
 struct msg_area
 { struct kc_dttm info_time; /* area for INFO DT */
 struct kc_sysinf info_sys; /* area for INFO SI */
 char text[200];
 } msg_a;
 };
 void cprog (struct ca_area *ca, struct work *spab)

kcmac.h KDCS macro interface for C/C++:
This file contains all macros in the C/C++ macro interface as well as the include state-
ments for the kcapro.h, kcca.h, kcdf.h and kcpa.h header files.

kcmsg.h Data structure for the UTM messages:
You will need this data structure if you handle UTM messages in an MSGTAC routine or
when you want to evaluate the SYSLOG file using your own program.

kcpa.h Data structure for the KDCS parameter area:
This area contains the parameters of a KDCS call.
kcpa.h is included by kcmac.h.

kcpad.h Data structure for the PADM call:
You should place this data structure in the KDCS message area during a PADM AI/PI
KDCS call.

kcsgst.h Data structure for the SIGN call:
You should place this data structure over the message area when issuing the KDCS call
SIGN ST with KCLA > 0.

Name Contents and meaning

Program structure Additional information for C/C++

490 Programming Applications with KDCS

9.1.5 Command section of a C/C++ program unit

You can design the command section of a C/C++ program unit any way you want. You
merely need to abide by a few rules pertaining to transaction processing as described in
detail in chapter “Structure and use of UTM programs” on page 29:

– the program units are subroutines of the UTM main routine KDCROOT

– the program units must be reentrant

– dialog program units must observe the strict rules of the dialog.

KDCROOT is used to designate the UTM main routine. The source program for KDCROOT
is created with the KDCDEF generation tool; see the openUTM manual “Generating Appli-
cations”.

There are special rules for event exits that will be described in section “Event exits” on
page 496.

Local classes in C++ program units

If a local class is declared in a C++ program, then the destructor for this class may only b
executed if the class is in a block whose block terminator "}" is reached before the PEND
call. This restriction does not apply under LINUX.

Recommendation: Local classes should be used within their own "inner" block.

Example

//extract of cpphello.C in sample Application

extern "C" void cpphello (struct kc_ca *kb, struct work *spab)
{
{

Demo Autoclass('A');
// further code using Autoclass

}
// reached after destructure call for Autoclass

:
:
/* PEND-FI - Call */
KDCS_PENDFI();

}

KDCS calls in C/C++ program units

KDCS allows you to use the using the C/C++ macro interface, which makes it easy to
supply the parameters with data (see page 491) when calling UTM functions.

Additional information for C/C++ Program structure

Programming Applications with KDCS 491

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

9.1.6 C/C++ macro interface

To make the passing of parameters through the KDCS interface easier, macros are
provided in the kcmac.h header file for each of the KDCS calls. These macros contain all the
data specifications required for a KDCS call as macro parameters. These macros execute
the desired call and then provide a return code (see also page 497).

The names and characteristics of the various macros and how the macro names were
created will be explained in the following section. The preparations you must make in order
to utilize the kcmac.h header file are discussed. You will find an example of a macro call and
a program listing of an executable KDCS program that will clarify the use of the kcmac.h
header file at the end of the section.

Using KDCS_SET to prepare for a call

In each compilation unit in which you want to call a KDCS macro, you must execute the
following two actions before the first macro call:

– Copy the include file kcmac.h into the compilation unit

– Copy the kcmac.h header file into the program unit

The four header files kcca.h, kcpa.h, kcapro.h and kcdf.h are used implicitly when kcmac.h
is used, i.e. the definitions therein are available to the programmer at all times.

– Call the KDCS_SET(pb,hdr,rti) macro for initialize the areas

pb pointer to the KDCS parameter area.

hdr pointer to the header area of the communication area
(ca_hdr data structure).

rti pointer to the return area of the communication area
(ca_rti data structure).

The KDCS_SET call establishes the connection between the KDCS macros and the
programmer’s definitions for the parameter area and the communication area. You can call
this macro more than once. It is therefore possible to use several different parameter areas,
for example.

Program structure Additional information for C/C++

492 Programming Applications with KDCS

Macro names

The names of the macros are created according to the following rules:

A KDCS macro name always begins with the prefix "KDCS_". The operation code of the
desired KDCS call follows in upper case letters. If necessary, the operation modifier is
appended to the operation code (also in uppercase letters).

Examples: KDCS_INIT, KDCS_LPUT, KDCS_MGET

KDCS_MPUTNT, KDCS_PENDFI, KDCS_SPUTMS

The DPUT calls using a "+T", "-T", "+I" or "-I" as the kcom parameter represent an exception
to these rules. These macros are named: KDCS_DPUTPT, KDCS_DPUTMT,
KDCS_DPUTPI and KDCS_DPUTMI.

Other exceptions are the APRO calls used to address OSI TP partners:
KDCS_APRODM_OSI / KDCS_APROAM_OSI/
KDCS_APRODM_OSI_O / KDCS_APROAM_OSI_O

Macro parameters

The macro parameters are each named after the KDCS parameters for which they will
contain values (kcrn, kclt, kchour, kcpi,...). The KDCS message area is named nb and, if it is
needed, is always specified as the first parameter.

There are three different types of KDCS parameters: character arrays, letters and numbers:

● Character arrays

In the KDCS interface these parameters are either two, three or eight characters long.
In the C/C++ macro interface these parameters are specified as pointers to a C string
of any length.
Internally, these parameters are converted to arrays of characters of the required length
by either appending any eventually missing spaces to the end of the C string or by
ignoring all superfluous characters at the end of the C string. In this manner, for
example, for an array of length 8, "ËËË" and "" are converted to the same string, namely
eight spaces: "ËËËËËËËË".
A string such as "xyz" is converted to "xyzËËËËË". The conversion is performed without
adding an end of string character ("\0").

Parameters of this type are: kcrn, kcfn, kclt, kcpa, kcus, kcadrlt, kcact, kcpi, kcpos, kcneg,
kccomid, kclangid, kcterrid, kccsname.

Additional information for C/C++ Program structure

Programming Applications with KDCS 493

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

● Letters

In the KDCS interface these parameters are of type character.
In the C/C++ macro interface these parameters are also specified as characters (per
value). The parameters are specified in the form: ' ', 'A', 'C', etc.

Parameters of this type are: kcmod, kcof.

● Numbers

There are different types of numbers in the KDCS interface: short, unsigned short and
numbers that are expected to be in the form of printable text.
In the C/C++ macro interface these parameters are always specified as numbers (per
value). These numbers are converted internally to the desired format. Short and
unsigned short numbers are passed directly. Numbers that must be provided as text are
converted.

Parameters of this type are: kcla, kclm, kcdf, kclcapa, kclspa, kcday, kchour, kcmin, kcsec,
kcli.

Simplified parameter passing

The macros know the required length of every parameter and ensure that they are passed
correctly (short strings are padded with spaces up to the required length). A parameter only
needs to be specified in the macro parameter list and does not have to be passed anymore
using memcpy. The macros also process all data that was previously processed with memcpy.
The assignments of the parameters to the appropriate KDCS parameter fields is done
implicitly by the C/C++ macros. The parameter types are determined by the C/C++ macro
definitions.

For comparison, here is an example of supplying the kcrn parameter with data:

– In a direct call:

memcpy(pb.kcrn,"rnam",8) /* only kcrn is supplied with data*/

– When using a macro:

macroname(...,"rnam",...) /* complete KDCS call*/

Any parameter fields not used are implicitly set to binary zero. You specify the constant
KDCS_SPACES for the fields that are to be set to spaces in a call.

Program structure Additional information for C/C++

494 Programming Applications with KDCS

Some of the KDCS parameters that were previously passed as an array of characters are
usually stored as integers in C. Such parameters are, for example, the parameters used to
specify the time and date: kcday, kchour, kcmin, kcsec. Such parameters are expected to be
passed as numbers (integers) in the new macro calls. The macros ensure that the data is
passed correctly to the interface.

Here is an example of supplying the KDCS call with a time specification for comparison:

– In a direct call:

memcpy(pb.kcext.kcdput.kcday,"003",3);
memcpy(pb.kcext.kcdput.kchour,"11",2);
memcpy(pb.kcext.kcdput.kcmin,"55",2);
memcpy(pb.kcext.kcdput.kcsec,"00",2);

– When using a macros:

macroname(...,3,11,55,0)

Format of the KDCS call through the C/C++ macro interface

KDCS calls using the C/C++ macro interface have the following format:

KDCS_operation_code[operation_modifier](parameter_list)

If a KDCS message area is required, then its address is always specified as the first
parameter. The parameter list can also be empty.

There are a few exceptions to the macro name format (see page 492).

Examples: KDCS_INIT (length_of_communication_area_program_area,
length_of_standard_primary_working_area);
KDCS_SGETRL(pointer_to_message_area, message_length,

name_of_local_secondary_storage_area)
KDCS_PGWTKP()

Example: KDCS_MPUTNT macro call

In the following the use of a KDCS macro is demonstrated with an example of an MPUT NT
call. First, a description of the macros:

KDCS_MPUT NT(nb,kclm,kcrn,kcfn,kcdf)

char *nb pointer to the KDCS message area

short kclm length

char kcrn[8] space/TAC/service ID

char kcfn[8] format/space/edit profile

unsigned short kcdf screen fill character / binary zero / ---

Additional information for C/C++ Program structure

Programming Applications with KDCS 495

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

The KDCS_MPUTNT macro requires five parameters, one of which is a pointer to the
KDCS message area nb. This parameter is always passed as the first parameter. The other
parameters of the macro originate in the KDCS parameter area. The required type and
meaning of each parameter is specified (for example, kclm is of type short and specifies the
length of the area in which the message is to be passed). In the following example, NB is a
pointer to the KDCS message area used and kc_pa is the KDCS parameter area.

A typical macro call looks like the following call, for example:

KDCS_MPUTNT(NB,10,KDCS_SPACES,KDCS_SPACES,KCNODF);

The same call without using a macro looks like (direct KDCS interface call):

memcpy(PB.kcop,MPUT,4);
memcpy(PB.kcom,NT,2);
kc_pa.kclm=10;
memcpy(kc_pa.kcrn," ",8);
memcpy(kc_pa.kcfn," ",8);
kc_pa.kcdf=0;
KDCS(&kc_pa,NB);

DEBUG function

You can enable a logging function during run time for the KDCS calls triggered by the
macros. The calling module, the source code line and the KCOP, KCOM, KCRCCC and
KCDCDC KDCS fields are recorded.

The logging function is switched on as follows:

● Unix, Linux and Windows systems :

By setting and exporting the KDCS_C_DEBUG environment variable
The information logged is written to stdout.

● BS2000 systems:

By setting the *KDCSCDB JOB VARIABLE LINK
The information logged is written to SYSOUT.
Please note that the job variable link must point to a non-empty job variable.

Example:
/CREATE-JV JV-NAME = KDCSCDB
/MODIFY-JV JV-CONTENTS = KDCSCDB, SET-VALUE = 'YES'
/SET-JV-LINK LINK-NAME = *KDCSCDB, JV-NAME = KDCSCDB

You will find additional information on this subject in the openUTM manual ”Messages,
Debugging and Diagnostics”.

X/W

X/W

B

B

B

B
B
B

Program structure Additional information for C/C++

496 Programming Applications with KDCS

Note: Macros as statement follow-ups

The KDCS macros are not simply individual C/C++ functions, rather they are a series of
several statements. The means that a single macro must be handled exactly as would be
required for a series of several statements. This peculiarity is normally not relevant, and the
macros can be used like normal C/C++ functions. There are, however, program structures
that require single statements, for example within an if statement:

if (condition) STATEMENT else STATEMENT;

Because the macros consist of several individual statements, it is not possible simply to use
a macro as if it were one (single) STATEMENT. You must therefore first designate the macro
as a unified block. This is done by using curly brackets: {macro;}. Instead of incorrectly
writing

if (condition) macro; else macro; /* W R O N G !!!! */

you should write:

if (condition) {macro;} else {macro;} /* C O R R E C T ! */

9.1.7 Event exits

The INPUT, START, SHUT and VORGANG event exits may not contain any KDCS calls.
They should be written as subroutines and must end with the return statement.

For START, SHUT and VORGANG the addresses of the communication area (KB) and
standard primary working area (SPAB) are passed as parameters; these areas must be
declared accordingly (just like for program units containing KDCS calls). On page 525ff you
will find an example of a combined START/SHUT exit.

openUTM passes an address for the INPUT exit. This address specifies the INPUT
parameter area. The header file kcinp.h contains the structure of the INPUT parameter area;
the name of the data structure is kc_inp. On page 508ff you will find an example of a INPUT
exit.
On BS2000 systems, it is also possible to pass the address of a control field area. The
include file kccf.h is available for the control field area.

There can be a maximum of eight START and eight SHUT event exits per application. There
can only be one INPUT and one VORGANG. For further information on event exits, please
refer to chapter “Event functions” on page 441

B

B

Additional information for C/C++ Program structure

Programming Applications with KDCS 497

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

9.1.8 Programming the KDCS error handling routines

The kcrccc return code in the return area of the communication area is returned as a three-
character field in the C/C++ KDCS interface. If the C/C++ macros are not used, then the
values must be compared using the strncmp function.

The request for the return code is simpler when the macro interface is used:
The kcmac.h header file defines a return code in the static variable long KCRCC that
contains the integer value of the kcrccc field after each macro call. Determining if an error
occurred during the call is then limited to checking KCRCC.

For comparison, here are two examples of determining if an error has occurred after a
KDCS call:

– for a direct call:

if(strncmp(kb->rti.kcrccc,"000",3) != 0) ...

– when using a macro:

if (KCRCC != 0) ...

To ensure a better diagnosis of a problem, all unused parameters are automatically set to
binary zero before a KDCS call when the macros are used.
In this manner, the entire parameter area contains a precisely defined set of data. If an error
occurs, the parameter area can be specifically checked and any deviation from the
expected contents can be detected.

Program structure Additional information for C/C++

498 Programming Applications with KDCS

9.1.9 Modifying KDCS attributes

If you use +formats or #formats, you can change the attributes of format fields in the
program.

The KDCS attribute combinations are contained in the header file kcat.h and are copied into
the program unit via include statements.
The kcat.h header file also contains the KDCATTR macro with which you can set the KDCS
attribute combinations. KDCATTR is called as follows:

KDCATTR (attribute_field, attribute_value);

The names and characteristics of the possible KDCS attribute combinations are listed in
your formatting system manual.

Example

The "name" field is to be output to the screen as a protected field; a_name is the attribute
field corresponding to this.

KDCATTR (spab->std_mask.a_name, KCPROT);

The +format "FORMAT5" contains the "FELD1" to "FELD5" fields. FELD4 should be
sent to the screen blinking, all other fields maintain the attributes from the format
description.

 #include <kcat.h>
 unsigned short mput_features;
 .
 .
 {... a_format5 mask_out; ...} *spab; 1)
 .
 /*MPUT call */
 .
 .
 KDCATTR (mask_out.a_field4, KCSIGN);
 KDCATTR (mask_out.a_field1, KCNOATTR);
 KDCATTR (mask_out.a_field2, KCNOATTR);
 KDCATTR (mask_out.a_field3, KCNOATTR);
 KDCATTR (mask_out.a_field5, KCNOATTR);
 .
 KDCS_MPUTNT (&mask_out, sizeof(a_format5),
 KDCS_SPACES,KDCS_SPACES,mput_features);

1) Declares the addressing assistants for the +format "format5".

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B

Additional information for C/C++ Program structure

Programming Applications with KDCS 499

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

9.1.10 Platform-specific characteristics on BS2000 systems

Compiling C/C++ program units

If a link and load module (LLM) is to be created that consists of a code CSECT and a data
CSECT section at compilation of C/C++ program units, you must set MODULE-
GENERATION(MODULE-FORMAT=LLM) for the COMPILER-ACTION option when calling
the compiler. The LLM must be made available in a PLAM library for linking with the
BINDER. Object modules can also be created for your C program units (type=R in LMS).

Using shareable code

If you plan on loading C/C++ program segments as shareable code, then you must set the
following option when compiling:

COMPILER-ACTION=MODULE-GENERATION(SHAREABLE-CODE=YES,...)

The shareable code does not have to be stored in its own object module, rather it can be
placed together with the non-shareable segment in an LLM that is divided into a public and
a private slice.

The shareable program segments only need to be loaded together once for all processes
(tasks) of the application(s). Then only the non-shareable segments need to be loaded into
the local task memory.

openUTM offers several ways of loading shareable objects:

– as a non-privileged subsystem
– with the ADD-SHARED-PROGRAM command into system memory
– into a common memory pool in user memory (class 6 memory).

You can find additional information on compiling shareable code in the User’s Manual for
your compiler. The openUTM manual “Generating Applications” as well as the openUTM
manual “Using openUTM Applications on BS2000 Systems” contains detailed information
on linking and loading shareable code.

Creating formats with the IFG

A detailed explanation of how to create formats using the IFG can be found in the IFG
manual. Please follow the guidelines below when creating these formats for use with
openUTM:

● The format name may be at most 7 characters long.

● Select "Structure of the data transfer area" in the user profile:
– for #formats: separated attribute blocks and field contents
– for *formats: unformatted, without attribute fields
– for +formats: unformatted, with attribute fields

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Program structure Additional information for C/C++

500 Programming Applications with KDCS

● For the C/C++ programming languages the IFG always creates one address assistant.
Fields with the "arithmetic field data type" are represented as character strings
(char [..]).

● Please note when defining the addressing assistants for *formats and +formats that
openUTM deletes the transaction code from the UTM message for MGET and FGET
(as long as this is not explicitly prevented in an INPUT exit). If the first field in the format
contains the transaction code, then you can take this into account by reading the UTM
message into the second field.

Example

 struct work
{ union kc_paa param;
 FORM1 std_mask; /* declare addressing aid for */
 . /* the *format FORM1 */
 } *spab;
 .
 .

 /* MGET call */

KDCS_MGET (spab->std_mask.FUNCTION 1)
 ,sizeof(FORM1)
 ,"*FORM1 ");

 .
 /* MPUT call */

KDCS_MPUTNT (&spab->std_mask,sizeof(FORM1)
,KDCS_SPACES,"*FORM1 ",KCNODF);

 /* PEND FI call */
 .

1) FUNCTION is the second input field of the format.

● When preparing for the application, you bring the formats into the format application
field (format library). You specify these names together with the FHS start parameters.

Extended line mode

You must define the control characters yourself when working in extended line mode if they
are not available in C/C++. You will find a list of which control characters correspond to
which hexadecimal values in the "TIAM User Guide", for example in the description of the
VTCSET macro.

B
B

B

B

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B

B

B

B

B

B

B

B

Additional information for C/C++ Program structure

Programming Applications with KDCS 501

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

9.1.11 Platform-specific characteristics on Unix and Linux systems

Signal handling

Program units in C have limited usage of signals on Unix and Linux systems. The SIGUSR1
and SIGUSR2 signals can be trapped by the C program unit in the start exit of a work
process. All other signals are handled by the openUTM system code itself.

CMX interface in utmwork

You must note the following when using CMX calls in C/C++ program units:
For technical reasons, a CMX simulation is used in the UTM library libwork.a and libwork.so
in UTM applications with OSI TP. It is therefore not possible in this case to use CMX calls
in a C/C++ program unit.

Calling the fork() function in a C/C++ program unit

You must note the following when calling the fork() function in C/C++ program units:
No openUTM program interfaces may be used in a child process created using fork().
Otherwise, the UTM application will terminate abnormally.

 For details on creating and linking shared objects, compiling program units and
linking applications, see the manual openUTM manual “Using openUTM Applica-
tions on Unix, Linux and Windows Systems”, section "Creating the application
program".

9.1.12 Platform-specific characteristics on Windows systems

On Windows systems, the projects must be created with Visual Studio as of Version 2010.

Signals are not supported on Windows systems.

 For details on creating DLLs, compiling program units and linking applications with
Visual Studio, see the manual openUTM manual “Using openUTM Applications on
Unix, Linux and Windows Systems”, chapter "Creating the application program".

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

W

W

XW

W

WW

Programming examples in C/C++ Additional information for C/C++

502 Programming Applications with KDCS

9.2 Programming examples in C/C++

In this section you will find examples of code for individual KDCS calls executed through
the C/C++ macro interface, examples of complete C programs, an INPUT exit, an MSGTAC
event service and an example of a complete UTM application.

9.2.1 Examples of individual KDCS calls

In this section you will find examples of code for the following KDCS calls:

– MGET
– MPUT
– DPUT
– MCOM with DPUT in a job complex
– APRO with MPUT for distributed processing

Because the rest of the KDCS calls are programmed analogously, we will not explicitly
present all of the calls.

In a KDCS call &pa designates the address of the KDCS parameter area and &ma the
address of the KDCS message area.

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 503

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

MGET call

● An unformatted, 80 byte long dialog message is to be received. If the message received
is too short due to an error, then a request for new input is sent.

 .
 KDCS_MGET (&ma,80,KDCS_SPACES);
 if (KCRCC != 0)
 mget_error();
 if (pa.kcla > ca->ca_return.kcrlm)
 r_mput ();

In the r_mput () routine a request to repeat the input is sent to the terminal with MPUT.

● The "FORM15" format was requested by a terminal. The length of the unprotected data
is 500 characters in various format fields. This format should be received in the
program. FORM15 was declared as a std_mask in the program.

 .
 KDCS_MGET (&ma.std_mask,500,"*FORM15 ");
 if (KCRCC == 5) /* invalid format ID */
 format_error();
 if (KCRCC != 0)
 mget_error();

In the format_error routine the format must be output again in order to continue working
with the correct format.

● In a running service an input which consists of a short message, created with the F2
function key, as well as 10 characters of data can be entered. The input should trigger
a special function. The F2 key was assigned the 21Z return code during generation.

 KDCS_MGET (&ma,input_lth,dev.features);
 if (KCRCC == 21) /* return code for F2 */

{
 KDCS_MGET (&ma,10,KDCS_SPACES);

 if (KCRCC != 0)
 mget_error();

}

B

B

B

B

B

Programming examples in C/C++ Additional information for C/C++

504 Programming Applications with KDCS

MPUT call

● An unformatted, 80 byte long UTM message is to be sent to the terminal.

 .
 KDCS_MPUTNE (&ma,80,KDCS_SPACES,KDCS_SPACES,KCNODF);
 if (KCRCC != 0)
 mput_error();

● The last UTM message in a service is to be sent to a terminal in the format mode. The
name of the *format is "FORM15". The screen should be cleared beforehand.

 .
 KDCS_MPUTNE (&ma,500,KDCS_SPACES,"*FORM15 ",KCREPL);
 if (KCRCC != 0)
 mput_error();

REPLACE is executed by default during a format change. The output is performed in
order to rule out the possibility of an error due to the undefined contents of a field.

● In a "FORM10" *format that is still on the terminal according to the last input, all unpro-
tected fields are to be erased as a result.

 .
 KDCS_MPUTNE (&ma,0,KDCS_SPACES,"*FORM10 ",KCERAS);
 if (KCRCC != 0)
 mput_error();

DPUT call

● A queued job with an 11 character long UTM message is to be sent on Nov.11 (= 315th
day of the year) at 11:11 AM to a program unit (absolute time). The TAC name is
"ALAAF".

 .
 KDCS_DPUTNE (&ma,11,"ALAAF ",KDCS_SPACES,0,'A',315,11,11,0);
 if (KCRCC != 0) /* A = absolute time */
 dput_error();

● An 80 character long queued message is to be output on terminal ’DSS1’ in 1 hour
(relative time). The ’acoustic alarm’ (BEL) screen function should be triggered when the
message is output.

 .
 KDCS_DPUTNE (&ma,80,"DSS1 ",KDCS_SPACES,KCALARM,'R',0,1,0,0);
 if (KCRCC != 0) /* R = relative time */
 dput_error();

B

B

B
B
B
B

B

B

B

B

B
B
B
B

B

B

B

B
B
B
B

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 505

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

Job complex: MCOM and DPUT call

A formatted queued message (200 bytes) is to be sent to the printer PRINTER2 on the
same day at 18:00. The printer confirmation is handled in the program.

For a positive confirmation an asynchronous program receives a confirmation job using the
PRINTPOS TAC with a 20 byte long message, for a negative confirmation an asynchronous
program is started with the TAC PRINTNEG (without a message). For a negative confir-
mation an 80-byte piece of user information is logged; it can be read using DADM UI.

The job complex is framed by two MCOM calls; the target of the print job (=base job) and
confirmation jobs are set in the call MCOM BC; the complex identification is "*PRICOMP".

 .
/* Begin of the complex */

 KDCS_MCOMBC ("PRINTER2","PRINTPOS","PRINTNEG","*PRICOMP");
 if (KCRCC != 0)
 mcom_error();

/* DPUT-message for printer */

 KDCS_DPUTNE (&ma1,200,"*PRICOMP","*FORM1 ",KCNODF,'A',
 ca->ca_head->kccv_doy,18,0,0);
 if (KCRCC != 0)
 dput_error();

/* acknowledgment job in positive case */

 KDCS_DPUTPT (&ma2,20,"*PRICOMP");
 if (KCRCC != 0)
 dput_error();

/* User information in negative case */

 KDCS_DPUTMI (&ma3,80,"*PRICOMP");
 if (KCRCC != 0)
 dput_error();

/* acknowledgment job in negative case */

 KDCS_DPUTMT (&ma2,0,"*PRICOMP");
 if (KCRCC != 0)
 dput_error();

/* End of complex */

 KDCS_MCOMEC ("*PRICOMP");
 if (KCRCC != 0)
 mcom_error();
 .

Programming examples in C/C++ Additional information for C/C++

506 Programming Applications with KDCS

Distributed processing: APRO call followed by MPUT

The dialog service is to be addressed by the job-submitting service with the ’LTAC1’ trans-
action code of the application ’PARTNER1’ (two stage addressing). The job-receiving
service will be assigned the service identification ’>VGID1’. Finally, a 100 byte long MPUT
message is sent to the partner application in line mode.

 .
 .
 .
 KDCS_APRODM ("LTAC1 ","PARTNER1",">VGID1 ");
 if (KCRCC != 0)
 apro_error();
 .
 .
 .
 KDCS_MPUTNE (&ma,100,">VGID1 ",KDCS_SPACES,KCNODF);
 if (KCRCC != 0)
 mput_error();

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 507

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

9.2.2 Example of a complete C program unit

The following is an example of an executable KDCS program unit in the C programming
language.
The program outputs the text "hello world !" and the names of the logical terminals.

#include <kcmac.h>

struct work {
 union kc_paa call_pb;
 char buffer[400];
 };

struct kc_ca {
 struct ca_hdr kopf;
 struct ca_rti rfld;
 char kcprg[500];
 };

#define NB spab->buffer
#define KBKOPF kb->kopf
#define KBRFLD kb->rfld
#define PB spab->call_pb

void mhello (struct kc_ca *kb, struct work *spab)

{

 /* KDCS interface initialization */
 KDCS_SET(&PB, &KBKOPF, &KBRFLD);

 /* INIT - Call */
 KDCS_INIT(sizeof(struct kb->kcprg), sizeof(struct work));

 /* MPUT-NT - Call */
 strcpy (NB, "hello world !\n\n");
 KDCS_MPUTNT(NB, (short)strlen(NB), KDCS_SPACES,
 KDCS_SPACES, KCNODF);

 /* MPUT-NT - Call */
 sprintf (NB, "lterm = %.8s \n", KBKOPF.kclogter);
 KDCS_MPUTNT(NB, (short)strlen(NB), KDCS_SPACES,
 KDCS_SPACES, KCNODF);

 /* PEND-FI - Call */
 KDCS_PENDFI();
}

Programming examples in C/C++ Additional information for C/C++

508 Programming Applications with KDCS

9.2.3 Example: INPUT exit

The forinput INPUT exit is called when data is input in the format mode, and it reacts to the
input as follows:

User commands are initiated:

– KDCOUT: Press the F1 key

– KDCDISP: Press the F2 key

– KDCOFF: the first character of the input is "/"; this is only accepted outside of a service.

If the user is also allowed to input KDCLAST and KDCFOR, then the program must be
expanded accordingly.

This INPUT exit is generated with the KDCDEF statement EXIT:

EXIT PROGRAM=FORINPUT,USAGE=(INPUT,FORMMODE)

#include <string.h>
#include <kcinp.h>

#define KDCDISP 2
#define KDCOUT 1
#define NOKEY 0
#define FKEY 1
#define KDCOFF "KDCOFF "
#define NOTAC (strncmp (param->kcicfinf, "ON", 2) != 0)
#define CV_END (strncmp (param->kcicvst, "EC", 2) == 0)

#define TAC param->kcicvtac[0]
#define fkey param->kcifkey
#define cmd param->kcintac
#define nexttac param->kcintac
#define errcode param->kcierrcd
#define contcode param->kciccd
#define firstchar param->kcifch[0]
#define cut param->kcicut

static int key(struct kc_inp *);
static void func_control(struct kc_inp *);
static void cv_continue(struct kc_inp *);

void forinput (struct kc_inp *param)

{

if (key (param) == NOKEY) /* No F-key */
{ if (CV_END)

func_control (param);
else

cv_continue (param);
}

}

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 509

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

/***/
/* function key for checking F-key */
/***/

int key (struct kc_inp *param)

{
int key_value = NOKEY;

if (fkey > 0)
{ switch (fkey)

{
case KDCOUT:

memcpy (cmd, "KDCOUT ", 8);
memcpy (contcode, "CD", 2);
cut = ´N´;
memset (errcode, ´ ´, 4);
key_value = FKEY;
break;

default: break;
}

}

return key_value;

}

/**/
/* function func_control: checking the next FUNCTION out of conversation*/
/** */

void func_control (struct kc_inp * param)

{
if (firstchar == ´/´) /* check the first character*/

{ memcpy (cmd, KDCOFF, 8); /* of input: ´/´ = KDCOFF */
memcpy (contcode, "CD", 2);
cut = ´N´;
memset (errcode, ´ ´, 4);

}
else /* check control field */

{
if (NOTAC) /* no input in control field*/

{ memset (nexttac, ´ ´, 8);
memcpy (contcode, "ER", 2);
cut = ´N´;
memcpy (errcode, "ER01", 4);

}
else

{ switch (TAC) /* TAC for the next */
{ /* conversation */
case ´1´:

memcpy (nexttac, "DTAC1 ", 8);
memcpy (contcode, "SC", 2);
cut = ´Y´;
memset (errcode, ´ ´, 4);
break;

Programming examples in C/C++ Additional information for C/C++

510 Programming Applications with KDCS

case ´2´:
memcpy (nexttac, "DTAC3 ", 8);
memcpy (contcode, "SC", 2);
cut = ´Y´;
memset (errcode, ´ ´, 4);
break;

case ´3´:
memcpy (nexttac, "DTAC6 ", 8);
memcpy (contcode, "SC", 2);
cut = ´Y´;
memset (errcode, ´ ´, 4);
break;

default: /* TAC is invalid */
memset (nexttac, ´ ´, 8);
memcpy (contcode, "ER", 2);
cut = ´N´;
memcpy (errcode, "ER02", 4);
break;

}
}

}
}

/***/
/* function cv_continue: continue the conversation */
/***/

void cv_continue (struct kc_inp * param)

{ memset (nexttac, ´ ´, 8);
memcpy (contcode, "CC", 2);
cut = ´N´;
memset (errcode, ´ ´, 4);

}

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 511

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

9.2.4 Example: MSGTAC event service

The MSGTAC event service NOHACK counts the number of failed attempts in a TLS. If
openUTM accepts a KDCSIGN (i.e. UTM message K008 or K033), then this TLS is deleted.

