
Contents
1 Preface 1........................

2 Pascal-XT programming system 5..............
2.1 Call and overview 5.....................
2.2 User guidance 9......................
2.3 Extension of the programming system 11.............
2.4 Termination behavior of the programming system 13.........
2.5 Modes of operation of the programming system 16.........
2.6 Statements to the programming system 17............
2.6.1 Definitions and notes 17...................
2.6.2 ADD-TOOL 21.......................
2.6.3 CALL-STATEMENT-FILE 22..................
2.6.4 COMPILE-UNIT 24.....................
2.6.5 DEFINE-PROJECT-FILE 32..................
2.6.6 EDIT-UNIT 33.......................
2.6.7 END 39..........................
2.6.8 MODIFY-COMPILE 40....................
2.6.9 MODIFY-EDIT 42......................
2.6.10 REMOVE-DIRECTORY-ENTRY 43...............
2.6.11 RUN-PROGRAM 44.....................
2.6.12 SHOW-ATTRIBUTES 48...................
2.6.13 STEP 56.........................
2.6.14 SYSTEM-COMMAND 57...................
2.7 Examples 58........................

Developing a main program 58.................
Working with PLAM libraries and the project directory 66.......

3 Project directory 79.....................
3.1 Tasks of the project directory 79................
3.2 Defining and processing the project directory 81..........
3.3 Hints on working with the project directory 83...........

Example: Working with the project directory 84...........

U2780-J-Z125-6-7600

Contents

4 Pascal-XT compiler 91...................
4.1 Using the project directory 91.................
4.2 Implementation-defined attributes 93...............
4.3 Representation of objects in main memory 96...........
4.4 Generated object modules 99.................
4.5 Compiler options 101.....................
4.6 Listings generated by the compiler 103..............
4.6.1 Controlling listing output 103..................
4.6.2 Source listing 104......................
4.6.3 Errors, warnings and notes 106.................
4.6.4 Assembler listing 108.....................
4.6.5 Cross-reference listing 109...................
4.6.6 Map listing 111.......................

5 Files 113..........................
5.1 Pascal files 113.......................
5.1.1 External Pascal files 113....................
5.1.2 Local Pascal files 113.....................
5.2 Supported BS2000 files and libraries 114.............
5.2.1 Standard files 116......................
5.2.2 SAM and ISAM files 116....................
5.2.3 PLAM library elements 118...................
5.2.4 Temporary files 119......................
5.3 Assigning BS2000 files to Pascal files 120.............
5.3.1 Default assignments 120....................
5.3.2 Assignment with the FILE command 120..............
5.3.3 Assignment with the predefined procedure assignfile 124.......
5.3.4 Assignment in the RUN statement 131..............
5.4 File operations 132......................

6 Linking and executing object programs 135...........
6.1 General 135........................
6.2 Static linking 138.......................
6.2.1 Linking to form a phase 138..................
6.2.2 Prelinking to form prelinked modules 140.............
6.2.2.1 Prelinking to form a single prelinked module 141...........
6.2.2.2 Prelinking code and data modules separately 143..........
6.2.2.3 Prelinking the runtime system 146................
6.2.3 Segmented linking 146....................
6.3 Dynamic linking 153.....................
6.4 Program termination code 155.................
6.5 License protection for the Pascal-XT runtime system 156.......

U2780-J-Z125-6-7600

Contents

7 Language interfaces 157...................
7.1 ILCS program communication interface 158............
7.1.1 ILCS register conventions 159..................
7.1.2 ILCS data structures 160....................
7.1.3 Initializing the Pascal-XT runtime system 161............
7.1.4 Program mask handling by ILCS 161...............
7.1.5 Parameter passing in ILCS program systems 162..........
7.1.6 Linking ILCS program systems 163................
7.2 Interfacing non-Pascal subprograms 164..............
7.3 Invocation by programs in other languages 171...........
7.4 Internal interface 176.....................

8 UTM linkage 189......................
Language interfaces under UTM 190...............
Data types and constants 190..................
Basic structure of UTM program units 191.............
Requesting memory with "NEW" 192...............
External files 192.......................
Error handling as of Pascal-XT V2.2A 193.............
Error handling up to Pascal-XT V2.2A 193.............
Linking the application 194...................

9 Debugging aid PATH 195...................
9.1 Features and characteristics of PATH 195.............
9.1.1 Command summary 197....................
9.1.2 Definition of terms 198....................
9.1.3 Syntax elements 199.....................
9.1.3.1 Debugging aid comments and options 202.............
9.1.4 Testpoints 203.......................
9.1.4.1 Testpoints before program start 203...............
9.1.4.2 User-set testpoints 203....................
9.1.4.3 Postmortem testpoints 206...................
9.1.4.4 Exception testpoints 207....................
9.1.4.5 Entry testpoints 209.....................
9.1.5 Scope of identifiers 212....................
9.1.6 Access to identifier types 214..................
9.1.7 Generation of test tables 214..................
9.2 PATH commands 215.....................
9.2.1 Testpoint commands 216...................
9.2.1.1 AT command 216......................
9.2.1.2 GETCMD command 218....................
9.2.1.3 RESUME command 219....................
9.2.1.4 REMOVE command 220....................
9.2.1.5 SLEEP command 222.....................
9.2.1.6 AWAKE command 223....................

U2780-J-Z125-6-7600

Contents

9.2.1.7 Example of the interaction between testpoint commands 225.....
9.2.2 Action commands 226....................
9.2.2.1 DISPLAY command 226...................
9.2.2.2 ASSIGN command 230....................
9.2.2.3 IF command 231......................
9.2.2.4 Compound command 232...................
9.2.2.5 SYSTEM command 233...................
9.2.2.6 EDIT command 234.....................
9.2.2.7 SHOW command 235....................
9.2.2.8 DUMP command 239....................
9.2.2.9 KILL command 240.....................
9.2.2.10 SWITCH command 241....................
9.3 Debugging aid messages 242.................

Error messages regarding test tables 244.............
Errors in testpoint commands 244................
Errors in action commands 245.................

9.4 Linking with PATH 248....................
9.5 Testing with PATH 249....................

10 Runtime errors and error handling 255.............
10.1 STXIT events and ILCS 256..................
10.2 Error handling and output in the event of an error 257........
10.2.1 Pascal-XT handling of SEH events 257..............
10.2.2 The Pascal-XT Break_Error 259................
10.2.3 Language interfacing between Pascal-XT and Assembler 259.....
10.2.4 Output when a runtime error occurs 260.............
10.3 Detecting runtime errors 273..................
10.4 System error codes 285...................

A Appendix 289.......................
A.1 Comparison between Pascal (BS2000) version 3.x and Pascal-XT 289..
A.2 Compiler listings 301.....................
A.3 Predefined packages 306...................
A.4 BS2000CALLS 307.....................
A.5 DMSIO 312........................
A.6 EDTADAPTER 327.....................
A.7 ERRORS 331.......................
A.8 HEAPSUPPORT 333....................
A.9 MEMORYMANAGER 339...................
A.10 Compatibility problems between Pascal-XT V2.2 and V3.0 341.....

References 343...........................

Index 351.............................

U2780-J-Z125-6-7600

1 Preface
The Pascal-XT language is an extension of Standard Pascal. It is available on a number
of different processors and with a variety of operating systems. This guide describes
how to use the compiler under the BS2000 operating system.

What previous knowledge is required?

You should have a knowledge of the Pascal-XT language, of the BS2000 command
language, of the Data Management System (DMS) and of the linkage editors TSOSLNK
and DLL.

Literature references appear in the text as figures in square brackets. The precise title
of each publication referred to is given under "References".

The Pascal-XT V2.1 language set remains applicable to this version (V2.2A); it is
described in the Pascal-XT (SINIX, BS2000) Language Reference Manual [1].

What does this User Guide contain?

This User Guide describes

operation of the Pascal-XT programming system
BS2000-specific attributes of the Pascal-XT compiler
assignment of BS2000 files to Pascal files
linking and execution of programs
language interfacing with external (non-Pascal) programs (ILCS interface)
UTM linkage
PATH debugging aid and testing of programs
runtime error messages
comparison of the languages Pascal (BS2000) V3.x and Pascal-XT
predefined BS2000-specific packages.

User inputs

In the examples user inputs are highlighted by shading, e.g.:

/EXEC $USERID.PASCAL-XT

U2780-J-Z125-6-7600 1

Preface

Changes since the last version of the manual

Section Topic new modified deleted

2.3 Example x

2.6.3 CALL-STATEMENT-FILE,
PLAM version number x

2.6.4 Compiler option MESSAGE-LEVEL x
COMPILE-UNIT, PLAM version number x

2.6.6 EDIT-UNIT, PLAM version number x

2.6.8 MODIFY-COMPILE, PLAM version number x

2.6.9 MODIFY-EDIT, PLAM version number x

2.6.11 RUN-PROGRAM for language interfacing x

2.6.12 SHOW-ATTRIBUTES, PLAM version number x

3 Project directory x

4.1 Pascal-XT compiler, using the
project directory x

4.2 Ulp-precision mathematical routines (5) x

4.5 Compiler option MESSAGE-LEVEL x
Table of compiler options x
Description of option specification x

4.6 Four-digit year number in compiler listing x

4.6.2 Compilation summary: Output of
suppressed messages x

4.6.3 Output of suppressed messages in the
compilation summary and to SYSOUT x

5.2.3 PLAM version number x
Note x x

5.3.3 ASSIGNFILE, PLAM version number x

6.1 Linking, general x
Pascal-XT runtime system and ILCS x
Compatibility between different versions x

6.2.2 Prelinking to form prelinked modules x

6.5 License protection x

2 U2780-J-Z125-6-7600

Preface

Section Topic new modified deleted

7 Language interfaces, general section x

7.1 General x
Program communication interface ILCS x

7.2 Connecting subprograms
written in other languages x

7.3 Invocation by programs in other languages x

8 UTM linkage x
New ILCS interface x
Language interfaces x
Requesting memory with "New" x
Error handling x
Linking x

9 Debugging aid PATH x

9.1.4.3 Postmortem testpoints x

9.1.4.4 Exception testpoints x

9.2.2.7 Four-digit year number in the
PATH command SHOW-UNITS x

9.2.2.9 PATH command KILL x

9.5 Restarting the program under test x

10 Runtime errors and error handling x

10.1 STXIT events and ILCS x

10.2 Error handling and output
in the event of an error x

10.2.1 Handling of SEH events x

10.2.2 Pascal-XT Break_Error x

10.2.3 Language interfacing between Pascal-XT
and Assembler x

10.2.4 Output when a runtime error occurs x
Dynamic call chain x
Restrictions for versions <= 2.1A x

A.10 Compatibility problems between
Pascal-XT versions 2.2 and 3.0 x

In addition to these changes, program examples have been expanded and/or
corrected, text formatting has been improved and any typographical errors detected
have been removed.

U2780-J-Z125-6-7600 3

Preface

2 Pascal-XT programming system

2.1 Call and overview

The Pascal-XT programming system provides a convenient environment for interactively
creating, compiling and testing programs without having to leave the programming
system. Beyond this, the system provides additional functions to facilitate software
development. The normal mode of operation of the programming system is interactive.
However, it can also be used to its full extent in batch mode.

Fig. 2-1 shows the statements of the programming system and the ways of accessing
the various BS2000 files.

U2780-J-Z125-6-7600 5

Call and overview Programming system

Input files Pascal-XT (Utility) Files
programming system programs

SAM/ISAM files
Edit -.-.- EDT PLAM elements

Show Project
Define directory
Remove

SAM/ISAM file
PLAM element
EDT

SAM/ISAM file
SYSDTA Compile -.-.- Compiler PLAM element

System Modify-
input Edit
file OMF

Modify- PLAM element
Compile

Debugging
aid PATH - -

Run -.-.- Applica- - -
-tion

PLAM element program
SAM/ISAM file Call
EDT

Add-Tool OMF
PLAM element

System -.-.- BS2000

Legend:

Data access
- - Monitoring
-.- Call

Fig. 2-1 Statements and access capabilities of the Pascal-XT programming system

6 U2780-J-Z125-6-7600

Programming system Call and overview

Calling the Pascal-XT programming system

The Pascal-XT programming system is called with the EXEC command (see [7]). The
following assumes that the programming system is available under the system
administrator ID $TSOS. In this case the call is:

/EXEC $PASCAL-XT

If the programming system is available under a different user ID, the call is:

/EXEC $USERID.PASCAL-XT

Statement input to the programming system is interpreted by the command processor
SDF [2] which offers various levels of user prompting (see next section). Depending on
the level selected, the programming system issues a prompt (// or STMT) or displays a
menu. The user may then input any of the statements below. A detailed description of
their syntax and meaning is given in section 2.6.

ADD-TOOL Load Pascal program into main memory. It may be executed by the
programming system as often as desired.

CALL-STATEMENT-FILE
Execute statements to the programming system which are stored in
a file.

COMPILE-UNIT Call Pascal-XT compiler.

DEFINE-PROJECT-FILE
Define project directory as required by the compiler in order to
access specifications.

EDIT-UNIT Call EDT editor (see [13]).

END Terminate programming system.

MODIFY-COMPILE
Temporarily modify operand default values in the compile statement.

MODIFY-EDIT Temporarily modify operand default values in the edit statement.

MODIFY-SDF-OPTIONS
Modify SDF options (see [2]).

REMOVE-DIRECTORY-ENTRY
Delete entry from current project directory.

RUN-PROGRAM Execute tool or program with or without Pascal-XT debugger.

U2780-J-Z125-6-7600 7

Call and overview Programming system

SHOW-ATTRIBUTES
Output information on programming system and current project
directory.

SHOW-SDF-OPTIONS
Output SDF options (see [2]).

STEP Define restart point following errors occurring in batch jobs or DO
procedures.

SYSTEM-COMMAND
Switch to BS2000 command mode, or execute BS2000 system
command.

8 U2780-J-Z125-6-7600

Programming system User guidance

2.2 User guidance

For the analysis of statements input to the programming system, the Pascal-XT
programming system uses the command processor SDF (System Dialog Facility). This
provides several levels of user guidance. In expert mode statements may be entered in
the shortest form; in the event of an error, a statement must be repeated completely.
Unguided dialog, the next level, presents the user with any incorrect operands that
have been entered so that they can be corrected; it accepts the correct values. Finally,
guided dialog presents the user with possible statements in the form of guided dialog
menus, in which only the operand values have to be entered. In guided dialog, in turn,
one of three levels (minimum, medium, maximum) may be selected. When minimum is
specified, only the operands are displayed. With medium the operands are displayed
with the possible values, and with maximum, help texts are also displayed.

In this manual only the major attributes of expert mode are described. Additional
information may be found under [2].

Input prompt

In expert mode, the input prompt of the Pascal-XT programming system consists of two
slashes //. An input prompt at the BS2000 command level takes the form of a single
slash /.

Help levels

If you are unsure which statements, operands or operand values are permissible, help
is available:

Which statements are permissible in the Pascal-XT programming system?

//?

If a question mark is entered following the input prompt, all programming system
statements available are listed.

Which operands can be specified for a statement?

//statement?

If a question mark is given immediately following the name of a statement, the
operands of that statement are displayed in a menu. The user is then to enter only
the desired operand values.

U2780-J-Z125-6-7600 9

User guidance Programming system

Which operand values can be specified for an operand?

//statement operand=?

If a question mark is entered instead of an operand value, the permissible operand
values for the operand specified are displayed.

Input in block mode

Several statements can be entered in a block if they are separated by a "logical end of
line" (LZE key). If an error occurs in the analysis or execution of a statement, the
remaining statements of the block will not be carried out in this case.

Function keys

K1 In guided and unguided dialog the current menu is aborted and control shifts
to the next higher menu level.

K2 The statement entered is interrupted and processing switches to BS2000
command mode. Following input of /RESUME the statement is continued;
following input of /INTR it is aborted.
In a current program, inputting K2 /INTR generates a Break_Error (see
chapter 10), which leads to program abortion if it is not handled properly.

10 U2780-J-Z125-6-7600

Programming system Extension

2.3 Extension of the programming system

The Pascal-XT programming system provides only a very small number of statements
for the software development process. However, it is designed as an open-ended
programming system and permits the user to extend it by adding individual statements
he frequently requires. These individual statements are implemented by programs,
designated in the following as tools. Before being used, they must be loaded using the
statement ADD-TOOL (see section 2.6.2), and be introduced to the programming
system. In contrast to the predefined statements of the programming system, these
tools cannot be called by specifying their names; they are started by means of the
RUN statement (see section 2.6.11).

Requirements on tools

Tools are Pascal programs or programs that have been generated by other language
compilers and which are called by a Pascal frame program. Programs that do not have
at least a "Pascal frame" cannot be included into the programming system.

Programs that are already present as object modules (phases) cannot be used as
tools.

Adding tools to the programming system

Tools are loaded into main memory using the ADD-TOOL statement, and cannot be
unloaded until the programming system is left. External references are resolved by the
autolink mechanism of the Dynamic Linking Loader.

A tool is automatically known by the name specified as the element name in the TOOL
operand of the ADD-TOOL statement. However, it is also possible to refer to the tool
using a shorter or mnenomic name, a so-called alias name. This alias name may be
specified in the ADD-TOOL statement. The tool is then known only by this alias name.

Note

Tools may be loaded from PLAM libraries with effect from BS2000 version 8.

U2780-J-Z125-6-7600 11

Extension Programming system

Calling a tool

A tool is executed by means of the RUN-PROGRAM statement (see section 2.6.11),
specifying the name of the tool. If the tool has any program parameters, these may be
assigned BS2000 files in the PARAMETER operand. The programming system stores
these assignments for future calls and makes them the default values unless new
assignments are specified in subsequent calls.

Information concerning existing tools

The SHOW-ATTRIBUTES statement (see section 2.6.12) displays a summary of the
existing tools. Apart from the names of the tools, the assignments of BS2000 files to
the program parameters are shown, to the extent specified in earlier calls.

Use of tools

Tools remain loaded in memory until the programming system is left. This setup makes
for fast calling as the tools need not be loaded when called. On the other hand, they
permanently occupy storage, which may result in storage bottlenecks when large
programs are compiled or executed. It is therefore recommended that only smaller
programs should be used as tools.

The first example in section 2.7 (Developing a main program) shows how a program
which writes a file line by line to standard output can be loaded as a tool in the
programming environment using ADD-TOOL (see note (20)).

12 U2780-J-Z125-6-7600

Programming system Termination behavior

2.4 Termination behavior of the programming system

The termination behavior of the programming system corresponds to the program
termination behavior conventions for user programs in BS2000. The termination
behavior is intended to minimize ill effects (destruction of data) resulting from faulty
programs.

Normal program termination

The programming system terminated normally. All statements of the programming
system have been executed successfully.

Abnormal program termination

An error occurred when a statement of the programming system was called, or an error
occurred in the programming system or compiler. The operating system issues the
message ABNORMAL PROGRAM TERMINATION. In batch mode, or in a DO procedure, the
spin-off mechanism is subsequently activated and processing branches to the next job
step.

In job variables for program monitoring(see [8]), the termination behavior is logged or
explained in more detail. Such a job variable can be specified when the programming
system is called (see example at the end of this section).

Job variables for program monitoring consist of a 3-byte status indicator and a 4-byte
return code indicator. The first byte in the return code gives the termination code, the
remaining 3 bytes provide additional program information.

The termination code and the status indicator are not set until a program or
programming system is terminated.

Status indicator

The status indicator is set by the operating system. When a program is started, it is set
to the value ’$R ’. In the case of normal program termination it is set to the value ’$T ’,
with abnormal termination it is set to ’$A ’.

U2780-J-Z125-6-7600 13

Termination behavior Programming system

Termination code

In the programming system, each statement returns a termination code (see section
6.4). The termination code of the RUN statement is the same as the termination code of
the executed program. The highest termination code occurring determines the
termination behavior of the programming system. The termination code can assume
one of the following values:

’0’ = All statements of the programming system were executed without error.

’1’ = All statements of the programming system were executed without error.
However, warnings were issued by the compiler during compilation.

’2’ = One (or more) statement(s) of the programming system was (were) either
syntactically incorrect or resulted in an error during execution. If an error
occurs during compilation, execution of the COMPILE statement is considered
erroneous.

’3’ = An error occurred in the programming system. The error should be reported to
maintenance.

The termination codes ’0’ and ’1’ result in normal termination of the programming
system, codes ’2’ and ’3’ result in abnormal termination.

Program information

The program information provides detailed information on the termination code.
Normally, it contains 3 blanks. In the programming system, only the compiler sets the
program information. If multiple compilations are performed, the highest program
information is returned when the programming system is left.

The compiler provides the following program information, in accordance with the
BS2000 convention:

’000’: The compilation proceeded without error.

’002’: The compiler issued warnings.

’004’: The compiler issued error messages.

14 U2780-J-Z125-6-7600

Programming system Termination behavior

’005’: A user error has occurred. Possible errors are:

Project directory not defined.
A specification has been compiled from the EDT.
Memory overflow (compilation unit too large).
Interruption with INTR.
Error in opening the specified files.
There was no entry for the package or program name in the project
directory.

’006’: A compiler error has occurred.

Program information greater than or equal to ’004’ results in abnormal termination when
the programming system is left.

Example

The example shows a DO procedure for compiling and statically linking a program.
Following a compiler error the program should not be linked. The job variable
MONITOR is defined for program monitoring.

/PROC A
/DCLJV MONITOR
/SYSFILE SYSDTA=(SYSCMD)
/EXEC $USERID.PASCAL-XT, MONJV=MONITOR
//COMPILE (PLAM.EXAMPLE,ERROR.PROG), (*STD,*STD), *STD
//END
/EXEC $TSOSLNK
PROGRAM TEST
INCLUDE EXAMPL1, PLAM.EXAMPLE
RESOLVE , PLAM.EXAMPLE
END
/STEP
/GETJV MONITOR
/ENDP

Executing this procedure:

/DCLJV MONITOR
/SYSFILE SYSDTA=(SYSCMD)
/EXEC $USERID.PASCAL-XT, MONJV=MONITOR
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//COMPILE (PLAM.EXAMPLE,FEHLER.PROG), (*STD,*STD), *STD

>>> 4 COMPILATION ERRORS DETECTED (WARNINGS: 1; NOTES: 3)
% CMD0230 ERROR IN PRECEDING STATEMENT: ALL STATEMENTS WILL BE IGNORED UNTIL ’//STEP’ IS RECOGNIZED
//END

END OF THE PASCAL SESSION - USED TIME = 0.298 SECONDS
% EXC0732 ABNORMAL PROGRAM TERMINATION. ERROR CODE ’NRT0101’ /HELP-MSG NRT0101
% CMD0206 TERMJ: COMMANDS WILL BE IGNORED UNTIL /STEP OR /LOGOFF OR /ABEND IS RECOGNIZED
/STEP
/GETJV MONITOR
%$A 2004

U2780-J-Z125-6-7600 15

Modes of operation Programming system

2.5 Modes of operation of the programming system

Statements and data intended for the operating system are read from system file
SYSDTA. Output is directed to system file SYSOUT.

The programming system can be used in both interactive and batch modes. With the
exception of the spin-off mechanism, behavior is the same in both modes. The spin-off
mechanism is activated if a statement is syntactically incorrect or if an error occurs in
the execution of a statement. In that case, all statements up to the next STEP or END
statement are skipped.

Interactive mode

The spin-off mechanism has no effect if statements of the programming system are
read from the terminal. If SYSDTA is assigned to a file by means of the SYSFILE
command, the spin-off mechanism is activated if an error occurs. In a DO procedure,
SYSDTA is assigned to a file and an illegal programming system statement therefore
results in activation of the spin-off mechanism. An illegal statement in a statement file
(see CALL-STATEMENT-FILE) likewise activates the spin-off mechanism.

Batch mode

Illegal statements cause the spin-off mechanism to be activated.

16 U2780-J-Z125-6-7600

Programming system Definitions and notes

2.6 Statements to the programming system

2.6.1 Definitions and notes

The following metasymbols and notational conventions are used to describe the
statements submitted to the programming system:

UPPERCASE LETTERS

Uppercase letters designate constants and keywords which must be
entered in the form given (but not in uppercase). They may be
abbreviated from right to left so long as the result is unambiguous.

ABBREVIATION

Uppercase letters in bold type designate permissible unique
abbreviations of constants and keywords.

value Lowercase letters designate metavariables that are replaced by actual
values when input (see "metavariables" below).

() Parentheses belong to the operand and must be specified with it.

NO An underscored value denotes a default value which is automatically
used when no value is specified.

NO

YES
Braces enclose alternative values. If none of the values is designated as
the default value, one of the values must be specified.

NO | YES A vertical bar between operand values likewise denotes alternative
values. If none of the values is designated as the default value, one of
the values must be specified.

[] Square brackets enclose optional specifications which may be omitted.
The square brackets themselves should not be entered.

Keywords

The values of operands in a statement may be keywords (specified in uppercase in the
description). A keyword may be prefixed by an asterisk (*). If an asterisk is given in the
syntax description, its specification is mandatory.

U2780-J-Z125-6-7600 17

Definitions and notes Programming system

Positional and keyword operands

Each operand may be entered either as a keyword operand or as a positional operand.

A keyword operand consists of the operand name, an equals sign and the operand
value.

//statement operand=value

A positional operand consists of a number of commas indicating the position of the
operand within the syntax description of the statement, and the operand value. If, for
example, a value is to be entered for the third operand in a statement, commas must
be entered for the two unspecified operands preceding it.

//statement ,,value

The sequence of keyword operands is optional. Once a keyword operand has been
specified, no more positional operands may be specified after it for that statement.

Abbreviation rules

The names of statements, operands and keywords may be abbreviated from right to
left, so long as the result is unambiguous.

Abbreviation is permitted

within a name
within any partial name separated by a hyphen.

Unique abbreviations for constants and keywords are highlighted in the description in
bold type.

Alias names

An alias name for a statement or an operand is a second name under which the
statement or operand can also be entered. Alias names cannot be abbreviated. They
are used in order to permit specification of often-used statements or operands by
means of a single letter or a short string.

An alias name for a statement or an operand is specified following the name of the
statement or operand, separated by a vertical bar.

18 U2780-J-Z125-6-7600

Programming system Definitions and notes

Metavariables

A few metavariables appear repeatedly in the syntax description. To avoid repetition,
their definitions are given here.

pascal-name Designates a package name or program name. Underscores in the
identifier must be specified as hyphens.

name Designates a file name, or a program name or package name.

filename Designates a file name in accordance with BS2000 conventions [7].

element Designates a PLAM library element. Only element names with the
same syntax as in LMS are accepted.

vers Designates the version of a PLAM element. The identifier may be 1
to 24 characters in length; it has the same syntax as in LMS.

type Designates the type of a PLAM element. The identifier may be 1 to 8
characters in length; it has the same syntax as in LMS.

tool-name Designates the name of a tool. It has the same syntax as a file
name.

Description of library elements

In some operands, values can be specified as PLAM elements consisting of library
name, element name, type and version. These specifications are combined to form a
structure that starts with the keyword *LIBRARY. In the syntax definitions of these
operands this keyword is omitted for the sake of clarity as its input is not required by
SDF. In the menus, however, the keyword is output by SDF.

Example

This example shows equivalent specifications of the SOURCE operand in the COMPILE
statement.

/EXEC $PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//C *LIBRARY(SOURCE-LIBRARY=PLAM.TOOL,SOURCE-ELEMENT=PAS.LMSCALL), *DUMMY

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C *LIBRARY(PLAM.TOOL, PAS.LMSCALL), *DUMMY

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (PLAM.TOOL, PAS.LMSCALL), *DUMMY

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C SOURCE-LIBRARY=PLAM.TOOL,SOURCE-ELEMENT=PAS.LMSCALL, L=*DUMMY (01)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//END

END OF THE PASCAL SESSION - USED TIME = 1.586 SECONDS
/

U2780-J-Z125-6-7600 19

Definitions and notes Programming system

(01) The SOURCE operand consists of a structure that contains the two SOURCE-
LIBRARY and SOURCE-ELEMENT operands. As these two operand names are
unique throughout the COMPILE statement, SDF can assign them uniquely to the
SOURCE operand. Specification of structural parentheses may thus be omitted.
Input of keyword L (LISTING) is mandatory because no positional parameters
must be specified following input of a keyword parameter.

Operand value *UNCHANGED

In guided dialog (menu), the operand value *UNCHANGED is also displayed for the
COMPILE, MODIFY-COMPILE, EDIT and MODIFY-EDIT statements; this value is not
included in the syntax descriptions in the sections concerned. This value means that
the current default value is assumed unchanged if an operand is omitted in the input.
The value may, however, be entered by the user, with the effect that the set default
value is not changed.
If a default value does not yet exist for an operand, an error message will be issued.
This may happen, for example, if only the element name has been specified for the
compilation from a library and this library name had not been defined beforehand with
MODIFY-COMPILE. The operand value for the library name is *UNCHANGED and thus
represents an undefined value.

Example

//C (,TEST.PROG),*DUMMY

means:

//C (*UNCHANGED, TEST.PROG(*HIGHEST-EXISTING)), *DUMMY

and results in an error message if no library had been defined beforehand by means of
MODIFY-COMPILE, e.g.

//MODIFY-COMPILE (PLAM.TEST,)
//C (,TEST.PROG),*DUMMY

means:

//C (PLAM.TEST, TEST.PROG(*HIGHEST-EXISTING)), *DUMMY

20 U2780-J-Z125-6-7600

Programming system ADD-TOOL

2.6.2 ADD-TOOL

Load program into main memory.

ADD-TOOL

TOOL = (LIBRARY = filename | *OMF
,ELEMENT = element)

[,ALIAS-NAME = *ELEMENT-NAME | tool-name]

Function

ADD-TOOL loads the program specified in the TOOL operand into main memory. It
may then be executed as often as desired using the RUN statement (see 2.3).

The spin-off mechanism is activated if a tool cannot be loaded or a tool having the
specified name already exists.

TOOL = (filename,element)
"element" designates the starter module of the program which is
loaded from the object module library "filename" or the temporary
EAM object module file (*OMF).

ALIAS-NAME Defines a new name which may be used to refer to the tool. The
name must be different from the names of tools that have already
been loaded.

= *ELEMENT-NAME
The tool may be called only by means of the element name
"element" specified in the TOOL operand.

= tool-name
An optional name for the tool.

Note

Loading of tools from a PLAM library is possible with effect from BS2000 version 8.

U2780-J-Z125-6-7600 21

CALL-STATEMENT-FILE Programming system

2.6.3 CALL-STATEMENT-FILE

Execute statements from a (statement) file.

CALL-STATEMENT-FILE

filename
*EDT (WORKFILE = *STD | 0..9)

STMT-FILE = (LIBRARY = filename,
,ELEMENT = element(VERSION = *HIGHEST-EXISTING | vers

,TYP = J | typ))

[,PROTOCOL = NO | YES]

In DO procedures and batch jobs, *STD is still accepted as a version specification.

Function

CALL-STATEMENT-FILE carries out several statements which are stored in a file. This
statement file may be a SAM or ISAM file or a library element. The CALL statement
opens the file, sequentially reads the statements from the file and executes them
immediately.

The statement file need not contain any special opening or terminating statements.
Each statement must appear in a separate line.

CALL statements may be nested to any depth. After leaving the statement file,
processing continues with the statement immediately following the last CALL. The
number of such nested calls is limited only by available main memory.

If the statement file contains an END statement, the programming system terminates
immediately after it has been executed.

An error in the analysis or execution of a statement activates the spin-off mechanism;
all subsequent statements in the statement file are skipped until a STEP or END
statement is recognized.

STMT-FILE Designates the file or library element from which the statements are
read.

= filename
Name of the statement file.

22 U2780-J-Z125-6-7600

Programming system CALL-STATEMENT-FILE

= *EDT(WORKFILE = *STD | 0..9)
The statements are read from the work area (WORKFILE) of the EDT
editor. The work areas 0 through 9 can be specified. By default,
reading is performed from the current work area (*STD).

= (filename,element(version,type))
The statements are read from the library element "element" with version
"version" of type "type" of the PLAM library "filename".

The "version" und "type" specifications are optional.
Default value for "vers" = *HIGHEST-EXISTING

for "type " = "J".

The version specification *HIGHEST-EXISTING causes the statements
from the highest existing version of the specified library element to be
read.

As of Pascal-XT V2.2A, the version specification *STD is no longer
permissible in dialog. *STD is still accepted in DO procedures and
batch jobs.

The version specification *INCREMENT is not permissible.

PROTOCOL The statements read from the file may simultaneously be logged to the
system file SYSOUT. On output, each statement is given the prefix
"(%STMT)". Invalid statements are always output to SYSOUT.

= NO Logging is suppressed.

= YES Statements are logged.

U2780-J-Z125-6-7600 23

COMPILE-UNIT Programming system

2.6.4 COMPILE-UNIT

Call Pascal-XT compiler.

COMPILE-UNIT | C

*EDT (WORKFILE = *STD | 0..9)
name (KIND = FILE | SPEC | BODY | PROG)

[SOURCE =
(SOURCE-LIBRARY = filename]

*HIGHEST-EXISTING
,SOURCE-ELEMENT = element(VERSION =))

vers

*SYSOUT
*SYSLST
*EDT (WORKFILE = *STD | 0..9)

[,LISTING =]
*DUMMY
(LIST-LIBRARY = *STD | filename
,LIST-ELEMENT = *STD | element)

[,MODULE-LIBRARY = *OMF (ERASE = YES | NO) | filename | *STD]
[,ASSEMBLER = *BY-SOURCE | ON | OFF]
[,CHECK = *BY-SOURCE | ON | OFF]
[,DEBUG = *BY-SOURCE | ON | OFF | RESTRICTED]
[,GENERATE = *BY-SOURCE | ON | OFF]
[,INITIALIZE = *BY-SOURCE | ON | OFF]
[,LIST | L = *BY-SOURCE | ON | OFF]
[,MAP = *BY-SOURCE | ON | OFF]
[,OPTIMIZE = *BY-SOURCE | ON | OFF]
[,STANDARD = *BY-SOURCE | ON | L0 | OFF]
[,XREF = *BY-SOURCE | ON | OFF]
[,LINES-PER-PAGE = *STD | 11..2147483639]
[,MESSAGE-LEVEL = NOTES | WARNINGS | ERRORS]

*STD is still accepted as a version specification for the SOURCE operand in DO
procedures and batch jobs.

Function

COMPILE-UNIT calls the Pascal-XT compiler. The source specified in the SOURCE
operand is compiled. All listings generated by the compiler are output to the file
specified in the LISTING operand. Following successful compilation of a main program
or of a package body, the object modules are generated and stored in the object
module library specified in the MODULE-LIBRARY operand. The compiler session can
be controlled by means of compiler options.

24 U2780-J-Z125-6-7600

Programming system COMPILE-UNIT

Instead of the file name, it is also possible to specify the Pascal identifier of a package
or main program in the SOURCE operand. The distinction between file name and
Pascal identifier is controlled by the KIND operand. However, this method assumes that
a project directory has been defined and that the program, or the package, has been
entered in it. For a compilation unit (specification, body or main program) to be entered
in the project directory, it must first have been compiled successfully from a file (other
than EDT).

For the compilation of a package or a main program that imports packages, the
compiler requires a project directory defined with the DEFINE statement. Through this
project directory, the compiler finds the specifications of imported packages required
for interface checking. Following successful compilation, the compilation unit is marked
as valid in the project directory. This information is necessary for recompilations to be
identified correctly. The project directory functions are discussed at length in chapter 3.

The compiler can also read in source programs from an EDT work area. In this case
the project directory will not be updated because, in general, the source will not be
available later on. Following successful compilation of a package specification from an
EDT work area, an additional message is issued saying that no entry has been made in
the project directory.

The default values of operands can be changed in a session using the MODIFY-
COMPILE statement. These changes apply until the next change, or until program
termination.

The spin-off mechanism is activated after the following errors:

(a) Errors in the syntax of the COMPILE statement

(b) Errors have been found during compilation

(c) A package specification has been compiled from an EDT work area

(d) Compilation required the project directory, but it has not been created

(e) The SOURCE operand contained the name of a package or program for which no
entry exists in the project directory

(f) The same file has been specified in SOURCE and LISTING

If a job variable is specified when calling the programming system, the program
information of the termination code (see section 2.4) describes the severest error the
spin-off mechanism has activated.

U2780-J-Z125-6-7600 25

COMPILE-UNIT Programming system

SOURCE Specifies the name of the file that contains the source program, or
the name of a package or main program that is to be compiled.

= *EDT (WORKFILE = *STD | 0..9)
The source program resides in a work area (0..9) of the EDT. By
default, the current work area (*STD) is addressed.

= filename
Name of the source file.

= name (KIND = FILE | SPEC | BODY | PROG)
"name" designates a file, a package or a main program. The KIND
operand defines how "name" is to be interpreted:

= FILE "name" is the name of a file
= SPEC "name" is the Pascal identifier of a package whose

specification is to be compiled
= BODY "name" is the Pascal identifier of a package whose body

is to be compiled
= PROG "name" is the Pascal identifier of a main program that is

to be compiled
Specification of SPEC, BODY, or PROG assumes that a project
directory has been defined and that there is an entry for the
package specification, package body or the main program,
otherwise an error message will be issued. The Pascal source is
read from the file in which the project directory is specified.
Underscores in the Pascal identifier must be specified in "name" as
hyphens ("-").

= (filename, element(vers))
The source program is read from the library element "element" with
the version "vers" of the PLAM library "filename". The library element
must be of type "S" (for source). By default, the element with the
highest-existing version (*HIGHEST-EXISTING) is read.

As of Pascal-XT V2.2A, the version specification *STD is no longer
permissible in dialog. *STD is still accepted in DO procedures and
batch jobs.

26 U2780-J-Z125-6-7600

Programming system COMPILE-UNIT

LISTING Specifies the name of the file to which the compiler outputs the
generated listings. The number of lines per page can be controlled
with the LINES-PER-PAGE option. The compilation is aborted with a
message if the SOURCE and LISTING operands designate the same
file.

= *SYSOUT
Output to system file SYSOUT

= *SYSLST
Output to system file SYSLST

= *EDT (WORKFILE = *STD | 0..9)
Output to the specified work area of the EDT. By default (*STD), this
is the current area. The work area is cleared beforehand. If the
SOURCE operand also specifies an EDT work area, the two work
areas must be different.

= *DUMMY
Output to system file *DUMMY. Thus all compiler listings are lost.

= filename
Name of the output file (SAM file). An existing file will be overwritten.

= (filename, element)
The compiler writes the generated listing to the element "element" of
PLAM library "filename". This list element is of type "P" (for print file),
and this cannot be changed by the user.
Any existing list element of the same name, type and version is
overwritten.

If a library element was specified in the SOURCE operand, the
following applies to the list element:

If the value *STD is specified for LIST-LIBRARY, the list element
is written to the same library as was specified for SOURCE-
LIBRARY.

If the value *STD is specified for LIST-ELEMENT, the list element
(of type "P") is given the same element name as the source
element (of type "S").

The version given to the list element is governed by whether or not
the source program itself is a library element.

U2780-J-Z125-6-7600 27

COMPILE-UNIT Programming system

If it is, the list element is given the same version as the source
element. If the source element version has the default value (as
of Pascal-XT V2.2A = *HIGHEST-EXISTING; previously = *STD),
the list element no longer receives the highest-possible version,
but instead is given the same version as the source element.

If not, the list element receives the version *UPPER-LIMIT (=
highest-possible version).

MODULE-LIBRARY
Specifies the module library in which, following successful
compilation of a program or package body, the generated object
modules will be stored. The CSECT names of the generated
modules are generated from the name of the compilation unit (see
section 4.4).

= *OMF (ERASE = YES | NO)
The generated object modules are stored in the temporary object
module file (*OMF) of the user task. The ERASE operand is used to
specify whether *OMF is to be erased before compilation:
ERASE = YES*OMF is erased beforehand
ERASE = NO *OMF is not erased beforehand (default value)

= *STD This entry is only permissible if a library element has been specified
in the SOURCE operand. The generated object modules are stored
in the library containing the source element.
Each object module generated is stored as an individual library
element of type "R" (for relocatable). The elements are given the
same names as the object modules (CSECT names). The elements
are given the same version number as the source elements. Existing
elements of the same name, type and version are overwritten.

= filename
Is the name of a PLAM library. For the rest, the same conventions
apply as for entry *STD.

ASSEMBLER, CHECK, DEBUG, GENERATE, INITIALIZE, LIST, MAP, OPTIMIZE,
STANDARD, XREF

Compiler options for controlling compilation. These can also be
specified in the Pascal-XT source program. Their meaning is given in
section 4.5.

= *BY-SOURCE
stands for the option value specified in the source program or, if the
relevant option is not specified there, the default value.

28 U2780-J-Z125-6-7600

Programming system COMPILE-UNIT

= ON The compiler option is activated.

With the option STANDARD, ON causes the compiler to accept only
those language constructs which conform to the Pascal standard
ISO 7185 Level 1.

= OFF The compiler option is deactivated.

With the option STANDARD, OFF causes the compiler to accept any
language constructs within the scope of Pascal-XT V2.1.

= L0 With the option STANDARD, L0 causes the compiler to accept only
those language constructs which conform to the Pascal standard
ISO 7185 Level 0.

LINES-PER-PAGE
Compiler option which can only be specified as an operand of the
COMPILE-UNIT statement. It defines the number of lines per page in
the compiler listing. The number of lines must lie within the specified
range of 11.. 2147483639. The default value (*STD) is 63.

MESSAGE-LEVEL
Compiler option which can only be specified as an operand of the
COMPILE-UNIT statement. It defines which messages are to be
issued in the compiler listing. There are three types of message:
notes, warnings and errors (see 4.6.3).

= NOTES
Default value. Messages are issued in the compiler listing as errors
(syntax or semantic errors), warnings (potential runtime errors) or
notes.

= WARNINGS
Messages are issued as errors and warnings.

= ERRORS
Messages are issued as errors only.

U2780-J-Z125-6-7600 29

COMPILE-UNIT Programming system

Note

In the program development cycle EDIT-COMPILE-RUN for a main program it must
be ensured that the temporary EAM object module (*OMF) is deleted before every
compilation so that RUN causes the last program compiled to be executed.

Examples

Call using default parameters or the parameters set by means of the MODIFY-COMPILE
statement:

//C

Specification of a file name:

//C BEISPIEL.PROG File name with default setting of KIND
//C BEISPIEL.PROG(F) File name with changed setting of KIND=FILE

Specification of a package name or program name:

//C A(S) Specification of package A (Specification)
//C A(B) Body of package A (Body)
//C MAIN(P) Main program MAIN (Program)

Specification of a library element:

//C (PLAMLIB, ELEM) Element ELEM from library PLAMLIB
//MC (PLAMLIB,) Preset the library PLAMLIB
//C (,ELEM) Element ELEM from the preset library PLAMLIB
//C S-E=ELEM Corresponds to previous line
//C (BSPLIB, BSP(2.0)) Version 2.0 of element BSP from library BSPLIB

30 U2780-J-Z125-6-7600

Programming system COMPILE-UNIT

Specification of an EDT work area:

//C *E Current work area
//C *E(5) Work area 5

Various options for the output of compiler listings (for SOURCE, the default value or
another presetting applies):

//C ,*D Listing to *DUMMY (listing is immaterial)
//C ,*SYSOUT Listing to screen
//C ,*SYSLST Listing to printer
//C ,*E Listing to current EDT work area
//C ,*E(7) Listing to EDT work area 7
//C ,LST.BSP Listing to file LST.BSP
//C ,(LIB, LST) Listing to element LST of library LIB
//MC (SOURCES,A) Define library for SOURCE operand
//C ,(*S,LST.A) Listing to element LST.A of library SOURCES
//C ,(*S,*S) Listing to element A (type P) in library SOURCES
//C ,(LSTLIB,*S) Listing to element A (type P) in library LSTLIB

The various options for specifying the object module library (for SOURCE and LISTING
the presettings are assumed):

//C ,,(Y) Object modules to *OMF which is deleted beforehand
//C ,,MODLIB Object modules to PLAM library MODLIB
//C ,,*S Object modules (type R) to source library. This requires a

library to have been specified in the SOURCE operand.

U2780-J-Z125-6-7600 31

DEFINE-PROJECT-FILE Programming system

2.6.5 DEFINE-PROJECT-FILE

Define project directory.

DEFINE-PROJECT-FILE

DIRECTORY = filename

Function

DEFINE-PROJECT-FILE defines a project directory which the Pascal-XT compiler
requires for accessing package specifications. The definition remains in effect until the
programming system is left, or until a new project directory is defined using the
DEFINE statement. If no project directory with the name given exists yet, a new project
directory is generated.

The defined project directory remains open throughout the entire session. It can be
used by several users simultaneously.

If the project directory is swapped in the course of a session, the programming system
outputs a list of the current assignments involving packages and EDT work areas (see
EDIT-UNIT) and asks whether the directory is really to be swapped. If "N" or "n" is
entered in response the command is terminated with a message. If "Y" or "y" is entered
the directory is swapped and the assignments stored in the programming system are
deleted, but the contents of the EDT work areas remain unchanged. If no assignments
have been specified the user is not asked if the directory is to be swapped. This
procedure ensures that the consistency of the project directory is maintained.

The spin-off mechanism is activated if an invalid project directory is defined.

DIRECTORY = filename
Name of the project directory.

32 U2780-J-Z125-6-7600

Programming system EDIT-UNIT

2.6.6 EDIT-UNIT

Call the editor EDT.

EDIT-UNIT | E

*EDT
name(KIND = FILE | SPEC | BODY | PROG)

]
[UNIT = (LIBRARY = filename,

,ELEMENT = element(VERSION = *HIGHEST-EXISTING | vers
,TYP = S | type))

[,WORKFILE = *STD | 0..9]

[,QUERY = YES | NO]

*STD is still accepted as a version specification for the UNIT operand in DO
procedures and batch jobs.

Function

EDT calls the EDT editor. The UNIT operand specifies whether only EDT is to be called
or whether, prior to the call, a file is to be loaded in the work area defined by the
WORKFILE operand. The QUERY operand is used to specify the security to be
undertaken on leaving EDT.

The work area defined when leaving EDT is designated as the current work area
(*STD). If in the following paragraphs EDT is called without specification of a work area,
a branch will be made to this work area. However, if a work area has been explicitly
defined with the MODIFY-EDIT statement, this work area will be branched into on
calling EDT.

Instead of a file name a Pascal identifier of a package or main program may be
specified in the UNIT operand. The distinction between file name and Pascal identifier is
controlled by the KIND operand. This method assumes the presence of a project
directory that contains an entry for the identifier.

For each EDT work area, the programming system stores the name of the file whose
contents have been loaded. Thus, work areas may be swapped at will in the certainty
that, on leaving EDT, the contents of the current work area will be stored in the
associated file. This method only works if the EDT commands READ and @READ are
not used, as otherwise the new contents of the work area will be rewritten.

U2780-J-Z125-6-7600 33

EDIT-UNIT Programming system

The QUERY operand is used to specify whether the programming system, on returning
from EDT, will automatically rewrite the contents of the EDT work area to the file, or
whether this should be queried at the terminal. The work areas of EDT are retained.

Compilation units which have been changed must be recompiled, usually together with
other compilation units from the same program. The SHOW-ATTRIBUTES statement
(see SHOW-ATTRIBUTES) indicates which compilation units need to be recompiled.
However, necessary recompilations can only be displayed correctly if any changes to
package specifications, package bodies or main programs are performed exclusively
under the control of the programming system. The programming system will only
recognize and store modifications in compilation units under the following conditions:

EDT is called with the UNIT operand as follows:

UNIT = name (KIND = SPEC | BODY | PROG)

EDT is quitted with "h" and the EDT work area is not rewritten to the file with an
EDT command.

A specification, body or a main program should be compiled immediately after a
modification so that any modifications in the package references (WITH clauses) can be
recorded in the project directory.

The default values of operands can be changed during a session with the aid of the
MODIFY-EDIT statement. These changes remain effective until the next change or until
termination of the programming system.

The output resulting from various error conditions is described below.

The spin-off mechanism is activated if the following errors occur:

(a) Errors in the syntax of the EDIT statement

(b) The required package/program cannot be loaded because no project directory
has been defined

(c) The UNIT operand contains the name of a package or program for which no
entry exists in the project directory

(d) The file does not exist or cannot be opened

UNIT This operand specifies whether merely EDT is to be called or
whether a file is to be loaded in the work area prior to the call.

= *EDT A branch is made to the current work area of the EDT. The contents
of the work area are not changed.

34 U2780-J-Z125-6-7600

Programming system EDIT-UNIT

= name (KIND = FILE | SPEC | BODY | PROG)
"name" is the name of a file, package or main program that is
loaded into the defined EDT work area. This area is cleared prior to
loading.
The KIND operand specifies how "name" is to be interpreted:
= FILE as the name of a BS2000 file
= SPEC as the Pascal identifier of a package specification
= BODY as the Pascal identifier of a package body
= PROG as the Pascal identifier of a main program.
The SPEC, BODY or PROG specification assumes that a project
directory has been defined and that there is an entry for the
specified compilation unit. Otherwise an error message will be issued
(see below). The Pascal source is read from the file specified in the
project directory. The name of this file is superimposed on the EDT
command line. Underscores in the Pascal identifier must be specified
as hyphens ("-") in "name".

= (filename, element (vers, type))
The current EDT work area is cleared and library element "element"
with specified version "vers" and type "type" is loaded from PLAM
library "filename" into the EDT work area. Upon quitting EDT, the
version of the library element which was being read is always
overwritten.

The "vers" and "type" specifications are optional.
Default value for "vers" = *HIGHEST-EXISTING,

for "type" = "S".

The effect of version specification *HIGHEST-EXISTING is as follows:

If the specified library element exists, the highest version of the
library element is read and, upon quitting EDT, overwritten.
Hence, as of Pascal-XT V2.2A, a new version is no longer
automatically created when rewriting, as was previously the case
with version specification *STD.

If the specified library element does not exist, an element is
created with version "001".

The version specification *STD is no longer permissible in dialog.
*STD can still be used in DO procedures and batch jobs, but its
meaning has changed:

If the specified library element exists, the highest version of the
library element is read and, upon quitting EDT, overwritten.

If the specified library element does not exist, an element with
version *UPPER-LIMIT (highest-possible version) is created.

U2780-J-Z125-6-7600 35

EDIT-UNIT Programming system

The version specification *INCREMENT is not permissible.

WORKFILE This operand is used to define the EDT work area.

= *STD Designates the current work area.

= 0..9 Number of the EDT work area.

QUERY On leaving EDT, a query may follow to decide whether the content
of the work area has to be rewritten to the file or to the library
element from which it had been loaded. By default (YES), the query
follows. The query and the rewriting do not follow if

the EDT work area is empty, or
no work area has been allocated to a file in the programming
system (e.g., after a work area switch in in EDT).

= YES A query will follow. On entering "Y" or "y" rewriting is peformed; on
entering "N" or "n" no writing is performed

= NO No query will follow and the contents of the work file are rewritten to
the file.

Error messages

If any errors should occur when a file is loaded into EDT, either the programming
system issues a message (with the prefix ">>>") or a message with an error code is
issued in the EDT message line (immediately above the command line), depending on
the type of error. The error codes, err-no, are explained in section 10.4.

(a) File does not exist. A branch is made to the EDT and

FILE "name" DOES NOT EXIST

is displayed on the message line. If the EDT work area is not empty on leaving
EDT, the file "name" is generated if QUERY=NO and the contents of the work
area are stored in it. If QUERY=YES, the system queries whether the file has to
be generated.

(b) File exists but cannot be opened in read mode. Message

>>> OPEN ERROR ON SPECIFIED FILE (err-no)

is issued and no branch is made to EDT.

(c) The specified library element does not exist. Control branches to EDT where it
issues this message:

ELEMENT "element (version,type)" DOES NOT EXIST

On leaving EDT, processing continues as described under (a).

36 U2780-J-Z125-6-7600

Programming system EDIT-UNIT

(d) The specified library cannot be opened. Control branches to EDT where it issues
this message:

OPEN ERROR ON LIBRARY "filename"

On leaving EDT, processing continues as described under (a) if the library did not
exist; processing is aborted if the library is locked.

(e) The name has not been entered in the project directory. Message

>>> UNIT NOT FOUND IN PROJECT DIRECTORY

is issued and control is not passed to EDT.

(f) The file specified in the project directory cannot be opened. Message

>>> OPEN ERROR ON FILE FOUND IN PROJECT DIRECTORY (err-no)

is issued and control is not passed to EDT.

Examples

Call which uses parameters preset by default or specified by means of the MODIFY-
EDIT statement:

//E

Editing an EDT work area:

//E *E Current work area
//E *E,5 Work area 5
//E ,5 Work area 5

Editing a file:

//E A.PROG File A.PROG
//E A.PROG(F) File A.PROG with option KIND=FILE

Specification of a package name or program name:

//E BSP(S) Specification of package BSP (Specification)
//E BSP(B) Body of package BSP (Body)
//E BEISPIEL(P) Main program BEISPIEL (Program)

U2780-J-Z125-6-7600 37

EDIT-UNIT Programming system

Editing a library element:

//E (TOOLLIB, LMS.PROG) Library TOOLLIB and element LMS.PROG
//ME (TOOLLIB,) Define library TOOLLIB
//E (,LMS.PROG) LMS.PROG from the defined library TOOLLIB
//E (LIB, TOOLS.S (V1.0)) Version 1.0 of element TOOL.S from library LIB
//E (TOOLLIB,LMS (,R)) Element LMS having the highest version (*HIGHEST-

EXISTING) and type R

Deactivate any query before overwriting:

//E ,,N or
//ME ,,N definition of a new default value

38 U2780-J-Z125-6-7600

Programming system END

2.6.7 END

Terminate programming system.

END

Function

END terminates the Pascal-XT programming system. All files still open are closed. A job
variable specified for program monitoring when the programming system was called is
set.

If an error occurred during the analysis or execution of a statement, the operating
system issues the following message on leaving the programming system:

ABNORMAL PROGRAM TERMINATION

In batch mode, control is subsequently passed to the next job step.

U2780-J-Z125-6-7600 39

MODIFY-COMPILE Programming system

2.6.8 MODIFY-COMPILE

Temporarily change the operand default values of the COMPILE statement.

MODIFY-COMPILE | MC

*EDT (WORKFILE = *STD | 0..9)
name (KIND = FILE | SPEC | BODY | PROG)

[SOURCE =
(SOURCE-LIBRARY = filename]

*HIGHEST-EXISTING
,SOURCE-ELEMENT = element(VERSION =))

vers

*SYSOUT
*SYSLST
*EDT (WORKFILE = *STD | 0..9)

[,LISTING =]
*DUMMY
(LIST-LIBRARY = *STD | filename
,LIST-ELEMENT = *STD | element)

[,MODULE-LIBRARY = *OMF (ERASE = YES | NO) | filename | *STD]
[,ASSEMBLER = *BY-SOURCE | ON | OFF]
[,CHECK = *BY-SOURCE | ON | OFF]
[,DEBUG = *BY-SOURCE | ON | OFF | RESTRICTED]
[,GENERATE = *BY-SOURCE | ON | OFF]
[,INITIALIZE = *BY-SOURCE | ON | OFF]
[,LIST | L = *BY-SOURCE | ON | OFF]
[,MAP = *BY-SOURCE | ON | OFF]
[,OPTIMIZE = *BY-SOURCE | ON | OFF]
[,STANDARD = *BY-SOURCE | ON | L0 | OFF]
[,XREF = *BY-SOURCE | ON | OFF]
[,LINES-PER-PAGE = *STD | 11..2147483639]
[,MESSAGE-LEVEL = NOTES | WARNINGS | ERRORS]

The specification *STD is still accepted as the SOURCE operand in DO procedures and
batch jobs.

Function

The MODIFY-COMPILE statement has the same format as the COMPILE statement. The
descriptions of the operands may be found under that statement.

The MODIFY-COMPILE statement is used to change the default operand values of the
COMPILE statement. This change remains in effect until the next change, or until the
programming system is left. The menus of the COMPILE and MODIFY-COMPILE
statements always show the current default values.

40 U2780-J-Z125-6-7600

Programming system MODIFY-COMPILE

In the case of library elements, library and element names may be defined
independently of one another. When only one of the operands is changed, the other
retains the value it had. In the SOURCE-ELEMENT operand the version must be defined
together with the element name.

The spin-off mechanism is activated if the input for the MODIFY-COMPILE statement is
syntactically incorrect.

Note

The operand value *UNCHANGED, shown in the menu, is described in section
2.6.1.

U2780-J-Z125-6-7600 41

MODIFY-EDIT Programming system

2.6.9 MODIFY-EDIT

Change operand default values in the EDIT statement.

MODIFY-EDIT | ME

*EDT
name(KIND = FILE | SPEC | BODY | PROG)

]
[UNIT = (LIBRARY = filename,

,ELEMENT = element(VERSION = *HIGHEST-EXISTING | vers
,TYP = S | typ))

[,WORKFILE = *STD | 0..9]

[,QUERY = YES | NO]

*STD is still accepted as the UNIT operand in DO procedures and batch jobs.

Function

The MODIFY-EDIT statement has the same format as the EDIT-UNIT statement. The
descriptions of the operands may be found under that statement.

This statement permits the operand default values in the EDIT statement to be changed.
The change remains in effect until the next change, or until the programming system is
left. The menus of the EDIT and MODIFY-EDIT statements always show the current
values.

In the case of library elements, library and element names may be defined
independently of one another. When only one of the operands is changed, the other
retains the value it had. Version and type in the ELEMENT operand can be defined only
together with the element name.

Note

The operand value *UNCHANGED, shown in the menu, is described in section
2.6.1.

42 U2780-J-Z125-6-7600

Programming system REMOVE-DIRECTORY-ENTRY

2.6.10 REMOVE-DIRECTORY-ENTRY

Delete entry in the current project directory.

REMOVE-DIRECTORY-ENTRY

UNIT = pascal-name

Function

REMOVE deletes all entries for the identifier specified in the UNIT operand from the
current project directory. The associated source files are not affected by this function.

Removal of an entry makes all compilation units that import the removed package
invalid. They are marked accordingly in the project directory.

The spin-off mechanism is activated if

(a) No project directory has been defined

(b) The name of the package or main program does not exist in the project directory

UNIT = pascal-name
Name of the package or main program whose entry is to be deleted.

U2780-J-Z125-6-7600 43

RUN-PROGRAM Programming system

2.6.11 RUN-PROGRAM

Execute tool or program with or without the interactive Pascal debugging aid.

RUN-PROGRAM | R

*LAST-COMPILED-PROG
tool-name

[PROGRAM =]
(LIBRARY = *OMF | filename
,ELEMENT = element)

[,PARAMETER = *NONE | string]

[,DEBUG = NO | YES]

Function

RUN executes a Pascal-XT program or a tool without having to leave the programming
system. Following termination of the program the programming system continues
operation. Current BS20000 files can be associated with program parameters prior to
program execution (see chapter 5). The DEBUG operand is used to specify whether the
program is to be tested with PATH, the Pascal debugging aid (see chapter 9).

With effect from Pascal-XT V2.2A, no Pascal-XT programs with interfaces to other
languages can be executed with RUN, as this is incompatible with ILCS (see 7.1).

The program started with RUN remains loaded until the next compilation. Thus a
program can be executed several times in succession without reloading.

If an exception (runtime error) occurs that is not handled by the program itself, the
dynamic call chain (see section 10.2) is output, the program terminates and control is
returned to the programming system.

A program is not executed if a tool having the same name as the program has already
been loaded. An error message is issued and the spin-off mechanism is activated. If the
program to be executed requires a package (or several packages) already loaded and
used by a tool that has been loaded itself, execution of that program may give rise to
error conditions on account of the multiple use of the package.

