
Edition June 2018

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\C

om
p

ile
r\

A
ID

\V
34

B
3

0\
D

o
cs

_
P

ro
d

uk
tio

n\
18

01
10

0_
A

ID
_M

a
sc

hi
n

en
co

d
e\

en
\a

id
m

c_
e

.v
or

English

AID V3.4B
Debugging on Machine Code Level

FUJITSU Software BS2000

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Documentation creation
according to DIN EN ISO 9001:2015
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2015.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2018 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

U2854-J-Z125-10-76

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
un

i 2
01

8
 S

ta
n

d
12

:1
9.

55
P

fa
d:

 P
:\F

T
S

-B
S

\C
o

m
pi

le
r\

A
ID

\V
3

4B
30

\D
o

cs
_P

ro
du

kt
io

n
\1

80
11

00
_A

ID
_

M
as

ch
in

e
nc

od
e

\e
n\

ai
d

m
c_

e.
iv

z

Contents

1 Preface . 5

1.1 Objectives and target groups of the AID documentation 5

1.2 Structure of the AID documentation . 6

1.3 Changes since the last edition of this manual . 7

1.4 Notational conventions . 8

2 Metasyntax . 9

3 Prerequisites for debugging . 11

3.1 Compiling, linking and loading . 11

3.2 Commands at the beginning of a debugging session 12

4 Machine-code-specific addressing . 13

4.1 Qualifications . 13
4.1.1 Base qualification . 14
4.1.2 Area qualifications . 14

4.2 Memory references . 17

5 AID commands . 21

%AID . 21
%AINT . 27
%BASE . 30
%CONTINUE . 32

Contents

 U2854-J-Z125-10-76

%CONTROLn . 33
%DISASSEMBLE . 38
%DISPLAY . 44
%DUMPFILE . 58
%FIND . 60
%HELP . 66
%INSERT . 68
%MOVE . 73
%ON . 79
%OUT . 86
%OUTFILE . 88
%QUALIFY . 90
%REMOVE . 93
%RESUME . 96
%SDUMP . 97
%SET . 104
%SHOW . 112
%STOP . 114
%TITLE . 115
%TRACE . 116

6 Sample application . 123

6.1 Assembler program . 123

Glossary . 131

Related publications . 141

Index . 143

U2854-J-Z125-10-76 5

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

1

1 Preface

AID (Advanced Interactive Debugger) is a powerful interactive debugging tool which runs
under the operating system BS2000. Error diagnostics, debugging and short-term error
recovery of all programs generated in BS2000 are considerably more rapid and more
straightforward than other approaches, such as inserting debugging aid statements into a
program, for example. AID is permanently available and can be easily adapted to the
relevant programming language. Programs that are debugged using AID need not be
recompiled; they can be used without LSD information and even with AID corrections in a
production run immediately. The range of functions of AID and its debugging language
(using AID commands) are primarily tailored to interactive applications. AID can, however,
also be used in batch mode. AID provides the user with a wide range of options for
monitoring and controlling execution, effecting output and modification of memory contents.
It also lets you call up information on program execution and on using AID.

AID permits debugging both on the symbolic level of the relevant programming language
and on machine code level. Symbolic debugging allows you to use the names defined in
the source code to address statements, functions and data items and to use the source
reference generated by the compiler to address statements which have no name. The
BS2000 commands in the AID documentation are described in the EXPERT form of the
SDF (System Dialog Facility) format. SDF is the dialog interface to BS2000. The SDF
command language supersedes the previous (ISP) command language.

1.1 Objectives and target groups of the AID documentation

AID is intended for all software developers working in BS2000 with the programming
languages ASSEMBLER, COBOL, Fortran, C, C++, or PL/I, especially those who wish to
debug as well as correct programs This manual is primarily intended for those involved in
debugging with AID on machine code level.

Structure of the AID documentation Preface

6 U2854-J-Z125-10-76

1.2 Structure of the AID documentation

The AID documentation consists of the AID Core Manual, the language-specific manuals
for symbolic debugging, and the manual for debugging on machine code level. For experi-
enced AID users there is also a Ready Reference [7], giving the syntax of all the commands
and the operands with brief explanatory notes. It also includes the %SET tables and a
comparison of AID and IDA. All the information the user requires for debugging can be
found by referring to the manual for the particular language required and the core manual.
The manual for debugging on machine code level can either be used as a substitute for or
as a supplement to any of the language-specific manuals.

AID Core Manual [1]

The core manual provides an overview of AID and deals with facts and operands which are
the same in all programming languages. The AID overview describes the BS2000
environment, explains basic concepts and presents the AID command set. The other
chapters discuss preparations for testing; command input; the operands subcmd, compl-
memref and medium-a-quantity; AID literals and keywords. The manual also contains BS2000
commands invalid in command sequences.

AID User Guides

The User Guides deal with the commands in alphabetical order and describe all simple
memory references. Apart from the present manual,
AID - Debugging on Machine Code Level,
the available User Guides are:
AID - Debugging of COBOL Programs [2]
AID - Debugging of FORTRAN Programs [3]
AID - Debugging ounder POSIX [4]
AID - Debugging of ASSEMBH Programs [5]
AID - Debugging of C/CC++ Programs [12]

In the language-specific manuals and in the manual for debugging on machine code level
the commands are listed in alphabetical order. All memory references which are not
complex are described in these manuals.

In the language-specific manuals, the description of the operands is tailored to the particular
programming language involved. The user is expected to be familiar with the relevant
language tools and compiler operation.

The manual for debugging on machine code level can be used for programs for which no
LSD records exist or for which the information from symbolic debugging does not suffice for
error diagnosis. When debugging on machine code level, use of the AID commands is
independent of the programming language in which the program was written.

Preface Changes since the last edition of this manual

U2854-J-Z125-10-76 7

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

1

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

Information under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

1.3 Changes since the last edition of this manual

AID V3.4B30 offers the following new functions compared to version V3.4B10:

● Extension of the %AID command: new LEV operand. This operand can expand the
output of the AID command %SDUMP %NEST by the levels within the call hierarchy.

● New qualification NESTLEV in the %DISPLAY, %MOVE, %SDUMP and %SET
commands designated to qualify all instances of recursive data.

● Enhancement of the %FIND command that enables searching the find area for
characters from a coded character set (CCS) supported by XHCS.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Notational conventions Preface

8 U2854-J-Z125-10-76

1.4 Notational conventions

italics In the body of the text, operands are shown in lowercase italics.

i This symbol marks points to be specially noted.

U2854-J-Z125-10-76 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

2

2 Metasyntax

The metasyntax shown below is the notational convention used to represent commands.
The symbols used and their meanings are as follows:

UPPERCASE LETTERS
String which the user must enter unchanged to select a particular function.

lowercase letters
String identifying a variable for which the user has to insert any of the permissible ope-
rand values.

⎧ alternative ⎫
⎨ ... ⎬
⎩ alternative ⎭

{ alternative 3 ... 3 alternative }

Alternatives; one of these alternatives must be picked. The two formats have the same
meaning.

[optional]
Specifications enclosed in square brackets may be omitted.
In the case of AID command names, only the entire part in square brackets can be
omitted; any other abbreviations cause a syntax error.

[...]
Reproducibility of an optional syntactical unit. If a delimiter, e.g. a comma, must be
inserted before any repeated unit, it is shown before the periods.

{...}
Reproducibility of a syntactical unit which must be specified at least once. If a delimiter,
e.g. a comma, must be inserted before any repeated unit, it is shown before the periods.

Underscore
Underscoring designates the default value, which AID inserts if the user does not
specify a value for an operand.

Metasyntax

10 U2854-J-Z125-10-76

• A bullet (period in bold print) delimits qualifications, stands for a prequalification (see the
%QUALIFY command), is the operator for a byte offset or is part of the execution
counter or subcommand name. A bullet is entered from the keyboard using the key for
a normal period. It is actually a normal period, but here it is shown in bold to make it
stand out better.

U2854-J-Z125-10-76 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

3

3 Prerequisites for debugging

You will need the assembly listing or comparable documentation such as the locator map
and/or object listing of the compiler as reference information. If no such information on
structures is available, the linkage editor listing can be used as a substitute.

3.1 Compiling, linking and loading

You can debug on machine code level and make full use of the complete functionality of
AID without having to specify any special options or operands when compiling, linking and
loading a program: the compiler generates an ESD (External Symbol Dictionary) or ESV
(External Symbol Vector) by default; the linkage editor being used automatically creates an
object structure listing or external symbol dictionary from it, and this is loaded along with the
program when standard options are used (see the AID Core Manual [1]). This provides AID
with the required information on CSECTs and COMMONs.

If the generation of this information was explicitly suppressed when linking the program with
BINDER (SYMBOL-DICTIONARY=NO operand in the SAVE-LLM statement) or if the infor-
mation was not loaded, the following functions cannot be executed:

– output of a list of all CSECTs of the user program (%D %SORTEDMAP or %D %MAP)

– output of machine-oriented localization information (%D %LOC (memref))

– specification of a CSECT/COM qualification in a memory reference

– monitoring program execution via %CONTROLn and %TRACE commands implicitly or
explicitly restricted to one CSECT/COMMON

– specification of CSECT-relative information for %DISASSEMBLE, %FIND, %TRACE,
and in the STOP message

– generation of REPs for modifications

CSECTs that have been renamed must be addressed in AID commands by their new
names (see the AID Core Manual [1]).

i Be careful with LLMs or contexts which include CSECTs of the same name; it is not
possible to predict which CSECT is addressed by AID in such cases.

If you are linking and loading your program with DBL, no operands need to be specified.

Commands at the beginning of a debugging session Prerequisites for debugging

12 U2854-J-Z125-10-76

3.2 Commands at the beginning of a debugging session

AID commands do not have an SDF syntax. This means that:

– operands are not requested via menus;

– an error message is issued in the case of an error, but no correction dialog is executed.

If your task is currently not in SDF-EXPERT mode, you will need to switch to EXPERT mode
with the command MODIFY-SDF-OPTIONS GUIDANCE=EXPERT in order to enter AID
commands.

The following option must be set with the MODIFY-TERMINAL-OPTIONS command to enable
the interruption of extensive AID outputs with the K2 key:
OVERFLOW-CONTROL=*USER-ACKNOWLEDGE

U2854-J-Z125-10-76 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

4

4 Machine-code-specific addressing

This chapter describes the qualifications and memory references that you can use for
debugging on machine code level. A general description of addressing can be found in the
AID Core Manual [1].
If you specify a memory object that is not in the current AID work area or cannot be uniquely
addressed in it, you must precede the memory reference with the qualifications that will
allow AID to make the assignment. The operations described in the AID Core Manual [1]
can be applied to all memory references.

If you are debugging programs with addressing in data spaces (AR mode), you can use the
ALET and SPID qualifications. These two qualifications allow you to reference virtual
addresses in a data space. For more information on the addressing in data spaces see the
“Executive Macros” manual [9].

4.1 Qualifications

When debugging on machine code level, you can use the base qualification, and the CTX,
L, O, C, COM, ALET, SPID, and NESTLEV qualifications as area qualifications.
These qualifications must always be specified in the order in which they are described here.
The individual qualifications are separated by periods. A period must also be entered
between the last qualification and the following address. The overview below shows you
how qualifications are used:

⎧ ⎧ ⎧X'f...f'⎫⎫ ⎫
3 3ALET=⎨%nAR ⎬3 3
3 ⎨ ⎩%nG ⎭⎬ 3
3 3 3 3

⎧VM⎫ 3 ⎩SPID=X'f...f' ⎭ 3
[E=⎨ ⎬•] ⎨ ⎬

⎩Dn⎭ 3 ⎧C=csect ⎫ 3
3 [CTX=context•][L=load-unit•][O=object-module•] ⎨ ⎬ 3
3 ⎩COM=common⎭ 3
3 3
⎩ [NESTLEV=level-number] ⎭

Qualifications Machine-code-specific addressing

14 U2854-J-Z125-10-76

4.1.1 Base qualification

The base qualification is used to define the AID work area. You specify whether an adjacent
address is to be located in virtual memory or in a dump file.

E={VM | Dn}
Defines whether AID is to access virtual memory (VM) or a dump file (Dn). The
 E qualification is described the AID Core Manual [1] and under the %BASE
command. It may be immediately followed by a virtual address, a keyword or a
complex memory reference.

4.1.2 Area qualifications

An area qualification designates a contiguous subsection of a program. If an address
operand ends with one of these qualifications, it restricts the effect of a command to that
area.

CTX=context
Designates a context (see the AID Core Manual [1]). This qualification precedes an
L, O, C, or COM qualification. An address operand can end with the CTX qualifi-
cation only in the %QUALIFY command. This qualification is required in order to
reference a translation unit, a CSECT or a COMMON which is contained in multiple
contexts but is not the location of the current interrupt point.
context may be the context name that was explicitly assigned in the BIND macro or
the implicitly assigned name LOCAL#DEFAULT or CTXPHASE. Programs loaded
with DBL are also assigned the standard context name LOCAL#DEFAULT.
Additional contexts for a program may be created as a result of a link to a shared-
code program. context must be a context name not exceeding 32 position.

[L=load-unit•] [O=object-module•] {C=csect | COM=common}
The L and/or O qualification is required only if you need to address a CSECT or
COMMON that is not the current one and only if the current context includes
multiple CSECTs/ COMMONs with the same name. You only need to specify the L
and/or O qualifications required for a unique address. A C/COM qualification must
follow. Information on L, O, and C/COM qualifications for a virtual address can be
obtained using %DISPLAY %LOC.

L=load-unit
Designates all link and load modules or a single load module that must be
located in virtual memory or the corresponding dump at the time it is addressed.
load-unit Name of an object module (OM); ≤ 8 characters
 Name of a link and load module (LLM); ≤ 32 characters.

Machine-code-specific addressing Qualifications

U2854-J-Z125-10-76 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

4

O=object-module
Designates an object module (OM) as entered during compilation. The
load-unit containing the object module must be located in virtual memory or in
the corresponding dump at the time the object module is addressed.
object-module Name of an object module; ≤ 8 characters.

C=csect
Designates a CSECT. The CSECT name was assigned in the source program,
but may have been modified with LMS or BINDER (see the AID Core Manual
[1]). csect must always be the last declared name. You may also specify a
masked CSECT; however, you cannot use CSECT names for addressing if no
object structure list was created by the linkage editor.
csect Name of a CSECT; ≤ 32 characters.
If the name contains no special characters, you must enter csect immediately
after C=; otherwise, it must be placed within quotes in the form C=N’...’.
AID displays the names of the CSECTs in a test object in the output of
%DISPLAY %SORTEDMAP or %DISPLAY %MAP.
An address operand may end with a C qualification. This designates the entire
CSECT in the %DISPLAY, %CONTROLn, %FIND, %MOVE, %SET and
%TRACE commands.
In the %DISASSEMBLE and %INSERT commands, it designates the start
address of the CSECT.
The C qualification can also be used as a memory reference, since it has both
an address attribute and a length attribute (see also the section on “Memory
references”).

i Be careful with LLMs or contexts which include CSECTs of the same name; it
 is not possible to predict which CSECT is addressed by AID in such cases.

COM=common
Designates a COMMON. Since the COM qualification can be used just like the
C qualification, refer to that description for details.

ALET={X’f...f’ | %nAR | %nG}
Designates a data space via one of its ALETs. The ALET qualification is only
required when debugging programs in AR mode (access register mode). The ALET
is returned by the ALESRV macro. It can be specified as a hexadecimal literal or be
taken from an access register or an AID register.
An ALET qualification may be followed by a virtual address or a complex memory
reference without symbolic components.

X’f...f’ is an 8-character hexadecimal literal.
%nAR is an access register; 0 ≤ n ≤ 15
%nG is an AID register in which the ALET was buffered;

0 ≤ n ≤ 15

Qualifications Machine-code-specific addressing

16 U2854-J-Z125-10-76

SPID=X’f...f’
Designates a data space via its SPID, an identifier 8 bytes in length. The SPID
qualification is only required when debugging programs in AR mode. It is returned
by the macro DSPSRV and can only be specified as a hexadecimal literal.
An SPID qualification may only be followed by a virtual address or a complex
memory reference without symbolic components.
X’f...f’ is a 16-character hexadecimal literal.

