English

FUJITSU Software BS2000

AID V3.4B

Debugging of C/C++ Programs

User Guide

Edition June 2018

O
FUJITSU

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Documentation creation
according to DIN EN 1SO 9001:2015

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2015.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

Copyright © 2018 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Contents

1.1
1.2
1.3
14

3.1
3.2
3.3
3.4
3.5
3.6
3.7

41
411

Preface e e e e e e e e e 7
Objectives and target groups of the AID documentation. 8
Structure of the AID documentation, 8
Changes since the last edition of thismanual 10
Notational conventions, 10
Metasyntax e e e e e 1"
Prerequisites fordebugging 13
Compilingin BS2000 i i e e e e 14
Linking, loading and startinginBS2000 16
Compiling and linkingunderPOSIX 17
Loading and startingunder POSIX, 17
Loadingthe LSD dynamically 18
bS2Cp e 18
Commands on starting a debuggingsession 19
AddressinginCand C++programs i ittt e e e e 21
Qualifications L e e e e e e e e 21
Associating data with translation units, functions and blocks 26

U6148-J-Z2125-8-76

Contents

4.2
4.2.1
4.2.2
4.2.21
4222
423
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8

4.3
4.3.1

5.1
5.2

5.3
5.3.1
5.3.2
5.3.3
5.3.4
5.3.4.1
5.3.4.2
5.3.4.3
53.44

54

541
5.4.2
543

5.5

5.5.1
5.5.2
55.3
554
555
5.5.6

Datanames L e e e e e e e 29
Subscript notation L 30
Cstrings e 36

Cstringliterals e 36

Cstringarrays e 38
Pointer notation L 40
Structure qualification 40
Dereferencing e 41
Operatorprecedence e 42
The address operator & and the address selector %@(...) 42
Length operator sizeof() and length selector %L(...) 47
Functions, labels and sourcereferences 50
Special notes on addressing statements 52
C++-specificaddressing e e 57
Qualifications L e e e e e e e e e e 57
Data defined in the middle ofablock 62
Classes e 63
Scoperulesinclasses 65
Constructors and destructors 72
Virtual functions 73
Pointerto class member L L 74

Pointertodatamember 75

Pointer to functionmember oL 79

Comparing pointerstomembers Lo 83

Setting a pointer to membertozeroo 84
Namespaces o i i e e e e e e e e e e e e 85
Unnamed Nnamespaces o o o i e e e e e e e e e e 86
Scoperulesinnamespaces e e e 87
Alias names fornamespaces Lo 93
Templates L e e e e e e e e e e e e 94
Template instantiation 94
Classtemplates e 99
Functiontemplates 104
Listing template instances 106
Displaying template instancenames Lo 107
Accessing source references from template instances 108

U6148-J-Z2125-8-76

Contents

5.6
5.7
5.8

8

8.1
8.2

Overloaded functions .. 110
Overloaded operators @ . i i i it e e 111
Referencevariables 112
AIDcommands i i e e e e e e e e e e 113
%AID . . L e 113
WAINT . L e 121
%ALIAS . . e e 124
%BASE 127
%CONTINUE e 129
%CONTROLN e 130
%DISASSEMBLE 139
%DISPLAY . . . e 148
%DUMPFILE e e 171
%FIND . . . e 173
YHELP 183
%INSERT e 185
%MOVE e 195
%ON . e 209
%OUT . . e e 221
%OUTFILE 224
%QUALIFY . . . e 226
%REMOVE e 230
%RESUME e 233
%SDUMP . . e 234
YSET . . e e e 254
%SHOW . . . e 272
%STOP . . e e 275
%SYMLIB e 278
%TITLE . . . 281
%TRACE e 282
POSIXdebugcommand 291
Special notes on debuggingunder POSIX 295
Inheriting the debugcontext 295
Debug strategies e e e e e e e e 295

U6148-J-Z2125-8-76

Contents

8.3

8.3.1
8.3.2
8.3.3

8.4

9.1
9.11
9.1.2

9.2
9.21
9.2.2

9.3

10

10.1

Input/output L e e e e e e e e e 297
Possibleinputs 297
Allocation L e 299
Errors e 299
Dump processing i e e e e e e e e e e e e e e e e e e e 300
Sample applications L. e e e e 301
Sample C applicationinBS2000o 301
Source errorlisting 302
Debugrun 303
Sample C++ applicationinBS2000 308
Source errorlisting 308
Debugrun e 309
Sample C application under POSIX 320
Appendix L e e e e e e e e e e e e e e e e e e e 321
Comparison: debugging older objects / C++ V3.0 objects 321
GloSSary i i e 323
Related publications e 339
Index e e e e e e e e e e e e e 343

U6148-J-Z2125-8-76

1 Preface

AID, the Advanced Interactive Debugger in BS2000, provides users with a powerful
debugging tool. Thanks to AID, error diagnostics, debugging and short-term error recovery
of all programs generated in BS2000 are considerably more rapid and more straightforward
than other approaches, such as inserting debugging aid statements into a program, for
example. AID is permanently available and is extremely adaptable to the particular
programming language. Any program debugged using AID does not have to be recompiled
but can be used in a production run immediately. The range of functions of AID and its
debugging language (using AID commands) are primarily tailored to interactive applica-
tions. AID can, however, also be used in batch mode. AID provides the user with a wide
range of options for monitoring and controlling execution, effecting output and modification
of memory contents. It also lets you call up information on program execution and on using
AID.

With AID, the user can debug both on the symbolic level of the relevant programming
language as well as on machine code level. Symbolic debugging of a C/C++ program
allows you to use the names defined in the source code to address statements, functions
and data items and to use the source reference generated by the compiler to address state-
ments which have no name.

The BS2000 commands occurring in the AID documentation are described in the EXPERT
form of the SDF (System Dialog Facility) format. SDF is the dialog interface to BS2000. The
SDF command language supersedes the previous (ISP) command language.

With AID, you can debug pure BS2000 or POSIX programs or mixed mode programs. Pure
POSIX programs run entirely in the POSIX shell. BS2000 programs which use the POSIX
interfaces are known as mixed mode programs.

In addition, the options for accessing the data and statements of a C++ program as
described in this manual require the C/C++ compiler as of V3.0.

Please refer to the appendix for an overview of the main differences when debugging
programs compiled with the C/C++ compiler as of V3.0 and older objects.

AID provides you with source-based debugging of programs compiled with the new C/C++
compiler, in a graphical interface on your PC as standard. Graphical debugging is a much
more convenient way of debugging as the program section currently being executed is
always displayed on your screen and you can input AID commands with a simple mouse-
click.

U6148-J-Z2125-8-76 7

Objectives and target groups of the AID documentation Preface

1.1

1.2

Objectives and target groups of the AID documentation

AID is targeted to all software developers working in BS2000 with the programming
languages COBOL, FORTRAN, C, C++, PL/I or ASSEMBH or those who wish to debug or
correct programs on machine code level. This manual is intended for those involved in
debugging C and C++ programs.

Structure of the AID documentation

AID documentation is comprised of the AID Core Manual, the language-specific manuals
for symbolic debugging, and the manual for debugging on machine code level. For experi-
enced AID users there is also a Ready Reference, giving the syntax of all the commands
and the operands with brief explanatory notes. It also includes the %SET tables and a
comparison of AID and IDA. All the information the user requires for debugging can be
found by referring to the manual for the particular language required and the core manual.
The manual for debugging on machine code level can either be used as a substitute for or
as a supplement to any of the language-specific manuals.

AID Core Manual [1]

This basic reference manual contains an overview of AID and a description of the topics
and operands which are common to all the programming languages. As part of the
overview, the BS2000 environment is described; basic concepts are explained and the
repertoire of AID commands is presented. The other chapters describe prerequisites for
debugging; command input; the subcommand, complex memory reference and medium-
and-quantity operands; AID literals and keywords. The manual also includes the BS2000
commands not permitted in command sequences.

AID User Guides

The User Guides deal with the commands in alphabetical order, and they describe all
simple memory references. Apart from the present manual,
AID - Debugging of C and C++ Programs,

the available User Guides are:

AID - Debugging of COBOL Programs [3]
AID - Debugging of FORTRAN Programs [4]
AID - Debugging under POSIX [5]

AID - Debugging of ASSEMBH Programs [6]

U6148-J-Z2125-8-76

Preface

Structure of the AID documentation

In these language-specific manuals, the description of the operands is tailored to fit the
programming language in question. A prerequisite for this is that the user knows the
particular language scope and operation of the relevant compiler.

The additional functionality for machine code debugging is described in
AID - Debugging on Machine Code Level [2]

The manual can be used for programs for which no LSD records exist or for which the infor-
mation from symbolic debugging does not suffice for error diagnosis. Debugging on
machine code level means the user can issue AID commands regardless of the language
in which the program was written.

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at Attp://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME .<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the SHOW-FILE command or an editor.

The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>command shows the
user ID under which the product’s files are stored.

Additional product information

Currentinformation, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

U6148-J-Z2125-8-76 9

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last edition of this manual Preface

1.3 Changes since the last edition of this manual

1.4

AID V3.4B30 offers the following new functions compared to version V3.4B10:

e Extension of the%AID command: new LEV operand. This operand can expand the
output of the AID command %SDUMP %NEST by the levels within the call hierarchy.

e New qualification NESTLEV in the %DISPLAY, %MOVE, %SDUMP and %SET
commands designated to qualify all instances of recursive data.

e Enhancement of the %FIND command that enables searching the find area for
characters from a coded character set (CCS) supported by XHCS.

Notational conventions

italics

bold

i

In the body of the text, operands are shown in lowercase italics.

Text to be highlighted is printed in bold. In addition, bold print is also used in
the syntax notations to differentiate special characters and lowercase
letters which must be entered as shown as opposed to metasyntax
elements and operand names. Typical examples include the square
brackets [1, which enclose the subscript of an array in C/C++, and the
sizeof () operator, which must always be entered in lowercase.

This symbol identifies points to be specially noted, e.g. cases where
different addresses are calculated in AID and C++ even though the
syntax is identical (e.g. because AID and C/C++ differ in their treatment of
individual address operands, etc).

10

U6148-J-Z2125-8-76

2 Metasyntax

The metasyntax shown below is the notational convention used to represent commands.
The symbols used and their meanings are as follows:

UPPERCASE LETTERS
Mandatory string which the user must employ to select a particular function.

lowercase letters

String identifying a variable, in the place of which the user can insert any of the
permissible operand values.

alternative
alternative
{ alternative | ... | alternative }

Alternatives; one of these alternatives must be selected. The two formats have the
same meaning.

Loptionall
Specifications enclosed in square brackets indicate optional entries.

In the case of AID command names, only the entire part in square brackets can be
omitted; any other abbreviations cause a syntactical error.

Reproducibility of an optional syntactical unit. If a delimiter, e.g. a comma, must be
inserted before any repeated unit, it is shown before the periods.

Reproducibility of a syntactical unit which must be specified at least once. If a
delimiter, e.g. a comma, must be inserted, it is shown before the periods.

U6148-J-Z2125-8-76 11

Metasyntax

Underscoring

Underscoring designates the default value which AID inserts if the user does not
specify a value for the operand.

A bullet (period in bold print) delimits qualifications or stands for a prequalification
(see also the %QUALIFY statement) or is the operator for a byte offset or is part of
the execution counter or subcommand name. The bullet is entered from the
keyboard using the key for a normal period. It is actually a normal period, but here
it is shown in bold to make it stand out better.

12 U6148-J-Z2125-8-76

3 Prerequisites for debugging

For symbolic debugging, AID requires a "List for Symbolic Debugging" (LSD) which
contains the symbolic names defined in a program. This LSD information is generated by
the compiler and can be taken over at the time of linkage and also be loaded. This chapter
briefly describes the control statements required for generating the LSD with the C/C++
compiler at both BS2000 and POSIX levels. In addition, the following sections also list the
operands you have to specify during compiling, linking and loading to create and run a
program under POSIX. General information on LSD records, linking, loading, and starting
can be found in the chapter on “Prerequisites for debugging with AID” in the AID Core
Manual.

In addition, AID offers an option that allows the LSD information to be dynamically loaded
if the program was initially loaded without the LSD. The LSD must have been stored with

the program concerned in one PLAM library for this. It can have been directly stored there
by the compiler during compilation or, if the program was compiled under POSIX, you can
copy it with the LSD records from the POSIX file system into a PLAM library. This chapter
also contains a brief description of the POSIX bs2cp command which you need to transfer
the program from POSIX into BS2000.

The final section of this chapter contains a summary of the commands you should always
use to start a debugging session.