The spin-off mechanism is activated if the program cannot be loaded or the program
terminated with an error.

44 U2780-J-Z125-6-7600

Programming system RUN-PROGRAM

PROGRAM Designates the Pascal program to be executed. It is loaded with DLL
if this has not been done already. External references are resolved in
accordance with the autolink mechanism of DLL (see also section
6.3).

= *LAST-COMPILED-PROG
The last program compiled is loaded from the library specified in the
COMPILE statement and executed.

= tool-name
Name of the tool to be executed. The tool must have been loaded
previously with the aid of the ADD-TOOL statement.

= (*OMF,element)
The program designated with "element" is loaded from the temporary
object module file (*OMF) and executed. "element" is the name of
starter module of the program. *OMF must be be deleted with
ERASE * prior to each compilation if a program is to be compiled
more than once and only the last program compiled is to be
executed.

= (filename,element)
From the PLAM library "file name", the program designated with
"element" is loaded and executed. "element" is the name of the
starter module of the program.

Note
DLL can be loaded from PLAM libraries with effect from BS2000
version 8.

PARAMETER Describes the assignment of BS2000 files to external files (program
parameters) of the program.

= *NONE
No physical files are specified. If the program was already executed
immediately before this execution with files specified, those files are
taken as default values in subsequent calls.

= string
Assignments of BS2000 files to external Pascal files are entered in a
string enclosed in single quotes ’...’. Each individual file assignment
is specified in the form

pascal-file = physical-file

U2780-J-Z125-6-7600 45

RUN-PROGRAM Programming system

Blanks are skipped. Multiple assignments within the string are to be
separated by commas:

’pas-file1 = file1, pas-file2 = file2, ...’

The correct number of parameters and the validity of the Pascal file
identifiers cannot be checked. An error is not detected until runtime.
The programming system stores these file assignments for as long
as the program is loaded. Following a compilation or following
execution of another program the assignments are no longer in
effect. For permanently loaded tools the assignments remain stored
until the programming system is left. If in a subsequent call of the
RUN statement other physical files are specified, they replace the
previously stored values. If no file assignments are specified, those
previously made are assumed, if possible.
As "physical file" a SAM or ISAM file may be specified. For ISAM
files the remarks made in section 5.2.2 should be noted.
Physical files must not be assigned to the predefined files INPUT
and OUTPUT. These are always assigned to the system files
SYSDTA and SYSOUT respectively. Therefore, no assignments are
recorded for them.

DEBUG Specifies whether the program is to run under the control of the
PATH debugging aid.

= NO execution without the debugging aid

= YES execution with the debugging aid

Note

Programs requiring large amounts of main memory should be statically linked and
executed outside of the programming system because any additional memory
required by the programming system and compiler is available there.

46 U2780-J-Z125-6-7600

Programming system RUN-PROGRAM

Examples

//R Execute the program compiled last

//R LMS Execute the tool named LMS (must have been loaded beforehand
by means of the ADD-TOOL statement).

//R (,TEST) Execute program TEST from the *OMF (Note: any required
packages cannot be loaded dynamically from *OMF by DLL. They
must be included in an object module library defined by means of
SYSFILE TASKLIB).

//R (MODLIB, BEISPIE)

Execute program BEISPIE (name of the starter module) from the
MODLIB object module library

//R d=y Execute the program compiled last under control of the PATH
debugging aid

//R ,’SRC=QUELLE,DEST=ZIEL’

Execute the program compiled last, assigning BS2000 files QUELLE
and ZIEL to Pascal files SRC and DEST respectively

U2780-J-Z125-6-7600 47

SHOW-ATTRIBUTES Programming system

2.6.12 SHOW-ATTRIBUTES

Provide information on the programming system and the current project directory.

SHOW-ATTRIBUTES | S

LOADED-PROGRAM
TOOLS (TOOL = *ALL | tool-name)

PROJECT-FILE
(PACKAGES = * | pascal-name
,KIND = ALL | SPEC | BODY | PROG

[WHAT =]
,REFERENCES = NONE | ALL | DIRECT | INDIRECT
,USED-BY = NONE | ALL | DIRECT | INDIRECT)

RECOMPILATIONS
(PACKAGES = *NECESSARY | *ALL | pascal-name
,KIND = ALL | SPEC | BODY | PROG)

*SYSOUT
*SYSLST
*EDT(WORKFILE = *STD | 0..9)
filename

[,OUTFILE =]
(LIBRARY=filename,

*UPPER-LIMIT
,ELEMENT=element(VERSION= ,TYP=type))

vers

*STD is still accepted as version specification for the OUTFILE operand in DO
procedures and batch jobs.

Function

SHOW-ATTRIBUTES provides information regarding the program executed last,
available tools, project directory and the compilation units to be compiled. By default,
the information is output to system file SYSOUT; it can, however, be directed to any
other file. The output format of the SHOW statement is described below.

The specifications WHAT=*LOADED-PROGRAM and TOOLS cause the program
executed last and the tools available, respectively, as well as any assignments of files
to program parameters to be output (see also RUN statement).

48 U2780-J-Z125-6-7600

Programming system SHOW-ATTRIBUTES

The specification WHAT=PROJECT causes the information stored in the current project
directory to be output via the compilation units. By default, the package or program
name and the file name in which the unit is stored are output. Additionally,

(a) all directly and indirectly imported package specifications

(b) all compilation units that import the specified package directly or indirectly

can be output.

The information under (b) is of particular importance as all compilation units affected by
a change in specification are shown.

Specification of RECOMPILATIONS causes COMPILE statements for recompilation of
compilation units to be generated. Recompilation may be necessary for the following
reasons:

(a) A compilation unit has been edited

(b) The specification of an imported package has been changed or recompiled
(without being changed)

(c) Errors have been generated during the compilation of a compilation unit.

(d) The GENERATE=OFF option has been specified for the compilation of a package
body or a new main program.

Unless specified otherwise, the COMPILE statements are generated only for those
compilation units that must be recompiled in order that all compilation units associated
with a program are present in a consistent state. COMPILE statements for the
compilation of all packages can also be generated.

U2780-J-Z125-6-7600 49

SHOW-ATTRIBUTES Programming system

The COMPILE statements are arranged in such a way that the compilations are
performed in the correct order. This assumes that compilation units have been changed
by means of the EDIT statement exclusively. Following changes in the WITH clause (list
of imported packages) the compilation unit should be compiled so that the new
package references in the project directory can be updated. If the compilation is not
peformed, the package references valid prior to the change are assumed for
establishing the sequence of compilations. This may result in the compilations being
performed in the wrong order.

The spin-off mechanism is triggered by the following errors, but (b) through (c) only if
WHAT=PROJECT or WHAT=RECOMPILATIONS):

(a) Errors in the syntax of the SHOW statement

(b) The project directory has not been defined

(c) The name of a package or program has been defined for which no entry in the
project directory exists

WHAT Specifies the desired information.

= LOADED PROGRAM
Specifies the name of the program executed last with RUN. If file
assignments were specified in the RUN statement, they are also
output.

= TOOLS (*ALL | tool-name)
By default (*ALL), the name of all tools are output. For each tool the
assignments of physical files to program parameters are also given if
the tool has already been executed (see RUN statement). When
"tool-name" is specified, only the information concerning that tool is
output.

= PROJECT-FILE (PACKAGES=.., KIND=.., REFERENCES=.., USED-BY=..)
This specification causes information from the project directory to be
output. The extent of the output is controlled by additional operands.
By default the names of all compilation units (PACKAGE NAME), the
kind of compilation units (KIND) and the file names (LOCATION)
under which they are stored, are output. Packages to be compiled
for the first time are characterized by an "!" preceding the kind of
compilation unit (KIND).

50 U2780-J-Z125-6-7600

Programming system SHOW-ATTRIBUTES

PACKAGES = * | [*] pascal-name [*]

Defines the names of the packages for which information is to be
output. By default ("*"), all packages will be considered. Specifying
"pascal-name" causes the information regarding this package or
main program to be output.
It is also possible to specify the wildcard character "*", which stands
for any (or an empty) string. "*pascal-name" provides all entries
ending in the string specified in "pascal-name"; "pascal-name*", all
entries starting with the string and "*pascal-name*", all entries
containing this string.

KIND = ALL | SPEC | BODY | PROG

This operand is used to restrict the output to specifications (SPEC),
or bodies (BODY), or main programs (PROG) of the names specified
in PACKAGE. By default (=ALL), information about all compilation
units is output.

REFERENCES = NONE | ALL | DIRECT | INDIRECT

For each package specified by PACKAGE and KIND, all packages
imported directly or indirectly can be output.
By default (= NONE), no package references are output.
If ALL is specified, all packages imported directly and indirectly are
output.
If DIRECT is specified, only packages imported directly are output.
If INDIRECT is specified, only packages imported indirectly are
output. All of these are packages imported directly or indirectly by
directly imported package specifications.
If a compilation unit does not import any packages, "--" is output
instead. If the compilation unit had been modified but not yet
compiled, "- undefined -" is output.

U2780-J-Z125-6-7600 51

SHOW-ATTRIBUTES Programming system

USED-BY = NONE | ALL | DIRECT | INDIRECT

For each package specified by PACKAGE and KIND, all packages
can be output that import this package directly or indirectly. Hence
these are packages that are to be recompiled in case of modification
of the specified package. This therefore corresponds to the reversed
relation of REFERENCES.
By default (= NONE), this information is not output.
If ALL is specified, all packages are output that import this package
directly or indirectly.
If DIRECT is specified, all packages are output that import this
package directly, i.e. that have this package specified in their WITH
clause.
If INDIRECT is specified, all packages are output that import the
specified package directly or indirectly.

= RECOMPILATIONS (PACKAGES=.., KIND=..)
This operand controls the generation of COMPILE statements for
compilation units. The PACKAGES and KIND operands are used to
select the compilation units for which COMPILE statements are to be
generated.
In the generated COMPILE statements only the SOURCE operands
(name of compilation unit and the KIND) are specified. The
statements, insofar as they are output to a file, can be brought into
effect by means of the CALL statement (for the unspecified
COMPILE operands the current values of the COMPILE statement
are assumed).
The order of the statements represents a valid compilation sequence
(see notes above).

PACKAGES = *NECESSARY | *ALL | pascal-name

By default (= *NECESSARY), COMPILE statements for modified
compilation units and units depending on them are output.
If *ALL is specified, COMPILE statements for all compilation units
are generated; if "pascal-name" is specified, only the compilation unit
mentioned and the compilation units depending on it.

KIND = ALL | SPEC | BODY | PROG

By default (= ALL), all compilation units are checked to find out
whether they have to be recompiled. The KIND specification is used
to restrict this check to specifications (SPEC), or bodies (BODY), or
main programs (PROG) of the names specified in PACKAGES.

52 U2780-J-Z125-6-7600

Programming system SHOW-ATTRIBUTES

OUTFILE Output is sent to the specified file.

= *SYSOUT
Output to system file SYSOUT

= *SYSLST
Output to system file SYSLST

= *EDT (WORKFILE = *STD | 0..9)
Output to the specified work area of EDT. By default (*STD), this is
the current area.

= filename
Name of the output file

= (filename, element (vers, type))
Output is sent to library element "element" of PLAM library
"filename". By default, the name of the library element is "P" (for print
file). If the generated element is to be executed by means of the
CALL statement, if for example it contains COMPILE statements,
then type "J" (for job control) must be specified explicitly. By default,
the element version is *UPPER-LIMIT (highest-possible version). If an
element with the same name, version and type already exists, it is
overwritten.

As of Pascal-XT V2.2A, the version specification *STD is no longer
permissible in dialog. *STD is still accepted in DO procedures and
batch jobs.

U2780-J-Z125-6-7600 53

SHOW-ATTRIBUTES Programming system

Output format of the SHOW statement for the project directory

The example from chapter 3 illustrates the use of the output format.

//D TEST.DIRECTORY
//S P(,,ALL,ALL) (01)

CONTENTS OF THE PROJECT DIRECTORY FILE (TEST.DIRECTORY)

PACKAGE NAME KIND LOCATION

A (SPEC) ($USERID.PLAM.SPEC,A.SPEC(*UPPER-LIMIT,S)) (02)
REFERENCES (03)
direct: - - (04)
indirect: - -

USED BY (05)
direct: A (OWN BODY), B (SPEC) (06)
indirect: B (BODY), C (SPEC), C (BODY)

A (BODY) $USERID.A.BODY
REFERENCES

direct: A (OWN SPEC)
indirect: - -

B !(SPEC) ($USERID.PLAM.SPEC,B.SPEC(*UPPER-LIMIT,S)) (07)
REFERENCES

direct: - undefined - (08)
indirect: - undefined -

B !(BODY) ($USERID.PLAM.BODY,B.BODY(*UPPER-LIMIT,S))
REFERENCES

direct: B (OWN SPEC)
indirect: A

C !(SPEC) ($USERID.PLAM.SPEC,C.SPEC(*UPPER-LIMIT,S))
REFERENCES

direct: B
indirect: A

USED BY
direct: C (OWN BODY)
indirect: - -

C !(BODY) ($USERID.PLAM.BODY,C.BODY(*UPPER-LIMIT,S))
REFERENCES

direct: C (OWN SPEC), D
indirect: A, B

D (SPEC) ($USERID.PLAM.SPEC,D.SPEC(*UPPER-LIMIT,S))
REFERENCES

direct: - -
indirect: - -

USED BY
direct: C (BODY), D (OWN BODY)
indirect: - -

54 U2780-J-Z125-6-7600

Programming system SHOW-ATTRIBUTES

D (BODY) ($USERID.PLAM.BODY,D.BODY(*UPPER-LIMIT,S))
REFERENCES

direct: D (OWN SPEC)
indirect: - -

(01) The SHOW statement is used to output the contents of the project directory,
including the relations between packages. The format of the statement when
written in full is:

SHOW-ATTRIBUTES WHAT = PROJECT-FILE (REFERENCES = ALL, USED-BY = ALL)

(02) For each entry in the project directory the package name, or program name, is
output followed by information on whether this is a package specification
(SPEC), a package body (BODY) or a main program (PROG) and, finally, by
the name of the associated source file. For library elements, the library name,
the element name, the version and the type of element are output. If the source
resides on a file, the associated BS20000 file name is output.

(03) The packages imported by this package or main program are listed under the
heading REFERENCES. Packages that have been specified directly in the WITH
clause and, where package bodies are concerned, also any user-own
specification (OWN SPEC), are considered directly imported. Indirectly imported
are all those packages that are imported by the specifications of the imported
packages (even if this involves several stages).

(04) Two successive minus signs ("--") mean that no packages are imported, or that
this package is not imported by other compilation units.

(05) Compilation units that import this package are listed under the heading USED-
BY. The information given for REFERENCES applies equally to direct and
indirect. This output is only produced for specifications as package bodies and
main programs cannot be imported by other packages.

(06) If an entry refers to a user-own specification or a user-own body, it is prefixed
by the word OWN.

(07) All compilation units that have to be recompiled are identified by an
exclamation mark ("!"). These include all modified compilation units and the
compilation units depending on them.

(08) After a compilation unit has been edited "- undefined -" is output as the system
does not know whether the WITH clause of the compilation unit has been
changed.

U2780-J-Z125-6-7600 55

STEP Programming system

2.6.13 STEP

Define restart point.

STEP

Function

STEP defines the point at which execution is to restart if an error is encountered in a
statement. This statement can only be specified in a statement file (see CALL
statement), a DO procedure or an ENTER job.

56 U2780-J-Z125-6-7600

Programming system SYSTEM-COMMAND

2.6.14 SYSTEM-COMMAND

Switch to BS2000 command mode or execute a BS2000 system command.

SYSTEM-COMMAND

[COMMAND = bs2000-cmd]

Function

SYSTEM-COMMAND switches to BS2000 command mode (same effect as the K2 key),
or carries out a BS2000 command without terminating the programming system.

If an error occurs during the execution of the command "bs2000-cmd", the spin-off
mechanism in the programming system is activated. An error in command execution
after processing has switched to BS2000 command mode has no effect on the spin-off
mechanism of the programming system.

COMMAND Defines whether processing is to switch to BS2000 command mode
or only one BS2000 command is to be carried out. If the operand is
not specified, the programming system is interrupted and any
BS2000 commands may be entered. The operand name COMMAND
must not be entered as otherwise it may be interpreted as part of
the BS2000 command. Following input of the RESUME command
the programming system continues.

= bs2000-cmd
Designates a BS2000 command, specified in the customary format.

Note

Commands such as EXEC unload the programming system. Calling such
commands should be avoided because the programming system cannot be
terminated properly.

U2780-J-Z125-6-7600 57

Examples Programming system

2.7 Examples

Developing a main program

This sample session shows how a program is developed that outputs a BS2000 text file
to the screen. Subsequently, this program is loaded as a tool in the programming
environment.

/EXEC $userid.PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//e list.pas (01)

1.00 ..
2.00 ..
3.00 ..
4.00 ..
5.00 ..
6.00 ..
7.00 ..
8.00 ..
9.00 ..

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..

FILE "$userid.LIST.PAS" DOES NOT EXIST (02)
..0000.00:001(0)

(01) Calling EDT specifying the name of the file to be edited. The format of the
statement when written in full is:

EDIT-UNIT UNIT = LIST.PAS (KIND = FILE)

(02) In the EDT status line, a message is issued that the file list.pas does not yet
exist.

58 U2780-J-Z125-6-7600

Programming system Examples

1.00 program list (output, f);
2.00 var
3.00 f : text;
4.00 line : string;
5.00 begin
6.00 reset (f);
7.00 while not eof (f) do
8.00 begin
9.00 readln (f, line)

10.00 writeln (line);
11.00 end;
12.00 end.
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..
23.00 ..

h...0001.00:001(0) (03)

>>> (OVER)WRITE "$userid.LIST.PAS" (y/n) ? (04)
*y

>>> "$userid.LIST.PAS" (OVER)WRITTEN (05)
//mc *e(0),*e(5),(y),ch=on,in=on,op=on (06)
//c (07)

>>> 1 COMPILATION ERROR DETECTED (WARNINGS: 0; NOTES: 0)
//e ,5 (08)

(03) After the source text has been entered, EDT is left by means of HALT.
Subsequently, the program is stored by the Pascal-XT programming system, so
no WRITE command is required in EDT.

(04) The programming system asks whether the contents of the EDT work area are
to be stored in file list.pas. This query can be suppressed if the QUERY=NO
operand is specified in the EDIT statement when this is called. In this case,
rewriting is always performed. Since file list.pas does not yet exist at this very
moment, it is created right now.

(05) This message confirms successful writing to the file. It also appears if
QUERY=NO.

U2780-J-Z125-6-7600 59

Examples Programming system

(06) The MODIFY-COMPILE statement enables the desired presettings to be made
for the COMPILE statement. Its format when written in full is:

MODIFY-COMPILE SOURCE = *EDT (WORKFILE=0),
LISTING = *EDT (WORKFILE=5),
MODULE-LIBRARY = *OMF (ERASE = YES),
CHECK = ON, INITIALIZE = ON, OPTIMIZE = ON

In case of a subsequent COMPILE statement the compiler expects the source
to be in EDT work area 0, writes the listing to EDT work area 5 and the
generated object program to the * area which is cleared prior to every
compilation.

(07) Calling the compiler using the preset parameters.

(08) As the compilation was unsuccessful, an attempt is now being made to find the
error in the listing. To do this, work area 5 of EDT is entered. The format of this
statement when written in full is:

EDIT-UNIT UNIT = *EDT, WORKFILE = 5

The entry *EDT in the UNIT operand leaves the specified work area unchanged
when EDT is called, so nothing is read in.

60 U2780-J-Z125-6-7600

Programming system Examples

1.00 A*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00
2.00
2.00
3.00
4.00 GLOBAL OPTIONS FOR THIS COMPILATION
5.00
6.00 CHECK = ON BY COMMAND
7.00 INITIALIZE = ON BY COMMAND
8.00 OPTIMIZE = ON BY COMMAND
9.00 DEBUG = OFF BY OPTIMIZE OPTION

10.00 GENERATE = ON BY DEFAULT
11.00 MAP = OFF BY DEFAULT
12.00 STANDARD = OFF BY DEFAULT
13.00 XREF = OFF BY DEFAULT
14.00
15.00
16.00 CURRENT COMPILATION UNIT (SOURCE FILE)
17.00
18.00 *EDT(0)
19.00
20.00 1 program list (output, f);
21.00 2 var
22.00 3 f : text;

+...0001.00:001(5)

23.00 4 line : string;
24.00 5 begin
25.00 6 reset (f);
26.00 7 while not eof (f) do
27.00 8 begin
28.00 9 readln (f, line) (09)
29.00 10 writeln (line);
30.00 1
31.00 >>> 1: ERROR 218: ";" INSERTED
32.00
33.00 11 end;
34.00 12 end.
35.00
36.00
37.00 ***
38.00 * COMPILATION SUMMARY *
39.00 ***
40.00 * ERRORS DETECTED : 1 *
41.00 * WARNINGS : 0 *
42.00 * NOTES : 0 *
43.00 * SIZE OF CODE MODULE : 0 BYTES *
44.00 * SIZE OF DATA MODULE : 0 BYTES *
45.00 * COMPILATION TIME : 0.174 SEC *
46.00 ***
47.00

0...0024.00:001(5) (10)

(09) A semicolon was missed out in line 9 when the program was input.

(10) To correct this, control is passed to work area 0 of EDT.

U2780-J-Z125-6-7600 61

Examples Programming system

1.00 program list (output, f);
2.00 var
3.00 f : text;
4.00 line : string;
5.00 begin
6.00 reset (f);
7.00 while not eof (f) do
8.00 begin
9.00 readln (f, line);

10.00 writeln (line);
11.00 end;
12.00 end.
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..
23.00...

h...0001.00:001(0)

>>> (OVER)WRITE "$userid.LIST.PAS" (y/n) ? (11)
*y

>>> "$userid.LIST.PAS" (OVER)WRITTEN
//c (12)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//sy file list.pas,link=f (13)
//r (14)
program list (output, f);
var

f : text;
line : string;

begin
reset (f);
while not eof (f) do

begin
readln (f, line);
writeln (line);
end;

end.

(11) EDT is left by means of HALT. As the programming system keeps a record of
the contents of the EDT work area, it now queries whether file list.pas is to be
rewritten.

(12) Compilation successful.

(13) Prior to program execution a BS2000 file is assigned to Pascal file F by means
of the BS2000 FILE command. In this case, the source of the program, file
list.pas, is used as an input file.

62 U2780-J-Z125-6-7600

Programming system Examples

(14) The RUN statement is used to load program list from the * area and start it. Its
format when written in full is:

RUN-PROGRAM PROGRAM = *LAST-COMPILED-PROGRAM

//s (15)

LAST LOADED PROGRAM

list
//sy rel f (16)
//r ,’f=list.pas’ (17)
program list (output, f);
var

f : text;
line : string;

begin
reset (f);
while not eof (f) do

begin
readln (f, line);
writeln (line);
end;

end.

(15) THE SHOW statement provides information about the last program loaded. The
format of this statement when written in full is:

SHOW-ATTRIBUTES WHAT = LOADED-PROGRAM

(16) The BS2000 RELEASE command releases the link between BS2000 file and
Pascal file F.

(17) The assignment of Pascal file F to a BS2000 file can also be made with the
RUN statement. Its format when written in full is:

RUN-PROGRAM PROGRAM = *LAST-COMPILED-PROGRAM,
PARAMETER = ’f = list.pas’

This assignment is retained until it is overwritten by a new entry in the RUN
statement, until another program is loaded or the programming system is left.

U2780-J-Z125-6-7600 63

Examples Programming system

//s (18)

LAST LOADED PROGRAM

list
F <- - - LIST.PAS

//s t (19)
>>> NO TOOL(S) AVAILABLE

//a (*omf,list),l (20)
//s t (21)

TOOLS OF THE PROGRAMMING ENVIRONMENT

L
//r l,’f=list.pas’ (22)
program list (output, f);
var

f : text;
line : string;

begin
reset (f);
while not eof (f) do

begin
readln (f, line);
writeln (line);
end;

end.

(18) The SHOW statement outputs the program name and the BS2000 file assigned
to Pascal file F.

(19) As the program is to be loaded as a tool in the programming system
environment, information about any tools loaded already is first requested by
way of the SHOW command. Issuing alias names twice is thus prevented. The
format of this statement when written in full is:

SHOW-ATTRIBUTES WHAT = TOOLS (TOOL = *ALL)

(20) The ADD statement loads program "list" as a tool in the programming
environment under the name l. The format of this statement when written in full
is:

ADD-TOOL (LIBRARY = *OMF, ELEMENT = LIST), ALIAS-NAME = L

(21) Now the SHOW statement shows that a tool having name l is present.

(22) Before the tool is executed, the link between Pascal file F and a BS2000 file
must be established, either by way of a FILE command or, as is done here,
with the aid of the RUN command. The format of this statement when written in
full is:

RUN-PROGRAM PROGRAM = L, PARAMETER = ’f = list.pas’

This link is retained until it is overwritten by a new entry in the RUN statement,
or the programming system is left.

64 U2780-J-Z125-6-7600

Programming system Examples

//s t (23)

TOOLS OF THE PROGRAMMING ENVIRONMENT

L
F <- - - LIST.PAS

//r l (24)
program list (output, f);
var

f : text;
line : string;

begin
reset (f);
while not eof (f) do

begin
readln (f, line);
writeln (line);
end;

end.
//end (25)

END OF THE PASCAL SESSION - USED TIME = 2.918 SECONDS
% E732 ABNORMAL PROGRAM TERMINATION APTT101 (26)

(23) The SHOW statement outputs the name of the tool as well as the file
allocations made in the RUN statement.

(24) As the file allocation has already been made, the specification of parameters
can be omitted when tool l is called once more.

(25) The Pascal-XT programming system terminates. All modifications of operand
presettings, e.g. by the MODIFY-COMPILE statement, see (06), will be lost and
will not be restored when the programming system is restarted.

(26) If an illegal statement is encountered in the programming system, or an error
occurred during compilation, the BS2000 spin-off mechanism is activated when
the programming system terminates. As a result, message ABNORMAL PROGRAM

TERMINATION is issued in interactive mode, or a branch is made to the next
STEP or ENDP or to LOGOFF in DO procedures and ENTER jobs.

U2780-J-Z125-6-7600 65

Examples Programming system

Working with PLAM libraries and the project directory

This sample session shows how a program is developed which represents an aid to
cleaning up user IDs. It outputs a listing of all cataloged files and subsequently asks
whether each file has to be deleted or not.

The program consists of the main program ERAQ and the packages FSTAT and
DIALOG. Furthermore, the two predefined packages BS2000CALLS and DMSIO are
used.

In particular, the example illustrates project directory handling and program
development with the aid of PLAM libraries.

/EXEC $userid.PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//E (ERAQ.PLAM,FSTAT.SPEC) (01)

1.00 ..
2.00 ..
3.00 ..
4.00 ..
5.00 ..
6.00 ..
7.00 ..
8.00 ..
9.00 ..

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..

OPEN ERROR ON LIBRARY "$userid.ERAQ.PLAM" (02)
..0000.00:001(0)

(01) Calling EDT, specifying library name and name of the element to be edited.
Neither the library nor the element exist at this point in time. The format of this
statement when written in full is:

EDIT-UNIT UNIT = *LIBRARY (LIBRARY = ERAQ.PLAM,
ELEMENT = FSTAT.SPEC)

(02) As library eraq.plam does not yet exist, a message that it cannot be opened is
issued in the EDT status line.

66 U2780-J-Z125-6-7600

Programming system Examples

1.00 package fstat;
2.00 type
3.00 fntype = string[54];
4.00
5.00 procedure makefstat (filename: fntype);
6.00
7.00 end.
8.00 ..
9.00 ..

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..
23.00...

h...0001.00:001(0)

>>> (OVER)WRITE "($userid.ERAQ.PLAM,FSTAT.SPEC(*UPPER-LIMIT,S))" (y/n) ? (03)
*y

>>> "($userid.ERAQ.PLAM,FSTAT.SPEC(*UPPER-LIMIT,S))" (OVER)WRITTEN
//ME (ERAQ.PLAM) (04)
//E (,FSTAT.BODY),1 (05)

(03) Once the source text has been input, EDT is left by means of HALT. The
programming system asks whether the contents of the work area have to be
stored in library element fstat.spec of library eraq.plam. This query can be
suppressed by specifying QUERY=NO in the EDIT statement when the call is
made. In this case, rewriting is always performed, without any query being
made. As library eraq.plam does not yet exist at this point in time, it is now
created as a PLAM library and element fstat.spec of type S is subsequently
added to it.

(04) To make things easier the MODIFY-EDIT statement is used to preset the name
of library eraq.plam. The format of this statement when written in full is:

MODIFY-EDIT UNIT = *LIBRARY (LIBRARY = ERAQ.PLAM)

(05) From now on it suffices to specify the element name in the EDT statement. The
body of the package must be entered in work area 1 so that the specification is
still present in work area 0 in case it is needed. The format of this statement
when written in full is:

EDIT-UNIT UNIT = *LIBRARY (, ELEMENT = FSTAT.BODY), WORKFILE = 1

U2780-J-Z125-6-7600 67

Examples Programming system

1.00 ..
2.00 ..
3.00 ..
4.00 ..
5.00 ..
6.00 ..
7.00 ..
8.00 ..
9.00 ..

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..

ELEMENT "FSTAT.BODY (*UPPER-LIMIT,S)" DOES NOT EXIST (06)
..0000.00:001(1)

1.00 with BS2000CALLS;
2.00 package body fstat;
3.00
4.00 procedure makefstat (filename: fntype);
5.00 var
6.00 b : boolean;
7.00 begin
8.00 BS2000CALLS.cmd (concat(’/SYSFILE SYSLST=’,filename), b);
9.00 BS2000CALLS.cmd (’/OPTION MSG=FHL’, b);

10.00 BS2000CALLS.cmd (’/FSTAT’, b);
11.00 BS2000CALLS.cmd (’/OPTION MSG=F’, b);
12.00 BS2000CALLS.cmd (’/SYSFILE SYSLST=(PRIMARY)’, b);
13.00 end;
14.00
15.00 begin
16.00 end.
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..
23.00...

h...0001.00:001(1)

>>> (OVER)WRITE "($userid.ERAQ.PLAM,FSTAT.BODY(*UPPER-LIMIT,S))" (y/n) ?
*y

>>> "($userid.ERAQ.PLAM,FSTAT.BODY(*UPPER-LIMIT,S))" (OVER)WRITTEN

(06) In the EDT status line, a message is issued that element fstat.body does not yet
exist.

68 U2780-J-Z125-6-7600

Programming system Examples

//E (,DIALOG.SPEC),2 (07)

1.00 ..
2.00 ..
3.00 ..
4.00 ..
5.00 ..
6.00 ..
7.00 ..
8.00 ..
9.00 ..

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..

ELEMENT "DIALOG.SPEC (*UPPER-LIMIT,S)" DOES NOT EXIST
..0000.00:001(2)

1.00 package dialog;
2.00 type
3.00 fntype = string[54];
4.00
5.00 procedure makedialog (filename: fntype);
6.00
7.00 end.
8.00 ..
9.00 ..

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..
23.00...

h...0001.00:001(2)

>>> (OVER)WRITE "($userid.ERAQ.PLAM,DIALOG.SPEC(*UPPER-LIMIT,S))" (y/n) ?
*y

>>> "($userid.ERAQ.PLAM,DIALOG.SPEC(*UPPER-LIMIT,S))" (OVER)WRITTEN

(07) The specification of package "dialog" is entered in EDT work area 2.

U2780-J-Z125-6-7600 69

Examples Programming system

//E (,DIALOG.BODY),3 (08)

1.00 ..
2.00 ..
3.00 ..
4.00 ..
5.00 ..
6.00 ..
7.00 ..
8.00 ..
9.00 ..

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..

ELEMENT "DIALOG.BODY (*UPPER-LIMIT,S)" DOES NOT EXIST
..0000.00:001(3)

1.00 with BS2000CALLS, DMSIO;
2.00 package body dialog (input, output, tmp);
3.00 var
4.00 tmp : text;
5.00
6.00 procedure makedialog (filename: fntype);
7.00 var
8.00 c : char;
9.00 b : boolean;

10.00 line : string;
11.00 begin
12.00 Assignfile (tmp, filename);
13.00 reset (tmp);
14.00 while not eoln (tmp) do
15.00 begin
16.00 readln (tmp, line);
17.00 delete (line, 1, 27);
18.00 writeln (’Is the file ’’’, line,
19.00 ’’’ to be deleted?(Y/N/E):’);
20.00 readln;
21.00 read (c);
22.00 if c in [’Y’,’y’,’j’,’J’] then
23.00 begin

+...0001.00:001(3)

(08) The body of package "dialog" is entered in EDT work area 3.

70 U2780-J-Z125-6-7600

Programming system Examples

24.00 BS2000CALLS.cmd (concat (’/ERASE ’,line), b);
25.00 if not b then
26.00 begin
27.00 writeln (’file ’’’, line, ’’’ deleted!’);
28.00 writeln;
29.00 end
30.00 end
31.00 else if (c = ’E’) or (c = ’e’) then
32.00 exit;
33.00 end;
34.00 DMSIO.close (tmp) ;
35.00 BS2000CALLS.cmd (concat(’/ERASE’, filename), b)
36.00 end;
37.00
38.00 begin
39.00 end.
40.00 ..
41.00 ..
42.00 ..
43.00 ..
44.00 ..
45.00 ..
46.00 ..

h...0024.00:001(3)

>>> (OVER)WRITE "($userid.ERAQ.PLAM,DIALOG.BODY(*UPPER-LIMIT,S))" (y/n) ?
*y

>>> "($userid.ERAQ.PLAM,DIALOG.BODY(*UPPER-LIMIT,S))" (OVER)WRITTEN
//E (,ERAQ.PROG),4 (09)

1.00 ..
2.00 ..
3.00 ..
4.00 ..
5.00 ..
6.00 ..
7.00 ..
8.00 ..
9.00 ..

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..

ELEMENT "ERAQ.PROG (*UPPER-LIMIT,S)" DOES NOT EXIST
..0000.00:001(4)

(09) Main program eraq.prog is entered in EDT work area 4.

U2780-J-Z125-6-7600 71

Examples Programming system

1.00 with FSTAT, DIALOG;
2.00 program eraq (input, output);
3.00 const
4.00 tempfile = ’TMP.SYSLST’;
5.00
6.00 begin
7.00 FSTAT.makefstat (tempfile);
8.00 DIALOG.makedialog (tempfile);
9.00 end.

10.00 ..
11.00 ..
12.00 ..
13.00 ..
14.00 ..
15.00 ..
16.00 ..
17.00 ..
18.00 ..
19.00 ..
20.00 ..
21.00 ..
22.00 ..
23.00...

h...0001.00:001(4)

>>> (OVER)WRITE "($userid.ERAQ.PLAM,ERAQ.PROG(*UPPER-LIMIT,S))" (y/n) ?
*y

>>> "($userid.ERAQ.PLAM,ERAQ.PROG(*UPPER-LIMIT,S))" (OVER)WRITTEN
//D ERAQ.DIR (10)

>>> PROJECT DIRECTORY FILE CREATED (11)
//C ($PASSUP-XT,BS2000CALLS.SPEC),*D (12)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C ($PASSUP-XT,DMSIO.SPEC),*D

>>> COMPILATION SUCCESSFUL

(10) After all sources have been input, the project directory must now be defined
prior to the first compilation. The format of this statement written in full is:

DEFINE-PROJECT-FILE DIRECTORY = ERAQ.DIR

(11) As project directory eraq.dir does not exist yet, it is created by the preceding
DEFINE-PROJECT-FILE statement, opened for processing and this message is
issued. If the project directory exists already, it is only opened and no message
is issued.

(12) Before a specification can be used during the compilation of another
specification, a package body or a main program, this specification must be
entered in the project directory. This is effected by compilation of this
specification. Here, the specifications of the predefined packages BS2000CALLS
and DMSIO are compiled first. Since the listings of these two compilations are
immaterial, the listing is written to BS2000 file *DUMMY. The format of this
statement when written in full is:

COMPILE-UNIT SOURCE = *LIBRARY (SOURCE-LIBRARY = $PASSUP-XT,
SOURCE-ELEMENT = DMSIO.SPEC),

LISTING = *DUMMY

72 U2780-J-Z125-6-7600

Programming system Examples

//MC (ERAQ.PLAM),(*STD,*STD),*STD,CH=ON,IN=ON,OP=ON (13)
//C (,FSTAT.SPEC) (14)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,FSTAT.BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,DIALOG.SPEC)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,DIALOG.BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,ERAQ.PROG)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//R (15)
0000003: C:$userid.AAAA
0000003: C:$userid.AAAA2
0000003: C:$userid.ERAQ.DIR
0000048: C:$userid.ERAQ.PLAM
Is the file ’C:$userid.AAAA’ to be deleted?(Y/N/E): (16)
n
Is the file ’C:$userid.AAAA2’ to be deleted?(Y/N/E):
e
//E DIALOG(B) (17)

(13) The MODIFY-COMPILE statement modifies the default values of the operands
for the following compilations: source library = ERAQ.PLAM, listing library =
source library, listing element = P element with the same name as source
element, module library = source library and the options Check, Initialize and
Optimize set to ON. The format of this statement when written in full is:

MODIFY-COMPILE SOURCE = *LIBRARY (SOURCE-LIBRARY = ERAQ.PLAM),
LISTING = *LIBRARY (LIST-LIBRARY = *STD,

LIST-ELEMENT = *STD),
MODULE = *STD,
CHECK = ON, INITIALIZE = ON, OPTIMIZE = ON

Thanks to these settings, only a PLAM library is required for program
development. In this library, the sources, listings and object modules are kept.

(14) At compile time only the element name has to be specified in the COMPILE
statement. The format of this statement when written in full is:

COMPILE-UNIT SOURCE = *LIBRARY (SOURCE-ELEMENT = FSTAT.SPEC)

U2780-J-Z125-6-7600 73

Examples Programming system

(15) The RUN statement is now used to start the last program compiled taken from
the library to which it had been written. Hence, the main program must always
be the last to be compiled. The DLL loads the necessary packages from the
same library (autolink mechanism) from which the main program was loaded. It
is not possible to start a program with packages from within the * area
because the autolink mechanism of DLL does not work there. So here program
eraq from eraq.plam is started and the external references to packages fstat
and dialog are resolved from library eraq.plam.

(16) The program is invalid. It deletes the first character of the file name (here a
blank).

(17) After the first successful compilation, all compilation units were entered in the
project directory. It is now possible to work with the package or program
names when editing or compiling. The compilation unit DIALOG is now edited
with KIND = BODY. The format of this statement when written in full is:

EDIT-UNIT UNIT = DIALOG (KIND = BODY)

74 U2780-J-Z125-6-7600

Programming system Examples

1.00 with BS2000CALLS, DMSIO;
2.00 package body dialog (input, output, tmp);
3.00 var
4.00 tmp : text;
5.00
6.00 procedure makedialog (filename: fntype);
7.00 var
8.00 c : char;
9.00 b : boolean;

10.00 line: string;
11.00 begin
12.00 Assignfile (tmp, filename);
13.00 reset (tmp);
14.00 while not eoln (tmp) do
15.00 begin
16.00 readln (tmp, line);
17.00 delete (line, 1, 27); (18)
18.00 writeln (’Is the file ’’’, line,
19.00 ’’’ to be deleted?(Y/N/E):’);
20.00 readln;
21.00 read (c);
22.00 if c in [’Y’,’y’,’j’,’J’] then

($userid.ERAQ.PLAM,DIALOG.BODY(*UPPER-LIMIT,S))
..0001.00:001(0)

1.00 with BS2000CALLS, DMSIO;
2.00 package body dialog (input, output, tmp);
3.00 var
4.00 tmp : text;
5.00
6.00 procedure makedialog (filename: fntype);
7.00 var
8.00 c : char;
9.00 b : boolean;

10.00 line: string;
11.00 begin
12.00 Assignfile (tmp, filename);
13.00 reset (tmp);
14.00 while not eoln (tmp) do
15.00 begin
16.00 readln (tmp, line);
17.00 delete (line, 1, 26); (19)
18.00 writeln (’Is the file ’’’, line,
19.00 ’’’ to be deleted?(Y/N/E):’);
20.00 readln;
21.00 read (c);
22.00 if c in [’Y’,’y’,’j’,’J’] then
23.00 begin

h...0001.00:001(0)

>>> (OVER)WRITE PACKAGE BODY "DIALOG" (y/n) ? (20)
*y

>>> PACKAGE BODY "DIALOG" (OVER)WRITTEN

(18) The program error occurred in line 17. The length specification in string
procedure "delete" is exceeded by one.

(19) Error correction.

(20) The unit name is now used for the query as to whether the package is to be
overwritten, and no longer the library and element names.

U2780-J-Z125-6-7600 75

Examples Programming system

//S R (21)
COMPILE DIALOG (BODY) (22)
//S P (23)

CONTENTS OF THE PROJECT DIRECTORY FILE (ERAQ.DIR)

PACKAGE NAME KIND LOCATION
BS2000CALLS (SPEC) ($PASSUP-XT,BS2000CALLS.SPEC(*UPPER-LIMIT,S))
DIALOG (SPEC) ($userid.ERAQ.PLAM,DIALOG.SPEC(*UPPER-LIMIT,S))
DIALOG !(BODY) ($userid.ERAQ.PLAM,DIALOG.BODY(*UPPER-LIMIT,S)) (24)
DMSIO (SPEC) ($PASSUP-XT,DMSIO.SPEC(*UPPER-LIMIT,S))
ERAQ (PROG) ($userid.ERAQ.PLAM,ERAQ.PROG(*UPPER-LIMIT,S))
FSTAT (SPEC) ($userid.ERAQ.PLAM,FSTAT.SPEC(*UPPER-LIMIT,S))
FSTAT (BODY) ($userid.ERAQ.PLAM,FSTAT.BODY(*UPPER-LIMIT,S))

//S P(K=BODY,REF=ALL) (25)

CONTENTS OF THE PROJECT DIRECTORY FILE (ERAQ.DIR)

PACKAGE NAME KIND LOCATION

DIALOG !(BODY) ($userid.ERAQ.PLAM,DIALOG.BODY(*UPPER-LIMIT,S))
REFERENCES
direct: - undefined - (26)
indirect: - undefined -

FSTAT (BODY) ($userid.ERAQ.PLAM,FSTAT.BODY(*UPPER-LIMIT,S))
REFERENCES
direct: BS2000CALLS, FSTAT (OWN SPEC) (27)
indirect: - -

(21) The SHOW statement is used to output the necessary recompilations. The
format of this statement when written in full is:

SHOW-ATTRIBUTES WHAT = RECOMPILATIONS (PACKAGES = *NECESSARY,

KIND = ALL)

(22) SHOW RECOMPILATIONS gives you the COMPILE statements for the required
compilation units.

(23) The SHOW statement is used to output the contents of the project directory.
The format of this statement when written in full is:

SHOW-ATTRIBUTES WHAT = PROJECT-FILE

(24) The packages to be recompiled are marked with an exclamation mark in the
output.

(25) The SHOW statement outputs the specifications imported by the package
bodies. The format of this statement when written in full is:

SHOW-ATTRIBUTES WHAT = PROJECT-FILE (KIND = BODY,
REFERENCES = ALL)

76 U2780-J-Z125-6-7600

Programming system Examples

(26) The body of dialog is marked as invalid. So no references can be given for this
package. The WITH clauses of the package might have been changed.

(27) The body of fstat uses the specification of BS2000CALLS and, of course, the
user-own specification. In this example, there are no indirectly imported
packages as the imported specifications, on their part, do not import any other
packages.

//S P (USE=ALL) (28)

CONTENTS OF THE PROJECT DIRECTORY FILE (ERAQ.DIR)

PACKAGE NAME KIND LOCATION

BS2000CALLS (SPEC) ($PASSUP-XT,BS2000CALLS.SPEC(*UPPER-LIMIT,S))
USED BY

direct: DIALOG (BODY), FSTAT (BODY) (29)
indirect: - -

DIALOG (SPEC) ($userid.ERAQ.PLAM,DIALOG.SPEC(*UPPER-LIMIT,S))
USED BY

direct: DIALOG (OWN BODY), ERAQ (PROG)
indirect: - -

DIALOG !(BODY) ($userid.ERAQ.PLAM,DIALOG.BODY(*UPPER-LIMIT,S)) (30)

DMSIO (SPEC) ($PASSUP-XT,DMSIO.SPEC(*UPPER-LIMIT,S))
USED BY

direct: DIALOG (BODY)
indirect: - -

ERAQ (PROG) ($userid.ERAQ.PLAM,ERAQ.PROG(*UPPER-LIMIT,S))

FSTAT (SPEC) ($userid.ERAQ.PLAM,FSTAT.SPEC(*UPPER-LIMIT,S))
USED BY

direct: ERAQ (PROG), FSTAT (OWN BODY)
indirect: - -

FSTAT (BODY) ($userid.ERAQ.PLAM,FSTAT.BODY(*STD,S))

(28) The SHOW statement now outputs the reverse references, i.e. by which
packages a package is imported. The format of this statement when written in
full is:

SHOW-ATTRIBUTES WHAT = PROJECT-FILE (USED-BY = ALL)

(29) The specification of BS2000CALLS is used by the bodies of packages DIALOG
and FSTAT.

(30) Package bodies cannot be imported from other packages.

U2780-J-Z125-6-7600 77

Examples Programming system

//S R,*E(8) (31)
//CA *E(8) (32)
(%STMT) COMPILE DIALOG (BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//S R (33)

>>> NO RECOMPILATIONS NECESSARY
//R (ERAQ.PLAM,ERAQ) (34)
0000003 :C:$userid.AAAA
0000003 :C:$userid.AAAA2
0000003 :C:$userid.ERAQ.DIR
0000048 :C:$userid.ERAQ.PLAM
Is the file ’:C:$userid.AAAA’ to be deleted?(Y/N/E):
y
File ’:C:$userid.AAAA’ deleted!
Is the file ’:C:$userid.AAAA2’ to be deleted?(Y/N/E):
y
File ’:C:$userid.AAAA2’ deleted!
Is the file ’:C:$userid.ERAQ.DIR’ to be deleted?(Y/N/E):
n
Is the file ’:C:$userid.ERAQ.PLAM’ to be deleted?(Y/N/E):
e
//END

END OF THE PASCAL SESSION - USED TIME = 31.091 SECONDS

(31) The SHOW statement once more outputs the necessary recompilations. This
time, output is sent to EDT work area 8 so that the generated COMPILE
statements can be executed with a CALL-STATEMENT-FILE statement. The
format of this statement when written in full is:

SHOW-ATTRIBUTES WHAT = RECOMPILATIONS (PACKAGES = *NECESSARY,
KIND = ALL),

OUTFILE = *EDT (WORKFILE = 8)

(32) The statements in EDT work area 8 are executed by means of the CALL-
STATEMENT-FILE statement. The presettings established by the MODIFY-
COMPILE statement, see (13), are still effective. The format of this statement
when written in full is:

CALL-STATEMENT-FILE STMT-FILE = *EDT (WORKFILE = 8)

(33) The SHOW statement reports that no recompilations are necessary.

(34) As the last compilation was not a main program, the library and the name of
the program to be started must be specified in the RUN statement because
otherwise the RUN statement will be rejected with this message:
>>> LAST COMPILATION UNIT IS NOT EXECUTABLE

The format of this statement when written in full is:

RUN-PROGRAM PROGRAM = (LIBRARY = ERAQ.PLAM, ELEMENT = ERAQ)

78 U2780-J-Z125-6-7600

Programming system Examples

3 Project directory
The project directory supports the package concept, which is a key feature of the
Pascal-XT language. The package concept permits large, complex programs to be
divided into smaller units (packages) that can be processed, compiled and managed
separately. Each package consists of a specification and a body.

Compilation units are package specifications, package bodies and main programs. The
name of a compilation unit is always the Pascal identifier which is placed after the
keyword "program", "package" or "body".

The program name of a main program must be different from the package names of all
the packages associated with the program.

3.1 Tasks of the project directory

Assigning program names to file names

In the project directory, the package names and program name of the main program
are assigned to the names of files which contain the compilation units of the program.
Such assignment is required for a number of functions.

In order to check the interfaces between packages, the Pascal-XT compiler rereads
the specifications of the imported packages. Since the WITH clauses of a
compilation unit contain only the names of the imported packages, the compiler
must be informed about the names of the files in which the specifications are
stored. The compiler takes this information from the assignments of specification
package names to file names in the project directory.

With the frequently used statements for the programming system EDIT and
COMPILE, the name of a main program or package to be processed may be
specified instead of a file name. The assignments in the project directory are also
accessed in this case.

The assignments of package and program names to file names are entered by the
compiler in the project directory (see 3.2).

U2780-J-Z125-6-7600 79

Tasks Project directory

Defining relationships between compilation units

A Pascal-XT program usually consists of a main program and a number of packages.
The relationships between the compilation units are statically defined in the WITH
clauses of the compilation units. Thus, a program can be represented by a graph
whose nodes are the compilation units and in which the main program represents a
root. Knowledge of the relationships between the compilation units is of particular
importance when a compilation unit is to be changed. The relationships clearly show
whether the changes affect any other compilation units, which must then be
recompiled.

The relationships between the compilation units can be gathered from the project
directory and be output with the aid of the SHOW statement (see sections 2.6.12 and
3.2).

Storing status information

Status information is stored in the project directory for each compilation unit. It includes
date and time of the latest compilation and a change mark that is set following a
modification by means of the EDIT statement. The SHOW statement accesses this
status information to identify which compilation units need to be recompiled.

80 U2780-J-Z125-6-7600

Project directory Definition and processing

3.2 Defining and processing the project directory

Defining the project directory

The project directory is defined by means of the DEFINE statement (see section 2.6.5).
It is created if it does not yet exist and it remains open until another project directory is
defined or the programming system is left.

Modifying the project directory

The assignments of package/program names to the file names that contain the source
programs, are entered in the project directory by the compiler only if one has been
defined and compilation is successful. Existing assignments are overwritten. Following
successful compilation of a package specification the programming system issues an
error message if the project directory cannot be updated.

Following a modification a compilation unit is marked as modified, if the modification is
effected under programming system control (see EDIT statement), to enable the user to
ascertain whether any recompilations are necessary.

Following every compilation of a compilation unit the compilation date is recorded in
the project directory to be able to identify any necessary recompilations. For one thing,
the compilation date of a compilation unit must be earlier than that of the specifications
of all imported packages. A compilation of a specification, even if no modifications were
performed, always results in recompilation of the dependent packages.

Deleting entries in the project directory

The information for a superfluous main program or package can be deleted from the
current directory file by means of the REMOVE-DIRECTORY-ENTRY statement. All
entries for the names specified when the statement was called are deleted. Although
the entries are deleted the files of the source program are retained.

Compilation units that import a deleted package are marked as invalid. They must be
recompiled.

U2780-J-Z125-6-7600 81

Definition and processing Project directory

Output of status information

The SHOW statement can be used to output various items of information regarding the
project directory by specifying the PROJECT or RECOMPILATIONS operand. By
default, it outputs all package or main program names and the file names in which the
source programs are contained. In addition, the following package references may be
listed:

(a) For a compilation unit all packages that are directly and indirectly imported by X
can be output. The directly imported packages are specified in the WITH clause
of X. These, in turn, can import packages which are thus indirectly imported by X.
The output furthermore discriminates between packages imported by the
specification and packages imported by the body.

(b) For each package X all compilation units can be established that depend on this
package X, i.e. which imported package X directly or indirectly. These relations
are required to determine the necessary recompilations. Following a modification
of the specification of package X, all compilation units that depend on X have to
be recompiled. This ensures the consistency of a program and restricts the
number of compilations to those compilation units that were affected by the
modification.

Following modifications or recompilations of compilation units all packages can be
identified that have to be recompiled. The SHOW RECOMPILATIONS statement
generates COMPILE statements so that the compilations are performed in the right
order.

82 U2780-J-Z125-6-7600

Project directory Usage

3.3 Hints on working with the project directory

The project directory is shareable, i.e. several users can access it simultaneously in
read and write mode. If several users simultaneously access the same record of the
project directory in write mode, these write access operations are executed in
succession.

In project development, the following approach has proven useful:

Create for each project a separate project directory, in which all package
specifications belonging to the project are entered.

Maintain package specifications separately from the package bodies.

Protect package specifications against unauthorized modification: only permit read
access or set a write password.

"Freeze" the interfaces (package specifications) after design. Make any necessary
changes only at specific times and inform all individuals involved.

Following changes to specifications, recompile all compilation units that directly or
indirectly import the changed specifications.

Make all object modules of tested package bodies accessible in object module
libraries.

When modifying a package body a developer should work on a separate copy of
the source. For testing, the object modules of the modified package are linked
together with the other object modules belonging to the program from the central
object module libraries.

U2780-J-Z125-6-7600 83

Example Project directory

Example: Working with the project directory

In this example the four packages A, B, C and D illustrate the use of the project
directory. The specification of B imports package A, the specification of C imports
package B and the body of C imports package D.

In Fig. 3-1 the relations between the packages are indicated by arrows, an arrow
always pointing in the direction of the imported specification. In order to distinguish
between different compilation units, the package names are followed by the suffix
".SPEC" (for specification) and ".BODY".

A.SPEC

A.BODY
B.SPEC D.SPEC

B.BODY C.SPEC D.BODY

C.BODY

Fig. 3-1 Relations between packages

The source files of the package specifications are assumed to be stored in PLAM
library PLAM.SPEC; the package bodies, in PLAM.BODY.

/EXEC $USERID.PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//D TEST.DIRECTORY (01)

>>> PROJECT DIRECTORY FILE CREATED
//MC (PLAM.SPEC,),*D,CH=ON,IN=ON,OP=ON
//C (,A.SPEC)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,B.SPEC)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,C.SPEC)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,D.SPEC)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//MC (PLAM.BODY)
//C (,A.BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,B.BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,C.BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (,D.BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)

84 U2780-J-Z125-6-7600

Project directory Example

(01) In order to generate a project directory for this programming system, two steps
are necessary:

first define a project directory with the DEFINE statement
then compile all packages successfully with the COMPILE statement.

//S P (02)

CONTENTS OF THE PROJECT DIRECTORY FILE (TEST.DIRECTORY)

PACKAGE NAME KIND LOCATION
A (SPEC) ($USERID.PLAM.SPEC,A.SPEC(*UPPER-LIMIT,S))
A (BODY) ($USERID.PLAM.BODY,A.BODY(*UPPER-LIMIT,S))
B (SPEC) ($USERID.PLAM.SPEC,B.SPEC(*UPPER-LIMIT,S))
B (BODY) ($USERID.PLAM.BODY,B.BODY(*UPPER-LIMIT,S))
C (SPEC) ($USERID.PLAM.SPEC,C.SPEC(*UPPER-LIMIT,S))
C (BODY) ($USERID.PLAM.BODY,C.BODY(*UPPER-LIMIT,S))
D (SPEC) ($USERID.PLAM.SPEC,D.SPEC(*UPPER-LIMIT,S))
D (BODY) ($USERID.PLAM.BODY,D.BODY(*UPPER-LIMIT,S))
//S P (,,A,A) (03)

CONTENTS OF THE PROJECT DIRECTORY FILE (TEST.DIRECTORY)

PACKAGE NAME KIND LOCATION

A (SPEC) ($USERID.PLAM.SPEC,A.SPEC(*UPPER-LIMIT,S))
REFERENCES

direct: - -
indirect: - -

USED BY
direct: A (OWN BODY), B (SPEC)
indirect: B (BODY), C (SPEC), C (BODY)

A (BODY) ($USERID.PLAM.BODY,A.BODY(*UPPER-LIMIT,S))
REFERENCES

direct: A (OWN SPEC)
indirect: - -

B (SPEC) ($USERID.PLAM.SPEC,B.SPEC(*UPPER-LIMIT,S))
REFERENCES

direct: A
indirect: - -

USED BY
direct: B (OWN BODY), C (SPEC)
indirect: C (BODY)

B (BODY) ($USERID.PLAM.BODY,B.BODY(*UPPER-LIMIT,S))
REFERENCES

direct: B (OWN SPEC)
indirect: A

U2780-J-Z125-6-7600 85

Example Project directory

C (SPEC) ($USERID.PLAM.SPEC,C.SPEC(*UPPER-LIMIT,S))
REFERENCES

direct: B
indirect: A

USED BY
direct: C (OWN BODY)
indirect: - -

C (BODY) ($USERID.PLAM.BODY,C.BODY(*UPPER-LIMIT,S))
REFERENCES

direct: C (OWN SPEC), D
indirect: A, B

D (SPEC) ($USERID.PLAM.SPEC,D.SPEC(*UPPER-LIMIT,S))
REFERENCES

direct: - -
indirect: - -

USED BY
direct: C (BODY), D (OWN BODY)
indirect: - -

D (BODY) ($USERID.PLAM.BODY,D.BODY(*UPPER-LIMIT,S))
REFERENCES

direct: D (OWN SPEC)
indirect: - -

(02) Now, the SHOW statement can be used to output the contents of the project
directory. Standard output consists of the package name, an entry showing
whether it is a package specification (SPEC), a package body (BODY) or a
main program (PROG), and the file name or, in the case of library elements, the
name of the element, version and type of element. This statement when written
in full has this format:
SHOW-ATTRIBUTES WHAT = PROJECT-FILE

(03) In addition to standard output, the SHOW statement now lists the relations
between the compilation units. Under the heading REFERENCES the imported
packages are listed. Directly imported packages are those that have been
specified directly in the WITH clause; in the case of package bodies this also
includes packages of the user’s own specification. Indirectly imported are those
packages that are imported by the specifications of the directly imported
packages (even if imported through several stages). Under the USED-BY
relation, those compilation units are listed that import this package. For "direct"
and "indirect" the above definitions equally apply. The format of this statement
when written in full is:

SHOW-ATTRIBUTES WHAT = PROJECT-FILE (USED-BY = ALL,

REFERENCES = ALL)

86 U2780-J-Z125-6-7600

Project directory Example

//E A(S) (04)
>>> (OVER)WRITE PACKAGE SPEC "A" (y/n) ?

*y
>>> PACKAGE SPEC "A" (OVER)WRITTEN

//S P (05)

CONTENTS OF THE PROJECT DIRECTORY FILE (TEST.DIRECTORY)

PACKAGE NAME KIND LOCATION
A !(SPEC) ($USERID.PLAM.SPEC,A.SPEC(*UPPER-LIMIT,S))
A !(BODY) ($USERID.PLAM.BODY,A.BODY(*UPPER-LIMIT,S))
B !(SPEC) ($USERID.PLAM.SPEC,B.SPEC(*UPPER-LIMIT,S))
B !(BODY) ($USERID.PLAM.BODY,B.BODY(*UPPER-LIMIT,S))
C !(SPEC) ($USERID.PLAM.SPEC,C.SPEC(*UPPER-LIMIT,S))
C !(BODY) ($USERID.PLAM.BODY,C.BODY(*UPPER-LIMIT,S))
D (SPEC) ($USERID.PLAM.SPEC,D.SPEC(*UPPER-LIMIT,S))
D (BODY) ($USERID.PLAM.BODY,D.BODY(*UPPER-LIMIT,S))

//S R (06)
COMPILE A (SPEC)
COMPILE A (BODY)
COMPILE B (SPEC)
COMPILE B (BODY)
COMPILE C (SPEC)
COMPILE C (BODY)

(04) The editor is used to modify and rewrite specification A. In the project directory
the specification of package A is marked as changed.

(05) All those compilation units that have to be recompiled because of a change of
specification A are marked with an exclamation mark in the output of the
project directory. These are those compilation units that import package A
directly or indirectly.