You can obtain information on the ALET/SPID qualifications by entering the following
command:
%DISPLAY %DS[(ALET/SPID-qua)]

NESTLEV=level-number
The NESTLEV qualification defines a level number.

Like the qualification S=srcname.PROC=function, the qualification NESTLEV=level-
number is designed to manipulate data names that users declare in the source units.
The environment qualification E={VM|Dn} is the only one NESTLEV=level-number
can be combined with.

The qualification NESTLEV accepts a level number, in other words, a reference to
the current call hierarchy. Based on this reference, AID identifies a complete list of
available data names defined at the specified level.

Normally, you have to display and analyze the call hierarchy before using the
NESTLEV qualification. The following AID commands output the current call
hierarchy augmented with the levels:

%AID LEV=ON
%SDUMP %NEST

The NESTLEV qualification can be used in the commands %DISPLAY, %MOVE,
%SDUMP and %SET. In these commands, the qualification NESTLEV=level-number
can equally (with the same result) replace the qualification
S=srcname.PROC=function, if level-number is correct.

For an example for the usage of the NESTLEVqualification, see AID Core Manual,
section “Area qualifications“[1].

Machine-code-specific addressing Memory references

U2854-J-Z125-10-76 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

4

4.2 Memory references

In debugging on machine code level, a memory location is referred to by a virtual address,
a complex memory reference, a C/COM qualification, or a keyword.
If a program (segment) for which LSD records have been generated is being debugged, the
data names and statement names defined in the source program can also be used in all
operands in which compl-memref is possible.

V’f...f‘ Designates a virtual address. It has the implicit length 4, the storage type %X, and
thus the output type dump.
f...f is a hexadecimal address of up to 8 digits, where f may be any value from
0 - 9 and A - F.
If you wish to reference an address in a data space when debugging programs in
AR mode, you must specify an ALET or SPID qualification before the virtual
address.
Otherwise, a virtual address is unique in the respective AID work area, and only the
specification of a base qualification is meaningful. Any area qualifications that are
specified are thus redundant and ignored by AID.

{C=csect | COM=common}
Designates a CSECT or a COMMON that has all attributes of a virtual address and
also the name attribute. The C/COM qualification can therefore also be used as a
start address of a compl-memref. The area limits of the CSECT/COMMON can only
be exceeded by indirect addressing (->). More detailed information can be found
under “Area qualifications” on page 15.

Memory references Machine-code-specific addressing

18 U2854-J-Z125-10-76

keyword
Designates a storage class, program register, AID register, system information,
program counters or the addressing mode, depending on the operand type (see the
AID Core Manual [1]). Each keyword has all the attributes of a memory object (see
the AID Core Manual [1]). The area limits of a keyword can only be exceeded by
indirect addressing (->).

compl-memref
A complex memory reference designates a calculated address. Without the appro-
priate type and length modification, it has the implicit length 4, the storage type %X,
and the output type dump.
The following operations may occur in compl-memref when debugging programs not
running in AR mode (see the AID Core Manual [1]):

– byte offset (•)

– indirect addressing (->)

– type modification (%T(dataname), %X, %C, %E, %P, %D, %F, %A, %S, %SX)

– length modification (%L(...), %L=(expression), %Ln)

– address selection (%@(...))

After a byte offset or indirect addressing, the implicit storage type and length of the
start address are lost, and %XL4 applies. However, the area limits of the start
address (e.g. CSECT or keyword) remain in effect. They must not be exceeded with
any operand in a compl-memref (byte offset, length or type modification); otherwise,
AID will issue an error message. It is only by connecting the address selector with
the pointer operator or indirect addressing that a switch is made to the machine
code level, i.e. the level on which the area includes the complete virtual memory
occupied by the loaded program.

If you are debugging programs runnning in AR mode, you should note the following
differences in connection with operations that may occur in compl-memref:

– You can mix symbolic and machine-oriented addressing for memory objects in
the program area; the available options are the same as those for programs in
not running in AR mode.

– You cannot use symbolic addressing for memory objects in the data space;
only machine-oriented components may be used. The ALET or SPID qualifica-
tions have an effect on all components of the complex memory reference. A
name can only be used in a following type modification. Without a preceding
area qualification, AID extends only the current base qualification.

%DISPLAY ALET=%2G.V‘34‘%T(NAME) corresponds to
%DISPLAY E=VM.ALET=%2G.V‘34‘ %T(E=VM.NAME)

Machine-code-specific addressing Memory references

U2854-J-Z125-10-76 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

4

Examples

Addressing and special operands when debugging programs in AR mode:

1. %DISPLAY %ASC

%ASC = 01

The keyword %ASC informs you if access registers were used in the address
conversion and if data spaces were addressed with them. The value 01 indicates that
access registers were used.

2. %DISPLAY %DS

SPID ALET SIZE

0001003300000031 00000000 0

0000000080000800 0001001B 409600

0000000080000800 0001001C 409600

0000000080000900 00010011 131072

0000000080000900 00010012 131072

All entries for the active data spaces are output.

3. %DISPLAY %AR

%AR (0 : 15)

(0) 00000000 (1) 000000FF (2) 00000000 (3) 00000090 (4) 00000094

(5) 000000B4 (6) 92020711 (7) 09252742 (8) 00000000 (9) 00000000

(10) 000000AC (11) 000000B0 (12) 000000B4 (13) 92020711 (14) 09252742

(15) 00000000

All access registers are output. The access registers with a value < 0 contain an ALET.

4. %FIND C‘01‘ IN ALET=X‘00010003‘.V‘0‘%L100

ABSOLUT +0000000F=0000000F : F0F1405E2 C5C9E3C5 40F0F0F0 01 PAGE 000

%FIND C‘01‘ IN ALET=%8AR.V‘0‘%L100

ABSOLUT +0000000F=0000000F : F0F1405E2 C5C9E3C5 40F0F0F0 01 PAGE 000

%FIND C‘01‘ IN SPID=X‘0000000080000200‘.V‘0‘%L100

ABSOLUT +0000000F=0000000F : F0F1405E2 C5C9E3C5 40F0F0F0 01 PAGE 000

Three methods of addressing the same location in the data space are shown.

Memory references Machine-code-specific addressing

20 U2854-J-Z125-10-76

U2854-J-Z125-10-76 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

5 AID commands

%AID

The %AID command can be used to declare global settings or to revoke the settings valid
up until then.

– With the CCS operand, you specify a CCS for interpreting characters if no CCS is
explicitly indicated in the %DISPLAY command. Unicode character sets are not
allowed.

– By means of the CHECK operand you define whether an update dialog is to be initiated
prior to execution of a %MOVE or %SET command.

– By means of the REP operand you define whether memory updates of a %MOVE
command are to be stored as REPs.

– By means of the SYMCHARS operand you define whether AID is to interpret a "-" in
program, data and statement names as a hyphen or as a minus sign.

– By means of the OV operand you can direct AID to take the overlay structure of a
program into account.

– By means of the LOW operand you direct AID to convert lowercase letters of character
literals and names to uppercase, or to interpret them as lowercase. OFF is the default.

– By means of the DELIM operand you define the delimiters for AID output of alphanu-
meric data. The vertical bar is the default delimiter.

– By means of the LANG operand you define whether AID is to output %HELP information
in English or German.

– With the operand LEV, you can activate the output of levels within the call hierarchy pro-
duced by the %SDUMP %NEST AID command.

%AID AID commands

22 U2854-J-Z125-10-76

DDD
 Command Operand
DDD

 ⎧ CCS = {<coded-character-set> | *USRDEF} ⎫
 3 3
 3 CHECK [= {ALL|NO}] 3
 3 3
 3 REP [= {YES|NO}] 3
 3 3
 3 SYMCHARS [= {STD|NOSTD}] 3
 3 3

3 OV [= {YES|NO}] 3
%AID m }

3 LOW [= {ON|OFF|ALL}] 3
 3 3
 3 ⎧C'x'|'x'C|'x'⎫ 3
 3 DELIM [= ⎨ ⎬] 3
 3 ⎩'|' ⎭ 3
 3 - 3

o LANG [= {D | E}] o
 o o

⎩ LEV [= {ON|OFF}] ⎭

DDD

%AID can only be issued as an individual command, it must never be part of a command
sequence or a subcommand.

The %AID command does not alter the program state.

<coded-character-set>
Name of the CCS (<name 1..8>) for interpreting AID data. XHCS must know the
indicated character set. Otherwise, AID rejects the statement with the message
AID0555.

*USRDEF
CCSNAME of the character set, that is assigned to the user ID. *USRDEF is the
default value of CCS.

If you specify the CCS operand in a %AID command, AID checks if the CCSNAME is
permitted by XHCS. If XHCS doesn‘t know the CCSNAME, the command is rejected and
the current CCS value is kept.

The following AID command enables you to display a complete list of CCSNAMEs, that are
supported by XHCS:

%SHOW %CCSN

CCS

AID commands %AID

U2854-J-Z125-10-76 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

ALL Prior to execution of a %MOVE or %SET command, AID conducts the following
update dialog:

OLD CONTENT:
AAAAAAAA
NEW CONTENT:
BBBBBBBB
% AID0274 CHANGE DESIRED? REPLY (Y = YES; N = NO) ?

N

AID0342 NOTHING CHANGED

If Y is entered, the old contents of the data field are overwritten and no further mes-
sage is issued. In procedures in batch mode AID is not able to conduct a dialog and
always assumes Y
The old and new contents are written to SYSOUT. If SYSOUT is redirected, the
above output will not appear on the terminal. The same applies if the %MOVE or
%SET command and the CMD macro have been used and output to SYSOUT has
been selected. Messages AID0274 and AID0342, by contrast, are always sent to
the terminal.

NO %MOVE and %SET commands are executed without an update dialog.

If the CHECK operand is entered without specification of a value, AID assumes the default
value (NO).

YES In the event of memory updates caused by a %MOVE command, LMS correction
statements (REPs) are created in SDF format. If the object structure list is not avail-
able, AID does not create any REPs and issues an error message to this effect.

AID stores the corrections in a file with the link name F6. The MODIFY-ELEMENT
statement must then be inserted in it for the LMS run. Care should therefore be
taken that no other outputs are written to the file with link name F6.

If no file with link name F6 is registered (see %OUTFILE), the REP record is stored
in the file AID.OUTFILE.F6 created by AID.
User-specific REP files must be created with FCBTYPE=SAM. REP files created by

CHECK

REP

%AID AID commands

24 U2854-J-Z125-10-76

AID are likewise defined with FCBTYPE=SAM, RECFORM=V and
OPEN=EXTEND. The file remains open until it is closed with an %OUTFILE
command or until /LOGOFF or /EXIT-JOB.

NO No REPs are generated.

If the REP operand is entered without a value specification, AID inserts the default (NO).
The REP operand of the %MOVE command can supersede the declaration made with
%AID, but only for this particular %MOVE command. For subsequent %MOVE commands
without a REP operand, the declaration made with the %AID command is valid again.

STD A hyphen "-" is interpreted as an alphanumeric character and can, as such, be used
in program, data and statement names. It is interpreted as a minus sign, however,
if a blank precedes it.

NOSTD
A hyphen "-" is always interpreted as a minus sign and cannot be part of names.

If the SYMCHARS operand is entered without a value specification, AID inserts the default
value (STD).

YES Mandatory specification if the user is debugging a program with an overlay struc-
ture. AID checks each time whether the program unit which has been addressed
originates from a dynamically loaded segment.

NO AID assumes that the program to be debugged has been linked without an overlay
structure. AID uses the loaded LSD records without checking whether the program
unit addressed might be situated in a dynamically loaded segment.

If the OV operand is entered without a value specification, AID assumes the default (NO).

ON Lowercase letters in character literals and in program, data and statement names
are not converted to uppercase.

OFF All lowercase letters from user entries are converted to uppercase.

SYMCHARS

OV

LOW

AID commands %AID

U2854-J-Z125-10-76 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

ALL Entry of all BLS names is case sensitive.

In addition, upper and lower case entries in character literals and in program, data
and instruction names are retained, as when %AID LOW=ON is specified.

The following BLS names are used by AID:
– Context names of the CTX qualification
– Load unit names of the L qualification
– Link module names of the O qualification
– CSECT names of the C qualification
– COMMON names of the COM qualification
– Names of compilation units of the S qualification

If no LOW operand is entered during a debugging session, OFF applies. If the LOW operand
is entered without a value specification, AID assumes the default (ON). To reactivate
conversion to uppercase LOW=OFF must be entered.

C’x’|’x’C|’x’
With this operand the user defines a character as the left-hand and right-hand
delimiter for AID output of symbolic character-type data with the %DISPLAY com-
mand.

 The standard delimiter is the vertical bar.

If the DELIM operand is entered without value specification, AID inserts the default value (|).

D AID outputs information requested with %HELP in German.

E AID outputs information requested with %HELP in English.

If the LANG operand is entered without a value, AID inserts the default (D).
You can also receive AID messages in German by using the SDFcommand
MODIFY-MSG-ATTRIBUTES TASK-LANGUAGE=D.

This has no effect on the update dialog (see the CHECK operand).

DELIM

LANG

%AID AID commands

26 U2854-J-Z125-10-76

ON Enable level output.

When level output is enabled, %SDUMP %NEST additionally outputs two kinds of
levels for each procedure (function or block in C/C++) in the call hierarchy:

– A general level (counter) with a backward numeration, i.e. from the current
procedure to the main procedure. This level number is applicable in the new
qualification NESTLEV.

– A recursive level (RLEV) or an individual counter for each procedure with a
backward numeration starting from 0. The recursive level serves as informative
element.

OFF Disable level output.

LEV

AID commands %AINT

U2854-J-Z125-10-76 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

%AINT

%AINT is used to define whether indirect addressing with AID is to work with 24-bit or 31-
bit addresses. For AID, the address preceding the pointer operator (->) then consists of 24
or 31 bits accordingly.

The addressing mode of the test object is not affected.

– By means of aid-mode you define address interpretation for indirect addressing within
an AID work area.

DD
Command Operand
DD

%AINT [aid-mode] [,...]

DD

As a standard procedure, AID interprets indirect address specifications in accordance with
the current addressing mode of the test object. The current addressing mode is the one
which appears at an interrupt point in the system information field %AMODE. As long as an
%AINT command is valid, no matching to the current addressing mode takes place and
indirect addresses are interpreted in accordance with the declarations made under %AINT.
The current addressing mode (%AMODE) of the test object can be queried using the
%DISPLAY command and modified using the %MOVE command.

If no qualification has been specified, %AINT is valid for AID commands which reference or
use indirect addresses of the current AID work area.

%AINT without operands switches back to standard address interpretation. The same
effect is achieved by an %AINT command with a base qualification and without any speci-
fication pertaining to address interpretation.

The %AINT command does not alter the program state.

Defines how indirect addresses in subsequent AID commands are to be interpreted for the
current AID work area or the one designated by the base qualification specified.

If a keyword is specified for address interpretation and no qualification, the %AINT
command is valid for processing of the current AID work area.

aid-mode

%AINT AID commands

28 U2854-J-Z125-10-76

If a base qualification is specified but no keyword for address interpretation, the AID
standard address interpretation goes into effect for the corresponding AID work area.

aid-mode-OPERAND -

 ⎧VM⎫ ⎧%M[ODE]31⎫
[•][E=⎨ ⎬[•]] [⎨ ⎬]
 ⎩Dn⎭ ⎩%M[ODE]24⎭

- -

• If the period is in a leading position, it identifies a prequalification, which must have
been defined in a preceding %QUALIFY command.
A period must be inserted between the base qualification and the keyword for
address interpretation. If only a base qualification is specified, no final period is
permitted.

E={VM | Dn}
 is specified if switching of address interpretation is not to apply for the current AID
work area. If only a base qualification is specified, the standard address interpre-
tation applies again for the area addressed.

{%M[ODE]31 | %M[ODE]24}
Keyword specifying the number of bits to be taken into account for indirect
addressing in AID commands.

%M[ODE]31 31-bit addressing
%M[ODE]24 24-bit addressing

AID commands %AINT

U2854-J-Z125-10-76 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Examples

The contents of address V’100’ are: 1200000C

The contents of register 5 are: 010001A0

1. %AINT %MODE24

%DISPLAY V'100'->

%MOVE %5-> INTO %5G

%AINT is used to switch over to 24-bit address interpretation. The changeover is valid
for the current AID work area.
The %DISPLAY command outputs four bytes as of address V’00000C’.
The %MOVE command transfers four bytes as of address V’0001A0’ to AID register 5.

