
Edition March 2016

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

1
50

17
0

4_
U

D
S

_E
nt

D
e

f\e
n\

ud
se

nt
.v

or

English

UDS/SQL V2.8
Design and Definition

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2016 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U929-J-Z125-12-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
18

. M
är

z
2

01
6

 S
ta

nd
 0

9:
23

.0
8

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
28

\D
oc

s\
15

01
70

4
_U

D
S

_
E

n
tD

ef
\e

n
\u

ds
en

t.i
vz

Contents

1 Preface . 9

1.1 Structure of the UDS/SQL documentation . 9

1.2 Objectives and target groups of this manual . 14

1.3 Summary of contents . 15

1.4 Changes since the last edition of the manuals 16

1.5 Notational conventions . 18
1.5.1 Warnings and notes . 18
1.5.2 Non-SDF notational conventions . 18

2 General information . 21

2.1 Modern data organization . 21

2.2 Data models . 24
2.2.1 The CODASYL model . 24
2.2.2 Relational model . 27
2.2.3 Relative merits of the data models . 31
2.2.4 Coexistence of the CODASYL and relational models 32

2.3 Universal Database System UDS/SQL . 37

3 Designing the database . 39

3.1 Data modeling . 40

3.2 Distributing the data . 41

3.3 Technical implementation . 46
3.3.1 Defining the logical structure of a UDS/SQL database 46
3.3.2 Defining the physical structure of a UDS/SQL database 47
3.3.3 Views . 47

Contents

 U929-J-Z125-12-76

4 Schema DDL . 49

4.1 Introduction . 49

4.2 Defining an item . 51
4.2.1 Defining an unpacked numeric item . 52
4.2.2 Defining a packed numeric item . 54
4.2.3 Defining a binary item . 55
4.2.4 Defining an alphanumeric item of fixed length . 56
4.2.5 Defining an alphanumeric item of variable length 57
4.2.6 Defining a national item (UTF-16) . 59
4.2.7 Defining a database key item . 60

4.3 Defining a vector . 61

4.4 Defining a repeating group . 62

4.5 Grouping record elements to form a record type 64

4.6 Linking the records of two record types to form a set 66
4.6.1 Defining a set . 66
4.6.2 Defining the type of membership of records in a set 75

4.7 Access paths and record sequences . 80
4.7.1 Direct and sequential access on record type level via database key value 81
4.7.2 Generating additional access paths for direct access on record type level 83
4.7.3 Determining the order of records within a set occurrence 90
4.7.4 Generating additional paths for direct access on set level 95
4.7.5 Determining set occurrence selection . 98

4.8 Special sets . 100
4.8.1 SYSTEM set . 100
4.8.2 Dynamic set . 101

4.9 Assigning names to hash areas and tables . 102

4.10 The realm concept . 103
4.10.1 Defining a realm . 104
4.10.2 Defining allocation of records to realms . 105
4.10.3 Temporary realms . 106

4.11 Assigning name and privacy to a schema . 107

4.12 Comprehensive example of DDL application 108

4.13 Reserved words of the DDL compiler . 119

Contents

U929-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.iv
z

5 SSL . 125

5.1 Introduction . 125
5.1.1 Methods of physical representation of the logical data structure 126
5.1.2 DBTT (Database Key Translation Table) . 127

5.2 Declaring the population . 132
5.2.1 Specifying the number of records in one record type 132
5.2.2 Specifying the size of the set occurrences of a set 137
5.2.3 Overview of the initial sizes for storage space reservations 140

5.3 Determining the linkage of records . 141
5.3.1 Determining the storage mode for set occurrences 141
5.3.2 Assessing pointer array, list and chain . 151
5.3.3 Preventing redundancy in SEARCH key tables . 155
5.3.4 Adding a pointer to link a member to its owner . 157

5.4 Defining the placement of member records, tables and hash areas 158
5.4.1 Defining the placement of member records, associated tables and hash areas for

secondary keys . 158
5.4.1.1 Placement at realm level . 159
5.4.1.2 Placement within a realm . 161
5.4.2 Defining the placement of record SEARCH key table, DBTT and record hash areas . 166
5.4.3 Overview of placement statements . 168

5.5 Defining the extent of table reorganization desired 171

5.6 Storing the records of a record type in compressed form 175

5.7 Formulas for calculating the storage space requirements for records and
tables . 176

5.8 Comprehensive example of SSL application . 178

5.9 Reserved words of the SSL compiler . 181

6 Definition of the user interface to the database 183

6.1 Subschema DDL . 183
6.1.1 Introduction . 183
6.1.2 Assigning name and privacy to a subschema . 184
6.1.3 Unlocking a schema for creating a subschema . 184
6.1.4 Copying entire record types from the schema into the subschema 185
6.1.5 Copying part of a record type from the schema into the subschema 185
6.1.6 Copying sets from the schema into the subschema 193
6.1.7 Copying realms from the schema into the subschema 194

Contents

 U929-J-Z125-12-76

6.1.8 Comprehensive example of subschema DDL . 195

6.2 Relational schema . 196

7 Structure of pages . 197

7.1 Page container . 199

7.2 Act-key-0 and act-key-N page . 200

7.3 FPA page . 202

7.4 DBTT pages . 205
7.4.1 DBTT anchor page . 205
7.4.2 DBTT page . 207

7.5 Direct CALC page . 210

7.6 Indirect CALC page . 213

7.7 Data page . 215

8 Structure of records and tables . 219

8.1 Structure of records . 219

8.2 Structure of tables . 223

9 Reference section . 231

9.1 Schema DDL syntax . 234
9.1.1 Schema entry . 235
9.1.2 Realm entry . 235
9.1.3 Record entry . 236
9.1.4 Set entry . 241

9.2 SSL syntax . 246
9.2.1 Schema entry . 246
9.2.2 Record entry . 247
9.2.3 Set entry . 252

9.3 Subschema DDL syntax . 257
9.3.1 IDENTIFICATION DIVISION . 258
9.3.2 AREA SECTION . 258
9.3.3 RECORD SECTION . 259

Contents

U929-J-Z125-12-76

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
a

tio
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.iv
z

9.3.4 SET SECTION . 260

Glossary . 261

Abbreviations . 303

Related publications . 307

Index . 313

Contents

 U929-J-Z125-12-76

U929-J-Z125-12-76 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.4
5

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
1

1 Preface

The Universal Database System UDS/SQL is a high-performance database system based
on the structural concept of CODASYL. Its capabilities, however, go far beyond those of
CODASYL as it also offers the features of the relational model. Both models can be used
in coexistence with each other on the same data resources.

COBOL DML, CALL DML and (ISO standard) SQL are available for querying and updating
data. COBOL DML statements are integrated in the COBOL language; SQL statements can
be used in DRIVE programs or via an ODBC interface.

To ensure confidentiality, integrity and availability, UDS/SQL provides effective but flexible
protection mechanisms that control access to the database. These mechanisms are
compatible with the openUTM transaction monitor.

The data security concept provided by UDS/SQL effectively protects data against
corruption and loss. This concept combines UDS/SQL-specific mechanisms such as
logging updated information with BS2000 functions such as DRV (Dual Recording by
Volume).

If the add-on product UDS-D is used, it is also possible to process data resources in
BS2000 computer networks. UDS/SQL ensures that the data remains consistent
throughout the network. Distributed transaction processing in both BS2000 computer
networks and networks of BS2000 and other operating systems can be implemented using
UDS/SQL together with openUTM-D or openUTM (Unix/Linux/Windows). UDS/SQL can
also be used as the database in client-server solutions via ODBC servers.

The architecture of UDS/SQL (e.g. multitasking, multithreading, DB cache) and its struc-
turing flexibility provide a very high level of throughput.

1.1 Structure of the UDS/SQL documentation

The “Guide through the manuals” section explains which manuals and which parts of the
manuals contain the information required by the user. A glossary gives brief definitions of
the technical terms used in the text.
In addition to using the table of contents, users can find answers to their queries either via
the index or by referring to the running headers.

Structure of the UDS/SQL documentation Preface

10 U929-J-Z125-12-76

Guide through the manuals

The UDS/SQL database system is documented in five manuals:

– UDS/SQL Design and Definition
– UDS/SQL Application Programming
– UDS/SQL Creation and Restructuring
– UDS/SQL Database Operation
– UDS/SQL Recovery, Information and Reorganization

Further manuals describing additional UDS/SQL products and functions are listed on
page 13.

For a basic introduction the user should refer to chapters 2 and 3 of this “Design and
Definition” manual; these chapters describe

– reasons for using databases

– the CODASYL database model

– the relational database model with regard to SQL

– the difference between the models

– the coexistence of the two database models in a UDS/SQL database

– the characteristic features of UDS/SQL

How the manuals are used depends on the user’s previous knowledge and tasks. Table 1
serves as a guide to help users find their way through the manuals.

Examples

A user whose task it is to write COBOL DML programs should look up the column
“COBOL/CALL DML Programming” under “User task” in the second line of table 1.
There, the following chapters of this “Design and Definition” manual are recommended:

In the same column the user can also see which chapters of the other manual are of
use.

Database administrators who are in charge of database administration and operation
will find the appropriate information under the column “Administration and Operation”.

General information B = Basic information

Schema DDL D = Detailed information

SSL D = Detailed information

Subschema DDL L = Learning the functions

Preface Structure of the UDS/SQL documentation

U929-J-Z125-12-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.4
5

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
1

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Manual UDS/SQL Design and Definition

Preface B – – – – B B –

General information B B B B B B – –

Designing the database B – – – – – – –

Schema DDL L D – L L – – –

SSL L D – L L – – –

Subschema DDL L L – L L – – –

Relational schema L – D – – – – –

Structure of pages D – – D D – – –

Structure of records and tables D – – D D – – –

Reference section S – – S – – – –

Manual UDS/SQL Application Programming

Preface – B – – – B B –

Overview – B – – – – – –

Transaction concept – L – L L D D –

Currency table – L – L L – – –

DML functions D L – L – – – –

Using DML – L – D – – – –

COBOL DML reference section – L – – – – – –

CALL DML reference section – L – – – – – –

Testing DML functions
using DMLTEST

– L – – – – – –

Table 1: Guide through the manuals (part 1 of 3)

Structure of the UDS/SQL documentation Preface

12 U929-J-Z125-12-76

Manual UDS/SQL Creation and Restructuring

Preface – – – B – B B –

Overview – – – B B – – –

Database creation – – – L – – – –

Defining access rights – – – L – – – –

Storing and unloading
data

D – – L – D – –

Restructuring the database D – – L – – – –

Renaming database objects D – – L – – – –

Database conversion D – – L – – – –

Database conversion using
BTRANS24

– – – D – – – –

Manual UDS/SQL Database Operation

Preface – – – – B B B –

The database handler – – – – L – – D

DBH load parameters – – – – L – – D

Administration – – – – L – – D

High availability – – – – B – – –

Resource extension and reorgan-
isation during live operation

D – – – B – – –

Saving and recovering a database
in the event of errors

D – – D L D – D

Optimizing performance – – – – D – – D

Using BS2000 functionality – – – – D – – –

The SQL conversation – – – – L – – –

UDSMON – – – – D – – –

General functions of the
utility routines

– – – – D – – –

Using IQS – – – L D – D –

Using UDS-D D D – D D D – D

Function codes of DML statements – D – – D – – –

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Table 1: Guide through the manuals (part 2 of 3)

Preface Structure of the UDS/SQL documentation

U929-J-Z125-12-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.4
5

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
1

Manual
UDS/SQL Recovery, Information and Reorganization

Preface – – – – B B B –

Updating and reconstructing a
database

D – – D L D – –

Checking the consistency of a
database

– – – – L – – –

Output of database information D – – D L – – –

Executing online services D – – D L – – –

Database reorganization D – – D L – – –

Controlling the reuse of
deallocated database keys

D – – D L – – –

Additional Manuals

UDS/SQL Messages D D D D D D D D

UDS/SQL System
Reference Guide

S S – S S S S S

IQS – – – D D – L –

ADILOS – – – – D – L –

KDBS – L 1 – D – – – –

SQL for UDS/SQL
Language Reference Manual

– – D – D – – –

1 only for COBOL-DML

B provides basic information for users with no experience of UDS/SQL

L helps the user learn functions

D provides detailed information

S provides a reference to syntax rules for practical work with UDS/SQL

Contents of the five

main manuals

User task

Design
and

definition

COBOL/
CALL DML

programming

SQL
program-

ming

Creation
and re-

structuring

Administra-
tion and

operation

Working
with

openUTM

Working
with
IQS

Working
with

UDS-D

Table 1: Guide through the manuals (part 3 of 3)

Objectives and target groups of this manual Preface

14 U929-J-Z125-12-76

Additional notes on the manuals

References to other manuals appear in abbreviated form. For example:

(see the “Application Programming” manual, CONNECT)

advises the user to look up CONNECT in the “Application Programming” manual.
The complete titles of the manuals can be found under “Related publications“ at the back
of the manual.

UDS/SQL Messages

This manual contains all messages output by UDS/SQL. The messages are sorted in
ascending numerical order, or in alphabetical order for some utility routines.

UDS/SQL System Reference Guide

The UDS/SQL System Reference Guide gives an overview of the UDS/SQL functions and
formats.

SQL for UDS/SQL
Language Reference Manual

This manual describes the SQL DML language elements of UDS/SQL.
In addition to UDS/SQL-specific extensions, the language elements described include
dynamic SQL as an essential extension of the SQL standard.

1.2 Objectives and target groups of this manual

This manual is intended to support database designers in designing the logical and physical
structure of their database and describing it with DDL and SSL. Furthermore, the manual
explains how to make database data available to users in the form they require by using the
subschema DDL to create suitable subschemas.
The language descriptions are also intended for database application programmers and the
database administrator.
The general section contains information which is of interest to any user intending to work
with UDS/SQL.

Preface Summary of contents

U929-J-Z125-12-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.4
5

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
1

1.3 Summary of contents

What does this manual contain?

The chapter “General information” contains general information on maintaining data and
using databases and explains the various database models and the differences between
them. The chapter is concluded by a general overview of UDS/SQL.

The chapter “Designing the database” provides an overview of the phases of database
design and presents options for distributing the data. This chapter concludes with a section
that briefly describes the technical implementation of the conceptual schema in a UDS/SQL
database.

The chapter “Schema DDL” deals with the data definition language (DDL) used to define
the logical data structure.

The chapter “SSL” describes the storage structure language (SSL), which can be used to
optimize the physical storage of the data.

The chapter “Definition of the user interface to the database” describes the possibilities
afforded by the subschema DDL and via the relational schema.

The chapters “Structure of pages” and “Structure of records and tables” provide information
for users who are interested in special details.

The chapter “Reference section” summarizes the syntax of schema DDL, SSL and
subschema DDL.

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

http://manuals.ts.fujitsu.com

Changes since the last edition of the manuals Preface

16 U929-J-Z125-12-76

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

1.4 Changes since the last edition of the manuals

The main changes introduced in UDS/SQL V2.8 in comparison with Version V2.7 are listed
in table 2 below together with the manuals and the sections in which the changes are
described. If a specific topic has been dealt with in more than one manual, the manual in
which a detailed description appears is listed first. The following codes are used in the
“Manual” column for the individual manuals involved:

DES Design and Definition DBO Database Operation

APP Application Programming RIR Recovery, Information and Reorganization

CRE Creation and Restructuring MSG Messages

Topic Manual Chapter

UDSMON utility: Improvements concerning transaction time and
DB counters

For output to terminal and output to printer: In the UDS/SQL
monitor mask COUNTER, the unit for displaying the AVG
TRANSACTION TIME is improved to seconds with milliseconds
after the decimal point to enable monitoring of short transactions.

DBO 11

New DISPLAY DBCOUNTERS command in UDSMON for displaying
database counters

DBO 11

BSTATUS utility: Limit the TABLE STATISTICS FOR OWNER IN SET

Improved DISPLAY TABLE FOR OWNER statement to enable limiting
the TABLE STATISTICS FOR OWNER IN SET to specific owner records
or ranges of records.

RIR 6

New BSTATUS utility routine messages MSG 3

New BPRECORD utility routine message 2553 in case of value 0
being specified as a start value in RSQ range.

MSG 3

Database Operation: The number of DML statements and I/O opera-
tions are counted per database.

DBO
MSG

4
2

BOUTLOAD utility: Output in CSV format CRE
MSG

5
3

Table 2: Changes in version V2.8 compared to V2.7

http://manuals.ts.fujitsu.com

Preface Changes since the last edition of the manuals

U929-J-Z125-12-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.4
5

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
1

General information

The name BS2000/OSD-BC for the BS2000 basic configuration has changed and from
Version V10.0 becomes: BS2000 OSD/BC.

COPY-RECORD statement: New CSV-OUTPUT operand CRE 5

New output file format CSV CRE 5

ONLINE-UTILITY – Reorganize probable position pointers (PPPs)

New DML REORGPPP - Reorganize PPPs RIR 8

New SDF statements: SET-REORGANIZE-PPP-PARAMETERS,
SHOW-REORGANIZE-PPP-PARAMETERS

RIR 8

New procedure statement REORGPPP RIR 8

New predefined variables: REORG-PPP-CURRENT, REORG-PPP-
LOCKED, REORG-PPP-PAGES

RIR 8

New predefined standard procedure *STDREPPP RIR 8

New example „Reorganizing pointers“ RIR 8

New status codes with progress information of the online utility
REORGPPP and new error codes

APP 10

Topic Manual Chapter

Table 2: Changes in version V2.8 compared to V2.7

Non-SDF notational conventions Preface

18 U929-J-Z125-12-76

1.5 Notational conventions

This section provides an explanation of the symbols used for warnings and notes as well
as the notational conventions used to describe syntax rules.

1.5.1 Warnings and notes

1.5.2 Non-SDF notational conventions

 Points out particularly important information

 CAUTION! Warnings

Language element Explanation Example

KEYWORD Keywords are shown in underlined uppercase
letters. You must specify at least the underlined
parts of a keyword.

DATABASE-KEY

MANUAL

OPTIONAL WORD Optional words are shown in uppercase letters
without underlining. Such words may be omitted
without altering the meaning of a statement.

NAME IS

ALLOWED

PAGES

variable Variables are shown in italic lowercase letters. In
a format which contains variables, a current value
must be entered in place of each variable.

item-name

literal-3

integer

lEither⎫
m }
nor ~

Exactly one of the expressions enclosed in braces
must be specified.
Indented lines belong to the preceding
expression.
The braces themselves must not be specified.

lCALC ⎫
m }
nINDEX~

lVALUE IS ⎫
m }
nVALUES ARE ~

[optional] The expression in square brackets can be
omitted. UDS/SQL then uses the default value
The brackets themselves must no be specified.

[IS integer]

[WITHIN realm-name]

Table 3: Notational conventions (part 1 of 2)

i
!

Preface Non-SDF notational conventions

U929-J-Z125-12-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.4
5

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
1

All other characters such as () , . ; “ = are not metacharacters;
they must be specified exactly as they appear in the formats.

 ...
or
,...

The immediately preceding expression can be
repeated several times if required. The two
language elements distinguish between repeti-
tions which use blanks and those which use
commas.

item-name,...

{SEARCH
KEY.....}...

.....
or
 .
 .

Indicates where entries have been omitted for
reasons of clarity. When the formats are used,
these omissions are not allowed.

SEARCH KEY IS
RECORD NAME
 ..
 .

.
The period must be specified and must be
followed by at least one blank. The underline must
not be specified.

SET SECTION.

03 item-name..... .

Space Means that at least one blank has to be specified. USING CALC

Language element Explanation Example

Table 3: Notational conventions (part 2 of 2)

Non-SDF notational conventions Preface

20 U929-J-Z125-12-76

U929-J-Z125-12-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

2 General information

This chapter provides general information on maintaining data and using databases. It also
explains the various database models and the differences between them. It concludes with
a general overview of UDS/SQL.

2.1 Modern data organization

Now that data processing is used at all levels in an organization, the qualitative and
quantitative demands on data storage and organization have increased considerably.
Moreover, they are subject to constant change.

The reasons for this change are:

– rapid growth of data volumes
– client/server applications
– transition from data to information processing
– influence of new communication media and technology
– increasing tendencies towards decentralization.

It is now widely recognized that data is as an independent factor in production alongside
traditional factors such as accounting, personnel and infrastructure.

Modern data organization General information

22 U929-J-Z125-12-76

How and by whom data is used at the different levels in an organization company, is shown
in the figure 1 in form of an information pyramid.

Figure 1: Flow of data and information in an organization

The basis for physical data storage and logical data organization within a company is the
database, which is the focus of the company’s informational processes.

Reasons for using databases

Often, people who are considering using a database system are motivated to do so
because they find that is no longer possible to process extensive quantities of data and an
increasing number of applications with conventional files.

Mutually isolated, frequently overlapping (redundant) data resources that are divided into
different files are awkward to handle and can be kept up to date only with considerable effort
and expense.

This is where the functionality offered by database systems can help. These systems
provide a stable, non-overlapping and expandable data organization, as well as
incorporating convenient, efficient functions for retrieving and manipulating data.

Combining the different sets of data and administering them together in a database system
also ensures consistency. At any given time, all the data has the same update status - even
when a large number of applications access the data at the same time.

Database systems also protect their data against unauthorized access. They make it
possible to have data resources constantly available and to reconstruct data that has been
corrupted or destroyed.

Database systems are also capable of satisfying demanding performance requirements
through the use of suitable techniques, for example for optimal operation of the data
processing system’s input and output devices.

Strategic data

Planning data

Operational data

Top management
(objectives, strategy)

Middle management
(planning, control, supervision)

Staff
(routine work)

General information Modern data organization

U929-J-Z125-12-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

The use of a database system results in a noticeable reduction of costs, particularly in the
development of applications.

The cost savings are achieved due to the following reasons:

– All the people involved in development can use a uniform, non-application-specific
database.

– Preprogrammed functions are provided.

– A data organization which remains stable over the long term solves lots of problems.

Follow-up costs for service and maintenance can be reduced due to the following reasons:

– Data and programs are clearly separated and independent from one another.

– Logical data organization and physical storage form are mutually independent.

CODASYL model General information

24 U929-J-Z125-12-76

2.2 Data models

The UDS/SQL database system supports both the network model (CODASYL model) and
the relational model. It encompasses the principles and capabilities of both the CODASYL
and the relational models in a single system. UDS/SQL can be regarded as the
implementation of a coexistence model of a database. The following sections briefly
describe the CODASYL model, the relational model, the relative merits of the two models,
and the coexistence model.

2.2.1 The CODASYL model

A major user demand is that database systems are compatible. The standardization of
database systems has thus been the goal of powerful user associations for many years.
The Conference on Data System Languages (CODASYL) has developed widely accepted
recommendations for the standardization of database systems. This association is already
well-known for its achievements in application portability thanks to its development of the
programming language COBOL.

CODASYL was constituted in 1959 by US producers and users, and, notably, with the
participation of the US Administration.
Since 1965, this association has concentrated partly on data organization and databases.
When the basic results of the different study groups were published, they described a
database concept which has been continually improved.

The CODASYL model provided the basis for the implementation of the UDS/SQL database
system.

In the CODASYL model, a database contains not only records, but also the relationships
between the records. This is why it is also referred to as the network model.

The following diagram (figure 2) shows an example of a networked data structure, which is
represented by boxes and arrows. A box symbolizes a type of record. In this example, the
records that describe the suppliers are grouped together in the record type SUPPLIER. All
records of the given record type have the same structure. For each supplier, the SUPPLIER
record type contains a record which defines the name and the city of that supplier. NAME
and CITY are record elements names.

Another record type shown in figure 2 is the record type ARTICLE. The record types
ARTICLE and SUPPLIER are connected by an arrow, which indicates that a relationship
exists between the record types. Such relationships are referred to as set relationships or
simply sets.

General information CODASYL model

U929-J-Z125-12-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

The set between the SUPPLIER and ARTICLE record types has the name SUPPLIES. In
the SUPPLIES set, SUPPLIER is the owner record type, and ARTICLE the member record
type. As a rule, two or more records of the member record type are assigned to a given
record of the owner record type. In this example, the supplier Schmidt supplies the articles
gingerbread cookies and marzipan.

Figure 2: Network-like structure of data

In a network structure, a record type may be a member in two or more different set
relationships and thus may also have more than one owner. A record can have only one
owner per set relationship.

PURCHASE

CONTAINED-IN

ORDERED-IN

CONTAINS

SUBSET PURCH-ORDER

NAME CITY

Mueller
Schmidt

Munich
Nuremberg

DESIGNATION PRICE

Milk
Yoghurt
Curd cheese
Gingerbread
Marzipan

1,49
0,99
1,29
4,39
2,99

SUPPLIER ARTICLESUPPLIES

Record element

Record elem.
name

Record

SUPPLIES

ARTICLE

RECEIVES

SUPPLIER

ORDER

ITEM

CODASYL model General information

26 U929-J-Z125-12-76

Relationships between record types and referential integrity

In figure 2, the SUPPLIES set indicates that a record of the ARTICLE record type is not an
isolated record, but is assigned to a record of the SUPPLIER record type. In UDS/SQL, it
is possible to declare in a set definition that no article may be entered without a supplier
being assigned to that article. A relationship of this type is an example of referential integrity.
Referential integrity also ensures, for example, that the relationships between order and
customer remain consistent; in this case, a customer must exist for each order. This means
that no order can be entered without the customer who placed it also being entered, and
that a given customer cannot be deleted as long as an order from that customer exists.

Language components of the CODSASYL report

The CODASYL report describes three basic language components:

1. The schema DDL (Data Description Language) defines the logical structure of the data
in the database. It allows any type of network structure to be defined.

2. The subschema DDL describes user-specific views of the database.

A subschema is a part of a schema. Two or more subschemas may exist for each
schema. These subschemas may overlap one another, i.e. a given record type may
exist in two or more subschemas. A subschema can include the entire database or
contain only a single record type.

The schema/subschema concept is a major part of data protection. Each user is
allowed to perform operations only within his or her own subschema, with no access to
the rest of the database.

3. The COBOL-DML (Data Manipulation Language) is a comprehensive language for
accessing databases. Both its range of functions and the way it is embedded in the
programming language COBOL are defined precisely. Its basic language components
are used for navigation, reading and updating in the database as well as to control
processing.

General information Relational model

U929-J-Z125-12-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

2.2.2 Relational model

The relational model is based on the theoretical work of E.F. Codd, who described the
organization and manipulation of data in database systems in terms of relational algebra.
He used precisely defined terms to represent the mathematical model of his relational
theory.

The terms and concepts used in the relational model are explained below, taking as an
example the following structure of a small database:

Figure 3: Terminology used in the relational model

DEPTNO DESIGNATION

ABT01ENT Development

DEPARTMENT

Record element

Record element
name

Record

LOCATION

ABT02KUN
ABT03PER
ABT04REC
ABT05VER

Customer service
Personnel
Computer center
Sales

Munich
Nuremberg
Munich
Munich
Munich

Primary key

EMPNO NAME

MIT7201 Rang

CITY

MIT0206
MIT3209

MIT9018

Smith
Gerold
Strahl
Berger

Munich
Nuremberg
Freising

Munich
Ottobrunn

SALARY DEPT. NO

MIT5011

MIT0100 Winsmann Munich

2800
4700
3020
6200
4820
4080

ABT04REC
ABT02KUN
ABT04REC
ABT03PER

Primary key Foreign key

EMPLOYEES

Relational model General information

28 U929-J-Z125-12-76

The following list shows the terms used in this manual and the corresponding formal terms
defined by Codd:

In the relational model, the data is managed and processed in the form of tables.
Different types of tables exist:

– base tables
– result tables
– views

Base tables

Base tables are tables that have a fixed definition within the database. In figure 3, the
database contains two base tables with the table names DEPARTMENT and
EMPLOYEES.
A table is composed of lines and columns. The base table in the relational model is
comparable to the record type in the CODASYL model. A line of a table is called a record.
A record of the EMPLOYEES table contains all the information on a given employee.
Instead of the term “column”, this manual uses the term “record element”.

Result tables

Querying the database yields a new table, a result table, which contains the records
returned in response to the query.

Views

A view is a defined section of a database. A view may contain record elements and records
from one or more base tables. Views can be addressed with SQL statements in the same
way as a base table can. The use of views can afford a vast simplification of the database
interface and provide a large degree of logical data independence.

Term used in manual Formal term (Codd)

table
record (row)
column, record element
value
value range

relation
tuple
attribute
attribute value
domain

General information Relational model

U929-J-Z125-12-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

Relationships between tables

In the case of relational data organization, record types are linked by means of certain
record elements with matching contents. A table in a relational schema thus corresponds
to a record type in a CODASYL schema. For example, to link a table with another table by
means of record element contents, the identifying primary key of the first table must also be
included as a (redundant) foreign key in the second table (see figure 3, DEPARTMENT and
EMPLOYEE tables).

A foreign key must match the values of another table’s primary key. Foreign keys create
logical links between tables. Foreign keys are defined by the users themselves.

Tables are the only fixed data structures in the relational model. Most relational database
systems neither monitor nor maintain the logical relationships between tables. Users create
these relationships by means of values when processing the database, i.e. the tables are
linked logically on the basis of their contents. Users are thus not restricted by structures
prescribed by the system.

Data manipulation and retrieval in relational databases

The relational model defines basic database functions which are analogous to set
operations. Thus, in addition to the principle of processing data in the form of tables,
another major feature characterizing the relational model is a defined set of basic
operations which can be used to retrieve information from relational databases.
The relational model does not define a language for data manipulation and retrieval.

The main features of data manipulation languages (DML) in relational systems are the set-
oriented operations projection, selection and join and the absence of any predefined
structures. In other words, relational data manipulation languages describe the desired
result itself, instead of describing how that result is to be obtained, i.e. users no longer need
to specify how the desired result is to be ascertained from the database - they need merely
state what they want to see.

The relational model is supported in UDS/SQL through the inclusion of SQL (Structured
Query Language), a language for relational database systems.

Relational model General information

30 U929-J-Z125-12-76

SQL - a uniform language for relational database systems

Development of the theory of relational databases by Codd and others was paralleled by
work on the user interface for such systems. The initial results of this work were first
presented in the “System R” prototype and were continually revised and supplemented with
further results in the years following. The first commercial implementations of this language
interface have been on the market since the early eighties under the name of SQL.
Major standardization organizations such as ANSI and ISO have been working on
standardizing SQL since 1982.
With the active support of Siemens, the ISO standard for SQL (ISO 9075:1989(E)) was
established in 1987.
The power of the SQL-DML enables users to perform all of the essential operations on the
database. New data can be inserted in the tables or data already in the tables can be
queried, updated or deleted. Tables can be linked with one another, and the result sets of
two or more queries combined. All processing by the DML is set-oriented. For example, a
selection yields a table which the user can then process further record by record, and an
update statement changes all the records that satisfy the specified conditions. It is precisely
this set-oriented processing that distinguishes SQL from database languages for non-
relational database systems.

This is also a major advantage for users in that it enables them to have a variety of actions
performed on the database by issuing a single statement. In the case of record-oriented
processing, all of these actions would have to be initiated separately.

In summary, SQL has the following main features:

– SQL is based on the relational data model developed by E.F. Codd and incorporates all
of its advantages: powerful data manipulation by means of descriptive set-processing
statements and simple data organization, which does not affect programs when altered.

– The use of the standardized SQL interface promotes the portability of DB applications
and provides a high degree of independence from special database interfaces
(facilitates the procurement of know-how).

– SQL is a uniform, easy-to-learn language.

Each of these features results in increased productivity in application programming and
improves the cost-effectiveness of database use overall. The obvious advantages of SQL
have prompted nearly all manufacturers to offer the SQL interface in their present products
or to announce its incorporation in their future ones.

A separate manual (see the “SQL for UDS/SQL” manual) provides detailed information on
the basic concepts and terminology of SQL and describes the SQL language set supported
by UDS/SQL.

General information Relative merits of the data models

U929-J-Z125-12-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

2.2.3 Relative merits of the data models

Comparing the data models with one another in terms of quality is difficult and possible only
from the perspective of a specific field of application. Especially an attempt to weight the
relative advantages and disadvantages of the models can be made only for a specific
application.

Basically, all data structures can be implemented with either of the two models.

Advantages of the relational model

The clear advantage of the relational model is its greater flexibility in regard to data
structures.

Since the application programs are not dependent on the data structures, the data
structures can in many cases be changed without affecting the applications. Through the
use of views, the underlying data structures can be hidden completely from the users.

Advantages of the CODASYL model

A major advantage of the CODASYL model lies in the performance of the application.

The CODASYL model explicitly defines not only the record types and tables, but also their
relationships to one another. This means that the relationships between the record types
must also be known to the applications. Since the applications build on the defined data
structures, the applications are optimally adjusted to them. This adaptation of the
applications to the data structures known to the database system has a very favorable
effect on the applications’ performance.
Of course, this favorable influence of the data structures on the applications is achieved at
the cost of flexibility. In many cases, alterations to the data structures have an effect on the
applications.

A further advantage of the CODASYL model lies in its monitoring of referential integrity.

A database system based on the CODASYL model automatically ensures that the defined
logical relationships between the record types are not violated.

Coexistence General information

32 U929-J-Z125-12-76

2.2.4 Coexistence of the CODASYL and relational models

A decision to use UDS/SQL is not a decision in favor of the CODASYL model and against
the relational model. UDS/SQL supports both models within a single database system,
which is consequently referred to as the coexistence model. Both SQL and CODASYL
applications can work with the same data resources at the same time.

The coexistence model also provides users with the advantages of both data models:

– a high degree of flexibility in regard to data structures for SQL applications, for example
through the use of views,

– optimal performance for CODASYL applications and

– monitoring of referential integrity for CODASYL and SQL applications, provided set
relationships were defined.

UDS/SQL supports two forms of logical data organization:

– CODASYL data organization with set relationships between the record types

– relational data organization, in which record types are linked only via the contents of
specific record elements

The SQL interface to CODASYL data structures is supported by the BPSQLSIA utility,
which generates a relational view for practically all of the system’s CODASYL structures
(see the “Recovery, Information and Reorganization” manual). This is necessary because
SQL statements require the use of explicit data elements which do not exist in the
CODASYL database description; in the relational database description, primary keys are
added to all owner record types, and foreign keys are added to member record types.

The generation of the relational data description by the BPSQLSIA utility does not
physically change the database. The additional data elements (primary keys and foreign
keys) exist only logically. As the result of the generation, SQL application programmers
receive a printout containing all the information needed to process a CODASYL database
with SQL (e.g. table names, record element names, record element descriptions, etc.). SQL
application programmers can work exclusively with the relational schema, yet the
CODASYL schema remains unchanged and available for use by CODASYL applications.

General information Coexistence

U929-J-Z125-12-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

This results in two different user views of a UDS/SQL database, as is shown in figure 4
below:

Figure 4: Two user views of the same UDS/SQL database

CODASYL appl icat ions

CODASYL user level Relational user level

SQL applications

CODASYL
subschema

Relational
schema

BPSQLSIA
utility routine

UDS/ SQL
database

Coexistence General information

34 U929-J-Z125-12-76

In summary, UDS/SQL offers the following options for combining program interfaces and
data organizations:

Figure 5: Coexistence of interfaces and data models in UDS/SQL

Relational SQL program interface → CODASYL data organization (RC)

Via the relational SQL program interface, applications access a CODASYL data
organization for which a relational view has been generated as described above. This
combination of program interface and data organization will be referred to in the following
as an RC combination.

An RC combination makes it possible to take advantage of the implicit set relations without
requiring SQL programmers to be acquainted with the CODASYL structures. By taking
advantage of these set relationships, UDS/SQL ensures the integrity of the data
relationships (referential integrity).

CODASYL
application

SQL
application

UDS/SQL

C C R RR C

CODASYL data st ructure Relational data structure

CODASYL-
DML
interface

Relational
SQL-DML
interface

General information Coexistence

U929-J-Z125-12-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

Relational SQL program interface → relational data organization (RR)

Via the relational SQL program interface, applications access a purely relational data
organization. This combination of program interface and data organization will be referred
to in the following as an RR combination.

An RR combination is suitable for compatible programs since in this case the primary and
foreign keys are administered by the user, as prescribed by the standard, which
corresponds to their handling in SESAM/SQL and INFORMIX. Since the data structures are
not based on set relations, the system cannot ensure referential integrity.

CODASYL program interface → CODASYL data organization (CC)

Via the CODASYL program interface (COBOL-DML or CALL-DML of UDS/SQL),
applications access the CODASYL data structures. This combination of program interface
and data organization will be referred to in the following as a CC combination.

Coexistence of interfaces and data models

UDS/SQL offers the options just described coexistently, which means that a database
handler can perform the following tasks simultaneously:

– run SQL applications and CODASYL applications
(SQL and CODASYL language elements can even be mixed in one and the same
application, but not within a transaction),

– process relational data structures and CODASYL data structures, and

– support all three of the program-interface/data-organization combinations described
above (RR, RC and CC).

In other words, the UDS/SQL data model incorporates the relational and the CODASYL
data models in such a way that each model can exist independently and that SQL
statements can be applied to CODASYL data structures. This is referred to as the
coexistence model, a model that was realized for the first time in UDS/SQL and which
provides an application environment combining the flexibility and simplicity of the relational
data model with the efficiency and performance of network database systems.

Coexistence General information

36 U929-J-Z125-12-76

Interface suitability

The COBOL-DML or CALL-DML interface is typically used for

– high-end OLTP applications and extremely performance-critical applications (Online
Transaction Processing) and

– special applications that run especially efficiently with network structures, e.g. parts list
processing.

The SQL interface is generally used in the following application areas:

– object-oriented database systems
– client/server applications
– data warehousing
– applications that are to be portable and comply with standards,
– 4GL programming with DRIVE (4th Generation Language) and
– COBOL programs that are to access databases.

General information Universal Database System UDS/SQL

U929-J-Z125-12-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

2

2.3 Universal Database System UDS/SQL

The Universal Database System UDS/SQL offers users a wide range of structuring options
and an abundance of capabilities for setting up, using and maintaining databases:

● Structuring options

The structure of a company’s database is a map reflecting the organizational, business
and technical aspects of the company. UDS/SQL allows you to map relational,
hierarchical and/or networked structures, i.e. the database schema can be adapted to
existing company structures without any problem.

The data structure can be adapted to new conditions if, for example, aspects of the
company change or the database is expanded to include new things.

● Redundancy-free data storage

In UDS/SQL, data is stored non-redundantly, thus minimizing the storage space
required and simplifying updates. An update is made only once, at a single location. The
data is thus always available in the same form and with the same update status to all
applications.

● Data independence of programs

In UDS/SQL, the records of the entire database are written only once at the logical level.
The data structure is defined during the creation of the database and is binding for all
application programs.
Application programs operate at the logical level. Alterations to the physical
organization of the data have no effect on the programs. Physical aspects (for instance
of storage) are thus decoupled or hidden from the users, who get to know only the
logical structure of the data required for their respective work.
Program creation and maintenance are simplified and made uniform.

● Flexible data evaluation

Users can evaluate data from different points of view since UDS/SQL maintains the
data resources centrally. Records and record elements can be selected not only via
defined keys, but also by means of any desired complex conditions or on the basis of
any desired record-element contents.

Universal Database System UDS/SQL General information

38 U929-J-Z125-12-76

● Central data protection measures

UDS/SQL incorporates effective, flexibly usable protective mechanisms to ensure that
each user group can access only precisely defined parts and sections of the database.

UDS/SQL checks the user’s access rights before requests to the database are actually
executed.

● Simultaneous data access by many users

UDS/SQL permits application-independent data to be accessed by large numbers of
users simultaneously. Their requests are “time interleaved” for processing to optimize
overall throughput.

UDS/SQL also contains functions that prevent users from hindering each other when
they contend for access to the same record.

● Central security concept

The security concept of UDS/SQL includes precautions to protect the data resources
against destruction or loss. Data resources which have been destroyed can be restored
to the most recent consistent status.

● Support for mirrored disks

UDS/SQL supports DRV (Dual Recording by Volume). When DRV is used, the
operating system writes data to two disks simultaneously. This ensures increased
availability and reliability since, even if one of the disks fails, all the data is still
consistent, up-to-date and available to the applications.

● Support for the BS2000 access method FASTPAM

UDS/SQL supports the BS2000 access method FASTPAM, which provides a highly
efficient means of accessing files and realms of the database.

● Support for uninterrupted time conversions

Support for uninterrupted time conversions ensures the continuous and uninterrupted
operation of UDS/SQL during seasonal conversions of the local time, e.g. when
converting from Central European Daylight Saving Time (MESZ) to Central European
Time (MEZ).

U929-J-Z125-12-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

3

3 Designing the database

In order to design a database with product-specific language resources, it is first necessary
to make a precise and detailed analysis of the data items, their interrelationships, their
interdependencies and the specific user requirements. This analysis should be performed
as thoroughly and as carefully as possible because it is of crucial importance for all
subsequent work. Design errors are known to entail the most far-reaching consequences
because correcting them at a later time involves a lot of effort and expense.

Data modeling Database design

40 U929-J-Z125-12-76

3.1 Data modeling

For data modeling, there are a wide range of models and aids available, the most important
of which include the Entity Relationship Model (ERM) and Structured Analysis (SA).

For example, a data dictionary can be used to acquire and administer the data collected.
Literature and training programs provide substantially more detailed information on data
analysis and design than can practicably be included in a product-specific manual.

Basically, the analysis includes the following steps:

– Delimiting the microcosm from the real world

The first step is to define the microcosm, i.e. the section of the real world on which the
data model is to be based, so that the requirements can be implemented in data-
processing procedures.

– Information analysis

The objective of information analysis is to study the data items and information of the
microcosm, as well as the interrelationships of the data items.

– Function analysis

This analysis documents what data is required by the individual applications and in what
order.

The analytical process yields a model which describes the designated section of the real
world in such a way that the data can be administered with a database system. The data is
complete, consistent and available in normalized form. The type of relationships existing
between the data items is defined, e.g. a 1:n relationship between customer and order.

The logical structure of the data is also called the conceptional schema. The conceptional
schema is an important basis for further work, both for database designers and for
specialized departments. The conceptional schema represents the data items and their
interrelationships without defining the data model in which the described structure is
mapped.

After a conceptional schema has been developed, it is necessary to consider how the data
is to be distributed in databases and on different systems.

Database design Database distribution

U929-J-Z125-12-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

3

3.2 Distributing the data

The data resources may be distributed over several databases, e.g., a personnel database
for the accounting department, a customer database for the order-processing department,
etc. The databases can be operated by one or more database handlers (DBHs). Databases
may also be distributed over different systems.

In dividing data resources, it is advisable to take the following aspects into account:

– Links between the applications
– Organizational circumstances
– Requirements for availability and throughput

Database distribution Database design

42 U929-J-Z125-12-76

One DBH - multiple databases

This constellation is also referred to as multi-DB operation. Many application programs
work with two or more databases simultaneously. An application program (AP) may access
several databases within a single transaction. The DBH controls the processing of the
databases and ensures the consistency of all the data resources.

The databases that are operated by a DBH are part of a database configuration.

Figure 6: Multi-DB operation

Reasons for distributing data over multiple databases:

– Data that is used only at certain times or for certain tasks can be stored in a separate
database, which need not be attached the whole time.

– A large-scale database project is more easily implemented by gradually developing
additional databases.

AP1 AP2 AP3

DB1 DB2 DB3

DBH

DB1 DB2 DB3 DB1 DB3DB1

AP1 AP2 AP3 AP1 AP1 AP3

Configuration

Database design Database distribution

U929-J-Z125-12-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

3

Multiple DBHs - multiple databases

Multi-DB operation is also possible with databases belonging to other configurations. Other
configurations may be located on another host in a homogeneous BS2000 network (see
figure 7) or on the same host (see figure 8).
The UDS/SQL supplementary product UDS-D is required for operation with multiple
database handlers (see the “Database Operation” manual). With UDS-D, a COBOL or
CALL DML application program, but not an SQL program, can access databases from two
or more different configurations within a single transaction, without requiring any
information on the location of the databases accessed. This means that multi-DB operation
can be extended to include UDS-D operation without any changes to existing application
programs.