U6148-J-Z2125-8-76 13

Compiling in BS2000 Prerequisites for debugging

3.1

Compiling in BS2000

You control the generation of LSD information with the following option of the C/C++
compiler V3.0:

//MODIFY-TEST-PROPERTIES TEST-SUPPORT = {*UNCHANGED|*YES|*NOQ}

*UNCHANGED
The last value defined with a MODIFY-TEST-PROPERTIES statement is taken over.
*NO applies if no value was defined in the current compilation run

*YES The compiler will generate LSD information.

*NO With the presetting NO, the compiler will not generate LSD information.
Call backtracing (SDUMP %NEST) is possible even without this LSD information.

LSD generation is possible for non-optimized programs only. If optimization is turned on
anyway (cf. the MODIFY—-OPTIMIZATION-PROPERTIES statement), the compiler sets the
optimization level to *LOW, and issues a corresponding message.

LSD generation for C++ programs also has an impact on the way functions are generated.
Inline functions are generated as outline functions. The option INLINING=*YES, if
specified, is reset by the compiler to INLINING=*NO.

Furthermore, note that if you do not plan to dynamically load the LSD information with
%SYMLIB when required, you will also have to ensure that the LSD information is included
in the compiler statement that controls the linking of the module:

//MODIFY-BIND-PROPERTIES ...,TEST-SUPPORT = {*UNCHANGED|*YES|*NO}

*UNCHANGED
The last value defined with a MODIFY-TEST-PROPERTIES statement is taken over.
*NO applies if no MODIFY-TEST-PROPERTIES statement was specified in the
current compilation run.

*YES The LSD information is linked into the module.
*NO With the default *NO setting, the LSD information is not linked in.

A further option of the MODIFY-BIND—-PROPERTIES statement that affects debugging with
AID is STDLIB. This is assigned the value *DYNAMIC by default, which means that the C
runtime system is loaded dynamically. In the case of some program errors, e.g. when some
portions of the code are overwritten by library functions, it may not be possible for AID to
display the entire call hierarchy, i.e., the last function before the error occurred may be
missing. If this occurs, you could help yourself by specifying STDLIB=*STATIC at linkage
and thus ensure that the runtime system is statically linked to the program (see also the
"C/C++ Compiler User Guide).

14

U6148-J-Z2125-8-76

Prerequisites for debugging Compiling in BS2000

You must specify the following two options if the program uses POSIX interfaces:

— The _0SD_POSIX define must be set before the first #include statement in the
program. The simplest way to do this is to specify the following compile option:
//MODIFY-SOURCE-PROPERTIES DEFINE = _0SD_POSIX

— In order to find the standard include headers during compilation, you must specify the
SYSLIB.POSIX-HEADER library, which contains the standard include elements for
POSIX functions, in addition to the CRTE library SYSLNK.CRTE.

This can be done with the following option:
//MODIFY-INCLUDE-LIBRARIES STD-INCLUDE-LIBRARY=
(*STD-LIBRARY,$.SYSLIB.POSIX-HEADER)

The following option must be set if the program is to read in the parameters for the main
function, as is usual with UNIX:

//MODIFY—-RUNTIME-PROPERTIES PARAMETER-PROMPTING = *YES

This causes the program to be halted immediately after starting and you are then prompted
to input the parameters for the main function or redirections for stdin/stdout or stderr.
Specifying this operand is meaningless if the program is started in the POSIX shell as
parameters and redirections are input directly in the command line as in UNIX.

A complete description of the operands which control compilation can be found in the
C/ C++ User Guide [9].

U6148-J-Z2125-8-76 15

Linking, loading and starting in BS2000 Prerequisites for debugging

3.2 Linking, loading and starting in BS2000

To be able to debug symbolically, you also have to ensure that the LSD information is
included during linking, loading and starting.

Compiled programs can be linked, loaded and started by using standard SDF commands
which are valid for all languages. These commands are described in the chapter on
“Prerequisites for debugging with AID” in the AID Core Manual. The same chapter also
describes which parameter is needed to pass the LSD information generated by the
compiler to the link editor (BINDER) or the dynamic binder loader DBL. It is also possible
to dynamically load LSD information from a PLAM library using the %SYMLIB command
(see the section “Loading the LSD dynamically” on page 18).

If you want to use the C runtime system POSIX functions, you must specify the
SYSLNK.CRTE.PQOSIX link switch library when linking. The module in this library must be
linked in before modules from other CRTE libraries. With dynamic linking using the DBL,
you therefore have to assign the SYSLNK.CRTE.POSIX library a lower link name BLSLIBnn
than any subsequent, further CRTE libraries.

Example

ADD-FILE-LINK FILE-NAME=$.SYSLNK.CRTE.POSIX,LINK-NAME=BLSLIB00
ADD-FILE-LINK FILE-NAME=$.SYSLNK.CRTE.PARTIAL-BIND,LINK-NAME=BLSLIBO1
LOAD-PROGRAM ...

If you link statically using BINDER and link in the SYSLNK.CRTE.POSIX library with an
INCLUDE-MODULES statement, this ensures that the module from the link switch library
is linked in before the runtime system modules:

INCLUDE-MODULES *LIB(LIB = $.SYSLNK.CRTE.POSIX, ELEM = *ALL)

More information on the common runtime environment CRTE can be found in the manual
“CRTE - Common RunTime Environment” [12].

16

U6148-J-Z2125-8-76

Prerequisites for debugging Compiling and linking under POSIX

3.3

3.4

Compiling and linking under POSIX

The following POSIX commands are available to you in the POSIX shell for compiling and
linking C or C++ programs:

cc, ¢89 Calls the compiler as C compiler
CC Calls the compiler as C++ compiler

The C/C++ compiler generates LSD information if you specify the —g option. Note that this
option also suppresses the inlining of functions in the C/C++ source program and the
standard optimizations (-0).

If you do not specify —g, you cannot debug the program symbolically. However, you can
debug the program at machine code level.

The cc, ¢c89 and CC commands are described in detail in the manual “POSIX Commands
of the C/C++ Compiler” [9].

Loading and starting under POSIX

You use the POSIX debug command to load the program with the LSD. This command is
described in detail in the chapter “Special notes on debugging under POSIX” on page 295.
After loading, AID outputs message AID0348, which contains the process number (pid) of
the created process. You are then presented with the debug mode prompt and can input
AID commands. You can start the program with %RESUME.

If you load and start the program directly in the POSIX shell, i.e. without using the debug
command, the program is unloaded if an error termination occurs. In contrast to the BS2000
level, you then have no possibility of examining the error environment and error cause
immediately if you want to try to eliminate the error and continue program execution.

U6148-J-Z2125-8-76 17

Loading the LSD dynamically Prerequisites for debugging

3.5

3.6

Loading the LSD dynamically

Programs used in production are generally loaded without the LSD. It is also meaningful to
load very large programs, in which only separate modules are to be debugged symbolically,
without the LSD. In such cases, AID can still access the relevant LSD at a later stage,
provided the module was stored together with the LSD in a PLAM library. This is done by
specifying the PLAM library containing the program with the LSD information in the
%SYMLIB command (see page 278). If you subsequently access a symbolic memory
reference with an AID command, AID opens the PLAM library and searches for the required
information in it. You can also use this procedure if the program is running in the POSIX
shell. Since %SYMLIB does not support accessing POSIX files, the program must be
stored with the LSD in a PLAM library in BS2000 in this case as well. If the program was
compiled in the POSIX shell, you will need to copy the created object into BS2000 with the
POSIX command bs2cp and store it there as a type L element in a PLAM library.

It is fundamentally not possible to dynamically load the LSD for programs invoked via an
exec() call from another program. In this case, you always have to use the procedure
described above if you wish to debug symbolically.

bs2cp

bs2cp copies files from the POSIX file system into BS2000 and vice versa. BS2000 files
may be DVS files or BS2000 PLAM library elements. You will find a detailed description of
bs2cp in the manual “POSIX Commands” [11].

18

U6148-J-Z2125-8-76

Prerequisites for debugging Commands on starting a debugging session

3.7 Commands on starting a debugging session

When debugging C/C++ programs, it is advisable to enter the following command at the
start of each debugging session:

%AID C=YES

This enables the handling of char arrays as C strings, and thus allows you to work with C
strings in AID just as you would in C/C++. At the same time, the setting C=YES also enables
LOW=ALL and SYMCHARS=NOSTD.

— LOW=ALL means that AID distinguishes between uppercase and lowercase in names
from the source program and does not convert lowercase names of translation units
and other BLS names into uppercase. All other specifications in BS2000 and AID
commands are converted as usual to uppercase. You can thus continue to enter
command and operand names and all other inputs in lowercase. Note, however, that if
you are not debugging under POSIX, it is better to set ZAID LOW=0N, since you would
then not have to worry about entering the names of translation units in uppercase.

— SYMCHARS=NOSTD sets the hyphen to be always interpreted as the minus sign. Since C
and C++ do not allow the use of hyphens in names, all hyphens in inputs can only
represent minus signs.

Note that the entry ZAID C=NO does not affect the settings of LOW and SYMCHARS, i.e. the
values LOW=ALL and SYMCHARS=NOSTD, which are set implicitly by C=YES, are not reset by
C=NO0.

The current settings of global parameters can be displayed during a debugging session with
%SHOW %AID (see the description of the command %SHOW on page 272).

Immediately after loading, the program counter (PC) is in the superblock. As a result, you
can only reference global data and data declared as static. AID requires the appropriate
qualification for access. There is no call hierarchy until the program counter is on the first
instruction in your program, and only then can AID address local data and execute the
%SDUMP command. You get to this point using:

%insert main;a%r

or

%trace 1 in s=srcname

srcname is the name of the translation unit which contains the main function.

In the case of C programs and C++ programs without virtual functions or constructors, both
options have the same significance, i.e. the program is halted before the first executable
statement of the main function.

However, C++ programs usually begin with a compiler-generated function in which, among
other things, constructors are interpreted and tables are constructed for virtual functions.
Following the % TRACE command, the program is halted at the start of this function. The

U6148-J-Z2125-8-76 19

Commands on starting a debugging session Prerequisites for debugging

name of this function (_ _STI_ _)is generated by the compiler and is also output in the

stop message of the % TRACE. To ensure that even a C++ program will always halt immedi-
ately before the first executable statement of the main function after loading, you can use
the command:

%trace 1 in main

The following option

OVERFLOW-CONTROL=*USER-ACKNOWLEDGE

must be set with the

/MODIFY-TERMINAL-OPTIONS

command to enable interruption of an extensive AID output with the K2 key.

20 U6148-J-Z2125-8-76

4.1

Addressing in C and C++ programs

This chapter describes only those memory references which are used for the symbolic
debugging of both C and C++ programs. In chapter 5 you will find descriptions of additional
address operands specific to C++ programs. A general description of addressing methods
can be found in the chapter on “Addressing in AID” in the AID Core Manual.

All data names and statement names from the program which are listed in the LSD records
as well as the source references generated by the compiler can be used as symbolic
memory references. In some cases, preceding qualifications may be required as described
below .

In all operands in which compl-memrefis possible, you can choose as you like between the
memory references described in this manual and those for debugging at machine code
level [2].

Qualifications

You use qualifications in the following cases:

— If you wish to access a memory object that is not in the current AID work area.
— If the interrupt point is not in the scope of the addressed memory object.

— If the required memory object is hidden by a definition with the same name.

— To designate a contiguous segment of program memory.

There are two qualifications: the base qualification, with which you define the AID work
area, and the area qualification, with which you address parts of the work area. A combi-
nation of qualifications may be used to describe the path to an area or memory object.

Qualifications are separated by using periods as delimiters. A period is also required
between the last qualification and the following operand part. The qualification for the
superblock, in which a pair of colons precede the address operand, constitutes an
exception; no additional period is inserted in this case between the :: and the address
operand.

U6148-J-Z2125-8-76 21

Qualifications Addressing in C and C++ programs

When debugging C and C++ programs, you can use the base qualification and, as area
qualifications, the S, PROC and BLK qualifications. Global data and functions are
addressed by means of a prepended ::. Qualifications are represented in the command
syntax using the qua operand. The following overview shows how qualifications are used:

keyword

source-referece
dataname)

[::]

VM function
[E={ }.] [CTX=contexte]l [S=srcnamee]
{dataname]
[PROC=functione]
L'label!

[BLK="[f-Inl[:bJ]"'e]l dataname

CNESTLEV=Tevel-number]

Base qualification

E={VM | Dn}
The base qualification determines whether the AID work area is in the loaded
program (E=VM) or in a dump file (E=Dn). The base qualification is used in the
same way for symbolic debugging and for machine-oriented debugging and is
described in the chapter on “Addressing in AID” in the AID Core Manual [1] and
under the command %BASE on page 127.