2. %AINT %MODE31

%DISPLAY V'100'->

%MOVE %5-> INTO %5G

The user switches address interpretation for the current AID work area to 31-bit inter-
pretation.
The %DISPLAY command outputs four bytes as of address V’1200000C’.
The %MOVE command transfers four bytes as of address V’010001A0’ to AID
register 5.

%BASE AID commands

30 U2854-J-Z125-10-76

%BASE

The %BASE command is used to specify the base qualification. All subsequently entered
memory references without a new base qualification assume the values declared by
%BASE. The command also defines where the AID work area is to be located.

– With the base operand the user designates either the virtual memory area of the
program which has been loaded or a dump in a dump file.

DDD
Command Operand
DDD

%BASE [base]

DDD

When debugging on machine code level, the AID work area corresponds to the non-privi-
leged area in virtual memory that is occupied by the loaded program and all connected
subsystems or to the corresponding area in a dump. If you do not specify a %BASE
command during a debugging session or enter %BASE without any operands, the base
qualification E=VM applies by default.

A %BASE command remains in effect until the next %BASE command or a /LOGOFF or
/EXIT-JOB, is issued, or until the dump file that was declared as the base qualification is
closed (see %DUMPFILE).

Immediately after input, all memory references in a command, even within a subcommand,
are supplemented with the current base qualification, i.e. a %BASE command has no effect
on subcommands specified previously.

%BASE can only be entered as an individual command, it must never be part of a command
sequence or subcommand.

The %BASE command does not alter the status of the program.

Defines the base qualification. All subsequently entered memory references without a
separate base qualification assume the value declared with the %BASE command.

base-OPERAND -

 ⎧ VM ⎫
E = ⎨ ⎬
 ⎩ Dn ⎭

- -

base

AID commands %BASE

U2854-J-Z125-10-76 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

E=VM
The virtual memory area of the program which has been loaded is declared as the base
qualification. VM is the default value, thus virtual memory is also the AID standard work
area.

E=Dn
A dump in a dump file with the link name Dn is declared as the base qualification.
n is a number with a value 0 ≤ n ≤ 7.

Before declaring a dump file as the base qualification, the user must assign the corre-
sponding dump file to a link name and open it, using the %DUMPFILE command.

%CONTINUE AID commands

32 U2854-J-Z125-10-76

%CONTINUE

The %CONTINUE command is used to start the program which has been loaded or to
continue it at the interrupt point.
As opposed to %RESUME, a %CONTINUE command does not terminate an interrupted
%TRACE but continues it depending on the declarations which have been made.

DDD
Command Operand
DDD

%CONT[INUE]

DDD

In the following cases a %TRACE command is regarded as interrupted and is resumed by
any %CONTINUE command:

1. When a subcommand has been executed as the result of a monitoring condition from
a %CONTROLn, %INSERT or %ON command having been satisfied, and the sub-
command contained a %STOP.

2. When an %INSERT command terminates with a program interrupt because the control
operand is K or S.

3. When the K2 key has been pressed (see section “Commands at the beginning of a
debugging session” on page 12).

If the %CONTINUE command is the only one in a subcommand, only the execution counter
is incremented.

If the %CONTINUE command is given in a command sequence or subcommand, any
subsequent commands are not executed.

%CONTINUE alters the program state.

AID commands %CONTROLn

U2854-J-Z125-10-76 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

%CONTROLn

By means of the %CONTROLn command you may declare up to seven monitoring
functions one after the other, which then go into effect simultaneously. The seven
commands are %CONTROL1 through %CONTROL7.

– By means of the criterion operand you may select different types of machine instruc-
tions. If an instruction of the selected type is about to be executed, AID interrupts the
program and processes subcmd.

– By means of the control-area operand you may define the program area in which subcmd
is to be processed if criterion is satisfied.

– By means of the subcmd operand you declare a command or a command sequence and
possibly a condition. subcmd is executed if criterion is satisfied and any specified
condition has been met.
Specification of the subcmd operand is mandatory.

DDD
Command Operand
DDD

%C[ONTROL]n [criterion][,...] [IN control-area] [<subcmd>]

DDD

A %CONTROLn on machine code level cannot be active at the same time as a write-event
of %ON.

Several %CONTROLn commands with different numbers do not affect one another.
Therefore you may activate several commands with the same criterion for different areas,
or with different criteria for the same area. If several %CONTROLn commands occur for one
machine instruction, the associated subcommands are executed successively, starting with
%C1 and working through %C7.

The effect of %CONTROLn when debugging on machine code level is different from
debugging on the symbolic level.
When debugging on machine code level, criterion is also monitored outside the
control-area, but subcmd is only executed within the control-area. The additional monitoring
overhead slows down execution of the program. In large programs, the %CONTROLn
command should therefore be used directly at test points as a subcommand of the
%INSERT command and deleted after execution (see %INSERT and the AID Core Manual
[1]).

The individual value of an operand for %CONTROLn is valid until overwritten by a new
specification in a later %CONTROLn command with the same number, until the
%CONTROLn command is deleted or until the end of the program.

%REMOVE can be used to delete an individual %CONTROLn command or all active
%CONTROLn declarations.

%CONTROLn AID commands

34 U2854-J-Z125-10-76

For %CONTROLn the base qualification E=VM must be valid (see %BASE) or specified
explicitly.

The %CONTROLn command does not alter the program state.

Keyword defining the type of machine instructions prior to whose execution AID is to
process subcmd.

Since the default value for criterion is the symbolic %STMT, criterion must always be
specified for machine-oriented debugging if no criterion declaration from a previous
%CONTROLn command is still valid.

Defines the program area in which the monitoring functionhas an effect. When the specified
program area is exited, monitoring of criterion continues, but subcmd is no longer processed.
When a machine instruction in the program area to be monitored is pending execution,
subcmd is processed again.

A control-area definition is valid until the next %CONTROLn command with the same
number is issued with a new definition, until the corresponding %REMOVE %CONTROLn
is given, or until the end of the program. %CONTROLn without a control-area operand of its
own results in a valid area definition being taken over. To be valid, control-area must be in
defined in a %CONTROLn command with the same number, and the current interrupt point
must be within this area. If no valid area definition exists, the control-area comprises the
entire user program by default.

criterion subcmd is processed prior to:

%INSTR every machine instruction pending execution

%B every branch instruction pending execution
(i.e. the machine instructions BAL, BALR, BAS, BASSM,
BASR, BC, BCR, BCT, BCTR, BSM, BXH and BXLE)

%BAL every subprogram call pending (as the result of machine
instructions BAL, BALR, BAS, BASSM and BASR)

criterion

control-area

AID commands %CONTROLn

U2854-J-Z125-10-76 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

control-area-OPERAND -

 ⎧ C=csect | COM=common ⎫
IN [•][qua•] ⎨ (V'f...f': V'f...f') ⎬
 ⎩ keyword ⎭

- -

• If the period is in the leading position, it denotes a prequalification which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

E=VM
As control-area can only be located in the virtual memory of the loaded program,
the specification E=VM is required if a dump file has been declared as the base
qualification.

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the qualifications required for a unique address.

{C=csect | COM=common}
The control-area covers the entire CSECT or COMMON specified.

(V’f...f’:V’f...f’)
The control-area is defined by specifying a virtual start address and a virtual end
address.
The addresses must be located in the executable part of a loaded program.
The start address must be less than or equal to the end address.

%CONTROLn AID commands

36 U2854-J-Z125-10-76

keyword
The control-area covers the memory area addressed by one of the following key-
words (see the AID Core Manual [1]).

%CLASS6 Class 6 memory below the 16-Mb limit
%CLASS6BELOW Class 6 memory below the 16-Mb limit
%CLASS6ABOVE Class 6 memory above the 16-Mb limit

This is processed whenever a machine instruction corresponding to criterion is pending in
control-area. The subcmd is executed before the instruction.

If subcmd is not specified, AID inserts <%STOP> for %CONTROLn.

A complete description of subcmd can be found in chapter 6 of the AID Core Manual [1].

subcmd-OPERAND -

 ⎧AID-command ⎫
< [subcmdname:] [(condition):] [⎨ ⎬ {;...}] >
 ⎩BS2000-command⎭

- -

The subcommand may contain a name, a condition and a command part. This command
portion can consist of an individual command or a command sequence; it may contain AID
commands, BS2000 commands and/or comments. There is an execution counter for each
subcommand. For information on how to formulate an execution condition, assign names
and execution counters and address them, and which commands are not permitted within
subcommands, refer to the AID Core Manual, chapter 5.

If a subcommand consists of only a name or only a condition, i.e. if the command part is
missing, AID merely increments the execution counter when the instruction selected with
criterion is executed.

In addition to the commands which are not permitted in any subcommand, the subcmd of a
%CONTROLn must not contain the AID commands %CONTROLn, %INSERT, %JUMP or
%ON.

The commands in subcmd are executed consecutively, after which the program is continued.
The commands for runtime control also immediately change the program state when they
are part of a subcommand. They abort subcmd and continue the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). In practice, they are only useful as the last
command in subcmd, since any subsequent commands of the subcmd will not be executed.
This also applies to the deletion of an active subcommand with %REMOVE.

subcmd

AID commands %CONTROLn

U2854-J-Z125-10-76 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Examples

1. %C1 %INSTR <C1_COUNTER: %CONT>

Prior to each instruction, the counter of subcommand C1_COUNTER is incremented by
one, after which the program continues.

2. %C1 %B IN C=M1BS <%D %PC->%XL8>

In CSECT M1BS, eight bytes of the program code are output at the interrupt point for
each branch instruction (%PC->). After this the program is continued and any active
%TRACE will be resumed. Program execution is, however, also monitored outside
M1BS and is therefore considerably slowed down.

3. %INSERT V'B40' <%REM %C5>
%INSERT V'A38' <%C5 %B IN (V'A38':V'B40') <%D V'798'>>

From address V’A38’ to V’B40’, four bytes are to be output for each branch instruction,
starting at address V’798’. The command does not, however, become active until the
program run reaches address V’A38’ (%INSERT), and the %CONTROL5 is deleted
again at the end of the area to be monitored. Program execution outside the area is thus
not slowed down.

4. %C2 %BAL <(%PC->%L2 EQ X'05EF'): %D %PC, %15>

All BALR 14,15 instructions are logged with both the exit point (%PC) and the target
address (%15).

%DISASSEMBLE AID commands

38 U2854-J-Z125-10-76

%DISASSEMBLE

%DISASSEMBLE enables memory contents to be "retranslated" into symbolic Assembler
notation and output.

– The output-quantity operand defines the amount of memory contents that are to be
disassembled and output.

– The start operand enables you to determine the address where AID is to begin disas-
sembling.

DD
Command Operand
DD

⎧%DISASSEMBLE⎫
⎨ ⎬ [output-quantity] [FROM start]
⎩%DA ⎭

DD

Disassembly of the memory contents starts with the first byte. For memory contents which
cannot be interpreted as an instruction, an output line is generated which contains the
hexadecimal representation of the memory contents and the message INVALID OPCODE.
The search for a valid operation code then proceeds in steps of 2 bytes each.

%DISASSEMBLE without a start operand permits the user to continue a previously issued
%DISASSEMBLE command until the test object is switched by means of a BS2000 or AID
command (LOAD-EXECUTABLE-PROGRAM, START-EXECUTABLE-PROGRAM,
%BASE) or a new operand value is declared. AID continues disassembly at the memory
address following the address last processed by the previous %DISASSEMBLE command.
If output-quantity is not specified either, AID generates the same amount of output lines as
declared before.

If the user has not entered a %DISASSEMBLE command during a test session or has
switched the test object and does not specify current values for one or both operands in the
%DISASSEMBLE command, AID works with the default value 10 for output-quantity and
V’0’ for start. If the program was not loaded starting at V’0’, start must be specified.

The %OUT command can be used to control how processed memory information is to be
represented and whether it is to be output to SYSOUT, SYSLST or a catalog file. The format
of the output lines is explained after the description of the start operand.

The %DISASSEMBLE command does not alter the program state.

AID commands %DISASSEMBLE

U2854-J-Z125-10-76 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Specifies the amount of the memory contents that are to be disassembled and output. If you
don‘t specify output-quantity, AID inserts the default value 10 in the first %DISASSEMBLE
after loading the program.

For each further %DISASSEMBLE command the last specified output-quantity is used.

output-quantity-OPERAND -

- -

number

Specifies, how many Assembler instructions are to be disassembled and output.

is an integer with the value:
1 ≤ number ≤ 231-1

length

Specifies the size of the memory content that is to be interpreted and output within
a single, prompted %DISASSEMBLE command.

is a hexadecimal number #’f..f’ with the value:
1 ≤ length ≤ 231-1

ALL Specifies that the Assembler instructions are to be disassembled and output until
the end of the CSECT, in which the start value is located. If start is not specified, the
current %DA position determines the CSECT.

If the start value is not located within a CSECT, the command is rejected with an
error message.

Defines the address at which disassembly of memory contents into Assembler instructions
is to begin. If the start value is not specified, AID inserts the address V’0’ for the first %DA.
For every further %DA, disassembly is continued after the last Assembler instruction that
was disassembled.

output-quantity

number
length
ALL

start

%DISASSEMBLE AID commands

40 U2854-J-Z125-10-76

start-OPERAND -

 ⎧ C=csect | COM=common ⎫
 o V'f...f' o
FROM [•][qua•]⎨ ´⎬
 o keyword o
 ⎩ compl-memref ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined by a previous %QUALIFY command.
Consecutive qualifications must be delimited by a period. In addition, there must be
a period between the final qualification and the following operand part.

qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

E={VM | Dn}
Only required if the current base qualification does not apply to start
(see %BASE).

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the qualifications required for a unique address.

{C=csect | COM=common}
Defines start as the start address of the specified CSECT or COMMON.

V’f...f’ is a virtual address that must lie in the executable segment of the program and must
be the start address of a machine instruction. Otherwise, the disassembly will be
meaningless.

keyword
Defines start as the start address of a memory class (see the AID Core Manual [1]).

%CLASS6 Class 6 memory below the 16-Mb limit
%CLASS6BELOW Class 6 memory below the 16-Mb limit
%CLASS6ABOVE Class 6 memory above the 16-Mb limit

AID commands %DISASSEMBLE

U2854-J-Z125-10-76 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

compl-memref
compl-memref should provide a start address of a machine instruction; otherwise, the
result of disassembly will be meaningless. The following operations may occur in
compl-memref (see the AID Core Manual [1] and chapter “Machine-code-specific
addressing” on page 13 in this manual for restrictions on debugging programs in AR
mode):

– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

With indirect addressing (->) the user can employ the address stored in the program
counter or in a register as start.
Example: %PC-> sets start to the interrupt point.

Output of the %DISASSEMBLE listing

By default, the %DISASSEMBLE listing is output with additional information to SYSOUT
(T=MAX). With %OUT the user can select the output media and specify whether or not
additional information is to be output by AID.

AID does not take into account XMAX and XFLAT modes for outputting the %DISAS-
SEMBLE log. Instead, it generates the default value (T=MAX).

The following is contained in a %DA output line if the default value T=MAX is set:

– CSECT-relative memory address
– memory contents converted to symbolic Assembler notation, displacements being rep-

resented as hexadecimal numbers (in contrast to Assembler format)
– for memory contents which do not begin with a valid operation code, Assembler instruc-

tion DC in hexadecimal format and with a length of 2 bytes, followed by the note
INVALID OPCODE

– hexadecimal representation of the memory contents (machine code).

The CSECT name is placed in a separate line if it exceeds 8 characters in length.
The next line then begins with the CSECT name, truncated to 7 characters and followed by
an asterisk (*), and otherwise corresponds to the structure described above.

Example of line format (T=MAX) for a CSECT with a short name

MOBS+A30 LM R01,R1,C0(R11) 98 01 B0C0
MOBS+A34 L R15,B4(R0,R11) 58 F0 B0B4
MOBS+A38 BALR R14,R15 05 EF
MOBS+A3A IDL 5F0(R9),X'00' 80 00 95F0
MOBS+A3E LPDR R2,R0 20 20

%DISASSEMBLE AID commands

42 U2854-J-Z125-10-76

Example of line format (T=MAX) for a CSECT with a long name

 BCL45678901234567890&@
BCL4567*+62 CLC 105(6,R2),11E(R2) D5 05 2105 211E

The %OUT operand value T=MIN produces abbreviated output lines, in which the CSECT-
relative address is replaced by the virtual address and the hexadecimal representation of
the memory contents is not included.