Inter-configuration consistency of all databases is maintained at all times during
processing. UDS-D also provides inter-configuration deadlock detection and resolution.

The following diagrams show the additional options provided by UDS-D, which are to be
understood as an addition to figure 6.

Figure 7: Accessing databases on remote computers

AP1 APn...

DB1 DBn...

Computer 1

DBH UDS-D

Configuration 1

AP1 APn...

DB1 DBn...

Computer 2
Configuration 2

Network

UDS-D DBH

Database distribution Database design

44 U929-J-Z125-12-76

Reasons for distributing databases among several computers within a network:

– Adaptability

Work processes can be optimized for the local computer center, and data storage can
be adapted even better to the organization of the company.

– Availability

When distributed databases are used, the data resources are more easily available
since especially important and frequently used data can be stored in more than one
system, and the copies coupled together. If the backups are stored at different locations
and one of the systems fails, the data can still be accessed in other systems.

– Reduced cost

Costs are cut when fewer data stations require a continuous link to the central computer
center. Most of the data required can be accessed locally; only occasionally is it
necessary to access remote data.

Figure 8: Accessing databases in another configuration within the same host

AP1 APn...

DB1 DBn...

Configuration 1

DBH UDS-D

AP1 APn...

DB1 DBn...

Configuration 2

UDS-D DBH

Host 1

Database design Database distribution

U929-J-Z125-12-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

3

Reasons for having two or more configurations on a single host:

– Improved performance
– Greater mutual independence of applications
– Separate administration
– Separate accounting
– Separate spheres of responsibility

Technical implementation Database design

46 U929-J-Z125-12-76

3.3 Technical implementation

3.3.1 Defining the logical structure of a UDS/SQL database

The logical structure of a UDS/SQL database, i.e. the UDS/SQL schema, can be defined
on the basis of either the CODASYL concept or the relational concept.

CODASYL database design

In a CODASYL database, data relationships are defined via database structures. A major
advantage of this concept is that the database handler automatically checks these
relationships for consistency (referential integrity) at runtime.

The language used to define a database is the schema DDL (Data Description Language).
Using the schema DDL to create a CODASYL database involves the following information
objects:

– database realms
– types of records
– sets
– keys as optimized access paths
– sort procedures
– set membership
– set selection

For a precise description of the schema DDL, see page 49.

Relational database design

In a relational database, the data relationships are defined by linking values at runtime.

The components of a relational structure, i.e. tables (record types) and columns (items), are
defined by means of the schema DDL.

In order to represent the relationships between tables, it is also necessary to define the
primary keys of the respective tables as foreign keys in the corresponding tables.
The users themselves must assign these primary and foreign keys and then check the
relationships for uniqueness.
Users must also check these relationships at runtime in their respective programs.

For a detailed description of the methods used to implement a conceptional schema in
relational structures, you can either refer to database literature or attend courses on the
subject.

Database design Technical implementation

U929-J-Z125-12-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.2

9
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

3

3.3.2 Defining the physical structure of a UDS/SQL database

To define the physical data structure, you use the SSL (Storage Structure Language).

The SSL is used to specify mainly:

– set information
– data placement
– optimization
– links: internal tables, chains, lists.

The data is essentially distributed over database areas via the SSL, taking the following
aspects into account:

– depending on access frequency,
– according to physical storage options (disk capacity) and
– according to the backup procedures used.

3.3.3 Views

Subschema

With the subschema DDL, the user selects sections from the database which are required
for a particular application.

For a detailed description of the subschema DDL, see page 183.

Relational schema

A relational schema is used in an SQL application. A relational schema is the relational view
of an actual subschema. Such a view can be derived from a subschema with the aid of the
utility BPSQLSIA.

For further information on the relational schema, see page 196.

Technical implementation Database design

48 U929-J-Z125-12-76

U929-J-Z125-12-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4 Schema DDL

4.1 Introduction

Before you start designing a UDS/SQL schema, it is first necessary to thoroughly analyze
the intended database applications and the information which is to processed by them. The
analysis must yield not only all the information required, but the relationships between the
information as well.

The data structure thus derived is translated into a UDS/SQL schema by means of the
schema DDL.

The UDS/SQL schema must define all data required for the tasks to be performed using the
database. However, the UDS/SQL schema has no direct user interface; user-friendly
editing of the data need not be provided for when designing the UDS/SQL schema.

The CODASYL model provides the following units for defining the logical data structure:

Item The smallest unit of named data within a record type. It is defined by item type, item
length and item name.

Vector Item with repetition factor. The repetition factor must be greater than 1. It defines
how many duplicates of the item the vector comprises.

Group item
Named grouping of record elements within a record type. A record element can in
this case be either an item, a vector or a group item. Group items that are not
repeating groups may only be defined for subschemas.

Repeating group
Group item with repetition factor. The repetition factor must be greater than 1. It
defines how many duplicates of the group item the repeating group comprises.

Record type
Named collection of record elements and the smallest unit of data which is
recognized by UDS/SQL via a unique identifier.
A record element may be an item, a vector or a repeating group.

Introduction Schema DDL

50 U929-J-Z125-12-76

Set Named relationship between two record types.

Realm Named physical subdivision of the database. Management unit for data privacy and
security as well as for handling concurrent accesses.

The language elements of the DDL which are used to define the data units are described
on page 51 through page 66.

The notational convention are explained on page 18, and the general syntax rules are
summarized on page 231.

You compile the Schema DDL with the DDL compiler. For information on operating the DDL
compiler, please refer to the “Creation and Restructuring” manual, Compiling the Schema
DDL).

Schema DDL Defining an item

U929-J-Z125-12-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.2 Defining an item

An “item” is the smallest unit of data within a record type that can be assigned a name by
means of the schema DDL. “Item” also stands for all the values which can be assumed by
the item. The particular value contained in an item is referred to as item content. The
entirety of all possible item contents is known as the value range of the item.

Defining an item basically means defining an item’s value range. The item description also
determines the physical form of storage of an item content.

Figure 9: Item types

Figure 9 shows the various possibilities of physical storage for the contents of an item.

DATABASE-KEY-LONG

item

numeric alphanumeric database key

un-
packed packed binary DATABASE-KEY

fixed length variable length

national

Defining an item Schema DDL

52 U929-J-Z125-12-76

4.2.1 Defining an unpacked numeric item

[level-number]item-name PICTURE IS mask-string.

Unpacked items can contain numeric values only. They can be used for arithmetic
operations and can be printed out.

level-number specifies whether the item is part of a repeating group:

If the item is not to be part of a repeating group, the specified level number should be the
smallest level number in the whole record type. This is especially important if the item is to
be used as a key item.
If the item is to be part of a repeating group, proceed as described on page 62.

The default value for level-number is 1.

item-name specifies the name assigned by the user.

mask-string defines the item value range, i.e. the symbolic representation of all possible item
contents, by means of a mask.
mask-string may consist of the following symbols:

Symbol Designation Explanation

S Sign symbol

Mandatory, if positive and negative item contents are
to be distinguished. If S is not specified, UDS/SQL
assumes the item content to be a positive numeric
value. This symbol is specified once only at the
beginning of the mask string.

9 Digit symbol

is the only symbol of the mask specifying a physical
storage location. This storage location can be filled
with a decimal digit. The digit symbol can be repeated
any number of times. The frequency of repetition
determines the item length

Table 4: Symbols of mask-string when defining an unpacked numeric item (part 1 of 2)

Schema DDL Defining an item

U929-J-Z125-12-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

You can define the item to hold up to 18 digits.

If at least one of the following assertions applies to an unpacked numeric item, the item
cannot be accessed using SQL, nor can any new records of the record type involved be
inserted:

– number of storage locations > 15
– scale factor < 0
– scale factor > number of storage locations

A positive scale factor specifies the number of digits to the right of the decimal point, while
a negative scale factor specifies how many zeroes UDS/SQL must append to the item
contents when performing calculations.

V

Decimal point
symbol

specifies the position of the decimal point for the mask
defined by the digit symbols 9.
Default value is V after the last digit symbol of the
mask.

P

is specified if the decimal point is to be more than one
position outside the mask defined by digit symbols 9
and cannot be specified by ”V”.
P stands for a zero to be added by UDS/SQL between
the mask defined by digit symbols 9 and the decimal
point.
P can be repeated any number of times.

(integer) Repetition symbol

The digit symbol 9 and the decimal point symbol P can
be repeated. In order to avoid repeating the symbols,
the user can add a repetition factor integer after the
symbol to denote the number of times the symbol is to
be repeated.

Symbol Designation Explanation

Table 4: Symbols of mask-string when defining an unpacked numeric item (part 2 of 2)

Defining an item Schema DDL

54 U929-J-Z125-12-76

4.2.2 Defining a packed numeric item

[level-number]item-name TYPE IS FIXED REAL DECIMAL
 [integer-1[,integer-2]].

Packed items can contain numeric values only. They are exclusively used as computational
items by the database programmer and cannot be printed without prior editing by a DML
program. Packed items require less storage space and can be processed faster than
unpacked items.

level-number denotes whether the item is part of a repeating group:
If the item is not to be part of a repeating group, the specified level number should be the
smallest level number in the whole record type.
This is especially important if the item is to be used as a key item.

If the item is to be part of a repeating group, proceed as described on page 62.

item-name specifies the name assigned by the user.

integer-1 and integer-2 are used to describe the value range of an item, where

– integer-1 indicates the number of storage locations the item contains, the maximum
being 18. Each storage location can be filled with a decimal digit.
Default value for integer-1: 18

– integer-2 specifies the position of the decimal point. This has no effect on the number of
storage locations, however. If integer-2 is positive, it denotes the number of digits to the
right of the decimal point; if it is negative, it signals to UDS/SQL how many zeros it is to
append to the item contents when performing calculations.
It follows that if integer-2 is m, specification of integer-2 means a multiplication of the item
contents by 10-m.
Default value for integer-2: 0

If at least one of the following assertions applies to an unpacked numeric item, the item
cannot be accessed using SQL, nor can any new records of the record type involved be
inserted:

– number of bytes of storage > 15
– scale factor < 0
– scale factor > number of bytes of storage

A positive scale factor specifies the number of digits to the right of the decimal point, while
a negative scale factor specifies how many zeroes UDS/SQL must append to the item
contents when performing calculations.

Schema DDL Defining an item

U929-J-Z125-12-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.2.3 Defining a binary item

 l15⎫
[level-number]item-name TYPE IS FIXED REAL BINARY[m }].
 n31~

Binary items can contain integers only. They are used exclusively as computational items
by the database programmer and cannot be printed without prior editing by a DML program.
Binary items require less storage space and can be processed faster than packed or
unpacked items.

If BINARY 15 items are not aligned to halfwords and BINARY 31 items are not aligned to
words by the user, UDS/SQL aligns them automatically.

level-number denotes whether the item is part of a repeating group:

If the item is not to be part of a repeating group, the specified level number should be the
smallest level number in the whole record type.
This is especially important if the item is to be used as a key item.

If the item is to be part of a repeating group, proceed as described on page 62.

item-name specifies the name assigned by the user.

BINARY 15 is used to define a binary item with a value range of -215 through 215-1.

BINARY 31 is used to define a binary item with a value range of -231 through 231-1.

If you do not specify a number, the default value BINARY 15 is assumed.

Defining an item Schema DDL

56 U929-J-Z125-12-76

4.2.4 Defining an alphanumeric item of fixed length

 lPICTURE IS mask-string ⎫
[level-number]item-name m }.
 nTYPE IS CHARACTER integer~

Alphanumeric items can contain any type of character.

level-number denotes whether the item is part of a repeating group: If the item is not to be
part of a repeating group, the specified level number should be the smallest level number
in the whole record type. This is especially important if the item is to be used as a key item.
If the item is to be part of a repeating group, proceed as described on page 62.

item-name specifies the name assigned by the user.

mask-string may consist of the following symbols:

The first symbol in a mask string must be A or X. (A mask string beginning with 9 defines a
numeric item.)

The item can be defined for a maximum of 255 characters. The digit symbol may not be
repeated more than 18 times and the mask string may consist of no more than 30
characters.

Symbol Designation Explanation

X
stands for a storage location containing any
character of the character set.

A

stands for a storage location containing a letter or
a blank. UDS/SQL does not distinguish between A
and X however.

9 Digit symbol
stands for a storage location containing a digit.
9 may not stand to the left of A or X.

(integer) Repetition symbol

Each of the X, A or 9 symbols can be repeated.
To do this, the user can either write the symbols
the desired number of times or add a repetition
factor integer after the symbol to denote the
number of times the symbol is to be repeated.
The default value is 1; the maximum value is 18 for
9 and 255 for X and A.

Table 5: Symbols of mask-string when defining an alphanumeric item of fixed length

Schema DDL Defining an item

U929-J-Z125-12-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

integer specifies the number of storage locations the item contains, each storage location
being able to contain one character of the character set.

4.2.5 Defining an alphanumeric item of variable length

 lPICTURE IS LX(integer) ⎫
[level-number]item-name-1 m }
 nTYPE IS CHARACTER integer~

 DEPENDING ON item-name-2.

Alphanumeric items of variable length can contain any type of character.

level-number denotes whether the item is part of a repeating group. As items of variable
length may not be part of a repeating group, the specified level number must be the smallest
level number in the whole record type.

item-name-1 specifies the name assigned by the user.

integer specifies the maximum length of the variable-length item, i.e. it denotes the
maximum number of storage locations, where each storage location can contain any
character of the character set. The value specified for integer must be > 0.

item-name-2 specifies the name of an item that must have been defined immediately before
the variable item as a binary item with a value range of 0 through 215-1. Before storing or
updating a record containing a variable item, the database programmer must specify the
current length of the variable item in the item-name-2 item. This (current) length may also be
0, in which case, neither the variable item nor the record length item are stored in the
database.

Depending on which page length has been defined for the database, the maximum length
of a record with a variable item must not exceed the following values:

– 2012 bytes for a 2048-byte page length (2-Kbyte page format)
– 3960 bytes for a 4000-byte page length (4-Kbyte page format)
– 8056 bytes for a 8096-byte page length (8-Kbyte page format)

The maximum length of a record containing a variable item could, however, also be
somewhat lower, depending on the connection data for the record (see “SCD” on
page 219).

Defining an item Schema DDL

58 U929-J-Z125-12-76

Since the record must also contain at least the record length item item-name-2 in addition to
the variable item, the maximum length of the variable item is equal to:

– 2010 bytes for a 2048-byte page length
– 3958 bytes for a 4000-byte page length
– 8054 bytes for a 8096-byte page length

If the record includes other items besides the variable item and the record length item, the
maximum length of the variable item decreases accordingly.

Furthermore, the following restrictions apply for variable items:

– There may be only one variable item for each record type; it must also be the last item.

– A variable-length item may not be defined as a key item, nor used for direct access to
records.

– A record type containing a variable item may not be restructured by means of
subschema DDL. It must be taken over into the subschema as defined by the schema
DDL.

– A record type containing an item of variable length cannot be addressed with SQL.

Example

RECORD NAME IS ARTICLE MASTER
 DATA-ITEM-1 TYPE IS
 . .
 . .
 . .
 LENGTH-ITEM TYPE IS BINARY 15.
 ARTICLE-INFO PICTURE IS LX(500) DEPENDING ON LENGTH ITEM.

Schema DDL Defining an item

U929-J-Z125-12-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.2.6 Defining a national item (UTF-16)

Detailed information is provided in the “COBOL2000 (BS2000) Reference Manual” under
“Character representation by UTF-16”.

[level-number]item-name PICTURE IS mask-string.

National items can be filled with any characters.

level-number specifies whether the item is part of a repeating group:
If the item is not part of a repeating group, the specified level number must be the smallest
level number in the whole record type.
This is especially important if the item is to be used as a key item.
If the item is part of a repeating group, proceed as described on page 62.

item-name specifies the name assigned by the user.

mask-string may consist of the following symbols:

The first symbol in a mask string must be N. The mask string may consist of no more than
30 characters.

integer specifies the number of storage locations the item contains, each storage location
being able to contain one character of the character set.

A national character occupies 2 bytes and is aligned to the byte boundary in data structures
(see the “COBOL2000 (BS2000) Reference Manual” under “Character representation by
UTF-16”).

Symbol Designation Explanation

N stands for a storage location containing any
character of the character set.

(integer) Repetition symbol

You can repeat the symbol N by writing it the
desired number of times or by adding a
repetition factor integer after the symbol to
denote the number of times the symbol is to be
repeated.
The default value is 1; the maximum value is
127.

Table 6: Symbols of the mask-string when defining a national item

Defining an item Schema DDL

60 U929-J-Z125-12-76

4.2.7 Defining a database key item

 lDATABASE-KEY. ⎫
[level-number]item-name TYPE IS m }
 nDATABASE-KEY-LONG.~

Database key items are binary items that are intended for storing database key values. At
the same time, they are the only items whose contents are interpreted by UDS/SQL as
database key values.

Database key items must be defined by the database programmer if the database key
values are not implicitly defined by UDS/SQL (see section “Assignment of database key
values by the user” on page 81).

level-number denotes whether the item is part of a repeating group:
If the item is not to be part of a repeating group, the specified level number should be the
smallest level number in the whole record type.
This is especially important if the item is to be used as a key item.

If the item is to be part of a repeating group, proceed as described on page 62.

A database key item can be defined as an item of type DATABASE-KEY or
DATABASE-KEY-LONG:

– A DATABASE-KEY item is a binary item of 4-byte length with a value range from
0 - 231-1.

– A DATABASE-KEY-LONG item is a binary item of 8-byte length with a value range from
0 - 263-1. Note that the bit positions 17 - 32 (from the left) are not evaluated by
UDS/SQL.

The structure of database key values is described in detail on page 128.

 A database key item must be supplied with values by the database programmer.
This allows the database programmer to independently define the database key
value used by UDS/SQL (see LOCATION MODE clause on page 81).
Note, however, that the content of the database key item need not always match the
value used internally by UDS/SQL for the database key of the record.

i

Schema DDL Defining a vector

U929-J-Z125-12-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.3 Defining a vector

 lPICTURE.....⎫
[level-number]vector-name m } OCCURS integer TIMES.
 nTYPE..... ~

A vector is an item with a repetition factor. The repetition factor must be greater than 1. It
denotes how many duplicates of the item are grouped into the vector.

A vector is defined in the same way as an item as described on page 51.

integer specifies the repetition factor.

Items of variable length and key items may not be declared vectors.

level-number denotes whether the vector is part of a repeating group:
If the vector is not to be part of a repeating group, the specified level number must be the
smallest level number in the whole record type.

If you want to declare the vector to be part of a repeating group, proceed as described on
page 62.

The limit is the maximum record length.

Example

02 CUST-ADDRESS PICTURE IS X(20) OCCURS 2 TIMES.

Defining a repeating group Schema DDL

62 U929-J-Z125-12-76

4.4 Defining a repeating group

[level-number-1]group-item-name OCCURS integer TIMES.

l lPICTURE.....⎫ ⎫
mlevel-number-2 record-element-name[m }][OCCURS.....].}...
n nTYPE..... ~ ~

A group item is a named grouping of record elements within a record type. A record element
can in this case be either an item, a vector or even a group item.

A repeating group is a group item with repetition factor. The repetition factor must be greater
than 1. It defines how many duplicates of a group item the repeating group comprises.

The definition of group items that are not repeating groups is only useful for subschemata
and is therefore not possible using the schema DDL.

group-item-name specifies the user-assigned name of the repeating group.

integer denotes the repetition factor.

record-element-name specifies the record element that is to become part of the repeating
group. It must be defined as described on page 51 if it is an item, as described on page 61
if it is a vector or as described on this page if it is a repeating group.

level-number-2 must be greater than level-number-1.

The following applies for all record elements that are to become part of a repeating group:
Record elements must have the same level number if they have the next higher repeating
group in common.

A hierarchy of repeating groups may not exceed three levels.

If one record element is a vector, only two more hierarchy levels are allowed.

The limit is the maximum record length.

If you want to use elementary items of a repeating group as key items, you must bear in
mind that in each case the first variant of the higher-ranking repeating group is taken as a
basis and that this may be continued recursively up to the outer repeating group.

Schema DDL Defining a repeating group

U929-J-Z125-12-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Example

01 ADDRESSES OCCURS 2 TIMES.
 02 CUST-ADDRESS PICTURE IS X(20) OCCURS 2 TIMES.
 02 TEL PICTURE IS X(12).

Figure 10: Items and vectors grouped to form a repeating group

ADDRESSES

CUST-ADDRESS CUST-ADDRESS

TEL TEL

Repeating group

Vectors

Items

Grouping to form a record type Schema DDL

64 U929-J-Z125-12-76

4.5 Grouping record elements to form a record type

RECORD NAME IS record-name
 .
 .
 .
 l lPICTURE.....⎫ ⎫
 m[level-number]record-element-name[m }][OCCURS.....].}...
 n nTYPE..... ~ ~

A record type is a named collection of record elements. A record element may be an item,
a vector or a repeating group.

A single occurrence of a record type is a record. A record thus consists of one item content
each of all the items represented in the record type.

A record type is also the smallest unit of data recognized by UDS/SQL by means of a
unique identifier - the database key. All record elements therefore have to be defined as
parts of record types.

record-name specifies the name of the record type assigned by the user.

record-element-name specifies the record element which is to become part of the record type.
It must be defined as described on page 51 through page 61.

The total length of all record elements within a record type must not exceed the maximum
record length.
Depending on which page length was defined for the database, the maximum record length
may be:

– 2020 bytes for a 2048-byte page length (2-Kbyte page format)
– 3968 bytes for a 4000-byte page length (4-Kbyte page format)
– 8064 bytes for a 8096-byte page length (8-Kbyte page format)

The maximum record length could, however, also be somewhat lower, depending on the
connection data for the record (see “SCD” on page 219).

The following applies to the maximum number of record types per database:

– A maximum of 253 record types can be defined in the schema of a database with a page
length of 2048 bytes.

– A maximum of 32 766 record types can be defined in the schema of a database with a
page length of 4000 or 8096 bytes.

Schema DDL Grouping to form a record type

U929-J-Z125-12-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Example

RECORD NAME IS CUSTOMER
 .
 .
 .
01 C-NO PICTURE IS 9(10).
01 C-NAME PICTURE IS X(20).
01 ADDRESSES OCCURS 2 TIMES.
 02 CUST-ADDRESS PICTURE IS X(20) OCCURS 2 TIMES.
 02 TEL PICTURE IS X(12).

Figure 11: Grouping of items and a repeating group to form a record type

ADDRESSES

CUST-ADDRESS CUST-ADDRESS

TEL TEL

Repeating group

Vectors

Items C-NO C-NAME

CUSTOMERRecord type

Linking record types Schema DDL

66 U929-J-Z125-12-76

4.6 Linking the records of two record types to form a set

UDS/SQL depicts the relationships and interdependencies of information existing in a
corporate organization and a planned database application as relationships between record
types using the set concept.

In a relational application, the definition of set relationships causes foreign keys to be
assigned appropriately. This is the prerequisite for linking tables (join).

A maximum of 32 766 sets can be defined per database.

For each record type which is owner of a set you can generate a maximum of 255 tables in
these sets. A table is created when the set mode pointer array or list or chain is of the type
sorted indexed, also for each secondary key in these sets.

Irrespective of this you may define up to 255 secondary keys per record type on record type
level and per singular set on set level; hash routines are not counted here.

4.6.1 Defining a set

SET NAME IS set-name
 .
 .
 .
 OWNER IS record-name-1.
MEMBER IS record-name-2.....
 .
 .
 .

A set is a named relationship between two record types. It is a hierarchic relationship in
which one record type is defined as higher-ranking, the other lower-ranking.

The higher-ranking record type is called the owner of the set.
record-name-1 specifies the name of the record type which is to be the owner.

The lower-ranking record type is called a member of the set.
record-name-2 specifies the name of the record type which is to be a member of the set.

set-name specifies the name of the set relationship between two record types and is
assigned by the user.

An individual occurrence of a set is known as a set occurrence. A set occurrence consists
of exactly one owner record and any number of lower-ranking member records. In other
words, a set consists of as many set occurrences as the owner record type has records.
An owner without a member is referred to as an empty set occurrence.

Schema DDL Linking record types

U929-J-Z125-12-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Sets and set occurrences are represented according to the following principle:

Figure 12: Representation of a set and its set occurrences

The figure 12 shows all the owner record types, i.e. all set occurrences of a set. However
only member records that are part of a set occurrence are shown.

The member records form a logical sequence within a set occurrence. The sequence is
represented by arrows pointing from one member record to the corresponding successor.

Member record MemberMember rec. 1

Member rec. 2

Member rec. 3

Set Set occurrence
Empty

Set occurrence Set occurrence

Owner record Owner record Owner record Owner record
 1type 2 3

record 4type

Linking record types Schema DDL

68 U929-J-Z125-12-76

Example

RECORD NAME IS SUPPLIER
.
.
.

RECORD NAME IS ARTICLE
.
.
.

SET NAME IS ARTICLES-AVAILABLE
.
.
.
OWNER IS SUPPLIER.

MEMBER IS ARTICLE.....
.
.
.

Figure 13: Set and set occurrences as defined above

ARTICLE CocoaStout

Bitter

Lager

ARTICLES ARTICLES ARTICLES
AVAILABLE

SUPPLIER Taylor Moore

AVAILABLE AVAILABLE

Schema DDL Linking record types

U929-J-Z125-12-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

A record type can be part of several sets. This makes the set the basic unit in network-like
data structures.

Figure 14: Network-like data structure

Relationships between record types

There are three possible types of relationships between record types that are to be linked:

– 1:n relationship between two record types
– m:n relationship between two record types
– m:n relationship within one record type

1:n relationship

If relationships between records are to be represented in a set, the following rule must be
observed:
A record may be a member of no more than one set occurrence in any set in which it is a
member record, i.e. within a set, a member record is assigned to no more than one owner
record.
An owner record may, however, have more than one member record associated with it.

Thus a 1:n relationship must exist between owner record type and member record type.

Linking record types Schema DDL

70 U929-J-Z125-12-76

Example of a 1:n relationship

The relationship between customers and their orders is a 1:n relationship.
A customer can place several orders, but each order can only be placed by one customer.

Figure 15: 1:n relationship between CUSTOMER and ORDERS

The logical relationship is created by defining the set CUSTOMER-ORDERS for the record
types to be associated.

ORDERS 1

CUSTOMER
ORDERS

CUSTOMER

2

3

4

ERIC

ORDER: 1
CUST.: ADAM

RADIO
LAMP

5
1

ORDER: 4
CUST.: ERIC

ORDER: 3
CUST.: ERIC

ORDER: 2
CUST.: ERIC

LAMP
CLOCK
RADIO

2
30

1

KETTLE
RADIO

30
1

CLOCK
LAMP
KETTLE

100
5

10

ADAM

Schema DDL Linking record types

U929-J-Z125-12-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

m:n relationship between two record types (many-to-many relationship)

An m:n relationship is a relationship in which a member record can be associated with more
than one owner record.

If m:n relationships are to be represented, they have to be broken down into two 1:n
relationships. To this purpose a new record type (auxiliary record type) has to be defined
which acts as member record type. After the relationship has been resolved, each member
record has an owner.

Example of an m:n relationship

An example of an m:n relationship is the relationship between orders and articles.
An order can refer to several articles, an article can be referred to in several orders.

Linking record types Schema DDL

72 U929-J-Z125-12-76

Figure 16: m:n relationship between ORDERS and ARTICLE

ORDERS

ITEM

ARTICLE

ORDER 1 ORDER 2 ORDER 3 ORDER 4

ORDER-
QTY: 100

ORDER-
QTY: 2

ORDER-
QTY: 5

1 30
1

1 5

10

ARTICLE-NAME:
RADIO

ARTICLE-NAME:
LAMP

ARTICLE-NAME:
CLOCK

ARTICLE-NAME:
KETTLE

ORDER: 3
CUST.: ERIC
KETTLE
RADIO

30
 1

ORDER: 2
CUST.: ERIC
LAMP
CLOCK
RADIO

1
5

ORDER: 1
CUST.: ADAM
RADIO
LAMP

2
30
1

ARTICLE-ITEMORDER-ITEM

ORDER-
QTY: 30

ORDER: 4
CUST.: ERIC
CLOCK
LAMP
KETTLE

100
5

10

Schema DDL Linking record types

U929-J-Z125-12-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

The m:n relationship between ORDERS and ARTICLE is resolved to form two 1:n
relationships by creating a new record type (auxiliary record type) ITEM which is a member
of both ORDERS and ARTICLE.

m:n relationship within one record type (parts list processing)

In this special case the m:n relationship is not between two record types, but exists within
one record type.

This type of relationship is resolved by defining a new record type (auxiliary record type)
which acts as a member, and defining a new set.

Example of an m:n relationship within one record type

An (assembled) part is made up of several subparts: → parts list

A subpart is used in several (assembled) parts: → where-used list

A bicycle is made up of several parts. Parts used for the bicycle are again in other parts
of the bike.

Linking record types Schema DDL

74 U929-J-Z125-12-76

Figure 17: m:n relationship within the record type PARTS

PARTS

ASSEMBLY

USED-INPARTS-LIST

QTY.SUBPART
PART-LIST
PART

BICYCLE 1
1
2
1
1
2

WHEEL TIRE 1
1

TUBEBICYCLE FRAME WHEEL RIM SPOKE TIRE CASING

1

2

1

36
1

1

1

1

QTY.SUBPART
PART-LIST
PART QTY.SUBPART

PART-LIST
PART

HANDLE-
BAR

1
36
1

HANDLEBAR
FRAME
WHEEL
BELL
LAMP
FENDER

RIM
SPOKE
TIRE

CASING
TUBE

Schema DDL Linking record types

U929-J-Z125-12-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.6.2 Defining the type of membership of records in a set

 lMANDATORY⎫ lAUTOMATIC⎫
MEMBER IS record-name m } m }
 nOPTIONAL ~ nMANUAL ~

The records of a member record type do not automatically have to be members in a set
occurrence. The type of membership of a record in a set can be defined under two aspects:

1. At which point is the record to be inserted in the set occurrence?

AUTOMATIC
The member record is automatically inserted in the set occurrence at storage time
(see the “Application Programming” manual, STORE).

MANUAL
The member record is not automatically inserted in the set occurrence at storage
time. Membership in the set occurrence only takes effect when a specific DML
statement is entered (see the “Application Programming” manual, CONNECT).

2. What type of link is to exist between an existing member and an owner?

MANDATORY
The link is fixed. A member record can only exist in connection with an owner
record. In this case, membership in a set occurrence can only be released by
making the member record a member of another set occurrence of the same set or
by deleting it from the database (see the “Application Programming” manual,
MODIFY and ERASE).

OPTIONAL
The link can be established or released by the database programmer (see the
manual “Application Programming”, CONNECT and DISCONNECT).
A member can be released from a set occurrence without the member record being
deleted.

Linking record types Schema DDL

76 U929-J-Z125-12-76

Example 1

Figure 18: Example of OPTIONAL AUTOMATIC

The link between a CUSTOMER-ORDER record and a CUSTOMER record is relatively
stable. An order only exists if a customer has placed one. The link to the owner record is
thus automatic at the time the CUSTOMER-ORDER record is stored. Filled orders are to
remain in the database for statistical purposes even when the link to the CUSTOMER
record no longer exists. This is why the set membership is defined as OPTIONAL.

CUSTOMER-

CUSTOMER-ORDERS-PLACED
(OPTIONAL AUTOMATIC)

CUSTOMER

ORDER

Schema DDL Linking record types

U929-J-Z125-12-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Example 2

The MANUAL option is used if, for example, a record type is a member type of two sets and
some of its member records are to belong to one set occurrence only.

Figure 19: Example of membership in two parallel sets

This example illustrates how project heads can be selected from all employees working on
a project by using a set. As not all employees working on a project can be project heads,
this set must be defined as MANUAL. An employee is taken over into the corresponding set
occurrence only when he or she becomes head of a project. If the set is defined as
OPTIONAL, the employee can be deleted from the set once no longer head of the project.

EMPLOYEE

PROJECT

HEAD
(OPTIONAL MANUAL)

EMPLOYEES

Linking record types Schema DDL

78 U929-J-Z125-12-76

Example 3

The MANUAL option is used in cyclic data structures, i.e. a number of record types are
connected in such a way that each record type is at the same time owner of one set and
member in another.

Figure 20: Type of set membership in a cycle

If all sets of a cycle were defined as AUTOMATIC, it would be impossible to store a record
of this cycle in the databases, as the AUTOMATIC option requires that the owner of a record
to be stored already exists in the database.

MANUAL

AUTOMATIC AUTOMATIC

Schema DDL Linking record types

U929-J-Z125-12-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Example 4

In order to resolve a many-to-many relationship, it is necessary to define an auxiliary record
type. This requires the following types of set membership:

Figure 21: Types of set membership in the case of a many-to-many relationship

The purpose of an auxiliary record type is to link the ORDERS records with the ARTICLE
records. The link is only effected if every auxiliary record is present in each set occurrence
of the two sets. This is why membership is enforced by the AUTOMATIC option.

If the auxiliary records contain no valid information once they have been released from their
owner records, the link to the owner records can be retained unless the records are to be
deleted. Membership can thus be specified as MANDATORY.

(MANDATORY AUTOMATIC)

ORDERS ARTICLE

AUX. RECORD
TYPE

(MANDATORY AUTOMATIC)

Types of access Schema DDL

80 U929-J-Z125-12-76

4.7 Access paths and record sequences

The user can define the following access types using DDL:

– direct access on record type level

A record is selected from all records of one record type via the content of an item or a
combination of items.

– sequential access on record type level

A record is selected on the basis of its position within the logical sequence of all records
of the record type.

– direct access on set level

A record is selected from all records of a set occurrence via the content of an item or a
combination of items.

– sequential access on set level

A record is selected on the basis of its position within the logical sequence of all records
of one set occurrence.

The following describes:

– which access paths for direct accesses are a standard feature and which can be
generated by the user.

– how to define the logical sequence of records if sequential processing is required.

Schema DDL Types of access

U929-J-Z125-12-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.7.1 Direct and sequential access on record type level via database key
value

The database key value is a unique internal record key assigned at the time a record is
stored, and retained for the entire life of the record.
The database key value is a combination of the record type identifier, the record reference
number and a record sequence number (see the section “Structure of a database key
value” on page 128). The order of records within a record type is according to ascending
record sequence numbers.

For each record type, UDS/SQL automatically generates a table, the Database Key
Translation Table (DBTT), which contains the physical addresses (page numbers) of all
records of one record type (see section “DBTT (Database Key Translation Table)” on
page 127). UDS/SQL obtains the physical address of a record in the DBTT by converting
the record’s database key value; it does not have to sequentially scan the DBTT.

Thus the database key represents a means of directly and sequentially accessing data on
record type level.

As a standard feature, the database key values are assigned by UDS/SQL. In this case, the
order of records is not usually predictable when sequential processing is applied:
If the database programmer stores the database key values, he or she can determine the
order in which the records are stored. This requires the following provisions:

Assignment of database key values by the user

 l lIN⎫ ⎫
 lDIRECT ⎫ oitem-name m } record-nameo
LOCATION MODE IS m } m nOF~ }
 nDIRECT-LONG~ o o
 nidentifier ~

If this clause is specified, the database programmer is not only enabled to determine the
order of the records, but it is also possible to select any associated set occurrences more
conveniently (see the section “Determining set occurrence selection” on page 98). If you
specify this clause, you cannot insert any new records of the specified record type with
SQL.

item-name specifies an item which can contain database key values. It is at the same time
defined as a key item for direct access.

If LOCATION MODE IS DIRECT is specified, item-name must be defined as a DATABASE-
KEY item.

Types of access Schema DDL

82 U929-J-Z125-12-76

If LOCATION MODE IS DIRECT-LONG is specified, item-name must be defined as a
DATABASE-KEY-LONG item.

record-name specifies the record type containing the database key item referred to
by item-name.

identifier specifies the name of an item which is automatically generated by UDS/SQL for
storing database key values. This item serves as a key item, but is not part of a record type.
If you specify LOCATION MODE IS DIRECT, UDS/SQL generates the identifier item as a
DATABASE-KEY item.
If you specify LOCATION MODE IS DIRECT-LONG, UDS/SQL generates the identifier item
as a DATABASE-KEY-LONG item.

When entering a record, the database programmer can store a database key value
signifying the position of the record within the record sequence in the item referred to by
item-name or identifier (see the section “DBTT (Database Key Translation Table)” on
page 127).

If the specified database key has already been assigned, another database key that is not
in use is automatically assigned by UDS/SQL.

If the database programmer does not wish to assign the database key value independently,
0 may be entered instead. This resumes the automatic assignment of database key values
by UDS/SQL.

More detailed information on assigning database keys when storing a record is provided in
the COBOL DML reference section of the “Application Programming” manual under
“STORE, Assigning database key values”.

Schema DDL Types of access

U929-J-Z125-12-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.7.2 Generating additional access paths for direct access on record type
level

Defining a primary key for conversion by hash routine

LOCATION MODE IS CALC[hash-routine]
 USING item-name,... DUPLICATES ARE[NOT] ALLOWED

With this clause, the user specifies the distributed storage of records on the basis of a hash
routine. The storage area which you address with this routine is called the hash area.
If the records are owners of a set, the corresponding set occurrences can also be
conveniently selected (see the section “Determining set occurrence selection” on page 98).

A key declared by LOCATION MODE IS CALC is referred to as a CALC key. It is the primary
key for the record type. It may comprise several items (compound key).

item-name specifies the item(s) representing the key; all named items must belong to the
same associated record type and may be both numeric and alphanumeric.

With the DUPLICATES ARE[NOT] ALLOWED specification, the user determines (for a
particular realm) whether UDS/SQL is to accept or reject duplicate key values.

Use hash-routine to specify the name of a module when you want to control the location of
the data in the hash area yourself. If you make no entry for hash-routine, UDS/SQL uses its
default hash routine.
If you have specified a hash-routine, it converts your primary key to a four-byte binary
number. UDS/SQL then converts the binary number to a relative page number. The page
with that number generally contains the associated record (see the section “Direct CALC
page” on page 210).

Types of access Schema DDL

84 U929-J-Z125-12-76

If you want to define a user-specific hash routine, you must observe the following register
conventions:

● Before and after running the routine, all UDS/SQL registers except Register 1 must
have the same content.
The hash routine is branched to by BALR 14,15; return to the UDS/SQL hash routine is
effected by BR 14.

● The following information is provided by the UDS/SQL DBH:

Register 1: The address of a word containing the address of the key item

Register 2: The address of a byte containing the length of the key item.

Register 3: The address of a word containing the number of pages of the hash area
assigned to this key.

Register 13: Starting with the address (Register 13) + X’0C’, 13 words are available
to the user as a transaction-oriented save area for registers.

● The UDS/SQL DBH expects the result of the hash routine in Register 1. It converts the
binary number encountered there into a relative page number as follows:

– Bit 231 in Register 1 is set to 0.

– If the resulting value is less than the number of pages in the hash area (content of
Register 3), this value is used as the relative page number.

– If the resulting value is greater, UDS/SQL performs the following division:
content (Register 1) / content (Register 3)

The quotient of this division is used as the relative page number.

Schema DDL Types of access

U929-J-Z125-12-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Example 1

The following exemplifies the conversion of a key value into a physical address using
the UDS/SQL standard hash routine.

Let the key value be 9952333 and the number of pages in the hash area be 503. This
results in the following arithmetic operations:

 1) Beginning from the 9952/333
 left, the key value
 is subdivided into
 words (units of
 four bytes length).

 2) An exclusive OR is F9F9F5F2 xx> 11111001 11111001 11110101 11110010
 performed with the 00F3F3F3 xx> 00000000 11110011 11110011 11110011
 corresponding binary xx
 representation. 11111001 00001010 00000110 00000001

 3) The first bit is set 01111001 00001010 00000110 00000001=790A0601
 to 0 (positive).

 4) The result is 790A060116 : 50310
 divided by the
 number of pages =203070003310 : 50310 = 4037117 Remainder= 2
 in the hash area.

The remainder gives the physical address in the form of a relative page number (see
the section “Structure of a physical page address” on page 127) within the hash area.

If the user employs a user-specific hash routine, the first two operations can be
replaced. UDS/SQL always performs the last two operations.

Types of access Schema DDL

86 U929-J-Z125-12-76

Example 2

This example shows how a user can program a user-specific hash routine.

The program replaces the first two operations of the UDS/SQL standard hash routine
by a division/remainder algorithm. The entire key value is considered a positive binary
number which is divided by the number of available CALC pages.

The algorithm is the same as a normal-type division, the only difference being that three
digits are brought down. An example of this type of operation follows (for the sake of
simplicity, in decimal numbers):

1234567890 : 13
117
 6
 6456
 8
 8789
 1
 10

The resulting remainder is the relative page number. It is always smaller than the
number of CALC pages, i.e. after returning to the standard hash routine, the page
number remains unchanged. The DBH accepts the binary value stored in Register 1 as
the final result.

This hash routine gives the same results as the standard hash routine if the key value
is not longer than four bytes.

Viewed logically, the hash routine BYTEHASH generates a CALC page number from a
CALC key in 2 steps:

1. The order of the bytes within the CALC key is reversed.

2. The entire byte string that results is treated as a positive integer and divided by the
number of CALC pages. The remainder of the division is then the CALC page
number.

Schema DDL Types of access

U929-J-Z125-12-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Example in Assembler:

BYTEHASH CSECT READ
BYTEHASH AMODE ANY
BYTEHASH RMODE ANY

USING *,15
STM 4,8,12(13)
LM 4,7 ALLZEROS
L 8,0(0,1)
LA 4,0(0,8)
BCTR 4,0 DDDDDDDDDDDDD (1)
IC 5,0(0,2) DDDDDDDDDDDDD (2)
DR 6,5 DDDDDDDDDDDDD (3)

HASHBYTE SRDL 6,24
IC 7,0(4,5)
D 6,0(0,3)
BCT 5,HASHBYTE
LR 1,6
LM 4,8,12(13)
BR 14

ALLZEROS DC 4F'0'
END

(1) Register 4 always contains the address before the CALC key.

(2) Register 5 contains the index to the CALC key; the initial value is the length
of the CALC key.

(3) If a zero is passed for the length of the CALC key, this division results in a
P104.

Types of access Schema DDL

88 U929-J-Z125-12-76

Defining secondary keys for conversion by hash routine

SEARCH KEY IS item-name,... USING CALC[hash-routine]
 DUPLICATES ARE[NOT] ALLOWED

A key declared by SEARCH KEY IS... is a SEARCH key or secondary key. It may consist
of more than one item (compound key).

item-name specifies the item(s) comprising the key. All items must be part of the
corresponding record type.

DUPLICATES ARE[NOT] ALLOWED specifies whether UDS/SQL is to accept or reject
duplicate key values.

hash-routine denotes the name of a module which converts the secondary key to a 4-byte
binary number. This binary number is subsequently converted into a relative page number
by UDS/SQL. The corresponding page contains a pointer to the record (see the section
“Indirect CALC page” on page 213).
The hash routine does not compute the record address directly, as it is up to the user to
place the record either via the primary key or by means of SSL statements.

Note that hash areas placed with SSL statements must be assigned names (see page 102).

If hash-routine is omitted, UDS/SQL uses the same standard hash routine as for conversion
of the primary key. (For programming a hash routine and running the standard hash routine,
refer to “Defining a primary key for conversion by hash routine” on page 83.)

More than one secondary key can be defined for one record type.

