
Edition June 2018

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

at
io

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

0
70

0_
A

ID
_C

_C
p

lu
sp

lu
s\

en
\c

pp
_e

.v
or

English

AID V3.4B
Debugging of C/C++ Programs

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Documentation creation
according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2015.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2018 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U6148-J-Z125-8-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ni

 2
0

18

S
ta

nd
 1

2:
10

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
7

00
_A

ID
_

C
_

C
p

lu
sp

lu
s\

en
\c

pp
_

e.
iv

z

Contents

1 Preface . 7

1.1 Objectives and target groups of the AID documentation 8

1.2 Structure of the AID documentation . 8

1.3 Changes since the last edition of this manual 10

1.4 Notational conventions . 10

2 Metasyntax . 11

3 Prerequisites for debugging . 13

3.1 Compiling in BS2000 . 14

3.2 Linking, loading and starting in BS2000 . 16

3.3 Compiling and linking under POSIX . 17

3.4 Loading and starting under POSIX . 17

3.5 Loading the LSD dynamically . 18

3.6 bs2cp . 18

3.7 Commands on starting a debugging session . 19

4 Addressing in C and C++ programs . 21

4.1 Qualifications . 21
4.1.1 Associating data with translation units, functions and blocks 26

Contents

 U6148-J-Z125-8-76

4.2 Data names . 29
4.2.1 Subscript notation . 30
4.2.2 C strings . 36
4.2.2.1 C string literals . 36
4.2.2.2 C string arrays . 38
4.2.3 Pointer notation . 40
4.2.4 Structure qualification . 40
4.2.5 Dereferencing . 41
4.2.6 Operator precedence . 42
4.2.7 The address operator & and the address selector %@(...) 42
4.2.8 Length operator sizeof() and length selector %L(...) 47

4.3 Functions, labels and source references . 50
4.3.1 Special notes on addressing statements . 52

5 C++-specific addressing . 57

5.1 Qualifications . 57

5.2 Data defined in the middle of a block . 62

5.3 Classes . 63
5.3.1 Scope rules in classes . 65
5.3.2 Constructors and destructors . 72
5.3.3 Virtual functions . 73
5.3.4 Pointer to class member . 74
5.3.4.1 Pointer to data member . 75
5.3.4.2 Pointer to function member . 79
5.3.4.3 Comparing pointers to members . 83
5.3.4.4 Setting a pointer to member to zero . 84

5.4 Namespaces . 85
5.4.1 Unnamed namespaces . 86
5.4.2 Scope rules in namespaces . 87
5.4.3 Alias names for namespaces . 93

5.5 Templates . 94
5.5.1 Template instantiation . 94
5.5.2 Class templates . 99
5.5.3 Function templates . 104
5.5.4 Listing template instances . 106
5.5.5 Displaying template instance names . 107
5.5.6 Accessing source references from template instances 108

Contents

U6148-J-Z125-8-76

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.iv
z

5.6 Overloaded functions . 110

5.7 Overloaded operators . 111

5.8 Reference variables . 112

6 AID commands . 113

%AID . 113
%AINT . 121
%ALIAS . 124
%BASE . 127
%CONTINUE . 129
%CONTROLn . 130
%DISASSEMBLE . 139
%DISPLAY . 148
%DUMPFILE . 171
%FIND . 173
%HELP . 183
%INSERT . 185
%MOVE . 195
%ON . 209
%OUT . 221
%OUTFILE . 224
%QUALIFY . 226
%REMOVE . 230
%RESUME . 233
%SDUMP . 234
%SET . 254
%SHOW . 272
%STOP . 275
%SYMLIB . 278
%TITLE . 281
%TRACE . 282

7 POSIX debug command . 291

8 Special notes on debugging under POSIX . 295

8.1 Inheriting the debug context . 295

8.2 Debug strategies . 295

Contents

 U6148-J-Z125-8-76

8.3 Input/output . 297
8.3.1 Possible inputs . 297
8.3.2 Allocation . 299
8.3.3 Errors . 299

8.4 Dump processing . 300

9 Sample applications . 301

9.1 Sample C application in BS2000 . 301
9.1.1 Source error listing . 302
9.1.2 Debug run . 303

9.2 Sample C++ application in BS2000 . 308
9.2.1 Source error listing . 308
9.2.2 Debug run . 309

9.3 Sample C application under POSIX . 320

10 Appendix . 321

10.1 Comparison: debugging older objects / C++ V3.0 objects 321

Glossary . 323

Related publications . 339

Index . 343

U6148-J-Z125-8-76 7

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

1

1 Preface

AID, the Advanced Interactive Debugger in BS2000, provides users with a powerful
debugging tool. Thanks to AID, error diagnostics, debugging and short-term error recovery
of all programs generated in BS2000 are considerably more rapid and more straightforward
than other approaches, such as inserting debugging aid statements into a program, for
example. AID is permanently available and is extremely adaptable to the particular
programming language. Any program debugged using AID does not have to be recompiled
but can be used in a production run immediately. The range of functions of AID and its
debugging language (using AID commands) are primarily tailored to interactive applica-
tions. AID can, however, also be used in batch mode. AID provides the user with a wide
range of options for monitoring and controlling execution, effecting output and modification
of memory contents. It also lets you call up information on program execution and on using
AID.

With AID, the user can debug both on the symbolic level of the relevant programming
language as well as on machine code level. Symbolic debugging of a C/C++ program
allows you to use the names defined in the source code to address statements, functions
and data items and to use the source reference generated by the compiler to address state-
ments which have no name.

The BS2000 commands occurring in the AID documentation are described in the EXPERT
form of the SDF (System Dialog Facility) format. SDF is the dialog interface to BS2000. The
SDF command language supersedes the previous (ISP) command language.

With AID, you can debug pure BS2000 or POSIX programs or mixed mode programs. Pure
POSIX programs run entirely in the POSIX shell. BS2000 programs which use the POSIX
interfaces are known as mixed mode programs.

In addition, the options for accessing the data and statements of a C++ program as
described in this manual require the C/C++ compiler as of V3.0.

Please refer to the appendix for an overview of the main differences when debugging
programs compiled with the C/C++ compiler as of V3.0 and older objects.

AID provides you with source-based debugging of programs compiled with the new C/C++
compiler, in a graphical interface on your PC as standard. Graphical debugging is a much
more convenient way of debugging as the program section currently being executed is
always displayed on your screen and you can input AID commands with a simple mouse-
click.

Objectives and target groups of the AID documentation Preface

8 U6148-J-Z125-8-76

1.1 Objectives and target groups of the AID documentation

AID is targeted to all software developers working in BS2000 with the programming
languages COBOL, FORTRAN, C, C++, PL/I or ASSEMBH or those who wish to debug or
correct programs on machine code level. This manual is intended for those involved in
debugging C and C++ programs.

1.2 Structure of the AID documentation

AID documentation is comprised of the AID Core Manual, the language-specific manuals
for symbolic debugging, and the manual for debugging on machine code level. For experi-
enced AID users there is also a Ready Reference, giving the syntax of all the commands
and the operands with brief explanatory notes. It also includes the %SET tables and a
comparison of AID and IDA. All the information the user requires for debugging can be
found by referring to the manual for the particular language required and the core manual.
The manual for debugging on machine code level can either be used as a substitute for or
as a supplement to any of the language-specific manuals.

AID Core Manual [1]

This basic reference manual contains an overview of AID and a description of the topics
and operands which are common to all the programming languages. As part of the
overview, the BS2000 environment is described; basic concepts are explained and the
repertoire of AID commands is presented. The other chapters describe prerequisites for
debugging; command input; the subcommand, complex memory reference and medium-
and-quantity operands; AID literals and keywords. The manual also includes the BS2000
commands not permitted in command sequences.

AID User Guides

The User Guides deal with the commands in alphabetical order, and they describe all
simple memory references. Apart from the present manual,
AID - Debugging of C and C++ Programs,

the available User Guides are:
AID - Debugging of COBOL Programs [3]
AID - Debugging of FORTRAN Programs [4]
AID - Debugging under POSIX [5]
AID - Debugging of ASSEMBH Programs [6]

Preface Structure of the AID documentation

U6148-J-Z125-8-76 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

1

In these language-specific manuals, the description of the operands is tailored to fit the
programming language in question. A prerequisite for this is that the user knows the
particular language scope and operation of the relevant compiler.

The additional functionality for machine code debugging is described in
AID - Debugging on Machine Code Level [2]

The manual can be used for programs for which no LSD records exist or for which the infor-
mation from symbolic debugging does not suffice for error diagnosis. Debugging on
machine code level means the user can issue AID commands regardless of the language
in which the program was written.

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last edition of this manual Preface

10 U6148-J-Z125-8-76

1.3 Changes since the last edition of this manual

AID V3.4B30 offers the following new functions compared to version V3.4B10:

● Extension of the%AID command: new LEV operand. This operand can expand the
output of the AID command %SDUMP %NEST by the levels within the call hierarchy.

● New qualification NESTLEV in the %DISPLAY, %MOVE, %SDUMP and %SET
commands designated to qualify all instances of recursive data.

● Enhancement of the %FIND command that enables searching the find area for
characters from a coded character set (CCS) supported by XHCS.

1.4 Notational conventions

italics In the body of the text, operands are shown in lowercase italics.

bold Text to be highlighted is printed in bold. In addition, bold print is also used in
the syntax notations to differentiate special characters and lowercase
letters which must be entered as shown as opposed to metasyntax
elements and operand names. Typical examples include the square
brackets [], which enclose the subscript of an array in C/C++, and the
sizeof() operator, which must always be entered in lowercase.

i This symbol identifies points to be specially noted, e.g. cases where
different addresses are calculated in AID and C++ even though the
syntax is identical (e.g. because AID and C/C++ differ in their treatment of
individual address operands, etc).

U6148-J-Z125-8-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

2

2 Metasyntax

The metasyntax shown below is the notational convention used to represent commands.
The symbols used and their meanings are as follows:

UPPERCASE LETTERS
Mandatory string which the user must employ to select a particular function.

lowercase letters
String identifying a variable, in the place of which the user can insert any of the
permissible operand values.

⎧ alternative ⎫
⎨ ... ⎬
⎩ alternative ⎭

{ alternative 3 ... 3 alternative }
Alternatives; one of these alternatives must be selected. The two formats have the
same meaning.

[optional]
Specifications enclosed in square brackets indicate optional entries.

In the case of AID command names, only the entire part in square brackets can be
omitted; any other abbreviations cause a syntactical error.

[...]
Reproducibility of an optional syntactical unit. If a delimiter, e.g. a comma, must be
inserted before any repeated unit, it is shown before the periods.

{...}
Reproducibility of a syntactical unit which must be specified at least once. If a
delimiter, e.g. a comma, must be inserted, it is shown before the periods.

Metasyntax

12 U6148-J-Z125-8-76

Underscoring
Underscoring designates the default value which AID inserts if the user does not
specify a value for the operand.

• A bullet (period in bold print) delimits qualifications or stands for a prequalification
(see also the %QUALIFY statement) or is the operator for a byte offset or is part of
the execution counter or subcommand name. The bullet is entered from the
keyboard using the key for a normal period. It is actually a normal period, but here
it is shown in bold to make it stand out better.

U6148-J-Z125-8-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

3

3 Prerequisites for debugging

For symbolic debugging, AID requires a "List for Symbolic Debugging" (LSD) which
contains the symbolic names defined in a program. This LSD information is generated by
the compiler and can be taken over at the time of linkage and also be loaded. This chapter
briefly describes the control statements required for generating the LSD with the C/C++
compiler at both BS2000 and POSIX levels. In addition, the following sections also list the
operands you have to specify during compiling, linking and loading to create and run a
program under POSIX. General information on LSD records, linking, loading, and starting
can be found in the chapter on “Prerequisites for debugging with AID” in the AID Core
Manual.

In addition, AID offers an option that allows the LSD information to be dynamically loaded
if the program was initially loaded without the LSD. The LSD must have been stored with
the program concerned in one PLAM library for this. It can have been directly stored there
by the compiler during compilation or, if the program was compiled under POSIX, you can
copy it with the LSD records from the POSIX file system into a PLAM library. This chapter
also contains a brief description of the POSIX bs2cp command which you need to transfer
the program from POSIX into BS2000.
The final section of this chapter contains a summary of the commands you should always
use to start a debugging session.

Compiling in BS2000 Prerequisites for debugging

14 U6148-J-Z125-8-76

3.1 Compiling in BS2000

You control the generation of LSD information with the following option of the C/C++
compiler V3.0:

//MODIFY-TEST-PROPERTIES TEST-SUPPORT = {*UNCHANGED|*YES|*NO}

*UNCHANGED
The last value defined with a MODIFY-TEST-PROPERTIES statement is taken over.
*NO applies if no value was defined in the current compilation run

*YES The compiler will generate LSD information.

*NO With the presetting NO, the compiler will not generate LSD information.
Call backtracing (%SDUMP %NEST) is possible even without this LSD information.

LSD generation is possible for non-optimized programs only. If optimization is turned on
anyway (cf. the MODIFY-OPTIMIZATION-PROPERTIES statement), the compiler sets the
optimization level to *LOW, and issues a corresponding message.
LSD generation for C++ programs also has an impact on the way functions are generated.
Inline functions are generated as outline functions. The option INLINING=*YES, if
specified, is reset by the compiler to INLINING=*NO.

Furthermore, note that if you do not plan to dynamically load the LSD information with
%SYMLIB when required, you will also have to ensure that the LSD information is included
in the compiler statement that controls the linking of the module:

//MODIFY-BIND-PROPERTIES ...,TEST-SUPPORT = {*UNCHANGED|*YES|*NO}

*UNCHANGED
The last value defined with a MODIFY-TEST-PROPERTIES statement is taken over.
*NO applies if no MODIFY-TEST-PROPERTIES statement was specified in the
current compilation run.

*YES The LSD information is linked into the module.

*NO With the default *NO setting, the LSD information is not linked in.

A further option of the MODIFY-BIND-PROPERTIES statement that affects debugging with
AID is STDLIB. This is assigned the value *DYNAMIC by default, which means that the C
runtime system is loaded dynamically. In the case of some program errors, e.g. when some
portions of the code are overwritten by library functions, it may not be possible for AID to
display the entire call hierarchy, i.e., the last function before the error occurred may be
missing. If this occurs, you could help yourself by specifying STDLIB=*STATIC at linkage
and thus ensure that the runtime system is statically linked to the program (see also the
"C/C++ Compiler“ User Guide).

Prerequisites for debugging Compiling in BS2000

U6148-J-Z125-8-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

3

You must specify the following two options if the program uses POSIX interfaces:

– The _OSD_POSIX define must be set before the first #include statement in the
program. The simplest way to do this is to specify the following compile option:
//MODIFY-SOURCE-PROPERTIES DEFINE = _OSD_POSIX

– In order to find the standard include headers during compilation, you must specify the
SYSLIB.POSIX-HEADER library, which contains the standard include elements for
POSIX functions, in addition to the CRTE library SYSLNK.CRTE.
This can be done with the following option:
//MODIFY-INCLUDE-LIBRARIES STD-INCLUDE-LIBRARY=
 (*STD-LIBRARY,$.SYSLIB.POSIX-HEADER)

The following option must be set if the program is to read in the parameters for the main
function, as is usual with UNIX:

//MODIFY-RUNTIME-PROPERTIES PARAMETER-PROMPTING = *YES

This causes the program to be halted immediately after starting and you are then prompted
to input the parameters for the main function or redirections for stdin/stdout or stderr.
Specifying this operand is meaningless if the program is started in the POSIX shell as
parameters and redirections are input directly in the command line as in UNIX.

A complete description of the operands which control compilation can be found in the
C/ C++ User Guide [9].

Linking, loading and starting in BS2000 Prerequisites for debugging

16 U6148-J-Z125-8-76

3.2 Linking, loading and starting in BS2000

To be able to debug symbolically, you also have to ensure that the LSD information is
included during linking, loading and starting.

Compiled programs can be linked, loaded and started by using standard SDF commands
which are valid for all languages. These commands are described in the chapter on
“Prerequisites for debugging with AID” in the AID Core Manual. The same chapter also
describes which parameter is needed to pass the LSD information generated by the
compiler to the link editor (BINDER) or the dynamic binder loader DBL. It is also possible
to dynamically load LSD information from a PLAM library using the %SYMLIB command
(see the section “Loading the LSD dynamically” on page 18).

If you want to use the C runtime system POSIX functions, you must specify the
SYSLNK.CRTE.POSIX link switch library when linking. The module in this library must be
linked in before modules from other CRTE libraries. With dynamic linking using the DBL,
you therefore have to assign the SYSLNK.CRTE.POSIX library a lower link name BLSLIBnn
than any subsequent, further CRTE libraries.

Example

ADD-FILE-LINK FILE-NAME=$.SYSLNK.CRTE.POSIX,LINK-NAME=BLSLIB00
ADD-FILE-LINK FILE-NAME=$.SYSLNK.CRTE.PARTIAL-BIND,LINK-NAME=BLSLIB01
LOAD-PROGRAM ...

If you link statically using BINDER and link in the SYSLNK.CRTE.POSIX library with an
INCLUDE-MODULES statement, this ensures that the module from the link switch library
is linked in before the runtime system modules:
INCLUDE-MODULES *LIB(LIB = $.SYSLNK.CRTE.POSIX, ELEM = *ALL)

More information on the common runtime environment CRTE can be found in the manual
“CRTE - Common RunTime Environment” [12].

Prerequisites for debugging Compiling and linking under POSIX

U6148-J-Z125-8-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

3

3.3 Compiling and linking under POSIX

The following POSIX commands are available to you in the POSIX shell for compiling and
linking C or C++ programs:

cc, c89 Calls the compiler as C compiler

CC Calls the compiler as C++ compiler

The C/C++ compiler generates LSD information if you specify the -g option. Note that this
option also suppresses the inlining of functions in the C/C++ source program and the
standard optimizations (-O).

If you do not specify -g, you cannot debug the program symbolically. However, you can
debug the program at machine code level.

The cc, c89 and CC commands are described in detail in the manual “POSIX Commands
of the C/C++ Compiler” [9].

3.4 Loading and starting under POSIX

You use the POSIX debug command to load the program with the LSD. This command is
described in detail in the chapter “Special notes on debugging under POSIX” on page 295.
After loading, AID outputs message AID0348, which contains the process number (pid) of
the created process. You are then presented with the debug mode prompt and can input
AID commands. You can start the program with %RESUME.

If you load and start the program directly in the POSIX shell, i.e. without using the debug
command, the program is unloaded if an error termination occurs. In contrast to the BS2000
level, you then have no possibility of examining the error environment and error cause
immediately if you want to try to eliminate the error and continue program execution.

Loading the LSD dynamically Prerequisites for debugging

18 U6148-J-Z125-8-76

3.5 Loading the LSD dynamically

Programs used in production are generally loaded without the LSD. It is also meaningful to
load very large programs, in which only separate modules are to be debugged symbolically,
without the LSD. In such cases, AID can still access the relevant LSD at a later stage,
provided the module was stored together with the LSD in a PLAM library. This is done by
specifying the PLAM library containing the program with the LSD information in the
%SYMLIB command (see page 278). If you subsequently access a symbolic memory
reference with an AID command, AID opens the PLAM library and searches for the required
information in it. You can also use this procedure if the program is running in the POSIX
shell. Since %SYMLIB does not support accessing POSIX files, the program must be
stored with the LSD in a PLAM library in BS2000 in this case as well. If the program was
compiled in the POSIX shell, you will need to copy the created object into BS2000 with the
POSIX command bs2cp and store it there as a type L element in a PLAM library.

It is fundamentally not possible to dynamically load the LSD for programs invoked via an
exec() call from another program. In this case, you always have to use the procedure
described above if you wish to debug symbolically.

3.6 bs2cp

bs2cp copies files from the POSIX file system into BS2000 and vice versa. BS2000 files
may be DVS files or BS2000 PLAM library elements. You will find a detailed description of
bs2cp in the manual “POSIX Commands” [11].

Prerequisites for debugging Commands on starting a debugging session

U6148-J-Z125-8-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

3

3.7 Commands on starting a debugging session

When debugging C/C++ programs, it is advisable to enter the following command at the
start of each debugging session:

%AID C=YES

This enables the handling of char arrays as C strings, and thus allows you to work with C
strings in AID just as you would in C/C++. At the same time, the setting C=YES also enables
LOW=ALL and SYMCHARS=NOSTD.

– LOW=ALL means that AID distinguishes between uppercase and lowercase in names
from the source program and does not convert lowercase names of translation units
and other BLS names into uppercase. All other specifications in BS2000 and AID
commands are converted as usual to uppercase. You can thus continue to enter
command and operand names and all other inputs in lowercase. Note, however, that if
you are not debugging under POSIX, it is better to set %AID LOW=ON, since you would
then not have to worry about entering the names of translation units in uppercase.

– SYMCHARS=NOSTD sets the hyphen to be always interpreted as the minus sign. Since C
and C++ do not allow the use of hyphens in names, all hyphens in inputs can only
represent minus signs.

Note that the entry %AID C=NO does not affect the settings of LOW and SYMCHARS, i.e. the
values LOW=ALL and SYMCHARS=NOSTD, which are set implicitly by C=YES, are not reset by
C=NO.
The current settings of global parameters can be displayed during a debugging session with
%SHOW %AID (see the description of the command %SHOW on page 272).

Immediately after loading, the program counter (PC) is in the superblock. As a result, you
can only reference global data and data declared as static. AID requires the appropriate
qualification for access. There is no call hierarchy until the program counter is on the first
instruction in your program, and only then can AID address local data and execute the
%SDUMP command. You get to this point using:

%insert main;%r

or

%trace 1 in s=srcname

srcname is the name of the translation unit which contains the main function.

In the case of C programs and C++ programs without virtual functions or constructors, both
options have the same significance, i.e. the program is halted before the first executable
statement of the main function.
However, C++ programs usually begin with a compiler-generated function in which, among
other things, constructors are interpreted and tables are constructed for virtual functions.
Following the %TRACE command, the program is halted at the start of this function. The

Commands on starting a debugging session Prerequisites for debugging

20 U6148-J-Z125-8-76

name of this function (_ _STI_ _) is generated by the compiler and is also output in the
stop message of the %TRACE. To ensure that even a C++ program will always halt immedi-
ately before the first executable statement of the main function after loading, you can use
the command:

%trace 1 in main

The following option
OVERFLOW-CONTROL=*USER-ACKNOWLEDGE
must be set with the
/MODIFY-TERMINAL-OPTIONS
command to enable interruption of an extensive AID output with the K2 key.

U6148-J-Z125-8-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

4 Addressing in C and C++ programs

This chapter describes only those memory references which are used for the symbolic
debugging of both C and C++ programs. In chapter 5 you will find descriptions of additional
address operands specific to C++ programs. A general description of addressing methods
can be found in the chapter on “Addressing in AID” in the AID Core Manual.
All data names and statement names from the program which are listed in the LSD records
as well as the source references generated by the compiler can be used as symbolic
memory references. In some cases, preceding qualifications may be required as described
below .
In all operands in which compl-memref is possible, you can choose as you like between the
memory references described in this manual and those for debugging at machine code
level [2].

4.1 Qualifications

You use qualifications in the following cases:

– If you wish to access a memory object that is not in the current AID work area.

– If the interrupt point is not in the scope of the addressed memory object.

– If the required memory object is hidden by a definition with the same name.

– To designate a contiguous segment of program memory.

There are two qualifications: the base qualification, with which you define the AID work
area, and the area qualification, with which you address parts of the work area. A combi-
nation of qualifications may be used to describe the path to an area or memory object.

Qualifications are separated by using periods as delimiters. A period is also required
between the last qualification and the following operand part. The qualification for the
superblock, in which a pair of colons precede the address operand, constitutes an
exception; no additional period is inserted in this case between the :: and the address
operand.

Qualifications Addressing in C and C++ programs

22 U6148-J-Z125-8-76

When debugging C and C++ programs, you can use the base qualification and, as area
qualifications, the S, PROC and BLK qualifications. Global data and functions are
addressed by means of a prepended ::. Qualifications are represented in the command
syntax using the qua operand. The following overview shows how qualifications are used:

- -

 ⎧keyword ⎫
 3 3
 3 ⎧source-referece ⎫3
 3 3 33
 3 3 ⎧dataname⎫ 33

3 3[::] ⎨ ⎬ 33
⎧VM⎫ 3 3 ⎩function ⎭ 3⎬

[E=⎨ ⎬•] ⎨[CTX=context•] [S=srcname•]⎨ ⎬3
⎩Dn⎭ 3 3 ⎧dataname⎫ 33

 3 3[PROC=function•] ⎨ ⎬ 33
3 3 ⎩L'label' ⎭ 33

 3 3 33
3 ⎩[BLK='[f-]n[:b]'•] dataname ⎭3
3 3
⎩[NESTLEV=level-number] ⎭

- -

Base qualification

E={VM | Dn}
The base qualification determines whether the AID work area is in the loaded
program (E=VM) or in a dump file (E=Dn). The base qualification is used in the
same way for symbolic debugging and for machine-oriented debugging and is
described in the chapter on “Addressing in AID” in the AID Core Manual [1] and
under the command %BASE on page 127.

Area qualifications

These qualifications enable you to designate a part of the work area. If an address operand
ends with one of these qualifications, the effect of the command will be restricted to only the
part which was designated by the last qualification. In other words, an area qualification
allows you restrict the scope within which a command takes effect and to thus make a data
or statement name unique in the work area or to reference a name that is otherwise
inaccessible at the current interruption point.

Addressing in C and C++ programs Qualifications

U6148-J-Z125-8-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

CTX=context
The CTX qualification designates a context (see also the section on “Area
qualifications” in the AID Core Manual [1]). It is only in the commands %SDUMP
and %QUALIFY that an address operand may end with the CTX qualification. This
qualification is only required if identically named translation units are loaded in
different contexts and if the desired translation unit can thus be uniquely addressed
only via the CTX qualification. context may be the context name explicitly assigned
in the BIND macro or the implicitly assigned name LOCAL#DEFAULT. The default
context name LOCAL#DEFAULT is also assigned to programs loaded with the
dynamic binder loader DBL. Further contexts of a program may occur as a result of
a link to a shared-code program.
context may have a length of up to 32 positions.

Note that the CTX qualification is not included in the syntax for the address
operands of the individual commands, since this would unnecessarily inflate the
syntax.

Examples
%control1 in ctx=local#default.s=n'list.c'.proc=main
Here the control-area is not located in the current context in which the program was
interrupted, but in the context LOCAL#DEFAULT.

%sdump ctx=ctxphase
The current interrupt point is located here in a different context of the call hierarchy.
In this %SDUMP, the command is restricted to the specified context.

%insert ctx=local#default.s=n'list.c'.s'30'
The translation unit LIST.C occurs in both the current context as well as the
context LOCAL#DEFAULT.The context qualification is required here so that an
interrupt point can be defined.

S=srcname
The S qualification defines a translation unit.

In the case of LLMs, the name of the source file must be specified and may occupy
up to 32 positions. The C/C++ compiler V3.0 only generates LLMs.

In the case of OMs, srcname is the name of the code CSECT and may thus occupy
up to 8 positions.

If the name includes special characters that do not belong to the AID character set,
e.g. a period or an “&”, the S qualification must be specified with n’srcname’. More
information on constructing module names can be found in the C/C++ User Guide
[8] in the section on “Standard name generation”.

AID converts srcname to uppercase, even if %AID LOW[=ON] is set.

Qualifications Addressing in C and C++ programs

24 U6148-J-Z125-8-76

However, if the program was compiled in the POSIX shell and the name of the
relevant source program contains lowercase characters, you must set %AID
LOW=ALL. This is the only way to ensure that uppercase/lowercase is also
considered in the S qualification. Note that LOW=ALL is set implicitly on entering
%AID C=YES.

You can use the S qualification to define the area in which the commands
%CONTROLn, %TRACE or %SDUMP take effect.
Otherwise, you use an S qualification when you want to reference a name (function,
block, data name, label or source reference) from the LSD records which is not
within the current program unit.

Note for users debugging on machine-code level:

The CSECT names of LLMs generated with the C/C++ compiler as of V2.1C
contain an '&' and must be written in n'...' in AID commands. More detailed
information on working with CSECTs when using AID can be found in the manual
“Debugging on Machine Code Level” [2].

NESTLEV=level-number
The NESTLEV qualification defines a level number.

Like the qualification S=srcname.PROC=function, the qualification NESTLEV=level-
number is designed to manipulate data names that users declare in the source units.
The environment qualification E={VM|Dn} is the only one NESTLEV=level-number
can be combined with.

The qualification NESTLEV accepts a level number, in other words, a reference to
the current call hierarchy. Based on this reference, AID identifies a complete list of
available data names defined at the specified level.

Normally, you have to display and analyze the call hierarchy before using the
NESTLEV qualification. The following AID commands output the current call
hierarchy augmented with the levels:

%AID LEV=ON
%SDUMP %NEST

The NESTLEV qualification can be used in the commands %DISPLAY, %MOVE,
%SDUMP and %SET. In these commands, the qualification NESTLEV=level-number
can equally (with the same result) replace the qualification
S=srcname.PROC=function, if level-number is correct.

For an example for the usage of the NESTLEVqualification, see AID Core Manual,
section “Area qualifications“[1].

Addressing in C and C++ programs Qualifications

U6148-J-Z125-8-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

:: You use the pair of colons to address the superblock. You can use this qualification
to reference global data that is hidden at the interrupt point by a definition with the
same name or to designate global data or functions which are not associated with
the current program unit. In contrast to the other qualifications, no delimiting period
is entered between the two colons and the following data or function name.

Example
%display s=n'list.c'.::name
The global variable name from the translation unit LIST.C is displayed.

PROC=function
The PROC qualification defines a function from the source program.
function is the name assigned in the source program to a function or main and can
be up to 1000 positions in length.

You can use the PROC qualification to specify the area in which the commands
%CONTROLn, %TRACE or %SDUMP take effect.
Otherwise, you use a PROC qualification when you want to reference a data name
declared as static or a statement name (label) which is not associated with the
current function. In addition, you use a PROC qualification when you want to
reference a data name which is associated with the current function, but which is
hidden at the interrupt point by a local definition with the same name, e.g. if a
variable with the same name is defined in an inner block.

BLK=’[f-]n[:b]’
The BLK qualification defines a block. As with source references, the name of a
block is formed from the line number and, in some cases, the FILE number as well
as the relative block number.

The outermost pair of braces in a function encloses the entire function and is not a
block for AID. All definitions found there are associated with the function and are
referenced with the corresponding PROC qualification. The second pair of braces
in a function begins a block which you can reference with a BLK qualification.

f FILE number; it is specified only for lines which were inserted because of an
#include or #line directive (see the section “Functions, labels and source
references” on page 50).

n Line number in which the block begins; you can find it in the source error listing,
column SRC-LIN; it is identical with the line number in the source file.

b Relative block number within a line; it can be found from the number of left
braces in a line, where only the braces for statement blocks are considered.
The braces for struct, union and enum declarations are not counted. The
first brace in a function counts as a relative block number even if it cannot be
referenced with a BLK qualification.

Qualifications Addressing in C and C++ programs

26 U6148-J-Z125-8-76

b is a number > 1; you specify it only if you do not want to reference the first
block in a line. The b-th block in the line is then specified.

Using the BLK qualification, you can define the area in which the commands
%CONTROLn, %TRACE and %SDUMP take effect.
Otherwise, you specify a BLK qualification when you reference a data name
declared as static which is associated with a block outside the current call hierarchy.
In addition, you can use a BLK qualification when you reference a data name which
is associated with a block within the current call hierarchy and is hidden at the
interrupt point by a definition with the same name.

keyword
The keywords are described in the AID Core Manual in the chapter on “Keywords”
[1]. You will also find them in the descriptions of the commands in which they are
used.

dataname
dataname is described in the section “Data names” on page 29.

{L'label' | source-reference | function}
label, source-reference and function are described in the section “Functions, labels
and source references” on page 50.

4.1.1 Associating data with translation units, functions and blocks

The addressing methods of AID take into consideration the specifics of scope in the C or
C++ programming language. Names declared extern are valid in the whole program;
parameter names and labels have validity within a function. Names which were declared in
a block are valid within that block only.

Global data is defined outside of all functions and are associated with the superblock . Local
data is always associated with the function or the block in which they are defined.

The AID work area comprises the complete non-privileged address area that is occupied
by your loaded program or the corresponding area in a memory dump and is defined by
means of the base qualification. All names that lie within the AID work area defined with
%BASE can be referenced without an explicit base qualification.
All names which lie in some other translation unit always require an S qualification and a
PROC or BLK qualification appropriate to their scope, or a pair of colons (::) if the names of
global data or functions are involved.
Names which lie within the current translation unit require a PROC and possibly a BLK
qualification if they are associated with another function of the same translation unit. Names
in the current function require only a BLK qualification if they are locally hidden by a
definition of the same name or are associated with a function block that is not in the current
call hierarchy.

Addressing in C and C++ programs Qualifications

U6148-J-Z125-8-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

All names that are valid at the interrupt point, i.e. which could also have been used within
the program at that interrupt point, can be referenced without qualification; however, in the
case of identical names, this is only the first definition that is found by AID within the current
call hierarchy (from the innermost to outermost level).
Top-level definitions with the same name can be referenced only with qualification. You
always use the qualification which corresponds to the scope of that name in C or C++.

Examples

1. Function parameters

 C program
 ===
 1 #include <ctype.h>
 2 ...
 10 int main(int argc, char *argv[])
 11 { ... }
 ===

The argc parameter is referenced as follows, where proc=main in the second possi-
bility is an overqualification which AID ignores.
argc
proc=main.argc

2. Nested blocks

 C program
 ===
 1 #include <stdio.h>
 2 int main(void)
 3
 4 { int a; struct s {int i;}; {
 1 2
 5 static int b;
 6 ...
 7 b++; }
 8 printf("%d\n", a); }
 ===

The current interrupt point is at source reference 8. The variable b is referenced with
the following block qualification:
blk='4:2'.b

Qualifications Addressing in C and C++ programs

28 U6148-J-Z125-8-76

3. Global external declarations

 C program - translation unit TEST2.C
 ===
 9 extern double d;
 10 int main(void) {
 11 int f1(void);
 12 d = PI;
 13 ...
 14 {
 15 int d = 15;
 16 ...
 ===

Let us assume that the program consists of three translation units: the variable d is
assumed to be defined in TEST1.C; it is simply declared in TEST2.C, and is not used in
TEST3.C. Variable d can be referenced as follows:

– if the interrupt point is S’13’:
%display d

– if the interrupt point is S’16’, and there is a local d:
%display ::d

– if the interrupt point is in TEST1.C:
%display d or %display ::d

– if the interrupt point is in TEST3.C:
%display s=n'test1.c'.::d

or
%display s=n'test2.c'.::d

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

4.2 Data names

AID allows you to reference the following types of data:
– simple (scalar) types
– arrays and array elements
– C strings
– structures/unions and structure/union components
– enumeration (enum) constants
– bit-fields
– pointers

You cannot reference the following with AID:
– preprocessor constants and macros (#define)
– typedef names
– enumeration, structure and union types (tags)

As a rule you can reference data as in C/C++, with the following exceptions:

– Array elements can only be referenced via subscripts, not by means of pointers.

– With variables of type long double, AID evaluates only the first 8 bytes.

– You cannot use variables of type char with AID as an arithmetic type in an expression.
You can only calculate with char variables after adding a type modification to the data
name. %A converts the data type to unsigned char and %F to signed char.
A variable of type signed char is also handled by AID as a signed integer variable.
You can use the contents of such a variable in an expression without type conversion.
The same applies to variables of type unsigned char.

dataname
stands for all data names defined in the source program.

dataname is usually specified as in the source program. AID takes a maximum of
1000 characters into account. If %AID LOW={ON|ALL} is set, AID distinguishes
between uppercase and lowercase. As in C/C++, C keywords such as int, char,
etc., are not allowed in AID and are rejected as syntax errors.

dataname may be used in all commands for outputting and modifying data, i.e. the
commands %DISPLAY, %MOVE, %SDUMP, and , %SET. In addition, datanname
can be specified in the %FIND command (to locate strings) and in the %ON
command (for write monitoring).

Data names Addressing in C and C++ programs

30 U6148-J-Z125-8-76

AID provides the following formats:
– subscript notation
– pointer notation
– structure qualification
– dereferencing

These formats can also be combined, i.e. in any of the formats, dataname can be
replaced by any of the other formats.

4.2.1 Subscript notation

- -

dataname [[subscript] {...}]

- -

You can use subscript notation to access arrays and type-related pointers. The subscript is
specified as in a C/C++ statement in brackets. The brackets used for subscripting are
printed in boldface in this manual in order to distinguish them from the brackets of the
metasyntax.

AID also provides the option of using the array name without a subscript, thus designating
the complete array.

subscript
 The subscript can have a value of between -231 and +231-1 and comprises:

– an integer,
– a variable of type int or
– an arithmetic expression

The arithmetic expression can contain the arithmetic operators (+, -, /, *), integers,
and numeric variables. The numeric variables used in a subscript cannot be
qualified. They must therefore be visible at the interrupt point or, if dataname is
qualified, the variables from subscript must be visible in the range designated by the
qualification.
The variables used in the subscript can be specified in the same way as dataname,
i.e., they can be subscripted, pointer or structure qualified, or dereferenced.
It must be noted that when a subscripted entry in a %ON %WRITE(...) is input, AID
immediately calculates the start address and length of the range to be monitored.
This means that if the contents of subscript change during a program run, thus
changing the start address of the range designated with dataname[subscript]{...},

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

the range defined when %ON %WRITE(...) was input is still monitored. In contrast
to this, entries in subcommands of the %CONTROLn, %INSERT and %ON
commands are only evaluated when the monitored event occurs, i.e.
dataname[subscript]{...} must be visible at the point of the program run where the
event occurs, e.g. when the test point is reached, but not when the command is
input.

Accessing a single element of an array requires as many subscripts as have to be
specified for access in a C/C++ statement.

If you specify subscript in the form subscript1:subscript2, you designate the range
between subscript1 and subscript2.
The following applies for subscript1 and subscript2:
Both must lie within the subscript limits and subscript1 must be less than or equal to
subscript2.

If you use an asterisk (*) for subscript, you designate the complete subscript range
of the dimension. For single dimension arrays, this is the same as using the array
name without a subscript. This may not be followed a type or length modification.

You can only use range specification in the %DISPLAY command. Array names
with range specifications must not be used in address calculations. Modifications of
type or length are not permitted.

Examples

1. %DISPLAY array [*][3]

Outputs all elements from the first dimension of a two-dimensional array whose
second dimension are 3.

2. %DISPLAY array [1:3][*][5:15]

Outputs the elements from a three-dimensional array whose:
– first dimension subscript is 1, 2 or 3,
– second dimension subscript is anywhere within the subscript limits and
– third dimension is 5 through 15.

Data names Addressing in C and C++ programs

32 U6148-J-Z125-8-76

Using arrays with AID

Working with arrays in AID differs from conventional C/C++ methods, since an additional
option allows you to use an array name without a subscript:

1. Referencing an array in the scope of its definition

In the function or block that contains the array definition, dataname without a subscript
references the entire array. For example,
%FIND X'...' IN dataname and
%ON %WRITE(dataname) search and monitor the entire array, respectively.

%DISPLAY and %SDUMP edit all array elements with the subscript and associated
content as a table. This also applies to character arrays if %AID C=NO has been set.
Note, however, that if you have enabled the interpretation of character arrays as C
strings by specifying %AID C=YES, AID will display the array contents as a contiguous
character string. The handling of C strings with AID is discussed in a separate section,
starting on page 36.

2. Referencing an array as a transfer parameter

When an array is passed to a function as a parameter in a function call, the array name
in that function includes only a pointer to the passed array. Consequently, only the start
address of the array is known in that function. This means that you can address
individual array elements as usual via a subscript, but if you use the parameter name
without a subscript here, you will effectively designate the start address of the array. The
only way to reference the array as a whole in this case is with a following pointer
operator and appropriate length modification::
%DISPLAY parametername->%typeLlength
For C strings, you can specify C for type, which causes the string to be output in
character format. For arrays of other data types, e.g. int, only the value X is meaningful
for type; this causes the array to be output in hexadecimal representation.

The currently occupied contents of a character array can be output by using the
following two commands:
%FIND X'00' IN parametername->%Ln
%DISPLAY parametername->%CL=(%0G - parametername)
The first command (%FIND) determines the address of the null byte. AID saves this
address in the AID register %0G. The following %DISPLAY command outputs the string
up to the null byte in character representation.

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

Examples

C program SOURCE: PARR.C
==
SRC
LIN
 1 void foo (char*,int*);
 2 char a[25] = "abcdefgh";
 3 char *p = &a[5];
 4 int iv[] = {0,10,20,30,40};
 .
 . main()
 . {
 .
 25 foo(a, iv);
 .
 . }
 .
 . void foo(char* str, int* nr)
 . {
 .
 80 printf("String str:\n%-25s\n",str);
 81 printf("Array nr:\n");
 82 for (i=0; i<5; i++) printf("%6i",nr[i]);
 .
 . }
===

1. Interrupt point in main:

Output of an individual array element:

tDDD?
3 SRC_REF: 25 SOURCE: PARR.C PROC: main ***************************3
3 /%display a[6],p[1] 3
3 a(6) = |g| 3
3 * = |g| 3

Every seventh element of array a is output.
The header line contains the source reference of the interrupt point and the names of
the current translation unit and current function.

Output of the entire array in dump format:

tDDD?
3 /%d a%x 3
3 CURRENT PC: 01000098 CSECT: PARR$O&@ ********************************3
3 V'0100111A' = a + #'00000000' 3
3 0100111A (00000000) 81828384 85868788 89000000 00000000 abcdefgh.....3
3 0100117A (00000010) 00000000 00000000 00 3

Data names Addressing in C and C++ programs

34 U6148-J-Z125-8-76

Due to the type modifier %X at the end, AID outputs the entire array a in hexadecimal
and in character representation. The hexadecimal output can be used to determine the
position of the null byte.
Since AID switches to machine code level, an additional header line containing the
current status of the instruction counter and the name of the associated CSECT is
output.

Output of the char array as a C string:

tDDD?
3 /%aid c=yes 3
3 /%d a 3
3 SRC_REF: 25 SOURCE: PARR.C PROC: main ******************************* 3
3 a = "abcdefgh" 3

%AID C=YES enables the interpretation of char arrays as strings. The subsequent
%DISPLAY outputs the occupied part of the string as a string literal in "...".

Output of a numeric array:

tDDD?
3 /%d iv 3
3 iv(0: 4) 3
3 (0) 0 (1) 10 (2) 20 (3) 30 3
3 (4) 40 3

Since the array name was specified without a subscript, AID edits all array elements in
a table and outputs them.

2. Interrupt point in the function foo:

Output of the start address and a single element of the array:

tDDD?
3 SRC_REF: 80 SOURCE: PARR.C PROC: foo ***************************3
3 /%d str,nr,str[6],nr[3] 3
3 str = 0100111A 3
3 nr = 01001180 3
3 * = |g| 3
3 * = 30 3

Unlike in main, specifying the unsubscripted array name causes the address of the
array to be output, since the array is passed as a pointer. Subscripted specifications are
also possible exactly as in main; however, since the element is referenced via a pointer,
AID outputs an asterisk instead of the element name.

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

Output of the complete character array:

tDDD?
3 /%d str->%xl(::a) 3
3 CURRENT PC: 0100020A CSECT: PARR$O&@ *******************************3
3 V'0100111A' = PARR$O&# + #'0000011A' 3
3 0100111A (00000000) 81828384 85868788 89000000 00000000 abcdefgh.....3
3 0100112A (00000010) 00000000 00000000 0000 3
3 /%f x'00' in str->%xl(::a) 3
3 PARR$O&#+00000123=01001123 : 00000000 00000000 00000000 3
3 /%d str->%cl=(%0g-str) 3
3 V'0100020A' = PARR$O&# + #'0000011A' 3
3 0100111A (0000011A) abcdefgh 3

As in main, it is also possible in the foo function to output the complete character array
in dump format (first %DISPLAY). If you want to output only the allocated string in
character format, however, you must first use %FIND to look for the null byte. This
information is used in the second %DISPLAY to calculate the length of the string.

Output of a numeric array:

tDDD?
3 /%d ::iv 3
3 SRC_REF: 80 SOURCE: PARR.C PROC: foo ***************************3
3 iv(0: 4) 3
3 (0) 0 (1) 10 (2) 20 (3) 30 3
3 (4) 40 3
3 /%d nr->%l(::iv) 3
3 CURRENT PC: 0100020A CSECT: PARR$O&@ *******************************3
3 V'01001180' = PARR$O&# + #'00000180' 3
3 01001180 (00000180) 00000000 0000000A 00000014 0000001E 3
3 01001190 (00000190) 00000028 3
3 /%d nr->.8%fl4 3
3 01001188 (00000188) +20 3

In the case of arrays with numeric elements, it is not possible to have the complete array
edited via the name of the transfer parameter. You can, how-ever, always reference the
whole array by means of the appropriate qualifications (i.e. with the two colons in this
case, since a global data item is involved) and the name with which the array was
defined. The second %DISPLAY shows how you can address the whole array on
machine code level via the parameter name. The contents of the array are output in
dump format (hexadecimal and character representation).
The last %DISPLAY outputs the third element of the array as an integer value.

Data names Addressing in C and C++ programs

36 U6148-J-Z125-8-76

4.2.2 C strings

Starting with Version V2.3B, AID supports the string notation of C/C++, provided you have
enabled the option %AID C=YES (see page 115). This means that you can enter C string
literals as in C/C++ within quotes ("...") and that char arrays are no longer treated as an
array of individual char elements, but as strings (as in C/C++).
This functionality can also be used in older C/C++ objects that were compiled with earlier
compiler versions < V3.0.

4.2.2.1 C string literals

C string literals are entered in the following form:

"x...x" Maximum length: 1000 characters on input; unrestricted for output.

x can be any printing or non-printing character. Non-printing characters must be
specified with an alternate representation. The alternate representation begins with
an escape character, i.e. a backslash (\), after which you can enter the value of the
character in different ways:

– Hexadecimal representation \xff:

Character set for f: 0-9, a-f, A-F

Value range from 00 to FF

The hexadecimal value must always be specified with two positions.

– Octal representation \ooo:

Character set for o: 0-7

Value range from 000 to 377

The octal value must always be specified with three positions.

– Symbolic alternate representation:

For some characters which cannot be printed, e.g. the bell character, specific
alternate representations have been defined, so you need not know the
hexadecimal or octal value of the character. Other characters such as the
backslash itself (\) or double quotes ("), though printable, can only be entered in
combination with a backslash.

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

All alternate representations are summarized in the following table:

In the output, AID always selects the printable equivalent of the character when
possible, regardless of the format in which the character was entered. Non-printing
characters are mapped to the alternate representation, if possible in the symbolic
form. Bit combinations which represent non-printing characters and for which no
symbolic representations have been defined are displayed in hexadecimal form.

C string literals can be used in the AID commands %DISPLAY and %SET and also in
comparisons within a subcommand. A C string literal can only be transferred to a char
array with %SET. If the literal is longer that the receiving field, it is truncated to the right, and
AID issues a warning. Alternatively, if the literal is shorter than the receiving field, the field is
padded with binary zeros. This means that you can set a char array to binary zero by
simply transferring an empty literal ("") to it.

Comparisons with a C string literal in a subcommand are only allowed if the second
relational operand is a char array.

Note that the handling of char arrays as C strings involves only a "high-level" functionality,
so you cannot transfer C string literals with a %MOVE. Furthermore, the receiving field in a
%SET must be designated with a symbolic memory reference, so a command such as

Alternate
represen-
tation

Hexadecimal
value

Meaning

\a X’2F’ bell character

\b X’16’ backspace

\f X’0C’ page feed

\n X’15’ newline

\r X’0D’ carriage return

\t X’05’ horizontal tabulator

\v X’0B’ vertical tabulator

\\ X’BC’ backslash

\? X’6F’ question mark

\' X’7D’ single quote

\" X’7F’ double quote

\xff X’ff’ hexadecimal number

\ooo - octal number

Table 1: Alternate representations and their meanings

Data names Addressing in C and C++ programs

38 U6148-J-Z125-8-76

%SET "abc" INTO V'...', for example, is not possible, and any such input is rejected as
a syntax error. AID likewise rejects the use of a C string literal in all AID commands, except
for %DISPLAY and %SET, as a syntax error.

If support for C string literals has been enabled with %AID C=YES, you must enclose
comments within /*...*/. Comments within "..." are no longer recognized by AID as such and
are always interpreted as C string literals, which usually results in a syntax error.

When AID commands are executed in a procedure, no parameter substitution occurs in C
string literals, since the BS2000 command interpreter always interprets entries within
quotes as comments, regardless of whether or not %AID C=YES has been set.

Example

/%set "\xC5\x25\x15" into cstr; %d cstr
cstr = "E\x25\n"

Three characters are transferred to the char array cstr with %SET and then displayed.
For the first character, which was specified with "\xC5", AID displays an "E", since "E" is
represented in hexadecimal notation with C5; the second character is output as a
hexadecimal number, since no corresponding printable character exists for " \x25". The
third character "\x15" appears in the output as "\n", which is the symbolic alternate repre-
sentation for a
newline character.

4.2.2.2 C string arrays

If %AID C=YES is enabled, char arrays are interpreted by AID as C strings. If the char array
has only one dimension, the C string begins with the first array element and ends with the
array element with the value X’00’. Multidimensional char arrays represent arrays of C
strings, and since the last subscript is processed first, the array elements addressed via the
last subscript are combined into C strings.

%DISPLAY outputs the contents of a one-dimensional char array as a C string literal. You
specify the name of the array without a subscript. The editing of individual characters
occurs as specified in the rules listed in the preceding section.
In the case of multidimensional char arrays, the array elements belonging to the subscript
on the extreme right are combined to form a C string, i.e. an array of C strings is displayed.
Following the array name, you specify one subscript less than the subscript levels
contained in the definition of the array. The end criterion in each case is X’00’. If further array
elements are set after X’00’, these are not taken into account in the output.
When you specify a char array with a subscript range in the %DISPLAY command, the
array is split into individual array elements in the output, even if %AID C=YES has been set.

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

C string arrays can be overwritten with %SET, where the sender can be a C string literal or
another C string array. The sender is entered into the receiver up to (and including) the end
criterion X’00’, and the following applies:
– If the sender is longer than the receiver, it is truncated to the right, and AID issues a

warning.
– If the sender is shorter than the receiver, the excess positions on the right are padded

with X’00’.

In a multidimensional array, the array elements associated with the last subscript level can
be transferred or overwritten as a C string.

A single char array element or char literal in the form ’x’ cannot be transferred to a
C string array, but a C string literal consisting of only one character, i.e. "x", can naturally
be transferred.

Note that the aspects applicable to the transfer of C strings must also be considered when
comparing C string arrays in a subcommand. A C string array can only be compared with
another C string array or with a C string literal. The comparison of a C string with an
individual char character and the transfer of an individual character to a C string are both
rejected with the following message:
AID0388 Types are not convertible .

Example

The char array carray is defined and initialized in a C program as follows:

char carray[3][10]={"1","22","333"};

tDDD?
3 /%aid c=yes 3
3 /%d carray 3
3 carray(0: 2) 3
3 (0) "1" (1) "22" (2) "333" 3
3 /%aid check=all 3
3 /%s "ab\n" into carray[1] 3
3 OLD CONTENT: 3
3 "22" 3
3 NEW CONTENT: 3
3 "ab\n" 3
3 % AID0274 Change desired? Reply (Y=Yes; N=No)?y 3
gDDDu

The command %AID C=YES causes AID to interpret char arrays as C strings. Conse-
quently, the array elements of the second subscript level are combined into C strings in the
output of the following %DISPLAY. The command %AID CHECK=ALL then turns on the
update dialog, and the following %SET overwrites the string in carray[1] with the
character string "ab\n".

Data names Addressing in C and C++ programs

40 U6148-J-Z125-8-76

4.2.3 Pointer notation

- -
dataname1 -> dataname2
- -

You can use pointer notation in AID only to reference structure components via pointers.
dataname1 must be a pointer type. As in a C/C++ statement, this refers to dataname2, which
AID processes according to its type and size attributes.

Example

p1 -> var

As in C/C++, you refer - beginning with the address stored in p1 - to the structure
component var.

4.2.4 Structure qualification

- -
top-level dataname• {...•} dataname
- -

You can use structure qualification to reference components of structures as in C/C++. The
first top-level dataname is the name of the structure. Any further top-level datanames are the
names of structure components nested within it. The last dataname is the name of the
structure components you want to reference. AID processes these components according
to their type and size attributes. As of C/C++ V2.1C, you must specify all levels of the
structure in an AID command (exactly as in a C/C++ statement) from the first top-level
dataname down to the component that you wish to address.
For the first time, the LSD created by the C/C++ V3.0 compiler contains the relationship
between base classes and derived classes, allowing AID to recreate the scope rules appli-
cable in C++ for accessing components from class systems. You can now access data and
function members from base and derived classes without qualification or with partial quali-
fication as long as the component concerned is uniquely identified.

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

4.2.5 Dereferencing

- -
[(]* {...} dataname[)]
- -

You can use dereferencing in AID on pointers only, not on arrays. The indirection operator
(*) is used as in a C/C++ statement, which means that repeated use is permitted. The entire
statement may be placed in parentheses. dataname is the name of a pointer which (perhaps
by way of other pointers) points to a memory object.

Pointer arithmetic for dereferencing pointers can be expressed in AID only in subscript
notation (see Example 4 below for details).

Examples

C-Program
===
 ...
 struct
 { int x;
 char y;
 float *z3;
 } z, *p, p1[5];
===

1. z.x
is the structure component x in the structure z.

2. p->y
is the structure component y in the structure pointed to by p.

3. *p
is the entire structure pointed to by p.

4. *(p1+4)->z3
This C/C++-style address specification yields a syntax error in AID. To address the
required memory location in an AID command you should enter the following:
*p1[4].z3.

Data names Addressing in C and C++ programs

42 U6148-J-Z125-8-76

4.2.6 Operator precedence

The operators for symbolic addressing in AID have the same precedence levels as in
C/C++. The operators ->, • and [] have the same precedence level, and all of them have a
higher precedence level than *. AID also allows you to use parentheses to change prece-
dence.

i Be careful with the second operand of the period operator: if it is enclosed in paren-
theses, AID performs a byte offset (see Example 2).

Examples

These examples are related to the definition of structure z on the preceding page.

1. *p -> z3
*(*p).z3
*p[0].z3
p[0].z3[0]
p -> z3[0]
(*p).z3[0]

All notations have the same meaning: p is a pointer which points to a structure with the
component z3. z3 is itself a pointer which is addressed via pointer p and then refer-
enced. The meaning is as in C/C++.

2. *(*p).(z3)

This expression has a different meaning than in C/C++: Since z3 is in parentheses, AID
treats the contents of z3 as a value for a byte offset. These contents must be of type
%F or %A; otherwise, AID rejects a byte offset. The result is 4 bytes of type %X.

4.2.7 The address operator & and the address selector %@(...)

Two options are available in AID in order to access the addresses of data when debugging
C/C++ programs: the address operator &, which you know from the C/C++ language, and
the AID address selector %@(...), which you can use independently of the respective
programming language. You can output the address of a data item with a %DISPLAY
command and pass the address of a data item with a %MOVE or %SET command. Apart
from the AID commands %DISPLAY, %MOVE and %SET, data addresses can be used in
the comparison of a subcommand or in expressions.

The memory object addressed by adding the pointer operator, i.e. &...-> or %@(...)->, is of
type %XL4 for AID, but you can also declare some other type and length with a type and
length modification or use the type selector %T(...) to apply a data type defined in the
source program with its associated length on the address.

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

The address operator & can be applied on all symbolic addresses from C/C++ programs
and returns the absolute address of the accessed data item in memory. Bit-field and register
variables are not allowed as an argument. The AID address selector %@(...) can be used
for data names of other programming languages or complex memory references. You will
find a detailed description of this in the section on “Address, type and length selector” in the
AID Core Manual.

When an address determined with the address operator & is transferred with %SET, the
receiving field must be of type pointer. AID does not perform any further checks, so the data
type of the sender, for example, need not match the data type that is referenced by the
pointer specified as the receiver. Such checks are performed by AID only when the address
of a class object is set to a pointer to a class (see “object” on page 43).

Syntax of the address operator &:

- -

 ⎧namespace::[...]⎫ ⎧dataname ⎫
[•][qua•]&[::][⎨this-> ⎬][class::[...]] ⎨function ⎬
 ⎩object• ⎭ ⎩object ⎭

- -

qua Base or area qualification

If a base or area qualification is required, this must be entered before the address
operator.

{:: | namespace:: | class::}
Qualification for the global area, namespace or class qualification

The :: qualification for the global area or a namespace or class qualification is
appended to the address operator if required. The operand of the address operator
must not end in namespace or class; otherwise, AID issues an error message
(AID0480).

this this pointer

The this pointer saves the address of the current object associated with a
member function.

It can be used in combination with a following pointer operator in the path to a
component of a class.

object Name of a class object

object is used with an appended period to define the path to a component of a
class.
If the operand of the address operator ends with an object name, it effectively
designates the start address of the object.

Data names Addressing in C and C++ programs

44 U6148-J-Z125-8-76

If you want to use %SET to transfer the address of an object to a pointer to a class,
the following must apply:

– The class to which the receiver points must match the class whose address is
to be transferred

or

– it must be the base class of the class assigned to the sender. This base class
must have a unique subobject in the class of the sender.

dataname
Name of a data item

dataname is specified as in the source program. It thus designates the start address
of the data item.

You can address data as in C/C++, with the following exceptions:

– An array name without a subscript returns the address of the first element in the
array.

– Individual array elements can be address only via subscripts, not via pointers.

– If %AID C=YES is set (see page 115), AID returns the array elements of a char
array corresponding to the last subscript level as C strings. The start address of
the C string can be obtained with the appropriate subscript specification.

– The start address of array elements addressed via a subscript range cannot be
determined.

– Arrays that were passed as parameters to a function serve as pointers to the
arrays in the calling program; the address operator & returns the address of the
pointer and not the address of the array.

For more details on working with arrays, see also the sections “Subscript notation”
on page 30 and “C strings” on page 36.

dataname can be specified as follows, and the formats may also be combined (see
the section “Data names” on page 29). The precedence rules of C/C++ apply:

Subscript notation: dataname [subscript] {...}
Pointer notation: dataname1 -> dataname2
Structure qualification: superordinate dataname• {...} dataname
Dereferencing: [(]*{...} dataname[)]
Pointer to member dataname1•*datanname2 or
 dereferencing: dataname1->*datanname2

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

If dataname is a dynamic data member of a class, AID returns either the absolute
address of the data item or the relative address of the data member, i.e. the address
relative to the start of the class, regardless of the interrupt point or any preceding
qualification. This occurs as follows:

– The absolute address of the data item is selected if the program is interrupted
outside the class and the data member is addressed via a class object or if the
program is interrupted in a dynamic member function of the class and the data
member can either be addressed directly of by means of an appropriate
preceding class qualification which you have entered to establish uniqueness.

– The offset to the start address of the class is selected if the program is inter-
rupted outside the class and the data member can be addressed via a class
qualification. If the program is interrupted in a dynamic member function of the
class, you can access the relative address only if you are addressing the
associated class from an external point and via an area qualification (S, PROC
or :: qualification).

Even the offset to the start of the class can only be transferred to a pointer with
%SET, but not to a numeric variable.

For static data members, the address operator & always returns the absolute
address.

function
Name of a function

A C function from a translation unit that was compiled with the option
//MODIFY-SOURCE-PROPERTIES LANGUAGE=C(...)
can be addressed in AID by name. The two trailing parentheses with the passed
parameters (signature) are omitted.
More details on how to specify the names of C++ functions in AID are presented on
page 58.

You can use &function to specify the function address in an AID command. The
same address can also be accessed with function without an address operator;
however, if you want to transfer the function address with a %SET command to a
pointer, you will need to specify &function.

Data names Addressing in C and C++ programs

46 U6148-J-Z125-8-76

Example

C++ program SOURCE: EXADR.C
===
SRC
LIN
...
 20 class X {
 21 int a;
 22 static int c;
 23 public:
 24 void gx(int) {...; return;}
 25 }x;
...
 68 int main()
 69 {
 70 x.gx(3);
...

tDDD?
3 /%in s'70';%r 3
3 STOPPED AT SRC_REF: 70, SOURCE: EXADR.C , PROC: main 3
3 /%d &x.a,&x.c 3
3 010010F0 3
3 010010EC 3
3 /%d &X::a,&X::c 3
3 00000000 3
3 010010EC 3
gDDDu

In the first step, the program is interrupted in main before the gx(int) function call. The
absolute address of the dynamic data member a and the static data member c are
displayed. The second %DISPLAY, in which the data members are addressed via the
associated class qualification, returns the offset to the start of the class for a, but the
absolute address for c, since c is static.

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

tDDD?
3 /%in x.n'gx(int)';%r 3
3 STOPPED AT SRC_REF: 24, SOURCE: EXADR.C , PROC: X::gx(int) 3
3 /%d &a,&c,&X::a,&X::c 3
3 010010F0 3
3 010010EC 3
3 010010F0 3
3 010010EC 3
3 /%d &::X::a 3
3 00000000 3
gDDDu

In the next step, a test point is set at the start of the member function gx(int) and the
program is executed up to that point. The data members a and c can now be addressed
directly. Note, however, that the absolute addresses are now displayed even with the
preceding class qualification X::, since the interrupt point lies in a member function of
class X (first %DISPLAY).
If you want to determine the relative address of a even from this point, you will need to enter
the two colons for the global block before the class qualification. This enables AID to access
X from an external location (second %DISPLAY).

4.2.8 Length operator sizeof() and length selector %L(...)

You can use the length operator sizeof(), which you know from C/C++, and the AID
length selector %L(...) to determine the lengths of data items. sizeof() can only be used
when debugging C/C++ programs, whereas the length selector %L(...) can be used
independently of the programming language of the program being debugged. The AID
length selector is described in detail in the section on “Address, type and length selector” in
the AID Core Manual [1].
The length of a data item can be output with %DISPLAY and transferred with %MOVE or
%SET. You can also use the result of a length selection in a comparison of a subcommand
or in an expression.
Function names are not allowed as operands, so neither the length operator nor the length
selector can be used to determine the length of a function.

The length operator sizeof() can be applied on all symbolic addresses from C/C++
programs. It returns the length of the addressed data item. Bit-field and register variables
are not allowed as arguments.

Note that sizeof() must be specified in lowercase as in C/C++ and that
%AID LOW={ON|ALL} must also be enabled.

Data names Addressing in C and C++ programs

48 U6148-J-Z125-8-76

Syntax of the length operator sizeof():

- -

 ⎧*this ⎫
 o o
[•][qua•]sizeof([::]⎨ ⎧namespace::[...]⎫ ⎧dataname⎫ ⎬)
 o[⎨this-> ⎬][class::[...]]⎨class ⎬ o
 ⎩ ⎩object• ⎭ ⎩object ⎭ ⎭

- -

qua Base or area qualification

If a base or area qualification is required, it must precede the length operator.

{:: | namespace::}
Qualification for the global block and namespace qualification.

The :: qualification for the global block or a namespace qualification are appended
to the address operator if required. The operand of the address operator must not
end in namespace; otherwise, AID issues an error message (AID0480).

class Name of a class

A class name followed by the two appended colons can be used as a class qualifi-
cation in the address path for a data member of the class. The operand of the length
operator may also end with class. The result is the same as if sizeof() were
applied on an object of class. You will receive the number of bytes occupied by an
object of that class, including any fill bytes that may be required to place an object
of the class in an array.

this this pointer

this points to the current object associated with a member function.
sizeof(*this) thus returns the length of that object.

The this pointer can be used with an appended pointer operator in the path to a
component of a class.

object Name of a class object

object followed by a period defines the path to a component of a class.
If the operand of the length operator ends with the name of an object, you will
receive the length of the object. This length corresponds to that of sizeof(class) if
class is the name of the class associated with the object (see above).

dataname
Name of a data item

Addressing in C and C++ programs Data names

U6148-J-Z125-8-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

dataname is specified as in the source program and effectively designates the length
of the data item.

Data can be accessed as in C/C++, but with the following exceptions:
An array name without a subscript designates the total length of all array elements.
If %AID C=YES is set (see page 115), AID combines the array elements of a char
array that can be addressed via the subscript on the extreme right into C strings.
Note, however, that sizeof() does not return the length of the C string in this case,
but the overall length of the underlying C string array.
In contrast to C/C++, the memory requirements for a selected subscript level cannot
be determined with AID.
Individual array elements can be addressed only via subscripts, not pointers. When
an array is passed to a function as a parameter in a function call, only the start
address of the array is known in that function. If you use the parameter name
without a subscript in the function, you will thus effectively designate that address.
sizeof() can be applied on the passed parameter and always returns a result of 4.

dataname can be specified as follows, and the formats may also be combined. The
precedence rules of C/C++ apply (see the section “Data names” on page 29):

Subscript notation: dataname [subscript] {...}
Pointer notation: dataname1 -> dataname2
Structure qualification: superordinate dataname• {...} dataname
Dereferencing: [(]*{...} dataname[)]
Pointer to member dataname1•*datanname2 or
 dereferencing: dataname1->*datanname2

Example

tDDD?
3 /%d sizeof(carray) 3
3 30 3
3 /%aid c=yes 3
3 /%d sizeof(carray[0]) 3
3 10 3

Let us assume that carray is a char array with the following definition:

char carray[3][10];

The first %DISPLAY shows the total length of the array.

After setting %AID C=YES, you can use sizeof() to display the length of the C string (in
carray) addressed via the second subscript. The total number of all array elements
associated with the second subscript is output here, regardless of the position of the end
criterion X’00’ within the underlying array of the C string.

