
List of Amendments
This Language Reference Manual applies to Pascal-XT running under the operating
systems BS2000 and SINIX. Every Pascal-XT compiler with a version number of the
form 2.1x, regardless of the operating system, accepts exactly the function set descri-
bed in this manual.

1 The table below lists only those sections containing technical changes.

modi- dele-
Section Item new

fied ted

6.3.3 Syntax of variant-part corrected x

9.3.1 Examples with MOD operator corrected x

14.3 Examples of error propagation x

15.6 Setmax and Setmin with empty set x

15.11 Raise (0) - Error propagation x

16.1 Argument L0 with option Standard x

The italic type used up to now has been modified for reasons of consistency.

U2778-J-Z55-4-7600

Contents

Page

1 Preface 1
1.1 Notes on Reading the Manual 1
1.2 The Pascal-XT Compiler Family 4
1.3 The Pascal Language 5
1.4 Compliance with the Pascal Standard 7

2 Definitions 9
2.1 Metalanguage 9
2.2 Implementation-defined and Implementation-dependent

Characteristics 11
2.3 Classifying Errors 12

3 Lexical Tokens 13
3.1 General 13
3.2 Special Symbols 14
3.3 Identifiers 15
3.4 Directives 17
3.5 Numbers 18
3.6 Labels 20
3.7 Character Strings 21
3.8 Separating Lexical Tokens and Comments 23

4 Label Declarations 25

5 Constants 27
5.1 Constant Definitions 27
5.2 Required Constants 30

6 Data Types 33
6.1 Type Definitions 35
6.2 Simple Types 37
6.2.1 Integer Types 37
6.2.2 Real Types 38
6.2.3 The Char Type 40
6.2.4 The Boolean Type 41
6.2.5 Enumerated Types 42
6.2.6 Subrange Types 44

U2778-J-Z55-4-7600

Contents

6.3 Structured Types 45
6.3.1 ARRAY Types 46
6.3.2 Generalized String Types 48
6.3.2.1 Fixed String Types 48
6.3.2.2 Variable String Types 49
6.3.3 RECORD Types 51
6.3.3.1 RECORD Types with Variants 52
6.3.3.2 RECORD Types Specifying Representation in Memory 55
6.3.4 SET Types 58
6.3.5 FILE Types 60
6.3.5.1 General Files 60
6.3.5.2 The FILE Type "Text" 61
6.4 Pointer Types 63
6.5 Generic Types 65
6.5.1 The Required FILE Type "Any"File" 65
6.5.2 The Required Pointer Type "Pointer" 65
6.5.3 The Required Type "Any"Type" 66
6.6 Equivalence and Compatibility of Data Types 67
6.6.1 Equivalence of Data Types 67
6.6.2 Compatible Data Types 69
6.6.3 Assignment-Compatibility of Data Types 71
6.7 Attributes of Data Types 75

7 Variables 77
7.1 Variable Declaration 78
7.2 Categories of Variables 79
7.3 Defined and Undefined Values of Variables 80

8 Procedures and Functions 83
8.1 Procedure Declaration 85
8.2 Function Declaration 87
8.3 INLINE Subprograms 91
8.4 ENTRY Subprograms 92
8.5 Parameters 93
8.5.1 Value Parameters 94
8.5.2 Variable Parameters 96
8.5.3 Procedural and Functional Parameters 99
8.5.4 Conformant Array Parameters 102
8.6 Directives and Procedure/Function Identifications 106
8.7 Subprogram Calls 109

9 Expressions 113
9.1 General Remarks 113
9.2 Static Expressions 116
9.3 Operators 117

U2778-J-Z55-4-7600

Contents

9.3.1 Arithmetic Operators 118
9.3.2 Boolean Operators 125
9.3.3 Set Operators 127
9.3.4 Relational Operators 129
9.4 Set Constructors 133
9.5 Aggregates 136
9.5.1 ARRAY Aggregates 137
9.5.2 RECORD Aggregates 139
9.6 Data Objects 141
9.6.1 General Remarks 141
9.6.2 Indexed Objects 143
9.6.3 Selected Objects 146
9.6.4 Dereferenced Objects 150
9.6.5 Buffer Variables 151

10 Statements 155
10.1 Simple Statements 156
10.1.1 Empty Statement 156
10.1.2 Assignments 158
10.1.3 Procedure Calls 162
10.1.4 GOTO Statement 163
10.1.5 EXIT Statement 164
10.1.6 RETURN Statement 165
10.2 Compound Statements 166
10.3 Conditional Statements 167
10.3.1 IF Statement 167
10.3.2 CASE Statement 170
10.4 Repetitive Statements 172
10.4.1 REPEAT Statement 173
10.4.2 WHILE Statement 175
10.4.3 FOR Statement 176
10.5 WITH Statement 179

11 Main Program and Packages 185
11.1 Main Program 185
11.2 Packages 188
11.2.1 Package Specification 191
11.2.2 Package Body 193
11.3 Context Specification 194
11.3.1 WITH List 194
11.3.2 USE List 196
11.4 Private Types 197
11.5 Program Parameters 198

U2778-J-Z55-4-7600

Contents

12 Scope Rules 201
12.1 Blocks 201
12.2 Defining Points and Regions of Identifiers and Labels 204
12.3 Scopes and the Use of Identifiers 207

13 Structure, Compilation and Execution of
Programs 211

13.1 Program Structure 211
13.2 Compilation Units and Compilation Sequence 214
13.3 Executing a Program or Subprogram 216
13.3.1 Executing a Block 216
13.3.2 Executing a Subprogram 216
13.3.3 Executing a Program 217

14 Exception Handling 219
14.1 Predefined and User-defined Exceptions 220
14.2 EXCEPTION Part 222
14.3 How to Handle Exceptions 224
14.4 Exception Handling and Optimization 230

15 Required Subprograms 231
15.1 File Processing Subprograms 232
15.2 Heap Management Subprograms 260
15.3 String Processing Subprograms 269
15.4 Arithmetic Functions 278
15.5 Transfer Functions 281
15.6 Ordinal Functions 283
15.7 Boolean Functions 286
15.8 Transfer Procedures 287
15.9 Attribute Functions 291
15.10 Unchecked Type Conversion 296
15.11 Exception Handling Subprograms 297
15.12 Explicit Package Initialization Procedure 299

16 Control Statements for the Compiler 301
16.1 Global Options 303
16.2 Local Options 305

17 The Package Concept 309
17.1 Applications for Packages 314
17.1.1 Sets of Declarations 314
17.1.2 Set of Subprograms 316
17.1.3 Abstract Data Type 317
17.1.4 Automatons 318

U2778-J-Z55-4-7600

Contents

18 Exception Handling Concept 321

19 Input/Output 327
19.1 Assigning a Physical File 330
19.2 Opening Files for Reading or Writing 332
19.3 The Read/Write Procedures Get and Put 333
19.4 The Read/Write Procedures "Read" and "Write" 336
19.5 Textfiles 340
19.5.1 Reading from a Textfile 342
19.5.2 Reading from the Terminal 353
19.5.3 Writing to a Textfile 354

20 Dynamic Data and Memory Allocation 357
Example 1: Chained list 360
Example 2: Binary tree 362

A Appendix 367
A.1 Pascal-XT Syntax 367
A.2 Required Identifiers 377
A.3 Meaning of the Word Symbols and Special Symbols 380
A.4 Extensions to Standard in Pascal-XT 383
A.5 List of Runtime Errors 385
A.6 Implementation-defined Characteristics 396
A.7 Implementation-dependent Characteristics 398
A.8 CLOCK package 399

References 401

Index 403

U2778-J-Z55-4-7600

Contents

Preface
 This Language Reference Manual for the Pascal-XT programming system contains a
 description of those elements of the Pascal-XT language which are common to all
 implementations of this system. Implementation-defined peculiarities are referred to in
 those sections where they are relevant.

 A general knowledge of data processing and the fundamentals of Boolean algebra is
 sufficient to understand this Language Reference Manual.

 This Language Reference Manual is based on the Pascal standard DIN 66256 (see
 References, [3]). Elements and characteristics which transcend this standard are indica-
 ted by a colored background.

Notes on Reading the Manual

Structure of the manual

This Language Reference Manual is intended as a reference work in which the characte-
ristics of the language are described as precisely as possible. For learning Pascal a
number of good textbooks are available (see e.g. [5]).
Chapter 2 deals with the definitions required for describing the language.
Chapters 3 to 16 describe the characteristics of the language.
Chapters 17 to 20 provide some background information and application possibilities
which have either been added with Pascal-XT or which are commonly known to cause
difficulties.

At the end of each section there is a list of cross-references to other passages of rele-
vance to an understanding of the section. The appendix contains summaries in tabular
form.

References to the literature in the text are given in short-title format. The complete title
of each publication referred to can be found in the References section, followed by
instructions for ordering manuals.

U2778-J-Z55-4-7600 1

Preface

Syntax and semantics

A Pascal program consists of a finite sequence of symbols, of which some are given in
the description of the language and others are formulated by the programmer himself
according to certain rules. The syntax of the language prescribes which symbols or
combinations of symbols may appear in this sequence and at which points. Since the
syntax can be precisely specified, we have taken it as the starting point for describing
the language. The syntax is described in Backus-Naur Form (see section 2.1).

The meaning of a program (its semantics) cannot, however, be deduced from the syn-
tactic rules. Yet it makes sense to explain the semantics of the language on the basis
of its syntax. For each language construct given in this manual, the corresponding rules
of its syntax appear first, following which the meaning of the construct is explained ver-
bally and with the aid of sample programs.

It will often be necessary to seek out the appropriate syntactic rules in other sections of
the manual. The alphabetical syntax summary given in Appendix A.1 can be helpful in
this regard.

Upper case and lower case

To make the manual easier to read, the following rules of notation have been followed
when selecting upper case, lower case or mixed notation for word symbols and identi-
fiers:

Word symbols (keywords) upper case throughout ("PROGRAM")

Required identifiers initial capital ("Integer")

User-defined identifiers lower case ("my_number")

Use of hyphens

Since Pascal is a programming language with worldwide distribution, the word symbols
(3.2) and required identifiers (Appendices A.2, A.3) are retained in English. When other
words appear in meta-identifiers (see section 2.1) the parts are separated by a hyphen.

Other meta-identifiers consisting of several words are joined by means of underscores.
When these meta-identifiers are used in the text the underscores are replaced by
blanks.

2 U2778-J-Z55-4-7600

Preface

Prefixes in italics

As far as the syntax is concerned, a meta-identifier with a prefix printed in italics is equi-
valent to a meta-identifier without this prefix. For example, type-name and variable-
name are identical to name. The italicized prefix is merely used to give expression to
semantic characteristics. For instance, ordinal-constant means that a constant of the
ordinal type is required in this position.

Items specified in italics appear only in the syntax rules. The prefixes are not italicized
in the text.

Notes

Notes do not belong to the definition of the language. They provide additional informa-
tion for better understanding or offer tips for programming.

Structure of the subject index

When an item in the index happens to be a compound term, it is listed in such a way
that the main term appears first, followed by the preceding term or terms. In a few
cases the parts of compound terms are equally significant (even if different in context),
so that two or more entries in the index may exist under different initial letters.

Cross-references

Backus-Naur Form: 2.1
Meta-identifier: 2.1
Required identifiers: A.2, A.3
Concepts: 17 to 20
Complete syntax: A.1

U2778-J-Z55-4-7600 3

Preface

The Pascal-XT Compiler Family

The Pascal-XT compiler family is a family of Pascal compilers for various Siemens com-
puters, all of which accept the language set described in this manual.

This uniformity of the Pascal-XT compiler family permits problem-free porting of Pascal-
XT programs from one computer to another. In particular, the software for a mainframe
can be developed, for example, on a workstation. Conversely, software developed in
Pascal-XT on a mainframe can be compiled and run without modification on a worksta-
tion.

4 U2778-J-Z55-4-7600

Preface

The Pascal Language

Origins and Standardization

The Pascal programming language was developed by Professor Niklaus Wirth of the
Swiss Federal Institute of Technology in Zurich. The first description of the language
was published in 1970. In 1974 the "Pascal User Manual and Report" [4] by K. Jensen
and N. Wirth appeared. This report was regarded as the definition of the language.
Unfortunately, this description was imprecise in a number of points. These difficulties
were not removed until Pascal was standardized.

The standardization of Pascal began in 1977 in Great Britain. In November 1983 the first
international Pascal standard, ISO 7185, was adopted. In March 1984 the German Pas-
cal standard DIN 66256 [3] appeared; though written in German, its contents were iden-
tical to those of the ISO standard. It forms the basis of the present handbook. We
would especially like to thank the Springer-Verlag of Berlin/New York/Tokyo for their
permission to use original sources.

Language Features

Pascal is a higher-level programming language developed by N. Wirth above all for
teaching purposes in the areas of algorithm design and programming methodology. For
this reason, Pascal plays an important part in the publication of algorithms, and is used
in many university courses.

The essential point of departure for Pascal is its provision of problem-oriented data
structures. Many other languages only recognize implicit data structures, or such struc-
tures as are offered by the available hardware, such as fixed (31) binary. Pascal on the
other hand offers a consistent approach of making machine-independent data types
definable by the user. Also of importance here is the facility for naming data types and
then referring to these names in other data types.
In a Pascal program, data are described as sets of values. These are referred to as a
data type. Examples of basic data types are:

ranges, such as -5..99
enumerations of values, e.g.
(monday, tuesday, wednesday, thursday, friday)
predefined (required) data types such as Boolean, Char, Integer, Real

U2778-J-Z55-4-7600 5

Preface

In addition to these basic data types, complex data structures may be defined. The fun-
damental constructs are:

Arrays, fields: ARRAY
Compound structures, data records: RECORD
Sets: SET
Files: FILE

Besides these, Pointer types may be defined for processing lists and tree-structures;
these open up an entire world of relationally linked data structures.

The block concept with procedures and functions permits programming problems to be
solved in a well-structured way, following the method of stepwise refinement. The formal
freedom of the language makes it possible to fashion clear, lucid programs.

Within the framework of the Pascal standard, it is possible to extend the language in a
manner appropriate to the areas of application involved. The purpose of this is to main-
tain the original positive characteristics of the language while making a few specific
additions in order to create an even more useful programming tool for commercial,
industrial and scientific applications.

Origins and Purpose of Pascal-XT

The Pascal-XT language offers a series of extensions that go beyond the limits of the
standard. The new concepts of Pascal-XT meet the demands put on modern program-
ming languages today. They are based on the need to develop ever-larger software
systems ever more rationally and in evershorter time periods. It is therefore necessary
for software development to be carried out by teams of co-workers, and to make use
of reusable and adaptable software modules already developed in other projects. Moreo-
ver, the demands made on modern programming languages are based on the need to
reduce maintenance costs. The software to be developed must therefore be easy to
understand and modify.

In this manual, extensions to the language are indicated by a colored
background. A summary of all the extensions, organized by keyword, appears
in Appendix A.4.

6 U2778-J-Z55-4-7600

Introduction Compliance with standard

Compliance with the Pascal Standard

Pascal-XT complies with the demands of Levels 0 and 1 of DIN 66256 (see also section
16.1).

• Extensions to DIN 66256 Pascal

All extensions to DIN 66256 Pascal in this manual are indicated at the
appropriate places on a colored background. Appendix A.4 summarizes these
extensions.

If "Standard" is specified (see section 16.1), only standard Pascal (DIN 66256, Level
1 or Level 0) will be accepted. Extensions will be reported as errors at compile time.

• Errors

All errors are described in the appropriate sections of the Language Reference
Manual and are summarized in tabular form in Appendix A.5. The errors that can be
detected are described in the User’s Guides [1,2].

• Implementation-defined characteristics

All implementation-defined characteristics are described in the relevant sections and
are summarized in tabular form in Appendix A.6. Further characteristics are specified
in the User’s Guides [1], [2].

• Implementation-dependent characteristics

Implementation-dependent characteristics are described in the relevant sections and
are summarized in tabular form in Appendix A.6. The individual characteristics are
defined in the User’s Guides [1], [2].

Cross-references

Implementation-defined: 2.2, A.6
Implementation-dependent: 2.2, A.7
Errors: 2.3, A.5
Extensions: A.4
Control statements: 16

U2778-J-Z55-4-7600 7

Introduction Compliance with standard

Definitions

Metalanguage

The metalanguage used in this manual to specify the Pascal syntax is based on the
Backus-Naur Form. Table 2-1 lists the meanings of the various metasymbols.

Metasymbol Meaning

= is defined to be

. end of definition

[x] 0 or 1 instance of x

{ x } 0, 1 or more instances of x

x | y or alternatively x or y
(x | y)

"xyz" occurs in the source
(terminal symbol)

meta-identifier indicates a syntactic unit
(non-terminal symbol)

Table 2-1: Metalanguage symbols

A meta-identifier is a sequence of letters and individual hyphens and/or underscores
(see section 1.1), beginning and ending with a letter.

A sequence of terminal and non-terminal symbols in a syntax rule implies the concate-
nation of the text that they ultimately represent (i.e. after the non-terminals have been
replaced in accordance with their syntax rules). In the syntax rules given in chapter 3
this concatenation is direct, i.e. no characters are allowed to intervene. In the syntax
rules given in other sections of the manual concatenation takes place in accordance
with the rules set out in section 3.8.

U2778-J-Z55-4-7600 9

Definitions

When used to verbally describe a syntax construct, the words "of", "containing" and
"closest-containing" have the following meanings:

• the x of a y

refers to the x occurring on the right-hand side of a syntax rule defining y.

• a y containing an x

refers to any y from which an x can be directly or indirectly derived using syntax
rules.

• the y closest-containing an x

refers to that y which contains an x but does not contain another y containing that
x.

These syntactic conventions are used to set out certain syntactic requirements and
the resultant semantic description.

Example

field-list = [(fixed-part [";" variant-part] |
variant-part) [";"]].

fixed-part = RECORD-section {";" RECORD-section}.

Verbal descriptions referring to this syntax might read as follows:

The fixed part of a field list L ...

The field list containing the RECORD section A ...
(A can also be contained in a nested RECORD definition)

The field list closest-containing the RECORD section A ...

• "...of an Integer type"

The phrase "...of an Integer type" is equivalent to the phrase
"...of the type Short_Integer or the type Long_Integer or a
subrange thereof".

• "...of a Real type"

The phrase "...of a Real type" is equivalent to the phrase
"...of the type Short_Real or the type Long_Real".

10 U2778-J-Z55-4-7600

Definitions

Implementation-defined and Implementation-dependent
Characteristics

This manual describes the complete performance scope of the Pascal-XT programming
language. The features and characteristics are described in full, and are identical within
the various implementations in which Pascal-XT exists. In several points, however, there
are peculiarities related to particular implementations. Wherever this is the case, it is
indicated appropriately.

• Implementation-defined characteristics:

An implementation-defined characteristic may be specific to a Pascal system, but is
at any rate defined. The description can be found in the User’s Guide of the imple-
mentation in question.

• Implementation-dependent characteristics:

An implementation-dependent characteristic may be specific to a particular Pascal
system, but is not necessarily defined.

By Pascal system (Pascal processor) we mean a complete system that accepts a Pas-
cal source text as input, edits this source text for execution (interpreter, compiler with
link editor) and is capable of executing the edited program (see section 13.3).

Implementation-defined or implementation-dependent characteristics are not allowed
when Pascal-XT programs are to be ported from one Pascal system to another.

Cross-references

Implementation-defined: A.6
Implementation-dependent: A.7
Executing a program: 13.3

U2778-J-Z55-4-7600 11

Definitions

Classifying Errors

When a Pascal source text is executed, a Pascal system may detect errors. Errors are
divided into two categories.

a) Errors detected at compile time

Violations of the syntax and static semantics as described in this manual are detec-
ted and reported by the Pascal-XT compiler at compile time. Programs containing
violations of this sort cannot be executed since no object code is generated for
them. These violations contradict the language description and are therefore not
explicitly mentioned as errors.

Examples of such violations:

";" before ELSE in an IF statement

Use of undeclared identifiers

The control variable in a FOR statement is not locally defined

Application of operators to operands with incompatible types

The static expression in a constant definition cannot be calculated
(e.g. CONST c = 2**31; causes an overflow)

 b) Errors detected at execution time (runtime errors)

Runtime errors are errors that occur during program execution due to incorrect
data or faulty program logic. Detection of these errors is made by the implementa-
tion, possibly in conjunction with the Check option. Potential runtime errors are
explicitly mentioned in the separate sections of this Language Reference Manual
and are summarized in tabular form in Appendix A.5.

Examples of such errors:

Division by zero

Dereferencing a NIL pointer

Overstepping index or subrange limits

Reading from file f when Eof (f) = true.

Cross-references

Check option: 16
Errors: A.5

12 U2778-J-Z55-4-7600

Definitions

Lexical Tokens

General

The lexical tokens for constructing Pascal programs are:

• Special symbols
• Identifiers
• Directives
• Unsigned numbers
• Labels
• Character strings.

Except within character strings, the typographical representation of a letter (upper/lower
case, type style, etc.) has no effect on the meaning of the program in which it occurs.
Thus, in Pascal a name is always the same whether written in upper or lower case. The
notation chosen for this manual is described in section 1.1.

U2778-J-Z55-4-7600 13

Lexical tokens

Special Symbols

The special symbols include special characters and word symbols.

• Special characters

The meanings of the special characters can change depending on the context. They
are described in the appropriate chapters.

special-symbol = "+" | "-" | "*" | "/" | "=" | "<"
| ">" | "[" | "]" | "." | "," | ":"
| ";" | " " | "(" | ")" | "**" | "<>"
| "<=" | ">=" | ":=" | ".." .

• Word symbols (keywords)

Word symbols are reserved names. They are thus not permitted as identifiers. If the
"Standard" option is activated (chapter 16), the word symbols highlighted below are not
reserved identifiers.

word-symbol =
"AND" | "ARRAY" | "BEGIN" | "BODY" |
"CASE" | "CONST" | "DIV" | "DO" |
"DOWNTO" | "ELSE" | "END" | "ENTRY" |
"EXCEPTION" | "EXIT" | "FILE" | "FOR" |
"FROM" | "FUNCTION" | "GOTO" | "IF" |
"IN" | "INLINE" | "LABEL" | "MOD" |
"NIL" | "NOT" | "OF" | "OR" |
"PACKAGE" | "PACKED" | "PROCEDURE" | "PROGRAM" |
"RECORD" | "REPEAT" | "RETURN" | "SET" |
"THEN" | "TO" | "TYPE" | "UNTIL" |
"USE" | "VAR" | "WHILE" | "WITH" .

• Alternate representation

For some special symbols there are alternate representations. One or the other repre-
sentation, or a mixture of both, may be used.

= @ = ^ { = (* } = *) [= (.] = .)

Cross-references

Options: 16
Meaning of special symbols: A.3

14 U2778-J-Z55-4-7600

Lexical tokens

Identifiers

The syntax of identifiers is as follows:

identifier = letter { ["_"] (letter | digit) }.

letter = "a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|
"k"|"l"|"m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"|
"u"|"v"|"w"|"x"|"y"|"z".

digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9".

Thus, the structure of identifiers is governed by the following rules:

Identifiers consist of letters, digits and the underscore character ("_").

The first character must be a letter.

All characters within an identifier are significant.

Identifiers must not be word symbols.

Upper- and lower-case letters are equivalent.

Identifiers may be any length (however, the end of the line places a limit on identi-
fier length).

Two consecutive underscore characters are not allowed.

The last character must not be an underscore.

Required (predefined) identifiers such as Input or Integer already have a specific me-
aning, but may also be subsequently redefined and used otherwise by the user. Since
they already possess their predefined meanings prior to the first character of the pro-
gram, they can be redefined, if desired, in the declaration part of the main program.

U2778-J-Z55-4-7600 15

Lexical tokens

Examples of

Valid Invalid
identifiers identifiers

Y 5numbers (starts with a digit)
sum breadth-width (- not allowed)
Sum1 no blank (blank not allowed)
ABC_4 _sum (underscore at the beginning)
Field_contents A__B (2 underscores in succession)

Cross-references

Required identifiers: A.2

16 U2778-J-Z55-4-7600

Lexical tokens

Directives

The following directives are supported:

directive = "forward" | "c" | "cobol" | "fortran"
| "external" | "internal".

Directives only occur in procedure and function declarations, and stand as a substitute
for the procedure or function block. They are not required identifiers. The only directive
prescribed by Standard Pascal is Forward.

Cross-references

Directives: 8.1, 8.2, 8.6

U2778-J-Z55-4-7600 17

Lexical tokens

Numbers

The syntax of numbers is as follows:

unsigned_integer-number
= digit-sequence | "#" hexadecimal-digit-sequence

unsigned_real-number
= integer-part "." fractional-part ["e" scale-factor]
| integer-part "e" scale-factor

digit-sequence = digit {digit}.

digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9".

hexadecimal-digit-sequence
= hexadecimal-digit {hexadecimal-digit}.

hexadecimal-digit
= digit|"a"|"b"|"c"|"d"|"e"|"f".

integer-part = digit-sequence

fractional-part = digit-sequence

scale-factor = ["+" | "-"] digit-sequence

• Integer-type numbers

Unsigned Integer numbers are digit sequences. They stand for values of an Integer
type. Since Pascal-XT recognizes two Integer types, the numbers have the following
type, depending on their value:

Short_Integer, ranging from 0 to 32767
Long_Integer ranging from 32768 to 2147483647
In Standard Pascal, unsigned Integer numbers are always of type Integer.

Unsigned Integer numbers in the program text are lexical entities and their value must
lie in the range from 0 to Long_Maxint (see section 5.2). Signed Integer numbers within
programs are expressions (see chapter 9) and not lexical entities. For this reason, the
number -2147483648 cannot be specified in the program text since 2147483648 is gre-
ater than Long_Maxint. However, this negative number may be read in using Read or
Readstring (see chapter 15).

Examples of unsigned Integer numbers

1
100
3056

18 U2778-J-Z55-4-7600

Lexical tokens

Entering numbers in hexadecimal form

Integers may also be specified in hexadecimal form. They are formed of the
prefix character "#", the digits 0 to 9 and the letters A to F (in upper or
lower case). Since a maximum of 32 bits (= 4 bytes) are available for Integer
numbers, a number in hexadecimal notation may include a maximum of 8
hexadecimal characters. A hexadecimal number of 8 digits with most
significant bit set (= sign bit) counts as a negative integer; all others are
non-negative.

Examples of hexadecimal numbers

#40 has the same value as 64
#FF has the same value as 255
#100A has the same value as 4106
#FFFFFFFF has the same value as -1
#7FFFFFFF has the same value as Long_Maxint
#80000000 has the same value as Long_Minint

• Real-type numbers

An unsigned Real number stands for a value of a Real type.
When an unsigned Real number is used in a program, its type is adapted to the
context, i.e. whether it is used as a value of the type Short_Real
or Long_Real (see chapter 9).
The letter "e" or "E" in a number, followed by an integer (exponent), means "times 10 to
the power of" ("e" and "E" are equivalent). The limits of the representable numeric range
are defined by required constant identifiers (see section 5.2).

A Real-type number can be:

An integer, followed by a scale factor, e.g. 2e10
An integer, followed by a fractional part, e.g. 3.14
An integer, followed by a fractional part and a scale factor, e.g. 3.14e-10

Examples of unsigned Real numbers

0.1
3.14159
5e-3 means 5 times 10 to the minus 3
67.32E+18 means 67.32 times 10 to the 18th
2e9 means 2 times 10 to the 9th

Cross-references

Integer types: 6.2.1
Real types: 6.2.2
Required constants: 5.2

U2778-J-Z55-4-7600 19

Lexical tokens

Expressions: 9
Input/output: 19

20 U2778-J-Z55-4-7600

Lexical tokens

Labels

label = digit-sequence .

digit-sequence = digit {digit}.

digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9".

Labels are digit sequences to be interpreted as Integer numbers. Their value must lie
between 0 and 9999. Different digit sequences having the same value stand for the
same label (see also chapter 4).

Labels are used to mark statements, to which it is then possible to branch by means of
GOTO statements.

Examples of labels

0
13
4711
09999

Cross-references

Label declaration: 4
GOTO statement: 10.1.4
Scope rules: 12

U2778-J-Z55-4-7600 21

Lexical tokens

Character Strings

character-string = "’" {string-element } "’"
| "#’" {hexadecimal-digit-pair} "’".

string-element = apostrophe-image | string-character.

apostrophe-image = "’’".

hexadecimal-digit-pair = hexadecimal-digit hexadecimal-digit.

hexadecimal-digit = digit|"a"|"b"|"c"|"d"|"e"|"f".

Character strings are sequences of tokens enclosed in apostrophes. Each token repre-
sents a value of the required type Char (see section 6.2.3). Upper case and lower case
are not equivalent. Character strings containing more than one token stand for a value
of a character-string type with as many components as the string has tokens. Character
strings with exactly one token stand for a value of the required type Char (see section
6.3.1.3). Like other lexical tokens, character strings must not extend beyond the end of
a line.

Representing apostrophes in character strings

If a string is to contain one or more apostrophes, each must be represented
by two apostrophes. Each pair of apostrophes within the string then counts
as a single character.

Empty string

A character string containing no tokens is called an "empty string". It is
represented by two successive apostrophes. Empty strings are prohibited in
Standard Pascal.

Example

coded: printed:
’PASCAL’ PASCAL
’’’’ ’
’Don’’t’ Don’t
’’ {empty string}

22 U2778-J-Z55-4-7600

Lexical tokens

Specifying hexadecimals

Character strings may also be represented in hexadecimal form. This is
done by prefixing the string with the character "#". In this case,
there must always be an even number of hexadecimal digits between the
apostrophes.

Examples (in EBCDI code)

#’C1D7C5’ means the same as ’APE’
#’D781A2838193’ means the same as ’Pascal’

It is thus possible to code non-printable characters in character strings.

The character string
#’0D0A’

contains the two ASCII characters for the functions "carriage return" and
"line feed", with which, for example, if a printer is attached that takes
ASCII codes, the corresponding movements of the platen and print head can
be initiated.

Cross-references

Type Char: 6.2.3
Generalized string types: 6.3.2

U2778-J-Z55-4-7600 23

Lexical tokens

Separating Lexical Tokens and Comments

In Pascal programs, lexical tokens are separated from each other by

comments
blanks (except in character strings)
end-of-line markers.

These are called separators.

Any number of such separators may appear between two successive lexical entities or
prior to the first lexical token of a program. At least one separator must separate each
pair of lexical tokens containing identifiers, word symbols, unsigned numbers or labels.
A separator must not occur within a lexical token (blanks in comments and character
strings do not count as separators).

In most cases, the special characters also have a separating function. However, a pro-
gram can be made clearer and more readable when separators are used extensively.

Comments

Any sequence of characters enclosed in braces (or their alternate representation) is
taken as a comment.

A comment beginning with a dollar sign directly after the open comment brace
is called a "pseudocomment". It contains control statements for the compiler
(see chapter 16).

Rules

End-of-lines markers may also occur within the sequence of characters, i.e. a com-
ment may extend over several lines.

No right brace (or its alternate representation) may occur within the sequence of
characters, and in particular, comments within comments are not permitted.

Alternate representations for braces:

"{" = "(*"

"}" = "*)"

24 U2778-J-Z55-4-7600

Lexical tokens

Example:

{This is a comment}

(*This is also a comment*)

{Braces and parentheses may also be mixed*)

{Comments may extend
over several
lines}

’{This is not a comment}, but a character string’

Cross-references

Special characters: 3.2
Word symbols: 3.2
Numbers: 3.5
Labels: 3.6, 4
Control statements: 16

U2778-J-Z55-4-7600 25

Lexical tokens

Label Declarations
The label declaration part has the following syntax:

label-declaration-part = "LABEL" label { "," label } ";" .
label = digit-sequence.

Labels are sequences of digits. They differ from each other in their integer value, which
must lie in the range 0..9999. Labels are used to mark statements to which a branch
may then be made by means of GOTO statements (see section 10.1.4). The use of
labels is announced by their declaration. A label declared in a block must be used
exactly once in the statement part of this block (main program or subprogram) to mark
a statement. Furthermore, it may occur in any number of GOTO statements in this
block or in nested blocks.

The scope rules for labels are described in chapter 12.

Example

LABEL 1, 13, 9999;

Notes

0000013, 0013, 013 and 13 are equivalent labels.

Labels and GOTO statements should be avoided since, if used too often, they can
lead to "spaghetti programs" in which the control flow is unclear and confusing. By
using IF, CASE, FOR, WHILE and REPEAT statements (see chapter 10) and subpro-
grams (see chapter 8) it is possible to create clear and lucid programs. Moreover,
GOTO statements hinder automatic code optimization by the compiler.

U2778-J-Z55-4-7600 27

Label declarations

Cross-references

Label: 3.6, 4
Block: 8.1, 8.2, 11.1, 12.1
GOTO statement: 10.1.4
Scope rules: 12

28 U2778-J-Z55-4-7600

Label declarations

Constants

Constant Definitions

A constant definition introduces an identifier which represents a fixed value. This value
can then be accessed by specifying the introduced constant-identifier.
A constant definition part has the following syntax:

constant-definition-part
= "CONST" constant-definition { constant-definition } .

constant-definition
= identifier "=" constant ";" .

constant = static-expression .

constant-name = [package-identifier "."] constant-identifier.

In Standard Pascal, only signed or unsigned numbers, constant-identifiers and character
strings are permitted as constants. A sign prefixed to a constant-identifier is allowed
only if this identifier stands for an Integer number or a Real number.

In Pascal-XT static expressions are also permitted as constants. Static
expressions are expressions that can already be evaluated at compile time.
The evaluation of the expression must not cause an error to be detected at
compile time (see section 2.3). Section 9.2 describes when an expression is
static.

The static expression in the right-hand part of the definition must not contain the iden-
tifier in the left-hand part.

If the static expression on the right-hand side is an (unqualified) set
constructor, the defined constant will be regarded as not packed unless
required otherwise by the context.

Each use of the identifier is referred to as a constant-name, and stands for the value
assigned to the identifier in the constant definition.
In Pascal-XT a constant-name can also be formed by prefixing a package-
identifier; it then refers to a constant definition within the specification
of the identified package.

U2778-J-Z55-4-7600 29

Constant definitions Constants

The scope rules for constant-identifiers are described in chapter 12.

Notes

Seldom-used constants can also be specified in the program directly as numbers,
character strings or static expressions, without previously linking them with an identi-
fier in a constant definition. A typical example is the output of character strings in
interactive applications. The disadvantage of this approach with repeatedly used con-
stants is obvious: as soon as the value of a constant is to be changed, all literals
strewn through the program must be located in order to do so. A constant definition
reduces this effort to a single change in the definition.

In Pascal-XT, NIL can also be used as a constant on the "right-hand" side
of a constant definition.

Examples

CONST
three = 3;
e = 2.718282;
minimum = - three;
on = True;
dot = ’.’;
title = ’PASCAL’;

{ specification in hexadecimal form }
max_byte = #FF;
ship = #’E2C8C9D7’;

{ use of NIL }
end_of_list= NIL;

{ arithmetic expressions }
const1 = 1/2 * e;
numbits = 13;
maxval = 2 ** numbits - 1;

{ Boolean expression }
test = numbits > 12;

{ SET expressions }
digits = [’0’ .. ’9’];
hexletters = [’A’, ’B’, ’C’, ’D’, ’E’, ’F’]
hexdigits = digits + hexletters;

{ character string expression }
version = ’2.0’;
header = Concat (title, version, ’88/05/01’);

{ use of constant pi }
pi2 = numeric.pi * 2.0; { from a package "numeric" }

TYPE { ARRAY aggregate }
hextab = array [0..15] of char;

CONST
hexchar = hextab (’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’,

’A’,’B’,’C’,’D’,’E’,’F’);

30 U2778-J-Z55-4-7600

Constants Constant definitions

Cross-references

Integer: 3.5
Real number: 3.5
Character string: 3.7
Hexadecimal form: 3.5, 3.7
Simple type: 6.2
Generic pointer type: 6.5.2
Static expression: 9.2
Set constructor: 9.4
Aggregate: 9.5
Scope rules: 12

U2778-J-Z55-4-7600 31

Required constants Constants

Required Constants

In Pascal-XT, the constant-identifiers listed in Tables 5-1 to 5-3 are required (predefi-
ned).

Identifier Data type Value

False Boolean Ord(False) = 0
True Boolean Ord(True) = 1

Table 5-1 Required constant-identifiers of type Boolean

Identifier Data type Value

Long_Maxint Long_Integer 2147483647 = 231-1
Long_Minint Long_Integer -2147483648 = -231

Short_Maxint Short_Integer 32767 = 215-1
Short_Minint Short_Integer -32768 = -215

Maxint Integer (1)
Minint Integer (2)

Long_Minreal Long_Real (3)
Long_Maxreal Long_Real (4)
Short_Minreal Short_Real (5)
Short_Maxreal Short_Real (6)

Minreal Real (7)
Maxreal Real (8)

Table 5-2 Required numeric constant-identifiers

Implementation-defined characteristics

(1) Maxint is implementation-defined to be equal to Short_Maxint or
Long_Maxint

(2) Minint is implementation-defined to be equal to Short_Minint or
Long_Minint

(3) Long_Minreal is the implementation-defined least positive value of the
type Long_Real

(4) Long_Maxreal is the implementation-defined greatest positive value of
the type Long_Real

(5) Short_Minreal is the implementation-defined least positive value of the
type Short_Real

32 U2778-J-Z55-4-7600

Constants Required constants

(6) Short_Maxreal is the implementation-defined greatest positive value of
the type Short_Real

(7) Minreal is implementation-defined to be equal to Short_Minreal or
Long_Minreal

(8) Maxreal is implementation-defined to be equal to Short_Maxreal or
Long_Maxreal

Note

Remarks on the precision of real numbers can be found in section 6.2.2.

In connection with programmed exception handling (see chapter 14) the
following error numbers are reserved as negative Integer constants:

Identifier Value Brief description

Numeric_Error -02 arithmetic overflow
Range_Error -03 value outside of subrange
Set_Error -04 value outside of SET type
String_Error -05 maximum length of a string exceeded
Index_Error -06 value outside the index subrange
Pointer_Error -07 dereferencing NIL
Variant_Error -08 accessing an inactive variant
Case_Error -09 no CASE alternative found
File_Error -10 file in incorrect mode
Eof_Error -11 attempt to read beyond end of file
Open_Error -12 error in opening a file
Read_Error -13 syntax error when reading a number
Memory_Error -14 memory overflow
Break_Error -15 interrupt
Elab_Error -16 cyclic initialization dependence
System_Error -01 other system error

Table 5-3 Required constant-identifiers for exception handling

Cross-references

Integer: 3.5
Real number: 3.5
Integer types: 6.2.1
Real types: 6.2.2
Boolean: 6.2.4
Exception handling: 14
Ord function: 15

U2778-J-Z55-4-7600 33

Constants Required constants

Data Types
With the data types we meet a fundamental characteristic of the Pascal programming
language. Every value and every variable has a type. The type defines the following pro-
perties:

the set of permissible values (value range) that a data object may assume,
the set of operations that may be applied to the object.

Types fall into three categories:

Category Associated types Value ranges / Examples

simple Integer Minint .. Maxint
types Short_Integer Short_Minint .. Short Maxint

Long_Integer Long Minint .. Long_Maxint
Char character from character set
Boolean (False, True)
enumerated types ex.: (open, closed, locked)
subrange types ex.: 0..255 or ’0’..’9’

Real
Short_Real
Long_Real

structured ARRAY [...] OF ... arrays
types RECORD ... END records

SET OF ... sets
FILE OF ... non-textfiles
Text textfiles
String [...] variable-length strings

Pointer types ... ex.: node

generic Pointer generic pointer type
types Any_File generic FILE type

Any_Type generic type

Table 6-1 Categories of types

U2778-J-Z55-4-7600 35

Data types

Simple (or scalar) types cannot be subdivided further, i.e. they do not contain any com-
ponents. Apart from the enumerated and subrange types, these types can be referen-
ced by means of required type-identifiers. The simple types (except for the Real types)
are referred to as ordinal types.
A structured type is described by means of the types of its components and the way it
is structured. The components of the type may have simple types, Pointer types or
other structured types.
The structuring is defined, for example, by means of the keywords ARRAY, RECORD
etc.
With Pointer types, identified variables can be created, processed and destroyed on the
heap. The heap is a dynamically expanding and contracting area of memory. Pointer
types are required when processing graphs or diagrams (e.g. trees or lists).

The type approach has the following implications:

In comparison to other programming languages, the definition of data structures in
Pascal plays a substantially more important role in the approach to solving a pro-
blem.

The increased effort during the definition phase pays for itself during the develop-
ment phase through increased transparency and simpler definition of interfaces for
large development teams.

The type approach results in more rapid error detection, since many errors are
detected at compile time that with other languages would not show up until runtime.

Selecting the data access methods at compile time generally results in the genera-
tion of highly efficient program code.

36 U2778-J-Z55-4-7600

Data types Type definitions

Type Definitions

A type definition introduces a new identifier standing for a type. This new identifier is
referred to as a type-identifier. The type may be a new type or a previously defined
type-identifier. A type definition part has the following syntax:

type-definition-part
= "TYPE" type-definition { type-definition } .

type-definition = identifier "=" type-denoter ";" .

type-denoter = type-name | new_type

new_type = enumerated_type | subrange_type | string_type |
pointer_type | structured_type .

enumerated-type = "(" identifier-list ")" .

identifier-list = identifier { "," identifier } .

subrange-type = ordinal-constant ".." ordinal-constant .

string-type = string-identifier "[" string-length "]" .

string-length = integer-constant .

structured-type
= ["PACKED"] unpacked-structured-type .

unpacked-structured-type
= ARRAY-type | RECORD-type | SET-type | FILE-type .

type-name = [package-identifier "."] type-identifier .

A type definition introduces an identifier which stands for the type described in the type
denoter.

Each use of this identifier is referred to as a type-name and stands for the type determi-
ned by the type denoter.
In Pascal-XT a type-name can also be formed by prefixing a package-identifier.
In this case, the type name refers to a type definition in the specification
of the associated package.

In the type denoter, it is possible to refer to a previously defined type by specifying the
type-name. In this case, however, the type denoter must not contain an application of
the type-identifier of the left-hand side of the type definition, except when this identifier
is used as a domain type for a Pointer type (see section 6.4). Each new type differs
from every other new type. A new type is specified explicitly, i.e. it is not addressed via
a previously defined type-identifier.

U2778-J-Z55-4-7600 37

Type definitions Data types

The optional specification of a constant is only permitted directly following
the required type-identifier "String"; it defines the maximum length of this
string (see section 6.3.2.2).
The scope rules for type-identifiers are described in chapter 12.

Note

The definition of more complex types is made simpler by being able to use a type-
name wherever type specification is expected. This makes programs easier to read
and to modify, and permits a data type, once defined, to be used in many places in
the program.

Example of a type definition part

TYPE
posint = 0..Maxint;
number = Integer;
range = 1..150;
color = (red, green, yellow, blue);
punchcard = PACKED ARRAY[1..80] OF Char;
line = String [80];
person = personinfo;
personinfo = RECORD

name, firstname : line;
age : number;
CASE married : Boolean OF

True : (wife : person);
False : ();

END;
datafile = FILE OF punchcard;

Cross-references

Simple type: 6.2
Structured type: 6.3
Variable string type: 6.3.2.2
Pointer type: 6.4
Domain type: 6.4
Compatibility: 6.6
Equivalence of types: 6.6.1
Scope rules: 12

38 U2778-J-Z55-4-7600

Data types Simple types

Simple Types

A simple type defines an ordered set of values. If these values correspond to whole
ordinal numbers on a one-to-one basis, the type is referred to as an ordinal type. The
Real types, therefore, do not belong to the ordinal types.

In the following cases only ordinal types are permitted:
as host type of a subrange type
as index type of an ARRAY type
as base type of a SET type
as tag type in a RECORD type
as runtime variable type in a FOR statement
as case index type in a CASE statement
as parameter type of the required functions Chr, Ord, Pred or Succ

The types Integer, Long_Integer, Short_Integer, Real, Long_Real, Short_Real, Char
and Boolean are predefined, i.e. their names are required type-identifiers.

Integer, Long_Integer, Short_Integer, Char, Boolean, enumerated types and subrange
types are ordinal types.

Cross-references

Subrange type: 6.2.6
ARRAY type: 6.3.1
RECORD type: 6.3.3
SET type: 6.3.4
Tag type: 6.3.3.1
CASE statement: 10.3.2
FOR statement: 10.4.3
Ordinal functions: 15.6

Integer Types

Integer types are ordinal types and represent subsets of the whole numbers.
Pascal-XT distinguishes between the two types Long_Integer and Short_Integer,
whose value ranges are defined by the required constants (see section 5.2):

Short_ Integer = Short_ Minint .. Short Maxint;
Long_Integer = Long_Minint .. Long Maxint;
Integer = Minint .. Maxint;

U2778-J-Z55-4-7600 39

Simple types Data types

Standard Pascal only recognizes one integer type: Integer. Moreover, it only guarantees
that the values of the range -Maxint .. Maxint belong to the value range of the type Inte-
ger. The value represented by the required constant-identifier Minint no longer necessa-
rily belongs to the type Integer.

Implementation-defined characteristic

The required type identifier Integer is implementation-defined, and is
identical either to the type Short_Integer to the type Long_Integer.

Arithmetic operators and relational operators can be applied to Integer-type values.
These values can be assigned, read in from textfiles and strings, or output to textfiles
and strings. Furthermore, there are many required subprograms whose parameters or
function results possess Integer types.

Cross-references

Numbers: 3.5
Required constants: 5.2
Ordinal type: 6.2
Arithmetic operators: 9.3.1
Relational operators: 9.3.4
Assignment: 10.1.2
Required subprograms: 15
Input/output: 19

Real Types

The values of the types Long_Real, Short_Real and Real form a subset of the real
numbers.
The required constant-identifiers Minreal, Maxreal, Short_Minreal,
Short_Maxreal, Long_Minreal and Long_Maxreal exist for the least/greatest
representable positive real number of the particular Real type involved.

Arithmetic operators and relational operators can be applied to Real-type values. These
values can be assigned, read in from textfiles and strings, or output to textfiles and
strings. Furthermore, there are many required subprograms whose parameters or func-
tion results possess Real types.

40 U2778-J-Z55-4-7600

Data types Simple types

Implementation-defined characteristics

Values of the types Short_Real and Long_Real are implementationdefined subsets of
the real numbers.

The required type identifier Real is implementation-defined, and is
identical to the type Short_Real or Long_Real.

The results of arithmetic real operators and functions are approximate values of the
actual mathematical results. The precision of these approximations is implementa-
tion-defined.

Note

Real-type values cannot always be represented exactly on a processor. When perfor-
ming arithmetic operations, the user must limit the accumulation of rounding errors
by employing suitable algorithms. Relational operations between Real numbers for
identity should be avoided due to this lack of precision.

Cross-references

Required constants: 5.2
Arithmetic operators: 9.3.1
Relational operators: 9.3.4
Assignment: 10.1.2
Required subprograms: 15
Input/Output: 19

U2778-J-Z55-4-7600 41

Simple types Data types

The Char Type

The values of the ordinal type Char result from enumerating the characters in the cha-
racter set defined for the given implementation (ASCII, EBCDIC, ISO 7-bit, etc.). Most of
these values are representable (printable) characters. Some, however, are used to con-
trol peripheral devices or to implement data exchange protocols with other devices.

The character values, starting at 0 and ascending consecutively, are assigned ordinal
numbers of the type Integer. The assignment is implementation-defined (see below). In
each implementation, however, the following relations apply:

The digits to ’0’ to ’9’ are numerically ordered and consecutively ascending.

The upper-case letters ’A’ to ’Z’ are alphabetically ordered, but not necessarily con-
secutive.

The lower-case letters ’a’ to ’z’ are alphabetically ordered, but not necessarily conse-
cutive.

The ordinal relation between any two character values is the same as that between
the corresponding ordinal numbers.

Implementation-defined characteristics

The value range of the Char type is implementation-defined.

The assignment of ordinal numbers of type Integer to the values of type Char is
implementation-defined.

Relational operators may be applied to Char-type values. These values may be assig-
ned, read in from textfiles and strings, and output to textfiles and strings. Furthermore,
there are many required subprograms whose parameters or function results are of type
Char. In Pascal-XT, the Char type is also a generalized string type (see sec-
tion 6.3.2).

42 U2778-J-Z55-4-7600

Data types Simple types

Notes

The representation of printable characters may differ for different terminal and printer
models.

It contradicts the standard if a Pascal program presupposes ordinal relations which
are satisfied by a given character set but are not included in the standard require-
ments listed above. For example, a sort algorithm which assumes a consecutively
ascending sequence of letters "A" to "Z" or ’ ’ < ’A’ does not comply with the stan-
dard.

In the EBCDIC character set there are gaps between the letters. In some cases this
causes the required functions Succ and Pred to return an unexpected character.

Cross-references

Ordinal type: 6.2
Character strings: 6.3.2
Relational operators: 9.3.4
Assignment: 10.1.2
Required subprograms: 15
Input/Output: 19

The Boolean Type

The values of the ordinal type Boolean result from enumerating the truth values repre-
sented by the required constant-identifiers True and False.

Boolean = (False, True)

The required functions Ord, Pred and Succ (see section 15.6) return the following valu-
es:

Ord (False) = 0
Ord (True) = 1
Pred (True) = False
Succ (False) = True.

Boolean operators and relational operators may be applied to Boolean-type values.
These values may be assigned and output to textfiles and strings. The results of all
relational operators and some required functions are of type Boolean. Expressions of
type Boolean are used in IF, WHILE and REPEAT statements to control the flow of the
program.

U2778-J-Z55-4-7600 43

Simple types Data types

Cross-references

Required constants: 5.2
Ordinal type: 6.2
Expressions: 9
Boolean operators: 9.3.2
Relational operators: 9.3.4
Assignment: 10.1.2
IF statement: 10.3.1
REPEAT statement: 10.4.1
WHILE statement: 10.4.2
Scope rules: 12
Required functions: 15
Input/Output: 19

Enumerated Types

Enumerated types are ordinal types. They have the following syntax:

enumerated-type = "(" identifier-list ")" .

identifier-list = identifier { "," identifier } .

An enumerated type specifies an ordered set of values by listing the identifiers which
are to represent those values. These identifiers may then be used as constant-identifiers
(see chapter 12). The list of identifiers is enclosed in parentheses. The ordering of the
values is determined by the sequence in which their identifiers are given, i.e. if x comes
before y, x is less than y.
The ordinal number of each value of an enumerated type results from the mapping of
all values of the type onto consecutive non-negative values of the type Integer, starting
with 0. The first identifier thus has the ordinal value 0, the second 1, and so on.

44 U2778-J-Z55-4-7600

Data types Simple types

All identifiers in a declaration part must be different from each other (see chapter 12).
For this reason, different enumerated types are not allowed to introduce the same identi-
fiers. The enumerations (white, red, blue) and (yellow, green, red) must therefore not
occur in the same declaration part as both introduce the constant-identifier "red".

Since identifiers are not allowed to be word symbols, the enumeration (do, re, mi, fa,
sol, la, ti) is prohibited as "DO" is a word symbol (see sections 3.2 and 3.3).

The scope rules for the identifiers defined in enumerations are described in chapter 12.

The required functions Pred, Succ and Ord may be applied to enumeratedtype values.
Furthermore, these values may also be used in assignments.

Note

Enumerated types make it possible to work very elegantly with information that in
most other programming languages can be represented only with sequences of bits.

Examples

TYPE
workday = (mon, tue, wed, thu, fri);
suit = (club, spade, heart, diamond);
color = (red, blue, yellow, green, white, violet, orange);
shape = (circle, ellipse, rectangle);

For example, the following apply:
Ord (red) = 0
Ord (green) = 3
Ord (orange) = 6
Succ (tue) = wed
Pred (tue) = mon
thu > mon

Cross-references

Identifiers: 3.3
Relational operators: 9.3.4
Assignment: 10.1.2
Scope rules: 12
Required functions: 15

U2778-J-Z55-4-7600 45

Simple types Data types

Subrange Types

Subrange types are ordinal types. They have the following syntax:

subrange-type = ordinal-constant ".." ordinal-constant .

A subrange type is a subrange of an ordinal type, which is referred to as its host type.
A host type may be required (e.g. Integer) or it may refer to a previously defined enu-
merated type. A subrange type is defined by specifying the least and greatest values in
the subrange, separated by two periods. The first constant indicates the least value. It
must be less than or equal to the greatest value, which is indicated by the second con-
stant. Both constants must be of the same ordinal type.

In Pascal-XT, the two constants may belong to different integer types
(Long_Integer, Short_Integer). In this case the host type is the type
Long_Integer.

The same operations may be applied to values of a subrange type as are permitted for
the associated host type.

Note

Subrange types are especially useful for those tasks where values have to lie within
a certain range. On the one hand, this enhances the lucidity of the program since
the value range of variables is clearly stated. On the other hand, when the Check
option is activated (see chapter 16), a check is also made at runtime to see whether
a variable of a subrange type has accepted any impermissible values.

Examples

TYPE
{ host type Integer: }

hour = 0 .. 24;
range2 = -5 .. +4711;
range3 = Ord(’0’) .. Ord(’9’);

{ host type color, see 6.2.5: }
basic-color = red .. yellow;
mixed-color = green .. orange;

{ host type Char: }
digit = ’0’ .. ’9’;

Cross-references

Constants: 5.1
Ordinal types: 6.2
Equivalence of types: 6.6.1

46 U2778-J-Z55-4-7600

Data types Structured Types

Structured Types

Structured types have the following syntax:

structured_type = ["PACKED"] unpacked_structured_type .

unpacked_structured_type
= ARRAY-type | RECORD-type | SET-type | FILE-type .

A structured type is made up of other types. The components of a structured type may
possess simple types, Pointer types or other structured types. A structured type is cha-
racterized by the types of its components and the way it is structured.

Packed structured types

The word symbol PACKED may come before the word symbols ARRAY, RECORD, SET
and FILE. PACKED indicates to the compiler that values of this type may be represen-
ted internally so as to save space, even if this reduces efficiency when working with
PACKED-type variables or their components.

The specification of a structured type as packed refers only to the representation of
that type itself, but not to any components of the structured type. An exception to this
rule is the abbreviated notation of multi-dimensional ARRAY types (see section 6.3.1).

Variable String-types are packed types.

Besides the potential effect on efficiency and storage space, the following rules for pak-
ked and unpacked types should be noted:

Values of a packed SET type cannot be linked in expressions with values of an
unpacked SET type (see section 9.3).

When variable parameters are passed (see section 8.5.2), the actual parameter must
not be a component of a variable whose type is packed (except for parameters of
required subprograms such as Read or New).

With regard to the comformability of conformant arrays, the actual parameter and
the conformant array schema must both be packed or both unpacked (see section
8.5.4).

With regard to the required procedures Pack and Unpack (see section 15.8), one
ARRAY parameter must be packed and the other unpacked.

U2778-J-Z55-4-7600 47

Structured Types Data types

Cross-references

Simple type: 6.2
Pointer type: 6.4
Variable parameters: 8.5.2
Conformant array schemas: 8.5.4
Required procedures Pack and Unpack: 15.8

ARRAY Types

An ARRAY type defines a structure consisting of a fixed number of components, all pos-
sessing the same type. An ARRAY type has the following syntax:

ARRAY-type = "ARRAY" "[" index-type { "," index-type } "]"
"OF" component-type.

index-type = ordinal-type-denoter .

component-type = type-denoter .

The value of an ARRAY type consists of an assignment of a value from the component
type to each value of the index type. The index type must be an ordinal type, e.g.
Char, Boolean, Integer, enumerations or subranges. The component type may be any
type.

Values of an ARRAY type may be assigned as a whole. The components may be acces-
sed by means of indexing. Furthermore, the required procedures Pack and Unpack can
be used. Additional operations may be applied to values of particular ARRAY types, e.g.
fixed character strings (see section 6.3.2.1).

Note

Components of a packed ARRAY cannot be passed to subprograms as variable
parameters.

48 U2778-J-Z55-4-7600

Data types Structured Types

Examples

In the final example a RECORD type is used as a component type (see section 6.3.3).