Example

RECORD NAME IS ARTICLE
 .
 .
 .
 SEARCH KEY IS ART-NO-AVAIL, COLOR-NO-AVAIL, SIZE USING CALC.....
 SEARCH KEY IS ARTICLE-NAME USING CALC.....
01 ART-NO-AVAIL PICTURE IS 9(4).
01 COL-NO-AVAIL PICTURE IS 99.
01 SIZE PICTURE IS 99.
01 ARTICLE-NAME TYPE IS CHARACTER 40.

Schema DDL Types of access

U929-J-Z125-12-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Defining a secondary key for direct access via table

SEARCH KEY IS item-name,... USING INDEX [NAME IS name]
 DUPLICATES ARE[NOT] ALLOWED

A key declared by SEARCH KEY IS... is a SEARCH key or secondary key. It may be made
up of more than one item.

item-name specifies the item(s) comprising the key. All items must be part of the
corresponding record type.

name specifies the name of the table. This name is referred to in the SSL statements
concerning the table.

DUPLICATES ARE [NOT] ALLOWED specifies whether UDS/SQL is to accept or reject
duplicate key values.

Based on this definition, UDS/SQL sets up a record SEARCH key table. This table contains
the values of the secondary keys of all records of a record type, representing a unique
reference between key value, database key value and physical address of the record. The
physical address is not automatically updated, however, when the position of the record is
changed.
A SEARCH key table is used only for direct access to the records of a record type. It always
involves several levels in order to speed up access.

Several independent secondary keys can be defined for one record type.

Types of access Schema DDL

90 U929-J-Z125-12-76

4.7.3 Determining the order of records within a set occurrence

Two basic concepts in determining the logical order of the member records within a set
occurrence can be distinguished:

– sorting without key values, and
– sorting according to primary key values

They are described in detail below.

Sorting without key values

 lLAST ⎫
 o o
 oFIRST o
 o o
ORDER IS mNEXT }
 o o
 oPRIOR o
 o o
 nIMMATERIAL~

ORDER IS LAST

Specifies that the order of the member records in a set occurrence corresponds to the
chronological sequence in which they are stored.

Figure 22: Record sequence for ORDER IS LAST

14.2.81

PURCHASE- 14.2.81
12.2.81

12.2.81

14.2.81

PURCH-ORD-
PLACED

LAST

SUPPLIER Moore

ORDER

Schema DDL Types of access

U929-J-Z125-12-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

ORDER IS FIRST

Specifies the reverse order to that in which the member records were chronologically
entered.

Figure 23: Record sequence for ORDER IS FIRST

ORDER IS NEXT/PRIOR

If this type of ordering is specified, the database programmer has the possibility of
establishing a certain order when storing the member records.
The CRS (current record of set), i.e. the record of a set referred to last, is used as a
reference point for positioning the record to be stored. Thus the CRS determines:

– the set occurrence, and
– the position within the set occurrence.

UDS/SQL places the record to be stored:

– immediately behind the CRS if ORDER IS NEXT, or
– immediately before the CRS if ORDER IS PRIOR.

If automatic selection of a set occurrence has been specified (see the section “Determining
set occurrence selection” on page 98), UDS/SQL automatically makes the owner record of
the set occurrence the current record of set (CRS). In this case, ORDER IS NEXT has the
same effect as ORDER IS FIRST.

12.2.81

PURCHASE-
14.2.81

14.2.81

13.2.81

PURCH-ORD-
RECEIVED

FIRST

SUPPLIER Moore

12.2.81

ORDER

Types of access Schema DDL

92 U929-J-Z125-12-76

Sets defined with ORDER IS NEXT or ORDER IS PRIOR cannot be accessed by SQL with
INSERT or UPDATE.

Figure 24: Record order if ORDER IS NEXT/PRIOR

ORDER IS IMMATERIAL

The user leaves ordering of the member records to UDS/SQL. Default values for ORDER
IS IMMATERIAL are

– for the SSL specification MODE IS CHAIN: ORDER IS NEXT
– for the SSL specification MODE IS LIST/POINTER ARRAY: ORDER IS LAST

Sets defined with ORDER IS IMMATERIAL cannot be accessed by SQL with INSERT or
UPDATE.

PURCH-ORD-

PURCH-ORD-CONTENTS

PRIOR

PURCHASE-
13.2.81

Water

Beer

Cocoa

CRS

NEXT

Lemonade

ORDER

ITEM

Schema DDL Types of access

U929-J-Z125-12-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Sorting member records according to primary key values

 lDATABASE-KEY ⎫
ORDER IS SORTED BY m }
 . nDEFINED KEYS DUPLICATES ARE[NOT] ALLOWED~
 .
 .
lASCENDING ⎫
m } KEY IS item-name,...
nDESCENDING~

ORDER IS SORTED BY DEFINED KEYS DUPLICATES ARE[NOT] ALLOWED

Items defined as keys with this ORDER clause are primary keys of a set.
UDS/SQL sorts the member records of the set occurrences according to the values of the
primary key (which may consist of one or several items of a member record type) either in
ASCENDING or DESCENDING order. If the key consists of several items, it is a compound
key.

item-name specifies the item(s) comprising the key. When inserting new member records in
a set occurrence, UDS/SQL automatically selects the position corresponding to the key
value. If the user changes key values in the database, UDS/SQL automatically updates the
sequence of the associated member records.

DUPLICATES ARE [NOT] ALLOWED specifies whether UDS/SQL is to accept or reject
duplicate key values.

If DUPLICATES ARE ALLOWED is specified, member records with identical key values are
sorted by database key values in ascending order.

The primary key does not only determine the sequence of the member records within a set
occurrence. If, by means of SSL, a storage mode is established which causes UDS/SQL to
set up a table in order to sort a set occurrence (see page 141; pointer array, list), UDS/SQL
also uses the table as a direct access path.

In this case the above clause must be supplemented by INDEXED, which results in the
creation of a multi-level table (see page 95).

Types of access Schema DDL

94 U929-J-Z125-12-76

Figure 25: Sorting a set occurrence according to the key ART-NAME

ORDER IS SORTED BY DATABASE-KEY

UDS/SQL sorts the member records of the set occurrence in ascending order according to
the values of the database key. In this case, the database key is also referred to as primary
key of the set.

The values of the database key can be defined by the user (see the section “Direct and
sequential access on record type level via database key value” on page 81) or left to
UDS/SQL.

If, by means of SSL, a storage mode is established which causes UDS/SQL to set up a table
in order to sort a set occurrence (see page 141; pointer array, list), UDS/SQL also uses the
table as direct access path.
In this case, the above clause must be supplemented by INDEXED, which results in the
creation of a multi-level table (see page 95).

Water

ARTICLE

Cocoa

Lemonade

ARTICLES-
AVAILABLE

SUPPLIER Moore

Beer

Schema DDL Types of access

U929-J-Z125-12-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.7.4 Generating additional paths for direct access on set level

Unlike on record level, on set level UDS/SQL supports direct access only via tables. Only
SYSTEM sets (see section “SYSTEM set” on page 100) allow direct access via a hash
routine. Two kinds of tables can be defined for direct access on set level:

– a table containing the primary key of the set, or
– one or more tables containing a secondary key (SEARCH key) of the set.

Generating an additional access path via primary key

ORDER IS SORTED INDEXED[NAME IS name] BY

 lDATABASE-KEY ⎫
 m }
 nDEFINED KEYS DUPLICATES ARE[NOT] ALLOWED~
 .
 .
 .
lASCENDING ⎫
m } KEY IS item-name,...
nDESCENDING~

ORDER IS SORTED INDEXED BY DEFINED KEYS DUPLICATES ARE [NOT] ALLOWED
..... ASCENDING/DESCENDING KEY IS item-name,...

Specifies a primary key determining the order of the member records within a set
occurrences (see section “Determining the order of records within a set occurrence” on
page 93).
It also sets up a multi-level table for each set occurrence of the set. For each record
belonging to the set occurrence, the table represents a unique reference between primary
key value, database key value and physical record address. In the case of a change in the
position of the record, its physical address is not automatically updated, however.

item-name specifies the item(s) of the member record type comprising the key.

DUPLICATES ARE[NOT] ALLOWED specifies whether UDS/SQL is to accept or reject
duplicate key values.

Types of access Schema DDL

96 U929-J-Z125-12-76

Example

RECORD NAME IS SUPPLIER
 .
 .
 .

RECORD NAME IS ARTICLE
 .
 .
 .
01 ARTICLE-NAME PICTURE IS X(30).

SET NAME IS ARTICLES-AVAILABLE
 ORDER IS SORTED INDEXED BY DEFINED KEYS.....
 OWNER IS SUPPLIER
MEMBER IS ARTICLE.....
 ASCENDING KEY IS ARTICLE-NAME
 .
 .
 .

ORDER IS SORTED INDEXED BY DATABASE-KEY

Specifies the order of the members of a set occurrence (see the section “Determining the
order of records within a set occurrence” on page 93). It also sets up a multi-level table for
each set occurrence of the set. The table represents a unique reference between database
key value and physical address for each record belonging to the set occurrence. UDS/SQL
makes use of this access path when inserting a record in or deleting a record from the set
occurrence and in sequential reading, but not for direct accesses.

Schema DDL Types of access

U929-J-Z125-12-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Generating an additional access path via secondary key

SEARCH KEY IS item-name,... USING INDEX [NAME IS name]
 DUPLICATES ARE[NOT] ALLOWED

A key defined by means of SEARCH-KEY IS... is called a SEARCH key or secondary key.
It may consist of more than one item.

item-name specifies the item(s) comprising the key. All items have to be part of the member.

name specifies the name of the table. This name is referred to in SSL statements concerning
the table.

DUPLICATES ARE[NOT] ALLOWED specifies whether UDS/SQL is to accept or reject
duplicate key values.

Based on this definition, UDS/SQL sets up a SEARCH key table on set level or a set
SEARCH key table for each set occurrence of the set. This table represents a unique
reference between secondary key value, database key value and physical address for each
record belonging to the set occurrence. It must be a multi-level table. When the position of
the record is changed, the physical address is not automatically updated.

Several independent secondary keys can be defined for each set.

Types of access Schema DDL

98 U929-J-Z125-12-76

4.7.5 Determining set occurrence selection

SET OCCURRENCE SELECTION IS THRU

 lCURRENT OF SET ⎫
 o litem-name ⎫ o
 ?LOCATION MODE OF OWNER[ALIAS FOR m } IS identifier-2]...?
 n nidentifier-1~ ~

When accessing records via sets, it is first necessary to select the desired set occurrences.

Two selection options are available:

SET OCCURRENCE SELECTION IS THRU CURRENT OF SET

In this case, the record last referenced within a set (CRS) identifies the set occurrence.

SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER
[ALIAS FOR item-name / identifier-1 IS identifier-2]...

 litem-name ⎫
[ALIAS FOR m } IS identifier-2]...
 nidentifier-1~

This option requires you to have defined a unique primary key for the owner record type
with one of the following clauses:

– LOCATION MODE IS DIRECT or LOCATION MODE IS DIRECT-LONG

– LOCATION MODE IS CALC..... DUPLICATES ARE NOT ALLOWED

This key is either the database key or a CALC key.

UDS/SQL can use this option either to read a record from a set occurrence (see the manual
“Application Programming”, FIND 7) or to insert a new record into a set occurrence (see
STORE and MODIFY in the “Application Programming” manual). All the programmer has
to do is provide UDS/SQL with the key value uniquely identifying the owner record of the
set occurrence. UDS/SQL will automatically select the set occurrence on owner record type
level using direct access via the database key or the hash routine, and make the selected
owner record the CRS.

Schema DDL Types of access

U929-J-Z125-12-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Simultaneous automatic selection of several owner records from one record type

With certain data structures, it may be necessary to select several set occurrences (i.e.
several owner records) at the same time when inserting a new member record, where all
owner records are part of the same record type.

Such a case applies when the following two conditions are met:

– Two record types are connected by more than one set.

– The member record type is defined as an AUTOMATIC member in at least two of these
sets.

If the selection option LOCATION MODE OF OWNER has been defined, UDS/SQL
automatically selects the set occurrences of the sets. In order to select several different
owner records simultaneously, however, the user then requires an additional language
resource, because it is not possible to provide the items defined as primary keys with
LOCATION MODE IS... with multiple key values at the same time.
The following clause can be used to create an additional item for the owner selection in this
set to hold the key values:

 litem-name ⎫
ALIAS FOR m } IS identifier-2
 nidentifier-1~

item-name and identifier-1 specify items that have been declared primary keys by
LOCATION MODE IS... .

identifier-2 specifies the name of the additional item to be created. UDS/SQL automatically
provides this item with the same item type and length as items referred to by item-name or
identifier-1.

If a key consisting of several items has been defined by LOCATION MODE IS CALC, the
ALIAS clause must be repeated an appropriate number of times in order to create one
substitute item for every key item.

Special sets Schema DDL

100 U929-J-Z125-12-76

4.8 Special sets

4.8.1 SYSTEM set

OWNER IS SYSTEM.

A record type which is not related to a higher-ranking record type on the basis of its data
structure can still be declared member of a set.

This applies in the following cases:

– For reasons of sequential processing, the records are to be in a different order than
ascending order according to database key values (see page 81 and page 90 ff).

– Only a certain collection of records is to be processed (see section “Defining the type
of membership of records in a set” on page 75).

In these cases, the record type is declared member of a set which has only a symbolic
owner record type named SYSTEM. Accordingly such sets are called SYSTEM sets.

The symbolic owner record type contains exactly one record which is automatically
generated by UDS/SQL. It is called an anchor record. A SYSTEM set thus consists of just
one set occurrence.

In addition to the possibilities of a normal set, SYSTEM sets allow direct access via hash
routines.

Defining secondary keys for conversion by hash routine

SEARCH KEY IS item-name,... USING CALC[hash-routine]
 DUPLICATES ARE[NOT] ALLOWED

A key declared by SEARCH KEY IS... is a SEARCH key or secondary key. It may be consist
of more than one item.

item-name specifies the item(s) comprising the key. All items must be part of the
corresponding member record type.

DUPLICATES ARE[NOT] ALLOWED specifies whether UDS/SQL is to accept or reject
duplicate key values.

Schema DDL Special sets

U929-J-Z125-12-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

hash-routine denotes the name of a module converting the secondary key to a 4-byte binary
number. This binary number is subsequently converted into a relative page number by
UDS/SQL. The corresponding page contains the pointer to the record (see page 213).

If hash-routine is omitted, UDS/SQL uses the same standard hash routine as for conversion
of the primary key on record type level (for programming a hash routine as well as using the
standard hash routine, see page 83).

More than one secondary key may be defined.

4.8.2 Dynamic set

In general, DML statements process one record of the database at a time.
One particular DML retrieval statement, however, selects several records from the
database at the same time (see the “Application Programming“ manual, FIND 7). The
selected records are buffered for further processing. UDS/SQL does this by automatically
making the records member records in a dynamic set.

It is characteristic of a dynamic set that, during a transaction, it can accept records of
various record types, identifying them as intermediate results of a search query, and discard
them when the intermediate result is no longer required. Membership in a dynamic set is
thus of the OPTIONAL MANUAL type and there is no defined member record type.

One set occurrence is sufficient for storing selected records in a dynamic set as connection
data relating to certain owner records need not be stored, i.e. a dynamic set is declared as
SYSTEM set.

The set is called dynamic because it holds member records for the course of one
transaction only. There is no static set membership.

In order to be able to define a dynamic set, the user must include a temporary realm in the
schema. The dynamic set is defined as follows:

SET NAME IS set-name
 SET IS DYNAMIC
 ORDER IS IMMATERIAL
 OWNER IS SYSTEM.

If the Interactive Query Language IQL is to be used, the user must define eight dynamic
sets with the names IQL-DYN1 through IQL-DYN8. More details can be found in the manual
“Interactive Query System IQS“.

Assigning names to hash areas and tables Schema DDL

102 U929-J-Z125-12-76

4.9 Assigning names to hash areas and tables

Names must be assigned to hash areas and tables for secondary keys and tables for
primary keys if they are to be referenced by the SSL for the following purposes:

– determining the physical placement of the hash areas and tables
– preventing redundancy in tables
– defining the type of table reorganization desired

Names are assigned to hash areas or tables for secondary keys on record type and on set
level by:

 lCALC ⎫
SEARCH KEY IS..... USING m } NAME IS name.....
 nINDEX~

Names are assigned to tables for primary keys on set level by means of:

ORDER IS SORTED INDEXED NAME IS name.....

where name specifies the name of the hash area or the table.

Schema DDL Realm concept

U929-J-Z125-12-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.10 The realm concept

In order to take the aspects of

– data privacy,
– data recovery,
– concurrent access, and
– the logical association of certain data

into account, it is often advisable to subdivide the database into subunits. These
subdivisions are called “realms” or “areas”. They are generated as BS2000 files at
database creation (see the “Creation and Restructuring” manual, Database creation).
There are realms which contain UDS/SQL-internal information only and realms for user
data. The latter are called user realms.

A maximum of 123 realms can be defined for a database with a page length of 2048 bytes
(2-Kbyte page format).
A database with a page length of 4000 or 8096 bytes (4-Kbyte or 8-Kbyte page format), by
contrast, may be subdivided into a maximum of 245 realms.

Data privacy

With the BPRIVACY utility, the database administrator can grant certain groups of users
access privileges to database objects (realms, record types, sets).
When defining the subschema, a user can restrict the use of data to certain realms.

Data security

The subdivision into realms allows the effects of hardware errors or read/write errors to be
restricted to a few realms or even to one realm. In such cases, only the realm or realms
concerned needs to be recovered by means of realm copies or after-images, if used (see
the “Recovery, Information and Reorganization” manual, BMEND). Data that is updated
frequently should therefore be stored in a separate realm from data that is seldom updated
or updated only at certain times.

Realm concept Schema DDL

104 U929-J-Z125-12-76

Handling concurrent access

When a transaction is opened, the database programmer states the realms to be accessed
within the transaction (see the “Application Programming” manual, READY). He can also
define usage modes for realms, restricting or prohibiting concurrent access to these realms
by other transactions. The subdivision of the database into realms helps keep mutual
interference by transactions to a minimum.

Data which is often accessed concurrently can be stored in different realms, and the realms
can be assigned different disk drives. This allows concurrent accesses by different
transactions, which again reduces access time.

Logical association of data

Data can be distributed over the different realms so that programs need access only some
of the existing realms. Realms can be attached or detached at the user’s discretion by
means of the BMEND utility or, in a session, by means of the administration with DAL
commands. There is no need to waste resources on realms which are rarely used.

4.10.1 Defining a realm

AREA NAME IS realm-name

realm-name specifies the name of the realm assigned by the user. No further specifications
are required to define a realm. Its size is specified at database creation (see the “Creation
and Restructuring” manual, Database creation).

Schema DDL Realm concept

U929-J-Z125-12-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.10.2 Defining allocation of records to realms

RECORD NAME IS record-name
 WITHIN realm-name-1[,realm-name-2,... AREA-ID IS identifier]

The allocation of data to realms and the placement of data within realms is performed
mainly when defining the physical storage structure by means of SSL (see the section
“Defining the placement of member records, tables and hash areas” on page 158). The
allocation of records to realms is however defined by means of the schema DDL.

realm-name-1, etc. specifies all the realms to contain records of the record type record-name.
If you specify multiple realms, you cannot insert any new records of this record type with
SQL.
When the record type record-name is the member record type of a distributable list (see
page 146), realm-name-1 etc. is used to specify all realms in which the records can be
stored. Provided the location of the table part (pages with level > 0) of the distributable list
is not explicitly determined (MODE IS LIST DETACHED WITHIN ...), realm-name-1
determines the location of the table part implicitly.

identifier must be specified only if more than one realm name is specified.
identifier is specified by the user to denote the name of an item that is automatically
generated by UDS/SQL to store one of the specified realm names in each case. Prior to
storing a record, the database programmer must provide this item with the name of the
realm that is to contain the record (see the “Application Programming” manual, STORE).
When the record is the member record type of a distributable list, no realm name need be
entered in the identifier item. The content of the item is ignored when it is stored.

The time required for retrieving member records via their set relationship can be decreased
by storing the member records in the same realm as the associated owner record. This
allows further placement optimization for records by means of SSL (see the section
“Placement within a realm” on page 161).

Realm concept Schema DDL

106 U929-J-Z125-12-76

4.10.3 Temporary realms

AREA IS TEMPORARY

A temporary realm must be defined if the schema description contains dynamic sets or if
UDS/SQL must automatically generate a dynamic set because a specific DML statement
has been given (see the “Application Programming” manual, FIND 7). The temporary realm
serves to store the table that represents the set occurrence of the dynamic set and that
points to the associated member records.
A temporary realm must also be defined when you wish to access the database using SQL.

Schema DDL Assigning name and privacy to a schema

U929-J-Z125-12-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.11 Assigning name and privacy to a schema

schema-name
 [PRIVACY LOCK FOR COPY IS literal-1[OR literal-2]].

The definition of a database with the schema DDL always begins with the assigning of a
name to the schema.

schema-name specifies the name assigned to the schema by the user. This name is later
referenced by the SSL, the subschema DDL and the utility routines.

How the data in the database can be accessed by means of the subschema depends on
the individual user’s access rights.
literal-1 and literal-2 specify passwords which prevent the creation of unauthorized
subschemas. In order to create a subschema, knowledge of at least one password is
required.

DDL example Schema DDL

108 U929-J-Z125-12-76

4.12 Comprehensive example of DDL application

This example shows the schema of a mail order business. The schema supports the
following functions:

– Management of master data relating to customers, articles, suppliers, customer orders
and orders placed with suppliers

– Stock management

– Issuing of reminders

– Parts list processing for replacement parts

Schema DDL DDL example

U929-J-Z125-12-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

Figure 26: Schema of a mail order business

CUST-
ORDER-ITEM SUBSET

Realms:

PURCH-ORD-
ITEM

COLORS MATERIALS

Realm: ARTICLE-RLMRealm: CUSTOMER-ORDER-RLM
PURCHASE-
ORDER-RLM

Realm:

CLOTHING, HOUSEHOLD-GOODS,
SPORTS-ARTICLES, FOOD,
LEISURE, STATIONERY

CUSTOMER

INSTALLMENT
CUSTOMER-

ORDER

ARTICLE-
DESCR

ARTICLE-
SELECTION

SYSTEM

ARTICLE

ARTICLE-TYPE SYSTEM

SUPPLIER

PURCHASE-
ORDER

CALC

CALC

CALC

SUPPLIERS

PURCH-
ORD-
RECEIVED

PURCH-ORD-
PLACED

SHORT-LISTOFFER

PURCH-ORD-
SPECS

MIN-STOCK-
LEVEL

CONTAINS CONTAINED-IN

REORDERED-
ARTICLES

HIRE-PURCHASECUSTOMER-
ORDERS-
PLACED

CUSTOMER-
ORDER-
CONTENTS

ORDERED-
ARTICELS

PURCH-ORD-
CONTENTS

ARTICLES-
AVAILABLEOUTSTANDING

DIRECT-
LONG

DDL example Schema DDL

110 U929-J-Z125-12-76

A rough selection of articles is possible by means of the criteria ARTICLE-TYPE and
ARTICLE-SELECTION. This selection leads to a detailed article description. An article
description can comprise several articles differing in color, size and price.

The sets CONTAINS and CONTAINED-IN comprise a parts list used for parts supply.
In the ARTICLE records, colors are coded by numbers, materials in by abbreviations with
percentages. The record types COLOR and MATERIALS contain the assignments of the
codes to the associated meanings.

In the example, the schema is designed to provide as full an understanding of DDL clauses
as possible.

1 SCHEMA NAME IS MAIL-ORDERS

2 PRIVACY LOCK FOR COPY IS "SHIP-KEY".

3 *

4 *

5 *

6 AREA NAME IS CUSTOMER-ORDER-RLM.

7 AREA NAME IS PURCHASE-ORDER-RLM.

8 AREA NAME IS CLOTHING.

9 AREA NAME IS HOUSEHOLD-GOODS.

10 AREA NAME IS SPORTS-ARTICLES.

11 AREA NAME IS FOOD.

12 AREA NAME IS LEISURE.

13 AREA NAME IS STATIONERY.

14 AREA NAME IS ARTICLE-RLM.

15 AREA NAME IS SEARCH-RLM

16 AREA IS TEMPORARY.

17 *

18 *

19 *

20 RECORD NAME IS CUSTOMER

21 LOCATION MODE IS DIRECT-LONG CUST-NO OF CUSTOMER

22 WITHIN CUSTOMER-ORDER-RLM.

23 *

24 01 CUST-NAME TYPE IS CHARACTER 30.

25 01 CUST-F-NAME TYPE IS CHARACTER 30.

26 01 CUST-NO TYPE IS DATABASE-KEY-LONG.

27 *

28 *

29 RECORD NAME IS CST-ORDERS

30 WITHIN CUSTOMER-ORDER-RLM.

31 *

32 01 ORD-NO PICTURE IS 9(4).

33 01 ORD-YEAR PICTURE IS 99.

34 01 ORD-MONTH PICTURE IS 99.

35 01 ORD-DAY PICTURE IS 99.

36 01 ORD-STATUS PICTURE IS X.

Schema DDL DDL example

U929-J-Z125-12-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

37 *

38 *

39 RECORD NAME IS ORD-ITEM

40 WITHIN CUSTOMER-ORDER-RLM.

41 *

42 01 ORD-NO-ITEM PICTURE IS 99.

43 01 ORD-QTY TYPE IS DECIMAL 6.

44 01 PAY-INSTAL-CODE PICTURE IS X.

45 01 ORD-STATUS-ITEM PICTURE IS X.

46 *

47 *

48 RECORD NAME IS INSTALMENT

49 WITHIN CUSTOMER-ORDER-RLM

50 SEARCH KEY IS YEAR-NEXT-INSTAL, MONTH-NEXT-INSTAL,

51 DAY-NEXT-INSTAL

52 USING INDEX NAME IS SEARCH-TAB-INSTALMENT

53 DUPLICATES ARE ALLOWED.

54 *

55 01 ORD-NO PICTURE IS 9(4).

56 01 ORD-NO-ITEM PICTURE IS 99.

57 01 TOT-PRICE-INSTAL TYPE IS DECIMAL 9,2.

58 01 SINGLE-INSTAL TYPE IS DECIMAL 7,2.

59 01 BALANCE TYPE IS DECIMAL 9,2.

60 01 YEAR-NEXT-INSTAL PICTURE IS 99.

61 01 MONTH-NEXT-INSTAL PICTURE IS 99.

62 01 DAY-NEXT-INSTAL PICTURE IS 99.

63 *

64 *

65 RECORD NAME IS ART-TYPE

66 WITHIN CLOTHING, HOUSEHOLD-GOODS, SPORTS-ARTICLES, FOOD,

67 LEISURE, STATIONERY AREA-ID IS RLM-SELECTION-1

68 SEARCH KEY IS ART-NAME USING CALC

69 NAME IS SEARCH-TAB-ART-TYPE DUPLICATES ARE ALLOWED.

70 *

71 01 ART-NAME TYPE IS CHARACTER 25.

72 *

73 *

74 RECORD NAME IS ART-SELECTION

75 WITHIN CLOTHING, HOUSEHOLD-GOODS, SPORTS-ARTICLES, FOOD,

76 LEISURE, STATIONERY AREA-ID IS RLM-SELECTION-2

77 SEARCH KEY IS SEL-CRIT USING INDEX

78 NAME IS SEARCH-TAB-ARTICLE-SELECTION

79 DUPLICATES ARE ALLOWED.

80 *

81 01 SEL-CRIT TYPE IS CHARACTER 25.

82 *

83 *

84 RECORD NAME IS ART-DESCR

DDL example Schema DDL

112 U929-J-Z125-12-76

85 LOCATION MODE IS CALC USING ARTICLE-NAME

86 DUPLICATES ARE ALLOWED

87 WITHIN CLOTHING, HOUSEHOLD-GOODS, SPORTS-ARTICLES, FOOD,

88 LEISURE, STATIONERY AREA-ID IS RLM-SELECTION-3.

89 *

90 01 ART-NO PICTURE IS 9(6).

91 01 ARTICLE-NAME TYPE IS CHARACTER 40.

92 01 MATERIAL OCCURS 4 TIMES.

93 02 PERZENT PICTURE IS 99.

94 02 MAT-CODE PICTURE IS X.

95 01 LENGTH-FIELD TYPE IS BINARY 15.

96 01 ART-INFO PICTURE IS LX(500)

97 DEPENDING ON LENGTH-FIELD.

98 *

99 *

100 RECORD NAME IS ARTICLE

101 LOCATION MODE IS CALC USING ART-NO, COL-NO, ART-SIZE

102 DUPLICATES ARE NOT ALLOWED

103 WITHIN CLOTHING, HOUSEHOLD-GOODS, SPORTS-ARTICLES, FOOD,

104 LEISURE, STATIONERY AREA-ID IS RLM-SELECTION-4

105 SEARCH KEY IS ART-NO-AVAIL, COL-NO-AVAIL, ART-SIZE

106 USING CALC NAME IS SEARCH-TAB-ARTICLE-1

107 DUPLICATES ARE NOT ALLOWED

108 SEARCH KEY IS ARTICLE-NAME USING CALC

109 NAME IS SEARCH-TAB-ARTICLE-2 DUPLICATES ARE ALLOWED.

110 *

111 01 ART-NO PICTURE IS 9(6).

112 01 COL-NO PICTURE IS 99.

113 01 ARTICLE-NAME TYPE IS CHARACTER 40.

114 01 ART-NO-AVAIL PICTURE IS 9(4).

115 01 COL-NO-AVAIL PICTURE IS 99.

116 01 ART-SIZE PICTURE IS 99.

117 01 PRICE TYPE IS DECIMAL 7,2.

118 01 INSTALMENT-PRICE TYPE IS DECIMAL 7,2.

119 01 MAX-STOCK TYPE IS DECIMAL 10.

120 01 MIN-STOCK TYPE IS DECIMAL 3.

121 01 CURR-STOCK TYPE IS DECIMAL 10.

122 01 STATISTICS TYPE IS DECIMAL 15.

123 01 NOT-AVAIL-CODE PICTURE IS X.

124 *

125 *

126 RECORD NAME IS SUBSET

127 WITHIN HOUSEHOLD-GOODS, SPORTS-ARTICLES

128 AREA-ID IS RLM-SELECTION-5.

129 *

130 01 QUANTITY PICTURE IS 99.

131 *

132 *

Schema DDL DDL example

U929-J-Z125-12-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

133 RECORD NAME IS COLORS

134 WITHIN ARTICLE-RLM

135 SEARCH KEY IS COL-NAME USING CALC DUPLICATES ARE NOT ALLOWED

136 SEARCH KEY IS COL-NO USING CALC DUPLICATES ARE NOT ALLOWED.

137 *

138 01 COL-NO PICTURE IS 99.

139 01 COL-NAME TYPE IS CHARACTER 20.

140 *

141 *

142 RECORD NAME IS MATERIALS

143 WITHIN ARTICLE-RLM

144 SEARCH KEY IS MAT-CODE USING INDEX

145 NAME IS SEARCH-TAB-MATERIAL-1 DUPLICATES ARE NOT ALLOWED

146 SEARCH KEY IS MAT-NAME USING INDEX

147 NAME IS SEARCH-TAB-MATERIAL-2 DUPLICATES ARE NOT ALLOWED.

148 *

149 01 MAT-CODE TYPE IS CHARACTER 1.

150 01 MAT-NAME TYPE IS CHARACTER 20.

151 *

152 *

153 RECORD NAME IS SUPPLIER

154 LOCATION MODE IS CALC USING SUPPL-NO, SUPPL-NAME

155 DUPLICATES ARE NOT ALLOWED

156 WITHIN PURCHASE-ORDER-RLM.

157 *

158 01 SUPPL-NO PICTURE IS 9(5).

159 01 SUPPL-NAME TYPE IS CHARACTER 30.

160 01 SUPPL-PCODE TYPE IS CHARACTER 4.

161 01 SUPPL-TOWN TYPE IS CHARACTER 30.

162 01 SUPPL-STREET TYPE IS CHARACTER 30.

163 01 SUPP-STREET-NO TYPE IS CHARACTER 3.

164 01 SUPPL-TEL PICTURE IS 9(12).

165 01 SUPPL-POBOX PIC 9(4).

166 01 SUPP-TELEX PIC 9(12).

167 *

168 *

169 RECORD NAME IS PURCHASE-ORDER

170 WITHIN PURCHASE-ORDER-RLM.

171 *

172 01 P-ORD-NO PICTURE IS 9(4).

173 01 P-ORD-YEAR PICTURE IS 99.

174 01 P-ORD-MONTH PICTURE IS 99.

175 01 P-ORD-DAY PICTURE IS 99.

176 *

177 *

178 RECORD NAME IS P-ORD-ITEM

179 WITHIN PURCHASE-ORDER-RLM.

180 *

DDL example Schema DDL

114 U929-J-Z125-12-76

181 01 P-ORD-NO-ITEM PICTURE IS 99.

182 01 P-ORD-QTY TYPE IS DECIMAL 10.

183 *

184 *

185 *

186 SET NAME IS CST-ORD-PLACED

187 ORDER IS SORTED INDEXED BY DEFINED KEYS

188 DUPLICATES ARE NOT ALLOWED

189 OWNER IS CUSTOMER.

190 MEMBER IS CST-ORDERS OPTIONAL AUTOMATIC

191 ASCENDING KEY IS ORD-NO

192 SEARCH KEY IS ORD-YEAR, ORD-MONTH, ORD-DAY USING INDEX

193 NAME IS SEARCH-TAB-C-O-PLCD DUPLICATES ARE ALLOWED

194 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

195 *

196 *

197 SET NAME IS CST-O-CONTENTS

198 ORDER IS SORTED INDEXED BY DEFINED KEYS

199 DUPLICATES ARE NOT ALLOWED

200 OWNER IS CST-ORDERS.

201 MEMBER IS ORD-ITEM MANDATORY AUTOMATIC

202 ASCENDING KEY IS ORD-NO-ITEM

203 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.

204 *

205 *

206 SET NAME IS OUTSTANDING

207 ORDER IS LAST

208 OWNER IS CUSTOMER.

209 MEMBER IS ORD-ITEM OPTIONAL AUTOMATIC

210 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

211 *

212 *

213 SET NAME IS HIRE-PURCHASE

214 ORDER IS LAST

215 OWNER IS CUSTOMER.

216 MEMBER IS INSTALMENT MANDATORY AUTOMATIC

217 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

218 *

219 *

220 SET NAME IS OFFER

221 ORDER IS SORTED INDEXED BY DEFINED KEYS

222 DUPLICATES ARE ALLOWED

223 OWNER IS ART-TYPE.

224 MEMBER IS ART-DESCR MANDATORY AUTOMATIC

225 ASCENDING KEY IS ARTICLE-NAME

226 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.

227 *

228 *

Schema DDL DDL example

U929-J-Z125-12-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

229 SET NAME IS SHORT-LIST

230 ORDER IS SORTED INDEXED BY DEFINED KEYS

231 DUPLICATES ARE ALLOWED

232 OWNER IS ART-SELECTION.

233 MEMBER IS ART-DESCR MANDATORY AUTOMATIC

234 ASCENDING KEY IS ARTICLE-NAME

235 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.

236 *

237 *

238 SET NAME IS P-ORD-SPEC

239 ORDER IS SORTED INDEXED BY DEFINED KEYS

240 DUPLICATES ARE NOT ALLOWED

241 OWNER IS ART-DESCR.

242 MEMBER IS ARTICLE MANDATORY AUTOMATIC

243 ASCENDING KEY IS COL-NO, ART-SIZE

244 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.

245 *

246 *

247 SET NAME IS MIN-STOCK-LEVEL

248 ORDER IS SORTED INDEXED BY DEFINED KEYS

249 DUPLICATES ARE NOT ALLOWED

250 OWNER IS SYSTEM.

251 MEMBER IS ARTICLE OPTIONAL MANUAL

252 ASCENDING KEY IS ART-NO, COL-NO, ART-SIZE.

253 *

254 *

255 SET NAME IS CONTAINING

256 ORDER IS NEXT

257 OWNER IS ARTICLE.

258 MEMBER IS SUBSET MANDATORY AUTOMATIC

259 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

260 *

261 *

262 SET NAME IS CONTAINED-IN

263 ORDER IS NEXT

264 OWNER IS ARTICLE.

265 MEMBER IS SUBSET MANDATORY AUTOMATIC

266 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER

267 ALIAS FOR ART-NO IS SUBST-ART-NO

268 ALIAS FOR COL-NO IS SUBST-COL-NO

269 ALIAS FOR ART-SIZE IS SUBST-SIZE.

270 *

271 *

272 SET NAME IS SUPPLIERS

273 ORDER IS SORTED INDEXED BY DEFINED KEYS

274 DUPLICATES ARE NOT ALLOWED

275 OWNER IS SYSTEM.

276 MEMBER IS SUPPLIER MANDATORY AUTOMATIC

DDL example Schema DDL

116 U929-J-Z125-12-76

277 ASCENDING KEY IS SUPPL-NAME, SUPPL-NO.

278 *

279 *

280 SET NAME IS ARTICLES-AVAILABLE

281 ORDER IS SORTED INDEXED BY DEFINED KEYS

282 DUPLICATES ARE ALLOWED

283 OWNER IS SUPPLIER.

284 MEMBER IS ARTICLE MANDATORY AUTOMATIC

285 ASCENDING KEY IS ARTICLE-NAME

286 SEARCH KEY IS NOT-AVAIL-CODE USING INDEX

287 NAME IS SEARCH-TAB-ART-AVAIL DUPLICATES ARE ALLOWED

288 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.

289 *

290 *

291 SET NAME IS ORDERED-ARTICLES

292 ORDER IS LAST

293 OWNER IS ARTICLE.

294 MEMBER IS ORD-ITEM MANDATORY AUTOMATIC

295 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

296 *

297 *

298 SET NAME IS REORDERED-ARTICLES

299 ORDER IS LAST

300 OWNER IS ARTICLE.

301 MEMBER IS P-ORD-ITEM MANDATORY AUTOMATIC

302 SET OCCURRENCE SELECTION IS THRU LOCATION MODE OF OWNER.

303 *

304 *

305 SET NAME IS P-ORD-PLACED

306 ORDER IS LAST

307 OWNER IS SUPPLIER.

308 MEMBER IS PURCHASE-ORDER MANDATORY AUTOMATIC

309 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.

310 *

311 *

312 SET NAME IS P-ORD-RECEIVED

313 ORDER IS FIRST

314 OWNER IS SUPPLIER.

315 MEMBER IS PURCHASE-ORDER MANDATORY MANUAL

316 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.

317 *

318 *

319 SET NAME IS P-ORD-CONTENTS

320 ORDER IS NEXT

321 OWNER IS PURCHASE-ORDER.

322 MEMBER IS P-ORD-ITEM MANDATORY AUTOMATIC

323 SET OCCURRENCE SELECTION IS THRU CURRENT OF SET.

324 *

Schema DDL DDL example

U929-J-Z125-12-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

325 *

326 *

327 SET NAME IS RESULT-SET

328 SET IS DYNAMIC

329 ORDER IS IMMATERIAL

330 OWNER IS SYSTEM.

331 *

332 SET NAME IS LIMITED-SET

333 SET IS DYNAMIC

334 ORDER IS IMMATERIAL

335 OWNER IS SYSTEM.

336 *

337 *

338 SET NAME IS IQL-DYN1

339 SET IS DYNAMIC

340 ORDER IS IMMATERIAL

341 OWNER IS SYSTEM.

342 *

343 SET NAME IS IQL-DYN2

344 SET IS DYNAMIC

345 ORDER IS IMMATERIAL

346 OWNER IS SYSTEM.

347 *

348 SET NAME IS IQL-DYN3

349 SET IS DYNAMIC

350 ORDER IS IMMATERIAL

351 OWNER IS SYSTEM.

352 *

353 SET NAME IS IQL-DYN4

354 SET IS DYNAMIC

355 ORDER IS IMMATERIAL

356 OWNER IS SYSTEM.

357 *

358 SET NAME IS IQL-DYN5

359 SET IS DYNAMIC

360 ORDER IS IMMATERIAL

361 OWNER IS SYSTEM.

362 *

363 SET NAME IS IQL-DYN6

364 SET IS DYNAMIC

365 ORDER IS IMMATERIAL

366 OWNER IS SYSTEM.

367 *

368 SET NAME IS IQL-DYN7

369 SET IS DYNAMIC

370 ORDER IS IMMATERIAL

371 OWNER IS SYSTEM.

372 *

DDL example Schema DDL

118 U929-J-Z125-12-76

373 SET NAME IS IQL-DYN8

374 SET IS DYNAMIC

375 ORDER IS IMMATERIAL

376 OWNER IS SYSTEM.

Schema DDL Reserved words of the DDL compiler

U929-J-Z125-12-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

4.13 Reserved words of the DDL compiler

ACCEPT ACCESS ACTUAL

AD ADD ADVANCING

AFTER ALIAS ALL

ALLOWED ALPHABETIC ALPHANUMERIC

ALSO ALTER ALTERNATE

AN AND ANY

APPLY ARE AREA

AREA-ID AREAS ASC

ASCENDING ASSIGN ASSIGNED

AT ATTACHED AUTHOR

AUTO AUTOMATIC BEFORE

BEGINNING BETWEEN BIN

BINARY BLANK BLOCK

BLOCK-DENSITY BOTTOM BY

C01 C02 C03

C04 C05 C06

C07 C08 C09

C10 C11 C12

CALC CALL CANCEL

CARD-PUNCH CARD-READER CBL-CTR

CD CH CHAIN

CHANGED CHAR CHARACTER

CHARACTERS CHECK CHECKING

CHECKPOINT CLASS CLOCK-UNITS

CLOSE COBOL CODE

CODE-SET COLLATING COLUMN

COMMA COMMUNICATION COMP

COMP-1 COMP-2 COMP-3

COMPILE COMPRESSION COMPUTATIONAL

COMPUTATIONAL-1 COMPUTATIONAL-2 COMPUTATIONAL-3

Reserved words of the DDL compiler Schema DDL

120 U929-J-Z125-12-76

COMPUTE CONFIGURATION CONNECT

CONSOLE CONTAINS CONTROL

CONTROLS COPY CORR

CORRESPONDING COUNT CREATING

CSP CURRENCY CURRENT

CURRENT-DATE CYCLES CYLINDER-OFLO

DATA DATABASE-EXCEPTION DATABASE-KEY

DATABASE-KEY-LIST DATABASE-KEY-LONG DATABASE-KEY-NAME

DATABASE-KEY-RANGE DATABASE-KEY-
TRANSLATION-TABLE

DATABASE-PRIVACY-KEY

DATABASE-REALM-NAME DATABASE-RECORD-NAME DATABASE-SET-NAME

DATABASE-STATUS DATE DATE-COMPILED

DATE-WRITTEN DAY DB

DBKEY DBKEY-LONG DBKEY-TRANSLATION-TABLE

DBTT DCB-NAME DE

DEBUGGING DEC DECIMAL

DECIMAL-POINT DECLARATIVES DEFINED

DELETE DELIMETED DELIMETER

DEPENDING DESC DESCENDING

DESTINATION DETACHED DETAIL

DIGITS DIRECT DIRECT-LONG

DISABLE DISC DISC64

DISC80 DISC90 DISCONNECT

DISPLAY DISPLAY-ST DIVIDE

DIVISION DOWN DUP

DUPLICATE DUPLICATES DYNAMIC

EGI ELSE EMI

EMPTY ENABLE END

END-OF-PAGE ENDING ENTER

ENTRY ENVIRONMENT EOP

EQUAL ERASE ERROR

ESI EVERY EXAMINE

Schema DDL Reserved words of the DDL compiler

U929-J-Z125-12-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

EXCEPTION EXCL EXCLUSIVE

EXHIBIT EXIT EXTEND

EXTENDED FD FETCH

FILE FILE-CONTROL FILE-LIMIT

FILE-LIMITS FILES FILLER

FINAL FIND FINISH

FIRST FIXED FOOTING

FOR FORM-OVERFLOW FREE

FROM GENERATE GET

GIVING GO GREATER

GREATEST GROUP GROUP-USAGE

HEADING HIGH-VALUE HIGH-VALUES

HOLD I-O I-O-CONTROL

ID IDENTIFICATION IF

IMMATERIAL IN INCLUDING

INCREASE INDEX INDEXED

INDICATE INDICATOR INITIAL

INITIATE INPUT INPUT-OUTPUT

INSPECT INSTALLATION INTO

INVALID IS ITEMS

JUST JUSTIFIED KEEP

KEY KEYS LABEL

LABELS LAST LEADING

LEFT LENGTH LESS

LIBRARY LIMIT LIMITED

LIMITS LINAGE LINE

LINE-COUNTER LINES LINK

LINKAGE LINKED LIST

LOC LOCATION LOCK

LOCKS LOG LOW-VALUE

LOW-VALUES MAND MANDATORY

MANUAL MASK MEMBER

Reserved words of the DDL compiler Schema DDL

122 U929-J-Z125-12-76

MEMBERS MEMBERSHIP MEMORY

MERGE MESSAGE MINUS

MIXED MODE MODIFY

MODULES MORE-LABELS MOVE

MULTIPLE MULTIPLY NAME

NAMED NATIONAL NATIVE

NEGATIVE NEXT NO

NOT NOTE NUMBER

NUMERIC OBJECT-COMPUTER OCCURRENCE

OCCURS OF OFF

OH OMITTED ON

ONES ONLY OPEN

OPT OPTIMIZATION OPTIONAL

OR ORDER ORGANIZATION

OTHER OTHERWISE OUTPUT

OV OVERFLOW OWNER

PA PAGE PAGE-COUNTER

PAGES PERCENT PERFORM

PERMANENT PF PH

PHYSICAL PHYSICALLY PIC

PICTURE PLACEMENT PLACING

PLUS POINTER POINTER-ARRAY

POPULATION POSITION POSITIONING

POSITIVE PRESELECTION PRINT-SWITCH

PRINTER PRINTING PRIOR

PRIVACY PRIVACY-GROUP PRIVACY-IDENTIFICATION

PRIVACY-NAME PRIVACY-RECORD PROCEDURE

PROCEDURES PROCEED PROCESS

PROCESSING PROGRAM PROGRAM-ID

PROT PROTECTED PROTECTION

PUNCH4 PUNCH6 QUEUE

QUOTE QUOTES RANDOM

Schema DDL Reserved words of the DDL compiler

U929-J-Z125-12-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
4

RD READ READER

READY REAL REALM

REALM-NAME REALMS RECEIVE

RECORD RECORDING RECORDS

REDEFINES REEL REFERENCE-YEAR

REFERENCES RELATIVE RELEASE

REMAINDER REMARKS REMOVAL

RENAMES REORGANIZATION REPEATED-KEY

REPLACING REPORT REPORTING

REPORTS RERUN RESERVE

RESET RESTRICTED RESULT

RETAINING RETR RETRIEVAL

RETURN REVERSED REWIND

REWRITE RF RH

RIGHT ROUNDED RUN

SA SAME SCHEMA

SD SEARCH SECTION

SECURITY SEEK SEGMENT

SEGMENT-LIMIT SELECT SELECTION

SELECTIVE SEND SENTENCE

SEPARATE SEQUENCE SEQUENTIAL

SET SETS SIEMENS-4004

SIGN SIGNED SIZE

SMALLEST SORT SORT-MERGE

SORT-TAPE SORT-TAPES SORTED

SOURCE SOURCE-COMPUTER SPACE

SPACES SPANS SPECIAL-NAMES

STANDARD STANDARD-1 START

STATUS STOP STORAGE

STORE STRING STRUCTURE

SUB-QUEUE-1 SUB-QUEUE-2 SUB-QUEUE-3

SUB-SCHEMA SUBTRACT SUM

Reserved words of the DDL compiler Schema DDL

124 U929-J-Z125-12-76

SUPPRESS SYMBOLIC SYNC

SYNCHRONIZED SYSIN SYSIPT

SYSLST SYSOPT SYSOPT-234

SYSOUT SYSPUNCH SYSRDR

SYSTEM TABLE TALLY

TALLYING TAPE TAPES

TEMP TEMPORARY TENANT

TERMINAL TERMINATE TEXT

THAN THEN THROUGH

THRU TIME TIMES

TO TODAYS-DATE TOP

TRACE TRACK-AREA TRACKS

TRAILING TRANSFORM TRY

TYPE UNDER UNIT

UNITS UNSTRING UNTIL

UP UPDATE UPON

USAGE USAGE-MODE USE

USING VALUE VALUES

VARYING VIA WHEN

WITH WITHIN WITHOUT

WORDS WORKING-STORAGE WRITE

WRITE-ONLY YEAR ZERO

ZEROES ZEROS

U929-J-Z125-12-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5 SSL

5.1 Introduction

The schema DDL is used to describe the logical structure of the data; the Storage Structure
Language SSL is used to specify the physical storage structure when storing data and
logical relationships between data. The definition of the physical storage structure is
optional. If it is omitted, UDS/SQL applies the default values. The user can influence the
storage space requirements for the data and especially the system run-time behavior in
future applications when defining the storage structure.