(06) The SHOW statement is used to generate the required COMPILE statements for
these marked compilation units. The format of the statement when written in full
is:
SHOW-ATTRIBUTES WHAT = RECOMPILATIONS

U2780-J-Z125-6-7600 87

Example Project directory

//S R,*E(8) (07)
//CA *E(8) (08)
(%STMT) COMPILE A (SPEC)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
(%STMT) COMPILE A (BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
(%STMT) COMPILE B (SPEC)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
(%STMT) COMPILE B (BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
(%STMT) COMPILE C (SPEC)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
(%STMT) COMPILE C (BODY)

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//S P (09)

CONTENTS OF THE PROJECT DIRECTORY FILE (TEST.DIRECTORY)

PACKAGE NAME KIND LOCATION
A (SPEC) ($USERID.PLAM.SPEC,A.SPEC(*UPPER-LIMIT,S))
A (BODY) ($USERID.PLAM.BODY,A.BODY(*UPPER-LIMIT,S))
B (SPEC) ($USERID.PLAM.SPEC,B.SPEC(*UPPER-LIMIT,S))
B (BODY) ($USERID.PLAM.BODY,B.BODY(*UPPER-LIMIT,S))
C (SPEC) ($USERID.PLAM.SPEC,C.SPEC(*UPPER-LIMIT,S))
C (BODY) ($USERID.PLAM.BODY,C.BODY(*UPPER-LIMIT,S))
D (SPEC) ($USERID.PLAM.SPEC,D.SPEC(*UPPER-LIMIT,S))
D (BODY) ($USERID.PLAM.BODY,D.BODY(*UPPER-LIMIT,S))

//REM B (10)

(07) For the generated COMPILE statements to be executed with the aid of a CALL-
STATEMENT-FILE statement, they are output to EDT work area 8. The format of
this statement when written in full is:
SHOW-ATTRIBUTES WHAT = RECOMPILATIONS,

OUTFILE = *EDT (WORKFILE = 8)

(08) The statements in EDT work area 8 are executed with the aid of the CALL-
STATEMENT-FILE statement. The format of this statement when written in full is:
CALL-STATEMENT-FILE STMT-FILE = *EDT (WORKFILE = 8)

(09) No other compilations are necessary as there no marked compilation units any
more.

(10) The REMOVE statement is used to delete all entries for package name B; this
affects both the entry for the specification and the entry for the body. The
format of this statement when written in full is:
REMOVE-DIRECTORY-ENTRY UNIT = B

88 U2780-J-Z125-6-7600

Project directory Example

//S P (11)

CONTENTS OF THE PROJECT DIRECTORY FILE (TEST.DIRECTORY)

PACKAGE NAME KIND LOCATION
A (SPEC) ($USERID.PLAM.SPEC,A.SPEC(*UPPER-LIMIT,S))
A (BODY) ($USERID.PLAM.BODY,A.BODY(*UPPER-LIMIT,S))
C !(SPEC) ($USERID.PLAM.SPEC,C.SPEC(*UPPER-LIMIT,S))
C !(BODY) ($USERID.PLAM.BODY,C.BODY(*UPPER-LIMIT,S))
D (SPEC) ($USERID.PLAM.SPEC,D.SPEC(*UPPER-LIMIT,S))
D (BODY) ($USERID.PLAM.BODY,D.BODY(*UPPER-LIMIT,S))

//END
END OF THE PASCAL SESSION - USED TIME = 2.965 SECONDS

% EXC0732 ABNORMAL PROGRAM TERMINATION. ERROR CODE ’NRT0101’:
/HELP NRT0101,INF=D

(11) The specification and the body of package C must be modified and recompiled
because they have directly or indirectly imported specification B, which no
longer exists.

U2780-J-Z125-6-7600 89

Project directory Example

4 Pascal-XT compiler

4.1 Using the project directory

The compiler requires the project directory in order to find specifications of imported
packages, to check the interfaces and to store the package and file names for
specifications. Additional project directory functions (see chapter 3) merely serve to
facilitate package usage.

When must a project directory be defined?

If a compilation unit that imports packages is to be compiled, the user must define a
project directory. The compiler requires the project directory in order to find the
specifications of the imported packages. If no project directory has been defined, the
package identifiers in the WITH clause appear in the compiler listing with the error:

PACKAGE SPECIFICATION NOT FOUND

What entries are generated in the project directory?

When a compilation unit has been successfully compiled, the compiler stores the
package or program name, the source file name and other status information in the
project directory. If a package specification is to be compiled and no project directory
has been defined, the following message is issued:

NO PROJECT DIRECTORY IS DEFINED

When the compilation unit is read from an EDT work area, no entry is generated in the
project directory.

U2780-J-Z125-6-7600 91

Project directory Pascal-XT compiler

In what sequence are the compilation units compiled?

Package specifications can only be used by other compilation units after they have
been compiled successfully (this is in line with the Pascal rule saying that identifiers can
only be used after they have been declared). The WITH clauses set up a static
relationship between the packages, through which a compilation sequence for the
package specifications is automatically defined. Note that the specifications of the
imported packages must always be compiled first. No compilation sequence is
stipulated for package bodies.

92 U2780-J-Z125-6-7600

Pascal-XT compiler Implementation-defined attributes

4.2 Implementation-defined attributes

This section defines the implementation-defined attributes listed in the Pascal-XT
Language Reference Manual ([1], appendix A.6) and describes the new, high-precision
mathematical routines available as of V2.2A. The numbering is the same as in the
Language Reference Manual.

1) Values of predefined real constants:

Long_Minreal = 5.397605346934027E-79
Long_Maxreal = 7.237005577332262E+75
Short_Minreal = 5.397605E-79
Short_Maxreal = 7.237005E+75

2) Presettings of the predefined constants:

Maxint = Long_Maxint (= 231 - 1)
Minint = Long_Minint (= - 231)
Minreal = Long_Minreal
Maxreal = Long_Maxreal

3) Predefined types:

Integer = Long_Integer
Real = Long_Real

4) Values of type Short_Real are represented as 32-bit floating-point numbers, values
of type Long_Real as 64-bit floating-point numbers as described in the Assembler
Instructions manual [12]. The absolute value range W for both real types is:

-Maxreal <= W <= Maxreal

5) The precision for real operations and real functions is defined by the
representation [12] and rounding, in case of intermediate results. The number of
significant decimal positions is for values of type

Long_Real: about 16
Short_Real: about 6

Exponent underflow is not recognized, exponent overflow with arithmetic
operations is generated as a Numeric_Error and, when reading in a real number,
as a Read_Error.

High-precision mathematical routines:

Pascal-XT provides the following arithmetical functions (see the Pascal-XT
Language Reference Manual [1], section 15.4):

Arctan(x) Ln(x)
Cos(x) Sin(x)
Exp(x) Sqrt(x)

As of version 2.2A they use high-precision mathematical routines which perform
their calculations with so-called ulp-precision algorithms (ulp = unit of last place).
Maximum precision is guaranteed with these routines, i.e. there is no

U2780-J-Z125-6-7600 93

Implementation-defined attributes Pascal-XT compiler

representable floating-point number between the calculated function result and the
exact result. Despite this considerable increase in precision, the new routines offer
the same high level of performance as the old ones.

As these new routines may deliver different function values to those obtained
previously, unexpected program behavior can occur if, for example, programs
created previously use the function values in comparisons.

6) The values of type Char are the elements of the EBCDIC character set SN77315
(see [5]). The ordinals of the character values are also specified in the table.

7) Type string without type parameter has a maximum length of 254.

8) The size of a storage unit is one byte (8 bits).

9) The restrictions for the offset and bit range specifications in a field identifier are
described in section 4.3.

10) The base type of a set can contain between 2041 and 2048 elements at most
(see section 4.3).

11) For non-qualified set constructors the ordinal values of the elements must lie in
the range 0 .. 2047.

12) As of Pascal-XT V2.2A, the "C" directive is also supported. However, it is
recommended that only the "EXTERNAL" directive should be used for non-Pascal
subprograms (see section 7.2).

13) Not all Pascal-XT parameter types are permitted for subprograms with a directive.
The relevant restrictions are described in sections 7.2 to 7.4.

14) The file operations executed for Rewrite, Put, Reset and Get are described in
section 5.4.

15) The description of an external file in the predefined procedure Assignfile and the
effect of this procedure are dealt with in section 5.3.3.

16) The use of Reset or Rewrite on the predefined text files Input or Output results in
an Open_Error with system error code 1607.

17) Default output length:

Integer values: 12
Real values : 22
Boolean values: 5.

The boolean value TRUE is output right-justified in the output field.

94 U2780-J-Z125-6-7600

Pascal-XT compiler Implementation-defined attributes

18) If Real values are output in floating-point representation,

’E’ is output as the exponent character and
a sign and two decimal digits are output for the exponent.

19) Boolean values are output in upper case (TRUE and FALSE).

20) The predefined procedure Page only generates a page control character
(character ’A’ output in the first column) in a text file if the attribute SPACE=E
was specified (see section 5.3.3) in the file assignment with the predefined
procedure Assignfile. For the BS2000 system file SYSLST the same procedure is
followed as conventionally for SPACE=E. Calling Page several times in succession
results in only one page throw being effected. Calling Page has no effect if no
other text is output after Page. Page has no effect if system file SYSOUT has
been assigned to the Pascal file.

21) The restrictions for entry subprograms are given in section 7.3.

22) The assignment of external files to program parameters is discussed in section
5.3.

23) The preset compiler options are described in section 4.5. When the COMPILE
statement is called the LINES-PER-PAGE option (see section 2.6.4) can be
specified as well.

Compiler limitations and system dependencies

• In a source program the line length is limited to 254 characters. Where longer lines
are encountered an error is reported.

• Identifiers can have a maximum length of 254 characters.

• A maximum of 50 levels of record nesting is permitted.

• A maximum of 50 WITH statements may be nested.

U2780-J-Z125-6-7600 95

Representation of objects Pascal-XT compiler

4.3 Representation of objects in main memory

Memory requirements and alignment for objects of simple types and pointer types are
shown in Table 4-1. For structured types specification of these items is somewhat more
complex and can therefore be discussed only briefly.

The predefined functions SIZEOF and ALIGNOF supply information about memory
requirements and the alignment of values for a type.

Data type T Value range Storage req’d Alignment
SIZEOF (T) ALIGNOF (T)
(in bytes) (in bytes)

BOOLEAN FALSE..TRUE 1 1
CHAR CHR(0)..CHR(255) 1 1
SHORT_INTEGER SHORT_MININT..SHORT_MAXINT 2 2
LONG_INTEGER LONG_MININT..LONG_MAXINT 4 4
INTEGER LONG_MININT..LONG_MAXINT 4 4
Enumerated Up to 256 elements 1 1
Enumerated Up to 32768 elements 2 2
Enumerated Beyond 4 4
Subrange 0 .. 255 1 1
Subrange SHORT_MININT..SHORT_MAXINT 2 2
Subrange LONG_MININT..LONG_MAXINT 4 4
LONG_REAL 8 8
SHORT_REAL 4 4
REAL 8 8
Pointer 4 4

Table 4-1 Memory requirements and alignment of simple types and pointer types

Packed representation of structured types

No distinction is generally made between packed and unpacked representation where
objects of structured types are concerned. Record types represent an exception to this
rule (see below).

Set types

The maximum number of elements of a set is restricted to 2048. If the lower set bound
of the base type of the set is not equal to zero, the maximum number may, at worst,
be restricted to 2041.
The storage required for a set (in bytes) is approximately the number of elements
divided by 8.
Alignment is at a byte boundary.

96 U2780-J-Z125-6-7600

Pascal-XT compiler Representation of objects

String types

The storage required equals the maximum number of characters plus one half word for
the length field.
Alignment is always on half word boundary, even within packed record types.
The storage required for the default string length is 256 bytes.

Array types

The storage required is calculated from the sum of the element sizes and any gaps that
may appear.
Alignment is the same as the alignment of the element type.

Record types

The storage required is calculated from the storage required for the fields of the fixed
part, the fields of the greatest variant of the variant part and any gaps that may appear
(depending on the alignment requirements). The field with the greatest alignment
determines the alignment of the entire RECORD type.

For packed record types scalar and pointer type fields are aligned on byte boundaries.
Fields regarded as belonging to a structured type are aligned in accordance with the
alignment requirements of the appropriate type (which in turn can be influenced by the
’packed’ specification).

Variants of a variant part are allocated the same storage location for the sake of
storage optimization. Where a variant contains a field of a FILE type, all variants are
allocated in succession. As a result, fast creation on the heap by means of the New
procedure is no longer possible.

If a RECORD type contains fields of a FILE type, then no specifications regarding
representation in storage can be given in the RECORD type.

If no specifications regarding representation in storage are given for fields, the compiler
may allocate the fields in a different order from that specified in the text in order to
make better use of available storage.

U2780-J-Z125-6-7600 97

Representation of objects Pascal-XT compiler

For offset specifications in a field the following additional restrictions apply:

The offset of a field of a string type must always be a multiple of 2 (a string type is
a packed type).
The offset of a field of type Long_Real (and, hence, also Real) must always be a
multiple of 8.
The offset of a field of type Short_Real must always be a multiple of 4.
In an unpacked RECORD type the offset of a field must be an integer multiple of the
alignment of its type.
In a packed RECORD type any offset may be specified for fields of an ordinal type
or pointer type. The offset of a field of a structured type must again be a multiple of
the alignment of this type.
Storage areas for fields in different variants of a variant part may overlap.

For bit range specifications in a field the following additional restrictions apply:

Bit ranges can only be specified for fields of an ordinal type.
The values of the bit range boundaries must lie in the range 0..31.

Note

If variables of a RECORD type are used as interfaces with external programs,
storage representations should be specified for all components. The compiler then
guarantees adherence to the desired representation provided that it does not
contravene any of the above requirements.

File types

The storage required is calculated from the size of the component type and the size of
a fixed management block. For text files the line buffer is created on the heap.
Alignment is at a doubleword boundary.

98 U2780-J-Z125-6-7600

Pascal-XT compiler Generated object modules

4.4 Generated object modules

The Pascal-XT compiler generates object modules for a compilation unit if the following
conditions are satisfied:

The compilation unit is a main program or a package body.
The compilation was successful.
The compiler option "Generate" was activated.

In accordance with the specification in the MODULE operand of the COMPILE
statement, the modules generated are stored in the temporary object module file *OMF
or in a PLAM library. The following modules are generated:

Code module The code module contains the constants and the object code for the
compilation unit. It is reentrant and shareable.

Data module The data module contains the variables of the compilation unit. This
module is not shareable.

Test tables module
Contains information for the PATH debugging aid. This module is
reentrant and shareable.

Starter module This module is generated only for a Pascal main program. It
contains the start address of the program and is not shareable.

XS capability

The compiler generated object modules and the runtime system modules support the
XS capability. AMODE=ANY and RMODE=ANY is true for every object module. A
Pascal-XT program can therefore run anywhere in the 31-bit address space (see also
chapter 6).

U2780-J-Z125-6-7600 99

Generated object modules Pascal-XT compiler

Naming the object modules

The names of the generated object modules are generated as follows:

characters 1-7 Taken from the program or package name. In the case of the starter
module, shorter names are padded with blanks; with the code, data
and test table modules they are padded with number signs ("#").
Underscore characters ("_") are converted to number signs ("#").

character 8 Used to distinguish the modules. The meanings are:

"C" for code modules
"D" for data modules
"T" for test table modules
" " for starter modules

Naming the procedures

The names of external procedures and entry procedures are outwardly visible. They are
a maximum of 8 characters in length. Longer names are truncated, shorter names are
padded with blanks. Underscore characters ("_") are converted to number signs ("#").

Note

In other languages underscores in names are generally not permitted. Therefore,
names of external and entry procedures should not contain any underscores in the
first 8 characters.

100 U2780-J-Z125-6-7600

Pascal-XT compiler Compiler options

4.5 Compiler options

The compiler options (control statements for the compiler) defined in the Pascal-XT
Language Reference Manual [1] apply to all Pascal-XT implementations. They can all be
specified as operands in the source program and, with the exception of PAGE and
TITLE, also in the COMPILE statement. PAGE and TITLE can only be specified in the
source program.

In a Pascal-XT source program, compiler options are given as pseudo-comments as in
the example below.

Example

{$Check = On, Initialize = On, List = Off}

There are also the LINES-PER-PAGE and MESSAGE-LEVEL options, which can only be
specified in the COMPILE statement (see 2.6.4). LINES-PER-PAGE defines the number
of lines per page in the compiler listing; MESSAGE-LEVEL controls the nature and
scope of compiler messages.

If an option is specified as an operand in the COMPILE statement, that setting applies
to the entire compilation unit and overrides the default setting or the setting specified in
the source program. Hence, the setting valid for an option is determined by where it
was specified. The following priorities apply to the input of options:

option in COMPILE statement
option in source program decreasing priority
default setting

The following table shows all options with their permissible values in alphabetical order.
The default values are underlined.

U2780-J-Z125-6-7600 101

Compiler options Pascal-XT compiler

Option Permissible Meaning May be specified in
values source COMPILE stmt.

Assembler On Output of an object code listing in x x
Off assembly language format

Check On Generate code for runtime checks x x
Off

Debug On Generate test information for the x x
Restricted symbolic debugging aid PATH
Off

Generate On Generate object code x x
Off

Initialize On Storage areas for variables are filled x x
Off with hexadecimal value 88

Lines-per- 11 through Define number of lines per page in x
page 2147483639 the compiler listing

63

List On Activate/deactivate compiler listing x x
Off

Map On Generate address tables x x
Off

Message- Errors Define nature and scope of compiler x
level Warnings messages in the compiler listing

Notes

Optimize On Generate optimized object code x x
Off

Page Generate a page throw x

Standard On On: Standard Pascal level 1 accepted x x
L0 L0: Standard Pascal level 0 accepted x
Off Off: Pascal-XT accepted x x

Title String Specification of a title in the x
’’ header of the compiler listing
__

Xref On Generate a cross-reference listing x x
Off

Table 4-2 Pascal-XT compiler options under BS2000

102 U2780-J-Z125-6-7600

Pascal-XT compiler Compiler listings

4.6 Listings generated by the compiler

During compilation, the Pascal-XT compiler generates a series of listings containing
information on the structure of the source program, the generated object modules and
the flow of compilation. Examples of the different listings are given in appendix A.2.

All listings have a uniform heading consisting of

Identification of the particular listing
Specification of the operating system and of the compiler
Version and date of the Pascal-XT compiler
Date and time of the start of the compilation
Consecutive page numbering

The heading is output at the beginning of each page. As of version 2.2A, the date in
the compiler listing header will show the year as four digits.

4.6.1 Controlling listing output

All listings generated by the compiler are output to an output file. This file is defined by
means of the LISTING operand in the COMPILE statement (see section 2.6.4).

The generation of the various listings is governed by the compiler options Assembler,
List, Map and Xref. The meaning of the options is described in section 4.5.

The number of lines per page in the compiler listing defaults to 63 but can be altered
using the LINES-PER-PAGE option.

U2780-J-Z125-6-7600 103

Source listing Pascal-XT compiler

4.6.2 Source listing

The source listing is divided into the sections prolog, source program and compilation
summary. The output of this listing is governed by the List option. By default, a source
listing is generated (List=On). If List=Off only the prolog and the compilation summary
are output.

Prolog

The prolog summarizes the global information for the compilation unit.

GLOBAL OPTIONS FOR THIS COMPILATION
Gives the values of the options that apply globally for the entire compilation unit.
The Debug option deactivates the Optimize option if both are specified either in the
source or in the COMPILE statement. Following the options information is given as
to where they were set.

BY COMMAND in the COMPILE statement
IN SOURCE within the source program
BY DEFAULT default value (see section 4.5)
BY DEBUG OPTION the Optimize option was deactivated by the Debug option
BY OPTIMIZE OPTION

the Debug option was deactivated by the Optimize option
(through specification in the COMPILE statement)

LIST OF RECOMPILED PACKAGE SPECIFICATIONS (SOURCE FILES)
The files are specified from which the directly and indirectly imported package
specifications are read. Indirectly imported specifications do not appear in the
context specification of the compilation unit, but are imported by at least one of
the specifications specified there.
This listing is output only if package specifications are imported in the compilation
unit.

CURRENT COMPILATION UNIT (SOURCE FILE)
Specifies the file from which the compilation unit is read.

104 U2780-J-Z125-6-7600

Pascal-XT compiler Source listing

Source program

Following the prolog the source program is output, with continuous line numbering,
starting with 1. The line numbers in the compiler listing match the line numbering in the
source program, even if within the source listing output is temporarily deactivated.
If a comment in the source program extends over several lines, all continuation lines of
the comment are marked with the character "C" appearing immediately after the line
number.

Errors, warnings and notes in the source program listing give rise to additional
message lines but these do not affect the line numbering. The format of the message
lines is described in section 4.6.3.

Compilation Summary

In the compilation summary the results of the compilation are summarized. The number
of messages suppressed with the compiler option MESSAGE-LEVEL is also given.

ERRORS DETECTED
Gives the number of syntax and semantic errors.

WARNINGS Gives the number of warnings.

NOTES Gives the number of notes.

SIZE OF CODE MODULE
Storage required for the generated code module, in bytes. The value
0 is output if Generate=Off, if compilation errors were reported, or if
the compilation unit was a package specification.

SIZE OF DATA MODULE
Storage required for the generated data module. The value 0 is
output if Generate=Off, if compilation errors were reported, or if the
compilation unit was a package specification.

COMPILATION TIME
Gives the CPU time required for the compilation and the generation
of the various listings. If specifications are referenced in the
compilation, the time to reread those specifications is likewise added
to the compile time.

U2780-J-Z125-6-7600 105

Errors, warnings, notes Pascal-XT compiler

4.6.3 Errors, warnings and notes

In the course of the compilation process the compiler may output messages indicating
errors, warnings or notes. These messages appear in the compiler listing.

Errors designate syntax and semantic errors in the compilation unit.

Warnings are output at those points where the compiler recognizes that an error will
occur when the program is run. For example, the compiler recognizes that the
statement

x := long_maxint + 1

will result in an overflow condition when the addition is effected and therefore issues a
WARNING at this point. Despite the presence of WARNINGS an executable object
program is generated.

Notes report errors in pseudo-comments and identifiers which have been declared but
not used. Despite the presence of NOTES an executable object program is generated.
Errors in pseudo-comments result in compiler options not having the desired effect.
Identifiers which are declared but not used are reported in accordance with the
following rules:

All identifiers declared in the program but not used are marked. This applies to
identifiers for constants, types, variables, functions, procedures and formal
parameters. Excluded from this list are field identifiers (components of record types)
and constant identifiers of enumerated types.

The identifiers in the WITH and USE clauses in the main compilation unit or the
associated package specification are reported if they are not used in the program
text. This does not apply when the main compilation unit is a package specification.

Function identifiers are marked if the function is not called in the program text. The
assignment to a function identifier within the function block is not regarded as use
of the function identifier.

The identifier of an enumerated type is considered as used if one of the enumerated
constants of this type is used.

No NOTES are output with respect to identifiers declared in a package specification
or with respect to formal parameters in external subprograms.

The total number of errors, warnings and notes together with the number of suppressed
messages (compiler option MESSAGE-LEVEL, see 2.6.4) is output in the COMPILATION
SUMMARY and written to the system file SYSOUT.

Where the List option is switched off (List=Off), only the prolog, the message lines
together with the associated source program lines, and the compilation summary are
output.

106 U2780-J-Z125-6-7600

Pascal-XT compiler Errors, warnings, notes

The columns of the source program line to which the messages refer are marked by
various digits in a separate line and output immediately after the source program line.
To highlight it in the source listing, this line is filled with "-" characters. Subsequently,
one or more self-explanatory error message texts are output for each digit.

U2780-J-Z125-6-7600 107

Assembler listing Pascal-XT compiler

4.6.4 Assembler listing

In the assembler listing the code generated is output in assembly language format.
Controlled by the Assembler option, the listing is output after the compiler listing.
The assembler listing can be generated for the entire compilation unit or for individual
subprograms. In the latter case, the option must be activated within the subprogram
block and deactivated in the following lines. For procedures and functions declared
"inline", no assembly listing is generated, since for them code is generated only at the
calling point.

The format of the assembler listing corresponds essentially to the format as generated
by the assembler.

Field Meaning

LOCTN Relative address in the module (hexadecimal, in bytes)

OBJECT CODE Object code in hexadecimal form

ADDR1 ADDR2 Addresses used in the instruction. The addresses are calculated from
the contents of the base register and the displacements. They give
the relative address in the module, i.e. correspond to the entries in
the LOCTN column.

STMNT Consecutive numbering in the listing

ASSEMBLY CODE
Assembly code generated

In addition, comment lines are inserted into the assembly code. These give the number
of the source line for which the subsequent instructions were generated.

108 U2780-J-Z125-6-7600

Pascal-XT compiler Cross-reference listing

4.6.5 Cross-reference listing

The cross-reference listing contains all user-defined identifiers used in the compilation
unit, along with all predefined identifiers used in the compilation unit, in alphabetical
order. Identifiers written in the same way but from different scopes appear in the cross-
reference listing once for each defining point. For each identifier there is a description
line, followed by a list of line numbers in which that identifier appears.

Generation of the cross-reference listing is governed by the Xref option. The listing is
output following the compiler listing.

The description line consists of four fields. Interpretation of the values of fields 2 and 3
depends on field 1. The fields mean:

field 1 class of the identifier
field 2 type of the identifier
field 3 class-specific attribute
field 4 defining point of the identifier

Classes of identifiers

CONSTANT constant identifier
FIELD field identifier in a record type
FUNCTION function identifier
FUNC-PARAM identifier of a formal function
PACKAGE package identifier
PROCEDURE procedure identifier
PROC-PARAM identifier of a formal procedure
TYPE type identifier
VAL-PARAM identifier of a formal value parameter
VAR-PARAM identifier of a formal variable parameter
VARIABLE variable identifier

Type of the identifier

This column specifies the type of the identifier. For identifiers of the classes PACKAGE
and PROCEDURE this specification is omitted. For identifiers of the classes FUNCTION
and FUNC-PARAM the type specification designates the type of the function result.

U2780-J-Z125-6-7600 109

Cross-reference listing Pascal-XT compiler

Class-specific attribute

This field contains a value whose interpretation depends on the class of the identifier.

Class Meaning of field 3

CONSTANT For ordinal constants their value is output, otherwise
this is omitted

FIELD Specifies the relative offset from the start of the record,
in bytes

FUNCTION Specifies the line number of the first statement in the
PROCEDURE block of the function or procedure

TYPE Storage required by the type, in bytes

other Omitted

Defining point of the identifier

This column specifies the number of the line in which the identifier has been declared.
If the identifier has been declared in a foreign package (or the current package
specification), then in addition to the line number the name of the package is specified.
If a predefined identifier is involved, "PREDEFINED" is output.

110 U2780-J-Z125-6-7600

Pascal-XT compiler Map listing

4.6.6 Map listing

The map listing provides information on the contents of the generated object modules
of the compilation unit. Output of this listing is controlled by the Map option.

Addresses of procedures and functions

For the procedures and functions of the compilation unit, the following is output (from
left to right):

entry address contains the starting address of the procedure (or function)

start address of the procedure code, relative to the beginning of the code module

name of the procedure or function

Global constants

All structured constants of the compilation unit are output. The items mean (from left to
right):

relative address
of the constant in the code module. The information is given in
decimal and hexadecimal form.

type of the constant

identifier for declared constants the constant identifier, for non-declared
constants the empty string is output.

value of the constant. With sets only the values of the smallest and largest
set elements are given.

Global variables

The variables declared as global in the compilation unit are output. The addresses
given (in decimal and hexadecimal form) are relative addresses in the generated data
module.

U2780-J-Z125-6-7600 111

Pascal-XT compiler Map listing

5 Files

5.1 Pascal files

5.1.1 External Pascal files

External Pascal files are file variables which, by specifying their variable names in the
program parameter list, are signed on as external, program-independent files. These file
variables must be assigned to BS2000 files when the program is run.

An exception is represented by the predefined text files Input and Output to which, by
default, system files SYSDTA and SYSOUT respectively are assigned.

Section 5.2 describes BS2000 files that can be assigned to the external files. Section
5.3 describes how the assignments may be made.

5.1.2 Local Pascal files

Local Pascal files are file variables or components of variables that do not appear as
program parameters. The life span of a local file corresponds to the life span of the
block in which the file (file variable) has been declared. After a block is left, its local
files can no longer be accessed. Local files in dynamic variables exist as long as
pointers to the variables exist or the dynamic variable is destroyed with the predefined
procedure Dispose. When a procedure (function) with a local file is called recursively, a
new local file is created for each incarnation of the call.

U2780-J-Z125-6-7600 113

BS2000 files Files

5.2 Supported BS2000 files and libraries

The Pascal-XT system supports access to the following BS2000 files and libraries:

Standard files
Sequential (SAM) and indexed sequential (ISAM) files
PLAM library elements
Temporary files

Section 5.3 deals with the various options for assigning BS2000 files to Pascal files.

Open modes for files

In addition to the predefined subprograms Reset and Rewrite the procedures Extend
and Replace are supported in the predefined package DMSIO (A.5). Sections 5.2.1
through 5.2.4 deal with the admissible procedures (open modes) that apply.

Reset The file or library element is opened for reading. If the file, element
or library does not exist, a runtime error OPEN_ERROR is
generated.

Rewrite The file or library element is opened for writing. Any existing element
will be overwritten. If the element does not exist it will be created.

Extend This procedure is defined in the predefined package DMSIO (A.5). It
has the same effect as Rewrite, except that the contents of any
existing file will not be lost.

Replace This procedure is defined in the predefined package DMSIO (A.5); it
opens a file for reading and writing.

Permitted open modes for the different files

Tables 5-1 and 5-2 both show possible combinations of files and open modes. "ok"
identifies a valid combination, while for invalid combinations the error message reported
and the associated system error code (system_code) are shown.

114 U2780-J-Z125-6-7600

Files BS2000 files

If the Pascal file variable f belongs to type "Text", then the following rules apply:

Reset(f) Rewrite(f) Replace(f) Extend(f)

*SYSDTA ok Open_Error Open_Error Open_Error
(1605) (1605) (1605)

*SYSLST Open_Error ok Open_Error ok
*SYSOUT (1605) (1605)

*DUMMY ok ok Open_Error ok
*EDT (1605)
SAM file
ISAM file

PLAM element ok ok Open_Error Open_Error
EAM file (1605) (1605)

Table 5-1: Permitted open modes for text files

If the Pascal file variable f belongs to type "FILE OF t", then the following rules apply:

Reset(f) Rewrite(f) Replace(f) Extend(f)

*DUMMY ok ok ok ok
SAM file
ISAM file

PLAM element ok ok Open_Error Open_Error
EAM file (1605) (1605)

Table 5-2: Permitted open modes for non-text files

U2780-J-Z125-6-7600 115

BS2000 files Files

5.2.1 Standard files

Standard files include BS2000 system files and the work areas of the editor EDT. To
distinguish them from permissible file names in the data management system they must
be prefixed by "*". A standard file can only be assigned to a Pascal text file.

*SYSDTA corresponds to system file SYSDTA
*SYSOUT corresponds to system file SYSOUT
*SYSLST corresponds to system file SYSLST
*DUMMY corresponds to system file *DUMMY. Data written to *DUMMY is

lost; when *DUMMY is read, EOF is returned immediately.
*EDT(number) designates a work area of the editor EDT. "number" specifies the

number of the work area and must lie in the range 0...9. The
specification of "(number)" is optional. By default, the current work
area is assumed.

Open modes

Reset
Rewrite
Extend

5.2.2 SAM and ISAM files

The Pascal-XT system can process all SAM files supported by BS2000. Sequential files
may be both text files and non-text files.

When a Pascal file is opened for writing (Rewrite) the assigned BS2000 file is created
as a sequential file with variable record length (FCBTYPE=SAM, RECFORM=V) as a
standard procedure. For all other file attributes the BS2000 default values are assumed
(see [6]). Any file attributes deviating from these values must be specified by means of
the FILE command.

When a file is opened for reading (Reset) and for the open modes Extend and Replace
(see appendix A.5) the file attributes specified in the catalog entry are taken over by the
Pascal-XT runtime system. Any incompatibilities between the specifications in the
catalog entry and the values preset by the program will be reported by the Pascal-XT
runtime system (see the tables in section 5.3.2).

116 U2780-J-Z125-6-7600

Files BS2000 files

The Pascal-XT language itself does not support any indexed sequential (ISAM) files.
However, a predefined package, DMSIO (see appendix A.5), is available which permits
the processing of ISAM files. The ISAM file attributes must be defined with the FILE
command (see section 5.3.2) prior to its generation. If an ISAM file has been assigned
to a Pascal text file, no keys will be generated during writing and any keys that are
encountered during reading will be ignored. The key of a record can be obtained by
using the "movekey" procedure in the DMSIO package (see appendix A.5).

Keyed and keyless file formats

With effect from BS2000 V10 the so-called keyless disk peripheral is supported. From
this version it is necessary to distinguish between

the previous keyed format (also known as the K format) and
the newly introduced keyless format (also known as the NK format)

The file format is controlled through the BLKCTRL operand in the FILE command. The
PAM keys contained in the K format are moved to the data area in the NK format and
thus reduce the area available for the data records. This has the effect of changing the
minimum and optimum block size for a specific record size. The user must take this
into account when specifying the block size in a FILE command. If he does not specify
the block size, then the runtime system determines the minimum block size on the
basis of the PAM key format when creating a new file.

Open modes

Reset
Rewrite
Extend
Replace

U2780-J-Z125-6-7600 117

BS2000 files Files

5.2.3 PLAM library elements

The Pascal-XT system permits the use of program libraries processed with the PLAM
library access method. Such libraries, PLAM libraries for short, may contain elements of
various types. For each element of a given type several versions may exist. A detailed
description of program libraries can be found in the LMS manual [3].

PLAM library elements can be assigned to Pascal files only via the Assignfile (see
section 5.3.3) standard procedure.

Open modes

Reset
Rewrite

Element designation

The specification of a library element is analogous to that in statements in the
programming system. The syntax is:

plam-element = (library-name , element)

element = element-name [([version][,type])]

library-name
Must be a valid file name in the data management system.

element-name Designates the name of the element in the library. The name may be
up to 64 characters in length.

version Designates the element version. It may be up to 24 characters in
length. The version identifiers *INCREMENT, *UPPER-LIMIT und
*HIGHEST-EXISTING have a special position.

*INCREMENT in write mode, causes the version number of the
library element to increase automatically. This
specification is permissible as of PLAM version 2.0.

*UPPER-LIMIT in read and write modes, stands for the
highest-possible version. This specification
corresponds to the version designated to date as the
@ version in LMS.

*HIGHEST-EXISTING
stands for the highest existing version. In read mode,
this version is read. In write mode, if the element is
present the highest version is overwritten, otherwise a
default version is specified.

118 U2780-J-Z125-6-7600

Files BS2000 files

The version specification *STD is still possible in Pascal-XT V2.2A. In
read mode, this stands for the highest existing version (viewed
lexicographically), so corresponds to the specification *HIGHEST-
EXISTING. In write mode, it stands for the highest-possible version,
so corresponds to the specification *UPPER-LIMIT.

Default value: *HIGHEST-EXISTING

type Designates the element type. It may be up to 8 characters in length.
Elements of type C (binary files) are not supported.

Default value: S (for Source)

Additional conventions for the identification of elements are not defined by PLAM.
However, it is recommended that the conventions laid down in LMS [3] be adhered to.

5.2.4 Temporary files

Temporary files are implemented by EAM files. Following termination of the user
program all EAM files are deleted.

Open modes

Reset
Rewrite

U2780-J-Z125-6-7600 119

Default assignments Files

5.3 Assigning BS2000 files to Pascal files

While a program is being executed the Pascal files (FILE variables) declared in the
program must be assigned operating system files. Sections 5.3.1 through 5.3.4 describe
the different options for effecting such assignments.

5.3.1 Default assignments

Input and Output

Unless specified otherwise, the predefined text files Input and Output are assigned to
the SYSDTA and SYSOUT system files, respectively. The predefined procedure
Assignfile (see section 5.3.3), however, can be used to assign to them any files that are
described in section 5.2 (but: SYSOUT cannot be assigned to Input, SYSDTA cannot be
assigned to Output).

External Pascal files

A BS2000 file must be assigned to an external Pascal file at runtime prior to opening
the file (Reset, Rewrite, Extend, Replace). By default the runtime system assumes the
Pascal name of the external Pascal file as the link name, and takes the file name
specified for the link name from the Task File Table. An OPEN_ERROR is generated if
no entry is present in the table.

Local Pascal files

Local Pascal files are normally created as temporary EAM files.

5.3.2 Assignment with the FILE command

The BS2000 FILE command is provided to define the attributes of a file as well as
creating an entry in the file catalog and in the Task File Table. The TFT permits the
Pascal-XT runtime system to establish a link to an external Pascal file if a link name is
specified in the FILE command that corresponds with the link name formed from the
variable name of the external file (see below).

120 U2780-J-Z125-6-7600

Files Default assignments

Conventions for the formation of link names

The link name is formed from the Pascal name of an external file in accordance with
the following rules:

If the Pascal name is longer than 8 characters, it is truncated to 8 characters.

Underscores (’_’) in the Pascal name are replaced in the link name by number signs
(’#’).

Uniqueness of program parameters

Link names may be up to 8 characters long. This is the reason why variable names of
all external files associated with a program must be distinct in the first 8 characters.
Any violation of this rule cannot be detected by the compiler and may therefore result
in an undefined program runtime condition.

What are the possible assignments?

The Pascal-XT runtime system makes the assignment to a BS2000 file conventionally
via the link mechanism. This permits only SAM and ISAM files to be assigned to
external Pascal files (see section 5.1.1). The assignment is made via the link name
which is derived from the identifier of the Pascal file. The assignment of SYSDTA and
SYSOUT to the predefined text files Input and Output respectively cannot be changed
by the FILE command (see also Assignfile in section 5.3.3).

When must the FILE command be executed?

The FILE command must be executed prior to opening the Pascal file (Reset, Rewrite,
Extend, Replace). The appropriate call may be issued prior to program execution or in
the program itself via the CMD procedure of the predefined package BS2000CALLS
(see appendix A.4).

When a Pascal file is opened for writing, the assigned BS2000 file is normally created
as a SAM file with the BS2000 defined file attributes.
A change in file attributes can only be achieved with the FILE command. In particular
when ISAM files are processed, the attributes must be defined with the FILE command
(see predefined package DMSIO in appendix A.5). Tables 5-3 and 5-4 show what may
happen when files are opened, depending on whether a FILE command was issued or
not.

U2780-J-Z125-6-7600 121

Default assignments Files

Interaction with the Assignfile procedure

File assignments can be made by means of the predefined Assignfile procedure
together with the FILE command. This is necessary in particular when file attributes
must be changed, which is not possible with the Assignfile procedure.

Compatibility between catalog entry and FILE command

When opening an existing file with Reset or Replace the runtime system requires the
attributes of the catalog entry to be compatible with those of the FILE command.

Checks are carried out for the RECFORM, FCBTYPE, KEYPOS and KEYLEN
attributes.

For the RECSIZE attribute the size of the runtime system’s internal buffer is also
taken into account. For non-text files this is equal to the size of the element type of
the FILE variables and for text files it is equal to the value of MAXLINELENGTH (the
default value is 254, see also section 5.3.3). Where RECFORM=V these values
increase by 4 and where SPACE=E they increase by 1.

If there is no FILE command or the RECSIZE operand is not specified, then the
runtime system compares the size of its internal buffer with the RECSIZE entry in
the catalog and reports an Open_Error condition where incompatibilities are
detected.

If the RECSIZE operand is specified in the FILE command, the runtime system
compares the size of its internal buffer with this entry and reports an Open_Error
condition where incompatibilities are detected.

The runtime system leaves to the operating system the comparison of the RECSIZE
entry from the catalog with that from the FILE command.

The operating system (DMS) regards RECSIZE=0 as being compatible with other
RECSIZE values and processes the file correctly.

The compatible combinations of RECSIZE entries are described in the DMS manual
[14].

122 U2780-J-Z125-6-7600

Files Default assignments

Open with Physical file
exists does not exist

The file is opened with its OPEN_ERROR
current attributes. If the (System_Code 1604)
file attributes are not

Reset compatible with the
attributes of the Pascal
file, a runtime error occurs
(READ_ERROR) when reading.

Rewrite The file is created as a SAM
Extend file with variable record length.

Replace File exists: same procedure as for Reset
File does not exist: same procedure as for Rewrite

Table 5-3 Opening a file without specification of a FILE command

Open with Physical file
exist does not exist

An OPEN_ERROR is generated OPEN_ERROR
if the file attributes in (System_Code 1604)
the catalog entry are not
compatible with the
attributes in the FILE
command. If the file

Reset attributes are not specified
in the FILE command and the
attributes are not
compatible, a runtime error
will occur only when reading
is attempted.

Rewrite The file is created with the attributes
Extend specified in the FILE command.

Replace File exists: same procedure as for Reset
File does not exist: same procedure as for Rewrite

Table 5-4 Opening a file with specification of a FILE command

U2780-J-Z125-6-7600 123

Assignment with Assignfile Files

5.3.3 Assignment with the predefined procedure assignfile

The predefined procedure Assignfile can be used within a program in order to assign
any of the files described in in section 5.2 to an external or Pascal file. Some
restrictions, however, apply for ISAM files (see below). The procedure supports two
parameters:

Assignfile (f, description)

"f" is a variable of any Pascal file type. "description" is a string (string expression)
describing the BS2000 file to be assigned to the Pascal file. The description can contain
a file description, an attribute description or both (see definitions in a later paragraph).
The string can contain lower- and upper-case letters; blanks are ignored.

Calling Assignfile merely causes the syntax of "description" and the storing of
specifications in the runtime system to be checked. The semantic characteristics
(validity of attributes, etc) are only checked when the file is opened (see also section
5.3.2).

Except for Input and Output, which are opened implicitly, assignment of a BS2000 file
to a Pascal file is only made when the file is opened (Reset, Rewrite, Extend, Replace).
If a previous assignment is still in force, the BS2000 file assigned up to that point is
closed. Assignfile on the predefined text file Input or Output then causes the text file to
be closed and reopened, i.e. the assignments defined in "description" will come into
effect immediately.

The string within the "description" parameter must satisfy the following syntax
requirements for file. Any blanks between the lexical units are ignored.

file = file-description |
[","] attribute-description |
file-description "," attribute-description.

file-description = standard-file |
file-name |
plam-element |
temp-file.

attribute-description = attribute { "," attribute }.

attribute = "SPACE" "=" "E" |
"LINK" "=" link-name |
"MAXLINELENGTH" "=" integr.

124 U2780-J-Z125-6-7600

Files Assignment with Assignfile

Note

In the following examples the file variable "f" may stand for any external or local
Pascal file. For the "description" parameter, only string literals are specified.
Obviously, any type of string expression may occur.

• File description

In the file description the name of the desired BS2000 file is specified. Any previous
assignments and attribute descriptions are deleted.

standard-file

The permissible standard files are described in section 5.2.1. The Pascal file must
be a text file.

Examples

Assignfile (f, ’*DUMMY’);
Assignfile (f, ’*SYSOUT’);
Assignfile (f, ’*EDT’);
Assignfile (f, ’*EDT(5)’);

file-name

"file-name" stands for the name of a BS2000 file. When the Pascal file is opened for
writing (Rewrite) a SAM file is created with the BS2000 default attributes and given
this name. If the file to be generated is an ISAM file, the file parameters must be
defined beforehand by means of the FILE command (see sections 5.2.2 and 5.3.2).
When the Pascal file is opened for reading "file-name" may stand for a SAM or
ISAM file. The use of keys in ISAM text files is discussed in section 5.2.2.

Example

Assignfile (f, ’$USERID.BEISPIEL.PROG’)

File $USERID.BEISPIEL.PROG is assigned to Pascal file f.

U2780-J-Z125-6-7600 125

Assignment with Assignfile Files

plam-element

A PLAM element is defined by library name, element name, type and version. An
exact description is given in section 5.2.3. If type and version are not specified, the
runtime system assumes the default value "S" (for source); in read and write
modes, it assumes the highest-existing and highest-possible versions respectively.
The library can also be addressed via a link name (see LINK attribute).

Examples

Assignfile (f, ’(TOOLS, LMS.PROG (10A,S))’)

Element LMS.PROG with version 10A and type S from PLAM library TOOLS is
assigned to Pascal file f.

Assignfile (f, ’(TOOLS, LMS.PROG), LINK=F’)

Library element LMS.PROG with the highest version (*STD) and type S is
assigned to Pascal file f. The library is searched for using link name F in the
Task File Table. If link name F is not found, library TOOLS is used.

Assignfile (f, ’(,LMS.PROG(,P)), LINK=LIB’)

Library element LMS.PROG with the highest version (*STD) and type P is
assigned to Pascal file f. The library is addressed via the link name LIB. Prior
to opening the library element, a FILE command with the file name of the
PLAM library and the link name LIB must be issued. Otherwise an Open_Error
with system error code 1603 will be generated.

temp-file

A temporary file (EAM file) can be assigned to every Pascal file by specifying a null
string. Temporary files can no longer be accessed once the program is terminated.

Example

Assignfile (f, ’’)

126 U2780-J-Z125-6-7600

Files Assignment with Assignfile

• Attribute description

The attribute description may specify additional file attributes such as changing the
buffer sizes for text files or addressing the file via link names. The attribute descriptions
may be specified together with a file name in the same Assignfile call or separately in a
subsequent call. If the attributes are specified in an individual Assignfile call, the
optional comma preceding the attribute list has an essential function.

(a) If the comma is not specified, the attributes of the current description, if any, are
added.

(b) If the attribute list begins with a comma, the existing description, if any, will be
deleted.

Local files have a description implicitly; it specifies the assignment to the temporary
EAM files. Should a non-EAM file be assigned to a local file, the assignment must
be made by specifying either a file name or a link attribute with preceding comma.

SPACE = E

This attribute, in a text file, reserves the first column for feed control characters.
The user cannot access this character explicitly. For the predefined Page
procedure to accomplish the required effect, this attribute must be specified when
a physical file is assigned. The following effects are achieved on input/output:

Output: Column 1 of each line is reserved for the control character and filled
with a blank, i.e. the line output by a program is lengthened by one
character.
When the predefined procedure Page is called, the current line,
possibly not yet closed by Writeln, is output, and a feed control
character ("A") is output to column 1 of the next line. Calling Page
has no effect if the SPACE attribute has not been specified.
For system files SYSLST and SYSOUT, SPACE=E is set by default.

Input: Column 1 of each line is skipped and not passed to the processing
program.

Example

Assignfile (listing, ’LST.MAIN, SPACE=E’)

File LST.MAIN is assigned to Pascal file "listing". The first column of the file is
reserved for the feed control character.

U2780-J-Z125-6-7600 127

Assignment with Assignfile Files

LINK = link-name

This attribute is necessary to assign a BS2000 file to a Pascal file via the BS2000
link mechanism. Prior to opening (Reset, Rewrite,...) of the Pascal file a FILE
command must be issued specifying the desired file name and the link name
specified in Assignfile. When the Pascal file is opened, the runtime system then
retrieves the file name via the Task File Table and accepts further FILE command
parameters, if any. If in Assignfile a file is assigned to a Pascal file and additionally
the LINK attribute is specified (in several calls or in the same Assignfile call), the
file name specified in Assignfile is assumed as the default value. It is used only if
the runtime system does not find, in the Task File Table, a file name for the link
name used.

When the Pascal file is opened an Open_Error of system error code 1603 is
generated if neither a file name in Assignfile nor a FILE command for the link name
(with specification of a file name) has been specified.

For "link-name" (up to 8 characters) any name or the name derived from the
Pascal file identifier (see section 5.3.2) can be specified.

Link name for external Pascal files

The link mechanism permits file attributes of the assigned BS2000 file to be preset
by means of the appropriate parameters in the FILE command. For existing files,
these parameters must match the entries in the catalog (see chapter 5 and
appendix A.5).

Link names for local Pascal files

For local Pascal files (i.e. file variables not listed in program parameter lists) the
leading comma must precede the attribute list.

Examples

Assignfile (f, ’TOOLS.SPEC, LINK=F’)

A file is assigned to Pascal file f via link name F. If no FILE command has been
issued for this link name, file TOOLS.SPEC is used.

128 U2780-J-Z125-6-7600

Files Assignment with Assignfile

Assignfile (f, ’LINK=F’);
BS2000CALLS.cmd (’/FILE TEST, LINK=F, KEYPOS=3, KEYLEN=10’, error);
Reset (f);
...
Assignfile (f, ’LST.BSP’);

ISAM file TEST with specified attributes is assigned to Pascal file f via link name
F. When Assignfile is called for the second time a file will be assigned to Pascal
file f thus deleting the previous assignment and attributes.

MAXLINELENGTH = integer

In the case of text files the internal line buffer of the runtime system has a default
length of 254 characters. When longer lines are encountered in reading a file or
writing to a file a FILE_ERROR results. The attribute MAXLINELENGTH can now be
used to alter the size of the line buffer (e.g. to output the entire contents of a
screen with a single call to Writeln). "integer" must be a positive integer value and
defines the desired number of characters per line. Where the value is equal to or
less than 0 a FILE_ERROR is reported. When specifying the length the additional
character stipulated if SPACE=E need not be taken into account. If the attribute is
not specified when Assignfile is called, then the default value applies regardless
whether or not a value has previously been defined.

The attribute is not effective until the Pascal file is opened. An exception is formed
by the predefined text files Input and Output which the user cannot open explicitly.
They are closed implicitly by the Assignfile call and subsequently reopened with the
new attributes.

Examples

Assignfile (output, ’*SYSOUT, MAXLINELENGTH=4000’)

After Assignfile has been called, lines with a maximum length of 4000
characters can be output to the predefined text file Output. The assignment of
Output to the terminal, or any file selected before, remains unaffected.

Assignfile (f, ’MAXLINELENGTH=512, SPACE=E’)

After file f has been opened (Reset, Rewrite), lines having a maximum length of
512 characters can be output. The additional characters required for form feed
control (SPACE=E) need not be taken into account.

U2780-J-Z125-6-7600 129

Assignment with Assignfile Files

Example

The LIST program permits the contents of a file to be output to a terminal. In the
Assignfile call both the file name requested interactively and a link name are specified.
The name entered interactively is used only if no appropriate FILE command has been
issued.

/EXEC $PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//sy er *
//c (plam.manual,list.prog),*dummy

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//run
Enter name of the file
(plam.manual, list.prog) (01)
(*$TITLE = ’Output of a file to SYSOUT’*)

program LIST (input, output, source);

var
source : text;
str : string;
filename : string;

begin
writeln (output, ’Enter name of the file’);
readln (input);
read (input, filename);
Assignfile (source, concat (filename, ’,LINK=SOURCE’));
reset (source);
while not eof (source) do begin

readln (source, str);
writeln (output, str);
end;

end (* LIST *).
//sy file testfile,link=source (02)
//run
Enter name of the file
(plam.manual, list.prog) (03)

*** This file "testfile" contains this line only ***
//

(01) Program LIST asks the name of the file to be output. The name of the library
element is entered that contains the source program of LIST. The link
mechanism has no effect as no FILE command has been issued yet.

(02) For the SOURCE link name a FILE command is issued specifying the file name
"testfile".

(03) A file name entry has no effect now. The file name specified in the FILE
command is used.

130 U2780-J-Z125-6-7600

Files Assignment in the RUN statement

5.3.4 Assignment in the RUN statement

When a program is started in the programming environment by means of the RUN
statement (see section 2.6.11), file assignments may be specified in the PARAMETER
operand as a string in the form:

PARAMETER = ’pascal-file = BS2000-filename’

Multiple assignments must be separated by commas. For "pascal-file", only the identifier
of an external Pascal file is valid. For "BS2000-filename" only SAM and ISAM files can
be specified. Details concerning file attributes are given in section 5.3.2. The linking of
the BS2000 file to the Pascal file is made with the FILE command using the name of
the Pascal file as the link name, as described in section 5.3.2. Following execution of
the program, the link name is released. However, the programming environment
records the assignment and resets it when the RUN statement is called next time. No
BS2000 files can be assigned to the predefined text files Input and Output. They are
assigned to system files SYSDTA and SYSOUT, respectively.

Example 1

The BS2000 file "testfile" is to be assigned to a program with the external file SOURCE.
The two assignments illustrate the different entry options for the RUN statement.

//run parameter = ’source=testfile’
//r ,’source=testfile’

Example 2

The BS2000 files "file1" and "file2" are to be assigned at execution time to a program
with the external files SOURCE and DESTINATION.

//r ,’source = file1, destination = file2’

U2780-J-Z125-6-7600 131

File operations Files

5.4 File operations

If the Pascal file specified in the predefined subprograms Rewrite, Reset, Get, Put,
Readln and Writeln as the first parameter, is assigned to a BS2000 file (SAM or ISAM),
library or system file, these subprograms will have a specific effect through the Data
Management System (DMS) or the PLAM library access system. Here are the details:

Rewrite: The BS2000 file may first have to be closed with the DMS CLOSE
operation and then opened with the DMS OPEN operation in the open
mode OUTPUT.
For PLAM library elements, first the library is opened with the PLAM
PMATCH operation in the attach mode INOUT and then the element, with
the PLAM PMOPEN operation in the open mode WRITE. If the file or the
PLAM library or library element cannot be opened, an Open_Error will be
generated.
System files will not be opened because they are considered to be
permanently open.
For a text file an internal line buffer of type string [n] is created, n being
the maximum length set in the latest Assignfile call or the default length
of 254.

Reset: Analogous to Rewrite, the BS2000 file will first be closed. Before closing
text files opened with Rewrite or Replace, the internal line buffer must be
transferred to the file if it is not empty (implicit Writeln). Transfer of the
line buffer in case of Close depends on the next Rewrite/Reset open
operation. Subsequently, the BS2000 file is opened with the DMS OPEN
operation, in the open mode IN.
For PLAM library elements, first the library is opened with the PLAM
PMATCH operation in the attach mode INPUT, after which the element is
opened with the PLAM PMOPEN operation in the OPEN mode INPUT. If
the file or library cannot be opened, an Open_Error will occur.
System files will not be opened because they are considered to be
permanently open.
For non-text files the first record of the BS2000 file is read with the DMS
GET or PLAM PMGETA operation and transferred to the buffer variable of
the Pascal file.
For a text file, a line buffer of type string [n] is created, where n is the
maximum line length set in the latest Assignfile call or the default length
of 254.
The first record of the BS2000 file is read with the DMS GET, PLAM
PMGETA or DMS RDATA operation and transferred to this line buffer.
The first character of the line buffer is copied into the buffer variable of
the text file and Eoln is set to False. Prefetching the first record by
means of RDATA is only valid for SYSDTA, no prefetch of the first record

132 U2780-J-Z125-6-7600

Files File operations

being allowed with standard input. If the first record is empty a blank is
entered for it in the buffer variable and Eoln is set to True. If on SAM
and ISAM files the DMS GET operation could not read a record because
the file is empty, Eof is set to True. The same applies if on PLAM library
elements the PLAM PMGETA operation did not succeed in reading
another record of record type 1.
Command entry /EOF on system file SYSDTA is interpreted as end of
file.

Get: On non-text files the next record of the BS2000 file is read with the DMS
GET or PLAM PMGETA operation and transferred to the buffer variable of
the Pascal file. On ISAM files opened with Replace or on ISAM files with
SHARED-UPDATE=YES the record read is locked (LOCK). The
information concerning LOCK also applies to text files. If Eoln is true on
text files at the time immediately before calling Get Eoln, the next record
of the BS2000 file is read with the DMS GET, PLAM PMGETA or DMS
RDATA operation and transferred to the internal line buffer, the first
character of the line buffer is entered in the buffer variable of the text file
and Eoln is set to False. If the record read is empty, a blank is set for it
in the buffer variable and Eoln is set to True. Otherwise, the next
character of the line buffer is copied into buffer variable. If there are no
other characters in the line buffer, a character is entered in the buffer
variable instead and Eoln is set to True. If the DMS GET operation failed
to read another record on SAM and ISAM files because an end-of-file
condition occurred, Eof is set to True. The same applies if, on PLAM
library elements, no other record of record type 1 can be read with the
PLAM PMGETA operation.
The command entry /EOF on system file SYSDTA is interpreted as end
of file.

Put: On non-text files the next record of a BS2000 file with the contents of the
buffer variables of the Pascal file is written by means of a DMS
operation, the DMS PUT operation being used for ISAM files opened with
Rewrite, the DMS STORE operation for ISAM files opened with Replace.
For SAM files, the buffer variable is only entered in the internal system
buffer of the BS2000 file because locate mode is used here. If the
system buffer cannot accommodate the buffer variable, the system buffer
is emptied with the DMS RELEASE operation.
Libraries with non-text elements have the buffer variable of the Pascal file
transferred into the library using the PLAM PMPUTA operation.
For text files the contents of the buffer variable of the text file are written
as the next character to the internal line buffer. If an overflow condition
occurs in the internal line buffer, an error will be generated.

U2780-J-Z125-6-7600 133

File operations Files

Readln: Allowed for text files only. The next record of the BS2000 file is read with
the DMS GET or PLAM GETA operation and transferred to the internal
line buffer. If the DMS GET operation could not read another record on
SAM and ISAM files because the end of file was reached, Eof is set to
True. The same applies if no other record of record type 1 can be read
on PLAM library elements of type S. Otherwise, the first character of this
record is copied into the buffer variable of the text file. If an empty
record has been read, Eoln is set to True instead and a blank is entered
in the buffer variable.

Writeln: Allowed for text files only. The next record of the BS2000 file, together
with the contents of the internal line buffer, is written using a DMS
operation (analogous to Put for non-text files) or the PLAM PMPUTA
operation. For SYSLST, the the line buffer is transferred with the DMS
WRLST operation and for SYSOUT the line buffer is transferred with the
DMS WROUT operation to the proper system file. Note that the writing of
a blank line to SYSOUT does not generate a line break on the part of
DMS.

Close: Is only effective if the BS2000 file is open. The BS2000 file is closed with
the DMS CLOSE operation. On PLAM library elements, first the element
is closed, using the PLAM PMCLOS operation and then the library, using
the PLAM PMDTCH operation. On text files opened with Rewrite or
Replace the internal line buffer is transferred to the file before it is closed,
unless this buffer is empty (implicit Writeln). Close is called when the
block is left in which a Pascal file has been declared.

Assignfile: The actual Assignfile actions are not performed until a subsequent Reset,
Rewrite or Replace. Only in case of change in file assignment of
temporary file to BS2000 file, library or system file will the temporary file
be deleted immediately. Additionally, for standard input an implicit Reset,
for standard output, an implicit Rewrite is performed.

134 U2780-J-Z125-6-7600

Files File operations

6 Linking and executing object programs

6.1 General

Creating an executable program involves the following steps:

The program sources (main program, specifications and bodies of imported
packages) need to be compiled in the correct sequence (see 4.1).

The object modules generated by the compiler and the runtime system modules
need to be linked to a program.

The program needs to be loaded and started.

Following correct compilation, the Pascal-XT compiler generates the following object
modules for the main program and package bodies:

code module
data module
test tables module

and for the main program also a

starter module.

No object modules are generated for package specifications.

The name of an object module is generated from the name of the compilation unit
(program or package name) and an additional character which identifies the type of
module generated (see section 4.4 for details).

Following compilation, modules are normally written to the temporary EAM object
module file (*OMF), but they can also be stored in a PLAM library (see section 2.6.4,
COMPILE-UNIT statement, MODULE-LIBRARY operand).

An executable Pascal program consists of a main program, a number of packages and
the Pascal-XT runtime system. Packages cannot be executed without a main program.
Linking of the object modules to a program can be either static (using the linkage
editor TSOSLNK) or dynamic (using the Dynamic Linking Loader). TSOSLNK and DLL
are described in detail in [4].