TYPE
col_array = ARRAY [Boolean] OF (red, yellow, green, blue);
int_array = ARRAY [Char] OF Integer;
char_array = ARRAY [0..255] OF Char;
real_array = ARRAY [-10..10] OF Real;
rec_array = ARRAY [1..10] OF RECORD k, g : Real; END;

Abbreviated notation for multi-dimensional ARRAY types

In particular, the component type of an ARRAY type may also be an ARRAY type. An
abbreviated form is permitted for specifying such nested ARRAY types. The following
examples demonstrate different possible ways of defining the same data type.

ARRAY [Boolean] OF ARRAY [1..10] OF ARRAY [1..9] OF Real
ARRAY [Boolean] OF ARRAY [1..10, 1..9] OF Real
ARRAY [Boolean, 1..10] OF ARRAY [1..9] OF Real
ARRAY [Boolean, 1..10, 1...9 OF Real

The abbreviated manner of writing gives rise to multidimensional arrays. With the abbre-
viated form, the attribute PACKED refers to all abbreviated definitions. Thus the follo-
wing both have the same meaning:

PACKED ARRAY [1..10, 1..8] OF Boolean
PACKED ARRAY [1..10] OF PACKED ARRAY [1..8] OF Boolean

Typical examples of these abbreviated definitions are matrices:

TYPE
matrix = ARRAY [1..100, 1..100] OF Real;

Cross-references

Ordinal types: 6.2
PACKED: 6.3
Character strings: 6.3.2
Indexing: 9.6.2
Assignment: 10.1.2

U2778-J-Z55-4-7600 49

Structured Types Data types

Generalized String Types

The term "generalized string type" encompasses the following types:

the required type Char,
PACKED ARRAY [1..n] OF Char with 1 < n Short_Maxint.
String and String [n] with 1 < n Short_Maxint

In Standard Pascal only the types PACKED ARRAY [1..n] OF Char are referred to as
string types, where n is any Integer-constant greater than 1.

In Pascal-XT, a PACKED ARRAY [1..n] OF Char is only considered a string type
when n Short_Maxint. This is at the same time the maximum value for n in
String [n].

Relational operators may be applied to values of a generalized string type. These values
may also be assigned (as a whole) and output to textfiles and strings. Their compo-
nents can be accessed by means of indexing.
There are several required subprograms whose parameters or function results
possess generalized string types.

Cross-references

Relational operators: 9.3.4
Type Char: 6.2.3
Assignment: 10.1.2
Required subprogram: 15
Input/Output: 19

Fixed String Types

A fixed string type is a packed ARRAY type PACKED ARRAY [1..n] OF Char with a con-
stant n, where 1 < n Short_Maxint.

Each value in this sort of fixed string type must contain exactly n characters.

Note

A fixed string type has the properties both of an ARRAY type and of a generalized
string type.

Example

punchcard = PACKED ARRAY [1..80] OF Char;

Cross-references

PACKED: 6.3

50 U2778-J-Z55-4-7600

Data types Structured Types

ARRAY type: 6.3.1

U2778-J-Z55-4-7600 51

Structured Types Data types

Variable String Types

Variable string types (also known for short as "string types") are defined by
means of the required type-identifier String in accordance with the following
syntax:

string-type = "String" ["[" constant "]"].

The constant after the required type-identifier String determines the maximum
length of the variable string type. The value of the constant must be of the
type Short_Integer and lie in the range 1 .. Short_Maxint.
A variable string type is considered a packed type.

Implementation-defined characteristic

If no constant is specified after the type-identifier String, an
implementation-defined maximum length is assumed.

Every value of type String is a character string whose current length (number
of characters) is less than or equal to the maximum length of the string
type. Thus, even the empty string is a permissible string type value.

The characters in the string as well as their number (the length of the
string) are components of the String type. The characters in the string may
be accessed by means of indexing (see section 9.6.2); the length can be
interrogated using the required function Length (see section 15.3).

Relational operators may be applied to String type values. These values can
be assigned (as a whole), output to textfiles and strings, and read in from
textfiles and strings (as remainder of line). Numeric values may be output
in printable form to a String-variable and read from it (see required
procedures Readstring and Writestring, section 15.3). Additional required
subprograms can be used to manipulate string type values (see section 15.3).

Note

Components of a string type value cannot be passed to subprograms as
variable parameters.

52 U2778-J-Z55-4-7600

Data types Structured Types

Examples

TYPE
stdstring = String; { implementation-defined maximum length }

string10 = String [10]; { maximum length 10 }

str = String [20000]; { maximum length 20000 }

Cross-references

Relational operators: 9.3.4
Indexing: 9.6.2
Assignment: 10.1.2
Required subprograms: 15.3
Input/Output: 19

U2778-J-Z55-4-7600 53

Structured Types Data types

RECORD Types

A RECORD type defines a structure with a fixed number of components, which may
possess different types. RECORD types have the following syntax:

RECORD-type = "RECORD" field-list "END" .

field-list = [(fixed-part [";" variant-part] | variant-part)[";"]].

fixed-part = RECORD-section { ";" RECORD-section } .

RECORD-section = field-identifier-list ":" type-denoter .

field-identifier-list
= field-identifier { "," field-identifier } .

field-identifier
= identifier ["(" offset [":" bit-range] ")"] .

offset = Integer-constant .

bit-range = Integer-constant ".." Integer-constant .

variant-part = "CASE" variant-selector "OF" variant { ";" variant } .

variant-selector
= [tag-field ":"] tag-type .

tag-field = field-identifier .

tag-type = ordinal-type-identifier .

variant = selector-list ":" "(" field-list ")" .

selector-list = selector {"," selector } "ELSE".

selector = case-constant [".." case-constant]

case-constant = ordinal-constant.

Each component of a RECORD type is called a field. For each field, a RECORD type
defines a field-identifier and a type. All fieldidentifiers in a RECORD type, including any
variants, must be different.

If the field list of a RECORD type is empty, then the RECORD type does not possess
any field and defines a single null value.

Values of a RECORD type may be assigned (as a whole). The individual components
may be accessed by means of field selection (see section 9.6.3). Variables of a
RECORD type may occur in WITH statements (see section 10.5).

54 U2778-J-Z55-4-7600

Data types Structured Types

Example

Example of a RECORD type with only one fixed part and a nested RECORD type.

TYPE
person = RECORD

name,
firstname : String [20];
age : 0..100;
birthday : RECORD

year : 0..2100;
month: 1..12;
day : 1..31;
END;

END;

The field "birthday" in turn has a RECORD type, whose fields are not fields of the type
"person".

Note

Components of a packed RECORD cannot be passed to subprograms as variable
parameters.

Cross-references

Constants: 5.1
Field selection: 9.6.3
Assignment: 10.1.2
WITH statement: 10.5

RECORD Types with Variants

In a RECORD type with variant part, it is possible to define additional fields depending
on the value of another field. The variant part consists of two or more variants which
are available as alternatives. The field list in a variant part likewise conforms to the gene-
ral format, i.e. it may consist of a fixed part, a variant part, or both.

The number of variants in a variant part is determined by the tag type in the variant
selector. The tag type must be an ordinal type, and the type of each CASE constant
must be compatible with the tag type.
The final variant of a variant part may contain the word symbol "ELSE" instead
of a selector list. "ELSE" is then short for all values of the tag type which
do not occur in the selector list of this variant part. If all values of the
tag type already appear in the selector list, an ELSE part is not allowed.

U2778-J-Z55-4-7600 55

Structured Types Data types

A selector in the form
c1 .. cn

is short for a selector list
c1, c2, ..., cn,

containing all values ci of the tag type, where
c1 ci cn .

The values of the CASE constants in a variant part must differ pair-bypair, and the set
of their values must be identical to the set of the values of the tag tape, unless an
ELSE part is specified.

The variant selector may optionally contain a tag field of the tag type, i.e. the following
specifications are permissible:

CASE tag-field:tag-type OF...

or

CASE tag-type OF...

• Tag field nonexistent

Before a field in a variant is read- or write-accessed, precisely this variant is automati-
cally activated. If this causes a change of variant, all fields in the newly activated variant
are undefined. It is therefore illegal to change variants when read-accessing a field in a
variant (since an undefined value will be read; see chapter 9).

• Tag field existent

Assigning a value to the tag field activates that variant which is linked to the value of
the tag field. With the change of variant, all fields in this variant are undefined until they
are assigned values.

The tag field will always be maintained along with the RECORD, as a sort of constituent
part of the fixed part, in order to be able to determine which variant is currently active.
If no tag field is specified, the active variant cannot be determined.

56 U2778-J-Z55-4-7600

Data types Structured Types

Example of a RECORD type with a fixed and a variant part

TYPE
string20 = String[20];
person = RECORD

firstname : string20;
lastname : string20;
age : 0..99;
CASE married : Boolean OF

True : (name_of_spouse : string20);
False : ();

END;

The tag field possesses the type Boolean. The field list following the CASE constant
"False" is the so-called empty field list. Thus, for this variant there are to be no other
fields at all, apart from the fields of the fixed part and the tag field.

Notes

A RECORD type with variants makes it possible to define structures with different
versions. Each version may contain different fields, and may therefore have, for
instance, different storage space requirements. An implementation can "superimpo-
se" the variants in memory (normal case), but it can also allocate them consecutive
storage space.

We recommend against defining a FILE-type field in variants. Once the variant is
activated the field is undefined, and file errors occur as a result (see also note in
section 6.3.3.2).

Once a variant is made active (switched on), all fields in this variant must first be
given values, since activation causes the values in the fields to be undefined. The
frequent practice of giving values to the fields in one variant and having them read
under a different type in another variant is illegal. There can even be implementa-
tions which do not "superimpose" variants, and therefore do not achieve the desired
functions. For type conversion of this sort, Pascal-XT provides the required proce-
dure Convert (see section 15.10).

Illegal accesses to inactive variants can only be detected when a tag field has been
specified and the Check option is activated (see section 9.6.3).

Cross-references

Check option: 9.6.3, 16.2
Convert: 15.10

U2778-J-Z55-4-7600 57

Structured Types Data types

RECORD Types Specifying Representation in Memory

With RECORD types, Pascal-XT permits specifications to be made regarding the
way the values of the RECORD type are represented in memory. These
specifications have no effect on the execution of a Pascal program. However,
they are necessary if Pascal programs are to maintain interfaces to foreign
systems or linkages with other languages.

The way a RECORD-type value is represented in memory is determined by the way
the values of the fields are represented. For each field, the offset can be
defined relative to the start of the RECORD type, and the desired bit range
can be defined for values of the field.

The memory areas for different fields of the fixed part of a field list are
not allowed to overlap. For fields in different variants of a field list,
there may be implementation-defined restrictions (see below), especially if
the variants contains fields of type FILE.

Implementation-defined characteristics

The size of a unit of memory is implementation-defined. It may be a byte
or a multiple of a byte (e.g. times a power of 2).

Specification of offset and bit range in field identifiers of type RECORD
may be subject to implementation-defined restrictions such as alignment
conditions for offset specifications, alignment of fields or allocation
of variants (see also notes below).

• Offset

For each RECORD-type value, the components corresponding to the individual
fields are stored with a fixed offset from the beginning of the entire
RECORD. This offset is dependent only on the RECORD type itself, not on the
variables or components of this type. If no offset is specified for a RECORD
field, the offset will be determined by the compiler. Specifying an offset
causes all component values associated with the declared field always to be
stored in accordance with the specification relative to the beginning of the
storage area reserved for the entire RECORD value.

The value of a constant specified as offset must be of type Integer, and must
be non-negative. The values of the offsets specified in a field list must be
specified in ascending order, corresponding to the textual sequence of the
field identifiers.

58 U2778-J-Z55-4-7600

Data types Structured Types

• Bit range

Bit ranges may only be specified in packed RECORD types, and only for
ordinal-type or Pointer-type fields. The bit range then indicates the
position of a bit sequence, relative to the memory unit specified with the
offset, at which the values of the RECORD field are stored, right-justified.
The numbering of the bits begins with "0" (this is the first bit within the
memory unit determined with the offset), continues up to the last bit of that
memory unit, and then continues with the first bit of the next memory unit
(that is the memory unit specified by the value of the offset, incremented
by 1), and so forth.

The constants in a bit range must be of type Integer, and must be non-
negative. The first constant determines the first bit belonging to the bit
sequence, the second determines the last bit. Bit ranges must always be
chosen large enough to accommodate all possible values of the type of the
field.

Bit ranges referring to one and the same offset value must be specified in
ascending, non-overlapping order, corresponding to the textual sequence of
the field identifiers.

Notes

Storage requirements for representing values can be found in the user’s
guide.

The way FILE variables are represented in memory is implementation-
dependent and unknown to the user. RECORD variables containing FILE-type
fields should therefore not be passed to external systems. In particular,
we recommend against including offset specifications in a RECORD type of
this sort.

An implementation may "superimpose" the variants belonging to a variant
part in order to optimize storage, but this is not mandatory. In
particular, if variants contain FILE-type fields, a different form of
implementation-dependent allocation (e.g. consecutive) may be chosen. When
FILE-type fields are used, the use of offset specifications may be subject
to additional implementation-defined restrictions (see User’s Guide).

U2778-J-Z55-4-7600 59

Structured Types Data types

Example 1

In the example below, the date is specified as a RECORD type in packed form.
Figure 6-1 shows how the date December 27, 1987, is represented in memory.
The offset and bit range specifications refer to an implementation for which
the memory unit is one byte.

TYPE
date = PACKED RECORD

day (0: 0..4) : 1..31;
month (0: 5..8) : 1..12;
year (1: 1..15): 0..3000;
END;

27 12 1987

Byte 0 Byte 1 Byte 2

Fig. 6-1 Representation of RECORD type in memory

Example 2

Offset and bit range specifications in a RECORD type with variant part.
The offset and bit range specifications may differ depending on how the
implementation is defined.

TYPE
t1 = PACKED RECORD

a (0: 0..3) : 0..15;
b (0: 4..7) : (state1, state2, state3);
CASE day (1) : Boolean OF

True : (c (2) : Integer);
False : (d (2), e (3) : Char)

END;

Cross-references

PACKED: 6.3
New, Dispose: 15.2

60 U2778-J-Z55-4-7600

Data types Structured Types

SET Types

In Pascal, sets are described by means of SET types. These SET types have the follo-
wing syntax:

SET-type = "SET" "OF" base-type .

base-type = ordinal-type-denoter .

The elements of a set must be values of an ordinal type, which is then called the base
type of the set. The structure and values of a SET type are defined by the power set of
the set of values of this base type. Thus, each value of a SET type is a set, which is
either empty or consists of an arbitrary pairwise combination of different values of the
base type.

There is no restriction on the least or greatest value of the base type, so long as the
number of values of the base type does not exceed an implementation-defined limit; in
particular, the base type may also be partly or entirely in the negative subrange of an
Integer type.
In the latter instance, it is necessary to specify qualified set constructors
(see section 9.4).

Implementation-defined characteristic

The maximum number of values of a base type of a set may be restricted to an
implementation-defined range.

Values of a SET type may be assigned (as a whole). Set and relational operators may
be applied to them. The IN operator may be used to query whether a particular value is
an element of a set. Values of a SET type are created by means of set constructors.

Examples of permissible SET types

SET OF 0..50
SET OF -20..20
SET OF -30000..-29990
SET OF 12321..12345
SET OF Char
SET OF Boolean
SET OF (yellow, red, blue)
SET OF ’0’..’9’

U2778-J-Z55-4-7600 61

Structured Types Data types

Values of the type SET OF (yellow, red, blue) might include:

[] { the empty set }

[yellow], [red], [blue] { single-element sets }

[yellow, red], { two-element sets }
[yellow, blue]
[red, blue]

[yellow, red, blue] { three-element set }

Note

SET types make it possible to work very elegantly with information that in most
other programming languages can be represented only with sequences of bits.

Cross-references

Ordinal types: 6.2
Set operator: 9.3.3
IN operator: 9.3.3
Relational operators: 9.3.4
Set constructor: 9.4
Assignment: 10.1.2

62 U2778-J-Z55-4-7600

Data types Structured Types

FILE Types

A FILE type describes sequences (theoretically of any length) of values of a specified
component type, together with a current position in each sequence and a processing
mode indicating whether the sequence is being read or written. The current position
within the file is also referred to as the file pointer. An empty file corresponds to an
empty sequence.

Pascal recognizes only sequential files. These can only be processed sequentially from
beginning to end. Only one component can be accessed at a given time. To do so, a
buffer variable is associated with every variable of type FILE (see chapter 7).

There are two required FILE-type identifiers: Any_File (see section 6.5.1) and Text
(see section 6.3.5.2).

Permissible operations on files are implemented exclusively by accessing their buffer
variables and by means of required subprograms.

Note

Pascal-XT implementations may offer a number of extensions to file processing in
predefined packages, such as direct access, multiple file processing, various ope-
ning modes, and so forth.

Cross-references

Buffer variables: 7
Scope rules: 12
Required subprograms: 15
Input/Output: 19

General Files

The syntax of a FILE type is as follows:

FILE-type = "FILE" "OF" component-type .

component-type = type-denoter .

The component type in a FILE type is not allowed to be a type denoter which itself
designates a FILE type or a structured type with any (direct or indirect) FILE-type com-
ponent.

U2778-J-Z55-4-7600 63

Structured Types Data types

Note

The use of Pointer types or of structured types possessing Pointertype components
(directly or indirectly) is only meaningful for local files written and read within the
same program run. Once a program run has terminated, all identifying values be-
come invalid, so that in any subsequent program run the dereferencing of identifying
values read from files will lead to errors.

Examples of FILE types

FILE OF ARRAY [1..50] OF Integer
FILE OF RECORD

field : ARRAY [1..50] OF Char;
number : Integer;
bool : Boolean;
END;

Cross-references

Pointer types, identifying values: 6.4

The FILE Type "Text"

The required type-identifier Text represents a special FILE type which has an additional
property: it describes a sequence of lines, where each line consists of a sequence of
characters of type Char. Each line is terminated by a special component value end-of-
line; within a Pascal program, this value is treated as a blank (’ ’), except in the case of
the required subprograms Reset, Readln, Eoln, Writeln and Page. A blank line consists
solely of the end-of-line component.

A textfile is read only in complete lines, i.e. lines ending with an end-of-line marker. This
applies even if the last line of the file was not terminated with Writeln when the file was
written.

A file of type Text is referred to as a textfile. All required subprograms which process
variables of type FILE OF "type" may be applied to textfiles. In addition, there are also
the required subprograms

Readln
Writeln
Eoln
Page

which are only applicable to textfiles.

64 U2778-J-Z55-4-7600

Data types Structured Types

When textfiles are input or output, it is also possible to output character strings, Integer
numbers, Real numbers and Boolean values in addition to characters. Input/Output of
numbers also includes conversion of the input character string to internal representation
(binary format) and vice versa. Boolean values are output according to their value as
character strings (see section 15.1 and chapter 19).

Input and Output

The required variable-identifiers Input and Output stand for textfiles (see section 11.5).

Cross-references

Input/Output: 11.5, 15
Required subprograms: 15
File processing subprograms: 15.1

U2778-J-Z55-4-7600 65

Pointer types Data types

Pointer Types

Pointers are references to identified variables which can be created and destroyed
during program execution. Identified variables are described in greater detail in
chapter 7.

The creation and destruction of identified variables takes places only via required sub-
programs (see section 15.2). Chapter 20 describes how to work with pointers and identi-
fied variables.

Pointers may be assigned. However, in this case it is not the identified variable but only
the reference to it which is copied. The relational operators "=" and "<>" may be
applied to pointers. Here, too, it is not the values of the identified variables but only the
references which are compared. Access to identified variables takes place by dereferen-
cing the pointers.

It is possible to write reusable packages with the aid of the generic pointer
type Pointer, which is described in section 6.5.2.

The syntax of Pointer types is as follows:

pointer-type = " " domain-type .

domain-type = type-identifier .

The type-identifier of the domain type can be used even before it is defined (see also
private Pointer types). This enables the definition of recursive data structures (see exam-
ple).

The values of a Pointer type consist of the NIL value and a set of identifying values,
each of which references its own identified variable of the domain type.

The set of identifying values of a Pointer type is changed during program execution by
the creation and destruction of identified variables. Each identifying value of a Pointer
type, however, is only allowed to reference one identified variable with the domain type
specified in the definition of the Pointer type. This strong type binding of pointers enhan-
ces the program reliability.

In Standard Pascal, the word symbol NIL does not have a special Pointer type, but
adopts a suitable Pointer type so as to satisfy the rules of compatibility or assignment-
compatibility. Since the NIL value is not an identifying value, it does not point to an
identified variable.
In Pascal-XT, NIL is considered a value of the generic pointer type Pointer
(see section 6.5.2).

Let T be any data type. Then T is the Pointer type to the domain type T. If TP is a
variable of Pointer type T, then the values of TP are references (pointers) to identified
variables of type T.

66 U2778-J-Z55-4-7600

Data types Pointer types

Example

Here the domain type is used prior to its definition.

TYPE
person_ptr = person;
person = RECORD

name: string;
father: person_ptr;

END;

Cross-references

Generic pointer type: 6.5.2
Pointer variable: 7
Relational operators: 9.3.4
Dereferencing: 9.6.4
Assignment: 10.1.2
Private Pointer type: 11.4
Scope rules: 12
Required subprograms: 15.2
Concept: 20

U2778-J-Z55-4-7600 67

Generic types Data types

Generic Types

The Required FILE Type "Any_File"

In order to offer extensions for file processing in predefined packages,
Pascal-XT has also introduced the generic FILE type. This type is known to by
the required type-identifier Any_File.

The type Any_File is only permitted as a type of variable parameters, but not
as the type of a variable or a component of a variable. The required file
processing subprograms cannot be called with an actual parameter of this
type.

Cross-references

File processing subprograms: 15.1

The Required Pointer Type "Pointer"

Additionally, Pascal-XT recognizes the generic pointer type, which is known
by the required type-identifier Pointer. With the aid of this type, it is
possible to write broadly applicable subprograms for processing identified
variables. It thus becomes possible to write, for instance, a set of sub-
programs for managing linearly concatenated lists which can be used
universally for lists of different element types (see example).

The set of identifying values of the generic pointer type Pointer is the
union of the identifying values of all Pointer types defined in the program.
The generic pointer type is compatible with every other pointer type.
The generic pointer type cancels strong type binding since a Pointer variable
of this type can reference identified variables of any domain type. However,
it is wrong to misuse this property for indirect type conversion (see section
6.6.2).

Data items of the generic pointer type cannot be dereferenced or used as
parameters for calling the required procedures New or Dispose. Before
dereferencing takes place, the identifying values must first be copied to
variables of a Pointer type defined in the program.

Example

TYPE
list = list_element;

68 U2778-J-Z55-4-7600

Data types Generic types

list_element = RECORD
object: Pointer;
tail : list
END;

U2778-J-Z55-4-7600 69

Generic types Data types

PROCEDURE insert (VAR queue : list; item : Pointer);
VAR

l : list;
BEGIN

New (l);
l .object := item;
l .tail := queue;
queue := l;

END;

The Required Type "Any_Type"

When parameters are passed to variable parameters, the actual parameter must
have the same type as the formal parameter. In the case of mixed languages
this strict type check can sometimes be a hindrance if, for example,
addresses of variables of different types have to be passed to the same
external procedure. A required generic type, identified by the required type-
identifier Any_Type, makes it possible to circumvent this type check.

The type Any_Type may occur only as a type of formal variable parameters in
those procedures and functions in which a directive other than Forward has
been specified.

Example

In this example, variables of any type may be passed to the external
procedure "ext", i.e. the addresses of the variables are available in ext.
The size of each of the variables is likewise passed as a second
parameter.

VAR
buf1 : ARRAY [1..100] OF Integer;
buf2 : ARRAY [1..50] OF Real;
buf3 : RECORD ... END;

PROCEDURE ext (VAR buffer: Any_Type; size: Integer); external;

BEGIN
ext (buf1, Sizeof(buf1));
ext (buf2, Sizeof(buf2));
ext (buf3, Sizeof(buf3));

END

Cross-references

Variable parameters: 8.5.2
Directives: 8.6

70 U2778-J-Z55-4-7600

Data types Equivalence

Equivalence and Compatibility of Data Types

Equivalence of Data Types

Equivalence of data types is required:

when VAR parameters are passed (see section 8.5.2),

for parameters and function results from procedural and functional parameters (see
section 8.5.3),

when there are two or more actual parameters to be assigned to formal parameters
from a single conformant array parameter specification (see section 8.5.4),

for conformability of conformant array schemas (with regard to the component
types, see section 8.5.4).

According to the syntax given in section 6.1, a type denoter may possess either of the
two following formats:

a) New type:
In this case, the type denoter defines a new type which is not identical to any other
new type (not even when the texts of the two type denoters are completely identi-
cal).

b) Type-name:
In this case, the type designated by the type denoter is identical to the type speci-
fied in the type definition of the type-name. By using type-names as type denoters in
type definitions, it becomes possible to define two or more type-names designating
identical types.

Examples of a)

TYPE
t1 = ARRAY [1..5] OF Char;
t2 = ARRAY [1..5] OF Char;

Here, despite the completely identical notation of their type denoters, t1 and t2 indicate
two different, even mutually incompatible types.

VAR
i: 1..5;
j, k: 1..5;

The variables i and j possess different types (which, however, being subrange types of
the same host type Integer, are mutually compatible; see section 6.6.2).

The variables j and k, on the other hand, possess the same type.

U2778-J-Z55-4-7600 71

Equivalence Data types

Examples of b)

TYPE
range = 0 .. Maxint;
cardinal = range;
positive = cardinal;
natural = range;

VAR
a: range;
b: cardinal;
c: positive;
d: natural;

Here range, cardinal, positive and natural all indicate the same type. The variables a, b,
c and d likewise all have the same type.

The following examples illustrate that the type-name can also be predefined or defined
in a different package:

TYPE
generic_ptr = Pointer;
compl_nr = complex_definitions.complex;

Here generic_ptr and the required type-identifier Pointer both indicate the
same type, namely, the required generic pointer type. Similarly, compl_nr
indicates the same type as the type-identifier "complex" which was defined
in a package complex_definitions (referenced via a WITH clause; see example
in chapter 17).

VAR
x: Long_Real;
y: Long_Real;

Since the type denoter Long_Real is a (required) type-name (and not a new type, as is
1..5 in the above example), the variables x and y have the same type.

Cross-references

VAR parameters: 8.5.2
Parameter subprograms: 8.5.3
Conformant array schemas: 8.5.4
Type denoter: 6.1
New type: 6.1
Type name: 6.1
Compatibility of types: 6.6.2
Subrange type, host type: 6.2.6
Pointer, generic pointer type: 6.5.2
Packages: 11.2

72 U2778-J-Z55-4-7600

Data types Compatibility

Compatible Data Types

Compatibility of data types is required:

for the operands of relational operators (see section 9.3.4).
for comformability of conformant array schemas (regarding their index types) (see
section 8.5.4).
for initial and final values in the FOR statement (see section 10.4.3)
for assignment-compatibility (see section 6.6.2).
for the operands of set operators (see section 9.3.3).
for CASE constants in variant parts
for CASE constants in CASE statements.

The compatibility requirement is checked at compile time.

Two types T1 and T2 are designated to be compatible if any of the following state-
ments is true:

a) T1 and T2 are the same type (see section 6.6.1).

b) T1 is a subrange of T2, or T2 is a subrange of T1, or T1 and T2 are subranges of
the same host type T3.

c) T1 and T2 are SET types with compatible base types and are either both packed
or both unpacked.

d) T1 and T2 are fixed string types, where the number of components of T1
and T2 may differ. In Standard Pascal, T1 and T2 must contain the same number
of components.

e) T1 (T2) is a variable string type and T2 (T1) is a generalized string
type (Char type, fixed string type, variable string type).

f) T1 (T2) is a Pointer type and T2 (T1) is the generic pointer type.

g) T1 (T2) is the type Short_Integer and T2 (T1) is the type Long_Integer.

h) T1 (T2) is the type Short_Real and T2 (T1) is the type Long_Real.

U2778-J-Z55-4-7600 73

Compatibility Data types

Cross-references

Integer type: 6.2.1
Real type: 6.2.2
Subrange type, host type: 6.2.6
Generalized string type: 6.3.2
Fixed string type: 6.3.2.1
Variable string type: 6.3.2.2
Variant part: 6.3.3.1
SET type, base type: 6.3.4
Pointer type: 6.4
Conformant array schemas: 8.5.4
Set operation: 9.3.3
Relational operator: 9.3.4
CASE statement: 10.3.2
FOR statement: 10.4.3

74 U2778-J-Z55-4-7600

Data types Assignment-compatibility

Assignment-Compatibility of Data Types

When a value is assigned to a variable, the type of the value must be assignment-com-
patible with the type of the variable. Assignment compatibility is required if an assign-
ment takes place explicitly (cf. items 1 to 3) or implicitly (cf. items 4 to 9):

1) When a value is assigned to a variable (see section 10.1.2).
2) When a value is assigned to a function identifier (see section 8.5.3).
3) For initial and final values in the FOR statement (see section 10.4.3).
4) When value parameters are passed (see section 8.5.1).
5) For aggregates (see section 9.5).
6) For Read (f, v) (see chapter 15).
7) For Write (f, a) (see chapter 15).
8) For indexing (see section 9.6.2).
9) For set constructors (see section 9.4).

A value of type T2 is designated assignment-compatible with a type T1 if one of the
following statements is true:

a) T1 and T2 are the same type and this type is neither a FILE type nor does it con-
tain (directly or indirectly) a FILE-type component.

b) T1 is a Real type and T2 an Integer type.

c) T1 and T2 are compatible ordinal types and the value of type T2 lies in the value
range of type T1.
When a program is executed a Range_Error, an Index_Error or a Set_Error will
occur if this condition is not met.

d) T1 is the type Short_Real and T2 is the type Long_Real and an
approximation of the value of type T2 lies in the value range of type T1.
When a program is executed a Numeric_Error will occur if this condition
is not met.

e) T1 and T2 are compatible SET types and all elements of the value of type T2 lie in
the value range of the base type of T1.
When a program is executed a Set_Error will occur if this condition is not met.

f) T1 and T2 are compatible fixed string types with the same number of components.

g) T1 is a variable string type with maximum length n and T2 is a
generalized string type with up to n components (see Table 6-1).
When a program is executed a String_Error will occur if T2 contains more
than n components.

U2778-J-Z55-4-7600 75

Assignment-compatibility Data types

h) T1 is a fixed string type with n components and T2 is a variable string
type. The actual length of the character string of type T2 must be
exactly n.
When a program is executed a String_Error will occur if the actual length
of the character string of type T2 is not equal to n.

i) T1 and T2 are compatible Pointer types.
When a program is executed an error (with unpredictable results) will
occur if T2 is the generic pointer type and the value of T2 is an
identifying value pointing to an identified variable whose type does not
match the domain type of T1.

v := e

Type of v Type of e assignment-compatible?

Char Char yes
PACKED ARRAY no
[1..k] OF Char
String[n] no

PACKED ARRAY Char no
[1..m] OF Char

PACKED ARRAY if m = k
[1..k] OF Char
String[n] if m = Length(e)

String[n] Char yes
PACKED ARRAY if n >= k
[1..k] OF Char
String[k] if n >= Length(e)

Table 6-1 Assignment-compatibility for character strings

Notes

In Pascal-XT, a PACKED ARRAY [1..n] OF Char is not a generalized string type
unless 1 < n <= 32767 (see section 6.3.2).

Which of the aforementioned errors is detected during program execution is imple-
mentation-defined.

76 U2778-J-Z55-4-7600

Data types Assignment-compatibility

When a value of a variable string type is assigned to a variable of a
generalized string type with n components, the actual length of the
variable string must be exactly equal to n. If the variable string has a
length other than n, it is possible with the aid of a user-defined
function to set the string to the desired actual length (e.g. by
truncating or padding with blanks). The definition of the function might
look as follows:

CONST
std_str_length = 80;

TYPE
std_string = String[std_str_length];

FUNCTION adjust (s: std_string; len: Short_Integer): std_string;
TYPE

blanks = PACKED ARRAY [1 .. std_str_length] OF Char;
CONST

filler = blanks (’ ’: std_str_length);
BEGIN

IF Length(s) >= len THEN
adjust := Substring (s, 1, len)

ELSE
adjust := Concat

(s, substring (filler, 1, len - Length(s)))
END;

When an Integer-type expression is assigned to a Real variable the (Integer) value of
the expression is converted to a Real value prior to the assignment. However, the
expression is computed in integer arithmetic (see also section 9.3.1).

Examples

VAR range : 1 .. 5;
string5 : String [5];
fixstr3 : PACKED ARRAY [1..3] OF Char;
set : SET OF 0 .. 255;
short : Short_Real;

{ Examples in which assignment-compatibility }
{ is violated during program execution }

BEGIN
range := 6; { causes a Range_Error }

string5 := ’123456’; { causes String_Error }

string5 := ’12’;
fixstr3 := string5; { causes a String_Error }

set := [1, 256]; { causes a Set_Error }

short := 10E100 { causes a Numeric_Error }
END;

U2778-J-Z55-4-7600 77

Assignment-compatibility Data types

Cross-references

Ordinal type: 6.2
Integer type: 6.2.1
Real type: 6.2.2
Component: 6.3
Generalized string type: 6.3.2
Variable string type: 6.3.2.2
SET type: 6.3.4
FILE type: 6.3.5
Pointer type: 6.4
Function: 8.2
Value parameter: 8.5.1
Set constructor: 9.4
Aggregate: 9.5
Indexing: 9.6.2
Assignment: 10.1.2
Read, Write: 15.1
Length: 15.3

78 U2778-J-Z55-4-7600

Data types Attributes

Attributes of Data Types

Besides the value range that defines them and their permissible operators or
functions, data types also have a number of attributes which, for example,
affect how the values of the types are represented. The values of these
attributes can be obtained via the various required functions (see section
15.9).

Alignment

Values of a type may be subject to implementation-dependent alignment in
memory. This alignment is a multiple of the implementation-defined memory
unit (see section 6.3.3.2). The function Alignof provides the requested
alignment.

Storage requirements in memory units

An implementation-dependent number of memory units is required in order to
represent the value of a type. The function Sizeof returns the number of
memory units occupied.

Storage requirement in bits

An implementation-defined minimum number of bits is required in order to
represent an ordinal-type value. The function Bitsizeof returns the
minimum number of bits required.

Least value of an ordinal type

The least value of an ordinal type is obtained by means of the function
function First.

Greatest value of an ordinal type

The greatest value of an ordinal type is obtained by means of the function
Last.

Maximum length of a variable string type

The values of a variable string type are strings of variable length. The
maximum permissible length of a character string of a variable string type
is limited by the maximum String-type length specified in the type
definition. The function Maxlength returns the maximum length of a

U2778-J-Z55-4-7600 79

Attributes Data types

variable string type.

Cross-references

Attribute functions: 15.9

80 U2778-J-Z55-4-7600

Data types Attributes

Variables
A variable is a place holder for values. It may be assigned various values during pro-
gram execution (see section 10.1.2). Variables may also occur as operands in expres-
sions; they then represent the value most recently assigned to them (see chapter 9). In
Pascal, every variable has a type. A variable may only be assigned values of its own
type.

Variables can be categorized by type of access:

Entire variables declared variables which are referenced in their entirety.

Component variables components of variables with a structured type (ARRAY
type, RECORD type, String type). The components are
likewise variables and may be individually referenced.

Identified variables variables pointing to an identifying value (see also section
7.2).

Buffer variables variables which are linked to variables of type FILE (see
also section 7.2).

All these categories of variables are subsumed under the term variable access (variable-
object). Section 9.6 describes in detail how to access variables.

Cross-references

Expression: 9
Assignment: 10.1.2

U2778-J-Z55-4-7600 81

Variable declaration Variables

Variable Declaration

Variable declarations have the following syntax:

variable-declaration-part
= "VAR" variable-declaration

{variable-declaration}.

variable-declaration
= identifier-list ":" type-denoter ";".

identifier-list = identifier {"," identifier}.

variable-name = [package-identifier "."] identifier.

Each identifier in the identifier list of a variable declaration stands for a single variable
whose type is determined by the type denoter in the variable declaration. A variable is
only allowed to assume values of the specified type.

Each use of this identifier is a variable-name which stands for this variable.
A variable-name may also be formed by prefixing a package-identifier; it then
references a variable declared in the specification of the indicated package.

Values of simple or Pointer variables cannot be broken down any further. Values of
structured variables are made up of the values of their components.

Example of a variable declaration part

VAR
a, b, c : Char;
x, y : Integer;
i : -10..+10;
bool : Boolean;
field1 : ARRAY [1..10, 1..100] OF Real;
p1, p2 : person; { person was defined in section 6.3.3 }

Cross-references

Identifier: 3.3
Type denoter: 6.1
Simple type: 6.2
Structured type: 6.3
Pointer type: 6.4
Variable declaration part: 11.1
Packages: 11.2
Scope rules: 12

82 U2778-J-Z55-4-7600

Variables Categories

Categories of Variables

Variables are declared (static variables), created dynamically (identified variables) or dec-
lared implicitly (buffer variables).

Declared variables

Declared variables are declared in a variable declaration part and may be referenced
via their identifier. They exist during execution of that block (program, procedure or
function) where they were declared (for further information see section 13.3). Variables
declared directly in a package specification, a package body or a main program
exist for the entire duration of the program run.

Identified variables

Identified variables are not declared in a variable declaration part and cannot be referen-
ced directly via an identifier. Instead, they are created by the required procedure New
when a program is being executed (see section 15.2). They exist so long as there are
identifying values referring to them, but not beyond the end of the program. Identifying
values may also be destroyed by means of the required procedure Dispose (see sec-
tion 15.2). Identified variables are accessed by dereferencing a Pointer object
(variable, constant, function result).

Buffer variables

Declaring a variable f of type FILE (known for short as a FILE variable) implicitly defi-
nes a buffer variable which is referenced by means of f . The type of this variable is
the same as the component type of the FILE type. With textfiles, the component is the
required type Char. The buffer variable is required for accessing the components of of
the FILE variable.

Cross-references

Textfile: 6.3.5.2
FILE type: 6.3.5
Pointer type: 6.4
Domain type: 6.4
Object: 9.6
Variable access: 9.6
Block: 12.1
Program execution: 13.3
Buffer variable: 6.3.5, 15.1, 19

U2778-J-Z55-4-7600 83

Defined values Variables

Defined and Undefined Values of Variables

When used in an expression, variables must have a valid value belonging to their type.
The items below describe when variables are defined, i.e. when they possess a defined
value.

At the moment of its creation a variable is totally undefined. A declared variable is cre-
ated when the block where is it directly defined is executed, and destroyed when this
block is terminated (see chapter 12). An identified variable is created by means of the
required procedure New.

• Simple variables

The value of a simple variable is defined only if the variable has been assigned a value;
otherwise, it is undefined. A variable may be assigned a value by means of assignment
(see section 10.1.2).

• Structured variables

The value of a structured variable is either defined (in which case all components pos-
sess a valid value) or totally undefined (in which case none of its components has a
valid value) or undefined (in which case not all of its components have a valid value).
Components of an undefined structured variable may be used in expressions insofar as
these components have a defined value. The entire structured variable cannot be used
in expressions until all of its components have defined values.

• Pointer variables

A Pointer variable is defined if it has a valid identifying value or the value NIL. It may be
assigned a valid identifying value by calling the required procedure New (see section
15.2) or by assignment (see section 10.1.2).
Identifying values are destroyed by calling the required procedures Dispose and Rele-
ase (see section 15.2).

Once New has been called, the specified Pointer-variable has a valid value, namely, a
reference to the created identified variable. This created identified variable, on the other
hand, is totally undefined.

84 U2778-J-Z55-4-7600

Variables Defined values

• FILE variables

A FILE variable has a defined value if one of the following propositions is true:

1) It was defined by means of the required procedure Rewrite.

2) The variable has been assigned a file existing outside the program. This assign-
ment may be made by means of the required procedure Assignfile (see section
15.1) of by specifying the variable as a program parameter (see section 11.5).

Accordingly, a FILE variable is undefined if it was not defined with Rewrite or if there is
no assignment to a file existing outside the program.

Notes

Non-initialized variables are a frequent source of errors which only become apparent
at a later point in time during program execution as a result of random consequent
errors (e.g. overwriting of code and data). The effect of executing such errored pro-
grams is unpredictable and may vary depending on other factors (load address, link
sequence, and so forth).

In some cases the compiler option Initialize, together with the Check
option, can help in the detection of non-initialized variables. When
variables are created (see above) the storage areas for the variables are
preset with a particular "bit pattern". If this bit pattern represents an
invalid value of the variable, a runtime error will occur in many cases
when the variable is used.
The Initialize option, however, does not cause variables to be set with
valid initial values (see chapter 16).

Cross-references

Runtime errors: 2.3, A.5
Structured types: 6.3
Simple type: 6.2
Component variable: 6.3
Program parameter: 11.5
Assignfile: 15.1
Rewrite: 15.1
New, Dispose: 15.2
Buffer variables: 7.2, 19
Compiler options: 16
Identified variables: 7.2, 20

U2778-J-Z55-4-7600 85

Variables Defined values

Procedures and Functions
Procedures and functions are also referred to below by the collective term "subpro-
grams".

Procedures are used to structure a program clearly and unambiguously into substeps
(the principle of "stepwise refinement"). The invocation of a procedure (i.e. the execu-
tion of the statement sequence contained within it) takes place by means of a proce-
dure call (also known as a procedure statement; see section 10.1.3).

Functions are used to clarify and simplify expressions by having elaborate or complica-
ted interim steps written as functions. Unlike a procedure, a function has the property
of representing a value within an expression. This value is formed by means of an
assignment to the result variable in the statement part of the function. The identifier of
this result variable is identical to that of the function.
A function call (also known as a function designator) is always an expression or part of
an expression (see chapter 9).

Subprograms may also have their own declarations. The identifiers used within them
are "local", i.e. they are only valid within the subprogram block where they were decla-
red, regardless of whether outside the block (globally) there already exist like-named
identifiers, possibly with a completely different meaning. Subprograms themselves may
also contain further subprograms, i.e. they may be nested to any depth.

Subprograms can be repeatedly activated. This can occur from outside the subpro-
gram’s own statement sequence or even from within the subprogram (recursion). Recur-
sion is limited in that each call requires new memory space, so that there may not be
sufficient memory available.

The following (infinite) recursion always results in memory overflow (we do not advise
trying it out!):

FUNCTION again_and_again (i:Integer) : Integer;
BEGIN

again_and_again := again_and_again (i)
END

U2778-J-Z55-4-7600 87

General remarks Procedures and functions

Subprograms may access the following entities:

the subprogram’s own parameters,
local variables and constants (defining point lies within subprogram’s declaration
part),
global variables, constants and parameters (defining point lies outside the subpro-
gram’s declaration part).

Parameters may be used to pass values to subprograms or to return them to the cal-
ling part of the subprogram.

We highly recommend that the defining points of the variables used be placed as close
as possible to the "location" at which they are processed, i.e. to use as few global varia-
bles as possible. Obviously, it will not be possible to dispense with global variables alt-
ogether; yet the user should be aware that the use of global data increases the probabi-
lity of errors, side effects and so forth. Equally important, global data frequently forces
the compiler to generate elaborate and hence slower code in order to access this data.

Besides the subprograms declared by the user, there is also a series of required sub-
programs, some of which are prescribed by the Standard while others are extensions in
Pascal-XT. They are described in detail in chapter 15.

Cross-references

Errors: 2.3, A.5
Side effects: 8.2
Expression: 9
Defining point: 12.2
Required subprograms: 15

88 U2778-J-Z55-4-7600

Procedures and functions Procedure declaration

Procedure Declaration

Procedure declarations have the following syntax:

procedure-declaration
= procedure-heading ";" directive ";"
| procedure-heading ";" procedure-block ";"
| procedure-identification ";" procedure-block ";"
| INLINE-procedure-declaration.

procedure-heading
= "PROCEDURE" identifier [formal-parameter-list].

procedure-identification
= "PROCEDURE" procedure-identifier

[formal-parameter-list].

INLINE-procedure-declaration
= "INLINE" procedure-heading ";" procedure-block ";".

block = { label-declaration-part
| constant-definition-part
| type-definition-part
| variable-declaration-part
| procedure-declaration
| function-declaration
}
statement-part.

statement-part = compound-statement.

procedure-name = [package-identifier "."] identifier.

A procedure declaration introduces an identifier which is linked with the procedure-
block. Each use of this identifier is a procedure-name, and stands for the execution of
the statements contained in the procedure-block (except in the case of procedure identi-
fication; see section 8.7).
A procedure-name can also be formed by prefixing a package-identifier; it
then references a procedure declaration in the identified package
specification.

"Block" stands for a declaration part followed by a statement part. A statement part is a
compound statement.

"Formal parameter list" is a list of formal parameters, enclosed in parentheses (see sec-
tion 8.5), which serve as place holders for the actual parameters used in the procedure
call.

In Pascal-XT, as an extension to the Standard, it is permitted to repeat the
formal parameter list from the associated procedure declaration within a
procedure identification. In this case, however, the parameter lists must be

U2778-J-Z55-4-7600 89

Procedure declaration Procedures and functions

textually identical.

90 U2778-J-Z55-4-7600

Procedures and functions Procedure declaration

INLINE procedures are described in section 8.3, directives and procedure
identifications in section 8.6.

Example of a procedure declaration

PROCEDURE swap (VAR x, y: Integer);

VAR
temp : Integer;

BEGIN
temp := x;
x := y;
y := temp;

END {swap};

Cross-references

Label declaration part: 4
Constant definition part: 5
Type definition part: 6
Variable declaration part: 7
INLINE subprogram: 8.3
Parameters: 8.5
Directives, procedure identification: 8.6
Compound statement: 10.2
Block: 12.1

U2778-J-Z55-4-7600 91

Function declaration Procedures and functions

Function Declaration

Functions represent a value: their result. They may therefore be used in expressions.
The type of the result must be specified in a function declaration as a type-name follo-
wing the function heading.

function-declaration
= function-heading ";" directive ";"
| function-heading ";" function-block ";"
| function-identification ";" function-block ";"
| INLINE-function-declaration.

function-heading
= "FUNCTION" identifier

[formal-parameter-list] ":" result-type.

result-type = type-name.

function-identification
= "FUNCTION" function-identifier
[[formal-parameter list] ":" result-type].

INLINE-function-declaration
= "INLINE" function-heading ";" function-block ";".

function-block = block .

function-name = [package-identifier "."] identifier .

A function declaration introduces an identifier which is linked with the function-block.
Each use of this identifier is a function-name, and stands for the execution of the state-
ments contained in the function-block (except in the case of function identification; see
section 8.7).
A function-name can also be formed by prefixing a package-identifier; it then
references a function declaration in the identified package specification.

Functions must include an assignment to the function-identifier, which at that point ser-
ves as a place holder for the function value. This assignment may be in the statement
part of the function or in a subprogram declared within the function. When the function-
block of the function is processed, at least one such assignment must be performed. In
this way the result of the function is determined. If two or more such assignments are
performed, the function result is determined by the assignment which was the last to be
dynamically executed.

In Standard Pascal, only simple types and Pointer types are permitted as a result type.

92 U2778-J-Z55-4-7600

Procedures and functions Function declaration

In Pascal-XT, the result type may be any type that is not a FILE type and
does not have a FILE type (directly or indirectly) as a component type. In
the case of structured result types, the function identifier must be assigned
a value as a whole; assignments to single components are only possible with
aggregates (see example 2).

"Formal parameter list" is a list of formal parameters enclosed in parentheses (see sec-
tion 8.5) which serve as place holders for the actual parameters used in the procedure
call.

In Pascal-XT, as an extension to the Standard, it is permitted to repeat the
formal parameter list and the result type from the associated function
declaration. In this case, however, the parameter lists must be textually
identical.

INLINE functions are described in section 8.3, directives and function
identification in section 8.6.

Note

The task of a function is to calculate a value. It enhances the clarity and readability
of programs and facilitates the writing of correct programs when the function result
is calculated solely from the values of the parameters. We recommend against inclu-
ding the values of global variables. Even more dangerous and confusing are func-
tions with side effects, i.e. those which also change global or identified variables
after calculating the function result.

Example 1

The function "max" returns the maximum value of the two parameters.

FUNCTION max (a, b: Integer): Integer;
BEGIN

IF a <= b THEN
max := b

ELSE
max := a

END { max };

U2778-J-Z55-4-7600 93

Function declaration Procedures and functions

Example 2

The two functions "add" and "sub" return values of a RECORD type (structured
type). The function add uses the temporary variable temp to calculate the
result; the function sub uses an aggregate (see section 9.5) since component-
by-component assignments in the form add.re := x.re + y.re are prohibited.

TYPE
complex = RECORD

re,
im: real

END;

FUNCTION add (x, y: complex): complex;
VAR

temp: complex;
BEGIN

temp.re := x.re + y.re;
temp.im := x.im + y.im;
add := temp;

END { add };

FUNCTION sub (x, y: complex): complex;
BEGIN

sub := complex (x.re - y.re, x.im - y.im);
END { sub };

Example 3

The function "replace" returns a character string. The first occurrence of
the string "old" in "original" is to be replaced by "new". If old does not
occur, original will be returned.

FUNCTION replace (original, old, new: String): String;
VAR

i: Short_Integer;
BEGIN

i := Position (old, original);
IF i > 0 THEN

replace :=
Concat

(Substring (original, 1, i-1),
new,
Substring

(original,
i + Length (old),
Length (original) - Length (old) - i + 1))

ELSE
replace := original;

END { replace };

94 U2778-J-Z55-4-7600

Procedures and functions Function declaration

Cross-references

Simple type: 6.2
FILE type: 6.3.5
Global variable: 7
Identified variables: 7
INLINE subprograms: 8.3
Parameters: 8.5
Aggregates: 9.5
Assignment: 10.1.2
Block: 12.1
String functions: 15.3

U2778-J-Z55-4-7600 95

INLINE subprograms Procedures and functions

INLINE Subprograms

A subprogram can be declared an INLINE subprogram by specifying the keyword
INLINE before writing PROCEDURE or FUNCTION.
In this case, the subprogram block must not be replaced by a directive (see
section 8.6).
At every place where an INLINE subprogram is called, the call is replaced by
a copy of the subprogram block. At the same time, the formal parameters are
replaced by the actual parameters in such a way that the subprogram run has
the same effect as a "genuine" subprogram call.
This so-called INLINE expansion serves to optimize subprogram calls at
execution time; this produces more efficient code, even if at times the code
may be somewhat longer.

Within an INLINE subprogram, it is not permitted to declare non-INLINE
subprograms; moreover, the block of an INLINE subprogram must not contain a
recursive call of its own subprogram.

It is not permitted to declare FILE variables in an INLINE subprogram.

Section 11.2 discusses the peculiarities of INLINE subprograms in package
specifications.

Example

INLINE FUNCTION max (a, b: Integer): Integer;
BEGIN

IF a <= b THEN
max := b

ELSE
max := a

END { max };

Cross-references

Directives: 8.6
Subprogram call: 8.7
Block: 12.1
Package specification: 11.2

96 U2778-J-Z55-4-7600

Procedures and functions ENTRY subprograms

ENTRY Subprograms

In package specifications, procedures and functions may be declared ENTRY
subprograms by specifying the keyword ENTRY before writing PROCEDURE or
FUNCTION. Subprograms declared in this manner may also be called by program
parts which are not written in Pascal. When this is done, any implementation-
defined interfaces must be maintained.

ENTRY subprograms are described in greater detail in section 11.2.

Cross-references

Package specification: 11.2

U2778-J-Z55-4-7600 97

Parameters Procedures and functions

Parameters

Subprograms communicate with their environment via parameters and via global varia-
bles and constants (where "global" means declared outside the subprogram). Parame-
ters must be declared in the formal parameter list of the subprogram declaration. They
are replaced with actual parameters when the subprogram is called.

There are five types of formal parameters:

Value parameters
Variable parameters (VAR parameters)
Procedural parameters
Functional parameters
Conformant array parameters

Formal parameter lists have the following syntax:

formal-parameter-list
= "(" formal-parameter-section

{";" formal-parameter-section} ")".

formal-parameter-section
= value-parameter-specification
| variable-parameter-specification
| procedural-parameter-specification
| functional-parameter-specification
| conformant-array-parameter-specification.

A formal parameter list consists of individual formal parameter sections, separated by
semicolons. In each formal parameter section there is either exactly one procedural or
functional parameter (see section 8.5.3), or there is a declaration of one or more values
or variable parameters of the same type, or of one or more conformant array schemas.

The conformant arrays satisfy level 1 of the Standard (see section 2.2) and are dealt
with in section 8.5.4.

Note

In Pascal-XT the formal parameter list may be repeated in the
identification of a subprogram. However, it must be textually identical to
the one given in the declaration.
With functional identifications, the parameter list, if present, and the
function result must be both repeated or both omitted.

98 U2778-J-Z55-4-7600

Procedures and functions Parameters

Value Parameters

Value parameters are defined by:

value-parameter-specification
= identifier-list ":" type-name.

Value parameters are used for passing values to subprograms. Within a subprogram,
they have the properties of local variables, to which the actual values are assigned
before the subprogram block is entered.

It is not possible to use value parameters in order to have the subprogram modify the
values of variables which were passed as actual parameters. In other words, value para-
meters cannot be used to send values outside the subprogram.

When a subprogram is called, an expression must be specified for each formal value
parameter (see chapter 9). This may be, for instance, a variable, a constant or a func-
tion result, and may contain operations such as "+" or "<". The value of the expression
must be assignment-compatible (see section 6.6.3) with the type of the associated for-
mal parameter. When value parameters are passed, the following runtime errors may
occur when the program is executed.

U2778-J-Z55-4-7600 99

Parameters Procedures and functions

Possible runtime errors:

Numeric_Error - At the time a value parameter is passed, the value
of the actual parameter of type Long_Real does not
lie in the value range of the formal parameter of
type Short_Real.

Range_Error - At the time a value parameter is passed, the value
of the actual parameter of an ordinal type does not
lie in the value range of the type of the formal
parameter.

Set_Error - At the time a value parameter is passed, the value
of the actual parameter of type SET does not lie in
the value range of the type of the formal parameter.

String_Error - At the time a value parameter is passed, the actual
length of the character string of the actual parameter
is greater than the maximum length of the variable
string type of the formal parameter.

- At the time a value parameter is passed, the actual
length of the character string of the actual para-
meter is not equal to the length of the fixed string
type of the formal parameter.

unpredictable - At the time a value parameter is passed, the type of
effects the actual parameter of generic pointer type and the

identifying value of the expression point to an ident-
ified variable whose type differs from the domain type
of the type of formal parameter.

Further runtime errors may occur when evaluating an expression which is received as
an actual parameter (see chapter 9).

Example of a procedure with value parameters and how to call it

{ Let i, j, z be "global" variables, f a function of type Integer or
a subrange thereof. }

PROCEDURE totalout (x, y: Integer; b: Boolean);
BEGIN

IF b THEN
Writeln (x + y);

END;

BEGIN
...
totalout (i * j, f(z), True);
...

END.

100 U2778-J-Z55-4-7600

Procedures and functions Parameters

Cross-references

Runtime errors: 2.3, 14, A.5
Assignment compatibility: 6.6.3
Variable: 9.6
Expression: 9

Variable Parameters

Variable parameters are defined by:

variable-parameter-specification
= "VAR" identifier-list ":" type-name.

For the period when the subprogram is being executed, a variable parameter is identi-
fied with the variable access that was specified as an actual parameter in the subpro-
gram call. This causes an operation to be carried out on the variable access which was
specified as the actual parameter.

When the subprogram is called, an actual parameter must be passed for each formal
variable parameter. This actual parameter must satisfy the following conditions:

a) The actual parameter must be a variable object (variable access).

b) The actual parameter must have the same type (see section 6.6.1) as the associa-
ted formal parameter.
If, however, the type of a formal parameter is the generic pointer type
(Pointer) or the generic FILE type (Any_File), then the corresponding
actual parameter may be of any Pointer or FILE type.
If the type of the formal parameter is the generic type Any_Type, then
the corresponding actual parameter may be of any type.

c) The actual parameter must not be a tag field of a variant part of a RECORD type
(see section 6.3.3).

d) The actual parameter must not be a component of a packed-type variable (see sec-
tion 6.3).

U2778-J-Z55-4-7600 101

Parameters Procedures and functions

Notes

Variable string types are likewise considered packed types. Thus, it is
not permitted to pass the components of String variables as actual
variable parameters.

If the variable parameter specification, it is necessary to specify a
type-name. The required type-identifier String, followed by a length
specification (e.g. String [4]), is not a type-name but rather a type
denoter.