If after three invalid KDCSIGN attempts the 4th KDCSIGN attempt also fails, then the corre-
sponding terminal should be automatically disconnected using an FPUT call with
KCRN="KDCPTRMA". The KDCS message area contains the following administration
command, see also the openUTM manual “Generating Applications”:

PTERM=pterm,PRO=proname,ACT=DIS

The K-messages are each read from the MSGTAC program unit using FGET. After
"processing" a K-message, the next K-message is read immediately within the same
program run using FGET.

#include <stdio.h>

#include <kcmac.h>
#include <kcmsg.h>

#define _K008 (memcmp (NR, "K008", 4) == 0)
#define _K033 (memcmp (NR, "K033", 4) == 0)

/* K008: KDCSIGN accepted */
/* K033: Start-Format */

#define MESSAGE_OK (_K008 || _K033)

#define _K004 (memcmp (NR, "K004", 4) == 0)
#define _K006 (memcmp (NR, "K006", 4) == 0)
#define _K031 (memcmp (NR, "K031", 4) == 0)

/* K004: Invalid Identification */
/* K006: Invalid password */
/* K031: Card not ok */

#define OTHER_MESSAGE !(_K004 || _K006 || _K008 || _K031 || _K033)
#define HACK_MAX 3

#define PTERM " PTERM="
#define PRONAM ",PRONAM="
#define DIS ",ACTION=DIS"
#define OFF ",STATUS=OFF"
#define kcrc_ca->ca return.kcrccc
#define pa spab->param
#define NR spab->ma.kcmsgs.msghdr.MSGNR
#define MSG spab->ma.kcmsgs.msg
#define LTERM spab->ma.lterm
#define hacknr spab->hack_nr
#define admin spab->ma.adm

Programming examples in C/C++ Additional information for C/C++

512 Programming Applications with KDCS

struct adm_line
{ char pterm_t[6];

char pterm[8];
char pronam_t[8];
char pronam[8];
char dis_t[11];
char off_t[11];

};

struct ca_area
{ struct ca_hdr ca_head;
struct ca_rti ca_return;

};

struct work
{ struct kc_pa param;

short hack_nr;
struct msg_area

{ char lterm[8];
struct adm_line adm;
struct KCMSGS kcmsgs;

} ma;
char buffer[100];

};

static void set_lterm(struct work *);
static void set_pterm(struct work *);

void NOHACK (struct ca_area *ca, struct work *spab)

{
int other_message = 0;

/* INIT-Operation */

KDCS_SET (&spab->param, &ca->ca_head, &ca->ca_return);
KDCS_INIT (0,512);

/***/
/* while-loop: reading and processing all messages */
/***/

while (KCRCC == 0)
{

/* FGET-Operation: reading the message */

KDCS_FGET (&spab->ma.kcmsgs,132,KDCS_SPACES);
if (KCRCC != 0)

break;

if (OTHER_MESSAGE)
{ other_message = 1;

break;
}

set_lterm (spab);

/* read TLSB */

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 513

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

KDCS_GTDA (&hacknr,2,"TLSB",LTERM);
if (KCRCC != 0)

break;

if ((hacknr < 0) || (hacknr > HACK_MAX))
hacknr = 0; /* Initialize TLS */

/* If KDCSIGN is correct, initialize the TLS, if not, count the number */
/* of failed attempts. After the fourth invalid KDCSIGN disconnect the */
/* correspondending terminal. */

if ((hacknr < HACK_MAX) && MESSAGE_OK)
hacknr = 0; /* Initialize TLS */

else /* invalid KDCSIGN */
{

if (hacknr < HACK_MAX)
++hacknr;

else
{ memcpy (admin.pterm_t, PTERM, 7);

memcpy (admin.pronam_t, PRONAM, 8);
set_pterm (spab);

/* Disconnect the terminal by asynchronous administration */

memcpy (admin.dis_t, DIS, 11);
memcpy (admin.off_t, OFF, 11);

KDCS_FPUTNE (&admin,sizeof(struct adm_line),"KDCPTRMA",KDCS_SPACES,KCNODF)
;

if (KCRCC != 0)
break;

hacknr = 0;

/* log on User logging */

KDCS_LPUT (&admin,sizeof(struct adm_line));
if (KCRCC != 0)

break;
}

}

/* set up TLSB */

KDCS_PTDA (&hacknr,2,"TLSB",LTERM);

}
/* **/
/* End of while loop */
/**/

if (KCRCC != 10 || other_message)

/* other message or error in the while loop */

{

/* error line */

Programming examples in C/C++ Additional information for C/C++

514 Programming Applications with KDCS

sprintf(spab->buffer, "Error in program unit - conversation %8.8s"\
", TAC: %8.8s because %4.4s. RC= %3.3s " ,
ca->ca_head.kccv_tac , ca->ca_head.kcpr_tac ,
pa.kcop , KDCS_ERR);

/* RSET-Operation */

KDCS_RSET();

/* LPUT-Operation: log on user logging */

KDCS_LPUT(spab->buffer , strlen(spab->buffer));
}

/* PEND FI-Operation */

KDCS_PENDFI();
}

/**/
/* function set_lterm () */
/**/

void set_lterm (struct work * spab)

{ if _K004
{ memcpy (LTERM,MSG.K004.LTRM, 8);

return;
}

if _K006
{ memcpy (LTERM, MSG.K006.LTRM, 8);

return;
}

if _K008
{ memcpy (LTERM, MSG.K008.LTRM, 8);

return;
}

if _K031
{ memcpy (LTERM, MSG.K031.LTRM, 8);

return;
}

if _K033
{ memcpy (LTERM, MSG.K033.LTRM, 8);

return;
}

}
/**/
/* function set_pterm () */
/**/

void set_pterm (struct work *spab)

{ if _K004
{ memcpy (admin.pterm, MSG.K004.PTRM, 8);

memcpy (admin.pronam, MSG.K004.PRNM, 8);
return;

}

if _K006
{ memcpy (admin.pterm, MSG.K006.PTRM, 8);

memcpy (admin.pronam, MSG.K006.PRNM, 8);

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 515

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

return;
}

if _K031
{ memcpy (admin.pterm, MSG.K031.PTRM, 8);

memcpy (admin.pronam, MSG.K031.PRNM, 8);
return;

}
}

The above example for the MSGTAC event service simply indicates appropriate ways of
evaluating messages and administering the application.

However, the K094 message (SIGNON SILENT-ALARM) should be used to monitor
security infringements since this also includes UPIC and OSI TP clients. Furthermore,
wider-ranging administration of the UTM application is possible using the programmed
administration capability (ADMI interface).

Programming examples in C/C++ Additional information for C/C++

516 Programming Applications with KDCS

9.2.5 Example of a complete UTM application

This application example administers address data that has been placed in a file. The appli-
cation provides the following functions which are called by entering the corresponding TAC
in the field used for this purpose. The input and output is performed in one format.

TAC Function

1 Read outputs an address that is in the file. The search term used is
the last name and the first two letters of the first name, both of
which are to be specified in the appropriate fields.

2 Write adds a new address to the file. There may not already be an
address with the same search key (see above) in the file.

3 Update modifies an address entry. The address must already exist in
the file.

4 Delete deletes an existing address from the file.

An error message appears in the lowest line of the format if used incorrectly.

The numbers listed above are the transaction codes (TACs) that control the application.
Transaction code 1 calls the "TPREAD" program unit, and transaction codes 2, 3 and 4 call
the "TPUPDATE" program unit. These program units then each branch to the "TPFILE"
program unit. This program unit is utilized as the START and SHUT exits and contains the
subroutines that perform the input/output operations on the address file.
The "BADTACS" program unit is automatically called by openUTM if an invalid TAC is
specified.

The "ERRCHECK" function handles errors that arise in the program units.

After the connection to the application has been established and a successful KDCSIGN,
the format is immediately output by openUTM (start format). The interaction with the user
is then done in a strictly controlled dialog, i.e. the application reacts to the input of the TAC
and of the key by outputting the format containing the address searched for or by outputting
a success or error message in the bottom line.

i This program is only meant to demonstrate how you program using openUTM. The
file accesses are not secured by the UTM transaction concept.

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 517

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

The following structure diagram presents the structure of the program units:

Structure diagram of the TPREAD program unit

Structure diagram of the TPUPDATE program unit

TPREAD program unit

INIT call

MGET call

TPFILE subroutine call : read address from file

MPUT call

PEND call

TPUPDATE program unit

INIT call

MGET call

TPFILE subroutine call : write, overwrite or delete
address depending on TAC

MPUT call

PEND call

Programming examples in C/C++ Additional information for C/C++

518 Programming Applications with KDCS

Structure diagram of the TPFILE program unit.

For the sake of completeness the generation of this application is listed at the end of the
C program. Please consult the openUTM manual “Generating Applications” for the exact
meaning of the individual operands and statements.

TPFILE program unit

TAC = ?
STARTUP SHUTDOWN

pr_swtch = 1 pr_swtch = 2 pr_swtch = 3

switch (pr_swtch)

1:

open file

2:

close file

3:

switch (FUNCTION)

READ:

search for and read address

WRITE:

write address

UPDATE:

search for, read and overwrite address

DELETE:

delete address

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 519

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

The following diagram shows the FORM1 format used for this application:

The data structure for the address assistant for this format is printed in the following.

typedef struct {
char NAME [14] ;
char FIRST_NAME [20] ;
char STREET [26] ;
char NUMBER [10] ;
char POSTAL_CODE [5] ;
char RESIDENCE [24] ;
char PHONE [21] ;

} ADDRESS;

typedef struct {
char TAC [8] ;
char FUNCTION [27] ;
ADDRESS addr;
char MSGTEXT [80] ;

} FORM1 ;

The FUNCTION field is a protected output field with the "automatic input" attribute.
Numerical data is allowed to be entered in the POSTAL_CODE field and MSGTEXT is a
protected output field. You can print out the entire list of attributes. You will find more infor-
mation on this subject in your formatting system manual.

**
A d d r e s s A d m i n i s t r a t i o n

**

Select function:

--

Actual function:
Name: First Name:

Street: No.:
Postal Code: Residence:

Phone:

--

Function selection
1 = Show address | 4 = Delete address

2 = Enter address |
3 = Update address | Finish with ´kdcoff´

Programming examples in C/C++ Additional information for C/C++

520 Programming Applications with KDCS

FORM1.h header file

/* FORMAT NAME : FORM1 */
/* USER AREA LENGTH : 235 */

typedef struct {
char NAME [14] ;
char FIRST_NAME [20] ;
char STREET [26] ;
char NUMBER [10] ;
char POSTAL_CODE [5] ;
char RESIDENCE [24] ;
char PHONE [21] ;

} ADDRESS;

typedef struct {
char TAC [8] ;
char FUNCTION [27] ;
ADDRESS addr;
char MSGTEXT [80] ;

} FORM1 ;

tp.h header file

#ifndef TP_H
#define TP_H

#include "FORM1.h"

 #define kcrc ca->ca_return.kcrccc
 #define pa spab->param

 struct ca_area
 { struct ca_hdr ca_head;
 struct ca_rti ca_return;
 };

 struct work
 { union kc_paa param;
 FORM1 std_mask; /* addressing assistant area */
 char progname[8];
 };

 void BADTACS (struct ca_area * , struct work *);
 void errcheck (struct ca_area * , struct work *);
 void TPFILE (struct ca_area * , struct work *);
 void TPREAD (struct ca_area * , struct work *);
 void TPUPDATE (struct ca_area * , struct work *);

#endif

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 521

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

TPREAD program unit

#include <kcmac.h>
#include "tp.h"

void TPREAD (struct ca_area *ca , struct work *spab)

{

/* INIT-Operation */

KDCS_SET (&spab->param, &ca->ca_head, &ca->ca_return);
KDCS_INIT (0,sizeof(struct work));
if (KCRCC != 0)

{ memcpy (spab->progname, "TPREAD ", 8);
errcheck (ca, spab);

}
else

memcpy (spab->std_mask.TAC, ca->ca_head.kcpr_tac, 8);

/* MGET-Operation */

KDCS_MGET (spab->std_mask.FUNCTION
,sizeof(FORM1)
,"*FORM1 ");

if (KCRCC != 0)
{ memcpy (spab->progname, "TPREAD", 8);

errcheck (ca, spab);
}

/* call function "tpfile" for reading address */

TPFILE (ca, spab);

/* MPUT-Operation */

KDCS_MPUTNT (&spab->std_mask,sizeof(FORM1)
,KDCS_SPACES,"*FORM1 ",KCNODF);

if (KCRCC != 0)
{ memcpy (spab->progname, "TPREAD", 8);

errcheck (ca, spab);
}

/* PEND FI-Operation */

KDCS_PENDFI();

}

Programming examples in C/C++ Additional information for C/C++

522 Programming Applications with KDCS

TPUPDATE program unit

#include <kcmac.h>
#include "tp.h"

void TPUPDATE (struct ca_area *ca , struct work *spab)

{

/* INIT-Operation */

KDCS_SET (&spab->param, &ca->ca_head, &ca->ca_return);
KDCS_INIT (0,sizeof(struct work));
if (KCRCC != 0)

{ memcpy (spab->progname, "TPUPDATE", 8);
errcheck (ca, spab);

}
else

memcpy (spab->std_mask.TAC, ca->ca_head.kcpr_tac, 8);

/* MGET-Operation */

KDCS_MGET (spab->std_mask.FUNCTION
,sizeof(FORM1)
,"*FORM1 ");

if (KCRCC != 0)
{ memcpy (spab->progname, "TPUPDATE", 8);

errcheck (ca, spab);
}

/* call function "tpfile" for updating address */

TPFILE (ca, spab);

/* MPUT-Operation */

KDCS_MPUTNT (&spab->std_mask,
sizeof(FORM1),KDCS_SPACES,"*FORM1 ",KCNODF);

if (KCRCC != 0)
{ memcpy (spab->progname, "TPUPDATE", 8);

errcheck (ca, spab);
}

/* PEND FI-Operation */

KDCS_PENDFI();

}

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 523

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

BADTACS program unit

#include <kcmac.h>
#include "tp.h"

#define ERRLINE "****** Wrong TAC - Please repeat \
Input ****** "

void BADTACS (struct ca_area *ca, struct work *spab)

{

/* INIT-Operation */

KDCS_SET (&spab->param, &ca->ca_head, &ca->ca_return);
memset (&spab->std_mask.TAC, ´ ´, 8);
KDCS_INIT (0,sizeof(struct work));
if (KCRCC != 0)

{ memcpy (spab->progname, "BADTACS", 8);
errcheck (ca, spab);

}

/* MGET-Operation */

KDCS_MGET (spab->std_mask.FUNCTION
,sizeof(FORM1)
,ca->ca_return.kcrfn);

if (KCRCC != 0)
{ memcpy (spab->progname, "BADTACS", 8);

errcheck (ca, spab);
}

/* MPUT-Operation: Replace the standard error message */

memcpy (spab->std_mask.MSGTEXT, ERRLINE, 80);
memset (spab->std_mask.TAC, ´ ´, 8);
KDCS_MPUTNT (&spab->std_mask

,sizeof(FORM1)
,KDCS_SPACES
,"*FORM1 "
,KCNODF);

if (KCRCC != 0)
{ memcpy (spab->progname, "BADTACS", 8);

errcheck (ca, spab);
}

/* PEND FI call */

KDCS_PENDFI();

}

Programming examples in C/C++ Additional information for C/C++

524 Programming Applications with KDCS

ERRCHECK function

#include <kcmac.h>
#include "tp.h"

void errcheck (struct ca_area * ca , struct work * spab)

{

struct err_line
{ char ftext[35];
char progname[8];
char optext[10];
char op_code[4];
char cctext[8];
char cc[3];
char cdtext[8];
char cd[4];

} err_msg;

/* ------- Making connections for the KDCS_... macros -------- */

KDCS_SET (&spab->param, &ca->ca_head, &ca->ca_return);

/* making entries in the errorline */

memcpy (err_msg.ftext, "****** E R R O R in program unit ",35);
memcpy (err_msg.progname, spab->progname, 8);
memcpy (err_msg.optext, " Op-Code: ",10);
memcpy (err_msg.op_code, pa.kcop, 4);
memcpy (err_msg.cctext, " kcrccc=", 8);
memcpy (err_msg.cc, KDCS_ERR , 3);
memcpy (err_msg.cdtext, " kcrcdc=", 8);
memcpy (err_msg.cd, KDCS_RTI->kcrcdc, 4);

memset (&spab->std_mask, ´ ´, sizeof (FORM1));
memcpy (spab->std_mask.MSGTEXT, &err_msg, 80);

/* MPUT-Operation */

KDCS_MPUTNE (&spab->std_mask,sizeof(FORM1),KDCS_SPACES,"*FORM1 ",KCNODF);

/* PEND ER-Operation */

KDCS_PENDER();
}

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 525

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

TPFILE program unit with START/SHUT exits and file accesses

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#include <kcpa.h>
#include <kcca.h>

#include "tp.h"

#define M spab->std_mask
#define TAC ca->ca_head.kccv_tac
#define JOB TAC[0]
#define ADR_LENGTH ((long) sizeof(ADDRESS))

#define READ ´1´
#define WRITE ´2´
#define UPDATE ´3´
#define DELETE ´4´

#ifdef __SNI_HOST_BS2000
#define FILE_NAME "link=CAPPLI"
#define FILE_MODE "r+b,type=record,forg=key"
#define FILE_MODE_FIRST "w+b,type=record,forg=key"

#else
#define FILE_NAME "cappli.address"
#define FILE_MODE "r+b"
#define FILE_MODE_FIRST "w+b"

#endif
#define PREVIOUS_POSITION -ADR_LENGTH
#define SAG_NAME "FUJITSU TECHNOLOGY SOLUTIONS"
#define SAG_STREET "Musterstrasse"
#define SAG_NUMBER "6"
#define SAG_PCODE "12345"
#define SAG_RES "Musterstadt"
#define SAG_PHONE "+12 34 567-89"

typedef enum {
FOUND = 1
,NOT_FOUND = 2
} address_status;

static address_status addr_fetch(struct work *);

static ADDRESS address;
static FILE * filepointer;
static fpos_t FilePosition;

void TPFILE (struct ca_area * ca , struct work *spab)

{
int pr_swtch;

#ifdef __SNI_HOST_BS2000
char BS2Cmd[500];

#endif

if (strncmp (TAC,"STARTUP ", 8) == 0)
pr_swtch = 1;

else

Programming examples in C/C++ Additional information for C/C++

526 Programming Applications with KDCS

{ if (strncmp (TAC,"SHUTDOWN", 8) == 0)
pr_swtch = 2;

else
{ pr_swtch = 3;

memset (M.MSGTEXT, ´*´, 80);
}

}

switch (pr_swtch)

{ case 1:

#ifdef __SNI_HOST_BS2000
sprintf(BS2Cmd ,

"SET-FILE-LINK LINK-NAME = CAPPLI ,FILE-NAME = CAPPLI.ADDRESS"\
" ,SUPPORT = *DISK(SHARED-UPDATE = *YES) ",
ADR_LENGTH);

system(BS2Cmd);
#endif

if ((filepointer = fopen (FILE_NAME, FILE_MODE)) == NULL) {
if((filepointer = fopen(FILE_NAME , FILE_MODE_FIRST)) == NULL) {

perror("fopen:");
exit(-1);
}

memcpy(address.NAME , SAG_NAME , sizeof(SAG_NAME)-1);
memcpy(address.STREET, SAG_STREET , sizeof(SAG_STREET)-1);
memcpy(address.NUMBER, SAG_NUMBER , sizeof(SAG_NUMBER)-1);
memcpy(address.POSTAL_CODE , SAG_PCODE , sizeof(SAG_PCODE)-1);
memcpy(address.RESIDENCE , SAG_RES , sizeof(SAG_RES)-1);
memcpy(address.PHONE , SAG_PHONE , sizeof(SAG_PHONE)-1);

fwrite(&address, ADR_LENGTH, 1, filepointer);
fclose(filepointer);

if ((filepointer = fopen (FILE_NAME, FILE_MODE)) == NULL) {
perror("fopen:");
exit(-1);
}

}
break;

case 2:
fclose (filepointer);
break;

case 3:

switch (JOB)

{ case READ:

memcpy (M.FUNCTION, "Show address ******", 26);
if (addr_fetch(spab) == NOT_FOUND)

{ memcpy (M.MSGTEXT, "Address not found ", 22);
break;

}
else

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 527

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

{ memcpy (M.addr.NAME, address.NAME, ADR_LENGTH);
break;

}

case WRITE:

memcpy (M.FUNCTION, "Enter address ***", 26);
if (addr_fetch(spab) == FOUND)

{ memcpy (M.MSGTEXT, "Address already exists ", 23);
break;

}
else

{ memcpy (address.NAME, M.addr.NAME, ADR_LENGTH);
fseek (filepointer, 0, 2);
fwrite (&address, ADR_LENGTH, 1, filepointer);
memcpy (M.MSGTEXT, "Address entered ", 24);
break;

}
case UPDATE:

memcpy (M.FUNCTION, "Update address ******", 26);
if (addr_fetch(spab) == NOT_FOUND)

{ memcpy (M.MSGTEXT, "Address not found ", 22);
break;

}
else

{ memcpy (address.NAME, M.addr.NAME, ADR_LENGTH);
fsetpos(filepointer,&FilePosition);
fwrite (&address, ADR_LENGTH, 1, filepointer);
memcpy (M.MSGTEXT, "Address changed ", 16);
break;

}

case DELETE:

memcpy (M.FUNCTION, "Delete address *****", 26);
if (addr_fetch(spab) == NOT_FOUND)

{ memcpy (M.MSGTEXT, "Address not found ", 22);
break;

}
else

{
#ifndef __SNI_HOST_BS2000

memset (&address, ´*´, ADR_LENGTH);
fsetpos(filepointer,&FilePosition);
fwrite (&address, ADR_LENGTH, 1, filepointer);

#else
fdelrec(filepointer , NULL);
memcpy (M.MSGTEXT, "Address deleted ", 22);
break;

#endif
}

}
}
return;

}

Programming examples in C/C++ Additional information for C/C++

528 Programming Applications with KDCS

/***/
/* Function addr_fetch */
/***/

static address_status addr_fetch(struct work *spab)
{

address_status filestatus = NOT_FOUND;

memset (&address, 0X00, ADR_LENGTH);
fseek (filepointer, 0, 0);

while (fgetpos(filepointer , &FilePosition) ,
(fread (&address, ADR_LENGTH, 1, filepointer)) != NULL)

{
if (address.NAME[0] != ´*´) /* Address not deleted */

{
if (strncmp (address.NAME, M.addr.NAME, sizeof M.addr.NAME) == 0)

if (strncmp (address.FIRST_NAME
, M.addr.FIRST_NAME
, sizeof M.addr.FIRST_NAME) == 0)

{ filestatus = FOUND;
break;

}
}

memset (&address, 0X00, ADR_LENGTH);
}

return filestatus;

}

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 529

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

KDCDEF statements

REM ***
REM *** D E F - S T A T E M E N T S ***
REM *** ***
REM *** KDCFILE = CAPPLI ***
REM ***
*
OPTION GEN=ALL
*
ROOT CAPPLI
*
*+--+
*| MAX statements |
*+--+
*
MAX KDCFILE = kdcfile
MAX APPLINAME = CAPPLI
MAX APPLIMODE = S
MAX TASKS = 3
MAX ASYNTASKS = 1
MAX PGPOOL = (25)
MAX CACHESIZE = (100,30)
MAX TRACEREC = 10000
MAX RECBUF = (5,4096)
MAX LPUTBUF = 10
MAX LPUTLTH = 4096
MAX TERMWAIT = 60
MAX KB = 1024
MAX NB = 2048
MAX SPAB = 4096
MAX CLRCH = X´FF´
*
*+--+
*| FORMSYS statement |
*+--+
*
FORMSYS ...
*
*+--+
*| MESSAGE statement |
*+--+
*
MESSAGE MODULE=MSGS
*
*+--+
*| PROGRAM statements |
*+--+
*
*
*
OPTION DATA=
*
*
*

PROGRAM-STATIC
PROGRAM-SHARED-OBJ
PROGRAM-BLS
PROGRAM-OLD-DLL

Programming examples in C/C++ Additional information for C/C++

530 Programming Applications with KDCS

*+--+
*| EXIT statements |
*+--+
*
EXIT PROGRAM=TPFILE ,USAGE=START
EXIT PROGRAM=TPFILE ,USAGE=SHUT
*
*+--+
*| TAC statements |
*+--+
*
REM *** ADMINISTRATION DIALOG ***
TAC KDCTAC ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCLTERM ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCPTERM ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCSWTCH ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCSEND ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCAPPL ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCUSER ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCDIAG ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCLOG ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCINF ,PROGRAM=KDCADM , ADMIN=READ
TAC KDCHELP ,PROGRAM=KDCADM , ADMIN=READ
TAC KDCSHUT ,PROGRAM=KDCADM , ADMIN=Y
TAC KDCTCL ,PROGRAM=KDCADM , ADMIN=Y
*
REM *** ADMINISTRATION ASYNCHRON ***
TAC KDCTACA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCLTRMA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCPTRMA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCSWCHA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCUSERA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCSENDA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCAPPLA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCDIAGA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCLOGA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCINFA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=READ
TAC KDCHELPA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=READ
TAC KDCSHUTA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
TAC KDCTCLA ,PROGRAM=KDCADM ,TYPE=A , ADMIN=Y
*
REM *** Application specific TACs ***
*
TAC KDCMSGTC , PROGRAM=NOHACK
TAC KDCBADTC , PROGRAM=BADTACS
TAC 1 , PROGRAM=TPREAD , LOCK = 1
TAC 2 , PROGRAM=TPUPDATE , TACCLASS=1 , LOCK = 2
TAC 3 , PROGRAM=TPUPDATE , TACCLASS=1 , LOCK = 2
TAC 4 , PROGRAM=TPUPDATE , TACCLASS=1 , LOCK = 2
*
*+--+
*| TACCLASS statements |
*+--+
*
TACCLASS 1,TASKS=1
*

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 531

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

*+--+
*| USER statements |
*+--+
*
USER NINA ,PASS=C´SOLO´ ,FORMAT=*FORM1 ,KSET=BUNDLE1 (1)
USER URSUS ,FORMAT=*FORM1 ,KSET=BUNDLE2 (1)
USER ADMIN ,PASS=C´ADM´ ,KSET=MASTER,PERMIT=ADMIN
*
*+--+
*| TLS statements |
*+--+
*
TLS TLSB
*
*+--+
*| TPOOL statements |
*+--+
*
TPOOL LTERM=... , NUMBER=2 , PRONAM=*ANY, PTYPE=... , KSET = MASTER
TPOOL LTERM=... , NUMBER=2 , PRONAM=*ANY, PTYPE=... , KSET = MASTER
*
*+--+
*| PTERM / LTERM statements |
*+---+
*
OPTION DATA=
*
*
*+--+
*| KSET statements |
*+--+
*
KSET BUNDLE1 , KEYS=(1,2)
KSET BUNDLE2 , KEYS=(1)
KSET MASTER, KEYS=MASTER

(1) BS2000 format

TERM-BS2
TERM-Unix
TERM-WIN

B

Programming examples in C/C++ Additional information for C/C++

532 Programming Applications with KDCS

Input files for the generation procedure

PROGRAM statements:

● PROGRAM-STATIC (for static linking)

PROGRAM KDCADM ,COMP=C
PROGRAM TPREAD ,COMP=C
PROGRAM TPUPDATE ,COMP=C
PROGRAM TPFILE ,COMP=C
PROGRAM NOHACK ,COMP=C
PROGRAM BADTACS ,COMP=C

● PROGRAM-BLS (for dynamic loading with BLS)

* --+
DEFAULT PROGRAM COMP = C
PROGRAM KDCADM
* --+
MPOOL LCPOOL , SIZE = 10 -
 , SCOPE = GROUP -
 , ACCESS = READ
* --+
LOAD-MODULE LLMTPS , VERSION = 001 -
 , LIB = DYNAMIC-LOADED-LIB -
 , LOAD-MODE = (POOL,LCPOOL,STARTUP)
* --+
DEFAULT PROGRAM COMP = C , LOAD-MODULE = LLMTPS
PROGRAM BADTACS
PROGRAM TPUPDATE
PROGRAM TPREAD
PROGRAM TPFILE
PROGRAM NOHACK

● PROGRAM-SHARED-OBJ (for shared object)

PROGRAM KDCADM ,COMP=C
* --+
SHARED-OBJECT tp, VERSION=001 -

, DIRECTORY=/home/utmuser -
, LOAD-MODE=STARTUP

* --+
PROGRAM TPREAD ,COMP = C, SHARED_OBJECT = tp
PROGRAM TPUPDATE ,COMP = C, SHARED_OBJECT = tp
PROGRAM TPFILE ,COMP = C, SHARED_OBJECT = tp
PROGRAM NOHACK ,COMP = C, SHARED_OBJECT = tp
PROGRAM BADTACS ,COMP = C, SHARED_OBJECT = tp

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

X

X
X
X
X
X
X
X
X
X
X
X

Additional information for C/C++ Programming examples in C/C++

Programming Applications with KDCS 533

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

6
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k0
9

PTERM/LTERM statement:

● TERM-BS2

PTERM TERM05 ,PTYPE=T9750 ,LTERM=DST01 ,PRONAM=D018KR06
LTERM DST01
PTERM TERM10 ,PTYPE=T9750 ,LTERM=DST02 ,PRONAM=D018KR06
LTERM DST02
PTERM TERM11 ,PTYPE=T9763 ,LTERM=DST03 ,PRONAM=D018KR06
LTERM DST03
PTERM TERM12 ,PTYPE=T9763 ,LTERM=DSTADMIN ,PRONAM=D018KR06
LTERM DSTADMIN
PTERM D17 ,PTYPE=T9001 ,LTERM=PRINTER1 ,PRONAM=D018KR06
LTERM PRINTER1 , USAGE = O

● TERM-Unix

PTERM tty05,PTYPE=TTY,LTERM=DST01
LTERM DST01
PTERM tty10,PTYPE=TTY,LTERM=DST02
LTERM DST02
PTERM tty11,PTYPE=TTY,LTERM=DST03
LTERM DST03
PTERM tty12,PTYPE=TTY,LTERM=DSTADMIN
LTERM DSTADMIN
PTERM D17,PTYPE=PRINTER,LTERM=DRUCKER
LTERM DRUCKER, USAGE=O

● TERM-WIN

PTERM TT400,PTYPE=TTY,LTERM=DST01
LTERM DST01

Note:

A Windows system user can only use this LTERM connection point if he or she has
specified the -PTT400 option when signing on (at the start of the dialog terminal process).