Linking a program using the PATH debugging aid is described in section 9.4.

U2780-J-Z125-6-7600 135

Linking and executing Object programs

References between object modules

Each code module of a package or main program contains external references to the
code modules of the packages which are directly and indirectly imported and to the
code modules of the required runtime system modules. Parallel to this, each data
module has external references to the data modules of the imported packages and
runtime system modules. If a package includes an entry procedure, the data module
will have an external reference to its own code module. No external references from
code modules to data modules exist. The starter module of a main program contains
external references to the code and data modules of the main program. The external
references to external (non-Pascal) subprograms are contained in the data modules.

Example 1

Fig. 6-1 shows the external references in a Pascal-XT program without entry procedures
and foreign subprograms. The main program BEISPIEL requires the package
AUSGABE, which in turn uses the package TOOLS. The main program has a reference
to TOOLS, since it is indirectly imported. No external references to the runtime system
are given.

BEISPIEC AUSGABEC TOOLS##C Code
modules

- -

BEISPIE BEISPIED AUSGABED TOOLS##D Data
modules

Fig. 6-1 External references between object modules

136 U2780-J-Z125-6-7600

Object programs Linking and executing

Example 2

The package TEST uses the package AUSGABE, which in turn calls the external (other
language) module EXTUP. As an entry procedure is defined in TEST, the data module
contains an external reference to its own code module. The external reference to the
foreign subprogram EXTUP is contained in the data module of AUSGABE. No external
references to the runtime system are given.

TEST###C AUSGABEC

- -

TEST###D AUSGABED EXTUP

Fig. 6-2 External references for entry procedures and external subprograms

Shareable programs

As a result of the strict separation of code modules and data modules, Pascal-XT
programs (main program, packages and runtime system) are shareable. Thus the code
modules of programs or of the Pascal-XT runtime system can be loaded into shared
code or the common memory pool (see section 6.2.2).

Pascal-XT runtime system and ILCS (Inter-Language Communication Services)

The following sections assume that the Pascal-XT runtime system is located in the
object module library $PASLIB-XT. This object module library also contains the modules
required by ILCS (see 7.1), which are automatically linked at the same time as the
Pascal-XT runtime system (see section 7.1 and the ASSEMBH manual [15]).

Compatibility of runtime system and compiler versions

Pascal-XT objects generated by an earlier compiler version can be linked with the latest
Pascal-XT runtime system. Objects generated by the latest compiler, however, cannot
be linked with an earlier runtime system.
A Pascal-XT program with ILCS capability requires version 2.2A of the runtime system.

U2780-J-Z125-6-7600 137

Static linking Object programs

6.2 Static linking

The static linkage editor TSOSLNK enables the object modules of a program to be
linked to form a loadable phase (load module), prelinked modules, or segments.

When a program is linked, all required packages must be linked in, even if they are not
accessed when the program is executed. All packages are initialized at program start
time. If one of the packages is missing, the result is program abortion.

6.2.1 Linking to form a phase

The object modules of the main program and the imported packages are interlinked
with the runtime system to form a phase (load module). Using the INCLUDE statement,
the starter module of the main program containing the start address of the program
must be loaded. To resolve the external references to the imported packages and to
the modules of the runtime system, RESOLVE statements must be specified for the
object module libraries containing these modules. The linkage editor is not allowed to
report unresolved external references (see above). The generated phase can be
executed on all BS2000 operating system versions from V7.5 on.

Static linking on XS processors

On XS processors, the loading point can be defined by specifying LOADPT=*XS in the
upper address space (above 16 Mb). In this case, however, it is necessary to ensure
that the external subprograms are also XS-compatible (see section 7.2).

The simplest form of static linking is provided by issuing the following link commands.

/EXEC $TSOSLNK
COMMENT *** Linking a program to form a load module ***
PROGRAM prog (01)
INCLUDE progname , modlib (02)
RESOLVE , modlib (03)
RESOLVE , $PASLIB-XT (04)
END

(01) The PROGRAM statement specifies the name of the linked program (load
module). The program can subsequently be started under this name.

(02) "progname" is the name of the main program (name of the starter module) which
is read from the object module library "modlib". The linkage editor determines the
start address of the program from this module.

138 U2780-J-Z125-6-7600

Object programs Static linking

(03) The RESOLVE statement specifies the object module library from which
TSOSLNK is to resolve the external references. If not all of the required modules
are present in the library, additional libraries must be specified.

(04) External references to modules of the runtime system are resolved from the
object module library $PASLIB-XT.

Example 1

The object modules of the sample program from appendix A.2 are included in the
object module library LIB.BEISPIEL. The program is first linked into a load module with
the name BSP.

/EXEC $TSOSLNK
% P500 TSOSLNK/190/85-07-10 LOADED
PROGRAM BSP
INCLUDE BEISPIE, LIB.BEISPIEL
RESOLVE , LIB.BEISPIEL
RESOLVE , $PASLIB-XT
END
% T500 PROG BOUND
% T503 PROG FILE WRITTEN: BSP
% T504 NUMBER PAM PAGES USED: 41

The program is then started and executed under the name of the load module BSP.

/EXEC BSP
% P500 BSP/000/88-01-21 LOADED
32767
Hexadecimal value = #00007FFF
0
Hexadecimal value = #00000000
/

U2780-J-Z125-6-7600 139

Static linking Object programs

Example 2

The same program is then linked in such a way that it executes in the upper address
space (above 16 MB). To do so, LOADPT=*XS must be specified in the PROGRAM
statement. The generated phase can then only execute on XS processors.

/EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’V21.0C08’ OF ’87-09-28’ LOADED.
PROGRAM BSP,LOADPT=*XS
INCLUDE BEISPIE, LIB.BEISPIEL
RESOLVE , LIB.BEISPIEL
RESOLVE , $PASLIB-XT
END
% LNK0500 PROG BOUND
% LNK0062 PHASE CAN BE LOADED ON XS SYSTEM ONLY
% LNK0503 PROG FILE WRITTEN: BSP
% LNK0504 NUMBER PAM PAGES USED: 41

/EXEC BSP
% BLS0500 PROGRAM ’BSP’, VERSION ’ ’ OF ’88-01-21’ LOADED.
777
Hexadecimal value = #00000309
0
Hexadecimal value = #00000000
/

6.2.2 Prelinking to form prelinked modules

TSOSLNK enables several object modules to be prelinked to form prelinked modules.
These can be processed by TSOSLNK in further linking procedures or, if they represent
an executable program, they can be loaded by DLL and executed.

Prelinking is used, for example, to prelink a program to a module (no phase) and store
it in an object module library. The code and data modules of a program can also be
separately prelinked to form prelinked modules. The various possibilities are described
in the following sections.

For prelinking, the external references and entries must remain apparent. This is
controlled via the LINK-SYMBOLS statement of TSOSLNK (see [4]). The exact
procedure is described in the examples below.

The Pascal-XT runtime system should not be linked into a prelinked module. With static
linking there are no negative effects if this rule is broken, since if a number of prelinked
modules are each statically linked with a runtime system, the program behaves as if
only one runtime system were linked in.
However, in the case of dynamic link loading (DLL) or dynamic loading (LINK macro) of
a prelinked module with its own linked runtime system, DLL would terminate the
loading and issue an error message.

140 U2780-J-Z125-6-7600

Object programs Static linking

6.2.2.1 Prelinking to form a single prelinked module

The code and data modules of a program are prelinked to form a prelinked module
without the runtime system. The external references to the runtime system are not
resolved until the program is loaded. The runtime system modules may be in shared
code or reside in the common memory pool, or they can be dynamically loaded from a
library (e.g. $PASLIB-XT).

/EXEC $TSOSLNK "Beginning with Version 18"
COMMENT * Linking a main program without runtime system *
MODULE prog (01)
INCLUDE progname , modlib (02)
RESOLVE , modlib (03)
BIND (04)

(01) The modules read are linked to form the prelinked module "prog" and stored in
the temporary object module file (*OMF).

(02) The starter module "prog-name" of the main program is read from the "modlib"
object module file. From this module the linkage editor determines the start
address of the program.

(03) The RESOLVE statement specifies the object module library from which
TSOSLNK is to resolve the external references. If not all required modules are
specified in the library, further libraries must be specified.

(04) Input to TSOSLNK is terminated with the BIND statement, i.e. the linking
procedure is executed even though there are still external references to the
runtime system which have not been resolved.

U2780-J-Z125-6-7600 141

Static linking Object programs

Example

The object modules of the sample program from appendix A.2 are included in the
object module library LIB.BEISPIEL. The object modules of the program are prelinked
without the runtime system to form a prelinked module. The runtime system modules
are to be dynamically loaded from $PASLIB-XT when the program is executed. To do
so, the Tasklib must be set for $PASLIB-XT.

/ERASE *
/EXEC $TSOSLNK
% P500 TSOSLNK/190/85-07-10 LOADED
MODULE BSPMOD
INCLUDE BEISPIE, LIB.BEISPIEL
RESOLVE , LIB.BEISPIEL
BIND
UNRESOLVED EXTRNS:
IP@#OP2D IP@#ER2D IP@#RT2D IP@#OP2C IP@#ER2C IP@#RT2C IP@#OU2C
IP@#iN2C IP@#TX2C IP@#RE2C IP@#OU2D IP@#iN2D IP@#TX2D IP@#RE2D

% T056 MODULE BOUND WITH UNRESOLVED EXTERNS
% T505 MODULE BSPMOD WRITTEN TO EAM OMF

/EXEC $LMS
% P500 LMS/11B/85-08-02 LOADED
LMS (BS2000) VERSION V1.1B05
CTL=(RDR) PRT=(CON)
LIB LIB.GROSSMODUL,OUT,OML,ANY
ADDR *OMF
END
**** E N D O F R U N **** LMS (BS2000) VERSION V1.1B05

/SYSFILE TASKLIB=$PASLIB-XT
/EXEC (BSPMOD, LIB.GROSSMODUL)
% P001 DLL VER 761
% P500 BSPMOD/001/88-01-21 LOADED
255
Hexadecimal value = #000000FF
0
Hexadecimal value = #00000000
/

142 U2780-J-Z125-6-7600

Object programs Static linking

6.2.2.2 Prelinking code and data modules separately

The code and data modules of a program are separately prelinked to form prelinked
modules. In this case the runtime system is not included. This type of prelinking
permits, for example, the code module to be loaded into shared code. In this case, it
should be noted that the code modules of the runtime system must also be in the
shared code.

The starter module of a main program is part of the data modules. When prelinking the
data modules it must be the first module that is read by means of the INCLUDE
statement, since it contains the program’s start address. Data modules must contain
external references to code modules (in the starter module and in the case of entry
procedures). When prelinking data modules, it should be noted that these references
are not resolved. This can be effected using the EXCLUDE statement or by reading in
the required data modules using the INCLUDE statement.
When prelinking the code modules it should be noted that the required entry names
(CSECT name of the code module of the main program and the names of the entry
procedures) must remain apparent. This must be guaranteed using the LINK-SYMBOLS
statement of TSOSLNK (see [4]).

/EXEC $TSOSLNK "Beginning with Version 18"
COMMENT *** Linking the code modules ***
MODULE code (01)
INCLUDE progcode , modlib (02)
RESOLVE , modlib (03)
LINK-SYMBOLS *KEEP (04)
BIND (05)

/EXEC $TSOSLNK "Beginning with Version 18"
COMMENT *** Linking the starter module and the data modules ***
MODULE prog (06)
INCLUDE progname , modlib (07)
RESOLVE , modlib (08)
EXCLUDE (progcode,...), modlib (09)
BIND (05)

(01) The code modules read in are linked to form the prelinked module "code" and
stored in the temporary object module file (*OMF).

(02) "progcode" is the name of the main program code module read from the object
module library "modlib".

(03) The external references to the remaining code modules are to be resolved from
the object module library "modlib".

(04) The external names remain apparent.

(05) The linking procedure is performed despite unresolved external references.

U2780-J-Z125-6-7600 143

Static linking Object programs

(06) The starter module of the main program as well as the data modules are linked
to form the prelinked module "prog" and stored in the temporary object module
library (*OMF).

(07) The starter module "progname" is read from the object module library "modlib".
From this module, the linkage editor determines the start address of this
program.

(08) All external references to the remaining data modules are resolved from object
module library "modlib".

(09) The external reference to the main program code module "progcode" must not
be resolved. If the application program contains entry procedures, the names of
the code modules containing these procedures must likewise be specified in this
list. The EXCLUDE statement can be omitted if the code modules are kept in a
separate object module library.

144 U2780-J-Z125-6-7600

Object programs Static linking

Example

The object modules of the sample program from appendix A.2 are contained in the
object module library LIB.BEISPIEL. The code and data modules of the program are
separately prelinked without the modules of the runtime system. The prelinked modules
BSPDAT and BSPCOD are generated and stored in object module library
LIB.GROSSMODUL. The EXEC command is used to execute the program. The data
module BSPDAT and the object module library are to be specified as parameters; the
code module BSPCOD is dynamically loaded by DLL automatically. To resolve the
external references to the runtime system modules, the Tasklib must be set to the
$PASLIB-XT library prior to program execution.

/ERASE *
/EXEC $TSOSLNK
% P500 TSOSLNK/190/85-07-10 LOADED
MODULE BSPCODE
INCLUDE BEISPIEC, LIB.BEISPIEL
RESOLVE , LIB.BEISPIEL
LINK-SYMBOLS *KEEP
BIND
UNRESOLVED EXTRNS:
IP@#OP2C IP@#ER2C IP@#RT2C IP@#OU2C IP@#iN2C IP@#TX2C IP@#RE2C

% T056 MODULE BOUND WITH UNRESOLVED EXTERNS
% T505 MODULE BSPCODE WRITTEN TO EAM OMF

/EXEC $TSOSLNK
% P500 TSOSLNK/190/85-07-10 LOADED
MODULE BSPDATA
INCLUDE BEISPIE , LIB.BEISPIEL
RESOLVE , LIB.BEISPIEL
EXCLUDE BEISPIEC, LIB.BEISPIEL
BIND
UNRESOLVED EXTRNS:
IP@#OP2D IP@#ER2D IP@#RT2D IP@#OU2D IP@#iN2D IP@#TX2D IP@#RE2D
IP@#RT2C BEISPIEC

% T056 MODULE BOUND WITH UNRESOLVED EXTERNS
% T505 MODULE BSPDATA WRITTEN TO EAM OMF

/EXEC $LMS
% P500 LMS/11B/85-08-02 LOADED
LMS (BS2000) VERSION V1.1B05
LIB LIB.GROSSMODUL,OUT,OML,ANY
ADDR *OMF
END
**** E N D O F R U N **** LMS (BS2000) VERSION V1.1B05

/SYSFILE TASKLIB=$PASLIB-XT
/EXEC (BSPDATA, LIB.GROSSMODUL)
% P001 DLL VER 761
% P500 BSPDATA/001/88-01-21 LOADED
16383
Hexadecimal value = #00003FFF
0
Hexadecimal value = #00000000
/

U2780-J-Z125-6-7600 145

Static linking Object programs

6.2.2.3 Prelinking the runtime system

To conserve main memory space it is recommended that the Pascal-XT runtime system
exists once only, even if there is more than one application. This is achieved by loading
the code modules of the runtime system into the shared code or common memory
pool (see [6]). The data modules are private for each user and must be linked to his or
her program.

To prelink the code modules, all modules from the runtime system library PASLIB-XT
whose names begin with "IP@" and whose eighth character is a "C" (for code) are read
in. Correspondingly, all data modules whose names begin with "IP@" and whose eighth
character is a "D" (for data) are read in. The module names must remain apparent (see
the LINK-SYMBOLS statement of TSOSLNK).

The object modules of the predefined packages (see appendix A.3) are contained in
PASLIB-XT. When required, they can be linked to form the prelinked modules of the
runtime system.

The module #TEST must not be linked in. It contains a switch function and would result
in execution of the program under the control of the debugging aid (see chapter 9).
Likewise the modules #PATH##C and #PATH##D of the PATH debugging aid should
only be linked in when required.

6.2.3 Segmented linking

A Pascal program consisting of one main program and several packages can be linked
in segments (see [4]). Linking using an overlay structure is only possible under certain
conditions:

(a) The modules of the main program and of all shared packages must be linked into
the basic segment (root). These also include the modules of the runtime system.
No references to packages in other segments may be given.

(b) Packages in a segment different from the root segment may only import packages
from their own segment and/or from the root segment.

(c) A procedure in a segment can only be called from the basic segment via the
"external entry mechanism". Therefore a procedure with the directive EXTERNAL
must be defined in the basic segment and have the same name (procedure
identifier) and the same formal parameter list as the calling entry procedure in the
segment.
Restrictions on parameter passing must be taken into account as a condition of
this calling mechanism (see chapter 7).

(d) The first time an entry procedure in a segment is called and upon the first call
after a segment change, all packages belonging to the segment will be initialized.

146 U2780-J-Z125-6-7600

Object programs Static linking

Notes

Segmented programs which have been linked cannot be tested with the PATH
debugging aid.

On XS processors programs can only be linked in segments in the lower address
space (below 16 Mb).

Example

The simplified example below shows an overlay structure with two segments. For
reasons of clarity, the basic segment consists merely of the main program TEST and
each segment consists of one package (OVL1 or OVL2). However, each segment could
also consist of any number of packages.
Messages which make it easier to understand the execution of the program are output
in the main program and the packages.

/EXEC $USERID.PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//D DIRECTORY
//MC (PLAM.EXAMPLE,), *SYSOUT, *STD
//C (, OVL1.SPEC)
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,OVL1.SPEC(*STD,S))

1 package OVL1;
2
3 entry procedure proz1;
4 entry procedure proz11 (var i : integer);
5
6 end { package OVL1 }.

U2780-J-Z125-6-7600 147

Static linking Object programs

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 0 BYTES *
* SIZE OF DATA MODULE : 0 BYTES *
* COMPILATION TIME : 0.228 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (, OVL2.SPEC)
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,OVL2.SPEC(*STD,S))

1 package OVL2;
2
3 entry procedure proz2 ;
4
5 end { package OVL1 }.

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 0 BYTES *
* SIZE OF DATA MODULE : 0 BYTES *
* COMPILATION TIME : 0.068 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (, OVL1.BODY)
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

148 U2780-J-Z125-6-7600

Object programs Static linking

LIST OF RECOMPILED PACKAGE SPECIFICATIONS (SOURCE FILES)

($USERID.PLAM.EXAMPLE,OVL1.SPEC(*STD,S))

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,OVL1.BODY(*STD,S))

1 package body OVL1 (output) ;
2
3 procedure proz1;
4 begin
5 writeln (’- execution of OVL1.proz1’);
6 end;
7
8 procedure proz11 (var i : integer) ;
9 begin
10 writeln (’- execution of OVL1.proz11; i = ’, i:1);
11 end;
12
13 begin
14 writeln (’- initialization of package OVL1’);
15 end { package body OVL1 }.

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 948 BYTES *
* SIZE OF DATA MODULE : 236 BYTES *
* COMPILATION TIME : 0.242 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (, OVL2.BODY)
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

U2780-J-Z125-6-7600 149

Static linking Object programs

LIST OF RECOMPILED PACKAGE SPECIFICATIONS (SOURCE FILES)

($USERID.PLAM.EXAMPLE,OVL2.SPEC(*STD,S))

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,OVL2.BODY(*STD,S))

1 package body OVL2 (output);
2
3 procedure proz2;
4 begin
5 writeln (’- execution of OVL2.proz2’);
6 end;
7
8 begin
9 writeln (’- initialization of package OVL2’);
10 end { package body OVL2 }.

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 676 BYTES *
* SIZE OF DATA MODULE : 168 BYTES *
* COMPILATION TIME : 0.216 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (, OVLTEST.PROG)
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,OVLTEST.PROG(*STD,S))

1 program OVLTEST (input , output);
2
3 var k : integer;
4
5 procedure proz1; external;
6 procedure proz11 (var i : integer); external;
7 procedure proz2; external;
8

150 U2780-J-Z125-6-7600

Object programs Static linking

9 begin
10 writeln (’- start of main program’);
11 proz1; { call OVL1.proz1 }
12 k := 1024;
13 proz11 (k); call OVL1.proz11
14 proz2; call OVL2.proz2
15 proz1; call OVL1.proz1
16 writeln (’- end of main program’);
17 end { program OVLTEST }.

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 740 BYTES *
* SIZE OF DATA MODULE : 116 BYTES *
* COMPILATION TIME : 0.229 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//END

END OF THE PASCAL SESSION - USED TIME = 1.247 SECONDS
/EXEC $TSOSLNK
% BLS0500 PROGRAM ’TSOSLNK’, VERSION ’V21.0D10’ OF ’90-05-10’ LOADED.
PROG OVLTEST, FILENAM=PH.OVL,CONTROL=Y
COMMENT *** Root ***
INCLUDE OVLTEST , PLAM.EXAMPLE
COMMENT *** Segment 1 ***
OVERLAY K1,O1
TRAITS OVL1###C, RMODE=24
TRAITS OVL1###D, RMODE=24
INCLUDE OVL1###C, PLAM.EXAMPLE
INCLUDE OVL1###D, PLAM.EXAMPLE
COMMENT *** Segment 2 ***
OVERLAY K1,O2
TRAITS OVL2###C, RMODE=24
TRAITS OVL2###D, RMODE=24
INCLUDE OVL2###C, PLAM.EXAMPLE
INCLUDE OVL2###D, PLAM.EXAMPLE
COMMENT *** Root segment ***
RESOLVE , $USERID.PASLIB-XT
RESOLVE , PLAM.EXAMPLE
END
PROG BOUND
PROGRAM FILE WRITTEN : PH.OVL
NUMBER PAM PAGES USED: 49

U2780-J-Z125-6-7600 151

Static linking Object programs

/EXEC PH.OVL
% BLS0500 PROGRAM ’OVLTEST’, VERSION ’ ’ OF ’90-11-27’ LOADED.
- start of main program
- initialization of package OVL1
- execution of OVL1.proz1
- execution of OVL1.proz11; i = 1024
- initialization of package OVL2
- execution of OVL2.proz2
- initialization of package OVL1
- execution of OVL1.proz1
- end of main program

152 U2780-J-Z125-6-7600

Object programs Dynamic linking

6.3 Dynamic linking

The Dynamic Linking Loader (DLL) loads the object modules into main memory, links
them, and starts the program.

External references, e.g. to imported packages, are resolved by the autolink mechanism
of DLL (see [4]).

Note

The autolink mechanism does not affect the temporary object module file (*OMF) of
the task.

Dynamic linking and loading within the programming system

Linking and loading are performed implicitly within the programming system when the
RUN-PROGRAM statement (see section 2.6.11) is used. With this statement, a program
can be linked and loaded from the temporary object module file (*OMF) of the user
task or from a specified object module library. The program uses the runtime system of
the programming system.

Dynamic linking and loading outside the programming system

Dynamic linking and loading are performed implicitly when the EXEC or LOAD
command is used. Loading from the temporary object module file (*OMF) is not
possible; it must take place from an object module library.

/EXEC (prog,modlib)

The program "prog" to be executed is loaded from the object module library "modlib".
"prog" identifies the starter module of the main program or the name of the prelinked
module into which the program was prelinked. The object modules of imported
packages can be linked from shared code or from object module libraries that can be
"accessed" via the autolink mechanism of DLL.

Dynamic linking and loading on XS processors

Pascal-XT programs and the Pascal-XT runtime system are XS-compatible, i.e. they can
execute anywhere in the 31-bit address space.

If a Pascal-XT program contains external subprograms (e.g. assembly language sub-
programs), these must likewise be XS-compatible if the program is to be executed in
the upper address space (above 16 Mb). If this is not the case, a program is usually
terminated as undefined.

U2780-J-Z125-6-7600 153

Dynamic linking Object programs

Example

When the program is called, the PROG-MOD parameter informs DLL that the program
can be executed in the upper address space.

/SYSFILE TASKLIB=$PASLIB-XT
/EXEC (BEISPIE,LIB.BEISPIEL),PROG-MOD=ANY
% BLS0001 DLL VER 917
% BLS0517 MODULE ’BEISPIE’ LOADED
55
Hexadecimal value = #00000037
0
Hexadecimal value = #00000000
/

154 U2780-J-Z125-6-7600

Object programs Program termination

6.4 Program termination code

A Pascal-XT program which has executed is terminated in accordance with the
conventions for program termination under BS2000. A description of these conventions
can be found in section 2.4.

The termination code can have the following values and meanings:

’0’ The program run was without error and terminated normally.

’2’ There was an error in program execution. The spin-off mechanism is activated.

’3’ The program has been terminated due to an error in the runtime system. The
spin-off mechanism is activated.

The program information bytes normally contain 3 blanks, but may be given program-
specific values in the program within the framework of the conventions. The program
information bytes in the program are set using the procedure SET_RETURN_CODE
from the predefined package BS2000CALLS. To call the program the termination code
must be specified.

U2780-J-Z125-6-7600 155

License protection Object programs

6.5 License protection for the Pascal-XT runtime system

As of version 2.2A, any program implemented in Pascal-XT with a linked runtime system
is checked for execute permission when it starts. Execute permission has been granted
if the $TSOS user ID includes a Pascal-XT license module with a version greater than
or equal to the version of the runtime system linked in the program. If the license
module has the wrong version or is missing, the program is terminated and the
following message is issued:

PASCAL-XT: MISSING LICENSE KEY FOR RUNTIME SYSTEM.

The license module is a component of both the Pascal-XT programming system and
the Pascal-XT runtime system. If you wish to use software implemented in Pascal-XT
but do not have a Pascal-XT programming system, you can use the Pascal-XT runtime
system.

156 U2780-J-Z125-6-7600

Object programs License protection

7 Language interfaces
A program generally consists of a number of program sections which may be
implemented in different programming languages.

A Pascal-XT main program or a Pascal-XT entry procedure together with any
subprograms called within it is known as a Pascal-XT program section. Calls between
Pascal-XT program sections and program sections in other languages are effected via
the interfaces described in this section.

The boundaries of Pascal-XT program sections are important both in terms of error
handling (see 10.2) and in terms of the behavior of the debugging aid PATH (see
9.1.4.3 and 9.1.4.4).

Pascal-XT supports language interfacing using a simple approach:

Calling a non-Pascal subprogram

The subprogram must be declared in the Pascal-XT program as a function or
procedure using the directive EXTERNAL and must be called as a Pascal-XT
procedure or function.

Calling Pascal-XT procedures from non-Pascal programs

The Pascal-XT procedure must be declared in a package specification and identified
as an entry procedure with the keyword ENTRY (see 7.3). Pascal-XT functions may
not be called from within programs written in other languages. Entry procedures
may also be called from within Pascal-XT programs.

As of Pascal-XT V2.2A, subprograms in other languages are invoked in accordance with
the ILCS conventions (see 7.1); the former "standard subprogram interface" still applies
to earlier versions. With language interfacing, there are no restrictions on the sequence
in which the different program sections are called. The naming conventions (see 4.4)
should be observed.

In addition, it is possible to invoke assembly language subprograms using a high-speed
mechanism (see 7.4) using the INTERNAL directive.

The same file variable cannot be accessed across language boundaries since Pascal-XT
cannot exchange information relating to the status of files with external subprograms.

U2780-J-Z125-6-7600 157

ILCS Language interfaces

7.1 ILCS program communication interface

The software product ILCS (Inter-Language Communication Services) standardizes and
simplifies essential communication functions across different languages both between
the programs of a run unit and between run unit and operating system.

ILCS is a combination of software and interface conventions:
It contains runtime routines that are combined in a PLAM library; also, it guarantees a
communication interface that complies with the "standard linkage conventions in
BS2000". This means that every object module generated by a compiler with ILCS
capability is ready for linking with other programs written in the same or a different
language in accordance with the standard linkage conventions.

The library of ILCS runtime routines is shipped with all ILCS-capable compilers - as an
additional runtime system, as it were.

Specifically, ILCS offers the following functions:

multilateral convention for linking programs in different languages
standardized guidelines for event handling
storage management (stack and heap storage)
program mask handling
processing of non-local branches

In this section, only the ILCS function ’program linkage’ used by the Pascal-XT compiler
is described, together with the underlying ILCS data structures.

Note

Programs that have been compiled with ILCS-capable compilers are required to be
linked into a program system by means of ILCS. If a program system includes
programs that do not behave according to ILCS conventions, they may have to be
restructured in order to be ILCS-compliant. Otherwise there is a risk of incompatibility -
at least as far as the linkage of programs written in different languages is concerned.

158 U2780-J-Z125-6-7600

Language interfaces ILCS

7.1.1 ILCS register conventions

Register contents at program call

The following table presents an overview of the register contents as supplied by the
calling program before passing control to the called program.

Register Contents
number

0 Number of parameters

1 Start address of the parameter address list

2 - 12 Program data

13 Start address of the save area of the
calling program

14 Address of the return point to the
calling program

15 Address of the entry point in the
called program

PM Program mask: value of PCD field "program mask"

Register contents on return to the calling program

The following table presents an overview of the register contents as supplied by the
called program when returning control to the called program.

Register Contents
number

0 - 1 Return values of integer functions
or undefined

2 - 14 Same as when the program was called

15 undefined

PM Program mask: value of PCD field "program mask"

U2780-J-Z125-6-7600 159

ILCS Language interfaces

7.1.2 ILCS data structures

Save area

The calling program passes the address of a save area in which the called program
can store the current register states. The called program sets up a new save area and
chains the two save areas together.
The save area has the following structure:

Byte Contents

1-4 1st byte:
1st bit: activity bit (1: program active, 0: program inactive)
2nd-7th bits: reserved
8th bit = generally 0

2nd byte: version = X’01’
3rd and 4th bytes: X’FEFF’

5-8 contains the start address of the save area of the calling
program; in the first calling program the content of this
field is -1

9-12 contains the start address of the next (chained) save area
(if any)

13-16 contents of register 14

17-20 contents of register 15

21-24 contents of register 0

25-28 contents of register 1

29-32 contents of register 2
.
.

69-72 contents of register 12

73-76 reserved for FOR1

77-80 address of the PCD

81-84 address of the EHL (Event Handler List): if no EHL is defined,
the field contains a value of -1

85-128 reserved

160 U2780-J-Z125-6-7600

Language interfaces ILCS

Prosys Common Data Area (PCD)

The PCD is a common data area that is used by all programming languages. It is 4096
bytes long. The first part contains the data areas used by ILCS, including the "program
mask" field (byte 148), which is initialized to the value X’0C’. The second part of the
PCD contains the programming language areas, each 128 bytes long, which are
available to the runtime systems of the different languages.

7.1.3 Initializing the Pascal-XT runtime system

Pascal-XT deviates from the ILCS conventions in that it initializes its runtime system
itself. When the Pascal-XT main program or the first Pascal-XT entry subprogram is
executed, the Pascal-XT runtime system initializes itself and then ILCS. Every ILCS-
compliant external subprogram which is called from within any Pascal-XT program
section can therefore assume that it will find an initialized ILCS.

7.1.4 Program mask handling by ILCS

The program mask for program execution is set during the initialization to the value of
the PCD "program mask" field (preset to X’0C’). If modified during the program run, it
must be reset to the value of the PCD field "program mask" before the next program
call or before control is returned.

U2780-J-Z125-6-7600 161

ILCS Language interfaces

7.1.5 Parameter passing in ILCS program systems

There are significant differences in the semantics of the data types of the programming
languages that can be linked using ILCS. The table below lists the data types that can
be passed as parameters without causing problems because they have the same data
representation in the individual languages. If other data types are used as parameters, a
precise knowledge of the relevant data storage is necessary in order to ensure correct
program execution.

D a t a t y p e s
C o m -
p i l e r Binary Floating-point Floating-point String

word word doubleword

COBOL85 PIC S9(i) COMP COMP-1 COMP-2 USAGE DISPLAY
SYNCHRONIZED
5<=i<=9

FOR1 INTEGER*4 REAL*4 REAL*8 CHARACTER*i

Pascal-XT long_integer short_real long_real packed array
[<range>]of char

PLI1 BIN FIXED(31) BIN FLOAT(21) BIN FLOAT(53) CHAR(i)
ALIGNED DEC FLOAT(6) DEC FLOAT(16)

C long float double char <var>
[<size>]

Columbus- F E D C
Assembler

Pascal-XT also supports the parameter types "short_integer" and "char", which are not
provided by ILCS. In COBOL85 the corresponding types are called "PIC S9(4) USAGE
COMP" and "PIC X".

The data must always be stored properly aligned, i.e. 32-bit integers in binary
representation on a word boundary, floating-point numbers on a word or doubleword
boundary, strings on a byte boundary. The length of strings is constant and known to
the called program.

Parameters are passed "by reference", i.e. the address of the parameter is passed and
not its value. The calling program sets up a list of the addresses that have been
passed. The number of parameters is passed in register 0, the address of the list in
register 1 (see "ILCS register conventions").

162 U2780-J-Z125-6-7600

Language interfaces ILCS

Passing function return values

Return values of integer functions are passed in registers 0 and 1, and return values of
floating-point functions in floating-point register 0, starting with the floating point.
It is possible to pass return values with other data types in registers 0 and 1, but this is
not defined by ILCS. Their representation is left to the individual programming
languages.

7.1.6 Linking ILCS program systems

The following basic rule applies:
The user should link in such a way that the ILCS module IT0INITS is contained only
once in the program system. This module is located in the library $PASLIB-XT, together
with the Pascal-XT runtime system. See chapter 6 for further details.

U2780-J-Z125-6-7600 163

Interfacing non-Pascal subprograms Language interfaces

7.2 Interfacing non-Pascal subprograms

Procedures written in other languages ("external" or "non-Pascal" subprograms must be
identified as such by means of a directive in the procedure declaration within the
Pascal program (package).

Declaration of non-Pascal subprograms in the Pascal program

For a subprogram written in a language other than Pascal, the procedure or function
header must be declared in the Pascal-XT program as follows:

PROCEDURE procedure-identifier (formal-parameter-list); directive, or
FUNCTION function-identifier (formal-parameter-list): type; directive.

One of the following values must be specified for "directive":

EXTERNAL for all other programming languages, necessary in all cases for XS
processors (see "Special conditions for XS processors");
As of Pascal-XT V2.2A, it is recommended that only this directive should
be used. However, the following directives are still supported.

FORTRAN for Fortran subprograms
COBOL for COBOL subprograms
C for C subprograms

The subprogram declaration is permitted in a package specification, package body or
main program. There can be no subprogram block identification in addition to the
subprogram declaration.

Result types of external functions

The result type for functions can be ordinal, real or a pointer. Ordinal values and
pointer values must be returned in register R0, while real values must be returned in
register F0. External functions are possible only with the EXTERNAL and FORTRAN
directives.

Formal parameters

Variable and value parameters are permitted as formal parameters. For value
parameters, copies are created prior to the call and their addresses are passed.

164 U2780-J-Z125-6-7600

Language interfaces Interfacing non-Pascal subprograms

Interpretation of directives

The different directives result in minor differences in interpretation. The following table
shows what the Pascal-XT system places in register 0 and how it sets the most-
significant bit in the last parameter, depending on the directive.

Directive Register 0 contains "first bit"

EXTERNAL the number of parameters is reset "0"
FORTRAN the number of parameters is set "1"
COBOL the number of parameters is set "1"

With procedures having no parameters, register 0 and register 1 contain the value 0.

Special conditions for XS processors

The EXTERNAL directive must always be specified for XS-compatible external
subprograms which are called via the standard subprogram interface, regardless of the
language the subprograms are written in.

Actions prior to calling a non-Pascal subprogram

When calling an external subprogram the following actions are taken:

The registers are set as described in 7.1

The Pascal-XT error handling facility remains activated, so that errors occurring in
the external subprogram can be propagated to the Pascal-XT program section. For
information on the behavior of external subprograms, please refer to the manual for
the relevant language.

Pascal-XT INTR-handling is deactivated internally, but not for ILCS. The INTR event,
which is initiated by K2 /INTR, is therefore only interpreted as a Break_Error and
propagated if it occurs while a Pascal-XT program section is executing.

The subprogram is called according to the ILCS convention, as described in 7.1.

Actions in the called external subprogram

The actions necessary within the called subprogram will be described in the manuals
for the language concerned. Possible differences in the storage representation of
parameters must be noted.
The called subprogram is responsible for the saving of the required registers in the
save area.

U2780-J-Z125-6-7600 165

Interfacing non-Pascal subprograms Language interfaces

Action following return from the external subprogram

Pascal-XT INTR handling is reactivated internally.

Up to V2.1:
The Pascal-XT program assumes that the external subprogram has executed correctly if
it receives control again afterwards and no errors are passed on to it. If there is to be a
return code, it must be returned via an additional parameter.

As of V2.2A:
Errors can be propagated across language boundaries, i.e. an error in an external
subprogram no longer necessarily causes the program to abort (see chapter 10,
Runtime errors and error handling). For information on the error propagation facilities
offered by a subprogram programming language, please refer to the appropriate
Language Reference Manual.

Note

The names of all external subprograms used within a program (main program and
packages) must be unique (up to BS2000 V11: this means that they must be
differentiated in the first 8 characters). This is not checked at the time of
compilation.

Examples

1. Language interfacing between Pascal-XT and Cobol

A Pascal-XT main program calls a Cobol subprogram and passes a record variable with
two components as a variable parameter. In the Cobol subprogram these components
are displayed on screen and their values are then changed. After the return to the main
program, the two components, their values now globally changed, are redisplayed.

Source code of Pascal-XT main program "PASCMAIN":

PROGRAM PASCMAIN (INPUT,OUTPUT);
TYPE

RA = 1..8;
STR8 = ARRAY [RA] OF CHAR;
SATZ = RECORD

A : INTEGER;
B : STR8;
END;

CONST
AGGR = STR8(’T’,’E’,’S’,’T’,’ ’:4); (01)

VAR
RC : SATZ;
I : INTEGER;

PROCEDURE COBUPROG (VAR PAR:SATZ); EXTERNAL; (02)

BEGIN { PASCMAIN }

166 U2780-J-Z125-6-7600

Language interfaces Interfacing non-Pascal subprograms

RC.A := 1111;
RC.B := AGGR;
COBUPROG (RC); (03)
WITH RC DO BEGIN

WRITELN (’A:’,A);
WRITE (’B:’);
FOR I := FIRST(RA) TO LAST(RA) DO

WRITE (B[I]);
WRITELN;
END;

END.

Source code of Cobol subprogram "COBUPROG":

ID DIVISION.
PROGRAM-ID. COBUPROG. (04)
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

TERMINAL IS SCREEN.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 TEILDR PIC 9(8). (05)
LINKAGE SECTION.
01 SATZ.

02 TEILB PIC S9(8) COMP. (06)
02 TEILA PIC X(8). (07)

PROCEDURE DIVISION USING SATZ.
ANF.

MOVE TEILB TO TEILDR. (08)
DISPLAY "TEILB: " TEILDR UPON SCREEN. (09)
DISPLAY "TEILA: " TEILA UPON SCREEN.
MOVE "XXXXZZZZ" TO TEILA. (10)
ADD 1 TO TEILB. (11)

BACK.
EXIT PROGRAM.

Call to executable phase "PASCOB" and runtime listing:

/EXEC PASCOB (12)
% BLS0500 PROGRAM ’PASCOB’, VERSION ’ ’ OF ’...’ LOADED
TEILB: 00001111 (13)
TEILA: TEST
A: 1112 (14)
B:XXXXZZZZ

Explanation:

(01) Definition of constant AGGR of type STR8: it is set via an aggregate (see [1],
section 9.5) with the character string "TEST " as value.

(02) Declaration of the external Cobol procedure COBUPROG.

(03) Call of subprogram COBUPROG: the variable RC of type record is passed. The
two components of RC contain the values 1111 and "TEST ".

U2780-J-Z125-6-7600 167

Interfacing non-Pascal subprograms Language interfaces

(04) Name of the Cobol subprogram: COBUPROG

(05) Declaration of variable TEILDR of type PIC 9(8).

(06) The passed variable of type SATZ ("record") has two components: The first is of
type PIC S9(8), which in PASCAL-XT corresponds to type long_integer. Its value
is assigned to variable TEILB. TEILB then contains the value 1111.

(07) The second is of type PIC X(8), which in PASCAL-XT corresponds to type array
[8] of char. Its value is assigned to variable TEILA. TEILA then contains as its
value the character string "TEXT ".

(08) The value of variable TEILB is assigned to variable TEILDR. TEILDR then
contains the value 1111.

(09) Name and value of the variables TEILB and TEILA are displayed. See (13).

(10) Variable TEILA is assigned the character string "XXXXZZZZ" as its value.

(11) The value of variable TEILB is incremented by 1.

(12) Startup of executable phase PASCOB.

(13) Output from the Cobol subprogram: name and value of variables TEILB and
TEILA. See (09).

(14) Output upon return to main program: names and values of A and B.

2. Language interfacing between Pascal-XT and Assembler

A Pascal-XT main program calls an Assembler subprogram and passes two value
parameters, which are added, and a variable parameter, in which the result of the
addition is stored. After the return to the main program, the result is displayed on
screen.

Source code of Pascal-XT main program "PASASS":

PROGRAM PASASS (OUTPUT);
PROCEDURE ASSUP (A,B : INTEGER; VAR ERG : INTEGER); EXTERNAL; (01)
VAR

ERG : INTEGER;
BEGIN

ASSUP (5,7,ERG); (02)
WRITELN (ERG);

END.

168 U2780-J-Z125-6-7600

Language interfaces Interfacing non-Pascal subprograms

Source code of Assembler subprogram "ASSUP":

ASSUP START (03)
ASSUP AMODE ANY
ASSUP RMODE ANY
PCD#AREA DSECT

IT0PCD PCD# (04)
ASSUP CSECT
ASS#VOR STM 14,12,12(13) (05)

BALR 5,0 (06)
USING *,5
ST 13,SAVPSA
L 6,SAVPCD-SAVAI(,13)
ST 6,SAVPCD
LA 13,SAVAI
ST 13,PCD#ASA-PCD#EYEC(,6)
LM 2,4,0(1) (07)
L 7,0(2) (08)
L 8,0(3) (09)
AR 7,8 (10)
ST 7,0(4) (11)

ASS#NACH L 6,SAVPCD (12)
L 13,SAVPSA
ST 13,PCD#ASA-PCD#EYEC(,6)
LM 14,12,12(13)

ASS#RET BR 14 (13)
DS 0F

SA IT0VSA SA (14)
END

Call to executable phase "PASASSEM" and runtime listing:

/EXEC PASASSEM (15)
% BLS0500 PROGRAM ’PASASSEM’, VERSION ’ ’ OF ’...’ LOADED

12 (16)

Explanation:

(01) Declaration of external procedure ASSUP.

(02) Call of procedure ASSUP; the value parameters 5 and 7 and variable parameter
ERG are passed at the same time. Variable ERG is to store the result of the
addition of 5 and 7 that is to be performed by the Assembler subprogram.

(03) Name of the Assember subprogram: ASSUP

(04) IT0PCD is an ILCS macro which generates the fields of the PCD area (Prosys
Common Data Area).

(05) The registers and SA (Save Area) of the caller are saved.

(06) The base address registers are loaded.

(07) Register 1 is loaded with the address of the parameter list.

U2780-J-Z125-6-7600 169

Interfacing non-Pascal subprograms Language interfaces

(08,09) The passed parameters are loaded.

(10) The passed value parameters are added.

(11) The passed variable parameter is supplied with the result of the addition.

(12) The register status prior to the Assembler subprogram call is restored.

(13) Return to caller, i.e. to the Pascal-XT main program.

(14) ILCS macro IT0VSA generates the ILCS-conforming save area.

(15) Startup of executable phase PASASSEM.

(16) Value of variable ERG displayed after return to main program.

 COBOL85 V01.1A02 COBOL-85 COMPILATION SOURCE LISTING...
 1 (*$TITLE = ’Call a COBOL subprogram’*)

170 U2780-J-Z125-6-7600

Language interfaces Call by programs in other languages

7.3 Invocation by programs in other languages

Procedures labeled with the keyword ENTRY in a package specification can be called
by any program (even from within Pascal-XT programs). Recursive calls of entry
procedures are permitted.

Requirements of the Pascal procedure

The procedure must be declared in a package specification. The corresponding
procedure identification must appear in the package body. Pascal functions cannot
be called by external programs.

The procedure must be labeled as an entry procedure by means of the keyword
ENTRY:

ENTRY PROCEDURE procedure-identifier (formal-parameter-list);

The procedure identification in the package body must not contain this keyword.

As formal parameters only variable (VAR) parameters are permitted.

Parameter passing

The number of parameters accepted is defined by the declaration of the Pascal-XT
procedure. Entries in register 0 regarding the number of parameters and/or the "first
bit" in the last parameter of the parameter address list are ignored.

Floating-point registers are not saved in the Pascal program.

Actions in the external program before calling

To call a Pascal-XT entry subprogram there is no need for the external caller to support
ILCS since the Pascal-XT runtime system is self-initializing and causes the initialization
of ILCS. The only requirement is for the caller’s save area to be chained backward with
that of its caller. If this is not the case, the user must provide a suitable adapter
module.

Note for assembly language programmers:
If a Pascal-XT prelinked module containing Pascal-XT entry procedures is loaded
dynamically, IT0ININ needs to be called only if mathematical functions are used.

U2780-J-Z125-6-7600 171

Call by programs in other languages Language interfaces

Actions in the called Pascal-XT entry procedure

The registers of the caller are saved in the assigned save area.

The license check is performed for the Pascal-XT runtime system (see 6.5).

ILCS is initialized if this has not already happened.

The Pascal-XT runtime system is initialized if this has not already happened, and the
user routine STXIT for the INTR event is activated for ILCS. Stack and heap are set
up.

The save area of the Pascal-XT entry procedure is set up in accordance with ILCS
conventions and chained with the save area of the caller.

The Pascal-XT error handling facility is activated for ILCS if this has not already
happened.

The Pascal-XT INTR handling facility is activated at each invocation. If the INTR
event (initiated by K2 /INTR) occurs while a Pascal-XT program section is
executing, it is interpreted as a Break_Error and propagated.

The package containing the entry procedure, and all packages imported by it are
initialized, if this has not already happened. This also causes any packages
referenced by the package to be initialized, where this has not already been done.

The entry procedure is called.

Actions after termination of an entry procedure

Local files in entry procedures, and in procedures and functions called within them,
are automatically closed.

The stack is logically released. Physically, however, a memory area is retained for
subsequent calls.

The Pascal-XT INTR handling facility is deactivated internally, but not for ILCS.

The save area of the Pascal-XT entry procedure is unchained and released. This
automatically deactivates Pascal-XT error handling under ILCS.

Orderly return to the caller is effected, providing no error has occurred.

Note

On return from an entry procedure, the Pascal-XT runtime system continues to exist in
the same status.

172 U2780-J-Z125-6-7600

Language interfaces Call by programs in other languages

The heap is not released. However, the user can explicitly control the release of the
heap using "mark" and "release" or functions from the predefined package
HEAPSUPPORT (see appendix A.8).

The external files defined and opened in the packages are not closed. If the heap is not
released, the files located there are not closed either.

Error handling

If an error occurs within the Pascal-XT program section and is not handled in that
program section, it is propagated to the caller (see chapter 10, Runtime errors and
error handling). In this event, the Pascal-XT program section is maintained for
diagnostic purposes in the same state as when the error occurred.

If the error is subsequently handled in the calling program, the Pascal-XT program
section is terminated normally via ILCS by a subprogram termination routine.

If the error is not handled by the caller and the program is aborted, the Pascal-XT
program section is not terminated normally. Files are not closed.

Example

Language interfacing between Cobol and Pascal-XT

A Cobol main program calls a Pascal-XT entry procedure and passes to it two variable
parameters. The entry procedure displays the transferred variables on screen and then
globally modifies their values. After the return to the Cobol main program, the now
modified variables are output.

Source code of the Cobol main program "COBPAS":

IDENTIFICATION DIVISION.
PROGRAM-ID. COBPAS. (01)
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

TERMINAL IS SCREEN.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 PARAMS.

10 VAR1 PIC S9(8) COMP.
10 VAR2 PIC X.

PROCEDURE DIVISION.
CALLPAS.

MOVE 777 TO VAR1.
MOVE "A" TO VAR2.
CALL "PASUPRO" USING VAR1, VAR2. (02)

ENDE.

U2780-J-Z125-6-7600 173

Call by programs in other languages Language interfaces

DISPLAY VAR1 UPON SCREEN. (03)
DISPLAY VAR2 UPON SCREEN.
STOP RUN.

Source code of the Pascal-XT entry procedure "PASUPRO" in the package "PAS":

Package specification:

PACKAGE PAS;
ENTRY PROCEDURE PASUPRO (VAR F1 : LONG_INTEGER; VAR F2 : CHAR); (04)
END.

Package body:

PACKAGE BODY PAS (OUTPUT);
PROCEDURE PASUPRO (VAR F1 : LONG_INTEGER; VAR F2 : CHAR);
BEGIN

WRITELN (’F1: ’,F1); (05)
WRITELN (’F2: ’,F2);
F1 := 111; (06)
F2 := ’Z’;

END;
BEGIN
END.

Call to the executable phase "COBOLPAS" and runtime listing:

/EXEC COBOLPAS (07)
% BLS0500 PROGRAM ’COBOLPAS’, VERSION ’ ’ OF ’...’ LOADED
F1: 777 (08)
F2: A
00000111 (09)
Z

Explanation:

(01) Name of the Cobol main program: COBPAS

(02) Call of the Pascal-XT entry procedure PASUPRO; at the same time the variables
VAR1 and VAR2 are passed with the values 777 and ’A’ respectively.

(03) After the return from the Pascal-XT entry procedure PASUPRO, the values of the
VAR1 variables and VAR2 are displayed. See (09).

(04) Declaration of the Pascal-XT entry procedure PASUPRO in the specification of
the PAS package.

(05) Names and values of the passed variables F1 and F2 are displayed. See (08).

(06) The values of the passed variables are globally modified.

(07) Startup of the executable phase COBOLPAS.

174 U2780-J-Z125-6-7600

Language interfaces Call by programs in other languages

(08) Output from the Pascal-XT entry procedure.

(09) Output from the Cobol main program following the return from the Pascal-XT
entry procedure.

U2780-J-Z125-6-7600 175

Internal interface Language interfaces

7.4 Internal interface

Assembly language subprograms can be called via the internal interface by specifying
the directive INTERNAL in the procedure or function declaration, e.g.:

PROCEDURE procedure-identifier (formal-parameter-list); internal

or

FUNCTION function-identifier (formal-parameter-list): type; internal;

The purpose of the subprograms called via the internal interface is to implement those
functions which cannot be formulated in Pascal-XT. These functions include, for
example, the use of special machine instructions or the invocation of operating system
functions (SVCs). This interface is not intended for calling more extensive subprograms,
since the call is not to be understood as a procedure call but more as the insertion of
several machine instructions in place of the call. Consequently, the call can be
performed more efficiently, with the benefit of considerably reduced runtimes as
compared to those for the standard subprogram interface (EXTERNAL and other
directives, etc., see also section 7.1).

Restrictions for parameter types

For formal parameters, all types are permitted except for conformant array schemata,
files, structured types with components from one file type, parameter procedures and
parameter functions.

Register conventions

R1 through R4 These registers are provided for passing parameters and returning the
result of a function (see the sections on "Parameter passing" and
"Functions").

F0, F2 These two floating-point registers are used for passing real values or
returning the result of a function from a real type.

R9 This register can be used as a work register. Prior to return, however,
it must have the same value as during the call. However, it is strongly
recommended that this register is not changed, as this could lead to
an error in the event of an exception.

R10, R11 These two registers must never be changed, not even temporarily
(see below).

R14 Return address.

R15 Address of the called subprogram.

176 U2780-J-Z125-6-7600

Language interfaces Internal interface

The other registers can be used as work registers. Upon return, only registers R9, R10
and R11 must have their original values.

Registers R10 and R11 must not be changed, otherwise exceptions which occur will not
be handled correctly and proper return to the caller will no longer be possible.

Parameter passing

All parameters are passed in registers. Registers R1 through R4 and the floating-point
registers F0 and F2 are used for this purpose. The number of parameters which can be
passed is influenced by the type of subprogram and the types of the formal
parameters. In the case of functions, a further parameter is implicitly required to transfer
the result of the function (see "Functions" below). In the case of the value parameter
transfer of a string (of variable length), two parameters are always passed (see "Passing
of value parameters" below).

Assignment of parameters to registers takes place in accordance with the following
guidelines:

The formal parameters are assigned in the order in which they are written to the
registers.

Assignment of the registers begins with R1 or, for real values, with F0.

A register is required for the result of a function when the function is a subprogram.
If the function result is of the real type, then the function result is returned in F0 and
only a parameter of a real type can be passed in register F2. In all other cases the
function result is passed in register R1 and the only registers still available for
parameter transfer are registers R2 through R4.

For VAR parameter transfer the next free register Ri (where "i" = 1..4) is used (see
below).

For value transfer of a real value, the next free floating-point register is used,
otherwise the next free register Ri. For variable-length strings registers Ri and Ri+1
are taken (see below).

If the registers are insufficient for transferring the parameters, an error message is
issued as early as compilation time. If more parameters are to be passed, they must be
combined in one record (if possible with specifications regarding the memory
representation).

U2780-J-Z125-6-7600 177

Internal interface Language interfaces

Passing of variable parameters

For variable parameters, the address of the actual parameter is always passed in a
general-purpose register (Ri). Depending on the justification requirements of the
parameter type, the address may be a byte, halfword, word or doubleword address
(see section 4.3).

For variable-length strings, the address of the 2-byte length field is passed. This is
directly followed by the character values.

Passing of value parameters

For value parameters, the value or the address of the actual parameter is passed,
depending on the type of formal parameter. When the address is transferred, the actual
parameter must never be modified, otherwise the semantic rules for the program will be
violated.

(a) For ordinal types (integer types, char, Boolean, enumerated and subrange types),
the value is passed. Values are held right-justified in the register.

(b) For real types, the value is transferred in a floating-point register.

(c) For a variable string type, two parameters are always transferred. In the first
parameter (Ri) the address of the first character in the string is passed; in the
second parameter (Ri+1), the current length of the string is passed.

(d) For all other types, the address of the actual parameter is passed.

Representation of the objects in memory

Knowledge of how objects are represented in memory is required for processing the
parameters which have been passed; this is described in section 4.3.

178 U2780-J-Z125-6-7600

Language interfaces Internal interface

Functions

Functions can be understood as procedures containing an additional parameter in
which the result of the function is returned. This parameter is always passed first.
Transfer of the function result varies according to the particular result type:

Ordinal type
The function result must be stored in register R1.

Real type
The function result must be stored in floating-point register F0.

Structured type
The caller has already allocated the area for the function result and, upon
invocation, transfers in register 1 the address of this area, in which the result has
to be stored.

Exception handling

The occurrence of an exception (error) during execution of the called subprogram is
handled as if it had occurred in the caller. From there the next competent "exception
handler" is sought. To ensure that error handling functions correctly, registers R9, R10
and R11 must never be changed within the called subprogram. If even one of these
registers is changed, a runtime error with unpredictable consequences is the result.

Separation of code and data

The subprogram called via the internal interface differs from Pascal subprograms in that
it does not have a work area for local data. The work area is required for such
operations as the saving of registers or the copying of a structured value parameter.
There are several ways of creating this area:

(a) The caller transfers a further variable parameter, e.g. a field (array) which the
receiver of the call can use as a work area. Thus the subprogram is shareable.

(b) A data area is statically defined in the subprogram. Thus the subprogram is not
shareable.

(c) The subprogram dynamically creates its own separate data area (e.g. using
REQM), and is thus shareable.

U2780-J-Z125-6-7600 179

Internal interface Language interfaces

Linking in the subprogram

The external references to external subprograms are contained in the data module of
the package or main program in which the subprogram has been declared. When code
and data modules are linked separately, the following must be taken into account:

(a) When the program is shareable:

The subprogram must be explicitly linked to the code modules. When the data
modules are linked, resolution of the external references to the subprogram must
be explicitly ruled out.
No local work area may be declared within the subprogram.

(b) When the program is not shareable:

The subprogram is linked to the data modules. A local work area may be defined
within this subprogram.

180 U2780-J-Z125-6-7600

Language interfaces Internal interface

Example 1

In this example the function UPPER is invoked via the internal interface; the function
replaces all lowercase letters in a string by uppercase letters. The main program
transfers a string to the function in the form of a value parameter, and the converted
string is returned as the function result. The program is loaded by DLL and started. The
Tasklib must be set to the library $PASLIB-XT to resolve the external references to the
runtime system modules.

/EXEC $ASSEMB
% BLS0500 PROGRAM ’ASSEMB’, VERSION ’...’ OF ’...’ LOADED.
V30.0A20 OF SIEMENS BS 2000 ASSEMBLER READY

SIEMENS F-ASSEMBLER LISTING 10:02:47 90-11-27 PAGE 0001
SYMBOL TYPE ID ADDR LENGTH EXTERNAL SYMBOL DICTIONARY

LETTER SD 0001 00000 00124
UPPER LD 0001 00000

SIEMENS F-ASSEMBLER LISTING 10:02:47 90-11-27 PAGE 0002
FLAG LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT

000000 1 LETTER CSECT

000000 2 ENTRY UPPER
3 *
4 * This function is called via the internal interface.
5 * All lowercase letters are converted to uppercase.
6 * Conversion is only within the current length of the string.
7 * With this function the type of string is unimportant.
8 *
9 *
10 * PROCEDURE upper (s: String): String; Internal;
11 *
12 * Parameter:
13 * R1: Address of the function result
14 * R2: Address of the 1st character of the string
15 * R3: Current length of the string
16 *

000001 17 R1 EQU 1
000002 18 R2 EQU 2
000003 19 R3 EQU 3
00000E 20 RR EQU 14
00000F 21 RX EQU 15

22 *
000000 23 USING UPPER,RX
000000 40 30 1000 24 UPPER STH R3,0(0,R1) Copy current length
000004 5B 30 F120 000120 25 S R3,=F’1’ and decrease by 1
000008 07 4E 26 BRM RR Return when length negative
00000A 44 30 F014 000014 27 EX R3,MOVE Copy string
00000E 44 30 F01A 00001A 28 EX R3,TRANS Transform string
000012 07 FE 29 BR RR

000014 D2 00 10022000 30 MOVE MVC 2(0,R1),0(R2)
00001A DC 00 1002F020 000020 31 TRANS TR 2(0,R1),TABLE

32 *
33 *

34 * Converts ’a’..’z’ to ’A’..’Z’
35 *
36 * 0 1 2 3 4 5 6 7 8 9 A B C D E F

000020 0001020304050607 37 TABLE DC X’000102030405060708090A0B0C0D0E0F’ 00 - 0F
000030 1011121314151617 38 DC X’101112131415161718191A1B1C1D1E1F’ 10 - 1F
000040 2021222324252627 39 DC X’202122232425262728292A2B2C2D2E2F’ 20 - 2F
000050 3031323334353637 40 DC X’303132333435363738393A3B3C3D3E3F’ 30 - 3F
000060 4041424344454647 41 DC X’404142434445464748494A4B4C4D4E4F’ 40 - 4F
000070 5051525354555657 42 DC X’505152535455565758595A5B5C5D5E5F’ 50 - 5F
000080 6061626364656667 43 DC X’606162636465666768696A6B6C6D6E6F’ 60 - 6F

U2780-J-Z125-6-7600 181

Internal interface Language interfaces

000090 7071727374757677 44 DC X’707172737475767778797A7B7C7D7E7F’ 70 - 7F
0000A0 80C1C2C3C4C5C6C7 45 DC X’80C1C2C3C4C5C6C7C8C98A8B8C8D8E8F’ 80 - 8F
0000B0 90D1D2D3D4D5D6D7 46 DC X’90D1D2D3D4D5D6D7D8D99A9B9C9D9E9F’ 90 - 9F
0000C0 A0A1E2E3E4E5E6E7 47 DC X’A0A1E2E3E4E5E6E7E8E9AAABACADAEAF’ A0 - AF
0000D0 B0B1B2B3B4B5B6B7 48 DC X’B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF’ B0 - BF
0000E0 C0C1C2C3C4C5C6C7 49 DC X’C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF’ C0 - CF
0000F0 D0D1D2D3D4D5D6D7 50 DC X’D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF’ D0 - DF

SIEMENS F-ASSEMBLER LISTING 10:02:47 90-11-27 PAGE 0003
FLAG LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT

000100 E0E1E2E3E4E5E6E7 51 DC X’E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF’ E0 - EF
000110 F0F1F2F3F4F5F6F7 52 DC X’F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF’ F0 - FF

000120 00000001 54 =F’1’
55 END

FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : -
THIS PROGRAM WAS ASSEMBLED BY THE SIEMENS ASSEMBLER (F) V30.0A20 CORR LEVEL: (2:0000010110:0000000000)
SOURCE LIBRARY : :V:$USERID.PLAM.EXAMPLE
SOURCE PROGRAM : UPPER.ASS
SOURCE VERS/DATE: @/901127
MODULE LIBRARY : :V:$USERID.PLAM.EXAMPLE
LIBRARY ELEMENT : LETTER VER-
ASSEMBLY TIME : 0.4235 SEC.