It the actual parameter is a dereferenced or an indexed object (see section 9.6),
dereferencing or indexing is already performed when the subprogram is called, i.e.
long before the statement part of the subprogram block is executed. If the value of
the Pointer or index expression is changed while the subprogram is being executed,
this does not alter the binding of the formal parameter to the variable access deter-
mined when the subprogram was called.

Example of a procedure with variable parameters and how to call it

VAR
i, j: Integer;

PROCEDURE swap (VAR x, y : Integer);
VAR

temp : Integer;
BEGIN

temp := x;
x := y;
y := temp;

END;

BEGIN
i := 5;
j := 8;
swap (i, j);
Writeln(i); { now yields 8 }
Writeln(j); { now yields 5 }

END {swap}

102 U2778-J-Z55-4-7600

Procedures and functions Parameters

Examples of invalid actual parameters

TYPE
string4 = String [4];

VAR
a : String [4];

PROCEDURE parametertest (VAR par : string4);

BEGIN ... END;

BEGIN
a := ’123’;
parametertest (a); { different types }
parametertest (’abcd’); { no variable }

END {parametertest}

Both parameter test calls are semantically errored. Variable a does not have the same
type as the VAR parameter (see section 6.6.1), and ’abcd’ is a constant and not a varia-
ble access.

Cross-references

Runtime errors: 2.3, 14, A.5
Packed types: 6.3
Variable string types: 6.3.2.2
Tag field: 6.3.3
Generic FILE type: 6.5.1
Generic pointer type: 6.5.2
Type identity: 6.6.1
Objects: 7
Variables: 7.1, 9.6
Expression: 9

U2778-J-Z55-4-7600 103

Parameters Procedures and functions

Procedural and Functional Parameters

When subprograms are used as parameters they are defined as follows:

functional-parameter-specification = function-heading.

procedural-parameter-specification = procedure-heading.

Procedural and functional parameters are specified in the form of a complete procedure
or function heading. They appear as a formal parameter in the formal parameter list of
another procedure or function.

When that other procedure or function is called, the corresponding actual parameter
must be a procedure-name or function-name that satisfies the following conditions:

a) It must not designate a required subprogram.

b) It must not designate an INLINE subprogram.

c) It must not designate a subprogram with one of the directives c, cobol,
fortran, internal or external.

d) If the formal parameter itself contains a formal parameter list, the actual parameter
must also have a formal parameter list and both must match (see below).

e) If the formal parameter is a functional parameter, the actual parameter must also
designate a function with the same result type as that of the formal parameter.
If, however, the result type of the formal parameter is the generic pointer
type, then the result type of the actual parameter may be any Pointer type.

Equivalence of formal parameter lists

The formal parameter lists of a formal parameter and an actual parameter are equiva-
lent when they have the same number of formal parameter sections and the following
propositions hold true for any two sections at corresponding positions:

a) They are both value parameter specifications or variable parameter specifications
with the same number of parameters and the same type.
If, however, the type in the formal parameter list of the formal parameter
is the generic pointer type (Pointer), the type in the formal parameter
list of the actual parameter may be any Pointer type.

b) They are both procedural parameter specifications with matching formal parameter
lists.

c) They are both functional parameter specifications with matching formal parameter
lists and the same result type.
If the result type in the formal parameter list of the formal parameter is
the generic pointer type (Pointer), the result type in the formal

104 U2778-J-Z55-4-7600

Procedures and functions Parameters

parameter list of the actual parameter may be any Pointer type.

U2778-J-Z55-4-7600 105

Parameters Procedures and functions

d) They are both value or variable conformant array specifications (see section 8.5.4)
with the same number of parameters and equivalent conformant array schemas.
Equivalent means that each of the following propositions hold true:

1) Both schemas have the same number of index type specifications.

2) The ordinal-type-name must represent the same type in both index type specifica-
tions.

3) The components of both schemas must have the same type or likewise be equi-
valent schemas.

4) Both schemas must be packed or both must be unpacked.

Example of a program with procedural parameters

PROGRAM calculator (Input, Output);

VAR
a, b, c: Integer;

PROCEDURE addition
(summand_1, summand_2 : Integer;
VAR total : Integer);

BEGIN
total := summand_1 + summand_2;

END {addition};

PROCEDURE division
(dividend, divisor : Integer;
VAR quotient : Integer);

BEGIN
quotient := dividend DIV divisor;

END {division};
...
{ additional operations could be declared here }
...

PROCEDURE calculate_and_output
(left_operand, right_operand: Integer;
PROCEDURE operation (x, y: Integer; VAR k: Integer));

VAR
result : Integer;

BEGIN
operation (left_operand, right_operand, result);
writeln (result);

END {calculate_and_output};

BEGIN {main program}
calculate_and_output (4711, 15, addition);
calculate_and_output (2048, 32, division);

END {calculator}.

106 U2778-J-Z55-4-7600

Procedures and functions Parameters

Note

When "calculate_and_output" is called, the name of the subprogram to be transfer-
red (addition/subtraction) is passed as an actual parameter.
The parameter names of the procedural parameter "operation (x, y, z)" are only
required in their parameter list.

Cross-references

Generic pointer type: 6.5.2
Type equivalence: 6.6.1
Procedure heading: 8.1
Function heading: 8.2
INLINE subprograms: 8.3
Directives: 8.6
Required subprograms: 15

U2778-J-Z55-4-7600 107

Parameters Procedures and functions

Conformant Array Parameters

Conformant array parameters represent the extended requirement of the Standard (level
1). They make it possible to process array parameters of different sizes within subpro-
grams.

The syntax for conformant array parameters is as follows:

conformant-array-parameter-specification
= value-conformant-array-specification
| variable-conformant-array-specification.

variable-conformant-array-specification
= "VAR" identifier-list ":" conformant-array-schema.

value-conformant-array-specification
= identifier-list ":" conformant-array-schema.

conformant-array-schema
= packed_conformant-array-schema
| unpacked_conformant-array-schema.

packed_conformant-array-schema
= "PACKED" "ARRAY" "[" index-type-specification "]"

"OF" type-name.

unpacked_conformant-array-schema
= "ARRAY" "[" index-type-specification {";"

index-type-specification} "]" "OF"
(type-name | conformant-array-schema).

index-type-specification
= identifier ".." identifier ":" ordinal-type-name.

Conformant array parameters are formal parameters of ARRAY types for which, within
the conformant array schema, a canonical index type and a fixed component type are
defined. An index type specification defines identifiers which can be used within the sub-
program as bound-identifiers (see example below).

When a subprogram with conformant array parameters is called, the index type of the
particular actual parameter may be any subrange type of the canonical index type of
the corresponding conformant array parameter specification. The value of the bound-
identifier is derived from the least and greatest values of the index type of the actual
parameter. This definition is referred to as "conformability" (as opposed to assignment-
compatibility, which is required when passing variable parameters).

Regarding the distinction between value and variable parameters, see the remarks given
in sections 8.5.1 and 8.5.2.

108 U2778-J-Z55-4-7600

Procedures and functions Parameters

Abbreviated notation for multi-dimensional conformant array schemas

If a conformant array schema closest-contains another conformant array schema, it
may be written in an abbreviated form. This short form substitutes a semicolon for the
character string "] OF ARRAY [" in the long form. The short form and the long form are
equivalent.

Example

ARRAY [u..v : t1] OF ARRAY [j..k : t2] OF t3

and

ARRAY [u..v : t1; j..k : t2] OF t3

are equivalent conformant array schemas.

Actual parameters

When the subprogram is called, an ARRAY-object must be passed for each formal con-
formant array parameter as the actual parameter. This ARRAY-object must satisfy the
following conditions:

a) If the formal parameter is a variable conformant array schema, the actual parame-
ter must be a variable-object (variable access).

b) The actual parameters which are to be assigned to formal parameters from a single
conformant array parameter specification must all have the same type.

c) The type of the actual parameters must conform to the conformant array schema
(see below).

d) When value parameters are passed, it is not permitted for an actual parameter to
be a conformant array parameter.

U2778-J-Z55-4-7600 109

Parameters Procedures and functions

Conformability of conformant arrays

Let T1 be an ARRAY type with a single index type, and T2 the ordinal type in the index
type specification of a conformant array schema. T1 conforms to the conformant array
schema when all of the following conditions are met:

a) The index type of T1 is compatible with T2.

b) The least and greatest values of the index type of T1 lie within the value range of
type T2.

c) The component type of T1 represents the same type as the type identifier in the con-
formant array schema, or it is conformable with the conformant array schema in the
conformant array schema.

d) Either both T1 and the conformant array schema are unpacked, or they are both
packed.

Possible runtime errors:

Index_Error - In a conformant array parameter, the index type of the
actual parameter is not a subrange of the canonical
index type of the conformant array schema.

110 U2778-J-Z55-4-7600

Procedures and functions Parameters

Example

PROGRAM add_vector (Input, Output);

TYPE
range = -1000..1000;

VAR
field_1, field_11, field_111: ARRAY [1.. 100] OF Integer;
field_2, field_22, field_222: ARRAY [-10.. 10] OF Integer;
field_3, field_33, field_333: ARRAY [-1000..1000] OF Integer;

PROCEDURE add_fields (VAR v1,v2,v3 : ARRAY [ug..og : range] OF Integer);

VAR
i : range;

BEGIN
FOR i := ug TO og DO
v3[i] := v1[i] + v2[i];

END {add_fields};

BEGIN {main program}
... {input the fields}
add_fields (field 1, field 11, field 111); {ug is 1, og is 100 }
add_fields (field 2, field 22, field 222); {ug is -10, og is 10}
add_fields (field 3, field 33, field 333); {ug is -1000, og is 1000}
... {output the fields}

END {add_vector}.

Both identifiers in the index type specification (in the example, "ug" and "og") are called
bound identifiers. The objects for which they stand are neither constants nor variables,
but instead represent a separate class of objects which, semantically, are permanently
linked to their applied occurrence within a conformant array schema. Values may not
be assigned to them, nor may they be used (as constants) in a type definition. They
may only be accessed for reading.

Cross-references

Packed types: 6.3
ARRAY type: 6.3.1
Type equivalence: 6.6.1

U2778-J-Z55-4-7600 111

Directives Procedures and functions

Directives and Procedure/Function Identifications

A directive stands for the block of the subprogram which may follow further down in
the text in the same declaration part, or which is written in a non-Pascal language and
does not belong to the Pascal-XT program text.

The only directive prescribed by Standard Pascal is "Forward".
Pascal-XT offers additional directives for accommodating subprograms not
written in Pascal. These directives are compiled separately, and then have to
be linked into the Pascal-XT program.

If, in a procedure or function declaration, a directive other than Forward
is specified, there must not be an associated procedure or function
identification.

Directive Meaning

Forward The associated subprogram block is specified further down
in the program (see below).

C The subprogram is written in C.

Cobol The subprogram is written in COBOL.

Fortran The subprogram is written in FORTRAN.

External The subprogram is not written in Pascal-XT and is called
via a system-specific subprogram interface.

Internal The subprogram is not written in Pascal-XT. Unlike the
directive External, the call is made to the internal call
mechanism of Pascal-XT subprograms. As far as the interfaces
are concerned, the compiler expects it to react like a
subprogram written in Pascal.

Table 8-1 Directives in Pascal-XT

• Directive Forward

The directive Forward is required when only the procedure heading or function heading
is to be declared. This can be done by using the procedure-identifier or function-identi-
fier before the associated procedure-block is declared. This directive is required to
enable mutually recursive subprogram calls (see example).

The identifier of a procedure or function declaration which has been given the directive
Forward must occur exactly once in a procedure or function identification belonging to
the same declaration part (see section 12.1).

112 U2778-J-Z55-4-7600

Procedures and functions Directives

Example

PROCEDURE p2 (k : Integer); Forward;

PROCEDURE p1 (j : Integer);
BEGIN

Writeln (j);
IF j>0 THEN p2 (j-1);
. . .

END {p1};

PROCEDURE p2;
BEGIN

Writeln (k);
IF k>0 THEN p1 (k-1);
. . .

END {p2};

Since the procedures p1 and p2 call each other, it is necessary (in accordance with
12.1) that p1 be declared before p2 and p2 before p1. By using the directive Forward it
becomes possible to make the procedure heading of p2 known before p2 is fully decla-
red. In this way, the outwardly visible part of p2 is already known and can now be
used.
The block of p2 does not follow until p1 has been declared, in which case the duplicate
specification of the formal parameter list (of procedure p2) may be omitted (it must be
omitted in standard Pascal). However, repetition of the formal parameter list, which is
permitted in Pascal-XT, is recommended for reasons of clarity, since, among other
things, the block follows long after the Forward declaration and one can spare oneself
much laborious paging through compiler listings or on the screen. If programming is to
be in accordance with standard, the formal parameter list can be enclosed in comment
braces.

Note

Between the Forward declaration and the associated identification there
may be any number of other declarations (LABEL, CONST, TYPE, VAR,
PROCEDURE and FUNCTION declarations). This accords with the extension to
the Standard described in chapter 12, whereby declarations may occur in
any order.

• Other directives

If one of the directives C, Cobol, Fortran, External or Internal is specified
in a procedure or function declaration, there must not be an associated
procedure or function identification.

For external subprograms of this sort there may be a number of
implementation-defined restrictions.

U2778-J-Z55-4-7600 113

Directives Procedures and functions

Implementation-defined characteristics

A Pascal-XT implementation need not support any directives except Forward.

For subprograms containing one of the directives C, Cobol, Fortran,
External or Internal, there may be implementation-defined restrictions
on the sort, type and number of parameters used.

Cross-references

Directives: 3.4
Procedure identification: 8.1
Function identification: 8.2
Formal parameter list: 8.5
Declaration part: 11.1
Block: 12.1

114 U2778-J-Z55-4-7600

Procedures and functions Calls

Subprogram Calls

Subprogram calls have the following syntax:

function-call = function-name [actual-parameter-list].

procedure-call = procedure-name [actual-parameter-list].

actual-parameter-list
= "(" actual-parameter {"," actual-parameter} ")".

actual-parameter = variable-object | expression | type-name
| procedure-name | function-name
| package-identifier | expression ":" format-denoter.

format-denoter = integer-expression [":" integer-expression].

A procedure call (procedure statement) causes the block belonging to the called proce-
dure to be executed.

A function call (function designator) returns a value (the function result) which is calcula-
ted by executing the function block and represented by the function-name.

If the subprogram has formal parameters, the subprogram call must contain an actual
parameter list with the actual parameters to be substituted for the corresponding formal
parameters:

a) For each value parameter an expression must be specified. A format denoter is per-
mitted only for the required procedures Write, Writeln and Writestring.

b) For each variable parameter a variable-object must be specified (i.e. a variable
access; see chapter 9).

c) For each procedural or functional parameter a procedure-name or function-name
must be specified.

d) A type-name may be specified only in the case of required attribute
functions (see section 15.9).

e) A package-identifier may only be specified in conjunction with the
required procedure Elaborate (see section 15.12).

U2778-J-Z55-4-7600 115

Calls Procedures and functions

A subprogram call performs the following actions:

Evaluates the actual parameters and assigns them to the formal parameters
Allocates a memory area for the local variables and parameters of the procedure or
function
Executes the statements in the procedure or function block
Passes the results in the case of functions
Releases the allocated memory area.

The actions involved in executing a block are described in detail in section 13.3.

Possible runtime errors:

Sections 8.5.1, 8.5.4 and 13.3 describe further errors which may occur when passing
parameters and when calling a procedure or function.

unpredictable - The result of a function will be unpredictable after
effects function block execution if the function identifier

has not been assigned a value.

Implementation-dependent characteristic

In a procedure or function call, the sequence in which access, evaluation and actual
parameter assignment takes place is implementation-dependent.

Examples of procedure calls

swap (aktx, akty);
{ call the procedure swap, defined in section 8.1, }
{ with suitable actual parameters aktx, akty }

Proc1;

trans (a, x, y);

bisect (fct (x + y), 2.0, 100, y);

116 U2778-J-Z55-4-7600

Procedures and functions Calls

Examples of function calls

s := add (aktx, akty);
{ call the function add, defined in section 8.2, }
{ with two actual parameters aktx and akty }

value := func (x);

bool := f (x, y, z);

s := g (x) + h (y);

Writeln (’Factorial is ’, fac(i));

Cross-references

Object: 9.6
Variables: 7.1, 9.6
Expression: 9
Block: 12.1
Write, Writeln: 15.1
Writestring: 15.3
Attribute functions: 15.9
Elaborate: 15.12

U2778-J-Z55-4-7600 117

Procedures and functions Calls

Expressions

General Remarks

An expression is an arithmetic formula which returns a value when it is computed,
unless an exception occurs during the computation or the expression contains a func-
tion call and the associated function block is exited by means of a GOTO statement.
The value of the expression depends on the values of its operands (variables, con-
stants, function calls) and on the operators involved.

An expression has the following syntax:

expression = simple_expression [relational_operator simple_expression].

relational_operator
= "=" | "<>" | "<" | ">" | "<=" | ">=" | "IN" .

simple_expression
= [sign] term { adding_operator term } .

sign = "+" | "-" .

adding_operator
= "+" | "-" | "OR" | "OR" "ELSE" .

term = factor { multiplying_operator factor } .

multiplying_operator
= "*" | "/" | "DIV" | "MOD" | "AND" | "AND" "THEN" .

factor = primitive ["**" primitive] | "NOT" factor .

primitive = unsigned_constant
| bound-identifier
| "(" expression ")"
| set=constructor
| qualified_set_constructor
| object .

unsigned_constant
= constant_name
| unsigned_integer_number
| unsigned_real_number
| character_string
| "NIL" .

U2778-J-Z55-4-7600 119

General remarks Expressions

In Pascal-XT, the exponent operator ** has been introduced as an extension
to the Standard. It has the same priority as the NOT operator. As a result,
Pascal-XT has been given the concept of a primitive. Also as an extension
to the Standard, Pascal-XT recognizes the shortcut operators AND THEN and
OR ELSE.
A primitive may also be a "qualified set constructor" (see section 9.4) or an
"object" (see section 9.6), which likewise represent extensions to Standard
Pascal.

Bound identifiers play a role in conjunction with conformant array parameters (see sec-
tion 8.5.4).

Primitives, factors, terms and simple expressions are all referred to below as operands.

Expressions are computed in according with the rules of algebra. Since expressions
consist of a sequence of operands and operators, the sequence in which the individual
operations are executed is of crucial importance, and is defined as follows:

The evaluation of an expression consists of a series of operations with operands
and operators, where operators with the highest precedence are executed first (see
section 9.3).

A sequence of operators with identical precedence is processed from left to right
(left associativity).

Expressions in brackets are evaluated first.

These rules likewise apply to expressions within brackets.

The evaluation sequence of operands in dyadic operators is not defined (see implemen-
tation-dependent characteristics in section 9.3).

The value of an expression is not defined if the expression contains a variable access
(as an object in a primitive) which has not yet been assigned a value (undefined varia-
ble, see section 7.3).

If the type of the object of a primitive is a subrange type, the type of the primitive is
the host type of the subrange type. If the type of the object of a primitive is a SET type
SET OF t, the type of the primitive is SET OF w, where w is either the host type of type
t or, if t is a subrange of Integer, an implementation-defined subrange of Integer (see
section 6.3.4).
In all other cases, the type of the primitive is identical to the type of the object.

Possible runtime errors:

unpredictable - A variable access used as an object in an
effects expression has an undefined value at the time the

(sub)expression is evaluated (see also section 7.3).

120 U2778-J-Z55-4-7600

Expressions General remarks

Examples of primitives

- Set constructor [1,5,x..y,z+23]
- Qualified set constructor set_of_t_type ([1, 2])
- Function call Sin (x+y)

Examples of factors

- Negated factor NOT (a = b)
- Exponential x ** 3

Examples of terms

x * y
i / (j - i)
(x <= y) AND (y < z)
(p <> NIL) AND THEN (p .i > 0)

Examples of simple expressions:

x + y
-x
i * j + 1
b OR (x = y)
(Length (s) = 0) OR ELSE (s[1] = ’.’)

Examples of expressions:

x = 1.5
p <= q
(a + b) > (a * b)
next_char IN letters

Cross-references

Unsigned Integer number: 3.5
Unsigned Real number: 3.5
Character string: 6.3.2
Constants: 5
Variables: 7
Undefined value: 7.3
Bound identifier: 8.5.4
Conformant array parameter: 8.5.4
Operators: 9.3
Set constructors: 9.4
Object: 9.6.1
GOTO statement: 10.1.4
Block: 12.1
Exception: 14

U2778-J-Z55-4-7600 121

Static expressions Expressions

Static Expressions

A static expression is an expression whose value can already be evaluated at
compile time. Consequently, a static expression must not contain a variable
access or a function call.
The following required subprograms may occur in a static expression if their
actual parameters are in turn static expressions:

Abs Long Round Sqr Trunc
Short_Round Long_Round Short_Trunc Long_Trunc
Chr Ord Odd Pred Succ
Card Setmax Setmin
Concat Length Substring
Alignof Bitsizeof First Last Maxlength Sizeof
Convert

The Convert function is governed by further restrictions which are described
in section 15.10.

In Pascal-XT (as an extension to the Standard), static expressions may be
used wherever the standard only permits constants.

The sections below describe when each particular expression is static.

Examples of static expressions

2 * 3.14159
Maxint - 1
Length (’String-constant’)
2 ** 8 -1
Concat (#’14’, ’highlighted’, #’15’)
Card ([’a’..’z’] { does not always yield 26 }

keine Akkolade
today.year { see static RECORD aggregate in section 9.5.2 }
null_vector[1] { see static ARRAY aggregate in section 9.5.1 }

Cross-references

Constants: 5
Subprograms: 15

122 U2778-J-Z55-4-7600

Expressions Operators

Operators

The syntax governing expressions, simple expressions, terms, factors and primitives
prescribes rules of precedence for the operators.

The operator NOT and the exponent operator ** take precedence over all other
operators.

Then come the multiplying operators.

Then come the adding operators and signs.

The lowest precedence is given to relational operators.

Sequences of two or more operators of the same precedence are evaluated from left to
right (left associativity). These rules of precedence may be circumvented by using
parentheses.

Implementation-dependent characteristics

Except for the two shortcut operators OR ELSE and AND THEN, the sequence for
calculating the operands in a dyadic operator is implementation-dependent. The ope-
rands may be evaluated in the order in which they were written, in the reverse
order, simultaneously, or perhaps not at all.

Examples:

a + b * c is equivalent to a + (b * c), as opposed to
(a + b) * c

NOT b1 OR b2 means (NOT b1) OR b2, as opposed to
NOT (b1 OR b2)

a = b AND c = d would mean (a = (b AND c)) = d, and should
therefore be parenthesized:

(a = b) AND (c = d)

U2778-J-Z55-4-7600 123

Arithmetic operators Expressions

Arithmetic Operators

Tables 9-1 and 9-2 provide an overview of the permissible operand types for monadic
and dyadic operations. Tables 9-3 to 9-6 give a detailed description of the result types
for dyadic operators.

Operator Operation Type of operand Type of result

+ Identity Integer Integer
Real Real
Short_Integer Integer
Long_Integer Long_Integer
Short_Real Short_Real
Long_Real Long_Real

- Sign inversion Integer Integer
Real Real
Short_Integer Integer
Long_Integer Long_Integer
Short_Real Short_Real
Long_Real Long_Real

Table 9-1 Monadic arithmetic operators (signs)

Operator Operation Type of operand Type of result

+ Addition see
- Subtraction Integer Table 9-3
* Multiplication or

Real
/ Division see Table 9-4

** Exponentiation left: Integer see Table 9-5
or Real

right: Integer

DIV Division with Integer see
truncation Table 9-6

MOD Modulo Integer

Table 9-2 Dyadic arithmetic operators

Note

The symbols +, -, * and / are also used as set operators (see section 9.3.3).

124 U2778-J-Z55-4-7600

Expressions Arithmetic operators

• Integer operations

For operations on values of type Integer, the following properties apply:

The monadic arithmetic operations "+" and "-", as well as the dyadic operations "+",
"-", "*", "**", "DIV" and "MOD", are executed in accordance with the rules of mathema-
tics when the operands have Integer values and the result lies in the value range of
the result type (as per tables 9-1 and 9-2).

A Numeric_Error (see below) occurs when the result value of an arithmetic integer
operation lies outside the value range, i.e. when an overflow occurs.

Notes

In Pascal-XT, an error can also occur with the monadic operation "-". The value of
the expression "-Long_Minint", for example, does not lie within the value range
Long_Integer.

If subtotals in expressions lie outside the relevant value range, but they can neverthe-
less still be used to produce mathematically correct calculations, it is implementa-
tion-dependent whether to proceed with the calculation or issue a Numeric_Error.

A dyadic operation with operands of type Short_Integer returns a value of type Inte-
ger, which may be implementation-defined as Short_Integer or Long_Integer. This
should be borne in mind when porting programs as the programs may otherwise
behave differently.

To avoid overflows with operands of type Short_Integer, at least one of the ope-
rands must be converted with the required function Long (see section 15.5) into a
value of the type Long_Integer. For example:

x := y * Long (z)

An expression which consists entirely of Integer type operands, and whose value is
to be assigned to a Real variable, is calculated in integer arithmetic and is not con-
verted into a Real value until the assignment takes place.

U2778-J-Z55-4-7600 125

Arithmetic operators Expressions

• Real operations

Real operations are monadic and dyadic arithmetic operations with at least one Real-
type operand, or the operator "/" with Integer-type operands.

Real-type values form subsets of the real numbers. The results of arithmetic real opera-
tors are therefore, in general, only approximations of the corresponding mathematical
results (see section 6.2.2). Depending on the hardware used, real operations can also
be calculated internally at a higher level of precision. In this case a loss of precision
may occur when the values are stored. Relational operators may, for example, yield
different values depending on whether variables are compared with each other or with
the results of an expression. In addition, the rounding behavior of the machine influen-
ces the result. In particular, comparisons for equality should be avoided.

A Numeric_Error occurs when the approximate value of the result of a real operation
lies outside the value range of the result type (as per tables 9-1 and 9-2). Depending on
the implementation used, subtotals may also be computed with greater precision
and/or with a larger value range.

Operations with Real constants

The type of a Real constant is a so-called universal Real type, whose value
range is identical to that of Long_Real. If, in a dyadic operation, the type
of an operand is of the universal Real type, the operation is executed with
the level of precision defined by the type of the other operand. If both
operands are of the universal Real type, the calculation will use the level
of precision appropriate to the type Long_Real.

Mixtures of Integer and Real operands

If, in a dyadic operator, one of the operands is of an Integer type and the other is of a
Real type, the first thing that happens is an implicit type conversion. The value of the
Integer operand is converted into a real number having the universal Real type.

126 U2778-J-Z55-4-7600

Expressions Arithmetic operators

• The arithmetic operations "+", "-" and "*"

Type of operands Type of result

x y x (+|-|*) y

Integer Integer Integer
Real Real

Real Integer Real
Real Real

Short Integer Short_Integer Integer
Long_Integer Long_Integer
Short_Real Short_Real
Long_Real Long_Real

Long_Integer Short_Integer Long_Integer
Long_Integer Long_Integer
Short_Real Short_Real
Long_Real Long_Real

Short_Real Short_Real Short_Real
Long_Real Long_Real
Integer type Short_Real

Long_Real Real_type Long_Real
Integer type Long_Real

universal universal universal
Real type Real type Real type

Long_Real Long_Real
Short_Real Short_Real
Integer type universal

Real type

Table 9-3 Result type for operations "+", "", "*"

U2778-J-Z55-4-7600 127

Arithmetic operators Expressions

• Division operator "/"

With division, the result is always of a Real type.

Type of operands Type of result

x y x / y

Integer Integer Real
Real Real

Real Integer Real
Real Real

Short_Real Short_Real Short_Real
Long_Real Long_Real
Integer type Short_Real

Long_Real Real type Long_Real
Integer type Long_Real

Integer type Short_Real Short_Real
Long_Real Long_Real
Integer type Long Real

universal universal universal
Real type Real type Real type

Long_Real Long_Real
Short_Real Short_Real
Integer type universal

Real type

Table 9-4 Result type for operation "/"

• The exponent operation "**"

Type of operands Type of result

x n x ** n

Integer Integer Integer
Real Integer Real

Short_Integer Integer_type Integer
Long_Integer Integer type Long_Integer

Short_Real Integer type Short_Real
Long_Real Integer type Long_Real

universal Integer type universal
Real type Real type

Table 9-5 Result type for exponentiation

128 U2778-J-Z55-4-7600

Expressions Arithmetic operators

U2778-J-Z55-4-7600 129

Arithmetic operators Expressions

• The "DIV" and "MOD" operators

Type of operands Type of result

x y x (DIV|MOD) y

Integer Integer Integer

Short_Integer Short_Integer Integer
Long_Integer Long_Integer

Long_Integer Integer type Long_Integer

Table 9-6 Result type for integer operations "DIV" and "MOD"

The following applies with regard to the DIV operator:

Abs(x) - Abs(y) < Abs (x DIV y) * y <= Abs(x)

 The result is zero if Abs(x) < Abs(y). The result is positive if x and y have the same
 sign, and negative if their signs are different.

Examples

5 DIV 3 yields 1
-5 DIV 3 yields -1

5 MOD 3 yields 2
4 MOD 3 yields 1
3 MOD 3 yields 0
2 MOD 3 yields 2
1 MOD 3 yields 1
0 MOD 3 yields 0

(-1) MOD 3 yields 2
(-2) MOD 3 yields 1 (etc.)
(-3) MOD 3 yields 0 (The remainder is determined to the next

smallest multiple of the divisor.)

In various instances, execution of an arithmetic operation will cause the occurrence of a
Numeric_Error:

130 U2778-J-Z55-4-7600

Expressions Arithmetic operators

Possible runtime errors:

Numeric_Error - y = 0 in an expression of the form x/y.

- j = 0 in an expression of the form i DIV j.

- j <= 0 in an expression of the form i MOD j.

- The result of an arithmetic operation does not
lie in the value range of the result type.

- In an expression of the form x**n,
- x is of an Integer type and n < 0, or
- x = 0 or 0.0 and n <= 0.

Cross-references

Errors: 2.3, A.5
Constants: 5
Integer types: 6.2.1
Real types: 6.2.2

U2778-J-Z55-4-7600 131

Boolean operators Expressions

Boolean Operators

Operands and results of Boolean operators have the type Boolean.

Operator Operation Type of Type of
operands result

OR logical disjunction Boolean Boolean
AND logical conjunction Boolean Boolean
NOT logical negation Boolean Boolean

OR ELSE logical disjunction Boolean Boolean
AND THEN logical conjunction Boolean Boolean

Table 9-7 Boolean operators

a b a OR b a b a AND b

False False False False False False
False True True False True False
True False True True False False
True True True True True True

Disjunction Conjunction

a NOT a

False True
True False

Negation

Table 9-8 Truth values for disjunction, conjunction and negation

As explained in section 9.3, the sequence in which the operands are evaluated for OR
and AND is implementation-dependent.
For the shortcut operators AND THEN and OR ELSE, on the other hand, the left-
hand operand is always evaluated first, while evaluation of the right-hand
operand depends on the result provided by the left-hand operand (shortcut).

a OR ELSE b If the value of a is True, b is not evaluated and the result
is True.

a AND THEN b If the value of a is False, b is not evaluated and the result
is False.

132 U2778-J-Z55-4-7600

Expressions Boolean operators

One area of application for shortcut operators is, for instance, the
processing of lists when other criteria are given in addition to the
terminate criterion end-of-list. When end-of-list is reached, the subsequent
operands must under no circumstances be evaluated if they involve pointer
dereferencing (see example 1).

Example 1

Processing of the list "list" is to terminate when end-of-list is reached or an element is
located whose component "number" has the value 1.

WHILE (list <> NIL) AND THEN (list .number <> 1) DO
list := list .next;

Example 2

An action should take place when the end of an array is reached or a negative element
is encountered:

IF (index > max_index) OR ELSE (a[index] < 0) THEN ...

Cross-references

Boolean type: 6.2.4
Evaluation: 9.3

U2778-J-Z55-4-7600 133

Set operators Expressions

Set Operators

The table below summarizes the rules governing the types of the operands and results
of set operations.

Operator Operation Type of Type of
operands result

+ Set union

- Set difference
Type of

SET type
* Set intersection operands

/ Symmetrical
set difference

Table 9-9 Set operations

In a set operation, the types of the two operands must be compatible with each other,
i.e. they must have compatible base types and they must be either both packed or
both unpacked. If one of the operands is an unqualified set constructor, its type is pak-
ked or unpacked depending on the type of the other operand (see section 9.4).

In addition Pascal-XT recognizes the symmetrical set difference "/"
(equivalent to exclusive OR). This operator is defined as follows:

A / B = (A - B) + (B - A)

Notes

Set operations cannot be executed in Pascal-XT if the implementation-defined maxi-
mum number of values of the base type of the set is exceeded. Thus, for example,
the union and the symmetrical difference of two sets can result in a set which is too
large.

The symbols "+", "-", "*" and "/" are also used as arithmetic operators.

134 U2778-J-Z55-4-7600

Expressions Set operators

Examples

CONST
digits = [’0’ .. ’9’];
hexletters = [’a’,’b’,’c’,’d’,’e’,’f’];
hexdigits = digits + hexletters;

VAR
set1 : SET OF 0 .. 200;
set2 : SET OF 100 .. 300;
set3 : SET OF 0 .. 1000;

BEGIN
set1 := [0, 10..20, 100, 200];
set2 := [99, 101, 300];
set3 := set1 + set2; { = [0, 10..20, 99..101, 200, 300] }
set3 := set1 * set2; { = [], the empty set }

END

Cross-references

Compatibility: 6.6.2
SET type: 6.3.4
Base type: 6.3.4
Packed/Unpacked: 6.1
Set constructor: 9.4

U2778-J-Z55-4-7600 135

Relational operators Expressions

Relational Operators

The table below summarizes the rules governing the operands and results of relational
operations.

Operator Type of operands Type of
result

= <> Ordinal, Real, Pointer, generalized Boolean
string or SET type

< > Ordinal, Real, generalized string Boolean
or SET type

<= >= Ordinal, Real, generalized string Boolean
or SET type

IN Left operand: an ordinal type Boolean
Right operand: a SET type

Table 9-10 Relational operations

Meaning of the relational operators:

u = v u is equal to v
u <> v u is not equal to v
u < v for ordinal types and Real types: u is less than v
u < v for SET types: u is a genuine subset of v (i.e. not identical)
u > v for ordinal types and Real types: u is greater than v
u > v for SET types: v is a genuine subset of u (not identical)
u <= v for ordinal types and Real types: u is less than or equal to v
u >= v for ordinal types and Real types: u is greater than or equal to v
u <= v for SET types: u is a subset of v
u >= v for SET type: v is a subset of u
a IN v a is a member of the set v

• IN operator

The operator IN returns the value True if the value of the left-hand operand is a mem-
ber of the value of the right-hand operand; otherwise, it returns the value False.

The ordinal type of the left-hand operand must be compatible with the base type of the
SET type of the right-hand operand.

136 U2778-J-Z55-4-7600

Expressions Relational operators

• Comparison of simple values

Either the types of the operands must be compatible, or one of the operands must be
of a Real type and the other of an Integer type.

Since Real-type numbers only represent approximations of real values, comparison bet-
ween two Real-type numbers, or between a Real-type number and an Integer-type num-
ber, may not yield the expected result. In particular, interrogation for identity ("=") or
non-identity ("<>") should be avoided in the case of Real-type operands.

• Comparison of pointers

The Pointer types must be compatible, i.e. the two operands must have the same type
(see section 6.6.1), or one of the two operands must have the generic pointer type
(see section 6.5.2). Only the relational operators "=" and "<>" may be applied to Poin-
ter types.

In other words, only those pointers may be compared that point to identified variables
of the same type. Comparison with "=" and "<>" can be used to determined whether
two pointers point to the same identified variable or whether a Pointer variable has the
value NIL.

• Comparison of sets

The SET types of the two operands must be compatible. In other words, they must
have compatible base types and they must either both be packed or both unpacked. If
one of the two operands is an unqualified set constructor, its type is considered unpak-
ked unless the SET type of the other operand is packed.

As an extension to standard, Pascal-XT also permits the relational operators
"<" and ">" (genuine subset or genuine superset).

• Comparison of character strings

When characters strings are compared, their types must be compatible. Table 9-11 lists
the possible combinations of operands, where PACKED ARRAY is short for fixed string
types (see section 6.3.2.1) and String [n] or String [m] is short for the varia-
ble string types (see section 6.3.2.2).

U2778-J-Z55-4-7600 137

Relational operators Expressions

PACKED ARRAY String [m] Char
[1..n] OF Char

PACKED ARRAY if k = n yes no
[1..k] OF Char also k <> n

String [n] yes yes yes

Char no yes yes

Table 9-11 Compatibility of operand types for comparison of character strings

Comparison of two character strings takes place in accordance with the lexicographical
comparison described below. This lexicographical comparison defines a total ordering
of the set of all character strings. Comparison occurs character-by-character from left to
right, whereby the comparison of corresponding characters is governed by the manner
in which the implementation-defined characters of type Char are ordered.
If the actual lengths of s1 and s2 are not identical, comparison uses the
length of the shorter operand. If this comparison yields identity, the string
with the shorter actual length is considered the smaller of the two.

Let s1 and s2 be two character strings. Let the actual length of s1 be n1 and that of s2
be n2, and let n be the smaller value of n1 and n2. The following now holds true:

s1 = s2 only if n1 = n2 and for all i in [1..n]:
s1[i] = s2[i].

s1 < s2 only if there is a p in [1..n]
and for all i in [1..p-1]:

s1[i] = s2[i] and s1[p] < s2[p],
or if for all i in [1..n]:

s1[i] = s2[i] and n1 < n2.

s1 > s2 is equivalent to s2 < s1
s1 <= s2 is equivalent to (s1 < s2) OR (s1 = s2)
s1 >= s2 is equivalent to (s1 > s2) OR (s1 = s2)
s1 <> s2 is equivalent to NOT (s2 = s1)

138 U2778-J-Z55-4-7600

Expressions Relational operators

Example

Table 9-12 illustrates the evaluation of the expression "a relational-operator b", where a
and b are character strings:

a b < = <= > >= <>

’ABC’ ’ABCD’ True False True False False True
’ABCD’ ’ABC’ False False False True True True
’ABCD’ ’’ False False False True True True
’ABC’ ’BBB’ True False True False False True
’A’ ’A’ False True True False True False
’B’ ’AAAA’ False False False True True True
’B’ ’A’ False False False True True True
’A’ ’A ’ True False True False False True

Table 9-12 Comparison of character strings

Cross-references

Packed/Unpacked: 6.1
Ordinal types: 6.2
Real types: 6.2.2
Generalized string types: 6.3.2
Set types: 6.3.4
Pointer types: 6.4
Type equivalence: 6.6.1
Type compatibility: 6.6.2

U2778-J-Z55-4-7600 139

Set constructors Expressions

Set Constructors

The syntax of set constructors is as follows:

set-constructor = "[" [member-designator
{"," member-designator}] "]".

member-designator
= ordinal-expression [".." ordinal-expression].

qualified-set-constructors
= type-name "(" set-constructor ")".

A set constructor stands for a value of type SET. The set constructor "[]", without mem-
ber designators, is referred to as the empty set, and is a value of each and every SET
type.

A set constructor represents a value containing zero, one or more members. Each
member is specified by means of at least one of the member designators of the set
constructor. A member designator consisting of a single expression stands for the value
which the expression possesses. A member designator in the form a .. b describes an
interval, i.e. all values x where a x b. If a > b, then the member designator a..b
does not describe a member.

A set constructor containing one or more member designators stands for a value of the
type SET OF w, where w is the common (host) type of all expressions occurring in the
member designators. This host type must be an ordinal type.
The size of the host type may be given an implementation-defined limit. In this case, a
maximum permissible subrange of the host type, whose least ordinal value is 0 and
whose greatest ordinal value is implementationdefined, is assumed as the base type of
the SET type.

The type of an (unqualified) set constructor is considered to be unpacked unless a pak-
ked SET type is required by the context. This makes it possible to assign set construc-
tors to packed and unpacked SET variables and to link them by means of set and rela-
tional operators.
However, when a set constructor occurs as a constant in a constant
definition, there is no context requiring a packed SET type. For this reason,
the constant defined in this manner has an unpacked SET type (see also
section 5.1).

• Qualified set constructors

Pascal-XT also recognizes the qualified set constructor, whose type is
determined explicitly by specifying a type-name rather than implicitly from
the host type of all member designators. The values for which the member

140 U2778-J-Z55-4-7600

Expressions Set constructors

designators of a qualified set constructor stand must be assignment-
compatible with the base type of the specified SET type.

U2778-J-Z55-4-7600 141

Set constructors Expressions

Implementation-defined characteristic

The greatest ordinal value of the base type of a SET type of an
unqualified set constructor is implementation-defined.

Implementation-dependent characteristic

The sequence in which the member designators and the expressions contained ther-
ein is evaluated in a set constructor is implementation-dependent.

Possible runtime errors

Set_Error - In a set constructor, the value of a member
designator does not lie in the value range
of the base type of the set constructor.

Notes

In Pascal-XT, the maximum number of values of the base type of a set may be limi-
ted (see section 6.3.4).

Qualified set constructors are required especially when, for a SET OF t,
the base type t is a subrange of type Integer that is not fully contained
in the subrange 0 .. n, where n is the implementation-defined greatest
ordinal value of the base value of a SET type.

The sequence in which the member designators are specified in a set constructor is
arbitrary; no sequence is prescribed.

142 U2778-J-Z55-4-7600

Expressions Set constructors

Examples

[] { the empty set }

[40, 49, 11..33]) { sequence of values is arbitrary }

[’A’, ’E’, ’I’, ’0’, ’U’] { contains exactly these characters }

[True, False] { all values of data type Boolean }

[red, yellow] { only the values "red" and "yellow" }

[1..5, x..y, a + b, 17, 31] { variables and expressions in
member designators }

[f(x)..f(y)] { function calls in member designators }

[-10] { qualified set constructor required as
-10 does not lie in interval 0 .. n }

st1 ([-10, 10]) { qualified set constructor, e.g.
st1 = SET OF -10..10 }

st2 ([8000..9000]) { qualified set constructor, e.g.
st2 = SET OF 8000..9000 }

Cross-references

Ordinal type: 6.2.2
Host type: 6.2.6
Subrange: 6.2.6
Base type: 6.3.4
SET type: 6.3.4
Assignment-compatible: 6.6.3
Expression: 9

U2778-J-Z55-4-7600 143

Aggregates Expressions

Aggregates

Aggregates are used to form RECORD- and ARRAY-type values from the values of
their components (see sections 9.5.1 and 9.5.2).

aggregate = ARRAY-aggregate | RECORD-aggregate .

An aggregate may be located at the right-hand side of a constant definition
as a static expression. In this way, it also becomes possible to define
RECORD and ARRAY constants.

An aggregate whose aggregate members are all static expressions is called
a static aggregate.

Implementation-dependent characteristic

The sequence in which the expressions in an aggregate are evaluated, and
in which its type is assigned to the components, is implementation-
dependent.

The value of each aggregate member must be assignment-compatible with the
type of the corresponding RECORD or ARRAY components.

144 U2778-J-Z55-4-7600

Expressions Aggregates

Possible runtime errors:

Numeric_Error - In an aggregate, the value of an aggregate member of the
type Long_Real does not lie in the value range of the
Short_Real type of the associated aggregate component.

Range_Error - In an aggregate, the value of an aggregate member of
an ordinal type does not lie in the value range of the
ordinal type of the associated aggregate component.

Set_Error - In an aggregate, the value of an aggregate member
of a SET type does not lie in the value range of
the SET type of the associated aggregate component.

String_Error - In an aggregate, the actual length of a character
string of an aggregate member is greater than the
maximum length of the variable string type of the
associated aggregate component.

- In an aggregate, the actual length of a character
string of an aggregate member (of a variable string
type) is not equal to the length of the associated
aggregate component (of a fixed string type).

unpredictable - In an aggregate, the type of a Pointer value is of
effects the generic pointer type and the Pointer value of

the expression points to an identified variable
whose type differs from the domain type of the
type of the corresponding aggregate component.

ARRAY Aggregates

ARRAY aggregates have the following syntax:

ARRAY-aggregate = ARRAY-type-name "(" ARRAY-aggregate-member
{ "," ARRAY-aggregate-member } ")".

ARRAY-aggregate-member
= expression [":" repeat-factor].

repeat-factor = integer-constant.

The values of the ARRAY aggregate members must be assignment-compatible with
the component type of the ARRAY type. The values of the index type are
assigned the values of the ARRAY aggregate members in ascending sequence in
the order they appear in the text. The value of the ARRAY aggregate then
consists of the assigned component values.

U2778-J-Z55-4-7600 145

Aggregates Expressions

Any repeat factor in an ARRAY aggregate member must be a static expression
of an Integer type whose value is greater than 0. An ARRAY aggregate member
containing a specified repeat factor of the value n stands for an n-fold
repetition of the same component value. In the ARRAY aggregate there must be
exactly as many ARRAY aggregate members (including any repeat factors) as
there are values in the index type belonging to the ARRAY type of the
aggregate.

If the ARRAY aggregate member has an ARRAY or RECORD type, it must be
specified again as an aggregate (see "matrix" in example).

Example

TYPE
vector = ARRAY [1..5] OF Integer;
matrix = ARRAY [1..5] OF vector;

CONST
null_vector = vector (0: 5);
null_matrix = matrix (null_vector : 5);

VAR
m : matrix;

BEGIN
m := matrix (null_vector : 5); { = null_matrix }
m := matrix (vector (1, 0:4), { 1 0 0 0 0 }

vector (0, 1, 0:3), { 0 1 0 0 0 }
vector (0:2, 1, 0:2), { 0 0 1 0 0 }
vector (0:3, 1, 0) : 2); { 0 0 0 1 0 }

{ 0 0 0 1 0 }
END

Cross-references

ARRAY type: 6.3.1
Index type: 6.3.1
Component type: 6.3.1
Constant: 5
Assignment-compatibility: 6.6.3
Expression: 9
Static expression: 9.2

146 U2778-J-Z55-4-7600

Expressions Aggregates

RECORD Aggregates

RECORD aggregates have the following syntax:

RECORD-aggregate = RECORD-type-name "(" expression {"," expression} ")".

The type of a RECORD aggregate must not be an empty RECORD type. At first,
the first RECORD aggregate members are assigned to the fields of the fixed
part of the field list of the RECORD in the order they appear in the text.

If this field list has a variant part, the variant part must have a tag
field, and the next aggregate member must be a static expression. The value
of this static expression is then assigned to the tag field, and determines
the variant of the value of the RECORD aggregate.

The remaining RECORD aggregate members are then assigned in the same way
to the fields of the field list belonging to this variant. The number of
RECORD aggregate elements must exactly coincide with the total number of
fields in the variants selected in the aforementioned manner and the fields
in their field lists.

The value of each RECORD aggregate member must be assignment-compatible
with the type of the assigned field or tag field. The value of the RECORD
aggregate then consists of the component values assigned in this manner.

If an ARRAY aggregate member has an ARRAY or RECORD type, it must be
specified again as an aggregate.

Example

TYPE
rectyp = RECORD

x : Integer;
CASE b : Boolean OF

True : (u : Integer);
False : (v,w : Char);

END;

CONST
const1 = rectyp (3, True, 5);
const2 = rectyp (3, False, ’A’, ’B’);

TYPE
date = RECORD

day: 1..31;
month: 1..12;
year: 1..2000;

END;

U2778-J-Z55-4-7600 147

Aggregates Expressions

CONST
today = date (1, 1, 1986);

FUNCTION input_date: date;
VAR

d, m, y: Integer;
BEGIN

Writeln (’Please enter day, month and year.’);
Readln; Read (d, m, y);
input_date := date (d, m, y);

END;

Cross-references

RECORD type: 6.3.3
Fixed part, field list: 6.3.3
Tag field, variant part: 6.3.3.1
Assignment-compatibility: 6.6.3
Expression: 9

148 U2778-J-Z55-4-7600

Expressions Data objects

Data Objects

General Remarks

Besides components of variables, Pascal-XT also includes components of
structured constants and structured values which are determined by means of
aggregates and function results. For this reason, the data object concept
has been introduced as an extension to Standard Pascal with the following
general form:

object = constant-name | variable-name
| aggregate | function-call
| indexed_object | selected-object
| dereferenced_object | buffer-variable

Objects are constants, variables, aggregates, results of function calls, or buffer varia-
bles. If the types of these objects are structured, then components of these objects can
also be accessed. Thus, an indexed object is a component of an object of an ARRAY
type or variable string type which may be index-accessed. A selected object is a com-
ponent of an object of a RECORD type on which access may be performed by selec-
tion (field designator). A dereferenced object accesses a dynamically created (identified)
variable (see section 9.6.4), which can be accessed by means of pointer dereferencing.
A buffer variable is declared implicitly for each FILE variable.

At the following positions objects must be variable accesses (variable objects):

as an actual parameter if the corresponding formal parameter is a variable parame-
ter;

as an actual parameter at particular positions in the calls for the required procedu-
res New, Mark, Pack, Unpack, Read, Readln, Readstring, Writestring,
Delete and Insert;

on the left-hand side of an assignment;

as a RECORD variable in a WITH statement.

U2778-J-Z55-4-7600 149

Data objects Expressions

The following rules apply:

Objects which are identified by a constant-name are not variable accesses.

Objects which are identified by a variable-name are variable accesses.

Aggregates are not variable accesses.

Functions calls are not variable accesses.

The sections below describe the conditions under which indexed and selected
objects are variable accesses.

In Standard Pascal the following restrictions apply:

Only constants of a simple type exist.
Only a simple type is permitted as the result type of functions.
Functions with a Pointer type as result type cannot be dereferenced.
Only variables can have a structured type.
Only variable-objects (variable accesses) may be indexed, selected or dereferenced.
In dynamic (identified) objects, the Pointer-object must always be a Pointer-variable.

Cross-references

Variable access: 7
Variable name: 7.1
Identified variable: 7.2
Variable parameter: 8.5.2
Function call: 8.7
Static expression: 9.2
Aggregate: 9.5
Assignment: 10.1.2
WITH statement: 10.5
Required function: 15

150 U2778-J-Z55-4-7600

Expressions Data objects

Indexed Objects

A component of an ARRAY object is selected by means of indexing. Indexed access is
made in accordance with the following syntax:

indexed-object = ARRAY-object
"[" index-expression {"," index-expression} "]"
| variable-string-object "[" index-expression "]".

index-expression = ordinal-expression.

An indexed object is a component of an object of an ARRAY type or a variable
string type. The type of the indexed object is the component type of the ARRAY-object,
or the type Char in the case of a String-object. If the object is a variable access,
the indexed object is likewise a variable access.

In Standard Pascal, only variable accesss can be indexed.

If the type of the object is an ARRAY type, the value of the index expression must be
assignment-compatible with the corresponding index type of the ARRAY type. In other
words, the value must lie in the value range of the index type.

If the type of the object is a variable string type, the value of the index
expression must have an Integer type. The value of the Integer expression
must not be less than 1 or greater than the actual length of the String-
object.

An indexed object is a static object if and only if the ARRAY-object or the
String-object is a static expression and all of the index expressions are
static objects.

Abbreviated notation for multi-dimensional ARRAY-objects

The sequence "[]" in the long form is replaced in the short form by a comma. The short
form and the long form are equivalent.

U2778-J-Z55-4-7600 151

Data objects Expressions

Example

Given the following declarations:

TYPE
t1 = Integer;
t2 = ARRAY [’A’..’Z’] OF t1;
t3 = ARRAY [’0’..’9’] OF t2;

VAR
v1 : t1;
v3 : t3;

The two assignments shown below are then equivalent:

v1 := v3[’0’][’A’] ;
v1 := v3[’0’, ’A’] ;

Implementation-dependent characteristic

The sequence in which index expressions in an indexed object are evaluated is
implementation-dependent.

Possible runtime errors:

Index_Error - In an indexed ARRAY-object, the value of the
index expression does not lie in the value range
of the index type of the type of the ARRAY-object.

- In an indexed String-object, the value of the
index expression is less than 1 or greater than
the actual length of the String-object.

unpredictable - In an indexed ARRAY- or String-object, the ARRAY-
effects or String-object was generated in short form by

calling New(p,e) or New (p, c1, .., cn, e) and
the value of the index expression in the indexed
object is greater than e.

- In an indexed String-object, the value of the
String-object is undefined (regardless of whether
the indexed object occurs in an expression, or is
used e.g. as a variable access on the left-
hand side of an assignment).

- The length of a string variable is changed although
there still exists a reference to a component of
this String variable.

152 U2778-J-Z55-4-7600

Expressions Data objects

Notes

Only in exceptional cases should String variables be used in indexed form.
Accesses beyond the actual length (but within the declared maximum length)
are illegal, and will raise an Index_Error if the Check option is
activated. For this reason, the required subprograms for character string
processing (see section 15.3) should be used wherever possible.

Note in particular that the value of a String-variable (and hence its
actual length) must be defined, i.e. there must have been an assignment
to the (whole) String-variable before its individual components can be
index-accessed (for reading or for writing).
Assigning characters to individual components of a String-variable
does not change the length of the String-variable.

Examples

TYPE
byte = 0 .. 255;
hex_pair = PACKED ARRAY [1..2] OF Char;

FUNCTION hex (i: byte) : hex_pair;
CONST

hex_base = 16;
TYPE

tab = PACKED ARRAY [0 .. hex_base - 1] OF Char;
CONST

hex_tab = tab (’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,
’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’);

BEGIN
hex := hex_pair (hex_tab [i DIV hex_base], (1)

hex_tab [i MOD hex_base]);
END;

VAR
i : byte;
pair: hex_pair;
ch,
ch2 : Char;
ptr : hex_pair;

BEGIN
Read (i);
pair := hex (i);
ch := pair[1]; (2)
ch2 := hex (i) [1]; (3)
New (ptr);
ptr [1] := ch; (4)

END

U2778-J-Z55-4-7600 153

Data objects Expressions

(1) The constant hex_tab is of an ARRAY type and may therefore be indexed.

(2) The variable pair is of an ARRAY type and may therefore be indexed.

(3) The result of the function call hex (i) is of an ARRAY type and may
therefore be indexed.

(4) The identified variable ptr is of an ARRAY type and may therefore be indexed.

Since even the aggregate is of an ARRAY type and may therefore be indexed,
the declaration of the constant hex_tab might have been omitted and replaced
throughout by the aggregate. For example:

hex_tab [i DIV hex_base]

could have been replaced by the (highly complicated) object

tab (’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,
’8’,’9’,’A’,’B’,’C’,’D’,’E’,’F’) [i DIV hex_base]

Cross-references

Component type: 6.3
ARRAY type: 6.3.1
Index type: 6.3.1
Variable string type: 6.3.2.2
Assignment-compatibility: 6.6.3
Expression: 9
Static expression: 9.2
Identified variable: 9.6.4
Assignment: 10.1.2
New: 15.2

Selected Objects

A component of a RECORD-object is singled out by means of selection (field designa-
tor). Selected access is performed in accordance with the following syntax:

selected-object = RECORD-object "." field-identifier
| field-designator-identifier.

field-designator-identifier
= field-identifier.

154 U2778-J-Z55-4-7600

Expressions Data objects

A selected object is a component of an object of a RECORD type (a RECORD-object).
The component is specified either by specifying a RECORD-object and the field-identi-
fier or by means of a field designator identifier. Specifying a field designator identifier is
only possible as part of a WITH statement (see section 10.5).

If the RECORD-object is a variable access, the selected object is likewise a variable
access. The type of the selected object is the type of the RECORD-object component
identified by the field-identifier or field designator identifier.

If the RECORD-object is a static expression, the selected object is likewise
a static expression.

Fields in the variant part can be accessed only if the corresponding variant has been
switched on (active). The values of all components of all variants are totally undefined
so long as no variant is active (see also section 7.3). If a new variant is activated, all
values of components in the old variant are lost, and cannot even be retrieved by reacti-
vating the old variant.

• Tag field exists

Moving a valid value to the tag field activates the variant which is linked to that
value. From this point on, it is possible to access the components belonging to this
variant. The values of all components, however, are still totally undefined at this
point in time, unless the variant was activated immediately beforehand.

If the tag field does not have a defined value, no variant is activated and all compo-
nent values of all variants are totally undefined.