Area qualifications

These qualifications enable you to designate a part of the work area. If an address operand
ends with one of these qualifications, the effect of the command will be restricted to only the
part which was designated by the last qualification. In other words, an area qualification
allows you restrict the scope within which a command takes effect and to thus make a data
or statement name unique in the work area or to reference a name that is otherwise
inaccessible at the current interruption point.

22 U6148-J-Z2125-8-76

Addressing in C and C++ programs Qualifications

CTX=context

The CTX qualification designates a context (see also the section on “Area
qualifications” in the AID Core Manual [1]). It is only in the commands %SDUMP
and %QUALIFY that an address operand may end with the CTX qualification. This
qualification is only required if identically named translation units are loaded in
different contexts and if the desired translation unit can thus be uniquely addressed
only via the CTX qualification. context may be the context name explicitly assigned
in the BIND macro or the implicitly assigned name LOCAL#DEFAULT. The default
context name LOCAL#DEFAULT is also assigned to programs loaded with the
dynamic binder loader DBL. Further contexts of a program may occur as a result of
a link to a shared-code program.

context may have a length of up to 32 positions.

Note that the CTX qualification is not included in the syntax for the address
operands of the individual commands, since this would unnecessarily inflate the
syntax.

Examples

%controll in ctx=local#default.s=n'list.c'.proc=main

Here the control-area is not located in the current context in which the program was
interrupted, but in the context LOCAL#DEFAULT.

%sdump ctx=ctxphase
The current interrupt point is located here in a different context of the call hierarchy.
In this %SDUMP, the command is restricted to the specified context.

%insert ctx=local#default.s=n'list.c'.s'30"

The translation unit LIST.C occurs in both the current context as well as the
context LOCAL#DEFAULT . The context qualification is required here so that an
interrupt point can be defined.

S=srcname

The S qualification defines a translation unit.

In the case of LLMs, the name of the source file must be specified and may occupy
up to 32 positions. The C/C++ compiler V3.0 only generates LLMs.

In the case of OMs, srcname is the name of the code CSECT and may thus occupy
up to 8 positions.

If the name includes special characters that do not belong to the AID character set,
e.g. a period or an “&”, the S qualification must be specified with n’srcname’. More
information on constructing module names can be found in the C/C++ User Guide
[8] in the section on “Standard name generation”.

AID converts srcname to uppercase, even if ZAID LOWL=0N] is set.

U6148-J-Z2125-8-76

23

Qualifications

Addressing in C and C++ programs

However, if the program was compiled in the POSIX shell and the name of the
relevant source program contains lowercase characters, you must set A1D
LOW=ALL. This is the only way to ensure that uppercase/lowercase is also
considered in the S qualification. Note that LOW=ALL is set implicitly on entering
%AID C=YES.

You can use the S qualification to define the area in which the commands
%CONTROLN, %TRACE or %SDUMP take effect.

Otherwise, you use an S qualification when you want to reference a name (function,
block, data name, label or source reference) from the LSD records which is not
within the current program unit.

Note for users debugging on machine-code level.:

The CSECT names of LLMs generated with the C/C++ compiler as of V2.1C
contain an '&' and must be writteninn'..."' in AID commands. More detailed
information on working with CSECTs when using AID can be found in the manual
“Debugging on Machine Code Level” [2].

NESTLEV=level-number

The NESTLEV qualification defines a level number.

Like the qualification S=srcname . PROC=function, the qualification NESTLEV=level-
number is designed to manipulate data names that users declare in the source units.
The environment qualification E={VM|Dn} is the only one NESTLEV=level-number
can be combined with.

The qualification NESTLEV accepts a level number, in other words, a reference to
the current call hierarchy. Based on this reference, AID identifies a complete list of
available data names defined at the specified level.

Normally, you have to display and analyze the call hierarchy before using the
NESTLEV qualification. The following AID commands output the current call
hierarchy augmented with the levels:

%AID LEV=ON
%SDUMP ZNEST

The NESTLEV qualification can be used in the commands %DISPLAY, %MOVE,
%SDUMP and %SET. In these commands, the qualification NESTLEV=level-number
can equally (with the same result) replace the qualification

S=srcname . PROC=function, if level-number is correct.

For an example for the usage of the NESTLEVqualification, see AID Core Manual,
section “Area qualifications“[1].

24

U6148-J-Z2125-8-76

Addressing in C and C++ programs Qualifications

You use the pair of colons to address the superblock. You can use this qualification
to reference global data that is hidden at the interrupt point by a definition with the
same name or to designate global data or functions which are not associated with
the current program unit. In contrast to the other qualifications, no delimiting period
is entered between the two colons and the following data or function name.

Example
%display s=n'Tist.c'.::name
The global variable name from the translation unit LIST.C is displayed.

PROC=function

The PROC qualification defines a function from the source program.

function is the name assigned in the source program to a function or main and can

be up to 1000 positions in length.

You can use the PROC qualification to specify the area in which the commands
%CONTROLN, %TRACE or %SDUMP take effect.

Otherwise, you use a PROC qualification when you want to reference a data name
declared as static or a statement name (label) which is not associated with the
current function. In addition, you use a PROC qualification when you want to
reference a data name which is associated with the current function, but which is
hidden at the interrupt point by a local definition with the same name, e.g. if a
variable with the same name is defined in an inner block.

BLK="[f-]n[:b]

The BLK qualification defines a block. As with source references, the name of a
block is formed from the line number and, in some cases, the FILE number as well
as the relative block number.

The outermost pair of braces in a function encloses the entire function and is not a
block for AID. All definitions found there are associated with the function and are
referenced with the corresponding PROC qualification. The second pair of braces
in a function begins a block which you can reference with a BLK qualification.

f FILE number; it is specified only for lines which were inserted because of an
#include or #11ine directive (see the section “Functions, labels and source
references” on page 50).

n Line number in which the block begins; you can find it in the source error listing,
column SRC—LIN; it is identical with the line number in the source file.

b Relative block number within a line; it can be found from the number of left
braces in a line, where only the braces for statement blocks are considered.
The braces for struct, union and enum declarations are not counted. The
first brace in a function counts as a relative block number even if it cannot be
referenced with a BLK qualification.

U6148-J-Z2125-8-76

25

Qualifications Addressing in C and C++ programs

411

b is a number > 1; you specify it only if you do not want to reference the first
block in a line. The b-th block in the line is then specified.

Using the BLK qualification, you can define the area in which the commands
%CONTROLN, %TRACE and %SDUMP take effect.

Otherwise, you specify a BLK qualification when you reference a data name
declared as static which is associated with a block outside the current call hierarchy.
In addition, you can use a BLK qualification when you reference a data name which
is associated with a block within the current call hierarchy and is hidden at the
interrupt point by a definition with the same name.

keyword
The keywords are described in the AID Core Manual in the chapter on “Keywords”
[1]. You will also find them in the descriptions of the commands in which they are
used.

dataname
dataname is described in the section “Data names” on page 29.

{L'label' | source-reference | function}
label, source-reference and function are described in the section “Functions, labels
and source references” on page 50.

Associating data with translation units, functions and blocks

The addressing methods of AID take into consideration the specifics of scope in the C or
C++ programming language. Names declared extern are valid in the whole program;
parameter names and labels have validity within a function. Names which were declared in
a block are valid within that block only.

Global data is defined outside of all functions and are associated with the superblock . Local
data is always associated with the function or the block in which they are defined.

The AID work area comprises the complete non-privileged address area that is occupied
by your loaded program or the corresponding area in a memory dump and is defined by
means of the base qualification. All names that lie within the AID work area defined with
%BASE can be referenced without an explicit base qualification.

All names which lie in some other translation unit always require an S qualification and a
PROC or BLK qualification appropriate to their scope, or a pair of colons (::) if the names of
global data or functions are involved.

Names which lie within the current translation unit require a PROC and possibly a BLK
qualification if they are associated with another function of the same translation unit. Names
in the current function require only a BLK qualification if they are locally hidden by a
definition of the same name or are associated with a function block that is not in the current
call hierarchy.

26

U6148-J-Z2125-8-76

Addressing in C and C++ programs Qualifications

All names that are valid at the interrupt point, i.e. which could also have been used within
the program at that interrupt point, can be referenced without qualification; however, in the
case of identical names, this is only the first definition that is found by AID within the current
call hierarchy (from the innermost to outermost level).

Top-level definitions with the same name can be referenced only with qualification. You
always use the qualification which corresponds to the scope of that name in C or C++.

Examples

1. Function parameters

C program

1 #include <ctype.h>
2

10 iﬁf ma}n(int argc, char *argv[l])
11 -

The argc parameter is referenced as follows, where proc=main in the second possi-
bility is an overqualification which AID ignores.

argc

proc=main.argc

2. Nested blocks

C program

1 #include <stdio.h>
2 int main(void)

3

4

{ int a; struct s {int i;}; {
1
static int b;
brts }
printf("%d\n", a); }

O ~NOoY O

The current interrupt point is at source reference 8. The variable b is referenced with
the following block qualification:
blk='4:2"'.b

U6148-J-Z2125-8-76 27

Qualifications Addressing in C and C++ programs

3. Global external declarations

C program — translation unit TEST2.C

9 extern double d;
10 int main(void) {
11 int fl1(void);

12 d = PI;

13

14 {

15 int d = 15;
16

Let us assume that the program consists of three translation units: the variable d is
assumed to be defined in TEST1.C; itis simply declared in TEST2.C, and is not used in
TEST3.C. Variable d can be referenced as follows:

— if the interrupt point is S’13’:
%display d
— if the interrupt point is S’16’, and there is a local d:
%display ::d
— if the interrupt pointis in TEST1.C:
%display d or %display ::d
— if the interrupt point is in TEST3.C:
%display s=n'testl.c'.::d

or
%display s=n'testZ2.c'.::d

28

U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

4.2 Data names

AID allows you to reference the following types of data:
— simple (scalar) types

— arrays and array elements

— Cstrings

— structures/unions and structure/union components
— enumeration (enum) constants

— Dbit-fields

— pointers

You cannot reference the following with AID:

— preprocessor constants and macros (#define)
— typedef names

— enumeration, structure and union types (tags)

As a rule you can reference data as in C/C++, with the following exceptions:
— Array elements can only be referenced via subscripts, not by means of pointers.
— With variables of type 1ong double, AID evaluates only the first 8 bytes.

— You cannot use variables of type char with AID as an arithmetic type in an expression.
You can only calculate with char variables after adding a type modification to the data
name. %A converts the data type to unsigned char and %F to signed char.

A variable of type signed char is also handled by AID as a signed integer variable.
You can use the contents of such a variable in an expression without type conversion.
The same applies to variables of type unsigned char.

dataname
stands for all data names defined in the source program.

dataname is usually specified as in the source program. AID takes a maximum of
1000 characters into account. If AID LOW={ON|ALL} is set, AID distinguishes
between uppercase and lowercase. As in C/C++, C keywords such as int, char,
etc., are not allowed in AID and are rejected as syntax errors.

dataname may be used in all commands for outputting and modifying data, i.e. the
commands %DISPLAY, %MOVE, %SDUMP, and , %SET. In addition, datanname
can be specified in the %FIND command (to locate strings) and in the %ON
command (for write monitoring).

U6148-J-Z2125-8-76 29

Data names

Addressing in C and C++ programs

4.21

AID provides the following formats:
— subscript notation

— pointer notation

— structure qualification

— dereferencing

These formats can also be combined, i.e. in any of the formats, dataname can be
replaced by any of the other formats.

Subscript notation

You can use subscript notation to access arrays and type-related pointers. The subscript is
specified as in a C/C++ statement in brackets. The brackets used for subscripting are
printed in boldface in this manual in order to distinguish them from the brackets of the
metasyntax.

AID also provides the option of using the array name without a subscript, thus designating
the complete array.

subscript
The subscript can have a value of between -23" and +231-1 and comprises:

— aninteger,
— avariable of type int or
— an arithmetic expression

The arithmetic expression can contain the arithmetic operators (+, -, /, *), integers,
and numeric variables. The numeric variables used in a subscript cannot be
qualified. They must therefore be visible at the interrupt point or, if dataname is
qualified, the variables from subscript must be visible in the range designated by the
qualification.

The variables used in the subscript can be specified in the same way as dataname,
i.e., they can be subscripted, pointer or structure qualified, or dereferenced.

It must be noted that when a subscripted entry ina 0N %WRITEC(...) isinput, AID
immediately calculates the start address and length of the range to be monitored.
This means that if the contents of subscript change during a program run, thus
changing the start address of the range designated with datanamelsubscript]{ . . .},

30

U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

the range defined when 20N %WRITE(...) was inputis still monitored. In contrast
to this, entries in subcommands of the %CONTROL#, %INSERT and %ON
commands are only evaluated when the monitored event occurs, i.e.
datanamesubscript1{ . . . } must be visible at the point of the program run where the
event occurs, e.g. when the test point is reached, but not when the command is
input.