Example of line format (T=MIN)

00000A30 LM R01,R1,C0(R11)
00000A34 L R15,B4(R0,R11)
00000A38 BALR R14,R15
00000A3A IDL 5F0(R9),X'00'
00000A3E LPDR R2,R0

Examples

1. %DISASSEMBLE 15 FROM CTX=CTXPHASE.V'A18'
The memory contents starting with virtual address ’A18’ in the context CTXPHASE are
to be disassembled into Assembler instructions. 15 output lines with valid or invalid
operation code are generated. Memory contents containing no permissible operation
code are output as a hexadecimal string with a length of two bytes and the note
INVALID OPCODE.

2. %DA 1 FROM %PC->

One instruction is disassembled beginning at the interrupt point.

3. %DA FROM C=PRINT.8

Disassembly begins with the start address of control section PRINT+8. If no previous
declaration for output-quantity exists, 10 output lines are generated.

4. %QUALIFY L=RESI.O=OSS1.C=HEADER
%DA 5 FROM .#'A0'->

AID supplements the command as follows:
%DA 5 FROM L=RESI.O=OSS1.C=HEADER.#'A0'->

#’A0’ is added to the start address of control section HEADER in object module OSS1,
which in turn is contained in load module RESI.
This calculated address contains the address at which AID is to start disassembly.

5. %OUT %DISASSEMBLE T=MIN

%DA 50 FROM V'128'

50 lines with disassembled memory contents are to be generated as of virtual address
’128’. The previous %OUT command defined that the hexadecimal representation of
memory contents and the CSECT-relative specification of the memory address are to
be omitted.

AID commands %DISASSEMBLE

U2854-J-Z125-10-76 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

6. %FIND X'D5' ALIGN=2

%DA 1 FROM %0G->

The start address of a CLC instruction is to be located. The %FIND command stores
the hit address in AID register %0G. AID is to disassemble one instruction starting at
this address.

7. %A 1 FROM C=CS1.(%L(C=CS1)-4)

The last four bytes of CSECT CS1 are to be disassembled.

%DISPLAY AID commands

44 U2854-J-Z125-10-76

%DISPLAY

The %DISPLAY command is used to output memory contents, addresses, lengths, system
information and AID literals and to control feed to SYSLST. Output is via SYSOUT, SYSLST
or to a cataloged file.

– By means of the data operand you specify a memory location whose content, address
or length is to be output, or you designate system information, define AID literals or
control feed to SYSLST.

– By means of the medium-a-quantity operand you specify the output medium AID uses
and whether or not additional information is to be output. This operand disables a decla-
ration made via the %OUT command, but only for the current %DISPLAY command.

DD
Command Operand
DD

%D[ISPLAY] data {,...} [medium-a-quantity][,...]

DD

A %DISPLAY command which does not have a qualification for data addresses data in the
current AID work area.

When debugging programs in AR mode, the addresses located in a data space are marked
in the output by an asterisk.

If the medium-a-quantity operand is not specified, AID outputs the data in accordance with
the declarations in the %OUT command or, by default, to SYSOUT together with additional
information.

The %DISPLAY command does not alter the program state.

AID as of version 3.4B10 supports also the output of data in different EBCDIC character
sets and ASCII character sets. As BS2000 terminals only support selected EBCDIC
character sets directly, the following character sets must be distinguished:

● Character set of the data: Character set, in which the data is available or interpreted

● Character set of the output: Character set, with which the data is displayed

AID interprets the data using the character set that is specified with the %DISPLAY
command. If no character set is specified there, the character set specified by the CCS
operand of the %AID command is used.

First of all you must specify the character set of the output with the MODIFY-TERMINAL-
OPTIONS command. It must be an EBCDIC character set that is supported by the terminal.
UTFE is not allowed. Furthermore the character set of the output must be in the same group

AID commands %DISPLAY

U2854-J-Z125-10-76 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

as the character set of the data. If, for example, the character set of the data is ISO88592,
first of all specify the corresponding character set of the output with /MOD-TERM-OPT
CODE=EDF042 (see the XHCS manual).

%DISPLAY <data-start> { %C|%X }[Lddd] ['<coded-character-set>']

If you prompt the %DISPLAY command with the %C or %X storage type, AID outputs the
characters in accordance with the explicitly specified character set <coded-character-
set>, or in accordance with the current character set CCS if '<coded-character-set>'
is not specified.%C and %X define different output layouts.

%DISPLAY <char-variable> ['<coded-character-set>']

If char variables are to be output, AID outputs them in accordance with the explicitly
specified character set <coded-character-set>, or in accordance with the current
character set CCS. The output layout differs from the layouts that are determined by %C or
%X.

To display the current character set CCS use the following AID command:
%SHOW %AID

To modify the current character set use the following AID command:
%AID CCS = {<coded-character-set>|*USRDEF}

This operand defines the information AID is to output. You may output memory contents,
addresses, lengths and system information. AID literals can be defined to improve the
readability of debugging logs, and feed to SYSLST can be controlled for the same purpose.

If you enter more than one data operand in a %DISPLAY command, you may switch from
one operand to another between the non-symbolic entries described here and the symbolic
entries described in the language-specific manuals [2] - [5].
Symbolic and machine-oriented specifications can also be combined within a complex
memory reference. For symbolic specifications, however, the LSD records must also be
available (see the AID Core Manual [1]).

data

%DISPLAY AID commands

46 U2854-J-Z125-10-76

data-OPERAND -

 ⎧ ⎧C=csect | COM=common⎫ ⎫
 o oV'f...f' o o
 o [•][qua•] ⎨ ⎬ o
 o okeyword o o
 o ⎩?ompl-memref ⎭ o
 o o
 o ⎧%@⎫ ⎧C=csect | COM=common⎫ o
 ⎨ ⎨ ⎬ ([•][qua•] ⎨keyword ⎬) ⎬
 o ⎩%L⎭ ⎩compl-memref ⎭ o
 o o
 o %L=(expression) o
 o o
 o AID-literal o
 o o
 ⎩ feed-control ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command.
Consecutive qualifications must be separated by a period. In addition, there must
be a period between the final qualification and the following operand part.

qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

E={VM | Dn}
Only required if the current base qualification does not apply to data.

 {ALET={X'f...f' | %nAR | %nG} | SPID=X'f...f'}
Specified to reference an address in a data space, but only required when
debugging programs in AR mode. These qualifications may only be followed by
a
V address or a compl-memref.

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the qualifications required for a unique address.

NESTLEV= level-number

level-number A level number in the current call hierarchy

AID commands %DISPLAY

U2854-J-Z125-10-76 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

level-number has to be followed by dataname.
The syntax indicates that the %DISPLAY command is to output the data item
dataname defined at the level level-number of the current call hierarchy.

{C=csect | COM=common}
If addressing ends with a C/COM qualification, the entire program segment that was
selected is displayed.

V’f...f’
Designates a virtual address, where f...f is a valid hexadecimal address with up to
eight digits. The contents at a virtual address are output in hexadecimal form with
a length of four bytes by default (%XL4).

keyword
Here you may specify all the keywords for memory classes, program registers, AID
registers and system information, as well as the keyword for the execution counter
(see the AID Core Manual [1]). Keywords returning more than one value are edited
by AID in tabular form.

%CLASS5 Class 5 memory
%CLASS5BELOW Class 5 memory below the 15-Mb limit
%CLASS5ABOVE Class 5 memory above the 16-Mb limit
%CLASS6 Class 6 memory
%CLASS6BELOW Class 6 memory below the 16-Mb limit
%CLASS6ABOVE Class 6 memory above the 16-Mb limit

%n General register, 0 Î n Î 15
%nD|E Floating-point register, single/douple precision,
 n = 0,2,4,6
%nQ Floating-point register, quadruple precision, n = 0,4
%nG AID general register, 0 Î n Î 15
%nGD AID floating-point register, n = 0,2,4,6
%nAR Access register, 0 Î n Î 15
%MR All 16 general registers in tabular form
%FR All 4 floating-point registers with double precision
 edited in tabular form
%AR All 16 access registers in tabular form

%PC Program counter
%PM Program mask
%CC Condition code
%PCB Process control block

%PCBLST List of all process control blocks
%SORTEDMAP A list of all CSECTs and COMMONs of the user
 program and of the connected subsystems (sorted by

 (name and address). Long names are truncated.

 ⎧ CTX=context [•L=load-unit] ⎫
 o L=load-unit o
%MAP [(⎨ ⎧USER⎫ ⎬)]

%DISPLAY AID commands

48 U2854-J-Z125-10-76

 o SCOPE = ⎨ ⎬ o
 ⎩ ⎩ALL ⎭ ⎭

 {CTX=contexto? L=load-unit}
 If a path is specified, all CSECTs/COMMONs of the
 specified context or the specified load unit are
 listed.

 SCOPE=USER The CSECTs/COMMONs of the default contexts CTXPHASE
 and LOCAL#DEFAULT and of contexts generated with the
 LNKCTX[@] operand of the BIND macro are listed.

 SCOPE=ALL In addition to the CSECTs/COMMONs of the user-defined
 contexts, a MAP of all contexts to which the program
 has connected (e.g. DSSM subsystems or user pool
 contexts) is output.
 All BLS names (context, load unit, CSECT and COMMON) are output
 in unabbreviated form. The output list is sorted by CSECT names
 within the contexts and load units.

%AMODE Addressing mode (24 or 31-bit addresses)
%ASC ASC mode
 (with AR mode: X'00' = off; X'01' = on)
%AUD1 P1 audit table, plus the SAVE table (if any)

%LINK Name of the last dynamically loaded module/segment
 (see event %LPOV under %ON)

%LOC(memref) Localization information for a memory referencein the
 executable part of a program

%DS[(ALET/SPID-qua)]
 Information on SPIDs and/or ALETs of the active
 data spaces.

%•[subcmdname] Execution counter. The abbreviation %. designates
 the execution counter of the currently active
 subcommand.

compl-memref
Designates a calculated address. The following operations may occur in
compl-memref (see the AID Core Manual [1] and chapter “Machine-code-specific
addressing” on page 13 for restrictions on debugging programs in AR mode):

– byte offset (•)
– indirect addressing (->)
– type modification (%T(dataname), %X, %C, %E, %P, %D, %F, %A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

Following byte offset or indirect addressing, AID outputs the memory contents at the
calculated address in dump format (%XL4) by default. Using the type modification,
data may be edited in a different format, since the type of output depends on the

AID commands %DISPLAY

U2854-J-Z125-10-76 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

storage type.
With the length modification you can define the output length yourself, e.g. if you
wish to output only parts of a CSECT or memory area or if you wish to output more
than the four default bytes.

If LSD records exist, the data names and statement names defined in the source
program may also be used within compl-memref.

%@(...)
Using the address selector you can output the start address of a CSECT or a
memory area (%CLASS6, %CLASS6BELOW, %CLASS6ABOVE) or of compl-
memref.
The address selector supplies an address constant which you can use in a complex
memory reference before a pointer operator (->). See also the AID Core Manual [1].

%L(...)
Using the length selector you can output the length of a CSECT or a memory area
(%CLASS6, %CLASS6BELOW, %CLASS6ABOVE). The length selector supplies
an integer value which you can use for the calculation of a byte offset or in a length
function (see the AID Core Manual [1]).
Example: %D %L(C=CS1) outputs the length of CSECT CS1.

%L=(expression)
With the length function you can calculate a value. expression is comprised of the
contents of memory references, constants, integers and the arithmetic operators (+,
–, *, /). Only memory reference contents of type %F or %A with a length less than
or equal to 4 are permitted. As a result the length function produces an integer
which can be used for byte offset calculation, in a further length function or for length
modification (see the AID Core Manual [1]).
Example: %D %L=(%1) outputs the contents of register 1 as a decimal number.

%DISPLAY AID commands

50 U2854-J-Z125-10-76

AID-literal
All AID literals described in the AID Core Manual may be specified. They are used
for output log layout and annotation.

feed-control
For output to SYSLST, print editing can be controlled by the following two keywords,
where:
%NPresults in a page feed.
%NL[(n)]results in a line feed by n blank lines.
1 ≤ n ≤ 255. The default for n is 1.

Defines the medium or media via which output is to take place, and whether additional infor-
mation is to be output besides the contents of the specified memory areas.

If this operand is omitted and no declaration has been made using the %OUT command,
AID uses the presetting T=MAX.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

medium-a-quantity is described in detail in the AID Core Manual [1].

T Terminal output
H Hardcopy output (includes terminal output; cannot

be specified in conjunction with T)
Fn File output
P Output to SYSLST

AID-literal Meaning

{C'x...x' | 'x...x'C |
'x...x'}
{X'f...f' | 'f...f'X}
{B'b...b' | 'b...b'B}
[{?}]n
#'f...f'
[{?}]n.m
[{?}]mantissaE[{?}]exponent

Character literal
Hexadecimal literal
Binary literal
Integer
Hexadecimal number
Fixed-point number
Floating-point number

medium-a-quantity

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

AID commands %DISPLAY

U2854-J-Z125-10-76 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

MAX Output with additional information

MIN Output without additional information

XMAX In the %DISPLAY command the operand value XMAX is not taken into ac-
count, as a result of which the behavior is identical to the default value MAX.

XFLAT In the %DISPLAY command the operand value XFLAT is not taken into
acount, as a result of which the behavior is identical to the default value MAX.

%DISPLAY AID commands

52 U2854-J-Z125-10-76

Examples

1. Output of the contents starting from virtual address V’8200’ up to V’8203’ in dump
format (if the storage type specification is omitted, %XL4 is used).

 tDD?
 3 /%DISPLAY V'8200' 3
 3 *** TID: 001901D2 *** TSN: 1544 *** 3
 3 CURRENT PC: 0000000C CSECT: M1BS ** 3
 3 V'00008200' = UPRONUM + #‘000001E8' 3
 3 00008200 (000001E8) 002C00C1 ...A 3
 3 3

2. Output of the contents starting with virtual address V’8200’ up to V’8203’ in character
format (%C) and as a packed integer (%P) with a length of two bytes.

 tDD?
 3 /%DISPLAY V'8200'%C 3
 3 V'00008200' = UPRONUM + #‘000001E8' 3
 3 00008200 (000001E8) ...A 3
 3 3
 3 /%DISPLAY V'8200'%PL2 3
 3 V'00008200' = UPRONUM + #‘000001E8' 3
 3 00008200 (000001E8) +2 3
 3 3

3. The instruction LA is located at address V’100’. In the first %DISPLAY, the address is
modified only with storage type %SX, which causes 4 bytes as of address V’100’ to be
output in hexadecimal form. If the address is to be calculated by AIDin the same way
as the LA instruction would be executed by the hardware, then the address must be
followed by the pointer operator (->) when entered in the %DISPLAY. The address is
calculated as follows: the value of base register %3 and the displacement X’01B’ are
added to the address in index register %1. The result is address V’725’, and the
memory location thus addressed is output with a length of 4 bytes in dump format.

 tDD?
 3 /%DISPLAY V'100'%SX 3
 3 V'0000100' = M1BS + #‘00000100' 3
 3 00000100 (00000100) 4101301B 3
 3 3
 3 /%DISPLAY %1, %3 3
 3 %1 = 00000700 3
 3 %3 = 0000000A 3
 3 3
 3 /%DISPLAY V'100'%SX-> 3
 3 V'00000725' = M1BS + #‘00000725' 3
 3 00000725 (00000725) 58F0F008 .00. 3
 3 3

AID commands %DISPLAY

U2854-J-Z125-10-76 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

4. With keyword %PCB, AID accesses the process control block and outputs it in tabular
form. With keyword %LOC, AID outputs information on static program nesting of the
specified address.