• No tag field exists

Accessing a component of a variant (for reading or writing) activates the variant. At
this point in time the components of the variant are still totally undefined, unless the
variant was activated immediately beforehand. Thus, converting a variant to a com-
ponent by means of read access leads to the error of reading an undefined value.

U2778-J-Z55-4-7600 155

Data objects Expressions

Possible runtime errors:

Variant_Error - A non-active variant of a RECORD-object is
accessed although the variant has a tag field.

unpredictable - The variant of a RECORD-variable is not active
effects for the total duration of each reference to each

of its components.

- In an identified variable created with
New(p, c1, .., cn) or New(p, c1, .., cn, e)
a variant is activated other than the one
determined by the CASE constants c1 to cn.

Notes

The frequent practice of assigning values to the components of a variable, then acti-
vating another variant and again reading the values of the components (under diffe-
rent types) is illegal. Type conversion of this sort should, if necessary at all, be car-
ried out with the aid of the required function Convert (see section 15.10).

Access of a non-active variant can only be detected with the Check option if a tag
field exists for this variant part.

Example

VAR
person : RECORD

lastname,
firstname : PACKED ARRAY [1..20] OF Char;
age : 0..100;
birthday : RECORD

year : 0..2000;
month: 1..12;
day : 1..31;

END;
END;

The following selected objects are component variables of "person":

person.lastname, person.firstname, person.age, person.birthday.

"year", "month" and "day", on the other hand, are components of "person.birthday", not
of "person". This is indicated as follows:

person.birthday.year
person.birthday.month
person.birthday.day

156 U2778-J-Z55-4-7600

Expressions Data objects

Example of an object which is not a variable access

TYPE
complex = RECORD

real_part,
imag_part : Real

END;

FUNCTION add_complex (x,y : complex) : complex;
BEGIN

add_complex := complex (x.real_part + y.real_part,
x.imag_part + y.imag_part);

END;

VAR
x,y : complex;
r : Real;

BEGIN
...
r := add_complex (x,y).real_part; (1)
...

END

(1) The function call add_complex (x, y) returns a RECORD-type value as a
result. The selected object add_complex (x, y).real_part is not a
variable access, since it is the component of a function result and not
of a variable.

Cross-references

RECORD type: 6.3.3
Defined variable: 7.3
WITH statement: 10.5
Scope: 12
Convert: 15.10
Check option: 16

U2778-J-Z55-4-7600 157

Data objects Expressions

Dereferenced Objects

dereferenced-object = pointer-object " " .

If the value of the Pointer-object is defined in a dereferenced object and is not NIL (i.e.
is a pointer to an identified variable), the dereferenced object stands for this identified
variable.

In Pascal-XT, the Pointer-object can be a constant, a variable, an aggregate
component or a function call. The dereferenced object, however, is always a
variable access.

In Standard Pascal, on the other hand, only variable accesses are permitted as Pointer-
objects.

The type of the Pointer-object must be a Pointer type which is neither the generic
pointer type (see section 6.5.2) nor a private pointer type of a foreign pak-
kage (see section 11.2). The type of the dereferenced object is the domain type of the
type of the Pointer-object.

In no case is the dereferencing of a Pointer-object a static expression.

Possible runtime errors:

Pointer_Error - In a dereferenced object, the value of the
Pointer-object is NIL.

unpredictable - In a dereferenced object, the value of the
effects Pointer-object is undefined.

- An identified variable created using New(p,c1,...,cn),
New(p,e) or New(p,c1,...,cn,e) occurs as a whole (i.e.
not merely some of its components) as an operand in
an expression.

Notes

Let p be a Pointer variable. A reference to the identified variable p is established
with a passed variable parameter, in a WITH statement (WITH p DO ...) or with an
assignment (p := ...). It is illegal to execute Dispose (p) in subprograms with para-
meter p or within WITH statements. In assignments, a function which executes a
Dispose (p) as a side effect is not allowed on the right-hand side.

158 U2778-J-Z55-4-7600

Expressions Data objects

An identified variable specified on the heap in abbreviated form must not occur as a
whole in an expression, e.g. on the right-hand side of an assignment. This would
cause the variable to be accessed in its entire size (corresponding to its type), inclu-
ding those ranges which were not even assigned to the variable due to its abbrevia-
ted form.
This restriction does not apply to identified variables of the variable
string type as they are always maintained at their actual length.

Examples

Two in-depth examples can be found in section 18.3.

p .firstname { simple dereferencing }

p .spouse .firstname { dereferencing a selected object }

f(x,y,z) .firstname { dereferencing a function call }

Cross-references

Pointer types: 6.4
NIL: 6.4
Generic pointer type: 6.5.2
Identifier variable: 7.2
Functions: 8.2
Private pointer type: 11.4
New, Dispose, Release: 15.2

Buffer Variables

buffer-variable = FILE-object " ".

A FILE-object (FILE-variable) is a generalized FILE-type variable. For each FILE-variable
a buffer variable f is implicitly declared. A buffer variable belonging to a textfile has the
type Char; otherwise, the type of the buffer variable is the component type of the FILE
type.

The type of the FILE-object must not be the generic FILE type Any_File.

U2778-J-Z55-4-7600 159

Data objects Expressions

Possible runtime errors:

unpredictable - The file pointer of a file variable f is modified
effects (e.g. by reading or writing) although there still

exists a reference to the buffer variable f .

Note

Variables of the generic FILE type Any_File cannot be declared and
therefore do not have a buffer variable.

Examples of access to buffer variables in conjunction with Read and Write can be
found in section 15.1 and in chapter 19.

So long as a reference to the buffer variable of a file variable exists, the value of the file
variable (especially the file pointer) must not be changed.
Let f be a FILE variable. A reference to the buffer variable f is established by passing
a variable parameter (p (.., f , ..)), in a WITH statement (WITH f DO ...) or with an
assignment (f := ...). The value of the FILE variable f is changed, for example, when
the file pointer is incremented with Put (f) or Get (f) (and hence also with Read and Wri-
te) within the called subprogram or WITH statement. Similarly, a function could illegally
increment the file pointer as a side effect on the right-hand side of an assignment.

Examples

VAR
i : Integer;
s : String;
data : FILE OF Integer;
outputs : ARRAY [1..3] OF Text;
club : FILE OF person; { see section 6.3.3 }

BEGIN
...
data := 1;
i := data ;

outputs [i] := ’x’;

club .lastname := pascal;
club := person (’blaise’, ’pascal’, 50, False);

END

160 U2778-J-Z55-4-7600

Expressions Data objects

Cross-references

FILE type: 6.3.5
Textfile: 6.3.5.2
Generic FILE type: 6.5.1
Buffer variable: 7.3, 15, 16.1
Variable parameter: 8.5.2
WITH statement: 10.5
Read, Write: 15.1

U2778-J-Z55-4-7600 161

Expressions Data objects

Statements
Statements represent the algorithm of the program. Any statement (including the empty
one) may be preceded by a label. In Pascal, statements are separated by semicolons.
A statement has to be followed by a semicolon only if another statement follows. Com-
pound statements, conditional statements, repetitive statements and the WITH statement
all contain one or more statements within them.

statement = [label ":"]
(simple-statement | conditional-statement

| repetitive-statement | compound-statement
| WITH-statement).

A statement preceded by a label can be branched to with the GOTO statement.

Statement class Statements Section Remarks / Examples

simple empty statement 10.1.1
statements assignment 10.1.2 a := b + c

procedure call 10.1.3 plus (erg, b, c)
GOTO statement 10.1.4 GOTO 4711
EXIT statement 10.1.5 Leave the surrounding

repetitive statement
RETURN statement 10.1.6 Leave the surrounding

block (e.g. subprogram)

conditional IF statement 10.3.1 IF bed THEN ... ELSE ;
statements CASE statement 10.3.2 multiple selection

repetitive REPEAT statement 10.4.1 REPEAT ... UNTIL exp
statements WHILE statement 10.4.2 WHILE exp DO ...

FOR statement 10.4.3 FOR i:=a1 TO b1 DO ...

compound statement 10.2 BEGIN ... END

WITH statement 10.5 WITH rec_var DO ...

Table 10-1 Statements

Cross-references

Labels: 3.6, 4

U2778-J-Z55-4-7600 163

Simple statement Statements

Simple Statements

A simple statement is a statement that does not contain any further statements.

simple-statement = empty-statement | assignment
| procedure-call | GOTO-statement
| EXIT-statement | RETURN-statement.

Empty Statement

An empty statement does not perform any actions. It is used e.g. to put a jump label in
front of END.

empty-statement =.

Note

It is not necessary, but thoroughly useful, to end statements before END with a semi-
colon. The fact that this inserts an empty statement between the semicolon and the
END has no effect whatsoever on the code generation.
This has the following advantages:

All statement end with a semicolon.
When a statement is inserted before END, it is no longer necessary to add a
semicolon to the preceding one.

Caution:
A semicolon is never permitted before the ELSE of an IF statement!

Examples

I := 1;;;;

In the above example, each pair of consecutive semicolons contains an empty state-
ment (invisible, of course). Thus, the line in the example contains a total of three empty
statements.

BEGIN
I := 5;
J := 2;

END;

In this example, the keyword END is preceded by an empty statement (due to the semi-
colon before "2"; see Note).

164 U2778-J-Z55-4-7600

Statements Empty statement

BEGIN
...
GOTO 13;
...

13:END;

In this example, "13:" is a marked empty statement. This is because jump labels can
only mark statements, not END.

CASE i OF
1: Writeln (’Special case 1’);
2: Writeln (’Special case 2’);
ELSE:

END;

In this example, the CASE statement contains an empty ELSE branch, i.e. an
ELSE branch containing an empty statement. This causes those values of i
which are neither 1 nor 2 to be ignored (i.e. not to cause a Case_Error).

FOR i := 1 TO 10000 DO;

FOR i := 1 TO 10000 DO BEGIN END;

Each of the two FOR statements shown above does "nothing" 10000 times, since there
is an empty statement between DO and semicolon in the one case and between BEGIN
and END in the other. (Whether these "empty loops" really are run through 10000 times
is left to each Pascal-XT implementation (code optimization). Caution is therefore advi-
sed when using "active wait loops".)

U2778-J-Z55-4-7600 165

Assignments Statements

Assignments

Assignments have the following general form:

assignment = variable-object ":=" expression
| function-identifier ":=" expression.

An assignment transfers the value resulting from the evaluation of the expression on the
right-hand side of the assignment to the variable access (variable-object) or the func-
tion-identifier on the left-hand side of the assignment. The value of the expression must
be assignment compatible (see section 6.6.3) with the type of the variable access or
the function-identifier. The assignment to the function-identifier must be contained in the
associated function-block (see also section 8.2).

A variable or a function result is undefined if it has not yet been assigned a value (see
also section 7.3).

Implementation-dependent characteristic

The sequence in which the left-hand and right-hand sides of an assignment are eva-
luated is implementation-dependent. The reference obtained when the variable-object
is evaluated (left-hand side) is retained during the entire time the statement is being
executed. This is especially important in connection with possible runtime errors
(see sections 9.6.2, 9.6.3, 9.6.4, 9.6.5).

166 U2778-J-Z55-4-7600

Statements Assignments

Possible runtime errors:

Range_Error - In an assignment, the value of an ordinal-type
expression (right-hand side) does not lie in
the value range of the ordinal-type of the
variable access or the function-identifier
(left-hand side).

Numeric_Error - In an assignment, the value of the expression
(right-hand side) of type Long_Real does not lie
in the value range of the variable access or
the function-identifier (left-hand side) of type
Short_Real.

Set_Error - In an assignment, the value of a SET-type expression
(right-hand side) does not lie in the value range of
the SET type of the variable access or the
the function-identifier (left-hand side).

String_Error - In an assignment, the actual length of the character
string value of the expression (right-hand side) is
greater than the maximum length of the variable
string type of the variable access or function-
identifier (left-hand side).

- In an assignment, the actual length of the character
string expression of a variable string type (right-
hand side) is not equal to the length of the fixed
character string type of the variable
access or the function-identifier (left-hand side).

unpredictable - In an assignment, the type of the expression
effects (right-hand side) of a generic pointer type

and the Pointer value of the expression point
to an identified variable whose type differs
from the domain type of the variable access
or the function-identifier (left-hand side).

Examples of assignments to variables

i := 0;
a [50] := 100;
field [x + y] := pi;
b := (1 < i) AND (i < 100);
p .age := 3;

Example of assignments to function identifiers

FUNCTION max (x, y : Integer);
BEGIN

IF x > y THEN max := x ELSE max := y;
END;

U2778-J-Z55-4-7600 167

Assignments Statements

Notes

For functions with a structured result type, the function-identifier must
be assigned a value as a whole. Only aggregates are allowed to have values
assigned to their components (see section 9.5).

The assignment of a value to a function-identifier should be located directly in the
statement part of the function. It is equally possible to place the assignment within a
nested function or procedure, but this is less easy to read.

The implementation-dependent access sequence to the variable access and the eva-
luation of the expression may lead to conflicting results.

A Numeric_Error can only occur for an assignment if the types Short_Real and
Long_Real have different value ranges.

Example of an implementation-dependent execution sequence

VAR
i : Integer;
a : ARRAY [1 .. 9] OF Char;

FUNCTION function_with_side_effect:Char;
BEGIN

i := 8; { - This is the side effect. }
function_with_side_effect := ’X’ ;

END;

BEGIN
i := 2;
a[i] := function_with_side_effect

END.

In the above example, the effect depends on the access sequence to a[i] and the call
of function_with_side_effect.

If the reference to a[i] is established first, after which the function is called, then the
character ’X’ is assigned to the component a[2].

If, on the other hand, the function is called first, the character ’X’ is assigned to the
component a[8].

As mentioned in section 1.4, programs whose effects depend on implementation-depen-
dent characteristics are considered errored.

168 U2778-J-Z55-4-7600

Statements Assignments

Cross-references

Implementation-dependent: 2.2
Ordinal type: 6.2
Real type: 6.2.2
Generalized string type: 6.3.2
Variable string type: 6.3.2.2
SET type: 6.3.4
Pointer type: 6.4
Generic pointer type: 6.5.2
Assignment-compatibility: 6.6.3
Variable access: 7
Function result: 8.2
Side effects: 8.2
Expression: 9
Aggregates: 9.5
Object: 9.6
Statement part: 12.1

U2778-J-Z55-4-7600 169

Procedure calls Statements

Procedure Calls

Procedure calls (also known as procedure statements) have the following syntax:

procedure-call = procedure-name [actual-parameter-list].

actual-parameter-list
= "(" actual-parameter {"," actual-parameter} ")".

A procedure call causes the block of the called procedure to be executed (see section
8.7).

If the procedure has formal parameters, it must contain an actual parameter list with the
actual parameters.
By specifying a package-identifier in the procedure-name, a procedure of the
corresponding package is called.

In a procedure call, the runtime errors described in sections 8.5.1, 8.5.4 and 8.7 may
occur when the parameters are passed. Runtime errors may also occur when the state-
ments in the procedure-block are executed, and unless they are handled in the pro-
cedure they may be propagated to the call position (see chapter 14).

Example

proc1;

trans (a, x, y);

numerics.bisect (fct (x + y), 2.0, 100, y);

Writeln (’The result is ’, a * b :10:5);

Cross-references

Actual and formal parameters: 8.5
Subprogram call: 8.7
Block: 12.1
Exception handling: 14

170 U2778-J-Z55-4-7600

Statements GOTO statement

GOTO Statement

The GOTO statement has the following syntax:

GOTO-statement = "GOTO" label.

A GOTO statement causes program execution to continue from the point indicated by
the label in the GOTO statement.

The use of a label in a GOTO statement is permitted only if the label was declared in a
label declaration part and if it is located in front of a statement on the same or a higher
statement level. In other words, it is prohibited to jump inside a subprogram or a struc-
tured statement from the outside. Nor is it permitted to jump outside the bound(s) of
alternative branches within a structured statement with alternatives (IF, CASE).

Example

GOTO 4711;
GOTO 1;

Note

GOTO statements should only be used sparingly. Most algorithms can be program-
med without them due to the fact that the conditional, repetitive,
EXIT and RETURN statements are available for structured control of the
program flow.

Cross-references

Labels: 3.6
Label declaration part: 4
Labels before statements: 10
Block: 12.1

U2778-J-Z55-4-7600 171

EXIT statement Statements

EXIT Statement

EXIT-statement = "EXIT".

This statement may only occur inside a repetitive statement (i.e. a WHILE,
REPEAT or FOR statement). In the case of nested repetitive statements, the
only statement terminated is the innermost repetitive statement which
closest-contains the EXIT statement.

Examples

FOR i:= 1 TO n DO BEGIN
IF a[i] = 0 THEN EXIT;
s := s + a[i];
END;

Writeln (s);

This example adds up the values of the components of ARRAY "a" up to the
first component with the value 0.

In the example below, each input line processes the characters of a line up
to the first semicolon; the remaining characters in the line are ignored.

Reset;
WHILE NOT Eof DO BEGIN

WHILE NOT Eoln DO BEGIN
Read (c);
IF c = ’;’ THEN EXIT;
processing (c);
END;

Readln;
END;

Cross-references

Repetitive statement: 10.4

172 U2778-J-Z55-4-7600

Statements RETURN statement

RETURN Statement

RETURN-statement = "RETURN" .

A RETURN statement causes execution of the block closest-containing it to
terminate immediately. A RETURN statement in the statement part of the main
program block causes termination of the program.

Note

Before leaving a function-block, the function-identifier must be assigned
a value; otherwise, the function result will be undefined.
undefined.

Example

FUNCTION find (x : Integer) : Integer;
VAR i : Integer;
BEGIN

FOR i := 1 TO 100 DO
IF a[i] = x THEN BEGIN

find := i;
RETURN; {found}
END;

find := 0; {not found}
END;

In this example, RETURN not only terminates the FOR statement but also
(unlike EXIT) execution of the function block. Thus, the statement
find := 0; is left unexecuted and the function result is find := i, the
located index.

Cross-references

Function: 8.2
Block: 12.1

U2778-J-Z55-4-7600 173

Compound statements Statements

Compound Statements

Compound statements have the following general form:

compound-statement = "BEGIN" statement-sequence [EXCEPTION-part] "END".

EXCEPTION-part = "EXCEPTION" statement-sequence.

statement-sequence = statement {";" statement}.

A compound statement unites one or more statements syntactically into a single state-
ment. This is necessary wherever only one statement is permitted but a more lengthy
statement sequence is required (e.g. in conditional statements). The statements in the
statement sequence are usually executed in the order in which they are written.

Execution of the statement sequence may be interrupted by executing a GOTO state-
ment (see section 10.1.4), an EXIT statement (see section 10.1.5), or a RETURN
statement (see section 10.1.6). It can also be interrupted by calling the requi-
red procedure Raise (see section 15.11) or by the occurrence of an exception condi-
tion.

Within a compound statement, an exception handling part (EXCEPTION part) may
also be defined. This part can be used to handle exceptions occurring when
the statement sequence of the compound statement is executed
(see chapter 14).

The statement sequence in the EXCEPTION part, assuming this part exists, will
only be executed if an exception situation occurs.

Examples

BEGIN
z := x;
x := y;
y := z;

END;

BEGIN
erg := a * b;

EXCEPTION
Writeln (’Overflow’);
erg := 0;

END;

Cross-references

GOTO statement: 10.1.4
EXIT statement: 10.1.5
RETURN statement: 10.1.6
Exception handling: 14
Raise: 15.11

174 U2778-J-Z55-4-7600

Statements IF statement

Conditional Statements

Conditional statements have the following general form:

conditional-statement = IF-statement | CASE-statement.

The conditional statements include the IF statements and the CASE statements. Depen-
ding on the value of an expression, particular statements in the interior of the conditio-
nal statement are executed or skipped.

IF Statement

IF statements may be written with or without an ELSE part:

IF-statement = "IF" Boolean-expression "THEN" statement
[ELSE-part].

ELSE-part = "ELSE" statement.

When an IF statement is executed, the first thing that happens is the evaluation of the
Boolean-expression. If this has the value True, the statement after THEN will be execu-
ted; otherwise, the statement in the ELSE part (if existent) will be executed.

If, instead of a single statement, an entire statement sequence is to be executed, the
statements must be combined into a compound statement.

IF statements may be nested to any depth. If the statement after THEN is followed by
ELSE, the ELSE is always assigned to the innermost unterminated IF statement which
does not have an ELSE part (see example).

ELSE must never be preceded by a semicolon. A semicolon after the statement follo-
wing the keyword THEN terminates the IF statement.

U2778-J-Z55-4-7600 175

IF statement Statements

Examples

IF a > maximum THEN
maximum := a;

IF a > maximum THEN
maximum := a

ELSE IF a < minimum THEN
minimum := a;

IF j = 0 THEN
IF i = 0 THEN

Writeln (’undefined’)
ELSE

Writeln (’infinite’)
ELSE

Writeln (i / j);

IF a = b THEN
IF c = d THEN

x := x + 1
ELSE

y := y + 1

In this example, the ELSE part belongs to the inner IF statement (IF c = d ...), i.e. the
statement y := y + 1 will be executed if a = b and c <> d are true.

If, on the other hand, the ELSE part is to belong to an outer IF statement (IF a = b ...),
i.e. the statement y := y + 1 is to be executed when a <> b, then one of the follo-
wing two notations must be used.

IF a = b THEN BEGIN
IF c = d THEN

x := x + 1
END

ELSE
y := y + 1

Here the inner IF statement is terminated by the end of the surrounding compound sta-
tement (BEGIN ... END). As a result, only the external IF statement is "open" and the
ELSE part is therefore assigned to it.

176 U2778-J-Z55-4-7600

Statements IF statement

IF a = b THEN
IF c = d THEN

x := x + 1
ELSE

{in this case nothing happens,}
{there is an empty statement here}

ELSE
y := y + 1

Here the inner IF statement is terminated by a separate ELSE branch (containing an
empty statement). The second ELSE branch (with the statement y := y + 1) will there-
fore be assigned to the outer IF statement.

Unlike a CASE statement, it is irrelevant for the effect of an IF statement whether it con-
tains an ELSE part with an empty statement or no ELSE part at all. The above exam-
ple, however, illustrates how important an "empty" ELSE part may be for the context.

Cross-references

Boolean: 6.2.4
Expression: 9
Empty statement: 10.1.1
Compound statement: 10.1.2

U2778-J-Z55-4-7600 177

CASE statement Statements

CASE Statement

CASE statements have the following general form:

CASE-statement = "CASE" case-index "OF" case-list [";"] "END".

case-list = ordinal-expression.

case-list = case-list-element {";" case-list-element}.

case-list-element
= selector-list ":" statement.

selector-list = selector {"," selector} | "ELSE".

selector = case-constant [".." case-constant] .

case-constant = ordinal-constant.

The CASE statement is used to execute a statement selected from a list of alternative
statements by means of an expression.

The expression in the case index must be of an ordinal type. The CASE constants of
the selector lists must be values of this ordinal type. A selector in the form a..b
stands for an enumeration of all constants c such that a c b. The individual
value ranges must differ pair-by-pair.

The selector list of the last case list element may be the word symbol ELSE.
This case list element is called the ELSE part. ELSE then stands for the
values of the case index type which did not occur in the previously executed
selector lists. If all values of the case index type occur in the selector
lists, the ELSE part has no effect.

When the CASE statement is entered, the first thing that happens is that the case index
is computed. If the result is contained in a selector list, the associated statement will be
executed.
If it is not contained in a selector list, the statement of the ELSE part
will be executed, provided that an ELSE part exists.

Note

Unlike the IF statement, there is a semicolon in front of the ELSE in a
CASE statement.

Possible runtime errors:

Case_Error - In a CASE statement, there is no CASE constant
corresponding to the value of the case index,

178 U2778-J-Z55-4-7600

Statements CASE statement

nor is an ELSE part specified.

Examples

CASE character OF
’0’..’9’: z := Ord (character) - Ord (’0’);
’+’ : z := x + y;
’-’ : z := x - y;
’*’ : z := x * y;
END;

A runtime error (Case_Error) occurs if "character" assumes a value other than ’+’, ’-’, ’*’
or a digit.

CASE character OF
’0’..’9’: z := Ord (character) - Ord (’0’);
’+’ : z := x + y;
’-’ : z := x - y;
’*’ : z := x * y;

ELSE : Writeln (’wrong input’);
END;

The statement in the ELSE part is executed for all values of "character"
other than ’+’, ’-’, ’*’ or a digit.

CASE character OF
’0’..’9’: ...;
...: ...;
’*’: ...;
ELSE: ; {in this case nothing happens}
END;

All values of "character" other than ’+’, ’-’, ’*’ or a digit are ignored
(because the ELSE part contains an empty statement).

A comparison of the first example with the last one shows that, unlike an IF
IF statement, it is by no means irrelevant to the effect of a CASE statement
whether it contains an ELSE part with an empty statement or no ELSE part at
all. "Wrong" values of the case index always trigger an action of some sort,
but may in other cases lead to a runtime error (detected as a Case_Error if
Check=On).

Cross-references

Constant: 5
Expression: 9
Ordinal expression: 9
Empty statement: 10.1.1

U2778-J-Z55-4-7600 179

Repetitive statements Statements

Repetitive Statements

Repetitive statements are:

repetitive-statement = REPEAT-statement
| WHILE-statement
| FOR-statement.

Repetitive statements cause those statements contained within them (the "inner" state-
ments) to be executed repeatedly. REPEAT statements and WHILE statements are con-
dition-controlled repetitive statements. FOR statements are controlled by means of a
control variable whose initial and final values are defined. Repetitive statements may
be abandoned with the EXIT statement.

180 U2778-J-Z55-4-7600

Statements REPEAT statement

REPEAT Statement

REPEAT statements have the following general form:

REPEAT-statement = "REPEAT" statement-sequence
"UNTIL" Boolean-expression.

The statement sequence in the REPEAT statement is executed repeatedly until the Boo-
lean expression after UNTIL returns the value True. The statement sequence is execu-
ted at least once, since the condition is not evaluated until after the statement se-
quence has been processed.

Statement sequence execution may be abandoned by executing a GOTO statement
(see section 10.1.4), an EXIT statement (see section 10.1.5) or a RETURN state-
ment (see section 10.1.6), or by calling the required procedure Raise (see sec-
tion 15.11), or by the occurrence of an exception situation.

Examples

The example below implements Euclid’s algorithm for calculating the greatest common
divisor (GCD) of two integers i and j by means of the MOD operator (see section
6.3.1). The "divisor" of MOD must never be less than zero; this must be ascertained at
the beginning of this statement sequence. Following the last program run, the greatest
common divisor of the initial values i and j is located in i.

{prerequisite: j > 0}
REPEAT

k := i MOD j;
i := j;
j := k;

UNTIL j = 0;

The REPEAT statement is well-suited for implementing user-controlled termination in a
loop. For example:

REPEAT
{ start of processing }
...
{ end of processing }
Writeln(’Continue? Y/N’);
Readln;
Read(character);

UNTIL character IN [’N’,’n’];

If it is not clear from the outset whether processing is to take place at all, the WHILE
statement is more appropriate.

U2778-J-Z55-4-7600 181

REPEAT statement Statements

Cross-references

Boolean: 6.2.4
Expression: 9
GOTO statement: 10.1.4
EXIT statement: 10.1.5
RETURN statement: 10.1.6
Statement sequence: 10.2
Exception handling: 14
Raise: 15.11

182 U2778-J-Z55-4-7600

Statements WHILE statement

WHILE Statement

WHILE statements have the following general form:

WHILE-statement = "WHILE" Boolean-expression "DO" statement.

If the Boolean expression in a WHILE statement returns the value True, the statement
contained within the WHILE statement (the "inner" statement) is executed and repeated
until the Boolean expression returns the value False. If a sequence of statements is to
be repeated, they must be combined into a compound statement.

Execution of the inner statement can be interrupted by executing a GOTO statement
(see section 10.1.4), an EXIT statement (see section 10.1.5) or a RETURN state-
ment (see section 10.1.6), or by calling the required procedure Raise (see sec-
tion 15.11), or by the occurrence of an exception situation.

Example

The example below implements Euclid’s algorithm for the greatest common divisor
(GCD), as already described for the REPEAT statement (see section 10.4.1).

WHILE j > 0 DO BEGIN
k := i mod j;
i := j;
j := k;
END;

In the next example, two numbers are read from every input line of file f and processed
until the end of the input file is reached. Due to the use of the WHILE statement (in con-
trast to the REPEAT statement), even empty input files are handled correctly.

Reset(f); { fetch 1st line or recognize EOF }
WHILE NOT Eof(f) DO BEGIN

Read(f,i); { supply i and k from current line }
Read(f,k);
process (i, k); { processing }
Readln(f); { fetch new line or recognize EOF }
END;

Cross-references

Boolean: 6.2.4
Expression: 9
GOTO statement: 10.1.4
EXIT statement: 10.1.5
RETURN statement: 10.1.6
Exception handling: 14
Raise: 15.11

U2778-J-Z55-4-7600 183

FOR statement Statements

FOR Statement

FOR statements have the following general form:

FOR-statement = "FOR" control-variable ":=" initial-value
("TO" | "DOWNTO") final-value "DO" statement.

control-variable = variable-identifier.

initial-value = ordinal-expression.

final-value = ordinal-expression.

The FOR statement causes the statement contained within it (the "inner" statement) to
be executed repeatedly. In doing this, the control variable is assigned, after each loop
cycle, a new value from the sequence of successive values between and including the
initial and final values (ascending in the case of TO, descending in the case of
DOWNTO).

Execution of the inner statement may be interrupted by executing a GOTO statement
(see section 10.1.4), an EXIT statement (see section 10.1.5) or a RETURN state-
ment (see section 10.1.6), or by calling the required procedure Raise (see sec-
tion 15.11) or by the occurrence of an exception situation.

The control variable must be an entire variable whose identifier is defined in the variable
declaration part of the block closest-containing the FOR statement. This means that glo-
bal variables are not permitted as control variables. The control variable must be of an
ordinal type, and the type of the initial and final values must be compatible with this
type.

The initial and final values of the FOR statement are only evaluated prior to the first
loop cycle. As a result, the loop cannot be abandoned by changing the final value.

If the initial value is greater than the final value (or less than in the case of DOWNTO),
the inner statement is not executed at all; if they are equal to each other, the statement
is executed exactly once.

If the inner statement is executed at least once, the initial and final values must be
assignment-compatible with the type of the control variable.

Once the FOR statement has been executed, the value of the control variable is undefi-
ned, unless the FOR statement has been exited by means of a GOTO or EXIT state-
ment. In this case, the control value has its current actual value. "Undefined" here
means in particular that one cannot be sure that the control variable will have the final
value after the FOR statement has been exited.

Neither the FOR statement nor a procedure or function declaration in the block closest-
containing the FOR statement may contain a statement which threatens the control
variable (i.e. which can potentially change its value).

184 U2778-J-Z55-4-7600

Statements FOR statement

A statement S threatens an ordinal-type variable V if one of the following propositions is
true:

a) S is an assignment and V is its left-hand side.

b) S is a procedure call or contains a function call in which V occurs as an actual
parameter, and the associated formal parameter is a variable parameter.

c) S is a call for the required procedure Read, Readln or Readstring, and V is a para-
meter in S.

d) S is a FOR statement and V represents the control variable in S.

Possible runtime errors:

Range_Error - When the statement in a FOR statement is executed,
the initial or final value of the FOR statement does
not lie in the value range of the type of the control
variable.

Example

FOR i := 1 TO 100 DO
FOR j := 1 TO i-1 DO BEGIN

h := a [i, j];
a [i, j]: = a [j, i];
a [j, i] := h;
END;

Notes

The value of a control variable must not be changed (threatened) by the user. This
can also happen in a nested subprogram called in the FOR loop. The call may be
dependent on data which only become known at execution time. For this reason,
the restrictions have been extended to include all nested subprograms.

FOR statements are particularly well-suited for processing arrays, since with arrays
the number of elements in a line, column etc. is known in advance. As the example
shows, the initial and final values of the control values need not be constant, but
they must have defined values at the moment FOR statement execution begins.

U2778-J-Z55-4-7600 185

FOR statement Statements

Cross-references

Ordinal type: 6.2
Compatible: 6.6.2
Assignment-compatible: 6.6.3
Subprogram call: 8.7
Expression: 9
GOTO statement: 10.1.4
EXIT statement: 10.1.5
RETURN statement: 10.1.6
Exception handling: 14
Read, Readln: 15.1, 19
Readstring: 15.3

186 U2778-J-Z55-4-7600

Statements WITH statement

WITH Statement

WITH statements have the following general form:

WITH-statement = "WITH" RECORD-variable-list "DO" statement.

RECORD-variable-list
= RECORD-variable-object {"," RECORD-variable-object}.

The WITH statement opens the scope of one or more RECORD-variables so that the
field identifiers of these variables can be accessed directly in the "inner" statement
without specifying the RECORD-variables (see section 9.6.2).

The identifiers, now made visible, conceal all other like-named identifiers defined further
outside. Particularly in the case of nested WITH statements, the scope rules should
always be kept in mind.

The RECORD-variables are accessed at the beginning of WITH statement execution,
and references to the variables are retained for the entire time the WITH statement is
being processed.

This is important for two reasons:

1. It may involve certain runtime errors (see sections 9.5.2, 9.5.3, 9.5.4 and examples
2, 3 and 4).

2. If a RECORD-variable in a WITH statement contains an indexed object or pointer
dereferencing, changes made to the index expressions or Pointer-objects while the
inner statement of the WITH statement is being executed no longer affect the refe-
rence (see examples 5 and 6).

The statement

WITH v1, v2, ..., vn DO statement

is equivalent to

WITH v1 DO
WITH v2 DO

...
WITH vn DO statement

U2778-J-Z55-4-7600 187

WITH statement Statements

Notes

WITH statements are usually used to reduce the effort of writing. This happens, of
course, at the expense of readability.

If two or more RECORD-variables have like-named components, nested WITH state-
ments pose a potential danger since field designator identifiers mutually overlap. It is
not always immediately apparent which component of which RECORD-variable is
being addressed.

Example 1

By means of a WITH statement, the statement

IF date.month = 12 THEN BEGIN
date.month := 1;
date.year := date.year + 1;
END

ELSE
date.month := date.month + 1;

can be abbreviated as follows:

WITH date DO
IF month = 12 THEN BEGIN

month := 1;
year := year + 1;
END

ELSE
month := month + 1;

Example 2

The next example illustrates an error in the use of a WITH statement. The value (name-
ly, the file pointer) of the FILE-variable f is modified by Get(f) although there is still a
reference to the buffer variable f due to the WITH statement.

VAR
f : FILE OF record_type;

BEGIN
...
WITH f DO BEGIN

...
Get (f); {this is an error with unpredictable effects}
...
END;

...
END

188 U2778-J-Z55-4-7600

Statements WITH statement

Example 3

The example below illustrates another error in the use of a WITH statement. Dispose (p)
removes an identifying value although there is still a reference to the identified variable
p due to the WITH statement (see section 9.5.3).

VAR
p : record_type;

BEGIN
New (p);
WITH p DO BEGIN

...
Dispose (p); {this is an error with unpredictable effects}
...
END;

...
END.

Example 4

This example illustrates a third error in the use of a WITH statement. As a result of the
statement r.b := False, the "True variant" of the RECORD variable r is not active for the
entire duration of the reference to its component r.y, even though this reference exists
due to the WITH statement (see section 9.5.2).

VAR
r : RECORD

CASE b : Boolean OF
False: (x : Integer);
True: (y : record_type);

END;

BEGIN
r.b := True;
WITH r.y DO BEGIN

...
r.b := False; {this is an error with unpredictable effects}
...
END;

...
END.

U2778-J-Z55-4-7600 189

WITH statement Statements

Example 5

The example below shows a case where modifying an index expression has no effect
on the reference of an indexed object.

VAR
i : Integer;
a : ARRAY [1..10] OF RECORD x : ... END;

BEGIN
i := 2;
WITH a[i] DO BEGIN {establishes reference to a[2] (=a[i])}

...
i := 8; {reference to a[2] remains in effect}
...
x := ...; {still refers therefore to a[2].x

but not to a[8].x (=a[i].x)}
...
END;

...
END.

Example 6

This final example shows the case where modifying a Pointer object has no effect on
the reference to the identified variable.

TYPE
record_ptr = record_type;
record_type = RECORD

x,
y : Integer;
next : record_ptr;

END;

VAR
p,
list : record_ptr;

BEGIN
...
p := list;
WITH p DO BEGIN {establishes reference to list (=p) }

WHILE (p <> NIL) AND THEN (x > 0) DO BEGIN
process (x, y);
p := next; {reference to list remains in effect}
END {WHILE};

END {WITH};
...

END.

190 U2778-J-Z55-4-7600

Statements WITH statement

This program part does not have the desired effect (i.e. accessing the components of
the dynamic RECORD variables list , list .next , list .next .next , ...). The reason
is that during the entire time the WITH statement is being executed (and thus during all
loop cycles of the WHILE statement) the reference to list (which was set up at the
beginning with the WITH statement) is retained although the Pointer variable p is chan-
ged by p := next. All accesses to x, y and next thus refer again and again only to
list .x, list .y and list .next.

The statement part should thus be written correctly as follows:

BEGIN
...
p := list;
WHILE (p <> NIL) AND THEN (p .x > 0) DO BEGIN

WITH p DO BEGIN
process (x, y);
p := next;
END {WITH};

END {WHILE};
...

END.

Cross-references

Field designator identifier: 6.3.3
RECORD type: 6.3.3
Object: 9.6
Scope rules: 12

U2778-J-Z55-4-7600 191

Statements WITH statement

Main Program and Packages

A Pascal-XT program consists of one or more compilation units, of which
exactly one must be a main program.

In Standard Pascal, a program consists of a single main program only.

Main Program

main-program = {context-specification}
"PROGRAM" identifier
["(" program-parameter-list ")"] ";"
main-program-block ".".

program-parameter-list
= identifier-list.

A main program is a compilation unit. The identifier following the keyword PROGRAM is
the program name. In Pascal-XT, the program name must be different from the
identifiers of all packages belonging to a program (see section 13.1).
In Standard Pascal, this identifier has no meaning within the program.

The context specification lists the identifiers of the packages to be
accessed in the main program. Context specification is described in section
11.3.

The identifiers in the program parameter list must be different from each other. The
parameters are described in detail in section 11.5.

Cross-references

Context specification: 11.3
Program parameters: 11.5
Block: 12.1
Scope rules: 12.2
Program structure: 13.1
Compilation units: 13.2
Program execution: 13.3

U2778-J-Z55-4-7600 193

Main program Main program and packages

Sample program: Labyrinth

The example below illustrates a complete Pascal program to solve the labyrinth pro-
blem. This problem crops up in similar form in many areas, e.g. in communications
engineering or transportation.

Problem:

Find all the ways out of a labyrinth, from a given starting point to the exit.

The labyrinth itself is described by means of a two-dimensional field:

VAR lab : ARRAY[0..n,0..n] OF Char;

The walls are represented by ’#’, the passageways by blanks. The path traversed is to
be marked with dots.

The search strategy used here is implemented by the procedure "search", which is
based on a recursive mechanism. The procedure illustrates the potential of the Pascal
programming language which, among other things, makes it possible to formulate
powerful algorithms with a small number of language elements.

The following actions are performed by the procedure "search":

• Search for the next free location.

• Delete dots in dead ends.

• Avoid walking in circles.

• Retrace a located exit to the first alternative and search for a new path.

• Terminate the search following the last possible path.

194 U2778-J-Z55-4-7600

Main program and packages Main program

PROGRAM labyrinth (Output, lfile);

CONST n = 16;
TYPE labtyp = ARRAY [0..n, 0..n] OF Char;
VAR lab : labtyp;

lfile : Text;

PROCEDURE read_lab (VAR l : labtyp);
VAR i, k: Integer;
BEGIN

Reset (lfile);
FOR i := 0 TO n DO BEGIN

FOR k := 0 TO n DO
Read (lfile, l[i,k]);

Readln;
END;

END { read_lab };

PROCEDURE write_lab (l : labtyp);
VAR i, k: Integer;
BEGIN

FOR i := 0 TO n DO BEGIN
FOR k := 0 TO n DO

Write (l[i,k]);
Writeln;
END;

END { write_lab };

PROCEDURE search (i, k: Integer);
BEGIN

IF lab[i,k] = ’ ’ THEN BEGIN { location free ? }
lab[i,k] := ’.’; { set path dot }
IF (i MOD n = 0) OR

(k MOD n = 0) { exit ? }
THEN write_lab (lab) { output path }
ELSE BEGIN { recursive call }

search (i+1,k); { counter-clockwise }
search (i,k+1);
search (i-1,k);
search (i,k-1);
END;

lab[i,k] := ’ ’; { Delete dot. The resolu- }
{ tion of the recursion }
{ operation automatically }
{ causes the path to be }
{ retraced. }

END; { IF location free }
END; { search }

BEGIN { labyrinth }
read_lab (lab); { read in the labyrinth }
search (n DIV 2, n DIV 2) { start search at }

{ mid-point }
END.

U2778-J-Z55-4-7600 195

Packages Main Program and Packages

Packages

Packages make it possible to combine logically related declarations. In the
simplest form, packages may contain commonly used constant, type and variable
declarations. In the more general case, packages specify related data
structures and subprograms which work with these data structures. A detailed
description of the use of packages can be found in chapter 17.

A package is divided into a package specification and a package body. These
are separate compilation units. The package specification contains the
outwardly visible part of the package, while the package body is protected
from outside access.

The general form for package specification and package body is as follows:

package-specification
= {context-specification}

"PACKAGE" identifier
["(" program-parameter-list ")"] ";"
{ constant-definition-part
| type-definition-part
| variable-declaration-part
| procedure-heading ";" [directive ";"]
| function-heading ";" [directive ";"]
| "ENTRY" procedure-heading ";"
| "ENTRY" function-heading ";"
| INLINE-procedure-declaration
| INLINE-function-declaration
}
"END" ".".

package-body
= {context-specification}

"PACKAGE" "BODY" package-identifier
["(" program-parameter-list ")"] ";"
{ constant-definition-part
| type-definition-part
| variable-declaration-part
| procedure-declaration
| function-declaration
} statement-part ".".

The identifier following the keyword PACKAGE is the name of the package.
The same name must also occur as the package-identifier following the keyword
BODY in the associated package body (see section 13.1).

For each package specification there must be a package body. This package
body may also be empty, i.e. consist solely of

"PACKAGE" "BODY" identifier; "BEGIN" "END" "."

(see section 11.2.2).

196 U2778-J-Z55-4-7600

Main Program and Packages Packages

The declaration and definition parts in the package specification, followed
by the declaration and definition parts and the statement part of the
package body, form the package-block. A package-block is set up in the same
way as a procedure-, function- or main-program-block.
However, it must not closest-contain any label declarations.
Because the package specification and package body are combined into a
package-block, the identifiers from the package specification must not be
declared or defined again in the body.

The context specification lists the identifiers of those foreign packages
which are to be accessed. The identifiers listed in the package specification
are also known in the package body; however, those listed in the package body
are not known in the package specification. Context specification is
described in section 11.3.

Package specification and package body may have separate program parameter
lists. The identifiers of the program parameter list of the package
specification must be declared in the package specification and are visible
in the entire package; the identifiers of the program parameter list of the
package body must be declared in the package body and are only visible there.
The program parameters are described in detail in section 11.5.

For each procedure heading or function heading specified in the package
specification but lacking a directive (other than Forward), the procedure
identification or function identification must be specified in the package
body. Only for INLINE subprograms is the declaration specified in the package
specification (see also section 11.2.1).

Note

A label declaration part is not allowed directly in the package block,
since otherwise a branch could be made from a subprogram to the statement
part of the package body although this statement part is only executed
once (see section 11.2.2).

Example

PACKAGE stack;
PROCEDURE push (x: Integer);
PROCEDURE pop (VAR x: Integer);
FUNCTION is_empty: Boolean;
END.

U2778-J-Z55-4-7600 197

Packages Main Program and Packages

PACKAGE BODY stack;

VAR
representation: ARRAY [1..100] OF Integer;
top_of_stack : 0..100;

PROCEDURE push (x: Integer);
BEGIN

top_of_stack := top_of_stack + 1;
representation [top_of_stack] := x;

END {push};

PROCEDURE pop (VAR x: Integer);
BEGIN

x := representation [top_of_stack];
top_of_stack := top_of_stack - 1;

END {pop};

FUNCTION is_empty: Boolean
BEGIN

is_empty := top_of_stack = 0;
END {is_empty};

BEGIN
top_of_stack := 0;

END {stack}.

Cross-references

Constant definition: 5
Type definition: 6
Variable declaration: 7
Procedure declaration: 8.1
Procedure heading: 8.1
Function declaration: 8.2
Function heading: 8.2
INLINE subprograms: 8.3
ENTRY subprograms: 8.4
Context specification: 11.3
Program parameters: 11.5
Scope rules: 12
Program structure: 13.1
Compilation units: 13.2
Program execution: 13.3
Package concept: 17

198 U2778-J-Z55-4-7600

Main program and packages Package specification

Package Specification

All identifiers declared and defined in the package specification may also
be used outside the package. Declared variables may also be modified outside
the package.

In the case of subprograms, attention must be paid to whether directives or
the keywords ENTRY or INLINE were specified:

• Subprograms without directives

For procedures and functions with no directive specification, only the
heading is specified; the associated identifications are not specified until
the package body.

• Subprograms with directives

For subprograms with a directive other than Forward, there must be no
identification for it in the package body. The subprogram block must be in
a different language, i.e. outside the package.

• ENTRY subprograms

If a procedure or function heading in a package specification is preceded by
the word symbol ENTRY, the procedure or function thus declared may also be
called by program components not written in Pascal-XT. In this case,
implementation-defined interfaces (see user’s guide) must be adhered to.
Before a procedure or function is called from a foreign-language program
component for the first time, the package containing the procedure or
function declaration will be initialized, as will all non-initialized
packages which were imported directly or indirectly by this package in WITH
lists (see section 13.3).

Implementation-defined characteristic

ENTRY subprograms may be subject to implementation-defined restrictions.

• INLINE subprograms

For an INLINE subprogram (usable outside the package), the package
specification must also contain a specification of the associated block,
since the subprogram call, which may lie outside the package, is replaced
(expanded) by the subprogram block (see also section 8.3).
The specification of the subprogram block may have to include, in the

U2778-J-Z55-4-7600 199

Package specification Main program and packages

package specification, further declarations and definitions which would
otherwise only be required in the package body. By being thus included,
these declarations and definitions are made outwardly visible.

200 U2778-J-Z55-4-7600

Main program and packages Package specification

Note

A package specification should only contain (and thus make outwardly
visible) those declarations and definitions which are absolutely required
by another compilation unit.

Example

This example illustrates implementation of a data type with the possible
access operations. For purposes of simplification, the data type "nodes"
contains only a single field "class", which can only be accessed via the
specified subprograms. By implementing these as INLINE subprograms, the
accesses are replaced at the call position by the statements specified in
the subprogram blocks.

PACKAGE data;

TYPE
range = 0..255;
node_pointer = nodes;
nodes = RECORD

class : range;
END;

FUNCTION new_nodes: node_pointer;

INLINE FUNCTION class_of (pointer: node_pointer): range;
BEGIN

class_of := pointer .class
END;

INLINE PROCEDURE set_class (pointer: node_pointer); i: range);
BEGIN

pointer .class := i;
END;

END.

Cross-references

Procedure heading: 8.1
Function heading: 8.2
INLINE subprograms: 8.3
ENTRY subprograms: 8.4

U2778-J-Z55-4-7600 201

Package body Main program and packages

Package Body

For each package specification there must be a package body. If a package
specification does not contain procedure and function headings to which
procedure or function identifications still have to be specified, the
associated package body may be "empty".

Unlike identifiers declared in the package specification, the identifiers
declared in the package body are visible only inside the package body, and
cannot be used outside the package.

The statement part of the package body is executed once and only once when
a program is run. The statement part may contain statements for initializing
variables (see example at the end of section 11.2).

Notes

A common package specification in different programs may have different
package bodies which satisfy the various requirements regarding memory
or runtime conditions. In the package "stack" (see section 11.2), the
stack is implemented by means of the ARRAY variable "representation",
and thus has a defined size. An alternative body might implement the stack
as a list whose size (theoretically) is unlimited. This would not change
anything at the interface (package specification).

The value of a variable declared in the package body can only be changed
in the body; the value of a variable declared in the package specification
may also be changed outside the package.

For enhanced readability, the formal parameter list for the subprograms
specified in the package specification may be repeated, as can the result
type in the case of functions.

Cross-references

Statements: 10
Program parameter list: 11.5
Program execution: 13.3.3

202 U2778-J-Z55-4-7600

Packages and main program Context specification

Context Specification

The context specification sets up the connection to other packages.

context-specification
= WITH-list | USE-list.

WITH-list = "WITH" package-identifier {","
package-identifier} ";".

USE-list = "FROM" package-identifier "USE"
imported-identifier {","
imported-identifier} ";".

imported-identifier
= constant-identifier | type-identifier
| variable-identifier | procedure-identifier
| function-identifier.

WITH List

The WITH list is used to define a relation between the compilation units of
a program: if the package-identifier P occurs in the WITH list of the
compilation unit U, this means that "U relates to the package specification
of P". Each package body automatically relates to the associated package
specification.

The relation "compilation unit U relates to the compilation unit V" must
be a partial ordering to the set of all compilation units belonging to a
program. This requirement excludes the possibility that two specifications
can mutually relate to each other. However, it is not prohibited for the
body of a package P to relate to the specification of a package Q and, at
the same time, for the specification or implementation of Q to relate to
the specification of P.

Example

PACKAGE P; PACKAGE Q;
. .
. .
. .
END. END.

U2778-J-Z55-4-7600 203

Context specification Packages and main program

WITH Q; WITH P;
PACKAGE BODY P; PACKAGE BODY Q;
. .
. .
. .
BEGIN BEGIN
END. END.

If the same package-identifier occurs more than once in the same or in
different WITH lists of a compilation unit, only the first occurrence is
significant and the subsequent ones are ignored. In particular, this applies
even when the first occurrence takes place in a WITH list of a package
specification and a subsequent occurrence takes place in a WITH list of the
associated package body.

The specification of a packa-identifier P in a WITH list of a compilation
unit U makes it possible for all identifiers declared directly in the
specification of P to be used in U by specifying

package-identifier "." identifier

The identifiers from package P are (fully) qualified by specifying the
package-identifier. In a package body, identifiers from the associated
package specification are used without prefixing the package-identifier.

In a WITH list, it is not allowed to specify the name of a main program
(program name).

Example

In the package body b, the enumerated type "color" is used with its constant-
identifiers from package a.

PACKAGE a;
TYPE

color = (red, blue, yellow, green, white, violet, orange);
END.

WITH a;
PACKAGE BODY b;
VAR

f: set of a.color;
BEGIN

f := [a.red, a.blue, a.yellow];
END { b }.

204 U2778-J-Z55-4-7600

Packages and main program Context specification

USE List

Imported identifiers from a foreign package which are listed in a USE list
may be used without prefixing the package-identifier.

The package-identifier listed in a USE list must also be listed in a
preceding WITH list, and the imported identifiers must be declared in the
package specification of the named package.

If the identifier listed in a USE list identifies an enumerated type, all
constant-identifiers forming the values of the enumerated type are also
imported implicitly.

If the same identifier occurs more than once in the same or in different USE
lists of a compilation unit, only the first occurrence is significant and
the subsequent ones are ignored. In particular, this applies eben though the
first occurrence takes place in a USE list of a package specification and a
subsequent occurrence takes place in a USE list of the associated package
body.

Note

To enhance the readability of a program, USE lists should be employed only
in limited cases so that the use of an identifier will clearly indicate
the location of its declaration or definition.

Example

The example given in section 11.3.1 looks as follows when a USE list is
employed:

PACKAGE a;
TYPE

color = (red, blue, yellow, green, white, violet, orange);
END.

WITH a;
FROM a USE color; { this also imports the identifiers }

{ red through orange }
PACKAGE BODY b;
VAR

f: set of color;
...
BEGIN

f := [red, blue, yellow];
END { b }.

U2778-J-Z55-4-7600 205

Private types Packages and main program

Private Types

A Pointer type is called a private type when the Pointer type is defined in a
package specification and the domain type is not defined until the associated
package body. Only the type-identifier is known outside the package, but not
the underlying structure of the domain type.

Pointer dereferencing with a pointer of the private pointer type is not
permitted outside this package or in INLINE subprograms declared in this
package specification. Identifier variables of this type may only be accessed
via access procedures and access functions declared in the package
specification. The required procedures New and Dispose may likewise be called
for private pointer types only within this package.

Note

With the concept of private pointer types, Pascal-XT supports the concept
of "information hiding", i.e. the concealment of details in the package
body. This enhances the security of a program, since data structures
cannot be inadvertently modified from outside.

Example

PACKAGE queue_manager;

TYPE queue = element;
FUNCTION tail (q: queue): queue;

END {queue_manager}.

PACKAGE BODY queue_manager;

TYPE element = RECORD
next: queue

END;
FUNCTION tail (q: queue): queue;
BEGIN

tail := q .next
END {Tail};

BEGIN

END {queue_manager}.

Cross-references

Pointer types: 6.4

206 U2778-J-Z55-4-7600

Packages and main program Private types

Domain type: 6.4
Dereferencing: 9.6.4
New: 15.2
Dispose: 15.2

U2778-J-Z55-4-7600 207

Program parameters Packages and main program

Program Parameters

The identifiers in a program parameter list are called program parameters. Each pro-
gram parameter, except the required identifiers Input and Output, must be declared
directly as FILE-variables in the block of the compilation unit in whose program parame-
ter list it occurs (see also implementation-defined and implementation-dependent charac-
teristics).

The program parameters of all compilation units belonging to a program (see also sec-
tion 13.1) must differ in pairs.
Since Input and Output have a special meaning as program parameters (see
below), they are permitted to be listed as program parameters in different
compilation units. They then always denote the same file.

In Pascal-XT, the identifiers Input and Output, when they occur as program
parameters, are automatically imported from an indirectly addressable
package Input Package or Output_Package which declares these identifiers
as Text-type variables. When Input_Package is initialized, Reset (Input)
is performed implicitly; when Output_Package is initialized, Rewrite (Output)
is performed implicitly.

PACKAGE Input_Package (Input);
VAR Input: Text;
END { Input_Package }.

PACKAGE Output_Package (Output);
VAR Output: Text;
END { Output_Package }.

In Standard Pascal, Input and Output are variable-identifiers of the required type Text.
Only when they occur in the program parameter list do they become visible (unlike the
other required identifiers), and only then will they automatically be opened using Reset
(Input) or Rewrite (Output) before being accessed for the first time.

This somewhat different interpretation of the required identifiers Input and Output in Pas-
cal-XT and in Standard Pascal does not, however, have any effect on a program.

Implementation-defined characteristics

For program parameters, the assignment to objects outside the program is imple-
mentation-defined.

According to the Pascal standard, the effect of the required procedures Reset or
Rewrite on either of the required textfiles Input or Output is implementation-defined.
In Pascal-XT, this characteristic is defined for all implementations:
namely, an Open_Error occurs.

208 U2778-J-Z55-4-7600

Packages and main program Program parameters

Implementation-dependent characteristic

For program parameters whose variables do not have a FILE type, the assignment
to objects outside the program is implementationdependent.
In Pascal-XT, a variable cannot be specified in the program parameter list
if it does not have a FILE type.

Note

The Pascal-XT implementation cannot check whether the program parameters
differ pair-by-pair in all compilation units belonging to a program.

Example

PACKAGE reporter (message_output);
VAR

message_output: Text;
...
END.

PACKAGE BODY reporter (message_texts, Output);
VAR

message_texts: Text;
BEGIN
...
END.

WITH reporter;
FROM reporter USE message_output;
PROGRAM example (Input, Output, file_input);
VAR

file input: Text;
BEGIN
...
END.

The program parameters in this program, apart from Input and Output, are all
different. The file "message-texts" is only known in the package body of
"reporter", and it is not possible to access this file from outside the
package. On the other hand, it is possible to access the package
specification, even from outside (see main program).

Cross-references

Textfile: 6.3.5.2
Scope rules: 12
Reset, Rewrite: 15.1
Input, Output: 6.3.5.2, 11.5, 19, A.2

U2778-J-Z55-4-7600 209

Packages and main program Program parameters

Scope Rules
Every identifier and every label must have a defining point. Each defining point has a
region (see section 12.2) which is part of the program text, and a scope (see section
12.3) encompassing the entire region or only part of it. The defining point of an identi-
fier must be located in front of each place where the identifier is used, except in the
case when it is used as a domain type in a Pointer type, or when program parameters
are used.