/EXEC $USERID.PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//C (PLAM.EXAMPLE, TRANSFORM.PROG), *SYSOUT, *STD
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,TRANSFORM.PROG(*UPPER-LIMIT,S))

1 program TRANSFORM (input, output);
2
3 var
4 s : string;
5
6 function upper (s: string): string; internal;
7
8
9 begin
10 writeln (output, ’Please enter text’);
11 readln (input);
12 read (input, s);
13 writeln (output, upper (s));
14 end.

182 U2780-J-Z125-6-7600

Language interfaces Internal interface

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 600 BYTES *
* SIZE OF DATA MODULE : 356 BYTES *
* COMPILATION TIME : 0.379 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//END

END OF THE PASCAL SESSION - USED TIME = 0.450 SECONDS

Execution of the program

/SYSFILE TASKLIB=$USERID.PASLIB-XT
/EXEC (TRANSFO, PLAM.EXAMPLE)
% BLS0001 *** DBL VERSION 067 RUNNING ***
% BLS0517 MODULE ’TRANSFO’ LOADED
Please enter text
123aAbBccCdD$=Q
123AABBCCCDD$=Q

U2780-J-Z125-6-7600 183

Internal interface Language interfaces

Example 2

In this example the subprogram LINK for dynamically loading a program is called via
the internal interface. The main program LOADER readies the definition for the LINK
macro (see also the DLINK macro [6]) and transfers it in the form of a parameter. In
the USERBLK parameter, the subprogram LINK returns the list of modules loaded by
DLL.
As a demonstration, the program TRANSFORM from example 1 is loaded from the
library PLAM.EXAMPLE and the list of loaded modules is output.

/EXEC $USERID.PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990.
ALL RIGHTS RESERVED
//C (PLAM.EXAMPLE, LINK.PROG), *SYSOUT, *STD
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,LINK.PROG(*UPPER-LIMIT,S))

1 program LOADER (input, output);
2
3
4 {*** General definitions ***}
5
6 type
7 symbol = packed array [1..8] of char;
8 filename = packed array [1..54] of char;
9
10
11 {*** Structure of table for external references list ***}
12
13 type
14 maxsym = 1 .. 100;
15 symtab = record
16 len : short_integer; { Record length field }
17 res1 : short_integer; { Reserved }
18 sym : array [maxsym] of symbol;
19 end;
20
21 const
22 end_of_table = symbol (#’00’:8);
23
24 {*** List of operands for the LINK macro ***}
25
26 const

184 U2780-J-Z125-6-7600

Language interfaces Internal interface

27 krzinhbt = #01;
28 krztsklb = #02;
29 krzlibnm = #04;
30 krzuserb = #40;
31
32 defaults = krzinhbt + krztsklb + krzlibnm + krzuserb;
33
34 type
35 byte = 0 .. 255;
36 linkop = record
37 krzcontr : byte;
38 krzentry : symbol;
39 krzlibry : filename;
40 krzform : byte;
41 case boolean of
42 true: (krzpage : short_integer);
43 false: (krzmpid : long_integer);
44 end;
45
46
47 var
48 userblk : symtab;
49 linkdescr : linkop;
50 result : integer;
51
52 {*** Return codes ***}
53
54 const
55 error = #FFFFFFFF; { Invalid operands or address }
56 ok = 0; { Module loaded, address in register 1 }
57
58
59 procedure link (descr : linkop;
60 tab : symtab;
61 var retcode : integer); internal;
62
63
64 function loaded: boolean;
65 begin
66 if result = error then begin
67 loaded := false;
68 writeln (output, ’Operand error or invalid address’);
69 end
70 else
71 loaded := (result mod 256) = ok;
72 end { loaded };
73
74
75 procedure print_list;
76 var
77 i : maxsym;
78 begin
79 writeln (output, ’List of the modules loaded by DLL:’);
80 for i := first (maxsym) to last (maxsym) do
81 if userblk.sym [i] <> end_of_table then
82 writeln (output, ’ ’, userblk.sym [i]);
83 end { print_list };
84

U2780-J-Z125-6-7600 185

Internal interface Language interfaces

85
86
87 begin { LOADER }
88 userblk.len := sizeof (symtab);
89 with linkdescr do begin
90 krzcontr := defaults;
91 krzentry := ’TRANSFO ’;
92 krzlibry := ’PLAM.EXAMPLE ’;
93 end;
94 link (linkdescr, userblk, result);
95 if loaded then
96 print_list;
97 end.

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 1156 BYTES *
* SIZE OF DATA MODULE : 980 BYTES *
* COMPILATION TIME : 0.532 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//END

END OF THE PASCAL SESSION - USED TIME = 0.602 SECONDS

/EXEC $ASSEMB
% BLS0500 PROGRAM ’ASSEMB’, VERSION ’300’ OF ’89-11-03’ LOADED.
V30.0A20 OF SIEMENS BS 2000 ASSEMBLER READY

SIEMENS F-ASSEMBLER LISTING 10:02:16 90-11-27 PAGE 0001
SYMBOL TYPE ID ADDR LENGTH EXTERNAL SYMBOL DICTIONARY

LNKCALL SD 0001 00000 00008
LINK LD 0001 00000

SIEMENS F-ASSEMBLER LISTING 10:02:16 90-11-27 PAGE 0002
FLAG LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT

000000 1 LNKCALL CSECT

000000 2 ENTRY LINK
3 *
4 * This subprogram is called via the internal interface.
5 * It calls the LINK macro.
6 * Registers R0, R1 and R15 are required for the LINK macro.
7 *
8 * PROCEDURE LINK (operands : a record type ;
9 * userblk : a record type ;
10 * var result : Integer);
11 * Parameter:
12 * R1: Address of the operand list
13 * R2: Address of the user block
14 * R3: Address of the result
15 *

000000 16 R0 EQU 0
000001 17 PAR1 EQU 1 1st parameter
000002 18 PAR2 EQU 2 2nd parameter
000003 19 PAR3 EQU 3 3rd parameter
00000E 20 RR EQU 14
00000F 21 RX EQU 15 ,

22 *

186 U2780-J-Z125-6-7600

Language interfaces Internal interface

000000 18 02 23 LINK LR R0,PAR2 Load USERBLK address
24 LINK MF=(E,(1)) Call the LINK macro
25 1 #INTF REFTYPE=REQUEST,INTNAME=LINK,INTCOMP=1 00019000

000002 0A 6E 26 1 SVC 110 00064000
000004 18 3F 27 LR PAR3,RX Result in the 3rd parameter
000006 07 FE 28 BR RR

29 END
FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : -
THIS PROGRAM WAS ASSEMBLED BY THE SIEMENS ASSEMBLER (F) V30.0A20 CORR LEVEL: (2:0000010110:0000000000)
SYSTEM MACROLIBRARY : :D:$TSOS.MACROLIB
SOURCE LIBRARY : :V:$USERID.PLAM.EXAMPLE
SOURCE PROGRAM : LINK.ASS
SOURCE VERS/DATE: @/901127
MODULE LIBRARY : :V:$USERID.PLAM.EXAMPLE
LIBRARY ELEMENT : LNKCALL VER-
ASSEMBLY TIME : 0.8187 SEC.

Execution of the program

/SYSFILE TASKLIB=$USERID.PASLIB-XT
/EXEC (LOADER, PLAM.EXAMPLE)
% BLS0001 *** DBL VERSION 067 RUNNING ***
% BLS0517 MODULE ’LOADER’ LOADED
List of modules loaded by DLL:

TRANSFO
TRANSFOC
TRANSFOD
LETTER

U2780-J-Z125-6-7600 187

Language interfaces Internal interface

8 UTM linkage
As of UTM V3.0, UTM program units can also be written in Pascal-XT. This chapter
gives a brief outline of the special points and marginal conditions that have to be
observed when UTM program units are implemented in Pascal-XT. For more detailed
descriptions the following UTM manuals should be referred to:

• "Planning and Design" [9]

• "Generating and Administering Applications" [10]

• "Programming Applications in Pascal-XT" [11]

The COMP operand must be set as follows in the program statement for the generation
procedure KDCROOT:
Pascal-XT V2.1 or earlier COMP = PASCAL
Pascal-XT V2.2 or higher COMP = ILCS

UTM program units are called as subprograms by the UTM linkage program.
Communication between the called program unit and the other components of the UTM
application is effected exclusively by calling the external procedure KDCS in the
KDCROOT linkage program. KDCS is an abbreviation of the German equivalent for
"compatible data communication interface".

Pascal-XT V2.2A makes exclusive use of ILCS (Inter-Language Communication Services,
see 7.1) as an interface to UTM; earlier Pascal-XT versions use IUTMHLL. Pascal-XT
V2.2A therefore requires UTM V3.2. Earlier Pascal-XT programs can also run under UTM
V3.2, as this version supports both the IUTMHLL and the ILCS interface:

UTM V3.1 UTM V3.2

Up to Pascal-XT V2.1 IUTMHLL IUTMHLL
As of Pascal-XT V2.2 ILCS

Table 8-1: Possible Pascal-XT / UTM combinations

The UTM linkage program KDCROOT calls the Pascal-XT program unit in accordance
with ILCS convention. UTM program units written in Pascal-XT should therefore satisfy
the requirements outlined in chapter 7 ("Language interfaces"):

• UTM program units must be declared as entry procedures in a package
specification.

U2780-J-Z125-6-7600 189

UTM linkage

• The external procedure KDCS must be declared by means of the COBOL directive.

Language interfaces under UTM

As of Pascal-XT V2.2A, external subprograms which are not UTM program units may be
called from a UTM program unit written in Pascal-XT. If these external subprograms use
ILCS, they can also use the ILCS error handling facility.

The reverse also applies: Pascal-XT entry routines may be called from external UTM
program units which use ILCS. In this case, the Pascal-XT entry routines are not
separate UTM program units.

Data types and constants

The data structures and constants used in parameters when calling the external
procedure KDCS are available to the user in the form of predefined packages:

• KCKBL contains
the definition of the KDCS operation code
the type declaration for the heading of the communication area
the type declaration for the parameter field

• KCINL contains
the type declaration for the return information of the INFO call

• KCDFL contains
the constant definitions for the screen output functions

• FIELD_ATTRIBUTE_PACKAGE contains
the type and constant declarations for the field attributes when the terminal or
terminals operate in format mode

• KCMSL contains
the constant and type declarations for the UTM messages.

Note

Though the package bodies of the above-mentioned packages are all "empty", they
must be compiled and linked when the program units are being linked, since they
are accessed when the Pascal-XT environment is initialized. (As the Pascal-XT
compiler reads only the specifications of the referenced packages, it does not
"know" whether a package body is empty.)

190 U2780-J-Z125-6-7600

UTM linkage

Basic structure of UTM program units

The number and structure of procedure parameters are defined to a large extent by
UTM (see the manual "Programming Applications in Pascal-XT" [11]). The package
specifications for UTM program units must therefore conform to the following pattern:

with KCKBL;
from KCKBL use kckb, kcpal;
...
package UTM_TP;
...
type

...
t_progb = ...;
...

t_kckb = record (* Communication area *)
kbhead: kckb; (* ..- Heading *)
progb : t_progb; (* Program area *)
end;

...

t_nb = ...;
...

t_spab = record (* Standard primary work area *)
parm: kcpal; (* Parameter field *)
nb : t_nb; (* Message area *)
end;

...

procedure KDCS (var p: kcpal; var n: t_nb); cobol;

(* Note: A component type of the message area can also be used for the
second parameter of the KDCS procedure if the message area has
been defined as a record type *)

...

entry procedure program unit_1 (var kb: t_kckb; var spab: t_spab);
...
entry procedure program unit_n (var kb: t_kckb; var spab: t_spab);

(* Note: Program units using the same parameter layout can be
combined into one package *)

end (* UTM_TP *).

U2780-J-Z125-6-7600 191

UTM linkage

As regards the package body of UTM program units the following points should be
noted:

• Except for the user exits START, SHUT and VORGANG, in which no KDCS calls are
allowed, it is not possible effectively to use the current parameters of the entry
procedure before the first KDCS call (with operation code INIT).

• Except for the user exits START, SHUT and VORGANG, communication with the
UTM linkage program must be terminated using a KDSC call with the operation
code PEND.
Subsequently UTM does not return to the entry procedure.
This has the following consequences:

The entry procedure should not be terminated normally, otherwise a PEND error
will occur.

The return statement should not be used in the outer block of such an entry
procedure, otherwise a PEND error will occur.

Local files declared in the outer block of such an entry procedure are not closed
after the PEND call and can therefore only be used in inner blocks.

Requesting memory with "NEW"

As of Pascal-XT V2.2A, UTM program units written in Pascal-XT can request memory
dynamically with "New" (see [1], 15.2). The user is responsible for subsequently
releasing the memory again using "dispose", "release" or "Heapsupport.Release_Heap"
before the KDCS call PEND. The Pascal-XT runtime system does not release
dynamically requested memory either at the end of the UTM program unit or at the end
of the total UTM application. Even if memory requested with "New" is not released, it
cannot be accessed by a subsequent program because with UTM this program could
be running under another task. Memory requested with "New" is not available for any
other task.

External files

When external files are used in UTM program units it should be borne in mind that
these are not closed at end of program (like those in a Pascal-XT main program). The
user is responsible for the opening and closing of files. This can be done effectively in
an entry procedure for the user exit SHUT. Local files from subprograms (procedures
and functions) are closed by the Pascal system.

192 U2780-J-Z125-6-7600

UTM linkage

Note

If program units of a UTM application are to be implemented in various packages
and if the same external file is used in more than one package, it is only possible
for it to be declared in one package in the program parameter list and as a file
variable. In other packages it must be imported by means of a context specification
(WITH/USE list).

Error handling as of Pascal-XT V2.2A

When a UTM program unit written in Pascal-XT is called, the Pascal-XT runtime system
signs on to the ILCS error handling facility. If an error occurs while the Pascal-XT
program unit is executing or if an error is propagated from an external subprogam, the
runtime system searches the program unit for an exception handler. If an exception
handler is defined, the Pascal-XT program unit is continued from that point.
If no exception handler is defined, the Pascal-XT runtime system propagates the error
to the caller (UTM). UTM outputs a user-dump and terminates the process with a KDCS
call PEND /Error.

Error handling up to Pascal-XT V2.2A

The UTM linkage program KDCROOT incorporates its own error handling facility. This
ensures that, if an error occurs (STXIT events), all UTM and data base transactions that
are not closed will be reset (UTM-S only) and provides for the possibility of terminating
the application in an orderly manner.

If a UTM application contains at least one Pascal-XT program unit, a Pascal-XT-specific
linkage module is linked in to perform the following actions:

Calling a Pascal-XT program unit dynamically for the first time causes the Pascal-XT
runtime system to be informed that STXIT handling is performed by UTM; Pascal-XT
STXIT handling is not activated.

When an STXIT event occurs during the active phase of a Pascal-XT program unit
(in Pascal-XT code or during the execution of a KDCS call), the error handling
facility of the Pascal-XT runtime system is invoked (if PROCHK, ERROR and TIMER
events occur). If the error in the Pascal-XT program unit is not handled by an
exception handler, UTM error handling is continued after the cause of error and the
dynamic call chain have been output by the Pascal-XT runtime system.

U2780-J-Z125-6-7600 193

UTM linkage

The Pascal-XT runtime system reports to UTM the first line of the dynamic call chain
if during the execution of a Pascal-XT program unit a runtime error occurs that is
not handled by an exception handler. UTM then outputs this line together with the
UTM dump.

Note

This behavior enables the user to handle any error conditions (by using the
standard procedure RAISE) reported by UTM in the return field of the
communication area.

Linking the application

No special action is required when linking a UTM application. The information given in
chapter 6, "Linking and executing object programs", applies.

The predefined package UTM_ADAPTER is no longer required as of Pascal-XT V2.2A,
but it is still available so that existing UTM program units written in Pascal-XT do not
have to be recompiled.

194 U2780-J-Z125-6-7600

UTM linkage

9 Debugging aid PATH
The debugging aid PATH is specific to Pascal-XT and is a component of every Pascal-
XT implementation. The user interface is the same for every implementation except for
some minor differences dictated by the different operating systems.

Sections 9.1 through 9.3 describe the general characteristics of the debugging aid
PATH, i.e. not those specific to BS2000. Sections 9.4 and 9.5 describe the way in which
PATH is used under BS2000.

9.1 Features and characteristics of PATH

PATH is an interactive Pascal debugging aid which permits the symbolic testing of
Pascal-XT in interactive mode or in prepared test runs. In order to test a Pascal-XT
compilation unit by means of PATH, the option DEBUG=ON or DEBUG=RESTRICTED
must be set when the compilation unit is compiled with the Pascal-XT compiler so that
a test table can be generated.

Writing of multiple Pascal-XT statements on one line of the source program is not
recommended (see section 9.1.4.2).

The most important functions of PATH include:

• halting of Pascal programs

• display and modification of program data

• conditional execution of commands

• display of the dynamic call chain (call history)

Program data is addressed symbolically (by using the names defined in the source
program) and in accordance with its type.

In particular, PATH reproduces the types from Pascal-XT (e.g. VAR COLOR: (RED,
YELLOW, GREEN) in its output; "COLOR:=RED;" is output as COLOR=RED).

U2780-J-Z125-6-7600 195

Features and characteristics Debugging aid PATH

In addition, PATH takes into account the block-oriented structure of Pascal and, during
testing, reflects the scope of identifiers defined by the nesting of procedures. In the
same way, PATH also permits testing of recursive procedures and functions of a
program.

When language interfaces are used for a mix of programs, Pascal-XT packages which
are called by non-Pascal-XT programs via the ENTRY interface can also be tested using
PATH.

To use PATH, no knowledge of the object code generated by the Pascal-XT compiler is
necessary.

As long as no debugging aid commands have been issued, PATH has no effect on the
execution time of the program (apart from the time required for the initialization of
PATH).

PATH executes interactively, has a syntax similar to Pascal, is free-format and recursive,
and permits structured debugging aid commands (compound commands). There are
abbreviations for the most commonly used commands (highlighted in the format
description). To the extent that they are not Pascal keywords, the command names and
abbreviations may also be referred to as program identifiers.

The compiler’s conventions with respect to uppercase and lowercase characters,
alternate symbols, hexadecimal specification of integer, character and string literals, and
underscore characters in identifiers apply analogously to the debugging aid. Like the
Pascal-XT compiler, PATH detects syntactic and semantic errors. If an invalid command
is entered, it is output up to the point at which the error was detected. The rest of the
input line is not analyzed and is replaced in the output by three periods. The invalid
command and any new commands in which it is contained must be reentered.

If errors occur in the execution of debugging aid commands, this is reported and the
command is executed only in part or not executed at all.

All debugging aid output is given a prefix to make it easier to distinguish it from
program output. In the BS2000 version of PATH and the examples used in the present
manual "%%" is used as the prefix.

196 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

9.1.1 Command summary

PATH commands are classed as either testpoint commands or action commands. They
should be terminated with a semicolon. Their syntax formats and precise meanings are
described in 9.2.

TESTPOINT COMMANDS:

AT Sets a testpoint and stores a debugging aid command which is
executed each time the testpoint is reached. AT always needs to be
specified with another PATH command.

REMOVE Deletes the specified testpoints (set with AT).

SLEEP Deactivates the commands set (with AT) for the specified testpoints.

AWAKE Activates the commands deactivated (with SLEEP) for the specified
testpoints.

GETCMD Interrupts the test run and requests input of further commands.

RESUME Continues at the point interrupted by GETCMD.

ACTION COMMANDS:

DISPLAY Outputs data to the PATH output medium.

ASSIGN Assigns values to variables of the program.

IF Specifies conditional execution of debugging aid commands.

BEGIN ... END Unites the debugging aid commands appearing between BEGIN and
END into one (compound) command.

SYSTEM Switches to system mode or executes the system command
enclosed in apostrophes.

EDIT Calls an editor.

SHOW Outputs status information (SHOW UNITS, SHOW CALLS, SHOW
WHERE).

DUMP Outputs all variables of the dynamic chain (the variables on the
stack) and the global variables of all packages to the PATH output
medium.

KILL Aborts execution of the program under test.

SWITCH Reassigns PATH input and output files.

U2780-J-Z125-6-7600 197

Features and characteristics Debugging aid PATH

9.1.2 Definition of terms

The terms explained here are frequently used in the following sections.

• Program under test

The Pascal-XT program to be tested, including all associated packages.

• Compilation unit

Main program or package (= specification and body together).

• Current compilation unit

Compilation unit in which the current testpoint (see 9.1.4) is located.

• Global scope (visibility)

This means that only the names of all compilation units as well as predefined names
(e.g.: Maxint) are visible. In this case, names declared within compilation units can
be referenced only when prefixed by a block qualification (see section 9.1.3).

• Potential testpoint

Point at which a testpoint can be set (e.g. at the beginning of most statements).
Which beginnings of statements represent potential testpoints, and whether other
points (e.g. ends of procedures) represent potential testpoints as well, is machine-
dependent.

• Block

Main program, package, procedure or function.

198 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

9.1.3 Syntax elements

The following syntactic units frequently appear in PATH commands. The use of these
syntactic units is described in section 9.2.

• Block qualification

Sequence of names which is terminated with a period. The individual names are
separated from one another by a period. The first name may be that of a
compilation unit or of a subprogram visible from the current testpoint. Each
additional name designates a procedure or function that is declared immediately
within the block as qualified up to that point (see section 9.1.2).

Examples

procx.procy.funcz.
unity.procx.funcx.
unity.

• Incarnation qualification

Block qualification followed by an incarnation number and a period. An incarnation
number consists of a % character immediately followed by an integer without a sign.
When a procedure is called recursively, different incarnations of the subprogram
arise; with %i, a specific incarnation can be referenced; %1 designates the "most
current" incarnation.

Examples

procx.%2.
procx.funcy.%3.
unity.procx.%4.

• Testpoint specification

List of potential testpoints (see section 9.1.2). It consists of line numbers and/or line
number ranges from the compiler listing separated by commas. In the simplest
case, this list consists of one line number.

It is also possible to write %ALL as the line number range in order to specify all
potential testpoints of a compilation unit or subprogram.

Examples

25
30..40
25, 30, 35..45, 50
%ALL

Each line number or line number range may be prefixed by a block qualification.

U2780-J-Z125-6-7600 199

Features and characteristics Debugging aid PATH

If the line number range is not %ALL, then the block qualification may designate a
compilation unit but not a subprogram.

Before %ALL, however, not only are block qualifications permissible that designate a
compilation unit (which causes all potential testpoints of this compilation unit
including all subprograms declared in it to be specified) but also those that
designate a subprogram (which causes all potential testpoints of this subprogram
but not those in subprograms contained in it to be specified).

Examples

unity.30
unitx.35, unity.42, unitz.28..35
unitx.%ALL, unity.100..108, unitz.%ALL
unitx.procy.funcz.%ALL
procx.%ALL

It is also possible to combine line numbers or line range numbers of a compilation
unit by enclosing in parentheses the list of individual line numbers or line number
ranges for the compilation unit.

Example

unity.123, 128..134, unitz.(15, 25, 35..40), 78

In this example, potential testpoints are specified in line 123 of the compilation unit
"unity", in lines 78 and 128 through 134 of the current compilation unit, and in lines
15, 25 and 35 through 40 of the compilation unit "unitz".

In addition to this type of testpoint specification (i.e. an enumeration of line numbers
or line number ranges), there is also the testpoint specification %ALL_UNITS, which
defines all potential testpoints of all testable compilation units of the program under
test.

At the end of the testpoint specification (i.e. at the end of the entire list) ": ENTER"
may be added. The effect of this is the same as for the potential testpoints specified
in the list, with the difference that only those testpoints are selected which are the
first potential testpoints of any block (see section 9.1.2).

Examples

%ALL_UNITS: ENTER
unitx.%ALL, unity.30..100: ENTER

The meanings of the above forms of testpoint specification are described in detail in
section 9.1.4.2.

200 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

Furthermore, it is possible to specify the keyword EXCEPTION as a testpoint
specification. This potential testpoint is called "exception testpoint" (see section
9.1.4.4).

Note
The keyword EXCEPTION must not occur together with line numbers, line
number ranges, %ALL, %ALL_UNITS, block qualifications or :ENTER in the same
testpoint specification.

• Factor

Integer, real, character or string literal, a constant or variable declared in the
program under test, or a qualified set constructor. Structure constants and variables
may be indexed ([]), qualified (.) or dereferenced (@). An index in turn may itself
be a factor. Furthermore a subrange of an array or of a string may be referred to by
specification of a slice ([..]) whose limits are themselves factors. A constant or
variable may be prefixed by a block qualification.

Examples

unity.procz.i
unitx.a[4, b[i], 2..k]
p[j]@.x@.y[l]
a[1..10]
char_set_type ([’A’, ’X’..’Z’])
int_set_type ([5..i, k, v[1]..p.x, 100])

In the first two examples, a block qualification is specified by "unity.procz" and
"unitx".

It is possible to output one-dimensional array and string slices e.g. A [7..10].
Assignment and comparison of array slices, on the other hand, are not permitted. It
is likewise not permitted to slice slices even further or to index them.

Example

VAR A: ARRAY [1..10, 1..20] OF STRING[50];

Permitted:

DISPLAY (A, A[5], A[6, 15, 43], A[7, 8, 30..40], A[I, J..16], A[2..8]);

Not permitted:

DISPLAY (A[3..4, 15], A[5..9, 10..20], A[I, 12..17][10..30]);

All of the above also applies to variables referred to via an incarnation qualification.

U2780-J-Z125-6-7600 201

Features and characteristics Debugging aid PATH

9.1.3.1 Debugging aid comments and options

For the purpose of documenting test runs, both in debugging aid commands or in
Pascal-XT programs, comments in the form (*comments*) or {comments} may be
inserted.

Note

In contrast to Pascal-XT, in PATH commands a comment must not exceed the limits of
a line.

Furthermore it is also possible to specify debugging aid options in the form of pseudo-
comments. At present only one option is implemented; in later versions others might
also be added.

{$R-} Only debugging aid commands recognized (at analysis time) as containing
errors are output to the PATH output medium, in the form of requests for
repeat input.

{$R+} All debugging aid commands entered are repeated on the PATH output
medium (default value).

202 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

9.1.4 Testpoints

PATH actions take place exclusively at "testpoints". There are the following types of
testpoints:

Testpoint before program start (preliminary testpoint)
User-set testpoint
Postmortem testpoint
Exception testpoint
Entry testpoint

9.1.4.1 Testpoints before program start

Before the packages belonging to a program are initialized and the main program is
executed, a GETCMD command is executed at an implicit testpoint. This permits the
user to enter PATH commands (in particular, to set testpoints in the different
compilation units). Since a preliminary testpoint is not located in any particular
package, global scope (visibility) applies (see section 9.1.2).

Messages at the testpoint before program start:

%% testpoint before program start
%% scope seen from outside all compilation units (01)
* (02)

(01) Global scope.

(02) Command input prompt.

9.1.4.2 User-set testpoints

The testpoint commands AT, SLEEP, AWAKE and REMOVE as well as SHOW WHERE
are used to specify, by means of a testpoint specification (see section 9.1.3) the points
(potential testpoints) in the program to be tested at which testpoints are to be set,
deleted or displayed.

In the following, only the setting of testpoints (AT command) is discussed; testpoint
specifications in the other commands mentioned have analogous meanings.

In the simplest case (setting a single testpoint in the current compilation unit, see
section 9.1.2), the testpoint specification consists solely of a line number, which can be
taken from the compiler listing.

The testpoint is then set in that line at the first potential testpoint (see section 9.1.2).

If the specified line contains no potential testpoints, an error is reported.

U2780-J-Z125-6-7600 203

Features and characteristics Debugging aid PATH

Example

1 {$DEBUG} PROGRAM STATEMENTS;
2 VAR I: INTEGER;
3 BEGIN
4 I := 1;
5 I := 2; I := 3; I
6 := 4;
7 END.

AT 1 DO ...; results in an error message;
AT 2 DO ...; results in an error message;
AT 3 DO ...; results in an error message;

AT 4 DO ...; sets a testpoint before I := 1;
AT 5 DO ...; sets a testpoint before I := 2;

AT 6 DO ...; results in an error message;
AT 7 DO ...; sets a testpoint before END.

The statements I := 3; and I := 4; in line 5 cannot be directly (individually) referenced
by the debugging aid.

Therefore, in programs that are to be tested it is advisable to use one line for each
statement.

It is also possible with one AT command to set testpoints at several consecutive
potential testpoints, by specifying a line number range in the form "line number .. line
number" or in the form "%ALL".

Thus, in the above example, as the result of the command

AT 5..6 DO ...;

a testpoint is set before each of the statements I := 2; I := 3; and I := 4; (i.e. 3
testpoints).

With the command

AT %ALL DO ...;

a testpoint is set before the statements I := 1; I := 2; I := 3; I := 4 and before END
(i.e. 5 testpoints).

Thus it is also possible to set testpoints before statements that do not begin on a
separate line (e.g. I :=3;). As stated, however, such statements cannot be referenced
individually, but instead only within a line number range.

In this example, with the command

AT %ALL: ENTER DO ...;

a testpoint is set only in line 4 (before the statement I :=1;).

204 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

By specifying a testpoint specification as a series of line numbers and/or line number
ranges separated by commas, it is possible with one AT command to set testpoints at
several, not necessarily consecutive statements.

Example

AT 550, 576..612, 434, 639 DO ...;

All the formats described thus far allow testpoints to be set only in the current
compilation unit. However, the syntax of testpoint specifications also permits potential
testpoints in other compilation units of the program under test to be referenced.

Example

AT 125, unitx.30, unity.(120, 130..135), 150, unitz.%ALL DO ...;

sets testpoints at the first potential testpoint in lines 125 and 150 of the current
compilation unit, in line 30 of the compilation unit "unitx", in line 120 and at consecutive
potential testpoints in lines 130 through 135 of the compilation unit "unity", as well as at
all potential testpoints in the compilation unit "unitz".

If ": ENTER" is added at the end of the above testpoint specification, i.e.

AT 125, unitx.30, unity.(120, 130..135), 150, unitz.%ALL: ENTER DO ...;

then of the potential testpoints specified, only those that are the first potential testpoints
of a block (see section 9.1.2) are selected.

Example

AT unitz.(87, 316..318, 772..775, 961) DO ...;

The parentheses in this example are necessary, since the command

AT unitz.87, 316..318, 772..775, 961 DO ...;

would set testpoints at the first potential testpoint in line 87 of the compilation unit
"unitz", as well as in lines 316 through 318, 772 through 775, and 961 of the current
compilation unit.

The testpoint specification %ALL_UNITS specifies all potential testpoints of all
compilation units of the program under test that were compiled with the option
DEBUG=ON or DEBUG=RESTRICTED and whose test tables are available.
In particular, %ALL and %ALL_UNITS are suitable for deleting (REMOVE command),
deactivating (SLEEP command) or activating (AWAKE command) all user-set testpoints
of a compilation unit or of all compilation units of the program under test.

U2780-J-Z125-6-7600 205

Features and characteristics Debugging aid PATH

9.1.4.3 Postmortem testpoints

If, when testing a program with PATH (see section 7), a runtime error occurs in a
Pascal-XT program section or is passed to it from an external subprogram, and if the
runtime error is not handled in that program section, the following steps are taken:

(1) If the program section tested is the main program, the Pascal-XT runtime system
displays the cause of the error together with the dynamic call chain (see 10.2.4).
Step (2) is then performed.

(2) The debugging aid behaves in each case as if a user-set testpoint with an input
prompt (GETCMD command) were set at one of the following points:

at the statement in which the error occurs.
at the point at which the external subprogram which propagated the runtime
error is called.

PATH then displays the input prompt * and the user can enter PATH commands, in
particular DUMP, SHOW CALLS and DISPLAY, to identify the cause of the error.

The PATH command KILL causes the program to abort.

The effect of the PATH command RESUME differs according to the nature of the
Pascal-XT program section tested.

In a main program the program under test is terminated if no new debugging run (see
9.5 "Restart) is requested.

In another program section, the Pascal-XT runtime system propagates the error to the
caller. Error propagation makes it possible for other Pascal-XT program sections to be
informed of the error. The debugging aid then offers a postmortem testpoint to any
Pascal-XT program section which propagates the error without handling it.

Example

1 {$DEBUG=ON} PROGRAM DIVIDE
2 VAR
3 dividend: Integer;
4 divisor: Integer;
5 result: REAL;
6
7 BEGIN
8 Allocation of a value to the
9 variables dividend and divisor is

10 achieved from the debugging aid
11 result := dividend / divisor;
12 END.

206 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

After program start:

%% testpoint before program start
%% scope seen from outside all compilation units
*at divide.11 do getcmd;
*resume
%% program continued
%% testpoint at line DIVIDE.11
*assign dividend := 5;
*assign divisor := 0; {provokes division by 0 in program under test}
*resume;
%% program continued
NUMERIC_ERROR (104) RAISED FROM DIVIDE.DIVIDE AT 000E5F3A

%% testpoint because of unhandled Numeric_Error at line DIVIDE.11
*dump;
%% global variables of DIVIDE:
%% dividend = 5
%% divisor = 0
%% result = 0.000000000000000E+00
*resume;
%% program aborted

9.1.4.4 Exception testpoints

The testpoint commands AT, SLEEP, AWAKE, REMOVE and SHOW WHERE permit a
so-called exception testpoint to be set, deactivated, (re)activated, deleted and displayed
by specifying the keyword EXCEPTION.

When an exception testpoint is set and a runtime error occurs in a Pascal-XT program
section (see section 7) or is passed to it from an external subprogram, the debugging
aid issues a message at the following points:

the statement in which the error occurs
the position in all Pascal-XT program sections at which the external subprogram
passing on the error is called.

Irrespective of whether an exception handler has been defined for the error, an
exception testpoint is activated and the PATH commands specified for it are executed.
This permits the user to identify the cause of the error even if the error is dealt with by
an exception handler. Only then is an exception handler sought, provided that the
program under test is not terminated by the PATH command KILL. If an exception
handler has been defined, the program under test will continue from that point. If no
exception handler has been defined, a postmortem testpoint is activated.

U2780-J-Z125-6-7600 207

Features and characteristics Debugging aid PATH

Example

1 {$DEBUG=ON} PROGRAM POWER;
2 VAR
3 result: Real;
4
5 FUNCTION power_of_e (x: Integer): Real;
6 BEGIN
7 power_of_e := Exp (x);
8 EXCEPTION
9 IF Error_Number = Numeric_Error THEN

10 power_of_e := Maxreal
11 ELSE { propagate other errors }
12 Raise (Error_Number);
13 END;
14
15 BEGIN
16 result := power_of_e (maxint);
17 END.

After program start:

%% testpoint before program start
%% scope seen from outside all compilation units
*at exception do display (’Exception occurred’); (01)
*at power.16 do getcmd;
*resume;
%% program continued
%% testpoint at line POWER.16
*show where exception; (02)
%% testpoint at exception (03)
*at exception do begin dump; getcmd; end; (04)
*resume;
%% program continued
%% testpoint because of Numeric_Error at line POWER.7 (power_of_e) (05)
%% ’Exception occurred’ (06)
%% parameters and local variables of power_of_e: (07)
%% x = 2147483647
%% global variables of POWER;
%% result = 0.000000000000000E+00
*resume; (08)
%% program continued

(01) If an exception occurs in the program under test, the testpoint message must be
issued (05) and the DISPLAY command executed (06).

(02) Has the exception testpoint been set?

(03) Indicates that the exception testpoint has been set.

(04) The command indicated in (01) and to be executed if an error occurs, is
expanded to include a DUMP and a GETCMD command.

208 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

(05) Testpoint message issued at exception testpoint.

(06) Output of the DISPLAY command defined in (01).

(07) Output of the DUMP command defined in (04).

(08) Execution of the GETCMD command defined in (04) causes the test run to be
interrupted; it is resumed by entering the RESUME command.

9.1.4.5 Entry testpoints

If a Pascal-XT entry procedure is called from a program segment written in another
language and the Pascal-XT package that contains the procedure has not yet been
made known to the debugging aid, then, before the package is initialized, a GETCMD
command is executed at an implicit testpoint (entry testpoint). This enables the user to
enter PATH commands, and, in particular, to define testpoints both in this package and
in all the packages referenced via WITH clauses.

"Global scope" applies at the entry testpoint (see section 9.1.2) and the following
messages appear:

testpoint before entry call
scope seen from outside all compilation units

On subsequent calls to the same entry procedure or to another entry procedure in a
package already known to the debugging aid, no further entry testpoint is created since
the user has already had the opportunity to set testpoints in the package and the many
testpoints that would result if there were frequent calls to entry procedures would place
a burden on processing capacity.

U2780-J-Z125-6-7600 209

Features and characteristics Debugging aid PATH

Example

The assembly-language main program calls the Pascal-XT entry procedure ’divide’
which performs a division calculation.

Assembly language main program:

1 CALLDIV CSECT
2 *
3 EXTRN DIVIDE
4 *
5 R0 EQU 0
6 R1 EQU 1
7 R10 EQU 10
8 R13 EQU 13 Address of the save area
9 R14 EQU 14 Return address

10 R15 EQU 15 Entry address
11 *
12 BALR R10,R0
13 USING *,R10
14 LA R1,PARLIST Load address of parameter list
15 LA R13,SAVEAREA Load address of save area
16 L R15,=A(DIVIDE) Load address of Pascal procedure
17 BALR R14,R15 Call Pascal entry procedure
18 TERM
19 *
20 PARLIST DC A(PAR1)
21 DC A(PAR2)
22 DC A(PAR3)
23 PAR1 DC F’10’ Dividend
24 PAR2 DC F’5’ Divisor
25 PAR3 DS D Result
26 SAVEAREA DS 18A Save area for Pascal
27 END

Pascal-XT package specification:

1 PACKAGE DIVI;
2 ENTRY PROCEDURE divide (VAR x, y: Integer; VAR z: Real);
3 END.

Pascal-XT package body:

1 {$Debug=On}
2 WITH Errors;
3 PACKAGE BODY DIVI;
4 PROCEDURE divide (VAR x, y: Integer; VAR z: Real);
5 BEGIN
6 z := x / y;
7 EXCEPTION
8 IF Error_Number = Numeric_Error THEN
9 z := Minreal

10 ELSE { propagate other errors }
11 Errors.ReRaise;
12 END;
13
14 BEGIN
15 END.

210 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

After program start:

%% testpoint before entry call (01)
%% scope seen from outside all compilation units
*show units; (02)
%% compilation-units:
%% DIVI, compiled 90-01-12 10:17:37, complete testtable ?
*at divi.12 do getcmd; (03)
*resume; (04)
%% program continued
%% testpoint at line DIVI.12 (divide) (05)
*display (%param);
%% parameters of divide:
%% x = 10
%% y = 5
%% z = 2.000000000000000E+00
*resume; (06)
%% program continued
%% program terminated

(01) Output of the testpoint message at the entry testpoint.

(02) Output of a list of all the compilation units currently known to the debugging
aid.

(03) Definition of a testpoint in the Pascal-XT procedure.

(04) Exit from the entry testpoint.

(05) The testpoint set in (03) is reached.

(06) Exit from the user-set testpoint.

Notes

The entry testpoint is thus not offered when starting the main program written in a
language other than Pascal, but only when the first call is made to a Pascal-XT
procedure.

This call makes known to the debugging aid the package that contains the entry
procedure and the packages that the procedure directly and indirectly references.
There may, however, be other packages involved. The debugging aid does not
know of them until entry procedures contained in them are called. When this
occurs, an entry testpoint is offered again and this enables the user also to set
testpoints in further packages and so on. It is possible to establish at any time the
packages currently known to the debugging aid by using the PATH command
SHOW UNITS ("SH U" in its short form).

Since an entry testpoint is not offered when calling an entry procedure in a package
already known to the debugging aid, the user now has no further opportunity in this
entry procedure to set testpoints. This means that he ought to take the chance to
set testpoints in this package at the entry testpoint offered earlier when the package
is being made known to the debugging aid.

U2780-J-Z125-6-7600 211

Features and characteristics Debugging aid PATH

9.1.5 Scope of identifiers

The scope of identifiers for a testpoint (both when a testpoint is reached and within an
AT command) reflects the static nesting of procedures in the Pascal-XT source
program.

Also the predefined constant identifiers in Pascal-XT (e.g. Maxreal, Index_Error,...) may
be referred to in PATH (DISPLAY, ASSIGN, IF).

Also the scope expanded in the source program by means of WITH statements is
reflected by the debugging aid.

Identifiers hidden in inner procedures by other identifiers having the same names can
be addressed by prefixing a block qualification (see section 9.1.3).

Identifiers that are not visible in the source program, because they are declared neither
in the current subprogram nor in a surrounding one, but which are declared in a
subprogram incarnation in the dynamic call chain, can be addressed by means of
prefixing an incarnation qualification (see section 9.1.3).

Example of scope

1 {$DEBUG}
2 PROGRAM scope:
3 VAR i: integer;
4 rec: RECORD
5 i: integer;
6 END;
7 PROCEDURE proc;
8 VAR i: integer;
9 BEGIN

10 i:= 1;
11 END;
12
13 BEGIN
14 WITH rec DO BEGIN
15 i := 2;
16 END;
17 i := 3;
18 proc;
19 END.

Line numbers Meaning

10 Used to refer to a testpoint in the procedure "proc". If at this
testpoint the variable "i" is referred to, reference is being made to the
variable "i" local to the procedure (= proc.i = scope.proc.i,
corresponding to the scope in the source program). "scope.1", on
the other hand, refers to the hidden global variable "i" declared in
the main program ("scope").

212 U2780-J-Z125-6-7600

Debugging aid PATH Features and characteristics

17,18 Testpoints in the main program are referred to; "i" refers to the main
program variable "i" (= "scope.1", corresponding to the scope in the
source program).

15 Since modification of the scope by means of WITH statements in a
source program is likewise reflected in the debugging aid, "i" at this
point (as in the source program) refers to the RECORD component
i, rather than to the main program variable "i". The latter can be
referred to by means of "scope.i".

If several testpoints are set in different (sub)programs by means of one AT command,
only those names visible from the closest common surrounding (subprogram) can be
referenced in the inner command of that AT command.

If an AT command is used to set several testpoints in different compilation units, only
"global scope" in the inner command of that AT command applies (see section 9.1.2).

However, the scope limitations described in the previous two paragraphs apply only
within the inner command (deferred action) of such an AT command. If, on the other
hand, due to a GETCMD command contained in the AT command a branch is made to
command input mode at one of the testpoints set, all names visible from that testpoint
may of course be referred to.

Identifiers that are spelled the same as PATH commands or PATH command
abbreviations (e.g. SHOW, SH, CALLS, C, DISPLAY, D, ...) may also be referred to.

Example

1 {$DEBUG} PROGRAM xyz;
2 CONST remove = True;
3 VAR display: INTEGER;
. . .

*display (display, remove);
%% display = 347
%% remove = True
*assign display := 1;

U2780-J-Z125-6-7600 213

Features and characteristics Debugging aid PATH

9.1.6 Access to identifier types

Program variables and program constants of all types can be symbolically referenced
and, corresponding to their types, output, assigned and compared. The rules regarding
type compatibility correspond to those in Pascal-XT.

Entire RECORD, ARRAY and SET variables can be referenced (also in the DISPLAY
command). When records with variants are output, the components of the fixed part
are output along with the currently active variant, to the extent that a tag field exists or
the tag type matches the tag type of the higher-ranking variant. For variant parts
without tag fields (... CASE typename OF ...) only the components of the fixed part (if
present) are output; the components of the variants can then be referenced only
individually.

9.1.7 Generation of test tables

To test a Pascal-XT compilation unit using PATH, the DEBUG=ON or
DEBUG=RESTRICTED option must be set when the compilation unit is compiled with
the Pascal-XT compiler, in order to generate a test table.

A "complete test table" is generated if DEBUG is set in a package body or in a main
program. In the case of DEBUG=ON, any PATH command may be used at testpoints
in the compilation unit; in the case of DEBUG=RESTRICTED, assignments (ASSIGN
command) are not permitted.

A "partial test table" is generated if DEBUG is set in a package specification but not in
the corresponding package body. This makes it possible to refer to all variables,
constants and types declared in the package specification.
Variables whose types are private pointer types cannot be dereferenced.

A "minimum test table" is generated if DEBUG=OFF is in effect both for the package
specification and for the corresponding package body. This permits only the output of
the dynamic call chain (in particular in the event of errors).

Note

When the GENERATE option is deactivated, DEBUG is also implicitly deactivated. By
activating the DEBUG option, the option OPTIMIZE is implicitly deactivated.

214 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2 PATH commands

When a GETCMD command is executed at a testpoint, a command sequence is read in
from the PATH input medium. The individual commands of the sequence are each
terminated with a semicolon. Commands are executed as soon as they are ended with
a semicolon and determined to be syntactically and semantically correct.

When a user-set testpoint is reached (see section 9.1.4.2) the "deferred actions" defined
for that testpoint with one or more AT commands are carried out (interpreted).
Additional commands can be entered only when a GETCMD command is executed.

The semicolon may be omitted at the end of an input line if at that point in the
command all that is syntactically still permissible in any case is a semicolon.

A semicolon at the end of a line must therefore not be omitted if the command could
be continued in the next line, i.e. following an

• IF command without an ELSE clause, since the next line could of course contain
the ELSE part

• ASSIGN command, since the expression on the right-hand side could of course still
be indexed, qualified or dereferenced in the next line

• REMOVE, SLEEP, AWAKE or SHOW WHERE command, since the next line could of
course still contain parts of the testpoint specification

• EDIT, SYSTEM or SWITCH command without a string, since this could of course
still appear in the next line.

In cases of error, the invalid command, including the point at which the error was
detected, is output to the PATH output medium, along with a corresponding error
message, and a new command is awaited.

There are testpoint commands and action commands.

The SHOW command is described under the action commands, although one of its
formats, namely SHOW WHERE, has the characteristics of a testpoint command.

A few commands and other PATH keywords may be abbreviated:

ASSIGN A SHOW CALLS SH C
BEGIN B SHOW UNITS SH U
DISPLAY D SHOW WHERE SH W
EDIT ED
GETCMD G SWITCH INPUT SW I
RESUME R SWITCH OUTPUT SW O
SYSTEM SY SWITCH LIST SW L

U2780-J-Z125-6-7600 215

PATH commands Debugging aid PATH

9.2.1 Testpoint commands

Five of the testpoint commands are used for setting (AT command), deleting (REMOVE
command), deactivating (SLEEP command), activating (AWAKE command) and
displaying (SHOW WHERE command) user-set testpoints (see section 9.1.4.2).

These commands may contain a testpoint specification (see sections 9.1.3, 9.1.4.2 and
9.1.4.4); they refer to potential testpoints (see section 9.1.2).

The two remaining testpoint commands are used for activating (GETCMD command)
and deactivating (RESUME command) command input mode.

9.2.1.1 AT command

Format 1:

AT testpoint-specification DO command

This command sets testpoints at the potential testpoints (see section 9.1.2) defined by
the testpoint specification (see sections 9.1.3, 9.1.4.2 and 9.1.4.4). When execution of
the program reaches one of the set testpoints, it is interrupted and the command
appearing after the DO (e.g. GETCMD, a compound command or also an AT
command) is then carried out ("deferred action").
Following execution of the command, the program run is continued. An input prompt is
output at the testpoint only if the deferred action of that testpoint is a GETCMD
command or contains one (with RESUME, processing continues at the point interrupted
by GETCMD).

An AT command at an existing testpoint supplements the commands to be carried out
at that testpoint (adds to them); the commands are carried out in the order in which
they are issued.

Example

1 {$DEBUG}
2 PROGRAM LOOP;
3 VAR i, k: INTEGER;
4 BEGIN
5 FOR i := 1 TO 5 DO BEGIN
6 k := i;
7 k := k;
8 END;
9 END.

216 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

Starting the test program:

Prior to program execution, the input of debugging aid commands is requested at an
implicit testpoint ("testpoint before program start").

%% testpoint before program start
%% scope seen from outside all compilation units (01)
*at loop.6..7 do display (i, k); (02)
*resume; (03)
%% k = 0
%% program continued
%% testpoint at line LOOP.7
%% i = 1
%% k = 1
%% program continued
%% testpoint at line LOOP.6
%% i = 2
%% k = 1
%% program continued
%% testpoint at line LOOP.7
%% i = 2
%% k = 2
%% program continued
%% testpoint at line LOOP.6
%% i = 3
%% k = 2
%% program continued
%% testpoint at line LOOP.7
%% i = 3
%% k = 3
%% program continued
%% testpoint at line LOOP.6
%% i = 4
%% k = 3
%% program continued
%% testpoint at line LOOP.7
%% i = 4
%% k = 4
%% program continued
%% testpoint at line LOOP.6
%% i = 5
%% k = 4
%% program continued
%% testpoint at line LOOP.7
%% i = 5
%% k = 5

(01) Global scope (see section 9.1.2).

(02) In lines 6 and 7, the values of i and k are output.

(03) With RESUME, the testpoint before program start is left.

U2780-J-Z125-6-7600 217

PATH commands Debugging aid PATH

Format 2:

AT DO command

The AT command without a testpoint specification can be used to place a further
deferred action at the testpoint at which the AT command is carried out. This additional
deferred action is then carried out the next time the testpoint is reached. If this
testpoint is the testpoint before program start (see section 9.1.4.1), the command will
be rejected with an error message (see section 9.3).
However, if the AT command without a testpoint specification is carried out at the
postmortem or exception testpoint (see sections 9.1.4.3 and 9.1.4.4), it will not affect
this testpoint but the potential testpoint (see section 9.1.2) at this position.

9.2.1.2 GETCMD command

GETCMD

A GETCMD command interrupts the test run and switches to input mode, i.e. PATH
commands are awaited.

Any number of debugging commands may be entered from the PATH input medium.

Note

A GETCMD command is permitted only within an AT command (i.e. in a deferred
action).

218 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2.1.3 RESUME command

RESUME

The command input made possible by means of a GETCMD command is ended.

The test run is continued at the point at which it was interrupted by the GETCMD
command, i.e. any further commands following a GETCMD command are processed
(these may also be further GETCMD commands).

When a RESUME command is executed, the debugging aid input buffer is cleared; this
means that any further commands appearing on the same line will no longer be
processed at the next GETCMD command.

A RESUME command within an AT command (i.e. in a deferred action) makes no
sense and therefore is not permitted.

If all commands defined for the testpoint (the entire deferred action) have been
processed, the program run is continued.

Example of the interaction between AT, GETCMD and RESUME

%% testpoint before program start
%% scope seen from outside all compilation units
*at loop.6 do getcmd; resume;
%% program continued
%% testpoint at line LOOP.6
*display (i); resume;
%% i = 1
%% program continued
%% testpoint at line LOOP.6
*display (k); resume;
%% k = 1
%% program continued
*

U2780-J-Z125-6-7600 219

PATH commands Debugging aid PATH

9.2.1.4 REMOVE command

Format 1:

REMOVE testpoint-specification

With regard to the meaning of "testpoint-specification" see sections 9.1.3, 9.1.4.2 and
9.1.4.4.

The testpoints specified by "testpoint-specification", which were previously set by means
of one (or more) AT command(s), are deleted again.

When these potential testpoints are reached during a subsequent run of the program
under test, the program will no longer be interrupted, and the deferred actions will no
longer be carried out.

If not a single testpoint is found to be set (and deleted) at the potential testpoints
specified by the testpoint specification, an error message is issued (see section 9.3).

However, if the command

REMOVE 63, 135, 716;

is executed and then at least one testpoint is found and deleted, the command is
considered successful and no error message is issued (regardless of whether testpoints
are found in the other lines as well).

Example

%% testpoint before program start
%% scope seen from outside all compilation units
*at loop.6 do getcmd; at loop.7 do getcmd; resume;
%% program continued
%% testpoint at line LOOP.6
*display (i); resume;
%% i = 1
%% program continued
%% testpoint at line LOOP.7
*remove 6; (01)
*resume;
%% program continued
%% testpoint at line LOOP.7
*

(01) The program is no longer interrupted at line 6.

220 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

Format 2:

REMOVE

The REMOVE command without a testpoint specification causes the testpoint (at which
the REMOVE command is executed) to be deleted. If this testpoint is the testpoint
before program start (see section 9.1.4.1), the command will be rejected with an error
message (see section 9.3).
If the command is executed at the postmortem or exception testpoint (see sections
9.1.4.3 and 9.1.4.4), it will not affect this testpoint. However, if at the position where the
error occurred a user-set testpoint is (incidentally) located (see section 9.1.4.2), this
testpoint will be deleted. If no testpoint has been set at this position, the command will
be rejected with an error message (see section 9.3).

U2780-J-Z125-6-7600 221

PATH commands Debugging aid PATH

9.2.1.5 SLEEP command

Format 1:

SLEEP testpoint-specification

Regarding the meaning of "testpoint-specification" see sections 9.1.3, 9.1.4.2 and
9.1.4.4).

The testpoints specified by "testpoint-specification", set previously by means of the AT
command(s), are deactivated for the time being; the commands defined for the
testpoints (deferred actions) are no longer carried out when the testpoints are reached.
In contrast to the REMOVE command, however, the commands still exist logically and
can be reactivated by means of the AWAKE command.

If an AT command is triggered at a testpoint deactivated with the SLEEP command, the
SLEEP command also affects the newly added command.

The SLEEP command is analyzed and executed analogously to the REMOVE
command.

Format 2:

SLEEP

The SLEEP command without a testpoint specification causes the testpoint (at which
the SLEEP command is executed) to be deactivated. If this testpoint is the testpoint
before program start (see section 9.1.4.1), the command will be rejected with an error
message (see section 9.3).
If the command is executed at the postmortem or exception testpoint (see sections
9.1.4.3 and 9.1.4.4), it will not affect this testpoint. However, if at the position where the
error occurred a user-set testpoint is (incidentally) located (see section 9.1.4.2), this
testpoint will be deactivated. If no testpoint has been set at this position, the command
will be rejected with an error message (see section 9.3).

222 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2.1.6 AWAKE command

Format 1:

AWAKE testpoint-specification

Regarding the meaning of "testpoint-specification" see sections 9.1.3, 9.1.4.2 and
9.1.4.4.

The testpoints specified by "testpoint-specification", previously deactivated by means of
the SLEEP command(s), are again in effect; i.e. the commands in effect for those
testpoints prior to the execution of the SLEEP command and any further commands set
thereafter by means of AT commands will again be carried out the next time one of the
testpoints is reached.

If no set testpoints are found (and reactivated) among the potential testpoints specified
by "testpoint-specification", an error message is issued (see section 9.3).

Example

%% testpoint before program start
%% scope seen from outside all compilation units
*at loop.6 do display (i); at loop.7 do getcmd; resume;
%% program continued
%% testpoint at line LOOP.6
%% i = 1
%% program continued
%% testpoint at line LOOP.7
*display (i, k);
%% i = 1
%% k = 1
*resume;
%% program continued
%% testpoint at line LOOP.6
%% i = 2
%% program continued
%% testpoint at line LOOP.7
*sleep 6; resume;
%% program continued
%% testpoint at line LOOP.7
*at 6 do display (’Will be output only after AWAKE 6’);
*resume;
%% program continued
%% testpoint at line LOOP.7
*awake 6; resume;
%% program continued
%% testpoint at line LOOP.6
%% i = 5
%% ’Will be output only after AWAKE 6’);
%% program continued
%% testpoint at line LOOP.7
* . . .

U2780-J-Z125-6-7600 223

PATH commands Debugging aid PATH

Format 2:

AWAKE

An AWAKE command without a testpoint specification causes the testpoint (at which
the AWAKE command is executed) to be activated. If this testpoint is the testpoint
before program start (see section 9.1.4.1), the command will be rejected with an error
message (see section 9.3).
If the command is executed at the postmortem or exception testpoint (see sections
9.1.4.3 and 9.1.4.4), it will not affect this testpoint. However, if at the position where the
error occurred a user-set testpoint (deactivated by SLEEP) is (incidentally) located, this
testpoint will be reactivated. If no testpoint has been set at this position, the command
will be rejected with an error message (see section 9.3).

224 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2.1.7 Example of the interaction between testpoint commands

*at loop.6 do getcmd;
*at loop.7 do display (’first AT at 7’);
*at loop.9 do display (’end of program’);
*resume; display (i); (01)
%% program continued
%% testpoint at line LOOP.6
*resume;
%% program continued
%% testpoint at line LOOP.7
%% ’first AT at 7’
%% program continued
%% testpoint at line LOOP.6
*at 7 do begin display (i); getcmd; end; (02)
*resume;
%% program continued
%% testpoint at line LOOP.7
%% ’first AT at 7’
%% i = 2
*resume;
%% program continued
%% testpoint at line LOOP.6
*sleep 7;
*at 7 do display (’third AT at 7’); (03)
*resume;
%% program continued
%% testpoint at line LOOP.6 (04)
*resume;
%% program continued
%% testpoint at line LOOP.6
*awake 7; resume;
%% program continued
%% testpoint at line LOOP.7
%% ’first AT at 7’
%% i = 5
*resume; (05)
%% ’first AT at 7’
%% program continued
%% testpoint at line LOOP.9
%% ’end of program’
*remove 7
* . . .

(01) After the RESUME command, the rest of the input line is cleared; i.e. the
command "display (i)" is no longer carried out.

(02) Supplements the DISPLAY command for line 7 by the addition of the compound
command.

(03) Becomes active only after AWAKE 7.

(04) Because of SLEEP 7, the program run is not interrupted in line 7.

(05) Return to the point interrupted by GETCMD; i.e. execution of the subsequent
DISPLAY command, set with the third AT command.

U2780-J-Z125-6-7600 225

PATH commands Debugging aid PATH

9.2.2 Action commands

The action commands are used for outputting (DISPLAY and DUMP) and changing
(ASSIGN) program data, for conditional execution of debugging aid commands (IF), for
combining several debugging aid commands into one command (i.e. a compound
command), for executing system commands (SYSTEM), for calling the editor (EDIT)
and for displaying status information (SHOW).

9.2.2.1 DISPLAY command

DISPLAY (list)

The DISPLAY command causes the factors (see section 9.1.3) and "variable groups"
specified in the list, separated by commas, to be output (appropriately for their types)
to the PATH output medium.