 tDDh
 3 /%DISPLAY %PCB 3
 3 P1 LEVEL STACK AT LOCATION 720EAAB0 PRESENT LOCATION: ABSOLUT +00000060 3
 3 (LAST CALLED SVC: 27=SYSF-MGT) 3
 3 LNK 73AC86D0 CWRD 86010200 (PC) 00000060 (0) 00000000 (1) 9F00003C 3
 3 (2) 00000002 (3) 00000000 (4) 00000000 (5) 00000003 (6) 00000000 3
 3 (7) 00000000 (8) 00000000 (9) 00000000 (A) 00000000 (B) 00000000 3
 3 (C) 00000000 (D) 00000000 (E) 00000000 (F) 00000000 FLP0 00000000 3
 3 FLP0 00000000 FLP2 00000000 FLP2 00000000 FLP4 00000000 FLP4 00000000 3
 3 FLP6 00000000 FLP6 00000000 CLK 00000000 CCLK 00000000 MIX0 00000000 3
 3 POST 00000000 MIX1 81000000 PCTR 00000000 AIDA 70F16000 MIX2 80500000 3
 3 EXRT 00000000 AUDM 00000000 MIX3 00000000 TLMW 00000000 -------- 3
 3 3
 3 3
 3 /%D %LOC(C=M1BS) 3
 3 V'00000000' = CONTEXT:LOCAL#DEFAULT 3
 3 LMOD : %ROOT 3
 3 SMOD : M1BS 3
 3 OMOD : M1BS 3
 3 CSECT : M1BS (00000000) + 00000000 3
 3 3

5. The first 3 examples illustrate the use of a simple memory reference, a one-level
indirect address, and then a two-level indirect address. Finally, the two-level indirect
addressing is followed by the byte offset with which the same address is calculated here
as in the first %DISPLAY command. More information on the multiple use of a byte
offset and indirect addressing can be found in the AID Core Manual [1]].

 tDD?
 3 /%D C=M1BS.#'A0' 3
 3 V'000000A0' = M1BS + #‘000000A0' 3
 3 000000A0 (000000A0) 000007FD ...} 3
 3 3
 3 /%D C=M1BS.#'A0'-> 3
 3 V'000007FD' = M1BS + #‘000007FD' 3
 3 000007FD (000007FD) 00000000 3
 3 3
 3 /%D C=M1BS.#'A0'->-> 3
 3 V'00000000' = M1BS + #‘00000000' 3
 3 00000000 (00000000) 58F0F008 .00. 3
 3 3
 3 /%D C=M1BS.#?'A0'->->.#'A0' 3
 3 V'000000A0' = M1BS + #‘000000A0' 3
 3 000000A0 (000000A0) 000007FD ...} 3
 3 3

%DISPLAY AID commands

54 U2854-J-Z125-10-76

6. The %DUMPFILE command is used to assign the dump file M.DUMP to the AID link
name D1. The first 20 bytes, starting with address V’798’ are to be output in dump
format. Since the current base qualification E=VM applies, the base qualification E=D1
must be specified explicitly.

 tDD?
 3 /%DUMPFILE D1=M.DUMP 3
 3 /%D E=D1.V'798'%L20 3
 3 ** D1: M.DUMP *** 3
 3 V'00000798' = M0BS + #‘00000798' 3
 3 00000798 (00000798) 003DF000 00000000 C1C2C3C4 C5C6C7C8 ..0.....ABCDEFGH 3
 3 000007A8 (000007A8) C9D1D2D3 IJKL 3
 3 3

7. The following is to be output to SYSLST:
– a header line with the current status of the program counter and the name of the

CSECT in which the program has been interrupted (%D P=MAX).
– the program counter (%PC)
– a blank line (%NL(1))
– four bytes in dump format starting with address V’798’
– a blank line (%NL; default value = 1)
– all general-purpose registers (%MR)

This is followed by positioning to the next page (%NP).

 tDD?
 3 /%OUT %D P=MAX 3
 3 /%D %PC, %NL(1), V'798', %NL, %MR, %NP 3
 3 3

8. The last four bytes of class 6 memory were to be output by AID. Since these memory
locations have not been allocated, AID outputs a corresponding error message.

 tDD?
 3 /%DISPLAY %CLASS6.(%L(%CLASS6)-4) 3
 3 V'003F8FFC' = %CLASS6 + #‘003F8FFC' 3
 3 AID0295 PAGE(S) FROM ADDRESS 003F8000 TO 003F8FFF NOT ALLOCATED 3
 3 3

AID commands %DISPLAY

U2854-J-Z125-10-76 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

9. AID calculates the value as follows:
To the last two bytes in register %1 add the value resulting from AID register %6G multi-
plied by 2, and to this add the length of CSECT CS1.
Length modification %FL2 is required, otherwise the byte offset (.) would exceed the
area limits of register %1.

 tDD?
 3 /%D %L=(%1.2%FL2 + (%6G * 2) + %L(C=CS1)) 3
 3 3
 3 3

10. Program in AR mode
The loaded program (E=VM) is working in AR mode, which means that addressing in
data spaces occurs via access registers.
In the dump file ESA.AR.DUMP, by contrast, AR mode was not used when creating the
dump, so all operations were only in the program area.

 tDD?
 3 %DISPLAY %ASC 3
 3 %ASC = 01 3
 3 3
 3 3
 3 %DF D3=ESA.AR.DUMP 3
 3 %BASE E=D3 3
 3 %DISPLAY %ASC 3
 3 ** D3: ESA.AR.DUMP ** 3
 3 %ASC = 00 3
 3 3
 3 3

%DISPLAY AID commands

56 U2854-J-Z125-10-76

11. Program in AR mode
In the first %DISPLAY, the memory location with address V’34’ in the program area is
output in the type of the data definition C#DS11.
All other %DISPLAY commands show the memory location with address V’34’ in the
data space with SPID X’0000000080000200’ in the type of the data definition C#DS11.
The ALET X’0001001B’ points to the same data space. It is buffered in %2G and held
in %7AR. Consequently, all four %DISPLAY commands have the same effect.

 tDD?
 3 /%DISPLAY V'34' %T(C#DS11) 3
 3 SRC_REF: 288 SOURCE: DS2S4A PROC: DS2S4A ******************************** 3
 3 C#DS11 = 3PS1-3 3
 3 3
 3 /%DISPLAY ALET=%2G.V'34' %T(C#DS11) 3
 3 C#DS11 = 3DS113 3
 3 3
 3 /%DISPLAY ALET=X'0001001B'.V'34' %T(C#DS11) 3
 3 C#DS11 = 3DS113 3
 3 3
 3 /%DISPLAY ALET=%7AR.V'34' %T(C#DS11) 3
 3 C#DS11 = 3DS113 3
 3 3
 3 /%DISPLAY SPID=X'0000000080000200'.V'34' %T(C#DS11) 3
 3 C#DS11 = 3DS113 3
 3 3

12. Program in AR mode
A datta area is addressed via the ALET in access register 4. All virtual addresses
(V’200’, V’0’, V’4’) from this data space are obtained in the following complex memory
reference. AID calculates V’1B30’ + #’08’ = address V’1B38’ and outputs 17 bytes
(X’11’) in dump format starting with that address.

 tDD?
 3 %DISPLAY %AR, ALET=%4AR.V'200', ALET=%4AR.V'0', ALET=%4AR.V'10' 3
 3 %AR (0: 15) 3
 3 (0) 00000000 (1) 00010003 (2) 00010004 (3) 00010005 (4) 00010006 3
 3 (5) 00000000 (6) 00000000 (7) 00000000 (8) 00000000 (9) 00000000 3
 3 (10) 00000000 (11) 00000000 (12) 00000000 (13) 00000000 (14) 00000000 3
 3 (15) 00000000 3
 3 3
 3 V'00000200' = *ABSOLUT + #‘00000200' 3
 3 00000200 (00000000) 00001B30 3
 3 3
 3 V'00000000' = *ABSOLUT + #‘00000000' 3
 3 00000000 (00000000) 0800C301 ..C. 3
 3 3
 3 V'00000010' = *ABSOLUT + #‘00000010' 3
 3 00000010 (00000010) 110300D1 ...J 3
 3 3
 3 3
 3 %D ALET=%4AR.V'200'->.(V'0' %FL1) %L(V'10' %XL1) 3
 3 V'00001B38' = *ABSOLUT + #00001B38'' 3
 3 00001B38 (000004D0) D4E4C5D3 D3C5D940 C1D5D5C5 D3C9C5E2 MUELLER ANNELIES 3
 3 00001B48 (000004E0) C5 E 3
 3 3

AID commands %DISPLAY

U2854-J-Z125-10-76 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

13. Program in AR mode
A %DISPLAY with %DS is used to output the SPID, all the ALETs, and the size in bytes
(SIZE) for all active data spaces.
When you specify an ALET or SPID qualification after the keyword, AID outputs the
associated SPID or ALETs.

 tDD?
 3 /%DISPLAY %DS 3
 3 *** TID: 00020243 *** TSN: 13KG ** 3
 3 CURRENT PC: 000000E0 CSECT: DS2S4A ********************************** 3
 3 3
 3 SPID ALET SIZE 3
 3 3
 3 0001003300000031 00000000 0 3
 3 0000000080000800 0001001B 409600 3
 3 0000000080000800 0001001C 409600 3
 3 0000000080000900 00010011 131072 3
 3 0000000080000900 00010012 131072 3
 3 3
 3 /%DISPLAY %DS(SPID=X'0000000080000800') 3
 3 3
 3 SPID = 0000000080000800 3
 3 3
 3 ALET = 0001001B 3
 3 ALET = 0001001C 3
 3 3
 3 /%DISPLAY %DS(ALET=X'00010011') 3
 3 3
 3 ALET = 00010011 3
 3 3
 3 SPID = 0000000080000900 3

14. Character output with any coded character set (CCS)

Specify the character set for the terminal:

/mod-term-opt coded-character-set=edf041

Load the program:

/load-ex-prog prog

Output of the memory area with the ISO88591 character set:

 tDDh
 3 /%d v'0'%xl16'iso88591' 3
 3 V'00000000' = ABSOLUT + #'00000000' 3
 3 00000000 (00000000) 41424361 62633132 33402400 00000000 ABCabc123@$..... 3
 3 3

%DUMPFILE AID commands

58 U2854-J-Z125-10-76

%DUMPFILE

With %DUMPFILE you assign a dump file to one of the link names and cause AID to open
or close this file.

– With link you select the link name for the dump file to be opened or closed.

– With file you designate the dump file to be opened.

DDD
Command Operand
DDD

⎧%DUMPFILE⎫
⎨ ⎬ [link [=file]]
⎩%DF ⎭

DDD

If you omit the file operand AID will close the file assigned to the specified link name.

With a %DUMPFILE command without operands, you cause AID to close all open dump
files. If the AID work area was contained in a dump file now closed, the AID standard work
area reapplies (see %BASE command).

%DUMPFILE may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

The %DUMPFILE command does not alter the program state.

Designates one of the AID link names for dump files and has the format Dn, where n is a
number with a value 0 ≤ n ≤ 7.

Specifies the fully-qualified file name under which the dump file AID is to open is cataloged.
If this operand is omitted, the dump file with the link name link is closed.
An open dump file must first be closed with a separate %DUMPFILE command before
another file can be assigned to the same link name.

link

file

AID commands %DUMPFILE

U2854-J-Z125-10-76 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Examples

1. %DUMPFILE D3=DUMP.1234.00001

The file with the BS2000 catalog name DUMP.1234.00001 is assigned to link name D3
and opened.

2. %DF D3

The file assigned to link name D3 is closed.

3. %DF

All open dump files are closed.

%FIND AID commands

60 U2854-J-Z125-10-76

%FIND

With %FIND you can search for a literal in the user area of the loaded program or in a
memory dump in a dump file and output hits to the terminal (via SYSOUT). In addition, the
address of the hit and the continuation address are stored in AID registers %0G and %1G.

– search-criterion is the character literal or hexadecimal literal to be located.

– With find-area you specify which memory area AID is to search for search-criterion.

– With alignment you specify whether the search for search-criterion is to be effected at a
doubleword, word, halfword or byte boundary. When a value for alignment is not given,
searching takes place at the byte boundary.

– With ALL you specify that the search is not to be terminated after output of the first hit,
rather the entire find-area is to be searched and all hits are to be output. The search can
only be aborted by pressing the K2 key.

DDD
 Command Operands
DDD

 %F[IND] [[ALL] search-criterion [IN find-area] [alignment]]

DDD

If the ALL operand is omitted from a %FIND command, the user may continue after the
address of the last hit and up to the end of the find-area by specifying a new %FIND
command without any operand values.

If a %FIND command is issued with a separate search-criterion and without any further
operands, AID inserts the appropriate default value for operands that have no current value,
i.e. does not transfer operands from a preceding %FIND command in this case.

The output of hits is always in hexadecimal character representation, with a maximum
length of 12 bytes, andd is sent to the terminal (SYSOUT). In addition to the hit itself, its
address and (insofar as possible) the name of the CSECT in which the hit was found, and
the CSECT-relative address of the hit are output.

In the event of a hit, the hit address is stored in AID register %0G and the continuation
address (hit address + search string length) in AID register %1G. With the ALL specification,
the address of the last hit is stored in %0G and the continuation address of the last hit is
stored in %1G. If the search-criterion has not been found, AID register %1G remains
unchanged. AID register %0G is set to -1.
The two register contents permit you to use the %FIND command in procedures as well as
in subcommands and to further process the results.

The %FIND command does not alter the program state.

AID commands %FIND

U2854-J-Z125-10-76 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Character literal or hexadecimal literal which can be searched for in virtual memory or in a
dump file. search-criterion may contain wildcard symbols. These symbols are always hits.
They are represented by ’%’.

search-criterion-OPERAND -

⎧C'x...x' | 'x...x'C | 'x...x'⎫
OURX'f...f' | 'f...f'X ?

- -

{C'x...x' | 'x...x'C | 'x...x'}
Character literal with a maximum length of 80 characters. Lowercase letters can only
be searched for by deactivating conversion to uppercase, i.e. specifying %AID
LOW[=ON].

x can be any representable character, in particular the wildcard symbol ’%’, which
always represents a hit. The character ’%’ itself cannot be located when it is in this form,
since C’%’ in a character literal must always result in a hit. For this reason it must be
represented as the hexadecimal literal X’6C’.

Please note that in order to properly locate character data, the CCS of find-area has to
agree with the CCS of the input media (SYSCMD). Be sure to specify the CCS of find-
area before looking for some character data in find-area:

%AID CCS= CCS-name

A complete list of CCS-name supported by XHCS and the current CCS of SYSCMD can
be displayed with the following AID command:

%SHOW %CCSN

The CCS of SYSCMD can be changed with the following SDF command:

MODIFY-TERMINAL-OPTION CODED-CHARACTER-SET= {EBCDIC-CCS-name | UTFE}

The current CCS of find-area can be displayed with the following AID command:

%SHOW %AID

Be aware that since V3.4B11 the %DISPLAY command refers to the CCS value of %AID
as to the default (implicit) CCS of character data to be displayed:

%D char-data ['CCS-name']

See the section “Character literal” in the AID Core Manual [1] for an example on how to
search for character literals in different coded character sets.

search-criterion

%FIND AID commands

62 U2854-J-Z125-10-76

{X'f...f' | 'f...f'X}
Hexadecimal literal with a maximum length of 80 digits or 40 characters. A literal with
an odd number of digits is padded with X’0’ on the right.

f can assume any value between 0 and F, as well as the wildcard symbol X’%’. The
wildcard symbol represents a hit for any hexadecimal digit between 0 and F.

Defines the memory area to be searched for search-criterion. find-area can be either a
subarea of virtual memory or a subarea of a dump file.

If no find-area is specified, AID inserts the default value %CLASS6 and searches the the
lower address space of the class 6 memory in the current AID work area.

find-area-OPERAND -

 ⎧C=csect | COM=common⎫
 o(V'f...f': V'f...f')o
IN [•][qua•]⎨ ⎬
 okeyword o
 ⎩?ompl-memref ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the final
qualification and the following operand part.

qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

E={VM | Dn}
Specified only if the current base qualification does not apply to find-area
(see %BASE).

{ALET={X'f...f' | %nAR | %nG} | SPID=X'f...f'}
Specified to reference an address in a data space, but only required when
debugging programs in AR mode. These qualifications must be followed by a
V address or a compl-memref.

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

find-area

AID commands %FIND

U2854-J-Z125-10-76 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the qualifications required for a unique address.