Blocks

block = { label-declaration-part
| constant-definition-part
| type-definition-part
| variable-declaration-part
| procedure-declaration
| function-declaration

}
statement part .

A block consists of declarations and definitions - known for short as the declaration
part - and a statement part. Declarations are used to introduce objects with particular
characteristics (values, algorithms). Definitions are used to define objects by means of
equating a name with another object. The definition is indicated by an equals sign. The
statement part determines the algorithmic actions which are performed when the block
is executed.

All identifiers and labels used in a block must be declared or defined beforehand, in so
far as they are not predefined (required).

A block closest-containing a label declaration part in which a label label is defined must
contain exactly one statement marked with this label. There can be any number of
branch statements (GOTO statements) specifying this label.

In Pascal-XT, declarations and definitions can be specified in any sequence;
they may also occur more than once.

U2778-J-Z55-4-7600 211

Block Scope rules

In Standard Pascal, the general form for a block is as follows:

block = [label-declaration-part]
[constant-definition-part]
[type-definition-part]
[variable-declaration-part]
{ procedure-declaration

| function-declaration
}
statement-part .

Blocks are defined recursively. This is because procedure and function declarations in
turn contain a block, in so far as they are not declared to be external subpro-
grams (see Directives). A subprogram thus has in turn a declaration part and a state-
ment part. Accordingly, a program may contain many nested blocks.

PROGRAM p

PROCEDURE q1

PROCEDURE q2

BEGIN ... END;

FUNCTION f1

BEGIN ... END;

BEGIN ... END;

PROCEDURE q3

BEGIN ... END;

BEGIN
...
END.

Fig. 12-1 Block structure in a program

212 U2778-J-Z55-4-7600

Scope rules Block

Cross-references

Label declaration part: 4
Constant definition part: 5
Type definition part: 6
Variable declaration part: 7
Procedure declaration: 8.1
Function declaration: 8.2
Procedure block: 8.1
Function block: 8.2
Directives: 8.6
Statements: 10
GOTO statement: 10.1.4
Main program block: 11.1
Package block: 11.2
Block: 12.1
Region: 12.2
Defining point: 12.2
Scope: 12.3
Executing a block: 13.3.1
Required identifiers: A.2

U2778-J-Z55-4-7600 213

Defining points and regions Scope rules

Defining Points and Regions of Identifiers and Labels

Every identifier and every label within a program text must have a unique defining point
for an associated region which is part of the program text (see section 13.1).

• Labels

The defining point of a label is its occurrence in a label declaration part (see chapter 4)
and the associated region is the total block closest-containing the defining point.

• Constant identifiers, type identifiers, variable identifiers,
procedure identifiers and function identifiers

The defining point of the identifier is its occurrence in its definition or declaration (see
chapters 5 to 8). A procedure or function identification does not contain a defining
point, but rather an applied occurrence of the procedure-identifier or function-identifier
(see sections 8.1, 8.2).

The associated region is the total block closest-containing the defining point.
If the defining point is closest-contained in a package specification, the
region is the entire package block. If, however, the defining point is
closest-contained in a package body, the associated region is merely a
package body. Thus, identifiers which are defined or declared in a package
specification may be used directly in the package body, but not vice versa.

• Package identifiers

The defining point of a package-identifier is its occurrence in a package
specification (immediately after PACKAGE). The occurrence of the package-
identifier in a package body (immediately after PACKAGE BODY) is not a
defining point, but rather an applied occurrence of the package-identifier.

The region for the defining point of a package-identifier is the entire
program text, except for those compilation units which do not list the
package-identifier in a WITH list of their context specification.
If the package-identifier is listed in the WITH list of the context
specification of a package specification, the region of the package-
identifier also includes the associated package body, regardless of whether
the package-identifier is also named in a WITH list of the context
specification of this package body.

214 U2778-J-Z55-4-7600

Scope rules Defining points and regions

• Imported identifiers

The defining point of an imported identifier is its occurrence in a USE list.
The region for the defining point of an identifier imported into a package
specification (i.e. one that is listed in a USE list of the context
specification of the package specification) is the entire associated package
block. The region for the defining point of an identifier imported into a
main program is the program-block. Imported identifiers may therefore be used
directly within their region (or more precisely, the scope; see section 12.3)
without being preceded by the package-identifier.

• Field identifiers

The defining point of a field-identifier is its occurrence in a field designator. The associa-
ted region is the RECORD type closestcontaining the defining point (see section 6.3.3).

• Constant identifiers of an enumerated type

The region for the defining point of a constant-identifier which is defined as an enumera-
ted-type value is the entire block closest-containing the enumerated type (see section
6.2.5). This means that, in the following example, the region for the defining point of
"red" is the entire surrounding block, and not merely the RECORD type:

RECORD
color : (red, yellow, green);
...

END

If the enumerated type is closest-contained in a package specification, the
region for the constant-identifier in the enumerated type is the entire
package block; if the enumerated type is closest-contained in a package body,
the region is the package body.

• Parameter identifiers

The defining point of a parameter-identifier is its occurrence in a formal parameter list.
The associated region is the formal parameter list closest-containing this defining point.
If the formal parameter list is part of a procedure or function declaration for which there
is a procedure- or function-block, the defining point of a parameter identifier is at the
same time the defining point for a variable-identifier, procedure-identifier or function-
identifier (depending on the type of parameter involved) for the region that constitutes
the procedure-block or function-block.

U2778-J-Z55-4-7600 215

Defining points and regions Scope rules

• Bound identifiers

The defining point of a bound-identifier is its occurrence in a conformant array schema.
The associated region consists of the formal parameter list closest-containing the defi-
ning point, plus the associated procedure-block or function-block.

• Field designator identifiers in a WITH statement

The RECORD-variable in a WITH statement is the defining point of all field identifiers
declared in the associated RECORD type as field designator identifiers. The associated
region (in which these field designator identifiers may be used directly) is the statement
in the WITH statement (see section 10.5).

• Required identifiers

Identifiers for required constants, types, procedures and functions have an imaginary
defining point (in front of the program text) whose region is the entire program text.

This does not apply to the required identifiers Input and Output, which stand for Text-
type variables.
In Pascal-XT, Input and Output have their defining point in the package
specifications of the required package Input_Package or Output_Package
(see also section 11.5).

In Standard Pascal, Input and Output have an imaginary defining point in front of the
main-program-block if and only if they occur in the program parameter list.

Cross-references

Label declaration: 4
Constant definition: 5
Type definition: 6
Variable declaration: 7.1
Procedure declaration: 8.1
Function declaration: 8.2
Formal parameters: 8.5
Bound identifiers: 8.5.4
WITH statement: 10.5
Program text: 13.1
Required identifiers: A.2

216 U2778-J-Z55-4-7600

Scope rules Scopes

Scopes and the Use of Identifiers

The use of an identifier (label) is only possible within the scope of its defining point.
The scope of a defining point is its region, minus the regions of other defining points of
like-named identifiers (labels) contained therein. If, in other words, as in Fig. 12-2, an
identifier x in the main program has a defining point D1 and a like-named identifier has
a defining point D2 in the procedure "proc", the scope of D1 is interrupted by the
region of D2, so that only D2, but not D1, is valid within the procedure "proc".

PROGRAM p(output); Part of the scope
VAR x, y: integer; of the identifier x

which was declared in
PROCEDURE proc; Region and scope the main program
VAR x: integer; of the identifier x
BEGIN which was declared Region of the identi-

x := y ; in the procedure fiers x and y which
END { proc }; "proc" were declared in the

main program; also
scope for y

BEGIN
x := 1; Part of the scope
y := 2; of the identifier x
proc; which was declared in
writeln (x); the main program

END { p }.

Fig. 12-2 Example of regions and scopes

In the region of a defining point of an identifier (label), there must be no like-named
identifiers (labels) having a defining point for the same region. Thus, different but like-
named identifiers (labels) cannot be declared or defined in the same block. The follo-
wing type definition part is therefore illegal, since there are two different defining points
in the same block for the like-named identifiers "unknown":

TYPE
color = (red, yellow, green, unknown);
form = (round, square, unknown);

{ illegal due to double definition of "unknown" }

U2778-J-Z55-4-7600 217

Scopes Scope rules

Identifiers (labels) may only be used within their scope. Their use then establishes a
relation to the sole defining point of a like-named identifier (label) in this scope. For this
reason, the use of the identifier x in the statement part of procedure "proc" (Fig. 12-2)
refers to the defining point D2 of x; the variable x declared in the main program is left
unchanged by the statement x := y. Thus, the program output is 1. The use of y within
the procedure, on the other hand, refers to the variable y which is declared in the main
program.

The defining point of an identifier (label) must precede all associated uses of that identi-
fier (label) in the program text, except in two cases:

New Pointer types must use a type-identifier as a domain type in front of their defi-
ning point, in so far as the applied occurrence and the defining point are closest-
contained in the same declaration part (see section 6.4).

Program parameters are applied occurrences of identifiers which are only declared
later in the main-program-block or package block.

On the basis of these rules, the program below is errored:

PROGRAM errored;

CONST max = 13; { defining point D1 for max }

PROCEDURE p; { start of region for D2 }

TYPE t = 1..max; { applied occurrence of defining point }

VAR max: t; { defining point D2 for max }

BEGIN
END; { end of region for D2 }

BEGIN
END.

In the main program, there is a defining point D1 for an identifier "max" with the entire
main-program-block as its region. In the variable declaration within the procedure p,
there is a defining point D2 for a second identifier "max" whose region is the entire pro-
cedure-block, i.e. the range of the procedure-block lying in front of the declaration of
"max". It follows that this entire procedure-block is excluded from the scope of D1. The
applied occurrence of the identifier "max" in the type definition within procedure p can
therefore only refer to the defining point D2, since this applied occurrence does not lie
in the scope of D1. In this case, however, this applied occurrence of "max" precedes
the associated defining point D2, which is illegal.

218 U2778-J-Z55-4-7600

Scope rules Scopes

Since the package-identifier in a package body constitutes the applied
occurrence of an identifier, the associated defining point of this package-
identifier, and thus the associated package specification in the program text
(the imagined succession of all compilation units; see chapter 13), must
precede the package body. Similarly, in the program text, the package
specification of a package named in a WITH list of a context specification
must precede the compilation unit starting with this context specification.

If a package-identifier is listed in a WITH list of a context specification
of a compilation unit, then all identifiers in this compilation unit which
are directly defined or declared in the associated package specification
may be used by prefixing the package-identifier:

constant-name = [package-identifier"."] constant-identifier.

type-name = [package-identifier"."] type-identifier.

variable-name = [package-identifier"."] variable-identifier.

procedure-name = [package-identifier"."] procedure-identifier.

function-name = [package-identifier"."] function-identifier.

In these constructs, the scope of the identifier following the period "." is
formally excluded from all regions defined in section 12.2. Instead, the
package-identifier is at the same time a new defining point for all
identifiers which already have a defining point for the region of the
associated package specifications. The region of these new defining points is
then identical to the scope of the identifier following the ".", which is
excluded from all other regions.

The same applies by analogy to selected objects (see section 9.6.3).

U2778-J-Z55-4-7600 219

Scope rules Scopes

Structure, Compilation and Execution of
Programs

This chapter describes the structure of an executable program, the characteristics of
separate compilation, and program execution.

Program Structure

In Pascal-XT, a program consists of exactly one main program and any number
of packages. A program can be considered as a succession of packages and the
main program. This imagined succession of all compilation units belonging to
a program is called a program text.

U2778-J-Z55-4-7600 221

Program structure Program

In Standard Pascal, a program consists solely of the main program.

- - - - - - - - - - - - - - - - -

PACKAGE a;
...

END { a }.

PACKAGE BODY a;
...

END { a }.

PACKAGE b;
...

END { b }.

WITH a;
PACKAGE BODY b;

...
END { b }.

WITH a, b;
PROGRAM p;

...
END { p }.

- - - - - - - - - - - - - - - - -

Fig. 13-1 Example of a program text

Note

There may be more than one different package body for a single package.
A program, however, is only allowed to contain one body of a package.

222 U2778-J-Z55-4-7600

Program Program structure

Example

In this example, the package "stack" from section 11.2 is used as a main program.

WITH stack;
PROGRAM calc (Input);
VAR

i, j: Integer;
BEGIN

FOR i := 1 to 6 DO BEGIN
Read (Input, j);
stack.push (j);
END;

WHILE NOT stack.is_empty DO BEGIN
stack.pop (j);
{ process j }
END;

END { calc }.

U2778-J-Z55-4-7600 223

Compilations Program

Compilation Units and Compilation Sequence

Package specifications, package bodies and main programs are all compilation units.

compilation-unit = package-specification
| package-body
| main program .

Each compilation unit is stored in its own source file, and is compiled separately from
all other compilation units.

The rules governing the sequence in which compilation units are compiled can
be derived directly from the scope rules and the relations specified in the
context specifications:

A compilation unit must be compiled in accordance with all package
specifications listed in its WITH list.

A package body must be compiled in accordance with the associated package
specification.

A compilation unit is dependent on a package specification whenever the
latter is listed in the WITH list of the compilation unit. Any change made to
the package specification (e.g. modification of constants, identifiers,
operators, WITH lists, etc.) invalidates all of the dependent compilation
units. Therefore, once a modified package specification has been compiled,
all dependent compilation units must be recompiled. A change made to a
package body will not affect other compilation units.

Note

The manner in which compilation units are stored and the compiler accesses
the package specifications listed in the WITH clauses is described in
section 21.2.

224 U2778-J-Z55-4-7600

Program Compilations

Example

PACKAGE a;
...
END.

WITH a;
PACKAGE b;
...
END.

WITH b;
PACKAGE c;
...
END.
PACKAGE d;
...
END.

WITH c, d;
PROGRAM example;
...
BEGIN
END.

A change made to package specification b makes it necessary to recompile
the dependent package specification c and, as a result, the main program
"example" as well. Because package specifications b and c are recompiled,
the associated package bodies must obviously be recompiled, too.
Package specifications a and c are not affected by these changes.

Cross-references

Main program: 11.1
Package specification: 11.2.1
Package body: 11.2.2
WITH list: 11.3.1
Scope rules: 12.2

U2778-J-Z55-4-7600 225

Execution Program

Executing a Program or Subprogram

Executing a Block

To execute a block, a separate set (incarnation) of the variables declared in the block
is set up. The variables stored in this incarnation are different from the variables of any
other incarnation of the same or a different block. In particular, each recursive incarna-
tion of a procedure or function has its own set of variables. The lifetime of the variables
stored in an incarnation ends when block execution is terminated (except in the case of
package blocks; see section 13.3.3). Execution of a block consists in the execution of
the statements in its statement part, and is terminated when

the final statement in the statement part of the block has been processed;
a RETURN statement is executed;
a GOTO statement is executed whose jump label is declared and defined outside
the block;
an exception situation occurs (e.g. by means of Raise) for which there is no
exception handler in the block.

In contrast, identified variables live from the moment they are created by a New call
until the end of main program execution, or until identifying values referring to them are
destroyed by a Dispose or Release call.

Cross-references

Identified variables: 7.2, 9.6.4, 18.3
GOTO statement: 10.1.4
RETURN statement: 10.1.6
Block: 12.1
Raise: 14, 15.11
New, Dispose, Release: 15.2, 18.3

Executing a Subprogram

Execution of a procedure-block or a function-block is activated by a procedure call
(also known as a procedure statement) or by a function call (also known as a function
designator).

Cross-references

Procedure call: 8.7
Function call: 8.7, 9.6.1

226 U2778-J-Z55-4-7600

Program Execution

Executing a Program

As with subprogram block execution, variables declared directly in a main-program-
block or a package block have, as their lifetime, the entire duration of program execu-
tion.

Program execution starts with the initialization of all packages belonging to the
program, followed by execution of the main-program-block.

A package is initialized by executing the package block. Each package is
initialized exactly once. If, while the statement part of a package block is
being executed, variables declared in a foreign package specification are to
be accessed or procedures and functions declared in a foreign package
specification are to be called, then the foreign package must be initialized
beforehand. This is done in an implementation-dependent sequence. To force a
package to be initialized at the right time, the required procedure Elaborate
(see section 15.12) can be called.

Possible runtime errors

Memory_Error - Program execution cannot continue due to a lack of
memory space (e.g. when a subprogram is called or
in the case of New).

Elab_Error - Initialization of the packages of a program cannot
continue since loops were generated during initia-
lization through the use of the required procedure
Elaborate.

unpredictable - The identifiers of the program parameters of the main
effects program and all associated packages do not differ

pair-by-pair, except for Input and Output.

- The names of all packages belonging to a program
and the name of the main program do not differ
pair-by-pair.

Cross-references

Main program block: 11.1
Package block: 11.2
Package specification: 11.2
Block: 12.1
Elaborate: 15.12

U2778-J-Z55-4-7600 227

Program Execution

Exception Handling

This chapter describes those extensions to the standard in Pascal-XT which
are used for handling errors and exception situations that can occur when a
program is running.

An exception is an event which interrupts normal program execution.
It may occur (be triggered) implicitly while a statement is being executed,
or explicitly by calling the required procedure Raise. The reaction to an
exception is referred to as exception handling. Actions to be performed may
be specified in the EXCEPTION part of a compound statement. If an exception
occurs, program execution continues in the EXCEPTION part (if present) of
the compound statement.

The required procedure Raise (see section 15.11) can be employed by the user
to create an exception situation or to propagate an exception which has
already occurred. The exception number is passed as a parameter.

Once an exception situation has occurred, the required function Error_Number
can be used to query the most recent exception.

Cross-references

Compound statement: 10.2
Raise: 15.11
Error_Number: 15.11

U2778-J-Z55-4-7600 229

Predefined and user-defined exceptions Exception handling

Predefined and User-defined Exceptions

An exception is represented by an Integer number. The negative numbers,
including zero, are reserved for Pascal-XT implementations; the positive
numbers may be employed at the user’s discretion.

The reserved exceptions with the numbers -1 to -16 are linked to required
identifiers as constants (see also section 5.2). These exceptions occur in
the following situations (for details see Appendix A.5):

Numeric_Error = -2 Occurs when there is an overflow during the computation
of an arithmetic expression or a required arithmetic
function, or when the real number assigned to a
Short_Real variable is too large.

Range_Error = -3 Occurs when an ordinal value does not lie in the
permissible value range.

Set_Error = -4 Occurs when not all members of the set lie in the value
range of the relevant SET type.

String_Error = -5 Occurs during character string processing when
conditions regarding length are violated.

Index_Error = -6 Occurs during object indexing when the value of the
index expression does not lie in the permissible value
range.

Pointer_Error = -7 Occurs when a Pointer object is dereferenced with the
Pointer value NIL.

Variant_Error = -8 Occurs when a component in an inactive variant of a
RECORD type is accessed. This error only occurs if the
variant part containing this variant has a tag field.

Case_Error = -9 Occurs in a CASE statement when there is no CASE
constant for the value in the case index and no ELSE
part is specified.

File_Error = -10 Occurs during file access when the file is in the wrong
mode or there are implementation-dependent restrictions
(e.g. internal buffer is too small).

Eof_Error = -11 Occurs during an attempt to read beyond the end of a
file.

Open_Error = -12 Occurs when a file cannot be opened (e.g. file
nonexistent, access-protected, etc.).

Read_Error = -13 Occurs during reading (Read, Readstring) of an Integer

230 U2778-J-Z55-4-7600

Exception handling Predefined and user-defined exceptions

or Real number when the number is syntactically errored
or its value is too large.

U2778-J-Z55-4-7600 231

Predefined and user-defined exceptions Exception handling

Memory_Error = -14 Occurs during program execution when there is not
enough main memory (e.g. when calling subprograms or
the required procedure New).

Break_Error = -15 Occurs when program execution is interrupted by the
user.

Elab_Error = -16 Occurs when initialization of the packages in a program
cannot be continued because the use of the required
procedure Elaborate creates loops during
initialization.

System_Error = -1 Occurs as a blanket term for other errors.

The detection of these predefined exceptions is defined by the Pascal-XT
implementation, possibly in conjunction with the Check option.

Notes

If the Check option is deactivated (see chapter 16) the errors
Numeric_Error, Range_Error, Set_Error, String_Error, Index_Error,
Pointer_Error, Variant_Error and Case_Error are generally not detected
and cause unpredictable effects (see section 2.3). As an implementation-
dependent feature, however, a Pascal-XT implementation can also detect
errors when the Check option is deactivated.

A Pointer_Error frequently occurs as a consequent error if, for example,
program errors cause memory to be overwritten, or Pointer-objects are
dereferenced whose values are undefined.

All user-defined exceptions in a program should differ pair-by-pair. Only
then can the origin of the exception be determined unambiguously in an
EXCEPTION part.

Cross-references

Errors: 2.3
Predefined exceptions: 5.2, A.5
Assignment-compatibility: 6.6.3
Program execution: 13.3
Format denoter: 15.1
Check option: 16.2

232 U2778-J-Z55-4-7600

Exception handling EXCEPTION part

EXCEPTION Part

The reaction to one or more exceptions can be defined in an exception
handling part (EXCEPTION part). This part is an extension of the compound
statement. It consists of a sequence of statements located after the keyword
EXCEPTION. The syntax for the extended compound statement is thus as follows:

compound-statement = "BEGIN"
statement-sequence
[EXCEPTION-part]
"END".

EXCEPTION-part = "EXCEPTION" statement-sequence.

Thus, an EXCEPTION part may be specified in the statement part (compound
statement) of a subprogram, a main program or a package body, or in any other
compound statement.

If no exception occurs when a statement sequence in a compound statement with
EXCEPTION part is processed, the statements in the EXCEPTION part are not
executed.

If, however, an exception does occur when the statement sequence in a
compound statement with EXCEPTION part is processed, all remaining statements
up to the keyword EXCEPTION are skipped, and execution resumes with the first
statement in the EXCEPTION part. Once the statement sequence in the EXCEPTION
part has been executed normally, the exception is considered to be handled,
and processing of the compound statement terminated normally. If an exception
situation again occurs when the statements in the EXCEPTION part are
executed, of if another exception is created by means of Raise, the exception
is said to be propagated (see section 14.3).

U2778-J-Z55-4-7600 233

EXCEPTION part Exception handling

Example 14-1

VAR
source : Text;
s : String;

BEGIN
Reset (source); {1}

{2}{3}
WHILE NOT Eof (source) DO BEGIN {1} {3}

Read (source, s); {1} {3}
Writeln (Output, s); {1}
Readln (source); {1}
END; {1}

EXCEPTION
IF Error_Number = Open_Error THEN {2}{3}

Writeln (Output, ’Error when opening the file!’) {2}
ELSE IF Error_Number = String_Error THEN {3}

Writeln (Output, ’Input line is too long!’) {3}
ELSE

Raise (0);
END;

In this example, comment braces indicate the lines which are to be executed
when certain situations occur:

{1} Statements to be executed under normal conditions.

{2} Statements to be executed in case of error with Reset (Open_Error).
The exception is considered to be handled.

{3} Statements to be executed when input line is too long (String_Error).
The exception is considered to be handled and the read operation is
terminated.

All other exceptions are propagated by Raise (0) since they cannot be
handled.

Note

If an exception cannot be handled in an EXCEPTION part, the same exception
should be propagated with Raise (0) since otherwise an unhandled exception
situation will be incorrectly considered handled.

Cross-references

Procedure block: 8.1
Function block: 8.2
Compound statement: 10.2
Main program block: 11.1
Package body: 11.2
Package block: 11.2

234 U2778-J-Z55-4-7600

Exception handling EXCEPTION part

Block: 12.1

U2778-J-Z55-4-7600 235

How to handle exceptions Exception handling

How to Handle Exceptions

The way to handle an exception occurring when the statement sequence in a
compound statement is processed depends on whether the compound statement
contains an EXCEPTION part. If it does, then the statement sequence contained
in this EXCEPTION part will be executed.

If the compound statement does not contain an EXCEPTION part, or if an
exception again occurs in the EXCEPTION part, then the following cases may
occur:

1) An exception situation in a compound statement which does not represent
the entire statement part of a block, is again generated immediately
behind the keyword END in this compound statement (see example 14-2).
In the case of nested compound statements, the relevant EXCEPTION part
can be determined on the basis of the static formulation of the program.

2) An exception situation in the compound statement (statement part) of a
procedure-block or function-block is again generated at the call point
of the subprogram (see example 14-3). Thus, the relevant EXCEPTION part
cannot be determined from the static formulation of the program, but must
be established dynamically by retracing the subprogram calls.

3) An exception situation in the compound statement (statement part) of a
main-program-block or package block causes the program to abort. The
error is handled by the relevant operating or runtime system.

An exception is propagated by being generated again with the Raise
(Error_Number) or Raise (0) call. Raise (Error_Number) generates the same
exception again and thereby changes the location at which the exception
originated. Raise (0), on the other hand, propagates the same exception
without changing the location at which the exception originated (see section
15.11 and examples 14-4 and 14-5).

236 U2778-J-Z55-4-7600

Exception handling How to handle exceptions

Example 14-2

VAR
i : Long_Integer;

BEGIN
FOR i := 1 TO 5 DO BEGIN

Reset (file);
EXIT;

EXCEPTION
IF (i < 5) AND (Error_Number = Open_Error) THEN

wait
ELSE

Raise (Error_Number)
END; {1}

{ processing the file }
...

END {1}

If Raise is called in the EXCEPTION part, then, in accordance with Rule 1,
the exception is generated again at the locations marked {1}.

Example 14-3

PROCEDURE r;
BEGIN

...
END {r};

PROCEDURE q;
BEGIN

r;
EXCEPTION

... { exception handling A2 }
END {q};

PROCEDURE p;
BEGIN

q;
EXCEPTION

... { exception handling A1 }
END {p};

U2778-J-Z55-4-7600 237

How to handle exceptions Exception handling

The following situations may occur:

1) If an exception occurs in the statement part of procedure p, then
EXCEPTION part A1 is responsible for handling it.

2) If an exception occurs in the statement part of procedure q which is
called by p, then EXCEPTION part A2 is responsible. Once A1 has
terminated normally, control returns to the call point of q (in the
statement part of p). If an exception again occurs in A2, the q is
aborted and the exception is again created at the call point of q (in p).
There, the EXCEPTION part A1 is now responsible for handling it.

3) If an error occurs in procedure r which is called by q, then r is aborted
and the exception is created again at the call point in q. The exception
is handled in A2.

Note

When an exception occurs, note that actions may have to be performed in
the EXCEPTION part to ensure the consistency of the data. In particular,
before the EXCEPTION part is abandoned, you must ensure that the function-
identifier has been assigned a value in the compound statement of a
function.

238 U2778-J-Z55-4-7600

Exception handling How to handle exceptions

Example 14-4

 Error propagation with Raise (Error_Number). Here the original location of the error is
 lost.

PROGRAM quadr_equation (Input, Output);

PROCEDURE get_value (name: String; VAR value: Real);
BEGIN

Writeln (’Please enter value for ’, name, ’:’);
Read (value); (1)

END;

PROCEDURE solve;
VAR

p, q, d: Real;
BEGIN

Writeln;
Writeln (’Quadratic equation x**2 + p*x + q = 0’);
get_value (’p’, p);
get_value (’q’, q);
d := Sqrt (Sqr (p) / 4 - q);
IF d = 0

THEN Writeln (’x = ’, -p / 2)
ELSE Writeln (’x = ’, -p / 2 + d, ’ or ’, -p / 2 - d);

EXCEPTION
IF Error_Number = Numeric_Error

THEN Writeln (’The equation has no solution’)
ELSE Raise (Error_Number); (2)

END;

BEGIN (*PROGRAM quadr_equation*)
WHILE True

DO solve;
EXCEPTION

IF Error_Number = Eof_Error
THEN Writeln (’Goodbye’)
ELSE Raise (Error_Number); (3)

END.

 (1) If an error occurs while the number is being read, a Read_Error is triggered. The
location where this error originated thus lies in the procedure get_value (1).

 (2) The Read_Error is propagated, i.e. triggered again. This causes the original loca-
tion of the error (1) to be lost. The new error location is (2).

 (3) Same behavior as (2). The new error location is now the main program (3).

 This type of error propagation hampers error diagnostics since the error location is
 lost. The response of the program is described in detail in the User’s Guide.

U2778-J-Z55-4-7600 239

How to handle exceptions Exception handling

Example 14-5

 With Raise (0) the same exception is propagated. Here, the original error location is
 retained for purposes of error diagnostics. Raise (0) does not trigger an exception with
 the number 0.

PROGRAM quadr_equation (Input, Output);

PROCEDURE get_value (name: String; VAR value: Real);
BEGIN

Writeln (’Please enter value for ’, name, ’:’);
Read (value); (1)

END;

PROCEDURE solve;
VAR

p, q, d: Real;
BEGIN

Writeln;
Writeln (’Quadratic equation x**2 + p*x + q = 0’);
get_value (’p’, p);
get_value (’q’, q);
d := Sqrt (Sqr (p) / 4 - q);
IF d = 0

THEN Writeln (’x = ’, -p / 2)
ELSE Writeln (’x = ’, -p / 2 + d, ’ or ’, -p / 2 - d);

EXCEPTION
IF Error_Number = Numeric_Error

THEN Writeln (’The equation has no solution’)
ELSE Raise (0); (2)

END;

BEGIN (*PROGRAM quadr_equation*)
WHILE True

DO solve;
EXCEPTION

IF Error_Number = Eof_Error
THEN Writeln (’Goodbye’)
ELSE BEGIN

Writeln (’Program aborted’);
Raise (0); (3)
END;

END.

 (1) A Read_Error occurred while reading the number.

 (2) The exception is propagated by Raise (0). Here, the original error location (1) is
retained in the get_value procedure.

 (3) Same behavior as (2). The original error location (1) is retained.

 This type of error propagation considerably simplifies error diagnostics as compared
 to example 14-4. The response of the program is described in detail in the User’s Gui-
 de.

240 U2778-J-Z55-4-7600

Exception handling How to handle exceptions

Cross-references

Procedure block: 8.1
Function block: 8.2
Compound statement: 10.2
Main program block: 11.1
Package body: 11.2
Package block: 11.2
Block: 12.1
Error_Number 15.11
Raise 15.11

U2778-J-Z55-4-7600 241

Exception handling and optimization Exception handling

Exception Handling and Optimization

This section describes the conditions under which an implementation may
execute statements and expressions in a sequence other than the one
prescribed by the Pascal language.

Insofar as Pascal-XT specifies rules for the sequence in which certain
actions are to be performed (canonical rules), an implementation is allowed
to choose an alternative sequence only if this does not affect the program.
In particular, the alternative sequence must not give rise to any exception
situations that would not have occurred anyway if execution had followed
canonical sequence.

If, however, an exception situation does occur when working in canonical
sequence, a program must not assume that the expressions in a compound
statement will be evaluated in canonical sequence. Since optimization causes
expressions to be executed in a non-canonical sequence, it may happen during
this preliminary evaluation that a different exception occurs than would have
happened without optimization. Nevertheless, we can guarantee that no
additional exception situations will arise as a result of optimization.

Example

VAR
i,n : Integer;

BEGIN
n := 0;
FOR i := 1 TO 5 DO

n := n + i ** f[a]; { let f and a be global }
EXCEPTION

IF Numeric_Error THEN
Writeln (Output, ’Error during computation’)

ELSE
Writeln (Output, ’unknown error’)

END.

Let f and a be global variables. The evaluation of f[a] is independent of the
FOR loop and may therefore be performed prior to the loop and even prior to
the statement "n := 0", even if it leads to an exception situation.
Accordingly, the value of n may be undefined within the EXCEPTION part. The
evaluation of f[a] may, however, not take place prior to BEGIN, since
otherwise any resultant exception would be handled by a different EXCEPTION
part.

242 U2778-J-Z55-4-7600

Exception handling Exception handling and optimization

Required Subprograms
This chapter describes all of the required subprograms (procedures and functions), sub-
divided into groups related by topic. Within each group, the subprograms are listed in
alphabetical order. An alphabetical list of all required subprograms can be found in
Appendix A.4.

The identifiers of the required subprograms are not word symbols (keywords), and may
therefore be redefined if desired.

Required subprograms may be called in the same way as user-defined subprograms:

However, standard procedures/functions may not be passed as procedu-
ral/functional parameters.

Moreover, these subprograms do not necessarily obey all of the rules set down for
user-defined subprograms (see chapter 8).

U2778-J-Z55-4-7600 243

Assignfile File processing subprograms

File Processing Subprograms

Assignfile (f, ext)

This procedure assigns, to a FILE variable f, a file existing outside the
program.

"f" is a variable of any FILE type.
"ext" is a character string expression and contains the implementation-
defined description of the physical file assigned to the FILE variable
(see section 22.2).

If necessary, Assignfile implicitly closes the file previously assigned to
FILE variable f.

Implementation-defined characteristic

The way the physical file is described in the required procedure
Assignfile and the effect of this procedure are implementation-defined.

Possible runtime errors:

File_Error - With Assignfile (f, ext), the description of the
physical file in the operand "ext" is errored.

Note:

In Standard Pascal, only files specified in the program parameter list
may be assigned physical files. By using Assignfile, it becomes possible
to do this with any FILE variables, even for local FILE variables and
those created dynamically with New.

Cross-references

FILE type: 6.3.5
Variables: 7.2
Input/Output: 16

244 U2778-J-Z55-4-7600

File processing subprograms Eof/Eoln

Eof (f)
Eof

The Eof (f) function returns the Boolean value True when the end of file f is reached
(EOF); otherwise, it returns the Boolean value False.

If the parameter f is not specified, the function is applied to the required textfile Input.

If the file was opened for writing, the function Eof always returns the value True.

Following Reset, Eof is True when the file is empty. Following Get, Eof is True if,
prior to Get, the final component of the file was in the buffer variable. In all other
cases Eof is False. If Eof is True, calling Get, Read, Readln and Eoln will cause the
runtime error Eof_Error.

If Eof is True, the buffer variable f is undefined.

Possible runtime errors:

File_Error - File f is undefined prior to the Eof (f) call
(see section 7.3).

Cross-references

Buffer variables: 8.2, 16.1
Get: 15.1
Defined variables: 7.3

Eoln (f)
Eoln

Eoln is a function for recognizing the end-of-line component in text files. Eoln can
only be used on textfiles which have been opened for reading. If the parameter f is
omitted, the function is applied to the required textfile Input.

The Eoln function returns the value True if the last item to be read was the end-of-
line component. The buffer variable then contains a blank (’ ’). Otherwise, Eoln re-
turns the value False.

U2778-J-Z55-4-7600 245

Eof/Eoln File processing subprograms

Possible runtime errors:

File_Error - File f is undefined prior to the Eoln (f) call.

Eof_Error - When Eoln (f) is called, the end of file marker
is already reached, i.e. Eof (f) is True.

Cross-references

Textfiles: 6.3.5.2, 16
End-of-file component: 16.1

246 U2778-J-Z55-4-7600

File processing subprograms Get

Get (f)

Get (f) reads the next component from file f and includes it in the buffer variable f . f
may be any FILE-type variable which is open for reading. Eof (f) must be False be-
fore Get (f) is called.

If a component was read, then Eof (f) has the value False. If it was not possible to
read another component (end of file), then the buffer variable f is undefined and Eof
(f) has the value True.

Possible runtime errors:

File_Error - Prior to the Get (f) call, file f was not
opened for reading.

- File f was undefined prior to the Get (f) call.

Eof_Error - Prior to the Get (f) call, Eof (f) was True.

Example

The components of file f were read in sequentially and processed. With Reset (f) the
first component is read to the buffer variable.

VAR
f : FILE OF component_type;

BEGIN
Reset (f);
WHILE NOT Eof (f) DO BEGIN

process (f);
Get (f);
END;

END;

U2778-J-Z55-4-7600 247

Page File processing subprograms

Page (f)
Page

The Page procedure is used for formatting the pages of textfiles. The text which is
output following Page (f) is put onto a new page, provided the output device posses-
ses a page control option. The way in which form feed takes place is implementation-
defined (see User’s Guide [1,2]). If an output line has not been terminated with Wri-
teln (f) before Page is called, Page will perform this Writeln (f) implicitly.

Page can only be applied to a textfile which is open for writing. The procedure is
applied to the required textfile Output if no FILE variable was specified.

Implementation-defined characteristic

The effect of the required procedure Page on textfiles is implementation-defined.

Implementation-dependent characteristic

The effect of reading a textfile which was being generated when the required pro-
cedure Page was applied is implementation-dependent. However, this effect can
be defined for a particular implementation.

Possible runtime errors:

File_Error - File f was not opened for writing prior to
the Page call.

- File f is undefined prior to the Page (f) call.

248 U2778-J-Z55-4-7600

File processing subprograms Put

Put (f)

The procedure Put (f) may be applied to a FILE variable which is open for writing.
The actual value of the buffer variable f is appended to the end of the processed
file. Following the Put call, the buffer variable f is undefined and Eof remains True.

The Put procedure also offers the opportunity of writing components in
abbreviated form. This form of the call is explained further below.

Possible runtime errors:

File_Error - File f was not opened for writing prior to
the Put call.

- File f is undefined prior to the Put (f) call.

unpredictable - The value of the buffer variable f is undefined.
effects

- When an ARRAY is output in abbreviated form with
Put (f, e) or Put (f, c1, ..., cn, e), the value
of index expression e does not lie in the value
range of the index type of the ARRAY.

- When a variable string is output in abbreviated
form with Put (f, e) or Put (f, c1, ..., cn, e),
the value of index expression e is less than 1
or greater than the actual length of the string.

Example

File f is written sequentially with previously computed values.

VAR
f : FILE OF component_type;

BEGIN
Rewrite (f);
WHILE NOT finished DO BEGIN

f := new_value;
Put (f);
END;

END;

U2778-J-Z55-4-7600 249

Put File processing subprograms

Put (f, e)

The base type of FILE type f must be an ARRAY type, a variable string type,
or a RECORD type with an ARRAY type or variable string type for the final
field in its field list.

With an ARRAY type, the expression e must be assignment-compatible with the
index type of the ARRAY type.
With a variable string type, the expression e must have an Integer type,
and its value must not be less than 1 or greater than the actual value of
the variable string.

With a Put call of this sort, an implementation is allowed to write the
components to the file in abbreviated form.
With ARRAY [m..n], only components m to e are written to the file. The
actual length of a character string must be e.

Example

VAR
h : FILE OF ARRAY [1..100] OF Real;
a : Integer;
s : FILE OF String;

BEGIN
...

Put (h, 45); { writes at least the first 45 real values }

a := 23;
Put (h, a); { writes at least the first 23 real values }

Put (s, a); { writes s if length (s) 23 }
END;

Put (f, c1, ..., cn)

The base type of FILE type f must be a RECORD type. It must contain nested
variants to which the CASE constants c1, ..., cn belong. These CASE
constants must be enumerated in the sequence defined by the nesting of the
variant parts. These variants must be initialized to the value of f .
Variants which are not listed must lie in a deeper nesting level then cn.
With a Put call of this sort, an implementation may write an abbreviated
record to the file, i.e. one that only has space for the RECORD fields of
these variants.

250 U2778-J-Z55-4-7600

File processing subprograms Put

Example

Given the following RECORD type, consisting of nested variants which
are referred to in the examples below:

TYPE
char_range = ’0’..’1’;
t = RECORD

t1: Integer;
CASE t2: Boolean OF

False:
(t21: Real;
CASE t22: char_range OF

’0’: (t221: ARRAY [0..10] OF Integer);
’1’: (t222: Short_Integer));

True: (t23: Char);
END;

VAR
g: FILE OF t;

The following Put calls are permitted. The comments indicate how the
length is calculated. Writing takes place in abbreviated form only if
provisions have been made for it in the relevant implementation.

Put (g, False); { writes t1, t2, t21, t22, (t221 or t222) }

Put (g, False, ’0’); { writes t1, t2, t21, t22, t221 }

Put (g, False, ’1’); { writes t1, t2, t21, t22, t222 }

Put (g, True); { writes t1, t2, t23 }

Put (f, c1, ..., cn, e)

The base type of FILE type f must be a RECORD type with nested variants
to which the CASE constants c1, ..., cn belong. These CASE constants
must be enumerated in the sequence defined by the variant parts. The
field list of the variant belonging to the final CASE constant cn must
not contain any further nested variants, and the final field in this
field list must have an ARRAY or variable string type.

With an ARRAY type, the expression e must be assignment-compatible with
the index type of the ARRAY type.
With a variable string type, the expression e must have an Integer type,
and its value must not be less than 1 or greater than the actual length
of the variable string.

With a Put call of this sort, an implementation may write an abbreviated
record to the file, i.e. one containing only the RECORD fields of the
variants determined by c1 cn. If the final RECORD field is an

U2778-J-Z55-4-7600 251

Put File processing subprograms

ARRAY [m..n], only components m to e are written to the file. If the
final RECORD field is a variable string, its actual length must be e.

252 U2778-J-Z55-4-7600

File processing subprograms Put

Example

Put (g, False, ’0’, 2); { writes t1, t2, t21, t22, }
{ t221[0], t221[1], t221[2] }

U2778-J-Z55-4-7600 253

Read - from a non-textfile File processing subprograms

Read (f, v1, ..., vn)

The Read procedure is used for reading in values from a file f to the variables v1 to
vn.

The file variable f may be of any FILE type except for the required FILE type
Any_File. File f must be open for reading, and Eof (f) must be False.

For the number of parameters vi, n 1.

Read (f, v1, ..., vn)

is defined by

BEGIN Read (f, v1); ...; Read (f, vn); END

Although the parameters vi must be variable accesses, they are not variable parame-
ters. They may therefore also be components of packed structures.

• Read - from a non-textfile

Read (f, v)

If FILE variable f does not have the required FILE type Text, then

Read (f, v)

is defined by:

BEGIN v := f ; Get (f); END

v must be a variable access. The value of the buffer variable f must be assign-
ment-compatible with the type of v.

254 U2778-J-Z55-4-7600

File processing subprograms Read - from a non-textfile

Possible runtime errors:

File_Error - Prior to the Read (f, ...) call, file f
was not opened for reading.

- File f is undefined prior to the Read (f, ...) call.

Eof_Error - Prior to the Read (f, ...) call, the end of file
marker is already reached, i.e. Eof (f) is True.

Numeric_Error - While reading from a non-textfile with Read(f,v),
the value of the buffer variable f of the type
Long_Real does not lie in the value range of the
type Short_Real of variable v.

Range_Error - While reading from a non-textfile with Read (f,v),
the value of the ordinal-type buffer variable f
does not lie in the value range of the ordinal type
of variable v.

Set_Error - While reading from a non-textfile with Read (f,v),
the value of the SET-type buffer variable f
does not lie in the value range of the SET type
of variable v.

String_Error - While reading from a non-textfile with Read (f,v),
the actual length of the character string of type
String in the buffer variable f is greater than
the maximum length of the variable string type of
variable v.

- While reading from a non-textfile with Read (f,v),
the actual length of the character string of type
String in the buffer variable f is not equal to
the length of the fixed string type of variable v.

Example

The components of file f are read sequentially and processed:

VAR
f : FILE OF component_type;
v : component_type;

BEGIN
Reset (f);
WHILE NOT Eof (f) DO BEGIN

Read (f, v);
process (v);
END;

END;

U2778-J-Z55-4-7600 255

Read - from a non-textfile File processing subprograms

Cross references

General files: 6.3.5
Assignment-compatibility: 6.6.2
Variable parameters: 8.5.2
Variable accesses: 7

256 U2778-J-Z55-4-7600

File processing subprograms Read - from a textfile

• Read - from a textfile

Read (f, v1, ..., vn)
Read (v1, ..., vn)

If FILE variable f has the required type Text, then each variable vi (i = 1...n) may
have the following types:

the type Char or a subrange of Char,
an Integer type or a subrange of an integer type,
a Real type,
a variable string type,
a type PACKED ARRAY [1..n] OF Char.

If the type of a variable vi is an Integer type or a Real type, the value represented
by the character string is moved to the variable vi.

If FILE variable f was omitted, reading takes place from the required textfile Input.

Possible runtime errors:

File_Error - Prior to the Read (f, ...) call, file f was not opened
for reading.

- Prior to the Read (f, ...) call, file f was undefined.

Eof_Error - Eof (f) became True when Read (f, ...) was called or
when leading blanks and end-of-line components were
being skipped.

Numeric_Error - The value of the input Real number can be represented
internally, but it lies outside the value range of the
read parameter v.

Read_Error - While an Integer number or Real number is being read
from a textfile (with Read (f, v)), the following
happens:
- the number is syntactically incorrect or
- the value of the input number is too large, thus it

cannot be represented internally. With Integer
numbers the value lies outside the range
Long_Minint .. Long_Maxint ; with Real numbers the
value lies outside the range
-Long_Maxreal .. Long_Maxreal.

Range_Error - The value of an input Integer number can be represented
internally, but it lies outside the value range of the
read parameter v.

String_Error - With Read (f,v), the maximum length of the String
variable v is less than the length of the input
character string.

U2778-J-Z55-4-7600 257

Read - from a textfile File processing subprograms

Reading a character

Read (f, v), where v is a Char-type variable

If v is a variable of type Char or a subrange of Char, then Read (f, v) is defined by

BEGIN v := f ; Get (f) END

The variable v contains the space character (blank) ’ ’ if, prior to the Read (f, v) call,
Eoln (f) is True.

Reading an Integer value

Read (f, v), where v is an Integer-type variable

If v is a variable of an Integer type or a subrange thereof, a string of characters is
read. Leading blanks and end-of-line characters are skipped. A sign may appear
directly in front of the number. The read operation is terminated when an input cha-
racter can no longer be part of an Integer number. This character is then located in
f .

The input character string must correspond to a signed Integer number in accor-
dance with the following general form:

integer-number = (sign) unsigned-integer-number.
sign = "+" | "-".

The input character string is converted to an Integer value and moved to variable v.
The Integer value must be assignment-compatible with the type of v.

Reading a Real value

Read (f, v), where v is a Real-type variable

If v is a variable of a Real type, a string of characters is read. Leading blanks and
end-of-line characters are skipped. A sign may appear directly in front of the num-
ber. The read operation is terminated when an input character can no longer be
part of an unsigned Integer number or a Real number. This character is then loca-
ted in f .

The input character string must correspond to a signed number in accordance with
the following general form:

real-number = [sign] (unsigned-real-number
unsigned-integer-number).

sign = "+" | "-".

The input character string is converted to a Real value and moved to variable v. The
Real value must be assignment-compatible with the type of v.

258 U2778-J-Z55-4-7600

File processing subprograms Read - from a textfile

Reading a String-type variable

Read (f, v), where v is a String-type variable

All characters are read to the end of the current line and moved to v.
After Read (f, v), Eoln (f) is True and f contains a blank (’ ’).

Read (f, v) is equivalent to:

BEGIN
v := ’’;
WHILE NOT Eoln (f) DO BEGIN

v := Concat (v, f);
GET (f);
END;

END;

Reading a fixed-string variable

Read (f, v), where v is a fixed-string variable with length n

Character input is terminated when one of the following two conditions
is satisfied:

1) The number of input characters is equal to the length n of the
character string type of v.

2) An end-of-line character was reached, i.e. Eoln (f) is True.
If the number of input characters is less then n, the remaining
components of v are padded with blanks (’ ’).

Read (f, v) with v of type PACKED ARRAY [1..n] OF Char is equivalent to:

FOR i := 1 TO n DO
IF Eoln (f) THEN

v[i] := ’ ’
ELSE

Read (f, v[i]);

U2778-J-Z55-4-7600 259

Read - from a textfile File processing subprograms

Example

This example illustrates the possible effects of Read with different parameters. File f
contains the following lines (blanks are represented by ’_’ for better visibility):

1. line: #_Hello
2. line: A123____3.1415PI
3. line: ____
4. line: 0001_DM_Finished

VAR
f : Text;
i, j : Integer;
r : Real;
c : Char;
s : String;
a : PACKED ARRAY [1..3] OF Char;

BEGIN
Reset (f);

Read (f, c); { c contains ’#’ }

Read (f, s); { s contains ’_Hello’ }

Read (f, s); { s contains ’’ because Eoln (f) = True }

Readln; { advance to next line }

Read (f, c); { c contains ’A’ }

Read (f, i); { i contains 123 }

Read (f, r); { r contains 3.1415 }

Read (f, a); { a contains ’PI_’ }

Read (f, j); { line 3 is skipped, j contains 1 }

Read (f, a); { a contains ’_DM’ }

Read (f, s); { s contains ’_finished’ }
END

The statement sequence is equivalent to:

BEGIN
Reset (f);
Readln (f, c, s, s);
Read (f, c, i, r, a, j, a, s);

END

260 U2778-J-Z55-4-7600

File processing subprograms Readln

Readln (f, v1, ..., vn)
Readln (v1, ..., vn)
Readln (f)
Readln

FILE variable f must be of type Text. If f is omitted, Readln is applied to the required
file Input. The permissible parameters v1 to vn are described under Read for textfiles.

When Readln is called, control is positioned to the beginning of the next line in the
file.

Readln (f, v1, ..., vn) is equivalent to

BEGIN
Read (f, v1); ...; Read (f, vn);
Readln (f);

END

and Readln (f) is equivalent to

BEGIN
WHILE NOT Eoln (f) DO Get (f);
Get (f);

END

The remaining characters in the current input line (if any) are skipped. The first cha-
racter in the new line is moved to the buffer variable f . If the end-of-file character
has been reached, the buffer variable is undefined following Readln, and Eof is True.

Possible runtime errors: same as for Read (see above).

Note

The special characteristics of Readln in conjunction with interactive terminal input
are described in chapter 19.

U2778-J-Z55-4-7600 261

Reset File processing subprograms

Reset (f)

Reset (f) opens a file f for reading, and reads the first component to the buffer varia-
ble f . If the file is empty, Eof returns the value True and buffer variable f is undefi-
ned.

Implementation-defined characteristic

According to Standard Pascal, the effect of the required procedure Reset on one
of the required textfiles Input or Output is implementation-defined.
In Pascal-XT, this characteristic has been made identical for all
implementations: an Open_Error occurs.

Possible runtime errors:

Open_Error - When Reset was called, the required textfile
Input or Output was specified.

- When Reset (f) was called, file f was undefined
(see section 7.3).

- With Reset (f), the external file assigned to f
cannot be opened for reading.

262 U2778-J-Z55-4-7600

File processing subprograms Rewrite

Rewrite (f)

Rewrite opens file f for writing. Following Rewrite (f), the file is empty and can be rew-
ritten. Eof (f) is True. The contents of f are undefined. Any contents in the old file
are lost.

Implementation-defined characteristic

According to Standard Pascal, the effect of the required procedure Rewrite on
one of the required textfiles Input or Output is implementation-defined.
In Pascal-XT, this property has been made identical for all
implementations: an Open_Error occurs.

Possible runtime errors:

Open_Error - When Rewrite was called the required textfile
Input or Output was specified.

- With Rewrite (f), the external file assigned to f
cannot be opened for writing.

U2778-J-Z55-4-7600 263

Write - to a non-textfile File processing subprograms

Write (f, a1, ..., an)

The Write procedure is used for writing the values a1 to an to a file f.

The FILE variable f may be of any FILE type except for the required FILE type
Any_File. File f must have been opened for writing.

The call

Write (f, a1, ..., an)

is defined by:

BEGIN Write (f, a1); ...; Write (f, an); END

• Write - to a non-textfile

Write (f, a1, ..., an)

If FILE variable f is not of the required FILE type Text, then

Write (f, a)

is defined by:

BEGIN f := a; Put (f) END

The expression a must be assignment-compatible with the buffer variable f .

264 U2778-J-Z55-4-7600

File processing subprograms Write - to a non-textfile

Possible runtime errors:

File_Error - File f was not opened for writing prior to
the Write call.

- File f is undefined prior to the Write (f) call.

Numeric_Error - While writing to a non-textfile with Write (f, a),
the value of expression a of type Long_Real does
not lie in the value range of the buffer variable
f of type Short_Real.

Range_Error - While writing to a non-textfile with Write (f, a),
the value of an ordinal-type expression a does not
lie in the value range of the ordinal type of the
buffer variable f .

Set_Error - While writing to a non-textfile with Write (f, a),
the value of a SET-type expression a does not lie
in the value range of the SET type of the buffer
variable f .

String_Error - While writing to a non-textfile with Write (f, a),
the actual length of the character string is greater
than the maximum length of the variable string type
of the buffer variable f .

- While writing to a non-textfile with Write (f, a),
the actual length of the character string a of a
variable string type is not equal to the length of
the buffer variable f of a fixed string type.

Example

The computed data are written sequentially to file f.

VAR
f : FILE OF component_type;
v : component_type;

BEGIN
Rewrite (f);
WHILE NOT finished DO BEGIN

v := new_value;
Write (f, v);
END;

END;

U2778-J-Z55-4-7600 265

Write - to a textfile File processing subprograms

• Write - to a textfile

Write (f, a1, ..., an)
Write (a1, ..., an)

If the FILE variable f is of the required type Text, then

Write (f, a1, ..., an)

is defined by

BEGIN Write (f, a1); ..; Write (f, an) END

and each parameter ai may take one of three forms:

a
a : n
a : n : m.

If the FILE variable f is omitted, the required textfile Output is assumed.

The value of expression a which is written to file f may have one of the following
types:

the type Char or a subrange of Char,
the type Boolean,
an Integer type or a subrange of an Integer type,
a Real type or
a variable or fixed string type.

With Integer and Real types, the value of the number is converted to a character
string prior to writing.

The entries n and m are used to format the output values, where n stands for the
total output length and m for the number of digits following the decimal point. n and
m are Integer-type expressions whose values must be greater than or equal to 1.
If the type of a is a variable string type, then the value of n may also
be 0.

The format a is equivalent to the format a:n, where a predefined value is used for n
depending on the type of a involved. For Integer-type, Real-type and Boolean-type
parameters, this value of n is implementationdefined.

The format a : n : m may be used only if expression a is of a Real type. This se-
lects fixed-point representation, with m indicating the number of positions following
the decimal point (see further below).

266 U2778-J-Z55-4-7600

File processing subprograms Write - to a textfile

Possible runtime errors:

File_Error - File f was not opened for writing prior to
the Write call.

- File f is undefined prior to the Write (f)
call.

Range_Error - With Write (f,a:n), the total output length
n < 1, or n < 0 if a has a variable string type.

- With Write(f,a:n:m), the total output length
n < 1 or the number of digits following the
decimal point m < 1.

Outputting a character

Write (f, a) or
Write (f, a : n), where a is a Char-type expression

If a is an expression of type Char or a subrange of Char, then

Write (f, a)

is defined by

BEGIN f := a; Put (f) END

The effect of Write (f, a) is identical to that of Write (k, a:1). The Write (f, a:n) call
causes an additional (n-1) blanks to be prefixed to a.

Example

This example outputs a pyramid of asterisks, with the position of the first asterisk in
each line being determined by a length parameter.

PROGRAM pyramid d (Output);
CONST

limit = 5;
star = ’*’;

VAR
i : 1..limit;
k : 0..8;

BEGIN
FOR i := 1 TO limit DO BEGIN

Write (star : (limit - i + 1));
{ writes an asterisk with leading blanks }

FOR k := 1 TO 2 * (i - 1) DO
Write (star);

Writeln;
END

END.

U2778-J-Z55-4-7600 267

Write - to a textfile File processing subprograms

Program printout:

1. line: *
2. line: ***
3. line: *****
4. line: *******
5. line: *********

Outputting character strings

Write (f, a) or Write (f, a : n), where a denotes a string-type expression

If a is a fixed string type with k components, then k is the default value for the total
output length.

If expression a is a variable string type, then the actual length of a
(Length (a)) is the default value for the total output length.

If a length is specified, output is right-justified, and leading blanks are added if the
actual length of the character string to be output is less than the total output length
n. If, on the other hand, the character string is longer than the total output length,
only its first n elements are output.

In the case of variable string values, the length specification may also
be zero. In this case, no output takes place.

Outputting Integer values

Write (f, a) or
Write (f, a : n), where a is an Integer-type expression

The value of expression a is written in decimal form to file f:

a series of blanks (adapted to output length),
a minus sign (’-’) if the expression is negative, and
the value of the expression (decimal number).

The number of characters to be output is determined by the expression n if the
form Write (f, a:n) was selected. Otherwise, an implementationdefined number of
characters is output (see user’s guide).