There are 2 types of variable groups:

• %LOCAL comprises the variables (not parameters) of a block (see section 9.1.2).
This block is defined by the block or incarnation qualification (see section 9.1.3)
preceding %LOCAL.

If no block or incarnation qualification is specified, the block is assumed to be the
one containing the testpoint at which the DISPLAY command is executed.

If the block is a package, %LOCAL refers to the variables declared directly within
the package specification and package body, but not to any variables of other
packages made visible by means of USE clauses.

If the block contains no variables, an appropriate message is issued.

Example

%% testpoint at line p.333
*display (%local);
%% variables of p:
%% strg = ’ab’
%% a_ch = ’a’
%% z_ch = ’z’
%% r
%% .i = 1
%% .j = 10
* ...

The variables declared in the current block, i.e. in package p (specification and
body) are output.

226 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

*display (a.b.c.%local);
%% variables of a.b.c:
%% i = 5
%% ch = ’x’

The local variables of the subprogram defined by the block qualification "a.b.c." are
output.

*at 15, unity.(11, 30) do display (%local); resume
%% program continued
%% testpoint at line unitx.15 (proc12)
%% variables of proc12:
%% b = True
%% k = 10
%% program continued
%% testpoint at line unity.11 (proc21)
%% variables of proc21:
%% i = 8
%% program continued
%% testpoint at line unity.30 (func22)
%% variables of func22: none
%% program continued

The local variables of the block containing the current (just reached) testpoint are
output.

• %PARAM comprises the parameters of a block. If the block is not a subprogram, or
is a subprogram without parameters, a corresponding message is issued.

Example

*display (a.b.%2.%param);
%% parameters of a.b.%2:
%% x = 1
%% b = False

*at unity. (46, 67) do display (%param); resume
%% program continued
%% testpoint at line unity.46 (proc22)
%% parameters of proc22:
%% m = 5
%% n = 5
%% program continued
%% testpoint at line unity.67 (proc23)
%% parameters of proc23: none
%% program continued

By appending :HEX, variables and constants can be output in hexadecimal form. When
this is applied to structured values, the individual components or elements are output in
hexadecimal form.

U2780-J-Z125-6-7600 227

PATH commands Debugging aid PATH

Example of the use of the DISPLAY command

1 {$DEBUG} PROGRAM G (input, output);
2 TYPE
3 color_type = (black, brown, red, orange, yellow,
4 green, blue, violet, gray, white);
5 colors = set of color_type;
6 VAR
7 i : integer;
8 b : boolean:
9 ch: string [3];

10 s : colors;
11 f : color_type;
12
13 PROCEDURE even (var v_b: boolean;
14 w_i: integer);
15 begin
16 if (w_i mod 2) = 0
17 then v_b := true
18 else v_b := false;
19 end;
20
21 begin
22 s := [green, gray, yellow, blue];
23 f := white;
24 readln;
25 read (i);
26 even (b, i);
27 if b
28 then ch := ’yes’;
29 else ch := ’no ’;
30 writeln (ch);
31 end.

After the start of the test program:

%% testpoint before program start
%% scope seen from outside all compilation units
*at g.19, g.32 do getcmd; resume;
%% program continued
*9 (01)
%% testpoint at line G.19 (even)
*display (v_b, w_i);
%% v_b = False
%% w_i = 9
*display (even.%local); (02)
%% variables of even: none
*display (even.%param); (03)
%% parameters of even:
%% v_b = False
%% w_i = 9

(01) Input for the program.

(02) Output of the local variables (if present) of the procedure "even".

(03) Output of all parameters of the procedure "even".

228 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

*dump; (04)
%% parameters and local variables of even:
%% v_b = False
%% w_i = 9
%% global variables of G:
%% i = 9
%% b = False
%% ch = ’’
%% s = [yellow..blue,gray]
%% f = white
*display (i, i:hex);
%% i = 9
%% i = #9
*resume;
%% program continued
no (05)
%% testpoint at line G.31
*display (%local);
%% variables of G:
%% i = 9
%% b = False
%% ch = ’no ’
%% s = [yellow..blue,gray]
%% f = white
*display (ch[1], ch[1]:hex);
%% ch[1] = ’n’
%% ch[1] = #’95’
*display (ch[2], ch[3]);
%% ch[2] = ’o’
%% ch[3] = ’ ’
*display (ch, ch:hex);
%% ch = ’no ’
%% ch = #’959640’
*display (’string’);
%% ’string’
*display (2, ’A’, 3.14, true);
%% 2
%% ’A’
%% 3.1400000000000E+00
%% True = True
*display (colors ([white, brown.. orange, red.. yellow])); (06)
%% colors ([white, brown.. orange, red.. yellow]) = [brown.. yellow, white]

(04) Output of all variables in the dynamic call chain and the global variables of all
packages (see section 9.2.2.8).

(05) Output produced by the program.

(06) Output of a qualified set constructor.

U2780-J-Z125-6-7600 229

PATH commands Debugging aid PATH

9.2.2.2 ASSIGN command

ASSIGN variable := factor

The variable is assigned the value of the factor (see section 9.1.3). If this value exceeds
the limit set by the type of the variable, the assignment is rejected with an error
message.

The ASSIGN command is permissible only if the compilation unit in which the testpoint
lies was compiled with the option DEBUG=ON, i.e. not with DEBUG=RESTRICTED
(see section 9.1.7).

Example

%% testpoint before program start
%% scope seen from outside all compilation units
*at g.19 do getcmd; resume;
%% program continued
*12
%% testpoint at line G.19 (even)
*display (i, w_i);
%% i = 12
%% w_i = 12
*assign w_i := 5; (01)
*display (i, w_i);
%% i = 12
%% w_i = 5
*display (b, v_b);
%% b = True
%% v_b = True
*assign v_b := false; (02)
*display (b, v_b);
%% b = False
%% v_b = False
*assign s := color ([gray, red.. green, yellow.. blue]); (03)
*display (s);
%% s = [red.. blue, gray]
*assign s := colors ([]);
*display (s);
%% s = []
* ...

(01) The assignment to w_i does not change variable i, passed as a value parameter.

(02) The assignment to v_b does change variable b, passed as a var parameter.

(03) A qualified set constructor is assigned to the variable s.

230 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2.2.3 IF command

Format 1:

IF condition THEN command

Format 2:

IF condition THEN command ELSE command

This command corresponds to the IF statement in Pascal-XT.

For "condition" the Boolean variables, Boolean constants and expressions of the type

factor relational operator factor

are permitted.

For "relational operator" the following operators are permitted:
"=", "<>", "<=", ">=", "<", ">" and "in".
For "command" in the THEN and in the optional ELSE clause, all debugging aid
commands are permitted.

Example

%% testpoint before program start
%% scope seen from outside all compilation units
*at g.26 do if i < 0 then getcmd;
*at g.27 do if blue in s then begin
* if b then display (’even’)
* else display (’odd’)
* end
* else display (’blue not in s’);
*resume;
%% program continued
*-6
%% testpoint at line G.26
*assign i := 3;
*if f in colors ([yellow.. blue]) then display (f); resume;
%% program continued
%% testpoint at line G.27
%% ’odd’
%% program continued

U2780-J-Z125-6-7600 231

PATH commands Debugging aid PATH

9.2.2.4 Compound command

BEGIN sequence-of-commands END

This command corresponds to the compound statement in Pascal-XT.

It can be used to combine several commands in one AT or IF command or to
postpone the execution of a sequence of commands until the terminating END.

If an error in analysis occurs in a command within a compound command, the entire
compound command must be reentered.

Example

%% testpoint before program start
%% scope seen from outside all compilation units
*begin display (1); (01)
* display (2); end;
%% 1
%% 2
*at g.22 do begin display (i); getcmd;
* display (’Hello !!!’) end; resume;
%% program continued
%% testpoint at line G.22
%% i = 0
*resume; (02)
%% ’Hello !!!’
%% program continued
* . . .

(01) The DISPLAY command is not carried out until the compound command is
concluded with END.

(02) The RESUME command refers to the GETCMD command in the compound
command.

232 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2.2.5 SYSTEM command

Format 1:

SYSTEM ’system-command’

The BS2000 command ’system-command’ is executed and then a return is made to
debugging aid mode. Both uppercase and lowercase letters can be specified within
’system-command’.

Example

%% testpoint at line G.22
*system ’fstat ,r’;
% PUBLIC SPACE: 13212 PAGES FOR 206 FILES
* ...

Format 2:

SYSTEM

This has the same effect as the Break key (K2). After /RESUME is entered a return is
made to debugging aid mode.

Example

%%testpoint at line G.22
*system;
BKPT PCOUNT 00722E
/FSTAT ,R
% PUBLIC SPACE: 13212 PAGES FOR 206 FILES
/RESUME
*

U2780-J-Z125-6-7600 233

PATH commands Debugging aid PATH

9.2.2.6 EDIT command

Format 1:

EDIT ’file-name’

The procedure area in use is cleared and an EDT FILE command issued using the
specified file name. Then the file is loaded into the procedure area and a branch is
made to EDT. After input of ’@RET’ or ’HALT’, or after pressing key K1, a return is
made to the debugging aid. Both uppercase and lowercase letters can be specified in
’file-name’.

Format 2:

EDIT

A branch is made to the last EDT procedure area used. The first time it is called this
will be procedure area 0. EDT can, however, be exited from, as described above.

234 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2.2.7 SHOW command

Format 1:

SHOW WHERE testpoint-specification

The SHOW WHERE command with testpoint specification (see sections 9.1.3, 9.1.4.2
and 9.1.4.4) shows at which of the potential testpoints specified (see section 9.1.2)
testpoints are actually set.

If no set testpoints are found among the potential testpoints specified by "testpoint-
specification", an error message is issued (see section 9.3).

Example

%% testpoint at line unitx.26
*show where 1..100, unity.(10..50, 63);
%% testpoints at:
%% line unitx.26
%% line unitx.35
%% line unitx.42
%% line unity.17
*show where unity.%all;
%% testpoints at:
%% line unity.17
%% line unity.98
*show where %all_units;
%% testpoints at:
%% line unitx.26
%% line unitx.35
%% line unitx.42
%% line unitx.378
%% line unity.17
%% line unity.98
%% line unitz.136
*show where exception;
%% testpoint at exception
*

U2780-J-Z125-6-7600 235

PATH commands Debugging aid PATH

Format 2:

SHOW WHERE

An "empty" SHOW WHERE command (without testpoint specification) forces the output
of the current testpoint message prior to the next PATH input or output, or at the latest
when the testpoint is left, even if it has already been output at this testpoint (see
section 9.3).

This command is useful if the user has forgotten which testpoint is the current one, or
(as a deferred action) for tracing the execution of a program.

Example

*show where;
%% testpoint at line unitx.26
*at 27..40 do show where; at 42 do getcmd;
*resume;
%% testpoint at line unitx.27; program continued
%% testpoint at line unitx.28; program continued
%% testpoint at line unitx.38; program continued
%% testpoint at line unitx.38; program continued
%% testpoint at line unitx.42
*

236 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

Format 3:

SHOW UNITS

The SHOW UNITS command provides a list of all compilation units (main program and
referenced packages) of the program under test. For each compilation unit, the
following can be taken from this list:

its full name, if the appropriate test table is loaded, its abbreviated name, if the
appropriate test table is not (yet) loaded.

the setting of the DEBUG option in the specification and in the body, i.e. whether
"minimum", "partial" or "complete" test tables (see section 9.1.7) were generated and
whether assignments to program variables are permitted.

information about the availability of the test tables.

time compilation took place. As of version 2.2A, the date information output for old
and new modules will include a four-digit year number.

Example

*show units
%% compilation units:
%% INTERPRETATION, compiled 1991-12-03 13:05:27, complete testtable
%% ANALYZATION (restricted), compiled 1991-11-31 10:13:36, complete testtable
%% NEGOTIAT, compiled 1991-12-04 10:24:57, partial testtable ?
%% XYZ, compiled 1991-12-04 10:21:26, minimal testtable ?
%% CONNECTI, compiled 1991-11-31 12:10:04, invalid testtable
%% AB, compiled 1991-12-04 10:17:23, unavailable testtable

The last four compilation units appear in this list with their abbreviated names. The first
and second compilation units (package bodies) were compiled using the DEBUG
option; "?" means that PATH has not yet accessed the test tables for these compilation
units and has not yet tested the availability of those test tables.

U2780-J-Z125-6-7600 237

PATH commands Debugging aid PATH

Format 4:

SHOW CALLS

The SHOW CALLS command provides a list of the elements of the dynamic call chain
for the current testpoint, i.e. all subprogram incarnations, beginning with the one from
which the subprogram incarnation containing the current testpoint was called, up to the
main program, are output.

Example

%% testpoint at line PROG.237 (proc7)
*show calls
%% called from line PROG.100 (proc6)
%% called from line PROG.80 (proc5)
%% called from line PROG.77 (proc5)
%% called from line PROG.77 (proc5)
%% called from line PROG.253 (func2)
%% called from line PROG.103 (proc6)
%% called from line PROG.323

The term subprogram incarnation is necessary because as a result of direct or indirect
recursive subprogram calls, one and the same subprogram may of course appear
several times in the dynamic call chain.

The output of the sequence is the reverse of the call sequence in the program; thus the
"most recent" incarnation appears first.

The variables of the individual subprogram incarnations may be referred to by means of
incarnation qualifications (see section 9.1.3).

Thus, if a variable i is declared in a function F, for example, the i in the second
incarnation of F can be referenced by means of F.%2.i, where F.%2. is the incarnation
qualification.

Output of all local variables or parameters of a subprogram incarnation is also possible
(see section 9.2.2.1).

Note

Prior to accessing data in the dynamic chain, it is expedient to output the list of the
(sub)program incarnations contained in the dynamic chain, with the help of the
SHOW CALLS command. In particular, when one testpoint has been left (by means
of RESUME) and execution is proceeding to another one (or possibly even the
same one again), the SHOW CALLS command should be used before data in the
dynamic chain is accessed, since the dynamic chain may have changed since the
last testpoint.

238 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2.2.8 DUMP command

DUMP

This command outputs all variables in the dynamic call chain and all global variables of
all packages in the PATH output medium.

Example

*dump
%% parameters and local variables of aaa:
%% i = 17
%% b = False
%% parameters and local variables of aa: none
%% parameters and local variables of a:
%% ch = ’a’
%% b = True
%% x = L’2D1’
%% global variables of HAUPT:
%% a = 200
%% b = 100
%% p = L’C2F11’
%% global variables of PACKA:
%% j = 1
%% rec_a
%% .p = L’0’
%% .q = L’A2F3’
%% .size = 512373
%% global variables of PACKB: none
%% global variables of PACKC:
%% c = 0
%% d = 1
%% tab
%% [1] = ’one’
%% [2] = ’two’
%% [3] = ’three’

U2780-J-Z125-6-7600 239

PATH commands Debugging aid PATH

9.2.2.9 KILL command

KILL

The effect of KILL depends upon the Pascal-XT program section active at the time. In
an entry procedure, the program under test is aborted. In a main program, the program
under test is only aborted if no more testing is requested (see section 9.5 "Restart").

Example

*kill
%% program aborted

240 U2780-J-Z125-6-7600

Debugging aid PATH PATH commands

9.2.2.10 SWITCH command

Format 1:

SWITCH INPUT ’file-name’
SWITCH OUTPUT ’file-name’
SWITCH LIST ’file-name’

The PATH input, output or list medium is assigned to the specified file.

Format 2:

SWITCH INPUT
SWITCH OUTPUT
SWITCH LIST

An "empty" SWITCH command cancels the current file assignment and restores the last
assignment that was valid.

Note

This command is not yet available.

U2780-J-Z125-6-7600 241

PATH messages Debugging aid PATH

9.3 Debugging aid messages

At analysis time, the command lines input by the PATH input medium are output to the
PATH output medium (echoing of input). If they are faulty (syntactic or semantic
errors), analysis stops at the first error and a corresponding error message is output.
Echoing of error-free command lines can be suppressed by means of the {$R-} option
(see section 9.1.3.1).

• Prior to each PATH input or output, the current testpoint message is output if it has
not yet been output since the testpoint was reached, or if, following its (last) output,
an (empty) SHOW WHERE command has been executed.

Example

%% testpoint at line unitx.72
*display (i);
%% i = 9
*show where;
%% testpoint at line unitx.72
* . . .

If at a (user-set) testpoint no PATH input or output takes place (but instead there is,
for example, only an ASSIGN command) and no (empty) SHOW WHERE command
is executed, no testpoint message is output.

Depending on the type of testpoint, the testpoint message will take one of the
following forms:

Testpoint before program start:
testpoint before program start

User-set testpoint:
testpoint at line <unit-name>.<line-no>

Postmortem testpoint:
testpoint because of unhandled <error> at line <unit-name>.<line-no>

Exception testpoint:
testpoint because of <error> at line <unit-name>.<line-no>

Entry testpoint:
testpoint before entry call

When a testpoint is reached at which "global scope" is in effect (see section 9.1.2)
the message

scope seen from outside all compilation units

242 U2780-J-Z125-6-7600

Debugging aid PATH PATH messages

is output, in particular at the testpoint before program start (see section 9.1.4.1) and
(if the test table is not complete or is not available, see section 9.1.7) at the post-
mortem testpoint (see 9.1.4.3) or at the exception testpoint (see section 9.1.4.4).

Examples

The following example shows the messages at the testpoint before program start:

%% testpoint before program start
%% scope seen from outside all compilation units
* . . .

The following example shows the messages at the postmortem testpoint of a
program with minimum or partial test table:

POINTER_ERROR (92) RAISED FROM PROG AT 8C0013C0 (00099000).
FILE_INFO IN THE MOMENT OF RAISE : NONE.
%% testpoint because of Pointer_Error at line PROG.16
%% scope seen from outside all compilation units
* . . .

• When a testpoint is left a testpoint end message is output if the testpoint message
has already been output (at least once) since the testpoint was reached. The
testpoint end message "program continued" or "program aborted" indicates whether
the program under test is being continued or was aborted due to execution of a
KILL command.

If an (empty) SHOW WHERE command is executed, but then, up to the point at
which the testpoint is left, no PATH input or output (and thus also no testpoint
message) occurs, or if a KILL command is executed and at the testpoint no
testpoint message has been output yet, a combined testpoint and testpoint end
message is output.

• In cases of errors during execution of a PATH command, one of the following error
messages is output:

U2780-J-Z125-6-7600 243

PATH messages Debugging aid PATH

Error messages regarding test tables

test-table not available

The test table required to test a compilation unit is not available.
The cause is implementation-dependent.

test-table invalid or incompatible

The test table and the loaded object of this compilation unit do not stem from the
same compilation, or the test table was generated with a compiler version that is
not compatible with the PATH version being used.
Compile the compilation unit with a suitable compiler and, if necessary, relink.

unit compiled without DEBUG-Option

The compilation unit was compiled with DEBUG=OFF. For this reason, no testpoints
can be set in it and variables that are declared in it (or whose types are declared)
cannot be referenced.
Compile compilation unit with DEBUG=ON or DEBUG=RESTRICTED.

Errors in testpoint commands

no such testpoint found

The testpoint specification of a SLEEP, AWAKE, REMOVE or SHOW WHERE
command does not contain a testpoint previously set by means of an AT command.

testpoint cannot be set

A testpoint specified in an AT command cannot be set. The cause is
implementation-dependent (e.g. machine code write-protected).

244 U2780-J-Z125-6-7600

Debugging aid PATH PATH messages

no testable unit

An attempt was made to set testpoints in all testable compilation units by means of
AT %ALL_UNITS... However, no compilation unit is testable, since the main program
and all reference packages were compiled with DEBUG=OFF or the test tables are
not available.
Compile the compilation units in which testing is to be performed with DEBUG=ON
or DEBUG=RESTRICTED.

Errors in action commands

no call chain

A SHOW CALLS command could not be executed since the current testpoint is
either the testpoint before program start, a postmortem testpoint, or a testpoint in
the main program and, as a result, no dynamic call chain exists.

no valid scope given

Global scope is in effect.
The variable group (%LOCAL or %PARAM) must in this case be prefixed by a block
qualification or incarnation qualification (see section 9.1.3).

no such incarnation found

The specified execution (incarnation) of the subprogram does not exist.
Display the dynamic call chain using the SHOW CALLS command and use the
correct incarnation number if possible.

invalid address

An attempt was made to dereference a pointer containing an invalid address.

U2780-J-Z125-6-7600 245

PATH messages Debugging aid PATH

invalid set

In an action command a set type variable has been used and it contains invalid
values. This is particularly likely to be the case if the variable has not (yet) been
initialized. If an IF or ASSIGN command is involved, it is not executed. In the case
of a DISPLAY or DUMP command the contents of the variables concerned
(including the invalid values) are output.

invalid string length

The length of a string lies outside the permissible range. PATH therefore cannot
access the string.

index out of range

The value of the specified index expression lies outside the range of values defined
by the ARRAY index type.

low bound > high bound

The value of the slice lower limit is greater than the value of the slice upper limit.

pointer is nil

An attempt was made to dereference a pointer that has the value nil (null).

out of range

The value of a variable lies outside the range of values defined by its ordinal type.

boolean variable is neither True nor False

The variable specified in an IF command as a condition has an invalid value.
Therefore, neither the THEN branch nor the ELSE branch is performed.

246 U2780-J-Z125-6-7600

Debugging aid PATH PATH messages

value to be assigned is out of bounds

An attempt was made to assign to a variable a value which is outside the range of
values defined by its ordinal type. The variable was not changed.

set-value to be assigned exceeds bounds of variable

An attempt was made to assign to a set variable a value containing elements
outside the range of values defined by the base type of the type of variable. The
variable was not changed.

command not executed

The operating system command specified in the command string of a SYSTEM
command was not carried out because it is faulty.

illegal parameter

The file specified in an EDIT command cannot be edited.

set-element is out of set-bounds

An element of the set qualified by the set constructor lies outside the range of
values defined by its base type.

Further error messages beginning with "DP:" can occur in exceptional cases.

Either there is a fatal inconsistency in the program under test (e.g. updating of a
package specification without recompilation of the package bodies involved) or, if
this is not the case, the error is an internal error in the Pascal-XT system.

U2780-J-Z125-6-7600 247

Linking to a program Debugging aid PATH

9.4 Linking with PATH

Before a program can be tested it must be linked with the PATH debugging aid. The
required modules of the debugging aid are contained in object module library $PASLIB-
XT.
Testing of programs in shared code is not possible.

Static linking

For static linking using TSOSLNK, linking of the module "#test" specifies that the
program is to be tested with the PATH debugging aid. The debugging aid and the test
table modules are loaded dynamically, provided that they have not already been loaded
statically.
For further information on linking see section 6.2.

/EXEC $TSOSLNK
PROGRAM prog
INCLUDE progname , modlib
INCLUDE #test , $PASLIB-XT (01)
INCLUDE (#path##c,#path##d), $PASLIB-XT (02)
INCLUDE test table , modlib (03)
RESOLVE , modlib
RESOLVE , $PASLIB-XT
END

(01) By linking in the module #test it is specified that the generated object program is
to be executed under the control of the debugging aid PATH.

(02) The modules of the PATH debugging aid are linked in. If the INCLUDE statement
is missing, the debugging aid is dynamically loaded when the program under
test is started.

(03) The specified test table module of the program is explicitly linked in. If this
INCLUDE statement is omitted, the test table module is then dynamically loaded
when required. The same applies to test table modules of the packages linked to
the program. See section 4.4 for naming conventions pertaining to the test table
modules.

Dynamic linking

Programs linked dynamically can only be tested within the programming system. This is
accomplished with the aid of the RUN-PROGRAM statement using the DEBUG=YES
operand. The test table modules are loaded dynamically when required.

248 U2780-J-Z125-6-7600

Debugging aid PATH Testing with PATH

9.5 Testing with PATH

The program under test can be called and executed both on a BS2000 command level
and from within the programming system.

Invocation on BS2000 command level

/EXEC test-program

Invocation from within the programming system

RUN-PROGRAM (modlib, progname), DEBUG=YES

The program under test ("progname") is loaded from the object module library "modlib"
and started. If the library specification and/or the program name is omitted, the last
program compiled is tested.

PATH checks the main program and all relevant packages to ensure that the respective
code and data modules stem from the same compilation. If this is not the case, error
messages of the type

code-module incompatible with data-module <unit-name>

are output and the debugging run is aborted.

Once the program has been loaded and started, PATH issues a message at the
testpoint before program start and awaits input of further commands:

%% testpoint before program start
%% scope seen from outside all compilation units
*

Restarting the program under test

If the Pascal-XT main program tested is terminated (normally, by KILL or due to an
unrecoverable runtime error) the user can terminate the program under test or restart it.
The following message appears:

%% do you want to restart program with same testpoints ? (y/n)

Entry of "y" or "Y" restarts the program using the same testpoints and ILCS is neither
terminated nor reinitialized.

Entry of "n" oder "N" causes a return to the work mode in effect before the Pascal-XT
program was called (Pascal-XT programming system or BS2000 command mode).

No restart is possible for a main program implemented in another programming
language.

U2780-J-Z125-6-7600 249

Testing with PATH Debugging aid PATH

Canceling PATH commands

PATH allows the user to cancel a currently active debugging aid command by pressing
the K2 key (useful, for example, if the command is producing an unexpected amount
of output). Entering the BS2000 command "/INTR" causes the debugging aid to cancel
the PATH command and (after completing the output of any line already begun) to
issue the following message:

"... command(s) cancelled by user"

It then requests new commands, i.e. all further commands related to this testpoint are
ignored.

This behavior applies only when K2 /INTR is entered at a testpoint; that is, at a point
between the testpoint message and the testpoint end message (see section 9.3).
However, if K2 /INTR is input at some other point (when the program under test is not
at a testpoint), then PATH is not interrupted, but the exception condition Break_Error is
raised in the program under test. The program is then aborted if it does not contain an
exception handler capable of handling this exception condition.

Package names

If the test tables have not been statically linked in and the program has been started by
the main program and any packages linked in, the system will recognize only those
names which have been abbreviated to eight characters. Unabbreviated names are not
recognizable in their full length until the test tables have been loaded.

Dynamic loading of the test tables

For a program started by the RUN statement or a statically linked program (phase) in
which the test tables have not been linked in, the test tables are loaded dynamically as
required. For dynamic loading, the debugging aid proceeds according to the following
strategy:

For a program started with the RUN statement, the debugging aid attempts to load
the test tables from the object module library from which the program was loaded.

For statically linked programs, the debugging aid attempts to load the test tables
from the file TASKLIB or $TASKLIB.

If they are not found there, the Dynamic Linking Loader (DLL) searches for them in a
Tasklib created by the user with the SYSFILE command.

250 U2780-J-Z125-6-7600

Debugging aid PATH Testing with PATH

If no test table is found, the debugging aid requests input of a library name or of an
asterisk "*" for the temporary EAM object module file, or it requests an empty string.
The empty string is used to indicate the unavailability of the test table. The debugging
aid then attempts to load further test tables from the specified library, requesting a new
library each time it does not meet with success.

If the debugging aid requires the test table of a predefined package (e.g.
BS2000CALLS) and cannot find it (e.g. ... MOD "BS2000CT" NOT FOUND ...),
$userid.PASLIB-XT must be entered as the library name.

Validity of the test tables

The debugging aid checks all required test tables as to their validity, i.e. whether or not
they were generated by the same compilation as the code and data modules. If the test
tables are invalid, the debugging aid issues the following messages in the case of
statically linked test tables:

statically linked test table is invalid, trying to link dynamically

For dynamically loaded test tables the message reads:

dynamically linked test table is invalid

and the system requests input of a library name (see above).

PATH input/output

Debugging aid outputs are prefixed by "%%" and are passed on to the system output
file SYSOUT. Commands to the debugging aid are read from the system input file
SYSDTA.

Output of pointer values

Values of pointer variables are output in the form "L’address’", with "address" being a
hexadecimal value.

Handling "non-printable" characters in EBCDIC character sets

Non-printable characters (e.g. in a variable within a variable string type) are output as
full stops (’.’). As before it is of course possible to output certain or all characters of
the variables in hexadecimal form by appending :HEX.

U2780-J-Z125-6-7600 251

Testing with PATH Debugging aid PATH

Example

Assume that "strg" is a variable within the variable string type "String".

*DISPLAY (strg);
%% strg = ’..Pascal.’

The first two characters and the last character of the character string are not
printable (or possibly the printable character ’.’ could be used). If it is important to
know which non-printable characters are contained in "strg", then it is possible to
have the value of "strg" or parts of it output in hexadecimal form:

*DISPLAY (strg[1..2] :HEX);
%% strg [#1..#2] = #’1A2E’
*DISPLAY (strg[9] :HEX);
%% strg [#9] = #’80’

Runtime error response of the program under test

When the exception testpoint has been set, the debugging aid in a Pascal-XT program
section issues a message either at the point where the error occurred or at the point
where the external subprogram which passed on the error was called, and it executes
the PATH command previously specified for the error condition.

If an exception handler is defined for the runtime error in the source program of the
Pascal-XT program section tested, the program continues from that point on leaving the
exception testpoint.

If no exception handler is defined, a postmortem testpoint is activated and the
debugging aid issues a message, as described in section 9.1.4.3. The message appears
either at the point in the Pascal-XT program section at which the runtime error
occurred, or at the point at which the external subprogram which passed on the error
was called.

The testpoint message contains the number of the source line in which the runtime
error occurred. Afterwards debugging aid commands can be entered.

The PATH command KILL causes the program to terminate.

The effect of the PATH command RESUME depends on the type of Pascal-XT program
section tested (see section 9.1.4.3).

Before the testpoint message is displayed the name of the object module library is
requested if the test table has not been loaded.

252 U2780-J-Z125-6-7600

Debugging aid PATH Testing with PATH

Simultaneous use of the PATH debugging aid and the system debugging aid AID

Simultaneous use of the debugging aids PATH and AID does not lead to any conflicts
as long as the Pascal program has been tested with PATH and the linked-in Assembler
programs have been tested with AID. AID commands can also be issued at PATH
testpoints using the SYSTEM command. However, it should be noted that when register
contents are output by AID for example, the values of the program under test are not
output, rather those of the debugging aid.

Potential testpoint

As well as most of the beginnings of statements, the end of a subprogram, main
program or package body represents a potential testpoint (see section 9.1.2) In
addition, the occurrence of an exception (see section 9.1.4.4) or a call to an entry
subprogram in a compilation unit not known to the debugging aid (see section 9.1.4.5)
represent potential testpoints.

U2780-J-Z125-6-7600 253

Debugging aid PATH Testing with PATH

10 Runtime errors and error handling
Runtime errors are errors and exceptions occurring during program execution. They
can have various causes, for example there may be an addressing error or the user
may produce an exception by calling the predefined procedure Raise (see [1], 15.11).

A runtime error is either intercepted by an exception handler (see [1], 14.2) in the
program section in which it is detected, or passed on to the calling program section.
Passing on a runtime error to the caller is also known as "error propagation".

As of Pascal-XT V2.2A, ILCS (see 7.1) also enables runtime errors to be propagated
across language boundaries, i.e. when the caller and the subprogram called are
implemented in different programming languages. Error propagation operates in both
directions: from a Pascal-XT entry procedure to an external caller, or from an external
subprogram to a Pascal-XT caller. However, as not all programming languages support
error propagation, interfacing between different languages can lead to unexpected
system behavior. For information on error handling mechanisms provided by other
programming languages, please refer to the relevant language or compiler reference
manual. The following section describes error handling for Pascal-XT V2.2A and
indicates potential problems.

U2780-J-Z125-6-7600 255

STXIT events and ILCS Runtime errors

10.1 STXIT events and ILCS

The Pascal-XT exception handling facility is designed to permit the user to deal with
potential runtime errors occurring during program execution. In BS2000 terminology,
runtime errors detected by the operating system are called events and are subdivided
into different STXIT event classes (see [6]).
As of Pascal-XT V2.2A, the following three event classes are no longer reported directly
to the operating system by the runtime system, but instead are reported via the SEH
(Standard Event Handler) or SSH (Standard STXIT Handler) of ILCS:

(a) Program check (PROCHK)

(b) Unrecoverable program error (ERROR)

These two event classes are reported to the operating system via the SEH of
ILCS. If such an event occurs, the operating system passes the interrupt weight of
the event to ILCS for use as the event code.

(c) Message to program (INTR)

This event class is reported to the operating system by the Pascal-XT runtime
system during its initialization via the SSH of ILCS. Provided that a Pascal-XT
program section is active, this event is activated by the key combination

K2 /INTR and is interpreted as a Pascal-XT Break_Error.

The Pascal-XT error handling facility and the debugging aid PATH function only if the
SEH of ILCS has not been deactivated by an external program section or overlaid by
the SSH in the same event classes.

256 U2780-J-Z125-6-7600

Runtime errors Error handling and output

10.2 Error handling and output in the event of an error

10.2.1 Pascal-XT handling of SEH events

As of Pascal-XT V2.2A, all runtime errors are reported to the Pascal-XT runtime system
via ILCS, regardless of where they originate. ILCS assigns an event code which enables
the runtime system to identify the error. ILCS bases the event code on a value (for
STXIT events, the interrupt weight; for program errors, the Error_Number) which is
passed to ILCS by the agency which first detects the error.

What are SEH events?

SEH events are runtime errors reported to the Pascal-XT runtime system by the SEH of
ILCS. The runtime system uses the assigned event code to distinguish between SEH-
STXIT events and SEH-NON-STXIT events.

SEH-STXIT events include the STXIT event classes PROCHK and ERROR; SEH-NON-
STXIT events include runtime errors which occur in a Pascal-XT program section (e.g.
due to Raise) or in an external program section written in another language.

How are SEH events handled?

The first time control passes to a Pascal-XT program section (main program or entry
procedure) during program execution, the Pascal-XT runtime system activates its own
event handling routine for SEH events within ILCS. This causes ILCS to report any
occurrence of an SEH event to the runtime system. The event handling routine remains
activated when an external subprogram is called from within the Pascal-XT program
section. This makes it possible to deal with errors that are passed from the external
subprogram to the calling Pascal-XT program section.

If an SEH event occurs in a Pascal-XT program section or is passed on from a
subprogram, ILCS reports that event with its event code to the Pascal-XT runtime
system, which then acts as follows:

(1) Determination of the Pascal-XT error number that corresponds to the SEH event.

The runtime system ascertains from the event code whether this is an SEH-STXIT
event or an SEH-NON-STXIT event.

With SEH-STXIT events, the interrupt weight is used in setting the Pascal-XT
system error code and, implicitly, the Pascal-XT error number. It does not matter
whether the program section in which the STXIT event occurred is implemented in
Pascal-XT or in another programming language.

U2780-J-Z125-6-7600 257

Error handling and output Runtime errors

With SEH-NON-STXIT events occurring in a Pascal-XT program section, the event
code is used as the Pascal-XT error number. SEH-NON-STXIT events that occur in
an external subprogram and are passed on to a Pascal-XT program section are
interpreted as a SYSTEM_ERROR (error number -1) with the system error code
5002.

Errors that occur in mathematical routines and are passed on to a Pascal-XT
program section are mapped to Numeric_Error with a special system error code.

(2) Search for an exception handler in the Pascal-XT program section.

If a procedure or function in the dynamic call chain of the Pascal-XT program
section contains an exception handler, the program continues from the point at
which it is defined. All program sections through which the error has been
propagated are terminated by a subprogram termination routine.

If no exception handler is defined, subsequent response depends upon whether the
program section examined is a Pascal-XT entry procedure or the main program.

If it is the main program, the runtime system displays the cause of the error and
the dynamic call chain (see 10.2.4). The program is then terminated.

If it is an entry procedure, the error is passed to the caller. If the caller is a Pascal-
XT program section or was itself called either directly or indirectly from within a
Pascal-XT program section, then steps (1) and (2) are repeated.
If the caller is an external program section and the error is not handled there nor
in any external program section above it, then the program is aborted.

If another runtime error ("Secondary_Error") occurs during steps (1) and (2), the whole
program is aborted immediately.

258 U2780-J-Z125-6-7600

Runtime errors Error handling and output

10.2.2 The Pascal-XT Break_Error

The STXIT event INTR (activated by the key combination K2 /INTR) is interpreted as a
Pascal-XT Break_Error and passed to the caller only if a Pascal-XT program section is
active. In this event, the user STXIT routine activated by the Pascal-XT runtime system
for the INTR event switches to the interrupted Pascal-XT program section process and
initiates an SEH-NON-STXIT event with the event code "Break_Error". If an exception
handler has been defined for this event, the program continues from that point; if not,
the error is passed to the caller.

If the INTR event occurs while an external program section is active, the SSH searches
for other user STXIT routines for the INTR event. If such routines are defined, SSH
reports the event to them; if not, the program continues without comment from the
point at which it was interrupted.

10.2.3 Language interfacing between Pascal-XT and Assembler

As the Pascal-XT error handling facility and the debugging aid PATH only function
correctly if the SEH is not deactivated by an external program section or overlaid by
the SSH, the following points should be noted for language interfacing with Assembler:

If necessary, a user can report and handle STXIT events in Assembler subprograms
(see the ASSEMBH manual [15]). If, however, Assembler program sections report their
own STXIT routines to BS2000 for the event classes PROCHK and ERROR, note that
Assembler programs leave STXIT routines in such a way that any errors are
subsequently reported correctly to the Pascal-XT runtime system.

U2780-J-Z125-6-7600 259

Error handling and output Runtime errors

10.2.4 Output when a runtime error occurs

When a runtime error occurs, the Pascal-XT runtime system stores the error number
and the names of the subprograms in the dynamic call chain.

The stored information is output automatically if a runtime error is not handled
anywhere in the program and if the main program is implemented in Pascal-XT. If a
runtime error occurs in a Pascal-XT entry procedure, the information is not output.
However, the user can define an exception handler and output the dynamic call chain
at that point to the system files SYSOUT and SYSLST with the predefined procedure
Print_Error_Info from the ERRORS package (see appendix A.7).

If a runtime error is passed to the caller, please note the different effects of Raise
(Error_Number) and Raise (0) (or ERRORS.reraise, see appendix A.7).
Raise (Error_Number) generates the same exception condition and the original point of
failure, i.e. the subprogram call chain from there to Raise, is lost.
In contrast, Raise (0) passes the exception condition on to the caller without destroying
the subprogram call chain (see also the examples at the end of this section).

The information output has the following structure:

Exception
System code

Dynamic call chain

% READ_ERROR (1094) RAISED FROM quadr_eq.get_valu AT 000E3240
% FROM quadr_eq.solve AT 000E32F0
% FROM quadr_eq.quadr_eq AT 000E3352
% FILE_INFO IN THE MOMENT OF RAISE : INPUT,’*SYSDTA,MAXLINELENGTH=254’.

File allocation

Where interfaces between different languages are used, other information is also output.
More details of this are given in the section dealing with the structure of the dynamic
call chain (see below).

260 U2780-J-Z125-6-7600

Runtime errors Error handling and output

Exception

The exception comprises an integer number supplied by the predefined function
Error_Number [1]. If a predefined exception is involved, the runtime system outputs the
identifier predefined in the syntax, instead of the error number. Identifiers and their
associated error numbers are shown in the table below.

System code

In brackets immediately following the exception code a system code is provided to
classify the exception more specifically. It is supplied by the System_Code function
from the predefined package ERRORS (see appendix A.7). It is only defined for some
of the predefined exceptions (refer to table); the meaning of this number is described in
section 10.4. The runtime system outputs the error number in hexadecimal form if a
BS2000 error code is involved.
The system code has the value 0 if the exception was triggered as the result of
activating the Check option (see also section 10.4).

Predefined ERROR_NUMBER ERRORS.system_code
exception

SYSTEM_ERROR - 1 See section 10.4
NUMERIC_ERROR - 2 See section 10.4
RANGE_ERROR - 3 Undefined
SET_ERROR - 4 Undefined
STRING_ERROR - 5 See section 10.4
INDEX_ERROR - 6 Undefined
POINTER_ERROR - 7 See section 10.4
VARIANT_ERROR - 8 Undefined
CASE ERROR - 9 Undefined
FILE_ERROR -10 See section 10.4
EOF_ERROR -11 Undefined
OPEN_ERROR -12 See section 10.4
READ_ERROR -13 See section 10.4
MEMORY_ERROR -14 See section 10.4
BREAK_ERROR -15 Undefined 1)
ELAB_ERROR -16 Undefined

Otherwise Undefined

1) A BREAK ERROR is generated by pressing the K2 key (transition to BS2000
command mode) and subsequently entering the BS2000 command /INTR.

U2780-J-Z125-6-7600 261

Error handling and output Runtime errors

Dynamic call chain

The dynamic call chain reflects the sequence of subprogram calls at the time a runtime
error occurs. The dynamic call chain output is structured as follows:

First and second line:
If the runtime error occurred in a Pascal-XT program section, the first line contains the
name of the Pascal-XT procedure in which the error occurred.
If the error was passed to the Pascal-XT program section from an external subprogram,
the first line contains the following text:

error number (system code) RAISED FROM OUTSIDE PASCAL ENVIRONMENT

In this case, the second line contains the name of the Pascal-XT procedure to which
the error was first passed.

Subsequent lines:
The subsequent lines each contain the dynamic Pascal-XT predecessors as far back as
the Pascal-XT main program. For each procedure specified the package name and
procedure name are output, each with a maximum of 8 characters; for entry
procedures, the keyword ENTRY is also output. If there is an external subprogram
between a Pascal-XT entry procedure and a Pascal-XT caller, the following text is
output:

FROM NON-PASCAL-ROUTINE(S)

Last line:
No more than the first 20 lines of the dynamic call chain are output. If there are more
dynamic predecessors than this, it is indicated in the last line by three periods following
the procedure name. If not, the last line contains either the name of the Pascal-XT main
program or, if the main program is implemented in another programming language, the
name of the last Pascal-XT entry procedure to pass on the error.

File assignment

If the runtime error occurs when a file is accessed, an additional line is output, with:
The name of the Pascal file (8 characters, maximum), if no local file is involved.
If the physical file was assigned by means of ASSIGNFILE, the external description
from this call is output.
In the case of non-temporary files, the name of the physical file is output.

If a runtime error occurs when testing a program (with PATH), following output of the
runtime error message at the postmortem testpoint the number of the source line is
output in which the runtime error occurred.

262 U2780-J-Z125-6-7600

Runtime errors Error handling and output

Secondary Error

In the case of significant errors the runtime system issues one of the following
messages:

SECONDARY ERROR ... or INTERNAL_ERROR...

This means that an inconsistency has been identified in the system. In order to avoid
never-ending recursions the runtime system issues the above message and aborts the
program. The error or inconsistency may have been caused by the program itself (e.g.
the effect of overwriting) or there may be an error in the system that has not yet been
detected.

U2780-J-Z125-6-7600 263

Error handling and output Runtime errors

Examples

1. Difference between Raise (Error_Number) and Raise (0)

The different effects of Raise (Error_Number) and Raise (0) are shown by examples 14-
4 and 14-5 in section 14.3 of the Pascal-XT Language Reference Manual (see [1]).

Processing for example 14-4

1 PROGRAM quadr_equation (Input, Output);
2
3 PROCEDURE get_value (name: String; VAR value: Real);
4 BEGIN
5 Writeln (’Please enter the value for ’, name, ’:’);
6 Read (value);
7 END;
8
9 PROCEDURE solve;

10 VAR
11 p, q, d: Real;
12 BEGIN
13 Writeln;
14 Writeln (’Quadratic equation x**2 + p*x + q = 0’);
15 get_value (’p’, p);
16 get_value (’q’, q);
17 d := Sqrt (Sqr (p) / 4 - q);
18 IF d = 0
19 THEN Writeln (’x = ’, -p / 2)
20 ELSE Writeln (’x = ’, -p / 2 + d, ’ or ’, -p / 2 - d);
21 EXCEPTION
22 IF Error_Number = Numeric_Error
23 THEN Writeln (’The equation has no solution’)
24 ELSE Raise (Error_Number);
25 END;
26
27 BEGIN {PROGRAM quadr_equation}
28 WHILE True
29 DO solve;
30 EXCEPTION
31 IF Error_Number = Eof_Error
32 THEN Writeln (’Goodbye’)
33 ELSE Raise (Error_Number);
34 END.

Quadratic equation x**2 + p*x + q = 0
Please enter the value for "p":
6
Please enter the value for "q":
5
x = -1.000000000000000E+00 or -5.000000000000000E+00

Quadratic equation x**2 + p*x + q = 0
Please enter the value for "p":
6

264 U2780-J-Z125-6-7600

Runtime errors Error handling and output

Please enter the value for "q":
9
x = -3.000000000000000E+00

Quadratic equation x**2 + p*x + q = 0
Please enter the value for "p":
6
Please enter the value for "q":
10
The equation has no solution

Quadratic equation x**2 + p*x + q = 0
Please enter the value for "p":
xxx
READ_ERROR (1094) RAISED FROM quadr_eq.quadr_eq AT 000E3660(000E5000).
FILE_INFO IN THE MOMENT OF RAISE : INPUT,’*SYSDTA,MAXLINELENGTH=254’.

As can be seen in the case of the Read_Error caused by the entry of "xxx" (and
propagated in the program by the specification of "Raise (Error_Number)") the dynamic
call chain is only output from the point of the last propagation (thus only from the main
program "quadr_equation"). It is no longer possible to identify that the error has
occurred in the procedure "get_value".

U2780-J-Z125-6-7600 265

Error handling and output Runtime errors

Processing for example 14-5

The program has been slightly modified when compared with that in the Language
Reference Manual: Instead of the call "Raise (0)" the equivalent call "Errors.ReRaise" is
used.

1 WITH Errors;
2 PROGRAM quadr_equation (Input, Output);
3
4 PROCEDURE get_value (name: String; VAR value: Real);
5 BEGIN
6 Writeln (’Please enter the value for ’, name, ’:’);
7 Read (value);
8 END;
9

10 PROCEDURE solve;
11 VAR
12 p, q, d: Real;
13 BEGIN
14 Writeln;
15 Writeln (’Quadratic equation x**2 + p*x + q = 0’);
16 get_value (’p’, p);
17 get_value (’q’, q);
18 d := Sqrt (Sqr (p) / 4 - q);
19 IF d = 0
20 THEN Writeln (’x = ’, -p / 2)
21 ELSE Writeln (’x = ’, -p / 2 + d, ’ or ’, -p / 2 - d);
22 EXCEPTION
23 IF Error_Number = Numeric_Error
24 THEN Writeln (’The equation has no solution’)
25 ELSE Errors.ReRaise;
26 END;
27
28 BEGIN {PROGRAM quadr_equation}
29 WHILE True
30 DO solve;
31 EXCEPTION
32 IF Error_Number = Eof_Error
33 THEN Writeln (’Goodbye’)
34 ELSE BEGIN
35 Writeln (’Program aborted, details on SYSLST’);
36 Errors.ReRaise;
37 END;
35 END.

Quadratic equation x**2 + p*x + q = 0
Please enter the value for "p":
xxx
Program aborted, details on SYSLST
% READ_ERROR (1094) RAISED FROM quadr_eq.get_valu AT 000E3240
% FROM quadr_eq.solve AT 000E32F0
% FROM quadr_eq.quadr_eq AT 000E3352
% FILE_INFO IN THE MOMENT OF RAISE : INPUT,’*SYSDTA,MAXLINELENGTH=254’.

With this solution the output of the dynamic call chain starts from the actual location of
the error.

266 U2780-J-Z125-6-7600

Runtime errors Error handling and output

It is possible to obtain the same error report by calling the procedure
"Errors.Print_Error_Info" in line 36 instead of "ReRaise" and the program would then
terminate "normally".

2. Unhandled runtime error in Pascal-XT/Cobol language interfacing

This example is the same as example no. 1 in chapter 7, with one difference: A runtime
error occurs in the Cobol subprogram (Numeric_Error due to division by 0) and is
passed on to the caller (Pascal-XT main program). As the error is not handled there, it
leads to abortion of the program.

Source code of the Pascal-XT main program "PASHAUPT":

PROGRAM PASHAUPT (INPUT,OUTPUT);
TYPE

RA = 1..8;
STR8 = ARRAY [RA] OF CHAR;
SATZ = RECORD

A(0) : INTEGER;
B(4) : STR8;
END;

CONST
AGGR = STR8(’T’,’E’,’S’,’T’,’ ’:4);

VAR
RC : SATZ;
I : INTEGER;

PROCEDURE COBUPROG (VAR PAR:SATZ); EXTERNAL;

BEGIN { PASHAUPT }
RC.A := 1111;
RC.B := AGGR;
COBUPROG (RC);
WITH RC DO BEGIN (01)

WRITELN (’A:’,A);
WRITE (’B:’);
FOR I := FIRST(RA) TO LAST(RA) DO

WRITE (B[I]);
WRITELN;
END;

END.

Source code of the Cobol subprogram "COBUPROG":

ID DIVISION.
PROGRAM-ID. COBUPROG.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

TERMINAL IS SCREEN.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 TEILDR PIC 9(8).
77 DIV PIC 9. (02)

U2780-J-Z125-6-7600 267

Error handling and output Runtime errors

LINKAGE SECTION.
01 SATZ.

02 TEILB PIC S9(8) COMP.
02 TEILA PIC X(8).

PROCEDURE DIVISION USING SATZ.
ANF.

MOVE TEILB TO TEILDR.
DISPLAY "TEILB: " TEILDR UPON SCREEN.
DISPLAY "TEILA: " TEILA UPON SCREEN.
MOVE "XXXXZZZZ" TO TEILA.
MOVE 0 TO DIV. (03)
COMPUTE TEILDR = TEILDR / DIV. (04)

BACK.
EXIT PROGRAM.

Call of the executable phase "PASCOBOL" and runtime listing:

/EXEC PASCOBOL (05)
% BLS0500 PROGRAM ’PASCOBOL’, VERSION ’ ’ OF ’...’ LOADED
TEILB: 00001111 (06)
TEILA: TEST
9089 INTERRUPT-CODE= 68 AT PROGRAM COUNT= 000008F4 , PROGRAM-ID IS COBUPROG

NUMERIC_ERROR (104) RAISED FROM OUTSIDE PASCAL ENVIRONMENT (07)
FROM PASHAUPT.PASHAUPT AT 0000027E (08)

% EXC0732 ABNORMAL PROGRAM TERMINATION. ERROR CODE ’NRT0101’ /HELP-MSG NRT0101
% CMD0205 ERROR IN PRECEDING COMMAND OR PROGRAM AND PROCEDURE STEP TERMINATION : COMMANDS ...

... WILL BE IGNORED UNTIL /SET-JOB-STEP OR /LOGOFF OR /ABEND IS RECOGNIZED

Explanation:

(01) Execution of the Pascal-XT main program is interrupted at this point due to a
runtime error in the Cobol subprogram which leads to abortion of the program.

(02) Declaration of the variable DIV of type PIC 9.

(03) The variable DIV is assigned a value of 0.

(04) The statement requests division of the value of TEILDR (1111) by the value of
DIV (0); this raises a runtime error. See (07).

(05) Startup of the executable phase PASCOBOL.

(06) Output of the Cobol subprogram: Name and value of the variables TEILB and
TEILA.

(07) Because a runtime error occurred in the Cobol subprogram and this was not
handled by the main program, the program is aborted and the dynamic call
chain is output. The first line indicates that the problem is a Numeric_Error and
that the error has been propagated from within an external program section.

(08) This line indicates the point in the Pascal-XT program section at which the
external subprogram that propagated the runtime error was called. Preceding the
period is the name of the package, where applicable; the period is followed by
the name of the entry procedure. If, as in this case, the Pascal-XT program
section is a main program, the same name appears in front of and after the
period.

268 U2780-J-Z125-6-7600

Runtime errors Error handling and output

3. Handled runtime error in Pascal-XT/Cobol language interfacing

This example is the same as example 2, with one difference: The runtime error passed
on by the Cobol subprogram to the Pascal-XT main program is intercepted by an
exception handler in the main program, and consequently does not cause an abnormal
program termination. As the runtime error is an SEH-STXIT event (division by 0), the
fact that it occurred in an external subprogram is immaterial: it is passed on as a
Numeric_Error, exactly as if it had occurred in a Pascal-XT program section and had
not been handled there.

Source code of the Pascal-XT main program "PASHAUPT":

WITH ERRORS;
PROGRAM PASHAUPT (INPUT,OUTPUT);
TYPE

RA = 1..8;
STR8 = ARRAY [RA] OF CHAR;
SATZ = RECORD

A(0) : INTEGER;
B(4) : STR8;
END;

CONST
AGGR = STR8(’T’,’E’,’S’,’T’,’ ’:4);

VAR
RC : SATZ;
I : INTEGER;

PROCEDURE COBUPROG (VAR PAR:SATZ); EXTERNAL;

BEGIN { PASHAUPT }
RC.A := 1111;
RC.B := AGGR;
COBUPROG (RC);
WITH RC DO BEGIN

WRITELN (’A:’,A);
WRITE (’B:’);
FOR I := FIRST(RA) TO LAST(RA) DO

WRITE (B[I]);
WRITELN;
END;

EXCEPTION
IF ERROR_NUMBER = NUMERIC_ERROR (01)

THEN WRITELN (’ERROR INTERCEPTED BY EXCEPTION HANDLER.’)
ELSE ERRORS.PRINT_ERROR_INFO;

END.

Source code of the Cobol subprogram "COBUPROG" (unchanged):

ID DIVISION.
PROGRAM-ID. COBUPROG.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

TERMINAL IS SCREEN.
DATA DIVISION.
WORKING-STORAGE SECTION.

U2780-J-Z125-6-7600 269

Error handling and output Runtime errors

77 TEILDR PIC 9(8).
77 DIV PIC 9.
LINKAGE SECTION.
01 SATZ.

02 TEILB PIC S9(8) COMP.
02 TEILA PIC X(8).

PROCEDURE DIVISION USING SATZ.
ANF.

MOVE TEILB TO TEILDR.
DISPLAY "TEILB: " TEILDR UPON SCREEN.
DISPLAY "TEILA: " TEILA UPON SCREEN.
MOVE "XXXXZZZZ" TO TEILA.
MOVE 0 TO DIV.
COMPUTE TEILDR = TEILDR / DIV.

BACK.
EXIT PROGRAM.

Call of executable phase "PASCOB" and runtime listing:

/EXEC PASCOB (02)
% BLS0500 PROGRAM ’PASCOB’, VERSION ’ ’ OF ’...’ LOADED
TEILB: 00001111 (03)
TEILA: TEST
ERROR INTERCEPTED BY EXCEPTION-HANDLER. (04)

Explanation:

(01) The exception handler includes a test for whether a Numeric_Error has occurred
or been passed on by a subprogram. If so, as is the case here, a message will
be output. See (04). If not, the dynamic call chain will be output. For this
purpose it is necessary to include the Errors package at the beginning of the
program.

(02) Startup of the executable phase "PASCOB".

(03) Output from the Cobol subprogramm.

(04) Message issued by the exception handler from the Pascal-XT main program.

4. Unhandled runtime error in Pascal-XT/Fortran/Pascal-XT language interfacing

A Pascal-XT main program calls a Fortran subprogram; this, in turn, calls a Pascal-XT
entry procedure. The Pascal-XT entry procedure calls the mathematical function SQRT
for calculating the square root of a number, but passes a negative value. As negative
values are illegal as parameters for this function, a runtime error (Numeric_Error) is
raised and passed on to the caller, i.e. the Pascal-XT entry procedure. As the error is
not handled there, it is passed on to the Fortran subprogram, and from there to the
Pascal-XT main program. As the error is not handled in the Pascal-XT main program
either, it leads to abortion of the program.

270 U2780-J-Z125-6-7600

Runtime errors Error handling and output

Source code of the Pascal-XT main program "PASFOPAS":

PROGRAM PASFOPAS (INPUT, OUTPUT);
VAR

PAR1 : LONG_REAL;
PROCEDURE FOPAS (VAR PAR1 : LONG_REAL); EXTERNAL; (01)
BEGIN

PAR1 := -88.1;
FOPAS (PAR1); (02)
WRITELN (’CALL TO FOPAS PROCEDURE’);
WRITELN (’PAR1: ’,PAR1);

END.

Source code of the Fortran subprogram "FOPAS":

SUBROUTINE FOPAS (VAR1)
REAL*8 VAR1
VAR1 = -1
CALL PASPROZ (VAR1) (03)
WRITE(2,100) VAR1 (04)

100 FORMAT (’ VAR1: ’,F6.2)
RETURN
END

Source code of the Pascal-XT entry procedure "PASPROZ" in the package "PASERR":

Package specification:

PACKAGE PASERR;
ENTRY PROCEDURE PASPROZ (VAR F1 : LONG_INTEGER); (05)
END.

Package body:

PACKAGE BODY PASERR (OUTPUT);
PROCEDURE PASPROZ (VAR F1 : LONG_REAL);
VAR

R : REAL;
BEGIN

WRITELN (’F1: ’,F1);
R := SQRT(F1); (06)

END;
BEGIN
END.

Call of the executable phase "PAFOPAER" and runtime listing:

/EXEC PAFOPAER
% BLS0500 PROGRAM ’PAFOPAER’, VERSION ’ ’ OF ’...’ LOADED
BS2000 F O R 1 : IMPROVED MATHEMATICAL ACCURACY
F1: -1.0E+00 (07)

NUMERIC_ERROR (1004) RAISED FROM OUTSIDE PASCAL ENVIRONMENT (08)
FROM PASERR.PASPROZ AT 00000C16 ENTRY

FROM NON-PASCAL-ROUTINE(S) FROM PASFOPAS.PASFOPAS AT 000002A0
% EXC0732 ABNORMAL PROGRAM TERMINATION. ERROR CODE ’NRT0101’ /HELP-MSG NRT0101
% CMD0205 ERROR IN PRECEDING COMMAND OR PROGRAM AND PROCEDURE STEP TERMINATION : COMMANDS ...

... WILL BE IGNORED UNTIL /SET-JOB-STEP OR /LOGOFF OR /ABEND IS RECOGNIZED

U2780-J-Z125-6-7600 271

Error handling and output Runtime errors

Explanation:

(01) Declaration of the external procedure FOPAS.

(02) Call of the subprogram FOPAS: the variable PAR1 is passed with the value -88.1.

(03) Call of the Pascal-XT entry procedure PASPROZ: the variable VAR1 is passed
with the value -1.

(04) Execution of the Fortran subprogram is interrupted at this point because the
Pascal-XT entry procedure is not terminated in an orderly manner, but instead
receives notification of a runtime error from the mathematical function SQRT; the
procedure, in turn, passes the error on to its caller.

(05) Declaration of the Pascal-XT entry procedure PASPROZ in the specification of
the PASERR package.

(06) Calling the square root function SQRT with a negative value raises a runtime
error, which is passed on to the calling Pascal-XT entry procedure.

(07) Output of the variable F1 from the Pascal-XT entry procedure.

(08) Because a runtime error occurred in the mathematical routine SQRT and is not
handled either in the calling Pascal-XT entry procedure or in the main program,
the program is aborted and the dynamic call chain is output.
The first line of the dynamic call chain indicates that the error has been passed
on by an external program section (in this case, by the mathematical routine
SQRT) to a Pascal-XT program section.
The second line indicates the Pascal-XT program section (in this case, the
Pascal-XT entry procedure PASPROZ) which first receives notification of the
runtime error from the external program section.
The third line indicates that the runtime error has been passed on to one or
more external program sections whose names are not given individually, and
from there to the Pascal-XT main program PASFOPAS.

272 U2780-J-Z125-6-7600

Runtime errors Detection

10.3 Detecting runtime errors

The following tables indicate all errors described in the Language Reference Manual
and when they are detected. Section 10.4 gives the system error codes for each error
class and provides additional information on error analysis.