Designing the storage structure involves the following steps:

1. Declaring the population

2. Defining the linkage of records

3. Determining the placement of member records, tables and hash areas

4. Determining the extent of table reorganization

Each of these steps is dealt with below in a separate section, which also explains the default
cases. These sections are preceded by a description of the methods UDS/SQL uses for the
physical representation of the logical data structure.

The metalanguage used is described on page 18, and the general syntax rules are
summarized on page 232.

You compile the SSL using the SSL compiler. For information on operating the SSL
compiler, please refer to the "Creation and Restructuring" manual, Compiling SSL).

Introduction SSL

126 U929-J-Z125-12-76

5.1.1 Methods of physical representation of the logical data structure

The physical representation of the entirety of

Using the SSL, the user determines if and how a pointer array, list, chain, sort key table or
SEARCH key table is to be set up. A description of these elements can be found on
page 141.

UDS/SQL automatically sets up a DBTT without user intervention.
A description of the DBTT follows.

● all records of a record type:

DBTT
(Database Key Translation Table)

Table representing all records of a record
type and linking all owner records to the
tables of their set occurrences.

Record SEARCH key table Table representing all records of a record
type.

● all records of a set occurrence:

Pointer array

Sort key table

Set SEARCH key table

⎫
o
o
}
o
o
~

Tables representing all member records
of a set occurrence

List Table containing all member records of a
set occurrence

Chain Contains owner record and all member
records of a set occurrence

SSL Introduction

U929-J-Z125-12-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.1.2 DBTT (Database Key Translation Table)

The DBTT establishes the link between the database key value of a database record and
the physical page address of that record.

Structure of a physical page address

The total space available for storing data in the database is divided into realms. A realm
consists of a number of pages defined at database creation (see the “Creation and
Restructuring” manual, “Database creation”). The pages in each realm are consecutively
numbered, as are the realms. UDS/SQL can thus locate data in the database if the number
of the page containing the data and the number of the realm containing the page are known.
The realm reference and page number are therefore combined to form a physical page
address, which UDS/SQL can use as a pointer to the physical position of the data.

Figure 27: Structure of a physical page address

For the main part, data in the database comprises the records and tables defined by the
user. The physical placement of these records and tables can change, but UDS/SQL does
not update all the associated pointers when this happens.
Pointers that must be current at all times are referred to as actual keys (act-key), the
remaining pointers are called probable position pointers (PPP).

Probable position pointers (PPP) can be updated to the most recent update level by means
of the BREORG utility routine (see the “Recovery, Information and Reorganization” manual,
BREORG).

1 byte 3 bytes

REALM-REF PNO

REALM-REF
PNO

 = Realm reference
 = Page number

Introduction SSL

128 U929-J-Z125-12-76

Structure of a database key value

To find the physical address of records and associated tables, UDS/SQL can always make
use of an additional identifier, the database key value, which never changes during the life
of a record in the database.

A record type consists of a number of records which are consecutively numbered. The
record types are also numbered. The record sequence number (RSQ) and record type
reference (REC-REF) are combined to form the database key value of the record.
The database key is thus an identifier that uniquely identifies each record contained in the
database.

The structure of the database key value varies, depending on whether the database page
length is 2048 bytes or 4000/8096 bytes.

Figure 28: Structure of a database key value if the page length is 2048 bytes

Figure 29: Structure of a database key value if the page length is 4000 or 8096 bytes

The following applies to the value range for a record reference number (REC-REF):

– 1 Î REC-REF Î 254 for databases with a 2048-byte page length

– 1 Î REC-REF Î 215-1 for databases with a 4000/8096-byte page length

1 byte 3 bytes

REC-REF RSQ

REC-REF
RSQ

 = Record reference no.
 = Record sequence no.

2 bytes 2 bytes

REC-REF RSQ

REC-REF
RSQ

 = Record reference no.
 = Record sequence no.

not used

4 bytes

SSL Introduction

U929-J-Z125-12-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

The following applies to the value range for a record sequence number (RSQ):

– 1 Î RSQ Î 224-1 for databases with a 2048-byte page length if the record type is not
an owner in any set.

– 1 Î RSQ Î 224- 216- 1 for databases with a 2048-byte if the record type is an owner in
a set.

– 1 Î RSQ Î 231-1 for databases with a 4000/8096-byte page length

Structure of the DBTT

In order to locate the physical placement of a record via the database key value, UDS/SQL
uses the database key translation table or DBTT.

UDS/SQL automatically sets up a DBTT for every record type. The DBTT contains exactly
one line for every record of a record type. A DBTT line is divided into columns. Column 0
contains the page address of the record. The DBTT of a record type which is not an owner
consists of column 0 only.
The database key value is contained only implicitly in the DBTT. It is symbolized by the
place where the associated physical page address is entered. For example, the record with
RSQ=3 is stored in line 3 of the DBTT; the record with RSQ=9 is stored in line 9, etc.

Introduction SSL

130 U929-J-Z125-12-76

Figure 30: Linkage between the database key value and the record address via the DBTT

0 5 0 0 0 0 0 3

1 byte 3 bytes

0 4 0 0 0 0 8 3

0 6 0 0 0 0 1 4

Line 3

Database key value
for page length of 2048 bytes

DBTT of record type 05

REC- REF R S Q Column 0

001 002 003 004

Realm 01

060 061 062 063

018 019 01 A 01 B

001 002 003 004

Realm 04

10 E 10F 110 111

084 085 086

001 002 003 004

Realm 06

034 035 036

013 015 016

033

083 014

2 bytes 4 bytes

Database key value
for page length of 4000/8096 bytes

REC- REF R S Q

2 bytes

00 05 00 00 00 03

no t
u se d

1 b yte 3 bytes

Line 3

0 5 0 0 0 0 0 9

Line 9

SSL Introduction

U929-J-Z125-12-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

If the placement of records changes, updating of the page addresses can be limited to the
DBTT.

In addition to the page addresses of the owner records, the DBTT of an owner record type
contains the page addresses of all tables pertaining to the set occurrences of the owner
records. To identify these tables, the database key value of the corresponding owner record
is combined with the DBTT column number, forming a unique identifier which never
changes.

Figure 31: Complete example of a DBTT

General conclusions:

– Page address updating for records and tables can be limited to the DBTT.

– All page addresses listed in the DBTT are current.

0 4 0 0 0 0 8 3 0 4 0 0 0 0 9 0 0 4 0 0 0 0 9 0

0 6 0 0 0 0 1 4 0 6 0 0 0 0 2 8 0 6 0 0 0 0 2 8

Act key: owner record Act key: pointer array
4 bytes 4 bytes

Act key:
set SEARCH key table

4 bytes

Column 0 Column 1 Column 2

Population SSL

132 U929-J-Z125-12-76

5.2 Declaring the population

5.2.1 Specifying the number of records in one record type

The number of records included in one record type is defined in the DBTT and in the record
POPULATION clause. Using this number UDS/SQL computes:

– the storage space requirement for the DBTT,
– the hash area size for the primary key,
– the hash area sizes for secondary keys.

A record SEARCH key table is always initially set up in a single database page and can be
subsequently extended page by page as required for additional records.

Storage space requirements for the DBTT

DATABASE-KEY-TRANSLATION-TABLE IS integer [WITHIN realm-name]

For each record, there must be one line available in the DBTT of the associated record type.
integer specifies the number of expected records of the record type, and thus the number
of DBTT lines.

– If the database has a page length of 2048 bytes, you may specify a maximum value of
16 777 215 (=224-1) for integer. If the record type in question is the owner in a set, the
maximum possible value for integer is 16 711 679.

– If the database has a page length of 4000 or 8096 bytes, the maximum value that can
be specified for integer is 231-1.

If the record type is not “owner”, the DBTT consists of exactly one column. Otherwise, one
column is added for each reference to

– a pointer array (MODE IS POINTER-ARRAY),

– a list (MODE IS LIST),

– a sort key table (MODE IS CHAIN, ORDER IS SORTED INDEXED), or

– a set SEARCH key table.

UDS/SQL calculates the storage space requirement of the DBTT from the number of lines
and columns, and reserves the required number of pages. Since only whole pages or DBTT
extents can be reserved for a DBTT, the table can accommodate more lines than specified
by integer.

SSL Population

U929-J-Z125-12-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Note, however, that UDS/SQL always creates only as many DBTT pages as required for
the DBTT and that, depending on the database page length, a maximum of 224-1 or
224- 216- 1 (=16711679) or 231-1 entries per DBTT can be administered. Since a DBTT
base can only be created in whole pages and a DBTT extent only in DBTT extent size (128
PAM pages), an excess amount is usually created if the maximum values are specified.
This excess amount is not used.

The DBTT can be extended by means of the BREORG utility routine (see the "Recovery,
Information and Reorganization" manual, BREORG).

By default, UDS/SQL reserves one page for a DBTT.

If a secondary key has been defined for a record type for conversion by a hash routine, the
size specification for the DBTT also affects the initial size of the hash area (see the section
“Size of a hash area for the primary key” on page 134).

Population SSL

134 U929-J-Z125-12-76

Size of a hash area for the primary key

POPULATION IS {integer WITHIN realm-name},...

The hash area for the primary key of a record type is distributed over several realms if the
records of the record type are allocated to several realms by means of the schema DDL
(see the section “Defining allocation of records to realms” on page 105) and if the record
type is not the member record type of a distributable list. For all records the hash area for
an indirect CALC over a distributable list is located in the table realm (information on
distributable lists is provided on page 146).

integer specifies the number of records to be stored in the realm referenced by realm-name.
Using this number, UDS/SQL calculates the minimum number of pages required for storing
the records (see the section “Direct CALC page” on page 210) or the record addresses (see
the section “Indirect CALC page” on page 213) in the respective realm. In each realm,
UDS/SQL then reserves a number of pages corresponding to the next higher prime
number.

The size of a hash area over a distributable list is determined from the sum of the
POPULATION values of the realms involved. The POPULATION specification has no
significance for the actual distribution of the records to the realms involved in the
distributable list.

A hash area is extended by means of overflow pages if the data assigned to a page by a
hash routine exceeds the maximum capacity of the page. The overflowing page is linked to
the overflow page by means of act-keys.

The efficiency of a hash routine can be judged by how evenly it distributes data over the
hash area, i.e. how many overflow pages are generated.

A hash area can be subsequently extended by means of the BREORG utility routine (see
the "Recovery, Information and Reorganization" manual, BREORG).

By default, UDS/SQL sets up a hash area of one page.

Example

DDL:

RECORD NAME IS ARTICLE
LOCATION MODE IS CALC
WITHIN CLOTHING, HOUSEHOLD-GOODS, AREA-ID
 .
.
.

SSL Population

U929-J-Z125-12-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

SSL:

 RECORD NAME IS ARTICLE
POPULATION IS 400 WITHIN CLOTHING, 100 WITHIN HOUSEHOLD-GOODS,

Population SSL

136 U929-J-Z125-12-76

Size of the hash area for a secondary key

DATABASE-KEY-TRANSLATION-TABLE IS integer

integer specifies the number of records of a record type.

– If the database has a page length of 2048 bytes, you may specify a maximum value of
224-1 for integer. If the record type in question is the owner in a set, the maximum
possible value for integer is 16 711 679.

– If the database has a page length of 4000 or 8096 bytes, the maximum value that can
be specified for integer is 231-1.

Using this number, UDS/SQL not only calculates the size of the DBTT, but also the
minimum number of pages required for the distributed storage of the record addresses (see
the section “Indirect CALC page” on page 213).
UDS/SQL then reserves a number of pages corresponding to the next higher prime
number.

A hash area is extended by means of overflow pages if the data assigned to a page by a
hash routine exceeds the maximum capacity of the page. The overflowing page is linked to
the overflow page by means of act-keys.

A hash area can be extended at a later time by means of the BREORG utility routine (see
the "Recovery, Information and Reorganization" manual, BREORG).

By default, UDS/SQL sets up a hash area of one page for each secondary key.

SSL Population

U929-J-Z125-12-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.2.2 Specifying the size of the set occurrences of a set

POPULATION IS integer

The size of the set occurrences must be specified in the following cases:

– if you want to store tables and member records in the proximity of the associated owner
records,

– if you want to facilitate subsequent table extensions,

– if you want to specify the size of a hash area for secondary keys in a SYSTEM set in
order to avoid overflow pages.

integer specifies an average set occurrence population. It should be the value which applies
to the majority of the set occurrences.

Based on this specification, UDS/SQL calculates:

– the storage space requirements for pointer arrays, lists, sort key tables and set
SEARCH key tables, provided the set is not a SYSTEM set,

– the storage space requirements for the member records of the set occurrences,
provided the set is not a SYSTEM set,

– the size of hash areas for secondary keys in a SYSTEM set.

UDS/SQL reserves the storage space calculated for a set occurrence in the next free space
following the owner record when storing the owner record.

The default value for integer is 0. In this case, no space is reserved for tables and member
records, and one page is reserved for each hash area.

Storage space requirements for pointer array, list, sort key table and set SEARCH key
table

Each of the above tables represents or contains all member records of a set occurrence.
Each member record corresponds to one line in the associated tables. This means that
integer specifies the number of lines in each table of the set occurrence.

Based on the number and the length of lines, UDS/SQL calculates the storage space
requirements for the tables.

Population SSL

138 U929-J-Z125-12-76

When storing an owner record, UDS/SQL reserves:

– the calculated storage space, if it is smaller than one page,
– one page, if the calculated storage space is greater than one page.

for each table belonging to the associated set occurrence.

In the case of SYSTEM sets, UDS/SQL reserves exactly one database page for each table,
regardless of the POPULATION clause.

Table extensions

UDS/SQL automatically extends pointer arrays, lists, sort key tables and set SEARCH key
tables if the need arises when member records are stored. In order to avoid frequent table
extensions, the user can control table size using the following specification in the set
POPULATION clause:

POPULATION IS integer-1 INCREASE IS integer-2

integer-2 specifies the number of table lines to be added with the first two table extensions.
Following the second extension, integer-2 * 2n (nïnumber of extensions) table lines are
added until there is no more space for a further table line. If data other than that belonging
to the table is contained in the page, preventing the table from being extended, a
subsequent table extension includes the relocation of the table. In this case, UDS/SQL
makes available a page large enough to accommodate the table and its desired extension.

For table extensions beyond the first table page, integer-2 no longer has any effect (see the
section “Defining the extent of table reorganization desired” on page 171).

The default value for integer-2 is 1.

Storage space requirements for member records

This only applies to member records which are not included in a list. When the owner is
stored, UDS/SQL reserves space for its member records if the PLACEMENT
OPTIMIZATION clause is defined for the member record type (see the section
“PLACEMENT OPTIMIZATION” on page 163). In this case, UDS/SQL uses the entry in
the set occurrence population clause to calculate the storage space requirement for the
member records.

SSL Population

U929-J-Z125-12-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Size of the hash area for a secondary key

Only in the case of SYSTEM sets can a secondary key be used for conversion by a hash
routine. UDS/SQL calculates the minimum number of pages required for distributed storage
of record addresses on the basis of the set occurrence population entry (see the section
“Indirect CALC page” on page 213) and then reserves the number of pages corresponding
to the next higher prime number.

If some pages overflow due to uneven data distribution by the hash routine, UDS/SQL
automatically sets up overflow pages.

A hash area can be extended at a later time by means of the BREORG utility routine (see
the "Recovery, Information and Reorganization" manual, BREORG).

By default, UDS/SQL sets up a hash area with a size of one page.

Population SSL

140 U929-J-Z125-12-76

5.2.3 Overview of the initial sizes for storage space reservations

Type of data Set type Reserved storage space

Records with
PLACEMENT OPTIMIZATION not

SYSTEM

According to integer in the set
POPULATION clause

List
Pointer array
Sort key table

Set SEARCH key table

According to integer in the set
POPULATION clause;
maximum one page

SYSTEM
One page

Record SEARCH key table -

Hash area for set SEARCH key
SYSTEM

According to integer in the set
POPULATION clause;
minimum one page

Hash area for record SEARCH key

-

According to integer in the DBTT
clause;
minimum one page

Hash area for primary key According to integer in the record
POPULATION clause;
minimum one page

DBTT
According to integer in the DBTT
clause;
minimum one page

Table 7: Initial sizes for storage space reservations

SSL Linkage methods

U929-J-Z125-12-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.3 Determining the linkage of records

5.3.1 Determining the storage mode for set occurrences

UDS/SQL offers three different storage modes for linking member records to form a set
occurrence. These are:

– pointer array (POINTER-ARRAY)
– list (LIST), and
– chain (CHAIN)

The following example is used in this section to explain the three storage modes:

Figure 32: Example of storage modes for set occurrences

Milk

ARTICLE

Gin

Cocoa

ARTICLES-
AVAILABLE

SUPPLIER Moore

Beer

Linkage methods SSL

142 U929-J-Z125-12-76

Storing a set occurrence as a pointer array

MODE IS POINTER-ARRAY

If MODE IS POINTER-ARRAY is defined for a set, UDS/SQL links the member records of
its set occurrences via a table called a pointer array.

This table contains pointers to each member record of a set occurrence. A pointer consists
of the RSQ of the member record and the probable position pointer (PPP) of the page
containing the member record (see page 223, Table line).

The further contents of the pointer array depend on which ORDER clause was defined for
the set in the schema DDL.

– ORDER IS LAST/FIRST/NEXT/PRIOR/IMMATERIAL or
SORTED INDEXED BY DATABASE-KEY

The pointer array contains only the pointers to the member records of the set
occurrence.

– ORDER IS SORTED INDEXED BY DEFINED KEYS

In addition to the pointers to the member records of the set occurrence, the pointer array
contains the associated values of the primary key.

– ORDER IS SORTED

This entry is not allowed for a pointer array.

SSL Linkage methods

U929-J-Z125-12-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Figure 33: Set occurrence stored as a pointer array

If a pointer array occupies more than one page, each page is connected by act-keys twice.
If ORDER IS SORTED INDEXED, the pointer array is provided with additional higher-
ranking table levels. Each higher-ranking level has the same structure as the lowest level,
but contains only the last table entry of the pages containing the next lower level. The
probable position pointers (PPP) pointing to the member records are replaced by the act-
key of the page where the table entry originates (see page 227, figure 59).

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.

.

.

.

Moore

. . .

 .

. . .

Owner record DBTT Pointer array Member records

Beer

Cocoa

Milk

Primary
key

RSQ
+

PPP

Gin

Beer

Cocoa

Milk

Gin
.

 .

. . .

 .

Linkage methods SSL

144 U929-J-Z125-12-76

Additional pointer from owner to its pointer array

MODE IS POINTER-ARRAY.....WITH PHYSICAL LINK

The standard UDS/SQL link between an owner record and the pointer array of its member
records is via the DBTT. The user can bypass the DBTT and save one page access by
specifying WITH PHYSICAL LINK, which generates a pointer to the pointer array in the
owner record.

Figure 34: Additional pointer from owner →pointer array

This entry is not permitted in SYSTEM sets, where both the function of the owner record
and of the DBTT is assumed by an anchor record.

.

.

.

.

.

.

.

.

.

. . .

.

.

.

.

.

.

.

.

.

Moore

. . .

.

. . .

Owner record DBTT Pointer array Member records

Beer

Cocoa

Milk

Primary
key

RSQ
+

PPP

Gin

Beer

Cocoa

Milk

Gin.

.

. . .

.

.

SSL Linkage methods

U929-J-Z125-12-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Storing a set occurrence as a list

MODE IS LIST

If a set is defined with MODE IS LIST, UDS/SQL stores the member records of a set
occurrence in a table called a list. The physical sequence of the records corresponds to the
logical sequence defined in the ORDER clause.

Figure 35: Set occurrence stored as a list

If a list occupies more than one page, each page is linked twice by act-keys.

If ORDER IS SORTED INDEXED, the list is provided with additional higher-ranking table
levels. The higher-ranking levels have the same structure as that of a pointer array.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moore

. . .

Owner record DBTT List

Beer

Cocoa

Milk

Gin . . .

. . .

. . .

Linkage methods SSL

146 U929-J-Z125-12-76

The physical placement of records can be defined only once:

– If a record type is a member of several sets, only one of the sets can be defined with
MODE IS LIST.

– It is not possible to define records with MODE IS LIST and PLACEMENT
OPTIMIZATION at the same time (see the section “PLACEMENT OPTIMIZATION” on
page 163).

– If the records of a record type are placed both by LOCATION MODE IS CALC and
MODE IS LIST, they are stored in lists, and the hash area consists of indirect CALC
pages.

Distributable list:

A list can be distributed over more than one realm ("distributable list"). The following
requirements must be met to do this:

– MODE IS LIST must be specified in the SSL set declaration (see page 252).

– OWNER IS SYSTEM and ORDER IS SORTED INDEXED must be specified in the DDL
set declaration (see page 241).

– In the DDL set declaration more than one realm must be specified in the WITHIN clause
of the member record type (see page 105 and page 238).

Distribution over more than one realm only concerns the level 0 pages containing the
records themselves.

The index of the list (pages with levels > 0) is located in one realm ("table realm").

When records are stored in the DBH, free pages are searched for in the favored realm
("preferred realm"). A new preferred realm can be set using the UDS online utility or an
existing one can be modified (see the "Recovery, Information and Reorganization" manual).

The following restrictions also apply for lists:

MODE IS LIST may only be specified if the set membership has been defined as
MANDATORY AUTOMATIC in the schema DDL (see the section “Defining the type of
membership of records in a set” on page 75).

MODE IS LIST may not be specified in the following cases:

● if the record lengths (including pointers; see page 220, SCD) exceed

– 993 bytes in a database with a 2048-byte page length (2-Kbyte page format)
– 1963 bytes in a database with a 4000-byte page length (4-Kbyte page format)
– 4011 bytes in a database with a 8096-byte page length (8-Kbyte page format)

(At least two records must fit in a list, but this would not be possible in the above cases.)

SSL Linkage methods

U929-J-Z125-12-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

● if a member record type contains an item of variable length;

● For the member record type of the set more than one realm was specified in the
Schema DDL in the WITHIN clause of the RECORD declaration, the owner record type
of the set is a member of a distributable list, and in the MODE IS LIST statement
DETACHED is specified without a WITHIN clause.

● The owner record type of the set is the member of a distributable list and ATTACHED
is specified in the MODE IS LIST statement.

● if the order of the records within the set occurrence is defined with ORDER IS SORTED
(without INDEXED) or

● if member records are to be stored in compressed form (see the section “Storing the
records of a record type in compressed form” on page 175).

Linkage methods SSL

148 U929-J-Z125-12-76

Additional pointer from owner to its list

MODE IS LIST.....WITH PHYSICAL LINK

The UDS/SQL standard connection between an owner record and the list of its member
records is via the DBTT. The user can bypass the DBTT and save one page access by
specifying WITH PHYSICAL LINK, which generates a pointer to the list in the owner record.

Figure 36: Additional pointer from owner → list

This entry is ignored by the compiler in SYSTEM sets, where both the function of the owner
record and the DBTT are assumed by an anchor record. The user is informed by a warning.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Moore

. . .

Owner record DBTT List

Beer

Cocoa

Milk

Gin . . .

. . .

. . .

.

SSL Linkage methods

U929-J-Z125-12-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Storing a set occurrence as a chain

MODE IS CHAIN

If MODE IS CHAIN is defined for a set, each set occurrence of the set is stored as a closed
chain of records. The chain comprises the owner record and all member records of the set
occurrence. The member records are chained by means of pointers in the order defined in
the ORDER clause for the set in the schema DDL. The position of the owner record is
between the last and the first member record.

The pointer is composed of the database key value of the subsequent record in the chain
and the probable position pointer (PPP) of the page containing this record.

Figure 37: Set occurrence stored as a chain

The chain is the only storage mode applicable if the set has been defined with ORDER IS
SORTED (without INDEXED) in the schema.
If ORDER IS SORTED INDEXED, a table is set up as an additional path for direct access.
This table is referred to as the sort key table. Its structure is the same as that of a multi-level
pointer array.

. . .Cocoa

. . .Beer

. . .Gin

.

.

.

Moore.

. . .Milk.

Linkage methods SSL

150 U929-J-Z125-12-76

Additional backward chaining for chain

MODE IS CHAIN LINKED TO PRIOR

In addition to standard forward chaining, the records of a chain can be concatenated in
reverse order. If LINKED TO PRIOR is specified, a further pointer is added to each record
pointing to the logically preceding record. In the same way as forward chaining, the pointer
is composed of the database key value of the preceding record and the probable position
pointer (PPP) of the page containing this record.

Figure 38: Additional backward chaining for chain

Backward chaining is important for large set occurrences where prior records are frequently
the object of a search.

Moore.

. . .Milk.

.

.

. . .Cocoa. .

. . .Gin. .

. . .Beer. .

SSL Linkage methods

U929-J-Z125-12-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.3.2 Assessing pointer array, list and chain

The time required for the execution of a program depends on the storage modes defined
for the set occurrences.

This section compares retrieval and updating operations when using pointer arrays, lists
and chains. The retrieval operations are subdivided into sequential and direct accesses.
Updating operations dealt with are insertion and deletion.

Pointer arrays

● Sequential access

The pointer array must be present in memory. This is almost always the case whenever
a member record of the set occurrence has already been accessed via the set. One
entry in the pointer array must then be read before the associated record can be read.
The number of disk accesses depends on how records are distributed over the pages
and can be reduced by optimizing the placement of the records (see the sections
“Natural optimization” on page 162 and “PLACEMENT OPTIMIZATION” on page 163).

● Direct access

– ORDER IS SORTED INDEXED: All levels of the pointer array must be in memory.
The higher levels are used to select the number of the page containing the entry of
the record to be found. One disk access is required for each level of the table.

– ORDER IS LAST/FIRST/NEXT/PRIOR: UDS/SQL must search the set occurrence
sequentially until the desired record is found. This may require a considerable
number of disk accesses.

● Insertion

In order to insert an entry, the place of insertion in the pointer array must be determined.
If ORDER IS SORTED INDEXED, this is possible via direct access.
If ORDER IS LAST/FIRST, UDS/SQL can directly access the last or first table page
respectively. If ORDER IS NEXT/PRIOR, the place of insertion is found via the currency
information or by sequentially reading the pointer array.
Writing the record usually requires a further disk access.

● Deletion

The record and its associated entry in the pointer array must be deleted.

● Result

MODE IS POINTER-ARRAY allows speedy sequential and direct access and updating
operations. The response times are largely independent of the order of the sets and the
size of the set occurrences.

Linkage methods SSL

152 U929-J-Z125-12-76

List

● Sequential access

If MODE IS LIST, the records are grouped together in a contiguous storage area. This
storage mode offers fastest sequential processing. The number of accesses when
processing large numbers of records depends on the record length.

● Direct access

If ORDER IS SORTED INDEXED, all levels of the list must be in memory. The higher
levels are used to select the number of the page containing the record. One disk access
is required for each level of the table. The number of levels depends on the record
length.
If ORDER IS SORTED INDEXED has not been defined, UDS/SQL must search the set
occurrence from the beginning. The number of disk accesses required for this depends
to a large degree on the record length and the size of the set occurrence.

● Insertion

If ORDER IS SORTED INDEXED, UDS/SQL finds the place where the record is to be
inserted by means of direct access. Otherwise UDS/SQL requires a maximum of two
disk accesses.
Insertion of a record may necessitate re-storage of a number of records by UDS/SQL.

● Deletion

In general, UDS/SQL need modify only the page from which the record is to be deleted.

● Result

MODE IS LIST offers the fastest sequential access mode. If an updating operation
causes a change in the record sequence, this may result in the physical relocation of
records. The probable position pointers (PPP) in SEARCH key tables pointing to these
records are then no longer valid.

The access behavior depends to a large degree on the order and size of the set
occurrences.

SSL Linkage methods

U929-J-Z125-12-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Chain

● Sequential access

When records are processed in their logical order, a maximum of one disk access for
each member record is required. The number of accesses can be considerably reduced
by optimizing the placement of the records (see page 163). If the logical order is not
adhered to, UDS/SQL will normally have to search large parts of the set occurrence
which may involve a large number of disk accesses. It should be noted that for reading
a preceding record UDS/SQL must search the set occurrence from the beginning
unless backward chaining has been specified.

If the physical placement of the records changes frequently (e.g. if member records for
a different set are stored as a list), it is advisable to perform occasional reorganization
runs in order to keep the probable position pointers (PPP) current (see the "Recovery,
Information and Reorganization" manual, BREORG).

● Direct access

– ORDER IS SORTED INDEXED:
Analogous to direct access in pointer array.

– ORDER IS LAST/FIRST/NEXT/PRIOR/SORTED:
On average, UDS/SQL must search half a set occurrence to find a record. A
maximum of one disk access per record is required.

● Insertion

When a record is inserted, it is linked to the preceding and to the subsequent record by
means of pointers.
For this reason, UDS/SQL updates the records preceding and, in the case of backward
chaining, following the record inserted.

– ORDER IS SORTED [INDEXED]:
UDS/SQL finds the place where the record is inserted by direct access.

– ORDER IS LAST/FIRST/NEXT:
A pointer points from the owner record to the preceding record, or the owner record
is the preceding record, or the preceding record is immediately obtainable by
means of the currency information. Insertion of the record requires a maximum of
two disk accesses.

– ORDER IS PRIOR:
UDS/SQL must search the set occurrence from the beginning unless backward
chaining has been specified. If backward chaining has been specified, insertion of
a record requires a maximum of three disk accesses.

Linkage methods SSL

154 U929-J-Z125-12-76

● Deletion

UDS/SQL must find the record to be deleted and also the record preceding it. This
requires less time if backward chaining has been specified. In the case of backward
chaining, UDS/SQL must also update the pointer in the subsequent record. If ORDER
IS SORTED INDEXED, the entry made for this record in the sort key table must be
deleted.

● Result

MODE IS CHAIN allows fast sequential access if the records are processed in the
sequence defined in the ORDER clause.

If the ORDER clause specifies SORTED INDEXED, fast direct access is possible even
in large set occurrences. If ORDER IS SORTED is specified, insertions are slower and
depend on the number of member records in the set occurrence. Modifications of the
primary key are relatively time consuming.

If the order of the member records is immaterial, the fastest mode of storing records is
achieved by specifying MODE IS CHAIN and ORDER IS NEXT or ORDER IS FIRST.

SSL Linkage methods

U929-J-Z125-12-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.3.3 Preventing redundancy in SEARCH key tables

TYPE IS DATABASE-KEY-LIST

In the description of the logical data structure drawn up using the schema DDL, the user
decides if UDS/SQL is to set up a SEARCH key table (SEARCH KEY IS... USING INDEX).
The form of this table can be influenced by means of the TYPE clause.

The UDS/SQL standard form of SEARCH key table is that of a multi-level pointer array: It
consists of one line for every record of the associated record type or for each member
record of the associated set occurrence. This line contains the key value of the record and
the pointer to the record.
(This standard form corresponds to the specification: TYPE IS REPEATED-KEY.)

Different records can often have the same key values (DUPLICATES ARE ALLOWED). In
such cases, TYPE IS DATABASE-KEY-LIST can be specified; this ensures that a key value
with duplicates is stored only once.

This type of SEARCH key table is referred to as a duplicates table. Duplicates tables are
useful

– in the case of long keys,

– if several key values have between 5 and 2000 duplicates,

– when processing large numbers of records (see the "Application Programming"
manual, FIND 7).

A third overflow page must be generated by UDS/SQL in the following cases:

– if there are more than approximately 2000 duplicates in a 2-Kbyte or 4-Kbyte database

– if there are more than approximately 4000 duplicates in an 8-Kbyte database.

This has an adverse effect on the access behavior (one additional access per overflow
page), which should be weighed against the saving in space achieved.
Duplicates tables are set up by UDS/SQL on the lowest level only. Higher table levels are
comparable to those of a standard SEARCH key table.

Linkage methods SSL

156 U929-J-Z125-12-76

Figure 39: Comparison of standard SEARCH key table with duplicates table

The pointers in the duplicates table are the RSQs of the associated records. The pointers
associated with the same key value are sorted in ascending order according to RSQs.
Thus an additional access to the DBTT is required to find the pages containing the records.

1923

1923

1923

1945

1945

1945

1945

1945

Miller

Byrne

Wagner

Martin

Walker

Smith

Sands

Vogel

1923

1923

1923

1945

1945

1945

1945

1945

1923

1945

.

.

.

.

.

. . .

RSQ

Standard
SEARCH key table

RSQ+PPP

Duplicates table

.

.

.

.

.

.

.

.

SSL Linkage methods

U929-J-Z125-12-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.3.4 Adding a pointer to link a member to its owner

MEMBER IS PHYSICALLY LINKED TO OWNER

This entry specifies that each member record of a set is provided with a pointer to the
associated owner record. This pointer is a probable position pointer (PPP). It optimizes
access to the owner record if one of its member records has already been selected (see the
"Application Programming" manual, FIND 6). Such accesses are often required in parts list
processing, for example.

This must not be specified for a SYSTEM set.

Placement SSL

158 U929-J-Z125-12-76

5.4 Defining the placement of member records, tables and hash
areas

The SSL provides options to define the placement of the following objects:

– member records
– lists
– pointer arrays
– sort key tables
– SEARCH key tables
– DBTTs
– hash areas.

These options include, in particular:

– For member records, lists, pointer arrays, sort key tables and set SEARCH key tables,
you can define not only the realm that is to contain the records but also the
concentration of data in one page or in contiguous pages within this realm.

– In the case of hash areas, DBTTs and record SEARCH key tables, it is only possible to
define the realm in which they are to be stored.

5.4.1 Defining the placement of member records, associated tables and
hash areas for secondary keys

This section covers the possibilities of defining the placement of data belonging to one set
occurrence. Such data may be:

– an owner record
– member records or list
– a pointer array
– a sort key table
– a set SEARCH key table
– a hash area for the set secondary key

SSL Placement

U929-J-Z125-12-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.4.1.1 Placement at realm level

The following clauses are used to allocate data to certain realms without specifying its
position within the realm.

Owner record, member records

WITHIN clause of the schema DDL (see the section “Defining allocation of records to
realms” on page 105).

List

MODE IS LIST DETACHED [WITHIN realm-name]

Pointer array

MODE IS POINTER-ARRAY DETACHED [WITHIN realm-name]

Sort key table, set SEARCH key table, hash area for set secondary key

INDEX NAME IS name PLACING IS DETACHED [WITHIN realm-name]

realm-name specifies the name of the realm that is to contain the list, pointer array, sort key
table, set SEARCH key table or hash area.

In a distributable list realm-name determines the table realm (see page 146) and the realm
in which any indirect hash area used for the entire list is to be stored. The realm must be
named in the DDL-WITHIN clause of the member record type.
If the distributable list is used without DETACHED WITHIN clause, the location of the table
pages and of an indirect hash area is determined by the realm named first in the DDL-
WITHIN clause of the member record type.

If this entry is omitted, UDS/SQL places the lists, pointer arrays or sort key tables in the
realm of the associated owner record, unless the set is a SYSTEM set.
In the case of a non-dynamic SYSTEM set, these tables or hash areas are automatically
placed in the first realm referred to in the DDL WITHIN clause for the member record type.
A dynamic set is stored in the temporary realm by UDS/SQL.

Placement SSL

160 U929-J-Z125-12-76

The location of a list is determined without the DETACHED WITHIN clause by means of the
location of the owner if the set is not a SYSTEM set and the records can reside in more than
one realm. In this case the realms of the owner and member record types in the DDL-
WITHIN clause must be the same. If the member record set can only reside in one realm,
the location of the list is determined without DDL-WITHIN clause by this realm.

If no entry is made for a set SEARCH key table or hash area, UDS/SQL selects the realm
according to the following principle:

Figure 40: Default value for realm-name

name specifies the name of the sort or SEARCH key table to be placed. This name must
have been assigned in the schema DDL (see the section “Assigning names to hash areas
and tables” on page 102).

Is the set a SYSTEM set?

Has a realm name been defined for

table of set?

Has a realm name been defined for

this set in the schema DDL?

Realm of the associated owner record

Specified realm

First realm specified in the
DDL WITHIN clause for the

No

Yes

Yes

No

Yes

No

the list, pointer array or sort key

the first secondary key defined for

member record type

SSL Placement

U929-J-Z125-12-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.4.1.2 Placement within a realm

Within a realm, data belonging to one set occurrence can be stored contiguously. If, for
example, member records are stored as list, they are physically stored in one page until the
page is completely filled. The other possibilities relate to the storage of member records and
the associated tables in the proximity of the owner record.
These are:

– Natural optimization
Owner proximity for lists, pointer arrays, sort key tables, set SEARCH key tables and
member records

– PLACEMENT OPTIMIZATION
Owner proximity for member records

– MODE clause
Owner page contains pointer array or list

– INDEX clause
Owner page contains sort key table or set SEARCH key table

Placement SSL

162 U929-J-Z125-12-76

Natural optimization

If the user does not influence the placement of data within a realm by means of the DDL
and SSL, UDS/SQL physically stores the data in the chronological order in which it is
entered. Thus, at initial load time or later on when running unload or load programs, the user
can select the load sequence in such a manner that a complete set occurrence with all
associated tables is stored in contiguous pages. Unlike other optimization methods, natural
optimization is effective over several levels of hierarchy. This method is especially useful if
the user recognizes critical access paths. In this case, data must be stored in the same
sequence as in the critical access path.

Example

Figure 41: Load sequence for natural optimization

In this example, the access behavior on the critical access path CUSTOMER, CUSTOMER-
ORDER, ITEM is improved by the specified load sequence. The emphasis has been placed
on the optimization of the CUSTOMER-ORDER, ITEM path.

CU STOM ER

CUSTOMER-
O RD ER S

ITEM

MARTI N

256

210

102

WAL KER

Iron

Radio

Raz or

Raz or

Battery

Radio

Trans istor

Battery

13

1

9

6

2

5

4

3

12

11

10

8

7

SSL Placement

U929-J-Z125-12-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

PLACEMENT OPTIMIZATION

PLACEMENT OPTIMIZATION FOR SET set-name

set-name specifies the name of the set to be optimized as an access path. It must not be a
SYSTEM set. This entry is to be added to the member record type of the set.
As a result of this entry, UDS/SQL reserves sufficient storage space immediately after the
owner record (when storing it) to hold the following information:

– Number of member records as specified in the POPULATION clause (see the section
“Storage space requirements for member records” on page 138).

– If member records are owners in other sets:
all tables to be stored in the pages of these records using ATTACHED (see the sections
“MODE clause” on page 164 and “INDEX clause” on page 165).

A prerequisite is that placement has not been specified for the owner record type of the
specified set using:

– LOCATION MODE IS CALC
– MODE IS LIST or
– PLACEMENT OPTIMIZATION

In the case of a record type defined in the schema DDL with LOCATION MODE IS CALC,
PLACEMENT OPTIMIZATION generates indirect CALC pages.