Functions, labels and source references Addressing in C and C++ programs

50 U6148-J-Z125-8-76

4.3 Functions, labels and source references

Functions and labels are names from the source program under which statements can be
addressed in AID. Labels and functions from C and C++ programs are stored as address
constants. They hold the address of the first instruction in a function or after a label.
You should avoid assigning identical names for functions and labels, since AID cannot then
tell whether the function or the label is meant.
AID interprets a maximum of 1000 characters for all names.

Source references are generated by the compiler for each executable statement. They are
address constants which contain the address of the first instruction generated for a
statement.

For labels and source references, the address stored in the address constant is identical to
the address of the associated executable statement. In the case of functions, by contrast,
the address constant holds the start address of the function prolog, which precedes the first
executable statement in the function. Consequently, when localizing addresses, e.g. in
%D %HLLOC(...), AID cannot associate the prolog addresses with the corresponding
function.

Functions, labels, and source references can only be used with a following pointer operator
in the %FIND and %ON write-event commands. In other words, you thus designate 4 bytes
of the machine code as of the address held in the address constant, i.e. the start address
of the prolog in the case of functions. This defines the address in %DISPLAY, %MOVE, and
%SET. In %DISASSEMBLE and %INSERT, the functions, labels, and source references
always reference the first executable statement which follows the address entered in the
address constant. In the commands %CONTROLn and %TRACE, you can define an area
by means of two source references.

function
is the name of a function as declared in the source program or the name of a library
function. Any C function from a translation unit compiled with the option
//MODIFY-SOURCE-PROPERTIES LANGUAGE=C(...)
or a library function can be addressed in AID by name. The two trailing parentheses
with the passed parameters (signature) are omitted.
For details on how to specify the names of C++ functions in AID, please refer to the
description on page 58.

Addressing in C and C++ programs Functions, labels and source references

U6148-J-Z125-8-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

L’label’
label is a label declared in the source program.You can only refer to those labels to
which the C/C++ program can jump from a goto statement. You cannot refer to
case and default labels.
In the commands %DISASSEMBLE and %INSERT you can also specify label
without L'...', since in these commands confusion with a data name is not
possible.

source-reference
is the statement designation generated by the compiler. It is in the following format:

S’[f-]n[:a]’
You may not include blanks within the single quotes.

f FILE number; only to be specified for lines inserted due to an #include
statement, and only if the inserted lines contain executable statements or if
a #line directive was used to explicitly specify line numbering for the
following line. The FILE number can be obtained from the FILE-NO column
of the source error listing.
f is a number > 0.

n Line number that is found in the column SRC-LIN of the source error listing;
identical to the line number of the source file if the source program contains
no #include or #line statements.
If a single statement extends over multiple lines, n is the line number of the
first line in the statement.
If a source program without #include or #line statements was processed
with the “Beautify” function of the C structurizer, there will only be one
statement in each line, and the source references will then consist of only
the line number: S’n’.

a Relative statement number within a line; it can be found from the number of
statements in the line. a is a number > 1 which you specify only if you do not
want to address the first statement in the line. Specifying a designates the
a-th statement in the line.

If you wish to specify an area by means of two source references in the
%CONTROLn or %TRACE command, you should note that ascending source
references correspond to ascending addresses only within a function block.
Furthermore, note that additional source references, which do not appear in the
source error listing but are logged by %TRACE, are generated in connection with
implicit constructor and destructor calls as well as conversion operations in C++
programs.

Functions, labels and source references Addressing in C and C++ programs

52 U6148-J-Z125-8-76

Example

FILE SRC
 NO LIN
===
0 100 i++;
 #line 17 "incl.h"
1 17 j++; k++;
===

With S’100’ you address the statement i++;.

The line #line 17 "incl.h" causes the compiler numbers lines from 1 to 17, starting
with the next line.
With S’1-17’ you address the statement j++;.
With S’1-17:2’ you address the statement k++;.

4.3.1 Special notes on addressing statements

A statement is understood here in the sense of ANSI C and is defined in its grammar. The
following lists the AID-specific special characteristics.

1. Definitions and declarations of data and functions

These are not statements, unless a definition includes initialization of the data item.
Data is addressed as described in section “Data names” on page 29. Functions are
addressed as described in the section “Functions, labels and source references” on
page 50. Accessing the additional language constructs provided by C++ is dealt with in
the chapter “C++-specific addressing” on page 57.

2. Labeled statements

Labels are neither statements themselves nor components of statements, and they
cannot be addressed by means of a source reference. Labels which can be jumped to
with a goto statement can be addressed in AID with the statement name L’label’.

Addressing in C and C++ programs Functions, labels and source references

U6148-J-Z125-8-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

Example

 SRC-LIN Statement
 DDD
 99 lab5:
 100 a = b; c = d;
 1 2
 101 ...
 102 case 'a': foo();
 1
 103 ...
 104 default: i = 0; break;
 1 2

With L'lab5' you reference the address of the statement a = b;, i.e. the address of
the first statement after the label lab5.

With S’100’ you reference the same statement a = b;.
With S’100:2’ you reference the statement c = d;.

You cannot address case and default labels using L'...'.

With S’102’ you address the function call foo();
With S’104’ you address the statement i = 0;.
With S’104:2’ you address the statement break;.

3. Compound statements or blocks

A compound statement allows you to combine a number of statements in a block and
use them in places where the grammar of the C/C++ language only permits a single
statement. AID considers neither the block itself nor the opening brace or closing brace
to be statements. No source reference is generated for a compound statement. It can
be addressed only as a block by means of the BLK qualification. The individual state-
ments within a block can be addressed with source references.

Example

SRC-LIN Statement
DD
 30 { a = b; f(a); }
 1 2

BLK=’30’ designates the compound statement, but that only lets you define the area for
%CONTROLn or %TRACE.

S’30’ designates the assignment a = b;.
S’30:2’ designates the function call f(a);.

Functions, labels and source references Addressing in C and C++ programs

54 U6148-J-Z125-8-76

4. Expression statements

An expression statement is only one statement. You cannot address assignments,
function calls, etc., within an expression statement, because no source references are
generated for them.

Example

SRC-LIN Statement
DDD
 40 a = f(b);
 41 c = a > x ? b : a;
 42 a = (b = c);
 43 ...

Only one source reference is generated per statement:

With S’40’ you reference the statement a = f(b); in line 40.
With S’41’ you reference the statement c = a > x ? b : a; in line 41.
With S’42’ you reference the statement a = (b = c); in line 42.

5. Selection statements

These are the if, if else and switch statements. They are considered by AID as by
C/C++ to consist of a number of statements, all of which you can reference using source
references.

Example

SRC-LIN Statement
DDD
 50 if (a < 0) a++; else a--;
 1 2 3
 51 if (a < 0) {a++;} else {a--;}
 1 2 3
 52 ...
 53 switch (c = getchar()) {
 1
 54 case 'X': look('y');
 1

 55 case 'Y': look('z'); return;
 1 2
 56 ...

With S’51’ you reference the control expression of the if statement in line 51.
With S’51:2’ you reference the then branch of the if statement.
With S’51:3’ you reference the else branch of the if statement.

With S’55’ you reference the case 'Y' (line 55).
With S’55:2’ you reference the return statement.

Addressing in C and C++ programs Functions, labels and source references

U6148-J-Z125-8-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

4

6. Iteration statements

These are the while, do and for loop constructs. They are considered by AID as by
C/C++ to consist of a number of statements, all of which you can address with source
references. In a for loop, there is an additional source reference for the control
expression and for the incrementation portion.

Example

SRC-LIN Statement
DDD
 60 while (p->next) mknode(p->next);
 1 2
 61 ...
 62 do show() while(tick);
 1 2 3
 63 do { x++; z(x); } while(x);
 1 2 3 4
 64 ...
 65 for (i=0; i < 10; i++) j[i] = i;
 1 2 3 4
 66 a = b;
 1
 67 ...

With S’65’ you reference the initialization i=0 of the for loop in line 65,
with S’65:2’ the control expression i < 10,
with S’65:3’ the incrementation portion i++, and
with S’65:4’ you reference the execution portion of the for loop j = i;.
With S’66’ you reference the first statement after the for loop.

7. Jump statements

These are the goto, continue, break and return statements.

Example

SRC-LIN Statement
DDD
 70 goto label1;
 1
 71 ...
 72 if (i < 10) continue;
 1 2
 73 ...
 74 if (k >= 1) return k * 2;
 1 2
 75 ...

With S’72:2’ you reference the statement continue; in line 72.
With S’74:2’ you reference the statement return k*2; in line 74.

Functions, labels and source references Addressing in C and C++ programs

56 U6148-J-Z125-8-76

U6148-J-Z125-8-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

5 C++-specific addressing

In addition to the language elements offered by C, C++ supports namespaces, classes,
templates, virtual functions, overloaded functions and operators, reference variables and
other new features. This chapter describes how you can reference these elements in AID
commands.

5.1 Qualifications

In C and C++ program debugging there are no differences in usage between base and area
qualifications. For more details refer to section “Qualifications” on page 21.

AID provides the additional qualifications class:: and namespace:: for accessing data and
functions from classes and namespaces.
Certain points also have to be noted with the notation of C++ function names and when
specifying instances of function or class templates.

class/namespace::[...]
This qualification is used to designate a class or namespace or to specify the path
to a class or namespace for derived or nested classes or nested namespaces. You
append the name of the data item or function you wish to reach via this qualification
directly to the last colon-pair of the qualification.
If you want to designate the instance of a class template with the class:: qualifi-
cation, you have to use the following syntax: t'k_template<arg[,...]>'::
If there is only one instance of a class template, you can access this instance with
the name of the class template and omit the template argument: t'k_template'::

Detailed information on constructing template instance names can be found in the
section “Template instantiation” on page 94. Classes are described on page 63 and
namespaces on page 85.

Example
%DISPLAY ::A::B::i
In this example, B is a class nested in class A and i is a static data member in B.
Class A is defined as global.
In this case, you can output i from any position of the translation unit with the above
%DISPLAY command.

Qualifications C++-specific addressing

58 U6148-J-Z125-8-76

PROC qualification
With C++, you must note that functions are not assigned directly to a translation unit
as in C, they can also be defined within namespaces or classes. To access these
functions, you prepend the function name with the relevant
class/namespace:: qualification.
There are also overloaded functions with C++ that have the same function names
but whose arguments (signature) differ and there are functions that result from
instantiation from a function template. You must take all these points into account
when writing a PROC qualification for a C++ function. This results in the following
syntax:

- -

PROC=[namespace::[...]][class::[...]]function

- -

namespace::
Namespace qualification, possibly multi-level.

class::
Class qualification, possibly multi-level. You have to use the form described
above if the class is an instance of a class template: t'k_tem-
plate<arg[,...]>'::

function
The following functions are discriminated in C++:
– normal functions which correspond to those in C
– overloaded functions
– virtual functions
– functions formed from a function template via instantiation

You have to use a particular notation, depending on the type of function you
want to specify in the PROC qualification:

– With normal and overloaded functions, you have to include the signature to
uniquely identify the function. The void signature must be omitted. In this
case, you designate the function with the function name and subsequent
parentheses as is also possible in C++. Since this means that the function
names can also include special characters (parentheses and possibly
commas) they have to be set in n'...'. This results in the following syntax:
n'function([signature])'

C++-specific addressing Qualifications

U6148-J-Z125-8-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

i In contrast to the functions described above, the main function and
the compiler-generated function _ _STI_ _ (see section
“Constructors and destructors” on page 72) can be addressed in
C++ with just their names. Similarly, all functions with C linkage that
are called in a C++ program are addressed only via the function
name, i.e. without parentheses or a signature.
Example: You qualify data from the main function as in C with
PROC=main.

– You have to enclose the instance name of a function template in t'...'.
You specify the template arguments in angled brackets with commas as
separators, resulting in the following syntax:
t'f_template<arg[,...]>([signature])'

If there is only one instance of a function template, you can access this
instance with the name of the function template and omit the template
arguments: t'f_template([signature])'.

A detailed description of the way template names are constructed can be
found in the section “Template instantiation” on page 94.

– Functions from classes addressed via pointers such as virtual functions or
functions addressed via a pointer to member cannot be used in a PROC
qualification; however, you can access the start address of a function that is
referenced accordingly. The way to do this is described in the section
“Virtual functions” on page 73 and in the section “Pointer to function
member” on page 79.

The two notations n'...' and t'...' are handled differently by AID:

– If the name is enclosed in n'...', AID accepts it without checking or
modifying it, while retaining uppercase/lowercase. This means that no
additional blanks may be inserted within n'...' and the name can be up
to 1000 characters in length.

– If the name is enclosed in t'...', AID assumes that it is a template
instance and checks the syntax and semantics of the name. If AID detects
that it is not a legal template instance name or if the specified instance does
not exist, it outputs corresponding error message. Names enclosed in
t'...' may be of any length.

Qualifications C++-specific addressing

60 U6148-J-Z125-8-76

If you want to access a function which is defined in a local class, a complete, explicit
qualification comprises specification of an additional PROC qualification for the top-
level function containing the definition of the local class, followed by the PROC
qualification with which you designate the desired function. If the local class is in an
inner block of the top-level function, you have to write one or possibly more BLK
qualifications between the two PROC qualifications. How you specify a BLK qualfi-
cation is described on page 25.
You qualify a function from a local class with the following syntax:

- -

PROC=top-level_fct•[BLK='[f-]n[:b]'•[...]]PROC=class::[...]function

- -

You can only access functions defined in local classes from inner blocks with AID if
the program was compiled with C/C++ V3.0B. In programs compiled with C/C++
V3.0A, you can neither specify these functions in a PROC qualification nor can you
refer to the start address of such a function in an AID command.

Since locally defined member functions are also implemented globally in C++, this
means that when working with AID, the data block containing the object definition
and the object name itself do not belong to the scope of the function and you can
only access the data of the block and the object name from within such a function
via a corresponding area qualification. However, you can always access the object
concerned via the this pointer (see page 64).

You will find an example of functions from local classes following this section
(example 3 on page 62).

C++-specific addressing Qualifications

U6148-J-Z125-8-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Example

Using member functions and overloaded functions in the PROC qualification

C++ program SOURCE: EXP.C
==
SRC
LIN
 1 extern "C" int printf (const char*,...);
 2
 3 int FOO(int X) {return X++; }
 4 long FOO(long X){return X--; }
 5 class A_global
 6 {
 7 public:
 8 A_global(void) { printf("Constructor called\n");... };
 9 ~A_global(void) { printf("Destructor called\n");... };
 10 void f(void) { static int k; printf("f called\n");
 11 k = 5;... return;};
 12 } a_global;
...

 68 int main(void)
 69 {
 70 FOO(1);
 71 FOO(1L);
...
120 {
121 class A_local
122 {
123 public:
124 A_local(void) { printf("Constructor called\n");... };
125 ~A_local(void) { printf("Destructor called\n");... };
126 void f(void) { static int k; printf("f called\n");
127 k = 5;... return;};
128 } a_local;
...

1. %trace 1 in proc=n'FOO(int)'

AID halts before the only statement of the function FOO(int) and traces it.

2. %control1 %proc in proc=A_global::n'~A_global()'

The program is to halt before execution of the first and last statements in the destructor
of global class A_global.

Data defined in the middle of a block C++-specific addressing

62 U6148-J-Z125-8-76

3. %display proc=main.proc=A_local::n'f()'.k

Static variable k of the member function f() defined in local class A_local in the
outermost block of the main function is output.

5.2 Data defined in the middle of a block

In contrast to C, data can also be defined in the middle of a block in C++.
As with C++, such data can also only be addressed with AID after its definition. If a qualifi-
cation is required, you must specify the entire enclosing block or the associated function in
a BLK or PROC qualification

Examples

C++ program SOURCE: BSPI.C
===
SRC
LIN
...
120 int main()
121 {
122 int i = 1;
123 {
124 i++;
125 int i = 3;
126 i++;
127 ...

1. %insert s'124'; %resume
%display i, proc=main.i

Due to the two commands %INSERT and %RESUME, the program is executed until
source reference S’124’ and then interrupted. With both i and proc=main.i from the
%DISPLAY command, you designate the same i from the main function.

2. %trace 3
%display i, proc=main.i

%TRACE executes the program until source reference S’126’. In this case, the first
operand of the %DISPLAY command designates variable i from block ’123’, which is
defined in line 125. Variable i from main is addressed as above with proc=main.i.

C++-specific addressing Classes

U6148-J-Z125-8-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

5.3 Classes

In AID, classes and the data and functions contained in them can be accessed in the usual
C++ notation, which means that data members of nested or derived classes can be
addressed exactly as in C++, depending on the interruption point, by specifying all the
class/object names (from the outermost to the innermost) that define the path to the data
item. With nested classes, all intermediate levels must always be specified as well and with
derived classes only the intermediate levels required to uniquely identify the data item have
to be specified.
With member functions, apart from virtual functions, you describe the path to the desired
function in a prepended class qualification (class::, see the section “Qualifications” on
page 57). You will find a description of how you can access virtual functions in the section
“Virtual functions” on page 73.

Objects of classes are assigned to the relevant scope as with the structures in C. Therefore,
objects of classes that are defined globally are accessed by prepending :: as with all other
global data. Locally defined objects of classes are assigned to the function/block containing
the definition.

If you specify the class name in a %DISPLAY or %SDUMP command, you will receive a
listing of the static data members and of the static and dynamic member functions
(excluding virtual functions) of that class and any classes nested in it (for derived classes,
including the base classes). In the case of data, the content is output; for functions, the
complete function name with the class names and signature in standard C++ notation and
also the start address of the function prolog are listed.
The whole class, i.e. also including both dynamic data members and virtual functions, is
output by AID if you specify the name of a class object in a %DISPLAY or %SDUMP
command. You are also shown the complete contents of the class if the program has been
interrupted in a dynamic member function of the class and you access the class with *this
or the class name.

As far as AID is concerned, it is immaterial whether data and functions within classes are
declared as public, private or protected. Access rights defined in the program have no effect
during the debugging run.

Classes C++-specific addressing

64 U6148-J-Z125-8-76

- -
 ⎧class[::...] ⎫
 ⎧:: ⎫ o o ⎧dataname ⎫
[E-qua•][S-qua•][⎨PROC=function• ⎬]⎨⎧this-> ⎫ ⎬[⎨ ⎬]
 ⎩BLK='[f-]n[:b]'•⎭ o⎨ ⎬[class[::...]] o ⎩function ⎭
 ⎩⎩object[•]⎭ ⎭
- -

class:: You specify the name of a class for class. You specify class in the first position if you
want to access the complete class, a static data item or a function of the class. You
must insert a colon-pair (::) between the class name and the data/function name.
In an intermediate position, you use the class name to access a base class from a
derived class, if a base class component, which is hidden by a definition of the same
name in the derived class, is to be addressed.

If the class concerned is an instance of a class template, you must use the following
syntax:
t'k_template<arg[,...]>'
If there is only one instance of the class template, t'k_template' suffices.
Detailed information on templates can be found on page 94.

this A C++ compiler-generated pointer that points from a dynamic member function to
the associated object. The pointer operator and any other base class names (or the
names of the outer classes of a nested class) that may be required in the path to
the desired data name can be appended to the this pointer in the same way as
you define the path to selected class data item, starting with the object name.
However, with derived classes you only have to specify the intermediate stages if
the name of the required data item is not unique.
Since the this pointer can only be used if the program was interrupted in a dynamic
member function and since it always points to the associated object, no preceding
area qualification is required.

AID shows you the pointer and its contents in the %SDUMP output for a dynamic
member function.

%DISPLAY this outputs the address of the current object.
%DISPLAY *this provides you with a listing of the current object.
If an address operand ends at the this pointer followed by the pointer operator
(->), the first 4 bytes of the current object will be addressed; storage type %X
applies.

object Is the name of a class object. You specify object for all dynamic data members
whenever the interrupt point is not in a dynamic member function of the associated
class. You also use object to uniquely identify a data item of a class which is locally
hidden by an identically named definition at the interrupt point.

C++-specific addressing Classes

U6148-J-Z125-8-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

5.3.1 Scope rules in classes

The scope rules known from C++ apply for accessing data and functions defined in classes.

You can access static data members via the class qualification independent of an object of
the class and the current interrupt point by prepending the class name and inserting a
colon-pair between the class and data names. With nested classes, you describe the path
to the required data item via multiple class levels from the outermost to the innermost, using
the colon-pair (::) to separate the class names.

Dynamic data members are accessed differently, depending on where the program was
interrupted:

– If the interrupt point is in a dynamic class member function, you can access the
associated dynamic data member directly. AID behaves in the manner known from the
C++ scope rules. The complete object concerned is accessed via the this pointer with
*this (see page 64). You can only reach the object name with the appropriate qualifi-
cation.

Since AID emulates the relationship between base and derived classes, the scope rules
applicable in C++ also apply for accessing data members from derived or base classes.

The information on base and derived classes is missing in the LSD for older objects
compiled with a C/C++ compiler up to V2.2C. AID therefore does not know the
relationship between base and derived classes for these objects. In this case, the
method described in the previous manual for AID V2.1A must be used to access data
from class systems.

– If the current interrupt point is not in a dynamic member function of the same class in
which the data members are also described, you can only access the dynamic data via
the associated object. You specify the object name as with a structure qualification in a
C program (see the section “Data names” on page 29) and insert a period between the
object name and data name. If you want to access a dynamic data member from a class
system of nested classes, you have to include the class name of the superordinate
levels in the path to the required data item, starting from the current object. You also
have to add a colon-pair after a class name in this case. In contrast to this, the C++
scope rules apply within base and derived classes so that after the object name, you
only need to add the class name required to uniquely identify the data item.

Classes C++-specific addressing

66 U6148-J-Z125-8-76

Examples

1. Accessing data and functions from classes from different interrupt points

C++ program SOURCE: VPTR.C
==
SRC
LIN
...
 20 class X
 21 {
 22 int a;
 23 static int b;
 24 int c;
 25 public:
 26 X(int x = 1) : a(x) {c=2; ...; return;}
 27 void f() {...; return;}
 28 static void g() {...; return;}
 29 };
 30 int X::b = 3;
 31
 32 class Y : public X
 33 {
 34 int a;
 35 static int b;
 36 public:
 37 Y(int x = 4) : a(x) {...; return;}
 38 void f() {...; return;}
 39 static void g() {...; return;}
 40 };
 41 int Y::b = 6;
 42
 43 class Y y;
...
 68 int main()
 69 {
 70 y.f();
 71 Y::g();
...

tDDD?
3 /%in s'70' 3
3 /%in ::Y::n'f()' 3
3 /%in ::Y::n'g()' 3
3 /%r 3
gDDDu

For the sake of readability, user input in the trace is printed in bold.

C++-specific addressing Classes

U6148-J-Z125-8-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

First the %INSERT commands set three test points in the program:
– in main before the call to the member function Y::f()
– in the member function Y::f(), before the first executable statement
– in the member function Y::g(), before the first executable statement

%RESUME starts the program, and it runs as far as the first test point.

tDDD?
3 STOPPED AT SRC REF: 70 , SOURCE: VPTR.C , PROC: main 3
3 /%d y.X::a, X::b, y.c 3
3 y.X::a = 1 3
3 X::b = 3 3
3 y.c = 2 3
3 /%d X::n'f()',X::n'g()' 3
3 X::f() = 01000628 3
3 X::g() = 01000730 3
3 /%d y.a, Y::b, Y::n'f()',Y::n'g()' 3
3 y.a = 4 3
3 Y::b = 6 3
3 Y::f() = 01000D48 3
3 Y::g() = 01000E50 3
3 /%r 3
gDDDu

The interrupt point is located in main. The dynamic data members of object y of class
Y can be addressed as in a structure qualification via the object name with a subse-
quent period. Data members of the base class X are addressed with y.X::dataname.
The static variables from the base and derived classes (both called b) are addressed
via an appropriate class qualification. The member functions are addressed by their
complete names and prepended class qualification and AID displays the start address
of the function prolog in each case. %RESUME continues execution until the next test
point.

tDDD?
3 STOPPED AT SRC_REF: 38 , SOURCE: VPTR.C , PROC: Y::f() 3
3 /%d X::a, X::b, c 3
3 SRC_REF: 38 SOURCE: VPTR.C PROC: Y::f() **3
3 Y.X::a = 1 3
3 Y.X::b = 3 3
3 Y.X.c = 2 3
3 /%d X::n'f()',X::n'g()' 3
3 Y.X::f() = 01000628 3
3 Y.X::g() = 01000730 3
3 /%d a, b, n'f()', n'g()' 3
3 Y.a = 4 3
3 b = 6 3
3 f() = 01000D48 3
3 g() = 01000E50 3
3 /%r 3
gDDDu

In this case, the interrupt point is located in the dynamic member function Y::f() of
class Y. Access to dynamic variable a of class X must be qualified as there is also an
a in Y. For the same reason, access to static variable b of class X must also be
qualified. c is, in contrast, unique and does not require qualification. a and b from Y
can also be reached directly. However, you have to specify static data member b from
X with its full name.

Classes C++-specific addressing

68 U6148-J-Z125-8-76

The X::f() and X::g() functions are not visible at the interrupt point as they are
hidden locally by the functions of the same name from Y and must therefore be
specified with the prepended class qualification. You can access functions f() and
g() from Y directly.

tDDD?
3 STOPPED AT SRC_REF: 39 , SOURCE: VPTR.C, PROC: Y::g() 3
3 /%d ::y.X::a,X::b,::y.c 3
3 SRC_REF: 39 SOURCE: VPTR.C PROC: Y::g() **3
3 y.X::a = 1 ‘ 3
3 X::b = 3 3
3 y.c = 2 3
3 /%d X::n'f()',X::n'g()' 3
3 X::f() = 01000628 3
3 X::g() = 01000730 3
3 /%d ::y.a, b, n'f()',n'g()' 3
3 y.a = 4 3
3 b = 6 3
3 f() = 01000D48 3
3 g() = 01000E50 3
gDDDu

The interrupt point is now in the static member function Y::g(). As in the first case,
where the program was interrupted in main, the dynamic data members of class Y can
only be accessed via the associated object. However, as the scope of object y only
starts after the definition of Y::g(), access to object name y (shown here with the
prepended colon-pair as qualification for the superblock) must be fully qualified. AID
can, however, reach static data member b from Y without qualification. Static data
member X::b is hidden by Y::b.

C++-specific addressing Classes

U6148-J-Z125-8-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

2. The following examples demonstrate accessing variables from base and derived
classes with various constructions of three classes A, B and C. The interrupt point is
to lie in the func_C() function of class C in each case.

First define classes A, B and C:

C++ program SOURCE: EX1.C
==
SRC
LIN
...
 42 class A {
 43 int i,j,l;
 44 public:
 45 A(int x=1, int y=2, int z=3) : i(x),j(y),l(z) {...}
 46 void func_A() {...}
 47 };
 48 class B {
 49 int j,k,l;
 50 public:
 51 B(int x=4, int y=5, int z=6) : j(x),k(y),l(z) {...}
 52 void func_B() {...}
 53 };
 54 class C: public A, public B {
 55 int l;
 56 public:
 57 C(int x = 7) : l(x) {...}
 58 void func_C() {...}
 59 };

Debug run:

tDDD?
3 ... 3
3 STOPPED AT SRC_REF: 58 , SOURCE: EX1.C , PROC: C::func_C() 3
3 /%d i, j, k, l 3
3 SRC_REF: 58 SOURCE: EX1.C PROC: C::func_C() ************************************3
3 C.A.i = 1 3
3 % AID0376 Ambiguous qualification for SYMBOL j 3
3 C.B.k = 5 3
3 C.l = 7 3
3 /%d A::j, B::j, A::l, B::l 3
3 C.A::j = 2 3
3 C.B::j = 4 3
3 C.A::l = 3 3
3 C.B::l = 6 3
gDDDu

As it can be seen from the definition, A and B are direct base classes of C.
The first %DISPLAY command initially tries to output all variables via their names,
without qualification.

Classes C++-specific addressing

70 U6148-J-Z125-8-76

The i and k variables only occur once each and can therefore be accessed directly.
With l without qualification, you reach C::l. The C:l variable belongs to class C and
therefore hides the variables with the same name A::l and B::l. These are specified,
qualified in the second %DISPLAY. AID finds two definitions on the same level for j, in
base classes A and B, and reports the ambiguity. Both data members can be identified
with an appropriate qualification, also in the second %DISPLAY.

3. In this example, the relationship between classes A, B and C from example 2 has been
changed as follows:

C++ program SOURCE: EX2.C
==
SRC
LIN
...
 42 class A {
 43 int i,j,l;
 44 public:
 45 A(int x,int y,int z) : i(x), j(y), l(z) {...}
 46 void func_A() {...}
 47 }
 48 class B: public A {
 49 int j,k,l;
 50 public:
 51 B(int x,int y,int z) : j(x), k(y), l(z), A(1,2,3) {...}
 52 void func_B() {...}
 53 }
 54 class C: public A, public B {
 55 int l;
 56 public:
 57 C(int x=7) : l(x), A(4,5,6), B(8,9,10) {...}
 58 void func_C() {...}
 59 }

C++-specific addressing Classes

U6148-J-Z125-8-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Debug run:

tDDD?
3 ... 3
3 STOPPED AT SRC_REF: 58 , SOURCE: EX2.C , PROC: C::func_C() 3
3 /%d i, j, k, l 3
3 SRC_REF: 58 SOURCE: EX2.C PROC: C::func_C() ************************************3
3 % AID0376 Ambiguous qualification for SYMBOL i 3
3 % AID0376 Ambiguous qualification for SYMBOL j 3
3 C.B.k = 9 3
3 C.l = 7 3
3 /%d A::i, B::A::i, A::j, B::j, B::A::j 3
3 C.A::i = 4 3
3 C.B::A::i = 1 3
3 C.A::j = 5 3
3 C.B::j = 8 3
3 C.B::A::j = 2 3
gDDDu

In this case, A and B are direct base classes of C, and A is also an indirect base class
of C. A is not virtual.
Variable i is now ambiguous as it occurs in both the direct and the indirect base class
A. In the second %DISPLAY, the two different i variables are output via the associated
class qualifications A::i and B::A::i.
j is also ambiguous. There are three definitions on different levels, in A, B and B::A.
These are also output with the second %DISPLAY.
k is unique, as in example 2 since it is only contained in B. AID can also identify l
uniquely as the l from C hides the various other definitions in A, B and B::A.

Classes C++-specific addressing

72 U6148-J-Z125-8-76

5.3.2 Constructors and destructors

Constructors and destructors are member functions belonging to a class and in debugging
with AID are thus referenced in exactly the same way as other functions in classes. If you
want to specify a constructor or a destructor in a PROC qualification, you must place the
function name together with its class and its signature in n'...' or t'...' as described
on page 58. You will also find an example on page 61.
The start address of the constructor or destructor can be likewise accessed by specifying
the class name in a class qualification before the function name (see example 1 at the end
of this section.

In some circumstances, such as when a class contains virtual functions but no constructor
is defined explicitly, the compiler generates a constructor which AID displays in the
%DISPLAY or %SDUMP output for that class.

When a program is started, constructors for global objects are invoked by a compiler-
generated function called _ _STI_ _ . Symbolic debugging in _ _STI_ _ is only possible
conditionally. If you specify _ _STI_ _ in an %AID command, this name as well as main
must be used without a signature.
On terminating main, destructors of global classes are called directly by the runtime
system. The names of the runtime system functions involved are displayed by AID via
%SDUMP %NEST in the call hierarchy.

Examples

1. %in A_global::n'A_global()'

A test point is set at the first executable statement of the constructor of class A_global
from the example on page 61.

2. %sd %nest

AID displays the current call hierarchy, starting with the constructor
A_global::A_global() from the same example as above. The constructor was
called from the compiler-generated function _ _STI_ _. The routines of the runtime
system then follow.

tDD?
3 SRC_REF: 7 SOURCE: BSP.C PROC: A_global::A_global() ******************3
3 SRC_REF: 12 SOURCE: BSP.C PROC: __STI__ ******************************3
3 ABSOLUT: V'101CF14' SOURCE: ICPSINI@ PROC: ICPSINI@ *****************3
3 ABSOLUT: V'101C582' SOURCE: ICPSINI@ PROC: ICPSINI@ *****************3
3 ABSOLUT: V'100C0FA' SOURCE: IPPSIN@@ PROC: IPPSINI *****************3

C++-specific addressing Classes

U6148-J-Z125-8-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

5.3.3 Virtual functions

You address virtual functions in an AID command as in a C++ program:
pointer->n'function([signature])'

pointer
Name of a pointer variable which points to a class object containing virtual
functions.

function(signature)
Name of a virtual function from a class. The signature must be omitted if it is void.
Due to the special characters, you must enclose function([signature]) within
n'...'.

If you use the syntax for the virtual functions in a %DISPLAY command, AID outputs the
address of the prolog of the member function to which pointer currently points. The prolog
address of the virtual function is also accessed in a %MOVE or %SET command with the
above syntax. However, in a %DISASSEMBLE or %INSERT command, you designate the
first executable statement of the virtual function which is currently referenced by pointer.
When you use an appended pointer operator (->) after the above syntax, you identify the
first 4 bytes from the start address of the prolog of the current function.

Example

C++ program SOURCE: BCL1.C
==
SRC
LIN
 1 class A
 2 {
 3 public:
 4 A() { printf ("A::A called\n"); }
 5 virtual void foo1() { printf("A::foo1 called\n"); }
 6 virtual void foo2() { printf("A::foo2 called\n"); }
 7 } a;
 8
 9 class B : public A
 10 {
 11 int i;
 12 public:
 13 B(int x = 1) : i(x) { printf ("B::B called\n"); }
 14 void foo1() { printf("B::foo1 called\n"); }
 15 void foo2() { printf("B::foo2 called\n"); }
 16 } b;
...
 30 int main()
 31 {
 32 A* aptr = &a;
 33 A* bptr = &b;
 34 bptr->foo2();
...

Classes C++-specific addressing

74 U6148-J-Z125-8-76

tDD?
3 ... 3
3 STOPPED AT SRC_REF: 34, SOURCE: BCL1.C , PROC: main 3
3 /%d bptr->n'foo2()' 3
3 SRC_REF: 34 SOURCE: BCL1.C PROC: main ****************************3
3 A.foo2() = 010005E0 3
3 /%d B 3
3 01 B 3
3 02 A 3
3 03 A() = 01000000 3
3 03 foo1() = 01000160 3
3 03 foo2() = 01000270 3
3 02 B(int) = 01000360 3
3 02 foo1() = 010004C0 3
3 02 foo2() = 010005E0 3
3 /%da 5 from bptr->n'foo2()' 3
3 BCL1$O&@+67A MVC 20(4,R11),4(R8) D2 03 B020 8004 3
3 BCL1$O&@+680 L R14,20(R0,R11) 58 E0 B020 3
3 BCL1$O&@+684 ST R14,88(R0,R13) 50 E0 D088 3
3 BCL1$O&@+688 LR R1,R14 18 1E 3
3 BCL1$O&@+68A L R15,0(R0,R9) 58 F0 9000 3
3 /%in bptr->n'foo2()'; %r 3
3 STOPPED AT SRC_REF: 15, SOURCE: BCL1.C , PROC: B::foo2() 3
3 /%d i 3
3 SRC_REF: 15 SOURCE: BCL1.C PROC: B::foo2() ******************************3
3 B.i = 1 3

The program was halted at the source reference S’35’. The first %DISPLAY shows the
complete name of the virtual function to which the pointer variable bptr currently points.
The second %DISPLAY lists class B. A comparison of the addresses shows that bptr
actually points to f002() from B. The subsequent %DISASSEMBLE disassembles the first
5 assembler commands of the first executable statement of B::foo2(). You now use the
command sequence %INSERT...;%RESUME to continue the program run until the first
executable statement of B::foo2() is reached. Data of the associated object can now be
addressed as usual.

5.3.4 Pointer to class member

In order to provide dynamic access to data and functions from classes at runtime, C++
offers the data type "pointer to member". A distinction is made here between a pointer to a
data member" and a pointer to member functions. In AID V2.3B, you can address data and
class functions using pointer to member exactly as in C++. The use of pointer to member
for debugging is described in detail in the sections that follow.

C++-specific addressing Classes

U6148-J-Z125-8-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

5.3.4.1 Pointer to data member

Output

You can view the current contents of a pointer to a data member of a class, referred to as
pointer to data member below, by using %DISPLAY or %SDUMP. The name of the data
member currently referenced by the pointer to data member is shown in the output. If the
data member is defined in a derived or nested class, the full class qualification is prepended
to the name of the data item.

- -

{%DISPLAY | %SDUMP} [qua•] pointer-to-data-member

- -

qua Qualification
The pointer to data member can be addressed like any other pointer by means of
an appropriate qualification if it is not visible at the interrupt point.

pointer-to-data-member
is the name of a pointer to a data member of a class.

If a pointer to data member has an invalid value, the error message AID0545 is issued.

Modification

You can use %SET to overwrite a pointer to data member. The sender may be another
pointer to data member of addresses to data members of classes. In the following syntax,
pointer to data member is abbreviated to ptdm due to the limited space available:

- -

 ⎧[object•][class::][...]ptdm⎫
%SET [qua•]⎨ ⎬ INTO [qua•][object•][class::]ptdm
 ⎩&[class::][...]dataname ⎭

- -

qua Qualification
If ptdm, class or dataname is not visible at the interrupt point, you must specify an
appropriate qualification.

Classes C++-specific addressing

76 U6148-J-Z125-8-76

object Name of a class object
You use object and possibly a following class qualification to specify the address
path to ptdm.

class:: Class qualification
A class qualification must be specified as in C++ only if ptdm or dataname is not
unique within a class hierarchy or is locally hidden.

dataname
Name of a data member
The various methods available in C/C++ to access a data item are described in the
section “Data names” on page 29.

ptdm Name of a pointer to a data member of a class.

The following must apply with respect to the sender and receiver:

– The class associated with the sender must match that of the receiver or must be the
base class of the class to which the receiver belongs and must have a unique
subobject.

– The data type referenced by the transferred pointer to data member or of the data item
specified as the sender must match the type referenced by the receiver. However, if the
data item referenced by the sender and receiver is of type pointer or pointer to member,
no further check is performed to determine whether the types of data designated by
these two pointers match.

If AID determines that the sender and receiver do not satisfy the conditions indicated above,
the error message AID0388: Types are not convertible is issued.

Dereferencing

Dereferencing enables you to access the content of the data item currently referenced by
the pointer to data member. You can display the value of the associated data item with
%DISPLAY or %SDUMP and change that value with %SET. The dereferenced pointer to
data member can also be used in expressions.

As in C++, two methods of dereferencing are also available to you in AID:

You designate the class object by name and enter •* as the dereferencing operator as
follows:

- -

[qua•]object•*[object•][class::][...]pointer-to-data-member

- -

C++-specific addressing Classes

U6148-J-Z125-8-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

You address the class object via a pointer and enter ->* as the dereferencing operator as
follows:

- -

[qua•]pointer->*[object•][class::][...]pointer-to-data-member

- -

qua Qualification
If the class object or the pointer to the object is not visible at the interrupt point, you
must specify an appropriate qualification. Note that pointer-to-data-member must
also be visible in the program area designated with qua.

object Name of a class object
The object before the •* operator designates the class object containing the desired
data item.
The object after the •* operator or the ->* operator, which may be followed by a class
qualification, specifies the address path to pointer-to-data-member.

pointer Name of a pointer to a class object

class:: Class qualification
A class qualification must be specified as in C++ only if pointer-to-data-member is not
unique within a class hierarchy or is locally hidden.

pointer-to-data-member
Name of a pointer to a data member of a class
pointer-to-data-member must be visible at the interrupt point. In other words, if a
qualification was specified before the entire expression, this applies to pointer-to-
data-member as well.

The following relationship must exist between {object | pointer} and pointer-to-data-member:

{object | pointer} and pointer-to-data-member must either refer to the same class or the class
associated with pointer-to-data-member must be a unique base class in object or in the object
referenced with pointer.

The following errors may occur when dereferencing a pointer to data member:

– The right operand is not of type pointer to member (AID0546)

– The left operand does not refer to a class object (AID0547)

– The operand refers to incompatible class types (AID0548)

– The class referred to by the pointer to member contains multiple subobjects that are not
unique (AID0549)

Classes C++-specific addressing

78 U6148-J-Z125-8-76

Example

C++ program SOURCE: PTOM01.C
==
SRC
LIN
 1 class Z
 2 {
 3 public:
 4 int a; // data member
 5 int Z::*ptr_to_dm_Z;
 6 int gz(int n) // nonvirtual member function
 7 {
 8 a= 4;
 9 return n+a;
 10 };
 11 };
 12
 13 class X :
 14 public Z
 15 {
 16 public :
 17 int a, bx; // data member
 18 int g1x(int n) // nonvirtual member function
 19 {
 20 a= 8;
 21 return n+a;
 22 };
 23 };
 24
 25 class X x;
 26 class X* px;
 27
 28 int X::* pdmX;
 29 int (X::* ptr_to_fun_mem) (int);
 30
 31 main()
 32 {
 33 px = &x;
 34 pdmX = &X::a;
 35 x.ptr_to_dm_Z = &Z::a;
 36 x.*x.ptr_to_dm_Z = 99;
 37 px->*pdmX = 2;
 38
 39 ptr_to_fun_mem = &Z::gz;
 40 x.a = x.gz(5);
 41 x.Z::a = (x.*ptr_to_fun_mem)(7);
 42 x.bx = x.g1x(9);
 43 return 0;
 44 }

C++-specific addressing Classes

U6148-J-Z125-8-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

tDD?
3 ... 3
3 STOPPED AT SRC_REF: 39, SOURCE: PTOM01.C , PROC: main 3
3 /%d pdmX,x.ptr_to_dm_Z 3
3 SRC_REF: 39 SOURCE: PTOM01.C PROC: main *****************************3
3 pdmX = X::a 3
3 x.ptr_to_dm_Z = Z::a 3
3 /%d px->*pdmX,x.*x.ptr_to_dm_Z 3
3 *pdmX = 2 3
3 *x.ptr_to_dm_Z = 99 3
3 /%s x.ptr_to_dm_Z into pdmX 3
3 /%d px->*pdmX 3
3 *pdmX = 99 3

The program has stopped in line 39. The first %DISPLAY shows the data members
currently referenced by the pointer to member pdmX and the pointer to member
ptr_to_dm_Z. The second %DISPLAY shows the contents of these data members. Z is
then used to overwrite the pointer to member pdmX. The following %DISPLAY shows the
contents of the data member now referenced by pdmX, i.e. Z::a.

5.3.4.2 Pointer to function member

Output

As in the case of a pointer to a data member of a class, you can also have the contents of
a pointer to a member function displayed. Such pointers are known as a “pointer to function
member”. AID outputs the full name of the function (with the signature) currently referenced
by the pointer to function member. If the function is defined in a derived or nested class, the
full class qualification is listed before the function name. If the pointer to function member
references the a virtual function, the name of the currently assigned function appears in the
output.

- -

{%DISPLAY | %SDUMP} [qua•]pointer-to-function-member

- -

qua Qualification
The pointer to function member can be addressed like any other variable via an
appropriate qualification if it is not visible at the interrupt point.

pointer-to-function-member
is the name of a pointer to a member function of a class.

If a pointer to function member has an invalid value, the error message AID0545 is issued.

Classes C++-specific addressing

80 U6148-J-Z125-8-76

Modification

You can overwrite a pointer to function member with %SET. Any other pointer to function
member or an address of a virtual or non-virtual class function is permissible as the sender.
In the following syntax, the pointer to function member is abbreviated to ptfm due to space
constraints:

- -

 ⎧[object•][class::][...]ptfm⎫
%SET [qua•]⎨ ⎬ INTO [qua•][object•][class::]ptfm
 ⎩&[class::][...]function ⎭

- -

qua Qualification
If ptfm, class or function is not visible at the interrupt point, you must specify an
appropriate qualification.

object Name of a class object
You use object and possibly a following class qualification to specify the address
path to ptfm.

class::
Class qualification
A class qualification must be specified before ptfm only if ptfm or dataname is not
unique within a class hierarchy or is locally hidden.
The class qualification preceding function designates the class containing the
definition of function. As in C/C++, only the levels of the class hierarchy that are
needed to uniquely identify function must be specified.

function
Name of a member function
Details on how to specify the name of a C++ function when debugging with AID can
be found on page 58.

ptfm Name of a pointer to a member function of a class.

The following condition must be satisfied for the sender and receiver:
The class associated with the sender must match that of the receiver or must be the base
class of the class of the receiver. Otherwise, AID issues error message AID0388.

i AID does not check whether the function types referenced by the sender and
receiver match. Consequently, program errors could occur during subsequent
execution if a function call in the program does not match the function accessed via
the modified pointer to function member. It is therefore the responsibility of the user
to ensure that the modified function calls execute without errors.

C++-specific addressing Classes

U6148-J-Z125-8-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Dereferencing

In order to access a function designated via a pointer to function member in an AID
command, the pointer to function member must be dereferenced.

When you specify a dereferenced pointer to function member in a %DISPLAY or %SDUMP
command, the start address of the prolog of the associated member function is displayed.
If you append a suitable type modification and a pointer operator (%al4->) to the derefer-
enced pointer to function member, you will receive the first 4 bytes of the function code in
hexadecimal representation.
If desired, a test point may be specified with a dereferenced pointer to function member in
%INSERT or %REMOVE. The test point is set at the first executable statement of the
function.
Furthermore, a dereferenced pointer to function member can also be used to specify the
area to be monitored in %CONTROLn or %TRACE.

As in the case of the pointer to data member, two methods of dereferencing are also
available here:

You designate the class object by name and enter •* as the dereferencing operator as
follows:

- -

[qua•]object•*[object•][class::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing operator as
follows:

- -

[qua•]pointer->*[object•][class::][...]pointer-to-function-member

- -

qua Qualification
If the class object or the pointer to the object is not visible at the interrupt point, you
must specify an appropriate qualification. Note that pointer-to-function-member must
also be visible in the program area designated with qua.

object Name of a class object
The object before the •* operator designates the class object containing the desired
function.
The object after the •* operator or the ->* operator, which may be followed by a class
qualification, specifies the address path to pointer-to-function-member.

Classes C++-specific addressing

82 U6148-J-Z125-8-76

pointer Name of a pointer to a class object

class:: Class qualification
A class qualification must be specified as in C++ only if pointer-to-function-member is
not unique within a class hierarchy or is locally hidden.

pointer-to-function-member
Name of a pointer to a member function of a class
pointer-to-function-member must be visible at the interrupt point. In other words, if a
qualification was specified before the entire expression, this applies to pointer-to-
function-member as well.

The following relationship must exist between {object | pointer} and
pointer-to-function-member:

{object | pointer} and pointer-to-function-member must either refer to the same class or the
class associated with pointer-to-function-member must be a unique base class in object or in
the object referenced with pointer.

As when dereferencing a pointer to data member, errors analogous to those described on
page 77 could also occur here.

Example

tDD?
3 ... 3
3 STOPPED AT SRC_REF: 40, SOURCE: PTOM01.C , PROC: main 3
3 /%d ptr_to_fun_mem,x.*ptr_to_fun_mem 3
3 SRC_REF: 40 SOURCE: PTOM01.C PROC: main *****************************3
3 ptr_to_fun_mem = Z::gz(int) 3
3 *ptr_to_fun_mem = 01000000 3
3 /%s &X::n'g1x(int)' into ptr_to_fun_mem 3
3 /%in x.*ptr_to_fun_mem;%r 3
3 STOPPED AT SRC_REF: 20, SOURCE: PTOM01.C , PROC: X::g1x(int) 3

The above example refers to the C++ program listed on page 78. The program run is
interrupted in line 40. To begin with, the function currently referenced by the pointer to
member ptr_to_fun_mem is displayed along with the address of the prolog of that
function. The %SET command overwrites the pointer to member with the address of the
function g1x(int). %INSERT sets a test point in this function by addressing the function
via the dereferenced pointer to member. %RESUME then continues the program execution.
The function call in line 40 now activates the function g1x(int) as was intended in the
program code instead of the function gz(int).

C++-specific addressing Classes

U6148-J-Z125-8-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

5.3.4.3 Comparing pointers to members

Pointers to members can be compared in a subcommand in order to have a command
sequence executed in accordance with the result of the comparison. Only the operators EQ
and NE are allowed. You can compare a pointer to member with another pointer to member
or with components of a class. The result of the comparison is TRUE if both relational
operands refer to the same member of a class.

In order to enable a comparison, both operands must satisfy the same conditions which
also apply to modification:

Both operands must either refer to same class or the class of one operand must be a unique
base class in the class of the other operand.

Example

tDD?
3 ... 3
3 STOPPED AT SRC_REF: 33, SOURCE: PTOM01.C , PROC: main 3
3 /%in x.n'gz(int)' <(::ptr_to_fun_mem eq &X::n'gz(int)'): - 3
3 /%d 'ptm-call'; %sd %nest; %stop> 3
3 /%r 3
3 ptm-call 3
3 SRC_REF: 8 SOURCE: PTOM01.C PROC: Z::gz(int) **************************3
3 SRC_REF: 40 SOURCE: PTOM01.C PROC: main ********************************3
3 ABSOLUT: V'113CF88' SOURCE: IC@RT20A PROC: IC@RT20A *******************3
3 ABSOLUT: V'10013D0' SOURCE: IC@MAIN@ PROC: IC@MAIN@ *******************3
3 STOPPED AT SRC_REF: 8, SOURCE: PTOM01.C , PROC: Z::gz(int) 3

The program listed on page 78 is now interrupted at the start of main. %INSERT sets a test
point at the first executable statement of the function Z::gz(int). A check is then
performed in the subcommand for this %INSERT to see if the function was called via the
pointer to member ptr_to_fun_mem, and if this is true, the text 'ptm-call' and the
current call hierarchy for the start instruction of Z::gz(int) are displayed.

Classes C++-specific addressing

84 U6148-J-Z125-8-76

5.3.4.4 Setting a pointer to member to zero

You can use the AID command

%SET 0 INTO pointer-to-member

to set the contents of the pointer to member to binary zero. This option is essentially
available for all pointers.

Example

tDDD?
3 /%AID CHECK=ALL 3
3 /%SET 0 INTO ptr_to_fun_mem 3
3 OLD CONTENT: 3
3 Z::gz(int) 3
3 NEW CONTENT: 3
3 00000000 00000000 3
3 % AID0274 Change desired? Reply (Y=Yes; N=No)?n 3
3 % AID0342 Nothing changed 3

%AID CHECK=ALL initiates the update dialog. Following the %SET command, AID displays
the old content of the pointer to member, the reference to the function gz(int) of class Z,
and the new content that would exist on executing the %SET, i.e. binary zero. AID then
issues a prompt to ask whether the change is to be performed.

C++-specific addressing Namespaces

U6148-J-Z125-8-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

5.4 Namespaces

Namespaces are a new language feature in C++. They are comparable to classes and are
used to prevent name collisions in the global namespace.

Accessing whole namespaces is analogous to accessing complete classes. To access
namespace members, you use the namespace qualification in the same way as you use
class qualification to access a class member. However, from the function of a namespace,
you can only reach the data members which are defined before the function.
As with classes, namespaces can be nested, whereby the outermost namespace can only
be defined globally.

The data defined in a namespace is always static.

If you specify a namespace in a %DISPLAY or %SDUMP command, the complete
namespace is output together with all variables and functions defined in it. The output is
listed in the same way as a structure.
The current values of variables are displayed and the functions are listed with their
complete function name, signature and the start address of the prolog. Further namespaces
nested in the namespace are also output completely.
You can assign a namespace an alias name with the %ALIAS command and then access
it under this alias name in subsequent commands. However, the namespace is always
shown under its original name in the output of a %SDUMP without operands. However, if
the namespace is assigned an alias name in the C++ program, AID lists the namespace
under both the original name and the alias name.
In all other AID commands which require an address operand, you can only specify a
namespace as a qualification for a subsequent data or function name.

- -
 ⎧dataname ⎫
[E-qua•][S-qua•][::]namespace[::...][class[::...]][⎨ ⎬]
 ⎩function ⎭
- -

E-qua Base qualification
Specified with E=VM or E=Dn and defines whether the AID work area is to lie in the
loaded program (E=VM) or in a dump file (E=Dn). The base qualification is used in
the same way with both symbolic and machine code debugging and is described in
the AID Core Manual in the section on “Addressing in AID” and in the %BASE
command on page 127.

S-qua S qualification
Designates the translation unit containing the namespace. You specify the S quali-
fication as described on page 23.

Namespaces C++-specific addressing

86 U6148-J-Z125-8-76

namespace
Name of a namespace
To access an inner namespace within a nested namespace, you have to specify the
names of the namespaces from the outmost to the innnermost in the path to the
required namespace, each terminated with a colon-pair.

Namespaces can only be defined globally. It is therefore only possible to have a
base, S or :: qualification before namespace for the global namespace. You can also
specify the namespace qualifications of one or more superordinate namespaces to
describe the path to a nested namespace in a lower level.

class Name of a class
If class designates the instance of a class template, you have to use the notation
t'k_template<arg[,...]>'. If there is only one instance of the class template, you
only have to specify t'k_template'.
Between the class name and subsequent function name, you insert a pair of colons
as usual (see also page 63).

function
Name of a function
Detailed information on how you specify a function name when debugging C++
programs can be found on page 58.

dataname
Name of a data item
The various ways of accessing a data item in C/C++ are described in the section
“Data names” on page 29.

5.4.1 Unnamed namespaces

You cannot access unnamed namespaces as a whole with %DISPLAY or %SDUMP. An
unnamed namespace is only listed fully in the output of a %SDUMP without operands. The
first line of the output, which normally contains the name of the namespace after the level
number 1, only contains the level number.

Variables and functions from unnamed namespaces cannot be qualified. They are therefore
only visible to AID where they can also be referenced in C++ without qualification, i.e. where
the entire namespace is visible. They behave in the same way as global static variables or
functions.

C++-specific addressing Namespaces

U6148-J-Z125-8-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Example

The namespace is defined as follows:

namespace {int i = 1; int j = 10;}

The output of the unnamed namespace with the %SDUMP command is listed as follows:

01
 02 i = 1
 02 j = 10
 02 using = // UNNAMED //

5.4.2 Scope rules in namespaces

AID emulates the scope rules which apply in C++ for working with namespaces. You can
access variables that are not visible at the interrupt point as in C++ at any time via the
associated namespace qualification namespace::.

using declaration and using directive

If the program is interrupted after a using declaration for a single variable from a
namespace or after a using directive for a complete namespace, you can access the
declared variable or all variables and functions from the namespace without qualification.
The variable included via a using declaration behaves like a locally defined variable. An
existing variable with the same name in the current scope area is hidden by the definition
from the namespace and can only be accessed fully qualified.
In contrast to this, a namespace variable that is made known via a using directive has the
scope of the superordinate namespace. In this case, a local variable with the same name
hides the definition from the namespace.
If, while working with namespaces, duplicated names occur with functions, they are
overloaded.

If ambiguities occur through using variables from namespaces, e.g. because global defini-
tions with the same name exist or nested namespaces contain definitions with the same
name on different levels, you cannot access these definitions directly. AID outputs the
following message if for ambiguities:
AID0529 Symbol name is ambiguous due to a using statement.
You can discriminate between ambiguous definitions with AID using an appropriate qualifi-
cation.

Namespaces C++-specific addressing

88 U6148-J-Z125-8-76

Classes in namespaces

AID still supports the C++ scope rules if namespaces contain classes.

In the following section, it is assumed that the program is interrupted in a dynamic function
of a derived class which is defined in a namespace. If you access a data item directly from
this interrupt point, i.e. without qualification, the following search order applies:

1. Local scope of the dynamic function in which the program is interrupted, before the
interrupt point

2. Scope of the derived class containing the function

3. Scope of the base classes

4. Scope of the namespace containing the class definition

5. Scope of superordinate namespaces

6. Global scope before the interrupt point

AID searches through all relevant scope areas sequentially. If there are several hits, AID
checks whether the first hides the subsequent ones, or if there is ambiguity. AID outputs an
error message (AID0376 or AID0529) in the second case.

C++-specific addressing Namespaces

U6148-J-Z125-8-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Examples

1. Namespaces and using

The example refers to the following program extract:

C++ program SOURCE: EXNSP1.C
==
SRC
LIN
 1 namespace PART1
 2 {
 3 int func_1(int) {...}
 4 int j = 88;
 5 int k = 99;
 6 }
 7 namespace SNI
 8 {
 9 void func_1() {...}
 10 using namespace PART1;
 11 int i = 19; int j = 20;
 12 }
 13 int k = 0;
 14
 15 int main()
 16 {
 17 k++;
 18 using SNI::i;
 19 i = k+10;
 20 using namespace PART1;
 21 j = 5; i = j + 10;
 22 ...

Namespaces C++-specific addressing

90 U6148-J-Z125-8-76

Debug run:

tDD?
3 STOPPED AT SRC_REF: 19, SOURCE: EXNSP1.C , PROC: main 3
3 /%d i, k, SNI 3
3 SRC_REF: 19 SOURCE: EXNSP1.C PROC: main ***3
3 i = 19 3
3 k = 1 3
3 01 SNI 3
3 02 func_1() = 01000088 3
3 02 i = 19 3
3 02 j = 20 3
3 02 using = PART1 3

Variables i and k can be uniquely accessed at interrupt point S‘19‘. Because of the
using declaration in line 18, i addresses the variable from namespace SNI; k
addresses the global variable k from line 13. The output of namespace SNI includes all
the components it contains and a note that namespace PART1 was registered via a
using directive in namespace SNI.

tDD?
3 /%in S'21';%r 3
3 STOPPED AT SRC_REF: 21, SOURCE: EXNSP1.C , PROC: main 3
3 /%d i, j, k, n'func_1(int)', PART1 3
3 SRC_REF: 21 SOURCE: EXNSP1.C PROC: main ***3
3 i = 11 3
3 j = 88 3
3 % AID0529 Symbol k ambiguous because of using directive. 3
3 func_1(int) = 01000000 3
3 01 PART1 3
3 02 func_1(int) = 01000000 3
3 02 j = 88 3
3 02 k = 99 3
3 /?? ?A?????k, ??k 3
3 PART1::k = 99 3
3 k = 1 3

The command sequence %INSERT S‘21‘;%RESUME executes the program up to
source reference S‘21‘. You can access i and j uniquely at this point. i addresses
the variable from namespace SNI as above; j accesses the variable PART1::j. k is
now ambiguous since, in addition to the global variable k there is also another k from
namespace PART1. However you can access the two k variables with qualification.

C++-specific addressing Namespaces

U6148-J-Z125-8-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

2. Namespaces and classes

Namespaces and classes are nested in each other in this example:

C++ program SOURCE: EXNSP2.C
==
SRC
LIN
 1 class A
 2 {
 3 int i,j;
 4 public:
 5 A(int x = 1) : i(x) {j=2; ...}
 6 void func_A() {i=j*i;...}
 7 }a;
 8
 9 class B
 10 {
 11 int j,l;
 12 public:
 13 B(int x = 4) : j(x) {l=6; ...}
 14 void func_B() {...}
 15 };
 16
 17 namespace M
 18 {
 19 int k=1,l=2,m=3;
 20 void func_M() {...}
 21 namespace N
 22 {
 23 int i=4,j=5,k=6;
 24 void func_N() {...}
 25 class X: public A, public B
 26 {
 27 int l;
 28 public:
 29 X(int x = 7) : l(x) {...}
 30 void func_X() {l++;...}
 31 }x;
 32 }
 33 }
 34 int main()
 35 {
 36 using namespace M;
 37 using namespace N;
 38 x.func_X();
...

Namespaces C++-specific addressing

92 U6148-J-Z125-8-76

Debug run:

tDD?
3 /%t 1 in proc=main 3
3 38 EXT.PROC START , BLOCK START, ASSIGN 3
3 STOPPED AT SRC_REF: 38, SOURCE: EXNSP2.C , PROC: main , END OF TRACE 3
3 /%d M 3
3 SRC_REF: 38 SOURCE: EXNSP2.C PROC: main **********************************3
3 01 M 3
3 02 N 3
3 03 X 3
3 04 A 3
3 05 A(int) = 01000000 3
3 05 func_A() = 01000168 3
3 04 B 3
3 05 B(int) = 010001D0 3
3 05 func_B() = 01000338 3
3 04 X(int) = 01000468 3
3 04 func_X() = 01000600 3
3 03 func_N() = 01000410 3
3 03 i = 4 3
3 03 j = 5 3
3 03 k = 6 3
3 03 x 3
3 04 A 3
3 05 i = 1 3
3 05 j = 2 3
3 05 A(int) = 01000000 3
3 05 func_A() = 01000168 3
3 04 B 3
3 05 j = 4 3
3 05 l = 6 3
3 05 B(int) = 010001D0 3
3 05 func_B() = 01000338 3
3 04 l = 7 3
3 04 X(int) = 01000468 3
3 04 func_X() = 01000600 3
3 02 func_M() = 010003B8 3
3 02 k = 1 3
3 02 l = 2 3
3 02 m = 3 3
3 3

The %TRACE command initially positions the program on the first executable
statement in main. %DISPLAY M then lists the entire namespace M together with
namespace N it contains and class X.

tDD?
3 /%in n'func_X()'; %r 3
3 STOPPED AT SRC_REF: 30, SOURCE: EXNSP2.C , PROC: M::N::X::func_X() 3
3 /%d i, j, k,l , m 3
3 SRC_REF: 30 SOURCE: EXNSP2.C PROC: M::N::X::func_X() *********************3
3 X.A.i = 1 3
3 % AID0376 Ambiguous qualification for SYMBOL j 3
3 k = 6 3
3 X.l = 7 3
3 m = 3 3
3 /%d M::N::i 3
3 M::N::i = 4 3
3 /%d A::j, B::j, M::k 3
3 X.A::j = 2 3
3 X.B::j = 4 3
3 M::k = 1 3

C++-specific addressing Namespaces

U6148-J-Z125-8-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

In the next step, the program is executed up to the start of function func_X(), which is
defined in class X. Variables i, j, k, l and m are accessed directly from this point,
i.e. without explicit qualification:
– With i you reach variable i from base class A; the i from namespace N is hidden

by this and can only be referenced with full qualification, i.e. with M::N::i, see next
%DISPLAY.

– j is ambiguous, since it occurs in both base classes. The two j variables are output
in the third %DISPLAY with an appropriate namespace qualification.

– k is unique since the k from namespace N hides the k from namespace M. Die
variable from M is output fully qualified in the third %DISPLAY, i.e. with M::k.

– l is defined in class X and therefore hides all other variables with this name.
– m is unique since it only occurs in namespace M.

5.4.3 Alias names for namespaces

In C++ you can assign additional, alias names to namespaces to avoid having to type in the
original name, which may be very long, each time. You can also assign several alias names
to one namespace. When debugging with AID, you can access the namespace with either
its original name or with any alias names assigned to it as long as the interrupt point lies
within the scope area of the alias name used.

If you output a list of all the program definitions using %SDUMP without any operands, the
namespace is listed fully under its original name and under all alias names.

AID provides such a mechanism with the %ALIAS command (see page 124).

Example

Alias assignment in the C++ program:
namespace FJ = Fujitsu;

You use the following %SET command to assign variable i, which is defined in namespace
Fujitsu, a value using the alias name FJ. The subsequent %DISPLAY outputs the
contents of FJ::i.

/%set 20 into FJ::i
/%display FJ::i
Fujitsu::i = 20

Templates C++-specific addressing

94 U6148-J-Z125-8-76

5.5 Templates

Templates are new in C++. There are two different types, class templates and function
templates.

A template is simply a pattern with which actual classes or functions, so-called template
instances, are created after template arguments have been specified. This produces the
following problems for debugging template instances with AID:

– Several different instances can exist for one template declaration.

– The source references of these multiple instances are derived from the template decla-
ration and are therefore not unique.

– The template arguments are included in the formation of the template instance names.
With AID, these can be literals, address constants or type parameters. The type
parameter names must differ from all other definitions in the program.

5.5.1 Template instantiation

An instance of a template is always created in a program when the template is assigned
concrete arguments. An instance of a function template is created if the function name is
called from the template declaration with specific arguments. In the same way, an actual
class is created from a class template when the place-holders in the template declaration
are replaced with real values or type definitions.

If you want to produce a list of the template instances created in the program, enter the
template name in a %DISPLAY command: %DISPLAY template. If only a single instance
was created for a template, it can be displayed with %DISPLAY t'template' (see also the
section “Listing template instances” on page 106). However, as in the C++ language, to
access a specific instance with AID, you must add the relevant template arguments after
the name defined in the template declaration, enclosed within in angle brackets as in C++.
To inform AID that it is a template instance, you have to specify the instance name in
t‘...‘.
AID checks the syntax of the template instance specification during input and rejects illegal
entries with a syntax error message. AID also checks whether a template instance with the
specified name has been created in the program and outputs an appropriate error message
if it cannot find the template instance.

Syntax for class template instance names:

- -

t'k_template<arg[,...]>'

- -

C++-specific addressing Templates

U6148-J-Z125-8-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Syntax for function template instance names:

- -

t'f_template<arg[,...]>([signature])'

- -

If there is only a single instance for a template declaration, you can access it using the short
form t'k_template' or t'f_template([signature])' without specifying the template
arguments. If several instances exist, the short form references just one of these instances
and it is not possible to predict which instance will be selected.

template
You specify the name of the template declaration with template.

arg The following entries are possible for arg with AID:

– Literal

A literal can be a number, e.g. 15, -15, 1.4, a character or a character string.
Single characters or character strings must be enclosed in double quotes (''),
e.g. ''a'', ''ABC''. As in C++, you may specify the numeric equivalent for a
single character. For example, the same template instance can be addressed
with t'CC<''a''>' and t'CC<129>'. The numeric values of characters are
based on the EBCDIC table of a /390 system. An example of this concept can
be found on page 100.
The following workaround can be used to determine the numeric value of a
character with AID:

%DISPLAY 'character'%X Displays the corresponding hexadecimal
value

%DISPLAY #'hexadecimal-no'%F Displays the corresponding decimal value

– Address constant

Address constants such as addresses of functions (foo), variables (&var), etc.,
are specified as in the C++ program.