NUMERIC_ERROR

Error Error detection

- In an expression in the form x/y, y = 0. Always detected

- In an expression in the form i DIV j, j = 0. Always detected

- In an expression in the form i MOD j, j <= 0. j=0 Always detected
j<0 When Check=On

- The result of an arithmetic operation is not
within the value range of the result type:
- for operands of type Short_Integer or a Always detected

subrange thereof, this is type Integer
- for operands of type Long_Integer or of a Always detected

subrange thereof, this is type Long_Integer
- for operands of type Short_Real this is Always detected

type Short_Real
- for operands of type Long_Real this is Always detected

type Long_Real

- For Abs(x), the result of the function is not in Always detected
the value range of the result type (Integer or
Long_Integer or Short_Real or Long_Real).

- For Sqr(x), the result of the function is not in Always detected
the value range of the result type (Integer or
Long_Integer or Short_Real or Long_Real).

- The result of Exp(x) is not within the value range Always detected
of the result type (Short_Real or Long_Real).

- For Ln(x), x <= 0. Always detected

- For Sqrt(x), x < 0. Always detected

- The result of Trunc(x) or Short_Trunc(x) or When Check=On
Long_Trunc(x) is not in the value range of the
result type (Integer or Short_Integer or
Long_Integer).

Continued next page

U2780-J-Z125-6-7600 273

Detection Runtime errors

Error (continued) Error detection

- The result of Round(x) or Short_Round(x) or When Check=On
Long_Round(x) is not within the value range of
the result type (Integer or Short_Integer or
Long_Integer).

- In an expression in the form x**n When Check=On
- x is from an integer type and n < 0, or
- x = 0 or x = 0.0 and n <= 0.

- In an assignment, the value of the expression Cannot occur
(right side) of type Long_Real is not within
the value range of the variable or of the function
identifier (left side) of type Short_Real.

- For the transfer of the value parameter, the value Cannot occur
of the actual parameter of type Long_Real is
not within the value range of the formal parameter
of type Short_Real.

- In an aggregate, the value of an aggregate element Cannot occur
of type Long_Real is not within the value range of
the associated aggregate component of type
Short_Real.

- When reading from a non-test file using Read(f,v) Cannot occur
the value of the buffer variable f of type
Long_Real is not within the value range of the
variable v of type Short_Real

- When writing to a non-text file using Write(f,a) Cannot occur
the value of the expression a of type Long_Real
is not within the value range of buffer variable
f of type Short_Real.

274 U2780-J-Z125-6-7600

Runtime errors Detection

RANGE_ERROR

Error Error detection

- In an assignment the value of the expression When Check=On
(right side) of an ordinal type is not within
the value range of the type of the variable or of
the function identifier (left side).

- For transfer of the value parameter the value of When Check=On
the actual parameter of an ordinal type is not
in the value range of the type of formal parameter.

- In an aggregate the value of an aggregate element When Check=On
of an ordinal type is not within the value range
of the type of the associated aggregate component.

- When reading from a non-text file using Read(f,v) When Check=On
the value of the buffer variable f of an
ordinal type is not within the value range of the
type of variable v.

- When writing to a non-text file using Write(f,a) When Check=On
the value of expression a of an ordinal type is
not within the value range of the type of the
buffer variable f .

- Character value Chr(x) is not within the value When Check=On
range of type Char.

- The result of Succ(x) is not within the value When Check=On
range of type x.

- The result of Pred(x) is not within the value When Check=On
range of type x.

- When executing the statement within a FOR statement When Check=On
the begin or end value of the FOR statement is
not within the value range of the type of the run
variable.

- When reading an integer from a text file (using When Check=On
Read(f,x)) or from a character string expression
using Readstring(s,x)) the value of the number is
not within the value range of the variable x and
no Read_Error (see below) has occurred.

- For Write(f,a:l1:l2) or Writestring(s,a:l1:l2) When Check=On
the total output length l1 is < 1 or the number
of digits after decimal point l2 is <1. For
Write(f,a:l1) or Writestring(s,a:l1) the total
output length l1 is < 1 or l1 < 0 if a is of a
string type.

U2780-J-Z125-6-7600 275

Detection Runtime errors

SET_ERROR

Error Error detection

- In an assignment the value of the expression When Check=On
(right side) of a set type is not within the value
range of the type of the variable or of the
function identifier (left side).

- For transfer of the value parameter the value of When Check=On
the actual parameter of a set type is not within
the value range of the type of the formal parameter.

- In an aggregate the value of an aggregate element When Check=On
of a set type is not within the value range of the
type of the associated aggregate component.

- When reading from a non-text file using Read(f,v) When Check=On
the value of the buffer variable f of a set type
is not within the value range of the type of
variable v.

- When writing to a non-text file using Write(f,a) When Check=On
the value of the expression a of a set type is not
in the value range of the type of buffer variable
f .

- In a set constructor the value of an element When Check=On
definition is not within the value range of the
basic type of the set constructor.

- For Setmin(s) or Setmax(s) the value of the When Check=On
expression s is equal to the empty set.

276 U2780-J-Z125-6-7600

Runtime errors Detection

STRING_ERROR

Error Error detection

- In an assignment the current length of the string When Check=On
(right side) is greater than the maximum length of
the string type of the variable or of the function
identifier (left side).

- In an assignment the current length of the string When Check=On
expression of a string type (right side) is not
equal to the length of the fixed-length string type
of the generalized variable or of the function
identifier (left side) (10.1.2).

- For transfer of the value parameter the current When Check=On
length of the character string of the actual
parameter is greater than the maximum length of
the string type of the formal parameter.

- For transfer of the value parameter the current When Check=On
length of the character string of the actual
parameter is not equal to the length of the fixed-
length string type of the formal parameter.

- In an aggregate the current length of a character When Check=On
string of an aggregate element is greater than the
maximum length of the string type of the associated
aggregate component.

- In an aggregate the current length of a character When Check=On
string of an aggregate element (of a string type)
is not equal to the length of the associated
component of the aggregate (of a fixed-length
string type).

- When reading from a non-text file with Read(f,v) When Check=On
the current length of the character string of a
string type in the buffer variable f is greater
than the maximum length of the type in string
variable v.

- When reading from a non-text file with Read(f,v) When Check=On
the current length of the character string of a
string type in the buffer variable f is not equal
to the length of the fixed-length string type in
variable v.

- When writing to a non-text file with Write(f,a) When Check=On
the current length of the character string is
greater than the maximum length of the string type
of the buffer variable f .

- When writing to a non-text file with Write(f,a) When Check=On
the current length of the character string a of a
string type is not equal to the length of the
buffer variable f of a fixed-length string type.

- For Read(f,v) or Readstring(s,v) the maximum length Always detected
of string variable v is less than the length of the
character string read.

Continued next page

U2780-J-Z125-6-7600 277

Detection Runtime errors

Error Error detection

- For Readstring(a,v1,...,vn) the character string Always detected
expression a does not contain as many characters as
requested by read parameter v1,...,vn.

- For Writestring(s,p1,...,pn) the maximum length of Always detected
string variable s is less than that of the
character string formed from write parameters
p1,...pn.

- For Delete(s,i,l), i<1 or l<0 or When Check=On
(i+l-1) > Length(s).

- For Insert(s1,s2,i), i<1, or When Check=On
Length(s2) + Length(s1) > Maxlength(s2).

- For Substring(s,i,l), i<1, or l<0 When Check=On
or (i+l-1) > Length(s).

- For Pack(a,i,z) the maximum length of the string When Check=On
variable z is too short to accommodate all
characters from unpacked array a as of index i.

278 U2780-J-Z125-6-7600

Runtime errors Detection

INDEX_ERROR

Error Error detection

- When indexing an array variable, an array constant, When Check=On
an array aggregate or a function result of an array
type, the value of the index expression is not
within the value range of the index type of the
array type.

- When indexing a variable, a constant or a function When Check=On
result of a string type, the value of the index
expression is less than 1 or greater than the
current length of the character string.

- For a conformant array parameter, the index type When Check=On
of the actual parameter is not a subrange of the
index type of the conformant array parameter.

- For Pack(a,i,z) the value of expression i is not When Check=On
within the value range of the index type of
unpacked array parameter a.

- For Pack(a,i,z) the index range of a is exceeded When Check=On
when transferring components from the unpacked
array a as of index i to packed array z.

- For Unpack(z,a,i) the ordinal value of expression When Check=On
i is not within the value range of the index type
of unpacked array parameter a.

- For Unpack(z,a,i) the specified range in unpacked When Check=On
array a as of index i is too small to accommodate
all components of packed array z.

- For Unpack(z,a,i) character string expression When Check=On
z contains more characters than can be transferred
to unpacked array a as of index i.

POINTER_ERROR

Error Error detection

- When dereferencing a pointer, the value of the When Check=On
variable, constant or function result of a pointer
type is equal to nil.

- When calling Dispose(p), p has the value nil. Always detected

- When calling Release(p), the reference value of p Always detected
was not generated by a Mark call.

U2780-J-Z125-6-7600 279

Detection Runtime errors

VARIANT_ERROR

Error Error detection

- A non-active variant of a variable, constant, When Check=On
aggregate or function result of a record type is
accessed.

CASE_ERROR

Error Error detection

- In a Case statement, no case constant corresponds When Check=On
to the value of the case index and no ELSE
alternative has been specified.

FILE_ERROR

Error Error detection

- Before calling Page(f), Put(f), Write(f,...) Always detected
or Writeln(f,...), file f was not yet opened for
writing.

- Before calling Page(f), Put(f), Write(f,...) Always detected
or Writeln(f,...), file f was still undefined.

- Before calling Page(f), Put(f), Write(f,...) Always detected
or Writeln(f,...) the current file position was not
the end of file position, i.e. Eof(f) was false.

- Before calling Get(f) or Read(f,...), file f Always detected
was not yet opened for reading.

- Before calling Get(f) or Read(f,...), file f Always detected
was still undefined.

- Before calling Read(f,...), buffer variable f Always detected
of file f was still undefined.

- Before calling Eof(f), file f was still When Check=On
undefined.

- Before calling Eoln(f), file f was still When Check=On
undefined.

- For Assignfile(f,ext) the definition of the Always detected
external file in operand "ext" is invalid.

280 U2780-J-Z125-6-7600

Runtime errors Detection

EOF_ERROR

Error Error detection

- When calling Get(f) or Read(f,...) the end of Always detected
file was already reached, i.e. Eof(f) is True.

- When calling Eoln(f) the end of file was already When Check=On
reached, i.e. Eof(f) is True.

OPEN_ERROR

Error Error detection

- When calling Reset or Rewrite the predefined Always detected
text file Input or Output was specified.

- When calling Reset(f) file f was still undefined. Always detected

- For Reset(f), the file linked to f but outside the Always detected
program was not opened for reading.

- For Rewrite(f), the file linked to f but outside Always detected
the program was not opened for writing.

READ_ERROR

Error Error detection

- When reading an integer or a real number from a text Always detected
file (with Read(f,v)) or from a character string
expression (with Readstring(s,v)), then either
- the syntax of the character string read is

not correct or
- the character string read forms a number that

cannot be represented internally. In the case of
integers the value lies outside the range
Long_Minint .. Long_Maxint and in the case of
real numbers the value lies outside the range
-Long_Maxreal .. Long_Maxreal.

U2780-J-Z125-6-7600 281

Detection Runtime errors

MEMORY_ERROR

Error Error detection

- Execution of the program cannot be continued due Always detected
to insufficient memory (e.g. when a subprogram is
called or in the case of New).

ELAB_ERROR

Error Error detection

- Initialization of the packages of a program cannot Always detected
be continued, as elaborate cycles are created on
initialization as the result of the use of the
predefined procedure.

Miscellaneous errors (without error number assignment)

The errors given in the following table have no fixed error assignment. The occurrence
of such errors is not detected and leads to secondary errors, the effects of which are
undefined.

Error Error detection

- In a statement the type of expression (right side) Not detected
is of the generic pointer type and the pointer
value of the expression refers to a dynamic
variable whose type is different from the domain
type of the type of generalized variable or
function identifier (left side).

- For transfer of the value parameter the type of the Not detected
actual parameter is of the generic pointer type and
the pointer value of the expression refers to a
dynamic variable whose type is different from the
domain type of the type of formal parameter.

- In an aggregate the type of a pointer value is of Not detected
the generic pointer type and the pointer value of
the expression refers to a dynamic variable whose
type is different from the domain type of the type
of the associated aggregate component.

- The length of a string variable is changed, Not detected
although there is still a reference to a component
of the string variable.

- In Writestring(s,p1,...,pn), one of the write Not detected
parameters p1,...,pn contains a reference to the
string variable s.

- In Convert(x,t) the storage representation of x Not detected
does not represent a permissible value of type t.

Continued next page

282 U2780-J-Z125-6-7600

Runtime errors Detection

Error Error detection

- The variant of a record variable is not active for Not detected
the entire duration of each reference to any of
its components.

- The file pointer of a file variable f is changed Not detected
(e.g. by reading or writing) although there is
still a reference to buffer variable f.

- When dereferencing a pointer the value of the Not detected
variable, constant or function result of a pointer
type is undefined.

- With Dispose(q) a value pointing to a dynamic Not detected
variable is deallocated although a reference to
the dynamic variable still exists.

- When calling Dispose(p) the value of p is still Not detected
undefined.

- Before calling Dispose(p), p was already Not detected
generated by New(p,c1,...,cn) or New(p,c1,...,cn,e)
or New(p,e).

- Before calling Dispose(p,k1,...,km), the dynamic Not detected
variable p was generated by New(p,c1,...,cn),
where m is not equal to n.

- In Dispose(p,k1,...,kn) or Dispose(p,k1,...kn,e) Not detected
variants other than those specified by selector
constants k1 through kn have been set in the
dynamic variable p .

- Before calling Dispose(p,e), p was already Not detected
generated by means of New(p,a), where a is not
equal to e. By analogy this also applies to
Dispose(p,c1,...,cn,e) and New(p,k1,...kn,a).

- In Dispose(p,e) or Dispose(p,c1,..., cn, e) Not detected
the value of e is not within the value range of
the index type of the corresponding ARRAY type or
is less than 1 or greater than the maximum length
of the corresponding string type.

- For an indexed ARRAY or string object the ARRAY or Not detected
string object was generated in abbreviated form by
calling New(p,e) or New(p,c1,...,cn,e) and the
value of the index expression in the indexed object
is greater than e.

- In an indexed string object the value of the string Not detected
object has not been defined (irrespective of the
fact whether the indexed object occurs in an
expression or, e.g., as a generalized variable on
the left side of an assignment).

Continued next page

U2780-J-Z125-6-7600 283

Detection Runtime errors

Error Error detection

- In a dynamic variable generated by New(p,c1,...,cn) Not detected
or New(p,c1,...,cn,e) a variant other than the one
specified by selector constants c1 through cn was
set.

- A dynamic string variable generated by New(p,e), Not detected
or the last component of a dynamic string variable
generated by New(p,c1,...,cn,e), is assigned a
character string that is longer than e.

- A dynamic variable generated by New(p,e), Not detected
New(p,c1,...,cn) or New(p,c1,...,cn,e), occurs in
its entirety in an expression or as the left side
in a value assignment, or is transferred as the
parameter.

- In New(p,e) or New(p,c1,...,cn,e) the value of e Not detected
is not within the value range of the index type of
the corresponding ARRAY type, or is less than 1 or
greater than the maximum length of the corresponding
string type.

- The reference value p, transferred when calling Not detected
Release(p), was destroyed by another Release(q)
call.

- Before calling Put(f), Put(f,c1,...,cn), Not detected
Put(f,e) or Put(f,c1,...,cn,e) the buffer variable
f is still undefined.

- With abbreviated output of an array with the aid of Not detected
Put(f,e) or Put(f,c1,...,cn,e) the value of the
index expression e is not within the value range of
the index type of the array.

- With abbreviated output of a character string of Not detected
variable length by means of Put(f,e) or
Put(f,c1,...cn,e) the value of index expression e
is less than 1 or greater than the current length
of the character string.

- A generalized variable used as the object in an Not detected
expression, has an undefined value at the time the
expression was evaluated.

- The result of a function is undefined after the Not detected
function block is executed if no value has been
assigned to the function identifier.

- In Unpack(z,a,i) one or the other component of the Not detected
packed array z is undefined.

- In Pack(a,i,z) a component of unpacked array a, Not detected
which is undefined, is accessed [D.27].

- The names of program parameters of the main Not detected
program and all associated packages are not paired
differently, with the exception of Input and Output.

- The names of all packages belonging to a program Not detected
and the name of the main program are not paired
differently.

284 U2780-J-Z125-6-7600

Runtime errors System error codes

10.4 System error codes

The following tables list the possible system error codes for the predefined exceptions,
as returned by the system_code function of the predefined package ERRORS (see
appendix A.7). System error codes greater than 9999 are system error messages and
must first be converted to a hexadecimal number in order to query the corresponding
texts of the errors using system command HELP. The meanings of the interrupt
priorities are found in [6].

A Pascal program always supplies System_Code 0 if any of the exceptions
Numeric_Error, Range_Error, Set_Error, String_Error, Index_Error, Pointer_Error,
Variant_Error or Case_Error is detected as the result of the Check option being
activated.

SYSTEM_ERROR (-1)

System_Code Meaning

1201 Calls a 24-bit subprogram with parameters in the 31-bit range
1405 HEAPSUPPORT.select_heap was applied to an invalid heap pointer
1406 HEAPSUPPORT.release_heap was applied to an invalid heap pointer
1407 HEAPSUPPORT.release_heap was applied to the current_heap
1408 HEAPSUPPORT.release_heap was applied to the default_heap
1409 NEW and DISPOSE: These procedures cannot be invoked in UTM

applications
1413 Error on return to the operating system from main memory
1414 No storage space for setting up a Glue Page
1503 Pascal file variable must be of the TEXT type
2250 Error in loading EDT
2251 Error in initializing EDT
2252 Error in SUBMIT_EDT
2254 Error in executing EDT
2255 Error in reading from virtual file
2256 SUBMIT_EDT: Line length is greater than 256
2257 Error in writing to the virtual file of EDT
3001 Error in calling the TABLE macro
4002 Error in the list of global files
4003 Error in the list of local files
5001 Reraise: No exception condition has yet occurred
5002 Error occurred in an external subprogram
other Interrupt priority (see [6])

NUMERIC_ERROR (-2)

System_Code Meaning

1001 EXP: The argument is too large
1002 LN: The argument is not positive
1003 SIN or COS: The absolute value of the argument is greater

than or equal to pi * 2**50
1004 SQRT: The argument is negative
other Interrupt priority (see [6])

U2780-J-Z125-6-7600 285

System error codes Runtime errors

STRING_ERROR (-5)

System_Code Meaning

0 Error in a string assignment or in INSERT, DELETE or SUBSTRING
(detected on account of {$CHECK=ON})

1012 WRITESTRING: The output length is invalid
1013 WRITESTRING: The string is too short to accept a character
1014 WRITESTRING: The string is too short to accept an integer

value
1015 WRITESTRING: The string is too short to accept a real number
1016 WRITESTRING: The string is too short to accept a string
1017 WRITESTRING: The string is too short to accept a Boolean value
1025 READSTRING: The end of the string variable has been reached
1030 READSTRING, READ: The string variable is too short to accept

the rest of the line

POINTER_ERROR (-7)

System_Code Meaning

0 Dereferencing a NIL pointer (detected on account of
{$CHECK=ON}) or a non-initialized pointer (detected on account
of {$INITIALIZE=ON, CHECK=ON})

1404 RELEASE: The pointer value was not generated by means of MARK
or MARK was invoked for another heap

1410 DISPOSE: Specification of an invalid pointer value
1411 DISPOSE: Specification of an invalid length
1412 DISPOSE: The memory to be released is reserved by a dynamic

variable of another type
Other Interrupt priority (see [6])

(addressing error detected by the hardware)

FILE_ERROR (-10)

System_Code Meaning

1090 Buffer overflow for the text file Output
1091 Buffer overflow for the text file Input 1)

1095 WRITE: The output length is invalid (also detected where
Check=Off)

1096 PUT: The input length is invalid
1500 ASSIGNFILE: The length of the external description is invalid
1501 ASSIGNFILE: Syntax error in the external description
1502 ASSIGNFILE: Invalid specifications in the external description
2010 WRITELN: Device error
2011 READLN: Device error

Continued next page

1) A line that has been read in is longer than the internal buffer of the runtime system
(see also Open_Error).

286 U2780-J-Z125-6-7600

Runtime errors System error codes

System_Code Meaning

2045 Input/output to an unopened file
2046 The file is not permitted for this call
2049 UPDATE: Call with an invalid record length
2105 Library element cannot be closed
2106 Library cannot be closed
2109 PLAM access error
2201 Error when reading an EAM file
2202 Error in writing to an EAM file
2203 Error in closing an EAM file
4001 Error in the runtime system
Other DMS error codes

OPEN_ERROR (-12)

System_Code Meaning

1091 Buffer overflow on opening a text file 1)

1603 The file name cannot be determined
1604 RESET: Open a non-existent file
1605 Invalid open mode for the file
1606 No more main memory available for block/record buffer
1607 RESET, REWRITE, REPLACE, EXTEND and CLOSE cannot be applied to

the predefined Input and Output text files
1608 Incorrect or missing parameter in the FILE command (FCBTYPE,

RECFORM, KEYLEN, KEYPOS, RECSIZE, BLKSIZE, SPACE)
1609 An attempt was made to open a file after an illegal Assignfile
2100 The system library for access to PLAM libraries does not exist
2101 Incorrect or unknown library type
2102 Library cannot be opened
2103 Library element not present
2104 Library element cannot be opened
2110 Invalid version specification for PLAM library elements
2200 Error on opening an EAM file
Other DMS error codes

1) When opening a text file for reading the first line has already been read and can
be longer than the internal buffer of the runtime system (see also File_Error).

READ_ERROR (-13)

System_Code Meaning

1092 Error in reading an integer number
1094 Error in reading a real number

MEMORY_ERROR (-14)

System_Code Meaning

1401 Main memory overflow in an internal request
1402 Main memory overflow in a stack request
1403 Main memory overflow in a heap request
1601 No more main memory available to create an FCB

U2780-J-Z125-6-7600 287

Runtime errors System error codes

A Appendix

A.1 Comparison between Pascal (BS2000) version 3.x and
Pascal-XT

All language attributes of Pascal (BS2000) version 3.1B (abbreviated as "Version 3") and
Pascal-XT are compared. The comparison is in keyword form only ; details can be
found in the relevant language reference manuals.

In the tables below all attributes of the language are listed. The presence or absence of
an attribute in a language is shown by:

X attribute present
attribute absent.

The essential differences between Pascal version 3 and Pascal-XT are:

Different approaches to separate compilation
Different approaches to programmed exception handling
Pascal-XT also includes level 1 of the ISO standard
Aggregates (structured values) in Pascal-XT
Static expressions as constants in Pascal-XT
Influence on storage representation in Pascal-XT
Inline subprograms in Pascal-XT
Different standard procedures
ISAM files are not integrated in the Pascal-XT language, but are instead provided in
a package
Include-mechanism omitted in Pascal-XT

U2780-J-Z125-6-7600 289

Comparison Pascal V 3.x/Pascal-XT Appendix 1

Record lengths for non-text files

In certain cases a Pascal-XT program cannot process non-text files generated by
Version 3. The reason for this is that in Version 3 the record length is always rounded
to an integral multiple of the alignment of the component type of the file, as opposed
to Pascal-XT. To read a file like this, the component type of the file in Pascal-XT must
be expanded to include a dummy field, the size of which is the product of the
difference between record lengths (see Example). The record length is calculated as
follows:

T is the component type of a file type (FILE OF T)
L is the record length of the BS2000 file
LF is the size of the record length field = 4 if RECFORM = V

= 0 if RECFORM = F
sizeof (T) : size of the component type (in bytes)
alignof (T) : alignment of the component type (1, 2, 4 or 8)

V3.x : L := ((sizeof (T) + LF) + alignof (T) - 1)
div alignof (T) * alignof (T)

Therefore the size of the record is always the smallest
integral multiple of the alignment of T, which is greater
than (sizeof (T) + LF)

Pascal-XT : L := sizeof (T) + LF
The size of the record is not rounded off.

Example

type
rec = record (* Definition of the record in Version 3 *)

i: integer;
c: char;

end;
var

my_file: file of rec;

The following applies to this file:
sizeof (rec) = 5
alignof (rec) = 4

Record length if
RECFORM = V RECFORM = F

V3.x 12 8
Pascal-XT 9 5

290 U2780-J-Z125-6-7600

Appendix 1 Comparison Pascal V 3.x/Pascal-XT

To read such a file generated by Version 3 the size of the record type "record" in
Pascal-XT must be increased by 3 bytes:

type
rec = record (* Definition of the record in Pascal-XT *)

i: integer;
c: char;
d: packed array [1..3] of char; (* Dummy field *)

end;

Keywords

Additional keywords in Pascal-XT are:

BODY ENTRY EXIT EXCEPTION FROM
INLINE PACKAGE USE

Compilation units

The approaches to separate compilation in the two languages are not compatible.
Version 3 takes a modular approach, with no checking of interfaces. In Pascal-XT,
interfaces and package body are separate and interface checking is done at compile
time.

Compilation unit Version 3 Pascal-XT

program X X
procedure module X
function module X are covered by the
module X package approach
entry procedure X
package - X
package body - X

Directives and language interfaces

In Version 3 all external subprograms are designated by the directive "external". In
Pascal-XT, for COBOL subprograms the directive "cobol" is to be specified, for
FORTRAN subprograms the directive "fortran" and for all other subprograms the
directive "external".
For language interfacing using a mix of program sections, Pascal-XT allows any calling
sequence without explicit initializations; Version 3 requires initializations of the runtime
environment to be specified explicitly.
Entry procedures in Version 3 are a separate compilation unit, in Pascal-XT they are
defined in package specifications (see compilation units).

U2780-J-Z125-6-7600 291

Comparison Pascal V 3.x/Pascal-XT Appendix 1

Directive Version 3 Pascal-XT

module X -
forward X X
internal X X
external X X
fortran - X
cobol - X

Pseudo-comments and compiler options

The compiler options of the two compilers are not compatible. Approximately equivalent
options are compared in the table, but in general they do not cover the same functions.
Version 3 provides the control statements SKIPON and SKIPOFF for conditional
compilation of program parts. In Pascal-XT this can be simulated with the IF statement,
if the IF condition is a static expression. If the condition has the value "True", only code
for the THEN part is generated; otherwise only code for the ELSE part is generated. In
a CASE statement with static case index only code for the corresponding case list
element is generated.

Version 3 Pascal-XT

(*%MAP*) the two control statements are
(*%COPY*) covered by the package concept
(*%SKIPON*) see above
(*%SKIPOFF*) see above
(*$...*) (*$...}
R, E, K, F, H, S -
J, Q, V, T, Z -
O OPTIMIZE = on | off
D CHECK = on | off
G GENERATE = on | off
N automatic, if testing with PATH
Y, U DEBUG = on | off | restricted
L LIST = on | off
L n -
X XREF = on | off
P PAGE (without title specification)
- TITLE = ’...’ (without page change)
C ASSEMBLER = on | off
W STANDARD = on | off
I MAP = on | off

292 U2780-J-Z125-6-7600

Appendix 1 Comparison Pascal V 3.x/Pascal-XT

Program parameter list

In Version 3 the buffer size for external text files can be specified following the file
identifier in the program parameter list. In Pascal-XT the buffer size is fixed.

Constant definitions

In Pascal-XT constant definitions may define constants of any type, even of structured
types. Any static expression may appear on the right side of the definition.

Constant definition Version 3 Pascal-XT

character literal (char) X X
enumerated type (boolean) X X
numbers (integer, real) X X
strings X X
constant identifier X X
static expression - X
- arithmetic or logical expression - X
- variable string expression - X
- (qualified) set constructor - X
- array aggregate - X
- record aggregate - X

Predefined constants

Identifier / keyword Version 3 Pascal-XT

TRUE X X
FALSE X X
MAXINT X X
SHORT_MAXINT - X
LONG_MAXINT - X
MININT - X
SHORT_MININT - X
LONG_MININT - X
MINREAL X X
SHORT_MINREAL - X
LONG_MINREAL - X
MAXREAL X X
SHORT_MAXREAL - X
LONG_MAXREAL - X
NIL X X

U2780-J-Z125-6-7600 293

Comparison Pascal V 3.x/Pascal-XT Appendix 1

Predefined types and new types

In Pascal-XT constants in type definitions may also be static expressions. String types
are defined in accordance with the ISO standard as packed array [1..n] of char,
variable string types as string [n], where n specifies the maximum string length. In
Version 3 a string type need not be packed and the index lower limit may be a value
other than 1. Pascal-XT adheres strictly to the ISO standard.

Type Version 3 Pascal-XT

CHAR X X
BOOLEAN X X
INTEGER X X
SHORT_INTEGER - X
LONG_INTEGER - X
REAL X X
SHORT_REAL - X
LONG_REAL - X
enumerated type X X
subrange type X X
pointer type X X
generic pointer type - X
private pointer type - X
string type X X (as per ISO standard)
variable string type X X
- default length = 252 254
- length field = 4 2
- maximum length = 216-1 215-1
record type X X
- specifications regarding - X

representation
- else part in the variant - X

part
- range specification for - X

selector constants
array type X X
file type X X
- ISAM files X -
generic file type - X
set type X X
corid type X -

Variables, expressions and operators

In Pascal-XT, in addition to components of variables there are also components of
values of a structured type.

Expressions which can be evaluated at compile time are called static expressions. In
Pascal-XT static expressions can be used as constants both in constant definitions and
in places where the ISO standard requires a constant.

294 U2780-J-Z125-6-7600

Appendix 1 Comparison Pascal V 3.x/Pascal-XT

Operators

Operator Version 3 Pascal-XT

monadic operators:
+ X X
- X X

arithmetic operators:
+ X X
- X X
* X X
/ X X
** (exponentation) - X
div X X
mod X X

Boolean operators:
or X X
and X X
not X X
or else - X
and then - X

set operators:
+ X X
- X X
* X X
/ (symmetric difference) - X

relational operators:
= X X
<> X X
< X X
> X X
<= X X
>= X X
in X X

In comparisons, string types in Version 3 may be of different lengths; in Pascal-XT, in
accordance with the ISO standard, the string types must contain the same number of
characters. With variable string types in both languages only the current length is
relevant.

U2780-J-Z125-6-7600 295

Comparison Pascal V 3.x/Pascal-XT Appendix 1

Statements

Statement Version 3 Pascal-XT

Assignment 1) X X
goto X X
exit - X
return X X
Compound statement X X
if X X
case X X
- Ranges for case constants - X
repeat X X
while X X
for X X
with X X
Procedure calls X X
Inline procedure calls - X

1) In Version 3 a variable of a string type may also be assigned a shorter string; in
Pascal-XT, in accordance with the ISO standard, the string expression must be of
the same type as the string variable.

Procedure and function declarations and formal parameters

In Pascal-XT the formal parameter list can be repeated.

Entry procedures

In Version 3 entry procedures are independent compilation units. In Pascal-XT entry
procedures may be declared only in package specifications.

Inline subprograms

In Pascal-XT procedures and functions may be declared as inline.

Value parameters

With formal parameters of a string type, in Version 3 the actual parameters may also be
string expressions of a shorter length. In Pascal-XT, in accordance with the ISO
standard, the actual parameters must have the same types. Pascal-XT also permits
conformant array schemata.

Variable parameters

Pascal-XT also permits conformant array schemata.

Procedural parameters and functional parameters

No differences.

296 U2780-J-Z125-6-7600

Appendix 1 Comparison Pascal V 3.x/Pascal-XT

Programmed exception handling

The approaches to programmed exception handling in the two languages are
completely different. In Version 3 an exception handler counts as being activated from
the point of its activation until a new one is activated or until the block that directly
contains details of its activation ends. In Pascal-XT an exception handler may be
defined for an individual compound statement or for the entire body of a subprogram.

Standard procedures and standard functions

Procedure/function Version 3 Pascal-XT

PACK X X
UNPACK X X
ABS X X
SQR X X
SIN X X
COS X X
EXP X X
LN X X
SQRT X X
ARCTAN X X
TRUNC X X
SHORT_TRUNC - X
LONG_TRUNC - X
ROUND X X
SHORT_ROUND - X
LONG_ROUND - X
LONG - X
ORD X X
CHR X X
SUCC X X
PRED X X
ODD X X

U2780-J-Z125-6-7600 297

Comparison Pascal V 3.x/Pascal-XT Appendix 1

Procedures for input/output

Procedure/function Version 3 Pascal-XT

RESET X X
REWRITE X X
GET X X
PUT X X
PUT (f,c1,...,cn,e) X X
EOF X X
READ X X
READ (f,str:len) X -
WRITE X X
WRITE (f,str:len1:len2) X -
WRITE (set:len HEX) X -
WRITE (f,expr HEX) X -
READLN X X
WRITELN X X 3)

EOLN X X
PAGE X X
PAGE (f,exp1,exp2,...) X -
EXTEND X
REPLACE X
CLOSE X
ELIM X
ELIMKEY X
GETKEY X
GETBACK X
UPDATE X
INSERT X provided in the
POS X predefined package DMSIO
POSKEY X
POSBACK X
MOVEKEY X
NOKEY X
LOCK X
RECLEN X
KEYPOS -
KEYLEN -
CLPAM X -
OPPAM X -
RDPAM X -
WRPAM X -
EAM X via local files

298 U2780-J-Z125-6-7600

Appendix 1 Comparison Pascal V 3.x/Pascal-XT

Procedures for heap management

Procedure/function Version 3 Pascal-XT

NEW X X
DISPOSE X X
MARK X X
RELEASE X X
PUSHEAP X can be emulated with the
POPHEAP X functions of the prede-
KILLHEAP X fined package HEAPSUPPORT

RELMEM X provided in the
REQMEM X predefined package
GETMAP X MEMORYMANAGER
CHPTR (p,e) X - 1)

ASSPTR (p,q) X - 2)

1) p := CONVERT (CONVERT (p,integer)+e, pointer)
2) p := CONVERT (q, pointer)
3) For generation of an empty line in Pascal-XT at least one blank must be output.

Procedures for programmed exception handling

Procedure/function Version 3 Pascal-XT

RAISE X X
ERROREXIT X -
SYSERROR X -
ERROR_NUMBER - X

Subprograms for string processing

Procedure/function Version 3 Pascal-XT

DELETE X X
INSERTSTRING X X = INSERT
READSTRING X X
WRITESTRING X X
LENGTH X X
POSITION X X
CONCAT X X
SUBSTRING X X

U2780-J-Z125-6-7600 299

Comparison Pascal V 3.x/Pascal-XT Appendix 1

Attribute functions

Function Version 3 Pascal-XT

ALIGNOF X X 1)

SIZEOF X X 1)

BITSIZEOF - X 1)

CARD X X
SETMIN - X
SETMAX - X
FIRST - X
LAST - X
MAXLENGTH - X

1) Applicable to variables and types

Co-routines

Co-routines are at present not supported in Pascal-XT.

Procedure/function Version 3 Pascal-XT

ALLOCATE X -
NEWCOR X -
TRANSFER X -
ENDCOR X -
USED X -

Other subprograms

Version 3 Pascal-XT

- CONVERT (unchecked type conversion)
- ELABORATE (expl. package initialization)

EDT EDTADAPTER . call_edt
EDT (cmd) EDTADAPTER . submit_edt (cmd)
EDP -
EDOR -
WRTRD -
GETSWITCH these and additional BS2000 macro calls
BREAK are provided in the predefined package
CMD BS2000CALLS

DATE are provided in modified form by
TIME the predefined package CLOCK

COMPDATE -
VERSION -
ASSEXT -
LINK -
LINKCALL -

STXIT is not required
FINALIZE is not required

300 U2780-J-Z125-6-7600

Appendix 2 Compiler listings

A.2 Compiler listings

The various compiler listings generated for a sample program are shown below.
Repetition of the prolog and the source listing is omitted in the assembler listing, cross-
reference listing and map listing. The error listing arose as the result of the insertion of
a few errors into the sample program.

The sample program used the TOOLS package from the PLAM library PLAM.SUPPORT.
For a given integer the hex function from this package returns the corresponding
hexadecimal value as a string.

*** SOURCE LISTING *** BS2000 SIEMENS PASCAL-XT COMPILER V2.2A...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

LIST OF RECOMPILED PACKAGE SPECIFICATIONS (SOURCE FILES)

($USERID.PLAM.MANUAL,TOOLS.SPEC(*STD,S))

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.MANUAL,EXAMPLE.PROG(*STD,S))

1 with TOOLS;
2
3 program EXAMPLE (input,output);
4
5 const
6 txt = ’hexadecimal value = #’;
7
8 var
9 i : integer;

10
11 begin
12 repeat
13 read (input, i);
14 writeln (output, txt, TOOLS.hex(i));
15 until i = 0;
16 end (* EXAMPLE *).

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 540 BYTES *
* SIZE OF DATA MODULE : 104 BYTES *
* COMPILATION TIME : 0.142 SEC *

U2780-J-Z125-6-7600 301

Compiler listings Appendix 2

*** SOURCE LISTING *** BS2000 SIEMENS PASCAL-XT COMPILER V2.2A...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.MANUAL,ERROR.PROG(*STD,S))

1 {$Check=Of}
1

>>> 1: NOTE 3: INVALID ARGUMENT NAME OF OPTION
>>> NOTE 5: OPTION IGNORED

2 prgram ERROR (input);
1

>>> 1: ERROR 723: REPLACED BY "PROGRAM"

3
4 const
5 toobig = maxint + 1;

1
>>> 1: ERROR 404: NUMERIC ERROR IN COMPUTATION

6
7 var
8 i,j : integer;

1
>>> 1: NOTE 50: IDENTIFIER IS DECLARED BUT NOT USED

9
10 begin
11 for i := 1 to 10 do
12 writeln (output, 2 ** i);

1 2
>>> 1: ERROR 361: STANDARD FILE MUST BE PROGRAM PARAMETER
>>> 2: ERROR 302: UNDECLARED OR INVISIBLE IDENTIFIER

13 i := maxint + 1;
1

>>> 1: WARNING 3404: NUMERIC ERROR IN COMPUTATION

14 end (* ERROR *).

* COMPILATION SUMMARY *

* ERRORS DETECTED : 4 *
* WARNINGS : 1 *
* NOTES : 3 *
* SIZE OF CODE MODULE : 0 BYTES *
* SIZE OF DATA MODULE : 0 BYTES *
* COMPILATION TIME : 0.070 SEC *

302 U2780-J-Z125-6-7600

Appendix 2 Compiler listings

** ASSEMBLER LISTING * BS2000 SIEMENS PASCAL-XT COMPILER V2.0A...

PROCEDURE: EXAMPLE

LOCTN OBJECT CODE ADDR1 ADDR2 STMNT ASSEMBLY CODE

000098 C2C5C9E2D7C9C5D3 1 DC C’BEISPIEL’
0000A0 00000088 2 DC F’136’
0000A4 00000238 3 DC A(START+568)
0000A8 0000018E 4 DC F’398’
0000AC 00000000 5 DC F’0’
0000B0 00000000 6 DC A(START+0)
0000B4 50 C0 B030 7 ST 12,48(0,11)
0000B8 50 90 B0AC 8 ST 9,172(0,11)
0000BC 50 A0 B0B0 9 ST 10,176(0,11)
0000C0 50 B0 B0B4 10 ST 11,180(0,11)
0000C4 50 D0 B034 11 ST 13,52(0,11)
0000C8 58 30 A018 0000B0 12 L 3,24(0,10)
0000CC 58 10 308C 13 L 1,140(0,3)
0000D0 58 F0 1028 14 L 15,40(0,1)
0000D4 58 10 D05C 15 L 1,92(0,13)
0000D8 50 10 B068 16 ST 1,104(0,11)
0000DC 58 D0 D05C 17 L 13,92(0,13)
0000E0 45 E0 9030 18 BAL 14,48(0,9)
0000E4 58 D0 B034 19 L 13,52(0,11)
0000E8 58 30 A018 0000B0 20 L 3,24(0,10)
0000EC 58 10 3090 21 L 1,144(0,3)
0000F0 58 F0 1028 22 L 15,40(0,1)
0000F4 58 20 D060 23 L 2,96(0,13)
0000F8 50 20 B06C 24 ST 2,108(0,11)
0000FC 58 D0 D060 25 L 13,96(0,13)
000100 45 E0 9030 26 BAL 14,48(0,9)
000104 58 D0 B034 27 L 13,52(0,11)
000108 58 30 A018 0000B0 28 L 3,24(0,10)
00010C 58 00 D030 29 L 0,48(0,13)
000110 5A 00 90C8 30 A 0,200(0,9)
000114 50 00 D030 31 ST 0,48(0,13)
000118 5B 00 90C0 32 S 0,192(0,9)
00011C 50 00 B048 33 ST 0,72(0,11)
000120 58 30 3094 34 L 3,148(0,3)
000124 50 30 B07C 35 ST 3,124(0,11)
000128 58 F0 3028 36 L 15,40(0,3)
00012C 58 D0 D064 37 L 13,100(0,13)
000130 05 E9 38 BALR 14,9
000132 58 D0 B034 39 L 13,52(0,11)
000136 58 30 A018 0000B0 40 L 3,24(0,10)
00013A 58 10 B068 41 L 1,104(0,11)
00013E 58 20 B06C 42 L 2,108(0,11)
000142 41 00 1034 43 LA 0,52(0,1)
000146 50 00 B080 44 ST 0,128(0,11)
00014A 58 10 3080 45 L 1,128(0,3)
00014E 50 10 B070 46 ST 1,112(0,11)
000152 41 20 2034 47 LA 2,52(0,2)
000156 50 20 B074 48 ST 2,116(0,11)
00015A 41 30 302C 49 LA 3,44(0,3)

U2780-J-Z125-6-7600 303

Compiler listings Appendix 2

00015E 50 30 B078 50 ST 3,120(0,11)
51 ***** LINE 13

000162 50 00 B048 52 ST 0,72(0,11)
000166 58 F0 1038 53 L 15,56(0,1)
00016A 58 D0 D050 54 L 13,80(0,13)
00016E 45 E0 9030 55 BAL 14,48(0,9)
000172 58 D0 B034 56 L 13,52(0,11)
000176 58 10 B070 57 L 1,112(0,11)
00017A 58 20 B074 58 L 2,116(0,11)
00017E 58 30 B078 59 L 3,120(0,11)
000182 41 00 0013 000013 60 LA 0,19(0,0)
000186 58 40 B04C 61 L 4,76(0,11)
00018A 50 40 D034 62 ST 4,52(0,13)

63 ***** LINE 14
00018E 50 20 B048 64 ST 2,72(0,11)
000192 50 30 B04C 65 ST 3,76(0,11)
000196 50 00 B050 66 ST 0,80(0,11)
00019A 50 00 B054 67 ST 0,84(0,11)
00019E 58 F0 1058 68 L 15,88(0,1)
0001A2 58 D0 D050 69 L 13,80(0,13)
0001A6 45 E0 9030 70 BAL 14,48(0,9)
0001AA 58 D0 B034 71 L 13,52(0,11)
0001AE 58 30 B07C 72 L 3,124(0,11)
0001B2 58 20 D034 73 L 2,52(0,13)
0001B6 41 10 B060 74 LA 1,96(0,11)
0001BA 58 F0 302C 75 L 15,44(0,3)
0001BE 58 D0 D064 76 L 13,100(0,13)
0001C2 05 E9 77 BALR 14,9
0001C4 58 D0 B034 78 L 13,52(0,11)
0001C8 58 10 B070 79 L 1,112(0,11)
0001CC 58 20 B074 80 L 2,116(0,11)
0001D0 41 00 B060 81 LA 0,96(0,11)
0001D4 41 30 0008 000008 82 LA 3,8(0,0)
0001D8 50 20 B048 83 ST 2,72(0,11)
0001DC 50 00 B04C 84 ST 0,76(0,11)
0001E0 50 30 B050 85 ST 3,80(0,11)
0001E4 50 30 B054 86 ST 3,84(0,11)
0001E8 58 F0 1058 87 L 15,88(0,1)
0001EC 58 D0 D050 88 L 13,80(0,13)
0001F0 45 E0 9030 89 BAL 14,48(0,9)
0001F4 58 D0 B034 90 L 13,52(0,11)
0001F8 58 10 B070 91 L 1,112(0,11)
0001FC 58 20 B074 92 L 2,116(0,11)
000200 50 20 B048 93 ST 2,72(0,11)
000204 58 F0 105C 94 L 15,92(0,1)
000208 58 D0 D050 95 L 13,80(0,13)
00020C 45 E0 9030 96 BAL 14,48(0,9)
000210 58 D0 B034 97 L 13,52(0,11)
000214 58 00 B080 98 L 0,128(0,11)
000218 58 10 B070 99 L 1,112(0,11)
00021C 58 20 D034 100 L 2,52(0,13)
000220 12 22 101 LTR 2,2
000222 47 70 A0CA 000162 102 BC 7,202(0,10)
000226 58 E0 B038 103 L 14,56(0,11)
00022A 58 90 B024 104 L 9,36(0,11)
00022E 58 A0 B028 105 L 10,40(0,11)
000232 58 B0 B02C 106 L 11,44(0,11)
000236 07 FE 107 BCR 15,14

304 U2780-J-Z125-6-7600

Appendix 2 Compiler listings

*** XREF LISTING *** BS2000 SIEMENS PASCAL-XT COMPILER V2.0A...

hex
FUNCTION ... ARRAY AT 7 IN TOOLS

14

i
VARIABLE ... INTEGER AT 9

13 14 15

integer
TYPE INTEGER 4 PREDEFINED

9

read
PROCEDURE PREDEFINED

13

TOOLS
PACKAGE AT 1

14

txt
CONSTANT ... ARRAY AT 6

14

writeln
PROCEDURE PREDEFINED

14

*** MAP LISTING *** BS2000 SIEMENS PASCAL-XT COMPILER V2.0A...

PROCEDURE ENTRY VECTOR

PEV-ADDRESS MODULE-OFFSET PROCEDURE / FUNCTION
40 (00000028) 0 (00000000) INITIAL PROCEDURE

GLOBAL CONSTANTS OF THE UNIT

MODULE-OFFSET TYPE NAME VALUE
44 (0000002C) STRING txt ’hexadecimal value = #’

GLOBAL VARIABLES OF THE UNIT

52 (00000034) i

U2780-J-Z125-6-7600 305

Predefined packages Appendix 3

A.3 Predefined packages

Together with the Pascal-XT programming system, users are offered a series of
predefined packages providing frequently used functions and procedures. Users can
employ these packages just as if they had written them themselves.

The specifications of the predefined packages are provided in PLAM library PASSUP-
XT; the object code of the packages is contained in the library of the runtime system,
namely PASLIB-XT. Predefined packages for UTM applications are described in [11].

Notes

The predefined packages are not portable.

The predefined package CLOCK is described in the Language Reference Manual [1]
because it is provided by all Pascal-XT implementations. The specification of the
package is contained in the library PASSUP-XT, the body in the library PASLIB-XT of
the runtime system.

The package names of the predefined packages cannot be used as program or
package names in an application program if these predefined packages are to be used.

To be able to use the predefined packages they must first be made known in the
defined project directory. This is accomplished simply by compiling the package
specifications of the required packages. Each package specification is stored in an
element of the library (of PASSUP-XT), whose element name is formed from the
package name and the suffix ".SPEC".

Example

/EXEC $PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//DEFINE DIRECTORY
//MC ($PASSUP-XT,), *DUMMY
//C (,DMSIO.SPEC)
//C (,BS2000CALLS.SPEC)

306 U2780-J-Z125-6-7600

Appendix 4 Predefined package BS2000CALLS

A.4 BS2000CALLS

The BS2000CALLS package provides macros specific to BS2000.

(***
* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1990 *
* ALL RIGHTS RESERVED *
* *
***)
{$DEBUG=ON}
package BS2000CALLS;

(**)
(* The body of this package is part of the *)
(* Pascal-XT runtime system. *)
(* *)
(* Required Pascal-XT Runtime System: >= 2.1A *)
(* Available in V2.1A and higher: *)
(* CREATE_CMD_BUFFER *)
(* RELEASE_CMD_BUFFER *)
(* RESET_CMD_BUFFER *)
(* CMDX *)
(* GET_CMD_LINE *)
(**)

const

batch_task = 0;

type

switches = set of 0 .. 31;
ret_code = packed array [1..4] of char;
byte = 0..255;
cmdstring = string [254];
name8 = packed array [1..8] of char;

unpacked_decimal = packed array [1..4] of char;

taskinfo = packed record
tasktype (0): byte;
bufsize (1): short_integer;
priority (3): byte;
tsn (4): unpacked_decimal;
user_id (8): name8;
account (16): name8;
time (24): long_integer;
privilege (28): byte;
line_length(29): byte;
station (30): byte;
prog_name (32): name8;
logon_name (40): name8;
end;

function tmode : taskinfo;
(* returns attributes of the user process *)

procedure break;
(* interrupts the program currently running *)

procedure cmd (command: string;
var errors: boolean);

(* the (BS2000-) command is executed; errors returns true, if an *)
(* error occurred, otherwise false. *)

U2780-J-Z125-6-7600 307

Predefined package BS2000CALLS Appendix 4

function get_switches : switches;
(* returns the currently set process switches *)

procedure set_switches (s: switches);
(* switch i is set if element (31 - i) is set in s *)

procedure reset_switches (s: switches);
(* switch i is reset if element (31 - i) is set in s *)

procedure set_return_code (c: ret_code);
(* return code c will be set at program termination *)

function return_code: ret_code;
(* returns the return code set by the last call of *)
(* set_return_code *)

procedure create_cmd_buffer (var buffer : pointer);
(* creates a new buffer of 32 KB and returns the pointer *)
(* of this buffer; returns nil, if allocation failed *)

procedure release_cmd_buffer (var buffer : pointer);
(* returns the buffer of 32 KB to the BS2000-System *)
(* buffer is set to NIL *)

procedure reset_cmd_buffer (buffer : pointer);
(* after this procedure was called the buffer@ can be read *)
(* again from the beginning *)

procedure cmdx (command: string;
sysout: boolean;
buffer: pointer;

var errors: boolean);
(* Precondition:
(* command contains the bs2000-command; sysout contains true, if *)
(* the output of the command shall be directed both to SYSOUT *)
(* and buffer@, sysout contains false, if the output shall be *)
(* directed only to buffer@. The information (strings) in *)
(* buffer@ can be read by means of procedure GET_CMD_LINE; *)
(* Postcondition: *)
(* error = false the command was executed and the return *)
(* information is available in buffer@ *)
(* = true an error occurred, the contents of buffer@ is *)
(* undefined. *)

procedure get_cmd_line (buffer: pointer;
var line: cmdstring;
var more: boolean);

(* Precondition: *)
(* buffer@ contains the value returned by a previous call of CMDX*)
(* Postcondition: *)
(* the first call of GET_CMD_LINE after a call of CMDX returns *)
(* the first line of buffer@, the following calls of GET_CMD_LINE*)
(* return the next lines of buffer@ until the end of the *)
(* information in buffer@ is reached. In this case the empty *)
(* string is returned. The next call of GET_CMD_LINE again *)
(* returns the first line of buffer@. More is true, if the *)
(* buffer’s line is longer than cmdstring. With following calls *)
(* of GET_CMD_LINE the remainder of the line can be read. *)

end (* package BS2000CALLS *).

308 U2780-J-Z125-6-7600

Appendix 4 Predefined package BS2000CALLS

TMODE

returns status information on the user task.

BREAK

causes a program interrupt and transfer to BS2000 command mode. Execution of
the program can be continued with the BS2000 command RESUME.

CMD (command, errors)

permits execution of a BS2000 command from within a Pascal program. The string
specified in this command is interpreted as a BS2000 command (macro CMD). The
Boolean variable "errors" returns the value "True" if the command was executed with
errors, otherwise "errors" has the value "False". Both uppercase and lowercase
letters can be specified in the command.

Caution is recommended when using commands which overload the Pascal
program and therefore terminate it, such as EXEC.

GET_SWITCHES

supplies the set of task switches currently set. The order of the switches is reversed
compared to the descriptions in [6] and [7], i.e. switch i is set if (31-i) is set in the
returned set.

SET_SWITCHES (s)

sets the task switches contained in set s. The switches are numbered from 0
through 31. The order is reversed as compared to the descriptions in [6] and [7], so
that switch i is set if (31-i) is applicable in s.

RESET_SWITCHES (s)

resets the task switches contained in set s. The switches are numbered from 0
through 31. The order is reversed as compared to the descriptions in [6] and [7], so
that switch i is reset when (31-i) is applicable in s.

U2780-J-Z125-6-7600 309

Predefined package BS2000CALLS Appendix 4

SET_RETURN_CODE (code)

accepts "code" as the termination code for the TERM macro to be executed at
program end (see [6]). If several SET_RETURN_CODE macros are present in a
program, the code specified in the last macro is used as the termination code in the
TERM macro. If a job variable was specified for program monitoring when the
program was called, "code" is transferred to this job variable when the program is
terminated.

RETURN_CODE

supplies the termination code last set with SET_RETURN_CODE.

CREATE_CMD_BUFFER (buffer)

This procedure requests 32 K of main memory. This is the maximum size of the
result area for the SYSOUT log when the CMD macro is called.

buffer after the execution of CREATE_CMD_BUFFER it contains the address of
the result area. If the request for memory cannot be satisfied, then "buffer"
contains the value NIL.

RELEASE_CMD_BUFFER (buffer)

By calling this procedure the memory area requested by CREATE_CMD_BUFFER is
returned to the operating system.

buffer contains the address of the result area to be returned and is then
subsequently set to NIL.

RESET_CMD_BUFFER (buffer)

This procedure is used to reposition the pointer to the start of the buffer so that the
lines can be read through again.

buffer contains the address of the result area.

310 U2780-J-Z125-6-7600

Appendix 4 Predefined package BS2000CALLS

CMDX (command, sysout, buffer, errors)

This procedure enables a BS2000 command to be issued together with the transfer
of the SYSOUT log into the buffer requested by CREATE_CMD_BUFFER. The
SYSOUT log is returned in an unedited form and therefore access to this
information should only be effected via the GET_CMD_LINE procedure.

command contains the BS2000 command to be issued.

sysout if "sysout" is TRUE, then an additional output of the log occurs (through
the system macro) to the system file SYSOUT.

buffer buffer, in which the information supplied from the system macro cmd is
stored. This buffer must have previously been created using
CREATE_CMD_BUFFER.

errors is TRUE, if an error occurs when issuing the command, otherwise it is
FALSE.

GET_CMD_LINE (buffer, line, more)

Using this procedure lines can be read from the buffer one at a time without
knowing the block/record structure specific to the operating system. After a CMDX
call each GET_CMD_LINE call causes the next line to be read from the buffer, i.e
- the first GET_CMD_LINE call delivers the first line
- the second GET_CMD_LINE call delivers the second line
and so on.

If there are no further lines, GET_CMD_LINE returns an empty string and resets its
pointer to the start of the buffer so that the first line can be read again with the next
GET_CMD_LINE. If a line delivered from the system macro cmd is longer than
Maxlength (line), then "line" contains the first part of the line and the variable "more"
is set to TRUE.
The following GET_CMD_LINE call delivers the next part of the line and "more" is
assigned the value FALSE, if "line" contains the remainder of the line.

buffer is the buffer specified in the preceding CMDX call.

line after the GET_CMD_LINE call it contains the next line from the buffer (as a
Pascal string).

more = TRUE the line read cannot be fully stored in "line". The remainder can
be read by issuing further GET_CMD_LINE calls.

= FALSE the complete line is contained in "line".

U2780-J-Z125-6-7600 311

Predefined package DMSIO Appendix 5

A.5 DMSIO

The DMSIO package provides additional functions for opening and closing files and a
series of functions for accessing ISAM files (index sequential files).

When a file is opened for reading, the Pascal system takes the current file attributes
from the catalog entry (when the file does not exist an OPEN_ERROR is generated). If
a FILE command with specification of the link name and file attributes was issued
before it was opened, an OPEN_ERROR is generated if these attributes do not match
those in the catalog (see also section 5.3).

When a file is opened for writing, the Pascal system sets up a SAM file with variable
record length as a standard procedure. If the current file is to be a SAM file with fixed
record length or an ISAM file, a FILE command must be issued using the desired file
attributes before opening the file. The FILE command must also include the name of
the Pascal file as the link name so that the file attributes can be transferred to the
catalog entry (see section 5.3). Attributes marked with "(*)" must definitely be specified
in the FILE command for an ISAM file, while the default values are used for the other
attributes (see [7]). For reasons of reliability and documentation, the attribute
RECFORM should always be specified because the value of KEYPOS is dependent on
the record format.

FCBTYPE (*) ISAM must be specified as the access method.

KEYPOS (*) Specifies the position of the first character of the record key within
the record. In a Pascal file, the record key corresponds to a record
field within the basic type of the file type. The relative offset n of the
record field to the beginning of record in the case of fixed record
length (RECFORM=F) corresponds to the position n+1; in the case
of variable record length (RECFORM=V) it corresponds to the
position n+5, because in this case the 4-byte long record length
field must be taken into account.

The relative offset of the record field containing the key should be
defined using the predefined function OFFSETOF (see also
examples).

KEYLEN (*) Specifies the length of the record key in bytes. The length of the
record field defining the record key can be determined using the
standard function SIZEOF.

RECFORM Defines whether fixed or variable length records are to be
processed. Variable length records are automatically given a 4-byte
record length field.

RECSIZE Specifies the record length (including length field) in bytes.

312 U2780-J-Z125-6-7600

Appendix 5 Predefined package DMSIO

BLKSIZE Defines the buffer length for I/O operations.

DUPEKY Defines whether duplicate keys are permissible. This attribute is not
stored in the catalog and is valid only for as long as the associated
FILE command is valid.

SHARUPD Defines whether a file can be updated by more than one task at the
same time if the file was opened with Replace. Further details on
access synchronization are contained in [7,8]. This attribute is not
stored in the catalog and is valid only for as long as the associated
FILE command is valid.

U2780-J-Z125-6-7600 313

Predefined package DMSIO Appendix 5

(***
* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1990 *
* ALL RIGHTS RESERVED *
* *
***)
{$DEBUG=ON}
package DMSIO;

(***************************************)
(* The body of this package is part *)
(* of the Pascal-XT runtime system *)
(***************************************)

procedure extend (var f: any_file);
(* same as rewrite but the file’s content is not lost *)

procedure replace (var f: any_file);
(* opens the file for reading and writing *)

procedure close (var f: any_file);
(* closes the file *)

procedure elim (var f: any_file);
(* deletes the last read record in the file *)

procedure elimkey (var f: any_file);
(* deletes the record with the given key *)

procedure getkey (var f: any_file);
(* reads the record with the specified key *)

procedure getback (var f: any_file);
(* reads backwards the next record *)

procedure update (var f: any_file);
(* writes a previously read record back into the file *)

procedure pos (var f: any_file);
(* positions to the beginning of the file *)

procedure poskey (var f: any_file);
(* positions to the record with the specified key *)

procedure posback (var f: any_file);
(* positions to the file’s end *)

procedure movekey (var f: any_file; var stv: string);
(* returns the key of the last read record *)

function bof (var f: any_file): boolean;
(* returns begin of file *)

function nokey (var f: any_file): boolean;
(* returns false if the specified record is in the file *)

function lock (var f: any_file): boolean;
(* is true if the specified record is locked *)

function reclen (var f: any_file): integer;
(* returns the length of the last read record *)

function keypos (var f: any_file): integer;
(* returns the file key’s position *)

function keylen (var f: any_file): integer;
(* returns the file’s keylength *)

end (* package DMSIO *).