If the set is defined with MODE IS LIST then PLACEMENT OPTIMIZATION is ignored.

Placement SSL

164 U929-J-Z125-12-76

MODE clause

 lPOINTER-ARRAY⎫
MODE IS m } ATTACHED TO OWNER
 nLIST ~

This entry is not permitted in SYSTEM sets.

This entry is not permitted with MODE IS LIST if the owner record type is the member
record type of a distributable list.

If a set occurrence population greater than zero has been specified for the set (see the
section “Specifying the size of the set occurrences of a set” on page 137), UDS/SQL sets
up all the tables of a set occurrence subsequent to the owner record when the owner record
is stored.
A table for which ATTACHED has been specified takes precedence over other tables in that
it is stored in the space immediately following the owner.
Even if the owner is a member of a set for which space has been reserved with the
PLACEMENT OPTIMIZATION clause, UDS/SQL takes into account the storage space
requirements for an associated ATTACHED table so that the owner record can be stored
contiguously with the table (see the section “PLACEMENT OPTIMIZATION” on page 163).

If zero has been specified as set occurrence population, UDS/SQL sets up a table when the
first member record is stored. In this case, ATTACHED results in UDS/SQL setting up the
table as close as possible to the owner record.

ATTACHED is thus a means of making the owner record and its associated table available
in one disk access, provided there is enough space for the table in the owner page.

A prerequisite is that the owner record type has not been defined with LOCATION MODE
IS CALC, as space reservation for member records and tables is not possible in hash areas.

SSL Placement

U929-J-Z125-12-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

INDEX clause

INDEX NAME IS name PLACING IS ATTACHED TO OWNER

This entry is not permitted for SYSTEM sets. It is used to place tables of primary and
secondary keys in the proximity of the associated owner.

For further details on the ATTACHED entry see the MODE clause.

name specifies the name of the table to be placed. It must have been assigned in the
schema DDL (see the section “Assigning names to hash areas and tables” on page 102).

Placement SSL

166 U929-J-Z125-12-76

5.4.2 Defining the placement of record SEARCH key table, DBTT and record
hash areas

For this data, the user can specify only the realm in which it is to be stored.

The following clauses are used to allocate data to specific realms:

Record SEARCH key table

NDEX NAME IS name PLACING IS WITHIN realm-name

DBTT

DATABASE-KEY-TRANSLATION-TABLE WITHIN realm-name

Hash area for primary key

POPULATION IS {integer WITHIN realm-name},...

Hash area for record secondary key

INDEX NAME IS name PLACING IS WITHIN realm-name

name specifies the name of the table or hash area to be placed. This name must have been
assigned in the schema DDL (see the section “Assigning names to hash areas and tables”
on page 102).

realm-name specifies the realm in which the table or the hash area is to be stored. If no realm
name is specified, UDS/SQL stores the DBTT and the secondary keys in the realm
specified first in the DDL WITHIN clause for this record type.
The hash area for primary keys is always set up according to the DDL WITHIN specification.

SSL Placement

U929-J-Z125-12-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Example

DDL: SET NAME IS CUSTOMER-ORDERS-PLACED
.
.
.

OWNER IS CUSTOMER.
MEMBER IS CUSTOMER-ORDER

.

.

.

SSL: RECORD NAME IS CUSTOMER-ORDER
PLACEMENT OPTIMIZATION FOR SET CUSTOMER-ORDERS-PLACED.

SET NAME IS CUSTOMER-ORDERS-PLACED
POPULATION IS 10
MODE IS POINTER-ARRAY ATTACHED TO OWNER
INDEX NAME IS SEARCH-TAB-C-ORD-PLCD

PLACING IS DETACHED.

In this example, UDS/SQL would arrange the records and table of the set as follows:

Figure 42: Placement of data based on the above definition

cust. 1
10-line
pointer array

10 orders
of cust. 1

10-line
SEARCH key table cust. 2

cust. 3
10-line
ptr. array

10 orders
of cust. 2

10-line
SEARCH key table . . .

Placement SSL

168 U929-J-Z125-12-76

5.4.3 Overview of placement statements

Placement statements for records:

Type of
data

WITHIN
realm-
name,...

Member records in set with LOCA-
TION
MODE IS
CALC

Placement of the
records

OWNER
IS
SYSTEM

PLACEMENT
OPTIMIZA-
TION FOR SET

MODE
IS
...

records manda-
tory

yes

yes not permitted

no

LIST see table 9 on page 169

POINTER-
ARRAY

ATTACHED not permitted

DETACHED
yes hash area in WITHIN

realm

no in WITHIN realm

DETACHED
WITHIN

yes hash area in WITHIN
realm

no in WITHIN realm

CHAIN -
yes hash area in

WITHIN realm

no in WITHIN realm

no

yes

LIST

ATTACHED - list near to owner

DETACHED - list near to owner

DETACHED
WITHIN

 not permitted

POINTER-
ARRAY/
CHAIN

-
yes

hash area (indirect
CALC) in WITHIN realm;
records near to owner

no near to owner

no

LIST see table 10 on page 169

POINTER-
ARRAY/
CHAIN

-
yes hash area in WITHIN

realm

no in WITHIN realm

Table 8: Placement statements for records

SSL Placement

U929-J-Z125-12-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Placement for singular lists:

Placement for regular lists without placement optimization:

MODE
IS
... Placement of the records

LIST

ATTACHED - Not permitted

DETACHED Non-distributable list First realm in DDL-WITHIN clause of the member record type

Distributable list Realms of the DDL-WITHIN clause of the member record type

DETACHED
WITHIN

- List in the DETACHED-WITHIN realm

Table 9: Placement for singular lists

MODE
IS
... Owner Member realm Placement of the

records

LIST

ATTACHED Owner in distributable list - Not permitted

Owner not in distributable list - List with owner 1)

1 The realms specified in the DDL-WITHIN clause must be the same for the owner and member record types.

DETACHED Owner in distributable list 1 member realm List in the member realm

Multiple member realms Not permitted

Owner not in distributable list 1 member realm List in the member realm

Multiple member realms List with owner 1)

DETACHED
WITHIN

- - List in the DETACHED
WITHIN realm 2

2 The DETACHED WITHIN realm must exist in the DDL-WITHIN clause of the member record type.

Table 10: Placement for regular lists without placement optimization

Placement SSL

170 U929-J-Z125-12-76

Placement statements for tables and hash areas:

Type of
data

Type
of Set

MODE, INDEX or DBTT clause
specifications

Placement

Realm within realm

List
Pointer array
Sort key table
Set SEARCH key
table

not
SYSTEM

ATTACHED TO OWNER Owner realm next to owner

SYSTEM DETACHED 1)

1 For set SEARCH key tables for a SYSTEM set, refer to the default values for realm-name in figure 40.

first realm in
WITHIN clause
for member
record type

according to time of
storage

not
SYSTEM
or
SYSTEM DETACHED WITHIN

realm-name

realm specified

Pointer array dynamic temporary realm

-

Hash area
for
distributable list
or
Hash area for set
SEARCH key

SYSTEM

DETACHED first realm in
WITHIN clause
for member
record type

DETACHED WITHIN realm-name realm specified

Record SEARCH
key table

-

WITHIN realm-name realm specified
according to time of
storage

default first realm in
WITHIN clause

Hash area for
record SEARCH
key

WITHIN realm-name realm specified

-

default first realm in
WITHIN clause

Hash area for
primary key

-

- realms in WITHIN
clause

DBTT

DBTT WITHIN realm-name realm specified

default first realm in
WITHIN clause

Table 11: Placement statements for tables and hash areas

SSL REORGANIZATION clause

U929-J-Z125-12-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.5 Defining the extent of table reorganization desired

DYNAMIC REORGANIZATION SPANS integer PAGES

If, when records are stored, the storage space requirements are formed to exceed those
initially calculated on the basis of the POPULATION clause, UDS/SQL automatically
performs a table extension. A table that is not quite the size of a page but that cannot be
extended by at least two table lines within its page is continued in a further page by
UDS/SQL. If a table spans several pages, however, and the part to be extended requires
an entire page, UDS/SQL can search a certain number of the pages containing the logically
adjacent parts of the table for free space.

integer denotes the number of table pages to be searched. In the case of pointer arrays,
lists, sort key tables and set SEARCH key tables, this specification only takes effect if the
set has not been defined with ORDER IS LAST/FIRST.

The pages to be searched are, at the same time, the pages submitted to UDS/SQL for
dynamic reorganization.

If UDS/SQL finds free space for a new table entry within these pages, this space is
relocated to the place where the table entry is to be inserted.

If, however, all pages searched are completely filled with table entries, UDS/SQL extends
the table by one empty page after the searched pages. Further reorganization depends on
the place at which the table entry is inserted.

1. The table entry is to be inserted in the table but not at the beginning or at the end:
UDS/SQL evenly distributes the contents of the searched pages and the new table
entry over the storage space which has been extended by one page.

2. The table entry is to be appended at the end of the table. The new page contains the
last table entry and the new table entry.

3. The table entry is to be inserted at the beginning of the table: UDS/SQL moves the
contents of the first table page, with the exception of the first entry, to the new page. The
table entry to be inserted is stored in the first page.

By this method, a high occupancy level is achieved for the table pages. In cases 2) and 3),
the occupancy level is obtained using the following formula:

 n-1
Occupancy level [%] = xxx x 100
 n

where n is the maximum number of table entries per page.

REORGANIZATION clause SSL

172 U929-J-Z125-12-76

In case 1), the occupancy level is dependent on the integer specified. It must not fall below
the following value:

 integer
Minimum occupancy level [%] = xxxxxxxxx x 100.
 integer+1

This means that high occupancy levels are most easily obtained if records are stored in
sorted order. High occupancy levels reduce storage space requirements for tables and
result in shorter access paths.

In order to obtain high occupancy levels by dynamic reorganization, the following must be
taken into consideration:

High values for integer

– are more acceptable for pointer arrays, sort and SEARCH key tables than for lists;
– are more acceptable for records that remain unchanged than for frequently changing

records.

Dynamic reorganization cannot be used for dynamic sets; for multi-level tables it can only
be applied on the lowest table level. Duplicates tables cannot be dynamically reorganized.

The default value for integer is 2.

Examples

DYNAMIC REORGANIZATION SPANS 1 PAGES

Figure 43: Inserting a record without reorganization

Record 854 can be inserted without reorganization.

Page 1 Page 2 Page 3 Page 4

216

470

611

709

715

801

950

1011

854

SSL REORGANIZATION clause

U929-J-Z125-12-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

In order to insert record 650 (see below), UDS/SQL must set up a new page, since page 2
is completely occupied. The new page accepts as many entries from page 2 as is
necessary to ensure even distribution of records over the two pages.

Figure 44: Inserting a record with table extension and subsequent reorganization

Page 1 Page 2 Page 4 Page 5

216

470 950

1011854611

650

709

Page 3

801

715

REORGANIZATION clause SSL

174 U929-J-Z125-12-76

DYNAMIC REORGANIZATION SPANS 3 PAGES

Based on figure 43, the following situation results from inserting record 650.

Figure 45: Inserting a record by shifting free space

Page 1 Page 3 Page 4

216

470 950

1011

Page 2

611

709

715

801

650 894

SSL COMPRESSION clause

U929-J-Z125-12-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.6 Storing the records of a record type in compressed form

COMPRESSION FOR ALL ITEMS

A record type containing an item of variable length may not be compressed.
Under CALL DML, records can be compressed by storing only part of the items belonging
to the record type (see the "Application Programming" manual, STORE 2).
The COMPRESSION clause is used if UDS/SQL is not to fill the omitted items with standard
values, but is to store records in the compressed form in which they exist at the CALL
interface.

For record types defined with LOCATION MODE IS CALC in the schema DDL compression
generates indirect CALC pages.

If this clause is specified, no records of the record type can be updated with SQL.

Calculation formulas SSL

176 U929-J-Z125-12-76

5.7 Formulas for calculating the storage space requirements for
records and tables

The storage space requirement for records varies depending on whether they are stored in
a direct hash area, whether an indirect hash area is set up for them and which type of
connection has been specified for them. Tables 12 and 13 contain formulas to calculate the
storage space requirement. These formulas differ, depending on whether the page length
of the database is 2048 bytes, 4000 bytes or 8096 bytes.

Calculation formulas for a database with a 2048-byte page length

Number of records

in the data page 2028
 xxxxxxxxxxxxxxxx
 record length1+8

in the direct CALC page 2018
 xxxxxxxxxxxxxxxxxxxxxxxxxxx
 record length+key length+15

Number of entries in the indirect CALC page 2018
 xxxxxxxxxxxx
 key length+7

Number of table
entries per page in a:

List 2002
 xxxxxxxxxxxx
 key length+8

pointer array 2

sort key table 3

SEARCH key table
(TYPE IS REPEATED-KEY)

 2002
 xxxxxxxxxxxx
 key length+7

Table 12: Calculation formulas for a database with a 2048-byte page length

SSL Calculation formulas

U929-J-Z125-12-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

Calculation formulas for a database with a 4000 or 8096-byte page length

Number of records

in the data page page length-20
 xxxxxxxxxxxxxxxxxx
 record length1 +12

1

The record length is the length of a record according to the schema DDL plus the length of its pointers (see
page 223, SCD)

in the direct CALC page page length-30
 xxxxxxxxxxxxxxxxxxxxxxxxxxx
 record length+key length+22

Number of entries in the indirect CALC page page length-30
 xxxxxxxxxxxxxx
 key length+10

Number of table
entries per page in a:

List page length-50
 xxxxxxxxxxxxxxxx
 record length+12

pointer array 2

sort key table 3

SEARCH key table
(TYPE IS REPEATED-KEY)

2

lLAST ⎫
 oFIRST o
 oNEXT o

If ORDER IS U } key length = 0
 oPRIOR o
 oIMMATERIAL o
 nSORTED INDEXED BY DATABASE-KEY~
3

If ORDER IS SORTED INDEXED BY DATABASE-KEY key length = 0

 page length-50
 xxxxxxxxxxxxxx
 key length+10

Table 13: Calculation formulas for a database with a 4000 or 8096-byte page length

SSL example SSL

178 U929-J-Z125-12-76

5.8 Comprehensive example of SSL application

STORAGE STRUCTURE OF SCHEMA MAIL-ORDERS.

*

*

RECORD NAME IS CUSTOMER

DATABASE-KEY-TRANSLATION-TABLE IS 100.

*

RECORD NAME IS CST-ORDERS

DATABASE-KEY-TRANSLATION-TABLE IS 400

PLACEMENT OPTIMIZATION FOR SET CST-ORD-PLACED.

*

RECORD NAME IS ORD-ITEM

DATABASE-KEY-TRANSLATION-TABLE IS 1000.

*

RECORD NAME IS INSTALMENT

DATABASE-KEY-TRANSLATION-TABLE IS 50

INDEX NAME IS SEARCH-TAB-INSTALMENT

TYPE IS DATABASE-KEY-LIST.

*

RECORD NAME IS ART-TYPE

DATABASE-KEY-TRANSLATION-TABLE WITHIN ARTICLE-RLM

INDEX NAME IS SEARCH-TAB-ART-TYPE

PLACING IS WITHIN ARTICLE-RLM.

*

RECORD NAME IS ART-SELECTION

DATABASE-KEY-TRANSLATION-TABLE WITHIN ARTICLE-RLM

INDEX NAME IS SEARCH-TAB-ARTICLE-SELECTION

PLACING IS WITHIN ARTICLE-RLM

DYNAMIC REORGANIZATION SPANS 5 PAGES.

*

RECORD NAME IS ART-DESCR

DATABASE-KEY-TRANSLATION-TABLE IS 300 WITHIN ARTICLE-RLM

POPULATION IS 200 WITHIN CLOTHING,

100 WITHIN HOUSEHOLD-GOODS,

200 WITHIN SPORTS-ARTICLES,

70 WITHIN FOOD,

200 WITHIN LEISURE,

100 WITHIN STATIONERY.

*

RECORD NAME IS ARTICLE

DATABASE-KEY-TRANSLATION-TABLE IS 600 WITHIN ARTICLE-RLM

POPULATION IS 400 WITHIN CLOTHING,

100 WITHIN HOUSEHOLD-GOODS,

400 WITHIN SPORTS-ARTICLES,

150 WITHIN FOOD,

400 WITHIN LEISURE,

SSL SSL example

U929-J-Z125-12-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

250 WITHIN STATIONERY

INDEX NAME IS SEARCH-TAB-ARTICLE-1

PLACING IS WITHIN ARTICLE-RLM

INDEX NAME IS SEARCH-TAB-ARTICLE-2

PLACING IS WITHIN ARTICLE-RLM.

*

RECORD NAME IS MATERIALS

INDEX NAME IS SEARCH-TAB-MATERIAL-1

DYNAMIC REORGANIZATION SPANS 5 PAGES

INDEX NAME IS SEARCH-TAB-MATERIAL-2

DYNAMIC REORGANIZATION SPANS 5 PAGES.

*

RECORD NAME IS SUPPLIER

DATABASE-KEY-TRANSLATION-TABLE IS 500

POPULATION IS 200 WITHIN PURCHASE-ORDER-RLM.

*

RECORD NAME IS PURCHASE-ORDER

DATABASE-KEY-TRANSLATION-TABLE IS 200.

*

RECORD NAME IS P-ORD-ITEM

DATABASE-KEY-TRANSLATION-TABLE IS 500.

*

*

SET NAME IS CST-ORD-PLACED

MODE IS POINTER-ARRAY ATTACHED TO OWNER

POPULATION IS 10

INDEX NAME IS SEARCH-TAB-C-O-PLCD

PLACING IS DETACHED.

*

SET NAME IS OFFER

MODE IS POINTER-ARRAY DETACHED WITHIN ARTICLE-RLM

WITH PHYSICAL LINK

POPULATION IS 100 INCREASE IS 5

DYNAMIC REORGANIZATION SPANS 5 PAGES.

*

SET NAME IS SHORT-LIST

MODE IS POINTER-ARRAY DETACHED WITHIN ARTICLE-RLM

POPULATION IS 100 INCREASE IS 20

DYNAMIC REORGANIZATION SPANS 5 PAGES.

*

SET NAME IS P-ORD-SPEC

MODE IS LIST DETACHED WITH PHYSICAL LINK

POPULATION IS 15

MEMBER IS PHYSICALLY LINKED TO OWNER.

*

SET NAME IS MIN-STOCK-LEVEL

MODE IS CHAIN LINKED TO PRIOR.

*

SSL example SSL

180 U929-J-Z125-12-76

SET NAME IS CONTAINING

POPULATION IS 10

MEMBER IS PHYSICALLY LINKED TO OWNER.

*

SET NAME IS CONTAINED-IN

MODE IS CHAIN LINKED TO PRIOR

MEMBER IS PHYSICALLY LINKED TO OWNER.

*

SET NAME IS ARTICLES-AVAILABLE

POPULATION IS 500

DYNAMIC REORGANIZATION SPANS 5 PAGES

INDEX NAME IS SEARCH-TAB-ART-AVAIL

PLACING IS DETACHED

TYPE IS DATABASE-KEY-LIST

MEMBER IS PHYSICALLY LINKED TO OWNER.

*

SET NAME IS ORDERED-ARTICLES

MEMBER IS PHYSICALLY LINKED TO OWNER.

*

SET NAME IS REORDERED-ARTICLES

MEMBER IS PHYSICALLY LINKED TO OWNER.

*

SET NAME IS P-ORD-CONTENTS

MODE IS LIST DETACHED WITH PHYSICAL LINK

POPULATION IS 20.

SSL Reserved words of the SSL compiler

U929-J-Z125-12-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
5

5.9 Reserved words of the SSL compiler

ALL AREA

ASSIGNED ATTACHED

CHAIN COMPRESSION

DATABASE-KEY-LIST DATABASE-KEY-TRANSLATION-TABLE

DBKEY-TRANSLATION-TABLE DBTT

DCB-NAME DETACHED

DYNAMIC FOR

INCREASE INDEX

INDICATOR IS

ITEMS LINK

LINKED LIST

MEMBER MODE

NAME OF

OPTIMIZATION OWNER

PAGES PHYSICAL

PHYSICALLY PLACEMENT

PLACING POINTER-ARRAY

POPULATION PRIOR

RECORD REORGANIZATION

REPEATED-KEY SCHEMA

SET SPANS

STORAGE STRUCTURE

TO TYPE

WITH WITHIN

Reserved words of the SSL compiler SSL

182 U929-J-Z125-12-76

U929-J-Z125-12-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
1

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
6

6 Definition of the user interface to the database

6.1 Subschema DDL

6.1.1 Introduction

All data the database requires to perform its tasks must be defined in the UDS/SQL
schema. The UDS/SQL schema has no direct interface with the user, however; aspects of
user-oriented data editing must not be considered when designing the UDS/SQL schema.

The user interface is created when the subschema is defined. The subschema describes
that section of the schema which is adapted to the requirements of a particular application.

This is advantageous in so far as the database programmer need know only that part of the
database required for a particular application. The subschema plays its part in data
protection as it prevents the user from becoming acquainted with the entire data resources
contained in the database.

The following functions are available for changing the data structure of the schema to
produce a subschema data structure designed for a particular application:

– exclusion of record types,
– exclusion of sets,
– exclusion of realms,
– exclusion of record elements from a record type,
– reduction of repetition factor of vectors and repeating groups,
– grouping of record elements into new group items,
– definition of conditions.

This chapter describes how these functions are implemented by the definition of a
subschema.

The metalanguage used is described on page 18, and the general syntax rules are
summarized on page 232.

Subschema DDL User interface

184 U929-J-Z125-12-76

6.1.2 Assigning name and privacy to a subschema

SUB-SCHEMA NAME IS subschema-name OF SCHEMA NAME schema-name
[PRIVACY LOCK FOR COMPILE IS literal-1[OR literal-2]]

subschema-name specifies the name of the subschema and is assigned by the user. Within
one DB configuration, subschema-name must be unique in the first 6 characters.

schema-name specifies the schema from which the subschema is derived.

Access to the data in a database by means of a subschema is dependent on a user’s
access rights. Data protection can be enhanced by the assignment of passwords.

With literal-1 and literal-2, the user can assign passwords that prevent the unauthorized
compilation of a DML program by means of this subschema. Compilation is only possible if
at least one password is known.

6.1.3 Unlocking a schema for creating a subschema

PRIVACY KEY FOR COPY IS literal.

If a schema has been provided with password protection to prevent the unauthorized
creation of a subschema, users must prove their access authorization.

For literal, the user must specify one of the passwords defined to protect the schema (see
the section “Assigning name and privacy to a schema” on page 107).

User interface Subschema DDL

U929-J-Z125-12-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
1

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
6

6.1.4 Copying entire record types from the schema into the subschema

Format 1:

COPY ALL RECORDS.

Format 2:

COPY record-name,... .

Format 1 is used if all record types in the schema are to be copied in their entirety into the
subschema.

Format 2 is used if only part of the record types in the schema are to be copied into the
subschema.

record-name denotes the record types to be copied in their entirety into the subschema.
All record types belonging to sets contained in the subschema must be copied either in their
entirety or in part.

6.1.5 Copying part of a record type from the schema into the subschema

01 record-name.
 {level-number record-element-name[PICTURE.....][USAGE.....]
 [OCCURS.....].}...

record-name specifies the name of the record type that is to be copied in part into the
subschema. This must not be a record type containing an alphanumeric item of variable
length. Such record types can only be copied in their entirety into the subschema (see
above).

record-element-name denotes:

– a record element of the record type to be copied into the subschema. It is to be copied
as described on pages 186 and 188 if it is an item, as described on page 189 if it is a
vector or as described on page 190 if it is a repeating group.

– a group item defined as described on page 191.

All items comprising the record type as it is contained in the subschema must be specified
in the same order as they appear in the schema description.

Subschema DDL User interface

186 U929-J-Z125-12-76

Copying a numeric item, an alphanumeric item of fixed length or a national item

level-number item-name PICTURE IS mask-string

 lDISPLAY ⎫
 oCOMPUTATIONAL-3o
 [USAGE IS m }].
 oCOMPUTATIONAL o
 nNATIONAL ~

In level-number, the user specifies if an item is to belong to a group item.
If the item is not to belong to a group item, the level number specified must be the lowest
of any record element in the record type. It may not be lower than 02.

If the item is already part of a repeating group in the schema, it must be defined as part of
the same group item in the subschema. For selection of the appropriate level number, refer
to page 190.

If the item is to be included in a newly defined group item, refer to page 191.

item-name is the name assigned to the item in the schema.

User interface Subschema DDL

U929-J-Z125-12-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
1

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
6

The item definition with PICTURE and USAGE clauses can be derived from the following
table 14, where n, m and l denote integers.

If no entry is specified for USAGE and the mask string does not contain the symbol N,
DISPLAY is assumed by default. If the mask string contains the symbol N, NATIONAL is
assumed if the USAGE clause is missing.

Item type Item definition in schema Item definition in subschema

numeric,
unpacked PICTURE IS

mask-string

PICTURE IS mask-string
[USAGE IS DISPLAY]

mask-string identical with mask-string in
schema

alphanumeric,
fixed length

TYPE IS CHARACTER m PICTURE IS X(m) [USAGE IS DISPLAY]

national PICTURE IS N(m) PICTURE IS N(m)
[USAGE IS NATIONAL]

numeric,
packed

TYPE IS
FIXED REAL DECIMAL n,m

for n > m, m > 0

PICTURE IS S9(l)V9(m)
USAGE IS COMPUTATIONAL-3
l:= n - m

for n > 0, m < 0 PICTURE IS S9(n)P(-m)
USAGE IS COMPUTATIONAL-3

for n < m
PICTURE IS SP(l)9(n)
USAGE IS COMPUTATIONAL-3
l:= m - n

for n = m PICTURE IS SV9(n)
USAGE IS COMPUTATIONAL-3

for m = 0 PICTURE IS S9(n)
USAGE IS COMPUTATIONAL-3

binary

TYPE IS FIXED REAL

BINARY 15

PICTURE IS S9(l)
USAGE IS COMPUTATIONAL
l: = 1,2,3,4

BINARY 31
PICTURE IS S9(l)
USAGE IS COMPUTATIONAL
l: = 5,6,7,8,9

Table 14: Item definition with PICTURE and USAGE clauses

Subschema DDL User interface

188 U929-J-Z125-12-76

Copying a database key item

 lDATABASE-KEY ⎫
level-number item-name USAGE IS m }.
 nDATABASE-KEY-LONG~

In level-number, the user specifies if an item is to belong to a group item.
If the item is not to belong to a group item, the level number specified must be the lowest
of any record element in the record type. It may not be lower than 02.
If the item is already part of a repeating group in the schema, it must be defined as part of
the same group item in the subschema. To select the appropriate level number, proceed as
described on page 190.
If the item is to be included in a newly defined group item, proceed as described on
page 191.

item-name is the name assigned to the database key item in the schema.
An item that is copied into the subschema with USAGE IS DATABASE-KEY-LONG must be
defined in the schema as a DATABASE-KEY-LONG item.

User interface Subschema DDL

U929-J-Z125-12-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
1

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
6

Copying a vector and reducing it if required

level-number vector-name PICTURE IS mask-string

 lDISPLAY ⎫
 o o
 oCOMPUTATIONAL-3 o
 o o
 [USAGE IS mCOMPUTATIONAL }]
 o o
 oNATIONAL o
 o o
 oDATABASE-KEY o
 o o
 nDATABASE-KEY-LONG~

 [OCCURS integer TIMES].

A vector is an item with a repetition factor. The repetition factor indicates how many
duplicates of the item are grouped into the vector.

Copying a vector into a subschema requires the same steps as copying an item (see
section “Copying a numeric item, an alphanumeric item of fixed length or a national item”
on page 186 and section “Copying a database key item” on page 188).

integer specifies the repetition factor, which must be at least 1, but no greater than that
specified in the schema. A vector can thus be reduced to any number of items, even down
to one item, when copying it into the subschema.

The default value for integer is 1.

Subschema DDL User interface

190 U929-J-Z125-12-76

Copying a repeating group and reducing it if required

level-number-1 group-item-name[GROUP-USAGE IS NATIONAL]
 [OCCURS integer TIMES].

{level-number-2 record-element-name PICTURE.....
 USAGE.....
 OCCURS.....}....

A repeating group is a group item with repetition factor. The repetition factor indicates the
number of duplicates of this group item to be grouped into the repeating group.

A repeating group must be copied into a subschema if one of its items is to be copied.

When copied into a subschema, the repeating group can be reduced as follows:

– by specifying a lower repetition factor. It is possible to reduce a group item down to a
single occurrence.

– by excluding record elements that are part of the repeating group from the subschema.

group-item-name specifies the name assigned to the repeating group by the user in the
schema.

integer specifies the repetition factor. It must be at least 1 and may not exceed that specified
in the schema.
The default value for integer is 1.

record-element-name denotes a record element which is defined as part of the repeating
group in the schema and which is to be copied into the subschema. It is copied as described
on page 186 and page 188 if it is an item, as described on page 189 if it is a vector or as
described in this section if it is a repeating group.

level-number-2 defines the record element as part of a repeating group in the subschema.
level-number-2 must be greater than level-number-1.

The following applies for all record elements to be copied from a repeating group in the
schema into a subschema: Record elements must have the same level number if they have
the next higher group item in common.

You use the GROUP-USAGE clause to declare a national repeating group, i.e. a repeating
group which is treated in its entirety like a national data item. The GROUP-USAGE clause
may only be specified if all lower-ranking record elements are of the type NATIONAL and
level-number-1 is not equal to 01.

User interface Subschema DDL

U929-J-Z125-12-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
1

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
6

Grouping record elements into a group item

 level-number-1 group-item-name[GROUP-USAGE IS NATIONAL]
 [OCCURS integer TIMES].

{level-number-2 record-element-name PICTURE.....
 USAGE.....
 OCCURS.....}....

A group item is a named group of record elements within a record type. A record element
can be an item, a vector or even a group item.

group-item-name specifies the name of a group item.

record-element-name specifies the record element to be declared part of the group item. This
can be:

– a record element to be copied from the schema into the subschema. It is copied as
described on pages 186 and 188 if it is an item, as described on page 189 if it is a vector
or as described on page 190 if it is a repeating group.

– a group item, which is defined as described in this section.

level-number-2 must be greater than level-number-1.

The following applies for all record elements which are to be grouped into a group item:
Record elements must have the same level number if they have the next higher group item
in common.

You use the GROUP-USAGE clause to declare a national data group, i.e. a data group
which is treated in its entirety like a national data item. The GROUP-USAGE clause may
only be specified if all lower-ranking record elements are of the type NATIONAL and level-
number-1 is not equal to 01.

Subschema DDL User interface

192 U929-J-Z125-12-76

Defining a condition

Detailed information is provided in the “COBOL2000 (BS2000) Reference Manual”.

88 condition-name

 lVALUE IS ⎫
 m } {literal-1[THROUGH literal-2]},... .
 nVALUES ARE~

The database programmer can make the execution of program statements dependent on
conditions. A condition can be that certain items have certain item contents.
Such items are then referred to as condition variables.

condition-name specifies the name assigned to the condition by the database programmer
for reference purposes. The name must be assigned immediately following the description
of the item which is to be the condition variable.

literal-1, literal-2, etc. denote value ranges applicable for the condition. The condition is
fulfilled if the item assumes a value within the specified value range. The value range can
be described by several individual values as well as smaller value ranges within the larger
ranges. It must be within the value range defined for the item.

Several condition names and associated value ranges may be specified for one condition
variable.

Example

01 ORDERS
 .
 .
 .
 02 ORDER-STATUS PICTURE IS S9.
 88 FINISHED VALUE IS 1.
 88 OPEN VALUE IS 0.

The condition FINISHED is met if the ORDER-STATUS item contains value 1. If it contains
value 0, the OPEN condition is fulfilled.

User interface Subschema DDL

U929-J-Z125-12-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
1

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
6

6.1.6 Copying sets from the schema into the subschema

Format 1:

COPY ALL SETS.

Format 2:

COPY set-name-1,... .

Format 1 is used if all the sets in the schema are to be copied into the subschema.

Format 2 is used if only some of the sets in the schema are to be copied into the
subschema.

set-name specifies the sets to be copied. All owner and member records of such sets must
be present in the subschema.

If key items referencing the sets to be changed, the corresponding sets must have been
defined in the subschema.

When SQL is used to access a record type that is a member record type in several sets, all
the sets for the record type must be present in the subschema.

Subschema DDL User interface

194 U929-J-Z125-12-76

6.1.7 Copying realms from the schema into the subschema

Format 1:

COPY ALL AREAS.

Format 2:

COPY realm-name,... .

Format 1 is used if all the realms in the schema are to be copied into the subschema.

Format 2 is used if only some of the realms in the schema are to be copied into the
subschema.

realm-name specifies the realms to be copied. All realms that contain data relating to the
record types and sets of the subschema and that the subschema user requires, must be
copied. The table 15 indicates which realms this may be. When SQL is used, the temporary
realm must always be copied.

Type of data Realm(s) from

Records WITHIN clauses (DDL)

DBTTs DBTT clauses

Hash areas for primary keys Record POPULATION clauses (SSL)

Hash areas for record secondary keys
Record INDEX clauses (SSL)Record SEARCH key tables

Pointer arrays
MODE clauses (SSL)Lists

Sort key tables

Set SEARCH key tables Set INDEX clauses (SSL)

Hash areas for set secondary keys

Table 15: Realms to be copied

User interface Subschema DDL (example)

U929-J-Z125-12-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
1

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
6

6.1.8 Comprehensive example of subschema DDL

IDENTIFICATION DIVISION.

SUB-SCHEMA NAME IS ADMIN OF SCHEMA MAIL-ORDERS

PRIVACY KEY FOR COPY IS "SHIP-KEY".

*

*

*

DATA DIVISION.

*

AREA SECTION.

COPY ALL AREAS.

*

RECORD SECTION.

COPY ALL RECORDS.

*

SET SECTION.

COPY ALL SETS.

*

*

*

Relational schema User interface

196 U929-J-Z125-12-76

6.2 Relational schema

The schema DDL can be used to create a schema complying with relational rules or with
CODASYL rules. A schema defined according to relational rules contains no set
relationships, and the primary and foreign keys are defined by the user.

If a schema was defined according to CODASYL rules, the utility routine BPSQLSIA can be
used to provide SQL programmers with a relational view of the CODASYL subschema.

The BPSQLSIA utility routine analyzes all the objects in a subschema and represents them
as objects in a relational database.

The list resulting from the conversion by BPSQLSIA contains all the information that
programmers need to work with SQL.

If a CODASYL subschema is to be processed on a completely relational basis with SQL, it
must satisfy certain requirements. Restrictions and notes on DDL, SSL and subschema
DDL can be found in the relevant chapters.

A description of the BPSQLSIA utility routine, including an overview of the relevant
restrictions and an example, is provided in another UDS/SQL manual (see the "Recovery,
Information and Reorganization" manual, BPSQLSIA).

U929-J-Z125-12-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

7 Structure of pages

When creating a database using DDL and SSL, the user does not usually require
information on the structure of pages, records and tables.
The following two chapters are intended as a reference section for users interested in
special details.

The entire storage space provided for the data in a database is divided into realms. Every
realm consists of a specific number of pages that is specified when creating the database.
This number may be subsequently modified (see the "Creation and Restructuring" manual).

The length of a page may be 2048, 4000 or 8096 bytes and must be uniform within a
database. This page length is defined when creating the database with the BCREATE utility
routine and can be subsequently extended with BPGSIZE (see the "Creation and
Restructuring" manual for details).

Pages with a length of 4000 or 8096 bytes are each embedded in a page container, which
consists of a 64-byte header that precedes the page itself, and a 32-byte trailer at the end.

The following types of pages can be distinguished in the structure of a realm. These pages
differ in their data contents and structure:

Act-key-0 page
contains realm-specific data; is always the first page in a realm

Act-Key-N page
contains realm-specific data; is always the last page in a realm

FPA page
serves free place administration (FPA) on realm level. At least one FPA page is
always present.

DBTT anchor page
manages the DBTT areas of a record type (DBTT: Database Key Translation Table).

DBTT page
page of a DBTT area. Manages the records of a record type.

CALC page
contains a hash area

Data page
contains records which are not stored in a hash area, and tables (except DBTT)

Structure of pages

198 U929-J-Z125-12-76

The following sections describe the page container and the various types of pages in detail.
These descriptions of the individual page types are restricted to the pages themselves, i.e.
the header and trailer for pages with a length of 4000 or 8096 bytes are not shown.
Displacement values for individual page areas are always with reference to the start of the
page. Unless explicitly specified otherwise, the given description applies to pages with
lengths of 2048, 4000 and 8096 bytes. Specific differences, if any, are explained separately.

Structure of pages Page container

U929-J-Z125-12-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

7.1 Page container

Figure 46: Structure of the page container for pages with a length of 4000 or 8096 bytes

Meaning of the bytes

Headers and trailers are used by UDS/SQL for administration purposes. Consistent pages
have a matching version number in their header and trailer.

Byte Meaning

1-64 Header; bytes 17-24 contain a version number.

65-4064
or
65-8160

Page with a length of 4000 or 8096 bytes

4065-4096
or
8161-8192

Trailer;
bytes 4089-4096 (for 4000-byte pages) and bytes 8185-8192 (for 8096-byte
pages) contain a version number.

Table 16: Meanings of the bytes in a page container

Header

Page

Trailer

1

65

4064/8160

4096/8192

64 bytes

4000 bytes
or
8096 bytes

4096 bytes
or
8192 bytes

32 bytes

Act-key-0 page / act-key-N page Structure of pages

200 U929-J-Z125-12-76

7.2 Act-key-0 and act-key-N page

Figure 47: Structure of the act-key-0 and act-key-N page

Page header

Beginning of FPA base

Number of pages

Beginning

Number of lines

Length of lines

Realm name

Configuration user ID

Configuration name

FPA extent table

1

21

25

37

41

77

119

1137

End of Page

39

33

20

4

4

4

2

2

30

10

8

2

1
Own act key

X‘01‘(Identifier

Page length

4

1

5

6

19

for act-key-o page

1137
Number of extents

Block number

2

3

3

1139

1142

Beginning of 1st FPA extent

Block number
Beginning of 2nd FPA extent

D
B
T
T
1

variable

29

47

109

127

1145

Structure of pages Act-key-0 page / act-key-N page

U929-J-Z125-12-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

Meaning of the bytes

Byte Meaning

1-4 The act-key specifies the address of the page. Since the act-key-0 page is
always the first page in a realm, the act-key of this page always contains
page number 0.

19-20 The page length can be 2048, 4000 or 8096 bytes.

21-24 Specifies the act-key of the first FPA base page.
For a description of the layout of an FPA base page, see
section “FPA page” on page 202.

25-28 Specifies the number of pages in the realm.

33-40 These fields are only filled in the DBDIR1 realm.

1 DBDIR is the database directory.

47-76 contains the name of the realm.

109-126 These fields are only filled in the DBDIR1 realm.

from 1137 Contains the FPA extent table.
For a description of the layout of an FPA extent and an FPA extent page, see
section “FPA page” on page 202.

Table 17: Meanings of the bytes of the act-key-0 and act-key-N page

FPA page Structure of pages

202 U929-J-Z125-12-76

7.3 FPA page

FPA pages constitute one level of the three-level UDS/SQL Free Place Administration and
are used to administer free place on the realm level. There is also a free place
administration facility on the page and table levels.

Note that if a database page contains tables, the value specified in the FPA page does not
always indicate storage space actually occupied.

Every FPA page contains a separate act-key, which specifies the address of the page. The
pair associated with a given act-key (i.e. the FPA page and entry within the page) can be
specifically defined with the help of the information about the FPA base and the FPA extent
table in the act-key-0 page.

Depending on which page length was defined for the database, the length of an FPA page
may be 2048 bytes, 4000 bytes or 8096 bytes.

Additional free place administration tables (FPA extents) may be present in a realm in
addition to the base free place administration table (FPA base).

The FPA base consists of the FPA pages created when the realm is created or when the
realm is converted by BPGSIZE. FPA extents may be created when the realm is extended.
It does not matter in this case if the realm is extended online or offline mode using the
BREORG utility routine.

Every FPA extent is 128 KB in size. In 2 KB databases it consists of 64 pages, in 4 KB
databases of 32 pages and in 8 KB databases of 16 pages. FPA extents are managed
through the act-key-0 page. The BPRECORD utility routine can be used to output
information on the FPA base and the FPA extents (see the “Recovery, Information and
Reorganization“ manual).

Structure of pages FPA page

U929-J-Z125-12-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

Structure of an BASE FPA page with a length of 2048 bytes

Figure 48: Structure of a FPA base page with a length of 2048 bytes

Meaning of the bytes

Byte Meaning

1-4 The address of the page is contained in the act-key

5 Starting from this byte there is an entry of 2 bytes for every page of the realm,
indicating the number of free bytes contained in the page.
This number is 0 for:
– the act-key-0 page, the act-key-N page
– FPA pages
– DBTT anchor pages
– DBTT pages
– CALC pages
as these pages are exclusively reserved for a particular purpose and no further
data can be allocated to them by the Free Place Administration. The entry for
empty pages is 2028 bytes, which can actually be used, 20 bytes being reserved
for the page header.

Table 18: Meanings of the bytes of a FPA base page with a length of 2048 bytes

own act-key

page 0=0

page 1

page n

free

number
of free
bytes
in

. . .

1

5

7

9

2048

4

2

2

2

FPA page Structure of pages

204 U929-J-Z125-12-76

Structure of an FPA extent page with a length of 2048 bytes or of an FPA page with a
length of 4000 or 8096 bytes

Figure 49: Structure of an FPA extent page with a length of 2048 bytes or of an FPA page with a length of 4000 or
8096 bytes

Meaning of the bytes

Byte Meaning

1-20 Page control information; type=FPA_PAGE;
contains, among other things, the act-key that indicates the page address.

25 Starting with this byte, there is a 2-byte entry for each page of the realm
indicating the number of free bytes in the respective page.
This is equal to 0 for
– the act-key-0 page, the act-key-N page,
– FPA pages,
– DBTT anchor pages
– DBTT pages,
– CALC pages,
since these pages are exclusively reserved for specific purposes and cannot
therefore be assigned additional data via the Free Place Administration. The
effectively usable storage space for empty pages is indicated as 2048 bytes,
3980 bytes or 8076 bytes, respectively, due to the 20 bytes taken up by the
the page header.

Table 19: Meanings of the bytes of an FPA extent page with a length of 2048 bytes or of an FPA page with a length
of 4000 or 8096 bytes

page control information

page 0=0

page 1

page n

free

number
of free
bytes
in

. . .

20

2

2

2

5th. byte: X‘03‘

1

21

23

25

4000/8096

(identifier for FPA page)

Structure of pages DBTT pages

U929-J-Z125-12-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

7.4 DBTT pages

For each record type, UDS/SQL requires a table - known as the DBTT (Database Key
Translation Table) - in which all the currently stored records are administered via a database
key. Basically, this is an index in the DBTT which points to the physical address of the record
in the database as recorded in the table. The structure of the DBTT anchor pages and the
actual DBTT pages are described below.

7.4.1 DBTT anchor page

Only for the SSIA-RECORD there is no DBTT anchor page. For all other record types, the
DBTT is administered via DBTT anchor pages. The first DBTT- anchor page is recorded in
the SIA and shown in the output of utilty routine BPSIA. In order to manage the largest
possible DBTT for a record type - in a 4-Kbyte database this means more than 2 billion DB
keys - multiple chained DBTT anchor pages may be required. DBTT anchor pages are
located in the realm containing the DBTT. They are only set up in the length that is required
at the time of creation. In the great majority of cases, no more than one DBTT anchor page
is required for each record type. The DBTT itself consists of the DBTT base with a variable
number of DBTT pages and possibly DBTT extents each of which consists of 128
consecutive PAM pages.