B

B
B
B
B
B
B
B
B
B
B

X

X
X
X
X
X
X
X
X
X
X

W

W
W
W

W

W

W

Programming examples in C/C++ Additional information for C/C++

534 Programming Applications with KDCS

Programming Applications with KDCS 535

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

10 Additional information for COBOL

In addition to the general information in chapters 1 to 8, this chapter provides you with
programming language-specific information which you will need in order to write COBOL
program units:

The first section deals with how COBOL program units are structured. The second contains
sample programs. The third lists the data structures KCBC and KCPAC.

10.1 Structure of COBOL program units

This section tells you:

– how to write a UTM COBOL program unit as a subroutine

– what you need to know when developing a LINKAGE SECTION and the WORKING-
STORAGE SECTION

– how the PROCEDURE DIVISION has to look and how a KDCS call needs to be
programmed in COBOL

– which platform-specific features you need to be aware of (dependencies on specific
compilers, formatting systems etc.).

10.1.1 COBOL program units as subroutines

UTM program units and event exits are subroutines of the UTM main routine. This fact leads
to the following consequences:

– The program name defines the start address.

– At least one data structure must be defined in the LINKAGE SECTION.

– The program unit is terminated dynamically with the PEND call. Event exits that are
exited with the statement EXIT PROGRAM are the exception. The statement STOP
RUN is not permitted (exceptions: the START and SHUT event exits).

Structure of COBOL program units Additional information for COBOL

536 Programming Applications with KDCS

A series of COPY members are available to ensure compatibility and to enable you to work
with error-free data structures. The section “Data structures for COBOL program units” on
page 541 describes how to use these COPY elements.

PROGRAM-ID as a start name

You define the start name for the program unit in the PROGRAM-ID paragraph. This name
is freely definable, but must be unique within a given application program. There must be
no naming conflicts between the program name and the runtime systems, the database
systems, the formatting system, the communication components and openUTM.

When choosing names, it is therefore important to bear in mind the following points:

● For BS2000 systems:

– All names that begin with KDC, KC or I are reserved.

● For Unix, Linux and Windows systems:

– All names that begin with KDC, KC, x or ITS are reserved.

– Names that begin with t_ are reserved for CMX and PCMX.

– Names that begin with a_, o_ or s_ are reserved for OSS.

● The names you define must comply with COBOL conventions.

You must also specify the program names (start names) when generating the UTM appli-
cation - each of them must be named in the KDCDEF application PROGRAM (see the
openUTM manual “Generating Applications”).

i Please note what the COBOL compiler manual has to say about how program
names are to be handled in the IDENTIFICATION DIVISION and in the CALL call.

WORKING-STORAGE SECTION

The WORKING-STORAGE SECTION is used primarily for constant data.

To ensure that program units remain compatibility and to make them easier to read, a series
of constants with predefined KDCS names is provided in the form of COPY members.

It is a good idea only to store fields with fixed values in the WORKING-STORAGE
SECTION. If you also want to store areas which contain variable data in the WORKING-
STORAGE SECTION, you can also define the KDCS parameter area and the message
area. However, since it is useful to accommodate them in the SPAB in the interests of
saving storage space, these areas are described in the following section.

B

B

X/W

X/W

X/W

X/W

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 537

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

LINKAGE SECTION

You can use the LINKAGE SECTION for passing parameters and as a working area.

In the LINKAGE SECTION, each program unit must have a data structure with the level
number 01 which describes the KDCS communication area.

This can be followed by a further data structure with the level number 01. This data structure
describes the standard primary working area (SPAB). You can accommodate the KDCS
parameter area and the message areas in the SPAB.

The data structures in the KB and in the KDCS parameter area are available as COPY
members (KCKBC and KCPAC).

You will need to define the message areas yourself. However, specific data structures are
provided in COPY members for calls which request information from openUTM (e.g. INFO,
INIT PU). If you are working with a formatting system, you will be able to use automatically
generated addressing aids to structure the message area (see the formatting system
manual).

Example

LINKAGE SECTION.
 COPY KCKBC. 1)
 05 KB-ANY PIC X(22). 2)
 05 KB-STARTLOC PIC X(2). 2)
 05 KB-DESTLOC PIC X(2). 2)
 05 KB-FLGTAG PIC X(5). 2)
 05 KB-FLGNO1 PIC X(5). 2)
 05 KB-FLGNO2 PIC X(5). 2)
 COPY KCPAC. 3)
 03 NB. 4)
 COPY IFORMA3. 4)
1) KDCS communication area

2) User-specific declaration of the KB program area

3) SPAB with KDCS parameter area

4) Message area: the COPY statement fetches the input addressing aid for the format
"FORMA3".

Structure of COBOL program units Additional information for COBOL

538 Programming Applications with KDCS

Extending the LINKAGE SECTION

In addition to the communication area and the SPAB, you can also accommodate still other
areas in the LINKAGE SECTION which can then be used as common data areas within a
UTM application.

You can declare these areas with the KDCDEF statement AREA. For more information,
refer to the openUTM manual “Generating Applications”.

In COBOL program units you can use AREAs as follows:

– In the LINKAGE SECTION you define these areas with the level number 01.

– In the PROCEDURE DIVISION you specify these areas under USING.

The order in which these areas are defined with the AREA statement is also important. If
the area defined in nth position is required, you will need to specify all areas up until this
one both in the LINKAGE SECTION and in the PROCEDURE DIVISION in the case of
USING.

This function is not reflected in DIN standard 66 265.

Example 1

The areas AREA1, AREA2 and AREA3 were defined in this order using the AREA
statement. AREA3 is required in a program unit. All areas are defined with the length 2000.

 .
 .
LINKAGE SECTION.
 COPY KCKBC.
 .
 .
 COPY KCPAC.
 .
 .
 .
01 AREA1 PIC X(2000).
01 AREA2 PIC X(2000).
01 AREA3 PIC X(2000).
 .
 .
PROCEDURE DIVISION USING KCKBC, KCSPAB, AREA1, AREA2, AREA3.
 .
 .

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 539

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

Example 2. Program unit in COBOL (on Unix and Linux systems)

In the following, two areas are generated, defined in a C source (see page 483) and passed
to a program unit. The following are defined:

– the area area for direct access (i.e. the data area is passed to the program unit directly)
– the area areaind for indirect access

IDENTIFICATION DIVISION.
PROGRAM-ID. COBAREA.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

COPY KCKBC.
05 PROG PIC X.
COPY KCPAC.
03 NB PIC X(4000).

01 AREA1 PIC X(20).
01 AREA2 PIC X(30).
PROCEDURE DIVISION USING KCKBC KCSPAB AREA1 AREA2.

MOVE AREA1 TO BUFFER.
MOVE AREA2 TO BUFFER1.
PERFORM INIT-OP.

.

.

.

X

X

X

X

X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Structure of COBOL program units Additional information for COBOL

540 Programming Applications with KDCS

Alternatives to AREAs

If program units which use AREAs are to be copied from one application to another,
problems may arise when using AREAs owing to possible differences in the parameter lists.
For this reason, AREAs in the local part of an application program should be replaced by
data declarations with the EXTERNAL clause. In this case, you do not have to program the
AREA declaration in KDCDEF or the AREA data declaration in the LINKAGE SECTION and
in the PROCEDURE DIVISION; a data declaration is required in the WORKING-STORAGE
SECTION with an EXTERNAL clause.

Example

Rather than define:

LINKAGE SECTION.
 .
 .
01 AREA1.
 02 DATA-ID PIC X(8).
 02 DATA-EX PIC X(4000).

it would be better to define:

WORKING-STORAGE SECTION.
01 COMMON1 IS EXTERNAL.
 02 DATA-ID PIC X(8).
 02 DATA-EX PIC X(4000).

In this example, the COMMON area COMMON1 is defined in such a way that can be loaded
as shareable. It can be defined as follows:

For BS2000 systems, for example, in assembly language:

COMMON1 CSECT PUBLIC
COMMON1 RMODE ANY
COMMON1 AMODE ANY
*
DATA_ID DC C'DATA-ID1'
DATA_EX DS CL4000
 END

If the COMMON area is to be loaded locally in the process, then you do not need to specify
the PUBLIC attribute.

For Unix, Linux and Windows systems in C:

struct COMMON1 {
char DATA_ID [8] = "DATA-ID1";
char DATA_EX [4000];
}

B

B
B
B
B
B
B
B

B

B

X/W

X/W
X/W
X/W
X/W

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 541

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

10.1.2 Data structures for COBOL program units

To help you structure your data areas, openUTM is supplied with the following COPY
members containing predefined data structures:
On BS2000 sysems the data structures are present in the library SYSLIB.UTM.064.COB.
On Unix, Linux and Windows systems the data structures are present in the directory
copy-cobol85 or netcobol in the UTM diectory utmpath.

Name Contents and meaning

KCAPROC Optional second parameter area for the APRO call:
This area allows you to select OSI TP function combinations and the security type.

KCATC KDCS attribute functions:
Where +formats are used, you can use the symbolic names for attribute functions to
modify the attribute fields for formats.

KCCFC Defines the second parameter passed by openUTM for the event exit INPUT. In this
parameter openUTM passes the contents of the control fields in screen formats to the
program unit. For this reason, this second parameter is also referred to as the control
fields area.

KCDADC Data structure for the DADM call:
You should place this data structure over the message area for the KDCS call DADM
RQ.

KCDFC KDCS screen functions:
You can use this symbolic name to influence the screen output by entering the name of
the function you want in the KCDF field in the KDCS parameter area.

KCINFC Data structure for the INFO call:
You should place this data structure over the message area for the KDCS call INFO
DT/SI/PC.

KCINIC Defines a second parameter area for the INIT call (only necessary for INIT PU). UTM
returns the information requested by the INIT PU call in this parameter area.

KCINPC Data structure for the INPUT exit:
This data structure contains the input and output parameters for the INPUT exit.

KCKBC Data structure for the KDCS communication area. It contains:
– current service and program data
– data returned to UTM after a call
– (if required) the KB program area for passing data between programs within a

service. You will also need to define the fields in the KB program area.

KCMSGC Data structure for the UTM messages:
You will need this data structure if you have to handle UTM messages in a MSGTAC
routine or if you want to use a program you have written to analyze the SYSLOG file.

KCOPC KDCS operation codes:
This data structure contains symbolic names for the KDCS operations. For your KDCS
calls you can enter a name in the KCOP field in the KDCS parameter area. Please note
that the symbolic name for the SIGN call is SGN.

B

X/W

X/W

B
B
B

BB
B
B
B

Structure of COBOL program units Additional information for COBOL

542 Programming Applications with KDCS

The data structures KCOPC, KCATC and KCDFC define constants. You should therefore
copy these area to the WORKING-STORAGE SECTION.
Copy the remaining data structures to the LINKAGE SECTION.

The data structures will be copied to the program unit as illustrated in the example below.

Example

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 COPY KCOPC.
 COPY KCATC.
 COPY KCDFC.
 **
 LINKAGE SECTION.
 COPY KCKBC.
 05 KBPRG PIC X(80).
 COPY KCPAC.
 COPY KCINFC.
 05 FILLER PIC X(50).
 03 NB REDEFINES KCINFC.

 PROCEDURE DIVISION USING KCKBC, KCSPAB.
 .
 .
 .

KCPAC Data structure for the KDCS parameter area:
This area accepts the parameters for a KDCS call.

KCPADC Data structure for the PADM call:
You should place this data structure over the message area for the KDCS call PADM
AI/PI.

KCSGSTC Data structure for the SIGN call:
You should place this data structure over the message area for the KDCS call SIGN ST
with KCLA > 0.

Name Contents and meaning

B

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 543

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

Command section in a COBOL program unit

The command section of a COBOL program unit is freely definable. There are merely a few
transaction processing rules, as described in chapter 2, which you need to note:

– program units are subroutines of the UTM main routine KDCROOT

– program units have to be reentrant

– dialog program units must strictly adhere to the rules governing dialogs.

Event exits are subject to special rules which are described on page 545.

Passing addresses

The PROCEDURE DIVISION in a COBOL program unit begins with the following
statement:

PROCEDURE DIVISION USING kckbc[, spab[, param1[, ... paramn]]]

kckbc is the name of the KDCS communication area which must be defined with
the level number 01 in the LINKAGE SECTION. Where the COPY member
KCKBC is used, the name is KCKBC.

spab is the name of the standard primary working area defined with the level
number 01 in the LINKAGE SECTION. Where the COPY member KCPAC
is used, the name is KCSPAB. If an area from the WORKING-STORAGE
SECTION was used in place of the SPAB, this specification is omitted.

param1 ... paramn
are the names of further objects defined in the LINKAGE SECTION; see
“Extending the LINKAGE SECTION” on page 538. These objects can, for
example, be AREAs which serve as an extension of the SPAB. If no such
objects are used, this specification is omitted.

Structure of COBOL program units Additional information for COBOL

544 Programming Applications with KDCS

10.1.3 KDCS calls in COBOL program units

Before you call a UTM function in a program, the KDCS parameter area must already have
been supplied with all the necessary parameters.

These parameters include:

– the operation code for the call

– additional parameters determined by the operation code (see chapter “KDCS calls” on
page 201).

In some KDCS calls, unused parameter fields must be supplied with LOW-VALUE. To avoid
errors, you should always issue the command MOVE LOW-VALUE TO KCPAC before supplying
values to the parameter fields.

Format of the KDCS call

Once all the necessary data areas have been supplied, the KDCS call can be issued. The
start address for all operations is "KDCS".

The format of the CALL is as follows:

CALL "KDCS" USING parm1[, parm2].

parm1 is the data name of the KDCS parameter area. If the corresponding COPY
member is used, the name is "KCPAC". This name must always be
specified.

parm2 is the data name for the storage area in the program to which messages or
data may need to be written or in which messages or data have been made
available. In the present description, this area is generally referred to as
“NB” (from the German acronym for message area). You can, however,
choose any name you wish.

The data names can be labeled if necessary.

The extended format would then be:

parm1 [{INUOF} dataname1}...], [parm2 [{INUOF} dataname2}...]].

For more details, refer to the description of the COBOL compiler.

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 545

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

Example

A data structure which exists more than once as a substructure is to be used as a message
area.

.

.
 03 BOOK5.
 05 DATX PIC X(50).
.
.
. 03 BOOK8.
 05 DATX PIC X(50).
.
..
CALL "KDCS" USING KCPAC, DATX IN BOOK5.

Event exits

The event exits INPUT, START, SHUT and VORGANG must not contain KDCS calls. They
must be written as subroutines and must be terminated with the statement EXIT
PROGRAM.

In the case of START, SHUT and VORGANG, the addresses for the communication area
(KB) and the standard primary working area (SPAB) are passed in the PROCEDURE
DIVISION. Accordingly, the structures of these areas are defined in the LINKAGE
SECTION (as for the program units with KDCS calls). On page 557ff is given an example
of a combined START/SHUT exit.

In the case of the INPUT exit, openUTM passes the address of the INPUT parameter area.
The COPY member KCINPC is available to help you structure the INPUT parameter area;
the name of the data structure is KCINPUTC.

On BS2000 systems, you can also pass the address of a control field area. The COPY
member KCCFC is available for the control field area; the name of the structure is
KCCFILDC.

For further information on event exits see chapter “Event functions” on page 441.

Example: INPUT exit

 DATA DIVISION.

 WORKING-STORAGE SECTION.
 .
 .
 **
 LINKAGE SECTION.
 COPY KCINPC.

 PROCEDURE DIVISION USING KCINPUTC [,KCCFILDC].
 .
 .

B

B

B

Structure of COBOL program units Additional information for COBOL

546 Programming Applications with KDCS

10.1.4 Platform-specific features on BS2000 systems

Notes on the DYNAMIC clause (COBOL85)

The DYNAMIC clause should not be used in load modules that are to be replaced, because
the working storage space allocated dynamically by this clause would not be released again
when replacement takes place.

When replacing load modules which make use of the dynamic allocation of working
storage, memory overflow errors can occur.

Programming program units with COBOL 2000

The lifetime of the objects is limited to one program unit run. At the PEND call, all objects
created in a program unit run are therefore released by the runtime system. This also
applies in the case of PEND variants without a change of process.

Object references therefore cannot be preserved after the end of a program unit run in order
to be passed on to follow-up program units. In other words, they cannot be preserved in
UTM storage areas either.

All LLMs that contain, use or inherit COBOL2000 modules with class definitions must
always be replaced together with the modified class definition. In other words, if a class
definition changes, all users of this class and the classes derived from it and their users
must be replaced together with the modified class definition.

Compiling COBOL program units

COBOL program units can be compiled with COBOL85 or COBOL 2000 (see the
"COBOL85 User Guide" or "COBOL 2000 User Guide").

You must specify the following COMOPT parameter TRUNCATE-LITERAL=NO when
compiling a UTM program unit. The COMOPT parameter TRUNCATE-LITERAL=NO is no
longer described for COBOL85 as of V1.2. In the interests of compatibility, COBOL85
nevertheless still supports it. When compiling a UTM program unit with COBOL85, it
continues to be mandatory to specify TRUNCATE-LITERAL=NO.

COBOL85 then issues a message informing you that the parameter does not conform to
the ANS85 standard; this does not, however, affect the compiler run.

When compiling with COBOL2000 you must specify the COMOPT parameter MARK-LAST-
PARAMETER=YES.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 547

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

Using shareable code

If you are intending to load COBOL program units and make them shareable, you must
specify the following option when compiling them:

*COMOPT GENERATE-SHARED-CODE=YES

The shareable code does not necessarily have to be stored in a separate object module: it
can also be stored together with the non-shareable part in a link and load module (LLM),
which is subdivided into a public slice and a private slice. To do this you must specify the
compiler option

COMOPTGEN-LLM=YES.

The shareable program units only need to be loaded once for all tasks in the application(s).
In the memory used locally by the task, all you then have to do is load the non-shareable
parts.

openUTM offers a variety of ways of loading shareable objects:
– as a non-privileged subsystem,
– in a common memory pool in the user storage area (class 6 memory).

For further information on how to compile shareable code, refer to the manual for your
compiler. The openUTM manual “Using openUTM Applications on BS2000 Systems”
provides a detailed explanation of how to link and load shareable code.

Generating formats with IFG

The manual “IFG for FHS” offers in-depth information on how to generate formats using the
IFG. If these formats are to be generated for use in conjunction with openUTM, please note
the following points:

● The format name must not be more than 7 characters long.

● In the user profile you must select "Structure of the data transfer area"

– for #formats: separate attribute blocks and field contents

– for *formats: non-aligned, without attribute fields

– for +formats: non-aligned, with attribute fields

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Structure of COBOL program units Additional information for COBOL

548 Programming Applications with KDCS

● For * and + formats you declare two addressing aids, one each for input and output. You
must also define a prefix for each addressing aid. The following example shows how
addressing aids can be used:

 LINKAGE SECTION.
 COPY KCKBC.

05 KBPROGAREA PIC X(100).
 COPY KCPAC.
 03 NB-EINGABE.
 COPY IFORMA-LIB.
 03 NB-AUSGABE.
 COPY OFORMA-LIB.

where FORMA is the format name defined with IFG, I is the prefix for input and O the
prefix for output. When using this format, you specify the format name for MPUT, FPUT
or DPUT calls in the field KCMF as “*FORMA” (for addressing aids without attribute
fields) and as “+FORMA” (for addressing aids with attribute fields).

● When defining addressing aids, please note that, in the case of + and * formats,
openUTM removes the transaction code from the message at the start of the service for
MGETs and FGETs (unless an INPUT exit explicitly prevents it from doing so). If the first
field in the format contains the transaction code, provision must be made for this in
addressing aids for input formatting. The example below suggests one way of doing this
for a *format or a +format:

LINKAGE SECTION.
 .
 .
 COPY KCPAC.
 03 NB.
 05 TACA PIC X(002). 1)
 05 TAC PIC X(008).
 05 DATEN PIC X(220).
 03 FILLER REDEFINES NB.
 COPY FORMA-LIB.
 .
 .
 MOVE MGET TO KCOP.
 .
 IF KCKNZVG = "F"
 THEN CALL "KDCS" USING KCPAC, DATEN (Service start)
 ELSE CALL "KDCS" USING KCPAC, NB (During service)
 END-IF.

1) This field is mandatory for +formats but must be omitted for *formats.

● When preparing to implement these addressing aids, the formats are to be stored in the
formats library. This name should be specified in the FHS start parameters.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 549

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

Extended line mode

The COPY element TIAMCTRC is available for work in extended line mode, but is not
supplied with openUTM. This COPY member contains the data structure LINE-MODE-
CONTROL-CHARACTERS with the symbolic names of the control characters. TIAMCTRC
can be copied to the WORKING-STORAGE SECTION.

B

B

B

B

B

Structure of COBOL program units Additional information for COBOL

550 Programming Applications with KDCS

10.1.5 Platform-specific features on Unix and Linux systems

You can create COBOL programs either with the compilers from Micro Focus or with the
Fujitsu NetCOBOL compiler.

This subsection describes the following compiler-specific characteristics:

– Generation
– Keywords
– Environment variables
– Compilation of COBOL program units

For details on linking applications and generating shared objects, see the manual openUTM
manual “Using openUTM Applications on Unix, Linux and Windows Systems”, subsection
"Linking a UTM process on Unix and Linux systems".

i All the programs in the openUTM sample application are suitable for use with the
various COBOL compilers. The appropriate environment is set depending on the
selected COBOL compiler.

Generation

At generation, you must specify the following KDCDEF statement for these programs:

● Micro Focus COBOL:
PROGRAM objectname, COMP=MFCOBOL [,SHARED-OBJECT=shared_object_name]

● NetCOBOL:
PROGRAM objectname, COMP=NETCOBOL [,SHARED-OBJECT=shared_object_name]

Keywords

Micro Focus COBOL and NetCOBOL

COBOL compilers include the keywords OBJECT-ID, RESTRICTED and USER. These
keywords clash with names in the COPY elements of the UTM interfaces. There are two
ways of preventing such conflicts.

– If the COBOL program units are not object-oriented, some compilers offer the possibility
to specify the compiler options REMOVE(OBJECT-ID), REMOVE(RESTRICTED) and
REMOVE(USER) at compilation.

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X
X

X
X

X

X

X

X

X

X

X

X

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 551

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

– If the compiler does not provide the REMOVE functionality or if you want to preserve
object-oriented functionality, you must modify the COPY statements as follows, for
example:

COPY COPY-element REPLACING OBJECT-ID BY NEW-OBJECT-ID.
COPY COPY-element REPLACING RESTRICTED BY NEW-RESTRICTED.
COPY COPY-Element REPLACING USER BY NEW-USER.

The new names must be used when data access is performed.

NetCOBOL

Both the COBOL copies supplied by openUTM (KCAUSERC and KCAUSD2C) contain a
structure field named PASSWORD.

Because PASSWORD is a reserved word in the NetCOBOL compiler, a REPLACING
statement must be added when including these files in the COBOL source, e.g.

COPY KCAUSERC REPLACING PASSWORD BY PASSWORD-NC.

Reserved keyworda when CPIC is used

In MicroFocus COBOL, TIMEOUT is a reserved word. However, since this word is
contained in the COBOL copy CMCOBOL on account of the CPIC specification, this name
must be replaced in the source. For example:
COPY CMCOBOL REPLACING TIMEOUT BY CPIC-TIMEOUT.

Environment variable

Micro Focus COBOL

Perform the following steps if you use COBOL program units with Micro Focus COBOL:

Ê Call the script <coboldir>/bin/cobsetenv.
This script sets the required environment variables for the compiler.

Ê Extend the COBCPY environment variable by adding $UTMPATH/copy-cobol85.

Ê If you create programs based on CPIC, TX or XATMI under openUTM, extend the
COBCPY environment variable as follows:
$UTMPATH/<interface>/copy-cobol85, where <interface> stands for cpic, tx or xatmi.

Ê If you create client programs based on UPIC-L, extend the COBCPY environment
variable by adding $UTMPATH/upicl/copy-cobol85.

Ê Set the COBMODE environment variable:
– To generate 32-bit objects, set it to 32.
– To generate 64-bit objects, set it to 64.

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Structure of COBOL program units Additional information for COBOL

552 Programming Applications with KDCS

NetCOBOL

Perform the following steps if you use NetCOBOL program units:

Ê Call the script <COBOLDIR>/config/cobol.sh.
This script sets the required environment variables.

Ê Extend the COBCOPY environment variable by adding $UTMPATH/netcobol.

Ê Set the COB_LIBSUFFIX environment variable to None,CPY,cpy.

Ê If you create programs based on CPIC, TX or XATMI under openUTM, extend the
COB_COBCOPY environment variable as follows:
$UTMPATH/<interface>/netcobol, where <interface> stands for cpic, tx or xatmi.

Ê If you create client programs based on UPIC-L, extend the COB_COBCOPY
environment variable by adding $UTMPATH/upicl/netcobol.

Compiling a COBOL program unit

Micro Focus COBOL

Micro Focus COBOL source programs are compiled with cob. You will need to set the
following switches:

-c to create an .o file
-x for static linking
-g to retain the symbol table during linkage

NetCOBOL

NetCOBOL source programs are created with cobol. To do this, specify the following
switches:

cobol -c WC'LIST,SOURCE,XREF,MESSAGE,COPY(FULL),SRF(VAR,FIX)' P'cobolpro-
gramm.lst' cobolprogramm.cbl (to create a .o file)

 For more details of creating UTM applications with COBOL programs, please refer
to the openUTM manual “Using openUTM Applications on Unix, Linux and
Windows Systems”.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

XX

XX

X

X

X

X

X

XX

X

X

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 553

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

10.1.6 Platform-specific features on Windows systems

You can create COBOL programs with the compilers from Micro Focus or with the
NetCOBOL compiler from Fujitsu.

This subsection describes the following compiler-specific characteristics:

– Generation
– Keywords
– Environment variables
– Compilation of COBOL program units
– Using the CPIC and XATMI COBOL interfaces

For details on linking applications, see the manual openUTM manual “Using openUTM
Applications on Unix, Linux and Windows Systems”, subsection "Linking a UTM process on
Unix and Linux systems".

i All the programs in the openUTM Quickstart Kit are suitable for use with the
various COBOL compilers. The appropriate environment is set depending on the
selected COBOL compiler.

Generation

At generation you must specify the following kdcdef statement for these programs:

● Micro Focus COBOL:
PROGRAM objectname, COMP=MFCOBOL [,SHARED-OBJECT=shared_object_name]

● NetCOBOL:
PROGRAM objectname, COMP=NETCOBOL [,SHARED-OBJECT=shared_object_name]

Keywords

Micro Focus COBOL and NetCOBOL

COBOL compilers include the keywords OBJECT-ID, RESTRICTED and USER. These
keywords clash with names in the COPY elements of the UTM interfaces. There are two
ways of preventing such conflicts.

– If the COBOL program units are not object-oriented, some compilers offer the possibility
to specify the compiler options REMOVE(OBJECT-ID), REMOVE(RESTRICTED) and
REMOVE(USER) at compilation.

W

W

W

W

W

W

W

W

W

W

W

XW

W

W

W

W

W
W

W
W

W

W

W

W

W

W

W

W

Structure of COBOL program units Additional information for COBOL

554 Programming Applications with KDCS

– If the compiler does not provide the REMOVE functionality or if you want to preserve
object-oriented functionality, you must modify the COPY statements as follows, for
example:

COPY COPY-Element REPLACING OBJECT-ID BY NEW-OBJECT-ID.
COPY COPY-Element REPLACING RESTRICTED BY NEW-RESTRICTED.
COPY COPY-Element REPLACING USER BY NEW-USER.

The new names must be used when data access is performed.

NetCOBOL

Both the COBOL copies supplied by openUTM (KCAUSERC and KCAUSD2C) contain a
structure field named PASSWORD.

Because PASSWORD is a reserved word in the NetCOBOL compiler, a REPLACING
statement must be added when including these files in the COBOL source, e.g.

COPY KCAUSERC REPLACING PASSWORD BY PASSWORD-NC.

Reserved keyworda when CPIC is used

In Micro Focus COBOL, TIMEOUT is a reserved word. However, since this word is
contained in the COBOL copy CMCOBOL on account of the CPIC specification, this name
must be replaced in the source. For example:
COPY CMCOBOL REPLACING TIMEOUT BY CPIC-TIMEOUT.

Environment variable

Micro Focus COBOL

Perform the following steps if you use Micro Focus COBOL program units:

Ê For Visual Cobol: Call the command script
<visualcoboldir>\base\bin\CreateEnv.bat.

Ê Extend the COBCPY environment variable by adding the directory
%UTMPATH%\copy-cobol85.

Ê Extend the INCLUDE environment variable by adding <path>\include, where<path> is
the installation directory of the COBOL compiler (required for the compilation of the root
sources).

Ê If you create programs based on CPIC, TX or XATMI under openUTM, extend the
COBCPY environment variable as follows:
%UTMPATH%\<interface>\copy-cobol85, where <interface> stands for cpic, tx or
xatmi.

Ê If you create client programs based on UPIC-L, extend
the COBCPY environment variable by adding %UTMPATH%\upicl\copy-cobol85.

W
W

W

W
W
W

W

W

W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Additional information for COBOL Structure of COBOL program units

Programming Applications with KDCS 555

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

NetCOBOL

Perform the following steps if you use NetCOBOL program units:

Ê COB_COBCOPY must contain the directory %UTMPATH%\NetCOBOL in which the COBOL
copies are stored.

Ê Set COB_LIBSUFFIX to None,CPY,cpy.

Ê Extend LIB by adding<NetCOBOLdir>.

Ê If necessary, extend the INCLUDE environment variable by adding <path>\include,
where<path> is the installation directory of the COBOL compiler.

Ê If you create programs based on CPIC, TX or XATMI under openUTM, extend the
COB_COBCOPY environment variable as follows:
%UTMPATH%\<interface>\netcobol, where <interface> stands for cpic, tx or xatmi.

Ê If you create client programs based on UPIC-L, extend the COB_COBCOPY
environment variable by adding $UTMPATH\upicl\netcobol.

Compiling a COBOL program unit

Micro Focus COBOL

You compile programs by entering the command cobol in a prompt window.
If the program is to be animated, it must be compiled by means of the cobol /ANIM
command.

NetCOBOL

To compile programs, enter the command cobol32 in a prompt window.

 For further details on compiling COBOL programs, see the user documentation for
the relevant compiler.

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

XW

W

Structure of COBOL program units Additional information for COBOL

556 Programming Applications with KDCS

Using the CPIC and XATMI COBOL interfaces

Micro Focus COBOL

COBOL programs that use the CPIC or XATMI interfaces must be adapted for use with a
MicroFocus compiler because of the Windows call conventions used.

Ê Before the DATA DIVISION, the following SPECIAL-NAMES paragraph must be inserted
to define the WINAPI call convention:

SPECIAL-NAMES.
CALL-CONVENTION 74 is WINAPI.

Ê Each call of the CPIC or XATMI interface must comply with this convention. For
example:

CALL WINAPI“CMACCP“ USING CONVERSATION-ID CM_RETCODE

NetCOBOL

NetCOBOL programs that use CPIC or XATMI under openUTM interfaces must be adapted
for use with NetCOBOL due to the Windows calling conventions:

Ê If necessary, remove the CALL-CONVENTION statements in DATA DIVISION.