{C=csect | COM=common}
If addressing ends with a C/COM qualification, the specified CSECT or COMMON
is defined as the find-area.

keyword
Defines a memory area by one of the following keywords (see the AID Core Manua
[1]).

(V’f...f’:V’f...f’)
Defines a memory area by means of a virtual start address and a virtual end
address. The resulting address difference must not exceed a value of 65535 and
the start address must be less than or equal to the end address.
f...f is a hexadecimal address with up to eight digits.

compl-memref
Designates a 4-byte area starting at the calculated address. If a different number of
bytes are to be searched, compl-memref must end with the appropriate length modifi-
cation (≤ 64 KB). The following operations may appear in compl-memref (see the
AID Core Manual [1] and chapter “Machine-code-specific addressing” on page 13
for restrictions on debugging programs in AR mode):

– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

keyword Meaning

%CLASS6
%CLASS6BELOW
%CLASS6ABOVE

Class 6 memory below the 16-Mb limit
Class 6 memory below the 16-Mb limit
Class 6 memory above the 16-Mb limit

%FIND AID commands

64 U2854-J-Z125-10-76

Defines that search-criterion is only to be searched for at certain aligned addresses.

alignment-OPERAND -

 ⎧1⎫
 o2o
ALIGN [=] ⎨ ⎬
 o4o
 ⎩8⎭
- -

search-criterion is searched for:
1 at byte boundary (default)
2 at halfword boundary
4 at word boundary
8 at doubleword boundary

Examples

1. %FIND C'***' IN %CLASS6

The character literal C’***’ is searched for in class 6 memory (below the 16-Mb
boundary) of the currently valid base qualification. Any hit is output to SYSOUT.

2. %F

The search is continued with the parameters of the last %FIND command after the last
hit.

3. %F ALL X'00F%00' ALIGN 2

At each halfword boundary a hexadecimal literal which has X’00F’ in the first three
halfbytes and an arbitrary hexadecimal value (represented by %) in the fourth halfbyte
and ends with X’00’ is searched for.

4. %ID LOW = ON

%IN V'8A0' <(%0G NE -1):%MOVE 'Donna' INTO %0G->>

%IN V'8A0' <%FIND 'Billy'>

Differentiation between uppercase and lowercase is activated.
By chaining, the following command sequence is created at test point V’8A0’:
%FIND 'Billy'; (%0G NE -1):%MOVE 'Donna' INTO %0G->

The condition may only be written at the beginning of a subcommand. For this reason
two %INSERT commands are required for the same test point if only part of the
command sequence to be effective at the test point is to be dependent on the condition.
The string ’Billy’ is to be searched for at the test point with virtual address V’8A0’. In the
event of a hit (AID register %0G ≠ -1) the corresponding memory area is overwritten
with ’Donna’.

alignment

AID commands %FIND

U2854-J-Z125-10-76 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

5. %IN V'1648' <(%0G NE -1): %SET %L=(%1G-%0G) INTO %2G>

%IN V'1648' <%FIND 'x...x'>

This command sequence can be used in a procedure in order to search for any arbitrary
character literal. In the event of a hit, the address which has been found is stored in AID
register %0G and the length of the located string in %2G.

6. %F X'ABCD' IN V'A1A'%L=(%1)

An arbitrary character literal is searched for in a memory area of variable length, starting
with address V’A1A’. The length of the relevant memory area is stored in register 1.

%HELP AID commands

66 U2854-J-Z125-10-76

%HELP

By means of %HELP you can request information on the operation of AID. The following
information is output to the selected medium: either all the AID commands or the selected
command and its operands, or the selected error message with its meaning and possible
responses.

– By means of the info-target operand you specify the command on which you need
further information or the AID message for which you want an explanatory text with a
description of actions to be taken.

– By means of the medium-a-quantity operand you specify to which output media AID is to
output the required information. By means of this operand you overwrite any declaration
made via %OUT, but only for the current %HELP command.

DD
Command Operand
DD

%H[ELP] [info-target] [medium-a-quantity][,...]

DD

%HELP provides information on all operands of the selected command, i.e. on both the
language-specific operands for symbolic debugging and the operands for machine-oriented
debugging. Refer to the relevant language-specific manual to see what is applicable for the
particular language in which your program is written.

The format for the message key for AID messages is AID0n; the format for AIDSYS
messages is IDA0n. Both can be requested with /HELP-MESSAGE-INFORMATION. Furthermore,
the AID command %HELP can be used in this version to reference messages with the old
message key In.

Messages from AIDSYS have the message code format IDA0nnn and are queried using
the /HELP command.

%HELP can only be entered as an individual command, i.e. it must not be contained in a
command sequence or subcommand.

The %HELP command does not alter the program state.

Designates a command or a message number on which information is to be output.
If the info-target operand is omitted, the command initiates output of an overview of the AID
commands with a brief description of each command, and of the AID message number
range.

info-target

AID commands %HELP

U2854-J-Z125-10-76 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

AID responds to a %HELP command having an invalid info-target operand by issuing an
error message. This is followed by the same overview as for a %HELP command without
info-target. This overview can also be requested via the %?, %H? or %H %? entries.

info-target-OPERAND -

⎧%AID | %AINT | %BASE | %CONT[INUE] | %C[ONTROL] ⎫
o%DISASSEMBLE | %DA | %D[ISPLAY] | %DUMPFILE | %DF | %F[IND] o
o%H[ELP] | %IN[SERT] | %JUMP | %M[OVE] | %ON | %OUT o
⎨%OUTFILE | %Q[UALIFY] | %REM[OVE] | %R[ESUME] | %SDUMP ⎬
o%S[ET] | %STOP | %SYMLIB | %TITLE | %T[RACE] o
o o
⎩In ⎭

- -

The AID command names may be abbreviated as shown above.

In designates the old number for which the meaning and possible actions are to be
output.
n is the three-digit message number. Note that the use of the AID %HELP
command will not be supported in future AID versions, since the same information
can be requested with the SDF command /HELP-MSG-INFORMATION.

Defines the media via which information on the info-target is to be output.

If this operand is omitted and no declaration has been made using the %OUT command,
AID works with the default value T=MAX.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

medium-a-quantity is described in detail in the AID Core Manual [1].

T Terminal output
H Hardcopy output (includes terminal output; cannot be specified in

conjunction with T)
Fn File output
P Output to SYSLST

The {MAX | | XMAX | XFLAT} specification has no effect for %HELP, but one of the two
entries is required for syntactical reasons.

medium-a-quantity

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

%INSERT AID commands

68 U2854-J-Z125-10-76

%INSERT

By means of %INSERT you can specify a test point and define a subcommand. Once the
program sequence reaches the test point, AID processes the associated subcommand. In
addition, the user can also specify whether AID is to delete the test point once a specific
number of executions has been counted and whether or not to interrupt the program after-
wards.

– By means of the test-point operand you may define a program instruction prior to whose
execution AID interrupts the program run and processes subcmd.

– By means of the subcmd operand you may define a command or a command sequence
and perhaps a condition. Once test-point has been reached and the condition satisfied,
subcmd is processed.

– By means of the control operand, you can declare whether test-point is to be deleted
after a specified number of passes and whether the program is then to be halted.

DDD
Command Operand
DDD

%IN[SERT] test-point [<subcmd>] [control]

DDD

A test-point is deleted in the following cases:

1. When the end of the program is reached.

2. When the number of passes specified via control has been reached and deletion of test-
point has been specified.

3. If a %REMOVE command deleting the test-point has been issued.

If no subcmd operand is specified, AID inserts the subcmd <%STOP>.

The subcmd in an %INSERT command for a test-point which has already been set does not
supersede the existing subcmd. This means that subcommands for the same test-point are
processed according to the LIFO rule (last in, first out).

The %REMOVE command is used to delete a subcommand, a test-point or all test-point
operands which have been entered. test-point can only be an address in the program which
has been loaded, for which reason the base qualification E=VM must be valid (see %BASE)
or specified explicitly.

The %INSERT command does not alter the program state.

AID commands %INSERT

U2854-J-Z125-10-76 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Is the address of an executable machine instruction. test-point is immediately entered by
targeted overwriting of the memory location addressed and must therefore be present in
virtual memory at the time the %INSERT command is input. A test-point which is not entered
for the start address of an executable machine instruction will lead to errors in the program
run (e.g. data/addressing errors).

When the program reaches the test-point, AID interrupts the program run and starts the
subcmd. If the program is continued it begins with execution of the instruction overwritten by
test-point.

test-point-OPERAND -

 ⎧ C=csect | COM=common⎫
[•][qua•]⎨ V'f...f' ⎬
 ⎩ compl-speicherref ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command.
Consecutive qualifications must be separated by a period. In addition, there must
be a period between the final qualification and the following operand part.

qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

E=VM
Since test-point can only be entered in the virtual memory of the program which
has been loaded, specify E=VM only if a dump file has been declared as the
current base qualification (see %BASE).

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the qualifications required for a unique address.

test-point

%INSERT AID commands

70 U2854-J-Z125-10-76

{C=csect | COM=common}
If addressing ends with a C/COM qualification, the test-point is placed at the start
address of the designated CSECT or COMMON.

V’f...f’
Is a virtual address, where f...f is a valid hexadecimal address with up to eight digits.
The address must be the start address of an interpretable machine instruction,
otherwise errors (e.g. data or addressing errors) may occur.

compl-memref
The result of compl-memref must be the start address of an executable machine
instruction. The following operations may occur in compl-memref (see the AID Core
Manual [1]):

– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

subcmd is processed whenever the program run reaches the address designated by test-
point.
If the subcmd operand is omitted, AID inserts a %STOP command.

subcmd-OPERAND -

 ⎧AID-command ⎫
< [subcmdname:] [(condition):] [⎨ ⎬ {;...}] >
 ⎩BS2000-command⎭

- -

The subcommand can contain a name, a condition and a command portion. The command
part may consist of a single command or a command sequence, it can contain both AID and
BS2000 commands as well as comments. There is an execution counter for each
subcommand. Refer to the AID Core Manual, chapter 5, for more information on how an
execution condition is formulated, how the name and execution counter are assigned and
addressed, and which particular commands are not permitted within subcommands.

If a subcommand consists of only a name or a condition, i.e. if the command part is missing,
AID merely increments the execution counter when test-point is reached.

subcmd

AID commands %INSERT

U2854-J-Z125-10-76 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

subcmd does not overwrite an existing subcommand for the same test-point, but the new
subcommand is prefixed to the existing one. subcmd may contain the commands
%CONTROLn, %INSERT and %ON. Nesting over a maximum of 5 levels is possible.
Subcommand chaining and nesting is described in more detail in the AID Core Manual,
chapter 5.

The commands in a subcmd are executed one after the other and the program run is then
continued. The commands for runtime control immediately alter the program state, even in
a subcommand. They abort the subcmd and continue the program (%CONTINUE,
%RESUME, %TRACE) or halt it (%STOP). They are thus only effective as the last
command in a subcmd, since any subsequent commands in the subcmd would fail to be be
executed.

Specifies whether test-point is to be deleted after the n-th pass, and whether the program is
to be halted with the purpose of entering new commands.
If no control operand has been specified, AID assumes the defaults 231-1 (for n) and K.

Note that this operand will not be described in later editions.

control-OPERAND -

 ⎧ K ⎫
ONLY n [⎨ S ⎬]
 ⎩ C ⎭

- -

n Is an integer with the value 1 ≤ n ≤ 65535, specifying after how many test-point
passes the further declarations for this control operand are to go into effect. The
default is 65535.

K Neither subcmd nor test-point is deleted (KEEP).
Program execution is interrupted, and AID expects input of commands.

S subcmd is deleted. If no further subcommand for this test-point has been entered,
test-point is deleted as well.
Program execution is interrupted, and AID expects input of commands (STOP).

C subcmd is deleted. If no further subcommand for this test-point has been entered,
test-point is deleted as well.
No interruption of the program (CONTINUE).

control

%INSERT AID commands

72 U2854-J-Z125-10-76

Examples

1. %IN V'80' <SUB1: %DISPLAY %5>

%IN V'80' <SUB2: %DISPLAY %7> ONLY 4 S

When the address V’80’ is reached, the contents of registers 7 and 5 are output. If the
subcommand SUB2 has been executed four times, it is deleted and the program is
interrupted. SUB1 is retained and is executed during the course of further debugging
whenever address V’80’ is reached.

2. %IN C=CS1.16 <(%0G NE -1): %SET %L=(%1G-%0G) INTO %2G>

A test point is entered for the 16th byte of CSECT CS1. If program execution reaches
this address, the return messages of the last %FIND command executed are checked.
If no hit was found, AID register %0G is set to -1, the condition result is FALSE and the
subcommand is not executed; if a hit was found, the address of the hit is stored in AID
register %0G, the condition result is TRUE and the subcommand is executed. The
length of the search string is calculated with the aid of the length function and trans-
ferred to AID register %2G.

3. %IN V'800'%SX-> <%DA 2 FROM %PC->>

Address V’800’ contains an Assembler instruction (RX format). A test point is entered
for the address resulting from the index register, base register and displacement. If the
program run reaches this address, the next two instructions are disassembled.

AID commands %MOVE

U2854-J-Z125-10-76 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

%MOVE

With the %MOVE command you transfer memory contents or AID literals to memory
locations within the program which has been loaded. Transfer is effected bytewise, left-
justified, without checking and matching of sender and receiver storage types.

– With the sender operand you designate the memory location whose contents are to be
transferred, a length, an address or an AID literal. sender can be located in virtual
memory of the loaded program or in a dump file.

– With the receiver operand you designate the memory location to be overwritten. receiver
can only be located in virtual memory of the loaded program.

– With the REP operand you specify whether AID is to generate a REP record for a modifi-
cation effected. This operand supersedes any declaration made in the %AID command,
but only for the current %MOVE command.

DD
Command Operand
DD

%M[OVE] sender INTO receiver [REP]

DD

In contrast to the %SET command, AID does not check for compatibility between the
storage types of sender and receiver when the %MOVE command is involved, and does not
match the type of sender to that of receiver.

AID transfers the information left-justified, with the length of sender. If the length of sender is
greater than that of receiver, AID rejects the attempt to transfer and issues an error
message.

Using the %AID command (CHECK operand) you can activate an update dialog for
checking purposes, which first provides you with a display of the old and new contents of
receiver and offers you the option of aborting the %MOVE command.

The %MOVE command does not alter the program state.

%MOVE AID commands

74 U2854-J-Z125-10-76

For sender and receiver you can specify a virtual address, a C/COM qualification, a complex
memory reference or a keyword. AID literals, selectors, and the keyword %MODEn can
only be specified as sender. Note that moving or overwriting instruction code may have
undesirable side-effects if sender or receiver lies in a control-area or trace-area that was
declared symbolically (see the AID Core Manual [1]).

sender may be either in virtual memory or in a dump file; receiver can only be in virtual
memory.

No more than 3900 bytes can be transferred with a %MOVE command. If the area to be
transferred is larger, multiple %MOVE commands must be issued.

sender-OPERAND - - - - - - - - - - - - - - receiver-OPERAND - - - - - - - - -

⎧ ⎧ ⎧C=csect | COM=common⎫ ⎫ ⎫
o o okeyword o o o
o o[•][qua•]⎨ ⎬ o o
o o oV'f...f' o o ⎧C=csect | COM=common⎫ o
o o ⎩?ompl-memref ⎭ o okeyword o o
o ⎨ ⎬ INTO [•][qua•]⎨ ⎬ o
⎨ o%@(...) o oV'f...f' o ⎬
o o%L(...) o ⎩??ompl-memref ⎭ o
o o%L=(expression) o o
o o o o
o ⎩AID-literal ⎭ o
o o
⎩ %M[ODE]{24331} INTO %AMODE ⎭

- -

• If the period is in a leading position it identifies a prequalification, which must have
been defined by a preceding %QUALIFY command. A period must be inserted
between consecutive qualifications. In addition, a period must be located between
the last qualification and the subsequent operand part.

 qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

{E={VM | Dn} for sender | E=VM for receiver}
A base qualification need only be specified if the current base qualification is not
to apply. sender can be either in virtual memory or in a dump file. receiver, on the
other hand, can only be located in virtual memory.

sender INTO receiver

AID commands %MOVE

U2854-J-Z125-10-76 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

 {ALET={X'f...f' | %nAR | %nG} | SPID=X'f...f'}
Specified to reference an address in a data space, but only required when
debugging programs in AR mode. These qualifications may only be followed by
a V address or a compl-memref.