Accessing a single element of an array requires as many subscripts as have to be
specified for access in a C/C++ statement.

If you specify subscript in the form subscriptl : subscript2, you designate the range
between subscript] and subscript2.

The following applies for subscript] and subscript2:

Both must lie within the subscript limits and subscript! must be less than or equal to
subscript?.

If you use an asterisk (*) for subscript, you designate the complete subscript range
of the dimension. For single dimension arrays, this is the same as using the array
name without a subscript. This may not be followed a type or length modification.

You can only use range specification in the %DISPLAY command. Array names
with range specifications must not be used in address calculations. Modifications of
type or length are not permitted.

Examples
1. %DISPLAY array [*]1[3]

Outputs all elements from the first dimension of a two-dimensional array whose
second dimension are 3.

2. %DISPLAY array [1:31J[*J[5:151]

Outputs the elements from a three-dimensional array whose:

— first dimension subscriptis 1, 2 or 3,

— second dimension subscript is anywhere within the subscript limits and
— third dimension is 5 through 15.

U6148-J-Z2125-8-76

31

Data names

Addressing in C and C++ programs

Using arrays with AID

Working with arrays in AID differs from conventional C/C++ methods, since an additional
option allows you to use an array name without a subscript:

1.

Referencing an array in the scope of its definition

In the function or block that contains the array definition, dataname without a subscript
references the entire array. For example,

%FIND X'...' IN dataname and

%0N ZWRITE (dataname) search and monitor the entire array, respectively.

%DISPLAY and %SDUMP edit all array elements with the subscript and associated
content as a table. This also applies to character arrays if AID C=NO has been set.
Note, however, that if you have enabled the interpretation of character arrays as C
strings by specifying %A1D C=YES, AID will display the array contents as a contiguous
character string. The handling of C strings with AID is discussed in a separate section,
starting on page 36.

Referencing an array as a transfer parameter

When an array is passed to a function as a parameter in a function call, the array name
in that function includes only a pointer to the passed array. Consequently, only the start
address of the array is known in that function. This means that you can address
individual array elements as usual via a subscript, but if you use the parameter name
without a subscript here, you will effectively designate the start address of the array. The
only way to reference the array as a whole in this case is with a following pointer
operator and appropriate length modification::

%DISPLAY parametername->%typel length

For C strings, you can specify C for sype, which causes the string to be output in
character format. For arrays of other data types, e.g. int, only the value X is meaningful
for type; this causes the array to be output in hexadecimal representation.

The currently occupied contents of a character array can be output by using the
following two commands:

%FIND X'00" IN parametername—>7%Ln

%DISPLAY parametername->%CL=(%0G — parametername)

The first command (%FIND) determines the address of the null byte. AID saves this
address in the AID register %0G. The following %DISPLAY command outputs the string
up to the null byte in character representation.

32

U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

Examples
C program SOURCE: PARR.C
SRC
LIN
1 void foo (char*,int*);
2 char al25] = "abcdefgh";
3 char *p = &al5]1;
4 int iv[] = {0,10,20,30,40};
main()
25 foo(a, iv);
.}
void foo(char* str, int* nr)
8@ printf("String str:\n%-25s\n",str);
81 printf("Array nr:\n");
for (i=0; i<b; i++) printf("%61",nrlil);

82

1.

Interrupt point in main:

Output of an individual array element:

SRC_REF: 25 SOURCE: PARR.C PROC: main ok ok ok ko ko ok
/%display al61,p[1]

a(6) = |gl

* = |gl

Every seventh element of array a is output.
The header line contains the source reference of the interrupt point and the names of
the current translation unit and current function.

Output of the entire array in dump format:

/%d a%
CURRENT PC: 01000098 CSECT: PARRBOBE **%tioktioktiokk ok ok otk ok
V'0100111A' = a + #'00000000"

0100111A (00000000) 81828384 85868788 89000000 00000000 abcdefgh.....
0100117A (00000010) 00000000 0000OOOOCO OO ...,

U6148-J-Z2125-8-76

33

Data names

Addressing in C and C++ programs

Due to the type modifier %X at the end, AID outputs the entire array a in hexadecimal
and in character representation. The hexadecimal output can be used to determine the
position of the null byte.

Since AID switches to machine code level, an additional header line containing the
current status of the instruction counter and the name of the associated CSECT is
output.

Output of the char array as a C string:

/%aid c=yes

/%d a
SRC_REF: 25 SOURCE: PARR.C PROC: main F*kkkkkkhkdhshhsdd ko Fekedededkdkek
a = "abcdefgh"

%AID C=YES enables the interpretation of char arrays as strings. The subsequent
%DISPLAY outputs the occupied part of the string as a string literal in "...".

Output of a numeric array:

/%d iv

iv(0: 4)

0 0 D 10 (2) 20 C 3) 30
C4) 40

Since the array name was specified without a subscript, AID edits all array elements in
a table and outputs them.

Interrupt point in the function foo:

Output of the start address and a single element of the array:

SRC_REF: 80 SOURCE: PARR.C PROC: foo Fokdddededokkkkkkkkkkdkddkkdkkdkdkk
/%d str,nr,strl(6],nrl3]

str = 0100111A

nr = 01001180

* = 19|

* = 30

Unlike in main, specifying the unsubscripted array name causes the address of the
array to be output, since the array is passed as a pointer. Subscripted specifications are
also possible exactly as in main; however, since the element is referenced via a pointer,
AID outputs an asterisk instead of the element name.

34

U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

Output of the complete character array:

/%d str—>%x1(::a)

CURRENT PC: 0100020A CSECT: PARRSQR@ ArAFAAFAArAdrdhadhrdhrirdirirrsk
V'0100111A" = PARR$O&# + #'0000011A"

0100111A (00000000) 81828384 85868788 89000000 00000000 abcdefgh.....
0100112A (00000010) 00000000 0OOOOOOOO OOOO o ...,

/%f x'00' in str—>%x1(::a)

PARR$0&#+00000123=01001123 : 00000000 00000000 00000000
/%d str—>%c1=(%0g-str)

V'0100020A" = PARR$O&# + #'0000011A"

0100111A (0000011A) abcdefgh

Asinmain, itis also possible in the foo function to output the complete character array
in dump format (first %DISPLAY). If you want to output only the allocated string in
character format, however, you must first use %FIND to look for the null byte. This
information is used in the second %DISPLAY to calculate the length of the string.

Output of a numeric array:

/%d ::i

SRC_RE;Y 80 SOURCE: PARR.C PROC: foo ek ok ek ke ek ke kk e e kok ek ok
iv(0: 4)

C 0) 0 1) 10 (2) 20 (3) 30

4 40

/%d nr=>%1(::iv)

CURRENT PC: 0100020A CSECT: PARR$QR@ FAAHHFhdddkhohdddhhsddkdkhddkdkddddhx
V'01001180" = PARR$O0&# + #'00000180"

01001180 (00000180) 00000000 OOOOOOOA 00000014 0000001E ..., ..
01001190 (00000190) 00000028

/%d nr—>.8%f14

01001188 (00000188) +20

In the case of arrays with numeric elements, it is not possible to have the complete array
edited via the name of the transfer parameter. You can, how-ever, always reference the
whole array by means of the appropriate qualifications (i.e. with the two colons in this
case, since a global data item is involved) and the name with which the array was
defined. The second %DISPLAY shows how you can address the whole array on
machine code level via the parameter name. The contents of the array are output in
dump format (hexadecimal and character representation).

The last %DISPLAY outputs the third element of the array as an integer value.

U6148-J-Z2125-8-76 35

Data names

Addressing in C and C++ programs

4.2.2 C strings

4221

Starting with Version V2.3B, AID supports the string notation of C/C++, provided you have
enabled the option AID C=YES (see page 115). This means that you can enter C string
literals as in C/C++ within quotes ("...") and that char arrays are no longer treated as an
array of individual char elements, but as strings (as in C/C++).

This functionality can also be used in older C/C++ objects that were compiled with earlier
compiler versions < V3.0.

C string literals

C string literals are entered in the following form:

x...x" Maximum length: 1000 characters on input; unrestricted for output.

x can be any printing or non-printing character. Non-printing characters must be
specified with an alternate representation. The alternate representation begins with
an escape character, i.e. a backslash (\), after which you can enter the value of the
character in different ways:

— Hexadecimal representation \ xff:

Character set for f: 0-9, a-f, A-F

Value range from 00 to FF

The hexadecimal value must always be specified with two positions.
— Octal representation \ooo:

Character set for o: 0-7

Value range from 000 to 377

The octal value must always be specified with three positions.
— Symbolic alternate representation:

For some characters which cannot be printed, e.g. the bell character, specific
alternate representations have been defined, so you need not know the
hexadecimal or octal value of the character. Other characters such as the
backslash itself (\) or double quotes ("), though printable, can only be entered in
combination with a backslash.

36

U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

All alternate representations are summarized in the following table:

Alternate Hexadecimal | Meaning
represen- value

tation

\a X2F bell character

\b X 16’ backspace

\f xXoc page feed

\n X15’ newline

\r xXoD’ carriage return

\t X0% horizontal tabulator
\v X0B’ vertical tabulator
\N\ X'BC backslash

\7? X6F question mark

\! X7D’ single quote

\" X7F double quote

\Xxff’ X[hexadecimal number
\ooo - octal number

Table 1: Alternate representations and their meanings

In the output, AID always selects the printable equivalent of the character when
possible, regardless of the format in which the character was entered. Non-printing
characters are mapped to the alternate representation, if possible in the symbolic
form. Bit combinations which represent non-printing characters and for which no
symbolic representations have been defined are displayed in hexadecimal form.

C string literals can be used in the AID commands %DISPLAY and %SET and also in
comparisons within a subcommand. A C string literal can only be transferred to a char
array with %SET. If the literal is longer that the receiving field, it is truncated to the right, and
AID issues a warning. Alternatively, if the literal is shorter than the receiving field, the field is
padded with binary zeros. This means that you can set a char array to binary zero by
simply transferring an empty literal ("") to it.

Comparisons with a C string literal in a subcommand are only allowed if the second
relational operand is a char array.

Note that the handling of char arrays as C strings involves only a "high-level" functionality,
so you cannot transfer C string literals with a %MOVE. Furthermore, the receiving field in a
%SET must be designated with a symbolic memory reference, so a command such as

U6148-J-Z2125-8-76 37

Data names Addressing in C and C++ programs

%SET "abc" INTO V'...',forexample, is not possible, and any such input is rejected as
a syntax error. AID likewise rejects the use of a C string literal in all AID commands, except
for %DISPLAY and %SET, as a syntax error.

If support for C string literals has been enabled with ¥AID C=YES, you must enclose
comments within /*...*/. Comments within "..." are no longer recognized by AID as such and
are always interpreted as C string literals, which usually results in a syntax error.

When AID commands are executed in a procedure, no parameter substitution occurs in C
string literals, since the BS2000 command interpreter always interprets entries within
quotes as comments, regardless of whether or not AID C=YES has been set.

Example

/%set "\xC5\x25\x15" into cstr; %d cstr
cstr = "E\x25\n"

Three characters are transferred to the char array cstr with %SET and then displayed.
For the first character, which was specified with "\xC5", AID displays an "E", since "E" is
represented in hexadecimal notation with C5; the second character is output as a
hexadecimal number, since no corresponding printable character exists for " \x25". The
third character "\x15" appears in the output as "\n", which is the symbolic alternate repre-
sentation for a

newline character.

4.2.2.2 C string arrays

If AID C=YESis enabled, char arrays are interpreted by AID as C strings. If the char array
has only one dimension, the C string begins with the first array element and ends with the
array element with the value X’00’. Multidimensional char arrays represent arrays of C
strings, and since the last subscript is processed first, the array elements addressed via the
last subscript are combined into C strings.

%DISPLAY outputs the contents of a one-dimensional char array as a C string literal. You
specify the name of the array without a subscript. The editing of individual characters
occurs as specified in the rules listed in the preceding section.

In the case of multidimensional char arrays, the array elements belonging to the subscript
on the extreme right are combined to form a C string, i.e. an array of C strings is displayed.
Following the array name, you specify one subscript less than the subscript levels
contained in the definition of the array. The end criterion in each case is X’'00'. If further array
elements are set after X'00’, these are not taken into account in the output.

When you specify a char array with a subscript range in the %DISPLAY command, the
array is split into individual array elements in the output, even if ,AID C=YES has been set.

38 U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

C string arrays can be overwritten with %SET, where the sender can be a C string literal or

another C string array. The sender is entered into the receiver up to (and including) the end

criterion X’00’, and the following applies:

— If the sender is longer than the receiver, it is truncated to the right, and AID issues a
warning.