Ê All calls of the CPIC or XATMI interface must take place using the following convention,
for example:

CALL "CMACCP" WITH STDCALL LINKAGE USING CONVERSATION-ID CM-RETCODE.

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

W

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 557

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

10.2 Programming examples in COBOL

This section provides you some simple examples of how to code a KDCS call and an
example of a complete UTM application, including the KDCDEF generation.

10.2.1 Examples of individual KDCS calls

This section includes examples of code for the following KDCS calls:

– MGET
– MPUT
– DPUT
– MCOM with DPUT in a job complex
– APRO with MPUT for distributed processing

Since the other KDCS calls are coded in a similar manner, they are not all illustrated
explicitly at this point in the manual.

In a KDCS call, KCPAC indicates the address of the KDCS parameter area and NB the
address of the message area. It is assumed that you are using the COPY member KCOPC
(constants for the operation codes).

MGET call

● An unformatted dialog message that is exactly 80 bytes long is to be received. If less
than 80 characters are read, a prompt for re-entry of the message is to be issued.

 .
 .
 MOVE LOW-VALUE TO KCPAC.
 MOVE MGET TO KCOP.
 MOVE 80 TO KCLA.
 MOVE SPACES TO KCMF.
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN PERFORM MGET-RETURN-CODE. 1)
 IF KCRLM NOT = KCLA
 THEN PERFORM ITERATION. 2)

1) If more than 80 characters are read, error handling is activated.

2) The routine ITERATION sends a prompt to the terminal requesting that the entry be
repeated.

Programming examples in COBOL Additional information for COBOL

558 Programming Applications with KDCS

● The format "PIC15" has been requested by a terminal. The unprotected data is
500 characters long in various different format fields. This format is to be received by
the program.

 .
 .
 MOVE LOW-VALUE TO KCPAC.
 MOVE MGET TO KCOP.
 MOVE 500 TO KCLA.
 MOVE "*PIC15 " TO KCMF.
 CALL "KDCS" USING KCPAC, IPIC15.
 IF KCRCCC = "05Z" GO TO FORMAT-ERROR. 1)
 IF KCRCCC NOT = ZERO GO TO MGET-RETURN-CODE.
 .
 .

1) In the routine ’FORMAT-ERROR’, the format has to be output again to enable you
to continue working with the correct format.

● An ongoing service may receive input that consists of a short message generated with
the function key F2 followed by 10 characters of data. This input is intended to trigger
a special function. The F2 key was assigned the return code 21Z during generation.

 .
 .

 MOVE LOW-VALUE TO KCPAC.
 MOVE MGET TO KCOP.
 .
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC = "21Z" 1)
 THEN PERFORM MGET-2.
 .
 .

 MGET-2. 2)
 MOVE LOW-VALUE TO KCPAC.

 MOVE MGET TO KCOP.
 MOVE 10 TO KCLA.
 MOVE SPACES TO KCMF.
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN PERFORM MGET-RETURN-CODE.

1) A special function is called.

2) An additional MGET is needed for the 10 characters of data.

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 559

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

MPUT call

● An 80-byte long unformatted message is to be sent to the terminal.

.
 .
 MOVE LOW-VALUE TO KCPAC.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 80 TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE ZERO TO KCDF.
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN PERFORM MPUT-RETURN-CODE.

● A 500-byte long formatted message is to be sent to the terminal. The name of the format
is “PIC15”. The screen is to be deleted before the message is sent.

.
 .
 MOVE LOW-VALUE TO KCPAC.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 500 TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE "*PIC15" TO KCMF.
 MOVE KCREPL TO KCDF. 1)
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN PERFORM MPUT-RETURN-CODE.

1) REPLACE is executed by default whenever a format is replaced. The output is
generated to preclude the possibility of errors resulting from undefined field
contents.

● In a *format called "PIC10" which, according to the most recent terminal input, still
exists, all unprotected fields are to be deleted by way of a response.

 .
 .
 .
 MOVE LOW-VALUE TO KCPAC.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE ZEROES TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE "*PIC10" TO KCMF.
 MOVE KCERAS TO KCDF.
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN PERFORM MPUT-RETURN-CODE.

Programming examples in COBOL Additional information for COBOL

560 Programming Applications with KDCS

DPUT call

● An asynchronous job with an 11-character long message is to be passed on November
11 (= the 315th day of the year) at 11.11 a.m. to a program unit (absolute time specifi-
cation). The relevant TAC is "ALAAF".

 .
 .
 MOVE LOW-VALUE TO KCPAC.
 MOVE DPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 11 TO KCLM.
 MOVE "ALAAF" TO KCRN.
 MOVE ZERO TO KCDF.
 MOVE SPACES TO KCMF.
 MOVE "A" TO KCMOD.
 MOVE "315" TO KCTAG.
 MOVE "11" TO KCSTD.
 MOVE "11" TO KCMIN.
 MOVE "00" TO KCSEK.
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN PERFORM DPUT-RETURN-CODE.

● An 80-character long message is to be output to the terminal ’DSS1’ one hour from now
(relative time specification), whereupon the screen function ’acoustic alarm’ (BEL) is to
be triggered.

 .
 .
 MOVE LOW-VALUE TO KCPAC.

 MOVE DPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 80 TO KCLM.
 MOVE "DSS1 " TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE KCALARM TO KCDF.
 MOVE "R" TO KCMOD.
 MOVE "000" TO KCTAG.
 MOVE "01" TO KCSTD.
 MOVE "00" TO KCMIN.
 MOVE "00" TO KCSEK.
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN PERFORM DPUT-RETURN-CODE.

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 561

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

Job complex: MCOM and DPUT calls

A formatted asynchronous message (of 200 bytes) is to be printed out at 6.00 p.m. (= 18.00
hours) on the same day on PRINTER2. The confirmation returned by the printer is to be
handled by a program.

If positive confirmation is returned, an asynchronous program with the TAC PRINTPOS
receives a confirmation job with a 20-byte long message. If negative confirmation is
returned, an asynchronous program with the TAC PRINTNEG is started (without a
message). 80 bytes of user information is also logged in the event of negative confirmation.
This information can be read with DADM UI as soon as the confirmation job becomes the
main job. Confirmation jobs cannot be addressed by means of a job ID.

The job complex is encapsulated within two MCOM calls, which determine the destinations
for the print job (= the basic job) and confirmation jobs in the MCOM BC call; the complex
ID is "*PRICOMP".

 .
 .
 COMPLEX-BEGIN.
 MOVE LOW-VALUE TO KCPAC.
 MOVE MCOM TO KCOP.
 MOVE BC TO KCOM.
 MOVE "PRINTER2" TO KCRN.
 MOVE "PRINTPOS" TO KCPOS.
 MOVE "PRINTNEG" TO KCNEG.
 MOVE "*PRICOMP" TO KCCOMID.
 CALL "KDCS" USING KCPAC.
 IF KCRCCC NOT = ZERO
 THEN PERFORM MCOM-RETURN-CODE.
 DPUT-NE.
 MOVE DPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 200 TO KCLM.
 MOVE "*PRICOMP" TO KCRN.
 MOVE "*FORM1" TO KCMF.
 MOVE ZERO TO KCDF.
 MOVE "A" TO KCMOD.
 MOVE KCTJHVG TO KCTAG.
 MOVE "18" TO KCSTD.
 MOVE "00" TO KCMIN.
 MOVE "00" TO KCSEK.
 CALL "KDCS" USING KCPAC, NB1.
 IF KCRCCC NOT = ZERO
 THEN PERFORM DPUT-RETURN-CODE.
 DPUT-PLUS-T.

Programming examples in COBOL Additional information for COBOL

562 Programming Applications with KDCS

 * Confirmation job in positive case

 MOVE LOW-VALUE TO KCPAC.
 MOVE DPUT TO KCOP.
 MOVE "+T" TO KCOM.
 MOVE 20 TO KCLM.
 MOVE "*PRICOMP" TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE ZERO TO KCDF.
 CALL "KDCS" USING KCPAC, NB2.
 IF KCRCCC NOT = ZERO
 THEN PERFORM DPUT-RETURN-CODE.
 DPUT-USER-INFO.

 * User information for negative case

 MOVE LOW-VALUE TO KCPAC.
 MOVE DPUT TO KCOP.
 MOVE "-I" TO KCOM.
 MOVE 80 TO KCLM.
 MOVE "*PRICOMP" TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE ZERO TO KCDF.
 CALL "KDCS" USING KCPAC, NB3.
 IF KCRCCC NOT = ZERO
 THEN PERFORM DPUT-RETURN-CODE.
 DPUT-MINUS-T.

 * Confirmation job in negative case

 MOVE LOW-VALUE TO KCPAC.
 MOVE DPUT TO KCOP.
 MOVE "-T" TO KCOM.
 MOVE ZERO TO KCLM.
 MOVE "*PRICOMP" TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE ZERO TO KCDF.
 CALL "KDCS" USING KCPAC, NB4.
 IF KCRCCC NOT = ZERO
 THEN PERFORM DPUT-RETURN-CODE.
 COMPLEX-END.
 MOVE LOW-VALUE TO KCPAC.
 MOVE MCOM TO KCOP.
 MOVE EC TO KCOM.
 MOVE "*PRICOMP" TO KCCOMID.
 CALL "KDCS" USING KCPAC.
 IF KCRCCC NOT = ZERO
 THEN PERFORM MCOM-RETURN-CODE.
 .
 .

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 563

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

Example of distributed processing: APRO call with a subsequent MPUT

The job-submitting service is to address the dialog service with the transaction code
’LTAC1’ for the application ’PARTNER1’ (double-step addressing). In this context, the job-
receiving service is to be assigned the service ID ’>VGID1’. A 100-byte long MPUT
message is then to be sent in line mode to the partner application.

.
 .
 MOVE LOW-VALUE TO KCPAC.
 MOVE APRO TO KCOP.
 MOVE "DM" TO KCOM.
 MOVE ZERO TO KCLM.
 MOVE "LTAC1 " TO KCRN.
 MOVE "PARTNER1" TO KCPA.
 MOVE ">VGID1 " TO KCPI.
 CALL "KDCS" USING KCPAC.
 IF KCRCCC NOT = ZERO
 THEN PERFORM APRO-RETURN-CODE.
 .
 .
 .
 MOVE LOW-VALUE TO KCPAC.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 100 TO KCLM.
 MOVE ">VGID1" TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE ZEROES TO KCDF.
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN PERFORM MPUT-RETURN-CODE.

Programming examples in COBOL Additional information for COBOL

564 Programming Applications with KDCS

10.2.2 Example of an INPUT exit

The INPUT exit "FORINPUT" is called for input made in format mode and responds to such
input as follows:

– User commands are issued:

Press the F1 key: KDCOUT

Press the F2 key: KDCDISP

KDCOFF: The first character in the input is "/"; this is accepted only outside of a service.

– Missing or invalid input elicits an error code with the message K098.

If the user is also to be permitted to enter KDCLAST and KDCFOR, the program will have
to be extended accordingly.

This INPUT exit is generated with the KDCDEF generation tool in the EXIT statement with
EXIT PROGRAM=FORINPUT,USAGE=(INPUT,FORMMODE).

 IDENTIFICATION DIVISION.
PROGRAM-ID.

FORINPUT.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 FUNC.

05 FUNC2.
10 COMMAND PIC X.

88 KDCOFF VALUE "/".
10 REST PIC X(7).

*
77 KDCDISP PIC 9(4) COMP VALUE 2.
*
77 KDCOUT PIC 9(4) COMP VALUE 1.
*
77 CV-END PIC X(2) VALUE "EC".
*
**
LINKAGE SECTION.

COPY KCINPC.

PROCEDURE DIVISION USING KCINPUTC.

P1-KEY-CONTROL-SECTION.
* Check F-keys *

IF KCIFKEY = KDCOUT
THEN

MOVE "KDCOUT" TO KCINCMD
MOVE "CD" TO KCICCD
MOVE "N" TO KCICUT
MOVE SPACES TO KCIERRCD
GO TO P99-END.

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 565

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

IF KCIFKEY = KDCDISP
THEN

MOVE "KDCDISP" TO KCINCMD
MOVE "CD" TO KCICCD
MOVE "N" TO KCICUT
MOVE SPACES TO KCIERRCD
GO TO P99-END.

P2-CV-CONTROL.
IF KCICVST NOT = CV-END
THEN

MOVE SPACES TO KCINTAC
MOVE "CC" TO KCICCD
MOVE "N" TO KCICUT
MOVE SPACES TO KCIERRCD
GO TO P99-END

ELSE
PERFORM P10-FUNC-CONTROL
GO TO P99-END.

P10-FUNC-CONTROL.

* Check the first character of input *

MOVE KCIFCH TO FUNC2.
IF KDCOFF
THEN

MOVE "KDCOFF" TO KCINCMD
MOVE "CD" TO KCICCD
MOVE "N" TO KCICUT
MOVE SPACE TO KCIERRCD
GO TO P10-END.

IF KCICFINF NOT = "ON"
THEN

MOVE SPACE TO KCINTAC
MOVE "ER" TO KCICCD
MOVE "N" TO KCICUT
MOVE "ER01" TO KCIERRCD
GO TO P10-END.

P10-END.
EXIT.

P99-END.
EXIT PROGRAM.

Programming examples in COBOL Additional information for COBOL

566 Programming Applications with KDCS

10.2.3 Example of an asynchronous MSGTAC program unit

The MSGTAC program unit NOHACK counts the number of incorrect sign-on attempts in
TLS. If openUTM accepts a KDCSIGN (i.e. with the message K008 or K033), the TLS is
deleted.

If, after three invalid KDCSIGN attempts, the fourth KDCSIGN attempt is also incorrect, the
relevant terminal is to be disconnected by means of “asynchronous administration”, using
an FPUT call with KCRN="KDCPTRMA". The message area contains the following admin-
istration command (see also the openUTM manual “Generating Applications”:

PTERM=pterm, PRONAM=processor,ACT=DIS

The administration command is then written with LPUT to the user log file and the TLS is
deleted.

The K messages are each read with an FGET by the MSGTAC program unit. Once a
K message has been “processed”, an FGET immediately reads the next K message within
the same program unit run.

IDENTIFICATION DIVISION.
PROGRAM-ID.

MSGTAC.

ENVIRONMENT DIVISION.

DATA DIVISION.
WORKING-STORAGE SECTION.

COPY KCOPC.

77 ID-HACK-TLS PIC X(8) VALUE "TLSHACK".

77 HACK-MAX PIC 9(4) COMP VALUE 3.

01 ADM-SATZ.
02 ADM-TXT.

03 F PIC X(07) VALUE "PTERM=(".
03 F PIC X(08).
03 F PIC X(09) VALUE "),PRONAM=".
03 F PIC X(08).
03 F PIC X(11) VALUE ",ACTION=DIS".

01 UTM-FEHLER-ZEILE.
03 F PIC X(18) VALUE "Error in prog. unit".
03 F-MODUL PIC X(08) VALUE "NOHACK".
03 F PIC X(12) VALUE "; Vorg./TAC".
03 F-VG PIC X(08).
03 F PIC X(01) VALUE "/".
03 F-AL PIC X(08).
03 F PIC X(05) VALUE " wg.".
03 F-OP PIC X(04).
03 F PIC X(07) VALUE " (RC:".
03 F-RC PIC X(08).
03 F PIC X(01) VALUE ")".

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 567

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

LINKAGE SECTION.
COPY KCKBC.
05 FILLER PIC X.

COPY KCPAC.

COPY KCMSGC.
03 NB.

05 HACKER-LTERM PIC X(8).
05 NB-ADM.

07 F PIC X(07).
07 PTRM PIC X(08).
07 F PIC X(09).
07 PRNM PIC X(08).
07 F PIC X(11).

05 TLS-HACK.
07 HACK-ANZ PIC 9(4) COMP.

PROCEDURE DIVISION USING KCKBC, KCSPAB.

MAIN SECTION .
INIT-ANF.

MOVE LOW-VALUE TO KCPAC
MOVE INIT TO KCOP
MOVE 0 TO KCLKBPRG
COMPUTE KCLPAB = FUNCTION LENGTH (KCSPAB)
CALL "KDCS" USING KCPAC.
IF KCRCCC NOT = ZERO
THEN GO TO PEND-LPUT.

FGET-ANF.
MOVE LOW-VALUE TO KCPAC
MOVE FGET TO KCOP
COMPUTE KCLA = FUNCTION LENGTH (KCMSGC)
MOVE SPACE TO KCMF
CALL "KDCS" USING KCPAC, KCMSGC
IF KCRCCC NOT = ZERO
THEN

IF KCRCCC = "10Z"
THEN

GO TO PEND-ANF
ELSE

GO TO PEND-LPUT.
IF MSGNR = "K004"

* Invalid identification *
MOVE LTRM OF K004 TO HACKER-LTERM

ELSE IF MSGNR = "K006"
* Invalid password *

MOVE LTRM OF K006 TO HACKER-LTERM
ELSE IF MSGNR = "K008"

* KDCSIGN accepted *
MOVE LTRM OF K008 TO HACKER-LTERM

ELSE IF MSGNR = "K031"
* Card not ok *

MOVE LTRM OF K031 TO HACKER-LTERM
ELSE IF MSGNR = "K033"

* if no K008 is generated *
MOVE LTRM OF K033 TO HACKER-LTERM

Programming examples in COBOL Additional information for COBOL

568 Programming Applications with KDCS

ELSE
MOVE MSGNR TO KCOP
GO TO PEND-LPUT.

PERFORM ARBEIT
IF KCRCCC NOT = ZERO

GO TO PEND-LPUT.
* More messages waiting ?? *

GO TO FGET-ANF.
PEND-ANF.

MOVE LOW-VALUE TO KCPAC
MOVE PEND TO KCOP
MOVE "FI" TO KCOM
CALL "KDCS" USING KCPAC.

PROG-ENDE.
EXIT PROGRAM.

PEND-LPUT.
MOVE KCOP TO F-OP
MOVE KCTACVG TO F-VG
MOVE KCTACAL TO F-AL
MOVE KCRC TO F-RC

MOVE LOW-VALUE TO KCPAC
MOVE LPUT TO KCOP
COMPUTE KCLA = FUNCTION LENGTH (UTM-ERROR-LINE)
CALL "KDCS" USING KCPAC, UTM-ERROR-LINE.

MOVE LOW-VALUE TO KCPAC
MOVE PEND TO KCOP
MOVE "FI" TO KCOM
CALL "KDCS" USING KCPAC.

M9.
EXIT.

/
ARBEIT SECTION .
A0.

MOVE LOW-VALUE TO KCPAC
MOVE GTDA TO KCOP
MOVE 2 TO KCLA
MOVE ID-HACK-TLS TO KCRN
MOVE HACKER-LTERM TO KCLT
CALL "KDCS" USING KCPAC, TLS-HACK
IF KCRCCC NOT = ZERO
GO TO A9.

IF KCRLM = 0
THEN

IF MSGNR = "K008"
OR = "K033"

THEN
* Ok, no TLS exists *

NEXT SENTENCE
ELSE

* Create TLS *
MOVE LOW-VALUE TO KCPAC
MOVE PTDA TO KCOP
MOVE 2 TO KCLA
MOVE 1 TO HACK-NO
MOVE ID-HACK-TLS TO KCRN
MOVE HACKER-LTERM TO KCLT

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 569

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

CALL "KDCS" USING KCPAC, TLS-HACK
ELSE

IF MSGNR = "K008"
OR = "K033"

THEN
* Ok; delete TLS *

MOVE LOW-VALUE TO KCPAC
MOVE PTDA TO KCOP
MOVE 0 TO KCLA
MOVE ID-HACK-TLS TO KCRN
MOVE HACKER-LTERM TO KCLT
CALL "KDCS" USING KCPAC, TLS-HACK

ELSE
PERFORM CHECK-NO.

A9.
EXIT.

/
PRUEF-ANZ SECTION .
P0.

ADD 1 TO HACK-NO
IF HACK-NO NOT > HACK-MAX
THEN

* Try it once more *
MOVE LOW-VALUE TO KCPAC
MOVE PTDA TO KCOP
MOVE 2 TO KCLA
MOVE ID-HACK-TLS TO KCRN
MOVE HACKER-LTERM TO KCLT
CALL "KDCS" USING KCPAC, TLS-HACK
GO TO P9.

* Disconnect !! *
MOVE ADM-TXT TO NB-ADM
IF MSGNR = "K004"

MOVE CORR K004 TO NB-ADM
ELSE IF MSGNR = "K006"

MOVE CORR K006 TO NB-ADM
ELSE

MOVE CORR K031 TO NB-ADM.
P-FPUT.

MOVE LOW-VALUE TO KCPAC
MOVE FPUT TO KCOP
MOVE "NE" TO KCOM
MOVE "KDCPTRMA" TO KCRN
COMPUTE KCLM = FUNCTION LENGTH (NB-ADM)
MOVE SPACE TO KCMF
MOVE ZERO TO KCDF
CALL "KDCS" USING KCPAC, NB-ADM
IF KCRCCC NOT = ZERO

GO TO P9.
P-LPUT.

* Write to user log *
MOVE LOW-VALUE TO KCPAC
MOVE LPUT TO KCOP
COMPUTE KCLA = FUNCTION LENGTH (NB-ADM)
CALL "KDCS" USING KCPAC, NB-ADM
IF KCRCCC NOT = ZERO

GO TO P9.
P-PTDA.

* Delete TLS *
MOVE LOW-VALUE TO KCPAC

Programming examples in COBOL Additional information for COBOL

570 Programming Applications with KDCS

MOVE PTDA TO KCOP
MOVE ZERO TO KCLA
MOVE ID-HACK-TLS TO KCRN
MOVE HACKER-LTERM TO KCLT
CALL "KDCS" USING KCPAC, TLS-HACK.

P9.
EXIT.

The above example for the MSGTAC program unit simply indicates appropriate ways of
evaluating messages and administering the application.

However, the K094 message (SIGNON SILENT-ALARM) should be used to monitor
security infringements since this also includes UPIC and OSI TP clients. Furthermore,
wider-ranging administration of the UTM application is possible using the programmed
administration capability (ADMI interface).

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 571

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

10.2.4 Example of a complete UTM application

Example of address management

This sample application allows you to manage address data stored in a file. The application
provides the following management functions for this purpose; each function can be called
by means of an entry in the appropriate field in the relevant TAC. Input and output are both
made in a format.

TAC Function

1 Display displays one of the addresses in the file. The search string
consists of the surname and the first two letters of the forename,
which must be entered in the appropriate fields.

2 Add enters a new address in the file. The file must not already
contain an address with the same search string (see above).

3 Update modifies an address entry. The address must already exist in
the file.

4 Delete deletes an existing address from the file.

If the user makes an error, an error message is displayed in the bottom line of the format.

The figures indicated above are the transaction codes (TACs) which control the application.
Transaction code 1 calls the program unit DISPLAY; transaction codes 2, 3 and 4 all call the
program unit UPDATE. These program units then branch to the program unit FILES.
The program unit FILES is implemented as the START and SHUT exit and contains the
subroutines which implement input to and output from the address file.

openUTM calls the program unit BADTACS automatically if an invalid TAC is entered. Once
the connection to the application has been established and KDCSIGN has been called
successfully, openUTM immediately outputs the format (start format). Subsequent inter-
action with the user is strictly dialog-driven; in other words, the application responds to the
input of a TAC and a key by outputting the format which contains the address being
searched for and/or by outputting a success or an error message in the bottom line.

i This program is intended merely to show you how you can program with openUTM.
The file accesses depicted here are not subject to UTM’s transaction management
concept.

Programming examples in COBOL Additional information for COBOL

572 Programming Applications with KDCS

The following structure diagrams show the structure of the program units:

Structure diagram of program unit DISPLAY

Structure diagram of program unit UPDATE

For the sake of completeness, the generation of the application has also been appended to
the COBOL program listings. To find out the exact meanings of the individual operands and
statements, please refer to the openUTM manual “Generating Applications”.

Program unit DISPLAY

INIT call

MGET call

Subroutine call FILES: read file address

MPUT call

PEND call

Program unit UPDATE

INIT call

MGET call

Subroutine call FILES: write, overwrite
or delete address, according to the TAC

MPUT call

PEND call

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 573

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

The figure below shows the format used for this application:

The *format "FORMA" with which the application works

The structure of the addressing aid for this format is provided below:

* USER-AREA-LEN: 228
 41 TACO PIC X(8).
 41 FUNCTIONO PIC X(26).
 41 LASTNAMEO PIC X(14).
 41 FSTO PIC X(2).
 41 FSTRESTO PIC X(18).
 41 STREETO PIC X(26).
 41 HOUSENOO PIC X(10).
 41 ZIPO PIC X(5).
 41 CITYO PIC X(26).
 41 PHONEO PIC X(18).
 41 MSGTEXTO PIC X(80).

The fields "FUNCTIONO" and "MSGTEXTO" are protected fields, the field "ZIPO" is
numeric.

A d d r e s s M a n a g e m e n t

Please select a function:

Current function: @@@@@@@@@@@@@@@@@@@@@@@@@@

Last name:++++++++++++++

Street:..........................

ZIP code:nnnnn

Phone:..................

Function menu
1 = Display addresses
2 = Add new addresses
3 = Update addresses

@@@

First name:++...................

No:..........

City:..........................

Quit with kdcoff

Delete addresses4 =

Programming examples in COBOL Additional information for COBOL

574 Programming Applications with KDCS

Program unit DISPLAY

IDENTIFICATION DIVISION.
 PROGRAM-ID. DISPLAY.

 ENVIRONMENT DIVISION.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY KCOPC.
 01 ERROR-TEXT.
 05 FILLER PIC X(21)
 VALUE "*** E R R O R ***".
 05 FILLER PIC X(14)
 VALUE "PROGRAM UNIT: ".
 05 F-TP PIC X(08).
 05 FILLER PIC X(17)
 VALUE " KDCS OPCODE: ".
 05 F-OP PIC X(04).
 05 FILLER PIC X(13)
 VALUE "RETURN CODE: ".
 05 F-CD PIC X(03).
 LINKAGE SECTION.
 COPY KCKBC.
 05 KBPRG PIC X(228).
 COPY KCPAC.
 03 NB.
 05 TAC PIC X(008).
 05 DATA1 PIC X(220).
 03 FILLER REDEFINES NB.
 COPY FORMAO.

 PROCEDURE DIVISION USING KCKBC KCSPAB.

 INIT-OPERATION-SECTION.
 MOVE SPACES TO NB.
 MOVE INIT TO KCOP.
 MOVE 0 TO KCLKBPRG.
 MOVE 512 TO KCLPAB.
 CALL "KDCS" USING KCPAC.
 IF KCRCCC NOT = ZERO
 THEN MOVE INIT TO F-OP GO TO ERROR-HANDLING.

 MGET-OPERATION.
 MOVE MGET TO KCOP.
 MOVE 228 TO KCLA.
 MOVE "*FORMA" TO KCMF.
 CALL "KDCS" USING KCPAC DATA1.
 IF KCRCCC NOT = ZERO
 THEN MOVE MGET TO F-OP GO TO ERROR-HANDLING.
* CALL PROGRAM UNIT "FILES" IN ORDER TO CALL *
* READ ROUTINE *
 READ-OPERATION.
 CALL "FILES" USING KCKBC, KCSPAB.

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 575

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

 MPUT-OPERATION.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 228 TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE "*FORMA" TO KCMF.
 CALL "KDCS" USING KCPAC NB.
 IF KCRCCC NOT = ZERO
 THEN MOVE MPUT TO F-OP GO TO ERROR-HANDLING.

 PEND-OPERATION.
 MOVE PEND TO KCOP.
 MOVE "FI" TO KCOM.
 CALL "KDCS" USING KCPAC NB.

 PROG-END.
 EXIT PROGRAM.

 ERROR-HANDLING.
 MOVE "DISPLAY" TO F-TP.
 MOVE KCRCCC TO F-CD.
 MOVE ERROR-TEXT TO NB.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 80 TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE ZEROES TO KCDF.
 CALL "KDCS" USING KCPAC NB.
 MOVE PEND TO KCOP.
 MOVE "ER" TO KCOM.
 CALL "KDCS" USING KCPAC.
 GO TO PROG-END.

Programming examples in COBOL Additional information for COBOL

576 Programming Applications with KDCS

Program unit UPDATE

 IDENTIFICATION DIVISION.
 PROGRAM-ID. UPDATE.

 ENVIRONMENT DIVISION.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY KCOPC.
 01 ERROR-TEXT.
 05 FILLER PIC X(21)
 VALUE "*** E R R O R ***".
 05 FILLER PIC X(14)
 VALUE "PROGRAM UNIT: ".
 05 F-TP PIC X(08).
 05 FILLER PIC X(17)
 VALUE " KDCS OPCODE: ".
 05 F-OP PIC X(04).
 05 FILLER PIC X(13)
 VALUE "RETURN CODE: ".
 05 F-CD PIC X(03).
 LINKAGE SECTION.
 COPY KCKBC.
 05 KBPRG PIC X(228).
 COPY KCPAC.
 03 NB.
 05 TAC PIC X(008).
 05 DATA1 PIC X(220).
 03 FILLER REDEFINES NB.
 COPY FORMAO.

 PROCEDURE DIVISION USING KCKBC, KCSPAB.

 INIT-OPERATION-SECTION.
 MOVE SPACES TO NB.
 MOVE INIT TO KCOP.
 MOVE 0 TO KCLKBPRG.
 MOVE 512 TO KCLPAB.
 CALL "KDCS" USING KCPAC.
 IF KCRCCC NOT = ZERO
 THEN MOVE INIT TO F-OP GO TO ERROR-HANDLING.

 MGET-OPERATION.
 MOVE MGET TO KCOP.
 MOVE 228 TO KCLA.
 MOVE "*FORMA" TO KCMF.
 CALL "KDCS" USING KCPAC DATA1.
 IF KCRCCC NOT = ZERO
 THEN MOVE MGET TO F-OP GO TO ERROR-HANDLING.
* CALL PROGRAM UNIT "FILES" IN ORDER TO BRANCH TO *
* WRITING, OVERWRITING AND DELETING ROUTINES *
* ACCORDING TO THE TAC *
 FILE-OPERATION.
 CALL "FILES" USING KCKBC, KCSPAB.

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 577

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

 MPUT-OPERATION.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 228 TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE "*FORMA" TO KCMF.
 CALL "KDCS" USING KCPAC NB.
 IF KCRCCC NOT = ZERO
 THEN MOVE MPUT TO F-OP GO TO ERROR-HANDLING.

 PEND-OPERATION.
 MOVE PEND TO KCOP.
 MOVE "FI" TO KCOM.
 CALL "KDCS" USING KCPAC NB.

 PROG-END.
 EXIT PROGRAM.

 ERROR-HANDLING.
 MOVE "UPDATE" TO F-TP.
 MOVE KCRCCC TO F-CD.
 MOVE ERROR-TEXT TO NB.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 80 TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE ZEROES TO KCDF.
 CALL "KDCS" USING KCPAC NB.
 MOVE PEND TO KCOP.
 MOVE "ER" TO KCOM.
 CALL "KDCS" USING KCPAC.
 GO TO PROG-END.