314 U2780-J-Z125-6-7600

Appendix 5 Predefined package DMSIO

Opening modes for files

CLOSE (f)

At program end all files opened by Pascal are automatically closed. The user can
also close a file independently using Close(f). In the case of a text file, an implicit
Writeln(f) is executed for Close(f) if the last line has not yet been completed using
Writeln(f). In the case of non-text files, the contents of a file buffer which has not
been output are lost. If Close is used on the predefined Input or Output file, then an
Open_Error (system error code 1607) will occur.

EXTEND (f)

opens the file for writing. The previously existing contents of the file are not lost.
Buffer f is undefined. Put permits further records to be stored at the end of the file.
Extend can only be used for SAM and ISAM files and the standard files *SYSOUT,
*SYSLST and *DUMMY. Calling Extend while specifying Input or Output leads to an
Open_Error (system error code 1607).

REPLACE (f)

opens the file for reading and writing so that records can be updated. If the file
does not exist, a new one is created. If the file does exist, the first record is then
read into the file buffer and in the case of ISAM files is locked by specifying
SHAREUPD=YES. The lock can be lifted by calling Pos(f). Replace can only be
used for SAM and ISAM files. Calling Replace while specifying Input or Output leads
to an Open_Error (system error code 1607).

General functions

BOF (f)

indicates whether the beginning of file f was reached. This function is symmetrical to
Eof. If Bof becomes True after calling Getback or Eof True, then a further Getback is
not permissible, whereas a Get is permissible.

POS (f)

positions to beginning of file so that the first record of the file is read using the next
Get(f). After Pos(f), Bof(f) is True. Eof(f) is True for a dummy file, otherwise it is
False.

U2780-J-Z125-6-7600 315

Predefined package DMSIO Appendix 5

POSBACK (f)

positions to end of file so that the last record of the file can be read using the next
Getback(f). After Posback(f), Eof(f) is True. Bof(f) is True for a dummy file, otherwise
it is False.

RECLEN (f)

provides the record length of the record last read or written as an integer result for
file f. When the file status is undefined the value -1 is returned.

UPDATE (f)

rewrites a record processed with Get(f), Getkey(f) or Getback(f) to the file. In this
case the record length and, for ISAM files the key field, must not be changed if file f
has been opened with Replace. The record lock is lifted. Update can only be used if
file f has been opened with Replace.

Processing of ISAM files

ELIM (f)

deletes from an ISAM file the record last read with Get(f) and leaves f undefined. If
this was the last record of the file, then Eof(f) is True; if it was the first one, Bof(f)
remains True.

ELIMKEY (f)

deletes from an ISAM file the record whose key is in the key field. If this record is
locked it is not deleted, instead Lock(f) is True. If such a record does not exist,
Nokey(f) is True after the call. If there is more than one record with the same key,
the first one is deleted. After Elimkey(f), Eof(f) and Bof(f) are False.

GETBACK (f)

reads the next record from the file in the direction beginning of file. If the previously
read record was the first one in the file, f is undefined and Bof(f) is True. If the
record is locked, i.e Lock(f) is True, then f is undefined and a new Getback
attempts to read the locked record again.

316 U2780-J-Z125-6-7600

Appendix 5 Predefined package DMSIO

GETKEY (f)

reads the record whose key is specified in the key field. If this record is locked, f
is undefined and Lock(f) is True. If such a record does not exist, Nokey(f) is True
after the call. When more than one record has the same key, the first one is read
and the others can be read with Get. If the file has been opened with Replace, the
record is locked after a successful Getkey(f), but not after Reset. Getkey(f) sets
(Eof)f and Bof(f) to False.

KEYLEN (f)

specifies the length of the record key in bytes for an ISAM file.

KEYPOS (f)

specifies the position of the first character of the record key for an ISAM file.

LOCK (f)

is True and f is undefined if the required record is locked at the time. When the
access function is repeated the locked record is accessed again. In the case of
ISAM files with equal keys (DUPEKY=YES) it is not possible to determine whether
the same record is being accessed again or not (this is determined by the
processing in the Retry macro).

MOVEKEY (f,stv)

moves the last record key read of file f to the string variable stv in the case of read
access to ISAM text files. In the case of files with sequential access or undefined file
status, an empty string is returned.

NOKEY (f)

is True if the required record in file f does not exist.

Note
After Poskey(f), Nokey is also False if the record does not exist. If the file has
been opened with Replace, then an interrogation must be made as to whether
the record is locked (Lock call) before calling Nokey.

U2780-J-Z125-6-7600 317

Predefined package DMSIO Appendix 5

POSKEY (f)

positions to the record whose key is in the key field so that it can be read with the
next Get(f). If such a record does not exist, positioning is to the place where such a
record should exist. With the next Get(f), the first record with the next highest key is
read. After Poskey(f), Eof(f), Bof(f), Lock(f) and Nokey(f) are False.

Extensions to the standard procedures

In addition to the above-mentioned procedures and functions, standard procedures and
functions defined in Pascal-XT can be used on ISAM files.
The procedures Put, Get and the function Eof are extended for ISAM files in the
following manner:

GET (f)

reads the next record from the file in the direction end of file. If this record is
locked, Lock(f) is True and f is undefined. If the file has been opened with
Replace, a record is locked when Get is successful, but not in the case of Reset. If
there are no more records, f is undefined and Eof(f) is True.

PUT (f)

appends a record to the end of the file in the case of a SAM file. For an ISAM file
opened with Rewrite or Extend, a record is likewise appended to the end of the
file. However the record key must be larger than the keys of all previously written
records. If the file has been opened with Replace, the record is stored in
accordance with its key. If a record with the same key already exists, it is
overwritten when DUPEKY=NO has been specified, otherwise it is appended to the
list of records with the same key. If the record to which writing is to take place is
locked, no action is taken and Lock(f) is True.

EOF (f)

shows whether the end of file f has been reached. If Eof is True after calling
Posback or Get, any further Get is not permitted, whereas Getback is permitted.

318 U2780-J-Z125-6-7600

Appendix 5 Predefined package DMSIO

The table below shows all action macros with respect to their permissibility as a
function of the Open mode and type of file.

Open mode - RESET REWRITE EXTEND REPLACE

File type - SAM ISAM SAM ISAM SAM ISAM SAM ISAM

Action macro

ELIM x

ELIMKEY x

GET x x x x

GETKEY x x

GETBACK x x

PUT x (1) x (1) x

UPDATE x x

POS x x x x

POSKEY x x

POSBACK x x x x

x The action macro is permitted

(1) Permitted at the end of the file, i.e. only with increasing keys

U2780-J-Z125-6-7600 319

Predefined package DMSIO Appendix 5

The table below outlines the influence of the results of functions Bof, Eof, Nokey and
Lock as well as the buffer contents of f with respect to the procedures.

BOF EOF NOKEY LOCK Buffer contents

RESET (1) (1) FALSE FALSE (A)

REWRITE - TRUE FALSE FALSE (U)

EXTEND - TRUE FALSE FALSE (U)

REPLACE (1) (1) FALSE (2) (A,B)

CLOSE - - FALSE FALSE (U)

ELIM - - FALSE (2) (U)

ELIMKEY FALSE FALSE (3) (2) (U)

GET FALSE (4) FALSE (2) (A)

GETBACK (5) FALSE FALSE (2) (A,B)

GETKEY FALSE FALSE (3) (2) (B)

POS TRUE (1) FALSE FALSE (U)

POSBACK (1) TRUE FALSE FALSE (U)

POSKEY FALSE FALSE FALSE FALSE (U)

PUT FALSE - FALSE (2) (U)

UPDATE - - FALSE FALSE (U)

 Unchanged, irrelevant.

(1) True if the file is empty, otherwise False.

(2) True if the record is locked, otherwise False.

(3) True if the record does not exist, otherwise False.

(4) True if an attempt was made to read beyond the end of file.

(5) True if an attempt was made to read before the beginning of file.

(A) Undefined if Eof is True, otherwise defined.

(B) Undefined if Lock or Nokey is True, otherwise defined.

(U) Undefined.

320 U2780-J-Z125-6-7600

Appendix 5 Predefined package DMSIO

Example 1

The sample program generates an ISAM file, writes records to this file, and then reads
a specific record. Assignment of the physical file to the Pascal file is made before the
program executes by issuing the FILE command. The first time the program is called,
fixed length records are processed, the second time variable length records.

/EXEC $USERID.PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//D DIRECTORY
//C ($USERID.PASSUP-XT, DMSIO.SPEC), *D

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (PLAM.EXAMPLE, ISAM1.PROG), *SYSOUT, *OMF(Y)
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

LIST OF RECOMPILED PACKAGE SPECIFICATIONS (SOURCE FILES)

($USERID.PASSUP-XT,DMSIO.SPEC(*STD,S))

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,ISAM1.PROG(*STD,S))

1 (*$TITLE = ’Generate an ISAM file’*)
2
3 with DMSIO;
4
5 program ISAM1 (output, isamfile);
6
7 const
8 keypos = 4;
9
10 type
11 record type = record
12 c (0) : char;
13 i (keypos) : long_integer;
14 end;
15 file type = file of record type;
16
17 var
18 isamfile : file type;
19
20 procedure generate_file;
21 begin
22 rewrite (isamfile);
23 isamfile .i := 1;

U2780-J-Z125-6-7600 321

Predefined package DMSIO Appendix 5

24 isamfile .c := ’A’;
25 put (isamfile);
26 isamfile .i := 2;
27 isamfile .c := ’B’;
28 put (isamfile);
29 end (* generate_file *) ;
30
31 procedure print_record (key : long_integer);
32 begin
33 reset (isamfile);
34 isamfile .i := key;
35 DMSIO.getkey (isamfile);
36 if DMSIO.nokey (isamfile) then
37 writeln (’Record not found’)
38 else
39 writeln (isamfile .i:1, isamfile .c:3);
40 end (* print_record *) ;
41
42 begin
43 generate_file;
44 print_record (2);
45 end (* ISAM1 *).

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 968 BYTES *
* SIZE OF DATA MODULE : 472 BYTES *
* COMPILATION TIME : 0.210 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//SY FILE FILE-1,LINK=ISAMFILE,FCBTYPE=ISAM,KEYLEN=4,KEYPOS=5,RECFORM=F (01)
//RUN (02)
2 B (03)
//SY FSTAT FILE-1,ALL (04)
0000003 :V:$USERID.FILE-1

FCBTYPE = ISAM VSNTYPE = PUB
LASTPG = 0000002 2ND ALLO= 00003
SHARE = NO ACCESS = WRITE
ACL = NO AUDIT = NONE DESTROY = NO
CRDATE = 1990-11-27 EXDATE = 1990-11-27 LADATE = 1990-11-27
RDPASS = NONE WRPASS = NONE EXPASS = NONE
ACCESS# = 002 VERSION = 001
LARGE = NO BACKUP = A MIGRATE = ALLOWED
BLKTYPE = STD BLKSIZE = 002048 BLKCTRL = PAMKEY
RECFORM = (F,N) RECSIZE = 000008
KEYLEN = 004 KEYPOS = 00005
VSN/DEV/EXT = PUBV02 / D3480 / 001
EXTCNT = 1

:V: PUBLIC: 1 FILE RES= 3 FREE= 1 REL= 0 PAGES
//SY FILE FILE-2,LINK=ISAMFILE,FCBTYPE=ISAM,KEYLEN=4,KEYPOS=9,RECFORM=V (05)
//RUN
2 B

322 U2780-J-Z125-6-7600

Appendix 5 Predefined package DMSIO

//SY FSTAT FILE-2,ALL (06)
0000003 :V:$USERID.FILE-2

FCBTYPE = ISAM VSNTYPE = PUB
LASTPG = 0000002 2ND ALLO= 00003
SHARE = NO ACCESS = WRITE
ACL = NO AUDIT = NONE DESTROY = NO
CRDATE = 1990-11-27 EXDATE = 1990-11-27 LADATE = 1990-11-27
RDPASS = NONE WRPASS = NONE EXPASS = NONE
ACCESS# = 002 VERSION = 001
LARGE = NO BACKUP = A MIGRATE = ALLOWED
BLKTYPE = STD BLKSIZE = 002048 BLKCTRL = PAMKEY
RECFORM = (V,N) RECSIZE = 000012
KEYLEN = 004 KEYPOS = 00009
VSN/DEV/EXT = PUBV04 / D3480 / 001
EXTCNT = 1

:V: PUBLIC: 1 FILE RES= 3 FREE= 1 REL= 0 PAGES
//

(01) Before execution of the program, FILE command is used to create a file
specifying the link name and the file attributes. In this instance fixed length
records are processed. As a consequence, KEYPOS must have the value 5.

(02) Execution of the program. The name of the Pascal file is assumed as the link
name.

(03) Message issued by the program.

(04) Output of information from the file catalog for FILE-1.

(05) The FILE command is used to define a new file. KEYPOS is given the value 9
because this time variable length records are processed.

(06) Output of information from the file catalog for FILE-2.

U2780-J-Z125-6-7600 323

Predefined package DMSIO Appendix 5

Example 2

The program writes records to a file. These records have the same key in pairs. Then
all records of a certain key are output. The name of the physical file is read by the
program. From within the program the FILE command is called to set the parameters
of the ISAM file. Assignment of the physical file to the Pascal file is accomplished by
means of the ASSIGNFILE macro.

/EXEC $USERID.PASCAL-XT
% BLS0500 PROGRAM ’PASCALXT’, VERSION ’22A00’ OF ... LOADED<
% BLS0552 COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG.1990. ALL RIGHT
S RESERVED
//D DIRECTORY
//C ($USERID.PASSUP-XT, DMSIO.SPEC), *D

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C ($USERID.PASSUP-XT, BS2000CALLS.SPEC), *D

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//C (PLAM.EXAMPLE, ISAM2.PROG), *SYSOUT, *OMF(Y)
*** SOURCE LISTING *** BS2000 PASCAL-XT COMPILER V2.2A00...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

LIST OF RECOMPILED PACKAGE SPECIFICATIONS (SOURCE FILES)

($USERID.PASSUP-XT,BS2000CALLS.SPEC(*STD,S))

($USERID.PASSUP-XT,DMSIO.SPEC(*STD,S))

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.EXAMPLE,ISAM2.PROG(*STD,S))

1 with BS2000CALLS, DMSIO;
2
3 program ISAM2 (input, output, isamfile);
4
5 type
6 key type = long_integer;
7 record type = record
8 c : char;
9 key : key type;
10 end;
11 file type = file of record type;
12
13 var
14 isamfile : file type;
15 attr : string;
16 file name : string;
17 error : boolean;
18

324 U2780-J-Z125-6-7600

Appendix 5 Predefined package DMSIO

19 procedure init;
20 begin
21 (* Format of the FILE command without specification of a file *)
22 writestring (attr, ’/FILE ’,
23 ’,LINK=ISAMFILE’,
24 ’,FCBTYPE=ISAM’,
25 ’,KEYPOS=’, (offsetof (record type, key) + 5):1,
26 ’,KEYLEN=’, sizeof (key type):1,
27 ’,RECFORM=V’,
28 ’,DUPEKY=YES’);
29 writeln (’Please enter file name:’);
30 readln; read (file name);
31 BS2000CALLS.cmd (attr, error);
32 if error then raise (1);
33 assignfile (isamfile, file name);
34 end (* init *) ;
35
36 procedure generate_file;
37 begin
38 rewrite (isamfile);
39 isamfile .key := 1; isamfile .c := ’A’; put (isamfile);
40 isamfile .key := 1; isamfile .c := ’a’; put (isamfile);
41 isamfile .key := 2; isamfile .c := ’B’; put (isamfile);
42 isamfile .key := 2; isamfile .c := ’b’; put (isamfile);
43 isamfile .key := 3; isamfile .c := ’C’; put (isamfile);
44 isamfile .key := 3; isamfile .c := ’c’; put (isamfile);
45 end (* generate_file *) ;
46
47 procedure print_record (value : key type);
48 begin
49 reset (isamfile);
50 isamfile .key := value;
51 DMSIO.getkey (isamfile);
52 if DMSIO.nokey (isamfile) then
53 writeln (’Record not found’)
54 else
55 repeat
56 writeln (isamfile .key:1, isamfile .c:3);
57 get (isamfile);
58 until (isamfile .key <> value) or eof (isamfile);
59 end (* print_record *) ;
60
61 begin
62 init;
63 generate_file;
64 print_record (2);
65 end (* ISAM2 *).

U2780-J-Z125-6-7600 325

Predefined package DMSIO Appendix 5

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 2368 BYTES *
* SIZE OF DATA MODULE : 988 BYTES *
* COMPILATION TIME : 0.326 SEC *

>>> COMPILATION SUCCESSFUL (WARNINGS: 0; NOTES: 0)
//RUN
Please enter file name:
TESTFILE
2 B
2 b
//SY FSTAT TESTFILE,ALL
0000033 :V:$USERID.TESTFILE

FCBTYPE = ISAM VSNTYPE = PUB
LASTPG = 0000002 2ND ALLO= 00032
SHARE = NO ACCESS = WRITE
ACL = NO AUDIT = NONE DESTROY = NO
CRDATE = 1990-11-27 EXDATE = 1990-11-27 LADATE = 1990-11-27
RDPASS = NONE WRPASS = NONE EXPASS = NONE
ACCESS# = 002 VERSION = 001
LARGE = NO BACKUP = A MIGRATE = ALLOWED
BLKTYPE = STD BLKSIZE = 002048 BLKCTRL = PAMKEY
RECFORM = (V,N) RECSIZE = 000012
KEYLEN = 004 KEYPOS = 00009
VSN/DEV/EXT = PUBV03 / D3480 / 001
EXTCNT = 1

:V: PUBLIC: 1 FILE RES= 33 FREE= 31 REL= 30 PAGES
//

326 U2780-J-Z125-6-7600

Appendix 6 Predefined package EDTADAPTER

A.6 EDTADAPTER

The EDTADAPTER package permits a program to call the EDT editor or to transfer data
and EDT commands to the EDT editor.

(***
* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1990 *
* ALL RIGHTS RESERVED *
* *
***)
{$DEBUG=ON}
package EDTADAPTER;

(**)
(* The body of this package is part of the *)
(* Pascal-XT runtime system. *)
(* *)
(* Required EDT version: >= 16.1 *)
(* Required Pascal-XT Runtime System: >= 2.1A *)
(* Available in V2.1A and higher: *)
(* EDT_VERSION *)
(* EDT_INTERFACE_VERSION *)
(* SET_EDT_INTERFACE_VERSION *)
(**)

procedure call_edt;
(* calls the editor EDT for interactive use *)

procedure submit_edt (command: string);
(* sends a string or an edt-command to the editor edt *)

const
(* Constant values defined by EDT *)

command_string_len = 296; (* must be equal to EUPCMDM *)
message_string_len = 80; (* must be equal to EUPMSGM *)
workfile_name_len = 8; (* must be equal to L’EGLFILE *)
version_number_len = 12; (* must be equal to EGLVERSL *)

type
command_string = string [command_string_len];
message_string = string [message_string_len];
workfile_name = string [workfile_name_len];
version_number = string [version_number_len];

procedure edt_command (command : command_string;
message : message_string;

var result : message_string;
var workfile : workfile_name);

(* this procedure executes F-mode commands as specified in *)
(* operand ’command’; the string passed in operand ’message’ *)
(* is displayed in line 23 of the EDT; in case of an error the *)
(* EDT’s error message is returned in ’result’; the name of the *)
(* current active workfile is returned in operand ’workfile’. *)

function edt_version : version_number;
(* returns the EDT version number *)
(* format: ’EDT V16.xAxx’ *)

function edt_interface_version : integer;
(* returns the EDT subprogram interface version *)
(* which is currently supported, e.g. 1 or 2 *)

U2780-J-Z125-6-7600 327

Predefined package EDTADAPTER Appendix 6

procedure set_edt_interface_version (vers : integer;
var errors : boolean);

(* this procedure sets the EDT subprogram *)
(* interface version *)
(* ’vers’ : specifies the interface version as *)
(* described in [1] (subprogram control *)
(* block EDTUPCB, field EUPVERS) *)
(* ’error’ : result of the operation *)
(* = true : an error occurred *)
(* = false : no error *)

end (* package EDTADAPTER *).

CALL_EDT

deactivates execution of the Pascal program and calls EDT. As a result of the EDT
command HALT or @RETURN or pressing the K1 key, EDT is exited from and
execution of the Pascal program continues. The contents of the EDT working areas
are retained.

SUBMIT_EDT (line)

passes the string designated by "line" to EDT. The version of the EDT subprogram
interface being used defines how the string is to be interpreted (as data or as an
EDT command). After EDT has processed the string, control is returned to the
calling subprogram.

EDT_COMMAND (command, message, result, workfile)

This procedure services the new subprogram interface of EDT starting with version
16.1 (see [13]). This interface permits passing of multiple EDT commands and
enables EDT to be called. In addition, a text can also be passed on, one which EDT
outputs in the message line. If an error occurs, the error message text of EDT is
returned. When returning from EDT, the name of the EDT working area exited from is
given. Both uppercase and lowercase letters can be specified in "command" and
"message".

command Contains a string of F mode commands (separated by semicolons)
which are processed in order of precedence. Permissible commands
are described in the EDT manual. Switchover of the EDT working
area is effected by: ’$0’ ,..., ’$9’, invocation of EDT by: ’DIALOG’

message The specified string is output in line 23 of EDT. When the empty
string (’’) is specified, EDT produces standard output.

328 U2780-J-Z125-6-7600

Appendix 6 Predefined package EDTADAPTER

result If errors occur when "command" is processed, then "result" contains
either the error text from EDT - or, if this is not present, the main
return code from EDT in the form
" PASCAL-XT : EDT MAIN-RETURNCODE xxxx", where xxxx
represents the hexadecimal value of the main return code. The
empty string is returned in the event of error-free execution.

workfile Always supplies the current working area of EDT
(in der Form ’$0 ’, ’$1 ’,..., ’$9 ’).

The subprograms call_edt and submit_edt likewise use the new EDT interface and
have the following effect:

call_edt: edt_command(’DIALOG’, ’’, dummy, dummy)

submit_edt(cmd): edt_command(cmd, ’’, dummy, dummy)

where "dummy" stands for the string variable.

EDT_VERSION

This function returns the version number of the EDT used in the system in a 12-
character string in the form ’EDT V16.xAxx’. ’x’ is a more detailed identification of
the version and is specific to EDT.

EDT_INTERFACE_VERSION

This function returns the interface version of the EDT subprogram interface in the
form of an integer variable. Possible values for the interface version and its
significance can be found in the reference manual for the EDT subprogram interface
[13] (currently a value of 1 designates the statement set supported by EDT version
16.1, while a value of 2 designates the statement set supported by EDT version
16.2).

U2780-J-Z125-6-7600 329

Predefined package EDTADAPTER Appendix 6

SET_EDT_INTERFACE_VERSION (vers, errors)

On initialization of the interface version the Pascal-XT runtime system takes
responsibility for presetting the values in the IEDTUPCB macro (see [13]). The
interface version can be changed by using the procedure
SET_EDT_INTERFACE_VERSION. The setting of the values is only possible before
EDT is initialized, i.e. apart from EDT_INTERFACE_VERSION, EDT_VERSION and
this procedure itself, no other procedure in the EDTADAPTER package may be
called before this is done. All other calls result in EDT being initialized. Similarly,
once an EDT procedure area has been used as a Pascal file or EDT has been
called in the programming environment or in the debugging aid PATH, it is no
longer possible to change the interface version.

vers specifies the required interface version; it must be defined as an integer
(1,2,...). The validity of the parameter is not checked by the procedure.

errors contains the result of the operation that has been executed.
= FALSE if execution is error-free
= TRUE if an inconsistency is detected in the EDT interface version (e.g.

EDT V16.1 is called with interface version 2), or, if a command
to EDT has already been issued and changing the interface is
no longer possible.

Notes

In the predefined procedure ASSIGNFILE the various working areas may be
addressed. In addition to *EDT (working area currently set) the number of the
working area can be specified in parentheses, e.g. (*EDT(1) ,..., *EDT(9))(see also
section 5.2.1).

If EDT is called from within a Pascal-XT program, then no Pascal-XT program can
be executed by means of the EDT command @RUN. The reason for this is that
both programs use the same runtime system, which will generate an error when the
program started with @RUN terminates. Programs other than Pascal-XT will execute
smoothly.

The programming system and the debugging aid also issue commands to EDT via
the subprogram interface. A program started with //RUN cannot change the
interface version if EDT has already been called in the programming system or in
the debugging aid.

330 U2780-J-Z125-6-7600

Appendix 7 Predefined package ERRORS

A.7 ERRORS

The ERRORS package provides additional information on the more precise classification
of the error when an exception occurs. The meanings of the system error codes is
described in section 10.4.

(***
* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1990 *
* ALL RIGHTS RESERVED *
* *
***)
{$DEBUG=ON}
package ERRORS;

(**)
(* The body of this package is part of the *)
(* PASCAL-XT runtime system. *)
(* *)
(* Required Pascal-XT Runtime System: >= 2.1A *)
(* Available in V2.1A and higher: *)
(* INTR_MESSAGE *)
(* PRINT_ERROR_INFO *)
(* RERAISE *)
(**)

function system_code: integer;
(* returns the system error code as additional information about *)
(* the last error. 0 is returned if there is no system error *)
(* code. *)

function interrupt_address: integer;
(* returns the interrupt address of the last exception. 0 is *)
(* returned if there is no error. *)

function file_info: string;
(* file_info returns file information if an exception was raised *)
(* by a file error. For other errors the empty string is *)
(* returned. *)

function intr_message: string;
(* returns the most recent /INTR message if an exception was *)
(* raised by /INTR; if /INTR was sent without message or no *)
(* /INTR at all, the empty string is returned. *)

procedure print_error_info;
(* Lists the dynamic stack chain as it existed at the instant *)
(* of the most recent exception. The format is the same as *)
(* in the case of an unhandled exception. If no exception has *)
(* occurred yet, nothing is listed. *)

inline procedure reraise;
begin raise(0) end;

(* Resumes the raise of the most recently raised exception. *)
(* Raises system_error with system_code 5001, if no exception *)
(* has occurred yet. *)

end (* package ERRORS *).

U2780-J-Z125-6-7600 331

Predefined package ERRORS Appendix 7

SYSTEM_CODE

returns the system error code of the last error which occurred (see 10.4). The value
of the function is undefined in the case of exceptions which are not predefined or in
the event of error-free execution.

INTERRUPT_ADDRESS

returns the interrupt address of the last interrupt or of the last call of standard
procedure RAISE. The value of the function is undefined when execution is without
error.

FILE_INFO

In the event of a file access error the name of the Pascal file, the external
description specified in the standard procedure ASSIGNFILE, and the name of the
current (not the temporary) BS2000 file are returned. The empty string is returned
for the other errors.

PRINT_ERROR_INFO

This procedure outputs to SYSOUT and SYSLST the dynamic call chain as it was
when the last exception occurred without the exception having to be triggered again
or propagated. The format of the output is the same as that in the case of an
unhandled exception. PRINT_ERROR_INFO can be called at any time either from
within or without an exception handler. If no exception has occurred then nothing is
output.

INTR_MESSAGE

This function returns the text of the message issued at the last K2 /INTR interrupt.
The empty string is returned if no text was specified in the last /INTR command or
if no /INTR command has yet been issued in the program run.

RERAISE

This (inline) procedure continues the propagation of the most recent exception
already processed by an exception handler. If there is no other exception handler
present, the dynamic call chain as it was when the last exception occurred is output
to SYSOUT and SYSLST.

RERAISE can be called from within or without an exception handler. If no exception
has yet occurred, a call leads to a runtime error
(SYSTEM_ERROR, System_Code=5001).

332 U2780-J-Z125-6-7600

Appendix 8 Predefined package HEAPSUPPORT

A.8 HEAPSUPPORT

The HEAPSUPPORT package permits the user to employ several heaps. Dynamically
generated objects are always allocated in the current heap. Objects in one heap can
also point to objects in other heaps. If this package is not used or if no heap is
defined, objects are then allocated in the default heap set up by the runtime system as
a standard procedure.

RELEASE(p) is used to release the heap level previously set with the relevant MARK(p).

The concept of heaps permits logically associated objects to be combined, or objects
with approximately the same lifespan, all in one heap. Release of these objects is
quick--simply by triggering this heap release function.

U2780-J-Z125-6-7600 333

Predefined package HEAPSUPPORT Appendix 8

(***
* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1990 *
* ALL RIGHTS RESERVED *
* *
***)
{$DEBUG=ON}
package HEAPSUPPORT;

(***************************************)
(* The body of this package is part *)
(* of the Pascal-XT runtime system *)
(***************************************)

type

heap = heap_descriptor; (* private *)

procedure create_heap (var h : heap);
(* Creates a new heap and returns the pointer of the heap descriptor *)
(* for subsequent use by select_heap and release_heap. *)
(* Raises memory_error with system_code 1403 if creation of a new *)
(* heap is not possible. *)
(* Note : create_heap does not select the new heap. *)

procedure select_heap (h : heap);
(* Selects the heap h as the current heap. All subsequent calls to *)
(* the standard procedure new will allocate memory on this heap. *)
(* select_heap(default_heap) is allowed, select_heap(current_heap) *)
(* has no effect. *)
(* select_heap on an already released heap raises system _rror with *)
(* system_code 1404. *)

function current_heap : heap;
(* Returns the pointer of the heap descriptor of the current heap. *)
(* Note : this may be the default heap. *)

function default_heap : heap;
(* Returns the pointer of the heap descriptor of the default heap. *)
(* Note : The Initialization routine of the Runtime-System creates *)
(* and selects a heap before transferring control to the *)
(* user program. This heap is called the "default heap". *)

procedure release_heap (h : heap);
(* All dynamic variables allocated in the heap h will be "disposed" *)
(* and their memory together with the heap descriptor returned to *)
(* the operating system. *)
(* release_heap(current_heap) raises system_error, system_code 1405 *)
(* release_heap(default_heap) raises system_error, system_code 1406 *)

end (* package HEAPSUPPORT *).

334 U2780-J-Z125-6-7600

Appendix 8 Predefined package HEAPSUPPORT

CREATE_HEAP (h)

creates a descriptor for a new heap and returns a pointer referring to this heap, the
pointer being used for the procedures select_heap and release_heap. An explicit
switch to a newly created heap must be made (by means of the select_heap
procedure) before it can be used.

DEFAULT_HEAP

returns a pointer referencing the heap selected by the runtime system as a standard
procedure. Release of this default_heap is not possible and raises a runtime error
(SYSTEM_ERROR, system_code = 1408).

CURRENT_HEAP

returns a pointer referencing the heap which was last selected by the select_heap
procedure. In the event select_heap has not yet been used, the current_heap =
default_heap. Release of the curren_ heap is not possible and raises a runtime error
(SYSTEM_ERROR, system_code = 1407).

SELECT_HEAP (h)

A switch is made to the heap specified by h. This heap must have been generated
by means of create_heap if this is not the default_heap. Subsequent calling of the
standard procedure NEW generates objects in this heap.
Calling select_heap (current_heap) has no effect, whereas calling select_heap
(default_heap) switches over to the default_heap, provided that current_heap =
default_heap does not already apply.

RELEASE_HEAP (h)

The heap specified by h is released and the reserved main memory is returned to
the operating system. Release of the current heap or of the default_heap raises a
runtime error.

U2780-J-Z125-6-7600 335

Predefined package HEAPSUPPORT Appendix 8

Example

The HEAPSTACK package simulates the functions pushheap, popheap and killheap
provided by Pascal (BS2000) version 3.

*** SOURCE LISTING *** BS2000 SIEMENS PASCAL-XT COMPILER V2.0A00...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.MANUAL,HEAPSTACK.SPEC(*STD,S))

1 (*$TITLE = ’Simulation of heap functions for Pascal version 3’*)
2 package HEAPSTACK;
3
4 procedure pushheap;
5 procedure popheap;
6 procedure killheap;
7
8 end (* package HEAPSTACK *).

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 0 BYTES *
* SIZE OF DATA MODULE : 0 BYTES *
* COMPILATION TIME : 0.071 SEC *

*** SOURCE LISTING *** BS2000 SIEMENS PASCAL-XT COMPILER V2.0A00...

GLOBAL OPTIONS FOR THIS COMPILATION

DEBUG = OFF BY DEFAULT
GENERATE = ON BY DEFAULT
MAP = OFF BY DEFAULT
STANDARD = OFF BY DEFAULT
XREF = OFF BY DEFAULT

LIST OF RECOMPILED PACKAGE SPECIFICATIONS (SOURCE FILES)

($PASSUP-XT,HEAPSUPPORT.SPEC(*STD,S))

($USERID.PLAM.MANUAL,HEAPSTACK.SPEC(*STD,S))

CURRENT COMPILATION UNIT (SOURCE FILE)

($USERID.PLAM.MANUAL,HEAPSTACK.BODY(*STD,S))

336 U2780-J-Z125-6-7600

Appendix 8 Predefined package HEAPSUPPORT

1 with HEAPSUPPORT;
2 from HEAPSUPPORT use heap , default_heap,
3 create_heap, select_heap, release_heap;
4
5 package body HEAPSTACK;
6
7 type
8 heapstack = heapctrlblock;
9 heapctrlblock = record
10 curr : heap;
11 rest : heapstack;
12 end;
13
14 var
15 hs : heapstack;
16 lastheap : heap;
17
18 procedure pushheap;
19 var
20 hsnew : heapstack;
21 newheap : heap;
22
23 begin
24 create_heap (newheap);
25 new (hsnew);
26 hsnew .curr := newheap;
27 hsnew .rest := hs;
28 hs := hsnew;
29 lastheap := nil;
30 select_heap (newheap);
31 end (* pusheap *) ;
32
33 procedure popheap;
34 begin
35 if hs .curr <> default_heap then begin
36 lastheap := hs .curr;
37 hs := hs .rest;
38 select_heap (hs .curr);
39 end;
40 end (* popheap *) ;
41
42 procedure killheap;
43 begin
44 if lastheap <> nil then begin
45 release_heap (lastheap);
46 lastheap := nil;
47 end;
48 end (* killheap *) ;
49
50 begin
51 new (hs);
52 hs .curr := default hea_;
53 hs .rest := nil;
54 lastheap := nil;
55 end (* package HEAPSTACK *).

U2780-J-Z125-6-7600 337

Predefined package HEAPSUPPORT Appendix 8

* COMPILATION SUMMARY *

* ERRORS DETECTED : 0 *
* WARNINGS : 0 *
* NOTES : 0 *
* SIZE OF CODE MODULE : 896 BYTES *
* SIZE OF DATA MODULE : 112 BYTES *
* COMPILATION TIME : 0.245 SEC *

338 U2780-J-Z125-6-7600

Appendix 9 Predefined package MEMORYMANAGER

A.9 MEMORYMANAGER

The procedures provided in the MEMORYMANAGER package execute the functions
provided by the BS2000 macros GTMAP, REQM and RELM (see [8]). Normally a Pascal
program for memory management only uses the predefined procedures NEW,
DISPOSE, MARK and RELEASE. To obtain information on the current storage space
reservation, calling MEMORYMANAGER.GETMAP is recommended. Invocation of
MEMORYMANAGER.REQMEM and MEMORY_MANAGER.RELMEM is reserved for
special applications only. In particular, calling of RELMEM for memory pages is not
permissible if the pages have not been previously obtained by means of an explicit
MEMORYMANAGER.REQMEM request. Incorrect use generally results in a program
crash.

Note that the runtime system automatically performs memory management and does
not always return released pages to the operating system. This is particularly true if it is
expected that released pages will soon be needed again.

(***
* *
* COPYRIGHT (C) SIEMENS NIXDORF INFORMATIONSSYSTEME AG 1990 *
* ALL RIGHTS RESERVED *
* *
***)
{$DEBUG=ON}
package MEMORYMANAGER;

(***************************************)
(* The body of this package is part *)
(* of the Pascal-XT runtime system *)
(***************************************)

const

max_page = 2047;
max_pages_per_reqmem = 1792; (* BS2000 V7.5 and higher *)
any_page = 0; (* code for non-specific page request *)

type

page_range = 0 .. max_page;
reqmem_page_range = 1 .. max_pages_per_reqmem;

page_map = set of 0..max_page;

procedure getmap (var map : page_map);
(* returns a map of the used pages of the user’s memory *)

procedure reqmem (number_of_pages : reqmem_page_range;
page_number : page_range; (* or "any_page" *)

var first_page : pointer);
(* request a contiguous memory area of pages *)

procedure relmem (number_of_pages : page_range;
first_page : pointer);

(* releases the specified number of pages starting at "first_page" *)

end (* package MEMORYMANAGER *).

U2780-J-Z125-6-7600 339

Predefined package MEMORYMANAGER Appendix 9

GETMAP (map)

provides information on the use of pages in the first 16 Mb of user memory. A page
i is free whenever "i in map" holds true (cf. [7]). This procedure provides no
information on the use of pages in the upper address space (> 16 Mb).

REQMEM (number_of_pages, page_number, first_page)

requests a contiguous memory area containing "number_of_pages", beginning with
the page specified by page_number. If page_number = any_page, any arbitrary free
page is used. If the request can be met by the BS2000 system, a pointer
referencing the allocated memory area is returned in the "first_page" result
parameter, otherwise the value NIL is returned.

RELMEM (number_of_pages, first_page)

releases the number of memory pages specified in number_of_pages, beginning
with the page specified by first_page.

340 U2780-J-Z125-6-7600

Appendix 10 Compatibility problems between Pascal-XT V2.2 and V3.0

A.10 Compatibility problems between Pascal-XT V2.2 and V3.0

In the next Pascal-XT version, a new language will replace the current language set.
This will cover the language set defined in ISO standard 10206 for Extended Pascal and
some extensions. To keep migration problems to a minimum, a tool will be provided for
converting Pascal-XT V2.2 source programs to V3.0 source programs. Certain language
constructs, however, will pose problems in this respect. The Pascal-XT V2.2A compiler
therefore already issues notes at points where these language constructs occur, to alert
the user to such problems. The compiler does not issue notes for language constructs
which the migration tool will convert to equivalent Pascal-XT V3.0 constructs without
difficulty.

The notes issued by the compiler relate to the following language constructs:

Standard procedure Elaborate(p)
(see the Pascal-XT Language Reference Manual [1], section 15.12)

This procedure, which enables the user to influence the sequence in which packages
are initialized, will no longer be supported in Pascal-XT V3.0. Therefore with cyclical
package references, package blocks may no longer contain statements.

Domain type of pointers
(see the Pascal-XT Language Reference Manual [1], section 6.4)

In Pascal-XT V3.0, the domain type of a pointer type and the pointer type must be
defined in the same declaration part.

The compiler cannot point precisely to this problem in every case.

Procedures and functions with the directive Forward
(see the Pascal-XT Language Reference Manual [1], section 8.6)

In Pascal-XT V3.0, if a procedure or function is declared with the directive "FORWARD",
the header and block of the procedure or function must be declared in the same
declaration part. This means that there must be no variable, type or constant
declarations between them.

Qualified set constructors
(see the Pascal-XT Language Reference Manual [1], section 9.4)

In Pascal-XT, the ordinal values of the base type of an unqualified set constructor must
be in the range 0..2047 (see 4.2., No.11). With qualified set constructors it is possible to
construct sets outside this range. In Pascal-XT V3.0, the base type of a set constructor
is set to ordinal values in the range 0..2047; sets can no longer be constructed outside
this range.

U2780-J-Z125-6-7600 341

Compatibility problems between Pascal-XT V2.2 and V3.0 Appendix 10

Indexing and selection of aggregate members
(see the Pascal-XT Language Reference Manual [1], section 9.5)

In Pascal-XT V3.0, a single expression may no longer be used when specifying an
aggregate from which a member is selected by indexing or selection. The aggregate
can be defined as a constant or, in the case of non-static members, a variable, as
required.

Smallest representable real number
(see 4.2, Nos.1 and 2)

The constant MINREAL stands for the smallest real number that can be represented on
a given machine. In Pascal-XT V3.0, the constant corresponds to the smallest
normalized real number, so it has a somewhat greater value.

342 U2780-J-Z125-6-7600

Appendix 10 Compatibility problems between Pascal-XT V2.2 and V3.0

References
[1] Pascal-XT (SINIX, BS2000)

Language Reference Manual

Target group
Pascal-XT users working under the BS2000 operating system.
Contents
Structure and elements of a Pascal program which complies with the
standard, and extensions of Pascal-XT as compared with the standard.

[2] BS2000
Introductory Guide to the SDF
Dialog Interface
User Guide

Target group
BS2000 users.
Contents
The various input options offered with SDF in system operation; operating
instructions and examples relating to optional user guidance via menus.
Applications
General.

[3] LMS (BS2000)
ISP Format
Reference Manual

Target group
BS2000 users
Contents
Description of the LMS statements in ISP format for creating and managing
PLAM libraries and the members these contain.
Frequent applications are illustrated by means of examples.

U2780-J-Z125-6-7600 343

References

[4] BS2000
Utility Routines
User Guide

Target group
BS2000 users (non-privileged).
Contents
Utility routines for non-privileged BS2000 users.
Applications
BS2000 timesharing mode.

[5a] BS2000
System User, Part 1
System Reference Guide

Target group
Experienced BS2000 users
Contents
Overview of commands and macros in BS2000, of essential tables and
registers, of code tables and systems standards.
Applications
BS2000 interactive/batch mode

[5b] BS2000
System User, Part 2
System Reference Guide

Target group
Experienced BS2000 users
Contents
Overview of

Assembler instructions and statements.
Statements for the software products and EDT, SORT, ARCHIVE,
PERCON, LEASY, TSOSLNK, DCAT, PASSWORD, FDEXIM, FDRIVE,
DPAGE, SODUMP, $PCCNTRL, TPCOMP2, PRSERVE

Applications
BS2000 interactive/batch mode

344 U2780-J-Z125-6-7600

References

[6] BS2000
Executive Macros
User Guide

Target group
BS2000 assembly language programmers (non-privileged)
System administrators

Contents
All Executive macros in alphabetical order with detailed explanations and
examples; selected macros for DMS and TIAM
Macro overview according to application areas
Comprehensive training section dealing with eventing, serialization, inter-
task communication, contingencies

Applications
BS2000 application programs

[7a] BS2000
User Commands (ISP Format)
User Guide

Target group
BS2000 users (non-privileged)
Contents

All BS2000 system commands in alphabetical order with detailed
explanations and examples
The following products are dealt with:
BS2000-GA, MSCF, JV, FT, TIAM

Applications
BS2000 interactive/batch mode, procedures

U2780-J-Z125-6-7600 345

References

[7b] BS2000
User Commands (SDF Format)
User Guide

Target group
BS2000 users
Contents
This manual describes the commands of the SDF command interface which
can be used by the non-privileged user in the basic configuration of BS2000
V10.0A. The following are also dealt with:

SDF V2.0A FT V4.0A
SDF-P V1.0A HSMS V1.1A
SYSFILE V10.1 JV V10.0A
RSO V2.1B RFA V10.0A
SPOOL V2.5B SECOS V1.0A

The descriptions are arranged alphabetically according to command names.
They include the command format and a description of the operands.

[8] BS2000
Job Variables
User Guide

Target group
BS2000 users
Contents

Applications for job variables in controlling and monitoring jobs and
program runs
Conditional job control
All the necessary commands and macros
Application examples

Applications
BS2000 timesharing mode

346 U2780-J-Z125-6-7600

References

[9] UTM (TRANSDATA, BS2000)
Planning and Design
User Guide

Target group
Dp managers
Application planners
Programmers

Contents
Introduction to UTM; description of the program memory and interface
concept, access to data and files, and the interoperation with databases
Notes on the design, optimization and performance of UTM applications,
as well as details of data protection and linked applications

Applications
BS2000 transaction processing

[10] UTM (TRANSDATA, BS2000)
Generating and Administering Applications
User Guide

Target group
System administrators
UTM administrators

Contents
Creation, generation and operation of UTM applications
Working with UTM messages and error codes

Applications
BS2000 transaction processing

[11] UTM (TRANSDATA)
Supplement for Pascal-XT
User Guide

Target group
Programmers of UTM Pascal-XT applications
Contents

Translation of the KDCS program interface into the language Pascal-XT
All the information required by programmers of UTM Pascal-XT
applications

Applications
BS2000 transaction processing

U2780-J-Z125-6-7600 347

References

[12] UTM (TRANSDATA)
Programming Applications
User’s Guide

Target group
Programmers of UTM applications
Contents

Language-independent description of the KDCS program interface
Structure of UTM programs
KDCS calls
Testing UTM applications
All the information required by programmers of UTM applications

Applications
BS2000 transaction processing

[13] BS2000
Assembler Instructions
Reference Manual

Target group
BS2000 assembly-language programmers
Contents
This manual describes in alphabetical order all (nonprivileged) assembler
instructions of the CPUs supported by BS2000. For each instruction the
following is described:

its function
its assembler format, i.e. how to write it in assembly language
its machine format, i.e. how it is represented in the CPU
its execution sequence in detail
any condition codes values which it sets
possible program interrupts when it is executed
programming notes
one or more examples

Applications
BS2000 assembly-language application programmers

348 U2780-J-Z125-6-7600

References

[14a] EDT (BS2000)
Statements
User Guide

Target group
EDT newcomers
End users

Contents
Processing of SAM and ISAM files and elements from program libraries
Introduction to the basic principles of EDT and description of the
operating modes
Creation of EDT procedures
Descriptions of all the EDT statements. Frequent applications are
illustrated with the aid of numerous examples.

Applications
File editing

[14b] EDT (BS2000)
Subroutine Interfaces
User Guide

Target group
Experienced EDT users
Programmers

Contents
Processing of SAM and ISAM files and elements from program liberaries
Incorporation of EDT functions into self-written programs
Description of the EDT subroutine interface
Calling EDT as a subroutine
Functions of the subroutine interface
Structure and generation of the control blocks
Creating external statement routines
Calling user programs from EDT

Applications
Program engineering

U2780-J-Z125-6-7600 349

References

[15] BS2000
DMS Introductory Guide and Command Interface
User Guide

Target group
Non-privileged BS2000 users
Contents

Functions of DMS in BS2000
Processing of disk and tape file
Access methods UPAM, SAM, BTAM, EAM, ISAM
DMS commands

[16] ASSEMBH (BS2000)
User Guide

Target group
Assembly language users under BS2000
Contents

Calling and controlling ASSEMBH
Assembling, linking, loading, and starting programs
Input sources and output of ASSEMBH
Runtime system, structured programming
Language interfacing
Assembler Diagnostic Program ASSDIAG
Advanced Interactive Debugger AID
ASSEMBH messages
Machine instruction formats

The publication(s) marked with an * is/are not published by Siemens Nixdorf
Informationssysteme AG or by Siemens AG.

Ordering manuals

The manuals listed above and the corresponding order numbers are to be found in the
List of Publications issued by Siemens Nixdorf Informationssysteme AG, which also
tells you how to order manuals. New publications are listed in the Druckschriften-
Neuerscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name
placed on the appropriate mailing list. Your local office will help you.

350 U2780-J-Z125-6-7600

References

Index

% character 199
%LOCAL 226
%PARAM 227
*LIBRARY 19
*OMF 99, 135

in the ADD-TOOL statement 21
in the COMPILE statement 28
in the RUN statement 45

*UNCHANGED 20, 41, 42
:HEX 227
? 237

A
abbreviation rules 18
abnormal program termination 13
abort 240
action commands 197, 226
ADD-TOOL 11, 21
alias names for operands 18
alias names for statements 18
alias names for tools 11
alignment 96
ARRAY 214
assembler listing 108
ASSIGN command 197, 214, 230
Assignfile 124

attribute description 127
change line length 129
file description 125
LINK specification 128
SPACE specification 127
syntax 124

assignment 214, 230, 237
AT command 197, 216
AT DO 216

U2780-J-Z125-6-7600 351

Index

availability of test tables 237
AWAKE command 197, 223

B
batch mode 16
BEGIN command 197
BEGIN END 232
bit range specification 94, 98
block 198, 199, 226, 227
block mode 10
block qualification 199, 212, 226
BOOLEAN 231
BREAK ERROR 261
Break_Error 10
BS2000 files 114
BS2000CALLS 307

C
call chain, dynamic 262
CALL-STATEMENT-FILE 22
calling the compiler 24
calling the EDT 33
calling the programming system 6
CASE ERROR 261
character set 94
code module 99
combination of commands 232
combined testpoint and debugging aid end message 243
command mode 57
comment, continuation character 105
comments 202
common memory pool 137
compatibility, compiler and runtime system 137
compatibility problems 341
compatible data types, ILCS 162
compilation sequence 92
compilation summary 105
compilation unit 198, 205, 237

current 198, 203, 205
compilation units 79

compilation sequence 92
relationships 80

COMPILE-UNIT 24
compiler

call 24

352 U2780-J-Z125-6-7600

Index

generated listings 103
generated object modules 99
implementation-defined attributes 93

compiler limitations 95
compiler listing 106
compiler options 101

default values 101
priorities 101
specification 101
validity 101

compiler version, compatibility with runtime system 137
complete test table 214, 237
components 227
compound command 197, 232
condition 231
constant identifiers, predefined 212
constants

predefined 93
presettings 93
values 93

control statements 101
cross reference listing 109
current compilation unit 198, 203, 205

D
data module 99
data structures, ILCS 160
data types

alignment 96
ILCS 162
memory requirements 96
packed 96
unpacked 96

DEBUG 214, 230
debugging aid, see PATH 195
debugging aid options 202
default output lengths 94

for Boolean 94
for Integer 94

default output lengths- for Real 94
default value 17
deferred action 215, 216, 218, 236
DEFINE-PROJECT-FILE 32
delete testpoints 220

U2780-J-Z125-6-7600 353

Index

dereferenced 201
different programming languages 157
directives 164
DISPLAY command 197, 226
DMSIO 312
DUMP command 197, 239
dynamic call chain 212, 238, 239, 262
dynamic linking 153

E
EAM object module file, see *OMF 99
echoing of input 242
EDIT command 197, 234
EDIT-UNIT 33
editor command 234
EDT

call 33
error messages 36

EDT work area 116
in Assignfile 116
in the CALL statement 23
in the COMPILE statement 25
in the EDIT statement 33
in the SHOW statement 53

EDTADAPTER 327
ELAB ERROR 261
END 39
entry procedures, naming 100
entry subprograms 171
entry testpoint 209
EOF ERROR 261
error handling 255

for internal interface 179
output 260
SEH events 257
system error code 285

error message 242, 247
error propagation across language boundaries 255
ERRORS 331
errors 106
event classes 256
exception handler 255
exception propagation across language boundaries 255
exceptions 255

354 U2780-J-Z125-6-7600

Index

execution
of a program 44
of a tool 44

expert mode 9
Extend 114
extension of the programming system 11
External, directive 164
external functions, result types 164
external references 136
external subprograms 157

naming 100

F
factor 201, 226, 230, 231
feed control character 127
FILE ERROR 261
files

assignment with Assignfile 124
default assignments 120
external 113
FILE command assignment 120
in RUN statement 131
ISAM files 116, 312
local 113
opening 116
PLAM libraries 118
SAM files 116
standard files 116
supported BS2000 files 114
temporary 119

four-digit year number 103, 237
function 198
function keys 10
function return values, passing in ILCS 162

G
GETCMD command 197, 216, 218
global scope 198, 203, 213, 242
guided dialog 9

U2780-J-Z125-6-7600 355

Index

H
HEAPSUPPORT 333
help levels 9
hexadecimal 227
hexadecimal output 227
hidden identifiers 212
high-precision routines 93

I
IF command 197, 231
IF THEN ELSE 231
ILCS

data types 162
functions 158
initialization 161
linking program systems 163
parameter passing 162
passing function return values 162
program communication interface 157
program mask handling 161
register conventions 159
Standard Event Handler (SEH) 256
Standard STXIT Handler (SSH) 256
subprograms in other languages 164

ILCS capability 137
ILCS conventions 157
ILCS data structures 160
implementation-defined attributes 93
implicit testpoint 203
incarnation number 199
incarnation qualification 199, 212, 226, 238
indexed 201
initialization

ILCS 161
Pascal-XT runtime system 161

input in block mode 10
input mode 218
input prompt 9, 216
interactive mode 16
internal interface 176

error handling 179
parameter passing 177
register conventions 176

ISAM file

356 U2780-J-Z125-6-7600

Index

open modes 117
text file 117

ISAM files 312

J
job step 13
job variable 13

K
keyword 17
keyword operands 18
KILL command 197, 240

L
language interface 157

error handling 166, 173
file processing 157
for entry procedures 171
for XS-compatible subprograms 165
internal interface 176

language mix 157
license module 156
license protection 156
line length 95
line number 199, 203
line number range 199, 204
link names, conventions 120
linking 135

code and data separate 143
dynamic 153
on XS processors 138, 153
prelinked modules 140
prelinking the runtime system 146
segmented 146
static 138
to a phase 138
with PATH 248
within the programming system 153

listing output
control 103
output file 103

U2780-J-Z125-6-7600 357

Index

M
main program 198
map listing 111
mathematical routines, high-precision 93
MAXLINELENGTH 122, 124, 129
MEMORY ERROR 261
MEMORYMANAGER 339
metasymbols 17
metavariable 18
minimum test table 214, 237
MODIFY-COMPILE 40
MODIFY-EDT 42

N
nesting of procedures 212
NK format 117
non-Pascal subprograms, ILCS 164
normal program termination 13
notational conventions 17
notes 106
NUMERIC ERROR 261

O
object module file, see *OMF 99
object modules 99

entry procedures 100
external references 136
naming 99
XS capability 99

offset specification 94, 97
OPEN ERROR 261
open modes 114, 116, 117, 118, 119
operand value

*LIBRARY 19
*UNCHANGED 20

operand value change
COMPILE statement 40
EDIT statement 42

option 202
output all variables 239
output lengths, see default output lengths 94
output medium 226

358 U2780-J-Z125-6-7600

Index

P
package 198, 237, 239
package concept 79
packed data types 96
PAGE 95

effect on input 95
effect on output 95

PAM key format 117
parameter 227
parameter passing, ILCS 162
partial test table 214, 237
Pascal program, cf. program 137
Pascal-XT, Pascal-XT V3.0, compatibility problems 341
Pascal-XT program section 157
PASLIB-XT 137
passing on errors across language boundaries 255
PASSUP-XT 306
PATH 195

testpoint before program start 249
PATH commands, canceling 250
PATH input medium 215, 218, 242
PATH output medium 215, 226, 239
PCD (Prosys Common Data Area) 160
PLAM element, see PLAM library 118
PLAM library 118

element designation 118
in statements 19
open modes 118
specification in the programming system 19

PLAM library element
see PLAM library 118
specification in Assignfile 118

POINTER ERROR 261
positional operands 18
postmortem testpoint 206, 242
potential testpoint 198, 203, 216
predefined constant identifiers 212
predefined constants 93
predefined packages 306

library PASSUP-XT 306
object modules 306
specifications 306
using 306

predefined types 93

U2780-J-Z125-6-7600 359

Index

prelinked module
handling of entries 140, 143
handling of external references 140, 143

prelinked modules 140
procedure 198

recursive 196
program

executable 135
shareable 137

program aborted 243
program continued 243
program execution 44
program information 14
program interface 157
program library, see PLAM library 118
program mask handling, ILCS 161
program monitoring 13
program parameters 121
program system 157
program systems, linking in ILCS 163
program termination 13

abnormal 13
application program 155
job step 13
message 39
normal 13
program information 13
programming system 14
spin-off mechanism 13
status indicator 13
termination code 13

program under test 198, 237
programming languages other than Pascal 157
programming system 5

call 6
extension 11
modifications 7
terminating 39

project directory 79
compiler access 91
defining 81
definition 32
output contents 48
processing 81

360 U2780-J-Z125-6-7600

Index

status information 80, 82
tasks 79
using 83

propagating errors across language boundaries 255
Prosys Common Data Area (PCD) 160

Q
qualified 201

R
R option 202
R-option 242
RAISE 255
RANGE ERROR 261
RDEBUG 214, 230
READ ERROR 261
real numbers

exponent overflow 93
exponent underflow 93
precision 93
significant positions 93
value range 93

recompilation 48
RECORD 214
RECORD type

bit range specification 98
offset specification 97

recursive procedure 196
recursive subprogram calls 238
register contents, ILCS 159
register conventions, ILCS 159
relational operator 231
REMOVE command 197, 220
REMOVE-DIRECTORY-ENTRY 43
Replace 114
Reset 114
restart point, in the programming system 56
result types, external functions 164
RESUME 216
RESUME command 197, 219
Rewrite 114
routines, high-precision mathematical 93
RUN-PROGRAM 44
runtime error, see error handling 255
runtime system 137

U2780-J-Z125-6-7600 361

Index

compatibility with compiler 137
module names 146
prelinking 146

S
SAM file, open modes 117
save area, ILCS 160
scope 212

global 198, 203, 213, 242
scope of identifiers 196, 212
SDF 7

abbreviation rules 18
input file 16

secondary error 263
segmented linking 146
SEH, Standard Event Handler, ILCS 256
SEH-NON-STXIT events 257
SEH-STXIT events 257
semantic error 242
semantic errors 196
semicolon 215

omission of 215
sequence of commands 232
SET 214
set constructor 94
SET ERROR 261
set testpoints 216
set type, number of elements 94, 96
setting testpoints 216
shared code 137
SHOW CALLS command 238
SHOW command 197, 235
show testpoints 235
SHOW UNITS command 237
SHOW WHERE command 235, 242, 243
SHOW-ATTRIBUTES 48
showing the testpoints 235
SLEEP command 197, 222
slice 201
source listing 104
spin-off mechanism 13, 16, 21, 22, 25, 32, 34, 41, 43, 44, 50
SSH, Standard STXIT Handler, ILCS 256
Standard Event Handler (SEH), ILCS 256
standard files, open modes 116

362 U2780-J-Z125-6-7600

Index

Standard STXIT Handler (SSH), ILCS 256
starter module 99
statement file 22
status indicator 13
STEP 56
storage unit 94
STRING ERROR 261
string type 94

default length 94
structured values 227
STXIT handling 256
subprogram calls, recursive 238
subprogram incarnation 238
subprograms, non-Pascal 157
subprograms in other languages 157

ILCS 164
SWITCH command 197, 241
syntactic error 242
syntax errors 196
SYSTEM command 197, 233
SYSTEM ERROR 261
system error code 285
system mode 233
SYSTEM-COMMAND 57

T
tag field 214
temporary file, open modes 119
temporary files 119
terminating the programming systems 39
termination code 14
test table 243

complete 214, 237
minimum 214, 237
partial 214, 237

test table not complete or not available 243
test tables 248

availability 237
dynamic loading 250
static loading 248
validity 251

test tables module 99
testing with PATH 249

response to errors 252

U2780-J-Z125-6-7600 363

Index

testpoint
implicit 203
potential 198, 203, 216
user-set 203

testpoint before program start 217, 242
testpoint commands 197
testpoint message 236, 242
testpoint specification 199, 203, 216, 235
testpoints 203

activate 223
deactivate 222

testpoints before program start 203
text editor 234
tool execution 44
tools 11

execution 12
information 12
loading 11
requirements 11

tracing program execution 236
type compatibility 214
types 214

predefined 93

U
ulp-precision 93
unguided dialog 9
USE clauses 226
user guidance 9

expert mode 9
user prompting

input prompt 9
unguided dialog 9

user-set testpoint 203
UTM

data types and constants 190
error handling 193
external files 192
linkage 189
linking 194
predefined packages 190
program structure 191

364 U2780-J-Z125-6-7600

Index

V
variable 226, 230
variable group 226
variables 239
VARIANT ERROR 261
variants 214

W
warnings 106
WITH statements 212

X
XS capability 99, 138, 140, 153
XS-compatibility 165

Y
year, four-digit format 237
year number, four-digit 103

U2780-J-Z125-6-7600 365