DBTT pages Structure of pages

206 U929-J-Z125-12-76

Figure 50: Layout of a DBTT anchor page

Page header

Beginning of DBTT base

1

21

29

33

20

4

2

1
Own act key

X‘04‘ (Identifier

Page length

4

1

5

6

19

for DBTT anchor page)

35
Number of DBTT lines

4of DBTT base

total number of
45

41

4

4

total number of DBTT lines
 of DBTT

DBTT extents

39

49

65

63

2

Number of DBTT extents
in this page

Act key of the next

Block number Beginning

69

81

84

4

4

3

DBTT anchor page

Act-Key of the preceding
DBTT anchor page

 of 1st DBTT extent

Block number Beginning
of 2nd DBTT extent 3

73

End of Page

87

Structure of pages DBTT pages

U929-J-Z125-12-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

7.4.2 DBTT page

This section describes the layout of a DBTT page and the structure of the DBTT entries in
terms of lines and columns. There is precisely one DBTT line for each record of a record
type.

In the case of record types which are not owner record types, the DBTT consists of only
column 0, which contains the act-keys of the records.
Otherwise, one column each is added for every reference to

– a pointer array (MODE IS POINTER-ARRAY),

– a list (MODE IS LIST),

– a sort key table (MODE IS CHAIN, ORDER IS SORTED INDEXED), and

– an indexed set SEARCH key table.

UDS/SQL uses the DBTT line length and the database key value specifying the line in the
DBTT, together with the block number of the associated DBTT component, DBTT base or
DBTT extent to calculate the location of the associated DBTT line.

Depending on which page length was defined for the database, the length of a DBTT page
may be 2048 bytes, 4000 bytes or 8096 bytes.

DBTT pages Structure of pages

208 U929-J-Z125-12-76

Structure of a DBTT page with a length of 2048 bytes

Figure 51: Structure of a DBTT page with a length of 2048 bytes

5

4

4

4

4

4

4

Column 0

For record types which are not owner In owner record types

Column 0

Column 1

Column n

Own act key

DBTT line

DBTT line

Free

Rec. act key

Set m

Set 1

4

1

9

Rec. act key

Table act key

Table act key

Table act key

Table act key

5

2048

Structure of pages DBTT pages

U929-J-Z125-12-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

Structure of a DBTT page with a length of 4000 or 8096 bytes

Figure 52: Structure of a DBTT page with a length of 4000 or 8096 bytes

Own act key

Page length

1

5

19

4

1

Free

X'02' (Identifier
for DBTT)

6

13

2
21

4

4

4

4

4

4

Column 0

For record types which are not owner In owner record types

Column 0

Column 1

Column n

DBTT line

DBTT line

Free

Rec act key

Set m

Set 1

25
Rec act key

Table act key

Table act key

Table act key

Table act key

21

4000/8096

Direct CALC page Structure of pages

210 U929-J-Z125-12-76

7.5 Direct CALC page

Depending on which page length was defined for the database, the length of a direct CALC
page may be 2048 bytes, 4000 bytes or 8096 bytes.

Direct CALC pages with a length of 2048 bytes differ from those consisting of 4000 or 8096
bytes with respect to the lengths of entries for the database key value, record sequence
number (RSQ) and page index:

– In the case of direct CALC pages with a length of 2048 bytes, the entry for the database
key value occupies 4 bytes; the length of the RSQ entry is 3 bytes, and that of the page
index entry is 8 bytes.

– For direct CALC pages with a length of 4000 or 8096 bytes, the entry for the database
key value occupies 8 bytes; the length of the RSQ entry is 6 bytes, and that of the page
index entry is 12 bytes.

Note that the values given in the form “number1/number2“ (e.g. 25/29) in figure 53 must be
interpreted as follows:

– “number1” indicates the applicable value for direct CALC pages with a length of
2048 bytes.

– “number2” indicates the applicable value for direct CALC pages with a length of
4000 or 8096 bytes.

All other length and displacement entries are equally applicable to direct CALC pages with
a length of 2048 bytes and direct CALC pages with a length of 4000 or 8096 bytes.

Structure of pages Direct CALC page

U929-J-Z125-12-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

Figure 53: Structure of a direct CALC page

Page header

Page index entry

Record

1

21
20

8/12

8/12

10

2

1
Own act key

Internal information

beginning

4

8

5

13

15

Number of reserved lines

Number of occupied lines

2

2

3
forward

backward
3

Chaining

length 2
Free space

Number of
page index entries 2

2

Beginning of
CALC table header

19

17
Page index entry

Free space

Record

CALC table line

CALC table line

CALC table header

2

21
Database key value

DBTT column = 0

4/8

1

25/29

26/30

27/31
1

Status = 3

Beginning of record

of record

4

Key value

3/6
Record RSQ

Beginning of
page index entry

Direct CALC page Structure of pages

212 U929-J-Z125-12-76

Meanings of bytes 1-28 or 1-32

The “chaining” items are used to link the overflowing pages to their overflow pages.

Based on the record length and the length of the key item, UDS/SQL calculates the
maximum number of records that can be stored in a page. Then UDS/SQL sets up a CALC
table at the end of the page with the calculated number of table lines, where each line refers
to exactly one record. The table entries are sorted in ascending order by key values, and
by RSQs for duplicate key values.

There is also a page index entry for each record.
If UDS/SQL knows the key value of a record, it can find the record in the page via the CALC
table and the associated page index entry. If UDS/SQL knows the database key value, it
locates the record via the page index entry alone.

Byte Meaning

1-4 specifies the address of the page

13-16 contains the length and the beginning of the free space. Since the free place is
filled with records starting from the CALC table header, the first record stored in
the page borders on the CALC table header. The free place begins after the last
page index entry and ends before the first record. This information on free place
represents the second level of the three-level Free Place Administration facility.

17-18 contains the number of page index entries and thus the number of records
contained in the page.

19-20 indicates the beginning of the CALC table header.

21-24
or
21-28

contains the database key value of the first record stored in the page.

25 or 29 Since the page index entries in CALC pages always refer to records, the
corresponding DBTT column is column 0.

26 or 30 Status=3 identifies the record associated with the page index entry as a CALC
record.

27-28
or
31-32

points to the first stored CALC record.

Table 20: Meanings of bytes 1-28 or 1-32 of the CALC page

Structure of pages Indirect CALC page

U929-J-Z125-12-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

7.6 Indirect CALC page

Indirect CALC pages are created for a record type stored with LOCATION MODE IS CALC
if the record type was simultaneously defined with the SSL as one of the following:

– as a member with MODE IS LIST or
– with PLACEMENT OPTIMIZATION or
– with COMPRESSION FOR ALL ITEMS.

Indirect CALC pages are always set up when SEARCH KEY USING CALC has been
specified.

Depending on which page length was defined for the database, the length of an indirect
CALC page may be 2048 bytes, 4000 bytes or 8096 bytes.

Indirect CALC pages with a length of 2048 bytes differ from those consisting of 4000 or
8096 bytes with respect to the lengths of entries for the record sequence number (RSQ):

– In the case of indirect CALC pages with a length of 2048 bytes, the RSQ entry is 3 bytes
long.

– For indirect CALC pages with a length of 4000 or 8096 bytes, the RSQ entry is 6 bytes
long.

The structure of indirect CALC pages differs from that of direct CALC pages in that they
contain no records or page index entries. The CALC table line therefore contains the
probable position pointer (PPP) to the associated record. In every other respect, the
description of the direct CALC page also applies to the indirect CALC page.

Indirect CALC page Structure of pages

214 U929-J-Z125-12-76

Figure 54: Structure of an indirect CALC page

Page header
1

21
20

10

2

1
Own act key

Free

beginning

4

8

5

13

15

Number of reserved lines

Number of occupied lines

2

2

3
forward

backward
3

Chaining

length 2
Free space

Number of
page index entries = 0

2

2

Beginning of
CALC table header

19

17
Free space

CALC table line

CALC table line

CALC table header

4

Key value

3/6
Record RSQ

PPP of the record

Structure of pages Data page

U929-J-Z125-12-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

7.7 Data page

Depending on which page length was defined for the database, the length of a data page
may be 2048 bytes, 4000 bytes or 8096 bytes.

Data pages with a length of 2048 bytes differ from those consisting of 4000 or 8096 bytes
with respect to the lengths of entries for the database key value and the page index:

– In the case of data pages with a length of 2048 bytes, the entry for the database key
value is 4 bytes in length and that of the page index entry is 8 bytes.

– For data pages with a length of 4000 or 8096 bytes, the entry for the database key value
is 8 bytes in length and that of the page index entry is 12 bytes.

The following data may be placed in a data page:

– pointer arrays
– lists
– sort key tables
– SEARCH key tables
– records that are not stored in a hash area

The values given in the form “number1/number2“ (e.g. 25/29) in figure 53 must be
interpreted as follows:

– “number1” indicates the applicable value for data pages with a length of 2048 bytes.
– “number2” indicates the applicable value for data pages with a length of 4000 or 8096

bytes.

All other length and displacement entries are equally applicable to data pages with a length
of 2048 bytes and those with a length of 4000 or 8096 bytes.

Data page Structure of pages

216 U929-J-Z125-12-76

Figure 55: Structure of a data page

1
Database key value

DBTT column

Status

Beginning of
record or table

Page index entry

Page index entry

Free space

Record or table

Record or table

Page header Own act key

Free

Free space
length

beginning

Number of page
index entries

Page length

21

25/29

26/30

27/31

4/8

1

20

8/12

1

5

13

15

17

19

4

8

21

2

8/12

2

2

2

21

Structure of pages Data page

U929-J-Z125-12-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

22
.3

2
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
k0

7

Meanings of bytes 1-28 or 1-32

There is a page index entry for each record and each table in the page, indicating the
position of the record or table. In the case of lists, there is a page index entry for the list itself
and for every record contained in it. The logical sequence of records in a list is not based
on their physical sequence, but on the sequence of the page index entries.

A data page must not contain two anchor records at the same time.

Byte Meaning

1-4 contains the address of the page.

13-16 specifies the length and the beginning of the free space. Since the free space
is filled with records and tables starting at the end of the page, the beginning of
the free space borders on the last stored record or table.
This information on free place represents the second level of the UDS/SQL
three-level Free Place Administration facility.

17-18 contains the number of page index entries.

19-20 The page length may be 2048 bytes, 4000 bytes or 8096 bytes.

Record Table

21-24
or
21-28

Database key value of the record Database key value of the associated
owner record

25/29 DBTT column=0 DBTT column=1-n

26/30 Status=0: Record is not part of a list
(anchor record)
Status=2: Record is part of a list

Status=1

27-28
or
31-32

indicates the beginning of the record or table.

Table 21: Meanings of bytes 1-28 or 1-32 of a data page

Data page Structure of pages

218 U929-J-Z125-12-76

U929-J-Z125-12-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
8

8 Structure of records and tables

In general, the user requires no information on the structure of records and tables when
defining a database by means of DDL and SSL.
This chapter is a reference chapter for users interested in particular details.

8.1 Structure of records

User-defined record

As a rule, the physical structure of a record defined in the schema DDL comprises more
than the items specified for this record type. In most cases, set connection data (SCD) is
automatically added when a record is stored. The SCD can consist of the following
components:

– the pointers UDS/SQL requires for storing a set occurrence as a chain,
– the pointer from the owner to its associated pointer array or list,
– the pointer from the member to the associated owner, and
– an indication if the record is part of a SYSTEM set.

Record structure Structure of records and tables

220 U929-J-Z125-12-76

If a variable item or compression has not been defined for a record type, its records are
stored in the format below:

Figure 56: Standard format of a user-defined record

Otherwise the following applies:

– Uncompressed storage in the case of STORE Format-1 and Subschema = Schema.
This means: There is a compression header but no compression entries, the number of
entries in the header is 0, the record is stored in full as with the uncompressed form.

– Compressed storage in all other cases.
This means: In contrast to the uncompressed form, fields omitted in Format-2 and/or
fields which do not exist in the subschema are not filled with binary 0, but are omitted
totally; the remaining substrings are managed in the compression entries. The
compression entries are sorted according to descending displacements; the length of
the substrings is derived from the difference in the content (“before comp.”) of two
consecutive compression entries. In the first compression entry the reference value for
the length is “Rec. length” in the compression header.

– Variable field
Compressed storage with precisely one compression entry. The variable field itself is
not managed in the stored record but via the Item String List of the SSIA log; the record
length in the compression header is the current length including SCD, compression
header and the one entry, the latter managing the entire record, including the variable
part.

SCD

Set

Record (as per schema)

Set
1 n

Structure of records and tables Record structure

U929-J-Z125-12-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
8

Figure 57: Compressed format of a user-defined record

Anchor record

In addition to the records defined in the schema DDL, UDS/SQL automatically generates
one anchor record for each SYSTEM set. In SYSTEM sets, the anchor record assumes the
function that the DBTT of an owner record type performs in a normal set. The anchor record
contains its own act-key as well as the act-keys of the tables belonging to the SYSTEM set.
It is extended by SCD if the records of the SYSTEM set are stored as a chain.

Set connection data

When a record is stored, UDS/SQL automatically adds set connection data (SCD) if the
record has to be connected with other records or tables. table 22 shows what the SCD
consists of in each case.

The length of the SCD may vary, depending on which page length was defined for the
database. The effect of the database page length on that of the SCD is indicated in table 22
in the column “SCD length in bytes” by means of 2 values (e.g. 8/12):

– The first value shows the SCD length for databases with a page length of 2048 bytes.
– The second value shows the SCD length for databases with a page length of 4000 or

8096 bytes.

Compression header
(is added to system

information according
to SIA log)

SCD
Compression

entry
Compression

entry
Compressed

record

No. of
compression

entries

Record length
including

system part
and comp.

entries

Distance of a substring
in (fictitious)

uncompressed
record including

SCD and
comp.header

in this record
including SCD,
comp. header

and comp.
entries

Record structure Structure of records and tables

222 U929-J-Z125-12-76

1 Database key value + PPP of the first member record ... 8/12 bytes

2 Database key value + PPP of the last member record ... 8/12 bytes

3 Database key value + PPP of the following record ... 8/12 bytes

4 Database key value + PPP of the preceding record ... 8/12 bytes

5 RSQ of the owner ... 3/6 bytes

6 PPP of the owner ... 4 bytes

7 PPP of the beginning of the table ... 4 bytes

8 Indicator for SYSTEM set ... 1 byte
This byte contains X'00' if the member record belongs to the set
and X'FF' if it is not part of the set.
In the case of “MODE IS CHAIN”, the byte is redefined as shown in
point 3 (see above).

MODE IS RECORD
TYPE

OWNER
IS
SYSTEM

ORDER
IS
LAST

LINKED
TO
PRIOR

MEMBER
LINKED

PHYSI-
CAL
LINK

SCD
length
in
bytes

SCD
content

CHAIN

Owner Y/N
 N
 Y

Y/N

N
N
Y

- -
8/12

16/24
16/24

1
1,2
1,2

Member

Y N
Y

- - 8/12
16/24

3
3,4

N
N
N
Y
Y

N
Y
N
Y

-
11/18
15/22
19/30
23/34

3,5
3,5,6
3,4,5
3,4,5,6

POINTER-
ARRAY

or

LIST

Owner
Y - - - 0 -

N - - N
Y

0
4 7

Member
Y - - - 1 8

N - N
Y

- 3/6
7/10

5
5,6

Table 22: Overview of the possible SCD combinations per set

Structure of records and tables Table structure

U929-J-Z125-12-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
8

8.2 Structure of tables

Figure 58: Structure of tables

1

Key

RSQ

PPP or act key

Page index entry

Free space

Occupied space

Page header

3/6

4

20

8/12

8/12

Table header

Table line

Occupied space RSQ

PPP or act key

3/6

4

Record

Table line

21

29/33

3)

1)

3)

Page index entry

Table header BNR format

Chaining

next
page

next higher
level

last
page

Chaining

Type

2

3

1
2)

4)

2

1

3

3

3

No. of reserved
 lines

No. of occupied
 lines

Level

preceding
page

No. of reserved
 lines

Chaining

next
page

Chaining

Type

Level

2

4

1
2)

1

2

4

4

Table header ACTKEY format

preceding
page
or
last
page

next higher
level

No. of occupied
 lines

Table structure Structure of records and tables

224 U929-J-Z125-12-76

Explanation of figure 58:

The length of the entries for the record sequence number (RSQ) and page index depend
on the page length that was defined for the database:

– In tables of a database with a 2048-byte page length, the RSQ entry is 3 bytes long,
and the page index entry is 8 bytes.

– In tables of a database with a 4000-byte or 8096-byte page length, the RSQ entry is
6 bytes long, and the page index entry is 12 bytes.

Pointer arrays, lists, sort key tables and standard SEARCH key tables are structured
according to the principle shown in figure 58. (The representation of the table line does not
apply to duplicates tables.) They are always stored in data pages. If a table does not fill a
page completely, the remaining space can be used for records or further tables. The table
headers contain the space reservations specified in the POPULATION clauses. This
represents the third level of the three-level UDS/SQL Free Place Administration facility.
Furthermore, the table header contains pointers to other table parts if the table exceeds one

1) In lists the table header is not located in front of the individual table lines; generally
the table header is located behind the table lines, i.e. the records of the list; the
affiliation of the records to the list is derived from the page index entries which are
consecutive and begin with the page index entry for the table header.
Two different formats exist for the table header:

– BNR format; the references in the table header are unambiguous because of the
block number (BNR).

– ACTKEY format for tables which can be distributed over more than one realm;
in addition to the block number, the references also contain the area reference
of the linked table page.

2) bit 27=1: list

bit 26=1: multi-level table

bit 25=1: table ATTACHED TO OWNER

bit 24=1: duplicates table

bit 23=1: Table in ACTKEY format

bit 22=1: Table in ACTKEY format with chaining to the last page.
This bit shows that the ACTKEY in the overlying item points to the logically
last level 0 page. It may only be set in conjunction with bit 23.

3) does not apply to duplicates tables (see figure 60 and figure 61).

4) applies to the highest table page of a multi-level table or to the first table page of a
single-level table only.

Structure of records and tables Table structure

U929-J-Z125-12-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
8

page and a pointer to the next higher table level if the page belongs to a lower level. Two
further indicators show the table level of the page itself and the type of the table. The
ACTKEY format of the table header is used in distributable lists.

The following overview shows which of the three available table lines corresponds to which
table type:

DDL/SSL clauses Table type Content of a table line:
Name of the
table

lowest level higher level

MODE IS
POINTER-ARRAY
ORDER IS LAST/
FIRST/NEXT/PRIOR

single-level RSQ, PPP - single-level
pointer array

MODE IS
POINTER-ARRAY
ORDER IS
SORTED INDEXED
BY DATABASE-KEY

multi-level RSQ, PPP RSQ, act-key

multi-level
pointer array

MODE IS
POINTER-ARRAY
ORDER IS
SORTED INDEXED
BY DEFINED KEYS
ASCENDING/
DESCENDING KEY IS...

multi-level
key value,
RSQ, PPP

key value,
RSQ, act-key

MODE IS LIST
ORDER IS LAST/
FIRST/NEXT/PRIOR

single-level member record -
single-level list

MODE IS LIST
ORDER IS
SORTED INDEXED
BY DATABASE-KEY

multi-level member record RSQ, act-key

multi-level listMODE IS LIST
ORDER IS
SORTED INDEXED
BY DEFINED KEYS
ASCENDING/
DESCENDING KEY IS...

multi-level member record key value,
RSQ, act-key

Table 23: Overview of the table types (part 1 of 2)

Table structure Structure of records and tables

226 U929-J-Z125-12-76

The table lines of a higher table level contain act-keys pointing to the associated pages of
the next lower table level.
The table lines of the lowest table level contain probable position pointers (PPP) which
indicate the pages where the associated records are stored. If a probable position pointer
is not current, UDS/SQL finds the record by means of the RSQ via the DBTT.

The hierarchic structure of a multi-level table is shown in Figure 59 below. The illustrated
example applies to pointer arrays, sort key tables and SEARCH key tables.
In the case of a list, level 0 contains the records themselves.

MODE IS CHAIN
ORDER IS
SORTED INDEXED
BY DATABASE-KEY

multi-level RSQ, PPP RSQ, act-key

sort key tableMODE IS CHAIN
ORDER IS
SORTED INDEXED
BY DEFINED KEYS
ASCENDING/
DESCENDING KEY IS...

multi-level key value,
RSQ, PPP

key value,
RSQ, act-key

SEARCH KEY IS...
USING INDEX

TYPE IS
REPEATED-KEY
(on set or record type
level)

multi-level key value,
RSQ, PPP

key value,
RSQ, act-key

SEARCH
key
table

SEARCH KEY IS...
USING INDEX

TYPE IS DATABASE-
KEY-LIST

multi-level see figure 60 and
figure 61

key value,
ACT_KEY

duplicates table

DDL/SSL clauses Table type Content of a table line:
Name of the
table

lowest level higher level

Table 23: Overview of the table types (part 2 of 2)

Structure of records and tables Table structure

U929-J-Z125-12-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
8

Figure 59: Hierarchic structure of a multi-level table

Page header
Page index
Free space

Table header

30125

60073
81010

Page header
Page index
Table header
350
523

30125

Page header
Page index
Table header

30289
30450

60073

Page header
Page index

Table header
60280

81010

Page header
Page index

Table header

350

Page header
Page index

Table header

523

Page header
Page index

Table header

81010

134
198

355
365

80635
80650

Records Records Records

Level 2

Level 1

Level 0

Data
record
level

DBTT of owner
record type

Table structure Structure of records and tables

228 U929-J-Z125-12-76

Duplicates table

Figure 60: Structure of a duplicates table

1

Next overflow
page

Preceding
overflow page

No. of
free bytes

Page index entry

Page index entry

Free space

Occupied space

Page header

3

20

8/12

8/12

Table header

Table index entry

Free space
Length of table

line

RSQ

3/6

No. of table
index entries

Chaining

next
page

prev.
page

next
level
last
page

Chaining

Type

Level

Table index entry

21

29/33

2

3

1
2)

1)

2

1

3

3

Key value

Beginning of
table line

3

Duplicates header

Table line

Table line

Occupied space

2

2

3

RSQ

2

3/6

18

8

1) Applies only in the highest table
page of a multi-level table or in
the first table page of a
single-level table

2)
bit 2 = 1: Multi-level table

2 = 1: Table

2 = 1: Duplicates table

6

5

4

3)
Calculated from the start
of the table header

3)

3)

ATTACHED TO OWNER

Beginning of
duplicates header

Structure of records and tables Table structure

U929-J-Z125-12-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
8

The lengths of the entries for the database key value, the record sequence number (RSQ),
and for the page index entries depend on the page length that was defined for the database:

– In tables of a database with a 2048-byte page length, the entry for the database key
value is 4 bytes long; the RSQ entry is 3 bytes, and the page index entry is 8 bytes.

– In tables of a database with a 4000-byte or 8096-byte page length, the entry for the
database key value is 8 bytes long; the RSQ entry is 6bytes, and the page index entry
is 12 bytes.

Table structure Structure of records and tables

230 U929-J-Z125-12-76

Overflow page of a duplicates table

Figure 61: Overflow page for a duplicates table

Depending on which page length was defined for a database, the length of an overflow
page may be 2048 bytes, 4000 bytes or 8096 bytes.
The following applies with respect to the lengths of entries for the record sequence number
(RSQ) and page index:

– In a 2048-byte overflow page, the RSQ entry is 3 bytes long, and the page index entry
is 8 bytes.

– In an overflow page of 4000 or 8096 bytes, the RSQ entry comprises 6 bytes, and the
page index entry is 12 bytes.

A duplicates table is a special type of SEARCH key table in which key values that occur
several times are represented only once. When a part of a duplicates table that contains
only one key value is to be extended to cover more than one page, UDS/SQL creates an
overflow page, in which the table line related to the key is continued. The connection to the
overflow page is not established via the table header but via the duplicates header.

3/6

2 2

3/6
8

3

3

2

Internal information

1
21

22

25/29

26/30

27/31

1

21

29/33

37/41

20

25

4

8/12

1

Page number for
table header

Free (only for 4000/
8096-byte pages)

DBTT Column

Status = 1

Beginning of
duplicated header

Next overflow page

Preceding overflow
page

No. of free bytes

Page header

Page index entry

Table line

Free

Length of
table line

RSQ

RSQ

Duplicated header

1

3

U929-J-Z125-12-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

9 Reference section

The previous chapters cover the functions and applications of the schema DDL, schema
SSL and subschema DDL clauses.
This chapter deals with the syntax rules you must observe in order to use the respective
language correctly.
The notational conventions are described on page 18.

General syntax rules Reference section

232 U929-J-Z125-12-76

General syntax rules

variable
must be replaced by a current value when applying the format. Four categories of
variables can be distinguished:

Variable Current value

schema-name
subschema-name
realm-name
set-name
record-name
record-element-name
group-item-name
vector-name
item-name
identifier
hashroutine

must begin with a letter and may consist of up to 30
characters. The characters used may include letters, digits
and hyphens. One hyphen must not follow another it must
not be the last character. The current value must not be
identical to optional word or keywords.

record-element-name, group-item-name, vector-name and
item-name must be unique within the record type only.
By specifying

record-name

the user can also refer to names which have already been
assigned.

All other names must be unique within the entire database.

The first 6 characters of subschema-name must be unique
within a database configuration.

literal
must be enclosed in quotation marks (if QUOTE IS
SINGLE, in apostrophes; see the "Creation and
Restructuring" manual, Schema DDL compilation).
They are not part of the value of the literal.

integer
consists of up to 15 digits. The minus sign is also permitted
in the TYPE clause (see page 234, TYPE clause).

mask-string see page “Defining an item” on page 51

IN
OF

Reference section Reserved words

U929-J-Z125-12-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

Comment
is indicated by * in column 7. The text in columns 8 through 72 is then recognized
as a comment by UDS/SQL.

Semicolon
may optionally be used as separator between clauses.

Page feed
is indicated by / in column 7.

Continuation line
Entries exceeding column 72 can be continued in a new lines line that must start
with a hyphen in column 7.

Uppercase
The COBOL compiler accepts uppercase letters only.

Column conventions

Each of the three languages is made up of clauses.
Clauses are generally written starting at column 12.
Entries starting at column 8 are:

– the first clause of an entry,
– the MEMBER clause;

and in the subschema DDL

– the first line of a division,
– the first line of a section,
– level number 01.

The syntax description of each language starts with an overview of the entries and their
clauses.

Reserved words

For the list of reserved words, see the reserved word list of the COBOL version that you are
using in the manual "COBOL2000 (BS2000) Reference Manual".

Schema DDL Reference section

234 U929-J-Z125-12-76

9.1 Schema DDL syntax

 lSCHEMA NAME clause
 Schema entry m
 n[PRIVACY LOCK clause].

 lAREA NAME clause
 Realm entry m
 n[TEMPORARY clause].

 lRECORD NAME clause
 o
 o[LOCATION MODE clause]
 o
 oWITHIN clause
 o
 o[SEARCH KEY clause].
 Record entry m
 orecord element name clause
 o
 o[PICTURE clause]
 o
 o[TYPE clause]
 o
 n[OCCURS clause].

 lSET NAME clause
 o
 o[DYNAMIC clause]
 o
 oORDER clause
 o
 oOWNER clause.
 Set entry m
 o[MEMBER clause
 o
 o[ASCENDING/DESCENDING-KEY clause]
 o
 o[SEARCH KEY clause]
 o
 n[SET OCCURRENCE SELECTION clause]].

Figure 62: Structure of schema DDL

The description of the logical data structure should always be started with the schema entry
and at least one realm entry.

The following applies for the subsequent realm, record and set entries:

– The two associated record types must be defined before a set can be defined.

– All the realms mentioned in the WITHIN clause for the record must be defined before a
record type can be defined.

Reference section Schema DDL

U929-J-Z125-12-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

9.1.1 Schema entry

SCHEMA NAME IS schema-name
 [PRIVACY LOCK FOR COPY IS literal-1[OR literal-2]].

literal-1,-2
may consist of up to 10 characters.

The schema entry is used to assign a name to the schema. Passwords can be specified to
prevent unauthorized creation of subschemas from the schema.

9.1.2 Realm entry

AREA NAME IS realm-name
 [AREA IS TEMPORARY].

The realm entry is used to assign a name to a realm and, if necessary, to define it as a
temporary realm.

 A maximum of 123 realms may be defined in a database with a page length of 2048
bytes, and
a maximum of 245 realms may be defined in databases with a page length of 4000
or 8096 bytes.

Only one temporary realm may be defined.

i

Schema DDL Reference section

236 U929-J-Z125-12-76

9.1.3 Record entry

RECORD NAME IS record-name
 l l lIN⎫ ⎫⎫
 olDIRECT ⎫ oitem-name-1 m } record-nameoo
 om } m nOF~ }o
 onDIRECT-LONG~ o oo
 [LOCATION MODE IS m nidentifier-1 ~}]
 o o
 oCALC[hash-routine] USING item-name-2,... o
 o o
 n DUPLICATES ARE[NOT] ALLOWED ~

 WITHIN realm-name-1[,realm-name-2,... AREA-ID IS identifier-2]

 lCALC[hash-routine]⎫
 [SEARCH KEY IS item-name-3,...USING m }[NAME IS name]
 nINDEX ~

 DUPLICATES ARE[NOT] ALLOWED]....

 {[level-number]record-element-name

 l lmask-string ⎫ ⎫
 oPICTURE IS m } o
 o nLX(integer-1) DEPENDING ON item-name-4~ o
 o o
 o l l l15⎫ ⎫ ⎫o
 o o oBINARY[m }] o oo
 o oFIXED REAL m n31~ } oo
 [m o o o o}]
 o o nDECIMAL[integer-2[,integer-3]] ~ oo
 oTYPE ISm }o
 o oCHARACTER[integer-4[DEPENDING ON item-name-5]]oo
 o o oo
 o oDATABASE-KEY oo
 o o oo
 n nDATABASE-KEY-LONG ~~

 [OCCURS integer-5 TIMES].}...

The record entry is used to assign a name to a record type. At the same time, it can be used
to define:

– the allocation of records to realms,
– the sequence of records for sequential processing,
– additional access paths for direct access via primary and secondary keys,
– all record elements to be included in the record type.

Reference section Schema DDL

U929-J-Z125-12-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

 A maximum of 253 record types may be defined in a database with a page length
of 2048 bytes, and
a maximum of 32 766 record types may be defined in databases with a page length
of 4000 or 8096 bytes.

The individual clauses of the record entry are explained below.

RECORD NAME IS record-name

A name is assigned to a record type.

 l l lIN⎫ ⎫⎫
 olDIRECT ⎫ oitem-name-1 m } record-nameoo
 om } m nOF~ }o
 onDIRECT-LONG~ o oo
[LOCATION MODE IS m nidentifier ~}]
 o o
 oCALC[has h-routine] USING item-name-2, ... o
 o o
 n DUPLICATES ARE[NOT] ALLOWED ~

item-name-1
must designate a database key item.
If you specify LOCATION MODE IS DIRECT, you must define item-name-1 as a
DATABASE-KEY item.
If you specify LOCATION MODE IS DIRECT-LONG, you must define
item-name-1 as a DATABASE-KEY-LONG item.

item-name-2
must specify an item of fixed length belonging to the record type.

You use LOCATION MODE IS DIRECT/DIRECT-LONG to enable you to assign the
database key of a record which is to be stored and to specify the sequence for sequential
processing. Information on assigning database keys when storing a record is provided in
the COBOL DML reference section of the “Application Programming” manual under
“STORE, Assigning database key values”.

You use LOCATION MODE IS CALC to specify a primary key to permit direct access to a
particular record or to a set of records with the same key values.

Generally a direct CALC is created. In special cases (e.g. for a member record type of a
list) an indirect CALC is created.

i

Schema DDL Reference section

238 U929-J-Z125-12-76

WITHIN realm-name-1[,realm-name-2,... AREA-ID IS identifier]

realm-name-1,-2,...
must not be temporary realms.

The records of the record type are allocated to certain realms.

In the case of distributable lists the first realm specified implicitly defines the placement of
the table part of the list (table realm) and possibly of an indirect CALC provided that this has
not been determined explicitly with the DETACHED WITHIN clause in the SSL.

 lCALC[hash-routine]⎫
[SEARCH KEY IS item-name,... USING m }[NAME IS name]
 nINDEX ~

 DUPLICATES ARE[NOT] ALLOWED]....

item-name
specifies an item of fixed length belonging to the record type.

name specifies tables for SEARCH keys; referred to in the SSL statements.

Additional direct access paths via secondary key are specified and a name is assigned to
the SEARCH KEY table or the hash area, which can be referenced in the SSL.

[level-number]record-element-name

level-number
must be an integer between 1 and 99.
Default value: 1

A name is assigned to a record element and optionally a level number can be defined.

 The total length of all record elements of one record type must not exceed the
maximum record length.
The maximum record length is equal to:

– 2020 bytes in a database with a page length of 2048 bytes (2-Kbyte format)
– 3968 bytes in a database with a page length of 4000 bytes (4-Kbyte format)
– 8064 bytes in a database with a page length of 8096 bytes (8-Kbyte format)

i

Reference section Schema DDL

U929-J-Z125-12-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

Depending on the length of the SCD, the maximum record length may also be
somewhat lower.

 lmask-string ⎫
PICTURE IS m }
 nLX(integer-1) DEPENDING ON item-name~

mask-string
may consist of the following symbols:

The mask string may define an item length of up to 255 bytes. This generally
corresponds to the number of characters. However, you may only repeat the symbol
N up to 127 times because in this case a character occupies 2 bytes. 9 may be
repeated up to 18 times.

integer-1
must be greater than 0. The maximum value depends on the record structure.

item-name
must refer to an item that has just been defined with TYPE IS BINARY 15.

The PICTURE IS clause is used to define unpacked numeric items or alphanumeric items
of fixed or variable length or national items.

Symbol Syntax rule

S can be specified once only at the beginning of the mask string.

X at least one of these symbols must be entered. Each can be
specified more than once or followed by a repetition symbol.
9 may not be placed to the left of A or X. N may not be combined
with other characters.

A

9

N

V cannot be specified in combination with X, N or A.

P cannot be specified in combination with X, N or A.
P can be specified more than once or followed by a repetition
symbol.
P may be specified either to the left or right of 9, but not both at the
same time.

(integer) may be added after X, N, A, 9 or P.

Table 24: Mask string

Schema DDL Reference section

240 U929-J-Z125-12-76

 l l l15⎫ ⎫⎫
 o oBINARY[m }] oo
 oFIXED REAL m n31~ }o
 o o oo
 o nDECIMAL[integer-1[,integer-2]] ~o
TYPE IS m }
 oCHARACTER[integer-3[DEPENDING ON item-name]]o
 o o
 oDATABASE-KEY o

o o
nDATABASE-KEY-LONG ~

BINARY
If no number is specified, the default value used by UDS/SQL is 15.

integer-1
must be an integer between 1 and 18.
Default value: 18

integer-2
must not be greater than 18 and not less than {integer-1} - 18.
Default value: 0.

integer-3
Unless DEPENDING ON is used, integer-3 must be between 1 and 255. Otherwise,
the maximum value depends on the record structure.

item-name
specifies the item which has just been defined with TYPE IS BINARY 15.

This clause is used to define

– packed numeric items,
– binary items,
– alphanumeric items of fixed or variable length, or
– database key items

[OCCURS integer TIMES]

integer
must be greater than 0. The maximum value depends on the record structure.

A repetition factor is defined for a vector or a repeating group.

Reference section Schema DDL

U929-J-Z125-12-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

9.1.4 Set entry

 SET NAME IS set-name

 [SET IS DYNAMIC]

 lLAST ⎫
 o o
 oFIRST o
 o o
 oNEXT o
 o o
 oPRIOR o
 ORDER IS m }
 oIMMATERIAL o
 o o
 oSORTED[INDEXED[NAME IS name]] o
 o o
 o lDATABASE-KEY ⎫o
 o BY m }o
 n nDEFINED KEYS DUPLICATES ARE[NOT] ALLOWED~~

 lrecord-name⎫
 OWNER IS m }.
 nSYSTEM ~

 lMANDATORY⎫ lAUTOMATIC⎫
 [MEMBER IS record-name m } m }
 nOPTIONAL ~ nMANUAL ~

 lASCENDING ⎫
 [m } KEY IS item-name-1,...]
 nDESCENDING~

lCALC[hash-routine]⎫
[SEARCH KEY IS item-name-2,... USING m }

 nINDEX ~

[NAME IS name]

DUPLICATES ARE[NOT] ALLOWED]...

 [SET OCCURRENCE SELECTION IS

 lCURRENT OF SET ⎫
 o o
 o litem-name-3 ⎫o
 THRU mLOCATION MODE OF OWNER[ALIAS FOR m }}]].
 o nidentifier-1~o
 o o
 n IS identifier-2]...~

Schema DDL Reference section

242 U929-J-Z125-12-76

This clause is used to assign a name to a set and to

– declare the set a dynamic set if required,

– define the sequence of the member records within the set occurrences for sequential
processing,

– define additional access paths via primary and secondary keys,

– declare a record type to be the owner record type of the set,

– declare a record type to be a member record type of the set if required, and define the
type of membership of member records in a set, and

– specify the selection option for the set occurrences.

 A maximum of 32 766 sets can be defined per database.

For each record type which is owner of a set you can generate a maximum of 255
tables in these sets. A table is created when the set mode pointer array or list or
chain is of the type sorted indexed, also for each secondary key in these sets.

Irrespective of this you may define up to 255 secondary keys per record type on
record type level and per singular set on set level; hash routines are not counted
here.

The individual clauses of the set entry are explained below.

SET NAME IS set-name

A name is assigned to the set.

[SET IS DYNAMIC]

The set is declared a dynamic set.

i

Reference section Schema DDL

U929-J-Z125-12-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

 lLAST ⎫
 o o
 oFIRST o
 o o
 oNEXT o
 o o
 oPRIOR o
ORDER IS m }
 oIMMATERIAL o
 o o
 oSORTED[INDEXED[NAME IS name]] o
 o o
 o lDATABASE-KEY ⎫o
 o BY m }o
 n nDEFINED KEYS DUPLICATES ARE[NOT] ALLOWED~~

This clause is used to define

– the sequence of the records within the set occurrences for sequential processing.
– an additional direct access path via the primary key.

 lrecord-name⎫
OWNER IS m }.
 nSYSTEM ~

A record type defined by the user or a symbolic record type SYSTEM is declared owner
record type of the set.

 lMANDATORY⎫ lAUTOMATIC⎫
MEMBER IS record-name m } m }
 nOPTIONAL ~ nMANUAL ~

A description of the member record type is not required for dynamic sets.
In all other cases, the above clause is used to declare a record type member record type
and to specify the type of membership of the member records in the set.

Schema DDL Reference section

244 U929-J-Z125-12-76

 lASCENDING ⎫
[m } KEY IS item-name,...]
 nDESCENDING~

item-name,...
denotes an item of fixed length that belongs to the record type.

This clause is used to define an item or a combination of items of the member record type
as sort key. The member records within the set occurrence are sorted in ascending or
descending order, according to the values of this key.

 lCALC[hash-routine]⎫
[SEARCH KEY IS item-name,... USING m }[NAME IS name]
 nINDEX ~

 DUPLICATES ARE[NOT] ALLOWED]...

item-name,...
must specify an item of fixed length that belongs to this record type.

name specifies the name of the table; referred to in the SSL statements.

This clause is used to define additional direct access paths via secondary keys and to
assign a name to the SEARCH key table or the hash area, which can be referenced in the
SSL.

SEARCH KEY ... USING CALC is permitted only with a SYSTEM set.

Reference section Schema DDL

U929-J-Z125-12-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

 [SET OCCURRENCE SELECTION IS

 lCURRENT OF SET ⎫
 o o
 o litem-name ⎫o
 THRU mLOCATION MODE OF OWNER[ALIAS FOR m }}]
 o nidentifier-1~o
 o o
 n IS identifier-2]...~

item-name
must denote an item specified in the LOCATION MODE clause for the owner record
type.

identifier-1
must be an identifier specified in the LOCATION MODE clause for the owner record
type.

identifier-2
identifier-2 assigns a name for the additional item to be generated. UDS/SQL
automatically creates this item with the same item type and length as item-name or
identifier-1.

This clause must be specified if the set is not a SYSTEM set.
It is used to define the selection option for the set occurrences.

SSL Reference section

246 U929-J-Z125-12-76

9.2 SSL syntax

 Schema entry STORAGE clause.

 l[RECORD NAME clause
 o
 o[DATABASE-KEY-TRANSLATION-TABLE clause]
 o
 o[record POPULATION clause]
 Record entry m
 o[PLACEMENT-OPTIMIZATION clause]
 o
 o[INDEX clause]
 o
 n[COMPRESSION clause]].

 l[SET NAME clause
 o
 o[set POPULATION clause]
 o
 Set entry m[MODE clause]
 o
 o[INDEX clause]
 o
 n[PHYSICALLY LINKED clause]].

Figure 63: Structure of SSL

The description of the physical storage structure is optional. If it is omitted, UDS/SQL uses
the default values indicated in the explanations for the individual syntax elements.

Otherwise, the description always starts with the STORAGE clause. The sequence of the
record and set descriptions is arbitrary. All names referred to in the storage structure
description must have been previously defined in the schema DDL.

9.2.1 Schema entry

STORAGE STRUCTURE OF SCHEMA schema-name.

The schema entry is used to specify the name of the schema to which the storage structure
description applies.

Reference section SSL

U929-J-Z125-12-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

9.2.2 Record entry

 RECORD NAME IS record-name

 [DATABASE-KEY-TRANSLATION-TABLE[IS integer-1][WITHIN realm-name-1]]

 [POPULATION IS {integer-2 WITHIN realm-name-2},...]

 [PLACEMENT OPTIMIZATION FOR SET set-name]

 [INDEX NAME IS name

 [PLACING IS WITHIN realm-name-3]

 lDATABASE-KEY-LIST ⎫
 o o
 [TYPE IS mREPEATED-KEY }]]...
 o o
 n [DYNAMIC REORGANIZATION SPANS integer-3 PAGES]~

 [COMPRESSION FOR ALL ITEMS].

The record entry is used to specify the name of the record type to which the storage
structure description applies and

– to describe the size and physical position of the DBTT and the size of the hash areas
for record SEARCH keys,

– to specify the number of records of the record type or the size of the hash area for the
primary key within certain realms,

– to describe the physical position of the records within a realm if the record type is a
member of a set,

– to describe the physical position, the type and the extent of reorganization employed for
record SEARCH key tables or the physical position of hash areas for record SEARCH
keys, and

– to indicate compression.

The individual clauses of the record entry are explained below.

RECORD NAME IS record-name

This clause is used to specify the name of the record type to which the record entry applies.

SSL Reference section

248 U929-J-Z125-12-76

[DATABASE-KEY-TRANSLATION-TABLE[IS integer][WITHIN realm-name]]

integer
must be greater than 0. If this entry is omitted, UDS/SQL reserves one page each
for the DBTT and the hash area of a record SEARCH key.

realm-name
must not denote a temporary realm. If this entry is omitted, the DBTT is placed in
the realm first mentioned in the DDL WITHIN clause for this record type.

This clause is used to describe the size and position of the DBTT and at the same time the
size of the hash areas for the record SEARCH keys.

[POPULATION IS {integer WITHIN realm-name},...]

integer
must be greater than 0.

realm-name
must be a realm name specified in the DDL WITHIN clause for this record type.
All realm names specified in the DDL WITHIN clause for this record type must be
listed.

This clause is used to describe size and position of the hash areas for the primary key
 (LOCATION MODE IS CALC). In addition, UDS/SQL bases its assessment of the realm
sizes on this entry.

If the clause is not used, in each realm of the WITHIN clause UDS/SQL reserves a page for
the hash area if the record type is not the member record type of a distributable list.

In the case of a distributable list the hash area is only created in one realm. The size of the
hash area is determined by the sum of the values for the POPULATION specified for the
various realms.