Templates C++-specific addressing

96 U6148-J-Z125-8-76

– Elementary data type

The elementary C++ data types have specific template arguments assigned to
them. The data type names on the left in the following table and the assigned
template arguments on the right are equivalent, i.e. with AID, you can access a
template instance via either the data type name or the assigned template
argument:

Data type Template argument

char char

unsigned char unsigned char

signed char signed char

bool bool

unsigned unsigned int

unsigned int unsigned int

signed int

signed int int

int int

unsigned short int unsigned short int

unsigned short unsigned short int

unsigned long int unsigned long int

unsigned long unsigned long int

signed long int long int

signed long long int

long int long int

long long int

signed short int short int

signed short short int

short int short int

short short int

wchar_t wchar_t

float float

double double

long double long double

void void

Table 2: Elementary data types and their assigned template arguments

C++-specific addressing Templates

U6148-J-Z125-8-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

– Derived data type

Derived data types are formed from elementary types by adding the *, & or []
operator.

Examples of derived type parameters are summarized in the following table:

– User-defined data type

You can use data types that you have defined yourself in the program with AID
in the same way as in C++.
Example
typedef int (*int_arr_def)[3] defines the data type int(*)[3] and
assigns it the name int_arr_def. You can use either the data type or the
assigned name with AID as a template argument to reference the same
template instance.

– It is illegal to specify an expression instead of a literal with AID. This would
cause a syntax error. For example, in C++ you could specify foo<40> or
foo<20*2> to access the same instance of function template foo<40>, or
foo<(1>2)> would mean the same as foo<(false)>. AID rejects foo<20*2>
or foo<(1>2)> with a syntax error.

Definition in C++ program Type parameter

int *pi int*

int *p[3] int* [3]

int (*pi) [3] int (*)[3]

int *f() int*()

int (*pf) (double) int (*)(double)

Table 3: Examples of derived type parameters

Templates C++-specific addressing

98 U6148-J-Z125-8-76

Example

C++ program SOURCE: EXTMP3.C
===
SRC
LIN
 1 template <class T, T* address> class T1
 2 {
 3 public:
 4 void foo() { (*address)++; }
 5 void bar() { (*address)(); }
 6 };
 7
 8 template <class S, class T, S* address, T (S::*ptm)()> class T2
 9 {
 10 public:
 11 void foo() { (address->*ptm)(); }
 12 };
 13
 14 template <class S, class T, S* address, T (S::*ptm)()> class T3
 15 {
 16 public:
 17 void bar() { (address->*ptm)(); }
 18 };
 19
 20 int i = 0;
 21 void f() { i--; }
 22 struct S
 23 {
 24 int i;
 25 void f() { i--; }
 26 } s;
 27 class X
 28 {
 29 public:
 30 void operator++() {};
 31 void operator++(int) {};
 32 void operator() () {};
 33 } x;
 34
 35 T1<X,&x> t1_x;
 37 T2<S, int, &s, &S::i> t2_i;
 38 T3<S, void, &s, &S::f> t3_f;
 39 ...

C++-specific addressing Templates

U6148-J-Z125-8-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

The three %DISPLAY commands shown below list the contents of the template instances
and the prolog address is output for each template function. The instances are accessed
here with their full names. You could also address the instances with their short names in
this case as only one instance has been created for each template in this example:
%DISPLAY t'T1', t'T2', t'T3' would produce the same result.

tDD?
3 /%d t'T1<X,&x>' 3
3 01 T1<X,&x> 3
3 02 foo() = 01000468 3
3 02 bar() = 01000578 3
3 /%d t'T2<S,int,&s,&S::i>' 3
3 01 T2<S,int,&s,&S::i> 3
3 02 foo() = 01000678 3
3 /%d t'T3<S,void,&s,&S::f> 3
3 01 T3<S,void,&s,&S::f> 3
3 02 bar() = 010006F8 3

5.5.2 Class templates

You can debug instances or objects of class template instances with AID as well as other
classes or class objects. The assigned scope areas do not differ from those of other
classes. Specifying the template arguments identifies the class instance uniquely and the
rules for accessing data and functions described in the section “Classes” on page 63 also
apply to members from class template instances. In the syntax on page 64, you must
specify the class names as described above in the section “Template instantiation”.

Templates C++-specific addressing

100 U6148-J-Z125-8-76

Example

C++ program SOURCE: EXTMP2.C
===
SRC
LIN
 1 #include <iostream.h>
 2 template <class T, int I>
 3 class XX {
 4 public:
 5 void foo(T& t) {
 6 --t;
 7 cout << "In XX:foo<>(t=" << t <<", I=" << I << ")\n";
 8 my_t[I-1]=t;
 9 }
 10 T my_t[I];
 11 static char *cptr;
 12 };
 13 template<> char *XX<int,10>::cptr = "XX<int,10>::cptr";
 14 template<> char *XX<int,12>::cptr = "XX<int,12>::cptr";
 15
 16 template <class W> class X {
 17 W x[5];
 18 public:
 19 int foo(int j) {
 20 cout << "X<>:foo(" << j << ")\n";
 21 return x[j];
 22 }
 23 };
 24
 25 template <typename T> class Y {
 26 T t;
 27 public:
 28 int foo(int i) {
 29 cout << "Y<>i::foo(" << i << ")\n";
 30 return t.foo(i);
 31 }
 32 };
 33
 34 template <char C>
 35 class CC {
 36 public:
 37 void foo() {
 38 cerr << "CC<" << C << ">::foo()\n";
 39 }
 40 };
 41

C++-specific addressing Templates

U6148-J-Z125-8-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

 42 int main ()
 43 {
 44 int i = 0;
 45 CC<'c'> c1;
 46 CC<195> c2;
 47 CC<1> c3;
 48 XX<int,10> xi10;
 49 XX<int,12> xi12;
 50 Y<X<int> > y;
 51
 52 c1.foo();
 53 c2.foo();
 54 c3.foo();
 55 xi10.foo(i);
 56 xi12.foo(i);
 57 y.foo(2);
 58 return(0);
 59 }

Debug run:

tDD?
3 /%t 1 in s=n'extmp2.c' 3
3 44 EXT.PROC START , BLOCK START, ASSIGN 3
3 STOPPED AT SRC_REF: 44, SOURCE: EXTMP2.C , PROC: main , END OF TRACE 3
3 /%d CC 3
3 01 CC 3
3 02 CC<1> 3
3 03 foo() = 01005B00 3
3 02 CC<'C'> 3
3 03 foo() = 010059C0 3
3 02 CC<'c'> 3
3 03 foo() = 01005880 3
3 /%t 1 in t'CC<''c''>'::n'foo()' 3
3 49 EXT.PROC START , BLOCK START, CALL 3
3 STOPPED AT SRC_REF: 49, SOURCE: EXTMP2.C , PROC: CC<'c'>::foo() , END OF 3
3 TRACE 3
3 /%t 1 in t'CC<195>'::n'foo()' 3
3 49 EXT.PROC START , BLOCK START, CALL 3
3 STOPPED AT SRC_REF: 49, SOURCE: EXTMP2.C , PROC: CC<'C'>::foo() , END OF 3
3 TRACE 3
3 /%t 1 in t'CC<1>'::n'foo()' 3
3 49 EXT.PROC START , BLOCK START, CALL 3
3 STOPPED AT SRC_REF: 49, SOURCE: EXTMP2.C , PROC: CC<1>::foo() , END OF 3
3 TRACE 3

%TRACE initially positions on the first executable statement in main. At this point, to access
data and statements, you only need the qualification of the scope concerned and do not
have to input the complete qualification starting with the S qualification each time.

Templates C++-specific addressing

102 U6148-J-Z125-8-76

The subsequent %DISPLAY command returns a list of all instances created for the class
template CC. Note that AID internally converts 195 to the character 'C' for the instance
CC<195> and displays the instance defined with CC<195> in the program as CC<’C’>. You
can nonetheless continue to address this instance with CC<195> in the subsequent test
run. In the reverse case, you could also address the instance CC<’c’> with CC<131>, since
131 is the numeric equivalent for ’c’.

The next three %TRACE commands trace the first statement of each instance: this is
always the statement in line 49. The reason for this is that the different instances all
originate from the same template and the source references are therefore the same in each
instance.

tDD?
3 /%d XX 3
3 01 XX 3
3 02 XX<int,12> 3
3 03 foo(int &) = 01005288 3
3 03 cptr = 0100624B 3
3 02 XX<int,10> 3
3 03 foo(int &) = 010050E0 3
3 03 cptr = 0100623A 3
3 /%in t'XX<int,12>'::n'foo(int &)';%r 3
3 STOPPED AT SRC_REF: 10, SOURCE: EXTMP2.C , PROC: XX<int,12>::foo(int &) 3
3 /%sd proc=t'XX<int,12>'::n'foo(int &)' 3
3 SRC_REF: 10 SOURCE: EXTMP2.C PROC: XX<int,12>::foo(int &) **************3
3 this = 010709B0 3
3 3
3 01 XX<int,12> 3
3 02 my_t(0: 11) 3
3 (0) 16813944 (1) 0 (2) 0 3
3 (3) 0 (4) 0 (5) 0 3
3 (6) 0 (7) 0 (8) 0 3
3 (9) 0 (10) 17238352 (11) 17882652 3
3 02 foo(int &) = 01005288 3
3 02 cptr = 0100624B 3
3 3
3 t = 17137988 3

The next step lists all instances created for template XX. A test point is set on function
foo(int&) of instance XX<int,12> and the program is then started with %RESUME. The
program is interrupted in foo(int&). The subsequent %SDUMP lists all data of function
XX<int,12>::foo(int &).

C++-specific addressing Templates

U6148-J-Z125-8-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

tDD?
3 /%in t'Y<X<int>>'::n'foo(int)' <%D i;%sd %nest;%d ' '> 3
3 /%in t'X<int>'::n'foo(int)' <%D j;%sd %nest;%d ' '>;%r 3
3 SRC_REF: 41 SOURCE: EXTMP2.C PROC: Y<X<int>>::foo(int) ******************3
3 i = 2 3
3 SRC_REF: 41 SOURCE: EXTMP2.C PROC: Y<X<int>>::foo(int) *****************3
3 SRC_REF: 75 SOURCE: EXTMP2.C PROC: main ********************************3
3 ABSOLUT: V'113C3FE' SOURCE: IC@RT20A PROC: IC@RT20A *******************3
3 ABSOLUT: V'100AF40' SOURCE: IC@MAIN@ PROC: IC@MAIN@ *******************3
3 SRC_REF: 33 SOURCE: EXTMP2.C PROC: X<int>::foo(int) *********************3
3 j = 2 3
3 SRC_REF: 33 SOURCE: EXTMP2.C PROC: X<int>::foo(int) *********************3
3 SRC_REF: 42 SOURCE: EXTMP2.C PROC: Y<X<int>>::foo(int) *****************3
3 SRC_REF: 75 SOURCE: EXTMP2.C PROC: main ********************************3
3 ABSOLUT: V'113C3FE' SOURCE: IC@RT20A PROC: IC@RT20A *******************3
3 ABSOLUT: V'100AF40' SOURCE: IC@MAIN@ PROC: IC@MAIN@ *******************3

Finally, a test point is set is in each of the foo(int) functions of instances Y<X<int>> and
X<int> and the function parameters i and j are output together with the current call
hierarchy when these test points are reached.

Templates C++-specific addressing

104 U6148-J-Z125-8-76

5.5.3 Function templates

An actual function is created from a function template via Instantiation. When you use this
function in a PROC qualification to specify the definition point of a data item it contains or
use the function name in an AID command to define the function start address, you access
the function via the function name with the template arguments, which must be enclosed in
angled brackets, and the signature. You enclose these entries in t'...', as described in the
section “Template instantiation” on page 94.

Example

C++ program SOURCE: EXTEMPL1.C
===
SRC
LIN
 1 // minimum of two objects
 2 template< class T >
 3 const T& minimum(const T& a, const T& b)
 4 {
 5 const T& retval((a<b) ? a : b);
 6 return retval;
 7 }
 8
 9 // minimum of three objects
 10 template< class T >
 11 const T& minimum(const T& a, const T& b, const T& c)
 12 {
 13 const T& retval((a<b) ? minimum(a,c) : minimum(b,c));
 14 return retval;
 15 }
 16
 17 int main()
 18 {
 19 int min;
 20 double xmin;
 21 min = minimum(2,3,1);
 22 xmin = minimum(2.2,1.1,3.3);
 23 ...

C++-specific addressing Templates

U6148-J-Z125-8-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Debug run:

tDD?
3 /%in t'minimum<double>(const double &, const double &)' 3
3 /%r 3
3 STOPPED AT SRC_REF: 5, SOURCE: EXTEMPL1.C , 3
3 PROC: minimum<double>(const double &, const double &) 3
3 /%sd %nest 3
3 SRC_REF: 5 SOURCE: EXTEMPL1.C 3
3 PROC: minimum<double>(const double &, const double &) ********3
3 SRC_REF: 13 SOURCE: EXTEMPL1.C 3
3 PROC: minimum<double>(const double &, const double &, 3
3 const double &) 3
3 SRC_REF: 22 SOURCE: EXTEMPL1.C PROC: main ******************************3
3 ABSOLUT: V'113CF88' SOURCE: IC@RT20A PROC: IC@RT20A *******************3
3 ABSOLUT: V'10014A8' SOURCE: IC@MAIN@ PROC: IC@MAIN@ *******************3
3 /%da 3 from t'minimum<double>(const double &, const double &)' 3
3 EXTEMPL1$O&@ 3
3 EXTEMPL*+5C2 L R14,0(R0,R9) 58 E0 9000 3
3 EXTEMPL*+5C6 LD R0,0(R0,R14) 68 00 E000 3
3 EXTEMPL*+5CA L R15,4(R0,R9) 58 F0 9004 3

The %INSERT command sets a test point at the first executable statement of instance
minimum<double>(const double &, const double &) of the minimum function
template. The test point is reached with %RESUME. The call hierarchy at the interrupt
point, which you can output with %SD %NEST, shows that the current instance of minimum
was called from a further instance of the same template,
minimum<double>(const double &, const double &, const double &).
Finally, the %DISASSEMBLE command disassembles the first three commands of instance
minimum<double>(const double &, const double &).

Templates C++-specific addressing

106 U6148-J-Z125-8-76

5.5.4 Listing template instances

You use the following %DISPLAY command to output an overview of the instances which
were created for a class or function template and are visible at the interrupt point:

- -

%DISPLAY [qua] template

- -

qua Qualification
qua specifies the program section containing the template declaration.

template
Name of the class or function template
The template arguments must be omitted for AID to output the overview. You
therefore do not need to enclose the template name in t'...'.

Note, however, that if only a single template instance exists, the following %DISPLAY
command must be used in order to list the instance:

- -

 ⎧t'k_template' ⎫
%DISPLAY [qua] ⎨ ⎬
 ⎩t'f_template([signature])'⎭

- -

qua Qualification
qua specifies the program section containing the template declaration (as above).

k_template
Name of the class template
The template arguments can also be omitted here, but the template name must be
enclosed in t'...'.

f_template([signature])
Name of the function template
The template arguments are omitted, and the template name is enclosed in
t'...'. If the signature is not void, it must be specified. If the signature is void,
only the two parentheses () must be entered.

signature
Parameters to be passed by the function
If the template involved is a function template, you must specify the signature;
however, if the signature is void, it is omitted.

C++-specific addressing Templates

U6148-J-Z125-8-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Example

The example refers to the C++ program listed on page 104.

tDD?
3 /%d minimum 3
3 01 minimum 3
3 02 minimum<double>(const double &, const double &) = 01000528 3
3 02 minimum<int>(const int &, const int &) = 010004A0 3
3 02 minimum<double>(const double &, const double &, 3
3 const double &) = 01000330 3
3 02 minimum<int>(const int &, const int &, const int &) = 010001D8 3

The %DISPLAY command lists all instances created for function template minimum and
also outputs the associated prolog addresses.

5.5.5 Displaying template instance names

AID displays the full name of the template instance in its outputs, e.g. in the STOP message
or the output of %SDUMP %NEST. AID uses the C++ designations for the relevant data types
in the template arguments.

If a user definition exists for a derived data type, AID uses it.

Examples

1. The instance of a function template has been created via the function call foo(15). AID
displays foo<int> as the function name in a STOP message. A second instance has
been created because of the foo(&i) call. The AID function name for this is
foo<*int>.

2. typedef int (*int_arr_def)[3] int_arr_def;
int_arr_def int_arr_ptr;
...
foo(int_arr_ptr);

In this case, AID uses the function name foo<int_arr_def> and not
foo<int(*)[3]>.

Templates C++-specific addressing

108 U6148-J-Z125-8-76

5.5.6 Accessing source references from template instances

Each instantiation creates an actual function from a function template or a class from a
class template. If a function is defined in the class template, instantiation not only creates a
new class each time, it also creates a new function. The source references to the state-
ments of such functions are formed from the template declaration line numbers. They are
therefore the same for each instance and no longer unique in the translation unit if more
than one instance is created. This means that you must qualify source references from
template declarations from which multiple instances have been created, with the function
of the required instance to enable AID to assign them correctly. Otherwise, AID outputs an
appropriate message.

Syntax for source references from template instances:

- -

[E-qua•][S-qua•]PROC=[namespace::[...]][class::[...]]function•S'[f-]n[:a]'

- -

E-qua Base qualification
Specified with E=VM or E=Dn and defines whether the AID work area is to lie in the
loaded program (E=VM) or in a dump file (E=Dn). The base qualification is used for
both symbolic and machine code debugging and is described in the AID Core
Manual in chapter “Addressing in AID” and in the %BASE command on page 127.

S-qua S qualification
Designates the translation unit containing the template declaration. You specify the
S qualification as described on page 23.

namespace
Name of the namespace containing the template declaration.

class Name of the class
If class designates the instance of a class template, you have to use the notation
t'k_template<arg[,...]>'. If there is only one instance for the class template,
t'k_template' suffices.
You insert two colons between the class name and subsequent function name as
usual.

function
Name of the function
You specify function with n'function([signature])' if the source reference is in a
normal C++ function which is defined in a class template, or with t'f_tem-
plate<arg[,...]>([signature])' if it is an instance of a function template. You can
abbreviate the latter to t'f_template([signatur])' if there is only one
instance for the function template.

C++-specific addressing Templates

U6148-J-Z125-8-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

You insert a period between the function name and the source reference.
You will find detailed information on how you specify a function name when
debugging C++ programs on page 58.

S’[f-]n[:a]’
is a source reference and designates an executable statement in a function which
is either defined in a class template or contained in the declaration of a function
template.

If you use an unqualified source reference from a template instance in an AID command,
AID rejects it with the following error message:
AID0376 Ambiguous qualification for SRC_REF

Example

The example refers to the C++ program shown on page 104.

/%in proc=t'minimum<int>(const int &, const int &)'.s'6'
/%in proc=t'minimum<double>(const double &, const double &)'.s'6'

A test point is set on source reference S’6’ in each of the two instances
minimum<int>(const int &, const int &) and
minimum<double>(const double &, const double &).

Overloaded functions C++-specific addressing

110 U6148-J-Z125-8-76

5.6 Overloaded functions

Overloaded functions can be uniquely addressed via their signature, since the signature is
included in the function designation (see the section “Qualifications” on page 57). You can
obtain an overview of the overloaded functions defined in the program by using
%DISPLAY to request an overview of all overloaded functions that have the same name at
the interrupt point or in the specified program section:

- -

%DISPLAY [qua•] function

- -

qua Qualification of the program section in which the overloaded function is to be
searched for.

function
Name of an overloaded function. If you want AID to output an overview, you must
omit the signature. Alternatively, you can specify the function name as described in
the section “Qualifications” on page 57, i.e. with a prepended namespace and/or
class qualification if required.

Structure of the table of overloaded functions:

- -
 01 function
 02 function(signature1) = address1
 02 function(signature2) = address2
 ...
- -

The name of the desired overloaded function can be obtained from the table in standard
C++ notation. For each overloaded function present in the scope area, the signature and
the associated prolog address are listed.

C++-specific addressing Overloaded operators

U6148-J-Z125-8-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

5

Example

The example refers to the code fragment of the example on page 61. For the sake of
readability, user commands are printed in bold.

tDD?
3 /%d FOO 3
3 SRC_REF: 70 SOURCE: BSP.C PROC: main ***********************************3
3 01 FOO 3
3 02 FOO(long) = 01000070 3
3 02 FOO(int) = 01000000 3
3 /%in n'FOO(int)' 3
3 /%in n'FOO(long)' 3

The %DISPLAY command lists the two prolog addresses of the overloaded functions with
the name FOO. The %INSERT commands which follow then set a test point at the first
executable statement of FOO(int) and FOO(long), respectively.

5.7 Overloaded operators

You can use AID to debug overloaded operators in exactly the same way as any other
function you have written. The desired overloaded operator can be identified to AID by
using the function name from your C++ program in standard C++ notation, i.e. with a
signature and, if relevant, a prepended class qualification. The complete designation must
then be enclosed within n'...' as usual. No additional blanks may be entered within
n'...'.

If an operator is multiply-overloaded, you should proceed as described in the section
“Overloaded functions” on page 110 to ensure a unique assignment to the required
function.

i When debugging a program featuring overloaded operators, note that AID always
works on the basis of the standard operators and thus does not allow for
overloading in its own calculations.

Example

%insert X1::n'operator+(float&)' <%d *this>

A function defined in class X1 overloads the + operator. You therefore set a test point with
%INSERT at the first executable statement of X1::operator+(float&). The
subcommand causes the contents of the associated object to be output following each call
to the function.

Reference variables C++-specific addressing

112 U6148-J-Z125-8-76

5.8 Reference variables

With the exception of its name, a reference variable has the same attributes as the variable
it references. Thus the two variables are identical in terms of address, length, contents,
storage type and return type. There are no special points to note in addressing reference
variables with AID.

Example

C++ program SOURCE: EXP1.C
===
SRC
LIN
 1 int i;
 2 int& p = i;
 3
 4 int main(void)
 5 {
 6 i = 17;
 7 ...

tDD?
3 /%d i, p, %@(i), %@(p), %l(i), %l(p) 3
3 SRC_REF: 7 SOURCE: BSP1.C PROC: main *********************************3
3 i = 17 3
3 p = 17 3
3 010547C8 3
3 010547C8 3
3 +4 3
3 +4 3

Variables i and p differ only in their name. They have exactly the same value, address
and length.

U6148-J-Z125-8-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

6 AID commands

%AID

The %AID command can be used to declare global settings or to change existing settings.

– The C operand defines how C string literals and C string arrays of the C and C++
programming languages are handled by AID.

– With the CCS operand, you specify a CCS for interpreting characters if no CCS is ex-
plicitly indicated in the %DISPLAY command. Unicode character sets are not allowed.

– The CHECK operand defines whether an update dialog is to be initiated before
executing the %MOVE and %SET commands.

– The DELIM operand defines the delimiters for the output of alphanumeric data by AID.
The vertical bar is the default delimiter.

– The EXEC operand defines whether debug mode is enabled after loading with exec().

– The FORK operand defines whether a task created via fork() is interrupted immedi-
ately after its creation and set to debug mode.

– The LANG operand defines whether AID is to output %HELP information in English or
German.

– With the LEV operand, you can activate the output of levels within the call hierarchy pro-
duced by the %SDUMP %NEST AID command.

– The LOW operand instructs AID whether or not to convert lowercase letters of character
literals and names to uppercase.

– The OV operand instructs AID to take the overlay structure of a program into account.

– The REP operand defines whether memory updates of a %MOVE command are to be
stored as REPs.

– The SYMCHARS operand defines whether the "-" character in program, data and
statement names is to be interpreted as a hyphen or as a minus sign by AID.

%AID AID commands

114 U6148-J-Z125-8-76

DDD
Command Operand
DDD
 ⎧ C = {YES| NO} ⎫
 o o
 3 CCS = {<coded-character-set> | *USRDEF} 3
 o o
 o CHECK [= {ALL| NO}] o
 o o
 o ⎧C'x'|'x'C|'x'⎫ o
 o DELIM [= ⎨ ⎬] o
 o ⎩'|' ⎭ o
 o - o
 o o
 o EXEC [= {OFF| ON}] o
 o o
%AID ⎨ FORK [= {OFF| NEXT| ALL}] ⎬
 o o
 o LANG [= {D | E}] o
 o o
 o LEV [= {ON|OFF}] o
 o o
 o LOW [= {ON| OFF| ALL}] o
 o o
 o OV [= {YES| NO}] o
 o o
 o REP [= {YES| NO}] o
 o o
 ⎩ SYMCHARS [= {STD| NOSTD}] ⎭
DDD

The following applies for the validity period of definitions made with %AID:

– The settings made with %AID apply in the LOGON task until changed by a new %AID
command or until /LOGOFF.

– All settings defined with %AID in the parent task are reset in the fork task. The only
exception is FORK=ALL.

– An exec() call does not affect definitions made with %AID.

– All definitions made with %AID, apart from FORK=ALL, are reset in the POSIX shell after
loading with debug progname (see page 291). If FORK=ALL was set in the LOGON task,
it still applies. EXEC=ON is set after each loading with debug progname.

%AID may only be specified as a single command and may not be included in a command
sequence or a subcommand.

%AID does not alter the program state.

AID commands %AID

U6148-J-Z125-8-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

YES AID supports the string notation of C/C++ and thus accepts C string literals in the
form "character string" in %DISPLAY and %SET commands and in comparisons
within subcommands. These literals are processed by AID as in C/C++, so you can
now specify a comment only by enclosing it within /*...*/. In addition, AID combines
the elements of a char array that are addressed via the last subscript into C strings,
where the first array element of that subscript level with the value X’00’ identifies the
end of the C string. You will find more detailed information on this topic in the section
“C strings” on page 36.

When AID commands are executed in a procedure, no parameter substitution
occurs in C string literals even if %AID C=YES has been set, since the BS2000
command interpreter always interprets C string literals as comments.

Note that the %AID C=YES option also sets %AID LOW=ALL (see page 118) and
%AID SYMCHARS=NOSTD (see page 120) at the same time.

NO Disables the interpretation of "character string" as a C string literal, which means that
characters enclosed within "..." are seen as comments. AID treats char arrays as
arrays of individual characters.

Note that if %AID C=YES was declared earlier, the implicit settings of %AID LOW=ALL
and %AID SYMCHARS=NOSTD will be retained and would need to be reset
independently if required.

If a C operand has not been entered in a debugging session, the default setting NO applies.

<coded-character-set>
Name of the CCS (<name 1..8>) for interpreting AID data. XHCS must know the
indicated character set. Otherwise, AID rejects the statement with the message
AID0555.

*USRDEF
CCSNAME of the character set, that is assigned to the user ID. *USRDEF is the
default value of CCS.

C

CCS

%AID AID commands

116 U6148-J-Z125-8-76

If you specify the CCS operand in a %AID command, AID checks if the CCSNAME is
permitted by XHCS. If XHCS doesn‘t know the CCSNAME, the command is rejected and
the current CCS value is kept.

The following AID command enables you to display a complete list of CCSNAMEs, that are
supported by XHCS:

%SHOW %CCSN

ALL Prior to execution of a %MOVE or %SET command, AID conducts the following
update dialog:

OLD CONTENT:
AAAAAAAA
NEW CONTENT:
BBBBBBBB
% AID0274 Change desired? Reply (Y=Yes; N=No)?n
% AID0342 Nothing changed

If y is entered, the old contents of memory are overwritten and no further message
is issued. In procedures in batch mode, AID is not able to conduct a dialog and
always assumes y.
The old and new contents are written to SYSOUT. If SYSOUT is redirected, the
above output will not appear on the terminal. The same applies if the %MOVE or
%SET command and the CMD macro have been used and output to SYSOUT has
been selected. Messages AID0274 and AID0342, by contrast, are always sent to
the terminal.

NO %MOVE and %SET commands are executed without an update dialog.

If the CHECK operand is entered without specification of a value, AID assumes the default
value (NO).

C’x’|’x’C|’x’
With this operand the user defines a character as the left and right delimiter for AID
output of symbolic data of type ’character’ (%DISPLAY and %SDUMP commands,
or for update dialog in %SET command.)

CHECK

DELIM

AID commands %AID

U6148-J-Z125-8-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

The standard delimiter is the vertical bar.

If the DELIM operand is entered without value specification, AID inserts the default value (|).

OFF Programs loaded with an exec() call are not interrupted after loading and not set
to debug mode.

ON Immediately after loading with exec(), the program is interrupted and set to debug
mode. All settings made prior to this with AID remain intact.

%AID EXEC without a value is the same as %AID EXEC=OFF (default).

OFF Fork tasks are not interrupted after their creation and not set to debug mode
(default). If %AID FORK has not been set in a task, %SHOW %AID displays
NOT_USED for FORK.

NEXT All first-generation fork tasks are interrupted immediately after their creation and set
to debug mode. However, FORK=OFF is set in these tasks, i.e. you cannot debug
second and higher-generation tasks created with fork() without taking further
steps. In this case, you can only set such a higher-generation fork task into debug
mode by interrupting the fork task from the POSIX shell with debug -p pid (see
page 291), or by sending a %STOP command including the appropriate TSN or pid
(see page 275) from a task in the same task family to the required fork task.

ALL All fork tasks of any generation which originate from the current task are interrupted
after their creation and set to debug mode. FORK=ALL is set in the fork tasks. This
setting is the only AID definition that is inherited.

Changing this switch only affects the tasks which are created after the change in direct line
from the task in which the switch was set.

%AID FORK without a value has the same effect as %AID FORK=OFF (default).

D AID outputs information requested with %HELP in German.

E AID outputs information requested with %HELP in English.

EXEC

FORK

LANG

%AID AID commands

118 U6148-J-Z125-8-76

If the LANG operand is entered without a value, AID inserts the default (D).
You can also receive AID messages in German by using the SDF command
MODIFY-MSG-ATTRIBUTES TASK-LANGUAGE=D.
This has no effect on the update dialog (see the CHECK operand).

ON Enable level output.

When level output is enabled, %SDUMP %NEST additionally outputs two kinds of
levels for each procedure (function or block in C/C++) in the call hierarchy:

– A general level (counter) with a backward numeration, i.e. from the current
procedure to the main procedure. This level number is applicable in the new
qualification NESTLEV.

– A recursive level (RLEV) or an individual counter for each procedure with a
backward numeration starting from 0. The recursive level serves as informative
element.

OFF Disable level output.

ON Lowercase letters in character literals and in program, data and statement names
are not converted to uppercase. When debugging C/C++ programs, you should set
%AID LOW at the start of every debugging session; otherwise, AID cannot distin-
guish between upper and lowercase in C/C++. Only in S qualifications is AID not
case-sensitive. Entries in the S qualification are always converted to uppercase.

OFF All lowercase letters from user entries are converted to uppercase.

ALL In addition to all entries affected by the LOW=ON setting, the distinction between
uppercase/lowercase letters also being taken into account when all BLS names are
entered. You always need this setting when you debug a program that was
compiled in the POSIX shell and its associated source file name contains lowercase
letters.

In addition, upper and lower case entries in character literals and in program, data
and instruction names are retained, as when %AID LOW=ON is specified.

The following BLS names are used by AID:
– Context names of the CTX qualification
– Load unit names of the L qualification
– Link module names of the O qualification

LEV

LOW

AID commands %AID

U6148-J-Z125-8-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

– CSECT names of the C qualification
– COMMON names of the COM qualification
– Names of compilation units of the S qualification

Note that the %AID C=YES specification will implicitly set LOW=ALL, but this setting
will not be revoked with %AID C=NO. LOW=ALL must be reset independently if
required.

i The presetting and default values differ for the LOW operand. If no LOW operand
has been entered in a debugging session, the presetting OFF applies. However, if
the LOW operand is input without a value specification, AID assumes the default
(ON). In this case, the complete %AID LOW=OFF command must be entered if
conversion to uppercase is to be reactivated.

YES Mandatory specification if the user is debugging a program with an overlay
structure. This also applies for programs which dynamically load and unload
program sections (BIND / UNBIND). AID checks each time whether the program
section which has been addressed originates from a dynamically loaded segment.

NO AID assumes that the program to be debugged has been linked without an overlay
structure. AID uses the one-time loaded LSD record without checking whether the
addressed program section is in a dynamically loaded segment.

If the OV operand is entered without a value specification, AID assumes the default (NO).

YES In the event of memory updates caused by a %MOVE command, LMS correction
statements (REPs) are created in SDF format. If the object structure list is not
available, AID does not create any REPs and issues an error message to this effect.

AID stores the corrections in a file with the link name F6. The MODIFY-ELEMENT
statement must then be inserted in it for the LMS run. Care should therefore be
taken that no other outputs are written to the file with link name F6. If no file with link
name F6 is registered (see %OUTFILE), the REP record is stored in the file created
by AID (AID.OUTFILE.F6).
User-specific REP files must be created with the SAM access method. REP files
created by AID are likewise defined with the SAM access method, record format V
and open mode EXTEND.
The file remains open until it is closed via %OUTFILE or until /LOGOFF.

OV

REP

%AID AID commands

120 U6148-J-Z125-8-76

NO No REPs are generated.

If the REP operand is entered without a value specification, AID inserts the default (NO).
The REP operand of the %MOVE command can supersede the declaration made with
%AID, but only for this particular %MOVE command. For subsequent %MOVE commands
without a REP operand, the declaration made with the %AID command is valid again.

STD A hyphen (-) is interpreted as an alphanumeric character and can, as such, be used
in program, data and statement names. A hyphen is only interpreted as a minus
sign if a blank precedes it.

NOSTD
A hyphen (-) is always interpreted as a minus sign and cannot be used as a part of
names. Since names in C/C++ may not contain hyphens, you should set NOSTD at
the begin of each debugging session. You will then not need to be careful about
when you need to enter a blank before a hyphen.

Note that the %AID C=YES specification will implicitly set SYMCHARS=NOSTD, but this
setting will not be revoked with %AID C=NO. SYMCHARS=NOSTD must be reset
independently if required.

If the SYMCHARS operand is entered without a value specification, AID inserts the default
value (STD).

SYMCHARS

AID commands %AINT

U6148-J-Z125-8-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%AINT

%AINT can be used to specify whether 24-, 31- or 32-bit addresses are to be used by AID
for indirect addressing. The address preceding the pointer operator (->) will then be inter-
preted as a 24-, 31- or 32-bit address by AID.
This does not affect the addressing mode of the test object.

– aid-mode specifies the address interpretation for indirect addressing within an AID work
area.

DDD
Command Operand
DDD

%AINT [aid-mode] [,...]

DDD

By default, AID interprets indirect address specifications in accordance with the current
addressing mode of the test object. This automatic adaptation can be deactivated by speci-
fying %AINT with the keyword %MODEn. The implicit addressing mode is 24 or 31 on /390
systems and can be retrieved with %DISPLAY %AMODE and altered with %MOVE (see the
manual "Debugging on Machine Code Level:" [2]). The addressing mode for the current AID
work area is also returned by %SHOW %AID or %SHOW %BASE along with other information.

Without a qualification, %AINT applies to AID commands that indirectly reference or use
addresses of the current AID work area. If a qualification is specified, %AINT will apply only
to AID commands that indirectly reference or use addresses of the qualified area.

The following applies for the validity period of the addressing mode defined with %AINT:

– The addressing mode applies in the LOGON task until default address interpretation is
reverted to using %AINT without operands or %AINT with a base qualification and
without %MODEn. Otherwise, the defined addressing mode applies until a /LOGOFF or
/EXIT-JOB.

– The addressing mode is reset to default address interpretation in a task created with
fork() and in a program loaded with exec().

– The default address interpretation is always set in the POSIX shell after loading with
debug progname (see page 291).

%AINT does not alter the program state.

%AINT AID commands

122 U6148-J-Z125-8-76

Defines, for the current work area or an AID work area designated with the specified base
qualification, how indirect addresses are to be interpreted in subsequent AID commands.

If you specify a keyword for the address interpretation and no qualification, the %AINT
command will be valid for processing the current AID work area.

If you specify a base qualification and no keyword for the address interpretation, the default
AID address interpretation will apply to the corresponding AID work area.

aid-mode-OPERAND -

 ⎧VM⎫ ⎧%M[ODE]32⎫
[•][E=⎨ ⎬[•]] [⎨%M[ODE]31⎬]
 ⎩Dn⎭ ⎩%M[ODE]24⎭

- -

• A leading period serves as an indicator for a prequalification, which must be defined
beforehand with the %QUALIFY command. A period must be entered between the
base qualification and the keyword for the address interpretation. If you specify only
a base qualification, no terminating period is permitted.

E={VM | Dn}
Specifies that the conversion of the address interpretation is not to be applicable for
the current AID work area. If you specify only a base qualification, the default
address interpretation will again apply to the referenced area.

{%M[ODE]32 | %M[ODE]31 | %M[ODE]24}
Keyword that defines how many bits are to be taken into account for indirect
addressing in AID commands.

%M[ODE]32 32-bit addressing
%M[ODE]31 31-bit addressing
%M[ODE]24 24-bit addressing

aid-mode

AID commands %AINT

U6148-J-Z125-8-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Examples

Address V’100’ has the contents: 1200000C
Register 5 has the contents: 010001A0

1. %AINT %MODE24
%DISPLAY V'100'->
%MOVE %5-> INTO %5G

%AINT is used to switch to a 24-bit address interpretation. The change applies to the
current AID work area.
%DISPLAY outputs 4 bytes as of address V’00000C’.
%MOVE transfers 4 bytes as of address V’0001A0’ to AID register 5.

2. %AINT %MODE31
%DISPLAY V'100'->
%MOVE %5-> INTO %5G

The address interpretation for the current AID work area is now switched to a 31-bit
interpretation.

%DISPLAY outputs 4 bytes as of address V’1200000C’.
%MOVE transfers 4 bytes as of address V’010001A0’ to AID register 5.

%ALIAS AID commands

124 U6148-J-Z125-8-76

%ALIAS

You can use %ALIAS to define short alias names for long variable names or class or
namespace qualifications to avoid having to type in the long original names in subsequent
commands.

– aliasname defines an abbreviated name that you want to use in subsequent commands
instead of the original name.

– originalname defines the name of a data item, class, class object, namespace, template
instance or function. You can prepend a class or namespace qualification to the name
with or use two colons (::) for the global namespace.

DDD
Command Operand
DDD

%ALIAS aliasname [= originalname]

DDD

An aliasname defined with %ALIAS applies until it is deleted with a %ALIAS command
without an originalname operand or until /LOGOFF or /EXIT-JOB.
In the POSIX shell, all alias names are deleted after a fork() call, i.e. also after debug
progname (see the chapter “POSIX debug command” on page 291). Names defined with
%ALIAS still apply in a program loaded via exec().

The %ALIAS definitions are only available to subsequently input commands. A new
%ALIAS has no effect on previously input subcommands in %CONTROLn, %INSERT and
%ON, even if the subcommands are executed after the %ALIAS.

When you input an alias name, you must ensure that the uppercase/lowercase handling is
correctly set (%AID LOW={ON|OFF|ALL}).
Several alias names can be assigned to one original name.
AID always outputs the original name in messages.
You can assign up to 40 alias names, depending on the length of the assigned original
name.

%ALIAS may only be input as a single command and may not be included in a command
sequence or subcommand.

%ALIAS does not alter the program state.

AID commands %ALIAS

U6148-J-Z125-8-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Defines the name that you can use in subsequent AID commands instead of originalname.
aliasname can be up to 32 characters long. The following characters can be used: a-z, A-Z,
0-9, $, #, @, underscore (_) or dash (-).
If you assign several alias names, they must all be different. AID rejects duplicated alias
names with the following message:
AID0531 Alias name is ambiguous.

i An alias name you assign should not be the same as the name of a definition in your
program as this will prevent you from being able to subsequently access the
definition. For the same reason, the alias name should not be the same as an AID
keyword or you will no longer be able to use the keyword.

Designates the definition from the source program which is to be addressed via the shortest
alias name during the subsequent debug run.

If you do not specify an originalname operand, aliasname is deleted from the list of alias
names. If aliasname did not exist, you are informed of this with the message:
AID0530 Alias name is undeclared.

originalname-OPERAND -

= [::]name [::name...]

- -

name Name of a data item, function, function template instance, class, class template
instance, class object or namespace defined in the source program.

You can specify a data name as described in the section “Data names” on page 29.
You can specify functions with the notation function, n'funktion([signatur])' or
t'f_template<arg[,...]>([signature])', depending on the type of function
concerned (see page 58).
With derived or nested classes or nested namespaces, you can specify the
complete path for accessing the required class or namespace for originalname. You
specify all superordinate classes or namespaces from the outermost to the
innermost and separated by a pair of colons (::).
You specify class template instances in the form t'k_template<arg[,...]>'.

If you define an alias name for an AID keyword, AID warns you of this but still
accepts the assignment and replaces the AID keyword in subsequent commands
with the alias name.

An alias name assigned to an original name may not be used as an original name.

aliasname

originalname

%ALIAS AID commands

126 U6148-J-Z125-8-76

Example

/%alias FJ=Fujitsu
/%display FJ::i
Fujitsu::i = 32

The %ALIAS command is used to assign the alias name SAG to the namespace Fujitsu.
A variable i from this namespace is referenced in the subsequent %DISPLAY with the short
form FJ::i. AID then displays the original name in the output.

AID commands %BASE

U6148-J-Z125-8-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%BASE

The %BASE command is used to specify the base qualification. All subsequently entered
memory references without their own base qualification assume the value declared via
%BASE. The %BASE command also defines the AID work area.

– With the base operand the user designates either the virtual memory area of the
program which has been loaded or a dump in a dump file.

DDD
Command Operand
DDD

%BASE [base]

DDD

When debugging C/C++ programs, the AID work area corresponds to the area occupied by
the load unit in virtual memory or in a dump file. If you do not specify a %BASE command
during a debugging session or enter %BASE without any operands, the base qualification
E=VM applies by default, and the AID work area corresponds to the unprivileged portion in
virtual memory that is used by the loaded program with all connected subsystems (AID
default work area).

A %BASE command remains in effect until the next %BASE command or a /LOGOFF or
/EXIT-JOB, is issued, or until the dump file that was declared as the base qualification is
closed (see the description of the command %DUMPFILE).
Immediately after input, all memory references in a command, even within a subcommand,
are supplemented with the current base qualification, i.e. a %BASE command has no effect
on subcommands specified previously.

%BASE can only be entered as an individual command, it must never be part of a command
sequence or subcommand.

%BASE does not alter the program state.

Defines the base qualification. All subsequently entered memory references without a
separate base qualification assume the value declared with the %BASE command.

base-OPERAND -

 ⎧ VM ⎫
E = ⎨ ⎬
 ⎩ Dn ⎭

- -

base

%BASE AID commands

128 U6148-J-Z125-8-76

E=VM
The virtual memory area of the program which has been loaded is declared as the
base qualification. VM is the default value.

E=Dn A dump in a dump file with the link name Dn is declared as the base qualification.
n is a number with a value 0 ≤ n ≤ 7.

Before declaring a dump file as the base qualification, the user must assign the
corresponding dump file a link name and open it, using the %DUMPFILE command.

AID commands %CONTINUE

U6148-J-Z125-8-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%CONTINUE

The %CONTINUE command is used to start the program which has been loaded or to
continue it at the interrupt point.
The address at which program execution is continued can not be influenced with
%CONTINUE. You can define such an address only by changing the program counter
(%PC) using %SET (see the description of the command %SET keyword on page 263).

An active %TRACE command is not terminated by %CONTINUE - in contrast to
%RESUME; instead, it is continued in conformance with the declarations which have been
made.

DDD
Command Operand
DDD

%CONT[INUE]

DDD

A %TRACE is regarded as active as soon as it is entered.

In the following cases a %TRACE command is merely interrupted and can be resumed by
a %CONTINUE command:

1. When a subcommand has been executed, and the subcommand contained a %STOP.

2. When the K2 key has been pressed (see the section “Commands on starting a
debugging session” on page 19).

A subcommand containing only the %CONTINUE command merely increments the
execution counter.

If the %CONTINUE command is given in a command sequence or subcommand, any
subsequent commands are not executed.

%CONTINUE alters the program state.

%CONTROLn AID commands

130 U6148-J-Z125-8-76

%CONTROLn

By means of the %CONTROLn command you may declare up to seven process monitoring
functions, which then go into effect simultaneously. The seven commands are
%CONTROL1 through %CONTROL7.

– By means of the criterion operand you may select different types of program state-
ments. If a statement of the selected type is waiting to be executed, AID interrupts the
program and processes subcmd.

– By means of the control-area operand you may define the program area in which
criterion is to be taken into consideration.

– By means of the subcmd operand you declare a command or a command sequence and
possibly a condition. subcmd is executed if criterion is satisfied and any specified
condition has been met. <%STOP> is used by default if subcmd is not explicitly
specified.

DDD
Command Operand
DDD

%C[ONTROL]n [criterion][,...] [IN control-area] [<subcmd>]

DDD

Several %CONTROLn commands with different numbers do not affect one another.
Therefore you may activate several commands with the same criterion for different areas,
or with different criteria for the same area. If several %CONTROLn commands occur in one
statement, the associated subcommands are executed successively, starting with %C1 and
working through %C7.

The individual value of an operand for %CONTROLn is valid until overwritten by a new
specification in a later %CONTROLn command with the same number, until the
%CONTROLn command is deleted or until the end of the program. In addition, all
%CONTROLn declarations are reset in a task created with fork() and in a program
loaded with exec().

A %REMOVE command can be used to delete either a specific %CONTROLn or all active
%CONTROLn declarations.

%CONTROLn can only be used in a loaded program, i.e. the base qualification E=VM must
have been set via %BASE or must be specified explicitly.

%CONTROLn does not alter the program state.

AID commands %CONTROLn

U6148-J-Z125-8-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Keyword defining the type of the program statements prior to whose execution AID is to
process subcmd.
You can specify several keywords at the same time, which are then valid at the same time.
Any two keywords must be separated by a comma.
If no criterion is declared, AID works with the default value %STMT, unless a criterion
declared in an earlier %CONTROLn command is still valid.

Specifies the program area in which the monitoring function will be valid. If the user exits
from the specified program, the monitoring function becomes inactive until another
statement within the program area to be monitored is executed. The default value is the
current program area.

A control-area definition is valid until the next %CONTROLn command with the same
number is issued with a new definition, until the corresponding %REMOVE command is
issued, or until the end of the program is reached. All control-area definitions are also reset
in a task created with fork() and in a program loaded with exec().
%CONTROLn without a control-area operand of its own results in a valid area definition

criterion

criterion subcmd is processed prior to

%STMT Every statement

%ASSGN Every assignment statement

%CALL Every function call

%COND Every if and switch statement, every else branch of an if
statement, and every control expression of a do, while, or for
statement

%EH
%EXCEPT
ION

Every throw or catch statement

%GOTO Every goto, break, and continue statement

%LAB Every statement with a label; does not apply to case and default
labels

%PROC The first and the last statement of a function

Table 4: Values of the criterion operand and their meanings

control-area

%CONTROLn AID commands

132 U6148-J-Z125-8-76

being assumed. To be valid, such a control-area operand must be defined in a
%CONTROLn command with the same number, and the current interrupt point must be
within this area. If no valid area definition exists, the control-area comprises the current
translation unit by default.

control-area OPERAND -

 ⎧S=srcname ⎫
 o o
IN [•][E=VM•]⎨ ⎧[qua•][PROC=]function ⎫⎬
 o[S=srcname•]⎨BLK='[f-]n[:b]' ⎬o
 ⎩ ⎩([PROC=function•]src-ref:src-ref) ⎭⎭

- -

• If the period is in leading position it denotes a prequalification which must have been
defined with a preceding %QUALIFY command. Consecutive qualifications must be
separated by a period. In addition, there must be a period between the final qualifi-
cation and the following operand part.

E=VM
As control-area can only be in the virtual memory of the loaded program, E=VM need
only be specified if a dump file has been declared as the current base qualification
(see %BASE command).

S=srcname
Specified only if control-area is not to be located in the current translation unit or if a
defined area restriction is no longer to apply.
If control-area ends with an S qualification, it includes the entire specified translation
unit.
The translation unit specified using srcname must be loaded at the time at which the
%CONTROLn command is issued or at which the subcommand which contains the
%CONTROLn command is processed.

[qua•][PROC=]function
Specified if control-area is not to be located in the current function or if a previously
valid control-area definition is to be overwritten.
In the case of functions from C programs, function is the function name declared in
the source program, but without parentheses or the signature.
You must specify functions from C++ programs in the notation n'...' or t'...',
depending on the type concerned. If the function is defined in a namespace or a
class, the namespace or class qualification is prepended to the function name.
The void signature may no longer be written. In this case, as in C++, you only enter
the two parentheses after the function name.

AID commands %CONTROLn

U6148-J-Z125-8-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

The following syntax results for function:

- -

 ⎧n'function([signature])' ⎫
[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_template<arg[,...]>([signature])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute an
exception; these functions are identified only by the function name even when
debugging within C++ programs (see page 58).

Syntax for virtual functions:

p->n'function([signature])'

p is a pointer variable that points to the class object containing the desired member
function. If p cannot be accessed from the current interrupt point, it must be
qualified in accordance with its scope. If the interrupt point is located in the virtual
function itself, you can reference the prolog address of the current function by using
the this pointer instead of p. (see the description of this on page 64 and the
section “Virtual functions” on page 73).

If you want to specify a function addressed via a pointer to member as the program
area, you can use one of the following two methods:

You designate the class object by name and enter •* as the dereferencing operator
as follows:

- -

[qua•]object•*[object•][class::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

- -

[qua•]pointer->*[object•][class::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.

%CONTROLn AID commands

134 U6148-J-Z125-8-76

The name of the pointer to function member must be entered on the right of the
dereferencing operator. This may need to be preceded by the object containing the
definition of the pointer to function member and the class qualification needed for
unique addressing within the object if the pointer to member cannot be reached
from the interrupt point by some other means. More details on working with a
pointer to function member can be found on page 79.

qua
If the function is defined in a local class, you have to specify a PROC qualifi-
cation for the superordinate function containing the definition of the local class,
before the name of the required function. For functions defined in an inner block
of the superordinate function, you append to the PROC qualification one or
possibly several BLK qualifications, each separated by a period, to describe the
path to the local class (see page 60).

Syntax for qua:

- -

PROC=top-level_fct•[BLK='[f-]n[:b]'•[...]]

- -

Accessing functions defined in local classes of inner blocks is only supported
by programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
control-area is defined by means of a BLK qualification and contains the entire spec-
ified block. The name for a block is constructed using the line number (n) and pos-
sibly a FILE number (f) and relative block number (b).

i The BLK qualification cannot be used in combination with the criterion
%PROC.

([PROC=function•]src-ref : src-ref)
With source references you can define control-area by specifying a start and an end
address. Both must lie within the same translation unit such that:
start address ≤ end address.
Note that ascending source references are only assigned ascending addresses
within a function block. If the condition start address ≤ end address is not satisfied,
AID rejects the command with a corresponding error message.

If control-area is to contain only one statement, the start and end addresses must be
identical.

AID commands %CONTROLn

U6148-J-Z125-8-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

PROC=function•
You only have to specify the PROC qualification if the specified source refer-
ences are not unique in the translation unit. This is the case if the source refer-
ences are in a function resulting from instantiation of a function template or if
the function containing the source references is defined in a class template and
at least two instances exist for the template (see above and page 108).

src-ref
is specified with S'[f-]n[:a]' and identifies the address of an executable
statement, where n is the line number, f is the FILE number and a is the relative
statement number within the line (if >1).

subcmd is processed whenever a statement that satisfies the criterion is awaiting execution
in the control-area. subcmd is processed before execution of the criterion statement.
If the subcmd operand is not specified, AID inserts a <%STOP>.

For a complete description of subcmd see the “Subcommand” chapter in the AID Core
Manual [1].

subcmd-OPERAND -

 ⎧AID-command ⎫
<[subcmdname:] [(condition):] [⎨ ⎬ {;...}]>
 ⎩BS2000-command⎭

- -

A subcommand may contain a name, a condition and a command part. Every subcommand
has its own execution counter. The command portion can consist of an individual command
or a command sequence; it may contain AID commands, BS2000 commands and
comments.

If the subcommand consists of a name or a condition, but the command part is missing, AID
merely increments the execution counter when a statement of type criterion has been
reached.

In addition to the commands which are not permitted in any subcommand, the subcmd of a
%CONTROLn must not contain the AID commands %CONTROLn, %INSERT or %ON.

The commands in subcmd are executed consecutively, after which the program is continued.
The commands for runtime control also immediately change the program state when they
are part of a subcommand. They abort subcmd and start the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). In practice, they are only useful as the last

subcmd

%CONTROLn AID commands

136 U6148-J-Z125-8-76

command in subcmd, since any subsequent commands in subcmd will not be executed.
Likewise, deletion of the current subcommand via %REMOVE is only expedient as the last
command in subcmd.

i Address operands in subcommands are not automatically supplemented on input
with the qualifications that correspond to the current interrupt point. If a statement
of type criterion occurs in the subsequent debugging run, and AID interrupts the
program to process subcmd, only the data and functions that are visible at the
address of the statement that caused the interrupt can be addressed without quali-
fication with AID commands from subcmd.

Examples

1. %control1 %call, %proc in (s'123':s'250') <%display countr; %stop>
%c1 %call,%proc in (s'123':s'250') <%d countr;%stop>

These two AID commands differ only in their notation.
The first example is written out in full and contains varying numbers of blanks in permis-
sible places; the second is abbreviated.

The %CONTROL1 command applies for the criteria %CALL and %PROC and is
effective between statement lines 123 through 250.

If a statement matching the criteria %CALL or %PROC occurs during program
execution in the specified area, the %DISPLAY command from subcmd is executed for
the count variable. Program execution is then interrupted by %STOP, and AID or
BS2000 commands can be entered.

2. %control1 %call <%display 'call'; %stop>

Before every function call, AID executes the %DISPLAY command from subcmd and
then interrupts the program as a result of the %STOP command.

3. %control2 %goto <%sdump %nest p=max; %remove %c1; %stop>

Before a goto, break or continue statement is executed, AID outputs the call hierarchy.
Since p=max is specified, it is written to the system file SYSLST. AID then executes the
%REMOVE command, which deletes the declarations of %CONTROL1. The program
is stopped (%STOP).

4. %c3 %proc in nread

The %C3 command causes AID to interrupt the program before the first or last
statement of the function nread is executed.

5. %c4 %assgn <(z1 le 10): %d tab[0])>

The %C4 command causes AID to output the first element of the array tab before
every assignment statement, but only if z1 evaluates to less than or equal to 10.

AID commands %CONTROLn

U6148-J-Z125-8-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

6. Exception handling

In the program EXMEM.C shown below, an attempt is made to allocate memory for two
pointers p and q. The size of the requested memory is such that the allocation triggers
the exception handling.

C++ program EXMEM.C
==
SRC
LIN
 1 #include <iostream.h>
 2 #include <cstdlib>
 3 #include <new>
 4
 5 void main()
 6 {
 7 char* p;
 8 try
 9 {
 10 p = new char[0x1000000];
 11 }
 12 catch(bad_alloc)
 13 {
 14 cerr << "No more memory!\n";
 15 return;
 16 }
 17 char *q;
 18 try
 19 {
 20 q = new char[0x10000000];
 21 }
 22 catch(bad_alloc)
 23 {
 24 cerr << "No memory for second pointer!\n";
 25 delete[] p;
 26 try
 27 {
 28 q = new char[0x10000000];
 29 }
 30 catch(bad_alloc)
 31 {
 32 cerr << "No more memory!\n";
 33 return;
 34 }
 35 }
 36 }

%CONTROLn AID commands

138 U6148-J-Z125-8-76

Trace log:

tDDD?
3 /LOAD-PROG *MOD(MYLIB,EXMEM,RUN-MODE=ADVANCED,PROGRAM-MODE=ANY), 3
3 TEST-OPTIONS=AID 3
3 % BLS0523 ELEMENT 'EXMEM', VERSION '@' FROM LIBRARY '$TEST.MYLIB' 3
3 IN PROCESS 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$$EXMEM$', VERSION ' ' OF '1999-01-07 3
3 10:27:02' LOADED 3
3 /%c1 %eh in s=n'exmem.c' <%t 1 r %stmt> 3
3 /%r 3
3 10 EXT.PROC START , BLOCK START, , BLOCK START, 3
3 ASSIGN 3
3 20 BLOCK END, , BLOCK START, ASSIGN 3
3 24 , BLOCK START, CALL 3
3 No memory for second pointer! 3
3 28 , BLOCK START, ASSIGN 3
3 32 , BLOCK START, CALL 3
3 No more memory! 3
3 % CCM0998 CPU TIME USED: 0.1531 SECONDS 3

Immediately after the program is loaded, a %CONTROL1 command is input to log the
exception handling process. The program is then started with %RESUME.
The first statements of the try and catch blocks are each listed in the output in the
order in which they are executed by the program.

AID commands %DISASSEMBLE

U6148-J-Z125-8-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%DISASSEMBLE

%DISASSEMBLE enables memory contents to be "retranslated" into symbolic Assembler
notation and displayed accordingly. Output is via SYSOUT, SYSLST, or into a cataloged file.

– The output-quantity operand defines the amount of memory contents that are to be
disassembled and output.

– The start operand defines the address where AID is to begin disassembling.

DDD
 Command Operand
DDD

⎧ %DISASSEMBLE ⎫
⎨ ⎬ [output-quantity] [FROM start]
⎩ %DA ⎭

DDD

For memory contents which cannot be interpreted as an instruction, an output line is
generated which contains the hexadecimal representation of the memory contents and the
message INVALID OPCODE. The search for a valid operation code then proceeds in steps
of 2 bytes.

%DISASSEMBLE without a start operand permits the user to continue a previously issued
%DISASSEMBLE command until the test object is switched or a new operand value is
defined by means of a BS2000 or AID command (LOAD-EXECUTABLE-PROGRAM,
START-EXECUTABLE-PROGRAM, %BASE), or a fork() or exec() call. AID continues
disassembly at the memory address following the address last processed by the previous
%DISASSEMBLE command. If output-quantity is not specified either, AID generates the
same amount of output lines as declared before.

If the user has not entered a %DISASSEMBLE command during a test session or has
changed the test object and does not specify current values for one or both operands in the
%DISASSEMBLE command, AID works with the default values 10 for output-quantity and
V’0’ for start. The default value V’0’ for start cannot be used for C/C++ programs as these
programs are loaded into the upper memory address space. You therefore have to specify
an explicit value for start with the first %DISASSEMBLE command.

The %OUT command can be used to control how processed memory information is to be
represented and whether it is to be output to SYSOUT, SYSLST or a cataloged file. The
format of the output lines is explained after the description of the start operand.

The %DISASSEMBLE command does not alter the program state.

%DISASSEMBLE AID commands

140 U6148-J-Z125-8-76

Specifies the amount of the memory contents that are to be disassembled and output. If you
don‘t specify output-quantity, AID inserts the default value 10 in the first %DISASSEMBLE
after loading the program.

For each further %DISASSEMBLE command the last specified output-quantity is used.

output-quantity-OPERAND -

- -

number

Specifies, how many Assembler instructions are to be disassembled and output.

is an integer with the value:
1 ≤ number ≤ 231-1

length

Specifies the size of the memory content that is to be interpreted and output within
a single, prompted %DISASSEMBLE command.

is a hexadecimal number #’f..f’ with the value:
1 ≤ length ≤ 231-1

ALL Specifies that the Assembler instructions are to be disassembled and output until
the end of the CSECT, in which the start value is located. If start is not specified, the
current %DA position determines the CSECT.

If the start value is not located within a CSECT, the command is rejected with an
error message.

Defines the address at which disassembly of memory contents into Assembler instructions
is to begin. If the start value is not specified, AID will assume the default value V’0’ for the
first %DISASSEMBLE command after a program is loaded and will issue an error message
if the program was not loaded at the start address V’0’.

output-quantity

start

number
length
ALL

AID commands %DISASSEMBLE

U6148-J-Z125-8-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

On every subsequent %DISASSEMBLE, AID continues after the Assembler instruction last
disassembled.

start-OPERAND -

 ⎧ function[->] ⎫
 o L'label' o
FROM [•][qua•] ⎨ ⎬
 o S'[f-]n[:a]' o
 ⎩ compl-memref ⎭

- -

• If the period is in a leading position it denotes a prequalification, which must have
been defined by a previous %QUALIFY command. Consecutive qualifications must
be delimited by a period. In addition, there must be a period between the final quali-
fication and the following operand part.

qua One or more qualifications may be specified here to address a function, label or
source reference that cannot be reached from the current interrupt point by other
means.

E={VM | Dn}
Specified only if the current base qualification (see %BASE) is not to apply for
a function, label or source reference.

S=srcname
Specified only if a function, label or a source reference is not located in the
current translation unit (see the chapter “Addressing in C and C++ programs”
on page 21).

:: You specify the two colons for the global namespace if the name of a
namespace, global class or function is hidden by a definition with the same
name at the interrupt point. Only an E or S qualification may precede the two
colons.

namespace::
Specified if you wish to access a function which is defined in a namespace that
has not been made known with a using directive before the interrupt point, if
the function has not been registered with a using declaration or there is
ambiguity at the interrupt point.
Only an E or S qualification may precede a namespace qualification (see the
section “Qualifications” on page 57).

%DISASSEMBLE AID commands

142 U6148-J-Z125-8-76

class::
Specified if the required function is defined in a class and the interrupt point
does not belong to the function name scope. If class is an instance of a class
template, you have to use the notation t‘k_template<arg[,...]>‘ for class (see
the section “Qualifications” on page 57).

BLK=’[f-]n[:b]’
You must specify a BLK qualification if you want to designate a function from a
local class, which is defined in the specified block, in a subsequent PROC quali-
fication (see below, PROC=function).
The block name is formed from the line number (n), a possible FILE number (f)
and relative block number (b).

PROC=function
Specified only if you want to reference a label from a function other than the
current one (see the chapter “Addressing in C and C++ programs” on page 21)
or if disassembly is to start with a source reference which is in a function
template instance or assigned to a function which is defined in a class template
instance (see the section “Templates” on page 94) and at least two instances
exist.
In the case of functions from C programs, function is the function name declared
in the source program, but without the parentheses or signature.

Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the namespace or class qualification is prepended to the function name.
The void signature may no longer be used. In this case, you only input the two
parentheses after the function name, as is also possible in C++. The following
syntax results (f_template and signature are abbreviated below for space
reasons):

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩ t'f_templ<arg[,...]>([sign])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several

AID commands %DISASSEMBLE

U6148-J-Z125-8-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

BLK qualifications (see page 60) between the two PROC qualifications.
Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

function[->]
Places start at the first executable statement in a function or at the first instruction
in a library function.
function is the name of a function as declared in the source program or the name of
a library function (see PROC=function above).

Syntax for virtual functions:

p->n'function([signature])'

p is a pointer variable that points to the class object containing the desired member
function. If p cannot be accessed from the current interrupt point, it must be
qualified in accordance with its scope. If the interrupt point is located in the virtual
function itself, you can reference the first executable statement of the current
function by using the this pointer instead of p.

If you want to specify a function addressed via a pointer to member as start, you can
use one of the following two methods:

You designate the class object by name and enter •* as the dereferencing operator
as follows:

- -

[qua•]object•*[object•][class::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

- -

[qua•]pointer->*[object•][class::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.
The name of the pointer to function member must be entered on the right of the
dereferencing operator. This may need to be preceded by the object containing the

%DISASSEMBLE AID commands

144 U6148-J-Z125-8-76

definition of the pointer to function member and the class qualification needed for
unique addressing within the object if the pointer to member cannot be reached
from the interrupt point by some other means.

Disassembly begins at the first executable instruction of the function currently
associated with the pointer to function member.

If you want to add an offset to the address designated by the dereferenced pointer
to function member in order to start the disassembly at a computed address
somewhere in the middle of the function, note that you cannot directly append the
pointer operator to one of the syntaxes above. Instead, you would have to first
specify a type modification, i.e. %al4, to indicate that the address designated by the
dereferenced pointer to function member should serve as a starting point from
which the offset is to be calculated. This results in the following syntax:

dereferenced-pointer-to-function-member %al4->•offset

Note, however, that the address calculation does not begin with the address of the
first executable instruction in this case, but with the prolog address of the function.

You will find more details on working with a pointer to function member on page 79.

If you use start to designate a library function, you must terminate function with the
pointer operator, since there is no LSD for the library functions. Disassembly begins
in these cases at the first instruction of the function prolog.

L’label’
Places start at the first executable statement after a label.
label is the name of a label declared in the source program. In this command you
can also specify label without L’...’, since there can be no confusion with a data
name.

S’[f-]n[:a]’
Is a source reference and designates an executable statement. The source
reference is constructed from the line number (n) and, if present, the FILE number
(f) and the relative statement number within the line (a).
If the source reference is in a function created from a function template via
instantiation or the function containing the source reference is defined in a class
template instance, you have to add an appropriate PROC qualification before the
source reference in cases of ambiguity.

AID commands %DISASSEMBLE

U6148-J-Z125-8-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

compl-memref
This should be the start address of a machine instruction, otherwise the
disassembly obtained will be meaningless.
compl-memref may contain the following operations (see the “Keywords” section in
the AID Core Manual [1]):
– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L=(expression), %Ln)
– address selection (%@(...))

If a compl-memref begins with a source reference, a label or a function name, the
pointer operator must come next. Note, however, that the pointer takes you out of
the symbolic level. If you put a pointer name after a function name, what you
reference is not the first executable statement in the function but the first instruction
in the prolog generated for the function by the compiler. If you use a label in a
complex memory reference, you must always place it in L’...’.
Source references, labels and function names can be used without the pointer
operator wherever hexadecimal numbers are allowed.