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the qualifications required for a unique address.

NESTLEV= level-number

level-nummer has to be followed by dataname.
Specify NESTLEV= level-number when you want to address a data name on a
certain level in the current call hierarchy. This qualification can only be com-
bined with E=, and not with any other qualification.

 {C=csect | COM=common}
If addressing ends with a C/COM qualification, the entire selected program
segment is transferred (sender), or overwritten from the beginning (receiver).
 However, sender must not be longer than 3900 bytes.

V’f...f’
Specifies a virtual address.

compl-memref
The following operations may occur in compl-memref (see the AID Core Manual [1]
and chapter 4 in this manual for restrictions on debugging programs in AR mode):

– byte offset (•)
– indirect addressing (->)
– type modification (%T(dataname), %X, %C, %E, %P, %D, %F, %A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

A subsequent type modification has no effect on the transfer, as the %MOVE
command always transfers data in binary form, regardless of the sender and receiver
storage type.

level-number A level number in the current call hierarchy

%MOVE AID commands

76 U2854-J-Z125-10-76

A following length modification for sender defines how many bytes are to be moved.
A length modification for receiver can become necessary, however, in order to avoid
exceeding the area limits of receiver.

Data names and statement names defined in the source program can be used
within compl-memref if LSD records exist.

keyword
Designates a register, the program counter or an execution counter. See the AID
Core Manual [1] for a description of the implicit storage types of keywords.

In addition, the keywords for storage classes may be used (see the AID Core
Manual [1]).

%@(...)
With the address selector you can use the storage class (%CLASS6; %CLASS5 for
class 5 memory) or compl-memref as sender.
The address selector supplies an address constant which you can use in a complex
memory reference before a pointer operator (->). See also the AID Core Manual [1].

%L(...)
With the length selector you can use the length of a CSECT, a COMMON, or a
storage class (%CLASS6, %CLASS6BELOW, %CLASS6ABOVE) as sender.
The length selector returns an integer that may be used for byte offset calculations
or within a length function (see the AID Core Manual 1]).
Example: With %L(C=CS1) the length of CSECT CS1 is used as sender.

%L=(expression)
With the length function you can calculate a value as sender. expression is comprised
of the contents of memory references, constants, integers and arithmetic operators.
Only memory reference contents of type %F or %A with a length less than or equal

keyword Meaning

%PC

%n
%nD|E
%nQ
%nG
%nDG

%•[subcmdname]

Program counter

General register, 0 ≤ n ≤ 15
Floating-point register, single/double precision, n = 0,2,4,6
Floating-point register, quadruple precision, n = 0,4
AID general register, 0 ≤ n ≤ 15
AID floating-point register, n = 0,2,4,6

Execution counter. The abbreviation %. designates the
execution counter of the currently active subcommand.

AID commands %MOVE

U2854-J-Z125-10-76 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

to 4 are permitted. The length function produces an integer, which can be used for
byte offset calculation, in a further length function or for length modification (see the
AID Core Manual [1]).
Example: With %L=(%1) the contents of register 1 are used as sender.

AID-literal
The following AID literals (see the AID Core Manual [1]) can be transferred with
%MOVE:

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal
[{±}]n Integer
#'f...f' Hexadecimal number
[{±}]n.m Decimal point number
[{±}]mantissaE[{±}]exponent Floating-point number

%M[ODE]{24|31}
Defines the addressing mode.

%AMODE
Is the system information field in which the addressing mode is entered.
Transfer of keyword %M{24|31} to the system information field %AMODE changes
the addressing mode of the test object. If only the address interpretation for indirect
addressing (->) is to be modified, the corresponding %AINT command should be
entered.

If the program counter is to be modified when testing a 31-bit-address program
while 24-bit mode is switched on, care must be taken to ensure that the most signif-
icant byte has the value X’00’.

Specifies whether AID is to generate a REP record after a modification has been
performed. With REP you temporarily deactivate a declaration made with the %AID
command. If REP is not specified and there is no valid declaration in the %AID command,
no REP record is created.

REP-OPERAND -

REP = {Y[ES] 3 N[0]}

- -

REP

%MOVE AID commands

78 U2854-J-Z125-10-76

REP=Y[ES]
LMS correction statements (REPs) are created in SDF format for the update caused
by the current %MOVE command. A MODIFY-ELEMENT statement must be
inserted for the LMS run. If the object structure list is not available, no correction
statements are generated, and AID will output an error message. If receiver is not
located completely within one CSECT, AID will also output an error message and
not write a REP record. To obtain REP records in the latter case, the user should
distribute transfer operations over several %MOVE commands in which the CSECT
limits are observed.
A REP record is stored in a file with link name F6. If no file with the link name F6
has been created (see %OUTFILE command), the REP record is stored in the file
AID.OUTFILE.F6 generated by AID.
If you create REP records, you should reserve link name F6 only for the %MOVE
command, in order not to inadvertently write other test data to the REP file.

REP=N[O]
No REP records are generated for the current %MOVE command.

Examples

1. %MOVE %6 ->.20 INTO V'10A'

The start address of sender is calculated from the contents in general register 6, to which
20 is added. This command is used to transfer four bytes (standard length of a memory
location).

2. %MOVE E=D1.%PC INTO V'A04'

The program counter status is transferred from the memory dump in the dump file with
link name D1 to virtual address V’A04’ of the current AID work area.

3. %MOVE %7.1%L2 INTO %3.2%L2

The contents of bytes 2 and 3 of general register 7 are transferred to bytes 3 and 4 of
general register 3. The length modification for receiver is required because the area
limits of register 3 would be exceeded as a result of the byte offset.

4. %MOVE X'47F0' INTO V'20' REP=YES

The contents of address V’20’ are overwritten with hexadecimal literal X’47F0’. For this
modification a REP record is generated and stored in the file AID.OUTFILE.F6 or the
file assigned to link name F6.

5. %MOVE %MODE31 INTO %AMODE

The addressing mode is set to 31-bit addresses for the current test object. The address
interpretation for indirect addresses in AID commands is automatically adapted to the
new addressing mode, provided no %AINT command is active. This declaration may
also need to be adapted accordingly.

AID commands %ON

U2854-J-Z125-10-76 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

%ON

With the %ON command you define events and specify subcommands. If a selected event
occurs in the program sequence, AID processes the associated subcommand.

– With write-event you define an event involving write access to a memory area. This
means that AID will interrupt program execution to process subcmd whenever the
program modifies the specified memory area.

– With event you define normal and abnormal program termination, a supervisor call
(SVC), a program error or any event for which AID is to interrupt the program in order
to process subcmd.

– With subcmd you define a command or a command sequence and perhaps a condition.
When event occurs and this condition is satisfied, subcmd is executed.

DDD
Command Operand
DDD

%ON event [<subcmd>]

DDD

If the subcmd operand is omitted, AID inserts the subcmd <%STOP>.

The subcmd of an %ON command for an event which has already been defined does not
supersede the existing subcmd, but the new subcmd is prefixed to the existing one. This
means that subcommands for the same event are processed in accordance with the LIFO
principle (last in, first out).
This does not apply to write-event. Each new write-event overwrites the previous one.

A defined event remains in effect until it is deleted with %REMOVE or the program termi-
nates.

For %ON the base qualification E=VM must be set (see %BASE).

The %ON command does not alter the program state.

Write monitoring is activated with the keyword %WRITE. The memory area to be monitored
is defined within parentheses after the keyword. As soon as the program changes a byte
within the defined area, program execution is interrupted, and subcmd is executed. The
interrupt point is located after the instruction responsible for the write access.

write-event

%ON AID commands

80 U2854-J-Z125-10-76

Only one write-event can be defined at any given time; the input of a new write-event
overwrites the existing one. Other events can, however, be active at the same time. If an
event and write-event occur simultaneously, AID will process the subcommand for write-event
first. The write-event can be deleted with %REMOVE %WRITE without specifying the
memory reference.

The following interactions must be noted between %ON write-event and other AID
commands:
– If a %CONTROLn or %TRACE with a machine-oriented criterion is active, the input of

%ON write-event is rejected with an error message, and vice versa.
– If a %CONTROLn or %TRACE with a symbolic criterion overwrites a machine

instruction with the AID-internal marker (X’0A81’), the write access of that instruction is
not detected by AID.

– AID does not detect the write access of a machine instruction at whose address a test
point was set with %INSERT.

To provide for continuous write monitoring, it is advisable to delete all %CONTROLn and
%INSERT commands with %REMOVE. An existing %TRACE, if any, is deleted when you
continue after the %ON with %RESUME or %TRACE 1 %INSTR.

The memory area to be monitored can be any memory object, regardless how it is
addressed, provided it is located within the memory area occupied by the program.
Registers, for example, cannot be monitored. The area to be monitored must not exceed
64KB; otherwise, an error message is issued.
If the address of the specified memory object is overloaded in a program with an overlay
structure, the corresponding area of the newly loaded program segment will be monitored.

write-event-OPERAND -

 ⎧C=csect | COM=common⎫
 oV'f...f' o
%WRITE([•][qua•]⎨ ⎬)
 okeyword o
 ⎩compl-memref ⎭

- -

• If the period is in a leading position it identifies a prequalification, which must have
been defined by a preceding %QUALIFY command. A period must be inserted
between consecutive qualifications. In addition, a period must be located between
the last qualification and the subsequent operand part.

qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

AID commands %ON

U2854-J-Z125-10-76 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

E={VM | Dn}
Specified only if the current base qualification does not apply to the memory
area to be monitored.

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the L and/or O qualifications required for a unique address.

{C=csect | COM=common}
If addressing ends with a C/COM qualification, the entire program segment that was
selected is monitored.

V’f...f’ Designates a virtual address. The first 4 bytes as of the specified address are
monitored.

compl-memref
Designates the area to be monitored as of a calculated address in the appropriate
implicit or specified length. The following operations may occur in compl-memref
(see the AID Core Manual [1] and chapter “Machine-code-specific addressing” on
page 13 for restrictions on debugging programs in AR mode):

– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

keyword
Allows you to define a memory area by specifying one of the following keywords
(see the AID Core Manual [1]).

%CLASS6 class 6 memory below the 16MB boundary
%CLASS6BELOW class 6 memory below the 16MB boundary
%CLASS6ABOVE class 6 memory above the 16MB boundary

%ON AID commands

82 U2854-J-Z125-10-76

Application programs running in AR mode support write stops in address spaces for data,
the data spaces. They can be uniquely addressed via the SPID (space identification) or via
one or more ALETs (access list entry tokens).

Note:
Write stops in address spaces are only supported on S/390 machines, but neither SPARC
nor x86-64 HSI.

Command Operand

%ON %WRITE ([ALET/SPID-qua] { V'f...f'|{ compl-memref})

The possible qualifications that can be entered for ' ALET/SPID-qua ' are shown in the
following syntax:

ALET/SPID-qua OPERAND -

{ALET={X'f...f' | %nAR | %nG} | SPID=X'f...f'}

-

Note:
/%ON %WRITE(ALET=X'00000000'.V'123')
/%ON %WRITE(SPID=X'0000000300000057'.V'123')

The ALET value NULL corresponds always to the PS. If the TCB field etcbSPID happens
to contain x'0000000300000057', then also the SPID specification denotes the PS
(otherwise it denotes a DS, existing or not). Thus, if PS is effectively specified by ALET or
SPID, the HSI does of course not matter.

AID commands %ON

U2854-J-Z125-10-76 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

A keyword is used to specify an event (normal or abnormal termination of the program,
supervisor call, program error, etc.) upon which AID is to process the subcmd specified.
Once an event has been processed by an STXIT routine, it is no longer possible to respond
to it with a subcmd assigned to that event.
When a subcommand is executed for the event %ANY, the prompt to check whether a
dump is to be output is dropped in the close handling of the program. If required, you will
need to explicitly initiate the output of the dump by using /CREATE-DUMP in the subcommand.

If several %ON commands with different event declarations are simultaneously active and
satisfied, AID processes the associated subcommands in the order in which the keywords
are listed in the table below. If various %TERM events are applicable, the associated
subcommands are processed in accordance with the LIFO principle.
For selection of the suitable event codes and SVC numbers, see the "Executive Macros"
manual [7].

If a write-event occurs together with some other event , the subcommand for write-event is
processed first.

event subcmd is processed in the following instances:

%ERRFLG (zzz) after

before

the occurrence of an error with the event code
zzz and
abortion of the program

%INSTCHK after

before

the occurrence of an addressing error, an impermis-
sible supervisor call (SVC), an operation code which
cannot be decoded, a paging error or a privileged
operation and
abortion of the program

%ARTHCHK after

before

the occurrence of a data error, divide error, exponent
overflow or a zero mantissa and
abortion of the program

%ABNORM after the occurrence of one of the errors covered by the
previously described events
as well as a DMS error and %ILLSTX

%ERRFLG after the occurrence of an error with any event code

%SVC(z...z)

%SVC

before

before

execution of the supervisor call (SVC) with the
specified number
execution of any supervisor call

event

%ON AID commands

84 U2854-J-Z125-10-76

zzz may be specified in one of two formats:
n unsigned decimal number (up to three digits)
#’ff’ two-digit hexadecimal number
The following applies for the value zzz: 1 ≤ zzz ≤ 255
No check is made to verify whether the specified event code or SVC number is
meaningful or permissible.

x...x is the name of a segment or load unit (up to 32 alphanumeric characters).

Is processed whenever the specified event occurs in the course of the program run. If the
subcmd operand is omitted, AID inserts a %STOP command.
A complete description of sbcmd can be found in the AID Core Manual [1].

subcmd-OPERAND -

 ⎧AID-command ⎫
< [subcmdname:] [(condition):] [⎨ ⎬ {;...}] >
 ⎩BS2000-command⎭

- -

%LPOV(x...x)

%LPOV

after

after

loading of the module or segment with the spe-cified
name
loading of any arbitrary module/segment (The name
is output with %D %LINK)

%TERM(N[ORMAL])
%TERM(A[BNORMAL]

%TERM(D[UMP])

%TERM(S[TEP])

%TERM

before
before
after
before

before

before

normal program termination
abnormal program termination, but
output of a dump
output of a dump; followed by program
termination
program termination; followed by a branch within
procedures
program termination by all of the %TERM events
described above

%ANY before termination of the program as the result of
a program error or as the result of the %TERM
events described above, or due to a DMS error or a
%ILLSTX

%ILLSTX before the occurrence of a STXIT call during processing of a
preceding STXIT call (STXIT within STXIT)

event subcmd is processed in the following instances:

subcmd

AID commands %ON

U2854-J-Z125-10-76 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

The subcommand can contain a name, a condition and a command portion. The command
part can consist of either an individual command or a command sequence; it may contain
AID and BS2000 commands as well as comments. Each subcommand has an execution
counter. Refer to the AID Core Manual [1], chapter 5, for information on how an execution
condition is formulated, how the name and execution counter are assigned and addressed
as well as which commands are not permissible within subcommands.

If a subcommand consists of only a name or a condition, AID merely increments the
execution counter when the associated event occurs.

subcmd does not overwrite an existing subcommand for the same event. Instead, the new
subcommand is prefixed to the existing one. The %CONTROLn, %INSERT and %ON
commands are permitted in subcmd. The user can form up to five nesting levels.
Subcommand chaining and nesting are described in the AID Core Manual, chapter 5.

The commands in a subcmd are executed one after the other; then the program is continued.
The commands for runtime control immediately alter the program state, even in a
subcommand. They abort subcmd and continue the program (%CONTINUE, %RESUME,
%TRACE) or interrupt it (%STOP). They should only be issued as the last command in a
subcmd, since any subsequent commands in that subcmd will not be executed.

Examples

1. %ON %ERRFLG (108)

%ON %ERRFLG (#'6C')
Both specifications designate the same program error (mantissa equal to zero).

2. %ON %LPOV <%DISPLAY %LINK; %CONTINUE>
After each segment is loaded, the name of the loaded segment is output and the
program is continued.

3. %ON %ERRFLG <%D %AUD1;%STOP>

When an error occurs, regardless of the error weight, the P1 audit table is output and
the program is halted (see the manual "User Commands (SDF Format)" [8]).