Reference section SSL

U929-J-Z125-12-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

[PLACEMENT OPTIMIZATION FOR SET set-name]

set-name
must not denote a SYSTEM set.

This clause is used to store the member records of the set set-name in the vicinity of their
owner record.

 The record type must be an AUTOMATIC member of the set set-name.

Each realm referenced in the DDL WITHIN clause for this record type must also be
specified in the WITHIN clause for the owner record type of the set set-name.

integer-1 in the set POPULATION clause of the set set-name must be greater than 0.

An indirect hash area is created if LOCATION MODE IS CALC has been defined for
this record type.

This clause has no effect

– if the record type is a member of a set for which MODE IS LIST has been
defined,

– if the owner record type of the set set-name is a member of a set for which MODE
IS LIST has been defined,

– if LOCATION MODE IS CALC or PLACEMENT OPTIMIZATION has been
defined for the owner record type of the set set-name.

i

SSL Reference section

250 U929-J-Z125-12-76

[INDEX NAME IS name

 [PLACING IS WITHIN realm-name]

 lDATABASE-KEY-LIST ⎫
 o o
 [TYPE IS mREPEATED-KEY }]]...
 o o
 n [DYNAMIC REORGANIZATION SPANS integer PAGES]~

name must have been defined in the schema DDL for a record SEARCH key table or a
hash area of this record type.

realm-name
must not be a temporary realm. If this entry is omitted, UDS/SQL places the record
SEARCH key table or the hash area in the first realm referenced in the DDL WITHIN
clause for this record type.

integer
must be an integer between 1 and 20.
Default value: 2

This clause is used to specify the name of the record SEARCH key table or the hash area
to which the description applies and to define

– for a record SEARCH key table; the physical placement, the type and the extent of
reorganization,

– for a hash area; the physical placement.

 If the description applies to a hash area, only PLACING can be specified. i

Reference section SSL

U929-J-Z125-12-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

[COMPRESSION FOR ALL ITEMS]

This clause causes UDS/SQL to store the records in compressed form, provided they are
made available in this form at the DML interface.

 If the record type has been defined with LOCATION MODE IS CALC, indirect CALC
pages are created due to the compression.

Compression is not allowed if the record type contains an item of variable length or
is a member of a set which has been defined with MODE IS LIST.

i

SSL Reference section

252 U929-J-Z125-12-76

9.2.3 Set entry

 SET NAME IS set-name

 [POPULATION IS integer-1[INCREASE IS integer-2]]

 lCHAIN[LINKED TO PRIOR] ⎫
 o o
 olPOINTER-ARRAY⎫ lATTACHED TO OWNER ⎫o
 [MODE IS mo o o o}]
 om } mDETACHED[WITHIN realm-name-1]}o
 oo o o oo
 nnLIST ~ n [WITH PHYSICAL LINK] ~~

 [DYNAMIC REORGANIZATION SPANS integer-3 PAGES]

 [INDEX NAME IS name

 lATTACHED TO OWNER ⎫
 [PLACING IS m }]
 nDETACHED[WITHIN realm-name-2]~

 lDATABASE-KEY-LIST ⎫
 o o
 [TYPE IS mREPEATED-KEY }]]...
 o o
 n [DYNAMIC REORGANIZATION SPANS integer-4 PAGES]~

 [MEMBER IS PHYSICALLY LINKED TO OWNER].

The set entry is used to specify the set to which the storage structure description applies as
well as

– to indicate the average size of the set occurrences

– to give information on the connection of the records within the set occurrences

– to define placement and extent of reorganization for pointer arrays, lists, sort key tables
and set SEARCH key tables

– to indicate the type of set SEARCH key tables

– to add a pointer from member to owner.

The individual clauses of the set entry are explained below.

Reference section SSL

U929-J-Z125-12-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

SET NAME IS set-name

This clause is used to specify the name of the set to which the set entry applies.

[POPULATION IS integer-1[INCREASE IS integer-2]]

integer-1
must be greater or equal to 0. Default value: 0

integer-2
must be greater than 0. Default value: 1

This clause is used to indicate the average number of member records which are expected
to be in the set occurrences when the database is initially loaded or when the set
occurrences are extended at a later date.

 lCHAIN[LINKED TO PRIOR] ⎫
 o o
 olPOINTER-ARRAY⎫ lATTACHED TO OWNER ⎫o
[MODE IS mo o o o}]
 om } mDETACHED[WITHIN realm-name]}o
 oo o o oo
 nnLIST ~ n [WITH PHYSICAL LINK]~~

[DYNAMIC REORGANIZATION SPANS integer PAGES]

CHAIN [LINKED TO PRIOR]
is the only valid specification if the set was defined with ORDER IS SORTED
(without INDEXED) in the schema DDL.

POINTER-ARRAY DETACHED WITHIN realm-name
is the only valid specification if the set is a dynamic set.

LIST may be specified only if the following conditions are satisfied:

– The membership of the member record type in the set was defined as
MANDATORY AUTOMATIC.

– Member records (including pointers, see page 219, SCD) are no longer than
– 993 bytes for databases with a page length of 2048 bytes,
– 1963 bytes for databases with a page length of 4000 bytes, and
– 4011 bytes for databases with a page length of 8096 bytes.

SSL Reference section

254 U929-J-Z125-12-76

ATTACHED
may be specified only if the set is not a SYSTEM set.
In the case of MODE IS LIST this entry is not permitted if the owner record type is
the member record type of a distributable list.

LIST DETACHED (without WITHIN)

– If the DDL-WITHIN clause of the member record type contains only one realm,
the list for DETACHED (without WITHIN) is stored in this realm.

– If the DDL-WITHIN clause of the member record type contains more than one
realm, the following procedure applies:

– If the set is not a SYSTEM set, the realms specified in the DDL-WITHIN
clause of the owner and member record types must be the same. The
position of the list is then determined by the position of the owner. The
owner record type may not be the member record type of a distributable list.

– If the set is a SYSTEM set and ORDER SORTED INDEXED is specified,
the set is a distributable list. The first realm of the DDL-WITHIN clause of
the member record set determines the position of the table part (pages with
level > 0) and of any indirect hash area which may exist. The first realm of
the DDL-WITHIN clause of the member record set also determines the
position of an unsorted list.

– In the case of distributable lists the position of the table part (pages with level >
0) is determined by the first realm specified in the DDL-WITHIN clause of the
member record type. This realm then also contains any declared indirect hash
area for the entire list.

LIST DETACHED WITHIN
determines the realm in which the list is stored.
In the case of distributable lists the DETACHED WITHIN clause determines the
position of the table part (pages with level > 0) or the indirect hash area of the entire
list.

realm-name
must denote a temporary realm if the set is dynamic.
In the case of LIST, it must be identical to that specified in the DDL WITHIN clause
for the member record type.

integer
specifies an integer between 1 and 20.
Default value: 2

This clause is used to specify the linking of records within the set occurrences.
When setting up a pointer array, list or sort key table, the user can also define the extent of
reorganization for such tables.

Reference section SSL

U929-J-Z125-12-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

If this clause is omitted, the following default values apply for:

– dynamic sets: POINTER-ARRAY DETACHED WITHIN realm-name
– ORDER IS SORTED INDEXED: POINTER-ARRAY DETACHED
– ORDER IS LAST/FIRST/NEXT/PRIOR/SORTED: CHAIN
– non-dynamic sets if ORDER IS IMMATERIAL: CHAIN

[INDEX NAME IS name

 lATTACHED TO OWNER ⎫
 [PLACING IS m }]
 nDETACHED[WITHIN realm-name]~

 lDATABASE-KEY-LIST ⎫
 o o
 [TYPE IS mREPEATED-KEY }]]...
 o o
 n [DYNAMIC REORGANIZATION SPANS integer PAGES]~

name must be the name of a table or of a hash area specified in the Schema DDL.

ATTACHED
may be specified only if the set is not a SYSTEM set.

realm-name
must not denote a temporary realm. If this entry is omitted, UDS/SQL selects the
default value as indicated on page 160, figure 40.

integer must be an integer between 1 and 20. Default value: 2

If a table of this set has been specified in the Schema DDL, this table can be referenced
here in order to define its placement, type and extent of reorganization.
If a SEARCH key has been defined for storage in a hash area, the realm which is to contain
this hash area can be specified here.

Default values

– for PLACING: DETACHED
– for TYPE: REPEATED-KEY

SSL Reference section

256 U929-J-Z125-12-76

MEMBER IS PHYSICALLY LINKED TO OWNER

This clause is used to include an additional pointer to its owner in each member record of
the set. The SCD of a member record also contains the probable position pointer (PPP) of
the associated owner record.

Reference section Subschema DDL

U929-J-Z125-12-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

9.3 Subschema DDL syntax

 IDENTIFICATION DIVISION.
 SUB-SCHEMA NAME clause
 [PRIVACY LOCK clause]
 [PRIVACY KEY clause].
 DATA DIVISION.
 AREA SECTION.
 COPY clause.
 RECORD SECTION.
 [COPY clause.]

l[record name clause.
 o
 orecord element name clause
 o
 o[GROUP-USAGE clause]
 o
 o[PICTURE clause]
Record entry m
 o[USAGE clause]
 o
 o[OCCURS clause].
 o
 o[condition name clause
 o
 nVALUE clause.]]

 [SET SECTION.
 COPY clause.]

Figure 64: Structure of subschema DDL

The sequence of clauses shown in figure 64 must be observed, with the following
exceptions:

– The sequence of PICTURE and USAGE clauses is arbitrary.

– In the RECORD SECTION, a COPY clause may also follow a record entry.

Names used in the definition of the subschema must have been defined in the schema
DDL.
This does not apply to group item and condition names, which are newly defined in the
subschema.

Subschema DDL Reference section

258 U929-J-Z125-12-76

9.3.1 IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.
 SUB-SCHEMA NAME IS subschema-name OF SCHEMA NAME schema-name
 [PRIVACY LOCK FOR COMPILE IS literal-1[OR literal-2]]
 [PRIVACY KEY FOR COPY IS literal-3].

literal-1,-2
may consist of up to 10 characters.

literal-3
must be a password defined in the schema entry of the schema DDL.

This entry is used to assign a name to the subschema, and

– to indicate from which schema the subschema is to be copied,

– to define passwords to prevent unauthorized compilation of a DML program with this
subschema, and

– to enter, where appropriate, one of the passwords preventing unauthorized copying of
a subschema from the schema.

9.3.2 AREA SECTION

DATA DIVISION.
AREA SECTION.

 lCOPY ALL AREAS. ⎫
 m }
 n{COPY realm-name,....}...~

This entry is used to copy all realms or a selection of realms from the schema into the
subschema.

Reference section Subschema DDL

U929-J-Z125-12-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
a

rc
h

20
16

 S
ta

nd
 0

9:
22

.3
2

P
fa

d:
 P

:\
F

T
S

-B
S

\D
B

\U
D

S
\U

D
S

V
2

8\
D

o
cs

\1
5

01
7

04
_U

D
S

_E
n

tD
ef

\e
n\

u
ds

en
t.

k0
9

9.3.3 RECORD SECTION

 RECORD SECTION.

 lCOPY ALL RECORDS. ⎫
 [m }]
 n{COPY record-name-1,...}....~

 [01 record-name-2.
 {level-number record-element-name[PICTURE IS mask-string]

 [GROUP-USAGE IS NATIONAL]

 lDISPLAY ⎫
 o o
 oCOMPUTATIONAL-3 o
 o o
 oCOMPUTATIONAL o
 [USAGE IS m }]
 oNATIONAL o
 o o
 oDATABASE-KEY o
 o o
 nDATABASE-KEY-LONG~

 [OCCURS integer TIMES].}...

 [88 condition-name

 lVALUE IS ⎫
 m } {literal-1[THROUGH literal-2]},... .]...]...
 nVALUES ARE~

record-name-2
must not be identical with record-name-1 and must not be used in combination with
COPY ALL RECORDS.

level-number
must be an integer between 02 and 49.

mask-string
See page 239, table 24.

GROUP-USAGE
If the GROUP-USAGE clause is specified, all lower-ranking record elements must
be of the type NATIONAL.

Subschema DDL Reference section

260 U929-J-Z125-12-76

USAGE
If this entry is omitted, DISPLAY is assumed by default.

Exception: if the PICTURE clause contains the symbol N, NATIONAL is assumed if
the USAGE clause is missing.

literal-1
must be less than literal-2.

The user has the choice of either completely copying all record types contained in the
schema into the subschema or only a selection of records or items.
In the latter case, the user specifies the record types that are to be copied completely or in
part. For records to be copied in part, the user must specify all record elements that are to
be copied.
It is also possible to define group items and conditions.

9.3.4 SET SECTION

SET SECTION.

 lCOPY ALL SETS. ⎫
 m }
 n{COPY set-name,....}...~

This entry is used to copy all sets or a selection of sets from the schema.

U929-J-Z125-12-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

Glossary

This Glossary contains the definitions of some of the important terms and
concepts used in the UDS/SQL manuals.
Terms that appear in italics within a particular definition have also been defined
in this Glossary.
In cases where two or more terms are used synonymously, a “See” reference
points to the more commonly used term in these manuals.

A

access, contending
See contending access.

access, direct
See direct access.

access, sequential
See sequential access.

access authorization
The rights of a specified user group with regard to access to the database.
Access rights are defined during live database operation using ONLINE-
PRIVACY utility routine or, in offline mode, using the BPRIVACY utility routine.

access path
Means of finding a certain subset of all records qualified by a search query,
without having to carry out a sequential search of the whole database.

access rights
Right of access to a database as defined in the BPRIVACY utility routine.

access type
Type of access, e.g. read, update etc.

A Glossary

262 U929-J-Z125-12-76

act-key
(actual key) Actual address of a page, consisting of realm number and page
number.

act-key-0 page
First page of a realm; contains general information on the realm such as
– when the realm was created,
– when the realm was last updated,
– internal version number of the realm,
– system break information
– if applicable, warm start information.

act-key-N page
Characteristic page of a realm, with the highest page number.
Copy of the act-key-0 page.

address, physical
See act-key or probable position pointer (PPP).

administrator task
Task of the independent DBH; The database administrator can control execution of
the independent DBH via this task.

AFIM
See after-image.

after-image
Modified portion of a page after its content has been updated.
The DBH writes after-images to the RLOG file as well as the ALOG file.

after-image, ALOG file
The after-images are written to the ALOG file when the ALOG buffer is full. The
purpose of the after-images in the ALOG file is to secure the data contained in
the database and thus they must be maintained for a long period of time. They
are used to reconstruct an original database or update a shadow database.

after-image, RLOG file
After-images are logged in the RLOG file before the updates are applied to the
database. The after-images held in the RLOG file are required for warm start only.
They are thus periodically overwritten.

ALOG file
File for securing the data contained in the database in the long term; see after-
image.

Glossary A

U929-J-Z125-12-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

ALOG sequence number
See sequence number.

anchor record
Record automatically created by UDS/SQL as owner record for SYSTEM sets. It
cannot contain any items defined with the schema DDL and cannot be accessed.

application
Realization of a job in one or several user programs working with UDS/SQL
databases.

application program (AP)
E.g. COBOL DML program or IQS.

area
See realm.

ascending key (ASC key)
Primary key of a set. Defines the sequence of member records in the set occurrences
by ascending key values.

authorization
Identification used for user groups.

authorized users
Specified user groups who are authorized to access the database.

automatic DBTT extension
Some utility routines automatically extend the number of records possible for a
record type if too few are available; no separate administration is required to do
this.
See also online DBTT extension.

automatic realm extension
Some utility routines automatically extend realms when insufficient free space
is available; no separate administration is required to do this.
See also online realm extension.

B Glossary

264 U929-J-Z125-12-76

B

backup database
See shadow database.

base interface block (BIB)
(Base Interface Block) Standard interface between UDS/SQL and each
individual user; it contains, among other things, the RECORD AREA (user
records as defined in the subschema).

before-image
Copy of a page taken before its contents are updated.
The DBH writes before-images to the RLOG files during database operation
before the updates are applied to the database. A prerequisite is that the RLOG
files exist.

BFIM
See before-image.

BIB
See base interface block.

buffer pool
See system buffer pools and exclusive buffer pool.

C

CALC key
Key whose value is converted into a relative page number by means of a hash
routine.

CALC page
Page of a hash area.

CALC SEARCH key
Secondary key. Used as access path for direct access via hash routine.

Glossary C

U929-J-Z125-12-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

CALC table
Table in the direct/indirect CALC page whose entries point to the stored records.
Each line contains:
– the CALC key,
– the record sequence number
– the displacement to the related page index entry (direct CALC page) or the

probable position pointer (indirect CALC page).

CALL DML
DML that is called by various programming languages (Assembler, COBOL,
FORTRAN, PASCAL, PL/1) via the CALL interface.

catalog identifier
Name of the public volume set (PVS) under which the BS2000 UDS/SQL files
are stored. The catalog identifier is part of the database or file name and must
be enclosed in colons: “:catid:”.

chain
Storage mode for a set occurrence in which every record contains a pointer to the
subsequent record.

Character Separated Values (CSV)
Output format in which the values are separated by a predefined character.

checkpoint
Consistency point, at which the ALOG file was changed and to which it is possible
to return at any time using BMEND utility routine

check records
Elements which provide information for checking the database. They vary in
length from 20 to 271 bytes.

CHECK-TABLE
Check table produced by the DDL compiler during Subschema DDL compilation,
and used by the COBOL compiler and CALL DML to check whether the DML
statements specified in the application program are permitted. It is part of the
COSSD or SSITAB module.

C Glossary

266 U929-J-Z125-12-76

clone pair, clone pubset, clone session, clone unit
A clone unit is the copy of an (original) unit (logical disk in BS2000) at a
particular time (“Point-in-Time copy”). The TimeFinder/Clone component
creates this copy optionally as a complete copy or as a “snapshot”.
After they have been activated, the unit and clone unit are split; applications can
access both.
The unit and clone unit together form a clone pair. TimeFinder/Clone manages
this pair in what is known as a clone session.
If clone units exist for all units of a pubset, these clone units together form the
clone pubset.
Details of this are provided in the manual "Introduction to System Adminis-
tration".

COBOL DML
DML integrated in the COBOL language.

COBOL runtime system
Runtime system; sharable routines selected by the COBOL compiler
(COBOL2000 or COBOL85) for the execution of complex statements.

COBOL Subschema Directory (COSSD)
Provides the COBOL compiler with subschema information for compilation of
the DB application programs.

common memory
Shareable memory area used by several different tasks. In UDS/SQL, it always
consists of the common pool and the communication pool and, depending on the
application, the SSITAB pool (see SSITAB module) if CALL DML is used.
If UDS-D is used, it also consists of the distribution pool and the transfer pool.

common pool
Communication area of the independent DBH. Enables DBH modules to commu-
nicate with each other. Contains, among other things, an input/output buffer for
pages (buffer pools).

communication partners
Tasks or data display terminals.

communication pool
Communication area of the independent DBH for application programs. One of its
functions is to store base interface blocks (BIB).

compatible database interface (KDBS)
see KDBS

Glossary C

U929-J-Z125-12-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

compiler database
The realms and files of the database which are required by the UDS/SQL
compiler. They are
– DBDIR (Database Directory)
– DBCOM (Database Compiler Realm)
– COSSD (COBOL Subschema Directory).

COMPILER-SCHEMA
UDS/SQL-internal schema of the compiler database.

COMPILER-SUBSCHEMA
UDS/SQL-internal subschema of the compiler database.

compound key
Key consisting of several key items.

compression
Only the filled items of a record are stored (see SSL clause COMPRESSION).

configuration
See DB configuration.

configuration user ID
User ID in which the database administrator starts the DBH.

configuration name
Freely selectable name of the database configuration for a particular session. The
DBH uses it to form:
– the name of the Session Log File,
– the names of the DB status file and its backup copy,
– the names of the RLOG files,
– the names of the temporary realms,
– the names of session job variables,
– the event names of P1 eventing,
– the DCAM application name for the administration,
– the names of the common pools
– the names of the dump files.

connection module
Module that must be linked into every UDS/SQL application program and which
establishes the connection with the DBH.

consistency
State of the database without conflicts in the data stored in it.

C Glossary

268 U929-J-Z125-12-76

consistency, logical
State of the database in which the stored data has no internal conflicts and
reflects the real-world situation.

consistency, physical
State of the database in which the stored data is consistent with regard to
correct physical storage, access paths and description information.

consistency, storage
See physical consistency.

consistency error
A violation of the physical consistency of the stored data.

consistency point
Point (in time) at which the database is consistent, i.e. all modifying transaction
have been terminated and their modifications have been executed in the
database.

consistency record
Administration record with consistency time and date stamps in the DBDIR. For
an update in a realm the DBH enters the date and time in the consistency record
and in the updated realm. When realms or databases are attached for a session,
the DBH uses this time stamp to check the consistency of the realms within
each database.

contending access
Different transactions attempting to access a page simultaneously.

conversation
SQL-specific administration data is retained across transaction boundaries in an
SQL application. This kind of data administration unit is called a conversation.
In openUTM such an administrative unit is also called a service.

copy
See database copy.

COSSD
See COBOL Subschema Directory.

CRA
(Current Record of Area) Record which is marked in the currency table as the
current record of a particular realm (area).

Glossary D

U929-J-Z125-12-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

CRR
(Current Record of Record) Record which is marked in the currency table as the
current record of a particular record type (Record).

CRS
(Current Record of Set) Record which is marked in the currency table as the
current record of a particular set.

CRU
(Current Record of Rununit) Record which is marked in the currency table as the
current record of the processing chain.

CSV
see Character Separated Values

currency table
The currency table contains:
– CURRENT OF AREA table (table of CRAs),
– CURRENT OF RECORD table (table of CRRs) and
– CURRENT OF SET table (table of CRSs).

CURRENT OF AREA table
See currency table.

CURRENT OF RECORD table
See currency table.

CURRENT OF SET table
See currency table.

D

DAL
(Database Administrator Language) Comprises the commands which monitor
and control a session.

data backup
Protection against loss of data as a result of hardware or software failure.

data deadlock
See deadlock.

D Glossary

270 U929-J-Z125-12-76

data protection (privacy)
Protection against unauthorized access to data. Implemented in UDS/SQL by
means of the schema/subschema concept and access authorization. Access
rights are granted by means of the BPRIVACY utility routine.

database (DB)
Related data resources that are evaluated, processed and administered with
the help of a database system.
A database is identified by the database name.
An UDS/SQL database consists of the user database and the compiler database.
To prevent the loss of data, a shadow database may be operated together with
(i.e. parallel to) the original database.

database administrator
Person who manages and controls database operation. The DB administrator is
responsible for the utility routines and the Database Administrator Language
(DAL).

database copy
Copy of a consistent database; may be taken at a freely selectable point in time.

database compiler realm (DBCOM)
Stores information on the realms, records and sets defined by the user in the
Schema DDL and Subschema DDL.

database copy update
Updating of a database copy to the status of a checkpoint by applying the appro-
priate after-images.

database directory (DBDIR)
Contains, among other things, the SIA, all the SSIAs and information on access
rights.

database job variable
Job variable in which UDS/SQL stores information on the status of a database.

database key (DB key)
Key whose value represents a unique identifier of a record in the database. It
consists of the record reference number and the record sequence number. The
database key values are either defined by the database programmer or
automatically assigned by UDS/SQL.

Glossary D

U929-J-Z125-12-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

database key item
Item of type DATABASE-KEY or DATABASE-KEY-LONG that is used to accom-
modate database key values.
Items of type DATABASE-KEY and DATABASE-KEY-LONG differ in terms of
the item length (4 bytes / 8 bytes) and value range.

DATABASE-KEY item
See database key item.

DATABASE-KEY-LONG item
See database key item.

database page
See page.

DATABASE-STATUS
Five-byte item indicating the database status and consisting of the statement
code and the status code.

database system
Software system that supports all tasks in connection with managing and
controlling large data resources. The database system provides mechanisms
for stable and expandable data organization without redundancies. They allow
many users to access databases concurrently and guarantee a consistent data
repository.

DB status file
(database status file) Contains information on the most recently reset transac-
tions.
openUTM-S or, in the case of distributed processing, UDS-D/openUTM-D
needs this information for a session restart.

DB configuration
(database configuration) The databases attached to a DBH at any one point
during session runtime. As the result of DAL commands or DBH error handling,
the database configuration can change in the course of a session.
At the session start, the DB configuration may be empty. Databases can be
attached with DAL commands after the start of the session. They can also be
detached during the session with DAL commands.

DBCOM
See database compiler realm.

D Glossary

272 U929-J-Z125-12-76

DBDIR
See database directory.

DBH
Database Handler: program (or group of programs) which controls access to
the database(s) of a session and assumes all the attendant administrative
functions.

DBH end
End of the DBH program run. DBH end can be either a session end or a session
abort.

DBH, independent
See independent DBH.

DB key
See database key.

DBH, linked-in
See linked-in DBH.

DBH load parameters
See load parameters (DBH).

DBH start
Start of the DBH program run. DBH start can be either a session start or a session
restart.

DBTT
(Database Key Translation Table) Table from which UDS/SQL can obtain the
page address (act-key) of a record and associated tables by means of the
database key value.
The DBTT for the SSIA-RECORD consists only of the DBTT base. For all other
record types, the DBTT consists of a base table (DBTT base) and possibly of
one or more extension tables (DBTT extents) resulting from an online DBTT
extension or created by BREORG.

DBTT anchor page
Page lying within the realm of the associated DBTT in which the DBTT base and
DBTT extents are administered. Depending on the number of DBTT extents
multiple chained DBTT anchor pages may be required for their administration.

DBTT base
see DBTT

Glossary D

U929-J-Z125-12-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

DBTT extent
see DBTT

DBTT page
Page containing the DBTT or part of the DBTT for a particular record type.

DCAM
Component of the TRANSDATA data communication program.

DCAM application
Communication application using the DCAM communication method. A DCAM
application enables communication between
– a DCAM application and terminals.
– different DCAM applications within the same or different hosts, and with

remote configurations.
– a DCAM and a openUTM application.

DDL
(Data Description Language) Formalized language for defining the logical data
structure.

deadlock
Mutual blocking of transactions.
A deadlock can occur in the following situations:
– Data deadlock: This occurs when transactions block each other with

contending access.
– Task deadlock: This occurs when a transaction that is holding a lock cannot

release it, since no openUTM task is free. This deadlock situation can only
occur with UDS/SQL-openUTM interoperation.

descending key (DESC key)
Primary key of a set. Determines the sequence of member records in the set occur-
rences to reflect descending key values.

direct access
Access to a record via an item content. UDS/SQL supports direct access via the
database key, hash routines and multi-level tables.

direct hash area
See hash area.

distributed database
A logically connected set of data resources that is distributed over more than
one UDS/SQL configuration.

D Glossary

274 U929-J-Z125-12-76

distributed transaction
Transaction that addresses at least one remote configuration. A transaction can
be distributed over:
– UDS-D,
– openUTM-D,
– UDS-D and openUTM-D.

distribution pool
Area in the independent DBH used for communication between UDSCT, server
tasks, user tasks and the master task with regard to UDS-D-specific data. The
distribution pool contains the distribution table and the UDS-D-specific system
tables.

distribution table
Table created by UDS-D using the input file assigned in the distribution pool.
With the aid of the distribution table, the distribution component in the user task
decides whether a processing chain should be processed locally or remotely.
Assigned in the distribution table are:
subschema - database
database - configuration
configuration - host computer.

DML
Data Manipulation Language: language for accessing a UDS/SQL database.

dummy subtransaction
A primary subtransaction is created by UDS-D when the first READY statement
in a transaction addresses a remote database.
A dummy subtransaction is used to inform the local configuration of the trans-
action so that the database can be recovered following an error.

duplicates header
Contains general information on a duplicates table or a page of a duplicates table,
i.e.
– chaining reference to the next and previous overflow page
– the number of free bytes in the page of the duplicates table.

Glossary E

U929-J-Z125-12-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

duplicates table
Special SEARCH-KEY table in which a key value which occurs more than once
is stored only once.
For each key value, the duplicates table contains:
– a table index entry with the key value and a pointer to the associated table

entry
– a table entry (DB key list), which can extend over several pages, containing

the record sequence numbers of the records which contain this key value.

duplicates table, main level
Main level, Level 0. Contains a table index entry and the beginning of the
associated table entry (DB key list).

dynamic set
Set which exists only for the life of a transaction and which stores member records
retrieved as result of search queries.

E

ESTIMATE-REPORT
Report produced after BGSIA run. Used to estimate the size of the user realms.

event name
Identification used in eventing.

exclusive buffer pool
Buffer which, in addition to the system buffer pools, is used exclusively for
buffering pages of the specified database.

F

foreign key
Record element whose value matches the primary key values of another table
(UDS/SQL record type). Foreign keys in the sense of UDS/SQL are qualified as
"REFERENCES owner record type" in the member record type of a set
relationship in the BPSQLSIA protocol.

FPA
See free place administration.

G Glossary

276 U929-J-Z125-12-76

FPA base
See free place administration.

FPA extent
See free place administration.

FPA page
Free place administration page.

free place administration (FPA)
Free space is managed both at realm level (FPA pages) and at page and table
level. Free place administration of the pages is carried out in a base table (FPA
base) and possibly in one or more extension tables (FPA extents) created by
means of an online realm extension or BREORG.

function code
Coding of a DML statement; included in information output by means of the DAL
command DISPLAY or by UDSMON.

G

group item
Nameable grouping of record elements.

H

hash area
Storage area in which UDS/SQL stores data and from which it retrieves data on
the basis of key values which are converted into relative page numbers. A hash
area may contain the record addresses as well as the records themselves.
A direct hash area contains the records themselves; an indirect hash area, by
contrast, contains the addresses of records stored at some other location.

hash routine
Module which performs hashing.

hashing
Method of converting a key value into a page address.

Glossary I

U929-J-Z125-12-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

HASHLIB
Module library for the storage of hash routines for one database.

I

identifier
Name allocated by the database designer to an item that UDS/SQL creates
automatically. UDS/SQL adapts item type and length to the specified item
usage.

implicit set
SYSTEM set created by UDS/SQL when a SEARCH key is defined at record type
level.

inconsistency
State of the database in which the data values contained in it are inconsistent.

independent DBH
Independent program system enabling more than one user to access a single
database (mono-DB operation) or several databases (multi-DB operation) simulta-
neously. The independent DBH is designed as a task family, consisting of
– a master task (UDSSQL)
– one or more server tasks (UDSSUB)
– an administrator task (UDSADM)

index level
Hierarchy level of an index page.

index page
Page in which the highest (lowest) key values of the next-lower level of an
indexed table are stored.

INDEX search key
Secondary key. Used as access path for direct access via a multi-level table.

indirect hash area
See hash area.

K Glossary

278 U929-J-Z125-12-76

integrity
State of the database in which the data contained in it is complete and free of
errors.
– entity integrity
– referential integrity
– user integrity

interconfiguration
Concerning at least one remote configuration.

interconfiguration consistency
A distributed transaction that has caused updates in at least one remote configu-
ration is terminated in such a way that the updates are either executed on the
databases in each participating DB configuration or on none at all.
Interconfiguration consistency is assured by the two-phase commit protocol.

interconfiguration deadlock
Situation where distributed transactions are mutually locked due to contending
accesses.

interface
In software: memory area used by several different programs for the transfer of
data.

internal version number
Each realm of the database, including DBDIR and DBCOM, has an internal
version number which the utility routines (e.g. BREORG, BALTER) increment by
one whenever a realm is updated. This internal version number is kept in the
act-key-0 page of the realm itself and also in the PHYS VERSION RECORD in
the DBDIR.

item
Smallest nameable unit of data within a record type. It is defined by item type and
item length.

K

KDBS
Compatible database interface. Enables programs to be applied to applications
of DB systems by different manufacturers.

Glossary L

U929-J-Z125-12-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

key
Item used by the database programmer for direct access to records; an optimized
access path is provided for the key by UDS/SQL in accordance with the schema
definition.

key, compound
Key consisting of several key items.

key item
Item defined as a key in the schema.

key reference number
Keys are numbered consecutively in ascending order, beginning at 1.

L

linked-in control system
UDS/SQL component for linked-in DBH, responsible for control functions (corre-
sponds to the subcontrol system of the independent DBH).

linked-in DBH
Module linked in to or dynamically loaded for the current DB application program
and controlling access to a single database (mono-DB operation) or several
databases simultaneously (multi-DB operation).

list
Table containing the member records of a set occurrence. Used for sequential and
direct access to member records.
In a distributable list the data pages which contain the member records (level 0
pages) can be distributed over more than one realm. The pages containing the
higher-ranking table levels all reside in one realm (table realm of a distributable
list).

load parameters (DBH)
Parameters requested by the DBH at the beginning of the session. They define
the basic characteristics of a session.

local application program
An application program is local with regard to a configuration if it was linked to the
configuration using /SET-FILE-LINK LINK-NAME=DATABASE,FILE-
NAME=conf-name

M Glossary

280 U929-J-Z125-12-76

local configuration
The configuration assigned to an application program before it is called using
/SET-FILE-LINK LINK-NAME=DATABASE,FILE-NAME=conf-name.
The application program communicates with the local configuration via the
communication pool. The local configuration is in the same host as the appli-
cation program.

local database
Database in a local configuration.

local distribution table
A distribution table is considered local to a DBH if it is held in the DBH’s
distribution pool.

local host
Host computer containing the application program.

local transaction
Transaction that only addresses the local configuration.

logging
Recording of all updates in the database.

logical connection
Assignment of two communication partners that enables them to exchange data.
DCAM applications communicate via logical connections.

M

main reference
In the DBH the main reference is used to manage the resources required for
processing a transaction’s requests, including those for transferring the
requests from the application program to the DBH and back.

mainref number
Number assigned to the transaction at READY. This number is unique only at a
given time; at the end of the transaction, it is assigned to another transaction.

master task
Task of the independent DBH in which the UDSQL module executes. Controls the
start and end of a session and communicates with the database administrator
directly or via the administrator task.

Glossary M

U929-J-Z125-12-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

member
See member record or member record type.

member, AUTOMATIC
Record is inserted at storage time.

member, MANDATORY
Record cannot be removed.

member, MANUAL
Record is not inserted automatically at storage time.

member, OPTIONAL
Record can be removed.

member record
Lower-ranking record in a set occurrence.

member record type
Lower-ranking record type in a set.

mono-DB configuration
Type of configuration where only one database takes part in a session.

mono-DB operation
Mode of database operation where the DBH uses only one database of a
configuration.

multi-DB configuration
Type of configuration where several databases take part in a session.

multi-DB operation
Mode of database operation where the DBH uses several databases of a
configuration.

multi-DB program
Application program that addresses more than one database. The databases may
be part of one or more mono-DB or multi-DB configurations.

multi-level table
SEARCH KEY table which contains a line for each record of the associated
record type or each member record of the set occurrence, as appropriate. Each line
comprises the key value of the record and the record pointer. It is also referred
to as an indexed table.

N Glossary

282 U929-J-Z125-12-76

multithreading
A mechanism that enables the DBH to fully exploit the CPU.
Multithreading means that the DBH processes several jobs concurrently by
using so-called threads. Each thread has information on the current status of a
particular job stored in it. When a job needs to wait for the completion of an I/O
operation, DBH uses the CPU to process some other job.

N

network
All computers linked via TRANSDATA.

O

OLTP
(Online Transaction Processing) In an OLTP application, a very large number
of users access the same programs and data. This usually occurs under the
control of a transaction monitor (TP monitor).

online backup
If AFIM logging is active, the database can be saved during a session. The ability
to save a database online is determined with the BMEND utility routine.

online DBTT extension
Extension during ongoing database operation of the number of possible records
of a record type. The DAL commands ACT DBTT-INCR, DEACT DBTT-INCR,
DISPLAY DBTT-INCR and EXTEND DBTT can be used to administer the online
extension of DBTTs.
See also automatic DBTT extension.

online realm extension
Extension of user realms and DBDIR in ongoing database operation. The DAL
commands ACT INCR, DEACT INCR, DISPLAY INCR, EXTEND REALM and
REACT INCR are provided for administering the online extensibility of realms.
See also automatic realm extension.

open transaction
Transaction which has not been closed with FINISH or FINISH WITH CANCEL,
or with COMMIT or ROLLBACK.

Glossary P

U929-J-Z125-12-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

openUTM
(universal transaction monitor) Facilitates the creation and operation of trans-
action-oriented applications.

operator task (OT)
See master task

original database
The term “original database” refers solely to the naming of the database files
(dbname.dbfile), not to the status of the database content (see also shadow
database).

overflow page
Page in hash areas and duplicates tables for storing data that does not fit in the
primary page. Their structure is the same as that of the pages of the hash area
or duplicates table in question.

owner
See owner record or owner record type.

owner record
Higher-ranking record in a set occurrence.

owner record type
Higher-ranking record type in a set.

P

page
Physical subunit of a realm. UDS/SQL identifies pages by means of unique keys
(act-key).
The length of a page may be optionally 2048, 4000 or 8096 bytes. All pages
within a database must have the same length. Pages with a length of 4000 or
8096 bytes are embedded in a page container.

page address
In a page address, a distinction is made between the current address of a page,
i.e. the act-key, and the probable address of a page, the probable position pointer
(PPP).

P Glossary

284 U929-J-Z125-12-76

page container
Pages with a length of 4000 or 8096 bytes are embedded in a so-called page
container, which consists of a 64-byte header that precedes the page and a
32-byte trailer at the end of the page.

page header (page info)
The first 20 bytes of a database page (except for the FPA and DBTT pages with a
length of 2048 bytes). They contain:
– the act-key of the page itself,
– the number of page index entries
– the length and displacement of the bytes which are still vacant in this page.
– the page type (ACT-Key-0 page, FPA page, DBTT page, DBTT anchor page,

normal data page or CALC page)

page index entry
Indicates the position of a record within a page.

page number
In each realm the pages are numbered consecutively in ascending order starting
starting from 0. The page number is part of the page address.
Page number = PAM page number -1 for databases with a page length of 2048
bytes
Page number = (PAM page number-1) / 2 for databases with a page length of
4000 bytes
Page number = (PAM page number-1) / 4 for databases with a page length of
8096 bytes.

password for UDS/SQL files
Password serving to protect the files created by UDS/SQL (default: C’UDSË’).
The DB administrator can define other passwords with PP CATPASS or
MODIFY-FILE-ATTRIBUTES.

pattern
Symbolic representation of all possible item contents, used at item definition.

pattern string
String defining a pattern.

Glossary P

U929-J-Z125-12-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

PETA
Preliminary end of transaction: UDS-D or openUTM-D statement that causes a
preliminary transaction end.
The PETA statement belongs to the first phase of the two-phase commit protocol
which terminates a distributed transaction.
The PETA statement stores the following information failproof in the RLOG file
of the local DBH:
– each updated page
– rollback and locking information
– the names of all participating configurations.
This information is required for any future warm start.

pointer array
Table of pointers to the member records of a set occurrence. Used for sequential
and direct access to member records.

PPP
See probable position pointer (PPP).

prepared to commit (PTC)
Part of the two-phase commit protocol:
State of a subtransaction after execution of a PETA statement and before receipt
of the message that the complete transaction is to be terminated with FINISH or
FINISH WITH CANCEL.

primary key
Distinguished from secondary keys for reasons of efficiency. Usually a unique
identifier for a record.

primary key (DDL)
The key of a record type which is defined by means of "LOCATION MODE IS
CALC" or the key of an order-determining key of a set occurrence which is
defined by means of "ORDER IS SORTED [INDEXED]". Also used for direct
access to a record or a set of records with the same key values or within a search
interval.

primary key (SQL)
In the broader sense (SQL), a record element uniquely identifying a record.
In UDS-SQL, the database key of an owner record output as the "PRIMARY
KEY" in the BPSQLSIA log (see also foreign key).
A record element which uniquely identifies a record is flagged as "UNIQUE" in the
BPSQLSIA log unless it is the aforementioned "PRIMARY KEY".

P Glossary

286 U929-J-Z125-12-76

primary subtransaction
Subtransaction that runs in the local configuration.
The primary subtransaction is opened by the first READY statement in a trans-
action on a local database.
If the first READY statement addresses a remote database, UDS-D generates a
dummy subtransaction as the primary subtransaction.

PRIVACY-AND-IQF SCHEMA
UDS/SQL-internal schema for protection against unauthorized access.

PRIVACY-AND-IQF SUBSCHEMA
UDS/SQL-internal subschema for protection against unauthorized access.

probable position pointer (PPP)
Probable address of a page, comprising realm number and page number.
UDS/SQL does not always update probable position pointers (PPP) when the
storage location of data is changed.

processing chain
Sequence of DML statements applied to a database within a transaction.

PTC state
See prepared to commit.

pubset declaration
Siee UDS/SQL pubset declaration

pubset declaration job variable
Job variable in which a UDS/SQL pubset declaration is specified.

P1 eventing
Manner in which tasks communicate with each other.

Glossary R

U929-J-Z125-12-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

R

READY
Start of a transaction or a processing chain in COBOL DML programs.

READYC
Start of a transaction or a processing chain in CALL DML programs.

realm
Nameable physical subunit of the database. Equivalent to a file. Apart from the
user realms for user data there are also the realms DBDIR and DBCOM, which
are required by UDS/SQL.

realm configuration
Comprises all the database realms taking part in a session.

realm copy
See database copy.

realm reference number
Realms are numbered consecutively in ascending order, starting with 1. The
realm reference number (area reference) is part of the page address.

reconfiguration
Regrouping of databases in a DB configuration after a session abort. A pre-
requisite for reconfiguration is that the SLF has been deleted or that its contents
have been marked as invalid.

record
Single occurrence of a record type; consists of one item content for each of the
items defined for the record type and is the smallest unit of data managed by
UDS/SQL via a unique identifier, the database key.
The reserved word RECORD is used in DDL and SSL syntax to declare a
record type.

record address
Address of the page containing the record. See page address.

R Glossary

288 U929-J-Z125-12-76

RECORD AREA
Area in the USER WORK AREA (UWA) which can be referenced by the user.
The record area contains the record types and the implicitly defined items
(IMPLICITLY-DEFINED-DATA-NAMES) of the database such as the AREA-ID
items of the WITHIN clauses of the schema. The length of the record area is
essentially defined by the record types contained in it.

record element
Item, vector or group item.

record hierarchy
Owner/member relationship between record types:
the owner record type is the higher-ranking part of the relationship;
the member record type is the lower-ranking part.

REC-REF
See record reference number.

record reference number
Record types are numbered consecutively in ascending order, starting at 1. The
record reference number is part of the database key.

record SEARCH KEY table
SEARCH KEY table for selection of a record from a record type.

record sequence number (RSQ)
The record sequence number can be assigned by the database programmer; if
not, UDS/SQL numbers the records of a record type contiguously in ascending
order, in the sequence in which they are stored; numbering starts at 1. The
record sequence number is part of the database key.

record type
Nameable grouping of record elements.

record type, linear
Record type that is neither the owner nor the member of a set (corresponds to
record types of a conventional file).

referential integrity
Integrity of the relationships between tables (UDS/SQL record types).

remote application program
Application program that is not local with regard to a particular configuration.

Glossary R

U929-J-Z125-12-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

remote configuration
DB-configurations that are not assigned to the application program via /SET-FILE-
LINK LINK-NAME=DATABASE,FILE-NAME=conf-name but via the distribution
table once the application program is running. The connection module of the appli-
cation program communicates with the remote configurations via DCAM appli-
cations.
Remote configurations can be situated on local or remote hosts.

remote database
Database in a remote configuration.

remote host
Host computer that is not local.

repeating group
Group item with repetition factor. The repetition factor, which must be greater
than 1, specifies the number of duplicates of the group item to be incorporated
in the repeating group.

request
The functions of the DAL commands ADD DB, ADD RN, DROP DB, DROP RN,
NEW RLOG and CHECKPOINT are held in the DBH as "requests" and are not
executed until the DAL command PERFORM is entered.

restart of BMEND
Resumption of an aborted BMEND run.

restart of a session
See session restart.

restructuring
Modification of the Schema DDL or SSL for databases already containing data.

return code
Internal code which the called program sends to the calling program;
Return code ≠ 0 means an error has occurred.