A type modification makes sense only if the contents of a variable can be used as
an address or if the address is taken from a register.

Example: %3g.2%al2->
The last two bytes from AID register %3G are used as the address.

Output of the %DISASSEMBLE log

By default, the %DISASSEMBLE log is output with additional information to SYSOUT
(T=MAX). With %OUT the user can select the output media and specify whether or not
additional information is to be output by AID.

AID does not take into account XMAX and XFLAT modes for outputting the %DISAS-
SEMBLE log. Instead, it generates the default value (T=MAX).

The following is contained in a %DISASSEMBLE output line if the default value T=MAX is
set:

– CSECT-relative memory address

– memory contents retranslated into symbolic Assembler notation, displacements being
represented as hexadecimal numbers (as opposed to Assembler format)

– for memory contents which do not begin with a valid operation code: Assembler
statement DC in hexadecimal format and with a length of 2 bytes, followed by the note
INVALID OPCODE

– hexadecimal representation of the memory contents (machine code).

%DISASSEMBLE AID commands

146 U6148-J-Z125-8-76

Example of line format with T=MAX

Beginning with the first statement of the function facul (see the description of the
%SDUMP command, Example 4 on page 248), eight machine instructions are to be
disassembled.

tDDD?
3 /%disassemble 8 from facul 3
3 EXAMP$O&@ 3
3 EXAMP$O*+20A TM 0(R9),X'80' 91 80 9000 3
3 EXAMP$O*+20E BC B'1000',3A(R0,R10) 47 80 A03A 3
3 EXAMP$O*+212 L R1,8(R0,R8) 58 10 8008 3
3 EXAMP$O*+216 L R15,4C(R0,R13) 58 F0 D04C 3
3 EXAMP$O*+21A ST R13,18(R0,R15) 50 D0 F018 3
3 EXAMP$O*+21E L R13,4(R0,R13) 58 D0 D004 3
3 EXAMP$O*+222 ST R13,C(R0,R15) 50 D0 F00C 3
3 EXAMP$O*+226 L R14,C(R0,R13) 58 E0 D00C 3

Example of line format with T=MIN

The %OUT operand value T=MIN causes AID to create shortened output lines in which
the CSECT-relative address is replaced by the virtual address and the hexadecimal
representation of the memory contents is omitted.

tDDD?
3 /%out %da t=min 3
3 /%disassemble 8 from facul 3
3 0100020A TM 0(R9),X'80' 3
3 0100020E BC B'1000',3A(R0,R10) 3
3 01000212 L R1,8(R0,R8) 3
3 01000216 L R15,4C(R0,R13) 3
3 0100021A ST R13,18(R0,R15) 3
3 0100021E L R13,4(R0,R13) 3
3 01000222 ST R13,C(R0,R15) 3
3 01000226 L R14,C(R0,R13) 3
3 3

AID commands %DISASSEMBLE

U6148-J-Z125-8-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Examples

1. %disassemble from s=n'examp.c'.::facul

This command causes ten instructions (default value) to be disassembled, beginning at
the address of the first statement in the function facul, which is contained in the trans-
lation unit EXAMP.C.

2. %da 2 from e=d1.s'27'

In the dump file with the link name D1, two instructions in the program code generated
for the first statement in line 27 are to be disassembled.

3. %da from s'27:2'

Since no value was specified for ausgabe-menge, AID either sets the default value of 10
- if this is the first %DISASSEMBLE for this program - or assumes the value from the
previous %DISASSEMBLE. The disassembling begins with the first instruction
generated for the second statement in line 27.

4. %disassemble from l'output'->.4

Sets the starting point for disassembly at a position 4 bytes from the first instruction
after the label output.

5. %da #'18' from facul

24 bytes are disassembled at the beginning of the facul function, that is, the instruc-
tions to the addresses 0100020A to 0100021E. The instruction to the address 0100022
is no longer displayed as it is located outside of the range.

%DISPLAY AID commands

148 U6148-J-Z125-8-76

%DISPLAY

The %DISPLAY command is used to output memory contents, addresses, lengths, system
information and AID literals and to control feed to SYSLST. AID processes data in accor-
dance with their definition in the source program, unless you select another type of output
by means of type modification.
You can use %DISPLAY to call up a list of all overloaded functions that have the same
names in the current scope or the scope you explicitly specify. You can also use the
%DISPLAY command to list all instances of a template
Output is via SYSOUT, SYSLST or to a cataloged file.

– By means of the data operand you specify namespaces, templates, classes, class
objects, data, their addresses and lengths, statements, registers, execution counters of
subcommands, and system information. Here you also define AID literals or you control
feed to SYSLST.

– By means of the medium-a-quantity operand you specify the output medium AID uses
and whether or not additional information is to be output. This operand disables a decla-
ration made via the %OUT command, but only for the current %DISPLAY command.

DDD
Command Operand
DDD

%D[ISPLAY] data {,...} [medium-a-quantity][,...]

DDD

If you omit the qualification for data, you address the data of the current block (for nested
blocks, also the data of the outer blocks), the data of the current function (unless it was
defined after the interrupt point), and the global data of the associated translation unit.
In the case of identical names within the current call hierarchy, AID outputs the data that
would also have been addressed by the program at the interrupt point.

If you do specify a qualification, you can access data in a dump file or in another loaded
translation unit or function or in another block, provided the scope of the addressed data
lies in the current call hierarchy. Outside the current call hierarchy you can address only
data of storage class static or extern.

If you need to address an overloaded function, you can enter
%DISPLAY [qua]function
to display an overview of all functions with the specified name that were found by AID in the
current or explicitly specified scope (see the section “Overloaded functions” on page 110).
The functions are listed in standard C++ notation together with the signature and, if present,
the prepended block numbers and class names.

AID commands %DISPLAY

U6148-J-Z125-8-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

You can also use
%DISPLAY [qua] template
to output an overview of all instances of a class or function template which are visible at the
current interrupt point. AID searches for the template declarations starting from the interrupt
point according to the scope rules for data or in the program section designated with qua
(see page 106). If only a single instance was created for the template, you can have it listed
with
%DISPLAY [qua] { t'k_template'|t'f_template([signature])' }

AID as of version 3.4B10 supports also the output of data in different EBCDIC character
sets and ASCII character sets. As BS2000 terminals only support selected EBCDIC
character sets directly, the following character sets must be distinguished:

● Character set of the data: Character set, in which the data is available or interpreted

● Character set of the output: Character set, with which the data is displayed

AID interprets the data using the character set that is specified with the %DISPLAY
command. If no character set is specified there, the character set specified by the CCS
operand of the %AID command is used.

First of all you must specify the character set of the output with the MODIFY-TERMINAL-
OPTIONS command. It must be an EBCDIC character set that is supported by the terminal.
UTFE is not allowed. Furthermore the character set of the output must be in the same group
as the character set of the data. If, for example, the character set of the data is ISO88592,
first of all specify the corresponding character set of the output with /MOD-TERM-OPT
CODE=EDF042 (see the XHCS manual).

%DISPLAY <data-start> { %C|%X }[Lddd] ['<coded-character-set>']

If you prompt the %DISPLAY command with the %C or %X storage type, AID outputs the
characters in accordance with the explicitly specified character set <coded-character-
set>, or in accordance with the current character set CCS if '<coded-character-set>'
is not specified.%C and %X define different output layouts.

%DISPLAY <char-variable> ['<coded-character-set>']

If char variables are to be output, AID outputs them in accordance with the explicitly
specified character set <coded-character-set>, or in accordance with the current
character set CCS. The output layout differs from the layouts that are determined by %C or
%X.

To display the current character set CCS use the following AID command:
%SHOW %AID

%DISPLAY AID commands

150 U6148-J-Z125-8-76

To modify the current character set use the following AID command:
%AID CCS = {<coded-character-set>|*USRDEF}

If the medium-a-quantity operand is not specified, AID outputs the data in accordance with
the declarations in the %OUT command or, by default, to SYSOUT, together with additional
information (see the AID Core Manual, chapter "Medium-a-quantity operand" [1]).

Immediately after loading the program, you can access only global and static data. AID
needs the appropriate qualifications to access them.

In addition to the operand values described here, you can also use the operand values
described for debugging on machine code level (see [2]).

This command can be used both in the loaded program and in a dump file.

%DISPLAY does not alter the program state.

This operand defines the information AID is to output. You may output the contents, address
and length of variables, arrays, array elements, structures, unions, namespaces and their
components, class objects and their components, and the addresses of statements and
functions. The contents of registers and execution counters as well as the system infor-
mation relevant for your program can be addressed via keywords. AID literals can be
defined to improve the readability of debugging logs, and feed to SYSLST can be controlled
for the same purpose.

AID processes data in accordance with the definitions in the source program, provided that
you have not defined another type of output using a type modification (see also the section
dealing with type modification in the AID Core Manual [1]).

If you enter more than one data operand in a %DISPLAY command, you may switch from
one operand to another between the symbolic entries described here and the non-symbolic
entries described in the manual for debugging on machine code level (see [2]). Symbolic
and machine code specifications can also be combined within a complex memory
reference.

i When using overloaded operators, note that AID does not emulate this process, but
always uses standard operators.

If for data a name is specified which is not contained in the LSD records, AID issues an error
message. The other data of the same command will be processed in the normal way.

data

AID commands %DISPLAY

U6148-J-Z125-8-76 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

data-OPERAND -

⎧ ⎧ namespace[::...] ⎫ ⎫
o o *this o o
o o o o
o o⎧[namespace::[...]]class[::] ⎫ o o
o o⎨this-> ⎬[class[:: ...]] o o
o o⎩object[•] ⎭ o o
o o o o
o o ⎧[namespace::[...]]⎫ ⎧dataname⎫ o o
o[•][qua•]⎨?⎨this-> ⎬[class::[...]]] ⎨function⎬ ⎬ o
o o ⎩object• ⎭ ⎩object ⎭ o o
o o o o
⎨ oL'label' o ⎬
o oS'[f-]n[:a]' o o
o okeyword o o
o ocompl-memref o o
o o&... o o
o ⎩sizeof(...) ⎭ o
o o
o %@(...) o
o %L(...) o
o %L=(expression) o
o literal o
⎩ feed-control ⎭

- -

• If the period is in leading position it denotes a prequalification, which must have been
defined with a preceding %QUALIFY command. Consecutive qualifications must be
separated by a period. In addition, there must be a period between the final qualifi-
cation and the following operand part.

qua Specify one or more qualifications only if the interrupt point is not located within the
current data scope or if data is not visible at the interrupt point. Specify only the
qualifications necessary for accessing the memory object uniquely.

E={VM | Dn}
Specified only if the current base qualification (see %BASE) is not to apply for
a data name, statement name, source reference or keyword.

S=srcname
Specified only if you are accessing a data name, a class or a class object, a
statement name or a source reference which is not located in the current trans-
lation unit (see the chapter “Addressing in C and C++ programs” on page 21).

:: Use the two prepended colons to address a global data item that is locally
hidden at the interrupt point by a definition of the same name. You must also
place two colons before the name of a global data item or a function if either the
data or the function is not in the call hierarchy or if its definition only occurs after
the interrupt point. In contrast to the other qualifications, no period must be
entered between the two colons and the operands which follow.

%DISPLAY AID commands

152 U6148-J-Z125-8-76

PROC=function
Specified only if you want to access a data name which is defined in the current
function, but is hidden at the interrupt point by a definition with the same name.
You also specify a PROC qualification when you want to address a label or a
data name declared as static which is defined in a function outside the current
call hierarchy (see the chapter “Addressing in C and C++ programs” on
page 21). If you specify a source reference that is located in a function template
instance or assigned to a function defined in a class template instance, (see the
section “Templates” on page 94), you also have to prepend the appropriate
PROC qualification if ambiguity occurs.
In the case of functions from C programs, function is the function name declared
in the source program, but without the parentheses or signature.
Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the namespace or class qualification is prepended to the function name.
The void signature may not be written, you enter just the two parentheses in
this case as is also possible in C++. The following syntax results (f_template and
signature are abbreviated for space reasons):

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_templ<arg[,...]>([sign])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several
BLK qualifications (see page 60) between the two PROC qualifications.
Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
Specified only when you want to address a data name which is assigned to a
block within the current call hierarchy and is hidden at the interrupt point by a
definition with the same name, or when you want to want to access a data name
declared as static and assigned to a block outside the current call hierarchy (see
the chapter “Addressing in C and C++ programs” on page 21).

AID commands %DISPLAY

U6148-J-Z125-8-76 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

You must also specify a BLK qualification if you want to designate a function
from a local class, which is defined in the specified block, in a subsequent
PROC qualification (see PROC=function above).

NESTLEV= level-number

level-number has to be followed by dataname.
The syntax indicates that the %DISPLAY command is to output the data item
dataname defined at the level level-number of the current call hierarchy.

namespace
Name of a namespace declared in the source program.

If the data operand ends with the name of a namespace, AID lists all data and
functions defined in it. The functions are listed in standard C++ notation and the
start address of the associated prolog is output. With nested namespaces, the
contents of the inner levels are also output. If a namespace contains a using
directive to a further namespace, only the name of this is listed.

You only specify the namespace qualification in the addressing path to classes,
data or functions defined in the namespace if the required namespace component
is not visible at the interrupt point.

Only the E or S qualification or the two colons (::) for the global namespace are
allowed before the namespace qualification.
You will find more information on namespaces in the section “Namespaces” on
page 85.

{ class | this-> | object }
Name of a class, the this pointer, or the name of a class object, as declared in the
source program.
You specify class names, the this pointer with the appended pointer operator, and
the names of class objects in order to describe the address path to data members
assigned to classes (see the section “Classes” on page 63).

If the current interrupt point is located in a dynamic member function, you can
address the class data according to the scope rules known from C++.

If an object is in the current call hierarchy, you can access the dynamic data of that
object independent of the interrupt point by means of the object name followed by
a period.

Static data members can be accessed from any part of the program via the
associated class names followed by the two colons. In the case of nested classes,
the path to the data item includes all the class names from the outermost to the
innermost level, separated by two colons each. The outermost class name requires

level-number A level number in the current call hierarchy

%DISPLAY AID commands

154 U6148-J-Z125-8-76

qualification appropriate to the scope. If the program is interrupted within a member
function of the class, the class scope rules apply for accessing static data members,
i.e. if the data is not hidden by a definition with the same name, it can be accessed
without qualification.

If the class is a class template instance, you have to use the following notation:
t'k_template<arg[,...]>'. If only one instance of the template exists, only
t'k_template'is required.

If the data operand consists of one or more class names, and the interrupt point is
outside the class system, the static data members and all non-virtual member
functions are listed. In the case of data, the current content is output. Member
functions are listed in standard C++ notation and the start address of the associated
prolog is output. For derived classes, AID also displays the base classes. Nested
classes are shown together with the contents of the inner levels.
However, if the interrupt point is located within a member function of the class, AID
additionally lists the dynamic data members and the virtual functions. The prolog
address of the currently valid member function is displayed with the name of the
virtual function. You can get the same output with %DISPLAY *this.

If the data operand ends with an object name, AID also outputs the complete object,
i.e. with the dynamic data members and complete information on the virtual
functions. If required to uniquely address a data item or a base class function,
append the name of the required base class to the object name, separated by a
period. The scope rules known from C++ then apply within the class system.

object requires a qualification appropriate to its scope. Only a base qualification is
meaningful before this.
If the data operand ends with this->, AID displays 4 bytes as of the starting
address of the current object in dump format (hexadecimal and character).

 dataname
This is the name of a data item declared in the source program. dataname is
specified as in the source program.

You can reference data as in C/C++, but with the following exceptions:
For an array name without a subscript, AID displays all array elements.
Individual array elements can be addressed only via subscripts, not via pointers.
Subscript ranges can also be displayed.
If %AID C=YES is set (see page 115), AID combines the array elements of a char
array that can be addressed via the subscript on the extreme right into C strings and
displays the contents of the array in the form of C string literals.
For more information on working with arrays, see also the section “Subscript nota-
tion” on page 30.

AID commands %DISPLAY

U6148-J-Z125-8-76 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

For variables of type long double, AID evaluates only the first 8 bytes.
Variables of type char are displayed in output type %C. If desired, you can also
display the appropriate numeric value by using a type modification (%A or %F; see
page 29 for details). The data types unsigned char and signed char, by contrast,
are treated as integer variables.
Arrays that are passed as parameters to a function and pointers are displayed as
hexadecimal numbers.

If dataname designates a pointer to member, the name of the class member currently
referenced by the pointer to member appears in the output. AID shows the contents
of the current data member or the start address of the current member function if
you specify the dereferenced pointer to member in the %DISPLAY command. More
information on dereferencing a pointer to member can be found on page 76.

dataname can be specified as follows. The formats can also be combined (see the
section “Data names” on page 29).

Subscript notation: dataname [subscript] {...}
Pointer notation: dataname1 -> dataname2
Structure qualification: superordinate dataname• {...} dataname
Dereferencing: [(]*{...} dataname[)]
Pointer to member dataname1•*datanname2 or
 dereferencing: dataname1->*datanname2

function
The name of a function as declared in the source program or the name of a library
function (see PROC=function on page 152 and the chapter “Addressing in C and
C++ programs” on page 21). Without the appended pointer operator, AID outputs
the start address of the function prolog; with the pointer operator, the first 4 bytes
as of this address are output.

The following syntax is used to address virtual functions:
p->n'function(signature)'

p is a pointer variable that points to the class object containing the desired member
function. If p cannot be accessed from the current interrupt point, it must be
qualified in accordance with its scope. If the interrupt point is located in the virtual
function itself, you can reference the prolog address of the current function by using
the this pointer instead of p. (see the description of this on page 64 and the
section “Virtual functions” on page 73).
The instruction code as of the start address of the prolog can be accessed with
p->n‘function([signature])->.

%DISPLAY AID commands

156 U6148-J-Z125-8-76

If you want to display the start address of the prolog of a function addressed via a
pointer to member, you can dereference the pointer to member by using one of the
methods below:

You designate the class object by name and enter •* as the dereferencing operator
as follows:

- -

[qua•]object•*[object•][cass::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

- -

[qua•]pointer->*[object•][cass::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.

The name of the pointer to function member must be entered on the right of the
dereferencing operator. This may need to be preceded by the object containing the
definition of the pointer to function member and the class qualification needed for
unique addressing within the object if the pointer to member cannot be reached
from the interrupt point by some other means.

If you want to display the instruction code starting with the prolog address of the
function, note that you cannot directly append the pointer operator to one of the
syntaxes above. Instead, you would have to first specify a type modification, i.e.
%al4, to switch to machine code level. This can be achieved with the following
syntax:

%DISPLAY dereferenced-pointer-to-function-member %al4->

More details on working with a pointer to function member can be found on page 79.

L’label’
Designates the address of the first executable statement after a label.
label is the name of a label declared in the source program.

AID commands %DISPLAY

U6148-J-Z125-8-76 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

S’[f-]n[:a]’
Source reference which designates an executable statement. It comprises the line
number (n) and possibly the FILE number (f) plus the relative statement number
within the line (a). If the source reference is located in a function which was created
from a function template via instantiation or the function containing the source
reference is defined in a class template instance, you have to prepend the
appropriate PROC qualification to the source reference if ambiguity occurs.

Without the subsequent pointer operator, AID outputs the address of the command
code generated for the statement. With the subsequent pointer operator, AID
outputs 4 bytes of the command code to this address.

keyword
Here you may specify all the keywords for program registers, AID registers, system
tables and the one for the execution counter or the symbolic localization information
(see the AID Core Manual, "Keywords" section [1]).
keyword can only be preceded by a base qualification.

%n General register, 0 Î n Î 15
%nD|E Floating point register, n = 0,2,4,6
%nQ Floating point register, n = 0,4
%nG AID general register, 0 Î n Î 15
%nGD AID floating point register, n = 0,2,4,6
%MR All 16 general registers in tabular form
%FR All 4 floating point registers with double
 precision edited in tabular form
%PC Program counter
%CC Condition code
%PM Program mask
%AMODE Addressing mode of the test object:
 either 24 or 31. The addressing mode is defined
 when the program is loaded.
%PCB Process control block
%PCBLST List of all process control blocks.
%AUD1 P1 audit table starting with the latest entry:
 only created during system generation.

%SORTEDMAP List of all CSECTs of the user program (sorted
 to names and addresses). Long names are trunca-
 ted.
%MAP [(CTX=context)] List of CSECTs and COMMONs of all contexts of
 the user program or of the context designated by
 the CTX qualification; the names are output in
 full, not abbreviated (for further operands see
 AID Core Manual, section "System information"[1])
%LINK Name of the last dynamically loaded segment
 (see %ON, event %LPOV)

%DISPLAY AID commands

158 U6148-J-Z125-8-76

%HLLOC(memref) Localization information on the symbolic level
 for a memory reference in the executable part
 of the program (high-level location)
%LOC(memref) Localization information on machine code level
 for a memory reference in the executable part of
 the program (low-level location)
%•[subcmdname] Execution counter
%• Execution counter of the currently active
 subcommand

compl-memref
The following operations may occur in a compl-memref (see the chapter on “Complex
memory references” in the AID Core Manual [1]):
– byte offset (•)
– indirect addressing (->)
– type modification (%X, %C, %E, %D, %F, %A)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

If a statement name or a source reference is to be used as a memory reference, it
must be followed by the pointer operator (->). This references the first machine
instruction of the prolog. Without the pointer operator, statement names and source
references can be used wherever hexadecimal numbers are also allowed.

Using the type modification, data may be output in another form (see the section on
type modification in the AID Core Manual [1].).

i Do not confuse the AID output types with the printf conversion specifiers:

 AID output type corresponding printf conversion spec.
 DD
 %C[l-mod] char %c a single character
 %s character string
 %D[l-mod] float %f float, double
 %F[l-mod] signed int %d signed int
 %A[l-mod] unsigned int %u unsigned int
 %X[l-mod] hexadecimal %x, %X hexadecimal

With the length modification you can define the output length yourself, e.g. if you
wish to output only parts of a variable or display a variable using the length of
another variable. With a type or length modification the implicit area limits of an of
an address can be exceeded only if you have used %@(...)-> to switch to machine
code level, where the area embraces the virtual memory occupied by the loaded
program.

AID commands %DISPLAY

U6148-J-Z125-8-76 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

& is the address operator. You can use it to display the start address of a data item, a
class object or a function.

You can also display the relative address of a dynamic data member of a class,
provided you observe the following:

If the interrupt point is located outside the class containing the data member, you
should enter the appropriate class qualification after the address operator, and then
the name of the data item. However, if the interrupt point is located in a dynamic
member function of the class, you will need to enter a base or area qualification (S,
PROC or :: qualification) before the address operator so that AID can access the
class from “outside”, so to speak.

Note that in contrast to the address selector %@(...) (see page 159), the address
operator is purely a “high-level” function and thus cannot be applied on complex
memory references.

For more details on the address operator, see also the section “The address
operator & and the address selector %@(...)” on page 42.

sizeof()
is the length operator. The length of a data item or class is displayed.
To determine the length of a class, you may specify the name of the class itself or
an object of the class as operands. You will receive the number of bytes occupied
by the dynamic data members of the class and by the auxiliary variables generated
by the compiler (if any).
You may specify the name of a namespace here, but only in the path to a
component of the namespace.
Bit-field and register variables are not allowed.

The length operator is described in detail in the section “Length operator sizeof()
and length selector %L(...)” on page 47.

%@(...)
The address selector (see the AID Core Manual, section "Address, type and length
selector" [1]) can be used to output the start address of a data item, a class object,
or a complex memory reference. You can specify a class name only in the path for
the base class of an object of a derived class to display the start address of the
dynamic data members of the base class.
You may specify the name of a namespace here, but only in the path to a
component of the namespace.
The address selector cannot be applied to constants, including labels, source
references and all functions.

%DISPLAY AID commands

160 U6148-J-Z125-8-76

%L(...)
The length selector (see the AID Core Manual, section "Complex memory
references" [1]) can be used to have the length of a data item or a class displayed
(see the section on “Complex memory references” in the AID Core Manual [1]). If
you apply the length selector to a class or a class object, the result corresponds to
that of sizeof() in C++, i.e. you receive the length of the dynamic data member and
of the compiler-generated auxiliary variables, if any.
You can only specify the name of a namespace here in the path to a component of
the namespace.

AID always outputs the length in bytes. For bit-fields, AID outputs the number of
bytes covered by the bit-field.
Example: %l(var1)
The length of var1 is output.

%L=(expression)
You can use the length function to calculate a value.
expression is formed from memory references and arithmetic operators (see the
chapter on “Addressing in AID” in the AID Core Manual [1]).

i AID uses the standard operators for its calculations and does not emulate
operator overloading.

Example: %l=(var1)
If var1 is of type int (type %F), the contents of var1 are output. Otherwise, AID
outputs an error message.

literal
All AID literals described in the chapter on “AID literals” in AID Core Manual [1] may
be specified in a %DISPLAY command:

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal
[{?}]n Integer
#'f...f' Hexadecimal number
[{?}]n.m Fixed point number
[{?}]mantissaE[{?}]exponent Floating-point number

If %AID C=YES is set, you may also specify a C string literal ("x...x"). See also
page 36.

feed-control
For output to SYSLST, print editing can be controlled by the following two keywords,
where:

%NP results in a page feed

AID commands %DISPLAY

U6148-J-Z125-8-76 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%NL[(n)] results in a line feed of n blank lines.
1 ≤ n ≤ 255. The default for n is 1.

Defines the medium or media via which output is to take place, and whether additional infor-
mation is to be output by AID. If this operand is omitted and no declaration has been made
using the %OUT command, AID uses the presetting T = MAX.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

medium-a-quantity is described in detail in the chapter “Medium-a-quantity operand” in the
AID Core Manua [1].

T Terminal output
H Hardcopy output

(includes terminal output and cannot be combined with T)
Fn File output
P Output to SYSLST

medium-a-quantity

MAX Output with additional information

MIN Output without additional information

XMAX In the %DISPLAY command the operand value XMAX is not currently taken
into account, as a result of which the behavior is identical to the default value
MAX.

XFLAT In the %DISPLAY command the operand value XFLAT is currently not taken
into account, as a result of which the behavior is identical to the default value
MAX.

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

%DISPLAY AID commands

162 U6148-J-Z125-8-76

Examples

1. %df d1=dump.test1
%base e=d1
%display s=n'test1.c'.int_var,'dump-content'

Here the contents of a dump are evaluated. Besides the contents of int_var, AID
outputs a header with the name of the dump file.

tDD?
3 ** D1: DUMP.TEST1 ***3
3 int_var = -53 3
3 dump-content 3

2. %display %l=(s'13'-s'12')

AID outputs the length of the machine code sequence generated for the statement in
line 12.

tDD?
3 +52 3

3. %base
%display scanf

%BASE switches back to the AID default work area. AID first outputs two header lines
with the TID and TSN and the source reference showing where the program run was
interrupted. AID then outputs the address of the first instruction of the function scanf
in hexadecimal form.

tDD?
3 *** TID: 00010266 *** TSN: 069R ***3
3 SRC_REF: 6 SOURCE: EXAMP.C PROC: main ********************************3
3 scanf = 01001B94 3

4. %display scanf->

AID outputs 4 bytes of the machine code beginning at the address of the function
scanf. The pointer operator switches to machine code level, causing AID to display an
additional header.

tDDD?
3CURRENT PC: 01000098 CSECT: EXAMP$O&@ *******************************3
3V'01001B94' = IC@PCON + #'00000634' 3
301001B94 (00000634) 58F0FF70 .0~. 3

AID commands %DISPLAY

U6148-J-Z125-8-76 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

5. %display var.4
%display var.(z)

i In the first case AID adds four bytes to the start address of variable var and from
that point outputs four bytes in dump format. In the second case, too, AID per-
forms a byte offset, as z is in parentheses. AID adds the contents of z to the
address of var and, as above, outputs four bytes starting at the address thus
calculated. In C/C++, though, var.(z) and var.z are synonymous, so there
the parentheses around the second operand are redundant. Hence the expres-
sion could refer to structure component z of structure var. In AID, however, the
last component in a structure qualification must never be placed in parentheses.

6.

tDD?
3 /LOAD-PROG *M(MYLIB,EXAMP,...),TEST-OPT = AID 3
3 % BLS0523 ELEMENT 'EXAMP', VERSION '@' FROM LIBRARY 'MYLIB' IN PROCESS 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$$EXAMP$', VERSION ' ' OF '1999-01-07 3
3 11:47:57' LOADED 3
3 /%r 3
3 % IDA0N51 PROGRAM INTERRUPT AT LOCATION '010000BC (EXAMP$O&), (CDUMP), 3
3 EC=58' 3
3 % IDA0N45 DUMP DESIRED? REPLY (Y=USER/AREA DUMP; Y,SYSTEM=SYSTEM DUMP; 3
3 N = NO)? N 3
3 % EXC0077 PROGRAM STILL LOADED AND IN 'COMMAND-MODE'. PROGRAM RUN MAY 3
3 BE CONTINUED WITH /RESUME-PROGRAM 3

Your program has encountered an error. Now you want to know which statement
caused the error. To find out, enter %DISPLAY %HLLOC for the address at which the
program was interrupted by the error. This address is contained in the program counter
(%PC). You can obtain further information with %DISPLAY %LOC.

tDD?
3 /%display %hlloc(%pc->) 3
3 *** TID: 00010266 *** TSN: 069R ***3
3 CURRENT PC: 010000BC CSECT: EXAMP$O&@ ******************************3
3 V'010000BC' = CONTEXT : LOCAL#DEFAULT 3
3 SMOD : EXAMP.C 3
3 BLOCK : *root* 3
3 PROC : main 3
3 SRC-REF : 11 3
3 /%display %loc(%pc->) 3
3 V'010000BC' = CONTEXT:LOCAL#DEFAULT 3
3 LMOD : %UNIT 3
3 SMOD : EXAMP.C 3
3 OMOD : EXAMP$O&@ 3
3 CSECT : EXAMP$O&@ (01000000) + 000000BC (/390) 3

%DISPLAY AID commands

164 U6148-J-Z125-8-76

7. %d abc_arr

The array abc_arr contains 27 elements of type char and is defined as follows:
char abc_arr[27] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";

Since the %DISPLAY command did not specify a subscript, AID outputs the entire
array:

 tDD?
 3 abc_arr(0: 26) 3
 3 (0) |A| (1) |B| (2) |C| (3) |D| (4) |E| (5) |F| (6) |G| 3
 3 (7) |H| (8) |I| (9) |J| (10) |K| (11) |L| (12) |M| (13) |N| 3
 3 (14) |O| (15) |P| (16) |Q| (17) |R| (18) |S| (19) |T| (20) |U| 3
 3 (21) |V| (22) |W| (23) |X| (24) |Y| (25) |Z| (26) |.| 3
 3 3

A detailed example on working with arrays when using AID can be found on page 33

8. %d abc_arr[n]

abc_arr is defined as described in example 7. n contains the value 4. The fifth
element of the array is output:

tDD?
3 abc_arr(4) = E 3

9. The following code fragment shows the definition of a derived class B with base
class A. The class contains two virtual functions: foo1(void) and foo2(void).

C++ program BCL1.C
==
SRC
LIN
 1 class A
 2 {
 3 public:
 4 A() { printf ("A::A called\n"); }
 5 virtual void foo1() { printf("A::foo1 called\n"); }
 6 virtual void foo2() { printf("A::foo2 called\n"); }
 7 } a;
 8
 9 class B : public A
 10 {
 11 int i;
 12 public:
 13 B(int x = 1) : i(x) { printf ("B::B called\n"); }
 14 void foo1() { printf("B::foo1 called\n"); }
 15 void foo2() { printf("B::foo2 called\n"); }
 16 } b;
 ...

AID commands %DISPLAY

U6148-J-Z125-8-76 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%in s'13'; %r
%d this, *this

The %INSERT followed by the %RESUME interrupts program execution in the
constructor for class B at source reference 13. The %DISPLAY command shows the
contents of the this pointer, i.e. the address of the associated object and, by derefer-
encing (*this), the contents of that object.

tDDD?
3 SRC_REF: 13 SOURCE: BCL1.C PROC: B::B(int) ****************************3
3 this = 01001138 3
3 3
3 01 * 3
3 02 A 3
3 03 A() = 01000000 3
3 03 foo1() = 010004C0 3
3 03 foo2() = 010005E0 3
3 02 i = 1 3
3 02 B(int) = 01000360 3
3 02 foo1() = 010004C0 3
3 02 foo2() = 010005E0 3

10. The C program OUTPUT.C outputs a number of simple unstructured data types which
can be defined in C.

 *** SOURCE - ERROR - LISTING ** BS2000 C/C++ COMPILER 03.2E21 DATE:2015-02-27 PAGE: 1
 SOURCENAME:LIB-ELEM(MYLIB,OUTPUT.C(*HIGHEST-EXISTING),S)
 DDD
 EXP INC FILE SRC BLOCK
 LIN LEV NO LIN LEV

 1 0 0 1 0 #include <stdio.h>
 1746 0 0 2 0 int main(void)
 1747 0 0 3 0 {
 1748 0 0 4 1
 1749 0 0 5 1 short int1 = -32768;
 1750 0 0 6 1 int int2 = 234;
 1751 0 0 7 1 long int3 = -567;
 1752 0 0 8 1
 1753 0 0 9 1 unsigned short un1 = 65535;
 1754 0 0 10 1 unsigned int un2 = 78900;
 1755 0 0 11 1 unsigned long un3 = 90123;
 1756 0 0 12 1
 1757 0 0 13 1 signed long long sll = -9223372036854775808;
 1758 0 0 14 1 unsigned long long ull = 18446744073709551615;
 1759 0 0 15 1
 1760 0 0 16 1 float fl1 = 123.456;
 1761 0 0 17 1 double fl2 = 567.89;
 1762 0 0 18 1 long double fl3 = 333.444;
 1763 0 0 19 1
 1764 0 0 20 1 char char1 = 'A';
 1765 0 0 21 1 signed char char2 = -63;
 1766 0 0 22 1
 1767 0 0 23 1 char *chstr = "Character string";
 1768 0 0 24 1 char chvek[17] = "Character array";
 1769 0 0 25 1
 1770 0 0 26 1 char *c_out = "Corresponding C output:";
 1771 0 0 27 1
 1772 0 0 28 1 printf ("%s\n",c_out);
 1773 0 0 29 1 printf ("int1 = %d\n", int1);
 1774 0 0 30 1 printf ("int2 = %d\n", int2);
 1775 0 0 31 1 printf ("int3 = %d\n", int3);

%DISPLAY AID commands

166 U6148-J-Z125-8-76

 1776 0 0 32 1
 1777 0 0 33 1 printf ("%s\n",c_out);
 1778 0 0 34 1 printf ("un1 = %u\n", un1);
 1779 0 0 35 1 printf ("un2 = %u\n", un2);
 1780 0 0 36 1 printf ("un3 = %u\n", un3);
 1781 0 0 37 1
 1782 0 0 38 1 printf ("%s\n",c_aus);
 1783 0 0 39 1 printf ("sll = %lld\n", sll);
 1784 0 0 40 1 printf ("ull = %llu\n", ull);
 1785 0 0 41 1
 1786 0 0 42 1 printf ("%s\n",c_out);
 1787 0 0 43 1 printf ("fl1 = %f\n", fl1);
 1788 0 0 44 1 printf ("fl2 = %f\n", fl2);
 1789 0 0 45 1 printf ("fl3 = %f\n", fl3);
 1790 0 0 46 1
 1791 0 0 47 1 printf ("%s\n",c_out);
 1792 0 0 48 1 printf ("char1 as character = %c and as value = %d\n",
 1793 0 0 49 1 char1, char1);
 1794 0 0 50 1 printf ("char2 as character = %c and as value = %d\n",
 1795 0 0 51 1 char2, char2);

1796 0 0 52 1 printf ("%s\n",c_aus);
 1797 0 0 53 1 printf ("*chstr = %s\n", chstr);
 1798 0 0 54 1 printf ("chvek = %s\n", chvek);
 1799 0 0 55 1
 1800 0 0 56 1 return 0;
 1801 0 0 57 1 }

 tDDh
 3 /START-CPLUS-COMPILER 3
 3 % BLS0523 ELEMENT 'SDFCC', VERSION '03.2E21', TYPE 'L' FROM LIBRARY 3

3 ':2OSH:$TSOS.SYSLNK.CPP.032' IN PROCESS 3
3 % BLS0524 LLM 'SDFCC', VERSION '03.2E21' OF '2015-02-24 07:17:56' LOADED 3
3 % BLS0551 COPYRIGHT (C) 2015 Fujitsu Technology Solutions GmbH. 3
3 ALL RIGHTS RESERVED 3

 3 % CDR9992 : BEGIN C/C++ VERSION 03.2E21 3
3 //MODIFY-TEST-PROPERTIES TEST-SUPPORT=YES 3

 3 //MODIFY-SOURCE-PROPERTIES LANGUAGE=*C(*ANSI) 3
 3 ... 3
 3 //MODIFY-BIND-PROPERTIES ... RUNTIME-LANGUAGE = *C, TEST-SUPPORT = *YES 3
 3 ... 3
 3 //END 3
 3 ... 3
 3 % BLS0524 LLM '$LIB-ELEM$MYLIB$OUTPUT', VERSION ' ' OF '2015-03-05 11:15:23' LOADED 3

3 /%aid c=yes 3
 3 /%in s'28' <%d 'AID-AUSGABE int1, int2 und int3', int1, int2, int3> 3
 3 /%in s'33' <%d 'AID-AUSGABE un1, un2 und un3', un1, un2, un3> 3
 3 /%in s'38' <%d 'AID-AUSGABE sll und ull', sll, ull> 3
 3 /%in s'42' <%d 'AID-AUSGABE fl1, fl2 und fl3', fl1, fl2, fl3> 3
 3 /%in s'47' <%d 'AID-AUSGABE char2 als Zeichen und als Wert', char2%c, char2> 3
 3 /%in s'47' <%d 'AID-AUSGABE char1 als Zeichen und als Wert', char1, char1%a> 3
 3 /%in s'52' <%d 'AID-AUSGABE *chstr und chvek', chstr->%cl16, chvek> 3
 3 /%resume 3
 gDDu

AID commands %DISPLAY

U6148-J-Z125-8-76 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

The program OUTPUT.C was compiled without errors and linked with LSD records and
loaded. %AID C=YES was set so that AID can output the char array chvek as a C
string. Case sensitivity, i.e. a distinction between uppercase and lowercase, was thus
enabled at the same time.
Test points were set using the %INSERT commands, causing each %DISPLAY
command to be followed by the corresponding C output. To make the output easier to
read, the text lines "AID-OUTPUT" and "CORRESPONDING C OUTPUT" are printed in
bold.

 tDD?
 3 AID-OUTPUT int1, int2 and int3 3
 3 *** TID: 00010266 *** TSN: 069R ***3
 3 SRC_REF: 28 SOURCE: OUTPUT.C PROC: main ***3
 3 int1 = -32768 3
 3 int2 = 234 3
 3 int3 = -567 3
 3 Corresponding C output 3
 3 int1 = -32768 3
 3 int2 = 234 3
 3 int3 = -567 3
 3 3
 3 AID-OUTPUT un1, un2 and un3 3
 3 SRC_REF: 33 SOURCE: OUTPUT.C PROC: main ***3
 3 un1 = 65535 3
 3 un2 = 78900 3
 3 un3 = 90123 3
 3 Corresponding C output: 3
 3 un1 = 65535 3
 3 un2 = 78900 3
 3 un3 = 90123 3
 3 3
 3 AID-OUTPUT sll and ull 3
 3 SRC_REF: 38 SOURCE: OUTPUT.C PROC: main ***3
 3 sll = -9223372036854775808 3
 3 ull = 18446744073709551615 3
 3 Corresponding C output: 3
 3 sll = -9223372036854775808 3
 3 ull = 18446744073709551615 3
 gDDu

All variables of type signed and unsigned int were displayed.
The use of printf to output data of type long long is supported in CRTE.

 tDD?
 3 AID-OUTPUT fl1, fl2 und fl3 3
 3 SRC_REF: 42 SOURCE: OUTPUT.C PROC: main ***3
 3 fl1 = +.1234559 E+003 3
 3 fl2 = +.5678899999999999 E+003 3
 3 fl3 = +.3334439999999999 E+003 3
 3 Corresponding C output: 3
 3 fl1 = 123.455994 3
 3 fl2 = 567.890000 3
 3 fl3 = 333.444000 3
 gDDu

Data of type float, double and long double was output. AID always outputs floating
point variables in exponential notation. For single-precision variables, AID outputs 7
significant digits; for double and long double data types, 16 digits are output.

%DISPLAY AID commands

168 U6148-J-Z125-8-76

 tDD?
 3 AID-OUTPUT char1 as character and as value 3
 3 SRC_REF: 40 SOURCE: OUTPUT.C PROC: main ***3
 3 char1 = 3A3 3
 3 CURRENT PC: 0100026A CSECT: OUTPUT$O&@ **3
 3 V'010227F8' = char1 + #'00000000' 3
 3 010227F8 (00000000) 193 3
 3 AID-OUTPUT char2 as character and as value 3
 3 V'010227F9' = char2 + #'00000000' 3
 3 010227F9 (00000000) A 3
 3 SRC_REF: 40 SOURCE: OUTPUT.C PROC: main ***3
 3 char2 = -63 3
 3 Corresponding C output: 3
 3 char1 as character = A and as value = 193 3
 3 char2 as character = A and as value = -63 3
 gDDu

AID handles data type char differently from signed char. AID outputs the character
value A for variable char1. You can only display the corresponding decimal value via
the explicit type modification %A. AID outputs the decimal value -63 for signed char
variable char2 without type modification. You have to use the explicit type modification
%C to display char2 as a character.

 tDD?
 3 AID-OUTPUT *chstr and chvek 3
 3 CURRENT PC: 0100035C CSECT: OUTPUT$O&@ **3
 3 V'01001188 = OUTPUT$O&# + #'00000118' 3
 3 001188 (00000188) Character string 3
 3 SRC_REF: 52 SOURCE: OUTPUT.C PROC: main ***3
 3 charr = "Character array" 3
 3 Corresponding C output: 3
 3 *chstr = Character string 3
 3 chvek = Character array 3
 gDDu

This output of character strings - addressed via a pointer in the first case and stored as
an array of characters in the second - concludes the comparison of the treatment of the
individual data types by AID and C.
The string referenced by the pointer chstr can be output with AID only via a following
pointer operator and with a type and length modification. The array chvek, by contrast,
is treated as a C string literal, since %AID C=YES was set.

AID commands %DISPLAY

U6148-J-Z125-8-76 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

11. Character output with any coded character set (CCS)

void main(void)
{

 char unsigned data[256];
 char ALPHA[28];
 int i;

 for (i=1; i<=255; i++)
 data[i-1] = i;

 data[255] = 0x00;
 strncpy(ALPHA, data+64, 26);
 ALPHA[26]= 0x00;
 STOP: ;

}

Specify the character set for the terminal:

/mod-term-opt coded-character-set=edf041

After loading the program:

%AID C=YES
%INSERT STOP
%RESUME

Data output with the default interpretation *USRDEF (=EDF03IRV):
/%D data.32 %XL80
V'0100112C' = data + #'00000020'
0100112C (00000020) 21222324 25262728 292A2B2C 2D2E2F30
0100113C (00000030) 31323334 35363738 393A3B3C 3D3E3F40
0100114C (00000040) 41424344 45464748 494A4B4C 4D4E4F50 `.<(+|&
0100115C (00000050) 51525354 55565758 595A5B5C 5D5E5F60 !$*);.-
0100116C (00000060) 61626364 65666768 696A6B6C 6D6E6F70 /........^,%_>?.

Change the current character set to ISO88591:
%AID CCS=ISO88591

%DISPLAY AID commands

170 U6148-J-Z125-8-76

Data output with the ISO88591 interpretation as specified:
/%D data.32 %XL80
V'0100112C' = data + #'00000020'
0100112C (00000020) 21222324 25262728 292A2B2C 2D2E2F30 !"#$%&'()*+,-./0
0100113C (00000030) 31323334 35363738 393A3B3C 3D3E3F40 123456789:;<=>?@
0100114C (00000040) 41424344 45464748 494A4B4C 4D4E4F50 ABCDEFGHIJKLMNOP
0100115C (00000050) 51525354 55565758 595A5B5C 5D5E5F60 QRSTUVWXYZ[\]^_`
0100116C (00000060) 61626364 65666768 696A6B6C 6D6E6F70 abcdefghijklmnop

Output of the char variable ALPHA (ISO88591 interpretation):
/%D ALPHA
ALPHA = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

AID commands %DUMPFILE

U6148-J-Z125-8-76 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%DUMPFILE

With %DUMPFILE you assign a dump file to a link name and cause AID to open or close
this file.

– With link you select the link name for the dump file to be opened or closed.

– With file you designate the dump file to be opened.

DDD
Command Operand
DDD

⎧%DUMPFILE⎫
⎨ ⎬ [link [=file]]
⎩%DF ⎭

DDD

If you omit the file operand, AID will close the file assigned to the specified link name.

With a %DUMPFILE command without operands, you cause AID to close all open dump
files. If the AID work area was, up until this point, contained in a dump file now closed, the
AID standard work area then reapplies (see also %BASE command).

If a library to dynamically load LSD information was assigned with the command %SYMLIB
for a file that is closed with %DUMPFILE, the library for the associated link name Dn is
released.

%DUMPFILE may only be specified as an individual command, i.e. it may not be part of a
command sequence and may not be included in a subcommand.

%DUMPFILE does not alter the program state.

Designates one of the AID link names for input files and has the format Dn, where n is a
number with a value 0 ≤ n ≤ 7.

Specifies the fully-qualified file name under which the dump file AID is to open is cataloged.
If this operand is omitted, the dump file with the link name link is closed.
An open dump file must first be closed with a separate %DUMPFILE command before
another file can be assigned the same link name.

link

file

%DUMPFILE AID commands

172 U6148-J-Z125-8-76

Examples

1. %dumpfile d3=dump.1234.00001

The file DUMP.1234.00001 with link name D3 is opened.

2. %df d3

The file assigned to link name D3 is closed.

3. %df

All open dump file are closed.

AID commands %FIND

U6148-J-Z125-8-76 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%FIND

With %FIND you can search for a literal in the data section or in the executable part of a
program and output hits to the terminal (via SYSOUT). In addition, the address of the hit
and the continuation address are stored in AID registers %0G and %1G. %FIND can be
used to search both virtual memory and a dump file.

– search-criterion is the character or hexadecimal literal to be searched for.

– With find-area you specify which data or which section of the executable part of the
program AID is to search for search-criterion. If the find-area value is omitted, AID
searches the entire memory area in accordance with the base qualification currently set
(see %BASE).

– With alignment you specify whether the search for search-criterion is to be effected at a
doubleword, word, halfword or byte boundary. When a value for alignment is not given,
searching takes place at the byte boundary.

DDD
 Command Operands
DDD

 %F[IND] [[ALL] search-criterion [IN find-area] [alignment]]

DDD

If the ALL operand is omitted from a %FIND command, the user may continue after the
address of the last hit and up to the end of the find-area by specifying a new %FIND
command without any operand values.

If a %FIND command is issued with a separate search-criterion and without any further
operands, AID inserts default values for find-area and alignment, i.e. does not transfer
operands from a preceding %FIND command in this case.

In the event of a hit, a maximum of 12 bytes from the hit to the end of find-area are output
to the terminal (SYSOUT) in DUMP output format (hexadecimal and character notation). In
addition to the hit itself, its address and (where possible) the name of the CSECT in which
the hit was found, and the relative address of the hit with respect to the beginning of the
CSECT, are output. For searches in global data, the relative address at the start of the data
module is output. In all other cases the absolute address is output.

In the event of a hit, the hit address is stored in AID register %0G and the continuation
address (hit address + search string length) in AID register %1G. With the ALL specification,
the address of the last hit is stored in %OG and the continuation address of the last hit is
stored in %1G. If the search-criterion has not been found, AID sets %0G to -1; %1G remains
unchanged.

%FIND AID commands

174 U6148-J-Z125-8-76

The two register contents permit you to use the %FIND command in procedures as well as
in subcommands and to further process the results.

The %FIND command does not alter the program state.

Is a character literal or hexadecimal literal. search-criterion may contain wildcard symbols.
These symbols are always hits. They are represented by ’%’.

search-criterion-OPERAND -

⎧C'x...x' | 'x...x'C | 'x...x'⎫
OURX'f...f' | 'f...f'X ?

- -

{C'x...x'|'x...x'C|'x...x'}

Character literal

with a maximum length of 80 characters. Lowercase letters can only be located as
character literals after specifying %AID LOW[=ON].

x can be any representable character, in particular the wildcard symbol ’%’, which
always represents a hit. The character ’%’ itself cannot be located when it is in this
form, since C’%’ in a character literal must always result in a hit. For this reason it
must be represented as the hexadecimal literal X’6C’.

Please note that in order to properly locate character data, the CCS of find-area has
to agree with the CCS of the input media (SYSCMD). Be sure to specify the CCS
of find-area before looking for some character data in find-area:

%AID CCS= CCS-name

A complete list of CCS-name supported by XHCS and the current CCS of SYSCMD
can be displayed with the following AID command:

%SHOW %CCSN

The CCS of SYSCMD can be changed with the following SDF command:

MODIFY-TERMINAL-OPTION CODED-CHARACTER-SET= {EBCDIC-CCS-name | UTFE}

The current CCS of find-area can be displayed with the following AID command:

%SHOW %AID

Be aware that since V3.4B11 the %DISPLAY command refers to the CCS value of
%AID as to the default (implicit) CCS of character data to be displayed:

search-criterion

AID commands %FIND

U6148-J-Z125-8-76 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%D char-data ['CCS-name']

See the section “Character literal” in the AID Core Manual [1] for an example on
how to search for character literals in different coded character sets.

{X'f...f' | 'f...f'X}

Hexadecimal literal

with a maximum length of 80 hexadecimal digits or 40 characters. A literal with an
odd number of digits is padded with X’0’ on the right.

f can assume any value between 0 and F, as well as the wildcard symbol X’%’. The
wildcard symbol represents a hit for every hexadecimal digit between 0 and F.

Defines the memory area to be searched for search-criterion. find-area can be a class object,
a data item or an area in the executable part of the loaded program or of a dump file.

If no find-area has been specified, AID inserts the default value %CLASS6 (see the section
on “Memory classes” in the AID Core Manual [1]), i.e. the class 6 memory for the currently
set base qualification is searched (see %BASE). The default value for find-area cannot be
used for C/C++ programs as these programs are loaded into the upper address space of
memory. You therefore have to specify an explicit value for find-area with the first %FIND
command (e.g. %CLASS6ABOVE).

find-area-OPERAND -

 ⎧namespace[::...] ⎫
 o o
 o*this o
 o o
 o⎧this-> ⎫ o
 o⎨ ⎬[class[:: ...]] o
 o⎩object[•]⎭ o
 o o
 o ⎧[namespace::[...]]class::⎫ o
IN [•][qua•] ⎨?⎨this-> ⎬[class::[...]]]dataname ⎬
 o ⎩object• ⎭ o
 o o
 o⎧[namespace::[...]][class::[...]]function ⎫ o
 o⎨L'label' ⎬-> o
 o⎩S'[f-]n[:a]' ⎭ o
 o o
 okeyword o
 o o
 ⎩compl-memref ⎭

- -

find-area

%FIND AID commands

176 U6148-J-Z125-8-76

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua One or more qualifications may be specified here if find-area cannot be reached
from the current interrupt point by other means or to address a data name that is
locally hidden at the interrupt point by an identically named definition.
It is sufficient to specify only the qualifications needed for a unique address.

E={VM | Dn}
Specified only if the current base qualification (see %BASE) is not to apply to
find-area.

S=srcname
 Specified only if find-area is not in the current translation unit (see the chapter
“Addressing in C and C++ programs” on page 21).

:: Use the two prepended colons to address a global data item that is locally
hidden at the interrupt point by a definition of the same name. You must also
place two colons before the name of a global data item or a function if either the
data or the function is not in the call hierarchy or if its definition only occurs after
the interrupt point. In contrast to the other qualifications, no period must be
entered between the two colons and the operands which follow.

PROC=function
Only specified if you want to access a data name which is defined in the current
function, but is hidden at the interrupt point by a definition with the same name.
You also specify a PROC qualification when you want to address a label or a
data name declared as static which is assigned in a function outside the current
call hierarchy (see the chapter “Addressing in C and C++ programs” on
page 21). If the start address of find-area is designated by a source reference
that is located in a function template instance or assigned to a function defined
in a class template instance, (see the section “Templates” on page 94), you also
have to prepend the appropriate PROC qualification if ambiguity occurs.
In the case of functions from C programs, function is the function name declared
in the source program, but without the parentheses or signature.
Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the namespace or class qualification is prepended to the function name.
The void signature may not be written, you enter just the two parentheses in
this case as is also possible in C++. The following syntax results (f_template and
signature are abbreviated for space reasons):

AID commands %FIND

U6148-J-Z125-8-76 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_templ<arg[,...]>([sign])' ⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several
BLK qualifications (see page 60) between the two PROC qualifications.
Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
Specified only when you want to address a data name which is assigned to a
block within the current call hierarchy and is hidden at the interrupt point by a
definition with the same name, or when you want to want to access a data name
declared as static and assigned to a block outside the current call hierarchy (see
the chapter “Addressing in C and C++ programs” on page 21).

You must also specify a BLK qualification if you want to designate a function
from a local class, which is defined in the specified block, in a subsequent
PROC qualification (see above, PROC=function).

namespace
Name of a namespace declared in the source program.

You only specify the name of a namespace if the required namespace component
is not visible at the interrupt point. You use this to describe the addressing path to
classes, data or functions defined in the namespace (see the section
“Namespaces” on page 85).

Only the E or S qualification or the two colons (::) for the global namespace are
allowed before the namespace qualification.

%FIND AID commands

178 U6148-J-Z125-8-76

{ class | this-> | object }
Name of a class, the this pointer or the name of a class object as declared in the
source program.
You specify class names, the this pointer with the appended pointer operator, and
the names of class objects in order to describe the address path to data members
assigned to classes (see the section “Classes” on page 63).

If the current interrupt point is located in a dynamic member function, you can
address the class data according to the scope rules known from C++.

If an object is in the current call hierarchy, you can access the dynamic data of that
object independent of the interrupt point by means of the object name followed by
a period.

Static data members can only be addressed individually. They can be accessed
from any part of the program via the associated class names followed by the two
colons. In the case of nested classes, the path to the data item includes all the class
names from the outermost to the innermost level, separated by two colons each.
The outermost class name requires qualification appropriate to the scope. If the
program is interrupted within a member function of the class, the class scope rules
apply for accessing static data members, i.e. if the data is not hidden by a definition
with the same name, it can be accessed without qualification.

If the class is a class template instance, you have to use the following notation:
t'k_template<arg[,...]>'. If only one instance of the template exists, only
t'k_template' is required.

If find-area ends with an object name, the dynamic data members and, if present,
the compiler-generated auxiliary variables and the address of the virtual function
table are referenced, regardless of the current interrupt point. In the case of derived
classes, find-area also includes the base classes. The same area can be refer-
enced with *this, if the program is interrupted in a dynamic member function of the
class. To designate a base class in a derived class, you specify the name of the
desired base class in the path starting from the object name or from this->.
If the interrupt point is not in the scope of object, it must be appropriately qualified.
Only a base qualification is meaningful before *this.
If the find-area operand ends at this->, the first 4 bytes as of the start address of
the current object are referenced.

AID commands %FIND

U6148-J-Z125-8-76 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

dataname
This is the name of a data item declared in the source program. dataname is
specified as in the source program.

You can reference data as in C/C++, but with the following exceptions:
An array name without a subscript addresses all array elements.
Array elements can only be referenced by means of subscripts, not pointers. For
more information on working with arrays, see also the section “Subscript notation”
on page 30.

You can specify dataname as follows. You can also combine these formats (see the
section “Data names” on page 29).

Subscript notation: dataname [subscript] {...}
Pointer notation: dataname1 -> dataname2
Structure qualification: superordinate dataname• {...} dataname
Dereferencing: [(]*{...} dataname[)]

⎧function[%al4] ⎫
⎨L'label' ⎬->
⎩S'[f-]n[:a]' ⎭

Designates 4 bytes of machine code beginning at the address stored in one of the
address constants. If another number of bytes is to be searched, you must specify
an appropriate length modification.

function
This is the name of a function, as declared in the source program, or the name
of a library function. It references the first instruction of the function prolog that
is generated by the compiler (see PROC=function on page 176 and the chapter
“Addressing in C and C++ programs” on page 21).

The following syntax is used to address virtual functions:
p->n'function(signature)'

p is a pointer variable that points to the class object containing the desired
member function. If p cannot be accessed from the current interrupt point, the
scope must be qualified accordingly. If the interrupt point is located in the virtual
function itself, you can reference the prolog address of the current function by
using the this pointer instead of p. (see the description of this on page 64 and
section “Virtual functions” on page 73).

If you want find-area to be in a function addressed via a pointer to member, you
can use one of the following two methods:

You designate the class object by name and enter •* as the dereferencing
operator as follows:

%FIND AID commands

180 U6148-J-Z125-8-76

- -

[qua•]object•*[object•][class::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

- -

[qua•]pointer->*[object•][class::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.
The name of the pointer to function member must be entered on the right of the
dereferencing operator. This may need to be preceded by the object containing
the definition of the pointer to function member and the class qualification
needed for unique addressing within the object if the pointer to member cannot
be reached from the interrupt point by some other means.

Note that you cannot directly append the pointer operator to one of the syntaxes
above. Instead, you would have to first specify a type modification, i.e. %al4, to
switch to machine code level. This results in the following syntax:

%DISPLAY dereferenced-pointer-to-function-member %al4->

More details on working with a pointer to function member can be found on
page 79.

L’label’
Designates the address of the first executable statement after a label.
label is the name of a label declared in the source program.

S’[f-]n[:a]’
Source reference which designates the address of an executable statement. It
comprises the line number (n) and possibly the FILE number (f) plus the relative
statement number within the line (a). If the source reference is located in a
function which was created from a function template via instantiation or the
function containing the source reference is defined in a class template instance,
you have to prepend the appropriate PROC qualification to the source
reference if ambiguity occurs.

AID commands %FIND

U6148-J-Z125-8-76 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

keyword
Allows you to define a memory area by specifying one of the following keywords
(see the chapter on “Keywords” in the AID Core Manual [1]).

When you specify one of the keywords for class 5 memory, the unprivileged areas
used by your program in class-5 memory are searched.

Only a base qualification may be specified before keyword.

%CLASS6 class 6 memory below the 16MB boundary
%CLASS6BELOW class 6 memory below the 16MB boundary
%CLASS6ABOVE class 6 memory above the 16MB boundary

%CLASS5 class 5 memory below the 16MB boundary
%CLASS5BELOW class 5 memory below the 16MB boundary
%CLASS5ABOVE class 5 memory above the 16MB boundary

%n general purpose registers, 0 Î n Î 15
%nD|E floating point registers, n = 0,2,4,6
%nQ floating point registers, n = 0,4
%nG AID general purpose registers, 0 Î n Î 15
%nGD AID floating point registers, n = 0,2,4,6
%MR All 16 general purpose registers in tabular form
%PC Instruction counter (program counter)

compl-memref
The following operations may occur in compl-memref (see also the section on
“Complex memory references” in the AID Core Manual [1]):
– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

If compl-memref begins with a statement name or a source reference, the pointer
operator (->) must come next. Without the pointer operator, statement names and
source references can be used wherever hexadecimal numbers are also allowed.
Labels in compl-memref must always be placed within L'...'.
compl-memref designates an area of 4 bytes, starting with the calculated address. If
a different number of bytes is to be searched, compl-memref must terminate with the
appropriate length modification. When modifying the length of data items, you must
pay attention to area limits or switch to machine code level using %@(dataname)->.
A maximum of 65 535 bytes can be declared with a length modification.

%FIND AID commands

182 U6148-J-Z125-8-76

Restricts the search for search-criterion to some aligned addresses.

alignment-OPERAND -

 ⎧1⎫
 o2o
ALIGN [=] ⎨ ⎬
 o4o
 ⎩8⎭

- -

search-criterion is searched for only at the:

1 byte boundary (default)

2 halfword boundary

4 word boundary

8 doubleword boundary

Examples

1. %find x'f0' in arr1

The hexadecimal literal X’F0’ is searched for in array arr1. Hits are output to SYSOUT.

2. %f x'd2' in s'12'->%l=(s'13'-s'12') align=2

The hexadecimal literal X’D2’ is searched for at a halfword boundary in the machine
code generated for the statement S’12’.

3. %f

The search is continued behind the last hit using the parameters of the last %FIND
command.

alignment

AID commands %HELP

U6148-J-Z125-8-76 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%HELP

You use %HELP to request information on the operation of AID. The following information
is output to the selected medium: either all the AID commands or the selected command
and its operands.

– By means of the info-target operand you specify the command on which you need
further information.

– By means of the medium-a-quantity operand you specify to which output media AID is to
output the required information. By means of this operand you temporarily disable a
declaration made via %OUT.

DDD
Command Operand
DDD

%H[ELP] [info-target] [medium-a-quantity][,...]

DDD

%HELP provides information on all the operands of the selected command, i.e. all
language-specific operands for symbolic debugging as well as all operands for machine-
oriented debugging. Refer to the relevant manual to see what is permitted for the language
in which your program is written.

The format for the message key for AID messages is AID0n; the format for AIDSYS
messages is IDA0n. Both can be requested with /HELP-MSG-INFORMATION.

%HELP can only be entered as an individual command, i.e. it must not be contained in a
command sequence or subcommand.

The %HELP command does not alter the program state.

Designates a command about which information is to be output.
If the info-target operand is omitted, the command outputs an overview of the AID
commands with a brief description of each command.

AID responds to a %HELP command containing an invalid info-target operand by issuing an
error message. This is followed by the same overview described above. This overview can
also be requested by specifying %?, %H? or %H %?.

info-target

%HELP AID commands

184 U6148-J-Z125-8-76

info-target-OPERAND -

⎧ %AID | %AINT | %ALIAS | %BASE | %CONT[INUE] | %C[ONTROL] ⎫
o %DISASSEMBLE | %DA | %D[ISPLAY] | %DUMPFILE | %DF o
o %F[IND] | %H[ELP] | %IN[SERT] | %JUMP | %M[OVE] o
⎨ %ON | %OUT | %OUTFILE | %Q[UALIFY] ⎬
o %REM[OVE] | %R[ESUME] | %SD[UMP] | ???E?] o
⎩ %SH[OW] | %STOP | %SYMLIB | %TITLE | %T[RACE] ⎭

- -

The AID command names may be abbreviated as shown above.

defines the media via which information on the info-target is to be output.

If this operand is omitted and no declaration has been made using the %OUT command,
AID works with the default value T=MAX. The specification {MIN | MAX | XMAX | XFLAT}
has no effect with %HELP, but the syntax requires one of these two specifications.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

For more details on medium-a-quantity, see the chapter “Medium-a-quantity operand” in the
AID Core Manual [1].

T Terminal output

H Hardcopy output (includes terminal output and cannot be combined with T)

Fn File output

P Output to SYSLST

medium-a-quantity

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

AID commands %INSERT

U6148-J-Z125-8-76 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%INSERT

You use %INSERT to specify a test point and define a subcommand. Once the program
sequence reaches the test point, AID processes the associated subcommand.

– By means of the test-point operand you may define the address of an instruction in the
program prior to whose execution AID interrupts the program run and to process
subcmd.

– By means of the subcmd operand you define a command or a command sequence and
perhaps a condition. Once test-point has been reached and the condition has been
satisfied, subcmd is executed.

DDD
Command Operand
DDD

%IN[SERT] test-point [<subcmd>]

DDD

A test-point is deleted in the following cases:

1. When the end of the program is reached.

2. If the test-point is deleted with %REMOVE.

If no subcmd operand is specified, AID inserts the subcmd <%STOP>.

The subcmd in an %INSERT command for a test-point which has already been set does not
overwrite the existing subcmd; instead, the new subcmd is prefixed to the existing one. The
chained subcommands are thus processed according to the LIFO rule (last in, first out).

%REMOVE can be used to delete a subcommand, a test point or all test points entered.

test-point can only be an address in the loaded program, therefore the base qualification
E=VM must have been set (see %BASE) or must be specified explicitly.

You can only set a test point on the throw and catch statements of a C++ program if
the program has been initialized, i.e. after it has run up to the first executable statement.
The program is interrupted immediately after initialization if you input the following
command after loading:

/%trace 1 in s=srcname

When you debug a program containing classes with virtual functions or constructors, the
program halts in a compiler-generated function called _ _STI_ _ instead of in main. This
function calls the constructors and generates the virtual function tables. AID outputs the
name _ _STI_ _ in the STOP message.

%INSERT does not alter the program state.

%INSERT AID commands

186 U6148-J-Z125-8-76

Must be the address of an executable machine instruction that was either generated for a
C/C++ statement or, if throw/catch statements are to be monitored, is located in a runtime
system routine which is called with each throw or catch statement.
test-point is immediately entered by targeted overwriting of the memory position addressed
and must therefore be loaded in virtual memory at the time the %INSERT command is input
or the subcommand containing %INSERT is processed. Since entering test-point modifies
the program code, a test point which has been incorrectly set may lead to errors in program
execution (e.g. data/addressing errors).

When the program reaches the test-point, AID interrupts the program and starts the subcmd.

test-point OPERAND -

⎧ ⎧function[->] ⎫ ⎫
o oL'label' o o
o[•][qua•]⎨ ⎬ o
o oS'[f-]n[:a]' o o
⎨ ⎩compl-memref ⎭ ⎬
o o
o⎧%EXCEPTION⎫ ⎧throw⎫ o
o⎨ ⎬(⎨ ⎬) o
⎩⎩%EH ⎭ ⎩catch⎭ ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua One or more qualifications may be specified here to address a function, label or
source reference that cannot be reached from the current interrupt point by other
means.
It is sufficient to specify only the qualifications needed for a unique address.