— If the sender is shorter than the receiver, the excess positions on the right are padded
with X’00’.

In a multidimensional array, the array elements associated with the last subscript level can

be transferred or overwritten as a C string.

A single char array element or char literal in the form 'x’ cannot be transferred to a
C string array, but a C string literal consisting of only one character, i.e. "x", can naturally
be transferred.

Note that the aspects applicable to the transfer of C strings must also be considered when
comparing C string arrays in a subcommand. A C string array can only be compared with
another C string array or with a C string literal. The comparison of a C string with an
individual char character and the transfer of an individual character to a C string are both
rejected with the following message:

AID0388 Types are not convertible.

Example

The char array carray is defined and initialized in a C program as follows:

char carray[31[10]={"1","22","333"};

/%aid c=yes

/%d carray

carray(0: 2)

c0)y "1 (1) "22" (2) "333"
/%aid check=all

/%s "ab\n" into carray[l]

OLD CONTENT:

VIZZVI

NEW CONTENT:

Vlab\nll

% AID0O274 Change desired? Reply (Y=Yes; N=No)?y

The command %AID C=YES causes AID to interpret char arrays as C strings. Conse-
quently, the array elements of the second subscript level are combined into C strings in the
output of the following %DISPLAY. The command %AID CHECK=ALL then turns on the
update dialog, and the following %SET overwrites the string in carrayl[1] with the
character string "ab\n".

U6148-J-Z2125-8-76 39

Data names Addressing in C and C++ programs

4.2.3 Pointer notation

You can use pointer notation in AID only to reference structure components via pointers.
datanamel must be a pointer type. As in a C/C++ statement, this refers to dataname2, which
AID processes according to its type and size attributes.

Example
pl —> var

As in C/C++, you refer - beginning with the address stored in pl - to the structure
component var.

4.2.4 Structure qualification

You can use structure qualification to reference components of structures as in C/C++. The
first top-level dataname is the name of the structure. Any further top-level datanames are the
names of structure components nested within it. The last dataname is the name of the
structure components you want to reference. AID processes these components according
to their type and size attributes. As of C/C++ V2.1C, you must specify all levels of the
structure in an AID command (exactly as in a C/C++ statement) from the first top-level
dataname down to the component that you wish to address.

For the first time, the LSD created by the C/C++ V3.0 compiler contains the relationship
between base classes and derived classes, allowing AID to recreate the scope rules appli-
cable in C++ for accessing components from class systems. You can now access data and
function members from base and derived classes without qualification or with partial quali-
fication as long as the component concerned is uniquely identified.

40 U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

4.2.5 Dereferencing

You can use dereferencing in AID on pointers only, not on arrays. The indirection operator
(*) is used as in a C/C++ statement, which means that repeated use is permitted. The entire
statement may be placed in parentheses. dataname is the name of a pointer which (perhaps
by way of other pointers) points to a memory object.

Pointer arithmetic for dereferencing pointers can be expressed in AID only in subscript
notation (see Example 4 below for details).

Examples

C—Program

struct
{ int x;
char y;
float *z3;
} oz, *p, pll5];

1. z.x
is the structure component x in the structure z.

2. p—>y
is the structure component y in the structure pointed to by p.
3. "

is the entire structure pointed to by p.

4. *(pl+4)—>z3
This C/C++-style address specification yields a syntax error in AID. To address the
required memory location in an AID command you should enter the following:
*pll41].z23.

U6148-J-Z2125-8-76 41

Data names

Addressing in C and C++ programs

4.2.6 Operator precedence

4.2.7

The operators for symbolic addressing in AID have the same precedence levels as in
C/C++. The operators ->, » and [] have the same precedence level, and all of them have a
higher precedence level than *. AID also allows you to use parentheses to change prece-
dence.

@ Be careful with the second operand of the period operator: if it is enclosed in paren-
theses, AID performs a byte offset (see Example 2).

Examples

These examples are related to the definition of structure z on the preceding page.

1. *p —> z3
*(*p).z3
*pl0]1.z3
pL0J.z3L0]
p —> z3[0]
(*p).z3L0]

All notations have the same meaning: p is a pointer which points to a structure with the
component z3. z3 is itself a pointer which is addressed via pointer p and then refer-
enced. The meaning is as in C/C++,

2. *(*p).(z3)

This expression has a different meaning than in C/C++: Since z3 is in parentheses, AID
treats the contents of z3 as a value for a byte offset. These contents must be of type
%F or %A; otherwise, AID rejects a byte offset. The result is 4 bytes of type %X.

The address operator & and the address selector %@J...)

Two options are available in AID in order to access the addresses of data when debugging
C/C++ programs: the address operator &, which you know from the C/C++ language, and
the AID address selector %@)(...), which you can use independently of the respective
programming language. You can output the address of a data item with a %DISPLAY
command and pass the address of a data item with a %MOVE or %SET command. Apart
from the AID commands %DISPLAY, %MOVE and %SET, data addresses can be used in
the comparison of a subcommand or in expressions.

The memory object addressed by adding the pointer operator, i.e. &...-> or %@j(...)->, is of
type %XL4 for AID, but you can also declare some other type and length with a type and
length modification or use the type selector %T(...) to apply a data type defined in the
source program with its associated length on the address.

42

U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

The address operator & can be applied on all symbolic addresses from C/C++ programs
and returns the absolute address of the accessed data item in memory. Bit-field and register
variables are not allowed as an argument. The AID address selector %@)X...) can be used
for data names of other programming languages or complex memory references. You will
find a detailed description of this in the section on “Address, type and length selector” in the
AID Core Manual.

When an address determined with the address operator & is transferred with %SET, the
receiving field must be of type pointer. AID does not perform any further checks, so the data
type of the sender, for example, need not match the data type that is referenced by the
pointer specified as the receiver. Such checks are performed by AID only when the address
of a class object is set to a pointer to a class (see “object” on page 43).

Syntax of the address operator &:

namespace::[...] dataname
[ellquael&l::1[{this—> Jlclass::[...]1]1 {function
objecte object

qua Base or area qualification

If a base or area qualification is required, this must be entered before the address
operator.

{:: | namespace:: | class::}
Qualification for the global area, namespace or class qualification

The :: qualification for the global area or a namespace or class qualification is
appended to the address operator if required. The operand of the address operator
must not end in namespace or class; otherwise, AlD issues an error message
(A1D0480).

this this pointer

The this pointer saves the address of the current object associated with a
member function.

It can be used in combination with a following pointer operator in the path to a
component of a class.

object Name of a class object

object is used with an appended period to define the path to a component of a
class.

If the operand of the address operator ends with an object name, it effectively
designates the start address of the object.

U6148-J-Z2125-8-76 43

Data names Addressing in C and C++ programs

If you want to use %SET to transfer the address of an object to a pointer to a class,
the following must apply:

— The class to which the receiver points must match the class whose address is
to be transferred

or

— it must be the base class of the class assigned to the sender. This base class
must have a unique subobject in the class of the sender.

dataname
Name of a data item

dataname is specified as in the source program. It thus designates the start address
of the data item.

You can address data as in C/C++, with the following exceptions:

— Anarray name without a subscript returns the address of the first element in the
array.

— Individual array elements can be address only via subscripts, not via pointers.

— IfZAID C=YES is set (see page 115), AID returns the array elements of a char
array corresponding to the last subscript level as C strings. The start address of
the C string can be obtained with the appropriate subscript specification.

— The start address of array elements addressed via a subscript range cannot be
determined.

— Arrays that were passed as parameters to a function serve as pointers to the
arrays in the calling program; the address operator & returns the address of the
pointer and not the address of the array.

For more details on working with arrays, see also the sections “Subscript notation”
on page 30 and “C strings” on page 36.

dataname can be specified as follows, and the formats may also be combined (see
the section “Data names” on page 29). The precedence rules of C/C++ apply:

Subscript notation: dataname [subscript] { ...}

Pointer notation: datanamel —> dataname2

Structure qualification: superordinate datanames { ...} dataname

Dereferencing: C(I*{...} datanamel)]

Pointer to member datanamel o *datanname? or
dereferencing: datanamel->*datanname?2

44 U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

If dataname is a dynamic data member of a class, AID returns either the absolute
address of the data item or the relative address of the data member, i.e. the address
relative to the start of the class, regardless of the interrupt point or any preceding
qualification. This occurs as follows:

— The absolute address of the data item is selected if the program is interrupted
outside the class and the data member is addressed via a class object or if the
program is interrupted in a dynamic member function of the class and the data
member can either be addressed directly of by means of an appropriate
preceding class qualification which you have entered to establish uniqueness.

— The offset to the start address of the class is selected if the program is inter-
rupted outside the class and the data member can be addressed via a class
qualification. If the program is interrupted in a dynamic member function of the
class, you can access the relative address only if you are addressing the
associated class from an external point and via an area qualification (S, PROC
or :: qualification).

Even the offset to the start of the class can only be transferred to a pointer with
%SET, but not to a numeric variable.

For static data members, the address operator & always returns the absolute
address.

function
Name of a function

A C function from a translation unit that was compiled with the option
//MODIFY-SOURCE-PROPERTIES LANGUAGE=C(...)

can be addressed in AID by name. The two trailing parentheses with the passed
parameters (signature) are omitted.

More details on how to specify the names of C++ functions in AID are presented on
page 58.

You can use &function to specify the function address in an AID command. The
same address can also be accessed with function without an address operator;
however, if you want to transfer the function address with a %SET command to a
pointer, you will need to specify &function.

U6148-J-Z2125-8-76 45

Data names Addressing in C and C++ programs

Example

C++ program SOURCE: EXADR.C

SRC
LIN

20 class X {

21 int a;

22 static int c;

23 public:

24 void gx(int) {...; return;}
25 Ix;

68 int main()
69 |
70 x.gx(3);

/%in s'70';%r

STOPPED AT SRC_REF: 70, SOURCE: EXADR.C , PROC: main
/%d &x.a,&x.c

010010F0

010010EC

/%d &X::a,&X::c

00000000

010010EC

In the first step, the program is interrupted in main before the gx(int) function call. The
absolute address of the dynamic data member a and the static data member c are
displayed. The second %DISPLAY, in which the data members are addressed via the
associated class qualification, returns the offset to the start of the class for a, but the
absolute address for c, since c is static.

46 U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

42.8

/%in x.n'gx(int)';%r

STOPPED AT SRC_REF: 24, SOURCE: EXADR.C , PROC: X::gx(int)
/%d &a,&c,&X::a,&X::c

010010F0

010010EC

010010F0

010010EC

/%d &::X::a

00000000

In the next step, a test point is set at the start of the member function gx(int) and the
program is executed up to that point. The data members a and ¢ can now be addressed
directly. Note, however, that the absolute addresses are now displayed even with the
preceding class qualification X: :, since the interrupt point lies in a member function of
class X (first %DISPLAY).

If you want to determine the relative address of a even from this point, you will need to enter
the two colons for the global block before the class qualification. This enables AID to access
X from an external location (second %DISPLAY).

Length operator sizeof() and length selector %L(...)

You can use the length operator sizeof (), which you know from C/C++, and the AID
length selector %L(...) to determine the lengths of data items. sizeof () can only be used
when debugging C/C++ programs, whereas the length selector %L(...) can be used
independently of the programming language of the program being debugged. The AID
length selector is described in detail in the section on “Address, type and length selector” in
the AID Core Manual [1].

The length of a data item can be output with %DISPLAY and transferred with %MOVE or
%SET. You can also use the result of a length selection in a comparison of a subcommand
or in an expression.

Function names are not allowed as operands, so neither the length operator nor the length
selector can be used to determine the length of a function.

The length operator sizeof () can be applied on all symbolic addresses from C/C++
programs. It returns the length of the addressed data item. Bit-field and register variables
are not allowed as arguments.

Note that sizeof () must be specified in lowercase as in C/C++ and that
%AID LOW={ON|ALL} must also be enabled.

U6148-J-Z2125-8-76 47

Data names

Addressing in C and C++ programs

Syntax of the length operator sizeof():

*this

[{this—> class

[ellquaelsizeof([::] namespace::[...] dataname)
Jlclass::[...1]

objecte object

qua

Base or area qualification

If a base or area qualification is required, it must precede the length operator.

{:: | namespace::}

class

this

object

Qualification for the global block and namespace qualification.

The :: qualification for the global block or a namespace qualification are appended
to the address operator if required. The operand of the address operator must not
end in namespace; otherwise, AID issues an error message (AI1D0480).