Programming examples in COBOL Additional information for COBOL

578 Programming Applications with KDCS

Program unit FILES with START/SHUT exit and file access operations

 IDENTIFICATION DIVISION.
 PROGRAM-ID. FILES.

 ENVIRONMENT DIVISION.

 INPUT-OUTPUT SECTION.
*----------------------

 FILE-CONTROL.
 SELECT ADDRESSES ASSIGN TO "addresses"
 ACCESS MODE IS RANDOM
 ORGANIZATION IS INDEXED
 RECORD KEY IS D-NAME
 FILE STATUS IS FILE-STATUS.

 DATA DIVISION.

 FILE SECTION.
*--------------

 FD ADDRESSES LABEL RECORD IS STANDARD.
 01 D-ADDRESSRECORD.
 05 D-NAME.
 10 D-LASTNAME PIC X(14).
 10 D-FST PIC X(02).
 05 D-FIRSTNAME PIC X(18).
 05 D-STREET PIC X(26).
 05 D-HOUSENO PIC X(10).
 05 D-ZIP PIC X(05).
 05 D-CITY PIC X(26).
 05 D-PHONE PIC X(18).

 WORKING-STORAGE SECTION.
*-------------------------

 01 FILE-ERROR-LINE.
 05 FILLER PIC X(24)
 VALUE " *** FILE ERROR NO.: ".
 05 FILE-STATUS PIC X(02).
 05 FILLER PIC X(04)
 VALUE " ***".
 05 FILLER PIC X(50) VALUE SPACES.
 LINKAGE SECTION.
*-----------------

 COPY KCKBC.
 05 KBPRG PIC X(228).
 COPY KCPAC.
 03 NB.
 05 TAC PIC X(008).
 05 DATA1 PIC X(220).
 03 FILLER REDEFINES NB.
 COPY FORMAO.

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 579

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

 PROCEDURE DIVISION USING KCKBC KCSPAB.
**

 CONTROLLING SECTION.
*---------------------

 CONTROLLING-BEGIN.
 IF KCTACVG = "STARTUP"
 THEN OPEN I-O ADDRESSES GO TO CONTROLLING-END.
 IF KCTACVG = "SHUTDOWN"
 THEN CLOSE ADDRESSES GO TO CONTROLLING-END.
 IF KCTACVG = "1"
 THEN GO TO READING-BEGIN.
 IF KCTACVG = "2"
 THEN GO TO WRITING-BEGIN.
 IF KCTACVG = "3"
 THEN GO TO OVERWRITING-BEGIN.
 IF KCTACVG = "4"
 THEN GO TO DELETING-BEGIN.

 CONTROLLING-END.
 EXIT PROGRAM.

 READING SECTION.
*-----------------

 READING-BEGIN.

* SET THE ISAM KEY
 MOVE LASTNAMEO TO D-LASTNAME.
 MOVE FSTO TO D-FST.
 MOVE SPACES TO STREETO HOUSENOO CITYO PHONEO.
 MOVE ZEROES TO ZIPO.
 MOVE KCTACVG TO TACO.
 MOVE "DISPLAY ADDRESSES" TO FUNCTIONO.
 READ ADDRESSES RECORD
 INVALID KEY PERFORM FILE-ERROR GO TO READING-END.
 MOVE D-LASTNAME TO LASTNAMEO.
 MOVE D-FST TO FSTO.
 MOVE D-FIRSTNAME TO FSTRESTO.
 MOVE D-STREET TO STREETO.
 MOVE D-HOUSENO TO HOUSENOO.
 MOVE D-ZIP TO ZIPO.
 MOVE D-CITY TO CITYO.
 MOVE D-PHONE TO PHONEO.

 READING-END.
 EXIT PROGRAM.

Programming examples in COBOL Additional information for COBOL

580 Programming Applications with KDCS

 WRITING SECTION.
*-----------------

 WRITING-BEGIN.
 ENTRY "WRITING" USING ADDRESSRECORD.
 MOVE FSTO TO D-FST.
 MOVE FSTRESTO TO D-FIRSTNAME.
 MOVE STREETO TO D-STREET.
 MOVE HOUSENOO TO D-HOUSENO.
 MOVE ZIPO TO D-ZIP.
 MOVE CITYO TO D-CITY.
 MOVE PHONEO TO D-PHONE.
 MOVE KCTACVG TO TACO.
 MOVE "ADD NEW ADDRESSES" TO FUNCTIONO.
 MOVE " * ADDRESS ADDED * " TO MSGTEXTO.
 WRITE D-ADDRESSRECORD INVALID KEY PERFORM FILE-ERROR.

 WRITING-END.
 EXIT PROGRAM.

 OVERWRITING SECTION.
*---------------------

 OVERWRITING-BEGIN.

* Read record to lock record
 MOVE LASTNAMEO TO D-LASTNAME.
 MOVE FSTO TO D-FST.
 MOVE "UPDATE ADDRESSES " TO FUNCTIONO.
 READ ADDRESSES RECORD
 INVALID KEY PERFORM FILE-ERROR GO TO OVERWRITING-END.
 MOVE FSTRESTO TO D-FIRSTNAME.
 MOVE STREETO TO D-STREET.
 MOVE HOUSENOO TO D-HOUSENO.
 MOVE ZIPO TO D-ZIP.
 MOVE CITYO TO D-CITY.
 MOVE PHONEO TO D-PHONE.
 MOVE " * ADDRESS UPDATED * " TO MSGTEXTO.
 REWRITE D-ADDRESSRECORD INVALID KEY PERFORM FILE-ERROR.

 OVERWRITING-END.
 EXIT PROGRAM.

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 581

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

 DELETING SECTION.
*------------------

 DELETING-BEGIN.

* Read record to lock record
 MOVE LASTNAMEO TO D-LASTNAME.
 MOVE FSTO TO D-FST.
 MOVE "DELETE ADDRESSES" TO FUNCTIONO.
 READ ADDRESSES RECORD
 INVALID KEY PERFORM FILE-ERROR GO TO DELETING-END.
 DELETE ADDRESSES RECORD
 INVALID KEY PERFORM FILE-ERROR GO TO DELETING-END.
 MOVE KCTACVG TO TACO.
 MOVE "* ADDRESS DELETED *" TO MSGTEXTO.

 DELETING-END.
 EXIT PROGRAM.

 FILE-ERROR SECTION.
*--------------------

 FILE-ERROR-BEGIN.
 IF FILE-STATUS = 22 THEN
 MOVE "*** ADDRESS WITH THIS NAME ALREADY EXISTS ***"
 TO MSGTEXTO GO TO FILE-ERROR-END.
 IF FILE-STATUS = 23 THEN
 MOVE "*** ADDRESS WITH THIS NAME DOES NOT EXIST ***"
 TO MSGTEXTO GO TO FILE-ERROR-END.
 MOVE FILE-ERROR-LINE TO MSGTEXTO.

 FILE-ERROR-END.
 EXIT.

Programming examples in COBOL Additional information for COBOL

582 Programming Applications with KDCS

Program unit BADTACS

 IDENTIFICATION DIVISION.
 PROGRAM-ID. BADTACS.

 ENVIRONMENT DIVISION.

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 77 BTEXT PIC X(41) VALUE
 "INCORRECT TAC - PLEASE REPEAT INPUT".
 77 STAR PIC X(6) VALUE ALL "*".
 COPY KCOPC.
 01 ERRORTEXT.
 05 FILLER PIC X(21)
 VALUE "*** E R R O R ***".
 05 FILLER PIC X(14)
 VALUE "PROGRAM UNIT: ".
 05 F-TP PIC X(08).
 05 FILLER PIC X(17)
 VALUE " KDCS OPCODE: ".
 05 F-OP PIC X(04).
 05 FILLER PIC X(13)
 VALUE "RETURN CODE: ".
 05 F-CD PIC X(03).
 LINKAGE SECTION.
 COPY KCKBC.
 COPY KCPAC.
 03 NB.
 05 TRANSAC PIC X(08).
 05 DATA1 PIC X(220).
 03 NB-A REDEFINES NB.
 COPY FORMAO.
 41 ERROR1 REDEFINES MSGTEXTO.
 45 STAR1 PIC X(6).
 45 BADTEXT PIC X(41).
 45 STAR2 PIC X(6).
 45 REST PIC X(27).

 PROCEDURE DIVISION USING KCKBC KCSPAB.

 INIT-OPERATION-SECTION.
 MOVE SPACES TO NB.
 MOVE INIT TO KCOP.
 MOVE 0 TO KCLKBPRG.
 MOVE 228 TO KCLPAB.
 CALL "KDCS" USING KCPAC.
 IF KCRCCC NOT = ZERO
 THEN MOVE INIT TO F-OP GO TO ERROR-HANDLING.

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 583

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

 MGET-OPERATION.
 MOVE MGET TO KCOP.
 MOVE 228 TO KCLA.
 MOVE "*FORMA" TO KCMF.
 CALL "KDCS" USING KCPAC, DATA1.
 IF KCRCCC = "05Z"
 THEN MOVE SPACES TO NB-A.
 GO TO MPUT-OPERATION.
 IF KCRCCC NOT = ZERO
 THEN MOVE MGET TO F-OP GO TO ERROR-HANDLING.

 MPUT-OPERATION.
 MOVE BTEXT TO BADTEXT.
 MOVE STAR TO STAR1.
 MOVE STAR TO STAR2.
 MOVE SPACES TO REST.
 MOVE SPACES TO TAC.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 228 TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE "*FORMA" TO KCMF.
 CALL "KDCS" USING KCPAC, NB.
 IF KCRCCC NOT = ZERO
 THEN MOVE MPUT TO F-OP GO TO ERROR-HANDLING.

 PEND-OPERATION.
 MOVE PEND TO KCOP.
 MOVE "FI" TO KCOM.
 CALL "KDCS" USING KCPAC.

 PROG-END.
 EXIT PROGRAM.

 ERROR-HANDLING.
 MOVE "BADTACS" TO F-TP.
 MOVE KCRCCC TO F-CD.
 MOVE ERRORTEXT TO NB.
 MOVE MPUT TO KCOP.
 MOVE "NE" TO KCOM.
 MOVE 80 TO KCLM.
 MOVE SPACES TO KCRN.
 MOVE SPACES TO KCMF.
 MOVE ZEROES TO KCDF.
 CALL "KDCS" USING KCPAC NB.
 MOVE PEND TO KCOP.
 MOVE "ER" TO KCOM.
 CALL "KDCS" USING KCPAC.
 GO TO PROG-END.

Programming examples in COBOL Additional information for COBOL

584 Programming Applications with KDCS

Generation of the sample application on BS2000 systems

REM **
REM *** D E F - S T A T E M E N T S ***
REM *** ***
REM *** KDCFILE = APPLI ***
REM **
MAX APPLINAME=A
MAX KDCFILE=(KDCFILE.APPLI,S),TASKS=2,ASYNTASKS=0
MAX CONRTIME=5,LOGACKWAIT=60
ROOT ADR1ROOT
OPTION GEN=ALL
REM **
REM ************ PROGRAM STATEMENTS ************
REM **
PROGRAM KDCADM,COMP=C
PROGRAM DISPLAY,COMP=COB1
PROGRAM UPDATE,COMP=COB1
PROGRAM FILES,COMP=COB1
PROGRAM BADTACS,COMP=COB1
REM **
REM ************ EXIT STATEMENTS ************
REM **
EXIT PROGRAM=TPFILE,USAGE=START
EXIT PROGRAM=TPFILE,USAGE=SHUT
REM **
REM ************ TAC STATEMENTS ************
REM **
DEFAULT TAC ADMIN=Y,PROGRAM=KDCADM
TAC KDCTAC
TAC KDCLTERM
TAC KDCPTERM
TAC KDCSWTCH
TAC KDCUSER
TAC KDCSEND
TAC KDCAPPL
TAC KDCDIAG
TAC KDCLOG
TAC KDCINF
TAC KDCHELP
TAC KDCSHUT
DEFAULT TAC TYPE=A,ADMIN=Y,PROGRAM=KDCADM
TAC KDCTACA
TAC KDCLTRMA
TAC KDCPTRMA
TAC KDCSWCHA
TAC KDCUSERA
TAC KDCSENDA

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Additional information for COBOL Programming examples in COBOL

Programming Applications with KDCS 585

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

0
16

S

ta
nd

 1
2:

58
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.4

_1
60

12
0

0\
02

_K
D

C
S

\e
n\

kp
ro

g_
e.

k1
0

TAC KDCAPPLA
TAC KDCDIAGA
TAC KDCLOGA
TAC KDCINFA
TAC KDCHELPA
TAC KDCSHUTA
TAC KDCTCLA
DEFAULT TAC TYPE=D,PROGRAM=(STD)
TAC KDCBADTC,PROGRAM=BADTACS
TAC 1,LOCK=1,PROGRAM=DISPLAY
TAC 2,LOCK=2,PROGRAM=UPDATE
TAC 3,LOCK=2,PROGRAM=UPDATE
TAC 4,LOCK=2,PROGRAM=UPDATE

REM **
REM ************ USER STATEMENTS ************
REM **
USER GUENTER,PASS=C'AUFGEHTS',KSET=BUND1,PERMIT=ADMIN,FORMAT=*FORMA
USER BESSY,PASS=C'HH',KSET=BUND2,STATUS=ON,FORMAT=*FORMA
USER HAPPI,KSET=BUND3,STATUS=ON,FORMAT=*FORMA
REM **
REM ************ FORMSYS STATEMENTS ************
REM **
FORMSYS TYPE=FHS
REM **
REM ************ PTERM/LTERM STATEMENTS ************
REM **
DEFAULT PTERM PRONAM=DSR01,PTYPE=T9750
PTERM DSS01,LTERM=UTMDST1
PTERM DSS02,LTERM=UTMDST2
PTERM DSS03,LTERM=UTMDST3
DEFAULT PTERM PRONAM=DSR01,PTYPE=T9022,USAGE=O
PTERM G01,LTERM=DRUCKER,CONNECT=A
LTERM UTMDST1,KSET=BUND1
LTERM UTMDST2,LOCK=4,KSET=BUND1
LTERM UTMDST3,LOCK=5,KSET=BUND1
LTERM DRUCKER,USAGE=O
REM **
REM ************ KSET STATEMENTS ************
REM **
KSET BUND1,KEYS=(1,2,3,4,5)
KSET BUND2,KEYS=(1,2,4)
KSET BUND3,KEYS=(1)
REM **
REM ************ TLS STATEMENTS ************
REM **

B
B
B
B
B
B
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Programming examples in COBOL Additional information for COBOL

586 Programming Applications with KDCS

TLS TLSA
TLS TLSB
END

B
B
B

Programming Applications with KDCS 587

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

11 Appendix

11.1 Overview of all KDCS calls

Overview of the entries in the KDCS parameter area and message area (NB) for KDCS
calls. Binary zero should be set in fields that are not listed.

In the table below, the field names in C/C++ are listed only if they differ from the field names
in COBOL by more than just their case.

The key to the tables below is as follows:

0 binary zero
B blank
X any other specifications
* return values

KDCS parameter area NB/
2nd
parameter
area

KCOP KCOM KCLA
KCLKBPRG
/kclcapa

KCLM
KCLPAB
/kclspa

KCRN KCMCOM

KCMF
/kcfn
KCLT
KCUS
KCPA
KCGTM

KCDF
KCLI
KCQRC

KCAPRO
KCDPUT
KCDGET
KCQCRE
KCEVENT
KCPADM
KCSGCL
/kc_sgcl
KCNORPLY

APRO AM
DM

X
X

X
X

X
X

X
X

[X]
[X]

CTRL PR
PE
AB

0
0
0

0
0
0

X
X
X

B
B
B

X/0
X/0
0

Currently
not used;
must be
passed

Overview of all KDCS calls Appendix

588 Programming Applications with KDCS

DADM RQ
UI
CS
DL
DA
MV
MA

X
X
0
0
0
0
0

0
0
0
0
0
0
0

X
X
X
X
B
X
B

X
0
0
X
X
X
X

0
0
0
0
0
0
0

X1

X
X
X1

X1

X
X

*
*
*
*
*
*
*

DGET FT
NT
BF
BN
PF
PN

X
X
X
X
X
X

0
0
0
0
0
0

X
X
X
X
X
X

B
B
X
X
X
X

0
0
0
0
0
0

X
X
X
X
X
X

*
*
*
*
*
*

DPUT NT
NE
NI
QT
QE
QI
+T
-T
+I
-I
RP

0
0
0
0
0
0
0
0
0

X
X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X
X

X
X
B
X
X
B
B
B
B
B
B

X
X
0
0
0
0
0
0
0
0
0

X
X
X
X1

X1

X
0
0
0
0
X

X
X
X
X
X
X
X
X
X
X
X

FGET X X *

FPUT NT
NE
RP

X
X
X

X
X
X

X
X
B

X
X
0

X
X
X

GTDA X X X *

KDCS parameter area NB/
2nd
parameter
area

KCOP KCOM KCLA
KCLKBPRG
/kclcapa

KCLM
KCLPAB
/kclspa

KCRN KCMCOM

KCMF
/kcfn
KCLT
KCUS
KCPA
KCGTM

KCDF
KCLI
KCQRC

KCAPRO
KCDPUT
KCDGET
KCQCRE
KCEVENT
KCPADM
KCSGCL
/kc_sgcl
KCNORPLY

B

BBBBBB

Appendix Overview of all KDCS calls

Programming Applications with KDCS 589

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

INFO CD
DT
LO
PC
SI

X
X
X
X
X

X

*
*
*
*
*

CK X

INIT X X

PU X X 0 0 X 0 *

MD X 0 0 0 0 0

LPUT X X

MCOM BC
EC

0
0

0
0

X
0

X
X

MGET X X *

NT X X X *

MPUT NT
NE
PM
RM
EM
ES
HM

0
0
0
0
0

X
X
X
X
0
X
0

X
X
B
X
X
0
X

X
X
X
0
B
X
B

X
X
X
X
0
0
0

0
0
0
0
0

X
X
X
X
X
X
X

PADM OK
PR
AT
AC
CA
CS
AI
PI

0
0
0
0
0
0
X
X

0
0
0
0
0
0
0
0

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

0
0
0
0
0
0
0
0

0
0
0
0
X
X
0
0

*
*
*
*
*
*
*
*

KDCS parameter area NB/
2nd
parameter
area

KCOP KCOM KCLA
KCLKBPRG
/kclcapa

KCLM
KCLPAB
/kclspa

KCRN KCMCOM

KCMF
/kcfn
KCLT
KCUS
KCPA
KCGTM

KCDF
KCLI
KCQRC

KCAPRO
KCDPUT
KCDGET
KCQCRE
KCEVENT
KCPADM
KCSGCL
/kc_sgcl
KCNORPLY

Overview of all KDCS calls Appendix

590 Programming Applications with KDCS

PEND PA
PR
PS
KP
RE
SP
FC
RS
FR
FI
ER

0

0
0
0

0

0
0
0

X
X
X
X
X
X
X
B
B

0

0
0
0

0

0
0
0

0

0
0
0

PGWT KP
PR
CM
RB

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

X
X
X
X

0
0
0
0

*
*
*
*

PTDA X X X X

QCRE NN X 0 B B 0 X

WN X 0 X B 0 X

QREL RL 0 0 X B 0 0

RSET

SGET KP
RL
GB
US

X
X
X
X 0

X
X
X
X X 0 0

*
*
*
*

SIGN ST
ON
CP
CK
OF
OB
CL

X
X
X
X
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
X
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
0
0
0

X
X
X
X

KDCS parameter area NB/
2nd
parameter
area

KCOP KCOM KCLA
KCLKBPRG
/kclcapa

KCLM
KCLPAB
/kclspa

KCRN KCMCOM

KCMF
/kcfn
KCLT
KCUS
KCPA
KCGTM

KCDF
KCLI
KCQRC

KCAPRO
KCDPUT
KCDGET
KCQCRE
KCEVENT
KCPADM
KCSGCL
/kc_sgcl
KCNORPLY

B

Appendix Overview of all KDCS calls

Programming Applications with KDCS 591

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

Overview of the values returned to the KDCS communication area for KDCS calls.

In the tables below, an asterisk (*) always indicates a return value.

SPUT DL
MS
ES
GB
US

X
X
X
X
X 0

X
X
X
X
X X 0 0

X
X
X
X
X

SREL LB
GB

X
X

UNLK GB
DA
US 0 0

X
X
X

X
X 0 0

1 If KCLT contains the name of a USER or temporary queue, a value of U or Q must be specified in the KCQTYP
field.

Call KDCS communication area

KB
hdr.

KB return area KB
program
area

KCRDF KCRLM KCRINFCC
KCRMGT
KCRST
KCRSIGN

KCRCCC
KCRCDC

KCRMF
/kcrfn

KCRPI
KCRUS
KCRWV
G
KCRQN
KCRQRC
KCRGTM
KCRDPI
D
KCRRC

APRO AM
DM

*
*

KDCS parameter area NB/
2nd
parameter
area

KCOP KCOM KCLA
KCLKBPRG
/kclcapa

KCLM
KCLPAB
/kclspa

KCRN KCMCOM

KCMF
/kcfn
KCLT
KCUS
KCPA
KCGTM

KCDF
KCLI
KCQRC

KCAPRO
KCDPUT
KCDGET
KCQCRE
KCEVENT
KCPADM
KCSGCL
/kc_sgcl
KCNORPLY

Overview of all KDCS calls Appendix

592 Programming Applications with KDCS

CTRL PR
PE
AB

*
*
*

DADM RQ
UI
CS
DL
DA
MV
MA

*
*

*
*
*
*
*
*
*

*

DGET FT
NT
BF
BN
PF
PN

*
*
*
*
*
*

*
*
*
*
*
*

*
*

*
*
*
*
*
*

DPUT NT
NE
NI
QT
QE
QI
+T
-T
+I
-I
RP

*
*
*
*
*
*
*
*
*
*
*

FGET * * *

FPUT NT
NE
RP

*
*
*

GTDA * *

Call KDCS communication area

KB
hdr.

KB return area KB
program
area

KCRDF KCRLM KCRINFCC
KCRMGT
KCRST
KCRSIGN

KCRCCC
KCRCDC

KCRMF
/kcrfn

KCRPI
KCRUS
KCRWV
G
KCRQN
KCRQRC
KCRGTM
KCRDPI
D
KCRRC

B

B

Appendix Overview of all KDCS calls

Programming Applications with KDCS 593

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

INFO CD
DT
LO
PC
SI

*
*
*
*
*

*
*
*
*
*

CK * * *

INIT * * * * *

PU * * * * * *

MD *

LPUT *

MCOM BC
EC

*
*

MGET * * * * *

NT * * * * *

MPUT NT
NE
PM
RM
EM
ES
HM

* *
*
*
*
*
*
*

PADM OK
PR
AT
AC
CA
CS
AI
PI

*
*

*
*
*
*
*
*
*
*

*
*

Call KDCS communication area

KB
hdr.

KB return area KB
program
area

KCRDF KCRLM KCRINFCC
KCRMGT
KCRST
KCRSIGN

KCRCCC
KCRCDC

KCRMF
/kcrfn

KCRPI
KCRUS
KCRWV
G
KCRQN
KCRQRC
KCRGTM
KCRDPI
D
KCRRC

Overview of all KDCS calls Appendix

594 Programming Applications with KDCS

PEND PA
PR
PS
KP
RE
SP
FI
FC
RS
ER
FR

*
*
*
*
*
*
*
*
*
*
*

PGWT1 KP
PR
CM
RB

*
*
*
*

*
*
*
*

*

*

*

*

PTDA *

QCRE NN * *

WN *

QREL RL *

RSET * *

SGET KP
RL
GB
US

*
*
*
*

*
*
*
*

Call KDCS communication area

KB
hdr.

KB return area KB
program
area

KCRDF KCRLM KCRINFCC
KCRMGT
KCRST
KCRSIGN

KCRCCC
KCRCDC

KCRMF
/kcrfn

KCRPI
KCRUS
KCRWV
G
KCRQN
KCRQRC
KCRGTM
KCRDPI
D
KCRRC

Appendix Overview of all KDCS calls

Programming Applications with KDCS 595

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

SIGN ST * * * * *

ON
CP
CK
OF
OB
CL

*

*

*
*
*
*
*
*

SPUT DL
MS
ES
GB
US

*
*
*
*
*

SREL LB
GB

*
*

UNLK GB
DA
US

*
*
*

1 KCRLM is only supplied when KCLI>0 was specified.

Call KDCS communication area

KB
hdr.

KB return area KB
program
area

KCRDF KCRLM KCRINFCC
KCRMGT
KCRST
KCRSIGN

KCRCCC
KCRCDC

KCRMF
/kcrfn

KCRPI
KCRUS
KCRWV
G
KCRQN
KCRQRC
KCRGTM
KCRDPI
D
KCRRC

B

Different field names for C/C++ and COBOL Appendix

596 Programming Applications with KDCS

11.2 Different field names for C/C++ and COBOL

Throughout this manual, the COBOL field names (which are always written as uppercase
letters) are used for the communication area and the KDCS parameter area. In C/C++, field
names always use lowercase letters.

Since the field names for C/C++ are (unlike those for COBOL) derived from the corre-
sponding English terms, further differences arise between the KB fields and those in the
KDCS parameter area, apart from the different cases used.

Throughout this manual, wherever discrepancies arise which go beyond the simple issue
of uppercase and lowercase, the C/C++ field name specified immediately following the
COBOL field name; the two are separated by a slash. For example: “KCTAG/kcday”.

In the tables on the next few pages, all COBOL field names which differ from C/C++ field
names in more than just the case used are shaded gray.

Moreover, you should also note the following points:

– in the data structures kcdad.h and kcpad.h, the fields for time specifications in C/C++ are
not combined in a group.

– In the data structure kcini.h, the field names are structured differently to their counter-
parts in the COBOL data structure KCINIC (see table on page 312ff). These data struc-
tures allow you to structure the message area for the INIT call with the modifier PU, and
for the call with KCLI>0.

– The screen function for reading the ID card reader in C/C++ has the symbolic name
KCCARDRD.

B

B

Appendix Different field names for C/C++ and COBOL

Programming Applications with KDCS 597

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

Field names in the KB header area KCKBKOPF (ca_hdr)

COBOL name C/C++ name Meaning

KCBENID kcuserid user identification

KCTACVG kccv_tac service: name of the transaction code

KCTAGVG kccv_day start of service: day

KCMONVG kccv_month start of service: month

KCJHRVG kccv_year start of service: year

KCTJHVG kccv_doy start of service: day of the year

KCSTDVG kccv_hour start time of service: hour

KCMINVG kccv_minute start time of service: minute

KCSEKVG kccv_second start time of service: second

KCKNZVG kccv_status service: status information

KCTACAL kcpr_tac program run: name of the transaction code

KCSTDAL kcpr_hour start time of program run: hour

KCMINAL kcpr_minute start time of program run: minute

KCSEKAL kcpr_second start time of program run: second

KCAUSWEIS kccard status of card reader

KCTAIND kctaind transaction indicator

KCLOGTER kclogter logical terminal name

KCTERMN kctermn terminal mnemonic

KCLKBPB kclpa length of program area

KCHSTA kchsta stack level

KCDSTA kcdsta change in stack level

KCPRIND kcprind program indicator

KCOF1 kcof1 OSI TP functional unit

KCCP kccp client protocol

KCTARB kctarb transaction rollback indicator

KCYEARVG kccv_year4 start of service: day of the year, 4-digit

Different field names for C/C++ and COBOL Appendix

598 Programming Applications with KDCS

Field names in the KB return area KCRFELD (ca_rti)

COBOL name C/C++ name Meaning

KCRDF kcrdf device feature

KCRLM kcrlm input message length

KCRINFCC kcrinfcc return information from INFO CK

KCVGST kcpcv_state service state of partner

KCTAST kcpta_state transaction state of partner

KCRMGT kcrmgt type of message

KCRSIGN kcrsign status of SIGN ON (complete code)

KCRSIGN1 kcrsign1 primary code of SIGN ON

KCRSIGN21

1 The field KCRSIGN2 is not defined in the C/C++ data structure ca_rti; the secondary code for the SIGN call is
defined in the second and third byte of kcrinfcc.

— secondary code of SIGN ON

KCRCCC kcrccc compatible return code

KCRCKZ kcrcid identifier of DC system

KCRCDC kcrcdc return code of DC system

KCRMF kcrfn format name

KCRPI kcrpi service identification

KCRQN kcrqn return queue name

KCRWVG kcrwvg return number waiting vg

KCRUS kcrus return user (SIGN ST, DGET FT)

KCRQRC kcrqrc queue specific redelivery counter

KCRGTM kcrgtm creation time of DGET message

KCRDPID kcrdpid DPUT ID of DGET message

KCRRC kcrrc redelivery counter of DGET message

Appendix Different field names for C/C++ and COBOL

Programming Applications with KDCS 599

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

Field names in the KDCS parameter area KCPAC (kc_pa)

COBOL name C/C++ name Meaning

KCOP kcop operation code

KCOM kcom operation modification

KCLA kcla length of data area

KCLKBPRG kclcapa length of ca program area

KCLM kclm length of message (part)

KCWTIME kcwtime waiting time for DGET messages

KCLPAB kclspa length of standard primary area

KCRN kcrn reference name

KCMF kcfn format name

KCLT kclt logical terminal name

KCUS kcus name of user

KCPA kcpa partner application name

KCOF kcof OSI functions

KCDF kcdf device feature

KCLI kcli length of init area

EXTENT kcext extensions for DPUT, APRO and PADM

KCDPUT kcdput extension for DPUT function

KCMOD kcmod DPUT: modifier

KCTAG kcday DPUT: days

KCSTD kchour DPUT: hours

KCMIN kcmin DPUT: minutes

KCSEK kcsec DPUT: seconds

KCQTYP kcqtyp queue type

KCQMODE kcqmode queue mode

KCAPRO kcapro extension for APRO function

KCPI kcpi APRO: process identification

KCPADM kcpadm extension for PADM function

KCACT kcact PADM: action

KCADRLT kcadrlt PADM: lterm name

KCNORPLY kcnorply CTRL: reply message not permitted

KCMCOM kcmcom redefinition for MCOM function

KCPOS kcpos MCOM: destination in positive case

Different field names for C/C++ and COBOL Appendix

600 Programming Applications with KDCS

KCNEG kcneg MCOM: destination in negative case

KCCOMID kccomid MCOM: complex identification

KCSGCL kc_sgcl extensions for SIGN CL

KCLANGID kclangid language ID of user

KCTERRID kcterrid territorial ID of user

KCCSNAME kccsname character set name of user

KCGTM kcgtm creation time of message (generation time)

KCQRC kcqrc queue-specific redelivery counter

KCDPID kcdpid DPUT ID of message

COBOL name C/C++ name Meaning

BBB

BBB

BBB

BBB

Appendix ASCII-EBCDIC code conversion

Programming Applications with KDCS 601

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

11.3 ASCII-EBCDIC code conversion

11.3.1 BS2000 systems

In the case of communication from BS2000 systems to partners by means of the TCP/IP
protocol, the partners generally work with ASCII or ISO 8859-1 code, whereas BS2000
systems generally work with EBCDIC code. To ensure that communication from BS2000
systems to these partners is nevertheless easy, openUTM offers automatic code
conversion. You can activate automatic code conversion at KDCDEF generation partner-
specifically with the help of the MAP= operand in the PTERM or TPOOL statement. You can
use different conversion tables for the conversion.