If the statement Write (f, a:n) defines an output field whose length is too short to
represent the value of the expression in decimal form, the required length will be
substituted for n. If n is greater than required to output the number, the number will
be padded with blanks to the specified length.

268 U2778-J-Z55-4-7600

File processing subprograms Write - to a textfile

Implementation-defined characteristic

The default output length for Integer-type values is implementation-defined.

Example

For better visibility blanks are represented by ’_’.

Write statement output actual
output length

Write (1325:8) ____1325 8
Write (-1235:8) ___-1235 8
Write (9876:2) 9876 4
Write (-9876:2) -9876 5

Outputting Real values in floating-point notation

Write (f, a) or
Write (f, a:n), where a is a Real-type expression

The value of expression a is written to file f in floating-point decimal form with scale
factor, rounded to the desired number of significant positions:

a series of blanks (adapted to the output length),
a minus sign (’-’) if the expression is negative,
the value of the mantissa (positions in front of and behind the decimal point) and
the scale factor (exponent).

If the total output length n is omitted, an implementation-defined output length is
assumed (see User’s Guide). If n too small for maximum-precision output, decimal
positions will be rounded off. If n is also too small for output with only one digit fol-
lowing the decimal point, it will be replaced be the requisite length. If n is greater
than necessary, zeros will be appended to the decimal digits. In any case, either a
minus sign or a blank appears in front of the leading digit.

U2778-J-Z55-4-7600 269

Write - to a textfile File processing subprograms

Implementation-defined characteristics

The default output length for Real-type values is implementation-defined.

The representation of the scale factor (’E’ or ’e’) is implementation-defined, as is
the number of decimal digits used for the scale factor when Real values are out-
put in floating-point notation.

Example

For better visibility blanks are represented by ’_’.

Write statement impl.-def. actual
output output length

Write (8.12231E17:12) _8.12231E+17 12
Write (-10.052173:14) -1.0052173E+01 14
Write (5.0123E-6:11) _5.0123E-6 11
Write (0.5:13) _5.000000E-01 13
Write (12.3:9) _1.23E+01 9
Write (2.3128143561231E11:20) _2.3128143561231E+11 20
Write (3.14:1) _3.1E+00 8

Outputting Real values in fixed-point notation

Write (f, a : n : m), where a is a Real-type expression

The value of expression a is written to file f in fixed-point decimal form with m posi-
tions following the decimal point, as follows:

a series of blanks (adapted to the output length),
a minus sign (’-’) if the expression is negative, otherwise a blank (’ ’), and
the value of the expression (positions in front of and behind the decimal point).

n is the total output length. If the n specified is too small, the least possible value is
assumed. The minimum total output length results from the number of positions in
front of and behind the decimal point, plus one position for the decimal point and
another position for the sign (’ ’ or ’-’).

m determines the number of positions to be output following the decimal point. If m
is greater than required for maximum-precision output, zeros will be appended to
the decimal positions. If m is smaller than required, the smallest position to be out-
put will be rounded off.

270 U2778-J-Z55-4-7600

File processing subprograms Write - to a textfile

Example

For better visibility blanks are represented by ’_’.

Write statement output actual
output length

Write (12219.378:10:2) __12219.38 10
Write (12219.378:10:3) _12219.378 10
Write (-12219.378:10:3) -12219.378 10
Write (-12219.378:6:1) -12219.4 8

Outputting Boolean values

Write (f, a) or
Write (f, a : n), where is a Boolean-type expression

Output corresponds to the following format:

a series of blanks (padding to output length),
the character string ’TRUE’ or ’FALSE’.

Write (f, a : n) is handled as follows:
Output takes place as if a variable string of the specified length were output.

n > output length : leading blanks, text right-justified
n < output length : the first n characters are output

Implementation-defined characteristics

The notation (upper case/lower case) of the individual letters of the Boolean
values True and False, when output, is implementation-defined for each letter.

The default output length for Boolean-type values is implementation-defined.

Example

For better visibility blanks are represented by ’_’.

Call impl.-def.
output

Write (1=2:10) _____FALSE
Write (1=1:3) TRU

U2778-J-Z55-4-7600 271

Writeln File processing subprograms

Writeln (f, a1, ..., an)
Writeln (a1, ..., an)
Writeln (f)
Writeln

The FILE variable f must be of type Text, and it must be opened for writing. If f is
omitted, Writeln is applied to the required textfile Output. The permissible parameters
a1 to an are described under Write.

A writeln call causes an end-of-line component to be written to file f and control to
be positioned to the start of a new line.

Writeln (f, p1, ..., pn) is equivalent to

BEGIN Write (f, p1, ..., pn); Writeln (f) END

and Writeln (f) is equivalent to

BEGIN
f := "end-of-line component";
Put(f);

END

Possible runtime errors: same as for Write to textfiles.

Note

With buffered output to a data display terminal, not until Writeln has been entered
is a line terminated and displayed on the screen.

272 U2778-J-Z55-4-7600

Heap management subprograms Dispose

Heap Management Subprograms

Dispose (p)

The parameter p must be an expression of a Pointer type other than the generic poin-
ter type. Its value must reference an identified variable p which was created with
New. Dispose (p) releases the memory space required for the identified variable p .

By means of New, the Pascal-XT system can reuse the released memory space of
p to meet later requirements.

Afterwards, the identified variable p can no longer be accessed, i.e. all identifying
values pointing to it are rendered invalid by Dispose (p).

If the form New (q, ...) with multiple parameters was chosen (abbreviated initialization
of an identified variable), the same form must also be chosen for Dispose.

Possible runtime errors:

Pointer_Error - When Dispose (p) is called, p has the value NIL.

unpredictable - Dispose (p) releases memory space of an identified
effects variable although a reference to the variable still

exists.

- When Dispose (p) is called, the value of p is
undefined.

- Prior to the Dispose (p) call, p was created by
New (q, c1, ..., cn) or New (q, c1, ..., cn, e) or
New (q, e).

- Prior to the Dispose (p, k1, ..., km) call, the
identified variable p was created by means of
New (q, c1, ..., cn), where m is not equal to n.

- With Dispose (p, c1, ..., cn) or
Dispose (p, c1, ..., cn, e), the identified
variable p has active variants other than
those specified by the CASE constants c1 to cn.

- Prior to the Dispose (p, e) call, p was created by
means of New (q, a), where a is not equal to e. The
same applies by analogy to Dispose (p, c1, ..., e)
and New (q, k1, ..., kn, a).

- With Dispose (p, e) or Dispose (p, c1, ..., cn, e),
the value of e does not lie in the value range of
the index type of the corresponding ARRAY type, or
it is less than 1 or greater than the maximum length
of the corresponding variable string type.

U2778-J-Z55-4-7600 273

Dispose Heap management subprograms

Dispose with reduced memory areas

Dispose (p, e)

The effect of this statement is analogous to that of Dispose (p).

The domain type of p must be an ARRAY type, a variable string type, or a
RECORD type with an ARRAY type or variable string type for the final field
in its field list.

With an ARRAY type, the expression e must be assignment-compatible with the
index type of the ARRAY type.
With a variable string type, the expression e must have an Integer type.
The value of e must not be less than 1 or greater than the maximum length
of the variable string type.

The Pointer expression p must point to an identified variable p which was
created by means of New (q, e). The same value e must be specified in all
cases.

Example

TYPE
t : ARRAY [1..100] OF Real;

VAR
p : t;

BEGIN
New (p, 45);
... { processing }
Dispose (p, 45);

END

Dispose (p, c1, ..., cn)

The effect of this statement is analogous to that of Dispose (p).

The domain type of p must be a RECORD type. It has nested variants to which the
CASE constants c1, ..., cn belong. These CASE constants must be enumerated in the
sequence defined by the nesting of the variant parts. Variants which are not listed
must be located in a nesting level deeper than cn.

The Pointer expression p must point to an identified variable p which was created
by means of New (q, c1, ..., cn). The same CASE constants must be specified in all
cases.

274 U2778-J-Z55-4-7600

Heap management subprograms Dispose

Example

Given the following data structure t, consisting of nested variants which are referred
to in the examples below.

TYPE
char_range = ’0’..’1’;
t = RECORD

t1: Integer;
CASE t2: Boolean OF

False:
(t21: Real;
CASE t22: char_range OF

’0’: (t221: ARRAY [0..10] OF Integer);
’1’: (t222: Short_Integer));

True: (t23: Char);
END;

VAR
p, q : t;

BEGIN
New (p, False);
New (q, False, ’0’);
... {processing}
Dispose (q, False, ’0’);
Dispose (p, False);

END;

Dispose (p, c1, ..., cn, e)

The effect of this statement is analogous to that of Dispose (q).

The domain type of the FILE type f must be a RECORD type with variants to
which the CASE constants c1, ..., cn belong. These CASE constants must be
enumerated in the sequence defined by the nesting of the variant parts.

The field list of the variant belonging to the final CASE constant cn must
not have any further nested variants. The final field in the field list of
the innermost variant must have an ARRAY type or a variable string type.

With an ARRAY type, the expression e must be assignment-compatible with the
index type of the ARRAY type. With a variable string type, the expression
e must have an Integer type. The value of e must not be less than 1 or
greater than the maximum length of the variable string type.

The Pointer expression p must point to an identified variable p which was
created by means of New (q, c1, ..., cn, e).

Example

This example refers to definitions given in the preceding example.

New (p, False, ’0’, 2);
...
Dispose (p, False, ’0’, 2);

U2778-J-Z55-4-7600 275

Mark Heap management subprograms

Mark (p)

Mark is used to store the current heap level in the variable p of the
generic pointer type Pointer. The heap is now marked by the pointer p at
its current position. Additional objects created with New will be
initialized beyond this heap mark. Release (p) can be used to reset the
heap level to this value. This releases the memory space of all identified
variables which were created with New following the associated Mark (p)
call.

Example

VAR
start_level : Pointer;

BEGIN
Mark (start_level);
WHILE condition DO BEGIN

...
New (...);
...
END;

Release (start_level);
END;

276 U2778-J-Z55-4-7600

Heap management subprograms New

New (p)

The parameter p must be a variable access of a Pointer type other than the
generic (and therefore private) pointer type.

New (p) requests space on the heap for a new identified variable of the domain type
of p. Following New (p), p points to this identified variable p , whose value is still
undefined.

Although the parameter p must be a variable access, it is not an actual variable para-
meter. In particular, p may also be a component of of packed RECORD or ARRAY.

The New procedure also offers the possibility of minimizing memory requirements.
For RECORD types with variants, the requisite combination of variants can be speci-
fied so that space is made available for these variants only. For ARRAY types or
variable string types, or for RECORD types containing an ARRAY type or
variable string type as their final component, it is possible to specify the maximum
index value for which memory space is to be made available.

Possible runtime errors:

The table below lists all possible errors which may arise in conjunction with New (p)
or New with reduced memory request.

Memory_Error - The memory space required for the identified
variable to be created is not available.

unpredictable - An identified String variable which was created
effects with New (p, e) or which is the final component

of an identified String variable created with
New (p, c1, ..., cn, e) is assigned a character
string longer than e.

- In an identified variable created with
New (p, c1, ..., cn), a variant is activated
other than the one specified by the CASE
constants c1 to cn.

- An identified variable created by means of
New (p, c1, ..., cn), New (p, e) or
New (p, c1, ..., cn, e) appears as a whole in
an expression or as the left-hand side of a
value assignment, or is passed as a parameter.

- With New (p, e) or New (p, c1, ..., cn, e), the
value of e does not lie in the value range of the
index type of the corresponding ARRAY type, or it
is less than 1 or greater than the maximum length
of the corresponding variable string type.

U2778-J-Z55-4-7600 277

New Heap management subprograms

New (p, e)

The effect of this statement is analogous to that of New (p). The memory
space may be requested in abbreviated form.

The domain type of p must be an ARRAY type, a variable string type, or a
RECORD type with an ARRAY type or variable string type for the final field
in its field list.

With an ARRAY type, the expression e must be assignment-compatible with the
index type of the ARRAY type.
With a variable string type, the expression e must have an Integer type and
its value must not be less than 1 or greater than the maximum length of the
variable string type.

The amount of memory space allocated is the same as that allocated for the
components m to n in the case of an ARRAY [m..n], or for the components 1
to e in the case of a character string.

New (p, c1, ..., cn)

The effect of this statement is analogous to that of New (p). The memory space may
be requested in abbreviated form.

The domain type of p must be a RECORD type. It must contain nested variants to
which the CASE constants c1, ..., cn belong. These CASE constants must be enume-
rated in the sequence defined by the nesting of the variant parts. Variants which are
not listed must be located in a nesting level deeper than cn.

For the combination of variants thus defined, an identified variable is created with
exactly this memory requirement.

The value of p is undefined; in particular, no corresponding tag fields have yet been
initialized. Thus, no variant has yet been activated.

The combination of variants for a variable created in this manner must not be chan-
ged by assigning conflicting values to the selector fields.

278 U2778-J-Z55-4-7600

Heap management subprograms New

Example

TYPE
r = RECORD

ri : Integer;
CASE rb : Boolean OF

True : (rta : ARRAY[1..10] OF Char);
False : (rfr : Real;

CASE rfc : Char OF
’A’: (rfai : Integer);
’B’: (rfbr : Real);
ELSE: ();

);
END;

VAR
p : r;

BEGIN
New (p, True);
{ creates an object with the fields ri, rb, rta }
New (p, False, ’A’);
{ creates an object with the fields ri, rb, rfr, rfc, rfai }

END;

New (p, c1, ..., cn, e)

The effect of this statement is analogous to that of New (p). The memory
area may be requested in abbreviated form.

The domain type of p must be a RECORD type with variants to which the CASE
constants c1, ..., cn belong. These CASE constants must be enumerated in
the sequence defined by the nesting of the variant parts.

The field list of the variant belong to the final CASE constant cn must not
contain any further nested variants.

The final field of the field list of the innermost variant must have an
ARRAY or variable string type.

With an ARRAY type, the expression e must be assignment-compatible with the
index type of the ARRAY type.
With a variable string type, the expression e must have an Integer type and
its value must not be less than 1 or greater than the maximum length of the
variable string type.

U2778-J-Z55-4-7600 279

New Heap management subprograms

Example

TYPE
r = RECORD

ri : Integer;
CASE rb : Boolean OF

TRUE : (rta : ARRAY[9..17,1..10] OF Char);
False : (rfr : Real;

CASE rc : Char of
’A’: (rfa : Integer);
’B’: (rfb : String [26]);
ELSE: ();

);
END;

VAR
p : r;

BEGIN

New (p, True, 11);
{ generates an object with the fields ri, rb,

rta [9..11, 1..10] }

New (p, False, ’B’, 20);
{ generates an object with the fields ri, rb,

rfr, rc, rfb [1..20] }
END.

Note for New with abbreviated memory request

Identified variables created by New (p, e), New (p, c1, ..., cn) or New (p,c1,
..., cn, e) must not occur as a whole in expressions or as the left-hand side of
a value assignment, and they must not be passed as parameters. This restriction
must be made as, in the above-named cases, the variable is described or read as
a whole. When variables are set up in abbreviated form, this causes the conti-
guous memory space to be overwritten, or non-allocated memory space to be
accessed.

280 U2778-J-Z55-4-7600

Heap management subprograms Release

Release (p)

The parameter p must be an expression of the generic pointer type Pointer.

The value of p must have arisen by calling Mark.

The heap is reset to the level specified in p. The memory space is released
for all identified variables created with New since the associated Mark (p)
call. Similarly, all identifying values created with Mark (q) since the
Mark (p) call are destroyed, and cannot be used in further Release (q)
calls.

Unlike Dispose, Release can be used to release more than one object on the
heap.

Possible runtime errors:

Pointer_Error - When Release (p) was called, the identifying value
of p was not created by a Mark call.

unpredictable - Release (p) releases the memory space of an identified
effects variable although there still exists a reference to

this variable.

- The identifying value passed with the Release (p)
call was destroyed by another Release (q) call.

Example

The two statement sequences

Mark (p);
New (p1);
New (p2);
New (p3);
process (p1, p2, p3);
Release (p);

and

New (p1);
New (p2);
New (p3);
process (p1, p2, p3);
Dispose (p1);
Dispose (p2);
Dispose (p3);

are equivalent.

U2778-J-Z55-4-7600 281

Concat String processing subprograms

String Processing Subprograms

Concat (s1, s2, ..., sn)

The Concat function is used to combine any number of character strings into
a single character string. The character string si is stored consecutively
from left to right in the sequence specified.

s1, ..., sn must be character string expressions.

Concat (s1, s2, ..., sn)

with n >= 2 is equivalent to

Concat (s1, Concat (s2, ..., sn)).

Concat (s1) returns the value s1 itself, and has a variable string type
whose maximum length is the length of the character string s1, regardless
of the type of s1.

Concat (s1, s2) returns a character string whose length is Length (s1) +
Length (s2).

If s1, ..., sn are static expressions, then a Concat (s1, ..., sn) call is
likewise a static expression.

Note

The sum of Maxlength (s1) +...+ Maxlength (sn) must be less than or
equal to the maximum permissible string length (215-1).

Example

CONST
s1 = ’This is’;

VAR
s2 : String;

BEGIN
s2 := ’sample string.’;
s2 := Concat (s1, ’ a ’, s2);
{ s2 = ’This is a sample string.’ }

END.

282 U2778-J-Z55-4-7600

String processing subprograms Delete

Delete (s, i, n)

The Delete procedure is used to delete n characters from position i in the
generalized String variable s and to shift the remaining characters to the
left. s must be of a variable string type. i and m must be Integer-type
expressions for which i 1, n 0, i+n-1 length (s).

Possible runtime errors:

String_Error - With Delete(s,i,n), i<1 or n<0 or
(i+n-1) > Length(s).

Example

VAR
a : String;

BEGIN
a := ’This is a string deletion.’;
Delete(a,11,7);
{ a now has the value ’This is a deletion.’ }

END.

U2778-J-Z55-4-7600 283

Insert String processing subprograms

Insert (s1, s2, i)

The Insert procedure inserts the character string s1 in the generalized
String variable s2 from position i.

s1 must be a character string expression. s2 must be a String-type
variable. i must be an expression whose value is assignment-compatible with
Short_Integer.

If i is greater than the actual length of s2, then s2 and s1 will be
concatenated.

Possible runtime errors:

String_Error - With Insert (s1, s2, i), i<1 or
Length (s2) + Length (s1) > Maxlength (s2).

Insert (s1, s2, i) with i length(s2) is equivalent to

s2 := Concat (Substring (s2, 1, i-1),
s1,
Substring (s2, i, Length (s2)-i+1))

Insert (s1, s2, i) with i > length (s2) is equivalent to

s2 := Concat (s2, s1)

Example

PROGRAM example;
VAR

b : String [10];
c : String [20];

BEGIN
b := ’ is ok’;
Insert (’The string’, b, 1); { causes String_Error }

c := b;
Insert (’The string’, c, 1); { correct call }
{ c now has ’The string is ok’ }

Insert (’ay’, c, 100); { correct call }
{ c now has ’The string is okay’ }

END.

284 U2778-J-Z55-4-7600

String processing subprograms Length

Length (s)

The function call Length (s) returns the length of the character string
expression s as a value of the type Short_Integer.

If s is of a variable string type, Length (s) returns the actual length of
the value of s.

If s is of a fixed string type, Length (s) returns the number of the values
in the index type of s.

If s is of type Char, Length (s) returns the value 1.

If s is a static expression or the type of s is an ARRAY type (fixed string
type) or the type Char, the Length (s) call is likewise a static
expression.

Example

PROGRAM example;
CONST

letters =’abc’;

VAR
ispacked : PACKED ARRAY [1..5] OF Char;
string10 : String [10];
len : Integer;

BEGIN
string10 := ’;’;

len := length (string10); { len = 1 }

len := length (letters); { len = 3 }

len := length (ispacked); { len = 5 }

len := length (’’); { len = 0 }
END.

U2778-J-Z55-4-7600 285

Position String processing subprograms

Position (s1, s2)

The Position function can be used to determine whether, and if so where,
the character string s1 is contained in the character string s2. s1 and s2
must be character string expressions.

The Position (s1, s2) call returns the value 0 if character string s1 does
not occur as a substring in character string s2, or if s1 has the type Char
and the character s1 does not occur in character string s2. Otherwise,
Position (s1, s2) returns the least positive Integer value i such that

s1 = Substring (s2, i, Length (s1)).

Position returns the value 1 when s1 is the empty string.

s1 and s2 must be character string expressions. The result type of Position
is Short_Integer.

Example

PROGRAM example;
VAR

a : String;

pos : Integer;

BEGIN
a := ’ship’;

pos := position (’ship’, a); { pos = 1 }

pos := position (’h’, a); { pos = 2 }

pos := position (’’, a); { pos = 1 }

pos := position (a, ’relationship’); { pos = 9 }

pos := position (a, ’x’); { pos = 0 }
END.

286 U2778-J-Z55-4-7600

String processing subprograms Readstring

Readstring (s, v1, ..., vn)

The Readstring procedure reads values from the character string expression
s to the variable accesses v1, ..., vn. The procedure works in the same way
as the Read procedure for textfiles, except that instead of the FILE
variable there has to be a character string expression.

s must be a character string expression, and the variable accesses v1,
..., vn must have one of the following types:

the type Char or a subrange thereof,
an Integer type or a subrange thereof,
a Real type,
a variable string type,
a fixed string type.

The call

Readstring (s, v1, ..., vn)

is then equivalent to the compound statement

BEGIN
Rewrite (f); Writeln (f, s);
Reset (f); Read (f, v1, ..., vn)

EXCEPTION
IF Error_Number = Eof_Error THEN

Raise (String_Error)
ELSE

Raise (0);
END

where f is a FILE variable of type Text which is used nowhere else in the
program. v1, ..., vn are subject to the same conventions as the parameters
of the Read procedure (see section 15.1). The equivalent compound statement
is not the final result, but is used for purposes of explanation.

Note

If vi is a String-type variable, then all the remaining characters in
character string expression s are consumed by vi (provided the maximum
length of s is sufficient; otherwise a String_Error will occur).
If vi is followed by further parameters, these parameters cannot be
assigned further values, and a String_Error is reported.

U2778-J-Z55-4-7600 287

Readstring String processing subprograms

Possible runtime errors:

Numeric_Error - The value of the input Real number can be represented
internally, but it lies outside the value range of the
read parameter v.

Read_Error - While an Integer number or Real number is being read from
a character string expression, the following happens:
- the number is syntactically incorrect or
- the value of the input number is too large, thus it

cannot be represented internally. With Integer numbers
the value lies outside the range
Long_Minint .. Long_Maxint;
with Real numbers the value lies outside the range
-Long_Maxreal .. Long_Maxreal.

Range_Error - The value of the input Integer number can be represented
internally, but it lies outside the range of the read
parameter v.

String_Error - With Readstring (s, v), the maximum length of the
generalized String variable v is less than the length of
the input character string.

- With Readstring (s, v1, ..., vn), the character string
expression s does not contain as many characters as is
required by the read parameters v1, ..., vn.

Cross-references

Read: 15.1

288 U2778-J-Z55-4-7600

String processing subprograms Substring

Substring (s, i, n)

The function call Substring (s, i, n) returns a character string of length
n, whose k-th element is the (i+k-1)-th string element of s, i.e. the
substring of s of length n beginning at i.
s must be a character string expression. i and n must be Integer-type
expressions for which i 1, n 0 and i+n-1 Length (s). The result type
of Substring is a variable-length string type.

If s, i, n are static expressions, the Substring (s, i, n) call is likewise
a static expression.

Possible runtime errors:

String_Error - With Substring(s,i,n), i<1 or n<0 or
(i+n-1) > Length(s).

Example

VAR
a : String;

BEGIN
a := ’processing package’;
a := Substring (a, 7, 4);
{ a now has the value ’sing’ }

END.

U2778-J-Z55-4-7600 289

Writestring String processing subprograms

Writestring (s, a1, ..., an)

The Writestring procedure writes the values of the expressions a1, ..., an
to the String variable s. Thus, Writestring works in the same way as the
Write procedure for textfiles, except that a String variable s is specified
instead of the FILE variable. s must be a String-type variable, and each
expression ai (i=1, ..., n) must have one of the following types:

the type Char or a subrange thereof,
an Integer type or a subrange thereof,
a Real type,
a generalized string type,
the Boolean type.

For each expression ai, a format denoter can be specified, just as with
the write parameters for Write (see section 15.1).

The call
Writestring (s, a1, ..., an)

is then equivalent to the compound statement

BEGIN
Rewrite (f); Writeln (f, a1, ..., an);
Reset (f); Read (f, s);

END

where f is a FILE variable of type Text which is used nowhere else in the
program. a1, ..., an are subject to the same conventions as the parameters
of the Write procedure (see section 15.1). The equivalent compound
statement is not the final result, but is used for purposes of explanation.

Possible runtime errors:

String_Error - With Writestring (s, a1, ..., an), the maximum length
of the String variable s is smaller than the character
string formed from the write parameters a1, ..., an.

Range_Error With Writestring (s, a:n), the total output length
n < 1 or n < 0, provided a has a variable string type.

- With Writestring (s, a:n:m), the total output length
n < 1 or the number of digits following the decimal
point m < 1.

unpredictable - With Writestring (s, p1,..., pn), one of the write
effects parameters p1,...,pn contains a reference to the

String variable s.

290 U2778-J-Z55-4-7600

String processing subprograms Writestring

Cross-references

Write: 15.1

U2778-J-Z55-4-7600 291

Arithmetic functions

Arithmetic Functions

The arithmetic functions are used for numeric calculations. The type of the parameter
may be a Real type or an Integer type. The result type is derived from the type of the
parameter.

The following applies to the functions Abs and Sqr:

Type of parameter Type of result

Integer Integer
Real Real
Short_Integer Integer
Long_Integer Long_Integer
Short_Real Real
Long_Real Long_Real

Table 15-1 Result types for Abs and Sqr

For the remaining arithmetic functions, the following applies:

Type of parameter Type of result

Integer Real
Real Real
Short_Real Short_Real
Long_Real Long_Real
universal Real type universal Real type
Integer type universal Real type

Table 15-2 Result types of arithmetic functions

The universal Real type is adapted to its context; see section 9.3.1.

When the Abs and Sqr functions are called with a static expression as actual
parameter, the calls are themselves static expressions. Calls of the other
standard arithmetic functions are not static expressions.

Arithmetic functions are calculated with at least the level of precision of the result type;
however, they may also be calculated with a higher level of precision.
When the result type is the universal Real type, calculation takes place with
at least the precision of Long_Real.

292 U2778-J-Z55-4-7600

Arithmetic functions Abs/Arctan/Cos/Exp

Abs(x)

calculates the absolute value of x.

Possible runtime errors:

Numeric_Error - With Abs(x), the function result does not lie in
the value range of the result type (Integer or
Long_Integer, Short_Real, Long_Real).

Arctan(x)

calculates the main value of the arc tangent of x in radians.

Cos(x)

calculates the cosine of x. Here x must be specified in radians.

Exp(x)

calculates e**x, where e is the base of the natural logarithm.

Possible runtime errors:

Numeric_Error - The result of Exp(x) does not lie in the value
range of the result type.

U2778-J-Z55-4-7600 293

Ln/Sin/Sqr/Sqrt Arithmetic functions

Ln(x)

calculates the natural logarithm of x.

Possible runtime errors:

Numeric_Error - With Ln(x), x <= 0.

Sin(x)

calculates the sine of x. Here x must be specified in radians.

Sqr(x)

calculates the square of x (i.e. x*x).

Possible runtime errors:

Numeric_Error - With Sqr(x), the function result does not lie in
the value range of the result type (Integer or
Long_Integer, Short_Real, Long_Real).

Sqrt(x)

calculates the square root of x.

Possible runtime errors:

Numeric_Error - With Sqrt(x), x < 0.

294 U2778-J-Z55-4-7600

Transfer functions Long/Round

Transfer Functions

When a transfer function is called with a static expression as its actual
parameter, the call is itself a static expression.

Long (x)

transfers the value of expression x of type Short_Integer to the same
value of type Long_Integer.

Round(x), Short_Round(x), Long_Round(x)

For the expression s, which must be of type Real, these functions return a result of
the corresponding Integer type:

The result type for Round is Integer,
the result type for Short_Round is Short_Integer and
the result type for Long_Round is Long_Integer.

The value of Round(x) is defined as follows:

Round(x) = Trunc(x + 0.5) for x 0,

Round(x) = Trunc(x - 0.5) for x < 0.

Possible runtime errors:

Numeric_Error - The result of Round(x) or Short_Round(x) or
Long_Round(x) does not lie in the value range
of the result type (Integer or Short_Integer or
Long_Integer).

Example

Round(3.5) yields 4
Round(-3.5) yields -4

U2778-J-Z55-4-7600 295

Trunc Transfer functions

Trunc(x), Short_Trunc(x), Long_Trunc(x)

calculates the integral part of x.

For the expression x, which must be of a Real type, these functions return a result of
the corresponding Integer type:

The result for Trunc is Integer,
the result for Short_Trunc is Short_Integer, and
the result for Long_Trunc is Long_Integer.

The value of Trunc (x) is defined by the following conditions:

Trunc(x) is integral,

0 x-Trunc(x) < 1 for x 0,

-1 < x-Trunc(x) 0 for x 0.

Possible runtime errors:

Numeric_Error - The result of Trunc(x) or Short_Trunc(x) or
Long_Trunc(x) does not lie in the value range
of the result type (Integer or Short_Integer
or Long_Integer).

Example

Trunc(3.5) yields 3
Trunc(-3.5) yields -3

296 U2778-J-Z55-4-7600

Ordinal functions Card/Chr

Ordinal Functions

When an ordinal function is called with a static expression as its actual
parameter, the ordinal function is itself a static expression.

Card (s)

returns the number of members contained in the set determined by the value
of the expression s, where s must have the type SET. The result is of type
Integer.

Chr (x)

For the Integer-type expression s, this function returns that Char-type value which is
encoded by the value of x.
For each Char-type value c the following applies: Chr (Ord (c)) = c

Range_Error - The character value Chr(x) does not lie in
the value range of the type Char.

Note

The character set of a Pascal-XT processor is implementationdefined (see also
section 6.2.3). If a program is written for different Pascal-XT implementations, no
further assumptions may be made regarding the assignment of Integer values to
character values and vice versa.

Cross-references

Char: 6.2.3

U2778-J-Z55-4-7600 297

Ord/Pred Ordinal functions

Ord (x)

For the expression x, which must have an ordinal type, this function returns that Inte-
ger-type number which is defined as the ordinal number of the value of expression x.

Cross-references

Char: 6.2.3
Enumerated type: 6.2.5

Pred(x)

For the expression x, which must have an ordinal type, this function returns the value
of the same type whose ordinal number is 1 less than that of expression x (predeces-
sor).

Possible runtime errors:

Range_Error - The result of Pred (x) does not lie in the
value range of the type of x.

298 U2778-J-Z55-4-7600

Ordinal functions Setmin/Setmax/Succ

Setmax (s)

Setmax (s) returns the value of the greatest member contained in the set
which is determined by the value of expression s, which must be of a SET
type. The result type is the base type of the SET type of s. The empty set
(i.e. "[]") must not be specified as a parameter.

Possible runtime errors:

Set_Error - With Setmax (s), the value of expression s
is equal to the empty set (see section 9.4).

Setmin (s)

Setmin (s) returns the value of the least member contained in the set which
is determined by the value of expression s, which must be of a SET type.
The type of the result is the base type of the SET type of s. The empty set
(i.e. "[]") must not be specified as a parameter.

Possible runtime errors:

Set_Error - With Setmin (s), the value of expression s
is equal to the empty set (see section 9.4).

Cross-references

Sets: 6.3.4
Set constructors: 9.4

Succ (x)

For the expression x, which must have an ordinal type, this function returns the value
of the same type whose ordinal number is 1 more than that of expression x (succes-
sor). The result type is the base type of the SET type of s. The empty set (i.e. "[]")
must not be specified as a parameter.

Possible runtime errors:

Range_Error - The result of Succ(x) does not lie in the
value range of the type of x.

U2778-J-Z55-4-7600 299

Odd Boolean functions

Boolean Functions

The Boolean functions Eof and Eoln were already discussed in section 15.1 (file proces-
sing).

Odd (x)

This function returns the Boolean value True for an Integer-type expression x if x is
odd, and the Boolean value False if x is even.
When the Boolean function Odd is called with a static expression as its
actual parameter, the function is itself a static expression.

300 U2778-J-Z55-4-7600

Transfer procedures Pack

Transfer Procedures

The transfer procedures Pack and Unpack make it possible to transfer components bet-
ween packed and unpacked ARRAYs which have the same component type.
In Pascal-XT, components may also be transferred between variable strings and
unpacked ARRAYs with the component type Char.
In particular, it is possible to transfer only a subrange.

Both procedures have the parameters z, a and i, for which the following rules apply:

z is of type PACKED ARRAY [s2] OF t or of type String[n]
a is of type ARRAY [s1] OF t
i is an expression whose value is assignment-compatible with s1.

If z is of type PACKED ARRAY, then z and a must have the same component type. t
must not be a FILE type or contain a component of a FILE type.
If z has the type String[n], the component type t of a must be the type Char.

Pack (a, i, z)

The Pack procedure transfers components of an unpacked ARRAY-type expression
to a variable of a packed ARRAY or String type.
In Standard Pascal, a must be a variable access.

Packing an ARRAY

From an unpacked ARRAY-type expression a, starting at index i, Pack transfers as
many components to variable z as will fit into that variable. a must contain at least as
many components from index i as are to be transferred, i.e. the following rule must
hold:

Last(s1) - i + 1 >= Last(s2) - First(s2) + 1

Packing a string

From an unpacked ARRAY expression a, Pack transfers all characters from
a[i] to a[Last(s1)] to the String variable z. The number of characters
transferred must be less than or equal to the maximum length of z, i.e. the
following rule must hold:

Last(s1) - i + 1 <= Maxlength(z)

U2778-J-Z55-4-7600 301

Pack Transfer procedures

Possible runtime errors:

Index_Error - With Pack (a,i,z), the value of expression i does
not lie in the value range of the index type of
the unpacked ARRAY parameter a.

- With Pack (a,i,z), the index range of the unpacked
array a is exceeded when the components of a are
transferred to the packed array z starting at index i.

String_Error - With Pack (a,i,z), the maximum length of the
String variable z is too small to include all
characters from the unpacked array a starting at
index i.

unpredictable - With Pack (a,i,z), a component accessed in the
effects unpacked array a is undefined.

Examples

In the example below, the components a[11] to a[20] are transferred to the variable p.

TYPE
t = ARRAY [-40..40] OF Boolean;
tp = PACKED ARRAY [1..10] OF Boolean;

VAR
a : t;
p : tp;

BEGIN
Pack (a, 11, p);

END

The following program fragment transfers the components a[17] to a[35] to the
String variable s.

TYPE
t = ARRAY [-10..35] OF Boolean;

VAR
a : t;
s : String;

BEGIN
Pack (a, 17, s);

END

Cross-references

PACKED: 6.3
ARRAY types: 6.3.1
Variable string types: 6.3.2.2
First, Last: 15.9
Maxlength: 15.9

302 U2778-J-Z55-4-7600

Transfer procedures Unpack

Unpack (z, a, i)

The Unpack procedure transfers data from a packed ARRAY or string to a specifia-
ble range of an unpacked ARRAY.
In Standard Pascal, z must be a variable access.

Unpacking a packed ARRAY

Unpack transfers all components from the package ARRAY expression z to the pak-
ked ARRAY variable, starting at a[i]. The number of components in ARRAY a from i
to Last (s1) must be greater than or equal to the number of components in the pak-
ked ARRAY z, i.e. the following rule must hold:

Last(s1) - i + 1 >= Last(s2) - First(s2) + 1

Unpacking a string

Unpack transfers all characters in the variable string expression z to the
unpacked ARRAY variable a, starting at a[i]. The number of characters
transferred is equal to the actual length (Length (z)) of expression z, and
the following rule must hold:

Last(s1) - i + 1 >= Length(z)

Possible runtime errors:

Index_Error - With Unpack (z,a,i), the value of expression i
does not lie in the value range of the index type
of the unpacked array parameter a.

- With Unpack (z,a,i), the range in the unpacked array,
starting at index i, is too small to include all the
components of packed array z.

- With Unpack (z,a,i), the character string expression
z contains more characters than can be transferred to
the unpacked array a starting at index i.

unpredictable - With Unpack (z,a,i), some component of the packed
effects array z is undefined.

U2778-J-Z55-4-7600 303

Unpack Transfer procedures

Examples

The components a[4] to a[11] are replaced by the components z[3] to z[10].

TYPE
tz = PACKED ARRAY [3 .. 10] OF Integer;
ta = ARRAY [0 .. 39] OF Integer;

VAR
z : tz;
a : ta;

BEGIN
z := tz (1, 2, 3, 4, 5, 6, 7, 8);
unpack (z, a, 4);

END

The components c[13] to c[17] are replaced by the five characters
(’H’,’e’,’l’,’l’,’o’) of the String variable s.

TYPE
tc = ARRAY [10..60] OF Char;

VAR
c : tc;
s : String;

BEGIN
s := ’Hello’;
Unpack (s, c, 13);

END

Cross-references

PACKED: 6.3
ARRAY types: 6.3.1
Variable string types: 6.3.2.2
Length: 15.3
First, Last: 15.9

304 U2778-J-Z55-4-7600

Attribute functions

Attribute Functions

Attribute functions primarily return information on types. Thus, the argument
of an attribute function is generally a type identifier. However, a variable
is also permitted as an argument. In this case, the attribute functions
return the values of the attributes of the type of the variable.

The information refers to

alignment (Alignof),
number of bits for representing ordinal-type values (Bitsizeof),
the least value of an ordinal type (First),
the greatest value of an ordinal type (Last),
the maximum length of a variable string type (Maxlength),
the offset of fields in a record (Offsetof) and
the memory requirement (Sizeof).

Attribute functions are always static expressions, except for Sizeof (t, e)
and Sizeof (t, c1, ..., cn, e) if the expression e is not static.

In the case of the functions First and Last, the result type is the same
type as that of the actual parameter. With the other functions, it is
Short_Integer if the value of the result lies within the value range of
Short_Integer. Otherwise, the result type is Long_Integer.

With the non-static calls Sizeof (t, e) or Sizeof (t, c1, ..., cn, e), the
result type is same as that of a Sizeof call without the final parameter e.

Implementation-defined characteristic

The size of a storage unit is implementation-defined. It may be 1 byte or
a multiple thereof (generally a power of 2).

Note

If a program has interfaces to program parts written in other languages,
the attribute functions may be used to obtain information on how the data
to be transferred are represented in memory.

Cross-references

Memory representation: 6.3.3.2
Attributes: 6.7

U2778-J-Z55-4-7600 305

Alignof/Bitsizeof Attribute functions

Alignof (t)

Alignof returns the memory alignment required for variables of type t. The
alignment is a positive integer, normally a power of 2, and derives from
the manner in which the processor is allowed to access memory space. The
The address of each variable of type t is an integral multiple of
Alignof (t).

Bitsizeof (t)

The function Bitsizeof (f) returns the minimum number of bits which are
normally required to represent the values of t. The type t must be an
ordinal type.

Example

TYPE
t1 = (c1, c2, c3);
t2 = (k1, k2, k3, k4);
r = PACKED RECORD

a (0 : 0..bitsizeof (t1)) : t1;
b (0 : bitsizeof (t1)..7) : t2;
END;

306 U2778-J-Z55-4-7600

Attribute functions First/Last/Maxlength/Offsetof

First (t)

returns the least value of the ordinal type t.

Last (t)

returns the greatest value of the ordinal type t.

Example

VAR
i : ordinal_type;

BEGIN
...
FOR i := First (ordinal_type) TO Last (ordinal_type) DO ... ;
...

END

The statement given below would have the same effect. In this case, the
values of First and Last are derived from the type of i.

BEGIN
...
FOR i := First (i) TO Last (i) DO ... ;
...

END

Maxlength (t)

returns the maximum length of the variable string type t.

Example

BEGIN
...
IF Length (s1) + Length (s2) > Maxlength (s) THEN

error_handling
ELSE

s := Concat (s1, s2);
...

END

Offsetof (t, f)

This function returns the offset of a RECORD field relative to the start of
the RECORD, in number of memory units. t indicates any RECORD type of a
variable of any RECORD type. f is a field identifier which is closest-
contained in t, i.e. f must not be contained in a nested RECORD.
The size of a memory unit is implementation-defined (see Appendix A.6).

U2778-J-Z55-4-7600 307

Sizeof Attribute functions

Sizeof (t)

Sizeof (t) returns the number of memory units required to represent values
of type t. The size of a memory unit is implementation-defined (see
Appendix A.6).

Sizeof (t, e)

Sizeof (t, e) returns the number of memory units occupied for an identified
variable p of type t in conjunction with a New (p, e) call.

Type t must be an ARRAY type, a variable string type, or a RECORD type with
an ARRAY type or variable string type for the final field in its field
list.

With an ARRAY type, the expression e must be assignment-compatible with the
index type of the ARRAY type.
With a variable string type, the expression e must have an Integer type,
and its value must not be less than 1 or greater than the maximum length of
the variable string type.

Sizeof (t, c1, ..., cn)

Sizeof (t, c1, ..., cn) returns the number of memory units which are
occupied for an identified variable p of type t in conjunction with a
New (p, c1, ..., cn) call.

Type t must be a RECORD type. It must contain nested variants to which the
CASE constants c1, ..., cn belong. These CASE constants must be enumerated
in the sequence defined by the nesting of the variant parts.
Variants which are not listed must be located in a nesting level deeper
than cn.

Sizeof (t, c1, ..., cn, e)

Sizeof (t, c1, ..., cn, e) returns the number of memory units which are
occupied for an identified variable p of type t in conjunction with a
New (p, c1, ..., cn, e) call.

Type t must be a RECORD type with variants to which the CASE constants
c1, ..., cn belong. These CASE constants must be enumerated in the sequence
defined by the nesting of the variant parts.

The field list of the variable belonging to the final CASE constant cn must
not contain any further nested variants. The final field in the field list
of the innermost variant must have an ARRAY type or a variable string type.

308 U2778-J-Z55-4-7600

Attribute functions Sizeof

With an ARRAY type, the expression e must be assignment-compatible with the
index type of the ARRAY type.
With a variable string type, the expression e must have an Integer type,
and its value must not be less than 1 or greater than the maximum length of
the variable string type.

U2778-J-Z55-4-7600 309

Sizeof Attribute functions

Example of using attribute functions

...
TYPE

color = (red,yellow,green,blue,brown,black);
data = PACKED RECORD

tint (0: 0..Bitsizeof(color)-1): color;
...
END;

bytes = PACKED ARRAY [1..Sizeof(data)] OF Char;
...

VAR
f : color;
d : data;
b : bytes;

...

BEGIN
...

FOR f := First (color) TO Last (color) DO ...

...
END

310 U2778-J-Z55-4-7600

Unchecked type conversion Convert

Unchecked Type Conversion

Pascal-XT has a function for unchecked type conversion between values with
the same memory representation.

Convert (x, t)

For the expression s and the type identifier t, this function returns that
value of type t which has the same representation in memory as the value x.
Type t must not be a FILE type, and it must not contain any FILE-type
components. If both type t and the type of x are ordinal types, the
following rule must hold:

Ord (First (t)) <= Ord (x) <= Ord (Last (t)),

For all other type combinations, the following must hold:

Sizeof (x) = Sizeof (t).

If the expression x is a static expression of a scalar or Pointer type, and
if type t is likewise a scalar type or a Pointer type, the Convert function
call is also a static expression.

Possible runtime errors:

unpredictable With Convert (x, t), the representation in
effect memory of x is not a permissible value of t.

Note

It is easy to see that this function is a back door for abandoning the
Pascal programming style. However, it does have a certain justification
when solving problems in a machine-bound environment (e.g. for directly
programming the buffering of data in mass storage units). Be forewarned
about using the type concept when solving problems at the user level!

U2778-J-Z55-4-7600 311

Error_Number/Raise Exception handling subprograms

Exception Handling Subprograms

Error_Number

This parameterless function returns the error number (see section 14.2) of
the most recent exception (error) situation. Its value is 0 if no exception
situation has occurred.

Raise (n)

Raise can be used to create a programmed exception (error) situation with
error number n or to propagate that exception (error) situation within an
exception handling part. n must be an Integer-type expression with the
following meaning:

n < 0: The negative error numbers are reserved for the Pascal-XT system.
For the values -1 to -16 there exist required identifiers (see
sections 14.1, 5.2).

n = 0: Any exception which occurred previously will be propagated
(forwarded) without changing the error number and without losing
any information regarding the original location of the error
(unlike Raise (Error_Number)). A System Error occurs if there was
no exception situation prior to calling Raise (0). Thus, n = 0 does
not represent an error number.

n > 0: The positive error numbers may be used as you wish.

If n <> 0, the effect is analogous to the situation when a "genuine" error
occurs, i.e. in place of the Raise call the exception with number n is
created. If an error cannot be handled in an exception handling part it can
be propagated (forwarded) with Raise in either of two ways:

1) Raise (Error_Number)
The most recent error is triggered again. The line with the Raise call
represents the new error location and the information on the original
error location is thus lost.

2) Raise (0)
The most recent error is propagated without losing the information on
the original error location.

To propagate errors Raise (0) should always be used so that information on
the original error location is retained for further (system-dependent)
diagnostic purposes (see also examples 14-4 and 14-5 in chapter 14 and the

312 U2778-J-Z55-4-7600

Exception handling subprograms Error_Number/Raise

User’s Guide).

U2778-J-Z55-4-7600 313

Error_Number/Raise Exception handling subprograms

Possible runtime errors:

System_Error - Raise (0) was called although no error had occurred
previously in this program and thus error propagation
is impossible.

Notes

- The error numbers employed in a program by a user must be unique so that
in case of error the original location of the error can be unambiguously
identified.

- The Pascal-XT implementations on various systems provide support when the
dynamic call chain is output in case of error.

- The Pascal-XT implementations on various systems provide an error
propagation procedure Reraise as part of a required package errors. To
improve understanding and portability, this procedure can be used instead
of Raise (0).

Cross-references

Error number, predefined exceptions: 14.1, 5.2
Exception handling: 14.3

Example of Error_Number and Raise

PROGRAM example (Output);
VAR

i, j : Long_Integer;

PROCEDURE check_overflow (n,m:Long_Integer);
BEGIN

IF (Long_Maxint-m) < n THEN
Raise (1);

END;

BEGIN
....
check_overflow (i,j):
....

EXCEPTION
IF Error_Number = 1 THEN

Writeln (’Overflow occurred’)
ELSE

Raise (0);
END.

314 U2778-J-Z55-4-7600

Explicit package initialization procedure Elaborate

Explicit Package Initialization Procedure

Elaborate (p)

The parameter p must be a package identifier. Calling the Elaborate (p)
procedure ensures that the initialization of package p will take place at
the latest following the Elaborate (p) call.
If initialization has already taken place prior to the Elaborate call, the
call has no effect.

Elaborate must be called only within the statement sequence of a package
block. It is not allowed to occur

within repetitive statements (WHILE, REPEAT, FOR)
within conditional statements (IF, CASE).

Possible runtime errors:

Elab_Error - It is not possible to continue initializing the
packages of a program since otherwise loops will
arise due to the use of the required procedure
Elaborate.

Example

During initialization, package a uses the global variable status from
package b. This variable must be initialized before being used in package
b. By calling Elaborate (b) before using status in package a, you can make
sure that package b is initialized.

PACKAGE a; PACKAGE b;
... VAR

status: Integer;
END. END.

WITH b;
PACKAGE BODY a; PACKAGE BODY b;

... ...
BEGIN BEGIN

Elaborate (b); status := 0;
IF b.status THEN ...; ...
...

END. END.

Cross-references

Program execution: 13.3.3

U2778-J-Z55-4-7600 315

Explicit package initialization procedure Elaborate

Control Statements for the Compiler

A comment starting with a dollar sign immediately after the open comment
bracket is called a pseudocomment. It contains control statements for the
compiler.

pseudocomment = "{$" control-statement {"," control-statement} "}".
control-statement = option ["=" ("On" |

"Off" |
"Restricted" |
character-string)].

option = identifier.

Like comments, pseudocomments have no effect on the logical execution of a
correctly written Pascal program. However, under certain conditions they may
affect its physical behavior, e.g. the speed of execution, memory
requirements, additional runtime error messages, the size of the compilation
listing or the applicability of the debugger.

Options fall into two categories:

Global options
apply for the entire compilation unit. They can only be activated by
control statements located before the actual beginning of the compilation
unit (i.e. before the word symbols WITH, PROGRAM or PACKAGE).

Local options
may be activated anywhere in the program by means of control statements.

Control statements can be further subdivided according to their effect:

Control of compilation listing (e.g. complete source listing, error list
only, cross-reference listing, object code listing).

Effect on runtime behavior (e.g. deactivation of error detection at
runtime, optimization of object code).

Generation of test tables for the symbolic debugger.

U2778-J-Z55-4-7600 317

General remarks Control statements

Many control statements function like "switches" for activating or
deactivating options. In these cases, the value specified for the option
may only be

On or Off

where On is used for activating the relevant option, and Off for deactivating
it. To activate an option, it is also sufficient to specify the option alone,
without "= On".

The value Restricted has only one meaning for the control statement for test
table generation. Only a character string can be entered with the Title
option.

Implementation-defined characteristics

The preset default values for the compiler options are implementation-
defined.

Whether, and if so how, options may be activated during operation (when
the compiler is called) is implementation-defined.

Examples of control statements

{$ List=On, Check=Off}

{$ Page}

Note

When developing Pascal programs you should always specify the control
statements Check = On and Initialize = On. This makes it possible to
detect errors in good time which might otherwise pass undetected. If
neither of these two options is specified, any error which would otherwise
have been detected by the options will have unpredictable effects. On the
other hand, this causes additional code to be generated for the runtime
checks, thereby increasing the run time of the program. For this reason
you should make sure that Check = Off, Initialize = Off and Optimize = On
when compiling benchmark programs for runtime measurements.

318 U2778-J-Z55-4-7600

Control statements Global options

Global Options

The global options apply for the entire compilation unit, and must be
specified before the keyword WITH, PROGRAM or PACKAGE.

Generate

activates or deactivates the generation of object code. Usually no code is
generated when package specifications are compiled.

[= On] Object code will be generated for this compilation unit.

= Off No object code will be generated for this compilation unit. In
this case, the local options Assembler, Check, Initialize and
Optimize have no effect in this compilation unit, nor do the
global options Debug and Map.

Debug

controls the generation of test tables. These test tables are needed when
testing with a symbolic debugger (see section 24.1). The test tables are
only generated for programs and package bodies if the Generate option is
switched to On. With package specifications, the Debug option only takes
effect when the package body is compiled.

If Debug = On or Debug = Restricted is entered in a package specification,
all the constant, variable and type identifiers defined in it can be used
in debugging statements. If the option was specified in a package body,
both the declarations and line numbers of this package body as well as the
declarations of the associated package specifications may be used in
debugging statements.

If Debug = On or Debug = Restricted is specified, the Optimize option will
have no effect.

[= On] This compilation unit can be tested with the symbolic debugger.

= Restricted
This compilation unit can be tested to a limited extent with the
symbolic debugger. Assignments are not permitted as debugging
statements at test points within this compilation unit.

= Off This compilation unit cannot be tested with the symbolic debugger.

U2778-J-Z55-4-7600 319

Global options Control statements

Map

activates or deactivates the output of address tables to the compilation
listing. Only if Generate = On will the Map option take effect when
programs and package bodies are compiled. In the case of package bodies,
the output tables also contain the objects of the associated
specification.

[= On] Address tables will be generated for this compilation unit.

= Off No address tables will be generated.

Standard

defines whether to accept the language set of Standard Pascal or
Pascal-XT.

[= On] The language set of Standard Pascal, Level 1, will be accepted.
Deviations from Standard Pascal will be reported as errors. The
word symbols added in Pascal-XT may only be used as ordinary
identifiers.

= L0 Same as On except that Standard Pascal, Level 0 (without
conformant array schema), will be accepted. This argument can only
be specified when the compiler is called.

= Off The entire language set of Pascal-XT will be accepted.

Xref

controls output of a cross-reference listing.

[= On] A cross-reference listing will be output containing all the
identifiers used in this compilation unit. Even those identifiers
will be included which are predefined (required) or which have
their defining point in a foreign compilation unit.

= Off No compilation listing will be output.

320 U2778-J-Z55-4-7600

Control statements Local options

Local Options

Local options may be specified anywhere in the program. The scope is
specified for each option.

Assembler

controls output of the object code listing in assembler format. When
activated before or inside a statement part of a block, the option applies
for the entire statement part. Deactivation of an option in a statement
part only takes effect at the end of this statement part.

[= On] Activates output of the object code listing.

= Off Deactivates output of the object code listing.

Check

controls the generation of additional commands (Check code) for runtime
error detection.

This option applies for all statements in which it is activated.

Note:

At the program development stage, you should activate the Check option
for the entire compilation unit in order to detect errors in good
time.

[= On] Activates the generation of Check code.

= Off Deactivates the generation of Check code.
The error situations Numeric_Error, Range_Error, Set_Error,
String_Error, Index_Error, Pointer_Error, Variant_Error and
Case_Error will not necessarily be detected and may lead to
unpredictable results.

Optimize

controls the optimization of object code. Optimization is performed to
minimize the amount of run time. When activated before or inside the
statement part of a block, this option applies for the entire statement
part. Deactivation of an option in a statement part only takes effect at
the end of this statement part.

[= On] Activates optimization.

= Off Deactivates optimization.

U2778-J-Z55-4-7600 321

Local options Control statements

Initialize

controls initialization of memory areas for variables with an
implementation-dependent value. Initialization of the memory area takes
place

before program execution in the case of variables in the main program
block or package block,
at the time the subprogram is called in the case of local variables
in a subprogram,
at the time New is called in the case of dynamically generated
(identified) variables.

The initializing value is chosen so that, for example, an undefined
identifying variable is recognized as being undefined (with Check = On).
However, this value is not meant to substitute for a programmed initial
assignment of a value to a variable, but is intended solely for the
purpose of error location! It may happen with this option that some
undefined variables are left undetected.

The Initialize option is only meaningful when the Check option is
activated. At the program development stage, it is essential that both of
these options be activated for the entire compilation unit.

When activated before or inside the statement part of a block, this option
applies for the entire statement part. Deactivation of an option in a
statement part only takes effect at the end of this statement part.

[= On] Additional initialization code will be generated.

= Off The memory areas will not be initialized.

List

controls output of the compilation listing.

[= On] Activates output of the compilation listing from the beginning of
the line containing this control statement.

= Off Deactivates output of the compilation listing from the end of the
line containing this statement. In this case, only errored source
code lines will be listed, together with the error messages.

322 U2778-J-Z55-4-7600

Control statements Local options

Page

causes a form feed to take place immediately following the line where this
control statement begins.

Title = character-string

controls output of a subtitle which will be output starting from the next
page of the source listing. Output of the subtitle can be terminated by
entering a blank string (’’). The subtitle is entered as a character
string enclosed in single quotes (apostrophes).

Example

{$ Title = ’Interface Description’ }

{$ Title = ’’ }

U2778-J-Z55-4-7600 323

Control statements Local options

The Package Concept
The package concept directly supports the principles of modularization, abstraction and
information hiding. The difference between Pascal-XT and many other programming
languages is that these principles are supported by packages, thereby encouraging the
user of the language to apply them.

For the Pascal-XT package concept, the term "program" is taken more broadly than is
intended in Standard Pascal. A program consists of a main program and any number
of packages. If there are no packages, this conforms to the sole main program of Stan-
dard Pascal.

A package consists of the package specification and the package body. The specifica-
tion describes what the package does, and the body describes how it does it. Specifi-
cations can be passed to a user even if he does not know the body. This is because,
physically, package specification and package body are managed separately from each
other.

As an example, consider the operation of an automobile. The interface is formed by the
steering wheel, breaks and accelerator. These are the visible entities of the automobile.
The driver does not have to know how these operating elements function. These are
details which may be as complicated as you please. In a similar way, Pascal-XT offers
an opportunity of hiding details in the package body.

Package specification

The specification defines the visible entities which can be addressed from other packa-
ges. These may be constants, types, variables or the headings of subprograms. Only
these entities may be accessed from outside the package.