E=VM
Since test-point can only be entered in virtual memory of the loaded program,
E=VM should only be specified if a dump file has been declared as the current
base qualification (see the %BASE command).

S=srcname
Specified only if you wish to address a statement name or source reference that
is not in the current translation unit (see the chapter “Addressing in C and C++
programs” on page 21).

test-point

AID commands %INSERT

U6148-J-Z125-8-76 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

BLK=’[f-]n[:b]’
You must specify a BLK qualification if you want to reference a function from a
local class in a subsequent PROC qualification and the local class is defined in
the specified block (see below PROC=function).
The block name is constructed from the line number (n), a possible FILE
number (f) and relative block number (b).

PROC=function
Specified only if you want to reference a label from a function other than the
current one (see the chapter “Addressing in C and C++ programs” on page 21)
or if test-point is to be set to a source reference that is ambiguous in the trans-
lation unit because it is located in a function template instance or assigned to a
function which is defined in a class template instance (see the section
“Templates” on page 94).
In the case of functions from C programs, function is the function name declared
in the source program, but without parentheses or the signature.
Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the function name is prepended with the namespace or class qualifi-
cation. The void signature may not be written, you enter just the two paren-
theses in this case as is also possible in C++. The following syntax results
(f_template and signature are abbreviated for space reasons):

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_templ<arg[,...]>([sign])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several
BLK qualifications (see page 60) between the two PROC qualifications.
Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

%INSERT AID commands

188 U6148-J-Z125-8-76

function[->]
Places test-point at the first executable statement in a function or at the first instruc-
tion in a library function.
function is the name of a function as declared in the source program or the name of
a library function (see PROC=function above and the chapter “C++-specific
addressing” on page 57).

Syntax for virtual functions:

p->n'function([signature])'

p is a pointer variable that points to the class object containing the desired member
function. If p cannot be accessed from the current interrupt point, it must be
qualified in accordance with its scope. If the interrupt point is located in the virtual
function itself, you can reference the first executable statement of the current
function by using the this pointer instead of p.

If you want to set a test point at the first executable statement of a function
addressed via a pointer to member, you can use one of the following two methods:

You designate the class object by name and enter •* as the dereferencing operator
as follows:

- -

[qua•]object•*[object•][class::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

- -

[qua•]pointer->*[object•][class::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.
The name of the pointer to function member must be entered on the right of the
dereferencing operator. Note, however, that this may need to be preceded by the
object containing the definition of the pointer to function member and the class
qualification needed for unique addressing within the object if the pointer to function
member cannot be reached from the interrupt point by some other means. More
details on working with a pointer to function member can be found on page 79.

AID commands %INSERT

U6148-J-Z125-8-76 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

If you use test-point to designate a library function, you must terminate function with
the pointer operator. In this case, the test point is set on the first command of the
function prolog. Note, however, that if you %SDUMP %NEST to view the call
hierarchy from this point, you may not see the direct caller of the library function,
since AID cannot determine the full call hierarchy until the prolog is traversed and
the first executable statement of the function is reached. If an LSD is available for
the function, you can use %TRACE 1 %STMT to position onto the first executable
statement of the function.

i Note that AID cannot usually associate the prolog address with the corre-
sponding function.. The same effect must be noted if function addresses
listed by AID for %DISPLAY{namespace|object|class} or in the %SDUMP
output are used in an %INSERT for the sake of simplicity in the case of
functions from C++ programs, which usually have very long names. Conse-
quently if you use %SHOW %INSERT later in the test run to obtain information
on all the test points that have been set thus far, AID displays the name of
an earlier function for the prolog address if virtual functions are involved.

L’label’
Places test-point at the first executable statement after a label.
label is the name of a label declared in the source program. In this command you
can also specify label without L'...', since there can be no confusion with a data
name.

S’[f-]n[:a]’
Is a source reference. It places test-point at an executable statement. The
source reference is constructed from the line number (n) and, if present, the
FILE number (f) and the relative statement number within the line (a).
If the source reference is located in a function which was created from a function
template via instantiation or the function containing the source reference is
defined in a class template instance, you have to prepend the appropriate
PROC qualification to the source reference if ambiguity occurs.

compl-memref
The result of compl-memref must be the start address of an executable machine
instruction. compl-memref may contain the following operations (see the section on
“Complex memory references” in the AID Core Manual [1]):
– byte OFFSET (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%Ln)
– address selection (%@(...))

%INSERT AID commands

190 U6148-J-Z125-8-76

If a compl-memref begins with a statement name or a source reference, the pointer
operator must come next. Labels in compl-memref must always be placed within
L’...’. Note, however, that the pointer takes you out of the symbolic level. If you put
a pointer name after a function name, what you reference is not the first executable
statement in the function but the first instruction in the prolog generated for the
function by the compiler.
Statement names and source references can be used without the pointer operator
wherever hexadecimal numbers are allowed.

Type modification makes sense only if the contents of a data item can be used as
an address or if you take the address from a register.

Example: %3g.2 %al2 ->
The last two bytes from AID register %3G are used as the address.

{%EXCEPTION | %EH} ({throw | catch})
Can be used to monitor the throw or catch statements of a C++ program. To do
this, a test point is set in a runtime system routine and called each time a throw or
catch statement is executed. The result of this is that the program is not interrupted
at the associated statement in the user program when a throw or catch statement
is executed, but rather before the first instruction in this runtime routine. If you want
to examine the local conditions which triggered the exception handling from this
point, you must note that with an interruption in the runtime system, full qualification
is required to access data and statements in your program.
To determine which statement in your program triggered the interrupt, you have to
proceed differently for throw and catch statements:

– throw (triggers exception handling):

Output the call hierarchy at the interrupt point with %SDUMP %NEST. You can write
the %SDUMP %NEST command directly in the subcommand of the %INSERT and
AID then automatically outputs the call hierarchy with each throw.

– catch (processes the exception):

AID provides the prolog address of the catch handler of your program in
register 15. The following command sequence
%INSERT %15-> <%TRACE 1 %STMT>; %RESUME
executes the program up to the first statement of the catch handler, the
statement is logged and the program is halted.

To input %INSERT %EH({throw|catch}), you must enable uppercase/lowercase
discrimination (%AID LOW={ON|ALL} command). Otherwise, AID reports a syntax
error.

Example 5 on page 193 illustrates the use of %INSERT %EH(...).

AID commands %INSERT

U6148-J-Z125-8-76 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

A subcommand is processed whenever program execution reaches the address desig-
nated by test-point.
If the subcmd operand is omitted, AID inserts a <%STOP>.

A complete description of subcmd can be found in chapter “Subcommand” of the AID Core
Manual [1].

subcmd-OPERAND -

 ⎧AID command ⎫
<[subcmdname:] [(condition):] [⎨ ⎬ {;...}]>
 ⎩BS2000 command⎭

- -

A subcommand may contain a name, a condition and a command part. Every subcommand
has its own execution counter. The command portion can comprise a single command or a
command sequence and may contain AID and BS2000 commands as well as comments.

If the subcommand consists of a name or a condition but the command part is missing, AID
merely increments the execution counter when the test point is reached.

subcmd does not overwrite an existing subcommand for the same test-point, rather the new
subcommand is prefixed to the existing one. A %INSERT subcmd may contain the
commands %CONTROLn, %INSERT and %ON. Nesting of up to a maximum of 5 levels is
possible.

The commands in a subcmd are executed one after the other; program execution is then
continued. The commands for runtime control immediately alter the program state, even in
a subcommand. They abort the subcmd and start the program (%CONTINUE, %RESUME,
%TRACE) or halt it (%STOP). They are thus only effective as the last command in a subcmd,
since any subsequent commands in the subcmd would fail to be executed. Likewise,
deletion of the current subcommand via %REMOVE makes sense as the last command in
subcmd only.

i Address operands in subcommands are not automatically supplemented on input
with the qualifications that correspond to the current interrupt point. When test-point
is reached in the subsequent debugging run and AID interrupts the program to
process subcmd, only the data and functions that are visible at the test point can be
addressed without qualification with AID commands from subcmd .

subcmd

%INSERT AID commands

192 U6148-J-Z125-8-76

Examples

1. %in s'48'

test-point is specified with a source reference and is set to the memory location of the
instruction code generated for the first statement in line 48.

2. %in facul <%display %.,n>

test-point is designated by a function name. Since facul is a C program, the function
name is specified without the signature or parentheses. Whenever the program run
arrives at the first statement in the function facul, the %DISPLAY command from
subcmd is executed.

3. %in n'A::out1(int)' <%display var1, 'function A::out1'>
%in n'A::out2(int)' <%display 'INSERT1', var1; %in n'A::out3(int)' -
 <%d 'INSERT2',i,j,k, i_arr[i]; %in s'172' <%d 'INSERT3' ,i,j; -
 %remove n'A::out3(int)'>>>

With the first %INSERT command, the first statement of the member function
A::out1(int) is set as the test-point. If, after the end of command input, the program
execution reaches this address, the subcommand is executed. It consists of a
%DISPLAY command (for data name var1) and the literal 'function A::out1'.
The program is then continued.

The second %INSERT command declares test-point A::n'out2(int)'. This
%INSERT command contains two other nested %INSERT commands. Their test-point
values are still inactive for AID. They do not become active until the test-point of the
%INSERT command in whose subcmd they are defined is reached.

When program execution reaches the first executable statement in member function
A::out2(int), the corresponding subcmd is executed, i.e. the %DISPLAY command
for the literal 'INSERT1' and the data name var1 is executed and the test-point
A::n'out3(int)' is set.
The subcmd for test-point A::n'out3(int)' is still inactive. Thus, in the program to be
debugged, the following three test-points have been set at this stage in the program run:
the first executable statement in each of the member functions A::out1(int),
A::out2(int) and A::out3(int).

Since the subcmd for test-point A::n'out2(int)' does not contain a %STOP
command, the program is continued after execution of subcmd. If program execution is
not interrupted for some other reason, e.g. an error or the occurrence of an event
declared by %ON, and finally reaches the first statement in A::out3(int), then %D
'INSERT2', i, j, k, i_arr[i] is executed. Furthermore, subcmd contains a
further %INSERT command, whose test-point this time is specified with source
reference S’172’.

AID commands %INSERT

U6148-J-Z125-8-76 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

If the statement in line 172 is reached during further program execution, AID executes
the %DISPLAY command for the literal ’INSERT3’ and the contents of variables i and
j. By means of the second command in this subcmd, the %REMOVE A::n'out3(int)'
command, test-point A::n'out3(int)' is deleted. This is necessary, for instance, if
a test-point is located in a loop and this would lead to an undesired chaining of nested
subcommands. Without the %REMOVE command, the following subcmd would be
created for test-point S’172’ during the second pass of A::n'out3(int)':
<%d 'insert3',i,j; %d 'insert3',i,j>

4. %out %display p=max
%in s'73' <%d 'i GE 10',i,c_str[i],k,num[i][k]>
%in s'73' <(i lt 10): %d 'i LT 10',i,c_str[i]; %cont>

First, all outputs of the %DISPLAY command are directed to SYSLST.
The two subsequent %INSERTs create the following subcommand at test-point S’73’:

<(i lt 10): %d 'I LT 10',i,c_str[i]; %cont; %d 'i GE 10',i,c_str[i],
-k,num[i][k]>

Every time program execution reaches the statement in line 73, a check is made
whether index i contains a value < 10. If the condition is satisfied, AID writes the
comment 'i LT 10' and the contents of i and c_str[i] to SYSLST and, as a result
of %CONTINUE, continues the program (with tracing, if the subcommand interrupted a
%TRACE).
If the value of i is ≥ 10, AID writes the comment 'i GE 10' and, in addition to i and
c_str[i], also writes the values of k and the array element num[i][k] to SYSLST
and likewise continues the program. In this case, too, any active %TRACE is continued.

5. Exception handling

The example program for the following trace log is on page 137.

tDDD?
3 /LOAD-PROG *MOD(LIB.23A,EXMEM,RUN-MODE=ADVANCED,PROGRAM-MODE=ANY), 3
3 TEST-OPTIONS=AID 3
3 % BLS0523 ELEMENT 'EXMEM', VERSION '@' FROM LIBRARY '$TEST.MYLIB' IN 3
3 PROCESS 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$$EXMEM$', VERSION ' ' OF '1999-01-07 3
3 10:27:02' LOADED 3
3 /%aid low 3
3 /%t 1 in s=n'exmem.c' 3
3 10 EXT.PROC START , BLOCK START, , BLOCK START,3
3 ASSIGN 3
3 STOPPED AT SRC_REF: 10, SOURCE: EXMEM.C , BLK: 8 , END OF TRACE 3
3 /%in %eh(throw) <%sd %nest; %stop> 3
3 /%in %eh(catch) <sub1: %in %15-> <%t 1 %stmt>; %r> 3
gDDDu

%INSERT AID commands

194 U6148-J-Z125-8-76

After the program is loaded the %AID command is called first to enable
uppercase/lowercase discrimination and the first executable statement is found with the
%TRACE. The two %INSERTs set test points for the throw and catch case. The call
hierarchy is requested at the throw test point with %SD %NEST, to indicate the point in
the program where the exception handling was triggered. The sub1 subcommand at
the catch test point causes the program to be executed up to the first statement of the
catch handler in the user program after reaching the test point in the runtime routine
AIDIT0@.

tDDD?
3 /%r 3
3 SRC_REF: 1354 SOURCE: AIDIT0@ PROC: AIDIT0@ ************************3
3 ABSOLUT: V'1029282' SOURCE: THROW&@ PROC: unwind_stack *************3
3 ABSOLUT: V'102CDCA' SOURCE: THROW&@ PROC: __throw ******************3
3 ABSOLUT: V'1038DE6' SOURCE: NEW&@ PROC: operator new ***************3
3 ABSOLUT: V'1025BFE' SOURCE: ARRAY_NEW&@ PROC: operator new[] *******3
3 SRC_REF: 20 SOURCE: EXMEM.C BLK : 18 ********************************3
3 SRC_REF: 36 SOURCE: EXMEM.C PROC: main ******************************3
3 ABSOLUT: V'7873C3FE' SOURCE: IC@RT20A PROC: IC@RT20A ****************3
3 ABSOLUT: V'1009970' SOURCE: IC@MAIN@ PROC: IC@MAIN@ ****************3
3 STOPPED AT LABEL: CPPTHROW , SRC_REF: 1354, SOURCE: AIDIT0@ , 3
3 PROC: AIDIT0@ 3
gDDDu

The program is started with %RESUME and runs until the exception handling is
triggered. From the call hierarchy you can see that the statement in program line 20
(q = new char[0x10000000];) could not be executed, thus triggering the exception
handling.

tDDD?
3 /%resume 3
3 24 , BLOCK START, CALL 3
3 STOPPED AT SRC_REF: 24, SOURCE: EXMEM.C , BLK: 22 , END OF TRACE 3
3 /%sh %in 3
3 > CTX: LOCAL#DEFAULT SRC-REF: 20 SOURCE: EXMEM.C PROC: main 3
3 (V'0100504C') 3
3 > CTX: LOCAL#DEFAULT SRC-REF: 1354 SOURCE: AIDIT0@ PROC: AIDIT0@ 3
3 LABEL: CPPTHROW 3
3 > CTX: LOCAL#DEFAULT SRC-REF: 1363 SOURCE: AIDIT0@ PROC: AIDIT0@ 3
3 LABEL: CPPCATCH 3
3 /%rem V'0100504C' 3
gDDDu

Program execution is continued up to the interruption in the catch handler, with
%RESUME. To ensure that the %INSERT on the catch handler prolog address stored
in register 15 does not cause unwanted interruptions during the further program run, it
is advisable to delete this test point with %REMOVE. The %SHOW %INSERT command
provides you with the appropriate address for this.

AID commands %MOVE

U6148-J-Z125-8-76 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%MOVE

With the %MOVE command you transfer memory contents or AID literals to memory
positions within the program which has been loaded. Transfer is effected bytewise, left-
justified, without checking and matching of sender and receiver storage types.

– With the sender operand you designate a variable, a class object or one of its compo-
nents, a structure or a structure component, an array or an array element, a length, an
address, an execution counter, a register, a complex memory reference or an AID
literal.
sender can be located in virtual memory of the loaded program or in a dump file.

– With the receiver operand you designate a variable, a class object or one of its compo-
nents, a structure or a structure component, an array or an array element, a complex
memory reference, an execution counter or a register which is to be overwritten. receiver
can only be located in virtual memory of the loaded program.

– With the REP operand you specify whether AID is to generate a REP record in
conjunction with a modification which has taken place. This operand has a higher
priority than a default specified in the %AID command but affects only the current
%MOVE.

DDD
Command Operand
DDD

%M[OVE] sender INTO receiver [REP]

DDD

In contrast to the %SET command, AID does not check for compatibility between the
storage types sender and receiver when the %MOVE command is involved, and does not
convert sender to the storage type of receiver.

AID passes the information left-justified, with the length of sender. If the length of sender is
greater than that of receiver, AID rejects the attempt to transfer and issues an error
message.

i When receiver. is an object of a class, %MOVE overwrites auxiliary variables which
have possibly been generated by the compiler. This leads to an inconsistent status
of the receiver-object.

Immediately after loading the program you can access only global and static data. AID
needs the appropriate qualifications to access them.

In addition to the operand values described here, the values described in the manual for
debugging on machine code level [2] can also be employed.

%MOVE AID commands

196 U6148-J-Z125-8-76

Using %AID CHECK=ALL you can also activate an update dialog, which first provides you
with a display of the old and new contents of receiver and offers you the option of aborting
the %MOVE command.

The %MOVE command does not alter the program state.

For sender or receiver you can specify a variable, a class object or one of its components, a
structure or a structure component, an array or an array element, an execution counter, a
register or a complex memory reference. Constants, addresses, lengths and AID literals
can only be employed as sender.

sender may be either in the virtual memory area of the program which has been loaded or
in a dump file; receiver, on the other hand, can only be within the virtual memory of the
loaded program. Moving program segments or overwriting them with instruction code may
have unwanted side-effects if this affects addresses which are associated with a control-
area or a trace-area or addresses at which a test-point has been set with %INSERT (see the
section on “Interactions” in the AID Core Manual [1]).

No more than 3900 bytes can be transferred with a %MOVE command. If the area to be
transferred is larger, you must issue multiple %MOVE commands.

sender-OPERAND -

⎧ ⎧*this ⎫ ⎫
o o o o
o o⎧this-> ⎫ o o
o o⎨ ⎬[class[:: ...]] o o
o o⎩object[•]⎭ o o
o o o o
o o ⎧[namespace::[...]]⎫ ⎧dataname ⎫ o o
o o?⎨this-> ⎬[class::[...]]]⎨function ⎬ o o
o [•][qua•] ⎨ ⎩object• ⎭ ⎩object ⎭ ⎬ o
o o o o
o oL'label' o o
⎨ oS'[f-]n[:a]' o ⎬
o okeyword o o
o ocompl-memref o o
o o o o
o o&... o o
o ⎩sizeof(...) ⎭ o
o o
o %@(...) o
o %L(...) o
o %L=(expression) o
o o
⎩ AID-literal ⎭

- -

sender INTO receiver

AID commands %MOVE

U6148-J-Z125-8-76 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

receiver-OPERAND -

 ⎧*this ⎫
 o ? o
 o⎧this-> ⎫ o
 o⎨ ⎬[class[:: ...]] o
 o⎩object[•]⎭ o
 o o
INTO [•][qua•] ⎨?⎧[namespace::[...]]class::⎫ ⎬
 o?⎨this-> ⎬[class::[...]]]dataname o
 o ⎩object• ⎭ o
 o o
 okeyword o
 o o
 ⎩compl-memref ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua One or more qualifications may be specified here if sender or receiver cannot be
reached from the current interrupt point by other means or to address a data name
that is locally hidden at the interrupt point by an identically named definition.
It is sufficient to specify only the qualifications needed for a unique address.

{E={VM | Dn} for sender | E=VM for receiver}
Specified only if the current base qualification (see %BASE) is not to apply for
a data name. class, class object, statement name, source reference or keyword
(see %BASE). sender can be located in virtual memory or in a dump file.
receiver, on the other hand, can only be in the virtual memory.

S=srcname
Specified only if you are accessing a data name, a class or a class object, a
statement name or a source reference which is not located in the current trans-
lation unit (see the chapter “Addressing in C and C++ programs” on page 21).

:: Use the two prepended colons to address a global data item that is locally
hidden at the interrupt point by a definition of the same name. You must also
place two colons before the name of a global data item or a function if either the
data or the function is not in the call hierarchy or if its definition only occurs after
the interrupt point. In contrast to the other qualifications, no period must be
entered between the two colons and the operands which follow.

%MOVE AID commands

198 U6148-J-Z125-8-76

 PROC=function
Specified if you want to access a class or class object or a data name which is
defined in the current function, but is hidden at the interrupt point by a definition
with the same name. You also specify a PROC qualification when you want to
address a label or a data name declared as static which is assigned in a
function outside the current call hierarchy (see the chapter “Addressing in C and
C++ programs” on page 21). If you want to specify a source reference that is
located in a function template instance or assigned in a function defined in a
class template instance, (see the section “Templates” on page 94), you also
have to prepend the appropriate PROC qualification if ambiguity occurs.

In the case of functions from C programs, function is the function name declared
in the source program, but without the parentheses or signature.

Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the namespace or class qualification is prepended to the function name.
The void signature may not be written, you enter just the two parentheses in
this case as is also possible in C++. The following syntax results (f_template and
signature are abbreviated for space reasons):

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_templ<arg[,...]>([sign])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several
BLK qualifications (see page 60) between the two PROC qualifications.
Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
Specified when you want to address a data name which is assigned to a block
within the current call hierarchy and is hidden at the interrupt point by a
definition with the same name, or when you want to want to access a data name
declared as static and assigned to a block outside the current call hierarchy (see
the chapter “Addressing in C and C++ programs” on page 21).

AID commands %MOVE

U6148-J-Z125-8-76 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

You must also specify a BLK qualification if you want to designate a function
from a local class, which is defined in the specified block, in a subsequent
PROC qualification (see above, PROC=function).

The block name is formed from the line number (n), a possible FILE number (f)
and relative block number (b).

NESTLEV= level-number

level-nummer has to be followed by dataname.
Specify NESTLEV= level-number when you want to address a data name on a
certain level in the current call hierarchy. This qualification can only be com-
bined with E=, and not with any other qualification.

namespace
Name of a namespace declared in the source program.

You only specify the name of a namespace if the required namespace component
is not visible at the interrupt point. You use this to describe the addressing path to
classes, data or functions defined in the namespace (see the section
“Namespaces” on page 85).

Only the E or S qualification or the two colons (::) for the global namespace are
allowed before the namespace qualification.

{ class | this-> | object }
Name of a class, the this pointer, or a class object declared in the source program.
You specify class names, the this pointer with the appended pointer operator, and
the names of class objects in order to describe the address path to data members
assigned to classes (see the section “Classes” on page 63).

If the current interrupt point is located in a dynamic member function, you can
address dynamic data members in exactly the same way as in C++, i.e. if the data
item is visible at the interrupt point you can access it directly with AID, without quali-
fication. As in C++, locally hidden data requires appropriate class qualification. You
can also access dynamic data members by using the this pointer followed by the
pointer operator. This is equivalent to using the object name followed by a period.

Static data members can only be addressed individually. They can be reached via
the associated class name from any part of the program by means of the two subse-
quent colons. In the case of nested classes, the path to the data item includes all
class names from the outer to inner levels, each separated by two colons. The
outermost class name requires qualification corresponding to the scope. If the

level-number A level number in the current call hierarchy

%MOVE AID commands

200 U6148-J-Z125-8-76

program is interrupted in a member function of the class, the class scope rules
apply for accessing static data members, i.e. if the data is not hidden by a definition
with the same name, it can be accessed without qualification.

If the class is a class template instance, you have to use the following notation:
t'k_template<arg[,...]>'. If only one instance of the template exists, only
t'k_template' is required.

If sender or receiver ends with an object name, the dynamic data and, if present, the
compiler-generated auxiliary variables and the address of the virtual function table
are referenced, regardless of the current interrupt point. For derived classes, sender
or receiver also includes the base classes. You can reference the same area using
*this, if the program was interrupted in a dynamic member function of the class.
To identify a base class in a derived class, you specify the name of the desired base
class in the path, with the object name or this-> as the starting point. The area
identified by sender or receiver are moved or are overwritten for the length of sender
in left-justified binary, with the division into components being ignored.
If object is not in the scope of the interrupt point, an appropriate qualification is
required. Only a base qualification is meaningful before *this.

If sender or receiver ends on this->, it designates the first 4 bytes from the start
address of the current object.

dataname
This is a data name declared in the source program. dataname is specified as in the
source program.
You can reference data as in C/C++, but with the following exceptions:
An array name without a subscript addresses all array elements.
Array elements can only be referenced by means of subscripts, not pointers. For
more information on working with arrays, see the section “Subscript notation” on
page 30.

You can specify dataname as follows. You can also combine these formats (see the
section “Data names” on page 29):

Subscript notation: dataname [subscript] {...}
Pointer notation: dataname1 -> dataname2
Structure qualification: superordinate dataname• {...} dataname
Dereferencing: [(]*{...} dataname[)]

You can transfer an entire structure by specifying the name of the structure as
sender.
You can transfer an entire array by specifying the name of the array without
subscript as sender. There is one exception: the names of formal array parameters.
With them you reference not the array, but just its address.

AID commands %MOVE

U6148-J-Z125-8-76 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

If you specify the name of a structure or array as receiver, the structure or array will
be overwritten in a length equal to that of sender, beginning with the start address,
without reflecting a division into components or elements.

⎧function ⎫
⎨L'label' ⎬
⎩S'[f-]n[:a]'⎭

Statement names and source references are address constants. They can only be
specified as sender. The address held in the address constant is transferred.
A following pointer operator (->) designates 4 bytes of the machine code located at
the corresponding address. You can use %DISASSEMBLE to output the machine
instructions in preparation for a length modification, should one be necessary.
function[%al4]->, L'label'-> and S'[f-]n[:a]'-> can be used as sender and as
receiver (see Examples 4 on page 207 and 6 on page 207).

function
This is the name of a function, as declared in the source program, or the name
of a library function. It references the start address of the function prolog that is
generated by the compiler (see PROC=function on page 198 and the chapter
“C++-specific addressing” on page 57).

Virtual functions can be addressed with the following syntax:
p->n'function(signature)'

p is a pointer variable that points to the class object containing the desired
member function. If p cannot be accessed from the current interrupt point, it
must be qualified in accordance with its scope. If the interrupt point is located
in the virtual function itself, you can reference the prolog address of the current
function by using the this pointer instead of p (see the description of this on
page 64 and section “Virtual functions” on page 73).

If you want to access a function addressed via a pointer to member, you can
use one of the following two methods:

You designate the class object by name and enter •* as the dereferencing
operator as follows:

- -

[qua•]object•*[object•][class::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

%MOVE AID commands

202 U6148-J-Z125-8-76

- -

[qua•]pointer->*[object•][class::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.
The name of the pointer to function member must be entered on the right of the
dereferencing operator. This may need to be preceded by the object containing
the definition of the pointer to function member and the class qualification
needed for unique addressing within the object if the pointer to function member
cannot be reached from the interrupt point by some other means.

If you want to transfer or overwrite the instruction code of a function addressed
via a pointer to member with %MOVE, note that you cannot directly append the
pointer operator to one of the syntaxes above. You would have to first switch to
machine code level with a type modification, i.e. %al4, by using the following
syntax:

dereferenced-pointer-to-function-member %al4->

This designates the first 4 bytes of the instruction code located at the prolog
address.

More details on working with a pointer to function member can be found on
page 79.

L’label’
This designates the address of the first executable statement after a label.
label is the name of a label as declared in the source program.

S’[f-]n[:a]’
is a source reference and designates the address of an executable statement.
It is constructed from the line number (n) and, if present, the FILE number (f)
and the relative statement number within the line (a).
If the source reference is located in a function which was created from a function
template via instantiation or the function containing the source reference is
defined in a class template instance, you have to prepend the appropriate
PROC qualification to the source reference if ambiguity occurs.

AID commands %MOVE

U6148-J-Z125-8-76 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

keyword
specifies an execution counter, the program counter, or a register. keyword may only
be preceded by a base qualification.

%•subcmdname Execution counter
%• Execution counter of the current subcommand
%PC Program counter
%n General register, 0 Î n Î 15
%nD|E Floating point register, n = 0,2,4,6
%nQ Floating point register, n = 0,4
%nG AID general register, 0 Î n Î 15
%nGD AID floating point register, n = 0,2,4,6

compl-memref
compl-memref may contain the following operations (see the section on “Complex
memory references” in the AID Core Manual [1]):
– byte offset (•)
– indirect addressing (->)
– type modification (%A, %E, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

If compl-memref begins with an address constant (such as a source reference or a
label), the pointer operator (->) must come next. A label must always be placed
within L'...' in such cases. Without the pointer operator, address constants can
be used in compl-memref wherever hexadecimal numbers are also allowed.

After byte offset (•) or a pointer operation (->), the implicit storage type and implicit
length of the original address are lost. At the calculated address, storage type %X
with length 4 applies to the sender, if no value for type and length has been explicitly
specified by the user. If you specify a complex memory reference as the receiver,
the area which can be overwritten extends from the start address of compl-memref
to the end of the memory occupied by your program. However, the most you can
move with one %MOVE command is 3900 bytes. A type modification at the end of
compl-memref is pointless, since transfers with %MOVE are always in binary form.
However, a type modification may be necessary before a pointer operation (->).

Example: %3g.2%al2->
The last two bytes of the AID register %3G are used as an address.

The assigned memory area for any operand in a complex memory reference must
not be exceeded as the result of byte offset or length modification; otherwise AID
does not execute the command and writes an error message. By combining the
address selection (%@) with the pointer operator (->) you can exit from the
symbolic level. You may then use the address of a data item without having to take
note of its area limits.

%MOVE AID commands

204 U6148-J-Z125-8-76

Example:
The arrays name and name1 are of type char and occupy 5 bytes each. The last
2 bytes of name as well as the following 3 bytes are to be transferred to name1.
%move name.3%l5 into name1
This command is rejected by AID because the memory area of name was violated.
The command should read:
%move %@(name)->.3%l5 into name1

& is the address operator. You can use it to define the start address of a data item, a
class object or a function as the sender.

The address operator & can also be used to determine the relative address of a
dynamic data member of a class, provided you observe the following:

– If the interrupt point is located outside the class containing the data member,
you should enter the appropriate class qualification after the address operator,
and then the name of the data item.

– If the interrupt point is located in a dynamic member function of the class, you
will need to enter a base or area qualification (S, PROC or :: qualification) before
the address operator so that AID can access the class from “outside”, so to
speak.

Note that in contrast to the address selector %@(...) (see page 159), the address
operator is purely a “high-level” function and thus cannot be applied on complex
memory references.

For more details on the address operator, see also the section “The address
operator & and the address selector %@(...)” on page 42.

sizeof()
is the length operator. The length of a data item or class is transferred.
To determine the length of a class, you may specify the name of the class itself or
an object of the class as operands. You will receive the number of bytes occupied
by the dynamic data members of the class and by the auxiliary variables generated
by the compiler (if any).
You may specify the name of a namespace here, but only in the path to a
component of the namespace.
Bit-field and register variables are not allowed here.

The length operator is described in detail in the section “Length operator sizeof()
and length selector %L(...)” on page 47.

AID commands %MOVE

U6148-J-Z125-8-76 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%@(...)
The address selector enables you to use the start address of a data item, of a class
object, or of a complex memory reference as sender. You can specify a class name
only in the path for the base class of an object of a derived class; this identifies the
start address of the dynamic data of the base class.
You can only specify the name of a namespace here in the path to a component of
the namespace.
The address selector returns an address constant as its result (see the section on
“Address, type, and length selectors” in the AID Core Manual [1]).
The address selector cannot be applied to constants, including labels, source
references and functions.

%L(...)
The length selector allows you to use the length of a data item or of a class as
sender. If you apply the length selector to a class or a class object, the result
corresponds to that of sizeof() in C++, i.e. you receive the length of the dynamic
data and of the compiler-generated auxiliary variables, if any.
You can only specify the name of a namespace here in the path to a component of
the namespace.

The length selector returns an integer as its result (see the section on “Complex
memory references” in the AID Core Manual [1]). For bit-fields, the number of bytes
over which the bit-field extends is calculated and returned as the length.
Example: %move %l(var1) into %3g
The length of var1 will be transferred.

%L=(expression)
The length function enables you to calculate a value and store it in receiver.
expression is formed from the contents of memory, constants and integers together
with the arithmetic operators (+,-,*,/). Only memory reference contents which are
integers (type %F or %A) are permitted. The length function returns an integer (see
the AID Core Manual, section "Length modification" [1]).

i When using overloaded operators, note that AID does not emulate this pro-
cess, but always uses standard operators.

Example: %move %l=(var1) into %3g
The content of var1 is transferred, provided it is an integer (data type int);
otherwise AID issues an error message.

%MOVE AID commands

206 U6148-J-Z125-8-76

AID literal
The following AID literals (see the chapter on “AID literals” in the AID Core Manual
[1]) can be transferred using %MOVE:

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal
[{±}]n Integer
#'f...f' Hexadecimal number

Specifies whether AID is to generate a REP record after a modification has been performed.
With REP you temporarily deactivate a declaration made with the %AID command. If REP
is not specified and there is no valid declaration in the %AID command, no REP record is
created.

REP-OPERAND -

REP = {Y[ES] 3 NO}

- -

REP=Y[ES]
LMS correction statements (REPs) are created in SDF format for the update caused
by the current %MOVE command. If the object structure list is not available, no REP
records are generated, and AID will output an error message.

If receiver is not located completely within one CSECT or sender exceeds a length of
3900 bytes, AID will also output an error message and not write a REP record. To
obtain REP records despite this, you will have to spread the transfer operation over
several %MOVE commands (see also the manual “Debugging on Machine Code
Level” [2]).

AID stores the corrections in a file with the link name F6. The MODIFY-ELEMENT
statement must then be inserted in it for the LMS run. Care should therefore be
taken that no other outputs are written to the file with link name F6.

If no file with link name F6 is registered (see %OUTFILE), the REP is stored in the
file AID.OUTFILE.F6 created by AID.

REP=NO
No REPs are created for the current %MOVE command.

REP

AID commands %MOVE

U6148-J-Z125-8-76 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Examples

The following variables and arrays are defined in a C program:

C program
===
 int i_arr_1[10];
 int i_arr_2[20];
 unsigned long number;
 float x_arr[10];
===

1. %move i_arr_1 into i_arr_2

No subscript is given for either array; AID therefore transfers the entire array i_arr_1
left-justified in hexadecimal form to i_arr_2 without reflecting a division into individual
elements.

2. %move 20 into number

Into the variable number, which also occupies 4 bytes in the C program, AID writes a
word containing the value 20 (X’00000014’).

3. %move 20 into x_arr[5]

Note: As in example 2, a word with the contents X’00000014’ is written to x_arr[5],
which of course makes no sense when an array element of type float is involved. To
transfer the value 20 to x_arr[5], you would have to enter a %SET command (see
%SET on page 254) to perform conversion prior to the transfer.

4. %move x'58f0c160' into s'21:2'->.16 rep=yes

The code generated for statement S’21:2’ is changed: Beginning with the 16th position
after the start address of S’21:2’, 4 bytes are overwritten with the hexadecimal literal
X’58F0C160’. A REP record is created for the correction and written to the file
AID.OUTFILE.F6 or the file assigned to the link name F6.

5. %move s'12' into %2g

The address of the first statement in line 12 is written into the AID register %2G.

6. %move s'12'->%l=(s'13'-s'12') into Y::n'f()'->.#'20'

The machine code generated for statement S’12’ is moved. The length of this statement
is defined by the entry %l=(s'13'-s'12'). This length of machine code is moved into
member function Y::f(), starting at the address determined by the prolog address
and the byte offset (#’20’ = 32 Bytes).

%MOVE AID commands

208 U6148-J-Z125-8-76

7. %move ::a into *this.4

The program was interrupted in a dynamic function of a class. The %MOVE command
transfers the contents of global variable a into the current object associated with the
function. The object is overwritten starting with the fifth byte.

8. %move ::A::j into z.X.4

The %MOVE transfers static variable j from global class A into base class X of object
z in left-justified binary format starting with the fifth position.

AID commands %ON

U6148-J-Z125-8-76 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%ON

With the %ON command you define events and subcommands. When a selected event
occurs, AID processes the associated subcmd.

– With write-event you define the event associated with write access to an area of memory.
Whenever the program modifies the specified area of memory, AID is to interrupt
program execution in order to process subcmd.

– With event you define one of the other events (normal or abnormal program termination,
supervisor call (SVC), program error, etc.) for which AID is to interrupt program
execution in order to process subcmd.

– With subcmd you define a command or a command sequence and perhaps a condition.
When event occurs and this condition is satisfied, subcmd is executed.

DDD
Command Operand
DDD

 ⎧write-event⎫
%ON ⎨ ⎬ [<subcmd>]
 ⎩event ⎭

DDD

If the subcmd operand is omitted, AID inserts the subcmd <%STOP>.

The subcmd of an %ON command for an event which has already been defined does not
overwrite the existing subcmd, rather the new subcmd is prefixed to the existing
subcommand. This means that chained subcommands are processed in accordance with
the LIFO principle. This does not apply to write-event. Each new write-event overwrites the
previous one.

A defined event remains in effect until it is deleted with %REMOVE or the program termi-
nates. In addition, all definitions made with %ON are reset after a fork() call and in a
program invoked with exec().

The base qualification E=VM must apply for %ON (see %BASE).

The %ON command does not alter the program state.

The keyword %WRITE activates write monitoring. The keyword is followed in parentheses
by the area of memory to be monitored. If the program modifies a byte within the specified
area, program execution is interrupted after the instruction which modified the memory
location and subcmd is executed.

write-event

%ON AID commands

210 U6148-J-Z125-8-76

Only one write-event may be defined at any one time. Each new write-event you define
overwrites the previous one. There may, however, be other types of event defined at the
same time. If an event is reported at the same time as write-event, AID processes the
subcommand for write-event first.
You delete write-event by issuing %REMOVE %WRITE without specifying the memory
reference.

%ON write-event and other AID commands interact in the following ways:

– If a %CONTROLn or a %TRACE with a machine-oriented criterion is in progress, any
attempt to enter %ON write-event will be rejected with an error message.

– If a machine instruction has been overwritten with the AID-internal marker (X’0A81’) by
a %CONTROLn or a %TRACE with a symbolic criterion, AID does not recognize this
instruction’s write access.

– If a machine instruction has been overwritten with the AID-internal marker by the test
point defined in an %INSERT command, AID likewise does not recognize this
instruction’s write access.

To ensure the continuity of write monitoring it is advisable to kill all %CONTROLn and
%INSERT commands with %REMOVE and cancel any %TRACE which is still in progress
by specifying %RESUME after %ON.

The memory area to be monitored can be any memory object, no matter how it is
addressed. The area is defined by its start address and an implicit or explicit length speci-
fication. The length must be not exceed 64KB; if it does, an error message is issued.

If the address of the specified memory object is overloaded in a program with an overlay
structure, the corresponding area of the last segment loaded is monitored.

AID commands %ON

U6148-J-Z125-8-76 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

write-event-OPERAND -

 ⎧namespace[::...] ⎫
 o o
 o*this o
 o o
 o⎧this-> ⎫ o
 o⎨ ⎬[class[:: ...]] o
 o⎩object[•]⎭ o
 o o
%WRITE ([•][qua•] ⎨ ⎧[namespace::[...]]class::⎫ ⎬)
 o[⎨this-> ⎬[class::[...]]] dataname o
 o ⎩object• ⎭ o
 o o
 o⎧[namespace::[...]][class::[...]]function[%al4]⎫ o
 o⎨L'label' ⎬-> o
 o⎩S'[f-]n[:a]' ⎭ o
 o o
 ⎩compl-memref ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua One or more qualifications may be specified here if the area to be monitored cannot
be reached from the current interrupt point by other means or to address a data
name that is locally hidden at the interrupt point by an identically named definition.
It is sufficient to specify only the qualifications needed to provide a unique address
for the memory object.

S=srcname
Specified only if the memory area you want to monitor is not located in the
current translation unit (see the section “Qualifications” on page 21).

:: Use the two prepended colons to address a global data item that is locally
hidden at the interrupt point by a definition of the same name. You must also
place two colons before the name of a global data item or a function if either the
data or the function is not in the call hierarchy or if its definition only occurs after
the interrupt point. In contrast to the other qualifications, no period must be
entered between the two colons and the operands which follow.

PROC=function
Specified only if you want to access a data name which is defined in the current
function, but is hidden at the interrupt point by a definition with the same name.
You also specify a PROC qualification when you want to address a label or a
data name declared as static which is assigned in a function outside the current

%ON AID commands

212 U6148-J-Z125-8-76

call hierarchy (see the chapter “Addressing in C and C++ programs” on
page 21). If you specify a source reference that is located in a function template
instance or assigned to a function defined in a class template instance, (see the
section “Templates” on page 94), you also have to prepend the appropriate
PROC qualification if ambiguity occurs.
In the case of functions from C programs, function is the function name declared
in the source program, but without the parentheses or signature.
Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the namespace or class qualification is prepended to the function name.
The void signature may not be written, you enter just the two parentheses after
the function name in this case as is also possible in C++. The following syntax
results (f_template and signature are abbreviated for space reasons):

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_templ<arg[,...]>([sign])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several
BLK qualifications (see page 60) between the two PROC qualifications.
Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
Specified only when you want to reference a data name which is assigned to a
block within the current call hierarchy and is hidden at the interrupt point by a
definition with the same name, or when you want to want to reference a data
name declared as static and assigned to a block outside the current call
hierarchy (see the chapter “Addressing in C and C++ programs” on page 21).

You must also specify a BLK qualification if you want to designate a function
from a local class, which is defined in the specified block, in a subsequent
PROC qualification (see above, PROC=function).

The block name is formed from the line number (n), a possible FILE number (f)
and relative block number (b).

AID commands %ON

U6148-J-Z125-8-76 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

namespace
Name of a namespace declared in the source program.

You only specify the name of a namespace if the required namespace component
is not visible at the interrupt point. You use this to describe the addressing path to
classes, data or functions defined in the namespace (see the section
“Namespaces” on page 85).

Only the E or S qualification or the two colons (::) for the global namespace are
allowed before the namespace qualification.

{ class | this-> | object }
Name of a class, the this pointer, or a class object, declared in the source
program.
You specify class names, the this pointer with the appended pointer operator, and
the names of class objects in order to describe the address path to data members
assigned to classes (see the section “Classes” on page 63).

If the current interrupt point is located in a dynamic member function, you can
address the class data according to the scope rules known from C++.

You can reach the dynamic data of an object independent of the interrupt point via
the object name followed by a period, if the object is located in the current call
hierarchy.

Static data members can only be addressed individually. They can be reached via
the associated class name from any part of the program by means of the two subse-
quent colons. In the case of nested classes, the path to the data item includes all
class names from the outer to inner levels, each separated by two colons. The
outermost class name requires qualification corresponding to the scope. If the
program is interrupted in a member function of the class, the class scope rules
apply for accessing static data members, i.e. if the data is not hidden by a definition
with the same name, it can be accessed without qualification.

If the class is a class template instance, you have to use the following notation:
t'k_template<arg[,...]>'. If only one instance of the template exists, only
t'k_template' is required.

If the area operand ends with an object name, the dynamic data and, if present, the
compiler-generated auxiliary variables and the address of the virtual function table
are referenced, regardless of the current interrupt point. For derived classes, the
area to be monitored also includes the base classes. You can reference the same
area using *this, if the program was interrupted in a dynamic member function of
the class. To identify a base class in a derived class, you specify the name of the
desired base class in the path, with the object name or this-> as the starting point.
You only have to specify the class names required to uniquely identify the desired
member.

%ON AID commands

214 U6148-J-Z125-8-76

If object is not visible at the interrupt point, an appropriate qualification is required.
Only a base qualification is meaningful before this.
If the area operand ends on this->, you designate 4 bytes as of the start address
of the current object.

dataname
This is a data name declared in the source program. dataname is specified as in the
source program.

You can reference data as in C/C++, but with the following exceptions,:
An array name without a subscript addresses all array elements.
Array elements can only be referenced by means of subscripts, not pointers.
It is not possible to monitor a range of subscripts.
Note that when a subscripted entry is specified in an %ON %WRITE(...), the start
address and length of the area to be monitored is calculated by AID as soon as the
input is received. Consequently, even if the value of the subscript changes during
the program run and thus results in a different start address for the area specified
with dataname[subscript]{...}, %ON %WRITE(...) will continue to monitor only
the area that was applicable on entering the command.
If %AID C=YES is set (see page 115), AID combines the array elements of a char
array that can be addressed via the subscript on the extreme right into C strings.
When such a C string is specified, %ON %WRITE(...) monitors the entire array
underlying the C string and not just the C string up to the end criterion X’00’.
Arrays that are passed as parameters to a function are implemented therein as
pointers to the array in the calling program. In such cases, %ON %WRITE(...)
monitors these pointers, but not the associated array.
For more information on working with arrays, see also the section “Subscript
notation” on page 30.

If you specify a data member that is referenced via a pointer to member in %ON
%WRITE(...), AID will always monitor the memory area designated on input even if
the address entered in the pointer to member changes in the course of the program
and the pointer to member subsequently references some other data member.AID
combines the array elements of a char array that can be addressed via the sub-
script on the extreme right into C strings.

You can specify dataname as follows. You can also combine these formats (see the
section “Data names” on page 29):

Subscript notation: dataname [subscript] {...}
Pointer notation: dataname1 -> dataname2
Structure qualification: superordinate dataname• {...} dataname
Dereferencing: [(]*{...} dataname[)]
Pointer to member dataname1•*datanname2 or
 dereferencing: dataname1->*datanname2

AID commands %ON

U6148-J-Z125-8-76 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

⎧function[%al4]⎫
⎨L'label' ⎬->
⎩S'[f-]n[:a]' ⎭

This designates 4 bytes of machine code starting at the address stored in one of the
address constants. To have a different number of bytes monitored you should
specify a suitable length modification.

function
This is the name of a function, as declared in the source program, or the name
of a library function. It references the start address of the function prolog that is
generated by the compiler (see PROC=function on page 211 and the chapter
“C++-specific addressing” on page 57).

Virtual functions can be addressed with the following syntax:
p->n'function(signature)'

p is a pointer variable that points to the class object containing the desired
member function. If p cannot be accessed from the current interrupt point, it
must be qualified in accordance with its scope. If the interrupt point is located in
the virtual function itself, you can reference the prolog address of the current
function by using the this pointer instead of p (see the description of this on
page 64 and the section “Virtual functions” on page 73).

If you want to access a function addressed via a pointer to member, you can
use one of the following two methods:

You designate the class object by name and enter •* as the dereferencing
operator as follows:

- -

[qua•]object•*[object•][class::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

- -

[qua•]pointer->*[object•][class::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.

%ON AID commands

216 U6148-J-Z125-8-76

The name of the pointer to function member must be entered on the right of the
dereferencing operator. This may need to be preceded by the object containing
the definition of the pointer to function member and the class qualification
needed for unique addressing within the object if the pointer to member cannot
be reached from the interrupt point by some other means.

If you want to monitor the instruction code of a function addressed via a pointer
to member with %ON %WRITE(...), note that you cannot directly append the
pointer operator to one of the syntaxes above. You would have to first switch to
machine code level with a type modification, i.e. %al4, by using the following
syntax:

dereferenced-pointer-to-function-member %al4->

This designates the first 4 bytes of the instruction code located at the prolog
address.

More details on working with a pointer to function member can be found on
page 79.

L’label’
This designates the address of the first executable statement after a label.
label is the name of a label as declared in the source program.

S’[f-]n[:a]’
is a source reference and designates the address of an executable statement.
It is constructed from the line number (n) and, if present, the FILE number (f)
and the relative statement number within the line (a).
If the source reference is located in a function which was created from a function
template via instantiation or the function containing the source reference is
defined in a class template instance, you have to prepend the appropriate
PROC qualification to the source reference if ambiguity occurs.

compl-memref
The following operations may occur in compl-memref (see also the section on
“Complex memory references” in the AID Core Manual [1]):
– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

compl-memref designates an area of 4 bytes, starting with the calculated address. If
a different number of bytes is to be monitored, compl-memref must end with the
appropriate length modification. When modifying the length of data items, you must
pay attention to area limits or switch to machine code level using %@(...)->.
If compl-memref begins with a function name, label or source reference, the pointer

AID commands %ON

U6148-J-Z125-8-76 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

operator (->) must come next. Labels in compl-memref must then be specified within
L'...'. Without the pointer operator, function names, labels and source refer-
ences can be used wherever hexadecimal numbers are also allowed.

A keyword is used to specify an event (program error, program termination, supervisor call,
etc.) upon which AID is to process the subcmd specified. An event code which has been
processed by an STXIT routine can no longer be responded to with a subcmd assigned to
the event.
If several %ON commands with different event declarations are simultaneously active and
satisfied, AID processes the associated subcommands in the order in which the keywords
are listed in the table below. If various %TERM events are applicable, the associated
subcommands are processed in the opposite order in which the %TERM events have been
declared (LIFO rule as for chaining of subcommands). If a write-event is reported at the
same time as some other event, AID processes the subcommand for write-event first.
For information on selection of the SVC numbers and event codes see the "Executive
Macros" manual (page 341).

It must be noted that an exec() call cannot be monitored with %ON %TERM. The program is
overloaded and thereby terminated by the exec() call, but this is not a program termination
in the sense of %ON %TERM. You have to set %AID EXEC=ON to monitor an exec() call. This
causes the program to be halted immediately after the exec().

event

event subcmd is processed:

%ERRFLG (z) after

before

the occurrence of an error with the specified
event code and
abortion of the program.

%INSTCHK after

before

the occurrence of an addressing error, an
impermissible supervisor call (SVC), an
operation code which cannot be decoded, a
paging error or a privileged operation and
abortion of the program.

%ARTHCHK after

before

the occurrence of a data error, divide error,
exponent overflow or a zero mantissa and
abortion of the program.

%ABNORM after the occurrence of one of the errors covered by
the previously described events or a DMS error
(as of BS2000 V10).

Table 5: %ON command events and their meanings

%ON AID commands

218 U6148-J-Z125-8-76

z Is an integer, where 1 ≤ z ≤ 255. z can be specified as an unsigned decimal number
of up to three digits or as a two-digit hexadecimal number (#’ff’). No check is made
whether the specified event code or the SVC number is meaningful or permissible.

Is processed whenever the specified event occurs in the course of program execution. If the
subcmd operand is omitted, AID inserts a <%STOP>.
A detailed description of subcmd can be found in the “Subcommand“ chapter of the AID Core
Manual [1].

subcmd-OPERAND -

 ⎧AID-command ⎫
<[subcmdname:] [(condition):] [⎨ ⎬ {;...}]>
 ⎩BS2000-command⎭

- -

%ERRFLG after the occurrence of an error with any event code.

%SVC(z) before execution of the supervisor call (SVC) with the
specified number.

%SVC before execution of any supervisor call (SVC).

%LPOV(name) after loading of the segment with the specified name.

%LPOV after loading of any segment
(to list the name enter %D %LINK).

%TERM(N[ORMAL]) before normal termination of a program.

%TERM(A[BNORMA
L])

before abnormal termination of a program, but after
output of a memory dump.

%TERM(D[UMP]) before output of a memory dump with subsequent termi-
nation of the program.

%TERM(S[TEP]) before termination of the program with subsequent
branching within procedures.

%TERM before termination of a program by any of the %TERM
events described above. An exec() call cannot
be monitored with this.

%ANY before termination of a program due to a program error
or the %TERM events described above or a DMS
error (as of BS2000 V10).

subcmd

event subcmd is processed:

Table 5: %ON command events and their meanings

AID commands %ON

U6148-J-Z125-8-76 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

A subcommand may comprise a name, a condition and a command part. Every
subcommand has its own execution counter. The command portion can consist of either an
individual command or a command sequence; it may contain AID and BS2000 commands
as well as comments.

If the subcommand contains a name or condition but no command part, AID merely incre-
ments the execution counter when the declared event occurs.

subcmd does not overwrite an existing subcommand for the same event. Instead, the new
subcommand is prefixed to the existing one. It is not possible to concatenate write events
in this way.

The commands %CONTROLn, %INSERT, and %ON can be used in subcmd in combination
with %ON. In other words, several monitoring commands may be nested. For an example
refer to the description of %INSERT.

The commands in a subcmd are executed one after the other; then the program is continued.
The commands for runtime control immediately alter the program state, even in a
subcommand. They abort subcmd and continue the program (%CONTINUE, %RESUME,
%TRACE) or halt it (%STOP). They should only be placed as the last command in a subcmd,
since any subsequent commands in subcmd will not be executed. For the same reason, a
%REMOVE for the current subcommand or for the %ON command itself or for the
associated event makes sense only as the last command in subcmd.

i Address operands in subcommands are not automatically supplemented on input
with the qualifications that correspond to the current interrupt point. If the defined
event occurs in the subsequent debugging run and AID interrupts the program to
process subcmd, only the data and functions that belong to the same scope as the
address at which the event occurred can be referenced without qualification with
AID commands from subcmd . The interrupt point can also be in a routine of the
runtime system, which means that in this case all user program data and functions
can only be accessed with qualification.

Examples

1. %on %errflg (108)
%on %errflg (#'6c')

Each specification designates the same program error (mantissa equals zero).

2. %on %errflg (107) <%d 'error'>

This event code does not exist; the subcmd defined for this event will therefore never be
started.

%ON AID commands

220 U6148-J-Z125-8-76

3. tDD?
3 /%on %any 3
3 /%resume 3
3 STOPPED AT SRC_REF: 59, SOURCE: VPTR.C , PROC: g(void) , 3
3 EVENT: ADDRESS ERROR 3

Your program was interrupted due to an error. In addition to the kind or error, AID
outputs the source reference as well as the names of the translation unit and the
function in which the error that caused the interrupt occurred.

4. tDD?
3 /%on %write(page) <wr1: %d 'Write access to page'> 3
3 /%r 3
3 3
3 Write access to page 3
3 Write access to page 3
3 Write access to page 3
3 Write access to page 3
3 Write access to page 3

Five write-access operations on page were performed by the program.

5. tDD?
3 /%on %write(page) <wr1:> 3
3 /%on %term <%display %.wr1; %stop> 3
3 /%r 3
3 % CCM0998 CPU TIME USED: 0.0323 SECONDS 3
3 CURRENT PC: 01015846 CSECT: IT0TRM@@ ******************************3
3 %.WR1 = 5 3
3 STOPPED AT V'1015846' = IT0TRM@@ + #'2E' , EVENT: TERM (NORMAL,PROGRAM,3
3 NODUMP)

This time only an execution counter %.WR1 is set up in a %WRITE subcommand. The
counter is incremented by one on each pass. On program termination, event %TERM,
the program is halted and the execution counter and a STOP message are displayed.

AID commands %OUT

U6148-J-Z125-8-76 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%OUT

With %OUT you define the media via which data is to be output and whether output is to
contain additional information, in conjunction with the output commands %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP and %TRACE.

– With target-cmd you specify the output command for which you want to define medium-
a-quantity.

– With medium-a-quantity you specify which output media are to be used and whether or
not additional information is to be output.

DDD
Command Operand
DDD

%OUT [target-cmd [medium-a-quantity][,...]]

DDD

In the case of %DISPLAY, %HELP and %SDUMP commands, you may specify a medium-
a-quantity operand which for these commands temporarily deactivates the declarations of
the %OUT command. %DISASSEMBLE and %TRACE include no medium-a-quantity
operand of their own; their output can only be controlled with the aid of the %OUT
command.

Before selecting a file as the output medium via %OUT, you must issue the %OUTFILE
command to assign the file to a link name and open it; otherwise AID creates a default
output file with the name AID.OUTFILE.Fn.
The declarations made with the %OUT command remain in effect until they are overwritten
by a new %OUT command or until a /LOGOFF or /EXIT-JOB is issued.

An %OUT command without operands assumes the default value T=MAX for all
target-cmds.

%OUT may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand. %OUT does not alter the program state.

designates the command for which the declarations are to apply. Any of the commands
listed below may be specified.

⎧%D[IS]A[SSEMBLE]⎫
o%D[ISPLAY] o
⎨%H[ELP] ⎬
o%SD[UMP] o
⎩%T[RACE] ⎭

target-cmd

%OUT AID commands

222 U6148-J-Z125-8-76

In conjunction with target-cmd this specifies the medium or media via which output is to take
place, as well as whether or not AID is to output additional information pertaining to the AID
work area, the current interrupt point and the data to be output.

If the medium-a-quantity operand has been omitted, the default value T=MAX applies for
target-cmd.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

For more details on medium-a-quantity, see the chapter “Medium-a-quantity operand” in the
AID Core Manual [1].

T Terminal output
H Hardcopy output

(includes terminal output and cannot be combined with T)
Fn File output
P Output to SYSLST

i AID does not take into account XMAX and XFLAT modes for outputting the %OUT
log. Instead, it generates the default value (T=MAX).

medium-a-quantity

MAX Output with additional information

MIN Output without additional information

XMAX Definition of XMAX mode for the corresponding command %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP or %TRACE.

XFLAT Definition of XFLAT mode for the corresponding command %DISASSEM-
BLE, %DISPLAY, %HELP, %SDUMP or %TRACE.

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

AID commands %OUT

U6148-J-Z125-8-76 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Examples

1. %outfile f1=output
%out %sdump t=min,f1=max

Data output of the %SDUMP command is to be output to the terminal in abbreviated
form, and parallel to this also, with additional information to the file with link name F1.
Prior to this the file OUTPUT was assigned to the link name F1.

2. %out %trace f1=max

The TRACE log with additional information is output only to the file with link name F1.

3. %out %trace

For the %TRACE command, this specifies that previous declarations for output of data
are erased, and that the default value T=MAX applies.

%OUTFILE AID commands

224 U6148-J-Z125-8-76

%OUTFILE

%OUTFILE assigns output files to AID link names F0 through F7 or closes output files. You
can write output of the commands %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and
%TRACE to these files by specifying the corresponding link name in the medium-a-quantity
operand of %OUT, %DISPLAY, %HELP or %SDUMP. If a file does not yet exist, AID will
make an entry for it in the catalog and then open it.

– With link you select a link name for the file to be cataloged and opened or closed.

– With file you designate an output file.

DDD
Command Operand
DDD

%OUTFILE [link [= file]]

DDD

If you do not specify the file operand, this causes AID to close the file designated using link.
In this way an intermediate status of the file can be printed during debugging.

An %OUTFILE without operands closes all open AID output files. If you have not explicitly
closed an AID output file using the %OUTFILE command, the file will remain open until
LOGOFF or EXIT-JOB. The AID output files are also closed by a fork() or exec() call.

Without %OUTFILE, you have two options of creating and assigning AID output files:

1. Enter an ADD-FILE-LINK command for a link name Fn which has not yet been
reserved. Then AID opens this file when the first output command for this link name is
issued.

2. Leave the creation, assignment and opening of files to AID. AID then uses default file
names with the format AID.OUTFILE.Fn corresponding to link name Fn.

%OUTFILE does not alter the program state.

Designates one of the AID link names for output files and has the format Fn, where n is a
number with a value 0 ≤ n ≤ 7.

The REP records for the %MOVE command are written to the output file with link name F6
(see also the %AID and %MOVE commands); so make sure that you do not write any other
output to the file with the link name F6.

link

AID commands %OUTFILE

U6148-J-Z125-8-76 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Specifies the fully-qualified file name with which AID catalogs and opens the output file. Use
of an %OUTFILE command without the file operand closes the file assigned to link name
Fn.

file

%QUALIFY AID commands

226 U6148-J-Z125-8-76

%QUALIFY

With %QUALIFY you define qualifications. In the address operand of another command
you may refer to these qualifications by prefixing a period.
Use of this abbreviated format for a qualification is practical whenever you want to
repeatedly reference addresses which require the same qualification.

– By means of the prequalification operand you define qualifications which you would like
to incorporate in other commands by referencing them via a prefixed period.

DDD
Command Operand
DDD

%Q[UALIFY] [prequalification]

DDD

A prequalification specified with the aid of the %QUALIFY command applies until it is
overwritten by a %QUALIFY with a new prequalification or revoked by a %QUALIFY without
operands, or until /LOGOFF or /EXIT-JOB. %QUALIFY specifications are also reset by a
fork() or exec() call.

On input of a %QUALIFY command, only a syntax check is made. Whether the specified
link name has been assigned a dump file or whether the specified translation unit has been
loaded or included in the LSD records is not checked until subsequent commands are
executed and the information from prequalification is actually used in addressing.

The declarations of the %QUALIFY command are only used by commands which are input
subsequently. %QUALIFY has no effect on any subcommands in %CONTROL, %INSERT
and %ON commands entered prior to this %QUALIFY command, even if they are executed
after it.

When entering the %QUALIFY command, the current setting for handling
uppercase/lowercase characters (%AID LOW={ON|OFF|ALL}) must be taken into account
to ensure that the prequalification produces the correct extensions in the address operands
of subsequent commands.

%QUALIFY may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

The %QUALIFY command does not alter the program state.

AID commands %QUALIFY

U6148-J-Z125-8-76 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Designates a base qualification or one or more area qualifications. Multiple qualifications
must be delimited by a period.

The reference to a prequalification defined in the %QUALIFY command is effected by
prefixing a period to the address operands of subsequent AID commands.

prequalification-OPERAND -

 ⎧VM⎫ ⎧[[[qua]•]PROC=function] ⎫
[E=⎨ ⎬] [[•]S=srcname] ⎨ ⎬
 ⎩Dn⎭ ⎩[[•]BLK='[f-]n[:b]'] ⎭

- -

E={VM|Dn}
Must be specified if you want to use a base qualification which is different from the
current one (see %BASE command).

S=srcname
Designates a translation unit (see the section “Qualifications” on page 21).

[qua•]PROC=function
Designates a function.

In the case of functions from C programs, function is the function name declared in
the source program, but without the parentheses or signature.

Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the namespace or class qualification is prepended to the function name.
The void signature may no longer be written. You enter just the two paren-
theses after the function name as in C++. This results in the following syntax
(f_template and signature are abbreviated below for space reasons):

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_templ<arg[,...]>([sign])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

prequalification

%QUALIFY AID commands

228 U6148-J-Z125-8-76

qua
If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several
BLK qualifications (see page 60) between the two PROC qualifications.

Syntax for qua:

- -

PROC=superordinate_function[BLK=’[f-]n[:b]’•[...]]

- -

Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
Designates a block. As in the case of names for source references, block names
are constructed from the line number (n) and, if appropriate, the FILE number (f)
and the relative block number (b).

AID commands %QUALIFY

U6148-J-Z125-8-76 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Examples

1. %qualify e=d1.s=n'parr.c'.proc=foo
%d .str[1]

Because of the prequalification, this %DISPLAY command has the same effect as the
following %DISPLAY command in full format:

%d e=d1.s=n'parr.c'.proc=foo.str[1]

2. %qualify s=n'bcl.c'
%set .::a into b

This qualification designates the translation unit BCL.C. Because of the prequalification,
the %SET command has the same effect as the following %SET command in full
format:

%set s=n'bcl.c'.::a into b

The global variable a of the compilation unit BCL.C is transferred into b.

3. %qualify s=n'examp.c'.proc=main
%d .x_arr[i]

As in examples 1 and 2, the prequalification from the %QUALIFY command is written
before the period in the %DISPLAY command.
The prequalification applies here not only to the array x_arr, but also to the specified
subscript i. You thus address the i-th element of the array x_arr from the function
main in the translation unit EXAMP.C.

%REMOVE AID commands

230 U6148-J-Z125-8-76

%REMOVE

With the %REMOVE command you revoke the debug declarations for the %CONTROLn,
%INSERT and %ON commands.

– With target you specify whether AID is to revoke all effective declarations for a particular
command or whether only a specific test point or event or a subcommand is to be
deleted.

DDD
Command Operand
DDD

%REM[OVE] target

DDD

If a subcommand contains a %REMOVE which deletes this subcommand or the associated
monitoring condition (test-point, event or criterion), any subsequent commands in subcmd will
not be executed. Such an entry is therefore only meaningful as the last command in a
subcommand.

%REMOVE does not alter the program state.

Designates a command for which all the valid declarations are to be deleted, or a test-point
to be deleted, or an event which is no longer to be monitored, or a subcommand to be
deleted. If target is within a nested subcommand and therefore has not yet been entered, it
cannot be deleted.

target-OPERAND -

⎧%C[ONTROL] | %C[ONTROL]n ⎫
o o
o%IN[SERT] | test-point o
⎨ ⎬
o%ON | %WRITE | event o
o o
⎩%•[subcmdname] ⎭

- -

%C[ONTROL]
The declarations for all %CONTROLn commands entered are deleted.

%C[ONTROL]n
The %CONTROLn command with the specified number (1 ≤ n ≤ 7) is deleted.

target

AID commands %REMOVE

U6148-J-Z125-8-76 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%IN[SERT]
All test points which have been entered are deleted.

test-point
The specified test-point is deleted. test-point is specified as described for the
%INSERT command. Within the current subcommand, test-point can also be
deleted with the aid of %REMOVE %PC->, as the program counter (%PC) contains,
at this point in time, the address of the test-point.

%ON All events which have been entered are deleted.

%WRITE
The write-event is deleted.

event The specified event is deleted. event is specified with a keyword, as under the %ON
command. The event table with the keywords and explanations of the individual
events can be found under the description of the %ON command.