Conversion tables

Up to four different conversion tables can be used for conversion. Table 1 is supplied
already filled. It is provided for 7-bit ASCII (the eight bit is ignored in ASCII code). Tables 2,
3 and 4 are still free and can be filled by the user. They are evaluated with the full 8 bits.

The tables are defined in the assembly language module KDCEA. The source for KDCEA
is in the SYSLIB.UTM.064.EXAMPLE library. If a table is to be changed, this module must
be modified. The module must then be reassembled and linked to the root by means of an
INCLUDE statement. This must be done before the resolve takes effect on the
SYSLNK.UTM.064 library.

Which of the tables is to be used is specified for the MAP= operand in the PTERM or
TPOOL statement when the partner is generated.

11.3.2 Unix, Linux and Windows systems

When exchanging unformatted messages of a UTM application with a partner application,
openUTM has the ability to automatically execute a ASCII-EBCDIC code conversion. You
can activate automatic code conversion during KDCDEF generation for specific partners
using the MAP=SYSTEM operand in the KDCDEF statements PTERM, TPOOL, OSI-CON
and SESCHA.

openUTM uses a standard table for conversion. This is in:

utmpath/src/kcsaeea.c (Unix and Linux systems)

utmpath\src\kcsaeea.c (Windows systems)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X

W

ASCII-EBCDIC code conversion Appendix

602 Programming Applications with KDCS

11.3.2.1 Modifying the code table on Unix and Linux systems

You can modify this standard table for UTM applications on Unix and Linux systems.
Proceed as follows to do this:

1. Copy the file kcsaeea.c into a separate directory.

2. Modify the table as desired.

3. Compile the modified source file.

4. Link the work process by specifying the .o object before the libwork.a library. If you
link with the libwork.so library, then you must regenerate this library beforehand. The
script utmpath/shsc/stat2dyn is provided for this purpose.

11.3.2.2 Modifying the code table on Windows systems

The code conversion tables are contained in the library utmconvt.dll. utmconvt.dll is
located in the same directory as libwork.dll.

You can modify these conversion tables to suit your own needs by modifying the supplied
source files and then creating a modified utmconvt.dll.

Source files for creating new code tables

The directory UTMPATH\src contains the following source files which you may need to
modify:

● kcsaeea.c and kcxaent.c

kcsaeea.c contains the conversion tables for previous openUTM-Server versions and
is used in the utmconvt.dll supplied with the product.
kcxaent.c contains the complete tables for conversion between the Windows character
set and EBCDIC.

These files are C source files and each contain two character arrays with 256 elements.
One array is used for conversion from ASCII to EBCDIC and the other array is used for
conversion from EBCDIC to ASCII (see the example below).

● utmconvt.def

Definition file containing EXPORT statements. It is not necessary to modify this file.

● utmconvt.rc and resource.h

Resource files containing version and copyright information. This information is
displayed when you right-click the DLL file and choose Properties. These files need not
necessarily be linked in.

X

X

X

X

X

X

X

X

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Appendix ASCII-EBCDIC code conversion

Programming Applications with KDCS 603

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
u

ly
 2

01
6

 S
ta

n
d

12
:5

8
.0

7
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

00
\0

2
_K

D
C

S
\e

n
\k

pr
og

_e
.a

n
h

Modifying the library utmconvt.dll

Three steps are necessary to convert the library utmconvt.dll:

1. Modify the code table to suit your requirements (as necessary). Do this by editing
kcsaeea.c or kcxaent.c with a text editor.

If you only wish to use the conversion table kcxaent.c in place of the standard
conversion table kcsaeea.c, you can omit step 1.

Example

You wish to incorporate German umlauts in the conversion table kcsaeea.c. Proceed
as follows for the letter ’Ä’:

a) Find out the code for ’Ä’. ’Ä’ has the code X’C4’ (= decimal 196) in ISO 8859-1 and
the code X’63’ (= decimal 99) in EBCDIC.DF.04-1.

b) Change the value of kcsaebc[196] from 0xff to 0x63 (ASCCI-to-EBCDIC
conversion)

c) Change the value of kcseasc[99] from 0x1a to 0xc4 (EBCDIC-to-ASCII
conversion)

Proceed in the same way for the remaining German umlauts.

2. Start Microsoft Visual Studio and proceed as follows:

– Create a new project with the name utmconvt in the directory UTMPATH\utmconvt.
The project must be of the type Dynamic-Link Library.

– Add the following files to the project:
– The code table you modified (either kcsaeea.c or kcxaent.c, see 1.),
– utmconvt.def
– and, if required, utmconvt.rc.

– From this project, create the library utmconvt.dll.

– Close Visual Studio

3. Replace the old library utmconvt.dll with the new library:

– First back up the library under a different name, so that you can access it again if
anything goes wrong.

– Copy the new utmconvt.dll to the directory which contains the UTM library
libwork.dll (this is generally UTMPATH\ex). Make sure that the original
utmconvt.dll is actually replaced by the new utmconvt.dll.

The new conversion library is ready for use.

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

ASCII-EBCDIC code conversion Appendix

604 Programming Applications with KDCS

Programming Applications with KDCS 605

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

abnormal termination of a UTM application
Termination of a UTM application, where the KDCFILE is not updated. Abnormal
termination is caused by a serious error, such as a crashed computer or an error
in the system software. If you then restart the application, openUTM carries out
a warm start.

abstract syntax (OSI)
Abstract syntax is defined as the set of formally described data types which can
be exchanged between applications via OSI TP. Abstract syntax is independent
of the hardware and programming language used.

acceptor (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The acceptor accepts the conversation initiated by the initiator
with Accept_Conversation.

access list
An access list defines the authorization for access to a particular service, TAC
queue or USER queue. An access list is defined as a key set and contains one or
more key codes, each of which represent a role in the application. Users or
LTERMs or (OSI) LPAPs can only access the service or TAC queue/USER queue
when the corresponding roles have been assigned to them (i.e. when their key
set and the access list contain at least one common key code).

access point (OSI)
See service access point.

ACID properties
Acronym for the fundamental properties of transactions: atomicity, consistency,
isolation and durability.

administration
Administration and control of a UTM application by an administrator or an
administration program.

Glossary

606 Programming Applications with KDCS

administration command
Commands used by the administrator of a UTM application to carry out adminis-
tration functions for this application. The administration commands are imple-
mented in the form of transaction codes.

administration journal
See cluster administration journal.

administration program
Program unit containing calls to the program interface for administration. This can
be either the standard administration program KDCADM that is supplied with
openUTM or a program written by the user.

administrator
User who possesses administration authorization.

AES
AES (Advanced Encryption Standard) is the current symmetric encryption stan-
dard defined by the National Institute of Standards and Technology (NIST) and
based on the Rijndael algorithm developed at the University of Leuven (Bel-
gium). If the AES method is used, the UPIC client generates an AES key for
each session.

Apache Axis
Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the
design of Web services and client applications. There are implementations in
C++ and Java.

Apache Tomcat
Apache Tomcat provides an environment for the execution of Java code on Web
servers. It was developed as part of the Apache Software Foundation's Jakarta
project. It consists of a servlet container written in Java which can use the JSP
Jasper compiler to convert JavaServer pages into servlets and run them. It also
provides a fully featured HTTP server.

application cold start
See cold start.

application context (OSI)
The application context is the set of rules designed to govern communication
between two applications. This includes, for instance, abstract syntaxes and
any assigned transfer syntaxes.

Glossary

Programming Applications with KDCS 607

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

application entity (OSI)
An application entity (AE) represents all the aspects of a real application which
are relevant to communications. An application entity is identified by a globally
unique name (“globally” is used here in its literal sense, i.e. worldwide), the
application entity title (AET). Every application entity represents precisely one
application process. One application process can encompass several application
entities.

application entity qualifier (OSI)
Component of the application entity title. The application entity qualifier identifies
a service access point within an application. The structure of an application entity
qualifier can vary. openUTM supports the type “number”.

application entity title (OSI)
An application entity title is a globally unique name for an application entity
(“globally” is used here in its literal sense, i.e. worldwide). It is made up of the
application process title of the relevant application process and the application entity
qualifier.

application information
This is the entire set of data used by the UTM application. The information com-
prises memory areas and messages of the UTM application including the data
currently shown on the screen. If operation of the UTM application is coordi-
nated with a database system, the data stored in the database also forms part
of the application information.

application process (OSI)
The application process represents an application in the OSI reference model. It
is uniquely identified globally by the application process title.

application process title (OSI)
According to the OSI standard, the application process title (APT) is used for
the unique identification of applications on a global (i.e. worldwide) basis. The
structure of an application process title can vary. openUTM supports the type
Object Identifier.

application program
An application program is the core component of a UTM application. It com-
prises the main routine KDCROOT and any program units and processes all jobs
sent to a UTM application.

application restart
see warm start

Glossary

608 Programming Applications with KDCS

application service element (OSI)
An application service element (ASE) represents a functional group of the appli-
cation layer (layer 7) of the OSI reference model.

application warm start
see warm start.

association (OSI)
An association is a communication relationship between two application enti-
ties. The term “association” corresponds to the term session in LU6.1.

asynchronous conversation
CPI-C conversation where only the initiator is permitted to send. An asynchro-
nous transaction code for the acceptor must have been generated in the UTM
application.

asynchronous job
Job carried out by the job submitter at a later time. openUTM includes message
queuing functions for processing asynchronous jobs (see UTM-controlled queue
and service-controlled queue). An asynchronous job is described by the asynchro-
nous message, the recipient and, where applicable, the required execution time.
If the recipient is a terminal, a printer or a transport system application, the asyn-
chronous job is a queued output job. If the recipient is an asynchronous service of
the same application or a remote application, the job is a background job.
Asynchronous jobs can be time-driven jobs or can be integrated in a job complex.

asynchronous message
Asynchronous messages are messages directed to a message queue. They are
stored temporarily by the local UTM application and then further processed
regardless of the job submitter. Distinctions are drawn between the following
types of asynchronous messages, depending on the recipient:
– In the case of asynchronous messages to a UTM-controlled queue, all further

processing is controlled by openUTM. This type includes messages that
start a local or remote asynchronous service (see also background job) and
messages sent for output on a terminal, a printer or a transport system
application (see also queued output job).

– In the case of asynchronous messages to a service-controlled queue, further
processing is controlled by a service of the application. This type includes
messages to a TAC queue, messages to a USER queue and messages to a
temporary queue. The USER queue and the temporary queue must belong
to the local application, whereas the TAC queue can be in both the local
application and the remote application.

Glossary

Programming Applications with KDCS 609

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

asynchronous program
Program unit started by a background job.

asynchronous service (KDCS)
Service which processes a background job. Processing is carried out indepen-
dently of the job submitter. An asynchronous service can comprise one or more
program units/transactions. It is started via an asynchronous transaction code.

audit (BS2000 systems)
During execution of a UTM application, UTM events which are of relevance in
terms of security can be logged by SAT for auditing purposes.

authentication
See system access control.

authorization
See data access control.

Axis
See Apache Axis.

background job
Background jobs are asynchronous jobs destined for an asynchronous service of
the current application or of a remote application. Background jobs are particu-
larly suitable for time-intensive processing or processing which is not time-crit-
ical and where the results do not directly influence the current dialog.

basic format
Format in which terminal users can make all entries required to start a service.

basic job
Asynchronous job in a job complex.

browsing asynchronous messages
A service sequentially reads the asynchronous messages in a service-controlled
queue. The messages are not locked while they are being read and they remain
in the queue after they have been read. This means that they can be read simul-
taneously by different services.

bypass mode (BS2000 systems)
Operating mode of a printer connected locally to a terminal. In bypass mode,
any asynchronous message sent to the printer is sent to the terminal and then redi-
rected to the printer by the terminal without being displayed on screen.

Glossary

610 Programming Applications with KDCS

cache
Used for buffering application data for all the processes of a UTM application.
The cache is used to optimize access to the page pool and, in the case of UTM
cluster applications, the cluster page pool.

CCS name (BS2000 systems)
See coded character set name.

client
Clients of a UTM application can be:
– terminals
– UPIC client programs
– transport system applications (e.g. DCAM, PDN, CMX, socket applications

or UTM applications which have been generated as transport system applica-
tions).

Clients are connected to the UTM application via LTERM partners.
openUTM clients which use the OpenCPIC carrier system are treated just like
OSI TP partners.

client side of a conversation
This term has been superseded by initiator.

cluster
A number of computers connected over a fast network and which in many cases
can be seen as a single computer externally. The objective of clustering is gen-
erally to increase the computing capacity or availability in comparison with a sin-
gle computer.

cluster administration journal
The cluster administration journal consists of:
– two log files with the extensions JRN1 and JRN2 for global administration

actions,
– the JKAA file which contains a copy of the KDCS Application Area (KAA).

Administrative changes that are no longer present in the two log files are
taken over from this copy.

The administration journal files serve to pass on to the other node applications
those administrative actions that are to apply throughout the cluster to all node
applications in a UTM cluster application.

cluster configuration file
File containing the central configuration data of a UTM cluster application. The
cluster configuration file is created using the UTM generation tool KDCDEF.

Glossary

Programming Applications with KDCS 611

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

cluster filebase
Filename prefix or directory name for the UTM cluster files.

cluster GSSB file
File used to administer GSSBs in a UTM cluster application. The cluster GSSB
file is created using the UTM generation tool KDCDEF.

cluster lock file
File in a UTM cluster application used to manage cross-node locks of user data
areas.

cluster page pool
The cluster page pool consists of an administration file and up to 10 files con-
taining a UTM cluster application’s user data that is available globally in the clus-
ter (service data including LSSB, GSSB and ULS). The cluster page pool is cre-
ated using the UTM generation tool KDCDEF.

cluster start serialization file
Lock file used to serialize the start-up of individual node applications (only on
Unix systems and Windows systems).

cluster ULS file
File used to administer the ULS areas of a UTM cluster application. The cluster
ULS file is created using the UTM generation tool KDCDEF.

cluster user file
File containing the user management data of a UTM cluster application. The
cluster user file is created using the UTM generation tool KDCDEF.

coded character set name (BS2000 systems)
If the product XHCS (eXtended Host Code Support) is used, each character set
used is uniquely identified by a coded character set name (abbreviation: “CCS
name” or “CCSN”).

cold start
Start of a UTM application after the application terminates normally (normal ter-
mination) or after a new generation (see also warm start).

communication area (KDCS)
KDCS primary storage area, secured by transaction logging and which contains
service-specific data. The communication area comprises 3 parts:
– the KB header with general service data
– the KB return area for returning values to KDCS calls

Glossary

612 Programming Applications with KDCS

– the KB program area for exchanging data between UTM program units
within a single service.

communication resource manager
In distributed systems, communication resource managers (CRMs) control
communication between the application programs. openUTM provides CRMs
for the international OSI TP standard, for the LU6.1 industry standard and for
the proprietary openUTM protocol UPIC.

configuration
Sum of all the properties of a UTM application. The configuration describes:
– application parameters and operating parameters
– the objects of an application and the properties of these objects. Objects

can be program units and transaction codes, communication partners,
printers, user IDs, etc.

– defined measures for controlling data and system access.
The configuration of a UTM application is defined at generation time (static con-
figuration) and can be changed dynamically by the administrator (while the
application is running, dynamic configuration). The configuration is stored in the
KDCFILE.

confirmation job
Component of a job complex where the confirmation job is assigned to the basic
job. There are positive and negative confirmation jobs. If the basic job returns a
positive result, the positive confirmation job is activated, otherwise, the negative
confirmation job is activated.

connection bundle
see LTERM bundle.

connection user ID
User ID under which a TS application or a UPIC client is signed on at the UTM
application directly after the connection has been established. The following
applies, depending on the client (= LTERM partner) generation:
– The connection user ID is the same as the USER in the LTERM statement

(explicit connection user ID). An explicit connection user ID must be
generated with a USER statement and cannot be used as a “genuine” user
ID.

Glossary

Programming Applications with KDCS 613

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

– The connection user ID is the same as the LTERM partner (implicit
connection user ID) if no USER was specified in the LTERM statement or if
an LTERM pool has been generated.

In a UTM cluster application, the service belonging to a connection user ID
(RESTART=YES in LTERM or USER) is bound to the connection and is there-
fore local to the node.
A connection user ID generated with RESTART=YES can have a separate ser-
vice in each node application.

contention loser
Every connection between two partners is managed by one of the partners. The
partner that manages the connection is known as the contention winner. The
other partner is the contention loser.

contention winner
A connection's contention winner is responsible for managing the connection.
Jobs can be started by the contention winner or by the
contention loser. If a conflict occurs, i.e. if both partners in the communication
want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation
In CPI-C, communication between two CPI-C application programs is referred
to as a conversation. The communication partners in a conversation are
referred to as the initiator and the acceptor.

conversation ID
CPI-C assigns a local conversation ID to each conversation, i.e. the initiator and
acceptor each have their own conversation ID. The conversation ID uniquely
assigns each CPI-C call in a program to a conversation.

CPI-C
CPI-C (Common Programming Interface for Communication) is a program
interface for program-to-program communication in open networks standard-
ized by X/Open and CIW (CPI-C Implementor's Workshop).
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE
Specification. The interface is available in COBOL and C. In openUTM, CPI-C
can communicate via the OSI TP, LU6.1 and UPIC protocols and with
openUTM-LU62.

Cross Coupled System / XCS
Cluster of BS2000 computers with the Highly Integrated System Complex Multiple
System Control Facility (HIPLEX® MSCF).

Glossary

614 Programming Applications with KDCS

data access control
In data access control openUTM checks whether the communication partner is
authorized to access a particular object belonging to the application. The
access rights are defined as part of the configuration.

data space (BS2000 systems)
Virtual address space of BS2000 which can be employed in its entirety by the
user. Only data and programs stored as data can be addressed in a data space;
no program code can be executed.

dead letter queue
The dead letter queue is a TAC queue which has the fixed name
KDCDLETQ. It is always available to save queued messages sent to transac-
tion codes or TAC queues but which could not be processed. The saving of
queued messages in the dead letter queue can be activated or deactivated for
each message destination individually using the TAC statement's
DEAD-LETTER-Q parameter.

DES
DES (Data Encryption Standard) is an international standard for encrypting
data. One key is used in this method for encoding and decoding. If the DES
method is used, the UPIC client generates a DES key for each session.

dialog conversation
CPI-C conversation in which both the initiator and the acceptor are permitted to
send. A dialog transaction code for the acceptor must have been generated in
the UTM application.

dialog job, interactive job
Job which starts a dialog service. The job can be issued by a client or, when two
servers communicate with each other (server-server communication), by a differ-
ent application.

dialog message
A message which requires a response or which is itself a response to a request.
The request and the response both take place within a single service. The
request and reply together form a dialog step.

dialog program
Program unit which partially or completely processes a dialog step.

Glossary

Programming Applications with KDCS 615

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

dialog service
Service which processes a job interactively (synchronously) in conjunction with
the job submitter (client or another server application) . A dialog service pro-
cesses dialog messages received from the job submitter and generates dialog
messages to be sent to the job submitter. A dialog service comprises at least
one transaction. In general, a dialog service encompasses at least one dialog
step. Exception: in the event of service chaining, it is possible for more than one
service to comprise a dialog step.

dialog step
A dialog step starts when a dialog message is received by the UTM application. It
ends when the UTM application responds.

dialog terminal process (Unix , Linux and Windows systems)
A dialog terminal process connects a terminal of a Unix, Linux or Windows sys-
tem with the work processes of the UTM application. Dialog terminal processes
are started either when the user enters utmdtp or via the LOGIN shell. A sepa-
rate dialog terminal process is required for each terminal to be connected to a
UTM application.

Distributed Lock Manager / DLM (BS2000 systems)
Concurrent, cross-computer file accesses can be synchronized using the
Distributed Lock Manager.
DLM is a basic function of HIPLEX® MSCF.

distributed processing
Processing of dialog jobs by several different applications or the transfer of back-
ground jobs to another application. The higher-level protocols LU6.1 and OSI TP
are used for distributed processing. openUTM-LU62 also permits distributed
processing with LU6.2 partners. A distinction is made between distributed pro-
cessing with distributed transactions (transaction logging across different applica-
tions) and distributed processing without distributed transactions (local transac-
tion logging only). Distributed processing is also known as server-server
communication.

distributed transaction
Transaction which encompasses more than one application and is executed in
several different (sub)-transactions in distributed systems.

distributed transaction processing
Distributed processing with distributed transactions.

Glossary

616 Programming Applications with KDCS

dynamic configuration
Changes to the configuration made by the administrator. UTM objects such as
program units, transaction codes, clients, LU6.1 connections, printers or user IDs can
be added, modified or in some cases deleted from the configuration while the
application is running. To do this, it is necessary to create separate administra-
tion programs which use the functions of the program interface for administration.
The WinAdmin administration program or the WebAdmin administration pro-
gram can be used to do this, or separate administration programs must be cre-
ated that utilize the functions of the administration program interface.

encryption level
The encryption level specifies if and to what extent a client message and pass-
word are to be encrypted.

event-driven service
This term has been superseded by event service.

event exit
Routine in an application program which is started automatically whenever cer-
tain events occur (e.g. when a process is started, when a service is terminated).
Unlike event services, an event exit must not contain any KDCS, CPI-C or XATMI
calls.

event function
Collective term for event exits and event services.

event service
Service started when certain events occur, e.g. when certain UTM messages are
issued. The program units for event-driven services must contain KDCS calls.

filebase
UTM application filebase
On BS2000 systems, filebase is the prefix for the KDCFILE, the user log file
USLOG and the system log file SYSLOG.
On Unix, Linux and Windows systems, filebase is the name of the directory
under which the KDCFILE, the user log file USLOG, the system log file SYS-
LOG and other files relating to to the UTM application are stored.

generation
See UTM generation.

global secondary storage area
See secondary storage area.

Glossary

Programming Applications with KDCS 617

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

hardcopy mode
Operating mode of a printer connected locally to a terminal. Any message which
is displayed on screen will also be sent to the printer.

heterogeneous link
In the case of server-server communication: a link between a UTM application and
a non-UTM application, e.g. a CICS or TUXEDO application.

Highly Integrated System Complex / HIPLEX®
Product family for implementing an operating, load sharing and availability clus-
ter made up of a number of BS2000 servers.

HIPLEX® MSCF
(MSCF = Multiple System Control Facility)
Provides the infrastructure and basic functions for distributed applications with
HIPLEX®.

homogeneous link
In the case of server-server communication: a link between two UTM applications.
It is of no significance whether the applications are running on the same oper-
ating system platforms or on different platforms.

inbound conversation (CPI-C)
See incoming conversation.

incoming conversation (CPI-C)
A conversation in which the local CPI-C program is the acceptor is referred to as
an incoming conversation. In the X/Open specification, the term “inbound con-
versation” is used synonymously with “incoming conversation”.

initial KDCFILE
In a UTM cluster application, this is the KDCFILE generated by KDCDEF and
which must be copied for each node application before the node applications
are started.

initiator (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The initiator sets up the conversation with the CPI-C calls
Initialize_Conversation and Allocate.

insert
Field in a message text in which openUTM enters current values.

Glossary

618 Programming Applications with KDCS

inverse KDCDEF
A function which uses the dynamically adapted configuration data in the KDC-
FILE to generate control statements for a KDCDEF run. An inverse KDCDEF
can be started “offline” under KDCDEF or “online” via the program interface for
administration.

JDK
Java Development Kit
Standard development environment from Oracle Corporation for the develop-
ment of Java applications.

job
Request for a service provided by a UTM application. The request is issued by
specifying a transaction code. See also: queued output job, dialog job, background
job, job complex.

job complex
Job complexes are used to assign confirmation jobs to asynchronous jobs. An
asynchronous job within a job complex is referred to as a basic job.

job-receiving service (KDCS)
A job-receiving service is a service started by a job-submitting service of another
server application.

job-submitting service (KDCS)
A job-submitting service is a service which requests another service from a dif-
ferent server application (job-receiving service) in order to process a job.

KDCADM
Standard administration program supplied with openUTM. KDCADM provides
administration functions which are called with transaction codes (administration
commands).

KDCDEF
UTM tool for the generation of UTM applications. KDCDEF uses the configuration
information in the KDCDEF control statements to create the UTM objects KDC-
FILE and the ROOT table sources for the main routine KDCROOT.
In UTM cluster applications, KDCDEF also creates the cluster configuration file,
the cluster user file, the cluster page pool, the cluster GSSB file and the cluster ULS
file.

Glossary

Programming Applications with KDCS 619

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

KDCFILE
One or more files containing data required for a UTM application to run. The
KDCFILE is created with the UTM generation tool KDCDEF. Among other
things, it contains the configuration of the application.

KDCROOT
Main routine of an application program which forms the link between the program
units and the UTM system code. KDCROOT is linked with the program units to
form the application program.

KDCS message area
For KDCS calls: buffer area in which messages or data for openUTM or for the
program unit are made available.

KDCS parameter area
See parameter area.

KDCS program interface
Universal UTM program interface compliant with the national DIN 66 265 stan-
dard and which includes some extensions. KDCS (compatible data communi-
cations interface) allows dialog services to be created, for instance, and permits
the use of message queuing functions. In addition, KDCS provides calls for distrib-
uted processing.

Kerberos
Kerberos is a standardized network authentication protocol (RFC1510) based
on encryption procedures in which no passwords are sent to the network in
clear text.

Kerberos principal
Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two loca-
tions, namely with the key owner (principal) and the KDC (Key Distribution Cen-
ter).

key code
Code that represents specific access authorization or a specific role. Several
key codes are grouped into a key set.

key set
Group of one or more key codes under a particular a name. A key set defines
authorization within the framework of the authorization concept used (lock/key
code concept or access list concept). A key set can be assigned to a user ID, an
LTERM partner an (OSI) LPAP partner, a service or a TAC queue.

Glossary

620 Programming Applications with KDCS

linkage program
See KDCROOT.

local secondary storage area
See secondary storage area.

Log4j
Log4j is part of the Apache Jakarta project. Log4j provides information for log-
ging information (runtime information, trace records, etc.) and configuring the
log output. WS4UTM uses the software product Log4j for trace and logging func-
tionality.

lock code
Code protecting an LTERM partner or transaction code against unauthorized
access. Access is only possible if the key set of the accesser contains the appro-
priate key code (lock/key code concept).

logging process
Process in Unix, Linux and Windows systems that controls the logging of
account records or monitoring data.

LPAP bundle
LPAP bundles allow messages to be distributed to LPAP partners across sev-
eral partner applications. If a UTM application has to exchange a very large
number of messages with a partner application then load distribution may be
improved by starting multiple instances of the partner application and distribut-
ing the messages across the individual instances. In an LPAP bundle, openUTM
is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The
slave LPAPs are assigned to the master LPAP on UTM generation. LPAP bun-
dles exist for both the OSI TP protocol and the LU6.1 protocol.

LPAP partner
In the case of distributed processing via the LU6.1 protocol, an LPAP partner for
each partner application must be configured in the local application. The LPAP
partner represents the partner application in the local application. During com-
munication, the partner application is addressed by the name of the assigned
LPAP partner and not by the application name or address.

LTERM bundle
An LTERM bundle (connection bundle) consists of a master LTERM and multi-
ple slave LTERMs. An LTERM bundle (connection bundle) allows you to distrib-
ute queued messages to a logical partner application evenly across multiple
parallel connections.

Glossary

Programming Applications with KDCS 621

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

LTERM group
An LTERM group consists of one or more alias LTERMs, the group LTERMs
and a primary LTERM. In an LTERM group, you assign multiple LTERMs to a
connection.

LTERM partner
LTERM partners must be configured in the application if you want to connect cli-
ents or printers to a UTM application. A client or printer can only be connected if
an LTERM partner with the appropriate properties is assigned to it. This assign-
ment is generally made in the configuration, but can also be made dynamically
using terminal pools.

LTERM pool
The TPOOL statement allows you to define a pool of LTERM partners instead
of issuing one LTERM and one PTERM statement for each client. If a client
establishes a connection via an LTERM pool, an LTERM partner is assigned to
it dynamically from the pool.

LU6.1
Device-independent data exchange protocol (industrial standard) for transac-
tion-oriented server-server communication.

LU6.1-LPAP bundle
LPAP bundle for LU6.1 partner applications.

LU6.1 partner
Partner of the UTM application that communicates with the UTM application via
the LU6.1 protocol.
Examples of this type of partner are:
– a UTM application that communicates via LU6.1
– an application in the IBM environment (e.g. CICS, IMS or TXSeries) that

communicates via LU6.1

main process (Unix systems / Windows systems)
Process which starts the UTM application. It starts the work processes, the UTM
system processes, printer processes, network processes, logging process and the timer
process and monitors the UTM application.

main routine KDCROOT
See KDCROOT.

management unit
SE Servers component; in combination with the SE Manager, permits centralized,
web-based management of all the units of an SE server.

Glossary

622 Programming Applications with KDCS

mapped host name
Mapping of the UTM host name to a real host name or vice versa.

message definition file
The message definition file is supplied with openUTM and, by default, contains
the UTM message texts in German and English together with the definitions of
the message properties. Users can take this file as a basis for their own mes-
sage modules.

message destination
Output medium for a message. Possible message destinations for a message
from the openUTM transaction monitor include, for instance, terminals, TS appli-
cations, the event service MSGTAC, the system log file SYSLOG or TAC queues,
asynchronous TACs, USER queues, SYSOUT/SYSLST or stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/
SYSLST and stderr/stdout.

message queue
Queue in which specific messages are kept with transaction management until
further processed. A distinction is drawn between service-controlled queues and
UTM-controlled queues, depending on who monitors further processing.

message queuing
Message queuing (MQ) is a form of communication in which the messages are
exchanged via intermediate queues rather than directly. The sender and recip-
ient can be separated in space or time. The transfer of the message is indepen-
dent of whether a network connection is available at the time or not. In
openUTM there are UTM-controlled queues and service-controlled queues.

MSGTAC
Special event service that processes messages with the message destination
MSGTAC by means of a program. MSGTAC is an asynchronous service and is
created by the operator of the application.

multiplex connection (BS2000 systems)
Special method offered by OMNIS to connect terminals to a UTM application. A
multiplex connection enables several terminals to share a single transport con-
nection.

multi-step service (KDCS)
Service carried out in a number of dialog steps.

multi-step transaction
Transaction which comprises more than one processing step.