Name of a class

A class name followed by the two appended colons can be used as a class qualifi-
cation in the address path for a data member of the class. The operand of the length
operator may also end with class. The result is the same as if sizeof () were
applied on an object of class. You will receive the number of bytes occupied by an
object of that class, including any fill bytes that may be required to place an object
of the class in an array.

this pointer

this points to the current object associated with a member function.
sizeof(*this) thus returns the length of that object.

The this pointer can be used with an appended pointer operator in the path to a
component of a class.

Name of a class object

object followed by a period defines the path to a component of a class.

If the operand of the length operator ends with the name of an object, you will
receive the length of the object. This length corresponds to that of sizeof (class) if
class is the name of the class associated with the object (see above).

dataname

Name of a data item

48

U6148-J-Z2125-8-76

Addressing in C and C++ programs Data names

dataname is specified as in the source program and effectively designates the length
of the data item.

Data can be accessed as in C/C++, but with the following exceptions:

An array name without a subscript designates the total length of all array elements.
If ZAID C=YES is set (see page 115), AID combines the array elements of a char
array that can be addressed via the subscript on the extreme right into C strings.
Note, however, that sizeof () does not return the length of the C string in this case,
but the overall length of the underlying C string array.

In contrast to C/C++, the memory requirements for a selected subscript level cannot
be determined with AID.

Individual array elements can be addressed only via subscripts, not pointers. When
an array is passed to a function as a parameter in a function call, only the start
address of the array is known in that function. If you use the parameter name
without a subscript in the function, you will thus effectively designate that address.
sizeof () can be applied on the passed parameter and always returns a result of 4.

dataname can be specified as follows, and the formats may also be combined. The
precedence rules of C/C++ apply (see the section “Data names” on page 29):

Subscript notation: dataname Lsubscript] { ...}
Pointer notation: datanamel —> dataname?2
Structure qualification: superordinate datanames { ...} dataname
Dereferencing: C(I*{...} datanamel)]
Pointer to member datanamel o *datanname?2 or
dereferencing: datanamel->"*datanname?2
Example

/%d sizeof(carray)
30
/%aid c=yes
/%d sizeof(carray[01)
10
Let us assume that carray is a char array with the following definition:
char carray[31[107;
The first %DISPLAY shows the total length of the array.

After setting 5AID C=YES, you can use sizeof () to display the length of the C string (in
carray) addressed via the second subscript. The total number of all array elements
associated with the second subscript is output here, regardless of the position of the end
criterion X'00’ within the underlying array of the C string.

U6148-J-Z2125-8-76 49

Functions, labels and source references Addressing in C and C++ programs

4.3 Functions, labels and source references

Functions and labels are names from the source program under which statements can be
addressed in AID. Labels and functions from C and C++ programs are stored as address
constants. They hold the address of the first instruction in a function or after a label.

You should avoid assigning identical names for functions and labels, since AID cannot then
tell whether the function or the label is meant.

AID interprets a maximum of 1000 characters for all names.

Source references are generated by the compiler for each executable statement. They are
address constants which contain the address of the first instruction generated for a
statement.

For labels and source references, the address stored in the address constant is identical to
the address of the associated executable statement. In the case of functions, by contrast,
the address constant holds the start address of the function prolog, which precedes the first
executable statement in the function. Consequently, when localizing addresses, e.g. in
%D %HLLOC(...), AID cannot associate the prolog addresses with the corresponding
function.

Functions, labels, and source references can only be used with a following pointer operator
in the %FIND and %ON write-event commands. In other words, you thus designate 4 bytes
of the machine code as of the address held in the address constant, i.e. the start address
of the prolog in the case of functions. This defines the address in %DISPLAY, %MOVE, and
%SET. In %DISASSEMBLE and %INSERT, the functions, labels, and source references
always reference the first executable statement which follows the address entered in the
address constant. In the commands % CONTROLn and %TRACE, you can define an area
by means of two source references.

function
is the name of a function as declared in the source program or the name of a library
function. Any C function from a translation unit compiled with the option
//MODIFY-SOURCE—-PROPERTIES LANGUAGE=C(...)
or a library function can be addressed in AID by name. The two trailing parentheses
with the passed parameters (signature) are omitted.
For details on how to specify the names of C++ functions in AID, please refer to the
description on page 58.

50

U6148-J-Z2125-8-76

Addressing in C and C++ programs

Functions, labels and source references

L'label’

label is a label declared in the source program.You can only refer to those labels to
which the C/C++ program can jump from a goto statement. You cannot refer to
case and default labels.

In the commands %DISASSEMBLE and %INSERT you can also specify label
without L' ... ', since in these commands confusion with a data name is not
possible.

source-reference
is the statement designation generated by the compiler. It is in the following format:
S’[f-In[:al’

You may not include blanks within the single quotes.

f

FILE number; only to be specified for lines inserted due to an #include
statement, and only if the inserted lines contain executable statements or if
a #11ine directive was used to explicitly specify line numbering for the
following line. The FILE number can be obtained from the FILE-NO column
of the source error listing.

fis a number > 0.

Line number that is found in the column SRC—-LIN of the source error listing;
identical to the line number of the source file if the source program contains
no #include or #11ine statements.

If a single statement extends over multiple lines, # is the line number of the
first line in the statement.

If a source program without #include or #11ine statements was processed
with the “Beautify” function of the C structurizer, there will only be one
statement in each line, and the source references will then consist of only
the line number: S’n’.

Relative statement number within a line; it can be found from the number of
statements in the line. a is a number > 1 which you specify only if you do not
want to address the first statement in the line. Specifying a designates the
a-th statement in the line.

If you wish to specify an area by means of two source references in the
%CONTROL#% or %TRACE command, you should note that ascending source
references correspond to ascending addresses only within a function block.
Furthermore, note that additional source references, which do not appear in the
source error listing but are logged by %TRACE, are generated in connection with
implicit constructor and destructor calls as well as conversion operations in C++
programs.

U6148-J-Z2125-8-76

51

Functions, labels and source references Addressing in C and C++ programs

Example
FILE SRC
NO LIN
0 100 i++;
#1ine 17 "incl.h"
1 17 J++; kt+;

With S’100’ you address the statement i++;.

The line #1ine 17 "incl.h" causes the compiler numbers lines from 1 to 17, starting
with the next line.

With S’1-17’ you address the statement j++;.

With S’1-17:2’ you address the statement k++;.

4.3.1 Special notes on addressing statements

A statement is understood here in the sense of ANSI C and is defined in its grammar. The
following lists the AlD-specific special characteristics.

1. Definitions and declarations of data and functions

These are not statements, unless a definition includes initialization of the data item.
Data is addressed as described in section “Data names” on page 29. Functions are
addressed as described in the section “Functions, labels and source references” on
page 50. Accessing the additional language constructs provided by C++ is dealt with in
the chapter “C++-specific addressing” on page 57.

2. Labeled statements

Labels are neither statements themselves nor components of statements, and they
cannot be addressed by means of a source reference. Labels which can be jumped to
with a goto statement can be addressed in AID with the statement name L'/abe!.

52 U6148-J-Z2125-8-76

Addressing in C and C++ programs Functions, labels and source references

Example

SRC-LIN Statement

99 labb:

100 a=b; c=4d;
1 2

101 ...

102 case 'a': foo();
1

103 ...

104 default: 1 = 0; break;
1 2

With L' 1ab5' you reference the address of the statement a = b;, i.e. the address of
the first statement after the label 1ab5.

With S’100’ you reference the same statement a = b;.
With S’100:2’ you reference the statement ¢ = d;.

You cannot address case and default labelsusing L'...".

With $’102’ you address the function call foo();
With S’104’ you address the statement i = 0;.
With S’104:2’ you address the statement break;.

3. Compound statements or blocks

A compound statement allows you to combine a number of statements in a block and
use them in places where the grammar of the C/C++ language only permits a single
statement. AID considers neither the block itself nor the opening brace or closing brace
to be statements. No source reference is generated for a compound statement. It can
be addressed only as a block by means of the BLK qualification. The individual state-
ments within a block can be addressed with source references.

Example
SRC-LIN Statement

30 { a=nb; f(a); }

a
1 2
BLK="30’ designates the compound statement, but that only lets you define the area for

%CONTROLnN or % TRACE.

S’30’ designates the assignment a = b;.
S’30:2’ designates the function call f(a);.

U6148-J-Z2125-8-76 53

Functions, labels and source references Addressing in C and C++ programs

4. Expression statements

An expression statement is only one statement. You cannot address assignments,
function calls, etc., within an expression statement, because no source references are
generated for them.

Example

SRC-LIN Statement

40 a = f(b);

41 c=a>x7?b : a;
42 a = (b=2c);

43 .

Only one source reference is generated per statement:

With S’40’ you reference the statementa = f(b); inline 40.
With S’41° you reference the statementc = a > x ? b : a; inline41.
With S’42’ you reference the statement a (b = c);inline 42.

5. Selection statements

These are the if, if else and switch statements. They are considered by AID as by
C/C++to consist of a number of statements, all of which you can reference using source
references.

Example

SRC-LIN Statement

50 if (a < 0) a++; else a—;
1 3
51 if (a < 0) {a++;} else {a—:;}
1 2 3
52 -
53 switch (¢ = getchar()) {
1
54 case 'X': Took('y');
1
55 case 'Y': Took('z'); return;
1 2
56

With S’51” you reference the control expression of the if statement in line 51.
With S$’51:2’ you reference the then branch of the if statement.
With S§’51:3’ you reference the else branch of the if statement.

With S’55’ you reference the case 'Y' (line 55).
With §’55:2’ you reference the return statement.

54 U6148-J-Z2125-8-76

Addressing in C and C++ programs Functions, labels and source references

6.

Iteration statements

These are the while, do and for loop constructs. They are considered by AID as by
C/C++ to consist of a number of statements, all of which you can address with source
references. In a for loop, there is an additional source reference for the control
expression and for the incrementation portion.

Example

SRC-LIN Statement

60 while (p—>next) mknode(p—>next);
1 2
61
62 do show() while(tick);
1 2 3
63 do { x++; z(x); } while(x);
1 2 3 4
64
65 for (i=0; i < 10; i++) jLil = 1;
1 2 3 4
66 a = b;
1
67

With S’65’ you reference the initialization i=0 of the for loop in line 65,
with S$’65:2’ the control expression i < 10,

with §’65:3’ the incrementation portion i++, and

with S$’65:4’ you reference the execution portion of the forloop j = i ;.
With S’66’ you reference the first statement after the for loop.

Jump statements

These are the goto, continue, break and return statements.
Example

SRC-LIN Statement

70 goto Tabell;
1

71

72 if (i < 10) continue;
1 2

73

74 if (k >= 1) return k * 2;
1 2

75

With S’72:2’ you reference the statement continue; inline 72.
With S’74:2’ you reference the statement return k*2; inline 74.

U6148-J-Z2125-8-76

55

Functions, labels and source references Addressing in C and C++ programs

56 U6148-J-Z2125-8-76

5 C++-specific addressing

In addition to the language elements offered by C, C++ supports namespaces, classes,
templates, virtual functions, overloaded functions and operators, reference variables and
other new features. This chapter describes how you can reference these elements in AID
commands.

5.1 Qualifications

In C and C++ program debugging there are no differences in usage between base and area
qualifications. For more details refer to section “Qualifications” on page 21.

AID provides the additional qualifications class: : and namespace: : for accessing data and
functions from classes and namespaces.

Certain points also have to be noted with the notation of C++ function names and when
specifying instances of function or class templates.

class/namespace:][...]

This qualification is used to designate a class or namespace or to specify the path
to a class or namespace for derived or nested classes or nested namespaces. You
append the name of the data item or function you wish to reach via this qualification
directly to the last colon-pair of the qualification.

If you want to designate the instance of a class template with the class: : qualifi-
cation, you have to use the following syntax: t 'k template<argl,...1>"'::

If there is only one instance of a class template, you can access this instance with
the name of the class template and omit the template argument: t 'k template' : :

Detailed information on constructing template instance names can be found in the
section “Template instantiation” on page 94. Classes are described on page 63 and
namespaces on page 85.

Example

ZDISPLAY ::A::B::i

In this example, B is a class nested in class A and i is a static data member in B.
Class A is defined as global.

In this case, you can output i from any position of the translation unit with the above
%DISPLAY command.

U6148-J-Z2125-8-76

57

Qualifications

C++-specific addressing

PROC qualification

With C++, you must note that functions are not assigned directly to a translation unit
as in C, they can also be defined within namespaces or classes. To access these
functions, you prepend the function name with the relevant

classlnamespace: : qualification.