The following applies for the events %ERRFLG(z), %SVC(z) and %LPOV(name):

– %REMOVE event(z | name) deletes only the event with the specified
number/name.

– %REMOVE event without specification of a number/name deletes all events of
the corresponding group.

%•[subcmdname]
deletes the subcommand with the name subcmdname in a %CONTROLn or
%INSERT command.

%• is the abbreviated form of a subcommand name and can only be used within
the subcommand. %REMOVE %• deletes the current subcommand.

As %CONTROLn cannot be chained, the associated %CONTROLn will be deleted
as well. Deleting the subcommand therefore has the same effect as deleting the
%CONTROLn by specifying the appropriate number.

On the other hand, several subcommands may be chained at a test-point of the
%INSERT command. With the aid of %REMOVE %•[subcmdname] you can delete an
individual subcommand from the chain, while further subcommands for the same
test-point will still continue to exist (see the “Subcommand” chapter in the AID Core
Manual [1]). If only the subcommand designated subcmdname was entered for the
test-point, the test-point will be deleted along with the subcommand.

%REMOVE %•[subcmdname] is not permitted for %ON.

%REMOVE AID commands

232 U6148-J-Z125-8-76

Examples

1. %c1 %call <call: %d %.>
%rem %c1
%rem %.call

Both %REMOVE commands have the same effect: %C1 is deleted.

2. %in s'58' <sub1: %d char1, char2, numb>
%in s'58' <sub2: %d result; %rem %.>
%r
...
%rem s'58'

When the test point S’58’ is reached, result is output, and the subcommand SUB2 is
deleted. This subcommand is thus executed only once. char1, char2 and numb are
then output, and the program is continued. Whenever the program run reaches the test
point S’58’, subcommand SUB1 is executed. %rem s'58' deletes the test point later.
%rem %.sub1 would have the same effect, since this subcommand is the only
remaining entry for test point S’58’

AID commands %RESUME

U6148-J-Z125-8-76 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%RESUME

With %RESUME you start the loaded program or continue it at the interrupt point. The
program executes without tracing.
The continuation address for the program run cannot be influenced with %RESUME. You
can define another continuation point only by using %SET to change the program counter
(%PC) (see the description of the command %SET keyword on page 203).

%RESUME terminates all active %TRACE commands, but %CONTINUE has no effect on
%TRACE.

DDD
Command Operand
DDD

%R[ESUME]

DDD

If a %RESUME command is contained within a command sequence or subcommand, any
commands which follow it will not be executed.

If the %RESUME command is the only command in a subcommand, the execution counter
is incremented and any active %TRACE deleted.

The %RESUME command alters the program state.

%SDUMP AID commands

234 U6148-J-Z125-8-76

%SDUMP

With %SDUMP you output a symbolic dump; you can dump individual data, all data of the
current call hierarchy, or the current call hierarchy itself. The current call hierarchy extends
from the function or block where the program was interrupted to the main program. Output
is via SYSOUT or SYSLST or into a cataloged file.

– With dump-area you designate the data or data areas which AID is to output, or you
specify that AID is to output the current call hierarchy.

– With medium-a-quantity you specify which output media AID is to use, and whether or
not additional information is to be output. This operand is used to deactivate for the
current %SDUMP command a declaration made using the %OUT command.

DDD
Command Operand
DDD

%SD[UMP] [[dump-area][,...] [medium-a-quantity][,...]]

DDD

If translation units for which there are no LSD records, not even in a PLAM library, are
included in the hierarchy, the user can only issue the %SDUMP command individually for
translation units for which LSD records have been loaded or can be loaded from a PLAM
library (see %SYMLIB command).

%SDUMP without operands outputs all data of the current call hierarchy to the extent that
AID can access the associated LSD records.
Data which has multiple definitions is also output multiple times. Data that was assigned an
alias name with %ALIAS is listed under its original name.

%SDUMP %NEST outputs the current call hierarchy, i.e. the source reference of the
interrupt point, the numbers of the blocks, and the names of the functions and of the
program that are active at the interrupt point. AID also outputs the current call hierarchy for
programs for which no LSD records were generated (see also Example 3 on page 247).

If the current interrupt point is located in a recursive function, %SDUMP counts each call of
this function, i.e. the data of the function is output for each call, and for %SDUMP %NEST,
the function is listed as many times as it was called up to the interrupt point.

You cannot use %SDUMP immediately after the program is loaded. Only when the program
is before the first executable statement does a call hierarchy exist, and AID can then
allocate the appropriate name areas. You interrupt the program with one of the following
commands before the first executable statement:

/%insert main;%r or

/%trace 1 in s=srcname

AID commands %SDUMP

U6148-J-Z125-8-76 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

If you use %TRACE when debugging a C++ program that includes classes with virtual
functions or constructors, the program will not halt in main, but in a compiler-generated
function with the name _ _STI_ _. This function invokes the constructors of global objects
and sets up the virtual function tables. AID indicates the function name _ _STI_ _ in the
STOP message and in the current call hierarchy.
The destructors of global objects are called by routines of the runtime system on completion
of main. Their names do not appear in the call hierarchy.

dump-area can be repeated up to 7 times. If you enter a name for dump-area which is not
contained in the LSD records, AID issues an error message. The other dump-areas of the
same command will be processed normally.

With this command the user can work either in the loaded program or in a dump file.

The %SDUMP command does not alter the program state.

Describes which information AID is to output. AID can output the current call hierarchy, all
data of the current call hierarchy, all data of a translation unit, function or block, or individual
data items.

AID edits the data items in accordance with their definition in the source program.

If a dataname, class, object or function has multiple definitions in the current call hierarchy, it
is output more than once, unless dump-area has been restricted by a qualification. Note that
the global area is not treated as part of the current call hierarchy. To output a global data
item of the same name, you must specify %DISPLAY [S=srcname•]::dataname. This also
applies to class, object or function.

In an %SDUMP S=srcname for all data items of a translation unit, by contrast, AID includes all
global data items and the addresses of all functions defined or declared and used in that
translation unit. You cannot use %SDUMP with a :: qualification to explicitly address the
global area.

dump-area

%SDUMP AID commands

236 U6148-J-Z125-8-76

dump-area-OPERAND -

 ⎧namespace[::...] ⎫
 o o
 o*this o
 o o
 o⎧[namespace::[...]]class[::]⎫ o
 o⎨this-> ⎬[class[:: ...]] o
[•][qua[•]][⎨⎩object[•] ⎭ ⎬]
 o o
 o ⎧[namespace::[...]]⎫ ⎧dataname⎫ o
 o[⎨this-> ⎬[class::[...]]]⎨function⎬ o
 o ⎩object• ⎭ ⎩object ⎭ o
 o o
 ⎩%NEST ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part. If the addressing ends in a qualification,
do not enter the terminating period.

qua Specify one or more qualifications if the interrupt point is not within the scope of the
addressed object or if the memory object is not visible at the interrupt point. Only
enter the qualification required for unique addressing.
The :: qualification cannot be used in this case. You can therefore only output data
and functions which need the :: qualification for access with %DISPLAY, but not with
%SDUMP.
If dump-area ends with a qualification, all data and functions of the program section
designated by the qualification are listed.

E ={VM | Dn}
If the addressing ends with the base qualification, you will receive all
namespaces, classes, class objects, data and functions of the relevant call
hierarchy.
Otherwise, specify a base qualification only if the current base qualification is
not to apply to dump-area.
Only a base qualification is possible before the %NEST keyword.

S=srcname
If the addressing ends with the S qualification, you will get all namespaces,
classes, class objects, data and functions of the corresponding translation unit.
The translation unit must be located in the current call hierarchy.
Otherwise, you specify an S qualification only to reference a class object, a data
name, a function or a block from another translation unit.

AID commands %SDUMP

U6148-J-Z125-8-76 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

PROC=function
Restricts dump-area to the specified function. function must be located in the call
hierarchy.

If the addressing ends with the PROC qualification, you will get all classes,
class objects, data and functions assigned to the name space of the corre-
sponding function.
Otherwise, you specify a PROC qualification only to reference a class, class
object, data name or function uniquely.

In the case of functions from C programs, function is the function name declared
in the source program, but without the parentheses or signature.

Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the function name is prepended with the namespace or class qualifi-
cation. The void signature may no longer be used. In this case, you only input
the two parentheses after the function name, as is also possible in C++. The
following syntax results (f_template and signature are abbreviated below for
space reasons):

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_templ<arg[,...]>([sign])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several
BLK qualifications (see page 60) between the two PROC qualifications.

Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
If the addressing ends with the BLK qualification, you will get all class objects
and data of the corresponding block. The block must be located in the current
call hierarchy.
Otherwise, you specify a BLK qualification only to reference a class, class
object or data name uniquely.

%SDUMP AID commands

238 U6148-J-Z125-8-76

If you want to use a PROC qualification to designate a function from a local
class, which is defined in an inner block, you have to prepend the corresponding
BLK qualification to the PROC qualification (see above, PROC=function).

NESTLEV= level-number

level-number can only be followed by dataname.
The %SDUMP command is to output a symbolic dump of all data defined at the
specified level or to output dataname defined at the specified level of the call
hierarchy.

namespace
Name of a namespace declared in the source program.

If the dump-area operand ends with the name of a namespace, AID lists all data and
functions defined in it. The functions are listed in standard C++ notation and the
start address of the associated prolog is output. With nested namespaces, the
contents of the inner levels are also output. If a namespace contains a using
directive to a further namespace, only the name of this is listed.

You only specify the namespace qualification in the addressing path to classes,
data or functions defined in the namespace if the required namespace component
is not visible at the interrupt point.

Only the E or S qualification are allowed before the namespace qualification.
You will find further information on namespaces in section “Namespaces” on
page 85.

{ class | this-> | object }
Name of a class, the this pointer, or the name of a class object, as declared in the
source program.
You specify class names, the this pointer with the appended pointer operator, and
the names of class objects in order to describe the address path to data members
(see the section “Classes” on page 63).

If the current interrupt point is located in a dynamic member function, you can
address the class data according to the normal C++ scope rules.

If an object is in the current call hierarchy, you can access the dynamic data of that
object independent of the interrupt point by means of the object name followed by
a period.

Static data members can be accessed at any point in the program via the
associated class names followed by the two colons. In the case of nested classes,
the path to the data item includes all the class names from the outermost to the
innermost level, separated by two colons each. The outermost class name requires

level-number A level number in the current call hierarchy

AID commands %SDUMP

U6148-J-Z125-8-76 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

qualification appropriate to the scope. If the program is interrupted in a member
function of the class, the class scope rules apply for accessing static data members,
i.e. if the data member is not hidden by a definition with the same name, it can be
accessed without qualification.

If the dump-area operand consists of one or more class names, the static data
members and all non-virtual member functions are listed. In the case of data, the
current content is output. Member functions are listed in standard C++ notation and
the start address of the associated prolog is shown. For derived classes, AID also
displays the base classes. Nested classes are shown together with the contents of
the inner levels.
If the dump-area operand ends with an object name, the dynamic data members are
also displayed by AID. The currently valid function is assigned to a virtual function
name. The same output can be obtained with %SDUMP *this, if the program is
interrupted in a dynamic member function of the class. To designate a base class
in a derived class, you specify the name of the desired base class in the path
starting from the object name or from this->.
object requires a qualification appropriate to its scope. Only a base qualification is
meaningful before this.

 dataname
This is a data name declared in the source program. dataname is specified as in the
source program.

You can reference data as in C/C++, but with the following exceptions:
An array name without a subscript addresses all array elements.
Individual array elements can be addressed only via subscripts, not via pointers.
Subscript ranges can also be displayed.
If %AID C=YES is set (see page 115), AID combines the array elements of a char
array that can be addressed via the subscript on the extreme right into C strings and
displays the contents of the array in the form of C string literals. For more informa-
tion on working with arrays, see also the section “Subscript notation” on page 30.

For variables of type long double, AID evaluates only the first 8 bytes.
Variables of type char are displayed in output type %C. If desired, you can also
display the corresponding numeric value by using a type modification (%A or %F;
see page 29 for details). The data types unsigned char and signed char, by con-
trast, are treated as small integer variables.

If dataname designates a pointer to member, the name of the class member currently
referenced by the pointer to member appears in the output. Note that you cannot
specify a dereferenced pointer to member with %SDUMP. In this case, you must
address the desired data item directly via the associated object.

dataname can be specified as follows. The formats can also be combined (see the
section “Data names” on page 29)

%SDUMP AID commands

240 U6148-J-Z125-8-76

Subscript notation: dataname [subscript] {...}
Pointer notation: dataname1 -> dataname2
Structure qualification: superordinate dataname• {...} dataname
Dereferencing: [(]*{...} dataname[)]

function
This is the name of a function as declared in the source program or the name of a
library function. The address of the first instruction of the compiler-generated func-
tion prolog is output (see PROC=function on page 237 and the chapter “C++-spe-
cific addressing” on page 57).

The following syntax is used to address virtual functions:
p->n'function(signature)'

p is a pointer variable that points to the class object containing the desired member
function. If p cannot be accessed from the current interrupt point, it must be
qualified in accordance with its scope. If the interrupt point is located in the virtual
function itself, you can reference the prolog address of the current function by using
the this pointer instead of p. (see the description of this on page 64 and the
section “Virtual functions” on page 73).

%NEST
An AID keyword which outputs the current call hierarchy.
For the lowest hierarchical level AID outputs the source reference of the interrupt
point and the number of the block or the name of the function. For higher hierarchi-
cal levels, for blocks AID outputs the source reference of the first executable state-
ment after exit from the block and the name of the function containing the block, or
the block number of the superordinate block. For functions it outputs the source ref-
erence of the function call and the name of the calling
function.

AID outputs the current call hierarchy even for programs for which no LSD records
exist. Note, however, that if the program is interrupted in the prolog of a library
function (e.g. after %INSERT library-function->;%R), the call hierarchy may not
include the direct caller of the library function, since AID cannot determine the full
call hierarchy until the prolog is traversed and the first executable statement of the
function is reached. If an LSD is available for the function, you can use %TRACE 1
%STMT to position onto the first executable statement of the function and you can
then display the complete call hierarchy with %SDUMP %NEST.

Note for users debugging on machine code level:
For C and C++ programs without LSD records, %SDUMP %NEST outputs the
addresses of the interrupt point, the CSECT names and the compiler-generated

AID commands %SDUMP

U6148-J-Z125-8-76 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

entry names of the functions that are part of the call hierarchy (see Example 3 on
page 247). Addresses, CSECT and entry names can be found in the object listing
of your program.

You can only specify a base qualification before %NEST.

Defines the medium or media via which output is to take place and whether or not AID is to
output additional information. If this operand is omitted and no declaration has been made
in the %OUT command, AID assumes the default value T = MAX.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

For more details on medium-a-quantity, see the chapter “Medium-a-quantity operand” in the
AID Core Manual [1].

TTerminal output
HHardcopy output
(includes terminal output and cannot be combined with T)
FnFile output
POutput to SYSLST

medium-a-quantity

MAX Output with additional information

MIN Output without additional information

XMAX Output as with MAX, but extended by the type information:
In addition, each data element is preceded by a type tag which defines the
type, size and output format of this data element. Syntax of the type tag:
<data-type(memory-size-in-bytes),output-format>

XFLAT Output as with XMAX, but with the following restrictions:
Only the topmost structure level is output for structured data types. In the
case of long data (e.g. long strings or arrays), the first elements are output.

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

%SDUMP AID commands

242 U6148-J-Z125-8-76

Data types

If you have specified the operand value XMAX or XFLAT, AID generates the output as with
MAX, extended by the following type tags:

<INT(size),D>
int-name = int-value

size Storage length in bytes.

int-name Specifies an element of the type integer.

int-value Decimal value (D); value of int-name.

<POINTER(size),X>
pointer-name = pointer-value

size Storage length in bytes.

pointer-name Specifies an element of the type pointer.

pointer-value Hexadecimal number (X); value of pointer-name.

<FLOAT(size),E>
float-name = float-value

size Storage length in bytes.

float-name Specifies an element of the type floating point number.

float-value Floating point number displayed as a decimal fraction with
exponent (E); value of float-name.

<CHARS(1),C>
char-name = |character|

char-name Specifies an element of the type character.

character The character as a printable character (C); value of char-name.
A non-printable character is displayed as |.|.

<CHARS(size),C>
chars-name = "string"

size Storage length in bytes.

chars-name Specifies an element of the type string, in other words an array
of the type character.

string String of printable characters (C); value of chars-name;
Non-printable characters are displayed as a hexadecimal value.

If string is longer than 80 characters, with XFLAT only the first 72
characters are output, followed by three periods ... in order to
display the incompleteness of the output. See also note 1 at the
end of the list.

<UNSIGN(size),D>
unsign-name = unsign-value

size Storage length in bytes.

AID commands %SDUMP

U6148-J-Z125-8-76 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

unsign-name Specifies an element of the type integer without a sign
(unsigned).

unsign-value Decimal value (D); value of unsign-name.

<ADDR(size),X>
addr-name = addr-value

size Storage length in bytes.

addr-name Specifies an element of a relative or absolute storage address.

addr-value Hexadecimal number (X); value of addr-name.

<CLASS(size),S>
class-name = class-value

size Storage length in bytes.

class-name Specifies an element of the type enum.

class-value Symbolic constant (S), value of class-name.

<ARRAY(size),type | STRUCT>
array-name (dimension)
(a1) value1 (a2) value2 (a3) value3 ...

size Primary memory length in bytes.

type Data type (CHARS, INT, FLOAT,...) if the array consists of a
particular data type.

STRUCT The array has a complex structure consisting of various data
types.

array-name Specifies an element of the type array.

dimension The dimensions of the array.

(a1) value1
(a2) value2
(a3) value3
...

a1, a2, a3, ... specifies the subelements of the array, value1,
value2, value3, ... and their values.
The display of the values depends on the particular data type.
With XMAX, all subelements are output.
With XFLAT, no subelements are output, see also note 1.
For details on array areas, see note 2.

<STRUCT(size)>
level struct-name
sub-elements

size Storage length in bytes.

level Level of embedding of the structure or of a structure element
(01, 02, 03, etc.). 01 stands for the topmost level.

struct-name Specifies an element of the type structure.

%SDUMP AID commands

244 U6148-J-Z125-8-76

Notes

1. Use the following syntax to query the entire content of a string, structure or array
distributed over several lines:

%SDUMP name {T | H | Fn | P} = {XMAX | MAX}

2. Use the following syntax to query the content of the array elements within the particular
area:

%SDUMP name [from:to] {T | H | Fn | P} = {XMAX | XFLAT | MAX}

Structures with XFLAT

For structures, AID generates various XFLAT data outputs depending on whether or not the
%SDUMP command contains data operands.

● %SDUMP without data operand

%SDUMP {T | H | Fn | P} = XFLAT

Only the type tag and the name are output (level 01). The output of the structure
elements is omitted.

● %SDUMP with a structure as operand

%SDUMP structure-name {T | H | Fn | P} = XFLAT

sub-elements Further elements which are contained in the structure. With
XMAX, all elements are output. With XFLAT, only some of the
elements, see section „Structures with XFLAT“.
See also note 1 at the end of the list.

<SET(size)>
01 set-name
<UNSIGN(size),D>
 02 class-name1 = class-value1
<UNSIGN(size),D>
 02 class-name2 = class-value2
...

size Particular storage length in bytes.

set-name Specifies an element of the type set.

class-name1/2...
class-value1/2...

Names of the symbolic constants.
Values of the symbolic constants.
With XMAX and XFLAT, in the case of set-name all elements are
output, with XFLAT without set-name, only level 01 is output.

AID commands %SDUMP

U6148-J-Z125-8-76 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

The structure name and the structure elements are output (level 02). Elements with
elementary types are normally output, elements with array type with their name, and
elements with structure type only with their name. Each element is preceded by a type
tag. The name is extended by a number, the level of embedding.

● %SDUMP with a substructure as operand

%SDUMP structure-name.substruct-name {T | H | Fn |P} = XFLAT

Also outputs the structure elements of the substructure (level 03)

Further levels of embedding can also be specified by the other substructure names
being chained by a period:

structure-name.substruct1-name.substruct2-name.substruct3-name.

i In order to query the entire content of a structure and of its substructures, use XMAX
instead of XFLAT.

Examples

1. %aid c=yes
%sdump

This command requests a symbolic dump of all data in the current call hierarchy. The
value for medium-a-quantity is T=MAX. The compiler listing for this SDUMP output is
given in Example 10 of the %DISPLAY description on page 165.

tDDD?
3 SRC_REF: 46 SOURCE: OUTPUT.C PROC: main *****************************3
3 int1 = -32768 3
3 3
3 int2 = 234 3
3 3
3 int3 = -567 3
3 3
3 un1 = 65535 3
3 3
3 un2 = 78900 3
3 3
3 un3 = 90123 3
3 3
3 sll = -9223372036854775808 3
3 3
3 ull = 18446744073709551615 3
3 3
3 fl1 = +.1234559 E+003 3
3 3
3 fl2 = +.5678899999999999 E+003 3
3 3
3 fl3 = +.3334439999999999 E+003 3

%SDUMP AID commands

246 U6148-J-Z125-8-76

The %SDUMP output starts with a header containing the source reference of the
statement at which the program was interrupted and the name of the current translation
unit. This is followed by the variables of type signed and unsigned int as well as
float with name and contents.

tDDD?
3 char1 = |A| 3
3 3
3 char2 = -63 3
3 3
3 chstr = 01001188 3
3 3
3 chvek = "Character array" 3
3 3
3 c_out = 01001248 3

AID outputs the char variables char1 and char2 in character format, which means
that the character corresponding to the contents is output. If you have not used the
DELIM operand of the %AID command to define another delimiter, the output uses the
vertical bar (for variables of char type) or double quotes (for strings).

For the pointer variables chstr and c_out, the address to which they point is output.
Since %AID C=YES was set, AID displays the char array chvek as a C string literal.

tDDD?
3 01 ::std 3
3 02 printf = 01001E5C 3
3 3
3 ::main = 01000000 3

The prolog addresses of the printf and main functions are output.

2. %sd %nest

The current call hierarchy from example 1 is to be output.

tDDD?
3 SRC_REF: 55 SOURCE: OUTPUT.C PROC: main *****************************3
3 ABSOLUT: V'113CF88' SOURCE: IC@RT20A PROC: IC@RT20A ****************3
3 ABSOLUT: V'10015E8' SOURCE: IC@MAIN@ PROC: IC@MAIN@ ****************3

The program was interrupted before the execution of the statement in line 55. The
interrupt point lies in the main function; the translation unit is OUTPUT.C.

AID commands %SDUMP

U6148-J-Z125-8-76 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

3. Comparison of the call hierarchies for symbolic debugging and for debugging on
machine code level:

This example is based on the program STRING.C from the section “Sample C++ appli-
cation in BS2000” on page 308. The program was interrupted at source reference S’50’.

– Call hierarchy with LSD

tDD?
3/%symlib mylib 3
3/%sdump %nest 3
3SRC_REF: 50 SOURCE: STRING.C 3
3 PROC: string::operator const char *() const ******** 3
3SRC_REF: 30 SOURCE: STRING.C 3
3 PROC: string::string(const string &) *************** 3
3SRC_REF: 72 SOURCE: STRING.C PROC: main ***************************3
3ABSOLUT: V'113CF88' SOURCE: IC@RT20A PROC: IC@RT20A ************3
3ABSOLUT: V'1002A70' SOURCE: IC@MAIN@ PROC: IC@MAIN@ ************3

– Call hierarchy without LSD

tDD?
3/%symlib 3
3/%sdump %nest 3
3ABSOLUT: V'10002FE' SOURCE: STRING$O&@ 3
3 PROC: operator const char * *************************3
3ABSOLUT: V'1000816' SOURCE: STRING$O&@ PROC: string *********3
3ABSOLUT: V'1000B1C' SOURCE: STRING$O&@ PROC: main ***********3
3ABSOLUT: V'113CF88' SOURCE: IC@RT20A PROC: IC@RT20A **********3
3ABSOLUT: V'1002A70' SOURCE: IC@MAIN@ PROC: IC@MAIN@ **********3

In the call hierarchy on machine code level, the CSECT name is inserted as the
source instead of the name of the translation unit. AID shows the compiler-
generated entry name of the function under PROC instead of the function name
from the source program.

%SDUMP AID commands

248 U6148-J-Z125-8-76

4. The following program example contains the recursive function facul.

With %in s'16:3' <%sd; %sd %nest> you cause AID to output all data and the
functions of the current call hierarchy before leaving facul for the last time. First, here
is the source error listing:

*** SOURCE - ERROR - LISTING ** BS2000 C/C++ COMPILER 03.2E21 DATE:2015-02-27 PAGE: 1
 SOURCENAME:*LIB-ELEM(MYLIB,EXAMP.C(*HIGHEST-EXISTING),S)
DDD

 EXP INC FILE SRC BLOCK
 LIN LEV NO LIN LEV

 1 0 0 1 0 #include <stdio.h>
 1746 0 0 2 0 int facul(int n);
 1747 0 0 3 0 int main()
 1748 0 0 4 0 {
 1749 0 0 5 1 unsigned n;
 1750 0 0 6 1 printf("n? : ");
 1751 0 0 7 1 scanf("%d",&n);
 1752 0 0 8 1 if (n > 16) return 0;
 1753 0 0 9 1 printf("%d! : %d\n", n, facul(n));
 1754 0 0 10 1 return 0;
 1755 0 0 11 0 }
 1756 0 0 12 0
 1757 0 0 13 0 int facul(int n)
 1758 0 0 14 0 {
 1759 0 0 15 1 if (n < 0) return (-1);
 1760 0 0 16 1 if (n == 0 33 n == 1) return (1);
 1761 0 0 17 1 else return (n * facul(n-1));
 1762 0 0 18 1 }

What follows is the command entry (in boldface) and the corresponding output of
%SDUMP:

tDDD?
3 /LOAD-PROG *M(MYLIB,EXAMP,RUN-MODE=ADVANCED,PROG-MODE=ANY),TEST-OPT=AID 3
3 % BLS0523 ELEMENT 'EXAMP', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB'3
3 IN PROCESS 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$$EXAMP$', VERSION ' ' OF '1999-01-11 3
3 12:47:37' LOADED 3
3 /%aid low 3
3 /%in s'16:3' <%sd; %sd %nest> 3
3 /%r 3
3 n? : 4 3
3 *** TID: 000401F9 *** TSN: 88G5 **3
3 SRC_REF: 16:3 SOURCE: EXAMP.C PROC: facul **********************3
3 n = 1 3
3 3
3 SRC_REF: 17:2 SOURCE: EXAMP.C PROC: facul **********************3
3 n = 2 3
3 3
3 SRC_REF: 17:2 SOURCE: EXAMP.C PROC: facul **********************3
3 n = 3 3
3 3
3 SRC_REF: 17:2 SOURCE: EXAMP.C PROC: facul **********************3
3 n = 4 3
3 3
3 SRC_REF: 9 SOURCE: EXAMP.C PROC: main **************************3
3 n = 4 3

AID commands %SDUMP

U6148-J-Z125-8-76 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

3 3
3 ::printf = 01001B14 3
3 3
3 ::scanf = 01001B4C 3
3 3
3 ::main = 01000000 3
3 ::facul = 01000180 3
3 SRC_REF: 16:3 SOURCE: EXAMP.C PROC: facul **********************3
3 SRC_REF: 17:2 SOURCE: EXAMP.C PROC: facul **********************3
3 SRC_REF: 17:2 SOURCE: EXAMP.C PROC: facul **********************3
3 SRC_REF: 17:2 SOURCE: EXAMP.C PROC: facul **********************3
3 SRC_REF: 9 SOURCE: EXAMP.C PROC: main **************************3
3 ABSOLUT: V'113CF88' SOURCE: IC@RT20A PROC: IC@RT20A ****************3
3 ABSOLUT: V'10012A8' SOURCE: IC@MAIN@ PROC: IC@MAIN ****************3
3 4! : 24 3
3 % CCM0998 CPU TIME USED: 0.0269 SECONDS 3
gDDDu

First, the source reference and the corresponding contents of n are output for each call
to facul. For the last call to facul, corresponding here to the highest hierarchical level,
AID also outputs for the source reference and for n the addresses of the functions
scanf, printf and main.
In the output of the current call hierarchy which then follows, you also see for each time
facul calls itself a line with the same source reference up to the last call of facul, the
superordinate main function, and the runtime system IC@RT20A and IC@MAIN@
routines.

%SDUMP AID commands

250 U6148-J-Z125-8-76

5. Example for XMAX and XFLAT

The following C program is to be debugged:

#include <stdio.h>
#include <string.h>
struct Universe
{
 int id;
 struct Galaxy
 {
 int id;
 struct Planet
 {
 int id;
 struct Continent
 {
 int id;
 struct Country
 {
 int id;
 struct Region
 {
 int id;
 struct Dense
 {
 int id;
 struct Forest
 {
 int id;
 struct Anthill
 {
 int id;
 struct Ant
 { float x,y;
 } ant;
 } anthill;
 } forest;
 } dense;
 } region;
 } country;
 } continent;
 } planet;
 } galaxy;
} universe;

void main(void)
{

AID commands %SDUMP

U6148-J-Z125-8-76 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

 struct {
 struct {int x; char y;} inner[5][5];
 struct {float u, v;} *pointer;
 union {
 char c100[100];
 char chx12345678901234567890123456789;
 char unsigned uch12345678901234567890123456789;
 short isx12345678901234567890123456789;
 short unsigned isu12345678901234567890123456789;
 int ixx12345678901234567890123456789;
 int unsigned iux12345678901234567890123456789;
 long ilx12345678901234567890123456789;
 long unsigned ilu12345678901234567890123456789;
 float flx12345678901234567890123456789;
 double dbx12345678901234567890123456789;
 } databox;
 } outer [2];

strcpy(outer[0].databox.c100,
"1234567890123456789012345678901234567890123456789012345678901234567890");

STOP: ;
}

After the C program has been loaded, the following AID commands are entered:

%AID C=YES
%INSERT STOP
%RESUME

The following variants show the effect of various specifications for XFLAT and XMAX:

– XFLAT without data operand
– XFLAT for the array element outer
– XFLAT for the databox structure of the array element outer
– XMAX for a sub-array element
– XFLAT for a deeply nested element

XFLAT without data operand

When you specify XFLAT without an operand, only the topmost level 01 is output.

/%SD T=XFLAT
SRC_REF: 59 SOURCE: X-C2 PROC: main *******
<ADDR(4),X>
STOP = 010000B6

<ARRAY(624),STRUCT>

%SDUMP AID commands

252 U6148-J-Z125-8-76

outer(0: 1)

<ADDR(4),X>
::strcpy = 7DB2BEC8

<ADDR(4),X>
::main = 01000000

<STRUCT(44)>
01 ::universe

XFLAT for the array element outer

/%SD outer[0] T=XFLAT
SRC_REF: 59 SOURCE: X-C2 PROC: main ******
<STRUCT(312)>
01 outer(0)
<ARRAY(200),STRUCT>
 02 inner(0: 4, 0: 4)
<POINTER(4),X>
 02 pointer = 00000000
<STRUCT(104)>
 02 databox

XFLAT for the databox structure of the array element outer

Long strings are displayed truncated.

/%SD outer[0].databox T=XFLAT
SRC_REF: 59 SOURCE: X-C2 PROC: main

<STRUCT(104)>
02 outer.databox(0)
<CHARS(71),C>
 03 c100 =
"123456789012345678901234567890123456789012345678901234567890" ...
<CHARS(1),C>
 03 chx12345678901234567890123456789 = |1|
<UNSIGN(1),D>
 03 uch12345678901234567890123456789 = 241
<INT(2),D>
 03 isx12345678901234567890123456789 = -3598
<UNSIGN(2),D>
 03 isu12345678901234567890123456789 = 61938
<INT(4),D>
 03 ixx12345678901234567890123456789 = -235736076
<UNSIGN(4),D>

AID commands %SDUMP

U6148-J-Z125-8-76 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

 03 iux12345678901234567890123456789 = 4059231220
<INT(4),D>
 03 ilx12345678901234567890123456789 = -235736076
<UNSIGN(4),D>
 03 ilu12345678901234567890123456789 = 4059231220
<FLOAT(4),E>
 03 flx12345678901234567890123456789 = -.9531502 E+059
<FLOAT(8),E>
 03 dbx12345678901234567890123456789 = -.9531502657561182 E+059

XMAX for a sub-array element

The element inner is itself once again part of an array element.

/%SD outer[0].inner[2][2] T=XMAX
SRC_REF: 59 SOURCE: X-C2 PROC: main ******
<STRUCT(8)>
02 outer.inner(0, 2, 2)
<INT(4),D>
 03 x = 0
<CHARS(1),C>
 03 y = |.|

XFLAT for a deeply nested element

/%SD universe.galaxy.planet.continent.country.region.dense.forest.anthill.ant T=XMAX
SRC_REF: 59 SOURCE: X-C2 PROC: main **
<STRUCT(8)>
02 ::universe.galaxy.planet.continent.country.region.dense.forest.anth ill.ant
<FLOAT(4),E>
 03 x = +.0000000 E+000
<FLOAT(4),E>
 03 y = +.0000000 E+000

%SET AID commands

254 U6148-J-Z125-8-76

%SET

With the %SET command you transfer the memory contents or AID literals to memory
positions in the program which has been loaded. Before transfer, the storage types sender
and receiver are checked for compatibility. The contents of sender are matched to the storage
type of receiver. AID always transfers bytewise.

– With sender you designate a variable, a class object or one of its components, a
structure or a component of a structure, an array element, a constant, a length, an
address, an execution counter, a register or an AID literal.
sender can be located either in the virtual memory of the loaded program or in a dump
file.

– With receiver you designate a variable, a class object or one of its components, a
structure or a component of a structure, an array element, an execution counter or a
register which is to be overwritten. receiver may only be located in the virtual memory of
the program which has been loaded.

DDD
Command Operand
DDD

%S[ET] sender INTO receiver

DDD

In contrast to the %MOVE command, for the %SET command AID checks (prior to transfer)
whether the storage type of receiver is compatible with that of sender and whether the
contents of sender match its storage type. In the event of incompatibility, AID rejects the
transfer and outputs an error message.
If sender is longer than receiver, it is truncated on the left or right, depending on its storage
type, and AID issues a warning message. sender and receiver may overlap. In the case of
numeric transfer, sender is converted to the storage type of receiver if required, and the
contents of sender are stored in receiver with the value being retained. If the value does not
fully fit into receiver, a warning is issued.

The following applies if sender and receiver are pointers to class objects:

– sender points to an object of a derived class,

– receiver points to an object of a base class of this derived class,

and only the base class entries are transferred. All other entries in the derived class are
ignored. AID checks the transfer permissibility in the same way as C++:
if the base class cannot be reached uniquely from the derived class, e.g. if the class refer-
enced via receiver is both a direct and indirect base class of the derived class addressed
with sender, AID rejects the transfer and outputs an error message.

AID commands %SET

U6148-J-Z125-8-76 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

The information on base and derived classes is missing from the LSD for older objects that
were compiled with a C/C++ compiler up to V2.2C. With these objects, AID therefore does
not know the relationship between the base and derived classes for these objects. Trans-
ferring derived classes into base classes via pointer as described above is then not
possible.

Which storage types are compatible and how transfer takes place is shown in the table at
the end of the description of the %SET command.

Immediately after loading, you can reference only global and static data. AID requires the
appropriate qualification for access.

In addition to the operand values described here, you can also use those described in the
manual for debugging on machine code level [2].

With %AID CHECK=ALL you can activate an update dialog; this dialog shows you the old and
new contents of receiver prior to transfer and offers the option of aborting the %SET
command.

The %SET command does not alter the program state.

For sender or receiver you can specify a variable, a class object or one of its components, a
structure, a structure component, an array element, a C string (if %AID C=YES is set), an
execution counter, a register or a complex memory reference. You can use addresses,
lengths, constants and literals only as the sender.
sender may be located in the virtual memory area of the loaded program or in a dump file.
receiver, on the other hand, can be only in the virtual memory area of the loaded program.
Moving program segments or overwriting them with instruction code may have unwanted
side-effects if this affects addresses which are associated with a control-area or a trace-area
or addresses at which a test-point has been set with %INSERT (see the section on
 “Interactions" in the AID Core Manual [1]).

sender INTO receiver

%SET AID commands

256 U6148-J-Z125-8-76

sender-OPERAND -

⎧ ⎧*this ⎫ ⎫
o o o o
o o⎧this-> ⎫ o o
o o⎨ ⎬[class[:: ...]] o o
o o⎩object[•]⎭ o o
o o o o
o opointer->object o o
o o o o
o o ⎧[namespace::[...]] ⎫ ⎧dataname ⎫ o o
o [•][qua•] ⎨?⎨this-> ⎬[class::[...]]]⎨function ⎬ ⎬ o
o o ⎩object• ⎭ ⎩object ⎭ o o
o o o o
⎨ oL'label' o ⎬
o oS'[f-]n[:a]' o o
o okeyword o o
o ocompl-memref o o
o o o o
o o&... o o
o ⎩sizeof(...) ⎭ o
o o
o %@(...) o
o %L(...) o
o %L=(expression) o
o o
⎩ literal ⎭

- -

receiver-OPERAND -

 ⎧*this ⎫
 o o
 o⎧this-> ⎫ o
 o⎨ ⎬[class[:: ...]] o
 o⎩object[•]⎭ o
 o o
 opointer->object o
INTO [•][qua•] ⎨ ⎬
 o ⎧[namespace::[...]]⎫ ⎧dataname ⎫ o
 o?⎨this-> ⎬[class::[...]]]⎨ ⎬ o
 o ⎩object• ⎭ ⎩object ⎭ o
 o o
 okeyword o
 o o
 ⎩compl-memref ⎭

- -

AID commands %SET

U6148-J-Z125-8-76 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua One or more qualifications may be specified here if sender or receiver cannot be
reached from the current interrupt point by other means or to address a data name
that is locally hidden at the interrupt point by an identically named definition.
It is sufficient to specify only the qualifications needed for a unique address.

{E={VM | Dn} for sender | E=VM for receiver}
Specified only if the current base qualification (see %BASE) is not to apply to a
data name, class, class object, statement name, source reference or keyword.
sender can be located in virtual memory or in a dump file. receiver, on the other
hand, can only be in the virtual memory.

S=srcname
Specified only if you are accessing a data name, a namespace, a class or a
class object, a statement name or a source reference which is not located in the
current translation unit (see the section “Qualifications” on page 21).

:: Use the two prepended colons to address a global data item that is locally
hidden at the interrupt point by a definition of the same name. You must also
place two colons before the name of a global data item or a function if either the
data or the function is not in the call hierarchy or if its definition only occurs after
the interrupt point. In contrast to the other qualifications, no period must be
entered between the two colons and the operands which follow.

PROC=function
Specified only if you want to address a data name or class object which is
defined in the current function, but is hidden at the interrupt point by a definition
with the same name. You also give a PROC qualification when you want to
reference a label or a data name declared as static which is assigned to a
function outside the current call hierarchy (see the chapter “Addressing in C and
C++ programs” on page 21). If you specify a source reference which is located
in a function template instance or assigned to a function which is defined in a
class template instance (see the section “Templates” on page 94), you have to
prepend the appropriate PROC qualification if ambiguity occurs.
In the case of functions from C programs, function is the function name declared
in the source program, but without the parentheses or signature.
Functions from C++ programs must be specified in n'...' or t'...'
notation, depending on their type. If the function is defined in a namespace or
class, the function name is prepended with the namespace or class qualifi-
cation. The void signature may no longer be used. In this case, you only input

%SET AID commands

258 U6148-J-Z125-8-76

the two parentheses after the function name, as is also possible in C++. The
following syntax results (f_template and signature are abbreviated below for
space reasons):

- -

 ⎧n'function([sign])' ⎫
PROC=[namespace::[...]][class::[...]]⎨ ⎬
 ⎩t'f_templ<arg[,...]>([sign])'⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute
an exception; these functions are identified only by the function name even
when debugging within C++ programs (see page 58).

If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to insert one or possibly several
BLK qualifications (see page 60) between the two PROC qualifications.
Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
Specified only when you want to reference a data name which is assigned to a
block within the current call hierarchy and is hidden at the interrupt point by a
definition with the same name, or when you want to want to reference a data
name declared as static and assigned to a block outside the current call
hierarchy (see the chapter “Addressing in C and C++ programs” on page 21).

You must also specify a BLK qualification if you want to designate a function
from a local class, which is defined in the specified block, in a subsequent
PROC qualification (see above, PROC=function).

The block name is formed from the line number (n), a possible FILE number (f)
and relative block number (b).

NESTLEV= level-number

level-nummer has to be followed by dataname.
Specify NESTLEV= level-number when you want to address a data name on a
certain level in the current call hierarchy. This qualification can only be com-
bined with E=, and not with any other qualification.

level-number A level number in the current call hierarchy

AID commands %SET

U6148-J-Z125-8-76 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

namespace
Name of a namespace declared in the source program.

You specify the name of a namespace to describe the address path to classes, data
or functions defined in the namespace (see the section “Namespaces” on page 85)
if the required namespace component is not visible at the interrupt point.

Only the E or S qualification or the two colons (::) for the global namespace are
allowed before the namespace qualification.

{ class | this-> | object | pointer->object}
Name of a class, the this pointer the name of a class object or a pointer to a class
object as declared in the source program.
You specify class names, the this pointer with the appended pointer operator, and
the names of class objects in order to describe the address path to data members
(see the section “Classes” on page 63).
If the class is a class template instance, you have to use the following notation:
t'k_template<arg[,...]>'. If only one instance of the template exists, only
t'k_template' is required.

You use the names of objects, or pointers to class objects to transfer class objects
as a whole. This is only possible under the following conditions:

1. sender and receiver reference objects of the same class. If the program is inter-
rupted in a dynamic member of the class, you can also access the complete
class object with *this.

2. sender is a pointer to a derived class object and receiver points to an object of an
associated base class. This transfer therefore corresponds to the C++
assignment statement:
pointer_a = pointer_b;
if pointer_a is a pointer to a base class object and pointer_b is a pointer to
an object of a derived class of this base class.

AID transfers the dynamic data part of the class object and, if available, compiler-
generated auxiliary variables and the address of the virtual functions table. Each
component is transferred according to its memory type. Appropriate qualification is
required if object or pointer are not visible at the interrupt point. Only a base qualifi-
cation is meaningful before this.
With derived classes, sender or receiver also includes the base classes as well as
the inner levels of nested classes. If receiver refers to a base class object of sender,
only the base class data is transferred.

Static data members can only be addressed individually. They can be reached via
the associated class name with the two subsequent colons from any part of the
program. In the case of nested classes, the path to the data item includes all class
names from the outer to inner levels, each separated by two colons. The outermost

%SET AID commands

260 U6148-J-Z125-8-76

class name requires qualification corresponding to the scope. If the program is
interrupted in a member function of the class, the class scope rules apply for
accessing static data members, i.e. if the data is not hidden by a definition with the
same name, it can be accessed without qualification.

If the current interrupt point is located in a dynamic member function, you can
access the data member in exactly the same way as in C++, i.e. if the data item is
visible at the interrupt point, you can access it with AID directly without qualification.
As in C++, locally hidden data requires appropriate class qualification. You can also
access dynamic data members via the this pointer with a subsequent pointer
operator. This is the same as using the object name followed by a period.

You can access dynamic data of an object, independent of the interrupt point, via
the object name and a subsequent period if the object is located in the current call
hierarchy.

If sender or receiver ends on this, the %SET will transfer or overwrite the start
address of the object that this points to, as the start address is recorded in this.
With a following pointer operator, i.e. with this->, you designate the first 4 bytes
from the start address of the current object in storage type %X.

dataname
This is a data name declared in the source program. dataname is specified as in the
source program.

You can reference data as in C/C++, but with the following exceptions:
Array elements can be referenced only via subscripts, not via pointers.
The specification of a subscript range is not allowed.
C strings are recognized by AID only if %AID C=YES is set (see page 115). You can
then modify C string arrays as you normally would in the C/C++ language (see also
the section on “C strings” on page 36).
If %AID C=NO is set or if arrays of some other data types are involved instead of C
strings, then you cannot transfer or overwrite arrays as a whole. If you specify an
array name without a subscript, AID will reject the transfer.
One exception is when using the names of arrays as passed parameters. Note,
however, that the name of the passed parameter does not refer to the array itself,
but only its address.
For more information on working with arrays, see also the section “Subscript nota-
tion” on page 30.

For variables of type long double, AID evaluates only the first 8 bytes.
Variables of type char are always treated as characters. If desired, you may also
use the corresponding numeric value, but only after a type modification with %F
(signed char) or %A (unsigned char). The data types unsigned char and
signed char, by contrast, are treated as integer variables.

AID commands %SET

U6148-J-Z125-8-76 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

If you specify a data name of type pointer to member as the receiver, then the sender
could also be a pointer to member, or you could specify the address of a data mem-
ber or a member function of a class as the sender. The following condition must be
satisfied when modifying a pointer to member:
The class associated with the sender must match the class referenced by the
receiver or must be the unique base class in the class of the receiver (see also the
section “Pointer to class member” on page 74).

You can specify dataname as follows and can also combine these formats (see the
section “Data names” on page 29):

Subscript notation: dataname [subscript] {...}
Pointer notation: dataname1 -> dataname2
Structure qualification: superordinate dataname• {...} dataname
Dereferencing: [(]*{...} dataname[)]
Pointer to member dataname1•*datanname2 or
 dereferencing: dataname1->*datanname2

Structures can be transferred using %SET only if sender and receiver are defined as
structures and the definitions of the components match.

Pointers can be set to binary zero with %SET 0 INTO pointer.

⎧function ⎫
⎨L'label' ⎬
⎩S'[f-]n[:a]'⎭

Statement names and source references are address constants. They can only be
specified as sender. The address held in the address constant is transferred.
A following pointer operator (->) designates 4 bytes of the machine code located at
the corresponding address. You can use %DISASSEMBLE to output the machine
instructions in preparation for a length modification, should one be necessary.
funktion[%al4]->, L'label'-> and S'[f-]n[:a]'-> can be used as sender and as
receiver (see Example 9 on page 271 following the %SET description).

function
This is the name of a function, as declared in the source program, or the name
of a library function. It references the start address of the function prolog that is
generated by the compiler (see PROC=function on page 257 and the chapter
“C++-specific addressing” on page 57).

Virtual functions are addressed with the following syntax:
p->n'function(signature)'

p is a pointer variable that points to the class object containing the desired
member function. If p cannot be accessed from the current interrupt point, it
must be qualified in accordance with its scope. If the interrupt point is located in

%SET AID commands

262 U6148-J-Z125-8-76

the virtual function itself, you can reference the prolog address of the current
function by using the this pointer instead of p (see the description of this on
page 64 and the section “Virtual functions” on page 73).

If you want to access a function addressed via a pointer to member, you can
use one of the following two methods:

You designate the class object by name and enter •* as the dereferencing
operator as follows:

- -

[qua•] object•*[object•][class::][...]pointer-to-function-member

- -

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

- -

[qua•] pointer->*[object•][class::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.
The name of the pointer to function member must be entered on the right of the
dereferencing operator. This may need to be preceded by the object containing
the definition of the pointer to function member and the class qualification
needed for unique addressing within the object if the pointer to function member
cannot be reached from the interrupt point by some other means.

If you want to transfer or overwrite the instruction code of a function addressed
via a pointer to member with %SET, note that you cannot directly append the
pointer operator to one of the syntaxes above. You would have to first switch to
machine code level with a type modification, i.e. %al4, by using the following
syntax:

dereferenced-pointer-to-function-member %al4->

This designates the first 4 bytes of the instruction code located at the prolog
address.

More details on working with a pointer to function member can be found on
page 79.

AID commands %SET

U6148-J-Z125-8-76 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

L’label’
This designates the address of the first executable statement after a label.
label is the name of a label as declared in the source program.

S’[f-]n[:a]’
is a source reference and designates the address of an executable statement.
It is constructed from the line number (n) and, if present, the FILE number (f)
and the relative statement number (a).
If the source reference is located in a function which was created from a function
template via instantiation or the function containing the source reference is
defined in a class template instance, you have to prepend the appropriate
PROC qualification to the source reference if ambiguity occurs.

keyword
is an execution counter, the program counter or a register. Only a base qualification
can be specified before keyword.
The implicit storage types of the keywords are listed in the chapter on “Keywords”
in the AID Core Manual [1].

%•subcmdname Execution counter
%• Execution counter of the current subcommand
%PC Program counter
%n General purpose register, 0 Î n Î 15
%nD|E Floating point register, n = 0,2,4,6
%nQ Floating point register, n = 0,4
%nG AID general purpose register, 0 Î n Î 15
%nGD AID floating point register, n = 0,2,4,6

The program counter holds the address at which the program is to continue with
%CONTINUE, %RESUME or %TRACE. You can define another continuation
address by overwriting the program counter (%PC). However, you must then make
sure yourself that register contents, file status, contents of subscripts and so on are
appropriate for the new continuation address so that the program can be continued
without error.

compl-memref
The following operations may occur in compl-memref (see the section on “Complex
memory references” in the AID Core Manual [1]):
– byte offset (•)
– indirect addressing (->)
– type modification (%T(dataname), %X, %C, %E, %D, %F, %A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

%SET AID commands

264 U6148-J-Z125-8-76

The storage types of sender and receiver can be matched by means of an explicit
type or length modification. Note, however, that if the storage type conflicts with the
memory contents, it will be rejected by AID even if a type modification is specified.

If compl-memref begins with an address constant (such as a source reference or a
label), the pointer operator (->) must come next. Labels must always be placed
within L'...' in such cases. Without the pointer operator, address constants can
be used in compl-memref wherever hexadecimal numbers are also allowed.
With an explicit type or length modification you can match the storage type for
sender to that of receiver. Memory contents which are incompatible with the storage
type will be rejected by AID even if a type modification is performed.

Following a byte offset (•) or pointer operation (->), the implicit storage type and
original address length are lost. At the calculated address, storage type %X with a
length of 4 applies unless the user has made an explicit specification for type and
length.
The assigned memory area for any operand in a complex memory reference must
not be exceeded as the result of byte offset or length modification; otherwise AID
will reject the command and issue an error message. By combining address selec-
tion (%@) and pointer operator (->) you may exit from the symbolic level. You can
then use the address of a data item without considering its area limits.

& is the address operator. You can use it to define the start address of a data item,
class object or function as the sender. You can transfer an address only to a receiver
of type pointer, but the types associated with the sender and receiver need not match.

Note, however, that if the address of a class object is to be transferred to a pointer
to a class, AID performs the following check:

– The class to which the receiver points must match the class whose address is
 to be transferred

or

– it must be the base class of the class assigned to the sender. This base class
must have a unique subobject in the class of the sender.

The address operator & can also be used to determine the relative address of a
dynamic data member of a class, provided you observe the following:

– If the interrupt point is located outside the class containing the data member,
you should enter the appropriate class qualification after the address operator,
and then the name of the data item.

– If the interrupt point is located in a dynamic member function of the class, you
will need to enter a base or area qualification (S, PROC or :: qualification) before
the address operator so that AID can access the class from “outside”, so to
speak.

AID commands %SET

U6148-J-Z125-8-76 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Even the relative address, i.e., the offset of the data member to the start of the class
in bytes, can only be transferred to a pointer.
Note that in contrast to the address selector %@(...) (see page 265), the address
operator is purely a “high-level” function and thus cannot be applied on complex
memory references.

More detailed information on the address operator can be found in the section “The
address operator & and the address selector %@(...)” on page 42.

sizeof()
is the length operator. The length of a data item or class is transferred.
To determine the length of a class, you may specify the name of the class itself or
the name of a class object as operands. You will receive the number of bytes
occupied by the dynamic data members of the class and by the auxiliary variables
generated by the compiler (if any).
You may specify the name of a namespace here, but only in the path to a
component of the namespace.
Bit-field and register variables are not allowed.

The length operator is described in detail in the section “Length operator sizeof()
and length selector %L(...)” on page 47.

%@(...)
The address selector (see the section on “Address, type, and length selectors” in
the AID Core Manual [1]) enables you to use the start address of a data item, of a
class object, or of a complex memory reference as sender. You can only specify a
class name in the path to the base class of an object of a derived class to identify
the start address of the dynamic data of the base class.
You can only specify the name of a namespace here in the path to a component of
the namespace.

The address selector cannot be applied to constants, including labels, source refer-
ences and functions.

%L(...)
The length selector allows you to use the length of a data item or of a class as
sender (see the section on “Complex memory references” in the AID Core Manual
[1]). If you apply the length selector to a class or a class object, the result
corresponds to that of sizeof() in C++, i.e. you receive the length of the dynamic
data and of the compiler-generated auxiliary variables, if any.
You can only specify the name of a namespace here in the path to a component of
the namespace.

%SET AID commands

266 U6148-J-Z125-8-76

AID always outputs the length in bytes. For bit-fields, the number of bytes over
which the bit-field extends is returned as the length.
Example: %set %l(var1) into %3g
The length of var1 will be transferred.

%L=(expression)
The length function enables you to calculate a value and store it in receiver.
expression is formed from the contents of memory, constants and integers together
with the arithmetic operators (+,-,*,/). Memory references must be of type %F or %A
(integers).

The length function returns an integer (see the section on “Address, type and length
selectors” in the AID Core Manual [1]).

i When using overloaded operators, note that AID does not emulate this pro-
cess, but always uses standard operators.

Example: %set %l=(var1) into %3g
The content of var1 is transferred if it is a whole number (data type int). Otherwise,
AID issues an error message.

literal
All AID literals described in the chapter on “AID literals” in the AID Core Manual [1]
may be specified with %SET. Take note of the possibilities described in that chapter
for converting AID literals to the respective receiver type:

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal
[{?}]n Integer
#'f...f' Hexadecimal number
[{?}]n.m Fixed point number
[{?}]mantissaE[{?}]exponent Floating-point number

If %AID C=YES is set, you can also transfer a C string literal ("x...x") to a character
array (see Example 10 on page 271 following the %SET description).

AID commands %SET

U6148-J-Z125-8-76 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%SET table

The following table shows an overview of the combinations allowed for sender and receiver
types in conjunction with the %SET command.

bin Binary transfer; left-justified;
sender < receiver: padding with binary zeros on the right.
sender > receiver: truncation on the right.

For transfer to storage type %X, a numeric literal (only integer permitted) corre-
sponds to a signed integer with length of 4 bytes (%FL4) transferred in binary form.

char Character transfer; left-justified;
sender < receiver: padded on the right with blanks (X’40’).
sender > receiver: truncated on the right.

char(1) Character transfer; left-justified;
sender < receiver: padding with binary zeros on the right.
sender > receiver: truncation on the right.

Sender
Receiver

int, float
%F %A %D

char
%C

%X Pointer C strings
(%AID
C=YES)

int, float
%F %A %D
{±}n

num - bin - -

#'f...f' num - bin bin -

{±}n.m
{±}mantE{±}ex
p

num - - - -

char
%C
C'x...x'

num(1) char bin - -

%X
X'f...f'
B'b...b'

bin bin bin bin bin

pointer,
address

- - bin bin -

C strings,
C string
literal
(%AID C=YES)

- - - - char(1)

Table 6: Permitted combinations of sender and receiver types

%SET AID commands

268 U6148-J-Z125-8-76

num Numeric transfer; retains value;
sender is converted where necessary to the storage type of receiver.

num(1) If a character literal which contains only numbers and is at most 18 digits long is
specified as the sender, and if the receiver is of type numeric, AID performs a
numeric conversion. All other senders of type character cannot be converted to
numeric receivers.

- No transfer;
AID reports the incompatibility of the storage types.

Examples

In a C program the following variables, arrays and structures are defined:

C program
===
 unsigned short count;
 float x_arr[16];
 struct tele {
 char name[10];
 unsigned number;
 }
 struct tele person_1;
 struct tele person_2;
 char c_arr[10];
 int i;
===

In the following examples, %aid check=all was used to enable the update dialog. You are
shown the content of the receiver field before and after %SET is executed:

1. %set #'61' into count

tDDD?
3OLD CONTENT: 3
3 1 3
3NEW CONTENT: 3
3 97 3
3 % AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

The following command has the same result:
%set 97 into count

AID commands %SET

U6148-J-Z125-8-76 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

2. %qualify proc=main
%set .count into .x_arr[15]

tDDD?
3OLD CONTENT: 3
3+.1234499 E+003 3
3NEW CONTENT: 3
3+.9700000 E+002 3
3% AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

3. %s 'A' into person_1.name[0]

tDDD?
3OLD CONTENT: 3
3|T| 3
3NEW CONTENT: 3
3|A| 3
3% AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

4. %s 'ABCDEF' into %@(person-1.name)->%cl6

tDDD?
3OLD CONTENT: 3
3|uvwxyz| 3
3NEW CONTENT: 3
3|ABCDEF| 3
3% AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

5. %set person_1 into person_2

tDDD?
3OLD CONTENT: 3
301 person_2 3
3 02 name(0: 9) 3
3 (0) |H| (1) |u| (2) |b| (3) |e| (4) |r| (5) |.| 3
3 (6) |.| (7) |.| (8) |.| (9) |.| 3
3 02 number = 4444 3
3NEW CONTENT: 3
301 person_2 3
3 02 name(0: 9) 3
3 (0) |M| (1) |a| (2) |i| (3) |e| (4) |r| (5) |.| 3
3 (6) |.| (7) |.| (8) |.| (9) |.| 3
3 02 number = 12345 3
3% AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

%SET AID commands

270 U6148-J-Z125-8-76

6. %set 123.45 into count

tDDD?
3I390 WARNING: SOURCE TRUNCATED 3
3OLD CONTENT: 3
3 9876 3
3NEW CONTENT: 3
3 123 3
3% AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

7. Interpreting a char as an unsigned and signed integer

%s x'ff' into c_arr[0]
%s c_arr[0]%a into i
%s c_arr[0]%f into i

– First %SET command

tDD?
3OLD CONTENT: 3
300 . 3
3NEW CONTENT: 3
3FF ~ 3
3% AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

– Second %SET command

tDD?
3OLD CONTENT: 3
3 0 3
3NEW CONTENT: 3
3 255 3
3% AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

– Third %SET command

tDD?
3OLD CONTENT: 3
3 255 3
3NEW CONTENT: 3
3 -1 3
3% AID0274 Change desired? Reply (Y=Yes; N=No)?y 3

8. %set Y::n'f()' into %2g

The prolog address of member function Y::f() is written to AID register %2G.

AID commands %SET

U6148-J-Z125-8-76 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

9. %da 5 from s'12'->
%set s'12'->%l2 into %3g

With the %DISASSEMBLE command you have two machine instructions disassembled
beginning at the source reference S’12’ . The first instruction is a 2-byte instruction.
This first instruction is transferred with %SET to AID register %3G.

10. %aid c=yes
%set "HELLO" into c_arr

The command %AID C=YES enables the handling of char arrays as C strings. You can
then overwrite the char array c_arr with the C string literal "HELLO". The remaining
bytes of c_arr are filled with binary zeros.

%SHOW AID commands

272 U6148-J-Z125-8-76

%SHOW

The %SHOW command allows the user to obtain information about the current definitions
relating to individual AID commands, to find out what the last entry of a command looked
like, and which command was entered last. It is also possible to use the subcommand name
to request the command in which it was defined or to output a list of all entered
subcommand names with the associated command type. Depending on how uppercase
and lowercase notation was defined in the %AID command, the original entry of the
command is either reproduced or the input string is converted to uppercase letters.

show-target can be used to specify a command, a subcommand name or an AID keyword
for all current subcommands.

DDD
Command Operand
DDD

%SH[OW] [show-target]

DDD

The effect of %SHOW without an operand is to output the AID command entered directly
beforehand. If no AID command has been entered for the task, an error message is issued.
A %SHOW for one of the commands for which it is not intended results in a syntax error.
The command may be used in command and subcommand strings.

%SHOW does not alter the program state.

designates an AID command, a specific subcommand or all entered subcommands. The
commands permitted for this command can also be specified in the abbreviated form in
show-target.

show-target

Command or subcommand Information displayed

%AID The currently valid settings for the %AID, %AINT
and %BASE commands and the version of AID loaded.

%ALIAS List of all defined alias names and their original
names.

%BASE The current settings for %BASE, %AINT and %SYMLIB,
the TSN, TID and the version of the operating
system and type of computer.

%C[ONTROL] The input string for each registered %CONTROLn.

Table 7: Operand values of the %SHOW command and the information displayed

AID commands %SHOW

U6148-J-Z125-8-76 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%D[IS]A[SSEMBLE] The current number and start address (V’...’).

%F[IND] The entered command and, if appropriate, the
virtual address of the last hit.

%IN[SERT] [test-point] Without the test-point entry, all active test points
are output. Otherwise, AID shows the entered
command in which test-point was declared.
Note that AID cannot usually associate the prolog
address with the corresponding function. Conse-
quently, AID may display the name of an earlier
function if function addresses which are listed by
AID for a %DISPLAY {namespace | object| class} or in an
%SDUMP output are used in an %INSERT for the sake
of simplicity in the case of functions from C++
programs, which usually have very long names.

%ON The input string for each active %ON command.

%OUT The valid medium-a-quantity values for the commands
that can be controlled via %OUT.

%OUTFILE All implicitly or explicitly registered output
files, with their link names.

%QUALIFY The last %QUALIFY command entered.

%SYMLIB The registered libraries with the associated base
qualifications and the TSN.

%TRACE The %TRACE parameters set on activation of the
%TRACE are output. Default values are supplied by
AID for the operands not explicitly specified. The
translation unit in which the %TRACE is executed
is specified, and account is taken of whether the
last %TRACE was symbolic or on machine code level.
In trailing lines AID shows how many instructions
or statements have already been processed with the
current %TRACE and what the input string of the
last %TRACE command looked like.

 %•* The names of all active subcommands with the type
of the AID command in which they were defined.

 %•subcmdname The command in which subcmdname was defined.

Command or subcommand Information displayed

Table 7: Operand values of the %SHOW command and the information displayed

%SHOW AID commands

274 U6148-J-Z125-8-76

Example

tDDD?
3 $debug examp 3
3 % AID0348 Program stopped due to EXEC event (PID=0000000891) 3
3 %0000000891/%aid c=yes 3
3 %0000000891/%show %aid 3
3 A I D V03.4B11 OF 2016-03-17 3
3 Copyright (C) Fujitsu Technology Solutions 2016 3
3 All Rights Reserved 3
3 3
3 E=VM : %AINT = %MODE31 3
3 3
3 %AID CHECK = NO 3
3 %AID REP = NO 3
3 %AID SYMCHARS = NOSTD 3
3 %AID OV = NO 3
3 %AID LOW = ALL 3
3 %AID DELIM = '|' 3
3 %AID LANG = D 3
3 %AID FORK = NOT_USED 3
3 %AID EXEC = ON 3
3 %AID C = YES 3
3 %AID EBCDIC = EDF03IRV 3
3 %AID CCS = EDF03IRV 3

After loading the program under POSIX with debug, the command %AID was first issued
with the option C=YES. This causes AID to accept C string literals enclosed within "" and to
interpret char arrays as C strings. In addition, the conversion of lowercase letters to
uppercase is disabled even for entries in the S qualification. The next command, %SHOW
%AID, requests a listing of the currently applicable settings for %AID. The output of the
%SHOW command shows the default settings of the operand values for %AID, with the
following
exceptions:

– SYMCHARS was set implicitly to NOSTD on setting C=YES, which means that the
hyphen (-) will always be interpreted as a minus character, since hyphens are not
allowed in names in C/C++ programs in any case.

– LOW was also set implicitly to ALL by %AID C=YES, which means that the conversion
of lowercase letters to uppercase is disabled even for entries in the S qualification.

– EXEC is always enabled in the POSIX shell on loading a program with debug.

– C=YES was set explicitly.

In the case of %AID FORK, the value NOT_USED is equivalent to the setting OFF; NOT_USED
simply indicates that the FORK option was not set in this task.

AID commands %STOP

U6148-J-Z125-8-76 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%STOP

With the %STOP command you direct AID to halt the program, to switch to command mode
and to issue a STOP message. This message indicates at what statement, in which trans-
lation unit, and in which function or block the program was interrupted.

If the command is entered at the terminal or from a procedure file, the program state is not
altered, since the program is already in the STOP state. In this case you may employ the
command to obtain localization information on the program interrupt point by referring to the
STOP message.

Under POSIX, you can use %STOP to interrupt a task created via fork() to check the
further progress of this task using AID commands. A task created via fork() can be inter-
rupted with the T=tsn (Task Sequence Number) and PID=pid (Process Identification)
operands. AID reports the process number (pid) of the interrupted task and you can then
check the further progress of the task using AID commands.

– T=tsn designates the task sequence number (TSN) of the task which AID is to interrupt.
– PID=pid designates the process identification (pid) of the task which AID is to interrupt.

DDD
 Command Operand
DDD
 ⎧ T=tsn ⎫
 %STOP [⎨ ⎬]
 ⎩ PID=pid ⎭
DDD

If the %STOP command is contained in a command sequence or subcommand, any
commands following it will not be executed.
If you used %BASE to set a dump file as the base qualification and then enter a %STOP
command, AID outputs a STOP message containing localization information on the
address at which the program was interrupted as the dump was written.
If the program has been interrupted by pressing the K2 key or via a %STOP command, the
program interrupt point need not necessarily be within the user program; it may also be
located in the runtime system routines. To access programs functions and variables without
having to specify the complete qualification each time, it is advisable to initially let the
program continue running to the next executable statement with %TRACE 1 IN S=srcname.

The %STOP command alters the program state.

A %STOP in a subcommand always refers to the loaded program.

tsn The fork task, which is to be set to debug mode, is addressed via its TSN.

T

%STOP AID commands

276 U6148-J-Z125-8-76

pid The fork task, which is to be set to debug mode, is addressed via its PID.