Glossary

Programming Applications with KDCS 623

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

Network File System/Service / NFS
Allows Unix systems to access file systems across the network.

network process (Unix systems / Windows systems)
A process in a UTM application for connection to the network.

network selector
The network selector identifies a service access point to the network layer of the
OSI reference model in the local system.

node
Individual computer of a cluster.

node application
UTM application that is executed on an individual node as part of a UTM cluster
application.

node bound service
A node bound service belonging to a user can only be continued at the node
application at which the user was last signed on. The following services are
always node bound:
– Services that have started communications with a job receiver via LU6.1 or

OSI TP and for which the job-receiving service has not yet been terminated
– Inserted services in a service stack
– Services that have completed a SESAM transaction
In addition, a user’s service is node bound as long as the user is signed-on at
a node application.

node filebase
Filename prefix or directory name for the node application's KDCFILE, user log
file and system log file.

node recovery
If a node application terminates abnormally and no rapid warm start of the appli-
cation is possible on its associated node computer then it is possible to perform
a node recovery for this node on another node in the UTM cluster. In this way,
it is possible to release locks resulting from the failed node application in order
to prevent unnecessary impairments to the running UTM cluster application.

normal termination of a UTM application
Controlled termination of a UTM application. Among other things, this means
that the administration data in the KDCFILE are updated. The administrator ini-
tiates normal termination (e.g. with KDCSHUT N). After a normal termination,
openUTM carries out any subsequent start as a cold start.

Glossary

624 Programming Applications with KDCS

object identifier
An object identifier is an identifier for objects in an OSI environment which is
unique throughout the world. An object identifier comprises a sequence of inte-
gers which represent a path in a tree structure.

OMNIS (BS2000 systems)
OMNIS is a “session manager” which lets you set up connections from one ter-
minal to a number of partners in a network concurrently OMNIS also allows you
to work with multiplex connections.

online import
In a UTM cluster application, online import refers to the import of application data
from a normally terminated node application into a running node application.

online update
In a UTM cluster application, online update refers to a change to the application
configuration or the application program or the use of a new UTM revision level
while a UTM cluster application is running.

open terminal pool
Terminal pool which is not restricted to clients of a single computer or particular
type. Any client for which no computer- or type-specific terminal pool has been
generated can connect to this terminal pool.

OpenCPIC
Carrier system for UTM clients that use the OSI TP protocol.

OpenCPIC client
OSI TP partner application with the OpenCPIC carrier system.

openSM2
The openSM2 product line offers a consistent solution for the enterprise-wide
performance management of server and storage systems. openSM2 offers the
acquisition of monitoring data, online monitoring and offline evaluation.

openUTM application
See UTM application.

openUTM cluster
From the perspective of UPIC clients, not from the perspective of the server:
Combination of several node applications of a UTM cluster application to form
one logical application that is addressed via a common symbolic destination
name.

Glossary

Programming Applications with KDCS 625

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

openUTM-D
openUTM-D (openUTM distributed) is a component of openUTM which allows
distributed processing. openUTM-D is an integral component of openUTM.

OSI-LPAP bundle
LPAP bundle for OSI TP partner applications.

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI TP partners generated in
openUTM. In the case of distributed processing via the OSI TP protocol, an OSI-
LPAP partner for each partner application must be configured in the local appli-
cation. The OSI-LPAP partner represents the partner application in the local
application. During communication, the partner application is addressed by the
name of the assigned OSI-LPAP partner and not by the application name or
address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization,
described this model in the ISO IS7498 standard. The OSI reference model
divides the necessary functions for system communication into seven logical
layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP
Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner
Partner of the UTM application that communicates with the UTM application via
the OSI TP protocol.
Examples of such partners are:
– a UTM application that communicates via OSI TP
– an application in the IBM environment (e.g. CICS) that is connected via

openUTM-LU62
– an application of the OpenCPIC carrier system of the openUTM client
– applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)
See outgoing conversation.

outgoing conversation (CPI-C)
A conversation in which the local CPI-C program is the initiator is referred to as
an outgoing conversation. In the X/Open specification, the term “outbound con-
versation” is used synonymously with “outgoing conversation”.

Glossary

626 Programming Applications with KDCS

page pool
Part of the KDCFILE in which user data is stored.
In a standalone application this data consists, for example, of dialog messages,
messages sent to message queues, secondary memory areas.
In a UTM cluster application, it consists, for example, of messages to message
queues, TLS.

parameter area
Data structure in which a program unit passes the operands required for a UTM
call to openUTM.

partner application
Partner of a UTM application during distributed processing. Higher communica-
tion protocols are used for distributed processing (LU6.1, OSI TP or LU6.2 via
the openUTM-LU62 gateway).

postselection (BS2000 systems)
Selection of logged UTM events from the SAT logging file which are to be eval-
uated. Selection is carried out using the SATUT tool.

prepare to commit (PTC)
Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system
waits for the partner to confirm the end of the transaction.

preselection (BS2000 systems)
Definition of the UTM events which are to be logged for the SAT audit. Preselec-
tion is carried out with the UTM-SAT administration functions. A distinction is
made between event-specific, user-specific and job-specific (TAC-specific) pre-
selection.

presentation selector
The presentation selector identifies a service access point to the presentation
layer of the OSI reference model in the local system.

primary storage area
Area in main memory to which the KDCS program unit has direct access, e.g.
standard primary working area, communication area.

print administration
Functions for print control and the administration of queued output jobs, sent to a
printer.

Glossary

Programming Applications with KDCS 627

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

print control
openUTM functions for controlling print output.

printer control LTERM
A printer control LTERM allows a client or terminal user to connect to a UTM
application. The printers assigned to the printer control LTERM can then be
administered from the client program or the terminal. No administration rights
are required for these functions.

printer control terminal
This term has been superseded by printer control LTERM.

printer group (Unix systems)
For each printer, a Unix system sets up one printer group by default that con-
tains this one printer only. It is also possible to assign several printers to one
printer group or to assign one printer to several different printer groups.

printer pool
Several printers assigned to the same LTERM partner.

printer process (Unix systems)
Process set up by the main process for outputting asynchronous messages to a
printer group. The process exists as long as the printer group is connected to the
UTM application. One printer process exists for each connected printer group.

process
The openUTM manuals use the term “process” as a collective term for pro-
cesses (Unix systems / Windows systems) and tasks (BS2000 systems).

processing step
A processing step starts with the receipt of a dialog message sent to the UTM
application by a client or another server application. The processing step ends
either when a response is sent, thus also terminating the dialog step, or when a
dialog message is sent to a third party.

program interface for administration
UTM program interface which helps users to create their own administration pro-
grams. Among other things, the program interface for administration provides
functions for dynamic configuration, for modifying properties and application
parameters and for querying information on the configuration and the current
workload of the application.

Glossary

628 Programming Applications with KDCS

program space (BS2000 systems)
Virtual address space of BS2000 which is divided into memory classes and in
which both executable programs and pure data are addressed.

program unit
UTM services are implemented in the form of one or more program units. The
program units are components of the application program. Depending on the
employed API, they may have to contain KDCS, XATMI or CPIC calls. They can
be addressed using transaction codes. Several different transaction codes can
be assigned to a single program unit.

queue
See message queue.

queued output job
Queued output jobs are asynchronous jobs which output a message, such as a
document, to a printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it
is not necessary to create program units to process them.

Quick Start Kit
A sample application supplied with openUTM (Windows systems).

redelivery
Repeated delivery of an asynchronous message that could not be processed cor-
rectly because, for example, the transaction was rolled back or the asynchronous
service was terminated abnormally. The message is returned to the message
queue and can then be read and/or processed again.

reentrant program
Program whose code is not altered when it runs. On BS2000 systems this con-
stitutes a prerequisite for using shared code.

request
Request from a client or another server for a service function.

requestor
In XATMI, the term requestor refers to an application which calls a service.

resource manager
Resource managers (RMs) manage data resources. Database systems are
examples of resource managers. openUTM, however, also provides its own
resource managers for accessing message queues, local memory areas and

Glossary

Programming Applications with KDCS 629

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

logging files, for instance. Applications access RMs via special resource man-
ager interfaces. In the case of database systems, this will generally be SQL and
in the case of openUTM RMs, it is the KDCS interface.

restart
See screen restart,
see service restart.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to
the TCP/IP family that implements the ISO transport services (transport
class 0) based on TCP/IP.

RSA
Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir
and Adleman). This method uses a pair of keys that consists of a public key and
a private key. A message is encrypted using the public key, and this message
can only be decrypted using the private key. The pair of RSA keys is created by
the UTM application.

SAT audit (BS2000 systems)
Audit carried out by the SAT (Security Audit Trail) component of the BS2000
software product SECOS.

screen restart
If a dialog service is interrupted, openUTM again displays the dialog message of
the last completed transaction on screen when the service restarts provided that
the last transaction output a message on the screen.

SE manager
Web-based graphical user interface (GUI) for the SE series of Business
Servers. SE Manager runs on the management unit and permits the central
operation and administration of server units (with /390 architecture and/or x86
architecture), application units (x86 architecture), net unit and peripherals.

SE server
A Business Server from Fujitsu's SE series.

secondary storage area
Memory area secured by transaction logging and which can be accessed by the
KDCS program unit with special calls. Local secondary storage areas (LSSBs)
are assigned to one service. Global secondary storage areas (GSSBs) can be

Glossary

630 Programming Applications with KDCS

accessed by all services in a UTM application. Other secondary storage areas
include the terminal-specific long-term storage (TLS) and the user-specific long-term
storage (ULS).

selector
A selector identifies a service access point to services of one of the layers of the
OSI reference model in the local system. Each selector is part of the address of
the access point.

semaphore (Unix systems / Windows systems)
Unix systems and Windows systems resource used to control and synchronize
processes.

server
A server is an application which provides services. The computer on which the
applications are running is often also referred to as the server.

server-server communication
See distributed processing.

server side of a conversation (CPI-C)
This term has been superseded by acceptor.

service
Services process the jobs that are sent to a server application. A service of a
UTM application comprises one or more transactions. The service is called with
the service TAC. Services can be requested by clients or by other servers.

service access point
In the OSI reference model, a layer has access to the services of the layer
below at the service access point. In the local system, the service access point
is identified by a selector. During communication, the UTM application links up to
a service access point. A connection is established between two service access
points.

service chaining (KDCS)
When service chaining is used, a follow-up service is started without a dialog
message specification after a dialog service has completed .

service-controlled queue
Message queue in which the calling and further processing of messages is con-
trolled by services. A service must explicitly issue a KDCS call (DGET) to read
the message. There are service-controlled queues in openUTM in the variants
USER queue, TAC queue and temporary queue.

Glossary

Programming Applications with KDCS 631

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

service restart (KDCS)
If a service is interrupted, e.g. as a result of a terminal user signing off or a UTM
application being terminated, openUTM carries out a service restart. An asynchro-
nous service is restarted or execution is continued at the most recent synchroni-
zation point, and a dialog service continues execution at the most recent synchro-
nization point. As far as the terminal user is concerned, the service restart for a
dialog service appears as a screen restart provided that a dialog message was
sent to the terminal user at the last synchronization point.

service routine
See program unit.

service stacking (KDCS)
A terminal user can interrupt a running dialog service and insert a new dialog ser-
vice. When the inserted service has completed, the interrupted service contin-
ues.

service TAC (KDCS)
Transaction code used to start a service.

session
Communication relationship between two addressable units in the network via
the SNA protocol LU6.1.

session selector
The session selector identifies an access point in the local system to the services
of the session layer of the OSI reference model.

shared code (BS2000 systems)
Code which can be shared by several different processes.

shared memory
Virtual memory area which can be accessed by several different processes
simultaneously.

shared objects (Unix systems / Windows systems)
Parts of the application program can be created as shared objects. These objects
are linked to the application dynamically and can be replaced during live oper-
ation. Shared objects are defined with the KDCDEF statement SHARED-
OBJECT.

sign-on check
See system access control.

Glossary

632 Programming Applications with KDCS

sign-on service (KDCS)
Special dialog service for a user in which program units control how a user signs
on to a UTM application.

single-step service
Dialog service which encompasses precisely one dialog step.

single-step transaction
Transaction which encompasses precisely one dialog step.

SOA
(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the
form of re-usable, technically independent, loosely coupled services. Services
can be called independently of the underlying implementations via interfaces
which may possess public and, consequently, trusted specifications. Service
interaction is performed via a communication infrastructure made available for
this purpose.

SOAP
SOAP (Simple Object Access Protocol) is a protocol used to exchange data
between systems and run remote procedure calls. SOAP also makes use of the
services provided by other standards, XML for the representation of the data
and Internet transport and application layer protocols for message transfer.

socket connection
Transport system connection that uses the socket interface. The socket inter-
face is a standard program interface for communication via TCP/IP.

standalone application
See standalone UTM application.

standalone UTM application
Traditional UTM application that is not part of a UTM cluster application.

standard primary working area (KDCS)
Area in main memory available to all KDCS program units. The contents of the
area are either undefined or occupied with a fill character when the program unit
starts execution.

start format
Format output to a terminal by openUTM when a user has successfully signed
on to a UTM application (except after a service restart and during sign-on via the
sign-on service).

Glossary

Programming Applications with KDCS 633

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

static configuration
Definition of the configuration during generation using the UTM tool KDCDEF.

SYSLOG file
See system log file.

synchronization point, consistency point
The end of a transaction. At this time, all the changes made to the application
information during the transaction are saved to prevent loss in the event of a
crash and are made visible to others. Any locks set during the transaction are
released.

system access control
A check carried out by openUTM to determine whether a certain user ID is
authorized to work with the UTM application. The authorization check is not car-
ried out if the UTM application was generated without user IDs.

system log file
File or file generation to which openUTM logs all UTM messages for which
SYSLOG has been defined as the message destination during execution of a UTM
application.

TAC
See transaction code.

TAC queue
Message queue generated explicitly by means of a KDCDEF statement. A TAC
queue is a service-controlled queue that can be addressed from any service using
the generated name.

temporary queue
Message queue created dynamically by means of a program that can be deleted
again by means of a program (see service-controlled queue).

terminal-specific long-term storage (KDCS)
Secondary storage area assigned to an LTERM, LPAP or OSI-PAP partner and
which is retained after the application has terminated.

time-driven job
Job which is buffered by openUTM in a message queue up to a specific time until
it is sent to the recipient. The recipient can be an asynchronous service of the
same application, a TAC queue, a partner application, a terminal or a printer.
Time-driven jobs can only be issued by KDCS program units.

Glossary

634 Programming Applications with KDCS

timer process (Unix systems / Windows systems)
Process which accepts jobs for controlling the time at which work processes are
executed. It does this by entering them in a job list and releasing them for pro-
cessing after a time period defined in the job list has elapsed.

TNS (Unix systems / Windows systems)
Abbreviation for the Transport Name Service. TNS assigns a transport selector
and a transport system to an application name. The application can be reached
through the transport system.

Tomcat
see Apache Tomcat

transaction
Processing section within a service for which adherence to the ACID properties
is guaranteed. If, during the course of a transaction, changes are made to the
application information, they are either made consistently and in their entirety or
not at all (all-or-nothing rule). The end of the transaction forms a synchronization
point.

transaction code/TAC
Name which can be used to identify a program unit. The transaction code is
assigned to the program unit during static or dynamic configuration. It is also pos-
sible to assign more than one transaction code to a program unit.

transaction rate
Number of transactions successfully executed per unit of time.

transfer syntax
With OSI TP, the data to be transferred between two computer systems is con-
verted from the local format into transfer syntax. Transfer syntax describes the
data in a neutral format which can be interpreted by all the partners involved.
An Object Identifier must be assigned to each transfer syntax.

transport selector
The transport selector identifies a service access point to the transport layer of
the OSI reference model in the local system.

transport system application
Application which is based directly on a transport system interface (e.g. CMX,
DCAM or socket). When transport system applications are connected, the part-
ner type APPLI or SOCKET must be specified during configuration. A transport
system application cannot be integrated in a distributed transaction.

Glossary

Programming Applications with KDCS 635

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

TS application
See transport system application.

typed buffer (XATMI)
Buffer for exchanging typed and structured data between communication part-
ners. Typed buffers ensure that the structure of the exchanged data is known to
both partners implicitly.

UPIC
Carrier system for openUTM clients. UPIC stands for Universal Programming
Interface for Communication.

UPIC Analyzer
Component used to analyze the UPIC communication recorded with UPIC
Capture. This step is used to prepare the recording for playback using UPIC
Replay.

UPIC Capture
Used to record communication between UPIC clients and UTM applications so
that this can be replayed subsequently (UPIC Replay).

UPIC client
The designation for openUTM clients with the UPIC carrier system.

UPIC Replay
Component used to replay the UPIC communication recorded with UPIC
Capture and prepared with UPIC Analyzer.

user exit
This term has been superseded by event exit.

user ID
Identifier for a user defined in the configuration for the UTM application (with an
optional password for system access control) and to whom special data access
rights (system access control) have been assigned. A terminal user must specify
this ID (and any password which has been assigned) when signing on to the
UTM application. On BS2000 systems, system access control is also possible
via Kerberos.
For other clients, the specification of a user ID is optional, see also connection
user ID.
UTM applications can also be generated without user IDs.

Glossary

636 Programming Applications with KDCS

user log file
File or file generation to which users write variable-length records with the
KDCS LPUT call. The data from the KB header of the KDCS communication area
is prefixed to every record. The user log file is subject to transaction manage-
ment by openUTM.

USER queue
Message queue made available to every user ID by openUTM. A USER queue is
a service-controlled queue and is always assigned to the relevant user ID. You
can restrict the access of other UTM users to your own USER queue.

user-specific long-term storage
Secondary storage area assigned to a user ID, a session or an association and which
is retained after the application has terminated.

USLOG file
See user log file.

UTM application
A UTM application provides services which process jobs from clients or other
applications. openUTM is responsible for transaction logging and for managing
the communication and system resources. From a technical point of view, a
UTM application is a process group which forms a logical server unit at runtime.

UTM cluster application
UTM application that has been generated for use on a cluster and that can be
viewed logically as a single application.
In physical terms, a UTM cluster application is made up of several identically
generated UTM applications running on the individual cluster nodes.

UTM cluster files
Blanket term for all the files that are required for the execution of a UTM cluster
application. This includes the following files:
– Cluster configuration file
– Cluster user file
– Files belonging to the cluster page pool
– Cluster GSSB file
– Cluster ULS file
– Files belonging to the cluster administration journal*
– Cluster lock file*
– Lock file for start serialization* (only in Unix systems and Windows systems)
The files indicated by * are created when the first node application is started. All
the other files are created on generation using KDCDEF.

Glossary

Programming Applications with KDCS 637

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

UTM-controlled queue
Message queues in which the calling and further processing of messages is
entirely under the control of openUTM. See also asynchronous job, background job
and asynchronous message.

UTM-D
See openUTM-D.

UTM-F
UTM applications can be generated as UTM-F applications (UTM fast). In the
case of UTM-F applications, input from and output to hard disk is avoided in
order to increase performance. This affects input and output which UTM-S uses
to save user data and transaction data. Only changes to the administration data
are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-
MODE=FAST), application data that is valid throughout the cluster is also
saved. In this case, GSSB and ULS data is treated in exactly the same way as
in UTM cluster applications generated with UTM-S. However, service data relat-
ing to users with RESTART=YES is written only when the relevant user signs
off and not at the end of each transaction.

UTM generation
Static configuration of a UTM application using the UTM tool KDCDEF and cre-
ation of an application program.

UTM message
Messages are issued to UTM message destinations by the openUTM transaction
monitor or by UTM tools (such as KDCDEF). A message comprises a message
number and a message text, which can contain inserts with current values.
Depending on the message destination, either the entire message is output or
only certain parts of the message, such as the inserts).

UTM page
A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone
UTM applications, the size of a UTM page on generation of the UTM application
can be set to 2K, 4K or 8 K. The size of a UTM page in a UTM cluster application
is always 4K or 8 K. The page pool and the restart area for the KDCFILE and
UTM cluster files are divided into units of the size of a UTM page.

Glossary

638 Programming Applications with KDCS

utmpath (Unix systems / Windows systems)
The directory under which the openUTM components are installed is referred to
as utmpath in this manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH
must be set to the value of utmpath. On Unix and Linux systems, you must set
UTMPATH before a UTM application is started. On Windows systems UTM-
PATH is set in accordance with the UTM version installed most recently.

UTM-S
In the case of UTM-S applications, openUTM saves all user data as well as the
administration data beyond the end of an application and any system crash
which may occur. In addition, UTM-S guarantees the security and consistency
of the application data in the event of any malfunction. UTM applications are
usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)
UTM-SAT administration functions control which UTM events relevant to secu-
rity which occur during operation of a UTM application are to be logged by SAT.
Special authorization is required for UTM-SAT administration.

UTM system process
UTM process that is started in addition to the processes specified via the start
parameters and which only handles selected jobs. UTM system processes
ensure that UTM applications continue to be reactive even under very high
loads.

UTM terminal
This term has been superseded by LTERM partner.

virtual connection
Assignment of two communication partners.

warm start
Start of a UTM-S application after it has terminated abnormally. The application
information is reset to the most recent consistent state. Interrupted dialog ser-
vices are rolled back to the most recent synchronization point, allowing processing

Glossary

Programming Applications with KDCS 639

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

1
6

 S
ta

nd
 1

2:
58

.0
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.4
_1

60
1

20
0

\0
2_

K
D

C
S

\e
n\

kp
ro

g_
e

.m
ix

to be resumed in a consistent state from this point (service restart). Interrupted
asynchronous services are rolled back and restarted or restarted at the most
recent synchronization point.
For UTM-F applications, only configuration data which has been dynamically
changed is rolled back to the most recent consistent state after a restart due to
a preceding abnormal termination.
In UTM cluster applications, th e global locks applied to GSSB and ULS on
abnormal termination of this node application are released. In addition, users
who were signed on at this node application when the abnormal termination
occurred are signed off.

WebAdmin
Web-based tool for the administration of openUTM applications via a Web
browser. WebAdmin includes not only the full function scope of the adminis-
tration program interface but also additional functions.

Web service
Application which runs on a Web server and is (publicly) available via a stan-
dardized, programmable interface. Web services technology makes it possible
to make UTM program units available for modern Web client applications inde-
pendently of the programming language in which they were developed.

WinAdmin
Java-based tool for the administration of openUTM applications via a graphical
user interface. WinAdmin includes not only the full function scope of the admin-
istration program interface but also additional functions.

work process (Unix systems / Windows systems)
A process within which the services of a UTM application run.

workload capture & replay
Family of programs used to simulate load situations; consisting of the main
components UPIC Capture, UPIC Analyzer and Upic Replay and - on Unix, Linux
and Windows systems - the utility program kdcsort. Workload Capture & Replay
can be used to record UPIC sessions with UTM applications, analyze these and
then play them back with modified load parameters.

WS4UTM
WS4UTM (WebServices for openUTM) provides you with a convenient way of
making a service of a UTM application available as a Web service.

Glossary

640 Programming Applications with KDCS

XATMI
XATMI (X/Open Application Transaction Manager Interface) is a program inter-
face standardized by X/Open for program-program communication in open net-
works.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI
CAE Specification. The interface is available in COBOL and C. In openUTM,
XATMI can communicate via the OSI TP, LU6.1 and UPIC protocols.

XHCS (BS2000 systems)
XHCS (Extended Host Code Support) is a BS2000 software product providing
support for international character sets.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by the
W3C (WWW Consortium) in which the interchange formats for data and the
associated information can be defined.

Programming Applications with KDCS 641

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
ul

i 2
0

16

S
ta

nd
 1

2:
58

.0
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
ab

k

Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used
in the original German product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000 systems)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix, Linux and Windows Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000 systems)

DB Database

DC Data Communication

DCAM Data Communication Access Method

Abbreviations

642 Programming Applications with KDCS

DES Data Encryption Standard

DLM Distributed Lock Manager (BS2000 systems)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000 systems)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000 systems)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

Abbreviations

Programming Applications with KDCS 643

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
ul

i 2
0

16

S
ta

nd
 1

2:
58

.0
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
ab

k

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000 systems)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000 systems)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000 systems)

RTS Runtime System

SAT Security Audit Trail (BS2000 systems)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

Abbreviations

644 Programming Applications with KDCS

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 systems (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 systems (Task User)

TX Transaction Demarcation (X/Open)

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000 systems

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

Abbreviations

Programming Applications with KDCS 645

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7

. J
ul

i 2
0

16

S
ta

nd
 1

2:
58

.0
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.4
_1

60
12

0
0\

02
_K

D
C

S
\e

n\
kp

ro
g_

e.
ab

k

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Process-
ing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

Abbreviations

646 Programming Applications with KDCS

Programming Applications with KDCS 647

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

16

S
ta

nd
 1

2:
58

.0
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.4

_1
60

1
20

0\
02

_
K

D
C

S
\e

n\
kp

ro
g_

e
.li

t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

i PDF files of all openUTM manuals are included on the openUTM Enterprise DVD
with open platforms and on the openUTM WinAdmin DVD (for BS2000 systems).

openUTM documentation

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Using openUTM Applications on BS2000 Systems
User Guide

openUTM
Using openUTM Applications on Unix, Linux and Windows Systems
User Guide

openUTM
Administering Applications
User Guide

openUTM
Messages, Debugging and Diagnostics on BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com

Related publications

648 Programming Applications with KDCS

openUTM
Messages, Debugging and Diagnostics on Unix, Linux and Windows Systems
User Guide

openUTM
Creating Applications with X/Open Interfaces
User Guide

openUTM
XML for openUTM

openUTM Client (Unix systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

Related publications

Programming Applications with KDCS 649

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

16

S
ta

nd
 1

2:
58

.0
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.4

_1
60

1
20

0\
02

_
K

D
C

S
\e

n\
kp

ro
g_

e
.li

t

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

openUTM
Master Index

Related publications

650 Programming Applications with KDCS

Documentation for the openSEAS product environment

BeanConnect
User Guide

JConnect
Connecting Java Clients to openUTM
User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Related publications

Programming Applications with KDCS 651

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

16

S
ta

nd
 1

2:
58

.0
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.4

_1
60

1
20

0\
02

_
K

D
C

S
\e

n\
kp

ro
g_

e
.li

t

Documentation for the BS2000 environment

AID
Advanced Interactive Debugger
Core Manual
User Guide

AID
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

AID
Advanced Interactive Debugger
Debugging of C/C++ Programs
User Guide

BCAM
BCAM Volume 1/2
User Guide

BINDER
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BLSSERV
Dynamic Binder Loader / Starter in BS2000/OSD
User Guide

DCAM
COBOL Calls
User Guide

DCAM
Macros
User Guide

DCAM
Program Interfaces
Description

Related publications

652 Programming Applications with KDCS

FHS
Format Handling System for openUTM, TIAM, DCAM
User Guide

IFG for FHS
User Guide

HIPLEX AF
High-Availability of Applications in BS2000/OSD
Product Manual

HIPLEX MSCF
BS2000 Processor Networks
User Guide

IMON
Installation Monitor
User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU
Functions and Commands
User Guide

OMNIS/OMNIS-MENU
Administration and Programming
User Guide

OSS (BS2000)
OSI Session Service
User Guide

RSO
Remote SPOOL Output
User Guide

SECOS
Security Control System
User Guide

Related publications

Programming Applications with KDCS 653

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

16

S
ta

nd
 1

2:
58

.0
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.4

_1
60

1
20

0\
02

_
K

D
C

S
\e

n\
kp

ro
g_

e
.li

t

SECOS
Security Control System
Ready Reference

SESAM/SQL
Database Operation
User Guide

openSM2
Software Monitor
Volume 1: Administration and Operation

TIAM
User Guide

UDS/SQL
Database Operation
User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support
User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD
User Guide

Related publications

654 Programming Applications with KDCS

Documentation for the Unix, Linux and Windows system environment

CMX V6.0 (Unix systems)
Betrieb und Administration (only available in German)
User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2
The documentation of openSM2 is provided in the form of detailed online help systems,
which are delivered with the product.

Related publications

Programming Applications with KDCS 655

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
7.