There are also overloaded functions with C++ that have the same function names
but whose arguments (signature) differ and there are functions that result from
instantiation from a function template. You must take all these points into account
when writing a PROC qualification for a C++ function. This results in the following
syntax:

namespace::
Namespace qualification, possibly multi-level.

class::
Class qualification, possibly multi-level. You have to use the form described
above if the class is an instance of a class template: t 'k _tem-
plate<argl,...1>"::

function
The following functions are discriminated in C++:
normal functions which correspond to those in C
overloaded functions
virtual functions
functions formed from a function template via instantiation

You have to use a particular notation, depending on the type of function you
want to specify in the PROC qualification:

— With normal and overloaded functions, you have to include the signature to
uniquely identify the function. The void signature must be omitted. In this
case, you designate the function with the function name and subsequent
parentheses as is also possible in C++. Since this means that the function
names can also include special characters (parentheses and possibly
commas) they have tobe setinn' ... "'. Thisresults in the following syntax:
n ' function(Lsignature]) '

58

U6148-J-Z2125-8-76

C++-specific addressing

Qualifications

In contrast to the functions described above, the main function and

@ the compiler-generated function _ _STI__ (see section
“Constructors and destructors” on page 72) can be addressed in
C++ with just their names. Similarly, all functions with C linkage that
are called in a C++ program are addressed only via the function
name, i.e. without parentheses or a signature.
Example: You qualify data from the main function as in C with
PROC=main.

You have to enclose the instance name of a function templatein t'...".
You specify the template arguments in angled brackets with commas as
separators, resulting in the following syntax:

t'f template<argl, . ..1>(Lsignaturel)"'

If there is only one instance of a function template, you can access this
instance with the name of the function template and omit the template
arguments: t'f template(Lsignaturel) '.

A detailed description of the way template names are constructed can be
found in the section “Template instantiation” on page 94.

Functions from classes addressed via pointers such as virtual functions or
functions addressed via a pointer to member cannot be used in a PROC
qualification; however, you can access the start address of a function that is
referenced accordingly. The way to do this is described in the section
“Virtual functions” on page 73 and in the section “Pointer to function
member” on page 79.

The two notationsn'..."' and t'...' are handled differently by AID:

If the name is enclosed inn'..."', AID accepts it without checking or
modifying it, while retaining uppercase/lowercase. This means that no
additional blanks may be inserted withinn'...' and the name can be up
to 1000 characters in length.

If the name is enclosedint'..."', AID assumes that itis a template
instance and checks the syntax and semantics of the name. If AID detects
thatitis not a legal template instance name or if the specified instance does
not exist, it outputs corresponding error message. Names enclosed in
t'...' may be of any length.

U6148-J-Z2125-8-76

59

Qualifications

C++-specific addressing

If you want to access a function which is defined in a local class, a complete, explicit
qualification comprises specification of an additional PROC qualification for the top-
level function containing the definition of the local class, followed by the PROC
qualification with which you designate the desired function. If the local class is in an
inner block of the top-level function, you have to write one or possibly more BLK
qualifications between the two PROC qualifications. How you specify a BLK qualfi-
cation is described on page 25.

You qualify a function from a local class with the following syntax:

You can only access functions defined in local classes from inner blocks with AID if
the program was compiled with C/C++ V3.0B. In programs compiled with C/C++
V3.0A, you can neither specify these functions in a PROC qualification nor can you
refer to the start address of such a function in an AID command.

Since locally defined member functions are also implemented globally in C++, this
means that when working with AID, the data block containing the object definition

and the object name itself do not belong to the scope of the function and you can

only access the data of the block and the object name from within such a function
via a corresponding area qualification. However, you can always access the object
concerned via the this pointer (see page 64).

You will find an example of functions from local classes following this section
(example 3 on page 62).

60

U6148-J-Z2125-8-76

C++-specific addressing Qualifications

Example

Using member functions and overloaded functions in the PROC qualification

C++ program SOURCE: EXP.C
SRC
LIN

1 extern "C" int printf (const char*,...);

2

3 int FOOCint X) {return X++; }

4 long FOO(long X){return X—; }

5 «class A_global

6

7 public:

8 A_global(void) { printf('Constructor called\n");... };

9 ~A_global(void) { printf("Destructor called\n");... };
10 void f(void) { static int k; printf("f called\n");

11 k = 5;... return;};

12 } a_global;

68 int main(void)

69 |

70 FOO(1);

71 FOO(1L);
120 {
121 class A_local
122 {
123 public:
124 A_Tocal(void) { printf("Constructor called\n");... };
125 ~A_local(void) { printf("Destructor called\n");... };
126 void f(void) { static int k; printf("f called\n");
127 k = 5;... return;};
128 } a_local;
1. %trace 1 in proc=n'F00(int)'

AID halts before the only statement of the function FOO(int) and traces it.
%controll %proc in proc=A_global::n'~A_global()'

The program is to halt before execution of the first and last statements in the destructor
of global class A_global.

U6148-J-Z2125-8-76

61

Data defined in the middle of a block C++-specific addressing

3.

%display proc=main.proc=A_local::n'f()'.k

Static variable k of the member function () defined in local class A_Tocal in the
outermost block of the main function is output.

5.2 Data defined in the middle of a block

In contrast to C, data can also be defined in the middle of a block in C++.

As with C++, such data can also only be addressed with AID after its definition. If a qualifi-
cation is required, you must specify the entire enclosing block or the associated function in
a BLK or PROC qualification

Examples

C++ program SOURCE: BSPI.C
SRC

LIN

120 int main()

121 A

122 int i =1;

123 {

124 i++;

125 int i = 3;

126 i+t

127

1. %insert s'124'; %resume

%display i, proc=main.i

Due to the two commands %INSERT and %RESUME, the program is executed until
source reference S’124’ and then interrupted. With both i and proc=main.i from the
%DISPLAY command, you designate the same i from the main function.

%trace 3
%display i, proc=main.i

%TRACE executes the program until source reference S’126’. In this case, the first
operand of the %DISPLAY command designates variable i from block ’123’, which is
defined in line 125. Variable i frommain is addressed as above with proc=main.1.

62

U6148-J-Z2125-8-76

C++-specific addressing Classes

5.3 Classes

In AID, classes and the data and functions contained in them can be accessed in the usual
C++ notation, which means that data members of nested or derived classes can be
addressed exactly as in C++, depending on the interruption point, by specifying all the
class/object names (from the outermost to the innermost) that define the path to the data
item. With nested classes, all intermediate levels must always be specified as well and with
derived classes only the intermediate levels required to uniquely identify the data item have
to be specified.

With member functions, apart from virtual functions, you describe the path to the desired
function in a prepended class qualification (class: :, see the section “Qualifications” on
page 57). You will find a description of how you can access virtual functions in the section
“Virtual functions” on page 73.

Objects of classes are assigned to the relevant scope as with the structures in C. Therefore,
objects of classes that are defined globally are accessed by prepending :: as with all other
global data. Locally defined objects of classes are assigned to the function/block containing
the definition.

If you specify the class name in a %DISPLAY or %SDUMP command, you will receive a
listing of the static data members and of the static and dynamic member functions
(excluding virtual functions) of that class and any classes nested in it (for derived classes,
including the base classes). In the case of data, the content is output; for functions, the
complete function name with the class names and signature in standard C++ notation and
also the start address of the function prolog are listed.

The whole class, i.e. also including both dynamic data members and virtual functions, is
output by AID if you specify the name of a class object in a %DISPLAY or %SDUMP
command. You are also shown the complete contents of the class if the program has been
interrupted in a dynamic member function of the class and you access the class with *this
or the class name.

As far as AID is concerned, it is immaterial whether data and functions within classes are
declared as public, private or protected. Access rights defined in the program have no effect
during the debugging run.

U6148-J-Z2125-8-76 63

Classes

C++-specific addressing

classless...]
HE dataname
[Equao][Squa-][{PROC#unctiono }] this—> [{ }]
BLK='[f-InL:b1'e { }[c]ass[::...]] function
objectle]

class::

this

object

You specify the name of a class for class. You specify class in the first position if you
want to access the complete class, a static data item or a function of the class. You
must insert a colon-pair (: :) between the class name and the data/function name.
In an intermediate position, you use the class name to access a base class from a
derived class, if a base class component, which is hidden by a definition of the same
name in the derived class, is to be addressed.

If the class concerned is an instance of a class template, you must use the following
syntax:

t 'k _template<argl, ...1>'

If there is only one instance of the class template, t 'k_template' suffices.

Detailed information on templates can be found on page 94.

A C++ compiler-generated pointer that points from a dynamic member function to
the associated object. The pointer operator and any other base class names (or the
names of the outer classes of a nested class) that may be required in the path to
the desired data name can be appended to the this pointer in the same way as
you define the path to selected class data item, starting with the object name.
However, with derived classes you only have to specify the intermediate stages if
the name of the required data item is not unique.

Since the this pointer can only be used if the program was interrupted in a dynamic
member function and since it always points to the associated object, no preceding
area qualification is required.

AID shows you the pointer and its contents in the %SDUMP output for a dynamic
member function.

%DISPLAY this outputs the address of the current object.

%DISPLAY *this provides you with a listing of the current object.

If an address operand ends at the this pointer followed by the pointer operator
(->), the first 4 bytes of the current object will be addressed; storage type %X
applies.

Is the name of a class object. You specify object for all dynamic data members
whenever the interrupt point is not in a dynamic member function of the associated
class. You also use object to uniquely identify a data item of a class which is locally
hidden by an identically named definition at the interrupt point.

64

U6148-J-Z2125-8-76

C++-specific addressing Classes

5.3.1 Scope rules in classes

The scope rules known from C++ apply for accessing data and functions defined in classes.

You can access static data members via the class qualification independent of an object of
the class and the current interrupt point by prepending the class nhame and inserting a
colon-pair between the class and data names. With nested classes, you describe the path
to the required data item via multiple class levels from the outermost to the innermost, using
the colon-pair (: :) to separate the class names.

Dynamic data members are accessed differently, depending on where the program was
interrupted:

If the interrupt point is in a dynamic class member function, you can access the
associated dynamic data member directly. AID behaves in the manner known from the
C++ scope rules. The complete object concerned is accessed via the this pointer with
*this (see page 64). You can only reach the object name with the appropriate qualifi-
cation.

Since AID emulates the relationship between base and derived classes, the scope rules
applicable in C++ also apply for accessing data members from derived or base classes.

The information on base and derived classes is missing in the LSD for older objects
compiled with a C/C++ compiler up to V2.2C. AID therefore does not know the
relationship between base and derived classes for these objects. In this case, the
method described in the previous manual for AID V2.1A must be used to access data
from class systems.

If the current interrupt point is not in a dynamic member function of the same class in
which the data members are also described, you can only access the dynamic data via
the associated object. You specify the object name as with a structure qualification in a
C program (see the section “Data names” on page 29) and insert a period between the
object name and data name. If you want to access a dynamic data member from a class
system of nested classes, you have to include the class name of the superordinate
levels in the path to the required data item, starting from the current object. You also
have to add a colon-pair after a class name in this case. In contrast to this, the C++
scope rules apply within base and derived classes so that after the object name, you
only need to add the class name required to uniquely identify the data item.

U6148-J-Z2125-8-76

65

Classes

C++-specific addressing

Examples

1.

Accessing data and functions from classes from different interrupt points

C++ program SOURCE: VPTR.C
SRC

LIN

20 class X

21 A

22 int a;

23 static int b;

24 int C;

25 public:

26 X(int x = 1) : a(x) {c=2; ...; return;}
27 void () {...; return;}
28 static void g() {...; return;}
29 };

30 int X::b = 3;

31

32 class Y : public X

33 |

34 int a;

35 static int b;

36 public:

37 Y(int x = 4) : a(x) {...; return;}
38 void () {...; return;}
39 static void g() {...; return;}
40 };

41 int Y::b = 6;

42

43 class Y A\

68 int main()
69 |

70 y.f();

71 Y::9();

/%in s'70"'

/%in ::Y::n'fO)!
/%in ::Y::n'g()'
/%r

For the sake of readability, user input in the trace is printed in bold.

66

U6148-J-Z2125-8-76

C++-specific addressing Classes

First the %INSERT commands set three test points in the program:

— inmain before the call to the member function Y::f()

— in the member function Y: : (), before the first executable statement
— in the member function Y: : g(), before the first executable statement

%RESUME starts the program, and it runs as far as the first test point.

STOPPED AT SRC REF: 70 SOURCE: VPTR.C PROC: main
/%d y.X::a, X::b, y.c

y.X::a = 1

X::b = 3

y.c = 2

/%d X::n'f()',X::n'g()!

X::f Q) = 01000628

X::90) = 01000730

/% y.a, Y::b, Y::n'f()',Y::n'g()"'
y.a = 4
Y:i:b = 6
Y::f() = 01000048

Y::gQ) = 01000E50

/%r

The interrupt point is located in main. The dynamic data members of object y of class
Y can be addressed as in a structure qualification via the object name with a subse-
quent period. Data members of the base class X are addressed with y . X::dataname.
The static variables from the base and derived classes (both called b) are addressed
via an appropriate class qualification. The member functions are addressed by their
complete names and prepended class qualification and AID displays the start address
of the function prolog in each case. %RESUME continues execution until the next test
point.