Examples

1.

tDD?
3 /%in s'10' <%display abc_arr; %stop> 3
3 /%resume 3
3 3
3 abc_arr(0: 26) 3
3 (0) |A| (1) |B| (2) |C| (3) |D| (4) |E| (5) |F| (6) |G| 3
3 (7) |H| (8) |I| (9) |J| (10) |K| (11) |L| (12) |M| (13) |N| 3
3 (14) |O| (15) |P| (16) |Q| (17) |R| (18) |S| (19) |T| (20) |U| 3
3 (21) |V| (22) |W| (23) |X| (24) |Y| (25) |Z| (26) |.| 3
3 STOPPED AT SRC_REF: 10 , SOURCE: EXAMP.C , PROC: main 3

%INSERT sets a test point on the first statement in line 10. The subcommand contains
the %DISPLAY and %STOP commands. After abc_arr has been output, AID halts
the program and writes a STOP message indicating the source reference, translation
unit and function of the current interrupt point.

2.

tDDD?
3 $debug exstop 3
3 % AID0348 Program stopped due to EXEC event (PID=0000000876) 3
3 %0000000876/%aid fork=next 3
3 %0000000876/%aid low=all 3
3 %0000000876/... 3
3 %0000000876/%resume 3
3 % AID0348 Program stopped due to FORK event (PID=0000000877) 3
3 %0000000877/... 3
3 %0000000877/%stop pid=876 3
3 % AID0492 %STOP was sent to fork task (PID=0000000876) 3
3 %0000000877/<DÜ> 3
3 % AID0348 Program stopped due to STOP event (PID=0000000876) 3
3 %0000000876/%trace 1 in s=n'exstop.c' 3
3 %0000000877/<DÜ> 3
3 45 BLOCK END, LOOP END 3
3 STOPPED AT SRC_REF: 45, SOURCE: exstop.c , BLK: 39 , END OF TRACE 3
3 %0000000876/%display count 3
3 %0000000877/<DÜ> 3
3 *** TID: 003400D1 *** TSN: 0EUV **3
3 SRC_REF: 45 SOURCE: exstop.c BLK : 39 ********************************3
3 count = 933 3

After loading the program with the POSIX debug command, %AID FORK=NEXT is used
to specify that the fork task created by exstop is also to run in debug mode. %AID
LOW=ALL is also set, otherwise the name of the source file exstop.c would be
converted into uppercase in the S qualification.

PID

AID commands %STOP

U6148-J-Z125-8-76 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

The parent task runs under pid 876 and the child task under pid 877. The parent task
is interrupted with the %STOP PID=876 command. AID reports back with the prompt
%0000000876/. You stop the parent task before the next executable statement with the
subsequent %TRACE command. You can now access the parent task variables without
qualification. Since both tasks are now competing for the terminal, you have to respond
to the prompt of the unwanted task with to allow the task you want to debug
to report on the terminal.

EM DÜ

%SYMLIB AID commands

278 U6148-J-Z125-8-76

%SYMLIB

With the %SYMLIB command you direct AID to open or close PLAM libraries. AID accesses
open PLAM libraries if in a command you address symbolic memory references located in
a translation unit for which no LSD records have been loaded.

– By means of qualification-a-lib you open or close one or more libraries in which object
modules and their associated LSD records are stored. In order to dynamically load LSD
records, any library can be assigned to the current program or to a dump file by speci-
fying the appropriate base qualification.

DDD
Command Operand
DDD

%SYMLIB [qualification-a-lib][,...]

DDD

When this command is executed, AID checks only whether the specified library can be
opened; it does not check whether the contents of the library match the program being
processed. Thus it is possible to initially open all libraries which you might need later during
a debug run. AID does not check whether the object module (OM) or the link and load
module (LLM) of the program which has been addressed matches that of the PLAM library
until the dynamically loaded LSD records are accessed.
If several libraries have been opened for a base qualification, AID scans them in the order
in which they were specified in the %SYMLIB command.
If the AID search is not successful or if no library is open, you may assign the correct library
by way of a new %SYMLIB command after the corresponding message has been issued.
You then repeat the command for whose execution the LSD records were lacking.

A library remains open until it is released by:
– a new %SYMLIB command for the same base
– a %SYMLIB command without an operand
– a %DUMPFILE command with which the dump file assigned to Dn is closed,
– a /LOGOFF or /EXIT-JOB.

You can also not access a library registered in the parent task, in a task created via a
fork() call.

If a new command contains new file names, these libraries are assigned and opened.

The %SYMLIB command does not alter the program state.

AID commands %SYMLIB

U6148-J-Z125-8-76 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

is a base qualification and/or the file name of a PLAM library.

– If you enter a base qualification and a file name, AID assigns the specified library for
this base qualification and opens it. Previously assigned libraries for the same base
qualification are closed.

– If you specify a file name only, AID assigns the library for the base qualification which
is currently applicable (see %BASE command) and opens it. All libraries previously
assigned for the current base qualification will be closed.

– If you specify a base qualification only, all open libraries for this qualification will be
closed.

AID can handle up to 15 library assignments. A library which is concurrently assigned for
several base qualifications is counted as often as it is specified.

qualification-a-lib-OPERAND -

 ⎧VM ⎫
[•][E=⎨ ⎬•][filename]
 ⎩Dn ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command and can only stand for a base
qualification.

E=VM
%SYMLIB applies for the loaded program (see also %BASE command).

E=Dn
%SYMLIB applies for a memory dump in a dump file with the link name Dn (see
%BASE, %DUMPFILE).

filename
BS2000 catalog name of a PLAM library which is assigned for the base qualification
specified with prequalification or entered explicitly. If the qualification is omitted, the
library is assigned for the base qualification which currently applies.

qualification-a-lib

%SYMLIB AID commands

280 U6148-J-Z125-8-76

Example

%symlib e=d5.mylib,out.cpp

If AID requires LSD records for processing a memory dump in the dump file with the link
name D5, AID attempts to load these records from the library MYLIB.
The library OUT.CPP is assigned for the currently set base qualification. If no %BASE
command has been issued, AID uses this library to dynamically load LSD records for the
program being executed.

AID commands %TITLE

U6148-J-Z125-8-76 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

%TITLE

With the %TITLE command you define the text of your own page header. AID uses this text
when the %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE commands
write to the system file SYSLST.

– By means of the page-header operand you specify the text of the header and direct AID
to set the page counter to 1 and to position SYSLST to the top of the page before the
next line to be printed.

DDD
Command Operand
DDD

%TITLE [page-header]

DDD

With a %TITLE command without a page-header operand you switch back to the AID
standard header. AID resets the page counter to 1 and positions SYSLST to the top of the
page before the next line to be printed.

A page header defined with %TITLE remains valid until a new %TITLE command is issued
or until the program ends.

The %TITLE command does not alter the program state.

Specifies the variable part of the page title. AID completes this specification by adding the
time, date and page counter.

page-header
is a character literal in the format {C’x...x’ | ’x...x’C | ’x...x’} and may have a maximum
length of 80 characters. A longer literal is rejected with an error message outputting
only the first 52 positions of the literal.

Up to 58 lines are printed on one page, not counting the title of the page.

page-header

%TRACE AID commands

282 U6148-J-Z125-8-76

%TRACE

With the %TRACE command you switch on the AID tracing function and start the program
or continue it at the interrupt point.

– By means of the number operand you can specify the maximum number of statements
to be traced, i.e. logged prior to execution.

– By means of the continue operand you control whether the program halts after the
%TRACE terminates (default) or continues running without logging.

– By means of the criterion operand you select different types of program statements
which AID is to log. Logging takes place prior to execution of the statements selected.

– By means of the trace-area operand you define the program area in which the criterion
is to be taken into consideration.

DDD
Command Operand
DDD

%T[RACE] [number] [continue] [criterion][,...] [IN trace-area]

DDD

A %TRACE cannot be active in conjunction with a write-event of %ON.

If program execution is interrupted while a %TRACE is running, the %TRACE can be reacti-
vated with %CONTINUE. This applies in the following situations:

– A subcommand containing a %STOP command has been executed.

– The K2 key has been pressed (see page 19).

A %TRACE command is terminated by any of the following events:

– The maximum number of statements to be traced has been reached.

– A subcommand containing a %RESUME or %TRACE command has been executed.

– A %RESUME command is issued after one of the above program interrupts.

– A fork() or exec() call was executed.

– The end of the program was reached.

The operand values of a %TRACE command apply until they are overwritten by the entries
in a subsequent %TRACE command, until a fork() or exec() call is executed or until the
program is terminated. In a new %TRACE command, AID therefore assumes the value

AID commands %TRACE

U6148-J-Z125-8-76 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

from the previous %TRACE command if an operand has not been specified. In the case of
the trace-area operand, this only happens if the current interrupt point is within the trace-area
to be assumed.

If there are no values to be taken over, AID uses the default values:
– 10 is set for number
– S is set for continue
– %STMT is inserted for criterion
– the translation unit containing the current interrupt point is set for trace-area.

With the aid of the %OUT command, you can control the information to be contained in a
line of the log and the output medium to which the log is to be written.

If the %TRACE is contained in a command sequence or subcommand, any commands
which follow will not be executed.

If you activate tracing in a C++ program prolog immediately after program loading or in the
epilog after main has terminated, it may not always be possible to assign the source refer-
ences and the associated statement types in the %TRACE log to the corresponding source
program statements in the source error listing.

trace-area can only be located in the loaded program, therefore the base qualification E=VM
must have been set (see the description of the command %BASE) or must be specified
explicitly.

The %TRACE command alters the program state.

Specifies the maximum number of program statements of type criterion which are to be
executed and logged.

number
is an integer 1 ≤ number ≤ 231-1. The default value is 10. If there is no value from a
previous %TRACE command, AID inserts the default value in a %TRACE
command without the number operand.

After the specified number of statements has been traced, the program is either halted or
continued without logging, depending on the value of the continue operand. If S is set for
continue, AID outputs a message to SYSOUT containing information on which statement, in
which translation unit, and in which function or block the program was halted.

number

%TRACE AID commands

284 U6148-J-Z125-8-76

Defines whether AID is to halt or continue program execution after the %TRACE termi-
nates. 'continue' applies until a different operand value for it is entered in a new %TRACE
or until the program terminates.

continue-OPERAND -

{S | R}

- -

S The program is halted. AID issues a STOP message containing the localization
information about the interrupt point. S is the default value.

R The program is continued without a message being issued.

Keyword which defines the type of statements to be traced during program execution.
Several keywords can be specified at a time; they take effect simultaneously. A comma
must be used to separate any two keywords.
If no criterion is declared, AID uses the default value %STMT unless a criterion declaration
from an earlier %TRACE command is still valid.

continue

criterion

criterion Output of log prior to

%STMT Every statement that is executed

%ASSGN Every assignment statement

%CALL Every function call

%COND Every if and switch statement, every else branch of the if statement
and every control expression of the do, while or for statement

%EH
%EXCEPTION

Every catch and throw statement

%GOTO Every goto, break and continue statement

%LAB Every statement with a label, but does not apply to case and default
labels

%PROC The first and the last statement of a function

Table 8: Values of the criterion operand and their meanings

AID commands %TRACE

U6148-J-Z125-8-76 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Defines the program area in which tracing is to take place, i.e. only within this area can
monitoring and logging of the statements selected by means of the criterion operand be
effected. The %TRACE command is inactive outside of this area and is activated again only
on returning to this area. trace-area is only valid if it is located in the loaded program; and if
you specify a translation unit, that unit must be loaded at the time when you enter the
%TRACE command or when the subcommand containing the %TRACE command is
executed.

A trace-area definition remains effective until a new %TRACE command with its own trace-
area operand is entered, until a %TRACE command is issued outside of this area, until a
fork() or exec() call is executed or until the program ends. If the trace-area operand has
been omitted, the area definition from an earlier %TRACE command is assumed if the
current interrupt point is located in this area. Otherwise AID uses the default value, i.e. the
translation unit containing the current interrupt point.

The continuation address for program execution cannot be influenced by the %TRACE
command. You can define another continuation address only by using %SET to change the
program counter (%PC) (see the description of the command %SET keyword on page 263).

trace-area-OPERAND -

 ⎧S=srcname ⎫
 o o
IN [•][E=VM•] ⎨ ⎧[qua•][PROC=]function ⎫⎬
 o[S=srcname•] ⎨BLK='[f-]n[:b]' ⎬o
 ⎩ ⎩([PROC=function•]src-ref:src-ref) ⎭⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command.
Consecutive qualifications must be separated by a period. In addition, there must
be a period between the final qualification and the following operand part.

E=VM
As control-area may only be located in the virtual memory of the program which has
been loaded, enter E=VM only if a dump file has been declared as the current base
qualification (see %BASE).

S=srcname
Specified only if trace-area is not to be in the current translation unit or if a defined
area limit is no longer to apply. If trace-area ends with an S qualification, it
encompasses the complete specified translation unit.

trace-area

%TRACE AID commands

286 U6148-J-Z125-8-76

[qua•][PROC=]function
trace-area is defined by a PROC qualification and includes the entire specified
function.
In the case of functions from C programs, function is the function name declared in
the source program, but without the parentheses or signature.
Functions from C++ programs must be specified in n'...' or t'...' notation,
depending on their type. If the function is defined in a namespace or class, the
function name is prepended with the namespace or class qualification.
The void signature may no longer be used. In this case, you only enter the two
parentheses after the function name, as is also possible in C++. The following
syntax results for function:

- -

 ⎧n’function([signature])’ ⎫
[namespace::[...]][class::[...]] ⎨ ⎬
 ⎩t’f_template<arg[,...]>([signature])’⎭

- -

The main and _ _STI_ _ functions and all functions with C linkage constitute an
exception; these functions are identified only by the function name even when
debugging within C++ programs (see page 58).

Syntax for virtual functions:

p->n'function([signature])'

p is a pointer variable that points to the class object containing the desired member
function. If p cannot be accessed from the current interrupt point, it must be
qualified in accordance with its scope. If the interrupt point is located in the virtual
function itself, you can reference the prolog address of the current function by using
the this pointer instead of p. (see the description of this on page 64 and the
section “Virtual functions” on page 73).

If you want to specify a function via a pointer to member as the trace-area, you can
use one of the following two methods:

You designate the class object by name and enter •* as the dereferencing operator
as follows:

- -

[qua•]object•*[object•][class::][...]pointer-to-function-member

- -

AID commands %TRACE

U6148-J-Z125-8-76 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

You address the class object via a pointer and enter ->* as the dereferencing
operator as follows:

- -

[qua•]pointer->*[object•][class::][...]pointer-to-function-member

- -

The class object is designated by the operand on the left of the dereferencing
operator •* or ->*:
object designates the class object by name;
pointer addresses the object via a pointer.
The name of the pointer to function member must be entered on the right of the
dereferencing operator. This may need to be preceded by the object containing the
definition of the pointer to function member and the class qualification needed for
unique addressing within the object if the pointer to member cannot be reached
from the interrupt point by some other means. More details on working with a
pointer to function member can be found on page 79.

qua
If the function is defined in a local class, before the PROC qualification you have
to add an additional PROC qualification for the superordinate function
containing the definition of the local class. With functions defined in an inner
block of the superordinate function, you have to append one or possibly several
BLK qualifications, each separated by a period, to the superordinate function
PROC qualification to describe the path to the local class (see page 60).

Syntax for qua:

- -

PROC=superordinate_function[BLK=’[f-]n[:b]’•[...]]

- -

Accessing functions defined in inner blocks of local classes is only supported
with programs that were compiled with a C/C++ compiler as of V3.0B.

BLK=’[f-]n[:b]’
trace-area is defined by a BLK qualification and includes the entire specified block.
Block names are constructed from the line number (n) and, if appropriate, the FILE
number (f) and the relative block number (b).

i The BLK qualification cannot be used together with the %PROC criterion.

%TRACE AID commands

288 U6148-J-Z125-8-76

([PROC=function•]src-ref : src-ref)
Source references let you define trace-area by specifying a start and end address.
Both must lie within the same translation unit, and start address must be ≤ end
address.
Note that ascending source references are only assigned ascending addresses
within a function block. If the condition start address ≤ end address is not satisfied,
AID rejects the command with a corresponding error message.

Furthermore, note that additional source references, which do not appear in the
source error listing but are logged by %TRACE, are generated in connection with
implicit constructor and destructor calls as well as conversion operations in C++
programs.

If trace-area is to include only one statement, the start and end addresses must be
identical.

PROC=function•
You only have to write the PROC qualification if the specified source references
in the translation unit are not unique. This is the case if the source references
are located in a function that was created from a function template via instanti-
ation or if the function containing the source references is defined in a class
template and at least two instances exist for the template (see above and
page 108).

src-ref
 Designates the address of an executable statement and is specified in the form
S'[f-]n[:a]', where n is the line number, u is the FILE number if it is > 0, and
a is the relative statement number within the line if it is > 1.

Output of the %TRACE log

The %TRACE log is output in full format via SYSOUT as a standard procedure (%OUT
operand value T=MAX). With the %OUT command, you can define the output media and
the scope of information to be output (see the chapter “Medium-a-quantity operand” in the
AID Core Manual [1]).

A %TRACE listing with additional information (T=MAX) contains the number and type of the
statement that was executed.

A %TRACE listing without additional information (T=MIN) does not show the statement
type.

AID does not take into account XMAX and XFLAT modes for outputting the %TRACE log.
Instead, it generates the default value (T=MAX).

AID commands %TRACE

U6148-J-Z125-8-76 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

6

Examples

1. tDDD?
3 /%out %trace t=max 3
3 /%t 3 3
3 15 EXT.PROC START , BLOCK START, IF 3
3 16 IF 3
3 17:2 THEN/ELSE, END 3
3 STOPPED AT SRC_REF: 17:2 , SOURCE: EXAMP.C , PROC: facul , 3
3 END OF TRACE 3

Using the %OUT command, output is switched back to the terminal and the maximum
amount of information is selected for output.
The %TRACE command is to trace three C statements. After the third statement follows
the termination message for this %TRACE command. Program control is before the
second statement in line 17, which is assigned to the function facul in the translation
unit EXAMP.C.

2. tDDD?
3 /%out %t t=min 3
3 /%t 3 3
3 15 3
3 16 3
3 17:2 3
3 STOPPED AT SRC_REF: 17:2 , SOURCE: EXAMP.C , PROC: facul , 3
3 END OF TRACE 3

The %OUT command reduces the range of information for the %TRACE command.
The next %TRACE entered outputs the log with less information.

3. %trace 5 r %instr

5 program statements are executed and logged. Then the program is continued without
logging.

4. %c1 %call in s=testprog <%trace 1 r>

All subroutine calls of program unit TESTPROG are logged. The program is continued
after each execution and logging of the CALL statement.

%TRACE AID commands

290 U6148-J-Z125-8-76

U6148-J-Z125-8-76 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

7

7 POSIX debug command

The debug command allows debugging of POSIX programs which were started in the
POSIX shell. With debug, you can load a program with LSD in the POSIX shell or interrupt
a running process and set it to debug mode.

debug is not allowed in POSIX sessions opened via rlogin for system security reasons.

Syntax- -

 ⎧ [-e] progname[argument]... ⎫
debug ⎨ ⎬
 ⎩ -p pid ⎭

- -

debug [-e] progname [argument]...
Program progname is loaded in a task created by the shell via fork() and set to
debug mode. AID then responds with a prompt formed from the task process
number (pid) and you can input AID commands for debugging. You can use the -e
option to control whether the LSD is to be loaded for symbolic debugging (without
-e) or not (with -e). The debug progname command in the POSIX shell thereby
corresponds to the BS2000 LOAD-PROGRAM progname command with the operand
TEST-OPTIONS=YES in the BS2000 environment.

-e progname is loaded without the LSD.

progname
Name of the program to be debugged.

argument
Argument of progname.

POSIX debug command

292 U6148-J-Z125-8-76

debug -p pid
The process with the specified pid is taken over by AID and interrupted if the
process designated by pid belongs to its own task family. The POSIX shell is
thereby the parent task for all processes started in the shell.
debug -p pid in the POSIX shell corresponds to the AID command %STOP PID=pid
(see page 275), which you can enter BS2000 command mode or in debug mode in
a task.

-p The program is taken over via the associated pid.

pid Process number of the task to be taken over by AID and interrupted.

Example

The example shows a running program being taken over by AID:

tDDD?
3 $ ps -ef 3
3 UID PID PPID C STIME TTY TIME CMD 3
3 D?9?39 ?90 ??4 0 ?0????3? t??m/003 0?0? ???] 3
3 D89239 888 824 0 10:22:27 term/003 0:00 [pexec] 3
3 D89239 889 888 0 10:22:28 term/003 0:00 [pexec] 3
3 D89239 830 1 0 09:35:13 term/004 0:04 [sh] 3
3 D89239 824 1 0 09:31:22 term/003 0:06 [sh] 3
3 $ debug -p 888 3
3 % AID0492 %STOP was sent to fork task (PID=0000000888). 3
3 % AID0348 Program stopped due to STOP event (PID=0000000888) 3

The POSIX ps -ef command is used first to request a list of all running processes. You
can select the PID of the process to be examined by AID (888) from this list. This process
is the parent task for the fork task with PID 889. The parent task is interrupted and set to
debug mode with debug -p 888.

tDDD?
3 %0000000888/%stop pid=889 3
3 % AID0492 %STOP was sent to fork task (PID=0000000889). 3

The child task is also interrupted. Both tasks then report alternately with their prompts.

POSIX debug command

U6148-J-Z125-8-76 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

7

tDDD?
3 %0000000888/%aid low=all 3
3 %0000000888/%symlib test.lib 3
3 % AID0348 Program stopped due to STOP event (PID=0000000889) 3
3 %0000000889/<DÜ> 3
3 %0000000888/%trace 1 in s=n’pexec.c’ 3
3 %0000000889/<DÜ> 3
3 %0000000889/<DÜ> 3
3 38 BLOCK END, LOOP END 3
3 STOPPED AT SRC_REF: 38, SOURCE: pexec.c , PROC: main , END OF TRACE 3

In the next step, the parent task is to be executed until the first statement after the interrupt
point. To enable AID to process the %TRACE 1 IN S=srcname command, the case sensitivity
must be enabled for the S qualification with %AID LOW=ALL and the PLAM library containing
the LSD for the pexec program must be registered with %SYMLIB.
Since the parent and child tasks are running in parallel, it is advisable to improve legibility
by responding to the prompt of the other task each time with until the %TRACE
command output is complete.

tDDD?
3 %0000000889/%aid low=all 3
3 %0000000888/<DÜ> 3
3 %0000000889/%symlib test.lib 3
3 %0000000888/<DÜ> 3
3 %0000000889/%trace 1 in s=n’pexec.c’ 3
3 %0000000888/<DÜ> 3
3 27 BLOCK END, LOOP END 3
3 STOPPED AT SRC_REF: 27, SOURCE: pexec.c , BLK: 17 , END OF TRACE 3
3 %0000000888/... 3

The same process as above is repeated for the child task.

EM DÜ

POSIX debug command

294 U6148-J-Z125-8-76

U6148-J-Z125-8-76 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

8

8 Special notes on debugging under POSIX

In addition to information on debug context inheritance with fork() or exec() calls and
dump processing when debugging with POSIX, this chapter also contains information on
the strategies most likely to lead to success when debugging fork tasks and programs
loaded with an exec() call.

8.1 Inheriting the debug context

The only setting which remains applicable in a task created via fork() is %AID FORK=ALL,
if it was set in the parent task. All other settings such as:
– settings defined with %AID
– set test points
– events traced with %ON
– PLAM libraries registered with %SYMLIB, etc.
are reset in the fork task.

However, settings made with AID and definitions made with %SYMLIB remain effective in
a program loaded with exec(). All other definitions are reset, as in a fork task.

8.2 Debug strategies

If you only have a BS2000 terminal or appropriate emulation available for debugging fork
tasks, you may run into problems when debugging several tasks concurrently as these
tasks have to compete for the terminal.

This section contains instructions on the most expedient procedures for successfully
debugging fork tasks and programs loaded with an exec() call.

One suitable strategy is to initially debug each program section, i.e. parent task, tasks
created via fork() and programs loaded with exec() completely separately. This also has
another advantage for programs which are to be loaded later with exec() calls. If the
program is loaded with exec(), the LSD cannot be loaded and must be explicitly assigned
with %SYMLIB. However, if you load the program directly with the POSIX debug command,
you can also load the LSD with it.

Debug strategies Special notes on debugging under POSIX

296 U6148-J-Z125-8-76

You should debug the call context separately and only proceed with debugging the entire
program after ensuring that all program sections and the call context are free of errors. One
way of doing this is to use successive fork() and exec() calls while the superordinate
task is quiescent in each case, which you can achieve by temporarily inserting a loop of
sufficient length or with a suitable wait() call.

Each program section should mark its outputs during the debug phase to allow them to be
properly allocated. More detailed information on allocating the inputs/outputs while
debugging multiple fork tasks is provided in the section “Allocation” on page 299.

You should initially debug the program in the POSIX shell. The various fork tasks run with
the same priority in the shell, i.e. each fork task has the same priority for accessing the
terminal to request inputs or output information. If the program is started in the LOGON
task, the BS2000 command mode has a higher priority than the fork task debug mode. This
may result in the parent tasks blocking the terminal, thus preventing the fork tasks from
accessing the terminal for input/output purposes.
A table in the following form can be a useful aid when simultaneously debugging several
fork tasks. You can use it to make a list of each fork task number together with its process
number and TSN, the source references of the fork() call and the current interrupt point:

You should also note that the program is interrupted in the runtime system immediately after
a fork() or exec() call. You can only access data, functions and source references from
this interrupt point with full qualification. To save yourself from having to write too much, it
is advisable to initially use %TRACE 1 IN S=srcname to advance to the next executable
statement in the user program.

You cannot use the K2 key under POSIX. To terminate a POSIX process, you have to input
the string @@c. The POSIX shell then responds with its prompt, generally $. You can
terminate a task in debug mode with the BS2000 EXIT-JOB or LOGOFF command or you
can input the CANCEL-JOB command with the TSN of the task to be terminated, from
another task (see “BS000 User Commands (SDF Format)”).

Fork number pid TSN Source reference

Fork start
source code

Current
interrupt

F1 929 0ND1 168

F11 930 0ND2 110 124, 128

...

Table 9: Overview of active fork tasks

Special notes on debugging under POSIX Input/output

U6148-J-Z125-8-76 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

8

8.3 Input/output

When debugging fork tasks, the separate tasks have to compete for the terminal. The
outputs of the separate fork tasks are initially put into a queue and then processed in
sequence. There are therefore specific rules that have to be noted for input/output in debug
mode which may differ from those for “normal” debugging in BS2000 command mode. The
following sections handle possible inputs in debug mode, problems with allocating
inputs/outputs to the various tasks and possible errors.

8.3.1 Possible inputs

You can input all AID commands and most BS2000 commands in debug mode. All BS2000
commands are allowed that you can also specify in command sequences and subcom-
mands (see the AID Core Manual [1]). Guided SDF dialog is not possible.

Command sequences comprising AID and BS2000 commands separated by semicolons (;)
can also be input. The restrictions described in the AID Core Manual in the section
“Command sequences and subcommands” [1] also apply in this case. These restrictions
also apply if BS2000 commands are input in debug mode, even separately.
As in BS2000 command mode, you can also only input in debug mode. This
“dummy” input is required in debug mode to allow the required task to report to the terminal
with its prompt from among several in one fork family. You may have to input
several times as tasks report to the terminal in the same order as their associated
inputs/outputs are entered in the queue.

Example

tDDD?
3 $ debug ex1fork 3
3 % AID0348 Program stopped due to EXEC event (PID=0000002893) 3
3 %0000002893/%on %svc(44) <%trace 1 %instr> 3
3 %0000002893/%aid fork=next 3

The program is first loaded with the POSIX debug command. Program ex1fork contains
a fork() call.
Tracing of SVC number 44 is activated with the AID %ON command. The associated
subcommand ensures that the SVC is executed and that the program is halted immediately
after this.
You then use %AID FORK=NEXT to enable debug mode for the first-generation fork tasks.

EM DÜ

EM DÜ

Input/output Special notes on debugging under POSIX

298 U6148-J-Z125-8-76

tDDD?
3 %0000002893/%resume 3
3 ICXSVCTU+7C46 SVC 44 1 FCT=POSPWENT IR1=010BCA40 3
3 PAR=00E4B601 00000000 00000000 3
3 STOPPED AT V'10646D0' = ICXSVCTU + #'7C48' , END OF TRACE 3
3 %0000002893/%r 3
3 ICXSVCTU+7C46 SVC 44 1 FCT=POSLDENV IR1=010BCA40 3
3 PAR=00E34101 00000000 00000000 3
3 STOPPED AT V'10646D0' = ICXSVCTU + #'7C48' , END OF TRACE 3
3 %0000002893/%r 3
3 ... 3
3 %0000002893/%r 3
3 ICXSVCTU+7C46 SVC 44 1 FCT=POSFORK IR1=010BCEB0 3
3 PAR=00E30201 00000000 00000000 3
3 STOPPED AT V'10646D0' = ICXSVCTU + #'7C48' , END OF TRACE 3

The subsequent %RESUME commands execute the program up to the deciding SVC with
number 44 (FCT=POSFORK). This SVC starts the fork task creation.

tDDD?
3 %0000002893/<DÜ> 3
3 % AID0348 Program stopped due to FORK event (PID=0000002897) 3
3 %0000002893/<DÜ> 3

You now respond to the parent task prompt with a dummy input (). AID outputs
message AID0348 which confirms that the fork task has been created. You then again
respond to the subsequent parent task prompt with (forced task change). AID
now prompts you input a command for the fork task.

tDDD?
3 %0000002897/%show %base 3
3 %0000002893/<DÜ> 3
3 %BASE E=VM 3
3 TSN: 0J05 TID: 0091017D 3
3 %AINT = %MODE31 3
3 BS: V12.0 HW: CFCS V3 3
3 %0000002897/ 3

You have to respond to the parent task prompt once more with a dummy input to output the
information of the %SHOW %BASE command to the terminal.

EM DÜ

EM DÜ

Special notes on debugging under POSIX Input/output allocation

U6148-J-Z125-8-76 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

8

8.3.2 Allocation

As mentioned several times, it is generally advisable to debug each task separately and put
other tasks created by the program into a quiescent state in the meantime. However, should
several tasks run simultaneously and output to the terminal, the following applies:

– Only the inputs can be uniquely allocated, i.e. each input always goes to the tasks
whose prompt was used to input it.

– Outputs cannot generally be allocated, except for the %TRACE logs which can be
allocated via the source references.
If several tasks try to output to the terminal simultaneously, the output order is more or
less random. If you are waiting for the output from a specific task, you should always
respond to the prompts from other tasks with a dummy input until the awaited output is
complete (see the example above).

– To ensure correct allocation during the debug phase, you should either redirect program
outputs into a file or identify them temporarily with a prepended program abbreviation.

8.3.3 Errors

A fork task cannot input or output to the terminal in the following cases:

– No program is loaded in the LOGON task.

– A program other than that from which the fork task was created (either directly or
indirectly) is loaded in the LOGON task.

– The LOGON task has been terminated.

This also applies analogously for programs that were started in the POSIX shell.

In this case, the fork task is aborted without an error message when it tries to output to or
input from the terminal. This also applies if the input/output request has already been
entered into the queue.

The fork task is not aborted while the input/output is redirected into files.

Dump processing Special notes on debugging under POSIX

300 U6148-J-Z125-8-76

8.4 Dump processing

You can process dumps (memory areas) from fork tasks and programs loaded via an
exec() call in the normal manner. Dumps are generally stored in BS2000, even if the
program that generated the dump was started in the POSIX shell. If AID has to load LSD
via the AID %SYMLIB command to dump a POSIX program, you must note that %SYMLIB
cannot access POSIX files. The file concerned must first be copied with the POSIX bs2cp
command as an L member into a PLAM library in BS2000 and can then be assigned with
%SYMLIB (see also the section “Loading the LSD dynamically” on page 18).
The %DUMPFILE command, which directs AID to open the dump file, and the %BASE
command, with which you specify to AID that the trace is to take place in the order of the
memory area stored in this dump file, are described in the chapter “AID commands” on
page 113.

In the POSIX shell, a user dump is always written for programs which were aborted
because of an error. The “IDA0N45 Dump desired?” query you know from BS2000 is not
output and the program is unloaded.
It is therefore advisable to trap program errors with %ON %ANY during debugging. When
an error occurs, AID then reports the address of the interrupt point at which the error
occurred and the event which caused the error. The program remains loaded and you can
inspect the error context immediately. If the error can be eliminated with AID commands,
you can continue program execution with %RESUME. However, if it is not possible to
continue program execution, you can terminate the task with EXIT-JOB or LOGOFF and
subsequently analyze the program error with further debugging.

U6148-J-Z125-8-76 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

9 Sample applications

This chapter presents three AID debugging sessions for short C and C++ programs. After
working through these sessions, you will understand the use and effects of a number of AID
commands better. The programs have intentionally been kept simple.

The examples in this chapter were executed on a specific BS2000 system. A test run on
some other machine may differ marginally from the descriptions here, depending on the
installed operating system and the other system components.

9.1 Sample C application in BS2000

The program is intended to read in a maximum of 5 names and telephone numbers and the
names are then sorted and output in list form together with the telephone numbers.
The source error listing of the C program is reprinted first, followed by the debug run.
To improve legibility, the user inputs in the run logs are printed in boldface. Data and
function names are shown in continuous text in typewriter font.

Sample C application in BS2000 Sample applications

302 U6148-J-Z125-8-76

9.1.1 Source error listing

*** SOURCE - ERROR - LISTING ** BS2000 C/C++ COMPILER 03.2E21 DATE:2015-02-27 PAGE: 1
 SOURCENAME:*LIB-ELEM(MYLIB,NLIST.C(*HIGHEST-EXISTING),S)
DDD
 EXP SRC BLOCK
 LIN ... LIN LEV

 1 1 0 #include <stdio.h>
 1662 2 0 #include <stdlib.h>
 2128 3 0 #include <string.h>
 2414 4 0 #define MAX 5
 2415 5 0
 2416 6 0 struct tele { /* Structure tele */
 2417 7 0 char name[15];
 2418 8 0 unsigned long number;
 2419 9 0 };
 2420 10 0
 2421 11 0 void nlist(struct tele array[], int count); /* Function nlist */
 2422 12 0 int nread(struct tele array[]); /* Function nread */
 2423 13 0
 2424 14 0 int main(void)
 2425 15 0 {
 2426 16 1 struct tele arrp[MAX]; /* Phone list */
 2427 17 1 int nentry; /* Number of entries */
 2428 18 1
 2429 19 1 nentry = nread(arrp); /* Read in */
 2430 20 1 qsort (arrp, nentry, sizeof(struct tele),
 2431 21 1 (int(*)(const void*, const void*))strcmp); /* Sort list */
 2432 22 1 nlist (arrp, nentry); /* Output list */
 2433 23 1 return 0;
 2434 24 1 }
 2435 25 0
 2436 26 0 int nread(struct tele f[]) /* Read in names and numbers */
 2437 27 0 {
 2438 28 1 int i;
 2439 29 1
 2440 30 1 for (i=0; i<=MAX; i++)
 2441 31 1 { printf ("Enter a name (end = 9): ");
 2442 32 2 if ((scanf ("%s", f[i].name) != 1) ||
 2443 33 2 (f[i].name[0] == '9')) break;
 2444 34 2 do {
 2445 35 3 fflush(stdin);
 2446 36 3 printf ("Now enter the phone number: ");
 2447 37 3 } while (scanf ("%lu", f[i].number) != 1);
 2448 38 2 }
 2449 39 1 return 0;
 2450 40 1 }
 2451 41 0
 2452 42 0 void nlist (struct tele f[], int n) /* Output list */
 2453 43 0 {
 2454 44 1 int i;
 2455 45 1
 2456 46 1 printf ("%-25s | %10s\n", "Name", "Number"); /* Header */
 2457 47 1 printf ("--------------------------------------\n");
 2458 48 1 for (i=0; i<n; i++)
 2459 49 1 printf ("%-25s | %10lu\n", f[i].name, f[i].number);
 2460 50 1 printf ("\n\n");
 2461 51 1 return;
 2462 52 1 }

Sample applications Sample C application in BS2000

U6148-J-Z125-8-76 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

9.1.2 Debug run

Step 1

The C source program in the file NLIST.C is compiled by the C compiler. Specifying the
SDF option MODIFY-TEST-PROPERTIES TEST-SUPPORT=*YES causes C to generate the
LSD records which make symbolic debugging possible. Optimization is suppressed during
compilation by means of the MODIFY-OPTIMIZATION-PROPERTIES LEVEL=*LOW option
(see section “Compiling in BS2000” on page 14). The compilation does not produce any
errors.

tDD?
3/START-CPLUS-COMPILER 3
3 % BLS0523 ELEMENT 'SDFCC', VERSION '03.2E21', TYPE 'L' FROM LIBRARY 3
3 ':2OSH:$TSOS.SYSLNK.CPP.032' IN PROCESS 3
3 % BLS0524 LLM 'SDFCC', VERSION '03.2E21' OF '2015-02-24 07:17:56' LOADED 3
3 % BLS0551 COPYRIGHT (C) 2015 Fujitsu Technology Solutions GmbH. ALL RIGHTS RESERVED 3
3 % CDR9992 : BEGIN C/C++ VERSION 03.2E21 3
3//MODIFY-SOURCE-PROPERTIES LANGUAGE=*C(MODE=*ANSI)",DEFINE=..." 3
3//MODIFY-TEST-PROPERTIES TEST-SUPPORT=*YES 3
3//MODIFY-OPTIMIZATION-PROPERTIES LEVEL=*LOW 3
3... 3
3% CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0 3
3% CDR9997 : MODULES GENERATED 3
3//MODIFY-BIND-PROPERTIES INCLUDE = *LIB-ELEM(L=MYLIB,E=NLIST.O) 3
3//BIND OUTPUT = *LIB-ELEM(L=MYLIB,E=NLIST) 3
3... 3
3//END 3
3% CDR9908 : END C TIME USED = 3.5300 SEC 3
3% CCM0998 CPU TIME USED: 3.6159 SECONDS 3
gDDu

Step 2

The program is loaded. The command %AID C=YES causes AID to accept C string literals
and enables the processing of char arrays as C strings. C=YES implicitly enables case
sensitivity, i.e. a distinction between uppercase and lowercase, as well as the interpretation
of hyphens as minus characters.
The command %ON %ANY ensures that the program will not be unloaded if an error is
encountered and that AID will issue an error message giving the address of the interrupt
point and the event which caused the interrupt.

On starting the program with %RESUME, it initially runs correctly and requests the input of
names and numbers; however, the nread function does not stop reading after the 5-th
number and requests a further name instead. Reading the 6-th name results in a page error.
The program can therefore now be examined at the interrupt point to determine what
caused the error.
The following two %DISPLAYs show the subscript and the associated array element
f[i].name. AID reports an invalid address for f[i].name: the array has only 5 elements,
so the highest permissible value for i is 4. On examining the start statement of the loop in
line 30, you learn that the query at the end of the loop is formulated incorrectly: instead of
testing for i<=MAX, a test for i<MAX should be performed.

Sample C application in BS2000 Sample applications

304 U6148-J-Z125-8-76

In order to continue in the program despite the error that occurred, you set the instruction
counter to the address of the return statement that was stored for source reference S’39’
and start the program with %RESUME at that address. Note, however, that it is advisable
to be cautious here, especially if large jumps are to be performed within the program by
overwriting the instruction counter. There is no guarantee that the register states, file status,
contents of subscripts, etc., will always be suitable at the destination address to continue
the program normally.
The program now executes up to the end, but the function nlist displays only the title.

tDD?
3/LOAD-PROG *M(MYLIB,NLIST,RUN-MODE=ADV,PROGRAM-MODE=ANY), TEST-OPT=AID 3
3% BLS0523 ELEMENT 'NLIST', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' IN PROCESS 3
3% BLS0524 LLM '$LIB-ELEM$MYLIB$$NLIST', VERSION ' ' OF '2015-01-14 12:24:58' LOADED 3
3/%aid c=yes 3
3/%on %any 3
3/%resume 3
3Enter a name (end = 9): Joe 3
3Now enter the phone number: 123 3
3Enter a name (end = 9): Weber 3
3Now enter the phone number: 456 3
3Enter a name (end = 9): Blob 3
3Now enter the phone number: 789 3
3Enter a name (end = 9): Peter 3
3Now enter the phone number: 101112 3
3Enter a name (end = 9): Williams 3
3Now enter the phone number: 131415 3
3Enter a name (end = 9): Smith 3
3STOPPED AT SRC_REF: 32, SOURCE: NLIST.C , BLK: 31 , EVENT: PAGING ERROR 3
3/%d i 3
3*** TID: 00420333 *** TSN: 8MEH **3
3SRC_REF: 32 SOURCE: NLIST.C BLK: 31 ***3
3i = 5 3
3/%d f[i].name 3
3*.name(0: 14) 3
3% AID0396 Invalid address for name 3
3/%s s'39' into %pc 3
3/%r 3
3Name | Number 3
3-------------------------------------- 3
3 3
3 3
3 % CCM0998 CPU TIME USED: 0.0540 SECONDS 3
3 STOPPED AT V‘1018846‘ = IT0TRM@@ + #‘2E‘ , EVENT: TERM (NORMAL,PROGRAM,NODUMP) 3
gDDu

Step 3

The program is reloaded. In order to bypass the error with the help of AID, the reading of
names and numbers is stopped via the subcommand in %INSERT S’31’ after five iterations.
The next command %CONTROL1 causes the program to stop on starting the nlist
function and just before it is exited, thus allowing you to examine why only the title of the
phone list was output by nlist.

On restarting the program with %RESUME, exactly 5 names and numbers are now read in
correctly. Due to the %CONTROL, the program stops at the first executable statement of
nlist. You now use the %DISPLAY command to examine the contents of the passed
parameter n, which has a value of 0. The variable nentry, which accepts the result of

Sample applications Sample C application in BS2000

U6148-J-Z125-8-76 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

nread and passes it on to nlist, is obviously not set correctly, as confirmed by the
following command %DISPLAY proc=main.nentry. A quick look at the source program
indicates that the function nread is passing the value 0 instead of i, so the return
statement in line 39 must be replaced by return i;.

With the next %SET command, you set n to 5, which causes nlist to output the list of
names and phone numbers. However, the names are not sorted, and this, in turn, is due to
the fact that the value of the nentry variable was still 0 when the library function qsort:
was called.
Furthermore, even the numbers are not accurate, and this is presumably because an
address operator was forgotten in the function call to scanf. This would mean that scanf
is probably using the content of f[0].number as an address and has entered the number
at that address. The subsequent %DISPLAY proves the invalid addressing. The first phone
number, “123”, can actually be found there.
The correct way call to scanf in line 37 would be:
scanf ("%lu", &f[i].number).

tDD?
3/LOAD-PROG *M(MYLIB,NLIST,RUN-MODE=ADV,PROGRAM-MODE=ANY), TEST-OPT=AID 3
3% BLS0523 ELEMENT 'NLIST', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' IN PROCESS 3
3% BLS0524 LLM '$LIB-ELEM$MYLIB$$NLIST', VERSION ' ' OF '2015-01-14 12:24:58' LOADED 3
3/%on %any 3
3/%in s'31' <s31:(i eq 5): %s s'39' into %pc> 3
3/%c1 %proc in proc=nlist 3
3/%r 3
3Enter a name (end = 9): Joe 3
3Now enter the phone number: 123 3
3Enter a name (end = 9): Weber 3
3Now enter the phone number: 456 3
3Enter a name (end = 9): Blob 3
3Now enter the phone number: 789 3
3Enter a name (end = 9): Peter 3
3Now enter the phone number: 101112 3
3Enter a name (end = 9): Williams 3
3Now enter the phone number: 131415 3
3STOPPED AT SRC_REF: 46, SOURCE: NLIST.C , PROC: nlist 3
3/%d n 3
3*** TID: 00420333 *** TSN: 8MEH **3
3SRC_REF: 46 SOURCE: NLIST.C PROC: nlist **3
3n = 0 3
3/%d proc=main.nentry 3
3nentry = 0 3
3/%s 5 into n 3
3/%r 3
3Name | Number 3
3-------------------------------------- 3
3Joe | 17988680 3
3Weber | 17989292 3
3Blob | 17989136 3
3Peter | 0 3
3Williams | 0 3
3 3
3 3
3STOPPED AT SRC_REF: 51, SOURCE: NLIST.C , PROC: nlist 3
3/%d f[0].number->%f 3
3CURRENT PC: 010004E2 CSECT: NLIST$O&@ **3
3V'01127C48' = IC@RT20A + #'00027C48' 3
301127C48 (00027C48) +123 3
gDDu

Sample C application in BS2000 Sample applications

306 U6148-J-Z125-8-76

Step 4

The program is reloaded, and the detected errors are eliminated with %INSERT
commands:

– The first %INSERT places the missing address operator before f[i].number in the
call to scanf.

– The second %INSERT is used to verify the entered names and numbers and also
to display each subscript.

– The third %INSERT breaks the loop in nread as above.

– Finally, the fourth %INSERT corrects the value of nentry.

Start the program with %RESUME.

The names and numbers are now read in correctly, and the phone list is sorted and output
in alphabetical order.
Due to the command %ON %ANY, the program stops before being finally unloaded even on
executing correctly, and a corresponding STOP message is issued.

tDD?
3/LOAD-PROG *M(MYLIB,NLIST,RUN-MODE=ADV,PROGRAM-MODE=ANY), TEST-OPT=AID 3
3% BLS0523 ELEMENT 'NLIST', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' IN PROCESS 3
3% BLS0524 LLM '$LIB-ELEM$MYLIB$$NLIST', VERSION ' ' OF '2015-01-14 12:24:58' LOADED 3
3/%on %any 3
3/%in s'32' <s32: %set %@(f[i].number) into f[i].number> 3
3/%in s'38' <s38: %d i, f[i].number, f[i].name> 3
3/%in s'31' <s31: (i eq 5): %s s'39' into %pc> 3
3/%in s'20' <s20: %set 5 into nentry> 3
3/%r 3
3Enter a name (end = 9): Joe 3
3Now enter the phone number: 123 3
3*** TID: 00420333 *** TSN: 8MEH **3
3SRC_REF: 38 SOURCE: NLIST.C PROC: nread **3
3i = 0 3
3*.number = 123 3
3*.name = "Joe" 3
3Enter a name (end = 9): Weber 3
3Now enter the phone number: 456 3
3i = 1 3
3*.number = 456 3
3*.name = "Weber" 3
3Enter a name (end = 9): Blob 3
3Now enter the phone number: 789 3
3i = 2 3
3*.number = 789 3
3*.name = "Blob" 3
3Enter a name (end = 9): Peter 3
3Now enter the phone number: 101112 3
3i = 3 3
3*.number = 101112 3
3*.name = "Peter" 3
3Enter a name (end = 9): Williams 3
3Now enter the phone number: 131415 3
3i = 4 3
3*.number = 131415 3
3*.name = "Williams" 3
gDDu
 Continued...

Sample applications Sample C application in BS2000

U6148-J-Z125-8-76 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

Continued...

tDDD?
3Name | Number 3
3-------------------------------------- 3
3Blob | 789 3
3Williams | 131415 3
3Joe | 123 3
3Weber | 456 3
3Peter | 101112 3
3 3
3 3
3 % CCM0998 CPU TIME USED: 0.1435 SECONDS 3
3 STOPPED AT V'1018846' = IT0TRM@@ + #'2E' , EVENT: TERM (NORMAL,PROGRAM,NODUMP) 3
gDDDu

Sample C++ application in BS2000 Sample applications

308 U6148-J-Z125-8-76

9.2 Sample C++ application in BS2000

This program is intended to display two lines of text, using the class string.
To enhance the readability of this example, data and function names are printed in
typewriter font in the body of the text, while user input is printed in boldface.

9.2.1 Source error listing

*** SOURCE - ERROR - LISTING ** BS2000 C/C++ COMPILER 03.2E21 DATE:2015-02-27 PAGE: 1
 SOURCENAME: *LIB-ELEM(MYLIB,STRING.C(*HIGHEST-EXISTING),S
DDD
EXP INC FILE SRC
LIN LEV NO LIN

 1 0 0 1
 2 0 0 2 extern "C" void* malloc(unsigned);
 3 0 0 3 extern "C" void free(void*);
 4 0 0 4
 5 0 0 5 extern "C" int strlen(const char*);
 6 0 0 6 extern "C" char* strcpy(char*, const char*);
 7 0 0 7 extern "C" char* strcat(char*, const char*);
 8 0 0 8
 9 0 0 9 extern "C" int printf(const char*, ...);
 10 0 0 10
 11 0 0 11 class string
 12 0 0 12 {
 13 0 0 13 int length;
 14 0 0 14 char* start;
 15 0 0 15 public:
 16 0 0 16 /*
 17 0 0 17 * constructors
 18 0 0 18 */
 19 0 0 19 string() : length(0), start(0) {};
 20 0 0 20 string(const char *s) {
 21 0 0 21 length = strlen(s) + 1;
 22 0 0 22 start = new char[length];
 23 0 0 23 strcpy(start, s);
 24 0 0 24 };
 25 0 0 25 string(const string &s) {
 26 0 0 26 length = s.length;
 27 0 0 27 start = new char[length];
 28 0 0 28 strcpy(start, s);
 29 0 0 29 };
 30 0 0 30 const string& operator=(const string& s)
 31 0 0 31 {
 32 0 0 32 length = s.length;
 33 0 0 33 start = new char[length];
 34 0 0 34 strcpy(start, s);
 35 0 0 35 return *this;
 36 0 0 36 };
 37 0 0 37 /*
 38 0 0 38 * destructor
 39 0 0 39 */
 40 0 0 40 ~string() {
 41 0 0 41 delete start;
 42 0 0 42 };

Sample applications Sample C++ application in BS2000

U6148-J-Z125-8-76 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

 43 0 0 43 /*
 44 0 0 44 * conversion
 45 0 0 45 */
 46 0 0 46 operator char*() const {
 47 0 0 47 return start;
 48 0 0 48 };
 49 0 0 49 };
 50 0 0 50 /*
 51 0 0 51 * string concatenation
 52 0 0 52 */
 53 0 0 53 string& operator + (const string& p, const string& q)
 54 0 0 54 {
 55 0 0 55 static string s = p; // copy first string
 56 0 0 56 s = strcat(s,q); // cat second string
 57 0 0 57 return s;
 58 0 0 58 }
 59 0 0 59
 60 0 0 60 string s = "Hello";
 61 0 0 61
 62 0 0 62 int main(void)
 63 0 0 63 {
 64 0 0 64 string p(s); // p is "Hello"
 65 0 0 65
 66 0 0 66 string q("World\n"); // q is "World\n"
 67 0 0 67
 68 0 0 68 printf(p + " C++ " + q); // should print "Hello C++ World\n"
 69 0 0 69
 70 0 0 70 p = "Goodbye"; // p is now "Goodbye"
 71 0 0 71
 72 0 0 72 q = "C " + q; // q is now "C World\n"
 73 0 0 73
 74 0 0 74 printf(p + q); // should print "Goodbye C World\n"
 75 0 0 75
 76 0 0 76 return 0;
 77 0 0 77 }

9.2.2 Debug run

Step 1

The C++ source program in the file STRING.C is compiled by the C++ compiler. Since the
SDF option MODIFY-TEST-PROPERTIES TEST-SUPPORT=*YES is set, C++ generates the
LSD records which support symbolic debugging. Optimization is suppressed during
compilation by the option MODIFY-OPTIMIZATION-PROPERTIES LEVEL=*LOW, and the
expansion of inline functions is suppressed by BUILTIN-FUNCTIONS=*NONE (see the
section “Compiling in BS2000” on page 14). No errors are reported during compilation. The
program is subsequently to be linked with the C/C++ compiler BIND statement. To ensure
that the LSD information is included in the linked module, you have to first set the TEST-
SUPPORT=*YES option in the MODIFY-BIND-PROPERTIES statement.

Sample C++ application in BS2000 Sample applications

310 U6148-J-Z125-8-76

tDDD?
3 /START-CPLUS-COMPILER 3
3 % BLS0523 ELEMENT 'SDFCC', VERSION '03.2E21', TYPE 'L' FROM LIBRARY 3
3 ':2OSH:$TSOS.SYSLNK.CPP.032' IN PROCESS 3
3 % BLS0524 LLM 'SDFCC', VERSION '03.2E21' OF '2015-02-24 07:17:56' LOADED 3
3 % BLS0551 COPYRIGHT (C) 2015 Fujitsu Technology Solutions GmbH. ALL RIGHTS RESERVED 3
3 % CDR9992 : BEGIN C/C++ VERSION 03.2E21 3
3 //MODIFY-SOURCE-PROPERTIES LANGUAGE=*CPLUSPLUS() 3
3 //MODIFY-TEST-PROPERTIES TEST-SUPPORT=*YES 3
3 //MODIFY-OPTIMIZATION-PROPERTIES LEVEL=*LOW, BUILTIN-FUNCTIONS=*NONE 3
3 //COMPILE SOURCE=*LIB(MYLIB,STRING.C),MODULE-OUTPUT=*LIB(MYLIB,STRING.O) 3
3 % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0 3
3 % CDR9997 : MODULES GENERATED 3
3 //MODIFY-BIND-PROPERTIES START-LLM-CREATION = *YES, - 3
3 //INCLUDE = *LIB-ELEM(L=MYLIB,E=STRING.O), - 3
3 //STDLIB=*STATIC, - 3
3 //RUNTIME-LANGUAGE =*CPLUSPLUS(MODE=ANSI), TEST-SUPPORT = *YES 3
3 //BIND OUTPUT = *LIB-ELEM(LIB=MYLIB,ELEM=STRING) 3
3 % BND1501 LLM FORMAT: '1' 3
3 % BND1101 BINDER NORMALLY TERMINATED. 3
3 //END 3
3 % CDR9908 : END C TIME USED = 4.7600 SEC 3
3 % CCM0998 CPU TIME USED: 4.8956 3
gDDDu

Step 2

The program is loaded. The %AID LOW command causes AID to be case-sensitive. The
command %ON %ANY ensures that the program will not be unloaded in the event of an error
and that AID will issue an error message giving the address of the interrupt point and the
event which caused the interrupt. When the program is started with %RESUME, execution
continues without errors until the end of the program is reached, but the result is false.

tDDD?
3 /LOAD-PROG *MOD(LIB=MYLIB,ELEM=STRING, - 3
3 /RUN-MOD=ADVANCED,PROGRAM-MODE=*ANY),TEST-OPT=*AID 3
3 % BLS0523 ELEMENT 'STRING', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' 3
3 IN PROCESSING 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$STRING$', VERSION ' ' OF '2015-03-06 13:26:24' LOADED 3
3 /%aid c=yes 3
3 /%on %any 3
3 /%resume 3
3 Hello C+World 3
3 Hello C+World 3
3 World 3
3 Hell 3
3 % CCM0998 CPU TIME USED: 0.0047 SECONDS 3
3 STOPPED AT V'101B846' = IT0TRM@@ + #'2E' , EVENT: TERM (NORMAL,PROGRAM,NODUMP) 3
gDDDu

Sample applications Sample C++ application in BS2000

U6148-J-Z125-8-76 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

Step 3

The outputs indicate that the contents of the string object have been overwritten. To find
out which statement in the program has caused the error, write monitoring is activated for
the allocated memory area at each dynamic memory request and associated initialization.
The program is started with %RESUME and runs up to the first interruption caused by the
activated write monitoring. You now display the call hierarchy with %SDUMP %NEST to check
which statement overwrote the contents of start.

tDDD?
3 /LOAD-PROG *MOD(LIB=MYLIB,ELEM=STRING, - 3
3 /RUN-MOD=ADVANCED,PROGRAM-MODE=*ANY),TEST-OPT=*AID 3
3 % BLS0523 ELEMENT 'STRING', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' 3
3 IN PROCESSING 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$STRING$', VERSION ' ' OF '2015-03-06 13:26:24' LOADED 3
3 /%in s'24' <%on %write(start-> %l=(length))> 3
3 /%in s'29' <%on %write(start-> %l=(length))> 3
3 /%in s'35' <%on %write(start-> %l=(length))> 3
3 /%r 3
3 % AID0496 Warning: previously defined event %WRITE is replaced 3
3 % AID0496 Warning: previously defined event %WRITE is replaced 3
3 % AID0496 Warning: previously defined event %WRITE is replaced 3
3 STOPPED AT V'1001E98' = IC@STRG@ + #'258' , EVENT: WRITE 3
3 /%sd %nest 3
3 *** TID: 010802A9 *** TSN: 6EJP **3
3 ABSOLUT: V'1001E98' SOURCE: IC@STRG@ PROC: STRCAT **********************************3
3 SRC_REF: 56 SOURCE: STRING.C PROC: operator+(const string &, const string &) ********3
3 SRC_REF: 68 SOURCE: STRING.C PROC: main ***3
3 ABSOLUT: V'10237B8' SOURCE: ICS$MAI@ PROC: ICS$MAI@ ********************************3
3 ABSOLUT: V'10019C8' SOURCE: IC@MAIN@ PROC: IC@MAIN@ ********************************3
gDDDu

Step 4

The strcat() function, which caused the erroneous overwriting, is called in S’56’. This
is analyzed in detail below. Because the statement in line 56 uses the string object s, we
suspect that its contents were modified and this is confirmed by the two %DISPLAYs.
However, a prequalification is first defined with %QUALIFY to avoid having to write the
complete qualification in each %DISPLAY.

tDDD?
3 /%q s=n'STRING.C'.proc=n'operator+(const string &, const string &)' 3
3 /%d .s.start->%l20 3
3 V'010E75C8' = ABSOLUT + #'010E75C8' 3
3 010E75C8 (010E75C8) C8859393 9640C34E 4E400000 00000000 Hello C++ 3
3 010E75D8 (010E75D8) 00000000 3
3 /%d .s.length 3
3 ABSOLUT: V'01001E98' SOURCE: IC@STRG@ PROC: STRCAT ***********************************3
3 s.length = 6 3
gDDDu

Sample C++ application in BS2000 Sample applications

312 U6148-J-Z125-8-76

Step 5

So the error is caused by statement S’56’, s = strcat(s,q);. The strcat call modifies
and extends its first argument, as can be seen from the fact that the first argument in its
declaration is specified as type char* rather than const char*.
The function operator+(const string &,const string &) is now modified such that
it creates a string with a length which is the sum of the lengths of strings p and q. For this
purpose it has to access the start and length components of class string and therefore
has to be declared as a friend function of that class. Then a number of other adjustments
need to be made, and the resulting program is as follows:

*** SOURCE - ERROR - LISTING ** BS2000 C/C++ COMPILER 03.2E21 DATE:2015-02-27 PAGE: 1
 SOURCENAME: *LIB-ELEM(MYLIB,STRING.C(*HIGHEST-EXISTING),S)
DDD
EXP INC FILE SRC
LIN LEV NO LIN

 1 0 0 1
 2 0 0 2 extern "C" void* malloc(unsigned);
 3 0 0 3 extern "C" void free(void*);
 4 0 0 4
 5 0 0 5 extern "C" int strlen(const char*);
 6 0 0 6 extern "C" char* strcpy(char*, const char*);
 7 0 0 7 extern "C" char* strcat(char*, const char*);
 8 0 0 8
 9 0 0 9 extern "C" int printf(const char*, ...);
 10 0 0 10
 11 0 0 11 class string
 12 0 0 12 {
 13 0 0 13 int length;
 14 0 0 14 char* start;
 15 0 0 15 public:
 16 0 0 16 /*
 17 0 0 17 * constructors
 18 0 0 18 */
 19 0 0 19 string(int n=0) : length(n){
 20 0 0 20 start = new char[length];
 21 0 0 21 };
 22 0 0 22 string(const char *s) {
 23 0 0 23 length = strlen(s) + 1;
 24 0 0 24 start = new char[length];
 25 0 0 25 strcpy(start, s);
 26 0 0 26 };
 27 0 0 27 string(const string &s) {
 28 0 0 28 length = s.length;
 29 0 0 29 start = new char[length];
 30 0 0 30 strcpy(start, s);
 31 0 0 31 };
 32 0 0 32 const string& operator=(const string& s)
 33 0 0 33 {
 34 0 0 34 delete start;
 35 0 0 35 length = s.length;
 36 0 0 36 start = new char[length];
 37 0 0 37 strcpy(start, s);
 38 0 0 38 return *this;
 39 0 0 39 };
 40 0 0 40 /*
 41 0 0 41 * destructor
 42 0 0 42 */
 43 0 0 43 ~string() {
 44 0 0 44 delete start;
 45 0 0 45 };

Sample applications Sample C++ application in BS2000

U6148-J-Z125-8-76 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

 46 0 0 46 /*
 47 0 0 47 * conversion
 48 0 0 48 */
 49 0 0 49 operator const char*() const {
 50 0 0 50 return start;
 51 0 0 51 };
 52 0 0 52 friend string& operator+(const string&,const string&);
 53 0 0 53 };
 54 0 0 54
 55 0 0 55 /*
 56 0 0 56 * string concatenation
 57 0 0 57 */
 58 0 0 58 string& operator + (const string& p, const string& q)
 59 0 0 59 {
 60 0 0 60 static string s;
 61 0 0 61 s = p.length + q.length -1;
 62 0 0 62 //allocate right length
 63 0 0 63 s.start = strcpy(s.start,p); //copy first string
 64 0 0 64 s.start = strcat(s.start,q); //copy second string
 65 0 0 65 return s;
 66 0 0 66 }
 67 0 0 67
 68 0 0 68 string s = "Hello";
 69 0 0 69
 70 0 0 70 int main(void)
 71 0 0 71 {
 72 0 0 72 string p(s); // p is "Hello"
 73 0 0 73
 74 0 0 74 string q("World\n"); // q is "World\n"
 75 0 0 75
 76 0 0 76 printf(p + " C++ " + q); // should print "Hello C++ World\n"
 77 0 0 77
 78 0 0 78 p = "Goodbye"; // p is now "Goodbye"
 79 0 0 79
 80 0 0 80 q = " C " + q; // q is now "C World\n"
 81 0 0 81
 82 0 0 82 printf(p + q); // should print "Goodbye C World\n"
 83 0 0 83
 84 0 0 84 return 0;
 85 0 0 85 }

Sample C++ application in BS2000 Sample applications

314 U6148-J-Z125-8-76

Step 6

The modified program is compiled, loaded and started. It runs through to the end but
produces the wrong result again.

tDDD?
3 /START-CPLUS-COMPILER 3
3 % BLS0523 ELEMENT 'SDFCC', VERSION '03.2E21', TYPE 'L' FROM LIBRARY 3
3 ':2OSH:$TSOS.SYSLNK.CPP.032' IN PROCESS 3
3 % BLS0524 LLM 'SDFCC', VERSION '03.2E21' OF '2015-02-24 07:17:56' LOADED 3
3 % BLS0551 COPYRIGHT (C) 2015 Fujitsu Technology Solutions GmbH. ALL RIGHTS RESERVED 3
3 % CDR9992 : BEGIN C/C++ VERSION 03.2E21 3
3 //MODIFY-SOURCE-PROPERTIES LANGUAGE=*CPLUSPLUS() 3
3 //MODIFY-TEST-PROPERTIES TEST-SUPPORT=*YES 3
3 //MODIFY-OPTIMIZATION-PROPERTIES LEVEL=*LOW, BUILTIN-FUNCTIONS=*NONE 3
3 //COMPILE SOURCE=*LIB(MYLIB,STRING.C),MODULE-OUTPUT=*LIB(MYLIB,STRING.O) 3
3 % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0 3
3 % CDR9997 : MODULES GENERATED 3
3 //MODIFY-BIND-PROPERTIES START-LLM-CREATION = *YES, - 3
3 //INCLUDE = *LIB-ELEM(L=MYLIB,E=STRING.O), - 3
3 //STDLIB=*STATIC, - 3
3 //RUNTIME-LANGUAGE =*CPLUSPLUS(MODE=ANSI), TEST-SUPPORT = *YES 3
3 //BIND OUTPUT = *LIB-ELEM(LIB=MYLIB,ELEM=STRING) 3
3 % BND1501 LLM FORMAT: '1' 3
3 % BND1101 BINDER NORMALLY TERMINATED. 3
3 %//END 3
3 % CDR9908 : END C TIME USED = 5.6300 SEC 3
3 % CCM0998 CPU TIME USED: 5.7149 3
3 /LOAD-PROG *MOD(LIB=MYLIB,ELEM=STRING, - 3
3 /RUN-MOD=ADVANCED,PROGRAM-MODE=*ANY),TEST-OPT=*AID 3
3 % BLS0523 ELEMENT 'STRING', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' IN PROCESS 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$$STRING', VERSION ' ' OF '2015-01-25 10:57:18' LOADED 3
3 /%on %any 3
3 /%r 3
3 World 3
3 Goodbye C World 3
3 % CCM0998 CPU TIME USED: 0.0027 SECONDS 3
3 STOPPED AT V'101C846' = IT0TRM@@ + #'2E' , EVENT: TERM (NORMAL,PROGRAM,NODUMP) 3
gDDDu

Sample applications Sample C++ application in BS2000

U6148-J-Z125-8-76 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

Step 7

The first text line ("Hello C++ World") has not been put together correctly. The error is
probably located in the function operator+(const string &,const string &).
Therefore once the program has been reloaded, several %CONTROL commands are
entered to cause the contents of s, p and q to be displayed before each of the statements
S’61’ through S’63’ are executed. The %INSERT S’78’ which follows causes the function
operator+(const string &,const string &) to be monitored only until the first text
line is displayed.
The Stop message at the end of the log is displayed as a result of the %ON %ANY command,
which halts the program before it is finally unloaded even after a normal program run, and
outputs the current status of the instruction counter and the name of the runtime routine
responsible for termination handling.

tDDD?
3 /LOAD-PROG *MOD(LIB=MYLIB,ELEM=STRING, - 3
3 /RUN-MOD=ADVANCED,PROGRAM-MODE=*ANY),TEST-OPT=*AID 3
3 % BLS0523 ELEMENT 'STRING', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' IN PROCESS 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$$STRING', VERSION ' ' OF '2015-01-25 10:57:18' LOADED 3
3 /%on %any 3
3 /%c1 %stmt in (s'61':s'63') <(s.length eq 0): %d s.start> 3
3 /%c2 %stmt in (s'61':s'63') <(s.length ne 0): %d ' ',s.length, - 3
3 / 's.start->:',s.start->%l=(s.length)> 3
3 /%c3 %stmt in (s'61':s'63') <%d p.length,'p.start->:' - 3
3 / ,p.start->%l=(p.length)> 3
3 /%c4 %stmt in (s'61':s'63') <%d q.length,'q.start->:' - 3
3 / ,q.start->%l=(q.length)> 3
3 /%in s'78' <%rem %c> 3
3 /%r 3
3 *** TID: 010802A9 *** TSN: 6EJP **3
3 SRC_REF: 61 SOURCE: STRING.C PROC: operator+(const string &, const string &) 3
3 s.start = 010E85C8 3
3 p.length = 6 3
3 p.start->: 3
3 CURRENT PC: 01000588 CSECT: STRING$O&@ ***3
3 V'010E8598' = ABSOLUT + #'010E8598' 3
3 010E8598 (010E8598) C8859393 9600 Hello. 3
3 SRC_REF: 61 SOURCE: STRING.C PROC: operator+(const string &, const string &) 3
3 q.length = 6 3
3 q.start->: 3
3 CURRENT PC: 01000588 CSECT: STRING$O&@ ***3
3 V'010E85B8' = ABSOLUT + #'010E85B8' 3
3 010E85B8 (010E85B8) 40C34E4E 4000 C++ . 3
3 3
3 SRC_REF: 63 SOURCE: STRING.C PROC: operator+(const string &, const string &) *******3
3 s.length = 11 3
3 s.start->: 3
3 CURRENT PC: 01000988 CSECT: STRING$O&@ ***3
3 '010E85F8' = ABSOLUT + #'010E85F8' 3
3 010E85F8 (010E85F8) 00000000 00000000 000000 3
3 SRC_REF: 63 SOURCE: STRING.C PROC: operator+(const string &, const string &) *******3
3 p.length = 6 3
3 p.start->: 3
3 CURRENT PC: 010005EC CSECT: STRING$O&@ ***3
3 V'010E8598' = ABSOLUT + #'010E8598' 3
3 010E8598 (010E8598) C8859393 9600 Hello. 3
gDDDu
 Continued...