U2778-J-Z55-4-7600 325

Package concept Concepts

Example

PACKAGE complex_definitions;

TYPE complex = RECORD
realpart : Real;
imagpart : Real;

END;

{ functions for manipulating complex numbers }
FUNCTION make_complex (r, i : Real) : Complex;

{r becomes the real part, i the imaginary part}

FUNCTION imag_part_of (c : complex) : Real;
{yields the imaginary part of the complex number }

FUNCTION real_part_of (c : complex) : Real;
{yields the real part of the complex number }

{ arithmetic functions }
FUNCTION add (left, right : complex) : complex;

FUNCTION subtract (left, right : complex) : complex;

FUNCTION multiply (left, right : complex) : complex;

FUNCTION divide (left, right : complex) : complex;

END.

Package body

A package body consists of a declaration part and a statement part, each of which
may be empty. If subprograms were declared in the specification, then the procedure
or function identification must be specified in the package body. This does not apply to
INLINE subprograms, for which the subprogram block must already be specified in the
package specification, or to subprograms with a directive. In addition, constants, types,
variables and subprograms may be declared which are only required within the pak-
kage body and are invisible outside the package. Since specification and body form a
logical unity, it follows that identifiers declared in the specification must not be declared
again in the package body.

The statement part is used to initialize the package, and is processed once and only
once prior to program execution (see section 13.3). The variables defined in the declara-
tion part of a package can be stored in the statement part with initial values. By the
time the first statement in the main program is executed, all the packages will already
have been initialized.

326 U2778-J-Z55-4-7600

Concepts Package concept

A specification must be accompanied by at least one package body. Depending on
boundary conditions, there may also be two or more package bodies performing the
same service of the package but in different ways. For example, different versions of a
package body may contain message texts in different languages. The desired package
body is chosen as needed without affecting the rest of the program.

The package body for the above specification looks as follows:

PACKAGE BODY complex_definitions;

FUNCTION make_complex (r, i : Real) : complex;
{r becomes the real part, i the imaginary part }

BEGIN
make_complex := complex (r, i);

END;

FUNCTION imag_part_of (c : complex) : Real;
{yields the imaginary part of the complex number }

BEGIN
imag_part_of := c.imagpart;

END;

FUNCTION real_part_of (c : complex) : Real;
{yields the real part of the complex number }

BEGIN
real_part_of := c.realpart;

END;

{ arithmetic functions }

FUNCTION add (left, right : complex) : complex;
BEGIN ... END;

FUNCTION subtract (left, right : complex) : complex;
BEGIN ... END;

FUNCTION multiply (left, right : complex) : complex;
BEGIN ... END;

FUNCTION divide (left, right : complex) : complex;
BEGIN ... END;

BEGIN
END { complex }.

U2778-J-Z55-4-7600 327

Package concept Concepts

In this example no initialization is necessary. In the case of a random number genera-
tor, a start value is required. Initialization takes place as follows:

PACKAGE random_number_generator;

FUNCTION random : real;

END.

PACKAGE BODY random_number_generator;
VAR

seed : integer;

FUNCTION random : Real;
BEGIN

...
END { random };

BEGIN { initialization }
seed := 123456;

END.

The variable seed is known only within the package random_number_generator. In the
statement part, the variable is assigned a start value. At the time the packa-
ge_random_number generator is initialized, this assignment is processed before the pro-
gram using this package is started.

Compilation units

Main programs, package specifications and package bodies are referred to as compila-
tion units. They are managed separately and even compiled separately.

Relations between compilation units

If entities in a specification of another package are accessed in a compilation unit, the
name of the package must be specified in the WITH list of the compilation unit. In this
way, all entities in this package are made visible and can be used by specifying the
package name and the desired identifier. The example below illustrates the use of the
package complex_definitions in the program some_program.

328 U2778-J-Z55-4-7600

Concepts Package concept

WITH complex_definitions;
PROGRAM some_program
VAR

x, y, z : complex_definitions.complex;
BEGIN

...
z := complex_definitions.add (x,y);
...

END.

To avoid having to specify the package name each time, the identifiers of the packages
to be imported may be specified in the USE list. Imported identifiers can be used wi-
thout prefixing the package name. The package from which the identifiers are imported
must be specified beforehand in a WITH list.

WITH complex_definitions;
FROM complex_definitions USE complex, add;
PROGRAM some_program;
VAR

x, y, z : complex;
BEGIN

...
z := Add (x,y);

...
END.

The use of the USE clause is practical because it permits shorter identifiers; at times,
however, it may adversely affect the clarity and readability of the program. The USE
clause does not forbid prefixing the package name in order to use an identifier.

Compilations

While a compilation unit is being compiled, the compiler checks whether the entities
from the packages specified in the WITH lists are used correctly, e.g. whether the para-
meters for subprograms are correct.

If more than one package is being compiled, a particular compilation sequence must
be adhered to. This sequence is derived from the package relations specified in the
WITH lists. All package specifications of the packages specified in the WITH lists of a
compilation unit must be compiled prior to the compilation unit.

Once a package specification has been modified, the associated package body and all
compilation units using this specification must be recompiled.

U2778-J-Z55-4-7600 329

Package concept Concepts

Applications for Packages

A package should only combine entities which are logically related. In this respect,
there are four different areas of applications:

Set of declarations
Exports constants, types and variables
Does not export subprograms

Set of subprograms
Does not export constants, types or variables
Exports subprograms

Abstract data types
Exports constants and types
Exports subprograms
No status information is stored in the package!

Automata
Exports constants and types
Exports subprograms
Status information is stored in the package!

These four areas of application are explained in greater detail in the sections that fol-
low.

Sets of Declarations

One of the simplest applications for packages is to combine constants, types and varia-
bles. Declarations used by different compilations units may be collected in a package.
In this case, any modifications made will only affect one compilation unit.

For example, all machine-dependent system constants of a program can be combined
in a package. If the program is then to be ported to another computer, this ensures
that these constants can be changed simply and conveniently for the entire program.

330 U2778-J-Z55-4-7600

Concepts Package concept

PACKAGE system_constants;

CONST
core_size = 64536;
printer_width = 80;
winchester = False;
terminal_width = 80;
terminal_height = 25;

END.

PACKAGE BODY system_constants;
BEGIN
END.

On the other hand, it is often useful to combine logically related types. The following
package illustrates how definitions might look in conjunction with date information.

PACKAGE date_definitions;

TYPE
name_of_day = (sunday, monday, tuesday, wednesday,

thursday, friday, saturday);
date_of_day = 1..31;
name_of_month = (january, february, march, april,

may, june, july, august,
september, october, november, december);

date_of_month = 1..12;
table_of_days = ARRAY [date_of_month] of date_of_day;
date_of_year = 0 .. Maxint;
date = RECORD

day : date_of_day;
month : date_of_month;
year : date_of_year;

END;
CONST

max_date_of_day = table_of_days
(31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31);

END.

PACKAGE BODY date_definitions;
BEGIN
END.

U2778-J-Z55-4-7600 331

Package concept Concepts

Packages should be kept small. The larger the package, the less clear and readable it
is. When specifications become hard to read, you should consider subdividing the data
structures hierarchically, or choosing a narrower logical context.

Moreover, packages should not be used like common areas, as in the days of
FORTRAN. If variables are offered in specifications, each access operation on them is
unmonitored. The safe way is to use access functions on status variables in the pak-
kage body (see also section 17.2.3). This not only makes it possible to monitor the
access operation, but the representation of the data can also be changed without affec-
ting the other compilation units. The latter is probably the more important point as it
clearly underscores the power of packages as compared to languages of earlier genera-
tions.

Set of Subprograms

As with combining constants, types and variables, it is also possible to group different
subprograms into a unit by means of a package. For example, the hyperbolic functions
can be combined in a package and used as a subprogram:

PACKAGE hyperbolic_functions;

FUNCTION sinh (x : Real) : Real;
FUNCTION cosh (x : Real) : Real;
FUNCTION tanh (x : Real) : Real;

END.

The subprogram headings given in this specification must be completed in the package
body by means of subprogram blocks. The example below illustrates one way of doing
this.

PACKAGE BODY hyperbolic_functions;

FUNCTION sinh (x : Real) : Real;
BEGIN

sinh := (Exp (x) + Exp (-x)) / 2.0
END;

FUNCTION cosh (x : Real) : Real;
BEGIN ... END;

FUNCTION tanh (x : Real) : Real;
BEGIN ... END;

BEGIN
END.

332 U2778-J-Z55-4-7600

Concepts Package concept

Abstract Data Type

By "abstract data type" we mean the union of type and operations which are permitted
on values of this type. Packages make it possible to define abstract data types. For
reasons of clarity, we recommend setting up a separate package for each abstract data
type. In order to induce logical abstraction, the type is best declared as a so-called "pri-
vate type". Admittedly, this is only possible in the case of Pointer types.

By "private pointer type" we mean a type whose type denoter is known externally, but
whose domain type is invisible outside the package. In this way, it is only possible to
access values of this type via the defined access functions. A private pointer type is
defined in the specification as a pointer with a domain type which is not defined until
the package body.

Section 11.4 uses the example of a wait queue to show how to implement an abstract
data type.

U2778-J-Z55-4-7600 333

Package concept Concepts

Automatons

An automaton is described by a set of states and state transitions. At any given time
the automaton is in exactly one state. When an automaton is implemented by means of
a package, its given state is represented by the momentary values of the variables dec-
lared in the package body. The state information is inaccessible to a user of the auto-
maton. The automaton can modify its state by performing operations (procedures). With
the aid of functions, the user of the automaton can obtain information on its momentary
state.

In general, an automaton does not export constants, types or variables. Hence, its appe-
arance resembles a set of subprograms. The major difference lies in the state informa-
tion stored in the package. In contrast, the subprograms in the package hyperbo-
lic_functions are independent of each other as the result of a function does not depend
on other function calls. With an automaton, the result of a subprogram call is depen-
dent on all the preceding calls.

PACKAGE integer_stack;

CONST
full = 900; { exception for stack overflow }
empty = 901; { exception when accessing empty stack }

PROCEDURE push (i : Integer);
{ an Integer value is written to the stack }

PROCEDURE pop (VAR i : Integer);
{ an Integer value is taken from the stack }

FUNCTION is_empty : Boolean;
{ any more Integer values on the stack? }

PROCEDURE clear;
{ puts the stack in the basic state }

END.

The package may, for example, be used to implement a pocket calculator. The entered
values are written to the stack. For this purpose, the procedure "push" is offered. With
the aid of "pop", values can again be taken from the stack. The two constants "empty"
and "full" define the possible exception situations of the automaton. The procedure "cle-
ar" puts the automaton in the basic state.

334 U2778-J-Z55-4-7600

Concepts Package concept

PACKAGE BODY integer_stack;

CONST
stack_size = 100;

TYPE
stack_array = ARRAY [1..stacksize] OF Integer;

VAR
stack : stack_array;
stack index: 0..stack_size;

PROCEDURE push (i : Integer);
{ a value is written to the stack }

BEGIN
IF stack_index = stack_size THEN

Raise (full);
stack_index := stack_index + 1;
stack [stack_index] := i;

END { push };

PROCEDURE pop (VAR i : Integer);
{ a value is taken from the stack }

BEGIN
IF is_empty THEN

Raise (empty);
i := stack [stack_index];
stack_index := stack_index - 1;

END { pop };

FUNCTION is_empty : Boolean;
{ any more values on the stack ? }

BEGIN
is empty := stack_index = 0;

END { is_empty };

PROCEDURE clear;
{ puts the stack in the basic state }

BEGIN
stack_index := 0

END { clear };

BEGIN
clear;

END { integer_stack }.

The entities stack and stack_index form the internal state information. Since they are
declared globally in the package, they exist during the entire time the program is being
executed. These data items can only be accessed by the visible procedures push, pop
and clear and the function is_empty.

The stack was implemented by means of an array. This limits the number of values
which can be written to the stack. Should the representation of the stack be changed
(e.g. into a chained list) for an expanded implementation, this will have no effect on
compilation units which use the package "stack".

U2778-J-Z55-4-7600 335

Concepts Package concept

Exception Handling Concept
Exceptions are special cases of an algorithm which do not occur when the algorithm
runs normally. Taking them into account does not help us to understand the algorithm;
on the contrary, it only makes the algorithm more difficult to understand. For example,
when calculating with integers, the integer values may be too large to be representable
in the computer (e.g. they may no longer lie within the corresponding Integer type). To
take this special case (arithmetic overflow) into account in a numeric algorithm, before
any formula is evaluated it would have to be preceded by a complicated interrogation
with the values of the operands used in it to see whether the intermediate or final
results might turn out to be too large. This interrogation would doubtless make the
numeric algorithm completely unintelligible. For this reason, it is better to write the
actual algorithm first without taking these special cases (exceptions) into account, and
then provide measures for handling the exceptions in a second part (the exception
handling part or EXCEPTION part). The measure in the case of an arithmetic overflow,
for example, would be to issue a message indicating that the numeric values became
too large and that the computation could therefore not be carried out with the numeric
representation used in the computer. As a consequence, after receiving this message
we would abort the program since further processing would be pointless.

In contrast, the special cases of an algorithm which might even occur when the algo-
rithm runs normally, or which contribute to our understanding of the algorithm when
taken into account, are not exceptions in the above sense of the term. It is therefore
thoroughly possible for one and the same event to be considered an exception in one
algorithm but a normal case in another. Consider, for example, what happens when an
end-of-tape mark is reached when reading input data. If a file is to be read and proces-
sed one component at a time, then reaching the end-of-file is an expected event that
causes the algorithm to terminate normally.

U2778-J-Z55-4-7600 337

Exception handling Concepts

Example

PROGRAM process (data);
TYPE

t = ... ;
VAR

data: FILE OF t;
elem: t;

BEGIN
WHILE NOT Eof (data) DO BEGIN

Read (data, elem);
{ process }
END;

END.

If, however, three numbers are to be read from a textfile, then reaching the end-of-file
prematurely may be considered an exception in the above sense of the term.

Example

PROGRAM example (file, Output);

VAR file: Text;
num1,
num2,
num3: Integer;

BEGIN
Reset (file);
Read (file, num1, num2, num3);
...

EXCEPTION
IF Error_Number = Eof_Error THEN

Writeln (’Error in file’)
ELSE

Writeln (’Other error’)
END.

In Pascal-XT, exceptions are coded by means of Integer-type numbers. Negative num-
bers are reserved for predefined exceptions; positive numbers may be used for user-
defined exceptions. Constants have been declared for the predefined exceptions (see
section 14.1).

338 U2778-J-Z55-4-7600

Concepts Exception handling

Programmed exception handling

When an exception (error) occurs, it makes little sense simply to continue with program
execution and pretend as if nothing had happened. Instead, depending on the situation
involved, the following measures may profitably be followed:

Abort the entire program with an error message and, if applicable, start any neces-
sary termination routine to leave data collections on files in a consistent state.

Abort the subprogram where the exception occurred. Here, too, it may be neces-
sary beforehand to perform termination handling to leave global data structures in a
consistent state so that it is possible and meaningful to resume the program behind
the call of the aborted subprogram.

Execute an alternative algorithm which accomplishes, with more complexity, the
same thing as the algorithm interrupted by the occurrence of the exception. In the
case of memory overflow Memory_Error), for example, further data might be written
to a file instead of being stored in main memory.

Repeat the operation which led to the exception situation. Repetition is obviously
meaningful only if we can assume that the same exception situation will not occur
the second time. If, for example, an attempt to open a file (with Reset or Rewrite)
causes an Open_Error because the the file has just been opened by another pro-
gram, it makes sense to try opening the file a second time following an interval
because it may be available (closed) in the meantime. In this case, we can assume
that the cause of the error will rectify itself after a while. In general, however, there
is no point in repeating the error-causing operation without removing the cause of
the error beforehand.

For programming all of these possible responses, Pascal-XT has provided the concept
of exception handling. An exception handler can be specified for a subprogram or a
compound statement (see chapter 14). If an exception occurs, program execution conti-
nues from the dynamically most recent exception handler. To do this, a search begins
within the currently active subprogram or main program for the innermost compound
statement with exception handler containing the statement that caused the exception. If
there is no such compound statement in the currently active subprogram, the search
will continue in the same way in the dynamic predecessor which called this subpro-
gram. There, a search takes place for the innermost compound statement with excep-
tion handler containing the subprogram call. The search continues until either an excep-
tion handler is located or, if none is found, the program is aborted with an error mes-
sage from the runtime system.

Now let’s consider these possible responses to an exception in detail:

U2778-J-Z55-4-7600 339

Exception handling Concepts

• Aborting a program or subprogram

The exception handler is specified in the block of the subprogram or main program. It
has the task of performing termination handling. Then the entire program (subprogram)
is aborted.

Example

PROGRAM example (old_data, new_data, transaction, Output);
VAR

old_data,
new_data,
transaction : Text;

BEGIN
Reset (old_data);
Reset (transaction);
Rewrite (new_data);
...
{ execute the transactions }
...

EXCEPTION
{ new_data may be incomplete, i.e. delete }
Rewrite (new_data);
Writeln (Output, ’Program aborted’);

END

• Executing an alternative algorithm

The procedure below is designed to search for an opening move in a library. If this
library cannot be opened, processing continues with the normal heuristic search for a
suitable opening move.

Example

PROCEDURE openmove;
BEGIN

Reset (openlib);
search_move; { exception 13 if nonexistent }

EXCEPTION
IF (Error_Number = Open Error) OR

(Error_Number = 13) THEN
own_move

ELSE
Raise (0);

END

This example also illustrates how to propagate all exceptions which are unexpected or
cannot be handled. This is done by calling Raise for all unexpected error numbers (see
section 15.11).

340 U2778-J-Z55-4-7600

Concepts Exception handling

• Repeating the error-causing operation

The operation to be repeated in case of error (exception) is packed in a compound
statement with exception handler. This compound statement is in turn the body of the
repeat loop. The following example illustrates how to attempt to open a file three times
before aborting the program with an error message. Once the file has been successfully
opened, the loop is abandoned with the EXIT statement (see section 10.1.5).

Example

FOR i := 1 TO 3 DO
BEGIN

Reset (file);
EXIT;

EXCEPTION
IF (i = 3) OR (Error_Number <> Open_Error) THEN

Raise (13);
END;

This example illustrates how to create user-defined exceptions: namely, by calling Raise
(see section 15.11) with an error number greater than zero. In the example, the excep-
tion with the user-defined error number 13 will be created with the occurrence of an
error other than Open_Error or with the third repetition. Since Raise (13) is located
within the exception handler, the exception is immediately propagated to a superordi-
nate exception handler (see section 14.3). Raise (13) also abandons the FOR loop.

However, it should also be mentioned in this context that Raise must not be specified
as a special form of GOTO. Raise should only be used to create genuine exception
situations! Seen in this light, the Raise (13) in our example is justified.

Cross-references

Compound statement: 10.2, 14.2
Exception: 14
EXCEPTION part: 14.2
Exception handling: 14.3
Error Number, Raise: 15.11

U2778-J-Z55-4-7600 341

Concepts Exception handling

Input/Output
Experience has shown that Pascal novices usually have problems with input/output. For
this reason, the concepts are repeated here and the problematical aspects are dealt
with in somewhat greater detail. An exact description of the required procedures and
functions can be found in section 15.1.

The Pascal standard only discusses file processing on the programming level. In view
of the vast selection of operating systems, data recording techniques and so forth avai-
lable, the external representation of a file (input/output devices and data media are
both regarded as files in this context) cannot be made subject to programming lang-
uage standardization. To distinguish between external files and their internal (programm-
able) representations, the terms "logical file" and "physical file" have been generally
adopted.

Implementation-defined characteristic

Pascal only describes the logical effects of file operations. The physical activities
and the time of their execution are implementation-defined.

Throughout this chapter, logical files are represented in the following form:

... ...
f: value#1 value#2 value#n

... ...
file pointer

f : value#a

buffer variable

Fig. 19-1 Representation of a logical file

U2778-J-Z55-4-7600 343

General remarks Input/Output

Let f be a variable of type FILE OF t. Then values of f are a sequence of values of the
component type t which can be read- or write-accessed. The current position, also refer-
red to as file pointer (represented by), describes the current read- or write-positions.
For each FILE variable there exists implicitly a buffer variable f of type t which can
accommodate a value from the sequence. Values in the file can be accessed only via
the buffer variable.

In all the figures below, the end of the sequence is represented by the character . This
character is used for illustrative purposes only and does not imply any particular imple-
mentations.

Data transport between the buffer variable and the physical file is described by means
of the required procedures Get, Read, Put, Write, Reset and Rewrite.

Standard Pascal only recognizes sequential files. Pascal-XT implementations may addi-
tionally offer predefined packages in order to support, for example, direct access files
or index-sequential files.

The end of a file can be determined with the required function Eof. This function yields
the Boolean value True if the end of file f has been reached; otherwise it yields the Boo-
lean value False. The application of this function is only meaningful for reading opened
files, since with writing one is always at the end of file anyway. Once the end of the file
has been reached, any further attempt to read values will cause a runtime error.

...
f: value#1 value#2 value#n

...

(1) (1) (1) (2)

Fig. 19-2 Applying the required function Eof

If while reading you find yourself at the positions marked with (1), then Eof(f) is False.
At the positions marked with (2), Eof is True.

Files in Pascal fall into two main categories:

• Local files

A file is called a local file if the identifier of the FILE variable is not specified as a
program parameter in a main program. The assignment to a physical file during pro-
gram execution is performed implicitly by an implementation-dependent mechanism.
In Pascal-XT, a physical file may also be assigned to a local file by means of Assign-
file.

344 U2778-J-Z55-4-7600

Input/Output General remarks

The lifetime of a local file is linked to the block where it was declared as a variable:
Local files declared in a main program or package exist for the entire duration of
program execution.
Local files declared in a subprogram are created when the subprogram is called,
and destroyed when it is terminated.
Identified variables and components of identified variables may be of a FILE
type. Their lifetime then corresponds to that of these variables (created with
New).

The physical file assigned to a local file likewise ceases to exist when the block is
terminated.

• External files

External files are always declared directly in the main program block or in a pak-
kage block. They are reported as external variables (i.e. variables existing indepen-
dently of the program) by specifying their variable identifier in the program parame-
ter list. These variable identifiers are assigned physical files at program execution
time. External files must be neither components of variables nor identified variables.

To process a file you have to do the following:

1) Declare a FILE variable of the desired FILE type
as a local or global variable, or
as an identified variable or a component thereof.

2) Establish a link to an external file when using external files.

3) Specify the required textfiles Input and Output in the program parameter list if they
are used in the program. They are assigned the data display terminal by default.

Cross-references

FILE type: 6.3.5
Textfile: 6.3.5.2
Buffer variable: 9.6.5
Input/Output: 11.5
Block: 12.1
Program execution: 13.3
Required subprograms: 15.1

U2778-J-Z55-4-7600 345

Assigning a physical file Input/Output

Assigning a Physical File

Assigning a physical file to a FILE variable can be done in either of two ways: by speci-
fying the variable identifier in the program parameter list, or by means of the required
procedure Assignfile.

• Specification in the program parameter list

Assigning a physical file to a FILE variable specified as a program parameter is done
by means of an implementation-defined mechanism.

File in Pascal-XT Physical file outside the
Pascal-XT system

implementation-defined
mechanism

PROGRAM t (f);
TYPE

component = ... ; physical
VAR

f : FILE OF component; file
BEGIN

...

...
END.

Fig. 19-3a Assignment via an implementation-defined mechanism

346 U2778-J-Z55-4-7600

Input/Output Assigning a physical file

• Assignment via Assignfile

The required procedure Assignfile can be used to assign a physical file either to a local
or to an external file. The way the physical file is described in the second parameter of
Assignfile is implementation-defined.

File in Pascal-XT Physical file outside the
Pascal-XT system

Assignfile

PROGRAM t (f);
TYPE

component = ... ; physical
VAR file with

f : FILE OF component; name XYZ
BEGIN

Assignfile (f, ’XYZ’);
...

END.

Fig. 19-3b Assigning an external file with Assignfile

File in Pascal-XT Physical file outside the
Pascal-XT system

Assignfile

PROGRAM t;
TYPE

component = ... ; physical
VAR file with

f : FILE OF component; name ABC
BEGIN

Assignfile (f, ’ABC’);
...

END.

Fig. 19-3c Assigning a local file with Assignfile

U2778-J-Z55-4-7600 347

Opening files for reading or writing Input/Output

Opening Files for Reading or Writing

Before files can be processed for reading or writing they must be opened with Reset or
Rewrite, respectively

Reset (f)

Reset (f) opens file f for reading and moves the first component of the physical file to
the buffer variable. The file pointer is positioned to the first component in the file. If the
file is empty, Eof (f) is True and the buffer variable f is undefined.

...
f: value#1 value#2 value#n

...

file pointer

f : value#1

buffer variable

Fig. 19-4 Opening a non-empty file for reading

Rewrite (f)

Rewrite opens file f for writing. Following Rewrite (f) the file is empty, and any earlier file
contents are lost. The buffer variable f does not have a defined value, and Eof (f) is
True.

f:

file pointer

f : ??????

buffer variable

Fig. 19-5 Opening a file for writing

348 U2778-J-Z55-4-7600

Input/Output Reading from a file

The Read/Write Procedures Get and Put

The required procedures Get and Put are basic functions for moving values from the
physical file to the buffer variable or vice versa.

Get (f)

Get (f) shifts the file pointer one position further. If there is another element in the file, it
is moved to the buffer variable f and Eof (f) yields the value False. If not, the buffer
variable f is undefined and Eof (f) is True.

...
f: value#1 value#2 value#n

...

f : value#1

Fig. 19-6a Status after Reset (f)

...
f: value#1 value#2 value#n

...

f : value#2

Fig. 19-6b Status after the first Get (f)

...
f: value#1 value#2 value#n

...

f : value#n

Fig. 19-6c Status after the (n-1)-th Get (f)

U2778-J-Z55-4-7600 349

Reading from a file Input/Output

...
f: value#1 value#2 value#n

...
Eof(f) is True

f : ??????

Fig. 19-6d Status after the n-th Get (f) (end of file)

350 U2778-J-Z55-4-7600

Input/Output Reading from a file

Put (f)

Put (f) appends the current value of the buffer variable f to the end of the file opened
with Rewrite. Thus, before Put is called, the buffer variable must be assigned a value.
After Put is called, the contents of the buffer variable are undefined.

f:

f : ??????

Fig. 19-7a Status after Rewrite (f)

f := value#1;
Put (f);

f: value#1 contents of f are
again undefined

Fig. 19-7b Status after Put (f)

f := value#2;
Put (f);

f: value#1 value#2 contents of f are
again undefined

Fig. 19-7c Status after second Put (f)

U2778-J-Z55-4-7600 351

Abbreviating read and write operations Input/Output

The Read/Write Procedures "Read" and "Write"

Since we primarily want to move data from program variables to files or vice versa, the
file access via the buffer variable is annoying. For this reason, the required procedures
Read and Write have been defined as a means of abbreviating read and write opera-
tions.

Read (f, v1, .., vn)

The Read parameter list can be used to specify any number of Read parameters vi (but
at least one). A Read statement of this sort is then regarded as a sequence of indivi-
dual Read statements, each with only one Read parameter. Read (f, v) is short for the
following statement sequence:

BEGIN v := f ; Get (f); END

In other words, Read moves the current component from the buffer variable to the varia-
ble, and the next component from the file to the buffer variable. The following sequen-
ces of instructions illustrate the differences when programming loops, depending on
whether Get or Read is used.

Reset (f); Reset (f);
WHILE NOT Eof (f) DO BEGIN WHILE NOT Eof (f) DO BEGIN

{ process f } Read (f, v);
Get (f); { process v }
END; END;

The figures below illustrate different statuses when reading components from a file.

...
f: value#1 value#2 value#n

...

f : value#1

v: ??????

Fig. 19-8a Status after Reset (f)

352 U2778-J-Z55-4-7600

Input/Output Abbreviating read and write operations

...
f: value#1 value#2 value#n

...

f : value#2

v: value#1

Fig. 19-8b Status after the first Read (f,v)

...
f: value#1 value#2 value#n

...

f : value#n

v: value#n-1

Fig. 19-8c Status after the (n-1)-th Read (f,v)

...
f: value#1 value#2 value#n

...
Eof(f) is True

f : ??????

v: value#n

Fig. 19-8d Status after the n-th Read (f,v) (end of file)

U2778-J-Z55-4-7600 353

Abbreviating read and write operations Input/Output

Write (f, a1, ..., an)

The Write parameter list can be used to specify any number of parameters ai (but at
least one). A Write statement of this sort is then regarded as a sequence of individual
Write statements, each with only one parameter. Each Write (f, a) is short for the follo-
wing statement sequence:

BEGIN f := a; Put (f); END

If the FILE variable f is not of the required type Text, the expressions ai must be assign-
ment-compatible with the component type of the FILE type. If f is a textfile, the ai’s are
referred to as write parameters, and may have the types described in section 19.5.

The figures below illustrate different statuses when writing components to a file.

f:

f : ??????

Fig. 19-9a Status after Rewrite (f)

f: value#1

f : ??????

Fig. 19-9b Status after Write(f, value1)

f: value#1 value#2

f : ??????

Fig. 19-9c Status after Write(f, value2)

354 U2778-J-Z55-4-7600

Input/Output Abbreviating read and write operations

The sample programs below are equivalent examples for copying a file with Real num-
bers. If Get and Put are employed, a component is copied immediately from the buffer
variable of the input file to the buffer variable of the output file. If Read is chosen,
copying takes place with a detour via an auxiliary variable.

PROGRAM copy(f,g); PROGRAM copy(f,g);

VAR VAR
f, g: FILE OF Real; f, g: FILE OF Real;

r : Real;

BEGIN BEGIN
Reset(f); Reset(f);
Rewrite(g); Rewrite(g);
WHILE NOT Eof(f) DO BEGIN WHILE NOT Eof(f) DO BEGIN

g := f ; Read(f,r);
Put(g); Get(f); Write(g,r);
END END

END. END.

Copying a file with Copying a file with
Get and Put Read and Write

U2778-J-Z55-4-7600 355

Textfiles Input/Output

Textfiles

Files of the required type Text (called "textfiles" for short) have an additional property:
they describe a sequence of lines, with each line consisting of a sequence of Char-type
characters. Each line ends with a special character, the end-of-line (EOL) component.
This component is treated like a blank within a Pascal program. A textfile may only con-
tain complete lines, as illustrated in Fig. 19-10.

Textfiles must not be confused with files of type FILE OF Char, which likewise consist
of a sequence of characters but do not have a line structure. The subprograms additio-
nally defined for textfiles cannot be applied to them. For both files, the buffer variable is
of type Char.

Figures 19-10 and 19-11 again illustrate the difference between these two types of file.

In all the examples below, the end-of-line component is represented by the character
"•" and the end-of-file component by ’ ’. Blanks are represented by ’_’ for better visibili-
ty.

VAR f1: Text;
f2: FILE OF Char;

f1: line-1• line-2•

Fig. 19-10 Structure of a textfile

f2: l i n e - 1 l i n e - 2

Fig. 19-11 Structure of a file of type FILE OF Char

There are four additional required subprograms for textfiles:

- Readln
- Writeln
- Eoln
- Page

Readln and Writeln are used for handling the end-of-line component. Writeln creates
this component, and Readln can be used to skip it. Eoln queries whether the end of
line has occurred. It yields the value True when the file pointer points to the end-of-line
component (the buffer variable then contains a blank); otherwise, the value is False.
Fig. 19-12 shows the value of Eoln for different positions of the file pointer.

356 U2778-J-Z55-4-7600

Input/Output Textfiles

f1: line-1• line-2•

.... position of file pointer
1 1 1 1

2 2
3

Fig. 19-12 Use of the required function Eoln

If, when reading, you are at the positions marked with (1), then Eoln(f1) is False. At the
positions marked with (2), Eoln(f1) is True. At position (3), Eoln(f1) must not be called
because Eof(f1) is already True.

The Page procedure is used for formatting pages of textfiles which are output to prin-
ter. Text written to the file after a Page call is put on a new page when printed out.

Input and Output are required FILE variables of type Text with special properties. They
must not be declared in a program. As soon as they are specified in the program para-
meter list, they become visible and are automatically opened for reading or writing
when the program is started. Both files are usually assigned the data display terminal.

Unlike non-textfiles, the parameters of the required procedures Read, Readln, Write and
Writeln can have the following types:

the Char type
Integer and Real types
fixed and variable string types
the Boolean type (for Write or Writeln).

When numbers are output with Write or Writeln, they are automatically converted from
internal representation into printable characters. When numbers are read with Read or
Readln, conversion takes place in the reverse order.

With Boolean values, the character string ’TRUE’ or ’FALSE’ is output (the orthography
is implementation-defined).

The FILE value may be omitted in subprogram calls for textfiles. In this case:

Readln, Read, Eoln and Eof refer to the required textfile Input, and
Writeln, Write and Page refer to the required textfile Output.

U2778-J-Z55-4-7600 357

Reading from a textfile Input/Output

Reading from a Textfile

Read (f, v1, ..., vn)
Readln (f, v1, ..., vn)

The Read procedure reads values from the current line of textfile f and moves them to
the Read parameters v1 to vn. Readln functions in the same way as Read, but has the
additional property that after the Read parameters v1 to vn are read, the remaining cha-
racters of the current line, if any, are skipped and the first character of the next line is
put in the buffer variable.

Each Read parameter vi must be a variable access with one of the types Char, Integer,
Real, or a fixed or variable string type.

The figures below illustrate the situations that arise when reading values from a textfile
(other than Input). Blanks are represented as ’_’ for better visibility.

Note

The peculiarities of Readln in conjunction with input from interactive terminals are
described in section 19.5.2.

VAR f: Text;
r: Real;
c1,
c2: Char;

f: 123• _3.1415• A• B•

f : 1

Fig. 19-13a Status after Reset (f)

358 U2778-J-Z55-4-7600

Input/Output Reading from a textfile

f: 123• _3.1415• A• B•

f : _

Fig. 19-13b Status after Readln (f)

f: 123• _3.1415• A• B•

f : A r now contains the value 3.1415

Fig. 19-13c Status after Readln (f, r)

f: 123• _3.1415• A• B•

f : B c1 now contains ’A’

Fig. 19-13d Status after Readln (f, c1)

f: 123• _3.1415• A• B• Eof(f) is True

f : ? c2 now contains ’B’

Fig. 19-13e Status after Readln (f, c2)

U2778-J-Z55-4-7600 359

Reading characters Input/Output

Reading characters

If v is a variable of type Char or a subrange of Char, then Read (f, v) is defined by

BEGIN v := f ; Get (f) END

The variable v contains the blank ’_’ if, prior to the Read (f, v) call, Eoln (f) is True.

VAR f: Text;
c: Char;

f: line-1• line-2•

f : l

Fig. 19-14a Status after Reset (f)

f: line-1• line-2•

f : i c now contains the character ’Z’

Fig. 19-14b Status after Read (f, c)

f: line-1• line-2•

f : _ c now contains the character ’1’

Fig. 19-14c Status after five further Read (f, c) calls

360 U2778-J-Z55-4-7600

Input/Output Reading characters

f: line-1• line-2•

f : l c now contains the character ’ ’

Fig. 19-14d Status after the next Read (f, c)

U2778-J-Z55-4-7600 361

Reading Integer numbers Input/Output

Reading Integer numbers

If v is a variable of type Integer or a subrange thereof, a sequence of characters is
read. Leading blanks and end-of-line components are skipped. Immediately in front of
the number there may be a sign. The Read operation is terminated when an entered
character can no longer be part of an Integer number. This character is then located in
f .

The input digit sequence must correspond to an Integer number in decimal notation in
accordance with section 3.5. The value corresponding to this digit sequence is assig-
ned to variable v.

VAR f: Text;
i: Integer;

f: 123• __-5___• • 88•

f : 1

Fig. 19-15a Status after Reset (f)

f: 123• __-5___• • 88•

f : _ i now contains the value 123

Fig. 19-15b Status after Read (f, i)

f: 123• __-5___• • 88•

f : _ i now contains the value -5

Fig. 19-15c Status after the next Read (f, i)

362 U2778-J-Z55-4-7600

Input/Output Reading Integer numbers

f: 123• __-5___• • 88•

f : _ i now contains the value 88

Fig. 19-15d Status after the next Read (f, i)

U2778-J-Z55-4-7600 363

Reading Real numbers Input/Output

Reading Real numbers

If v is a Real-type variable, a sequence of characters is read. Leading blanks and end-
of-line components are skipped. Immediately in front of the number there may be a
sign. The Read operation is terminated when an entered character can no longer be
part of a Real number (in accordance with section 3.5). This character is then located
in f . The value of the read number is then moved to v.

VAR f: Text;
r: Real;

f: 3.1415• __-5E10__•

f : 3

Fig. 19-16a Status after Reset (f)

f: 3.1415• __-5E10__•

f : _ r now contains the value 3.1415

Fig. 19-16b Status after Read (f, r)

f: 3.1415• __-5E10__•

f : _ r now contains the value -5.1010

Fig. 19-16c Status after the next Read (f, r)

364 U2778-J-Z55-4-7600

Input/Output Reading character strings

Read parameters of a variable string type

If v is a variable of a variable string type (String), all characters up to the end of the
current line are read and moved to v. After the Read operation, Eoln (f) is True and f
contains the end-of-line component.

VAR f: Text;
s: String;

f: string• line-2•

f : s

Fig. 19-17a Status after Reset (f)

f: string• line-2•

f : _ s now contains ’string’

Fig. 19-17b Status after Read (f, s)

A Readln (f) call is now imperative since otherwise, with a subsequent Read (f, s),
nothing will be read and the file pointer will continue to point to the end-of-line compo-
nent.

f: string• line-2•

f : _ s contains the empty string

Fig. 19-17c Status after Read (f, s)

U2778-J-Z55-4-7600 365

Reading character strings Input/Output

f: string• line-2•

f : l

Fig. 19-17d Status after Readln (f)

f: string• line-2•

f : _ s now contains ’line-2’

Fig. 19-17e Status after Read (f, s)

366 U2778-J-Z55-4-7600

Input/Output Reading character strings

Read parameters of a fixed string type

If v is a variable of a fixed string type (PACKED ARRAY [1..n] OF Char), the Read ope-
ration is terminated when either the number of characters entered is equal to n, or the
end-of-line is reached. In the latter case, the remaining characters of v and padded with
blanks.

VAR f: Text;
a: PACKED ARRAY [1..6] OF Char;

f: Pascal-XT• line-2•

f : P

Fig. 19-18a Status after Reset (f)

f: Pascal-XT• line-2•

f : - a now contains ’Pascal’

Fig. 19-18b Status after Read (f, a)

f: Pascal-XT• line-2•

f : _ a now contains ’-XT ’

Fig. 19-18c Status after Read (f, a)

U2778-J-Z55-4-7600 367

Reading character strings Input/Output

A Readln (f) call is now imperative since otherwise, with a subsequent Read (f, a),
nothing will be read and the file pointer will continue to point to the end-of-line compo-
nent.

f: Pascal-XT• line-2•

f : _ a now contains ’ ’

Fig. 19-18d Status after Read (f, a)

f: Pascal-XT• line-2•

f : l

Fig. 19-18e Status after Readln (f)

f: Pascal-XT• line-2•

f : _ a now contains ’line-2’

Fig. 19-18f Status after Read (f, a)

368 U2778-J-Z55-4-7600

Input/Output Reading from the terminal

Reading from the Terminal

When a program is started the file Input is automatically opened for reading. This me-
ans that a Reset (Input) is performed implicitly. However, Reset not only causes the file
to be opened for reading, but loads the first component of the file into the buffer varia-
ble as well. Since the file Input is assigned to the terminal by default, this would lead to
an input prompt. To solve this, Pascal-XT has introduced a virtual line 0 containing
solely an end-of-line component. Following the implicit Reset (Input), Eoln(Input) is True
and Input contains a blank.

To read a character or character string v from a new line, we recommend the following
sequence of calls:

Readln (Input);
Read (Input, v);

When an Integer or Real number is read, all leading blanks and end-ofline components
are skipped. The preceding Readln may therefore be omitted.

Another problem when reading from terminal is the behavior of Readln. Readln, of cour-
se, skips the remaining characters in the current line and positions control to the first
character in the next line. On the terminal, however, there is no next line as yet; it must
first be entered by the user. This means that each Readln, and even each read opera-
tion on the end-of-line component with Read, causes the user to be given an input
prompt. A statement in the form

Readln (Input, v1,..., vn)

causes the values for variables v1 to vn to be read in first, followed by a prompt for a
new line.

U2778-J-Z55-4-7600 369

Writing to a textfile Input/Output

Writing to a Textfile

Write (f, p1,..., pn)
Writeln (f, p1,..., pn)

The Write procedure writes values (Write parameters) p1,...,pn to the current line of the
textfile f. Writeln works like Write except that it also causes the current line to terminate
with an end-of-line component and control to be positioned to the beginning of a new
line.

In Pascal-XT, output caused by Write is first sent to an internal line buffer. Only after
Writeln does output take place to the file or (if Output is specified) to the terminal
screen.

The individual Write parameters may have the form

a or a:a1 or a:a1:a2 .

a must be an expression of type Char, Integer, Real, Boolean or String (fixed or varia-
ble). At output time, Integer- or Real-type values are converted to decimal representa-
tion. Boolean-type values are output as a string (’True’ or ’False’, where the orthogra-
phy is implementationdefined).

The expression a1 determines the total length in which the value is output. If a1 is gre-
ater than required to represent the value, the value is stored in the field with right-justifi-
cation. If a1 is less than the required length, the following applies:

For Integer- or Real-type values, the required number of characters is output.
Strings of a character string type are output in the length a1; the remainder is trun-
cated.
Boolean-type values are output like values of a character string type.

If a1 is omitted, an implementation-defined number of characters is output for Integer,
Real and Boolean values. Values of type Char are output with a length of 1, character
strings in their actual length.

The expression a2 can only be specified for Real-type values. When specified, it causes
Real numbers to be output in fixed-point form with a2 digits after the decimal point. If
a2 is greater than required for maximum-precision output, zeros will be appended to
the decimal digits. If it is less than required, the decimal digits will be rounded.

370 U2778-J-Z55-4-7600

Input/Output Writing to a textfile

The figures below illustrate the output formats for Integer and Real values. We have
omitted the formats for the other types because of their simplicity.

| total output length |

V

blanks digits

V: sign (blank or ’-’)

Fig. 19-19 Output format for Integer values

| total output length |

Vm . E Ve

leading mantissa exponent
digit

Vm: sign of value a (blank or ’-’)
Ve: sign of exponent (’+’ or ’-’)
E: exponent sign

Fig. 19-20 floating-point representation of Real values

| total output length |

V .

blanks digits before a2 digits behind
decimal point decimal point

V: sign (blank or ’-’)

Fig. 19-21 Fixed-point representation of Real values

U2778-J-Z55-4-7600 371

Input/Output Writing to a textfile

Dynamic Data and Memory Allocation
Pascal distinguishes between two types of variables:

static (declared) variables and
dynamic (identified) variables.

Static variables are declared in a variable declaration such as "VAR a: person;". The
compiler reserves memory space for static variables in the block where they were decla-
red. They are created when the block is entered and destroyed when the block is termi-
nated.

Dynamic variables (henceforth called identified variables) are not created until runtime.
They are allocated memory space in their own memory area, called the "heap". To pro-
cess them, one declares a Pointer variable with the variable’s type as domain type.
With this form of declaration, the Pointer variables are strictly bound to their domain
type and can only point to (identify) dynamic variables (identified variables) of the same
type.

Values which can be assumed by Pointer variables are called "identifying values". The
possible values of a Pointer type include the NIL value (a defined, empty identifying
value) and the set of identifying values that point to an identified variable of the domain
type. Identifying values arise exclusively by applying the required procedure New to
Pointer variables. Let p be a Pointer variable with domain type t. By applying New (p),
an identified variable of type t is created, and p is assigned the identifying value poin-
ting to this variable.

Dynamic memory areas are usually generated and managed by means of required pro-
cedures. Standard Pascal provides the New procedure to create memory space for
identified variable, and the Dispose procedure to release that memory space. Besides
these required procedures, Pascal-XT has additional variants to set up Pointer variables
on the heap in abbreviated form with particular domain types (see section 15.2). This
saves memory space. However, these abbreviated identified variables can only be
accessed one component at a time. As an additional extension, the procedures Mark
and Release have been provided. They simplify dynamic memory allocation since a
Release call releases (deallocates) all variables created with New after the associated
Mark call.

U2778-J-Z55-4-7600 373

Dynamic data and memory allocation Concepts

A Pointer variable p only has a defined value following a New (p) call. Referencing this
variable before the New (p) call will lead to a runtime error with unpredictable effects.
The identified variable p , once created, is totally undefined.

The identified variable p is accessed by dereferencing the Pointer variable p. As an
extension to the Standard, Pascal-XT has introduced the concept of a dereferenced
object to enable dereferencing not only of Pointer variables but also of function calls
whose result type is a Pointer type (see section 9.6.4).

An identified variable can be made inaccessible not only by calling one of the two pro-
cedures Dispose or Release, but also by assigning another identifying value to the Poin-
ter variable p.

To process two or more variables of the same domain type simultaneously, you can

declare as many Pointer variables as you need to match the required number of
identified variables, or

chain the identified variables to each other.

The latter option is not only more flexible and more elegant, it also constitutes the main
application of pointers altogether, namely to set up dynamic data structures (e.g. cha-
ined lists). Chaining is performed by declaring a component of a Pointer type in the
associated domain type (which must be a RECORD in this case). This can be done e.g.
as follows:

TYPE
list = element;
element = RECORD

next: list;
...

END;

374 U2778-J-Z55-4-7600

Concepts Dynamic data and memory allocation

Once again let’s summarize the essential characteristics of dynamic data structures and
their practical significance:

Memory space is occupied only as long as it is required. Above all, this can be
determined by the programmer himself.

Any data structure can be set up.

A chained list (Example 1) and a binary tree (Example 2) illustrate the possible applica-
tions of dynamic data structures.

Cross-references

Pointer types: 6.4
Variables: 7
Objects: 9.6
Dereferencing: 9.6.4

U2778-J-Z55-4-7600 375

Chained lists Dynamic data and memory allocation

Example 1: Chained list

Our task is to process a list of names and telephone numbers, putting the names in
alphabetical order (character string comparison). One data structure typical for proces-
sing such lists is defined as follows:

TYPE
string17 = String[17];
plist = listtype;
listtype = RECORD

name,
telephone_no : string17;
successor : plist;

END;
VAR

list : plist;

The component "successor" is to identify the list element whose name immediately fol-
lows alphabetically. A list defined in this way is called a singly chained list. Similarly, we
can insert a RECORD field for reverse chaining, e.g. "predecessor : plist", where "prede-
cessor" then identifies the list element, the value of whose "name" comes alphabetically
before the current element. A list of this sort would then be doubly chained.

In our example, the Pointer type "plist" must be defined before "listtype" because this
Pointer type is required for the field "successor". This situation is typical for recursive
data structures. While identifiers in Pascal otherwise have to be defined before they are
applied, an exception to this rule arises in the case of Pointer types, namely, for the
expressed purpose of writing recursive data structures. A domain type can be used in a
declaration part to define a Pointer type before this domain type is itself defined (in the
same declaration part).

The variable "list" must be initialized with "list := NIL" before you can use the procedu-
res that follow. Typical operations on a list include insertion at the start of a list or at a
particular position in the list. The following procedure is used for insertion before the
first element in a list:

PROCEDURE insert (n, t: string17; VAR p: plist);
VAR

q : plist;
BEGIN

New (q);
q .name := n;
q .telephone_no := t;
q .successor := p;
p := q;

END { insert };

376 U2778-J-Z55-4-7600

Dynamic data and memory allocation Chained lists

With the aid of this procedure you can formulate another procedure to put a new entry
at the right place in list sorted in ascending order:

PROCEDURE enter (n, t: string17; VAR p: plist);
BEGIN

IF p = NIL THEN
insert (n, t, p)

ELSE IF n > p .name THEN
insert (n, t, p .successor)

ELSE IF n < p .name THEN
insert (n, t, p)

ELSE
p .telephone_no := t; { new telephone number }

END { enter }

In the case of the "enter" procedure, it is not mandatory to use recursion. The problem
could even be solved more efficiently with the aid of a repetitive statement. In both
cases, however, calling the "enter" procedure triggers a linear search in the list of exi-
sting entries. The number of steps in the search for an arbitrary entry increases in prop-
ortion to the number of existing list elements.

U2778-J-Z55-4-7600 377

Binary tree Dynamic data and memory allocation

Example 2: Binary tree

More efficient algorithms can be achieved by using tree structures. Instead of a pointer
"successor", as in the list in Example 1, two pointers - ltree and rtree - are used. For
each node in the tree the following situation then arises: the pointer ltree points to a
subtree on the left, and rtree to a subtree on the right. All subtrees have the same data
structure as the entire tree. When the tree is set up, it can be arranged that the follo-
wing rules hold for each node in the tree: all names in the left subtree are smaller than
the name at the current node, and all names in the right subtree are greater than that
name. The advantage of this data structure resides in the generally short paths to a
node with a particular name. This branching considerably simplifies the insertion of new
nodes or the search for existing ones.

378 U2778-J-Z55-4-7600

Dynamic data and memory allocation Binary tree

Maxwell

6666666

ltree rtree

Bohr Socrates

78654431 63644237

ltree rtree ltree rtree

NIL

Aristotle Galileo Planck

1234567 3134917 471119

ltree rtree ltree rtree ltree rtree

NIL NIL NIL NIL

Einstein Newton

330033 13131313

ltree rtree ltree rtree

NIL NIL NIL NIL

Fig. 20-1 Setting up a binary tree

U2778-J-Z55-4-7600 379

Binary tree Dynamic data and memory allocation

One data structure typical for processing trees of this sort is defined as follows:

TYPE
string17 = String[17];
ptree = treetype;
treetype = RECORD

name,
telephone : string17;
ltree,
rtree : ptree;

END;

VAR
tree : ptree;

The variable "tree" should be initialized with "tree := NIL" before you use the procedu-
res that follow. Typical operations on a tree structure include appending a new node to
a branch ending with NIL:

PROCEDURE append (n, t: string17; VAR p: ptree);
BEGIN

new (p);
p .name := n;
p .telephone := t;
p .ltree := NIL;
p .rtree := NIL;

END { append };

Using this procedure, you can formulate another procedure to put a new entry at the
right place in a binary tree:

PROCEDURE enter (n, t: string17; VAR p: ptree);
BEGIN

IF p = NIL THEN
append (n, t, p)

ELSE IF n > p .name THEN
enter (n, t, p .rtree)

ELSE IF n < p .name THEN
enter (n, t, p .ltree)

ELSE
p .telephone := t; { new telephone number }

END { enter }

In this case, a procedure with repetitive statements would be considerably easier to
read. Since the specified data structure is recursive (it consists of a tree with similarly
structured subtrees), it is more natural here to use recursive algorithms.

380 U2778-J-Z55-4-7600

Dynamic data and memory allocation Binary tree

Another example of the use of recursion is the following procedure, which outputs a
tree with the specified tree structure, sorted by name:

PROCEDURE printtree (p: ptree);
BEGIN

IF p <> NIL THEN BEGIN
printtree (p .ltree);
Writeln (p .name, ’ has the telephone number ’, p .telephone);
printtree (p .rtree);

END
END { printtree };

This procedure defines a particular path through the tree. At particular points along this
path an output is made - in this case whenever the left subtree has been passed
through completely. The result is a printout of the names in alphabetical order with
associated telephone numbers. If the three middle lines are entered in a different order,
the result would be a different order of the nodes encountered along the path. For
example, exchanging the lines "printtree (p .ltree)" and "printtree (p .rtree)" would pro-
duce an output in reverse alphabetical order.

U2778-J-Z55-4-7600 381

Dynamic data and memory allocation Binary tree

Appendix

Pascal-XT Syntax

Note

The root of the syntax is "compilation unit".

actual-parameter
= variable-object | expression | procedure-name
| function-name | type-name
| package-identifier | expression ":" format-denoter.

actual-parameter-list
= "(" actual-parameter {"," actual-parameter} ")".

adding-operator = "+" | "-" | "OR" | "OR" "ELSE".

aggregate = ARRAY-aggregate | RECORD-aggregate.

apostrophe-image
= "’’".

ARRAY-aggregate = ARRAY-type-name "(" ARRAY-aggregate-element
{"," ARRAY-aggregate-element} ")".

ARRAY-aggregate-element
= expression [":" repeat-factor].

ARRAY-type = "ARRAY" "[" index-type {"," index-type} "]" "OF"
component-type.

assignment = variable-object ":=" expression
| function-designator ":=" expression.

base-type = Ordinal-type-denoter.

bit-range = Integer-constant ".." Integer-constant.

U2778-J-Z55-4-7600 383

Pascal-XT syntax Appendix 1

block = { label-declaration-part
| constant-definition-part
| type-definition-part
| variable-declaration-part
| procedure-declaration
| function-declaration
}
statement-part.

buffer-variable = FILE-object " ".

case-constant = Ordinal-constant.

case-constant-list
= case-constant-range {"," case-constant-range} | "ELSE".

case-constant-range
= case-constant [".." case-constant].

case-index = Ordinal-expression.

case-list = case-list-element {";" case-list-element}.

case-list-element
= case-constant-list ":" statement.

CASE-statement = "CASE" case-index "OF" case-list [";"] "END".

compilation-unit
= package-specification
| package-body
| main-program.

component-type = type-denoter.

compound-statement
= "BEGIN" statement-sequence [EXCEPTION-part] "END".

conditional-statement
= IF-statement | CASE-statement.

conformant-array-parameter-specification
= value-conformant-array-specification
| variable-conformant-array-specification.

conformant-array-schema
= packed-conformant-array-schema.
| unpacked-conformant-array-schema.

constant = static-expression.

constant-definition
= identifier "=" constant ";".

constant-definition-part
= "CONST" constant-definition

{constant-definition}.

384 U2778-J-Z55-4-7600

Appendix 1 Pascal-XT syntax

context-specification
= WITH-list | USE-list.

control-statement
= option ["=" "On" | "Off" | "Restricted" |

character-string].

control-variable
= variable-identifier.

dereferenced-object
= Pointer-object " ".

digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9".

digit-sequence = digit {digit}.

directive = "c" | "cobol" | "external" | "fortran"
| "forward" | "internal".

domain-type = type-name.

ELSE-part = "ELSE" statement.

empty-statement = .

enumerated-type = "(" identifier-list ")".

EXCEPTION-part = "EXCEPTION" statement-sequence.

EXIT-statement = "EXIT".

exponent = ["+" | "-"] digit-sequence.

expression = simple-expression
[relational-operator simple-expression].

factor = primitive ["**" primitive] | "NOT" factor.

field-identifier
= identifier ["(" offset [":" bit-range] ")"].

field-identifier-list
= field-identifier {"," field-identifier}.

field-list = [(fixed-part [";" variant-part
| variant-part) [";"]].

field-selector-identifier
= field-identifier.

FILE-type = "FILE" "OF" component-type.

final-value = Ordinal-expression.

fixed-part = RECORD-section {";" RECORD-section}.

FOR-statement = "FOR" control-variable ":=" initial-value

U2778-J-Z55-4-7600 385

Pascal-XT syntax Appendix 1

("TO" | "DOWNTO") final-value "DO" statement.

386 U2778-J-Z55-4-7600

Appendix 1 Pascal-XT syntax

format-denoter = Integer-expression [":" Integer-expression].

formal-parameter-list
= "(" formal-parameter-section

{";" formal-parameter-section} ")".

format-parameter-section
= value-parameter-specification
| variable-parameter specification
| procedural-parameter-specification
| functional-parameter-specification
| conformant-array-parameter-specification.

fractional-part = digit-sequence.

function-declaration
= function-heading ";" directive ";"
| function-heading ";" function-block ";"
| function-identification ";" function-block ";"
| INLINE-function-declaration.

function-designator
= function-name [actual-parameter-list].

function-heading
= "FUNCTION" identifier

[formal-parameter-list] ":" result-type.

function-identification
= "FUNCTION" function-identifier
[[formal-parameter-list] ":" result-type].

functional-parameter-specification
= function-heading.

GOTO-statement = "GOTO" label.

hexadecimal-digit
= digit|"a"|"b"|"c"|"d"|"e"|"f".

hexadecimal-digit-pair
= hexadecimal-digit hexadecimal-digit .

hexadecimal-digit-sequence
= hexadecimal-digit {hexadecimal-digit}.

identifier = letter {["_"] (letter | digit)}.

identifier-list = identifier {"," identifier}.