STOPPED AT SRC_REF: 38 SOURCE: VPTR.C PROC: Y::f()
/%d X::a, X::b, c

SRC_REF: 38 SOURCE: VPTR.C PROC: Y::f() xHkokax HAKKAK HAKKAK HAKKFAAKAA
Y.X::a = 1

Y.X::b = 3

Y.X.c = 2

/%d X::n'f(O)',X::n'g()’

Y. X::f () = 01000628

Y.X::90) = 01000730

/%d a, b, n'f()', n'g()’

Y.a = 4

b = 6

() = 01000048

gQ) = 01000E50

/%r

In this case, the interrupt point is located in the dynamic member function Y::f() of
class Y. Access to dynamic variable a of class X must be qualified as there is also an
a in VY. For the same reason, access to static variable b of class X must also be
qualified. c is, in contrast, unique and does not require qualification. a and b from Y
can also be reached directly. However, you have to specify static data member b from
X with its full name.

U6148-J-Z2125-8-76

67

Classes

C++-specific addressing

The X::f() and X::g() functions are not visible at the interrupt point as they are
hidden locally by the functions of the same name from Y and must therefore be
specified with the prepended class qualification. You can access functions f() and
g() fromY directly.

STOPPED AT SRC_REF: 39 SOURCE: VPTR.C PROC: Y::qQ)
/%d ::y.X::a,X::b,::y.c

SRC_REF: 39 SOURCE: VPTR.C PROC: Y::g() ***
y.X::a = 1

X::b = 3

y.c = 2

/%d X::n'f()',X::n'g()'

X::fO) = 01000628

X::90) = 01000730

/%d ::y.a, b, n'f()',n'g()’

y.a = 4

b = 6

fO) = 01000048

g() = 01000E50

The interrupt point is now in the static member function Y::g(). As in the first case,
where the program was interrupted in main, the dynamic data members of class Y can
only be accessed via the associated object. However, as the scope of object y only
starts after the definition of Y: : g(), access to object name y (shown here with the
prepended colon-pair as qualification for the superblock) must be fully qualified. AID
can, however, reach static data member b from Y without qualification. Static data
member X::b is hiddenby Y: :b.

68

U6148-J-Z2125-8-76

C++-specific addressing Classes

2. The following examples demonstrate accessing variables from base and derived
classes with various constructions of three classes A, B and C. The interrupt point is
to lie in the func_C() function of class C in each case.

First define classes A, B and C:

C++ program SOURCE: EX1.C

SRC
LIN

42 class A {

43 int i,j,.1;

44 public:

45 ACint x=1, int y=2, int z=3) : i(x),j(y),1(z) {...}
46 void func_AQ) {...}

47 };

48 class B {

49 int j.k,1;

50 public:

51 B(int x=4, int y=5, int z=6) : j(x),k(y),1(z) {...}
52 void func_B() {...}

53}

54 class C: public A, public B {
55 int 1;

56 public:

57 Clint x =7) : 1(x) {...}
58 void func_C() {...}
59 };

Debug run:

STOPPED AT SRC_REF: 58 . SOURCE: EX1.C . PROC: C::func_CO)

/%d i, 3, K, 1

SRC_ REF 58 SOURCE: EX1.C PROC: C::func_CO
1

C.A.

% AID0376 Amb1guous qualification for SYMBOL j
C.B.k = 5

C.1 = 7

/%d A::j, B::j, A::1, B::l

C.A::] = 2

C.B::J = 4

C.A::1 = 3

C.B::1 = 6

As it can be seen from the definition, A and B are direct base classes of C.
The first %DISPLAY command initially tries to output all variables via their names,
without qualification.

U6148-J-Z2125-8-76 69

Classes

C++-specific addressing

The i and k variables only occur once each and can therefore be accessed directly.
With 1 without qualification, youreach C: : 1. The C: 1 variable belongs to class C and
therefore hides the variables with the same name A: : 1 and B: : 1. These are specified,
qualified in the second %DISPLAY. AID finds two definitions on the same level for j, in
base classes A and B, and reports the ambiguity. Both data members can be identified
with an appropriate qualification, also in the second %DISPLAY.

In this example, the relationship between classes A, B and C from example 2 has been
changed as follows:

C++ program SOURCE: EX2.C
SRC

LIN

42 class A {

43 int i,j,1;

44 public:

45 ACint x,int y,int z) : i(x), jly), 1(z) {...}
46 void func_A() {...}

47 1}

48 class B: public A {

49 int j.k,1;

50 public:

51 B(int x,int y,int z) : j(x), k(y), 1(z), A(1,2,3) {...}
52 void func_B() {...}

53}

54 class C: public A, public B {

55 int 1;

56 public:

57 Clint x=7) : 1(x), A(4,5,6), B(8,9,10) {...}
58 void func_C() {...}

59 }

70

U6148-J-Z2125-8-76

C++-specific addressing Classes

Debug run:
STOPPED AT SRC_REF: 58 . SOURCE: EX2.C . PROC: C::func CO
/%d i, 3, k, 1
SRC_REF: 58 SOURCE: EX2.C PROC: C::func_C()

%
%
C.B
C.1
%d

OOOO O
W >w >

AIDO376 Ambiguous qualification for SYMBOL i
AIDO376 Ambiguous qualification for SYMBOL j
= 9

Lk
= 7
A::i, B:i:A::d, A::j, B::j, B::A::j
[= 4
cAdid = 1
BN = 5
:J = 8
A::j = 2

In this case, A and B are direct base classes of C, and A is also an indirect base class

of C.

A is not virtual.

Variable i is now ambiguous as it occurs in both the direct and the indirect base class
A. In the second %DISPLAY, the two different i variables are output via the associated
class qualifications A::7 and B::A::1.

j is also ambiguous. There are three definitions on different levels, in A, B and B: : A.

Thes

e are also output with the second %DISPLAY.

k is unique, as in example 2 since it is only contained in B. AID can also identify 1
uniquely as the 1 from C hides the various other definitions in A, B and B: : A.

U6148-J-Z2125-8-76

71

Classes

C++-specific addressing

5.3.2 Constructors and destructors

Constructors and destructors are member functions belonging to a class and in debugging
with AID are thus referenced in exactly the same way as other functions in classes. If you
want to specify a constructor or a destructor in a PROC qualification, you must place the
function name together with its class and its signatureinn'..."' or t'...' asdescribed
on page 58. You will also find an example on page 61.

The start address of the constructor or destructor can be likewise accessed by specifying
the class name in a class qualification before the function name (see example 1 at the end
of this section.

In some circumstances, such as when a class contains virtual functions but no constructor
is defined explicitly, the compiler generates a constructor which AID displays in the
%DISPLAY or %SDUMP output for that class.

When a program is started, constructors for global objects are invoked by a compiler-
generated function called _ _STI_ _ . Symbolic debuggingin __STI_ _ is only possible
conditionally. If you specify __STI_ _ in an %AID command, this name as well as main
must be used without a signature.

On terminating main, destructors of global classes are called directly by the runtime
system. The names of the runtime system functions involved are displayed by AID via
%SDUMP ZNEST in the call hierarchy.

Examples

1. %in A_global::n'A_global()'

Atest point s set at the first executable statement of the constructor of class A_global
from the example on page 61.

2. %sd %nest

AID displays the current call hierarchy, starting with the constructor
A_global::A_global() from the same example as above. The constructor was
called from the compiler-generated function _ _STI_ _. The routines of the runtime
system then follow.

SRC_REF: 7 SOURCE: BSP.C PROC: A_global::A_global() *¥xkktskakxksiitxx
SRC REF: 12 SOURCE: BSP_C PROC: STI R R S S e S S B R e S S e S S e S S
ABSOLUT: V'101CF14" SOURCE: ICPSINI@ "PROC: ICPSINI@ <sksoksksoksbokksokbx
ABSOLUT: V'101C582" SOURCE: ICPSINI@ PROC: ICPSINI@ otttk
ABSOLUT: V'I100COFA' SOURCE: IPPSIN@@ PROC: IPPSINI FHKKKFFF KA KA KKAK

72

U6148-J-Z2125-8-76

C++-specific addressing Classes

5.3.3 Virtual functions

You address virtual functions in an AID command as in a C++ program:
pointer—>n'function(lLsignaturel)’

pointer
Name of a pointer variable which points to a class object containing virtual
functions.

function(signature)
Name of a virtual function from a class. The signature must be omitted if it is vo1id.
Due to the special characters, you must enclose function(Lsignaturel) within
n'...".

If you use the syntax for the virtual functions in a %DISPLAY command, AID outputs the
address of the prolog of the member function to which pointer currently points. The prolog
address of the virtual function is also accessed in a %MOVE or %SET command with the
above syntax. However, in a %DISASSEMBLE or %INSERT command, you designate the
first executable statement of the virtual function which is currently referenced by pointer.
When you use an appended pointer operator (->) after the above syntax, you identify the
first 4 bytes from the start address of the prolog of the current function.

Example

C++ program SOURCE: BCL1.C

SRC
LIN
1 class A
2 |
3 public:
4 AC) { printf ("A::A called\n"); }
5 virtual void fool() { printf("A::fool called\n"); }
6 } virtual void foo2() { printf("A::foo2 called\n"); }
7 a;
8
9

%Wass B : public A

10
11 int 1;
12 public:

13 B(int x = 1) : i(x) { printf ("B::B called\n"); }
14 void fool() { printf("B::fool called\n"); !}

15 } void foo2() { printf("B::foo2 called\n"); }

16 b;

'éé jnt main()

32 A* aptr =
33 A* bptr =

&a;
&b;
34 bptr—>foo2()

U6148-J-Z2125-8-76 73

Classes C++-specific addressing

STOPPED AT SRC_REF: 34, SOURCE: BCL1.C , PROC: main
/%d bptr—>n'foo2()’'
SRC_REF: 34 SOURCE: BCL1.C PROC: main ***x* Fkk *
A.foo2() = 010005E0
/%d B
01 B
02 A
03 AC) = 01000000
03 fool() = 01000160
03 foo2() = 01000270
02 B(int) = 01000360
02 fool() = 010004C0
02 foo2() = 010005E0
/%da 5 from bptr—>n'foo2()’'
BCL1$0&@+67A MVC 20(4,R11),4(R8) D2 03 B020 8004
BCL1$0&@+680 L R14,20(RO,R11) 58 EO B020
BCL1$0&@+684 ST R14,88(R0O,R13) 50 EO D088
BCL1$0&@+688 LR R1,R14 18 1E
BCL1$0&@+68A L R15,0(R0,R9) 58 FO 9000
/%in bptr—>n'foo2()'; %r
STOPPED AT SRC_REF: 15, SOURCE: BCL1.C , PROC: B::foo2()
/%d i
SRC_REF: 15 SOURCE: BCL1.C PROC: B::T002() ****x*%* HAAk *
B.i = 1

The program was halted at the source reference S’35’. The first %DISPLAY shows the
complete name of the virtual function to which the pointer variable bptr currently points.
The second %DISPLAY lists class B. A comparison of the addresses shows that bptr
actually points to f002 () from B. The subsequent %DISASSEMBLE disassembles the first
5 assembler commands of the first executable statement of B: : foo2 (). You now use the
command sequence 5INSERT. .. ;%RESUME to continue the program run until the first
executable statement of B: : foo2() is reached. Data of the associated object can now be
addressed as usual.

5.3.4 Pointer to class member

In order to provide dynamic access to data and functions from classes at runtime, C++
offers the data type "pointer to member". A distinction is made here between a pointer to a
data member" and a pointer to member functions. In AID V2.3B, you can address data and
class functions using pointer to member exactly as in C++. The use of pointer to member
for debugging is described in detail in the sections that follow.

74 U6148-J-Z2125-8-76

C++-specific addressing Classes

5.3.4.1

Pointer to data member

Output

You can view the current contents of a pointer to a data member of a class, referred to as
pointer to data member below, by using %DISPLAY or %SDUMP. The name of the data
member currently referenced by the pointer to data member is shown in the output. If the
data member is defined in a derived or nested class, the full class qualification is prepended
to the name of the data item.

qua Qualification
The pointer to data member can be addressed like any other pointer by means of
an appropriate qualification if it is not visible at the interrupt point.

pointer-to-data-member
is the name of a pointer to a data member of a class.

If a pointer to data member has an invalid value, the error message AID0545 is issued.

Modification

You can use %SET to overwrite a pointer to data member. The sender may be another
pointer to data member of addresses to data members of cl