Sample C++ application in BS2000 Sample applications

316 U6148-J-Z125-8-76

Continued...

tDD?
3 SRC_REF: 63 SOURCE: STRING.C PROC: operator+(const string &, const string &) *******3
3 q.length = 6 3
3 q.start->: 3
3 CURRENT PC: 010005EC CSECT: STRING$O&@ **3
3 V'010E6598' = ABSOLUT + #'010E6598' 3
3 0010E6598 (010E6598) 40C34E4E 4000 C++ . 3
3 3
3 SRC_REF: 61 SOURCE: STRING.C PROC: operator+(const string &, const string &) *******3
3 s.length = 11 3
3 s.start->: 3
3 CURRENT PC: 01000924 CSECT: STRING$O&@ **3
3 V'010E65D8' = ABSOLUT + #'010E65D8' 3
3 010E85F8 (010E85F8) C8859393 9640C34E 4E4000 Hello C++ . 3
3 SRC_REF: 61 SOURCE: STRING.C PROC: operator+(const string &, const string &) *******3
3 p.length = 11 3
3 p.start->: 3
3 CURRENT PC: 01000588 CSECT: STRING$O&@ **3
3 V'010E85F8' = ABSOLUT + #'010E85F8' 3
3 010E85F8 (010E85F8) C8859393 9640C34E 4E4000 Hello C++ . 3
3 SRC_REF: 61 SOURCE: STRING.C PROC: operator+(const string &, const string &) *******3
3 q.length = 7 3
3 q.start->: 3
3 CURRENT PC: 01000588 CSECT: STRING$O&@ **3
3 V'010E85A8' = ABSOLUT + #'010E85A8' 3
3 010E85A8 (010E85A8) E6969993 841500 World.. 3
3 3
3 SRC_REF: 63 SOURCE: STRING.C PROC: operator+(const string &, const string &) ********3
3 s.length = 17 3
3 s.start->: 3
3 CURRENT PC: 010005EC CSECT: STRING$O&@ **3
3 V'010E85F8' = ABSOLUT + #'010E85F8' 3
3 010E85F8 (010E85F8) 00859393 9640C34E 4E400000 00000000 .ello C++ 3
3 010E8608 (010E8608) 00 . 3
3 SRC_REF: 63 SOURCE: STRING.C PROC: operator+(const string &, const string &) ********3
3 p.length = 17 3
3 p.start->: 3
3 CURRENT PC: 010005EC CSECT: STRING$O&@ **3
3 V'010E85F8' = ABSOLUT + #'010E85F8' 3
3 010E85F8 (010E85F8) 00859393 9640C34E 4E400000 00000000 .ello C++ 3
3 010E8608 (010E8608) 00 . 3
3 SRC_REF: 63 SOURCE: STRING.C PROC: operator+(const string &, const string &) ********3
3 q.length = 7 3
3 q.start->: 3
3 CURRENT PC: 010005EC CSECT: STRING$O&@ ***3
3 V'010E85A8' = ABSOLUT + #'010E85A8' 3
3 010E85A8 (010E85A8) E6969993 841500 World.. 3
3 World 3
3 Goodbye C World 3
3 % CCM0998 CPU TIME USED: 0.1770 SECONDS 3
3 STOPPED AT V'101C846' = IT0TRM@@ + #'2E' , EVENT: TERM (NORMAL,PROGRAM,NODUMP) 3
gDDu

Sample applications Sample C++ application in BS2000

U6148-J-Z125-8-76 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

Step 8

As suspected, the string "World\n" is not appended to the old text the second time
operator+(const string &,const string &) is called, but is again stored in s.start-> from the start.
To find out with AID exactly what is happening in statement S’61’, s = p.length + q.length -1;
(which implicitly calls constructor string::string(int) and function operator=(const string &)),
two %INSERT commands are issued on reloading the program to have the contents of the
length and start components output at various test points in string::string(int) and
operator=(const string &).
The last %INSERT command again tells the program to run through to the end without
monitoring once it has output the first text line.

tDDD?
3 /LOAD-PROG *MOD(LIB=MYLIB,ELEM=STRING, - 3
3 /RUN-MOD=ADVANCED,PROGRAM-MODE=*ANY),TEST-OPT=*AID 3
3 % BLS0523 ELEMENT 'STRING', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' IN PROCESS 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$$STRING', VERSION ' ' OF '2015-01-25 10:57:18' LOADED 3
3 /%in s'61' <(%. eq 2): %in s'20' <%d length,'start->:',start->%l=(length)>> 3
3 /%in s'61' <(%. eq 2): %c1 %proc in proc=string::n'operator=(const string &)'- 3
3 /<%d ' ',length,s.length;%d 'start->:',start->%l20; %d 's.start->:',s.start->%l20>> 3
3 /%in s'78' <%rem %c; %rem %in> 3
3 /%r 3
3 *** TID: 010802A9 *** TSN: 6EJP **3
3 SRC_REF: 20 SOURCE: STRING.C PROC: string::string(int) *******************************3
3 string.length = 17 3
3 start->: 3
3 CURRENT PC: 01000236 CSECT: STRING$O&@ ***3
3 V'010E85D8' = ABSOLUT + #'010E85D8' 3
3 010E85D8 (010E85D8) 00000000 00000000 00000000 00000000 3
3 010E85E8 (010E85E8) 00 . 3
3 3
3 SRC_REF: 34 SOURCE: STRING.C PROC: string::operator=(const string &) *****************3
3 string.length = 11 3
3 s.length = 17 3
3 start->: 3
3 CURRENT PC: 010003CA CSECT: STRING$O&@ ***3
3 V'010E85F8' = ABSOLUT + #'010E85F8' 3
3 010E85F8 (010E85F8) C8859393 9640C34E 4E400000 00000000 Hello C++ 3
3 010E8608 (010E8608) 00000000 3
3 s.start->: 3
3 V'010E85D8' = ABSOLUT + #'010E85D8' 3
3 010E85D8 (010E85D8) 00000000 00000000 00000000 00000000 3
3 010E85E8 (010E85E8) 00000000 3
3 3
3 SRC_REF: 38 SOURCE: STRING.C PROC: string::operator=(const string &) *****************3
3 string.length = 17 3
3 s.length = 17 3
3 start->: 3
3 CURRENT PC: 0100046C CSECT: STRING$O&@ ***3
3 V'010E85F8' = ABSOLUT + #'010E85F8' 3
3 010E85F8 (010E85F8) 00859393 9640C34E 4E400000 00000000 .ello C++ 3
3 010E8608 (010E8608) 00000000 3
3 s.start->: 3
3 V'010E85D8' = ABSOLUT + #'010E85D8' 3
3 010E85D8 (010E85D8) 00000000 00000000 00000000 00000000 3
3 010E85E8 (010E85E8) 00000000 3
3 World 3
3 Goodbye C World 3
3 % CCM0998 CPU TIME USED: 0.0920 seconds 3
gDDDu

Sample C++ application in BS2000 Sample applications

318 U6148-J-Z125-8-76

Step 9

From the information supplied by AID we can infer the following situation:
when operator+(const string &, const string &) is called for the second time and the third part
of the text ("World\n") is about to be appended to the results of the first pass, parameter p
is equal to static object s, in which the results of the first pass through function
operator+(const string &, const string &) have been stored. Thus after the second call to the
function, s.start and p.start both contain the same address.
Statement S’61’ invokes constructor string::string(int), which allocates a new area of
memory with the length calculated for the whole string (p.length + q.length -1) to hold the
result line. Here in the example this area contains binary zeros. The function
operator=(const string &) copies the requested area of memory to s. This overwrites the first
byte of s.start-> with X’00’ and, because s and p are identical on the second pass, also
destroys p.start->. The call to strcat in statement S’63’ thus combines q with the now empty
string s.start->. To eliminate this error, operator+(const string &,const string &) must cause
each new piece of text to be buffered in a dynamic object of class string. With this
enhancement the final code for the function reads as follows:

string& operator + (const string& p, const string& q)
{
 static string s;
 string s1 = p.length + q.length -1; //allocate right length
 s1.start = strcpy(s1.start,p); //copy first string
 s1.start = strcat(s1.start,q); //copy second string
 s = s1;
 return s;
}

Sample applications Sample C++ application in BS2000

U6148-J-Z125-8-76 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

d
uk

tio
n\

18
0

07
00

_
A

ID
_C

_C
pl

u
sp

lu
s\

e
n\

cp
p_

e.
k0

9

Step 10

The program is recompiled, loaded and started. The text is now output correctly:

tDDD?
3 /START-CPLUS-COMPILER 3
3 % BLS0523 ELEMENT 'SDFCC', VERSION '03.2E21', TYPE 'L' FROM LIBRARY 3
3 ':2OSH:$TSOS.SYSLNK.CPP.032' IN PROCESS 3
3 % BLS0524 LLM 'SDFCC', VERSION '03.2E21' OF '2015-02-24 07:17:56' LOADED 3
3 % BLS0551 COPYRIGHT (C) 2015 Fujitsu Technology Solutions GmbH. ALL RIGHTS RESERVED 3
3 % CDR9992 : BEGIN C/C++ VERSION 03.2E21 3
3 //MODIFY-SOURCE-PROPERTIES LANGUAGE=*CPLUSPLUS() 3
3 //MODIFY-TEST-PROPERTIES TEST-SUPPORT=*YES 3
3 //MODIFY-OPTIMIZATION-PROPERTIES LEVEL=*LOW, BUILTIN-FUNCTIONS=*NONE 3
3 //COMPILE SOURCE=*LIB(MYLIB,STRING.C),MODULE-OUTPUT=*LIB(MYLIB,STRING.O) 3
3 % CDR9907 : NOTES: 0 WARNINGS: 0 ERRORS: 0 FATALS: 0 3
3 % CDR9997 : MODULES GENERATED 3
3 //MODIFY-BIND-PROPERTIES START-LLM-CREATION = *YES, - 3
3 //INCLUDE = *LIB-ELEM(L=MYLIB,E=STRING.O), - 3
3 //STDLIB=*STATIC, - 3
3 //RUNTIME-LANGUAGE =*CPLUSPLUS(MODE=ANSI), TEST-SUPPORT = *YES 3
3 //BIND OUTPUT = *LIB-ELEM(LIB=MYLIB,ELEM=STRING) 3
3 % BND1501 LLM FORMAT: '1' 3
3 % BND1101 BINDER NORMALLY TERMINATED. 3
3 %//END 3
3 % CDR9908 : END C TIME USED = 5.6300 SEC 3
3 % CCM0998 CPU TIME USED: 5.7149 3
3 /LOAD-PROG *MOD(LIB=MYLIB,ELEM=STRING, - 3
3 /RUN-MOD=ADVANCED,PROGRAM-MODE=*ANY),TEST-OPT=*AID 3
3 % BLS0523 ELEMENT 'STRING', VERSION '@' FROM LIBRARY ':2OS2:$TEST.MYLIB' IN PROCESS 3
3 % BLS0524 LLM '$LIB-ELEM$MYLIB$STRING$', VERSION ' ' OF '2015-01-26 10:46:33' LOADED 3
3 /%r 3
3 Hello C++ World 3
3 Goodbye C World 3
3 % CCM0998 CPU TIME USED: 0.0026 SECONDS 3
gDDDu

Sample C application under POSIX Sample applications

320 U6148-J-Z125-8-76

9.3 Sample C application under POSIX

You can find a sample application under POSIX in the manual „POSIX Commands“ [11].

U6148-J-Z125-8-76 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

18

S
ta

nd
 1

2:
10

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
7

00
_A

ID
_

C
_

C
p

lu
sp

lu
s\

en
\c

pp
_e

.a
n

h

10 Appendix

10.1 Comparison: debugging older objects / C++ V3.0 objects

C++ programs that were compiled with earlier versions of the C/C++ compiler up to V2.2C
are subject to the same rules as those described in the previous manual for AID V2.1A
(“Debugging C/C++ Programs“) even if you are debugging with AID as of V3.4B. This is due
to the different LSD structure. There are also some deviations in connection with accessing
data and functions of classes and transferring derived classes to base classes.

Objects compiled with C/C++ up to V2.2C Objects compiled with C/C++ V3.0

Dynamic data of a class can only be
accessed from within a dynamic member
function via the this pointer.

Dynamic data of a class can be accessed
from within a dynamic member function
according to the same scope rules as apply
in C++.

The class qualification of a member function
is included in the function designation:
n’class::[...]function(signature)’

The class qualification of a member function
is in front of the function designation:
class::[...]n’function([signature])’

The signature in a function designation must
always be specified, even if it is void.

If the signature in a function designation is
void, it must be omitted. However, the two
parentheses must be written, as in C++.

The assignment “pointer to base class =
pointer to derived class” cannot be executed
with the %SET command. All dynamic data
must be transferred individually instead.

The assignment “pointer to base class =
pointer to derived class” can be executed
with the %SET command.

Table 10: Differences in the debugging of older objects and objects of the C++ V3.0 compiler

Comparison: debugging older objects / C++ V3.0 objects Appendix

322 U6148-J-Z125-8-76

U6148-J-Z125-8-76 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.m
ix

Glossary

/390
Designation of a computer in the 7,500 (CISC) series.

addressing mode
The addressing mode determines how addresses are to be converted for the
execution of machine instructions. By default, AID assumes the addressing
mode of the object being debugged. This applies to the address length (24 or
31 bits) for programs (%AMODE) and also to the addressing of data spaces
(%ASC).
System information on the address length can be referenced with the keyword
%AMODE. This setting can be checked with %DISPLAY and modified with
%MOVE %MODE{24|31} INTO %AMODE.
The keyword %ASC (access space control mode) references the system infor-
mation for the AR mode (access register mode). It returns information on
whether access registers for addressing data spaces are included in the
address conversion. This setting can also be checked with %DISPLAY.

address operand
This is an operand used to address a memory location or memory area. The
operand may specify virtual addresses, data names, statement names, source
references, keywords, complex memory references, or an S, PROC or BLK
qualification. The memory location or area is located either in the program
which has been loaded or in a memory dump in a dump file. If you have
assigned a name more than once in your program and thus no unambiguous
address reference is possible, you can use area qualifications or a structure
qualification to associate the name unambiguously to the desired address.

AID input files
AID input files are files which AID requires to execute AID functions, as distin-
guished from input files which the program requires. AID processes disk files
only. AID input files include:

1. Dump files containing memory dumps (%DUMPFILE)

2. PLAM libraries containing object modules (OMs) or link and load modules
(LLMs). If the library has been assigned with the %SYMLIB command, LSD
records can be dynamically loaded by AID.

Glossary

324 U6148-J-Z125-8-76

AID literals
AID provides the user with both alphanumeric and numeric literals (see the
chapter on “AID literals” in the AID Core Manual [1]):

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal
[{?}]n Integer
#'f...f' Hexadecimal number
[{?}]n.m Decimal number
[{?}]mantissaE[{?}]exponent Floating-point number

AID output files
AID output files are files to which the user can direct output of the %DISASSEM-
BLE, %DISPLAY, %HELP, %SDUMP and %TRACE commands. The files are
addressed via their link names (F0 through F7) in the output commands (see
%OUT and %OUTFILE).
The REP records are written to the file assigned to link name F6 (see %AID
REP=YES and %MOVE).

There are three ways of creating an output file, or of assigning an output file:

1. %OUTFILE command with link name and file name

2. ADD-FILE-LINK command with link name and file name

3. For a link name to which no file name has been assigned, AID issues a FILE
macro with the file name AID.OUTFILE.Fn.

An AID output file always uses the SAM access method, record format V, and
is opened with MODE=EXTEND.

AID standard address interpretation
Indirect addresses, i.e. addresses which precede a pointer operator, are inter-
preted by default in accordance with the currently valid addressing mode of the
debugged object. The %AINT command allows you to deviate from the default
address interpretation of AID, i.e. to define whether AID is to work with 24-bit or
31-bit addresses in the case of indirect addressing.

Glossary

U6148-J-Z125-8-76 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.m
ix

AID standard work area
This is the non-privileged segment of virtual memory in your task that is occu-
pied by the program and all connected subsystems.
If no presetting has been made with the %BASE command and no base quali-
fication is specified, the AID standard work area applies by default.

AID work area
The AID work area is the address space in which memory references can be
accessed without the need for a base qualification.
It includes the non-privileged segment of virtual memory in your task that is
occupied by the program and all connected subsystems or the corresponding
area in a memory dump.
You may deviate from the AID work area in a command by specifying a base
qualification in the address operand. Using the %BASE command, you can shift
the AID work area from the loaded program to a memory dump, or vice versa.

area checking
In the case of byte offset, length modification and the receiver of a %MOVE, AID
checks whether the area limits of the referenced memory objects are exceeded
and issues a corresponding message if necessary.

area limits
Each memory object is assigned a particular area, which is defined by the
address and length attributes in the case of data names and keywords. For vir-
tual addresses, the area limits are between V’0’ and the last address in virtual
memory (V’7FFFFFFF’).
The area limits for a CSECT or a COMMON as a memory object are determined
by the start and end addresses of the CSECT/COMMON (see the section on
“Machine code memory references” in the AID Core Manual [1]).

area qualifications
The S, PROC, BLK, and :: qualifications are called area qualifications. The S
qualification designates a translation unit and is used to describe the path to a
memory object which is not located in the current translation unit. The PROC
qualification designates a function; the BLK qualification designates a block.
The :: qualification for the superblock is used to address global data or to des-
ignate functions that are not visible at the current interrupt point because their
definition occurs later.
Area qualifications are used to describe the path to memory objects that are not
in the scope of the interrupt point or are locally hidden at the interrupt point by
identically-named definitions.

Glossary

326 U6148-J-Z125-8-76

attributes
Each memory object has up to six attributes:
address, name (opt), content, length, storage type, output type.
Selectors can be used to access the address, length and storage type. Using
the name, AID can find all the associated attributes in the LSD records to be
able to work with them.
Address constants and constants from the source program have only up to five
attributes:
name (opt), value, length, storage type, output type.
They have no address. When a constant is referenced, AID does not access a
memory object but merely inserts the value stored for the constant.

base qualification
This is the qualification designating either the loaded program or a memory
dump in a dump file. It is specified via E={VM | Dn}.
The base qualification can be declared globally with %BASE or specified explic-
itly in the address operand for a single memory reference.

byte offset
In AID, this is an operation which allows address calculations, enabling you to
move forward or backward from an address in steps measured in bytes.

character format
Output type for %DISPLAY (see also the section on “General storage types” in
the AID Core Manual). If a storage area is edited with the following type modifi-
cation %C, AID will output its contents in character notation.

child task
A task created via a fork() call.

command mode
In the AID documentation, the term "command mode" designates the EXPERT
mode of the SDF command language.
Users working in a different mode (GUIDANCE={MAXIMUM|MEDIUM|MINI-
MUM|NO}) and wishing to enter AID commands should switch to EXPERT mode
via MODIFY-SDF-OPTIONS GUIDANCE=EXPERT.
AID commands are not supported by SDF syntax:
– operands are not queried via menus
– if an error occurs, AID issues an error message but does not offer a

correction dialog.
In EXPERT mode, the system prompts for command input with "/".

Glossary

U6148-J-Z125-8-76 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.m
ix

command sequence
Several commands are linked to form a sequence via semicolons (;). The
sequence is processed from left to right. A command sequence may contain
both AID and BS2000 commands, like a subcommand. Commands not permit-
ted in a command sequence are the AID commands %AID, %ALIAS, %BASE,
%DUMPFILE, %HELP, %OUT and %QUALIFY as well as the BS2000 com-
mands listed in the appendix of the AID Core Manual.
If a command sequence contains one of the commands for runtime control, the
command sequence is aborted at that point and the program is started (%CON-
TINUE, %RESUME, %TRACE) or halted (%STOP). As a result, any commands
which follow as part of the command sequence are not executed.

constant
A constant represents a value which cannot be accessed via an address stored
in program memory.
Constants include the results of length selections, length functions and address
selections, as well as statement names and source references.
You can determine the length of a memory reference by using either the AID
length selector %L(...) or the length operator sizeof(...), which corresponds
to the sizeof operator in the C/C++ language. As in C/C++, sizeof must be
entered in lowercase letters (make sure that you set %AID C=YES or %AID
LOW={ON|ALL}).
Similarly, there are two operators with which you can specify the address of a
memory reference: the AID address selector %@(...) and the address operator
&, which you should know from C/C++.
An address constant represents an address. Address constants include state-
ment names, source references and the result of an address selection with the
address selector %@(...) or the address operator &. They can be used in con-
junction with a pointer operator (->) to address the corresponding memory loca-
tion.

CSECT information
is contained in the object structure list.

current call hierarchy
The current call hierarchy represents the status of block and function nesting at
the interrupt point. It extends from the block or function in which the program
was interrupted, to the middle hierarchical levels (i.e. the superblocks or func-
tions in which the corresponding function call is located), to the main function.
The current call hierarchy is output using %SDUMP %NEST.
For a recursive function, each call of itself is also output.

Glossary

328 U6148-J-Z125-8-76

current program
The current program is the one loaded in the task in which the user enters AID
commands.

current translation unit
The current translation unit is the unit in which the program was interrupted. Its
name is output in the STOP message.

data name
An operand that stands for all names assigned for data in the source program.
With the aid of the data name the user addresses data items during symbolic
debugging.
You specify a data name as in C, with the following exceptions:
You reference array elements only via subscript, not by way of a pointer.
For variables of type long double, AID evaluates only the first 8 bytes.
Unlike C/C++, AID does not treat a variable of type char as an arithmetic type
(see data type). You can calculate with such a variable only after a type modifi-
cation to %A (unsigned char) or %F (signed char).
For structures you may use pointer notation and structure qualification.
For arrays you can only use subscript notation.
For pointers you can use subscript notation, pointer notation, and dereferenc-
ing.

data type
In accordance with the data type declared in the source program, AID assigns
an AID storage type to all data:
– binary string (ï %X)
– character (ï %C)
– numeric (ï %D, %F, %A)

The data type char, which is treated as numeric in C/C++, is not numeric for
AID. You can calculate with such a variable only after a type modification to %A
(unsigned char) or %F (signed char). However, data of type signed char
and unsigned char are also handled by AID as small integers with and without
a leading sign, respectively.

The assigned storage type determines how the data is output by %DISPLAY,
transferred or overwritten by %SET, and how it is compared in the condition of
a subcommand.

Glossary

U6148-J-Z125-8-76 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.m
ix

debug mode
Designates the state of a task in which you can input AID commands for debug-
ging. Debug mode in the LOGON task is identical to the BS2000 command
mode. With fork tasks, AID handles the dialog between the user and the task.
AID displays a command input prompt which is formed from the process num-
ber of the fork task.
Debug mode has a lower priority than the LOGON task command mode, i.e. the
fork task does not have the same priority for using the terminal as the LOGON
task.

dump format
Output type for %DISPLAY; corresponds to storage type %X (see the section
on “General storage types” in the AID Core Manual). If a storage area is edited
with the following type modification %X, AID will output its contents in both
hexadecimal and character notation.

DMS file
BS2000 data management system file.
These can be single files or modules stored in PLAM libraries. Files can be cop-
ied between POSIX and BS2000 with the POSIX bs2cp command (see also
UFS file).

ESD/ESV
The ESD for OMs/ESV for LLMs lists the external references of a module. It is
generated by the compiler and contains, among other items, information on
CSECTs, DSECTs and COMMONs. The link editor accesses this information
when creating the object structure list (OMs) or the external symbol dictionary
(LLMs).

exec()
Designates a function group to which the following functions belong: execl(),
execv(), execle(), execve(), execlp(), execvp().
An exec() call causes the program specified in the call to overlay the calling
program.

Glossary

330 U6148-J-Z125-8-76

external symbol dictionary
If the generation of an external symbol dictionary has not been suppressed, the
link editor BINDER will create one on the basis of the ESV (External Symbols
Vector).
If the external symbol dictionary was subsequently loaded, you can use
%SDUMP %NEST to output the current call hierarchy even if the LSD informa-
tion was not loaded at the same time.
Instead of the source references and the names of the translation units and
functions, AID outputs the absolute addresses, CSECT names and the com-
piler-generated entry names of the functions.

fork()
System call which creates a copy of the process containing the fork() call.
After the fork() call, an additional, identical process exists in the system.

fork task
A task created by a fork() call.

global settings
AID offers commands facilitating addressing, saving input efforts and enabling
the behavior of AID to be adapted to individual requirements. The presettings
specified in these commands continue to apply throughout the debugging ses-
sion if not explicitly modified (see %AID, %AINT, %BASE, %OUT and %QUAL-
IFY).

input buffer
AID has an internal input buffer. If this buffer is not large enough to accommo-
date a command input, the command is rejected with an error message identi-
fying it as too long. You will then need to abbreviate the command or command
sequence or distribute the function over multiple commands.

interrupt point
The interrupt point is the address at which a program has been interrupted.
From the STOP message the user can determine both the address at which and
the translation unit in which the interrupt point is located. The program is con-
tinued at this point.

LIFO
Stands for the Last In First Out principle. If statements from different entries
concur at a test point (%INSERT) or upon occurrence of an event (%ON), the
ones entered last are processed first (see the section on “Chaining” in the AID
Core Manual).

Glossary

U6148-J-Z125-8-76 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.m
ix

localization information
Static program nesting for a given memory location is output by AID with
%DISPLAY %HLLOC(memref) for the symbolic level and
%DISPLAY %LOC(memref) for the machine code level.
Conversely, %SDUMP %NEST outputs the dynamic program nesting, i.e. the
call hierarchy for the current program interrupt point.

LOGON task
Task which is started with the SDF /SET-LOGON-PARAMETERS command.
The LOGON task command mode has a higher priority than the debug mode of
a task created via fork(), which can cause problems when simultaneously
debugging parent and child tasks.

LSD
The List for Symbolic Debugging is a list of the data/statement names defined
in the module. It also contains the compiler-generated source references. The
LSD records are created by the compiler. AID uses them to fetch the information
required for symbolic addressing.

memory object
A memory object is formed by a set of contiguous bytes in memory. At program
level, this comprises the program data (if it has been assigned a memory area)
and the instruction code. Other memory objects are all the registers, the pro-
gram counter, and all other areas that can only be addressed via keywords.
Conversely, statement names, source references, the results of address selec-
tion, length selection and length function, and the AID literals do not constitute
memory objects because they represent a value that cannot be changed.

memory reference
A memory reference addresses a memory object. Memory references can
either be simple or complex.
Simple memory references include virtual addresses, a closing C or COM qual-
ification, keywords, and names for which AID can obtain the address from the
LSD information. Statement names and source references are allowed as mem-
ory references in the AID commands %CONTROLn, %DISASSEMBLE,
%INSERT, %REMOVE and %TRACE, even though they are merely address
constants.
Complex memory references instruct AID how to calculate a particular address
and which type and length are to apply.

Glossary

332 U6148-J-Z125-8-76

The following operations are possible here:
– byte offset
– indirect addressing
– type modification
– length modification
– address selection

monitoring
%CONTROLn, %INSERT and %ON are monitoring commands. When the pro-
gram reaches a statement of the selected group (%CONTROLn) or the defined
program address (%INSERT), or if the declared event occurs (%ON), program
execution is interrupted and AID processes the specified subcommand.

namespace
This comprises all names assigned in the LSD records to a program unit, a func-
tion, or a block. It corresponds to scope in C/C++. You specify the name range
via %SDUMP, specifying the appropriate qualification.

numeric output types
%F, %A and %D are the numeric output types (see the section on “General stor-
age types” in the AID Core Manual [1]) . When a memory area is output with
%DISPLAY and edited with one of the numeric output types, the following
assignments apply:
%F signed integer (equivalent to int in C/C++)
%A unsigned integer (equivalent to unsigned int in C/C++);

%A is also used in AID to interpret the contents of a memory
location as an address before a pointer operator.

%D Floating point number (equivalent to float in C/C++)

object structure list
If the object structure list was subsequently loaded, you can use %SDUMP
%NEST to output the current call hierarchy even if the LSD information was not
loaded at the same time.
Instead of the source references and the names of the translation units and
functions, AID outputs absolute addresses, CSECT names and the compiler-
generated entry names of the functions.

Glossary

U6148-J-Z125-8-76 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.m
ix

output type
This is an attribute of a memory object and determines how AID outputs the
memory contents. Each storage type has its corresponding output type. A list of
all AID-specific storage types together with their output types can be found in
the section on “general storage types” in the AID Core Manual. This assignment
also applies for the data types used in C/C++.
A type modification in %DISPLAY and %SDUMP causes the output type to be
changed as well.

parent task
The first task in the hierarchy of a task family.

pointer operator
This is the string ->, which you enter in an address operand when the contents
of a memory object or the value of a constant is used for indirect addressing
(see the section on “Indirect addressing” in the AID Core Manual [1]). The
addressing mode is also taken into account for indirect addressing.

POSIX shell
A ported UNIX system program which provides communication between the
user and system. The POSIX shell is a command interpreter which interprets
the input commands into a language that the system can process.

process
A term from the UNIX world which is also used under POSIX. A process corre-
sponds to a task at the BS2000 level. Process is used to designate the address
space and the program executed in it as well as the required system resources.
A process is created by another process by calling the fork() function. The
process which calls fork() is known as the parent process (parent task in
BS2000) and the new process created by fork() is known as the child pro-
cess (child task in BS2000).

process number (pid)
A number assigned by the system to uniquely identify a process. AID forms the
prompt output by a fork task as an input prompt, from the process number (Pro-
cess Identification/pid).

program state
AID makes a distinction between three program states which the program being
tested may assume:

Glossary

334 U6148-J-Z125-8-76

1. The program has stopped.
%STOP or the K2 key interrupt a running program. The program is also in-
terrupted when a %TRACE is completed and the continue operand is set
to S. The task is in command mode. The user may enter commands.

2. The program is running without tracing.
The program was loaded and started with START-EXECUTABLE-PROGRAM
or started or continued with %RESUME. If no %TRACE has been defined,
%CONTINUE can be used for the same purpose.

3. The program is running with tracing.
%TRACE started or continued the program. The program sequence is
logged in accordance with the declarations made in the %TRACE com-
mand. %CONTINUE has the same effect if a %TRACE is still active.

qualification
A qualification allows you to reference a memory object which is not located in
the AID work area or which has a name which is not unambiguous there.
The base qualification specifies whether the memory object is located in the
loaded program or in a memory dump.
The S qualification specifies in which translation unit the memory object is
located.
The PROC or BLK qualification specifies in which function or block the mem-
ory object is located. Both of these qualifications are used to reference data
names declared as static which are located in a function or block outside the
current call hierarchy, or to reference data names located in a function or block
within the current call hierarchy, but which are hidden at the interrupt point by a
definition with the same name.
The :: qualification designates a global data item or a function. Global data and
functions can be referenced by the two prepended colons from the interrupt
point even if they are defined after the interrupt point.

scope
The scope of local data extends from the point at which it is defined to the end
of the block containing the definition and includes any blocks nested within that
block. If the definition comes at the beginning of the function, or if it is in the form
of a passed parameter, the scope extends over the entire function. In the case
of external variables and functions, the scope extends from the point of decla-
ration to the end of the translation unit. The scope of a label is the whole of the
function in which it is defined.
AID cannot address data, function names or labels without qualifications,
unless the current interrupt point is within the scope of the corresponding name.
In the case of data names this applies only if the name is not hidden locally by
a definition with the same name.

Glossary

U6148-J-Z125-8-76 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.m
ix

signature
The parenthesized type specifications for the transfer parameters of a function
are called its signature. In the case of functions from C++ programs, the signa-
ture is included in the function name. Due to the special characters (parenthe-
ses and possibly commas), the name must be specified within n'...'. No addi-
tional blanks may be inserted. If the signature is void, only the parentheses are
written. The exact function name in standard C++ notation can be determined
from the %SDUMP output. If the function is defined in a class, AID displays the
exact function name in the %DISPLAY output for that class.

source reference
A source reference designates a name generated by the compiler with which
you can reference any executable statement. The name consists of the line
number, which may have a FILE number prefixed or a line-specific statement
number appended to it: S'[f-]n[:a]'. The LSD records hold an address con-
stant associated with the source reference which contains the address of the
statement. More precisely, it contains the address of the first instruction gener-
ated for the statement.

statement name
This designates a name declared in the source program which can be used in
AID to reference an executable statement. The ones relevant for debugging C/
C++ programs are labels and function names. An address constant is stored in
the LSD records for this purpose; in the case of labels, the address of the first
statement after the label is stored.
When you use function names in the %DISASSEMBLE and %INSERT com-
mands, you designate the first executable statement of the corresponding func-
tion; in all other commands, you reference the prolog address of that function.

storage type
This is either the data type defined in the source program or the one selected
by way of type modification. AID recognizes the general storage types %X, %C,
%E, %P, %D, %F and %A and the special storage types %SX and %S for the
interpretation of machine instructions (see %SET and the chapters on “address-
ing in AID” and “Keywords” in the AID Core Manual).

subcommand
A subcommand is an operand of the monitoring commands %CONTROLn,
%INSERT or %ON. A subcommand can contain a name, a condition and a
command part. The latter may comprise a single command or a command
sequence. It may contain both AID and BS2000 commands. Each subcom-
mand has an execution counter. Information on how an execution condition is

Glossary

336 U6148-J-Z125-8-76

formulated, how the names and execution counters are assigned and
addressed, and which commands are not permitted within subcommands can
be found in the chapter “Subcommand” of the AID Core Manual [1].
The command part of the subcommand is executed if the monitoring condition
(criterion, test-point, event) of the corresponding command is satisfied and any
execution condition defined has been met.

subscript
Subscripts are used to address the elements of an array. In AID as in C/C++,
subscript notation can be used both for arrays and for pointers. As in C/C++, a
subscript can be specified in square brackets.

superblock
Designates the outermost block in a translation unit. This corresponds to the
global namespace in C++.
All global data and all functions are assigned to the superblock.
Namespaces can only be defined in the superblock.

task family
All tasks of all generations created from one task with fork().

tracing
%TRACE is a tracing command. You use it to define the type and number of
statements (symbolic debugging) or instructions (machine code level) to be
logged.
Program execution is normally traced at the screen, but %OUT %TRACE may
be specified to redirect the output to some other output medium.

translation unit
The part of a C/C++ program which is compiled as a unit. It can be referenced
via the S qualification.

UFS file
UNIX file system file.
As with UNIX, the files are also stored under POSIX in hierarchically organized
directories. The C/C++ compiler can process both UFS and DMS files (see
DMS file). However, you can only use the AID %SYMLIB command on PLAM
libraries in BS2000.

Glossary

U6148-J-Z125-8-76 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
07

0
0_

A
ID

_C
_C

pl
us

pl
u

s\
e

n\
cp

p_
e

.m
ix

update dialog
The update dialog is initiated by means of the %AID CHECK=ALL command. It
goes into effect when a %MOVE or %SET command is executed. During the
dialog, AID asks whether updating of the memory contents is to take place. If N
is entered in response, no modification is carried out; if Y is entered, AID will
execute the transfer.

user area
This is the area in virtual memory which is occupied by the loaded program and
all its connected subsystems. It corresponds to the area represented by the
keyword %CLASS6 or %CLASS6ABOVE and %CLASS6BELOW.

Glossary

338 U6148-J-Z125-8-76

U6148-J-Z125-8-76 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

du
kt

io
n

\1
80

07
0

0_
A

ID
_C

_C
pl

us
p

lu
s\

e
n\

cp
p_

e
.li

t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

AID

[1] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

[2] AID (BS2000)
Debugging on Machine Code Level
User Guide

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

[4] AID (BS2000)
Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

[5] AID (BS2000)
Advanced Interactive Debugger
Debugging under POSIX
User Guide

[6] AID (BS2000)
Advanced Interactive Debugger
Debugging of ASSEMBH Programs
User Guide

http://manuals.ts.fujitsu.com

Related publications

340 U6148-J-Z125-8-76

[7] AID (BS2000)
Advanced Interactive Debugger
Ready Reference
User Guide

C/C++

[8] C/C++ (BS2000)
C/C++ Compiler
User Guide

[9] C/C++ (BS2000)
POSIX Commands of the C/C++ Compiler
User Guide

POSIX

[10] POSIX (BS2000)
POSIX Basics for Users and System Administrators
User Guide

[11] POSIX (BS2000)
Commands
User Guide

BS2000

[12] CRTE (BS2000)
Common RunTime Environment
User Guide

[13] BINDER (BS2000)
User Guide

[14] BS2000 OSD/BC
Dynamic Binder Loader / Starter
User Guide

Related publications

U6148-J-Z125-8-76 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

0.
43

P
fa

d:
 P

:\F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
3

0\
D

o
cs

_P
ro

du
kt

io
n

\1
80

07
0

0_
A

ID
_C

_C
pl

us
p

lu
s\

e
n\

cp
p_

e
.li

t

[15] BS2000 OSD/BC
Executive Macros
User Guide

[16] BS2000 OSD/BC
Commands
User Guide

[17] XHCS
8-Bit Code and Unicode Processing in BS2000
User Guide

Related publications

342 U6148-J-Z125-8-76

U6148-J-Z125-8-76 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

18

S
ta

nd
 1

2:
10

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
7

00
_A

ID
_

C
_

C
p

lu
sp

lu
s\

en
\c

pp
_

e.
si

x

Index

_ _STI_ _ 20, 59, 72, 133, 142, 152, 177, 185,
187, 198, 212, 227, 235, 237, 258, 286
%TRACE 283

:: qualification 25, 176, 197, 211, 257, 325
%SDUMP 236
before function name 25

@@c 296
/390 323
#include statement 15, 51
#line statement 51
%? 183
%• 158, 192, 231, 232, 273
%•subcmdname 158, 203, 263, 273
%0G 173
%1G 173
%A 158, 332
%ABNORM 217
%AID 113, 195, 196, 206, 255, 272
%AID LOW[=ON] 23, 118
%AINT 121, 324
%ALIAS 85, 272
%AMODE 121, 157, 323
%ANY 218
%ARTHCHK 217
%ASC 323
%AUD1 157
%BASE 127, 139, 173, 175, 272, 279, 300
%C 158
%CC 157
%CLASS6 175
%CONTINUE 129, 282
%CONTROLn 24, 50, 51, 130, 230, 272

with exec() call 130
with fork() call 130

%D 158, 332
%DISASSEMBLE 50, 51, 139, 221, 273, 281

log 145
output 224

%DISPLAY 29, 32, 50, 63, 121, 148, 221, 273,
281
output 224

%DISPLAY %HLLOC(...) 50, 163, 331
%DISPLAY %LOC(...) 163
%DUMPFILE 127, 278, 279, 300
%ERRFLG 217, 231
%F 158, 332
%FIND 29, 50, 273
%FR 157
%H %? 183
%H? 183
%HELP 117, 183, 221, 281

English or German 113
output 224

%HLLOC(...) 158
%INSERT 50, 51, 185, 230, 273
%INSTCHK 217
%LINK 157
%LPOV 157, 218, 231
%M[ODE] {32|31|24} 122
%MAP 157
%MOVE 29, 50, 113, 121, 195
%MR 157, 181
%n 157, 181, 203, 263
%nD 157, 181, 203, 263
%nE 157, 181, 203, 263
%NEST 14, 240
%nG 157, 181, 203, 263
%nGD 157, 181, 203, 263
%nQ 157, 181, 263

Index

344 U6148-J-Z125-8-76

%ON 29, 209, 230, 273, 295
%ON %ANY 300
%ON %LPOV 157
%ON %TERM

exec() call 217
%ON %WRITE(...) 50

for arrays 32
%OUT 139, 148, 161, 184, 221, 241, 273, 283

%TRACE 336
%OUTFILE 119, 206, 224, 273
%PC 129, 157, 163, 181, 203, 231, 233, 263,

285
%PCB/%PCBLST 157
%PM 157
%QUALIFY 23, 226, 273
%REMOVE 130, 191, 219, 230
%RESUME 129, 233
%SDUMP 23, 24, 29, 32, 63, 64, 72, 189, 221,

234, 273, 281
namespace 85
output 224
unnamed namespace 86

%SDUMP %NEST 14, 331
%SET 29, 50, 254
%SET table 267
%SHOW 272

%BASE 298
%INSERT 189, 273

%SORTEDMAP 157
%STOP 185, 209, 275

within a subcommand 275
%SVC 231
%SYMLIB 18, 234, 273, 278, 295, 300, 323
%TERM 218
%TITLE 281
%TRACE 24, 50, 51, 221, 233, 273, 281, 282

active 129
listing 288
output 224
terminate 282

%X 158, 329

24-bit address 121
31-bit address 121
32-bit address 121

A
aborting a fork task 299
absolute address of the data member 45
access

functions 25
global data 25
to POSIX file 18

active %TRACE 129
additional information 221, 222, 241
address 148, 196, 205, 255, 266

constant 95, 201, 261, 327, 335
operand 22, 23, 136, 191, 219, 226, 323
operator & 159, 204, 264
path 238, 259, 325
selection 145, 158, 159, 181, 189, 203, 205,

216, 263, 265
address of a class object

transfer 264
address operand

within a subcommand 195
addressing

%MODE{24|31} 323
C function 45, 50
data regions 323
error 217
mode 157, 323, 333
XS computers 323

addressing path 65
with namespaces 177, 199, 213, 259
with nested classes 65

AID address interpretation 121
AID character set 23
AID default work area 127
AID floating point register 157, 181
AID general purpose registers 181
AID general register 157
AID input files 323
AID link name 171
AID literal 148, 160, 196, 206, 255, 266

Index

U6148-J-Z125-8-76 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

18

S
ta

nd
 1

2:
10

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
7

00
_A

ID
_

C
_

C
p

lu
sp

lu
s\

en
\c

pp
_

e.
si

x

AID message
in German 118
number range 183

AID output 139, 148, 161, 184, 241
delimiter 113

AID output file 206, 324
assign 224
open 224

AID register 157, 173, 203, 255, 263
AID standard address interpretation 324
AID work area 21, 22, 26, 85, 108, 127, 171, 222,

226
aid-mode 121
AIDIT0@ 194
AIDSYS messages 183
alias name

after exec() call 124
after fork() call 124
for namespaces 93
from C++ program 85

alignment 173
ALL 140
alter program state 275
alternate representation in C string literal 36
ambiguity with namespaces 87
ambiguous source references 288
area limits 203
area qualification 21, 22, 64, 227, 325
array 29, 44, 49, 154, 179, 200, 214, 239

as passed parmeter 214, 260
ascending source references 288
assign

AID output file 224
PLAM library 278

assignment
of the prolog address 189
template arguments to data types 96

automatic update in memory 174

B
backslash 36
backspace 37
base 127
base class 64, 65, 67, 154, 164, 200, 213

base qualification 21, 22, 122, 127, 132, 141,
151, 176, 197, 203, 227, 236, 257, 279, 285,
325, 334

bell character 36
binary literal 160, 206, 266, 324
binary string 328
binary transfer 267
BIND macro 23
BINDER 16, 330
bit-field 29

length 160
variable 43, 47

blanks 111
BLK qualification 25, 26, 134, 142, 152, 177,

187, 198, 212, 228, 237, 258, 287, 325, 334
BS2000 catalog name of a PLAM library 279
BS2000 command

permitted in debug mode 297
byte boundary

search at 182
byte offset 145, 158, 181, 189, 203, 216, 263

C
C function

addressing 50
C string 19, 32, 34

transfer 260
write monitoring 214

C string array 38, 115
C string literal 36, 115, 154, 239

alternate representation 36
hexadecimal representation 36
in procedure 38, 115
maximum length 36
octal representation 36

C strings in multidimensional arrays 39
C/C++ statement 186
C++ notation 63, 110
C=YES

hyphen 120
uppercase/lowercase 119, 120

call backtracing 14
call context 296

Index

346 U6148-J-Z125-8-76

call hierarchy 19, 26, 151, 176, 197, 211, 240,
247, 257, 331
incomplete 14
on machine code level 247

calling the C/C++ compilers 17
CANCEL-JOB 296
carriage return 37
case label 51, 53
cataloging

the output file 224, 225
catch statement 131, 185, 284
CC, POSIX command 17
cc, POSIX command 17
CCS 113, 115

example 169
chaining

of subcommands 185
char array 19, 32, 38

output 35
char-variables

ouput character set 149
character 168

data type 328
format 35, 246, 326
literal 118, 160, 173, 174, 206, 266, 281, 324
notation 329
numeric equivalent 95
representation 32, 35
set 23
transfer 267

character output
CCS (example) 169

character set
data 149
for alias names 125
ouput of char variables 149
ouput of data 149
output 149

character sets
data output 149

CHECK 113
checking

the storage types 254
child task 326

class 63, 64, 153, 178, 199, 213, 238, 259
length 205, 265
object 60, 63, 64, 65, 73, 153, 178, 238, 259
qualification 57, 67

of a member function 321
template instance 99

class 6 memory 175
classes in namespaces 88
close

AID output file 224
PLAM library 278

CMD macro 116
code CSECT 23
command

brief description 183
mode 275
sequence 135, 219, 297

comment 38, 115
COMMON 157
comparing

C string arrays 39
pointers to members 83

compl-memref 145, 158, 189
complete qualification 275
condition code 157
constant 196, 255
constructors 19, 72, 185, 235
context 23, 157
continuation address

%FIND 173
continue 282

program 135, 191, 219, 233, 282
control

of the output file 221, 281
control-area 130
conversion operations 51, 288
create

an AID output file 224
criterion 130, 282
CRTE libraries

SYSLNK.CRTE 15
SYSLNK.CRTE.POSIX 16

CSECT 24, 157, 206, 240, 247
CTX qualification 23, 157

Index

U6148-J-Z125-8-76 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

18

S
ta

nd
 1

2:
10

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
7

00
_A

ID
_

C
_

C
p

lu
sp

lu
s\

en
\c

pp
_

e.
si

x

current call hierarchy 27, 148, 234, 240, 246
current interrupt point 132, 222, 275, 283, 285,

334

D
data 148

character set 149
data item, defined in middle of block 62
data member 67

dynamic 64
static 178, 199, 213, 259

data module 25
data name 29, 65, 154, 179, 200, 214, 239, 260
data output 148, 221
data type 328, 335

long long 29
data types 242
DBL 16, 23
debug mode 117, 275, 329
debugging

older objects (up to V2.2C) 65
default address interpretation 121
default label 51, 53
define

_OSD_POSIX 15
page header for SYSLST 281
prequalification 226

definition
in the source program 150
within a block 62

delete
%CONTROLn 130, 230
alias names 125
event 231
subcmdname 231
test-point 231

DELIM 113, 116
delimiter

of AID output fields 113
dereferenced pointer to function member 180
dereferencing 30, 41, 44, 49, 179, 200, 214, 240,

261
operator 81
pointer to data member 76

pointer to function member 81
pointer to member, output 155, 156

dereferencing operator ->* 77, 81, 215, 287
dereferencing operator .* 76, 133, 143, 156, 179,

188, 201, 215, 262, 286
derived class 63, 65, 67
derived data type 97
destructors 72, 235
double quotes

in C string literals 36
doubleword boundary

search at 182
dummy input 297, 298
dump

area 234
file 22, 85, 108, 127, 148, 162, 257, 275, 323

opening 300
format 35, 154, 329
processing 300

DVS file 18, 329
dynamic

binder loader 16
data member 64, 65
member function 64, 65, 178, 238
program nesting 331

dynamic loading of LSD 278
for modules in the LLM format 16
with %SYMLIB 16

dynamically loaded segment 119

E
E qualification

before namespace 177, 199, 213, 259
elementary data type 96
empty C string literal 37
end address 134, 288
entry name 241

%SDUMP %NEST 247
epilog

%TRACE 283
error

abort 300
cause 17
message 183

Index

348 U6148-J-Z125-8-76

error (continued)
when dereferencing pointer to member 77
when modifying pointer to function

member 80
ESD/ESV 329
event 209, 217, 295

code 217, 218
remove 209
table 217, 218

example programs
EX1.C 69
EX2.C 70
EXMEM.C 137
EXNSP1.C 89
EXTEMPL1.C 104
EXTMP3.C 98
VPTR.C 66

exception handling 131, 137, 185, 190, 284
EXEC

%AID operand 113, 117
exec() 114, 117, 295, 329
execution

condition 219
control 135, 219, 275, 282
counter 135, 157, 158, 191, 196, 203, 219,

233, 255, 263
EXIT-JOB 296, 300
expression as a template argument 97

F
F6 224
feed to SYSLST 148
feed-control 160
file 171, 224
FILE number 25, 51, 134, 187, 199, 212, 258,

287, 288
file output 241
filename 279
find literal 173
find-area 173
float 332
floating point

number 160, 266, 324, 332
register 157, 181

FORK
%AID operand 113, 117

fork task 114, 275, 295, 330
aborting 299

fork() 330
full qualification 296
function 50, 60, 143, 155, 179, 196, 201, 215,

240, 261
block 288
local class 60, 134
name 72
parameter 32, 44, 155, 214
with C linkage 59, 133, 142, 152, 177, 187,

198, 212, 227, 237, 258, 286

G
general purpose registers 181
general register 157
global

data 25, 334
declaration, define 226
namespace 336
object 63

global data item 25, 151, 176, 197, 211, 257
graphical debugging 7

H
halfword boundary

search at 182
halt the program 275
hardcopy output 241
header line 162
help texts 183
hexadecimal

literal 160, 173, 174, 206, 266, 324
notation 329
number 145, 155, 160, 206, 266
representation 35
representation in C string literal 36

hit address 173
horizontal tabulator 37
hyphen 19, 113, 120

SYMCHARS=NOSTD 115

Index

U6148-J-Z125-8-76 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

18

S
ta

nd
 1

2:
10

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
7

00
_A

ID
_

C
_

C
p

lu
sp

lu
s\

en
\c

pp
_

e.
si

x

I
identical names 148
impermissible supervisor call (SVC) 217
incomplete call hierarchy 14
indirect addressing 121, 145, 158, 181, 189, 203,

216, 263, 324
individual command 171, 221
info-target 183
inheriting

settings 117
the debug context 295

inline functions 14
input <DÜ> 297
input file 171
input/output, redirection into a file 299
instance

of a function template 104
of a template 94

instruction 139
counter 181

int 332
integer 206

signed 332
unsigned 332

interpretation
of indirect addresses 121
of the hyphen 113

interrupt point
in dump file 275

interrupting
the program 275

interruption in runtime system 190
INVALID OPCODE 139
issue STOP message 275

K
K2 key 129, 275, 296
keyword 26, 122, 157, 181, 203, 233, 240, 263

events 217

L
L element 18
L member 300

label 51, 144, 156, 180, 189, 190, 202, 216, 263,
335

LANG 113, 117
length 140, 148, 196, 205, 255, 266

function 205, 266
modification 42, 145, 158, 181, 189, 203,

216, 263
of a class 48
of a data item 159, 204, 265
operator sizeof() 47, 159, 204, 265
selector 47, 160, 205, 265

length restriction
for %MOVE 206
for %ON %WRITE(...) 210

LEV 118
level number 24, 86
library function 50, 179, 189, 201, 215, 240, 261
LIFO principle 185, 217, 330
line number 51
link 171, 224
link and load module 23, 323
link name 324

assign 171, 224
F6 206

link switch library SYSLNK.CRTE.POSIX 16
literal 95
LLM 16, 23, 24, 323
LMS correction statements 119, 206
load address of C/C++ programs 139
loaded program 22, 85, 108
local data 19
local object 63
LOCAL#DEFAULT 23
localization information 331

machine code 158
symbolic 157, 158

locally defined member function 60
locate strings 29
LOGOFF 296, 300
LOGON task 114, 296, 299, 331
long long 29, 167
LOW 118

Index

350 U6148-J-Z125-8-76

LSD 21, 119, 189, 234, 240, 278, 300, 331
-structure 321
dynamic loading

after exec() call 18
dynamic loading with %SYMLIB 278
generation 14
List for Symbolic Debugging 13

M
machine code level 35, 150, 195, 255
machine code localization information 158
main 20, 33, 59, 72, 133, 185, 187, 198, 212,

227, 234, 237, 258, 283, 286
main function

read parameters in 15
matching

numeric values 254
maximum length of C string literals 36
medium-a-quantity 148, 183, 221, 234
member function 61, 63, 67

locally defined 60
memory area 175, 300
memory contents

modifying 195, 254
message number

AID0n 183
metasyntax 11
minus sign 19, 113, 120

SYMCHARS=NOSTD 115
mixed mode program 7
modify

pointer to data member 75
pointer to function member 80

modifying
C strings 260
memory contents 195, 254

module names
constructing 23

monitor C statements 131
monitoring an exec() call 217
multidimensional array 39
multiple-overloaded operators 111

N
n’...’ 59
name duplication in namespaces 87
name lengths 59
namespace qualification 57
nested class 64, 65
nested namespace 86
NESTLEV qualification 24, 153, 199, 238, 258
newline 37
NOT_USED 117, 274
notation n’...’ 59
notation t’...’ 59
number 140, 282

of lines per print page 281
numeric

array 34
output 35

data type 328
equivalent for a single character 95
receiver 254
transfer 254, 268

O
object 60, 63, 64, 65, 73, 153, 178, 238, 259

defined globally 63
defined locally 63
listing 241
module 23, 323
name 65
of class template instance 99
structure list 119, 206

octal representation in C string literal 36
offset 144

to the start of the class (data member) 45
with pointer to function member 144

older objects (up to V2.2C) 65
OM 23, 323
open

AID output file 224, 225
PLAM library 278

operator
multiple-overloaded 111
precedence 42

optimization 14

Index

U6148-J-Z125-8-76 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

18

S
ta

nd
 1

2:
10

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
7

00
_A

ID
_

C
_

C
p

lu
sp

lu
s\

en
\c

pp
_

e.
si

x

output 34
%DISASSEMBLE log 145
%TRACE log 288
addresses 42
array 32
block number 240
C string literal 37
character set 149
commands 221
current call hierarchy 234
data areas 234
dereferencing pointer to member 155, 156
file 161, 241
file F6 206
function names 240
hardcopy 161, 241
help texts 183
medium 139, 148, 161, 183, 184, 221, 241,

283
of a numeric array 34
of hits with %FIND 173
pointer to data member 75
pointer to function member 79
pointer to member 155, 239
program names 240
source reference 240
template instance 106, 149
terminal 161, 241
type 150, 158, 329

output-quantity 139, 140
output, file 161, 222
output, hardcopy 161, 222
output, terminal 161, 222
OV 113, 119
overlay 113, 119
overlay structure 119
overloaded function 58, 61, 110
overloaded operators 111
overview

of overloaded functions 110
of template instances 106
template instances 149

overwrite
C strings 260
pointer to data member 75
pointer to function member 80

P
P1 audit table 157
page counter

for SYSLST 281
page feed 37, 160
page header 281
paging error 217
parent task 333
passed parameters

array 260
passing a C string literal 37
passing the address 42
period 122, 132, 141, 151, 176, 186, 197, 211,

226, 236, 257, 279, 285
permissible combinations for %SET 267
permissible comparison

pointer to member 83
permissible modification

pointer to data member 76
pointer to function member 80

pid 275, 291, 292, 333
PLAM library 13, 18, 234, 295, 323, 329

assign 278
close 278
open 278

pointer 29, 44, 155, 214
arithmetic 41
notation 30, 40, 44, 49, 179, 200, 214, 240,

261
operator 50, 64, 158, 203, 264, 324, 333
variable 73, 74, 133, 155, 179, 240, 286

pointer to data member 74
dereferencing 76
modify 75
output 75

pointer to function member 74, 133, 143, 179,
180, 262, 286
dereferencing 81
modify 80

Index

352 U6148-J-Z125-8-76

pointer to function member (continued)
output 79
PROC qualification 59

pointer to member
comparing 83
output 155, 239
write monitoring 214

POSIX command
bs2cp 18
CC 17
cc 17
debug 17, 291

POSIX file 18
POSIX shell 296, 333
preprocessor constants/macros 29
prequalification 132, 141, 151, 176, 186, 197,

211, 226, 236, 257, 279, 285
priorities, of debug mode 296
private 63
PROC qualification 25, 26, 61, 72, 132, 142, 152,

176, 187, 198, 211, 227, 237, 257, 286, 325,
334
pointer to function member 59

process 333
interrupt 292
terminate 296

process control block 157
process identification 275
process number 275, 291, 292, 333
program

alter state 129, 233
area to be monitored 131, 284, 285
continue 233, 282
counter 129, 157, 181, 203, 231, 233, 263,

285
error 17, 209, 300
interruption in runtime system 296
load with LSD 291
mask 157
nesting 234, 331
register 157
start 233, 282
termination 209
with overlay structure 113

program counter 129, 163
prolog 145, 179, 201, 215, 261

%TRACE 283
address 50, 63, 67, 73, 110, 133, 155, 179,

189, 240, 286, 335
address in register 15 190

protected 63
public 63

Q
qualification 21, 275, 334

pointer to data member 77
pointer to function member 82

qualification-a-lib 278
question mark 37
queue, input/output 297

R
read parameters in

main function 15
Readme file 9
receiver 195, 196, 254, 255
recursive function

%SDUMP 234
reference

data in C/C++
exceptions 29

reference variable 112
register 157, 181, 196, 203, 263
register 15 190
register variable 43, 47, 159, 204, 265
relative address of a dynamic data member 159,

204, 264
relative address of data members 45
relative block number 25, 134, 142, 187, 199,

212, 258
relative statement number 51, 135, 288
REMOVE 135
REP 113, 119, 195, 206

generate 206
rlogin 291
runtime

control 191
monitoring 185

Index

U6148-J-Z125-8-76 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

e
20

18

S
ta

nd
 1

2:
10

.4
3

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

00
7

00
_A

ID
_

C
_

C
p

lu
sp

lu
s\

en
\c

pp
_

e.
si

x

runtime (continued)
system 72, 275, 296

runtime routine AIDIT0@ 194

S
S qualification 23, 26, 118, 132, 141, 151, 176,

186, 197, 211, 227, 236, 257, 276, 285, 325,
334
before namespace 177, 199, 213, 259

scope 21, 26, 260
scope rules 65

in class systems 321
SDF format

expert form 7
SDUMP

alias names 93
search criterion 173
search order in namespaces 88
search string length 173
segment, dynamically loaded 119
sender 195, 196, 254, 255
shared-code program 23
short form for template instance names 95
show-target 272
signature 58, 59, 63, 72, 73, 104, 335

void 58, 321
signed integer 270
single command 124, 183
sizeof() 205, 265
source

error listing 51
file 23

source reference 51, 134, 141, 144, 151, 157,
180, 186, 189, 197, 202, 216, 257, 263, 288
from template instance 108, 135, 288

source-based debugging 7
special characters 23, 73
standard include header 15
start 139, 140

%TRACE 282
program 233

start address 134, 288
of the loaded program 141

start address of a data item 159, 204, 264

starting a debugging session 19
statement 148
statement name 50, 51, 257
static

data member 64, 65, 67, 153, 178, 199, 213,
238, 259

member function 63
program nesting 331

STOP message 275
storage type 158, 335

%X 64
check 195

structure 29
component 40
qualification 30, 40, 44, 49, 67, 179, 200,

214, 261
STXIT routine 217
subcommand 124, 129, 130, 135, 174, 185, 191,

209, 217, 226, 233, 275, 282, 335
chaining 191, 219
condition 135
name 135, 219
nesting 191, 219

subscript 29, 44, 49, 154
subscript notation 30, 41, 44, 49, 155, 179, 200,

214, 240, 261
arrays 30
type-related pointers 30

superblock 19, 21, 25, 68, 325, 336
supervisor call (SVC) 209

impermissible 217
SVC 217
symbolic localization information 158
symbolic memory references 21
SYMCHARS 19, 113, 120
SYSLST 160, 161, 222, 241, 281
SYSOUT 173
system table 157

T
t’...’ 59
tags 29
target 230
target-cmd 221

Index

354 U6148-J-Z125-8-76

task family 336
task sequence number 275
template arguments 95
template declaration 108
template instance

output 106
terminal output 241
terminate

%TRACE 282
task 296, 300

test object 139
test-point 185, 186, 191, 196, 231, 255, 273, 295

in library function 189, 240
this pointer 60, 64, 153, 165, 178, 199, 213, 238,

259
throw statement 131, 185, 284
trace-area 282, 284
tracing 233, 282
transfer

C string arrays 39
C strings 260
character 267
class object 254, 259, 321
parameter 32
while retaining values 254

translation unit 23, 334, 336
TSN 275
type modification 29, 42, 145, 148, 155, 158,

181, 189, 203, 216, 239, 260, 263, 328
%A 158, 168, 260, 332
%C 158, 326
%D 158, 332
%F 158, 168, 260, 332
%X 158, 329

typedef names 29

U
UFS file 336
union 29
unloading after program abort 17
unsigned int 270, 332
update dialog 196, 255
uppercase/lowercase 19, 23, 24, 118, 276

LOW=ALL 115

user-defined data type 97
using

declaration 87
directive 87, 153, 238

V
validity period 114
variable 148, 196, 255

defined in middle of block 62
vertical tabulator 37
virtual function 19, 59, 63, 72, 73, 74, 133, 143,

155, 286

W
wait() call 296
wildcard symbol 174
word boundary

search at 182
write monitoring 29

for arrays 32
pointer to member 214

write-event 217

	Contents
	Preface
	Objectives and target groups of the AID documentation
	Structure of the AID documentation
	Changes since the last edition of this manual
	Notational conventions

	Metasyntax
	Prerequisites for debugging
	Compiling in BS2000
	Linking, loading and starting in BS2000
	Compiling and linking under POSIX
	Loading and starting under POSIX
	Loading the LSD dynamically
	bs2cp
	Commands on starting a debugging session

	Addressing in C and C++ programs
	Qualifications
	Associating data with translation units, functions and blocks

	Data names
	Subscript notation
	C strings
	C string literals
	C string arrays

	Pointer notation
	Structure qualification
	Dereferencing
	Operator precedence
	The address operator & and the address selector %@(...)
	Length operator sizeof() and length selector %L(...)

	Functions, labels and source references
	Special notes on addressing statements

	C++-specific addressing
	Qualifications
	Data defined in the middle of a block
	Classes
	Scope rules in classes
	Constructors and destructors
	Virtual functions
	Pointer to class member
	Pointer to data member
	Pointer to function member
	Comparing pointers to members
	Setting a pointer to member to zero

	Namespaces
	Unnamed namespaces
	Scope rules in namespaces
	Alias names for namespaces

	Templates
	Template instantiation
	Class templates
	Function templates
	Listing template instances
	Displaying template instance names
	Accessing source references from template instances

	Overloaded functions
	Overloaded operators
	Reference variables

	AID commands
	%AID
	%AINT
	%ALIAS
	%BASE
	%CONTINUE
	%CONTROLn
	%DISASSEMBLE
	%DISPLAY
	%DUMPFILE
	%FIND
	%HELP
	%INSERT
	%MOVE
	%ON
	%OUT
	%OUTFILE
	%QUALIFY
	%REMOVE
	%RESUME
	%SDUMP
	%SET
	%SHOW
	%STOP
	%SYMLIB
	%TITLE
	%TRACE

	POSIX debug command
	Special notes on debugging under POSIX
	Inheriting the debug context
	Debug strategies
	Input/output
	Possible inputs
	Allocation
	Errors

	Dump processing

	Sample applications
	Sample C application in BS2000
	Source error listing
	Debug run

	Sample C++ application in BS2000
	Source error listing
	Debug run

	Sample C application under POSIX

	Appendix
	Comparison: debugging older objects / C++ V3.0 objects

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