IF-statement = "IF" Boolean-expression "THEN" statement
[ELSE-part].

imported-identifier
= constant-identifier | type-identifier
| variable-identifier | procedure-identifier
| function-identifier.

U2778-J-Z55-4-7600 387

Pascal-XT syntax Appendix 1

index-expression
= Ordinal-expression.

index-type = Ordinal-type-denoter.

index-type-specification
= identifier ".." identifier ":" Ordinal-type-name.

indexed-object
= ARRAY-object

"[" index-expression {"," index-expression} "]"
| String-object "[" index-expression "]".

initial-value = Ordinal-expression.

INLINE-function-declaration
= "INLINE" function-heading ";" function-block ";".

INLINE-procedure-declaration
= "INLINE" procedure-heading ";" procedure-block ";".

integer-part = digit-sequence.

label = digit-sequence.

label-declaration-part
= "LABEL" label {"," label} ";".

letter = "a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|
"k"|"l"|"m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"|
"u"|"v"|"w"|"x"|"y"|"z".

main-program = {context-specification}
"PROGRAM" identifier
["(" program-parameter-list ")"] ";"
main-program-block ".".

member-designator
= Ordinal-expression [".." Ordinal-expression].

multiplication-operator
= "*" | "/" | "DIV" | "MOD" | "AND" | "AND" "THEN".

name = [package-identifier "."] identifier.

new-type = enumerated-type | subrange-type | String-type
| Pointer-type | structured-type

object = constant-name | variable-name
| aggregate | function-designator
| indexed-object | selected-object
| dereferenced-object | buffer-variable.

offset = Integer-constant.

option = identifier.

388 U2778-J-Z55-4-7600

Appendix 1 Pascal-XT syntax

package-body
= {context-specification}

"PACKAGE" "BODY" package-identifier
["(" program-parameter-list ")"] ";"
{ constant-definition-part
| type-definition-part
| variable-declaration-part
| procedure-declaration-part
| function-declaration-part
}
statement-part ".".

package-specification
= {context-specification}

"PACKAGE" identifier
["(" program-parameter-list ")"] ";"
{ constant-definition-part
| type-definition-part
| variable-declaration-part
| procedure-heading ";" [directive ";"]
| function-heading ";" [directive ";"]
| "ENTRY" procedure-heading ";"
| "ENTRY" function-heading ";"
| INLINE-procedure-declaration
| INLINE-function-declaration
}
"END" ".".

packed-conformant-array-schema
= "PACKED" "ARRAY" "[" index-type-specification "]"

"OF" type-name.

pointer-type = " " domain-type.

primitive = unsigned-constant | bound-identifier
| "(" expression ")" | set-constructor
| qualified-set-constructor | object.

procedural-parameter-specification
= procedure-heading.

procedure-call = procedure-name [actual-parameter-list].

procedure-declaration
= procedure-heading ";" directive ";"
| procedure-heading ";" procedure-block ";"
| procedure-identification ";" procedure-block ";"
| INLINE-procedure-declaration.

U2778-J-Z55-4-7600 389

Pascal-XT syntax Appendix 1

procedure-heading
= "PROCEDURE" identifier [formal-parameter-list].

procedure-identification
= "PROCEDURE" procedure-identifier

[formal-parameter-list].

program-parameter-list
= identifier-list.

pseudocomment = "{$" control-statement
{"," control-statement} "}".

qualified-set-constructor
= SET-type-name "(" set-constructor ")".

RECORD-aggregate
= RECORD-type-name "(" expression {"," expression} ")".

RECORD-section
= field-identifier-list ":" type-denoter.

RECORD-type = "RECORD" field-list "END".

RECORD-variable-list
= RECORD-variable-object

{"," RECORD-variable-object}.

relational-operator
= "=" | "<>" | "<" | ">" | "<=" | ">=" | "IN".

repeat-factor = Integer-constant.

REPEAT-statement
= "REPEAT" statement-sequence

"UNTIL" Boolean-expression.

repetitive-statement
= REPEAT-statement
| WHILE-statement
| FOR-statement.

result-type = type-name.

RETURN-statement
= "RETURN".

selected-object
= RECORD-object "." field-identifier
| field-designator-identifier.

set-constructor = "[" [member-designator
{"," member-designator}] "]".

SET-type = "SET" "OF" base-type.

390 U2778-J-Z55-4-7600

Appendix 1 Pascal-XT syntax

sign = "+" | "-".

simple-expression
= [sign] term {adding-operator term}.

simple-statement
= empty-statement| assignment
| procedure-call | GOTO-statement
| EXIT-statement | RETURN-statement.

special-symbol = "+"|"-"|"*"|"/"|"="|"<"|">"|"["|"]"|"."|","|":"|
";"|"?"|"("|")"|"**"|"<>"|"<="|">="|":="|"..".

statement = [label ":"]
(simple-statement | conditional-statement

| repetitive-statement | compound-statement
| WITH-statement).

statement-part = compound-statement.

statement-sequence
= statement {";" statement}.

string = "’" {character-string-element "’"
| "#’" {hexadecimal-digit-pair "’".

string-element = apostrophe-image | character.

string-length = Integer-constant .

string-type = String-identifier "[" string-length "]".

structured-type
= ["PACKED"] unpacked-structured-type.

subrange-type = Ordinal-constant ".." Ordinal-constant.

tag-field = field-identifier.

tag-type = Ordinal-type-name.

term = factor {multiplication-operator factor}.

type-definition = identifier "=" type-denoter ";".

type-definition-part
= "TYPE" type-definition {type-definition}.

type-denoter = type-name | new-type.

unpacked-conformant-array-schema
= "ARRAY" "[" index-type-specification

{";" index-type-specification} "]" "OF"
(type-name | conformant-array-schema).

unpacked-structured-type
= ARRAY-type | RECORD-type | SET-type | FILE-type.

U2778-J-Z55-4-7600 391

Pascal-XT syntax Appendix 1

unsigned-constant
= constant-name
| unsigned-integer-number
| unsigned-real-number
| character-string
| "NIL".

unsigned-integer-number
= digit-sequence | "#" hexadecimal-digit-sequence.

unsigned-real-number
= integer-part "." fractional-part ["e" exponent]
| integer-part "e" exponent.

USE-list = "FROM" package-identifier "USE"
imported-identifier
{"," imported-identifier} ";".

value-conformant-array-specification
= identifier-list ":" conformant-array-schema.

value-parameter-specification
= identifier-list ":" type-name.

variable-conformant-array-specification
= "VAR" identifier-list ":" conformant-array-schema.

variable-declaration
= identifier-list ":" type-denoter ";".

variable-declaration-part
= "VAR" variable-declaration

{variable-declaration}.

variable-parameter-specification
= "VAR" identifier-list ":" type-name.

variant = case-constant-list ":" "(" field-list ")".

variant-part = "CASE" variant-selector "OF"
variant {";" variant} .

variant-selector
= [tag-field ":"] tag-type.

WHILE-statement = "WHILE" Boolean-expression "DO" statement.

WITH-list = "WITH" package-identifier
{"," package-identifier} ";".

WITH-statement = "WITH" RECORD-variable-list "DO" statement.

392 U2778-J-Z55-4-7600

Appendix 1 Pascal-XT syntax

word-symbol = "AND" | "ARRAY" | "BEGIN" | "BODY" | "CASE" |
"CONST" | "DIV" | "DO" | "DOWNTO" | "ELSE" |
"END" | "ENTRY"| "EXCEPTION" | "EXIT" | "FILE" |
"FOR" | "FROM" | "FUNCTION" | "GOTO" | "IF" |
"IN" | "INLINE" | "LABEL" | "MOD" | "NIL" |
"NOT" | "OF" | "OR" | "PACKAGE" | "PACKED" |
"PROCEDURE" | "PROGRAM" | "RECORD" | "REPEAT" |
"RETURN" | "SET" | "THEN" | "TO" | "TYPE" |
"UNTIL" | "USE" | "VAR" | "WHILE" | "WITH".

U2778-J-Z55-4-7600 393

Required identifiers Appendix 2

Required Identifiers

Identifier Section containing
the definition

Constants: Break_Error 5.2
Case_Error 5.2
Elab_Error 5.2
Eof_Error 5.2
False 5.2
File_Error 5.2
Index_Error 5.2
Long_Maxint 5.2
Long_Maxreal 5.2
Long_Minint 5.2
Long_Minreal 5.2
Maxint 5.2
Maxreal 5.2
Memory_Error 5.2
Minint 5.2
Minreal 5.2
Numeric_Error 5.2
Open_Error 5.2
Pointer_Error 5.2
Range_Error 5.2
Read_Error 5.2
Short_Maxint 5.2
Short_Maxreal 5.2
Short_Minint 5.2
Short_Minreal 5.2
Set_Error 5.2
String_Error 5.2
System_Error 5.2
True 5.2
Variant_Error 5.2

Types: Any_File 6.5.1
Any_Type 6.5.3
Boolean 6.2.4
Char 6.2.3
Integer 6.2.1
Long_Integer 6.2.1
Long_Real 6.2.2
Pointer 6.5.2
Real 6.2.2
Short_Integer 6.2.1
Short_Real 6.2.2
String 6.3.2.2
Text 6.3.5.2

Variables: Input 11.5
Output 11.5

394 U2778-J-Z55-4-7600

Appendix 2 Required identifiers

Subprograms:

Identifier Section containing
the definition

Abs 15.4
Alignof 15.9
Arctan 15.4
Assignfile 15.1
Bitsizeof 15.9
Card 15.6
Chr 15.6
Concat 15.3
Convert 15.10
Cos 15.4
Delete 15.3
Dispose 15.2
Elaborate 15.12
Eof 15.1
Eoln 15.1
Error_Number 15.11
Exp 15.4
First 15.9
Get 15.1
Insert 15.3
Last 15.9
Length 15.3
Ln 15.4
Long 15.5
Long_Round 15.5
Long_Trunc 15.5
Mark 15.2
Maxlength 15.9
New 15.2
Odd 15.7
Offsetof 15.9
Ord 15.6
Pack 15.8
Page 15.1
Position 15.3
Pred 15.6
Put 15.1
Raise 15.11
Read 15.1
Readln 15.1
Readstring 15.3
Release 15.2
Reset 15.1
Rewrite 15.1
Round 15.5
Setmax 15.9
Setmin 15.9
Short_Round 15.5
Short_Trunc 15.5
Sin 15.4
Sizeof 15.9
Sqr 15.4
Sqrt 15.4

U2778-J-Z55-4-7600 395

Required identifiers Appendix 2

Identifier Section containing
the definition

Substring 15.3
Succ 15.6
Trunc 15.5
Unpack 15.8
Write 15.1
Writeln 15.1
Writestring 15.3

396 U2778-J-Z55-4-7600

Appendix 3 Word symbols and special symbols

Meaning of the Word Symbols and Special Symbols

Word symbol Section containing
the definition

AND Boolean operators 9.3.2
ARRAY ARRAY types 6.3.1
BEGIN statement part 12.1

compound statement 10.2
CASE variants 6.3.3.1

CASE statement 10.3.2
CONST constant definition part 5.1
DIV arithmetic operators 9.3.1
DO WHILE statement 10.4.2

FOR statement 10.4.3
WITH statement 10.5

DOWNTO FOR statement 10.4.3
ELSE IF statement 10.3.1

CASE statement 10.3.2
END statement part 12.1

compound statement 10.2
CASE statement 10.3.2
RECORD types 6.3.3

FILE FILE types 6.3.5
FOR FOR statement 10.4.3
FUNCTION function declarations 8.2
GOTO GOTO statement 10.1.4
IF IF statement 10.3.1
IN set operators 9.3.3
LABEL label declaration part 4
MOD arithmetic operators 9.3.1
NIL constant definition part 5.1
NOT Boolean operators 9.3.2
OF variants 6.3.3.1

CASE statement 10.3.2
OR Boolean operators 9.3.2
PACKED packed types 6.3
PROCEDURE procedure declarations 8.1
PROGRAM program heading 11.1
RECORD RECORD types 6.3.3
REPEAT REPEAT statement 10.4.1
SET SET types 6.3.4
THEN IF statement 10.3.1

U2778-J-Z55-4-7600 397

Word symbols and special symbols Appendix 3

TO FOR statement 10.4.3
TYPE type definition part 6.1
UNTIL REPEAT statement 10.4.1
VAR variable declaration part 7.1

variable parameters 8.5.2
conformant array parameters

8.5.4
WHILE WHILE statement 10.4.2
WITH WITH statement 10.5

Word symbols Section containing
1. Word symbols introduced in Pascal-XT the definition

BODY packages and programs 11.2
ENTRY packages and programs 11.2
EXCEPTION exception handling 14
EXIT EXIT statement 10.1.5
FROM relations between packages 11.2
INLINE procedure declarations 8.3

functions declarations 8.3
PACKAGE packages and programs 11.2
RETURN RETURN statement 10.1.6
USE relations between packages 11.3

2. Standard word symbols with additional semantic meanings in PASCAL-XT:

AND THEN Boolean operators 9.3.2
ELSE variants 6.3.3.1

CASE statement 10.3.2
OR ELSE Boolean operators 9.3.2
WITH relations between packages 11.3

398 U2778-J-Z55-4-7600

Appendix 3 Word symbols and special symbols

Special symbols

Symbol Meanings

+ addition, set union
subtraction, set difference

* multiplication, set intersection
** raised to the power of
/ division
: colon, defined variable, separator
= is equal to

defined type, defined constant
< is less than

is a genuine subset of
> is greater than

is a genuine subset of
<> is not equal to
<= is less than or equal to, is a subset of
>= is greater than or equal to, is a superset of
[] square brackets, open and close
() parentheses, open and close
{} curly brackets (braces), open and close (comment)
:= variable on left is assigned value on right
• decimal point, separator
, comma, separator
; semicolon, separator
.. 2 periods, range indicator

up arrow, dereferencing

U2778-J-Z55-4-7600 399

Pascal-XT extensions Appendix 4

Extensions to Standard in Pascal-XT

All extensions in Pascal-XT to Standard Pascal (DIN 66 256) can be reported
when a program is compiled by entering the pseudocomment

{$ STANDARD = ON }

in the Pascal source program (see chapter 16).

• Word symbols and special symbols
BODY ENTRY EXCEPTION EXIT FROM
INLINE PACKAGE RETURN USE
"**"

• Identifiers
Identifiers may contain underscore characters.

• Directives
C Cobol Fortran External Internal

• Numbers
Integer values may be specified in hexadecimal form.

• Character strings
Character strings may be specified in hexadecimal form.
Empty character string.

• Comments
Pseudocomments for controlling the compiler.

• Declarations
Declarations may be entered in any order.

• Constants
NIL may be located on the right-hand side of a constant declaration.
Static expressions on the right-hand side of a declaration.
Additional required (predefined) constants.

• Types
Required type identifiers:
Short_Integer Long_Integer Short_Real Long_Real
Pointer Any_File Any_Type String
RECORD type
Specifications for memory representation of RECORD fields.
ELSE part in variant part of a RECORD type.
Specifications of areas in the case constant list.

• Procedure and function declarations

400 U2778-J-Z55-4-7600

Appendix 4 Pascal-XT extensions

Repetition of parameter lists in identifications.
INLINE subprograms.
ENTRY procedures in packages.
Result type of functions may be any type.

U2778-J-Z55-4-7600 401

Pascal-XT extensions Appendix 4

• Expressions
Shortcut operators OR ELSE and AND THEN.
Exponential operator "**".
Symmetrical set difference "/".
Genuine subset relations "<" and ">".
Set constructor with specification of SET type.
Static expressions may take the place of constants.
ARRAY aggregates and RECORD aggregates.
Indexing of structured values.
Selection of components of structured values.
Selecting, indexing and dereferencing of function results.
Comparison of character strings of different lengths.

• Statements
Compound statement with exception handling part.
EXIT statement for abandoning a loop.
RETURN statement for abandoning a block.
CASE statement.

ELSE as case constant.
Specification of areas in the case constant list.

• Package concept
Package specification and package bodies.
Context specifications WITH and USE.
Concept of private pointer type (with packages).

• Extensions to required subprograms
New Dispose Put Read Write
Pack Unpack

• New required subprograms
Mark Release Assignfile
Delete Insert Readstring Writestring Length
Position Concat Substring
Raise Error_Number
Elaborate
Long Short_Round Long_Round Short_Trunc Long_Trunc
Setmin Setmax Card Sizeof Bitsizeof
Alignof Offsetof First Last Maxlength
Convert

402 U2778-J-Z55-4-7600

Appendix 5 List of runtime errors

List of Runtime Errors

All errors described in the manual are sorted by error class in the following tables. This
makes it easy to ascertain which errors may occur in a specific error class.

Each error text is accompanied by references to this Manual in parentheses and referen-
ces to the the Pascal standard in square brackets insofar as they are mentioned there.

NUMERIC_ERROR

In an expression of the form x/y, y = 0 (9.3.1), [D.44].

In an expression of the form i DIV j, j = 0 (9.3.1), [D.45].

In an expression of the form i MOD j, j <= 0 (9.3.1), [D.46].

The result of an arithmetic operation does not lie in the value range of the result
type (9.3.1), [D.47]:

For operands of type Short_Integer or a subrange thereof, the type is Integer.
For operands of type Long_Integer or a subrange thereof, the type is
Long_Integer.
For operands of type Short_Real, the type is Short_Real
For operands of type Long_Real, the type is Long_Real

For Abs(x), the function result does not lie in the value range of the
result type (Integer or Long_Integer or Short_Real or Long_Real) (15.4).

For Sqr(x), the function result does not lie in the value range of the result type (Inte-
ger or Long_Integer or Short_Real or Long_Real) (15.4), [D.32].

The result of Exp(x) does not lie in the value range of the result type
(Short_Real or Long_Real) (15.4).

For Ln(x), x <= 0 (15.4), [D.33].

For Sqrt(x), x < 0 (15.4),D.34].

The result of Trunc(x) or Short_Trunc(x) or Long_Trunc(x) does not lie in the
value range of the result type (Integer or Short_Integer or Long_Integer) (15.5),
[D.35].

The result of Round(x) or Short_Round(x) or Long_Round(x) does not lie in the
value range of the result type (Integer or Short_Integer or Long_Integer)
(15.5), [D.36].

U2778-J-Z55-4-7600 403

List of runtime errors Appendix 5

In an expression of the form x**n, either
x is of an Integer type and n < 0, or
x = 0 or x = 0.0 and n <= 0 (9.3.1).

In an assignment, the value of the expression (right-hand side) of type
Long_Real does not lie in the value range of the variable access or the
function identifier (left-hand side) of type Short_Real (10.1.2).

With value parameter passing, the value of the actual parameter of type
Long_Real does not lie in the value range of the formal parameter of type
Short_Real (8.5.1).

In an aggregate, the value of an aggregate element of type Long_Real does
not lie in the value range of the associated aggregate component of type
Short_Real (9.5).

When reading from a non-textfile with Read(f,v), the value of the buffer
variable f of type Long_Real does not lie in the value range of the
variable v of type Short_Real (15.1).

When writing to a non-textfile with Write(f,a), the value of the
expression a of type Long-Real does not lie in the value range of the
buffer variable f of type Short_Real (15.1).

RANGE_ERROR

In an assignment, the value of the expression (right-hand side) of an Ordinal type
does not lie in the value range of the type possessed by the variable access or func-
tion identifier (left-hand side) (10.1.2) [D.49].

With value parameter passing, the value of the actual parameter of an Ordinal type
does not lie in the value range of the type possessed by the formal parameter
(8.5.1), [D.7].

In an aggregate, the value of an aggregate element of an Ordinal type does
not lie in the value range of the type of the associated aggregate
component (9.5).

When reading from a non-textfile with Read(f,v), the value of the buffer variable f of
an Ordinal type does not lie in the value range of the type possessed by the varia-
ble v (15.1), [D.17].

When writing to a non-textfile with Write(f,a), the value of the expression a of an
Ordinal type does not lie in the value range of the type of the buffer variable f
(15.1), [D.18].

404 U2778-J-Z55-4-7600

Appendix 5 List of runtime errors

The character value Chr(x) does not lie in the value range of the Char type (15.6),
[D.37].

U2778-J-Z55-4-7600 405

List of runtime errors Appendix 5

The result of Succ(x) does not lie in the value range possessed by the type of x
(15.6), [D.38].

The result of Pred(x) does not lie in the value range of the type of x (15.6), [D.39].

When the statement in a FOR statement is executed, the initial or final value of the
FOR statement does not lie in the value range of the type possessed by the control
variable (10.4.3), [D.52, D.53].

When reading an Integer number from a textfile (with Read(f,x)) or from a character
string expression (with Readstring(s,x)), the value of the number does not lie in the
value range of the variable x and no Read_Error (see below) has occurred (15.1,
15.3), [D.55].

With Write(f,a:l1:l2) or Writestring(s,a:l1:l2), the total output length l1 < 1 or the
number of digits after the decimal point l2 < 1. With Write(f,a:l1) or
Writestring(s,a:l1), the total output length l1 < 1 or l1 < 0 if a is of a
String
type (15.1), [D.58].

SET_ERROR

In an assignment, the value of the expression (right-hand side) of a SET type does
not lie in the value range of the type possessed by the variable access or function
identifier (left-hand side) (10.1.2), [D.50].

With value parameter passing, the value of the actual parameter of a SET type does
not lie in the value range of the type possessed by the formal parameter (8.5.1),
[D.8].

In an aggregate, the value of an aggregate element of a SET type does not
lie in the value range of the type of the associated aggregate component
(9.5).

When reading from a non-textfile with Read(f,v), the value possessed by the buffer
variable f of a SET type does not lie in the value range of the type of the variable
v (15.1), [D.17].

When writing to a non-textfile with Write(f,a), the value of the expression a of a SET
type does not lie in the value range of the type possessed by the buffer variable f
(15.1), [D.18].

In a set constructor, the value of the member designator does not lie in the value
range of the base type of the set constructor (9.4).

With Setmin(s) or Setmax(s), the value of the expression s is equal to the
empty set (9.4, 14.3.4, 15.6).

406 U2778-J-Z55-4-7600

Appendix 5 List of runtime errors

U2778-J-Z55-4-7600 407

List of runtime errors Appendix 5

STRING_ERROR

In an assignment, the actual length of the character string value of the
expression (right-hand side) is greater than the maximum length of the
String type possessed by the variable or function identifier (left-hand
side) (10.1.2).

In an assignment, the actual length of the character string expression of
a String type (right-hand side) is not equal to the length of the fixed
character string type possessed by the variable access or function
identifier (left-hand side) (10.1.2).

With value parameter passing, the actual length of the character string
of the actual parameter is greater than the maximum length of the String
type of the formal parameter (8.5.1).

With value parameter passing, the actual length of the character string
of the actual parameter is not equal to the length of the fixed String
type possessed by the formal parameter (8.5.1).

In an aggregate, the actual length of a character string of an aggregate
element is greater than the maximum length of the String type of the
associated aggregate component (9.5).

In an aggregate, the actual length of a character string of an aggregate
element (of a String type) is not equal to the length of the associated
aggregate component (of a fixed character string type) (9.5).

When reading from a non-textfile with Read(f,v), the actual length of the
character string of a String type in the buffer variable f is greater
than the maximum length of the type possessed by the String variable v
(15.1).

When reading from a non-textfile with Read(f,v), the actual length of the
character string of a String type in the buffer variable f is not equal
to the length of the fixed character string type possessed by the variable
v (15.1).

When writing to a non-textfile with Write(f,a), the actual length of the
character string is greater than the maximum length of the String type of
the buffer variable f (15.1).

When writing to a non-textfile with Write(f,a), the actual length of the
character string a of a String type is not equal to the length of the
buffer variable f of a fixed character string type (15.1).

With Read(f,v) or Readstring(s,v), the maximum length of the String
variable v is less than the length of the character string entered

408 U2778-J-Z55-4-7600

Appendix 5 List of runtime errors

(15.1, 15.3).

With Readstring(a,v1,...,vn), the character string expression a does not
contain as many characters as requested by the read parameters v1, ...,vn
(15.3).

With Writestring(s,p1,...,pn), the maximum length of the String variable s
is less than the character string formed from the write parameters
p1,...,pn (15.3).

With Delete(s,i,l), i<1 or l<0 or (i+l-1) > Length(s) (15.3).

With Insert(s1,s2,i), i<1 or Length(s2) + Length(s1) > Maxlength(s2)
(15.3).

With Substring(s,i,l), i<1 or l<0 or (i+-1) > Length(s) (15.3).

With Pack(a,i,z), the maximum length of the String variable z is too small
to accommodate all of the characters from the unpacked array a starting
starting at index i (15.8).

INDEX_ERROR

When indexing an array variable, array constant, array aggregate or a function
result of an ARRAY type, the value of the index expression does not lie in the
value range of the index type of the ARRAY type (9.6.2), [D.1].

When indexing a variable, constant or function result of a String type,
the value of the index expression is less than 1 or greater than the
actual length of the character string (9.6.2).

With a conformant array parameter, the index type of the actual parameter is not a
subrange of the index type of the conformant array schema (8.5.4), [D.59].

With Pack(a,i,z), the value of the expression i does not lie in the value range of the
index type of the unpacked array parameter a (15.8), [D.26].

With Pack(a,i,z), the index range of a is exceeded while moving the components
from the unpacked array a to the packed array z starting at index i (15.8), [D.28].

With Unpack(z,a,i), the ordinal value of expression i does not lie in the value range
of the index type of the unpacked array parameter a (15.8), [D.29].

With Unpack(z,a,i), the specified area in the unpacked array a starting at index i is
too small to accommodate all the components of the packed array z (15.8), [D.31].

With Unpack(z,a,i), the character string expression z has more characters

U2778-J-Z55-4-7600 409

List of runtime errors Appendix 5

than can be moved to the unpacked array a starting at index i (15.8).

410 U2778-J-Z55-4-7600

Appendix 5 List of runtime errors

POINTER_ERROR

With pointer dereferencing, the value of the variable, constant or function result
of a Pointer type is equal to the NIL value (9.6.4), [D.3].

With a Dispose(p) call, p has the NIL value (15.2), [D.23].

With a Release(p) call, the identifying value of p was not created by a
Mark call (15.2).

VARIANT_ERROR

An inactive variant of a variable, constant, aggregate or function result of a
RECORD type was accessed (9.6.3), [D.2].

CASE_ERROR

In a CASE statement, there is no CASE constant corresponding to the value of the
case index, and no ELSE alternative is specified (10.3.2), [D.51].

U2778-J-Z55-4-7600 411

List of runtime errors Appendix 5

FILE_ERROR

Before calling Put(f), Write(f,...), Writeln(f,...) or Page(f), file f was not opened for wri-
ting (15.1), [D.9].

Before calling Put(f), Write(f,...), Writeln(f,...) or Page(f), file f is undefined (15.1),
[D.10].

Before calling Put(f), Write(f,...), Writeln(f,...) or Page(f), the actual file position is not
the end-of-file position, i.e. Eof(f) is False. This error can only occur in conjunction
with [D.9]. See [D.11].

Before calling Get(f) or Read(f,...), file f was not opened for writing (15.1), [D.14].

Before calling Get(f) or Read(f,...), file f is undefined (15.1), [D.15].

Before calling Read(f,...), the buffer variable f of file f is undefined. This error can
only occur in conjunction with [D.15]. See (15.1), [D.57].

Before calling Eof(f), file f is undefined (15.1), [D.40].

Before calling Eoln(f), file f is undefined (15.1), [D.41].

With Assignfile(f,ext), the description of the external file in the "ext"
operand is invalid (15.1).

EOF_ERROR

With a Get(f) or Read(f,...) call, the end-of-file is already reached, i.e. Eof(f) is True
(15.1), [D.16].

With a Eoln(f) call, the end-of-file is already reached, i.e. Eof(f) is True (15.1), [D.42].

412 U2778-J-Z55-4-7600

Appendix 5 List of runtime errors

OPEN_ERROR

With a Reset or Rewrite call, the required textfile Input or Output is
specified (15.1).

With a Reset(f) call, file f is undefined (15.1), [D.13].

With Reset(f), the file linked to f and residing outside the program
cannot be opened for reading (15.1).

With Rewrite(f), the file linked to f and residing outside the program
cannot be opened for writing (15.1).

READ_ERROR

When reading an Integer number or a Real number from a textfile (with Read(f,v)) or
from a string expression (with Readstring(s,v)), the following applies:

the input string is syntactically errored [D.54];
the input string forms a number which cannot be represented internally. For Inte-
ger numbers, the value lies outside the range Long_Minint .. Long_Maxint. For
Real numbers, the value lies outside the range
-Long_Maxreal .. Long_Maxreal.

MEMORY_ERROR

Program execution cannot continue due to a shortage of memory space (e.g. with a
subprogram call or with New) (13.3.3, 15.2).

ELAB_ERROR

Package initialization of a program cannot continue as loops will arise
during initialization due to the use of the required procedure Elaborate
(13.3.3, 15.12).

U2778-J-Z55-4-7600 413

List of runtime errors Appendix 5

Miscellaneous errors (without error numbers)

The errors given in the table below have not been assigned error numbers. If one of
these errors occurs, it is not detected, and will generally lead to follow-up errors with
unpredictable effects.

In an assignment, the type of the expression (right-hand side) is of the
generic pointer type and the pointer value of the expression points to an
identified variable whose type differs from the domain type of the type
of the variable access or function identifier (left-hand side) (10.1.2).

With value parameter passing, the type of the actual parameter is of the
generic pointer type and the pointer value of the expression points to an
identified variable whose type differs from the domain type of the formal
parameter (8.5.1).

In an aggregate, the type of a Pointer value is of the generic pointer
type and the Pointer value of the expression points to an identified
variable whose type differs from the domain type of the type possessed by
the corresponding aggregate component (9.5).

The length of a String variable is modified even though there is still a
reference to a component of the String variable (9.6.2).

With Writestring(s,p1,...,pn), one of the write parameters p1,...,pn
contains a reference to the String variable s (15.3).

With Convert(x,t) the representation in memory is not a valid value of
type t (15.10).

The variant of a RECORD variable is not active for the entire duration of each refe-
rence to each one of its components (9.6.3), [D.2].

The file pointer of a file variable f is modified (e.g. by reading or writing) even
though there is still a reference to the buffer variable f (9.6.5), [D.6].

With pointer dereferencing, the value of the variable, constant or function
result of a Pointer type is undefined (9.6.4), [D.4].

With Dispose(q), an identifying value to an identified variable is removed although
there is still a reference to the identified variable (15.2), [D.5].

With a Dispose(p) call, the value of p is undefined (15.2), [D.24].

Before calling Dispose(p), p is created by New(q,c1,...,cn) or New(q,c1,...,cn,e)
or New(q,e) (15.2), [D.20].

Before calling Dispose(p,k1,...,km), the identified variable p was created by
New(p,c1,...,cn), with m not equal to n (15.2), [D.21].

414 U2778-J-Z55-4-7600

Appendix 5 List of runtime errors

With Dispose(p,c1,...,cn) or Dispose(p,c1,...cn,e), the identified variable p has
active variants other than those specified by the CASE constants c1 to cn (15.2),
[D.22].

Before calling Dispose(p,e), p was created by New(q,a) with a not equal
to e. By analogy, the same applies to Dispose(p,c1,...,cn,e) and
New(q,k1,...kn,a) (15.2).

With Dispose (p,e) or Dispose (p,c1,...,cn,e) the value of e does not lie
in the value range of the index type of the corresponding ARRAY type or is
less than 1 or greater than the maximum length of the corresponding String
type (15.2).

In an indexed ARRAY or String object, the ARRAY or String object was
generated in short form by calling New(p,e) or New (p,c1,...,cn,e) and
the value of the index expression in the indexed object is greater than
e (9.6.2).

In an indexed String object the value of the String object is undefined
(irrespective of whether the indexed object occurs in an expression or
e.g. as a variable access on the left-hand side of an assignment).

In an identified variable created with New(p,c1,...,cn) or New(p,c1,...,cn,e), a
variant is activated other than the one specified by the CASE constants c1 to cn
(9.6.3, 15.2), [D.19].

An identified String variable created with New(p,e) or the final component
of an identified String variable created with New(p,c1,...,cn,e) is
assigned a character string longer than e (15.2).

An identified variable created with New(p,c1,...,cn), New(p,e), or
New(p,c1,...,cn,e) appears intact in an expression or as the left-hand side of a
value assignment, or is passed as a parameter (9.6.4, 15.2), [D.25].

With New (p,e) or New (p,c1,...,cn,e), the value of e does not lie in the
value range of the index type of the corresponding ARRAY type, or it
is less than 1 or greater than the maximum length of the corresponding
variable string type (15.2).

The identifying value p passed with the Release (p) call was destroyed by
another Release (q) call (15.2).

Before calling Put(f), Put(f,c1,...,cn), Put(f,e) or Put(f,c1,...,cn,e), the buf-
fer variable f is undefined (15.1), [D.12].

U2778-J-Z55-4-7600 415

List of runtime errors Appendix 5

With abbreviated output of an array with Put(f,e) or Put(f,c1,...,cn,e),
the value of the index expression e does not lie in the value range of the
index type of the array (15.1).

With abbreviated output of a variable string with Put(f,e) or
Put(f,c1,...cn,e), the value of the index expression e is less than 1 or
greater than the actual length of the character string (15.1).

A variable access used as an object in an expression has an undefined value at the
time the expression is evaluated (9.1), [D.43].

The result of a function will be unpredictable after function block execution if the
function identifier has not been assigned a value (8.7), [D.48].

With Unpack(z,a,i), some component of the packed array z is undefined (15.8),
[D.30].

With Pack(a,i,z), a component of the unpacked array a is accessed although the
component is undefined (15.8), [D.27].

The identifiers of the program parameters of the main program and all
associated packages do not differ pair by pair (except for Input and
Output) (13.3.3).

The names of all packages belonging to a program and the name of the main
program do not differ pair by pair (13.3.3).

416 U2778-J-Z55-4-7600

Appendix 6 Implementation-defined characteristics

Implementation-defined Characteristics

The implementation-defined characteristics may differ for each Pascal-XT implementa-
tion; however, they are defined for each implementation. A program can draw on imple-
mentation-defined values or characteristics, although this may lead to different results
when it runs on different implementations. One simple example of this is the output of
the value Maxint, which can be Short_Maxint or Long_Maxint depending on the imple-
mentation involved.

All of the implementation-defined characteristics in this manual are specified in the
User’s Guides [1], [2]. The cross-references in parentheses refer to sections in this
Language Reference Manual, while the numbers in square brackets refer to sections in
the Pascal standard, insofar as these characteristics are mentioned there.

The characteristic given in item 16 is defined identically for all Pascal-XT implementa-
tions.

1) The values of the following required Real constants are implementation-
defined (5.2):

Short_Minreal
Long_Minreal
Short_Maxreal
Long_Maxreal

2) The following required constants have implementation-defined values
(5.2),[6.7.2.2]:

Maxint is equal to Short_Maxint or Long_Maxint
Minint is equal to Short_Minint or Long_Minint
Maxreal is equal to Short_Maxreal or Long_Maxreal
Minreal is equal to Short_Minreal or Long_Minreal.

3) As regards the required type identifiers Integer and Real the following
is implementation-defined (6.2.1):

Integer is equal to Short_Integer or Long_Integer
Real is equal to Short_Real or Long_Real.

4) The values of the types Short_Real and Long_Real represent implementation-defi-
ned subsets of Real numbers (6.2.2), [6.4.2.2].

5) The results of arithmetic Real operators and Real functions are approximate values
of the mathematical results. The precision of these approximations is implementa-
tion-defined (6.2.2), [6.7.2.2].

6) The values of type Char are obtained by enumeration of the implementation-defi-
ned characters, and the assignment of ordinal numbers of type Integer to the cha-
racter values is implementation-defined (6.2.3), [6.4.2.2].

7) The maximum length of the String type without specification of a Type

U2778-J-Z55-4-7600 417

Implementation-defined characteristics Appendix 6

parameter is implementation-defined (6.3.2.2).

8) The size of a memory unit is implementation-defined. It may be one byte
or a multiple (generally a power of two) of one byte (6.3.3.2).

9) The offset and bit-range specifications in field identifiers of a
RECORD type may be subject to implementation-defined restrictions
(6.3.3.2).

10) The maximum number of values of the base type of a set may be subject to
implementation-defined restrictions (6.3.4).

11) The greatest ordinal value of the base type of a non-qualified set
constructor is implementation-defined (9.4).

12) Which of the directives C, Cobol, Fortran, External and Internal are
supported is implementation-defined (8.6).

13) Subprograms with any of the directives C, Cobol, Fortran, External and
Internal may be subject to implementation-defined restrictions with
regard to the kind and type and number of parameters (8.6).

14) In Pascal, the logical results of the file operations are described. The physical acti-
vities and the timing of their execution are implementation-defined (19), [6.6.5.2].

15) The definition of the external file in the required procedure Assignfile
and the effect of this procedure are implementation-defined (15.1).

16) The effect of the required procedures Reset and Rewrite on one of the required
textfiles Input or Output is, in line with the Pascal standard, implementation-defi-
ned.
In Pascal-XT, this characteristic is defined for all implementations: an
Open_Error will occur (15.1),[6.10].

17) The default output lengths for values of an Integer type, of a Real type and of the
Boolean type are implementation-defined (15.1), [6.9.3.1].

18) The way the exponent is represented (either as E or as e) and the number of deci-
mal places for the exponent when Real values are output in floating point repre-
sentation is implementation-defined (15.1), [6.9.3.4.1].

19) The representation (upper case/lower case) of Boolean values in the output is
implementation-defined for each letter (15.1), [6.9.3.5].

20) The effect of the required procedure Page on textfiles is implementation-defined
(15.1), [6.9.5].

21) Entry subprograms may be subject to implementation-defined restrictions
(11.2.1).

22) For program parameters whose variables contain a FILE type, the assignment to

418 U2778-J-Z55-4-7600

Appendix 6 Implementation-defined characteristics

objects outside of the program is implementation-defined (11.5), [6.10].

23) The presettings of compiler options are implementation-defined (16).

U2778-J-Z55-4-7600 419

Implementation-defined characteristics Appendix 6

Implementation-dependent Characteristics

The implementation-dependent characteristics may differ in the various Pascal implemen-
tations, and apart from the characteristic mentioned in item 8, which applies to all Pas-
cal-XT implementations, they are not necessarily defined.

A program based on particular implementation-dependent characteristics does not com-
ply with the Standard, and is errored in Pascal-XT unless the characteristic is implemen-
tation-defined (see item 8).

The cross-references in parentheses refer to sections in this manual; numbers in square
brackets refer to sections in the Pascal standard.

1) The sequence in which index expressions are evaluated in an indexed variable, an
indexed constant, an indexed aggregate or an indexed function designator is imple-
mentation-dependent (9.6.2), [6.5.3.2].

2) The sequence in which member designators and the expressions in member desig-
nators are evaluated in a set constructor is implementation-dependent (9.4), [6.7.1].

3) Apart from the shortcut operators OR ELSE and AND THEN, the sequence in which
the operands of a dyadic operator are evaluated is implementation-dependent. The
operands may be evaluated in the order they are written, in reverse order, simulta-
neously, or possibly not at all (9.3), [6.7.2.1].

4) The sequence in which expressions are evaluated and assigned to the
components of an aggregate is implementation-dependent (9.5).

5) The sequence in which actual parameters are accessed, evaluated and assigned in
a procedure statement or function designator is implementation-dependent (8.7),
[6.7.3, 6.8.2.3].

6) The sequence in which the variable (right-hand side) of an assignment is accessed
or the expression (left-hand side) is evaluated is implementation-dependent (10.1.2),
[6.8.2.2].

7) The effect of reading a textfile for which the required procedure Page was applied
during its generation is implementation-dependent. however, the effect can be defi-
ned for an implementation (15.1), [6.9.5].

8) For program parameters whose variables do not have a FILE type, the assignment
to objects outside the program is implementationdependent (11.5), [6.10].
In Pascal-XT, a variable cannot be specified in the program parameter
list unless it has a FILE type.

420 U2778-J-Z55-4-7600

Appendix 8 Predefined packages

CLOCK package

The CLOCK package supplies information on the time, date, and amount of CPU time
used.

package CLOCK;

(***************************************)
(* The body of this package is part *)
(* of the Pascal-XT runtime system *)
(***************************************)

type

date_string = packed array [1..12] of char; (* ISO Date : ’yy-mm-ddjjj ’ *)
time_string = packed array [1.. 8] of char; (* ISO Time : ’hh:mm:ss’ *)
cpu_seconds = real; (* cpu time in seconds *)

function date : date_string;
(* returns the actual date *)

function time : time_string;
(* returns the actual time *)

function cpu_time : cpu_seconds;
(* returns the task’s used cpu time *)

end (* package CLOCK *).

DATE

returns the current date in ISO format (yy-mm-ddjjj), where jjj indicates the number
of days accumulated in the year.

TIME

returns the current time-of-day in ISO format (hh:mm:ss).

CPU_TIME

returns the amount of CPU time (in seconds) used since the start of the process.
The CPU time is counted in the implementation-defined increment of 0.02 seconds.

U2778-J-Z55-4-7600 421

Appendix 8 Predefined packages

References
The publications marked with an * are not published by Siemens Nixdorf Informations-
systeme AG or by Siemens AG.

[1] Pascal-XT (BS2000)
User’s Guide

Target group
Pascal-XT users in BS2000.
Contents
Operation of the programming system and of the compiler; description of the
BS2000-specific attributes of the compiler; linking and executing programs;
language interfaces; runtime error messages; description of predefined packa-
ges; comparison with Pascal Version 3.

[2] Pascal-XT (SINIX)
User’s Guide

Target group
Pascal-XT users working under the SINIX operating system.
Contents

Using the compiler
Description of the SINIX-specific characteristics of the compiler
Pascal files and file linkage to SINIX files
Language interfaces
The debugging aid PATH
Description of predefined packages

[3]* Däßler/Sommer
Pascal - Einführung in die Sprache,
DIN-Norm 66256
Springer Verlag, Berlin, Heidelberg
New York, Tokio 1983/85
ISBN 3-540-12835-2

U2778-J-Z55-4-7600 423

References

[4]* K. Jensen, N. Wirth
Pascal user manual and report
Springer Verlag, Berlin, Heidelberg
New York, Tokio 1974

[5]* Jacques Tiberghien
The Pascal Handbook
Sybex, 1982
ISBN 3-887 45-005-1

Remark
This book is especially suitable as a reference work. It offers the programmer
a summary of the most common versions of Pascal, and thus the ability to
compare Pascal-XT, described in this manual.

Ordering manuals

The manuals listed above and the corresponding order numbers are to be found in the
List of Publications: Data Systems, which also tells you how to order manuals. New
publications are listed in the Druckschriften-Neuerscheinungen Datentechnik (New
Publications).

You can arrange to have both of these sent to you regularly by having your name pla-
ced on the appropriate mailing list. Your local Siemens office will help you.

424 U2778-J-Z55-4-7600

References

Index
A
Abs 279
active variant 147
actual parameter 109, 162

list 109, 162
adding operator 113, 117
addition 118
aggregate 136, 141

static 136
use of 136

alignment 75
Alignof 75, 292
Any_File 65
Any_Type 66
apostrophe image 21
Arctan 279
arithmetic

function 278
operators 118

ARRAY aggregate 137
member 137

ARRAY type 46, 265
Assembler 305
Assignfile 232
assignment 156, 158
assignment-compatibility 71
attribute function 291

B
Backus-Naur Form 9
base type 58
bit range 51, 56
Bitsizeof 75, 292

U2778-J-Z55-4-7600 425

Index

block 85, 87, 165, 185, 201
execution 216
function 87
main program 185
procedure 85

Boolean 41
expression 167, 173, 175
operators 125

bound identifier 102, 105, 113
defining point 206
region 206

Break_Error 221
buffer variable 60, 77, 79, 141, 151

C
C 106
canonical index type 102
Card 283
case

constant 170
index 170
list 170
list element 170

CASE
constants 52
statement 167, 170

Case_Error 220
Char 40

type 244, 274, 277, 283
character

string 21
value 40

Check 305
Chr 283
Cobol 106
comments 23
comparison

character strings 130
lexicographical 131
Pointer values 130
sets 130
simple values 130

compatible types 69
compilation error 12

426 U2778-J-Z55-4-7600

Index

compilation sequence 214
compilation units 214

dependent 214
recompilation 215
relations 194
storage 214

compiler options 301
component type 46, 60
component variable 77
compound statement 85, 87, 166, 167, 222
Concat 269
conditional statement 167
conformability 104
conformant array

parameter 93, 102
schema 102
schema multi-dimensional 103

conjunction 125
constant 116

definition 27
definition part 27, 188, 201

constant identifier 27, 41f, 194, 196
defining point 204
region 204
required 30

constant name 27, 113, 141, 209
constant unsigned 113
context specification 185, 188f, 194
control

statement 23, 301
variable 176
variable threat 177

Convert 296
Cos 279

D
Debug 303
declaration

function 87
part label 25
part variable 78, 188
procedure 85
sequence 201

declared variable 79

U2778-J-Z55-4-7600 427

Index

defined variable 80
defining point 201, 204

bound identifier 206
constant identifier 204
enumerated constant 205
field designator identifier 206
field identifier 205
function identifier 204
imported identifier 205
label 204
package identifier 204
parameter identifier 205
procedure identifier 204
required identifier 206
type identifier 204
variable identifier 204

definition part
constant 27, 188
type 35, 188

definitions, sequence 201
Delete 270
dereferenced object 141, 150
directives 17, 106, 191
disjunction 125
Dispose 260, 357
DIV 123
division 118

integral 118
domain type 63, 197, 357

E
Elab_Error 221
Elaborate 299
ELSE part 167
empty

file 60
set 133
statement 156
string 49

entire variable 77
ENTRY 191

function 92, 188, 191
procedure 92, 188, 191

enumerated constant

428 U2778-J-Z55-4-7600

Index

defining point 205
region 205

enumerated type 42
Eof 233, 328
Eof_Error 220
Eoln 61, 233, 340
equivalence of types 67
error 12, 219

compilation 12
runtime 12

Error_Number 219
exception 113, 219

detection 221
handled 222
handling 219
propagation 219, 222, 224, 227f, 297
representation 220
reserved 220
user-defined 220

EXCEPTION part 166, 219, 222
exception situation 219, 297
EXIT statement 156, 164
Exp 279
exponent operator 114, 117
exponentiation 118
expression 113

Boolean 167, 173, 175
evaluation 113
evaluation sequence 114, 125
simple 113
static 27, 116, 143, 147, 272, 278

External 106
external file 329

F
factor 113
False 30, 41
field

access 51
bit range 56
designator 146

field designator identifier 51, 146, 179f
defining point 205f
region 206

U2778-J-Z55-4-7600 429

Index

field list 51
empty 51

field offset 55

430 U2778-J-Z55-4-7600

Index

file 60
current position 60
empty 60
external 329
general 60
local 328
pointer 60, 152, 180, 328
processing mode 60
Text 61

FILE object 151
FILE type 60, 71, 232, 328

generic 65
File_Error 220
final value 176
First 75, 293
fixed part 51
FOR statement 176
formal parameter 162

list 85, 87, 93
list repetition 85, 88, 93, 193
section 93

format denoter 109
Fortran 106
Forward 106
fully qualified identifier 195
function 83

arithmetic 278
block 87
call 109, 141
declaration 87, 201
ENTRY 92
execution 216
heading 87, 99
identification 87
identifier 87, 158, 194
identifier defining point 204
identifier region 204
INLINE 91
name 87, 99, 109, 209
static 116
value 87

functional parameter 93, 99

U2778-J-Z55-4-7600 431

Index

G
Generate 303
generic

FILE type 65
pointer type 65, 263

Get 234, 333
global variables 84
GOTO statement 156, 163

H
hexadecimal 19
host type 44, 67, 69, 114, 133

I
identified variable 63, 77, 79, 150, 357f
identifier 15

bound 105
constant 27, 41f, 194, 196
defining point 201, 204
field 51, 146
fully qualified 195
function 87, 158, 194
imported 194, 196
list 78
notation 2
package 27, 188, 194, 196
procedure 85, 194
program name 185
program parameter 198
required 377
scope 207
syntax 15
type 35, 194
use 201, 207f
variable 62, 176, 194

identifying value 63, 357
IF statement 167
implementation-defined 11
implementation-dependent 11
imported identifier 194, 196

defining point 205
region 205

IN 129
index type 46

canonical 102

432 U2778-J-Z55-4-7600

Index

Index_Error 220
indexed object 141, 143
indexing 143

long form 143
short form 143

initial value 176
initialization, package 299
Initialize 306
INLINE 191

function 91, 188, 191
procedure 91, 188, 191

Input 62, 341
input 198
Insert 271
Integer 37
integer operations 119
Integer type 244, 274, 277, 282, 284, 297
integer type 37, 71
integral division 118
Internal 106
italics 3

L
label 20, 25, 163

declaration part 25, 201
defining point 204
region 204
scope 207
use 207

Last 75, 293
Length 269, 272
lexical tokens 23
lexicographical comparison 131
List 306
lists, structured 360
Ln 280
local file 328
Long 119, 281
Long_Integer 37, 69
Long_Maxint 30, 37
Long_Maxreal 30
Long_Minint 30, 37
Long_Minreal 30
Long_Real 38, 69, 71

U2778-J-Z55-4-7600 433

Index

M
main program 185

block 185, 329
Map 304
Mark 263, 357
maximum length 49
Maxint 30, 37
Maxlength 75, 293
Maxreal 30
member designator 133
memory unit 75
Memory_Error 221
meta-identifier 2f, 9
metasymbols 9
Minint 30, 37
Minreal 30
MOD 123
modulo 118
multiplication 118
multiplying operator 113, 117

N
name 3

constant 27, 209
function 87, 99, 209
procedure 85, 99, 209
type 35, 209
variable 78

negation 125
New 264, 357
new type 35, 67
NIL value 63, 357
non-terminal symbol 9
NOT operator 117
number

hexadecimal 19
real 38

Numeric_Error 220

O
object 141

dereferenced 141, 150
FILE 151
indexed 141, 143
Pointer 150

434 U2778-J-Z55-4-7600

Index

selected 141, 146
variable 77, 141f, 158

offset 51, 55
Offsetof 293
Open_Error 220
operand 114
operations

integer 119
real 120
with Real constants 120

operators 117
arithmetic 118
Boolean 125
dyadic arithmetic 118
monadic arithmetic 118
precedence rules 117
relational 129
set 127

Optimize 305
options 301, 303
Ord 284
ordinal

number 37, 284
type 37, 46, 58, 71, 284f

Output 62, 341
output 198

P
package 188

block 189, 329
body 188, 193
body empty 188, 193
declaration part 189
definition part 189
identifier 27, 78, 85, 87, 109, 188, 194, 196
identifier defining point 204
identifier region 204
initialization 217, 299
invisible part 193
specification 188, 191
visible part 191

packed structured type 45
Page 61, 236, 307
parameter 93

U2778-J-Z55-4-7600 435

Index

actual 93
formal 93
identifier
identifier defining point 205
identifier region 205
passing of 162

Pointer 65, 263
constant 358
object 150
type 63, 69, 72, 197
variable 357f

pointer 63
dereferencing 197
type generic 65, 263
type private 197

Pointer_Error 220
Position 273
precedence rules 117
Pred 284
primitive 113f
private pointer type 197
procedural parameter 93, 99
procedure 83

block 85
call 109, 156, 162
declaration 85, 201
ENTRY 92
execution 216
heading 85, 99
identification 85
identifier 85, 194
identifier defining point 204
identifier region 204
INLINE 91
name 85, 99, 109, 162, 209

processing mode 60
program 185

execution 217
in Pascal-XT 211
in Standard Pascal 211
initialize 217
name 185
parameter 189, 198
parameter, differing 198

436 U2778-J-Z55-4-7600

Index

parameter list 185, 188
structure 211
text 211

programming, unmonitored 296
propagate 297
pseudocomment 23, 301
Put 236, 335

Q
qualified set constructor 133

R
Raise 219, 297
Range_Error 220
Read 241, 336, 349, 351
Read_Error 220
Readln 61, 248
Readstring 274
Real 38

constants 120
type 38, 244, 274, 277, 282
type universal 120, 278

real
number 38
operations 120
type 71

RECORD
aggregate 139
aggregate member 139
type 51
variable list 179
variable object 179

recursion 83
references 63
region 201, 204

bound identifier 206
constant identifier 204
enumerated constant 205
field designator identifier 206
function identifier 204
imported identifier 205
label 204
package identifier 204
parameter identifier 205
procedure identifier 204

U2778-J-Z55-4-7600 437

Index

required identifier 206
type identifier 204
variable identifier 204

relational operator 113, 117, 129
Release 268, 357
repeat factor 137
REPEAT statement 173
repetitive statement 164, 172
representation, alternate 14
required

constant identifier 30
identifier 377
identifier defining point 206
identifier region 206
subprograms 231
type identifier 37

reserved exceptions 220
Reset 249, 332
result type 87
RETURN statement 156, 165
Rewrite 250, 332
Round 281
runtime error 12

S
scope 201, 207

WITH statement 179
selected object 141, 146
selection 146
selector 170

list 51f, 170
semantics 2
separators 23
set

constructor 58, 133
constructor qualified 133
constructor unqualified 133
difference 127
difference symmetrical 127
empty 133
intersection 127
operator 127
size 133

SET type 58, 69, 71, 127

438 U2778-J-Z55-4-7600

Index

set union 127
Set_Error 220
Setmax 285
Setmin 285
Short_Integer 37, 69, 272, 281
Short_Maxint 30, 37
Short_Maxreal 30
Short_Minint 30, 37
Short_Minreal 30
Short_Real 38, 69, 71
shortcut operators 125

application area 126
evaluation 125

side effects 88, 150, 152, 160
simple

expression 113
statements 156
type 37

Sin 280
Sizeof 75, 294
special

characters 14
symbols 14, 380

specification
value parameter 94
variable parameter 96

Sqr 280
Sqrt 280
Standard 304
standard

function 231
procedure 231

statement 155
classes 155
compound 166
conditional 167
part 85, 87, 188, 201
repetitive 164
sequence 166
simple 156

static
expression 27, 116, 143, 147, 272, 278
function 116

storage requirement 75

U2778-J-Z55-4-7600 439

Index

string
character 21
empty 21, 49
hexadecimal 22

String type 49, 244
string type 48

fixed 48, 69, 244, 274
generalized 277
maximum length 49
variable 49, 71, 274

String_Error 220
structured type 45
subprogram 83

call 109
required 231

subrange 69
type 44, 114

Substring 276
subtraction 118
Succ 285
symbol

non-terminal 9
special 14
terminal 9
word 14

symmetrical set difference 127
syntax 2
System_Error 221

T
tag

field 51
type 51f

terminal symbol 9
Text 340
text type 277
textfile 61
transfer function 282
True 30, 41
Trunc 282
type

ARRAY 265
attribute 75
compatibility 69

440 U2778-J-Z55-4-7600

Index

compatible 69
definition 35
definition part 35, 188, 201
denoter 35, 46, 51, 58, 60, 67, 78
domain 63
enumerated 42
equivalence 67
FILE 71, 232, 328
host 44
identifier 35, 63, 194
identifier defining point 204
identifier region 204
identifier required 37
name 35, 51, 67, 87, 94, 96f, 102, 109, 133, 137, 139, 209
new 35, 67
ordinal 37
packed 45
packed structured 45
Pointer 63
simple 37
string 48
structured 45
subrange 44
unpacked 45
unpacked structured 45

U
undefined variable 80
universal Real type 120, 278
unmonitored programming 296
unpacked structured type 45
unsigned constant 113
USE list 194, 196
user-defined exceptions 220

V
value parameter 93f

specification 94
variable

access 77, 96, 103, 114, 116, 141ff, 150f, 158
buffer 77, 79
component 77
declaration 78
declaration part 78, 188, 201
declared 79

U2778-J-Z55-4-7600 441

Index

defined 80
entire 77
identified 63, 77, 79, 150, 358
identifier 62, 176, 194
identifier defining point 204
identifier region 204
lifetime 216
name 78, 141
non-initialized 81
object 77, 141f, 158
undefined 80
valid value 80
parameter 93, 96
parameter specification 96

variant 51f
access 147
active 53, 147
part 51f
selector 51f

Variant_Error 220

W
WHILE statement 175
WITH list 194
WITH statement 179

scope 179
word symbols 2, 14, 380
Write 251, 338
Writeln 61
Writestring 277

X
Xref 304

442 U2778-J-Z55-4-7600