 J
ul

y
20

16

S
ta

nd
 1

2:
58

.0
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.4

_1
60

1
20

0\
02

_
K

D
C

S
\e

n\
kp

ro
g_

e
.li

t

Other publications

XCPI-C (X/Open)
Distributed Transaction Processing
X/Open CAE Specification, Version 2
ISBN 1 85912 135 7

Reference Model Version 2 (X/Open)
Distributed Transaction Processing
X/Open Guide
ISBN 1 85912 019 9

TX (Transaction Demarcation) (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 094 6

XTAMI (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)
Web page: http://www.w3.org/XML

FUJITSU Software BS2000 BS2IDE
Eclipse-based Integrated Development Environment for BS2000
Web page: https://bs2000.ts.fujitsu.com/bs2ide/

http://www.w3.org/XML
https://bs2000.ts.fujitsu.com/bs2ide/

Related publications

656 Programming Applications with KDCS

Programming Applications with KDCS 657

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
Ju

ly
 2

0
16

 S
ta

nd
 1

3:
01

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

02
_K

D
C

S
\e

n
\k

pr
og

_
e.

si
x

Index

-format 106
*format 106
#format 106
+format 106
$LANG

read with INFO LO 292

A
abort dialogue 216
abstract syntax 356
address assistant 500
addressing 122, 206

asynchronous service 122, 206
dialog service 122, 206
double-step 122, 206
single-step 122, 206

addressing aid 548
administration

asynchronous 469
asynchronous jobs 224
message queue 95
printers and printouts 362

administration journal 610
ANNOAMSG 278
appl_info 312
application name

reading by event exit 443
request 294

application program 30
application start 283
applnm 314
APRO 122, 206

C/C++ example 506
COBOL example 563

AREA 87
C/C++ 483
COBOL 538

as_day 289
as_doy 289
as_dt_day 312
as_dt_doy 313
as_dt_month 312
as_dt_year 312
as_hour 289
as_min 289
as_mon 289
as_season 313
as_sec 289
as_tm_hour 313
as_tm_minute 313
as_tm_second 313
as_year 289
ASN1 compiler 356
ASSOCIATION name 309
asynchronous administration 469
asynchronous job 50, 191

generate 269
in distributed processing 191
parallel 262
to remote dialog service 193

asynchronous message 50
read 263
write 241
writing 269

asynchronous processing 50
asynchronous program unit 53

Index

658 Programming Applications with KDCS

asynchronous service 34
addressing 206
issuing jobs 57
multiple program units 56
structure 53

ATAC job, see background job
auto 39
automatic screen restart 119
availability of card reader 98

B
background job 52, 241
BADTACS 442, 466, 582

C/C++ example 523
COBOL example 582

basic format 109
basic functions (OSI TP) 150, 209
basic job 58, 255
bcapnm 314
BEGIN WORK 103
BINDER 499
bottom-up strategy 137
browse in message queue 64

DGET call 230
byte stream 196

C
C/C++ 479

BS2000 specific characteristics 499
data structures 488
error handling 497
example 502
Unix and Linux system specific

characteristics 501
Windows specific characteristics 501

C/C++ macro 491
names 492
parameters 492
statement follow-up 496

C++ program unit
compile 499

ca_hdr 306
field names 597

ca_rti
field names 598

card identifier 307
card information

read 288
card reader 97, 98

data input 98
CCSN 315
chained transactions 148
chaining services 47
change

format 108
password 412

character array 492
character set 315
checking availability 98
client protocol

indicator 307
client_enclev 317
cluster administration journal 610
COBOL 535

BS2000 specific features 546
example 557
KDCS call 544
Unix adn Linux system specific features 550

code conversion 601
socket applications 601

command section
C/C++ 490
COBOL 543

commit 148
commit functions (OSI TP) 209
COMMIT WORK 103
communication area 80, 306

C/C++ 482
field names 597

communication partner 92
complex ID 58
confirmation 348

handshake 148
confirmation job 58

creating 255
connecting

with database systems 100

Index

Programming Applications with KDCS 659

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
Ju

ly
 2

0
16

 S
ta

nd
 1

3:
01

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

02
_K

D
C

S
\e

n
\k

pr
og

_
e.

si
x

control code 116
control field 110, 448
conv_enclev 318
conversion tables 601
conversion, lowercase letter 341
convtac_enclev 318
CTRL 216
curr_ccs 315
cursor 105

positioning 107

D
DADM 221
data declaration 482
data structure

C/C++ 488
COBOL 541
version number 312, 420

data that is local to the node 74
data transfer phase 154
DATA-PERMITTED 148
DATABASE 100
database error 104
database system 99

connecting 100
coordinating multiple 99
error processing 104

database transaction 101
date and time 283

request 289
dattim_info 312
DB transaction 101
dead letter queue 62
DEBUG function

C/C++ 495
declaring areas

C/C++ 483
COBOL 538

delete
secondary storage area 433
temporary queue 399

destructor 490
dev_cap 315
DGET 230

dialog
distributed 124
LU6.1 (example) 143
OSI TP (example) 164
via LU6.1 132
via OSI TP 147

dialog confirmation (OSI TP) 348
dialog message

read 330
write 347

dialog program unit
structure 37

dialog service
structure 40

dialog step 32
dialogue (OSI TP) 147
different field names 596
DIN 66 265 202
distributed processing 121

asynchronous message 191
controlling communication 124
dialog message 124
LU6.1 (example) 143
MGET 344
OSI TP (example) 164
via LU6.1 132
via OSI TP 147

documentation
summary 14

double-step addressing 206
DPUT 241

C/C++ example 504
COBOL example 560
influence of generation parameters 252
job complex 255
order of the calls 262
with distributed processing 253
without job complex 242

DPUTLIMIT1 252
DPUTLIMIT2 252
dynamic loading 532

Index

660 Programming Applications with KDCS

E
EDIT 117
edit profile 117
encv_info 312
end of service 154, 155

requesting 150
end of transaction 154, 155

requesting 150
endta 316
environment variable

COBOL on Unix and Linux systems 551
error

with connected database 104
error handling

after service restart 128
by program unit 125
programming (C/C++) 497
with connected database 104

error routine
programming 89

ESQL program unit 103
event exit

C/C++ 496
COBOL 545
FORMAT 455
INPUT 443
INPUT, C/C++ example 508
INPUT, COBOL example 564
SHUT 452
SHUT, C/C++ example 525
SHUT, COBOL example 578
START 451
START, C/C++ example 525
START, COBOL example 578
VORGANG 453

event functions 441
event service 466

BADTACS 466
BADTACS, C/C++ example 523
BADTACS, COBOL example 582
MSGTAC 467
MSGTAC, C/C++ example 511
MSGTAC, COBOL example 566
SIGNON 471

event-driven service see event service
exit 479
EXIT PROGRAM 535
external 39

F
FGET 263
FHS 106
field name

differences C/C++ - COBOL 596
fill character

communication area 81
SPAB 78

flag
message segment at socket 199

fork() 501
form 105
FORMAT 441, 455
format 105
format identifier 106
format name 456, 499, 547
format type 106
formatting control area 459
formatting system 106
formatting user area 458
formfeed 115
FORMIO area 114
FORMUSR area 114
FPUT 269

influence of generation parameters 278
with distributed processing 278

fuchn 315
fucom 315
fuhsh 315
functional unit 147

chained transactions 148
commit 148
dialogue 147
handshake 148
polarized control 147
recovery 149

fupol 315

Index

Programming Applications with KDCS 661

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
Ju

ly
 2

0
16

 S
ta

nd
 1

3:
01

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

02
_K

D
C

S
\e

n
\k

pr
og

_
e.

si
x

G
gen_nb_lth 312
gen_spab_lth 312
generation

C/C++ example 529
global secondary storage area, see GSSB
GSSB 83, 427

unlock 437
GTDA 279

H
handshake (OSI TP) 148, 209

confirmation 335
request 335

hardcopy mode 94
heterogeneous coupling via OSI TP 162
heuristic decision 153
hostm 314
HP-UX 13

I
ID card

signing on 97
ID card reader, see card reader
identifier of the communication partner 307
if_ver 312
if_version 420
IFG 499, 547
ILCS

event handling 464
indicator

client protocol 307
INFO 283
INFO CD 288
INFO CK 295
INFO DT 289
INFO LO 290, 292

BS2000 systems 290
Unix, Linux and Windows systems 292

INFO PC 293
INFO SI 294
information on rollback 307

information, request
INFO 283
INIT PU 299

INFORMIX 100
INIT 298

with distributed processing 309
INIT PU

structure of the message area 312, 420
initiate

program unit 298
INPUT 441, 443

C example 508
COBOL example 564
errors 450
generation notes 450
second parameter 448

input
partial formats 112

input messages
socket partners 196

input/output indicator 459
inputmsg_enclev 319
IUTMDB 99
ivariant 314
iversion 314

J
job

asynchronous 51
background 51
output 52

job complex 58, 255, 325
C/C++ example 505
COBOL example 561
define 325
MCOM 325

job ID 221
ascertain 229

JOB VARIABLE LINK 495
job-receiving service

INIT 309
MPUT 357
multiple 124

Index

662 Programming Applications with KDCS

job-submitting service
INIT 309
MPUT 357

K
K071 104
KB 306
KB header 80, 306

field names 597
KB program area 80, 306, 308

adjust size 298
maximum length 307

KB return area 80
field names 598

KB, see communication area
kc_pa

field names 599
KCACKCID 365
KCADAY 312, 420
KCADOY 313
KCAHOUR 313, 420
KCALARM 108
KCAMIN 313, 420
KCAMONTH 312, 420
KCAPCCSN 291
KCAPLANG 291, 292
KCAPNLSL 292
KCAPPL 312
KCAPPLNM 294, 314
kcapro.h 207, 488
KCAPROA 541
KCAPROC 207
KCAPTERR 291, 292
KCASEAS 313
KCASEC 313, 420
kcat.h 488
KCATC 541
KCAUSWEIS 307, 309
KCAUSWEIS field 98
KCAYEAR 312
KCBCAPNM 294, 314
KCBENID 306, 309
kcca.h 488
kccard 98, 307

KCCCSNO 291
kccf.h 448, 488
KCCFC 448, 541
KCCFCFLD 449
KCCFCREM 449
KCCFFLD 449
KCCFFNAM 449
KCCFLOFL 449
KCCFNOCF 449
KCCFREM 449
KCCFS 449
KCCLIENT 317
KCCLNODE 420
KCCNVTAC 318
KCCON 366
KCCONV 318
KCCP 307
KCCSCURR 315
kccv_day 306
kccv_doy 306
kccv_hour 306
kccv_minute 306
kccv_month 306
kccv_second 306
kccv_status 306
kccv_tac 306
kccv_year 306
kccv_year4 307
kcdad.h 222, 228, 488
KCDADC 222, 228, 541
KCDADPID 228
KCDAGDOY 228
KCDAGHR 228
KCDAGMIN 228
KCDAGSEC 228
KCDAGTIM 228
KCDAGUS 228
KCDANMSG 228
KCDAPMSG 228
KCDASDOY 228
KCDASHR 228
KCDASMIN 228
KCDASSEC 228
KCDASTIM 228

Index

Programming Applications with KDCS 663

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
Ju

ly
 2

0
16

 S
ta

nd
 1

3:
01

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

02
_K

D
C

S
\e

n
\k

pr
og

_
e.

si
x

KCDATAK 289
KCDATAS 289
KCDATE 312
KCDEFCCS 291
KCDEVCAP 315
kcdf.h 108, 488
KCDFC 108, 541
KCDPMSGS 366
KCDPUTID 365
KCDSTA 307
KCENCR 312, 317
KCENDTA 150, 316
KCERAS 108
KCFPMSGS 366
KCFUCHN 210, 315
KCFUCOM 210, 315
KCFUHSH 210, 315
KCFUPOL 210, 315
KCGENDOY 365
KCGENHR 365
KCGENMIN 365
KCGENSEC 365
KCGENTIM 365
KCGENUID 365
KCGNB 312
KCGPAB 312, 420
KCHOSTNM 294, 314
KCHSET1 291
KCHSTA 307
KCICCD 447
KCICFINF 446
KCICUT 447
KCICVST 446
KCICVTAC 446
KCIERRCD 447
KCIFCH 445
KCIFKEY 446
kcifn 445
KCIKKEY 446
KCILTERM 446
KCIMF 445
KCINCMD 447
kcinf.h 488
KCINFC 541

kcini.h 312, 420, 488
KCINIC 312, 420, 541
kcinp.h 488
KCINPC 541
KCINPMSG 319
KCINTAC 447
KCIUSER 446
KCIVAR 294, 314
KCIVER 294, 314
KCJHRAK 289
KCJHRAS 289
KCJHRVG 306
KCKBC 541
KCKBKOPF 306
KCKNZVG 306, 309
KCLANG 294
KCLKBPB 307
KCLOCALE 312
KCLOGTER 307, 309
kclpa 307
KCLSTSGN 420
KCLTCCSN 291
KCLTLANG 291, 292
KCLTNLSL 292
KCLTRMNM 366
KCLTTERR 291, 292
kcmac.h 489, 491
KCMINAK 289
KCMINAL 307
KCMINAS 289
KCMINVG 306
KCMISC 319
KCMONAK 289
KCMONAS 289
KCMONVG 306
kcmsg.h 489
KCMSGC 541
KCNEGMSG 365
KCNODF 108
KCNORPLY 219
KCOF1 150, 307
KCOPC 541
KCOSITP 312
kcpa.h 489

Index

664 Programming Applications with KDCS

KCPAC 542
field names 599

kcpad.h 365, 489
KCPADC 365, 542
kcpcv_state 133, 152
KCPCVTAC 293
KCPDAY 313
KCPDOY 313
KCPFN 293
KCPHOUR 313
KCPLDATE 293
KCPLDAY 293
KCPLDOY 293
KCPLHOUR 293
KCPLMIN 293
KCPLMON 293
KCPLSEC 293
KCPLTIME 293
KCPLYEAR 293
KCPMIN 313
KCPMONTH 313
KCPNXTAC 293
KCPOSMSG 365
kcpr_hour 307
kcpr_minute 307
kcpr_second 307
kcpr_tac 307
KCPRIND 307, 454
KCPRONM 294, 314
KCPRTCID 366
KCPRTMOD 366
KCPSEAS 313
KCPSEC 313
KCPSWORD 211
kcpta_state 133, 153
KCPTERM 317
KCPTRMNM 294, 314
KCPWDLTH 211
KCPWDTYP 211
KCPYEAR 313
KCQMODE 394
KCRCC 497
KCRCCC 89
KCRCDC 89

KCREPL 108
KCREPR 108
KCRESTRT 108, 119
KCRFELD

field names 598
KCRMGT 151, 335
KCRPSWRD 420
KCRPWMIN 420
KCRPWVAL 420
KCRQN 395
KCRSIGN1 472
KCRTAC 420
KCRUS 233
KCRUSER 420
KCRWVG 233
KCSECTYP 210
KCSEKAK 289
KCSEKAL 307
KCSEKAS 289
KCSEKVG 306
KCSEND 151, 316
KCSESS 318
KCSGRES 420
kcsgst.h 489
KCSGSTC 542
KCSTATE 366
KCSTDAK 289
KCSTDAL 307
KCSTDAS 289
KCSTDOY 365
KCSTDVG 306
KCSTHR 365
KCSTMIN 365
KCSTSEC 365
KCSTTIM 365
KCTACAL 307
KCTACVG 306
KCTAGAK 289
KCTAGAS 289
KCTAGVG 306
KCTAIND 307
KCTAPTC 420
KCTARB 307, 389
KCTAST 133

Index

Programming Applications with KDCS 665

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
Ju

ly
 2

0
16

 S
ta

nd
 1

3:
01

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

02
_K

D
C

S
\e

n
\k

pr
og

_
e.

si
x

KCTERMN 307, 309
KCTJHAK 289
KCTJHAS 289
KCTJHVG 306
KCTMZONE 313
KCUHRAK 289
KCUHRAS 289
KCUIDLTH 211
KCUIDTYP 211
KCUSCCSN 315
KCUSERID 211
kcuserid 306, 309
KCUSLANG 314
KCUSNLSL 315
KCUSTERR 314
KCVER 312, 420
KCVERS 210, 294, 314
KCVGST 133, 152, 153
KCYEARVG 307
KDCAPLI 443
KDCATTR 498
KDCDEF

C/C++ example 529
KDCDISP

internal 98
KDCDLETQ 62
KDCFOR 109
kdcinp.h 445
KDCINPC 445
KDCPADM 359
KDCROOT 30
KDCS 202

storage areas 74
KDCS attribute 498
KDCS call 31

APRO 206
COBOL 544
CTRL 216
DADM 221
DGET 230
DPUT 241
FGET 263
FPUT 269
GTDA 279

KDCS call (cont.)
INFO 283
INIT 298
LPUT 322
MCOM 325
MGET 330
MPUT 347
PADM 359
PEND 367
PGWT 380
PTDA 390
QCRE 394
QREL 399
RSET 402
SGET 406
SIGN 412
SPUT 427
SREL 433
UNLK 437

KDCS calls 201
C/C++ 490
check 295
COBOL 544
comments on the description 205
extensions 202
function groups 204
overview 202, 587

KDCS communication area
see communication area

KDCS interface
characteristics 30
MQ calls 52
MQ calls without automatic processing 64

KDCS macro, see C/C++ macro
KDCS parameter area, see parameter area
KDCS storage areas 74

locked 88
KDCS_C_DEBUG 495
KDCS_SPACES 493
KDCSCDB 495
KDCSIGN 511

Index

666 Programming Applications with KDCS

L
LANG variable

read with INFO LO 292
language environment

request information 290
language identifier 314

request with INFO LO 292
LEASY 100
length conflict

MGET 341
lifetime

service-controlled queue 64
line mode 116

extended 500, 549
link and load module 499
LINKAGE SECTION 535, 537
Linux distribution 13
LLM (link and load module) 499, 547
local classes 490
local secondary storage area, see LSSB
locale

changing the location of the user ID 423
locale_info 312
logical control code 116
long messages

exchanging with socket partners 198
lowercase letter

conversion 341
LPAP name 122
LPUT 322
LSES name 309
LSSB 82, 427

length 82
LTAC name 122
LU6.1 132

M
macro, see C/C++ macro
main routine KDCROOT 30
MCOM 325

C/C++ example 505
COBOL example 561

message
of length 0 250, 342
redelivery 60, 65
to service-controlled queue 51

message destination 467
message flow, BS2000 systems 114
message format 459
message queuing 34, 50

administration 95, 221
DADM 221
DPUT 241
FGET 263, 394, 399
FPUT 269
MCOM 325

message segment 90
DPUT 251
flag at socket 199
FPUT 277
MPUT 355

message-oriented 196
MFHSROUT 114
MGET 330

C/C++ example 503
COBOL example 557
length conflict 341
rollback message 345
status information 345
with distributed processing 344

MPUT 347
C/C++ example 504
COBOL example 559
with distributed processing 357

MPUT EM 358
MPUT HM 357
MSCF 613
MSGTAC 442, 467

C/C++ example 511
COBOL example 566
example 469

multi-step service 40
multi-step transaction 102

Index

Programming Applications with KDCS 667

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
Ju

ly
 2

0
16

 S
ta

nd
 1

3:
01

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

02
_K

D
C

S
\e

n
\k

pr
og

_
e.

si
x

N
NetCOBOL 553

Windows systems 550
NetExpress 553
notational conventions 27

O
octet string 211, 214
online auction

example 73
openUTM version

query 294
Oracle 100
OSI TP 147

basic functions 150, 209
commit functions 209
control dialog 216
example 164
handshake functions 209
heterogeneous coupling 162
information on rollback 307
information on selected functions 307
protocol element 147
select function combinations 207

OSI TP example
more complex dialog trees 180
multiple job receivers 178
one job receiver 165
terminating via CTRL AB 189

OSI-LPAP name 122
ositp_info 312
output

format mode 115
line mode 118
partial formats 111
printer 94

output job 51, 241, 269
output messages

socket partners 198
overview

KDCS calls 202, 587
overview information

reading 222

P
PADM 359
PADM AI

return 365
PADM PI

return 366
parameter

program unit (C/C++) 481
program unit (COBOL) 543

parameter area 31
field names 599

parameter list
RSO printer 245

partial format 111
read 343
write 355

partner identification 123
partner status 137
passing addresses 543
PCMX 18
PEND 367

by distributed processing (LU6.1) 134, 137,
139

by distributed processing (OSI TP) 156
variants 373

PEND ER
by distributed processing 127

PEND PS 471
PEND RS

by distributed processing 125
PGWT 380

in distributed processing (OSI TP) 156
in OSI TP service 389

physical input/output area 458
polarized control 147
prepare

end dialogue 216
to commit 216

prepare to commit 153
MGET 338

print job 95
print options

RSO printer 241, 251, 269, 277
printable string 214

Index

668 Programming Applications with KDCS

printer
administration 359

printer control 95
printing

avoiding bottlenecks 96
format mode 115
line mode 118

printout
administration 359

PROCEDURE DIVISION 538
processing

multiple job receivers 124
processing acknowledgment (OSI TP)

request 347
processing step 32

for differing actions 42
multiple in a single program unit 46
multiple program units 44

processor name
request 294

program framework 35
program indicator 307, 454
program name

C/C++ 479
COBOL 536

program unit 29
asynchronous 53
C example 507
command section (C/C++) 490
command section (COBOL) 543
existing as LU6.1 job receiver 141
existing as OSI TP job receiver 160
existing as OSI TP job submitter 161
initiate 298
name (C/C++) 480
name (COBOL) 536
parameters (C/C++) 481
reentrant capability 39
start 283
structure 35
subprogram call 47
terminate 367

program unit run 31
PROGRAM-ID 536

programming aid 124
LU6.1 132
OSI TP 149

programming recommendation
LU6.1 137
OSI TP 157

programming rule
LU6.1 134
OSI TP with commit 154
OSI TP without commit 154

pronm 314
protocol element

TP-ABORT 147
TP-DEFER(END-DIALOGUE) 148
TP-DEFER(GRANT-CONTROL) 148
TP-GRANT-CONTROL 147
TP-HANDSHAKE 148
TP-HANDSHAKE-AND-GRANT-

CONTROL 148
TP-PREPARE 148
TP-U-ERROR 147

ps_day 289
ps_doy 289
ps_dt_day 313
ps_dt_doy 313
ps_dt_month 313
ps_dt_year 313
ps_hour 289
ps_min 289
ps_mon 289
ps_season 313
ps_sec 289
ps_tm_hour 313
ps_tm_minute 313
ps_tm_second 313
ps_year 289
pseudo-conversational 34
PTDA 390
pterm_enclev 317
ptrmnm 314
PTYPE

APPLI 195

Index

Programming Applications with KDCS 669

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
Ju

ly
 2

0
16

 S
ta

nd
 1

3:
01

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

02
_K

D
C

S
\e

n
\k

pr
og

_
e.

si
x

Q
QCRE 394
QREL 399
queue

service-controlled 51, 61
queue messages

lifetime 64

R
read

application name (event exit) 443
asynchronous message 231, 394, 399
asynchronous messages 263
card information 288
dialog message 330
from secondary storage area 406
from TLS 279
ID card information 284, 288
partial format 343
status information 345

Readme files 20
receive see read
recovery 149
Red Hat 13
redelivery

background jobs 60
DGET 239
FGET messages 60
queue messages 65
service-controlled queues 65

reentrant capability 39
register 39
remote queuing 191
resources

locked 387
restart

by distributed processing via OSI TP 158
screen 105, 119

restart area 119, 458
return 479, 496

KDCS call 591
rlstsgn 420
rminpw 420
RMXA 100

rollback 158
programmed 125
RSET call 402

rollback message 348
MGET 345
MPUT 348
read 345

ROLLBACK WORK 103
rpsword 420
rpwval 420
RSET 402

in job-receiving service 127
in job-submitting service 127
with distributed processing 405

RSO parameter list 241, 269
RSO printer 95

print options 245, 251, 277
rtac 420
ruser 420

S
screen, updating 111
screen function 355

format mode 108
screen restart 105, 119
secondary storage area, delete 433
security type 210
send

processing acknowledgment (OSI TP) 347
send authorization 151, 154

end-of-transaction 155
prohibiting with OSI TP 219

send see write
server/server communication 121
service 29

asynchronous 34
chaining 47
concept 32
end of 154, 155
requesting end of 150
stacking 48
start 32
start time 306
structure 33, 40

Index

670 Programming Applications with KDCS

service ID 123, 306
service indicator 309, 454
service routine 29
service rule 136
service stack 49
service status

LU6.1 133
MGET 336
OSI TP 152

service TAC 32, 306
service transaction code 32
service-controlled queue 50, 61

in distributed processing 194
lifetime 64
message to 51, 241
reading 230

SESAM/SQL 100
session name 309
session_enclev 318
set wait point 380
SGET 406
shareable code

C/C++ 499
COBOL 547

shared objects 532
short 493
SHUT 441, 452

C/C++ example 525
COBOL example 578

SHUTDOWN 452
SIGN 412
SIGN CL 423
SIGN ON 471
SIGN ST 471
sign-on service 412, 470

sample program 478
signal handling 501
signing on

via card reader 97
SIGNON 442, 471
single-step addressing 206
socket connections 196
Solaris 13

SPAB 78, 308
C/C++ 482

SPUT 427
SREL 433
stack height 307
stacked conversation

information 293
stacking

service 48
standalone UTM application 11
standard primary working area, see SPAB
START 441, 451

C/C++ example 525
COBOL example 578
generation notes 452

start address
C/C++ 480
COBOL 536

start format 109
start of a service 32
STARTUP 451, 452
static 39
status information 104, 128, 309, 345
STOP RUN 535
storage area

locked 88
strict dialog 33
strncmp 497
structure

asynchronous service 53
dialog service 40

STXIT events 465
STXIT routines 463
subprogram call 47
SUSE 13
synchronization point 99
system name

request 294

Index

Programming Applications with KDCS 671

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
13

.
Ju

ly
 2

0
16

 S
ta

nd
 1

3:
01

.5
5

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

4_
16

0
12

0
0\

02
_K

D
C

S
\e

n
\k

pr
og

_
e.

si
x

T
T61 String 214
TAC queue 62

message to 269
temporary queue 63

creating 394
deleting 399

terminal-specific long-term storage area, see TLS
terminate

program unit 367
territory identifier 314

request with INFO LO 292
TIAM 116
time

service start 306
time entry

limiting 252
time_zone 313
time-driven asynchronous job 241
TLS 84, 279, 390

unlock 437
TLS block 282
TP-ABORT 147
TP-DEFER(END-DIALOGUE) 148
TP-DEFER(GRANT-CONTROL) 148
TP-GRANT-CONTROL 147
TP-HANDSHAKE 148
TP-HANDSHAKE-AND-GRANT-CONTROL 148
TP-PREPARE 148
TP-U-ERROR 147
transaction

end of 154, 155
global 121
requesting end of 150
rollback 402

transaction code 32
remove 342

transaction indicator 307
transaction rule 136
transaction status

LU6.1 133
MGET 337
OSI TP 153

transfer syntax 356

TRMSGLTH 114
TRUNCATE-LITERAL 546
TS application 92
TS applications 195
two-phase-commit 99
type of the format 106

U
UDS/SQL 100
ULS 85, 427

unlock 437
UNLK 437
unlock

GSSB 437
TLS 437
ULS 437

us_ccsname 315
us_lang_id 314
us_nlslang 315
us_terr_id 314
user exit, see event exit
user ID 306
user information 254

log 242
reading 222

user log file 86, 322
USER queue 61
user-defined formatting routine 456
user-specific location, change 423
user-specific long-term storage are, see ULS
user-specific STXIT routines 465
USLOG file 86
USP 196
UTM application 30

C example 516
COBOL example 571
communication partners 92

UTM application program 30
UTM cluster application 11

cluster administration journal 610
UTM control field 110
UTM Socket Protocol 196
UTM-controlled queue 50

in distributed processing 191

Index

672 Programming Applications with KDCS

V
version 314
version number

data structure 312, 420
version number of the data structure 420
void 479
VORGANG 453
VTCSET 500
VTSU 116

W
Windows system 13
WORKING-STORAGE SECTION 536
write

asynchronous message 241, 269
dialog message 347
message segment 355
partial format 355
rollback message 348
to log file 322
to secondary storage area 427
to TLS 390

X
X/Open 99
XA interface 99
XA message 104

	Contents
	Preface
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Innovations in openUTM V6.4
	New server functions
	New client functions
	New and modified functions for openUTM WinAdmin
	New functions for openUTM WebAdmin

	Notational conventions

	Structure and use of UTM programs
	The openUTM service concept
	Structure of a program unit
	Program framework
	Structure of a dialog program unit
	Reentrant capability of program units

	Structuring services
	Multi-step services
	Multiple program units in one processing step
	Multiple processing steps in a single program unit
	Subprogram calls from program units
	Chaining services
	Stacking services

	Message Queuing (asynchronous processing)
	Messages to UTM-controlled queues
	Output jobs
	Background jobs
	MQ calls of the KDCS interface
	Structure of an asynchronous service
	Redelivery with background jobs
	Saving incorrectly processed messages in the dead letter queue

	Messages to service-controlled queues
	USER queues
	TAC queues
	Temporary queues
	MQ calls of the KDCS interface
	Lifetime of queues and queue messages
	Deleting USER and TAC queues by means of programmed administration
	Examples

	KDCS storage areas in openUTM
	Standard primary working area (SPAB)
	Communication area (KB)
	Local secondary storage area (LSSB)
	Global secondary storage area (GSSB)
	Terminal-specific long-term storage area (TLS)
	User-specific long-term storage area (ULS)
	User log file
	Other areas
	Action with locked storage areas (TLS, ULS and GSSB)

	Programming error routines
	Message segments
	Communication partners of a UTM application
	Output to printers
	Hardcopy mode with openUTM
	Print jobs

	Support for ID card readers
	Signing on to the application via ID card reader
	Data input via ID card

	Interaction with databases
	UTM transaction and DB transaction
	Programming ESQL program units
	Error processing with connected databases

	Screen functions
	Use of formats in openUTM on BS2000 systems
	Screen output functions in format mode
	Starting services using basic formats
	Using partial formats
	Output formatting with partial formats
	Input formatting with partial formats

	Message flow for formatted messages
	Outputs on printers in format mode

	Controlling the output in line mode (BS2000 systems)
	Output on printers in line mode
	Screen restart
	Format names for message exchange with UPIC clients

	Program structure in distributed processing
	Addressing remote services
	Distributed dialogs
	Controlling communication in the program
	Error handling by the program unit
	Programmed rollback
	Error handling after service restart

	Load distribution using LPAP bundles

	Distributed dialogs via LU6.1
	Programming aids
	Programming rules and recommendations
	Existing program units as LU6.1 job receivers
	Example: distributed dialog via LU6.1

	Distributed dialogs via OSI TP
	Functional units
	Programming aids
	Programming rules for dialogs without the functional unit commit
	Programming rules with the functional unit commit
	Programming rules for communications with BeanConnect
	Particularities of rollback and restart
	Using existing program units for OSI TP communication
	Particularities with heterogeneous coupling
	Examples: distributed dialogs via OSI TP
	One job receiver
	Multiple job receivers
	More complex dialog trees
	Using CTRL AB to terminate a job receiver

	UTM-controlled queues in distributed processing
	Job submitter side
	Job receiver side

	Service-controlled queues in distributed processing

	Program structure in communication with transport system applications
	Communication with TS applications of the type APPLI
	Communication via socket connections
	Input messages for openUTM
	Output messages of openUTM
	Structure of the socket protocol header

	KDCS calls
	Complete overview of KDCS calls
	Comments on the description of the KDCS calls
	APRO Address job-receiving service
	CTRL Control OSI TP Dialog
	DADM Administer message queues
	DGET Read a message from a service-controlled queue
	DPUT Generate time-driven asynchronous messages
	DPUT call without job complex
	DPUT call in a job complex

	FGET Receive asynchronous message
	FPUT Generating asynchronous messages
	GTDA Read from TLS
	INFO Request information
	INFO CK call

	INIT Initialize program unit
	LPUT Write to log file
	MCOM Define job complex
	MGET Receive dialog message
	MPUT Send dialog message
	PADM Administer printouts and printers
	PEND Terminate program unit
	PGWT Set wait point in program without terminating program unit
	PTDA Write to TLS
	QCRE Create temporary queue
	QREL Delete temporary queue
	RSET Roll back transaction
	SGET Read from secondary storage area
	SIGN Control sign-on and sign-off, check authorization data, change passwords
	SIGN CL - Change locale of user ID

	SPUT Write to secondary storage area
	SREL Delete secondary storage area
	UNLK Unlock TLS, ULS or GSSB

	Event functions
	Event exits
	Event exit INPUT
	Event exit START
	Event exit SHUT
	Event exit VORGANG
	Event exit FORMAT (BS2000 systems)

	STXIT routines (BS2000 systems)
	Event handling in ILCS programs (BS2000 systems)
	Event services
	Dialog service BADTACS
	Asynchronous service MSGTAC
	The SIGNON service
	Programming notes
	Sign-on service for terminals
	Sign-on service for UPIC clients or transport system applications

	Additional information for C/C++
	Program structure for C/C++ program units
	C/C++ program units as subroutines
	Parameters of a C/C++ program unit
	Declaring data
	Communication area
	Standard primary working area
	Other data areas (AREAs)

	Data structures for C/C++ program units
	Command section of a C/C++ program unit
	C/C++ macro interface
	Event exits
	Programming the KDCS error handling routines
	Modifying KDCS attributes
	Platform-specific characteristics on BS2000 systems
	Platform-specific characteristics on Unix and Linux systems
	Platform-specific characteristics on Windows systems

	Programming examples in C/C++
	Examples of individual KDCS calls
	Example of a complete C program unit
	Example: INPUT exit
	Example: MSGTAC event service
	Example of a complete UTM application

	Additional information for COBOL
	Structure of COBOL program units
	COBOL program units as subroutines
	Data structures for COBOL program units
	KDCS calls in COBOL program units
	Platform-specific features on BS2000 systems
	Platform-specific features on Unix and Linux systems
	Platform-specific features on Windows systems

	Programming examples in COBOL
	Examples of individual KDCS calls
	Example of an INPUT exit
	Example of an asynchronous MSGTAC program unit
	Example of a complete UTM application

	Appendix
	Overview of all KDCS calls
	Different field names for C/C++ and COBOL
	ASCII-EBCDIC code conversion
	BS2000 systems
	Unix, Linux and Windows systems
	Modifying the code table on Unix and Linux systems
	Modifying the code table on Windows systems

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