RLOG file
Backup file used by the DBH during a session to store before-images (BFIMs)
and after-images (AFIMs) of data which is updated. With the aid of the RLOG file,
the DBH can cancel updates effected by incomplete transactions. There is one
RLOG file per configuration. An RLOG file consists of two physical files.

S Glossary

290 U929-J-Z125-12-76

rollback
Canceling of all updates effected within a transaction.

RSQ
See record sequence number.

RUNUNIT-ID
See transaction identification.

S

schema
Formalized description of all data structures permitted in the database. A
UDS/SQL schema is defined by means of the Schema DDL.

Schema DDL
Formalized language for defining a schema.

Schema Information Area (SIA)
The SIA contains the complete database definition. The DBH loads the SIA into
main memory at the start of DB processing.

SEARCH KEY
Secondary key; access paths using secondary keys are created by UDS/SQL by
means of hash routines and multi-level tables.

SEARCH KEY table
Multi-level table used by UDS/SQL as an access path via a secondary key.

secondary key
Any key which is not a primary key. Used for direct access to a record or a set of
records with the same key values or within a search interval.

secondary subtransactions
Subtransactions that address remote configurations.

sequence number
Identifier in the name of the ALOG files (000000001 - 999999999). The first
ALOG file of a database is always numbered 000000001.

Glossary S

U929-J-Z125-12-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

sequential access
Accessing a record on the basis of its position within a predefined record
sequence.

server task
Task of the independent DBH in which the UDSSUB module executes; processes
the requests of the DB application programs.

session
Period between starting and normal termination of the DBH (independent/ linked-
in) in which it is possible to work with the databases of the configuration. Normally,
a session consists of a sequence of session sections and session interrupts.

session abort
Occurs when the DBH is terminated abnormally after a successful session start.
A session abort can be caused by: power failure, computer failure, BS2000
problems, DBH problems, %TERM.

session end
Is the result of:
– DAL when using independent DBH,
– TERM in the DML application program when using linked-in DBH,
– DBH error handling.
During a session interrupt, the user can also effect session end by invalidating
the SLF contents. Inconsistent databases can be made consistent again by a
warm start, even without an SLF.

session interrupt
The period between a session abort and the related session restart.

session job variable
Job variable in which UDS/SQL stores information about a session.

Session Log File (SLF)
File which is permanently assigned to a session and which is required by the
DBH in the event of a session restart. It contains information on the current DB
configuration, the number of current file identifiers and the current values of the
DBH load parameters.

S Glossary

292 U929-J-Z125-12-76

session restart
Starting of the DBH, under the same configuration name and configuration user ID,
after a session abort. With the aid of the SLF, the DBH load parameters and the
current file identifiers which existed when the session aborted are re-estab-
lished, and the databases of the previous configuration are reattached, if
necessary by means of a warm start.

session section
Period from the start of the DBH, either at the session start or a restart, to the
normal session end or to a session abort.

session section number
Number which identifies a session section unambiguously.

session start
State of a session in which the DBH is started under a configuration name for
which there is no Session Log File (SLF) with valid contents.

set
Nameable relationship between two record types.

set, dynamic
See dynamic set.

set, implicit
See implicit set.

set, singular
See SYSTEM set.

set, standard
See standard set.

Set Connection Data (SCD)
Linkage information for the records of a set occurrence.

set occurrence
Single instance of a set. Comprises exactly one owner record and any number of
subordinate member records.

set reference number
Sets are numbered contiguously in ascending order, beginning at 1.

Glossary S

U929-J-Z125-12-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

set SEARCH KEY table
SEARCH KEY table for selecting a member record from a set occurrence.

SF pubset
See single feature pubset

shadow database
Backup of all the files of a database, each saved under the name
”dbname.dbfile.copyname”.
A shadow database can be created at any time and processed parallel to the
original database in RETRIEVAL mode.
In addition BMEND can be used to apply ALOG files that have already been
closed to the database parallel to the UDS/SQL session.

Shared user buffer pool
Shared buffer of several databases which is used in addition to the System Buffer
Pool, solely for buffering pages of the databases that have been assigned to it.

SIA
See Schema Information Area.

SIB
See SQL Interface Block.

single feature pubset
A single feature pubset (SF pubset) consists of one or more homogeneous
disks which must have the same major properties (disk format, allocation unit).

SLF
See session log file.

SM pubset
See system managed pubset

S Glossary

294 U929-J-Z125-12-76

snap pair, snap pubset, snap session, snap unit
A snap unit is the copy of an (original) unit (logical disk in BS2000) at a particular
time (“Point-in-Time copy”). The TimeFinder/Snap component creates this copy
as a “snapshot” in accordance with the “Copy-On-First-Write strategy“: Only if
data is modified is the original data concerned written beforehand into a central
save pool of the Symmetrix system. The snap unit contains the references
(track pointers) to the original data. In the case of unmodified data the refer-
ences point to the unit, in the case of modified data to the save pool.
After they have been activated, the unit and snap unit are split; applications can
access both.
The unit and snap unit together form a snap pair. TimeFinder/Snap manages
this pair in what is known as a snap session.
If snap units exist for all units of a pubset, these snap units together form the
snap pubset.
Details of this are provided in the manual "Introduction to System Adminis-
tration".

sort key table
Table pointing to the member records of a set occurrence.

source program
Program written in a programming language and not yet translated into machine
language.

spanned record
Record exceeding the length of a page. Only UDS/SQL-internal records can
be spanned records;
User record types must not exceed
– 2020 bytes for a page length of 2048 bytes
– 3968 bytes for a page length of 4000 bytes
– 8064 bytes for a page length of 8096 bytes.

SQL
SQL is a relational database language which has been standardized by ISO
(International Organization for Standardization).

SQL conversation
See conversation.

SQL DML
SQL Data Manipulation Language for querying and updating data.

Glossary S

U929-J-Z125-12-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

SQL Interface Block (SIB)
Interface between UDS/SQL and SQL application program(s); contains the
SQL statement, any existing parameters and the statement results.

SQL transaction
Related sequence of SQL statements which is processed by UDS/SQL either as
a whole or not at all. This method ensures that the database(s) is/are always in
a consistent state.

SSIA
See Subschema Information Area.

SSIA-RECORD
UDS/SQL-internal record type, located in the DBDIR. Records belonging to this
type are, for example, the Schema Information Area (SIA) and the Subschema
Information Areas (SSIAs).

SSITAB module
Module generated by the BCALLSI utility routine; makes available the
subschema information required by CALL DML programs.

SSL
See Storage Structure Language.

standard set
A set other than a dynamic, implicit or SYSTEM set.

statement code
Number stored in the first part of the DATABASE-STATUS item. Its function is to
indicate which DML statement resulted in an exception condition.

status code
Number stored in the second part of the DATABASE-STATUS item. It indicates
which exception condition has occurred.

Storage Structure Language (SSL)
Formalized language for describing the storage structure.

string
A series of consecutive alphanumeric characters.

subcontrol system
Component for the independent DBH. Responsible for control functions.

S Glossary

296 U929-J-Z125-12-76

subschema
Section of a schema required for a particular application; it can be restructured,
within limits, for the intended application; a subschema is defined by means of
the Subschema DDL.

Subschema DDL
Formalized language for defining a subschema.

Subschema Information Area (SSIA)
The SSIA contains all subschema information required by the DBH to carry out,
on behalf of the user, the database accesses permitted within the specified
subschema. The DBH loads the SSIA into main memory when it is referenced in
a READY command.

subschema module
Module resulting from subschema compilation when a COBOL DML program is
compiled. It must be linked in to the application program and includes the USER
WORK AREA (UWA) as well as the RECORD AREA, which is also part of the
base interface block (BIB). The name of the subschema module is the first 8 bytes
of the subschema name.

subschema record
Record defined in the Subschema DDL.

SUB-SCHEMA SECTION
In COBOL programs with DML statements: section of the DATA DIVISION used
for specifying the schema name and the subschema name.

subtransaction
In a distributed transaction, all the processing chains that address the databases
in one configuration form a subtransaction.

system area
Realm required only by UDS/SQL. The system areas of a database include:
– the Database Directory (DBDIR),
– the Database Compiler Realm (DBCOM),
– the COBOL Subschema Directory (COSSD)

system break information
Indicates whether the database is consistent or inconsistent.

Glossary T

U929-J-Z125-12-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

system buffer pools
Input/output buffer for database pages (see page). The buffer is part of the
common pool (independent DBH) or the DBH work area (linked-in DBH). Its size is
determined by the DBH load parameters 2KB-BUFFER-SIZE, 4KB-BUFFER-
SIZE or 8KB-BUFFER-SIZE.

system managed pubset
A system managed pubset consists of one or more volume sets which, as with
an SF pubset, comprise a collection of multiple homogeneous disks; here, too,
homogeneity relates to particular physical properties such as disk format and
allocation unit.

SYSTEM record
See anchor record.

SYSTEM set
Set whose owner record type is the symbolic record type SYSTEM.

T

table, multi-level
See multi-level table.

table (SQL)
A table in the context of SQL corresponds to a UDS/SQL record type.

table header
Contains general information on a table or table page:
– the table type and the level number of the table page,
– the number of reserved and current entries in this table page,
– the chaining reference to other table pages on the same level,
– the pointer to the associated table page on the next higher level,
– the pointer to the page containing the last table on the main level (for the

highest-level table only).

table page
Page containing a table or part of a table. If a table which does not extend over
several pages or the highest level of a multi-level table is concerned, "table
page" only refers to the object involved, not the entire page.

T Glossary

298 U929-J-Z125-12-76

TANGRAM
(Task and Group Affinity Management) Subsystem of BS2000 that plans the
allocation of processors for task groups which access large quantities of shared
data in multi-task applications.

task attribute TP
There are 4 task attributes in BS2000: SYS, TP, DIALOG and BATCH.
Special runtime parameters that are significant for task scheduling are assigned
to each of these task attributes.
In contrast to the other task attributes, the TP attribute is characterized by
optimized main memory management that is specially tailored to transaction
processing requirements.

task communication
Communication between the DBH modules. See also common pool.

task deadlock
See deadlock.

task priority
In BS2000, it is possible to define a priority for a task. This priority is taken into
account when initiating and activating the task.
Priorities may be fixed or variable. Variable priorities are adapted dynamically;
fixed priorities do not change.
Note that UDS/SQL server tasks should be started with a fixed priority in order
to ensure consistent performance.

TCUA
See Transaction Currency Area.

time acknowledgment
Message sent by the UDS-D task to the remote application program to indicate
that there is still a DML statement being processed.

transaction (TA)
Related sequence of DML statements which is processed by UDS/SQL either
as a whole or not at all. This method ensures that the database(s) is/are always
in a consistent state.
For UDS-D:
The total set of subtransactions active at a given time.

transaction, committing a
Terminating a transaction with FINISH, i.e. all updates performed within the
transaction are committed to the database.

Glossary U

U929-J-Z125-12-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

transaction, rolling back a
Terminating a transaction with FINISH WITH CANCEL, i.e. all updates
performed on the database within the transaction are rolled back.

Transaction Currency Area (TCUA)
Contains currency information.

transaction identification (TA-ID)
Assigned by the DBH to identify a particular transaction. Can be requested with
the DAL command DISPLAY.

transfer pool
UDS-D-specific storage area in which the UDSCT receives the BIBs from remote
application programs.

two-phase commit protocol
Procedure by which a distributed transaction that has made changes in at least
one remote configuration is terminated in such a way as to safeguard inter-config-
uration consistency or UDS/SQL openUTM-D consistency. The two-phase
commit is controlled
– by the distribution component in the user task if the transaction is distributed

via UDS-D.
– by openUTM-D if the transaction is distributed via openUTM-D or via

openUTM-D and UDS-D.

U

UDSADM
Module of the independent DBH; executes in the administrator task.

UDSHASH
Module generated by the BGSIA utility routine. It contains the names of all the
hash routines defined in the Schema DDL.

UDSNET
Distribution component in the user task.

UDSSQL
Start module of the independent DBH; executes in the master task.

UDSSUB
Start module of the independent DBH; executes in the server task.

U Glossary

300 U929-J-Z125-12-76

UDS-D task UDSCT
Task started for each configuration by UDS/SQL so that it can participate in
distributed processing with UDS-D.

UDS/SQL / openUTM-D consistency
A transaction that has updated both openUTM data and UDS/SQL databases is
terminated in such a way that the openUTM data and the UDS/SQL databases
are either updated together or not at all.

UDS/SQL pubset declaration
Declaration in a pubset declaration job variable for restricting the UDS/SQL
pubset environment. This reduces or prevents the risk of file names being
ambiguous.

unique throughout the network
Unique in all the computers that are included in the network.

user database
The realms and files of the database required by the user in order to be able to
store data in, and to retrieve data from a database are:
– the Database Directory (DBDIR),
– the user realms
– the module library for hash routines (HASHLIB).

user realm
A realm defined in the realm entry of the Schema DDL. It contains, among other
things, the user records.

user task
Execution of an application program or openUTM program, including the parts
linked by the system.

USER-WORK-AREA (UWA)
Transfer area for communication between the application program and the DBH.

UTM
See openUTM.

UWA
See USER-WORK-AREA (UWA).

Glossary V

U929-J-Z125-12-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
. M

a
rc

h
20

1
6

 S
ta

nd
 0

9:
22

.3
2

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.m
ix

V

vector
Item with repetition factor. The repetition factor must be greater than 1. It
specifies how many duplicates of the item are combined in the vector.

version number, internal
See internal version number.

W

warm start
A warm start is performed by UDS/SQL if an inconsistent database is attached
to a session. For UDS/SQL this involves applying all updates of completed trans-
actions to the database which have not yet been applied, rolling back all
database transactions that are open, and making the database consistent. The
related RLOG file and the DB status file are required for a warm start.

W Glossary

302 U929-J-Z125-12-76

U929-J-Z125-12-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

23
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
ab

k

Abbreviations

ACS Alias Catalog Service

Act-Key ACTual KEY

AFIM AFter-IMage

AP Application Program

ASC ASCending

BIB Base Interface Block

BFIM BeFore-IMage

COBOL COmmon Business Oriented Language

CODASYL COnference on DAta SYstem Languages

CRA CuRrent of Area

CRR CuRrent of Record

CRS CuRrent of Set

CRU Current of RunUnit

COSSD COBOL SubSchema Directory

DAL Database Administration Language

DB DataBase

DBCOM DataBase COmpiler Realm

DBDIR DataBase DIRectory

DBH DataBase Handler

DB-Key DataBase Key

DBTT DataBase key Translation Table

DDL Data Description Language

DESC DESCending

DML Data Manipulation Language

DRV Dual Recording by Volume

DSA Database System Access

DSSM Dynamic SubSystem Management

Abbreviations

304 U929-J-Z125-12-76

FC Function Code

FPA Free Place Administration

GS Global Storage

HSMS Hierarchic Storage Management System

ID IDentification

IQL Interactive Query Language

IQS Interactive Query System

KDBS Kompatible Datenbank-Schnittstelle (= compatible database interface)

KDCS Kompatible Datenkommunikationsschnittstelle
(= compatible data communications interface)

LM Lock Manager

LMS Library Maintenance System

MPVS Multiple Public Volume Set

MR-NR MainRef NumbeR

MT Master task

OLTP OnLine transaction processing

openUTM Universal Transaction Monitor

OT Operator Task

PETA Preliminary End of TrAnsaction

PPP Probable Position Pointer

PTC Prepared To Commit

PTT Primäre Teiltransaktion (= primary subtransaction)

PVS Public Volume Set

REC-REF RECord REFerence number

RSQ Record Sequence Number

SC SubControl

SCD Set Connection Data

SCI Software Configuration Inventory

SECOLTP SECure OnLine Transaction Processing

SECOS SEcurity COntrol System

SET-REF SET-REFerence

SIA Schema Information Area

SIB SQL Interface Block

Abbreviations

U929-J-Z125-12-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

18
.

M
är

z
20

16
 S

ta
nd

 0
9:

23
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

5
01

7
04

_U
D

S
_E

n
tD

ef
\e

n\
u

ds
en

t.
ab

k

SLF Session Log File

SQL Structured Query Language

SSD Solid State Disk

SSIA SubSchema Information Area

SSITAB SubSchema Information TABle

SSL Storage Structure Language

ST ServerTask

STT Sekundäre Teiltransaktion (= secondary subtransaction)

TA TrAnsaction

TA-ID TrAnsaction IDentification

TANGRAM TAsk aNd GRoup Affinity Management

TCUA Transaction CUrrency Area

UDS/SQL Universal Database System/Structured Query Language

UWA User Work Area

Abbreviations

306 U929-J-Z125-12-76

U929-J-Z125-12-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
är

z
20

16

S
ta

nd
 0

9:
23

.0
8

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

UDS/SQL (BS2000)
Application Programming
User Guide

UDS/SQL (BS2000)
Creation and Restructuring
User Guide

UDS/SQL (BS2000)
Database Operation
User Guide

UDS/SQL (BS2000)
Messages
User Guide

UDS/SQL (BS2000)
Recovery, Information and Reorganization
User Guide

UDS/SQL (BS2000)
Ready Reference

UDS (BS2000)
Interactive Query System IQS
User’s Guide

UDS-KDBS (BS2000)
Compatible Database Interface
User Guide

SQL for UDS/SQL
Language Reference Manual

http://manuals.ts.fujitsu.com

Related publications

308 U929-J-Z125-12-76

BS2000 OSD/BC
Commands
User Guide

BS2000 OSD/BC
Introduction to System Administration
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BS2000 OSD/BC
Introductory Guide to DMS
User Guide

SDF (BS2000)
SDF Dialog Interface
User Guide

SORT (BS2000)
User Guide

SPACEOPT (BS2000)
Disk Optimization and Reorganization
User Guide

LMS (BS2000)
SDF Format
User Guide

DSSM/SSCM
Subsystem Management in BS2000
User Guide

ARCHIVE (BS2000)
User Guide

DRV (BS2000)
Dual Recording by Volume
User Guide

Related publications

U929-J-Z125-12-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
är

z
20

16

S
ta

nd
 0

9:
23

.0
8

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.li
t

HSMS / HSMS-SV (BS2000)
Hierarchical Storage Management System
Volume 1: Functions, Management and Installation
User Guide

SECOS (BS2000)
Security Control System
User Guide

openNet Server (BS2000)
BCAM
Reference Manual

DCAM (BS2000)
Program Interfaces
Reference Manual

DCAM (BS2000)
Macros
User Guide

OMNIS/OMNIS-MENU (BS2000)
Functions and Commands
User Guide

OMNIS/OMNIS-MENU (BS2000)
Administration and Programming
User Guide

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
User Guide

openUTM
Generating Applications
User Guide

openUTM
Administering Applications
User Guide

Related publications

310 U929-J-Z125-12-76

openUTM
Using openUTM Applications under BS2000
User Guide

openUTM
Messages, Debugging and Diagnostics in BS2000
User Guide

COBOL2000 (BS2000)
COBOL Compiler
Reference Manual

COBOL2000 (BS2000)
COBOL Compiler
User’s Guide

COBOL85 (BS2000)
COBOL Compiler
Reference Manual

COBOL85 (BS2000)
COBOL Compiler
User’s Guide

CRTE (BS2000)
Common Runtime Environment
User Guide

DRIVE/WINDOWS (BS2000)
Programming System
User Guide

DRIVE/WINDOWS (BS2000)
Programming Language
Reference Guide

DRIVE/WINDOWS (BS2000)
System Directory of DRIVE Statements
Reference Manual

DRIVE/WINDOWS (BS2000/SINIX)
Directory of DRIVE SQL Statements for UDS
Reference Manual

Related publications

U929-J-Z125-12-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
3

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 1

4.
02

.2
00

7
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

00
7

1
8.

 M
är

z
20

16

S
ta

nd
 0

9:
23

.0
8

P
fa

d
: P

:\F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

2
8\

D
o

cs
\1

50
17

04
_

U
D

S
_E

nt
D

ef
\e

n\
ud

se
nt

.li
t

DAB (BS2000)
Disk Access Buffer
User Guide

Unicode in BS2000
Introduction

XHCS (BS2000)
8-Bit Code and Unicode Processing in BS2000
User Guide

BS2000 OSD/BC
Softbooks English
DVD

openSM2 (BS2000)
Software Monitor
User Guide

SNMP Management (BS2000)
User Guide

Related publications

312 U929-J-Z125-12-76

U929-J-Z125-12-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

8.
 M

ar
ch

 2
01

6
 S

ta
nd

 0
9:

23
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

15
01

70
4

_U
D

S
_

E
n

tD
ef

\e
n

\u
ds

en
t.s

ix

Index

4GL 36

A
access

concurrent 50, 104
contending 261
direct 58, 80, 89, 95, 151, 236, 243, 244, 261
sequential 80, 151, 261

access authorization 261
access path 80, 83, 95, 149, 163, 236, 242, 244,

261
access rights 38, 107, 261
access type 80, 261
act-key 134, 262
act-key-0 page 197, 200, 262
act-key-N page 197, 200, 262
act-keys 207
ACTKEY format

see table header
address

physical 262
address, physical 81, 85, 89, 95, 128
administrator task 262
AFIM 262
after-image 103, 262

ALOG file 262
RLOG file 262

ALIAS entry 245
ALOG file 262
ALOG sequence number 263
analytical process 40
anchor record 100, 148, 221, 263
ANSI 30
application 263

application program 42
application program (AP) 263
area 50, 103, 127, 134, 159, 166, 183, 194, 258,

263
AREA NAME clause 104, 235
ascending key (ASC key) 263
ASCENDING-KEY clause 93, 95, 243
attribute 28
attribute value 28
authorization 263
authorized users 263
AUTOMATIC 75, 78, 99, 146, 243, 249
automatic DBTT extension 263
automatic realm extension 263

B
backup database 264
backward chaining 150, 153
Base Interface Block (BIB) 264
base table 28
before-image 264
BFIM 264
BIB (Base Interface Block) 264
BMEND 103
BNR format

see table header
BPRIVACY 103
BPSQLSIA 32, 47
BREORG 133, 139
buffer pools

see exclusive buffer pool
see system buffer pools

Index

314 U929-J-Z125-12-76

C
CALC key 83, 98, 264
CALC page 197, 264

direct 210
indirect 146, 175, 213

CALC SEARCH key 264
CALC table 210, 265
CALC table header 210
calculation formulas, storage space

requirement 176
CALL DML 43, 265
catalog identifier 265
CC 35
CHAIN 126, 132, 141, 154, 222
chain 126, 141, 149, 153, 265
Character Separated Values (CSV) 265
check records 265
CHECK-TABLE 265
checkpoint 265
clone 266
COBOL DML 26, 43, 266
COBOL runtime system 266
COBOL Subschema Directory (COSSD) 266
CODASYL 49
CODASYL model 24, 31, 32
Codd 27
coexistence 32
column 28
column conventions 233
comment 233
common memory 266
common pool 266
communication partners 266
communication pool 266
compatible database interface 266, 278
compiler database 267
COMPILER-SCHEMA 267
COMPILER-SUBSCHEMA 267
compound key 83, 88, 267
compression 175, 267
COMPRESSION clause 175, 249
computer 44, 45
computer network 44
conceptional schema 40

condition 192, 260
condition name clause 192, 259
condition variable 192
configuration 42, 43, 44, 45, 267
configuration identification 267
configuration name 267
connection data 221
connection module 267
consistency 38, 42, 43, 267

logical 268
physical 268
storage 268

consistency error 268
consistency point 268
consistency record 268
container

see page container
contending access 268
continuation lines 233
conversation 268
copy 268
COPY clause 185, 193, 258
Copying a database key item 188
copying a numeric item, an alphanumeric item of

fixed length or a national item 186
COSSD 268
CRA 268
CRR 269
CRS 93, 98
CSV 269
currency table 269
CURRENT

OF AREA table 269
OF RECORD table 269
OF SET table 269

Current
Record of Rununit 269
Record of Set (CRS) 269

cyclic data structure 78

D
data analysis 40
data backup 269
data deadlock 269

Index

U929-J-Z125-12-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

8.
 M

ar
ch

 2
01

6
 S

ta
nd

 0
9:

23
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

15
01

70
4

_U
D

S
_

E
n

tD
ef

\e
n

\u
ds

en
t.s

ix

Data Definition Language 46
Data Description Language 26, 46
data independence 28, 37
data manipulation 29
Data Manipulation Language 26
Data Manipulation Language (DML) 274
data modeling 40
data models 24
data organization 34
data page 197, 215
data privacy 50
data protection 38, 50, 183, 184
data protection (privacy) 270
data relationship 25, 26, 29, 46
data retrieval 29
data security 50, 103
data structure

logical 126
physical 126

database (DB) 270
database administrator 270
Database Administrator Language (DAL) 269
database compiler realm (DBCOM) 270
database configuration 42, 43, 44, 45
database copy 270
database copy update 270
database description

relational 32
database directory (DBDIR) 270
database handler, see DBH
database job variable 270
database key 64, 82, 94, 100, 128, 149, 240, 270

item 271
database key item 237
database key translation table 81, 126
database key translation table (DBTT) 247

placement 158, 166, 247
database key value 60, 82, 207, 210, 215
database page 271
database system 271
DATABASE-KEY item 60, 81, 82, 188, 237, 240,

271
DATABASE-KEY-LONG item 60, 82, 188, 237,

240, 271

DATABASE-KEY-TRANSLATION-TABLE
clause 132, 136, 248

DATABASE-STATUS 271
DB configuration 271
DB key 272
DB status file 271
DBCOM 271
DBDIR 272
DBH 42, 43, 272

end 272
independent 272
linked-in 272
start 272

DBH load parameters 272
DBTT 82, 126, 127, 140, 272

column 129
line 129, 132
page 273
placement 158, 166
size 140
storage space requirement 132

DBTT anchor page 197, 205, 272
DBTT base 272
DBTT clause 140
DBTT extension

automatic 263
online 282

DBTT extent 273
DBTT page 197, 207
DCAM 273
DCAM application 273
DDL 26, 46, 273
deadlock 38, 43, 273
decimal point symbol 52, 53
descending key (DESC key) 273
DESCENDING-KEY clause 93, 95, 243
Description 46
design 39
digit symbol 52, 56
direct access 58, 80, 95, 100, 151, 236, 243, 273
direct CALC page 210
direct hash area 273

Index

316 U929-J-Z125-12-76

distributable list 105, 134, 146, 147, 159, 164,
169, 170, 225, 238, 248, 254, 279
table part 105, 238, 254
table realm 134, 146, 159, 238, 279

distributed database 273
distributed transaction 274
distribution 41
distribution pool 274
distribution table 274
DML 26
domain 28
DRIVE 36
DRV 38
dummy subtransaction 274
duplicate table 155
DUPLICATES clause 83
duplicates header 274
duplicates table 228, 275

main level 275
DYNAMIC clause 101, 242
dynamic set 101, 275

E
ESTIMATE-REPORT 275
event name 275
exclusive buffer pool 275

F
FASTPAM access method 38
field

variable length 220
flexibility 31
foreign key 28, 29, 32, 46, 275
FPA 275
FPA base 202, 276
FPA extent 202, 276
FPA page 197, 202, 276
free place administration 197, 202, 212, 215,

224, 276
function analysis 40
function code 276

G
group item 49, 62, 191, 260, 276

H
hash area 83, 146, 166, 250, 276

name 88
naming 102, 238, 244
placement 125, 158, 166, 171, 250
position 102
size 132, 139, 247

hash routine 83, 85, 88, 95, 100, 133, 139, 276
hashing 276
HASHLIB 277
host 43, 44
host computer 45
host network 43

I
IDENTIFICATION DIVISION 258
identifier 277
implicit set 277
inconsistency 277
independent DBH 277
INDEX clause 158, 164, 249, 255
index level 277
index page 277
INDEX search key 277
indirect hash area 277
information analysis 40
integrity 278

referential 26, 29, 31, 34, 46
interconfiguration 278

consistency 278
deadlock 278

interface 278
internal version number 278
IQL 101
ISO 30
item 49, 278

alphanumeric 56, 186, 239, 240
binary 55, 57, 187, 240
fixed length 239
national 59, 187, 239
numeric 52, 186, 239
packed 54, 187, 240
unpacked 52, 187, 239
variable length 57, 147, 175, 239

Index

U929-J-Z125-12-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

8.
 M

ar
ch

 2
01

6
 S

ta
nd

 0
9:

23
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

15
01

70
4

_U
D

S
_

E
n

tD
ef

\e
n

\u
ds

en
t.s

ix

item contents 51, 80
item name 49
item type 49, 187

K
KDBS 266, 278
key 83, 88, 93, 142, 154, 279

compound 279
key item 81, 279
key reference number 279
keyword 18, 19

L
level 189
linkage of records 125, 141
linked-in control system 279
linked-in DBH 279
linking of records 254
LIST 132, 222
list 126, 132, 141, 145, 151, 152, 171, 224, 252,

254, 279
distributable, see distributable list
placement 158, 171
storage requirements 140
storage space requirement 137, 176

literal 233
load parameters DBH 279
local application program 279
local configuration 280
local database 280
local distribution table 280
local host 280
local transaction 280
LOCATION MODE clause 81, 82, 83, 237
logging 280
logical connection 280
logical structure 40

M
main reference 280
mainref number 280
MANDATORY 75, 79, 146
manipulation 29
MANUAL 75

many-to-many relationship 79
mask 52
mask string 52, 56, 59
master task 280
member 25, 32, 281

AUTOMATIC 281
MANDATORY 281
MANUAL 281
OPTIONAL 281

MEMBER clause 75, 243
member record 75, 90, 105, 125, 137, 141, 157,

158, 161, 163, 256, 281
member record type 66, 163, 242, 243, 281
microcosm 40
mirrored disks 38
MODE clause 142, 158, 164, 253
MODE-Klausel 132
mono-DB configuration 281
mono-DB operation 281
multi-DB configuration 281
multi-DB operation 42, 43, 281
multi-DB program 281
multi-level table 281
multithreading 282

N
N, PICTURE symbol 59, 187, 239
NATIONAL 59, 187, 239
natural optimization 161
network 43, 44, 282
network model 24, 31, 32
network structures 36
normalized 40
notational conventions 18, 19

O
occupancy level, table pages 171
OCCURS clause 61, 189, 239, 240
OLTP 36, 282
online backup 282
online DBTT extension 282
online realm extension 282
open transaction 282
openUTM 283

Index

318 U929-J-Z125-12-76

operator task (OT) 283
OPTIONAL 75
optional word 18, 19
ORDER clause 90, 102, 142, 145, 151, 243
original database 283
overflow page

of CALC page 134, 139
of duplicate table 155
of duplicates table 230

overflow pages 283
owner 25, 32, 283
OWNER clause 100, 243
owner record 66, 98, 105, 137, 144, 148, 157,

159, 161, 163, 169, 249, 283
owner record type 66, 242, 283

P
P1 eventing 286
page 127, 197, 198, 283

overflow 134
structure 200

page address 127, 283
page container 197, 199, 284
page feed 233
page format 57, 64, 103, 146, 238
page header
page header (page info) 284
page index entry 210, 215, 284
page length 57, 64, 103, 129, 146, 197, 202, 207,

210, 213, 215, 224, 229, 237, 238
page number 127, 284

relative 83, 88, 101
parts list 110, 157
parts list processing 36
password 107, 184, 235, 258
password for UDS/SQL files 284
pattern 284
pattern string 284
performance 31
PETA 285
physical

page address 127
PHYSICALLY LINKED clause 157, 255
PICTURE clause 52, 56, 59, 186, 189, 239

placement
data at realm level 159
data within realm 161
define 158

placement for data
overview 169

PLACEMENT OPTIMIZATION 140, 146, 161,
163

PLACEMENT OPTIMIZATION clause 249
pointer 88, 101, 127, 142, 148, 154, 219, 252,

256
pointer array 126, 132, 141, 151, 171, 224, 252,

254, 285
placement 158, 171
storage requirements 140
storage space requirement 137, 176

POINTER-ARRAY 126, 132, 141, 142, 151, 222
population, declare 125, 132
PPP (probable position pointer) 127, 142, 152,

153, 157, 285, 286
prepared to commit (PTC) 285
primary key 28, 29, 32, 46, 83, 90, 93, 132, 140,

142, 154, 166, 171, 236, 242, 247, 285
primary key (DDL) 237, 285
primary key (SQL) 285
primary subtransaction 286
PRIVACY KEY clause 184
PRIVACY LOCK clause 107, 184
PRIVACY-AND-IQF SCHEMA 286
PRIVACY-AND-IQF SUBSCHEMA 286
probable position pointer (PPP) 127, 142, 152,

153, 157, 285, 286
processing chain 286
program interface 34
PTC state 286
pubset declaration 286
pubset declaration job variable 286

R
RC 34
Readme file 15
READY 287
READYC 287

Index

U929-J-Z125-12-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

8.
 M

ar
ch

 2
01

6
 S

ta
nd

 0
9:

23
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

15
01

70
4

_U
D

S
_

E
n

tD
ef

\e
n

\u
ds

en
t.s

ix

realm 50, 103, 104, 127, 134, 159, 166, 183,
194, 258, 287
size 248
structure 197
temporary 101, 106, 159

realm configuration 287
realm copy 103, 287
realm entry

DDL 235
realm extension

automatic 263
online 282

realm reference 127
realm reference number 287
REALM-REF (Realm Reference) 127
REC-REF 288
reconfiguration 287
record 28, 64, 105, 126, 132, 140, 146, 169, 254,

287
structure 219

record address 88, 128, 134, 139, 287
RECORD AREA 288
record element 24, 28, 29, 49, 62, 185, 236, 238,

260, 288
record entry

DDL 236
SSL 247
subschema DDL 257

record hierarchy 288
record length item 58
RECORD NAME clause 105, 237, 247
record name clause 185
record POPULATION clause 132
record reference number 81, 128, 288
record SEARCH KEY table 288
record SEARCH key table 89, 126, 132, 140,

223, 247, 250
placement 158, 166, 171

record sequence 80, 90, 100, 145, 149, 152,
236, 242

record sequence number 81, 128, 129, 288
record sequence number (RSQ) 210, 213

record type 24, 49, 64, 126, 132, 183, 185, 236,
247, 260, 288
linear 288

record type reference 128
record-element-name clause 238
record-POPULATION clause 248
redundancy 102, 155
redundancy-free data storage 37
referential integrity 26, 29, 31, 34, 46, 288
relation 28
relational database description 32
relational model 27, 31, 32
relational schema 47
relational view 32, 47
relationship 25, 26, 29, 46
remote application program 288
remote configuration 289
remote database 289
remote host 289
reorganization, dynamic 102, 125, 171, 247, 250,

253
repeating group 49, 62, 183, 190, 240, 289
repetition factor 49, 240
repetition symbol 52, 53, 56, 59
request 289
restart

of a session 289
of BMEND 289

restructuring 289
result table 28
retrieval 29
return code 289
RLOG file 289
rollback 290
RR 35
RSQ 129, 142, 156, 210, 213, 290
RUNUNIT-ID 290

S
SCD 219, 221
schema 290

conceptional 40
naming 235
relational 47

Index

320 U929-J-Z125-12-76

schema DDL 26, 46, 49, 134, 142, 146, 290
structure 234

schema entry
DDL 234
SSL 246

Schema Information Area (SIA) 290
SCHEMA NAME clause 107
SEARCH KEY 290
SEARCH key 88, 95, 97, 100, 140, 171, 238,

244, 247
naming 102

SEARCH KEY clause 88, 97, 100, 102, 238, 243
SEARCH KEY table 290
SEARCH key table 89, 97, 126, 132, 137, 152,

155, 171, 176, 224, 252, 255
form 155
naming 238, 244
placement 158, 165, 171
storage space requirement 176

secondary key 88, 95, 97, 102, 132, 136, 139,
159, 166, 171, 236, 238, 242, 244, 290

secondary subtransaction 290
security 38
security concept 38
selection method for set occurrences 98
selection option for set occurrences 242, 245
semicolon 233
sequence number 290
sequence of records 67
sequential access 291
server task 291
session 291

abort 291
end 291
interrupt 291
start 292

session job variable 291
Session Log File (SLF) 291
session restart 292
session section 292
session section number 292
set 50, 66, 100, 183, 193, 242, 252, 260, 292

dynamic 101, 106, 159, 242, 292
implicit 292

singular 292
standard 292

set connection data 219, 221
Set Connection Data (SCD) 292
set entry

DDL 241
SSL 252

set membership 75, 101, 146, 242, 243
SET NAME clause 66, 242, 253
set occurrence 66, 90, 126, 141, 145, 149, 158,

161, 252, 292
representation 67
size 137, 152

SET OCCURRENCE SELECTION clause 98,
245

set operations 29
set POPULATION clause 136, 137, 253
set reference number 292
set relationship 25, 26, 29
set SEARCH KEY table 293
set SEARCH key table 97, 126, 132, 140, 171,

224, 252
placement 158, 165, 171
storage space requirement 137

SF pubset 293
shadow database 293
Shared User buffer pool 293
SIA 127, 293
SIB 293
sign symbol 52
single feature pubset 293
SLF 293
SM pubset 293
snap 294
sort key table 126, 132, 140, 149, 171, 224, 252,

254, 294
naming 102
placement 158, 165, 171
storage space requirement 137, 176

source program 294
spanned record 294
SQL 30, 32, 294
SQL access 53, 54, 58, 81, 92, 105, 106, 175,

193, 194

Index

U929-J-Z125-12-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
1

8.
 M

ar
ch

 2
01

6
 S

ta
nd

 0
9:

23
.0

8
P

fa
d:

 P
:\

F
T

S
-B

S
\D

B
\U

D
S

\U
D

S
V

28
\D

oc
s\

15
01

70
4

_U
D

S
_

E
n

tD
ef

\e
n

\u
ds

en
t.s

ix

SQL conversation 294
SQL DML 294
SQL Interface Block (SIB) 295
SQL transaction 295
SSIA 295
SSIA-RECORD 295
SSITAB module 295
SSL 47, 93, 102, 105, 125, 246, 295

structure 246
standard set 295
standardization 30
statement code 295
status code 295
storage mode 94, 141
storage space reservation 140
storage structure 125
Storage Structure Language (SSL) 47, 295
string 295
structure, logical 40
SUB-SCHEMA NAME clause 184
SUB-SCHEMA SECTION 296
subcontrol system 295
subschema 47, 183, 257, 296

naming 184, 258
Subschema DDL 296
subschema DDL 26, 47, 107, 183, 257

structure 257
Subschema Information Area (SSIA) 296
subschema module 296
subschema record 296
subtransaction 296
syntax rules 232
system area 296
system break information 296
system buffer pools 297
system managed pubset 297
SYSTEM record 297
SYSTEM set 95, 100, 101, 137, 221, 297

T
table 28, 29, 158

multi-level 297
table (SQL) 297
table extension 137, 171

table header 223, 297
ACTKEY format 224
BNR format 224

table level 143, 155
table line 138
table pages 297
table part

distributable list 105, 238, 254
table realm

distributable list 134, 146, 159, 238, 279
table structure 223
TANGRAM 298
task attribute TP 298
task communication 298
task deadlock 298
task priority 298
TCUA 298
TEMPORARY clause 104, 235
temporary realm 106
time acknowledgment 298
time conversion, uninterrupted 38
transaction 298

committing a 298
roll back 299

Transaction Currency Area 299
transaction identification (TA-ID) 299
transfer pool 299
tuple 28
two-phase commit protocol 299
TYPE clause 54, 155, 239, 240

U
UDS 299
UDS-D 43
UDS-D task UDSCT 300
UDS/SQL 300
UDS/SQL / openUTM-D consistency 300
UDS/SQL pubset declaration 300
UDSADM 299
UDSHASH 299
UDSNET 299
UDSSUB 299
uninterrupted time conversion 38
unique throughout the network 300

Index

322 U929-J-Z125-12-76

unit of data 49
uppercase letters 233
USAGE clause 188
user database 300
user realm 103, 300
user task 300
user view 34
USER-WORK-AREA (UWA) 300
UTF-16 59, 187, 239
utility 104
utility routine 107, 133, 139
UWA 300

V
value 28
VALUE clause 192
value range 28

of condition 192
of item 51

variable 18, 19
vector 49, 61, 183, 189, 240, 301
version number

internal 301
view 28

relational 47

W
warm start 301
WITHIN clause 104, 159, 166, 238

	Title
	Contents
	Preface
	Structure of the UDS/SQL documentation
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manuals
	Notational conventions
	Warnings and notes
	Non-SDF notational conventions

	General information
	Modern data organization
	Data models
	The CODASYL model
	Relational model
	Relative merits of the data models
	Coexistence of the CODASYL and relational models

	Universal Database System UDS/SQL

	Designing the database
	Data modeling
	Distributing the data
	Technical implementation
	Defining the logical structure of a UDS/SQL database
	Defining the physical structure of a UDS/SQL database
	Views

	Schema DDL
	Introduction
	Defining an item
	Defining an unpacked numeric item
	Defining a packed numeric item
	Defining a binary item
	Defining an alphanumeric item of fixed length
	Defining an alphanumeric item of variable length
	Defining a national item (UTF-16)
	Defining a database key item

	Defining a vector
	Defining a repeating group
	Grouping record elements to form a record type
	Linking the records of two record types to form a set
	Defining a set
	Defining the type of membership of records in a set

	Access paths and record sequences
	Direct and sequential access on record type level via database key value
	Generating additional access paths for direct access on record type level
	Determining the order of records within a set occurrence
	Generating additional paths for direct access on set level
	Determining set occurrence selection

	Special sets
	SYSTEM set
	Dynamic set

	Assigning names to hash areas and tables
	The realm concept
	Defining a realm
	Defining allocation of records to realms
	Temporary realms

	Assigning name and privacy to a schema
	Comprehensive example of DDL application
	Reserved words of the DDL compiler

	SSL
	Introduction
	Methods of physical representation of the logical data structure
	DBTT (Database Key Translation Table)

	Declaring the population
	Specifying the number of records in one record type
	Specifying the size of the set occurrences of a set
	Overview of the initial sizes for storage space reservations

	Determining the linkage of records
	Determining the storage mode for set occurrences
	Assessing pointer array, list and chain
	Preventing redundancy in SEARCH key tables
	Adding a pointer to link a member to its owner

	Defining the placement of member records, tables and hash areas
	Defining the placement of member records, associated tables and hash areas for secondary keys
	Placement at realm level
	Placement within a realm

	Defining the placement of record SEARCH key table, DBTT and record hash areas
	Overview of placement statements

	Defining the extent of table reorganization desired
	Storing the records of a record type in compressed form
	Formulas for calculating the storage space requirements for records and tables
	Comprehensive example of SSL application
	Reserved words of the SSL compiler

	Definition of the user interface to the database
	Subschema DDL
	Introduction
	Assigning name and privacy to a subschema
	Unlocking a schema for creating a subschema
	Copying entire record types from the schema into the subschema
	Copying part of a record type from the schema into the subschema
	Copying sets from the schema into the subschema
	Copying realms from the schema into the subschema
	Comprehensive example of subschema DDL

	Relational schema

	Structure of pages
	Page container
	Act-key-0 and act-key-N page
	FPA page
	DBTT pages
	DBTT anchor page
	DBTT page

	Direct CALC page
	Indirect CALC page
	Data page

	Structure of records and tables
	Structure of records
	Structure of tables

	Reference section
	Schema DDL syntax
	Schema entry
	Realm entry
	Record entry
	Set entry

	SSL syntax
	Schema entry
	Record entry
	Set entry

	Subschema DDL syntax
	IDENTIFICATION DIVISION
	AREA SECTION
	RECORD SECTION
	SET SECTION

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