4. %ON %WRITE(V'100') <%DA 4 FROM %PC->.(-6); %DA 4 FROM %PC->.(-4);%STOP>
Whenever one of the 4 bytes from V’100’ to V’103’ is modified in the program, the
program is halted, and 4 disassembled instructions are output twice: starting with the
address 6 bytes before the interrupt point, and starting with the address 4 bytes before
the interrupt point. The interrupt point itself is located after the instruction that executed
the write operation. The program is then halted, and a STOP message is issued.

5. %ON %WRITE(V'200'%L2) <(V'200'%L2 EQ X'FFFF'):%STOP>
AID monitors byte V’200’ and V’201’. If the content of both bytes is X’FFFF’, the
program is halted, and a STOP message is issued.

%OUT AID commands

86 U2854-J-Z125-10-76

%OUT

With the %OUT command you define the media via which data is to be output and whether
output is to contain additional information, in conjunction with the output commands
%DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE.

– With target-cmd you specify the output command for which you want to define
medium-a-quantity.

– With medium-a-quantity you specify which output media are to be used and whether or
not additional information is to be output.

DD
Command Operand
DD

%OUT [target-cmd [medium-a-quantity][,...]]

DD

In the %DISPLAY and %HELP commands, you may specify a separate medium-a-quantity
operand which temporarily disables the declarations of the %OUT command for these
commands. %DISASSEMBLE and %TRACE include no medium-a-quantity operand of their
own; their output can only be controlled with the aid of the %OUT command.

Before selecting an output file with the %OUT command, the file must be assigned to a link
name with the aid of the %OUTFILE command; otherwise, AID will use the default file
names (see %OUTFILE).

The declarations made with the %OUT command are valid until overwritten by a new
%OUT command, or until /LOGOFF.

An %OUT command without operands uses the default value T=MAX for all target-cmds.

%OUT may only be specified as an individual command, i.e. it may not be part of a
command sequence or subcommand.

The %OUT command does not alter the program state.

Designates the command for which the declarations are to apply. Any of the following
commands may be specified:

⎧%D[IS]A[SSEMBLE]⎫
o%D[ISPLAY] o
⎨%H[ELP] ⎬
o%SD[UMP] o
⎩%T[RACE] ⎭

target-cmd

AID commands %OUT

U2854-J-Z125-10-76 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Specifies the output medium or media for target-cmd and determines whether or not AID is
to output additional information.

If the medium-a-quantity operand has been omitted, the default value T=MAX applies for
target-cmd.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

The medium-a-quantity operand is described in more detail in the AID Core Manual.

T Terminal output via SYSOUT
H Hardcopy output (includes terminal output; cannot

be specified in conjunction with T)
Fn Output to a file with link name F0...F7
P Output to SYSLST

i AID does not take into account XMAX and XFLAT modes for outputting the %OUT
log. Instead, it generates the default value (T=MAX).

Examples

1. %OUT %DISPLAY T=MIN, F1=MAX

Data output of the %DISPLAY command is to be directed to the terminal in abbreviated
form, and in parallel to the file with link name F1 along with additional information.

2. %OUT %DISPLAY

For the %DISPLAY command, this specifies that previous declarations for output of
data are canceled and the default value T=MAX applies.

MAX Output with additional information

MIN Output without additional information

XMAX Definition of XMAX mode for the corresponding command %DISASSEMBLE,
%DISPLAY, %HELP, %SDUMP or %TRACE.

XFLAT Definition of XFLAT mode for the corresponding command
%DISASSEMBLE, %DISPLAY, %HELP, %SDUMP or %TRACE.

medium-a-quantity

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

%OUTFILE AID commands

88 U2854-J-Z125-10-76

%OUTFILE

With the %OUTFILE command you can assign output files to AID link names F0 through
F7 or close output files. You can write output of the commands %DISASSEMBLE,
%DISPLAY, %HELP and %TRACE to these files by specifying the corresponding %OUT
command or medium-a-quantity operand. If a file does not yet exist, AID will make an entry
for it in the catalog and then open it.

– With link you select the link name for the file to be cataloged and opened or closed.

– With file you assign a file name to the link name.

DDD
Command Operand
DDD

%OUTFILE [link [= file]]

DDD

If you do not specify the file operand, this causes AID to close the file designated via link.
In this way the intermediate status of the file can be printed during debugging.

An %OUTFILE command without operands closes all open AID output files. If you have not
explicitly closed an AID output file using the %OUTFILE command, the file will remain open
until /LOGOFF.

Without %OUTFILE, you have two options of creating and assigning AID output files:

1. Enter an ADD-FILE-LINK command for a link name Fn which has not yet been
reserved. Then AID opens this file when the first output command for this link name is
issued.

2. Leave the creation, assignment and opening of files to AID. AID then uses default file
names with the format AID.OUTFILE.Fn in accordance with link name Fn.

The %OUTFILE command does not alter the program state.

Designates one of the AID link names for output files and has the format Fn, where n is a
number with a value 0 ≤ n ≤ 7.

The REP records generated with the %MOVE command are always written to the output
file with link name F6. This name should not be simultaneously used for other output
purposes (see also the %AID and %MOVE commands).

link

AID commands %OUTFILE

U2854-J-Z125-10-76 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Specifies the fully-qualified file name with which AID catalogs and opens the output file. An
%OUTFILE command without the file operand closes the file assigned to link name Fn.

file

%QUALIFY AID commands

90 U2854-J-Z125-10-76

%QUALIFY

With the %QUALIFY command you define qualifications or an address, which can then be
referenced in the address operand of another command by prefixing a period.
This abbreviated format is practical whenever you want to repeatedly access addresses
which are not located in the current AID work area or if an address is to be used repeatedly
as the start address for byte offset (•).

– The prequalification operand is used to specify qualifications or an address to be refer-
enced in subsequent commands by prefixing a period.

DDD
Command Operand
DDD

%QUALIFY [prequalification]

DDD

A prequalification defined with the %QUALIFY command applies until it is superseded by a
%QUALIFY command with a new prequalification or canceled by a %QUALIFY command
without operands, or until /LOGOFF.

When entering a %QUALIFY command, only the syntax of the command is checked.
Whether a dump file has been assigned to the specified link name and whether the
specified area qualifications have been loaded and the associated object structure list
exists is not checked until subsequent commands are executed and the specifications from
the prequalification are actually used for addressing.

The declarations of the %QUALIFY command are only used by subsequently entered
commands. A new %QUALIFY command has no effect on the subcommands in a
%CONTROLn, %INSERT or %ON command previously entered, even if the subcommands
are not executed until later on.

The current setting for handling uppercase/lowercase characters (%AID LOW={ON|OFF})
must be taken into account when entering the %QUALIFY command to ensure that the
prequalification produces the correct extensions in the address operands of subsequent
commands.

The %QUALIFY command may only be entered as an individual command, it may not be
included in a command sequence or subcommand.

The %QUALIFY command does not alter the program state.

AID commands %QUALIFY

U2854-J-Z125-10-76 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Defines a single or multiple qualification or the start address for byte offset. By prefixing a
period in the address operands of subsequent AID commands the prequalification defined
in the %QUALIFY command can be referenced.

prequalification-OPERAND -

⎧ ⎧VM⎫ ⎧C=csect ⎫ ⎫
o[E=⎨ ⎬][[•]CTX=context][[•]L=load-unit][[•]O=object-module][[•]⎨ ⎬]|
o ⎩Dn⎭ ⎩COM=common⎭ o
⎨ ⎬
o ⎧ALET={X'f...f'| %nAR| %nG}⎫ ⎧V'f...f' ⎫ o
o[E={VM|Dn}] [[•]⎨ ⎬] [[•]⎨ ⎬] o
⎩ ⎩SPID=X'f...f' ⎭ ⎩compl-memref ⎭ ⎭

- -

• Consecutive qualifications must be separated by a period. In addition, there must
be a period between the final qualification and the following operand part.

E={VM | Dn}
Designates virtual memory (VM) or a dump file with the link name Dn (see %BASE).

{ALET={X'f...f' | %nAR | %nG} | SPID=X'f...f'}
Designates a data space.

CTX=context
Designates a context.

[L=load-unit•][O=object-module•]
Designates the load unit and/or the object module.

{C=csect | COM=common}
Designates a CSECT or a COMMON.

V’f...f’ Designates a virtual address which can be predefined as the start address for byte
offset.

prequalification

%QUALIFY AID commands

92 U2854-J-Z125-10-76

compl-memref
Designates a calculated start address for a byte offset.
The following operations may occur in compl-memref (see section “Memory refer-
ences” on page 17 and the AID Core Manual [1]):

– byte offset (•)
– indirect addressing (->)
– type modification (%A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

Examples

1. %QUALIFY E=VM.L=MOD
%DISPLAY .C=CS

In the %DISPLAY command the string E=VM.L=MOD is inserted before the leading
period, i.e. the CSECT with the name CS in load module MOD is output from the
memory area of the loaded program. The qualification E=VM is required only if the
current AID work area is in a dump file.

2. %QUALIFY V'100'

%MOVE .0 INTO .#'A0'

Without a preceding %QUALIFY command the %MOVE command would have the
following appearance:
%MOVE V'100'.0 INTO V'100'.#'A0'

3. %QUALIFY C=CSECT001.16

%D .24

Without a preceding %QUALIFY command the %DISPLAY command would be:
%D C=CSECT001.16.24

4. %BASE E=VM

%QUALIFY E=D1.%1G->

%D .0 %FL4

When the %DISPLAY command is executed the contents of AID register %1G are used
as the address in the dump, the byte offset is added to this, and four bytes interpreted
as an integer are output from the dump starting at this calculated address.

AID commands %REMOVE

U2854-J-Z125-10-76 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

%REMOVE

With the %REMOVE command you revoke the test declarations for the %CONTROLn,
%INSERT and %ON commands.

– With target you specify for which commands or command parts the declarations are to
be deleted.

DDD
Command Operand
DDD

%REM[OVE] target

DDD

The %REMOVE command does not alter the program state.

Designates a command for which all the valid declarations are to be deleted, or a test-point
to be deleted, or an event which is no longer to be monitored, or the subcommand to be
deleted. If target is within a nested subcommand and therefore has not yet been entered, it
cannot be deleted either.

target-OPERAND -

⎧%C[ONTROL] | %C[ONTROL]n⎫
o o
o%IN[SERT] | test-point o
⎨ ⎬
o%ON | %WRITE | event o
o o
⎩%•[subcmdname] ⎭

-

%C[ONTROL]
The declarations for all %CONTROLn commands entered are deleted.

%C[ONTROL]n
The %CONTROLn command with the specified number (1 ≤ n ≤ 7) is deleted.

target

%REMOVE AID commands

94 U2854-J-Z125-10-76

%IN[SERT]
All test points which have been entered are deleted.

test-point
The specified test-point is deleted. test-point is specified as for the %INSERT
command.
Within the current subcommand, test-point can also be deleted with the aid of
%REMOVE %PC->, as the program counter (%PC) contains, at this point in time,
the address of the test point.

%ON
All events which have been entered are deleted.

%WRITE
The write-event is deleted.

event
The specified event is deleted. event is specified using a keyword, as with the %ON
command. The event table with keywords and explanations of the individual events
is listed under the %ON command.

The following applies for the events %ERRFLG(zzz), %SVC(zzz) and %LPOV(zzz)
%REMOVE event(zzz) deletes only the event with the specified number.
%REMOVE event without specification of a number deletes all events of the corre-
sponding group.

%•[subcmdname]
Deletes the subcommand of a %CONTROLn or %INSERT command with sub-
cmdname.

%• is the abbreviated form for a subcommand name and can only be used within
the subcommand. %REMOVE %. results in deletion of the subcommand which was
most recently executed. This specification is only feasible as the last command in
a subcommand, as subsequent commands under subcmd are not executed. As the
%CONTROLn command cannot be chained, the associated %CONTROLn
command is deleted too. Deletion of the subcommand thus corresponds to deletion
of the %CONTROLn command with specification of the number.

Multiple subcommands, however, may be chained at a test-point of the %INSERT
command. Using %REMOVE %.[subcmdname], the user can delete an individual
subcommand from a string, while further subcommands for the same test-point are
retained (see AID Core Manual, chapter 5). If only the subcommand with sub-
cmdname was entered for test-point, the test-point is deleted as well.

%REMOVE %.[subcmdname] is not permitted in conjunction with %ON.

AID commands %REMOVE

U2854-J-Z125-10-76 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Examples

1. %C1 %BAL <CTL1: %D %.>
%REM %C1
%REM %.CTL1

Both %REMOVE commands have the same effect: %C1 is deleted.

2. %IN V'100' <SUB1: %D %14, %15>

%IN V'100' <SUB2: %D %PC; %REM %.>

...

%REM V'100'

When test point V’100’ is reached, the program counter is output, after which
subcommand SUB2 is deleted. This subcommand is therefore executed once only.
Then registers 14 and 15 are output and the program is continued. Whenever the
program run then reaches test point V’100’, subcommand SUB1 is executed. The test
point is deleted later using %REM V’100’. A %REM %.SUB1 command would have the
same effect, since this subcommand is now the only one entered for test point V’100’.

%RESUME AID commands

96 U2854-J-Z125-10-76

%RESUME

With %RESUME you start the loaded program or continue it at the interrupt point. The
program executes without tracing.

If the program has been interrupted during execution of a %TRACE command, the
%TRACE command will be aborted. An interrupted %TRACE can only be continued by
means of the %CONTINUE command.

DD
Command Operand
DD

%R[ESUME]

DD

If a %RESUME command is contained within a command sequence or a subcommand, any
commands which follow will not be executed.

If the %RESUME command is the only command in the subcommand, the execution
counter is incremented and any active %TRACE deleted.

The %RESUME command alters the program state.

AID commands %SDUMP

U2854-J-Z125-10-76 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

%SDUMP

In machine-oriented debugging, %SDUMP outputs the current call hierarchy.

– %NEST instructs AID to output the program names of the current call hierarchy.

– medium-a-quantity defines the output media to be used by AID and whether additional
information is to be provided. This operand can be used to deactivate a declaration
made with %OUT for the current %SDUMP.

DD
Command Operand
DD

%SD[UMP] %NEST [medium-a-quantity][,...]

DD

In order to use this command, an ESD or ESV listing must be generated beforehand when
compiling the program, and an object structure list or an external symbol dictionary should
already have been created from it. Furthermore, the module AIDIT0 must have been loaded
by the runtime system. This can be verified with %DISPLAY C=AIDIT0.

The keyword %NEST initiates the output of the current call hierarchy. The output of AID
differs considerably in this case from the corresponding output of %SDUMP %NEST when
LSD information has been loaded. The source references, for example, are omitted.

Defines the output medium or output media to be used and determines whether any supple-
mentary information is to be shown in addition to the current call hierarchy.

If this operand is omitted, and no declaration with the %OUT command is in effect, AID will
use the default value T=MAX.

medium-a-quantity-OPERAND -

⎧
3

 =
3Fn3 ⎩
⎩P ⎭

- -

medium-a-quantity is described in detail in the AID Core Manual [1].

%NEST

medium-a-quantity

T

H

Fn

P

MIN
MAX
XMAX
XFLAT

%SDUMP AID commands

98 U2854-J-Z125-10-76

T Terminal output

H Hardcopy output (includes terminal output; cannot be specified in conjunction
with T)

Fn File output

P Output to SYSLST

Data types

If you have specified the operand value XMAX or XFLAT, AID generates the output as with
MAX, extended by the following type tags:

MAX Output with additional information

MIN Output without additional information

XMAX Output as with MAX, but extended by the type information:
In addition, each data element is preceded by a type tag which defines the
type, size and output format of this data element. Syntax of the type tag:
<data-type(memory-size-in-bytes),output-format>

XFLAT Output as with XMAX, but with the following restrictions:
Only the topmost structure level is output for structured data types. In the
case of long data (e.g. long strings or arrays), the first elements are output.

<INT(size),D>
int-name = int-value

size Storage length in bytes.

int-name Specifies an element of the type integer.

int-value Decimal value (D); value of int-name.

<POINTER(size),X>
pointer-name = pointer-value

size Storage length in bytes.

pointer-name Specifies an element of the type pointer.

pointer-value Hexadecimal number (X); value of pointer-name.

<FLOAT(size),E>
float-name = float-value

size Storage length in bytes.

float-name Specifies an element of the type floating point number.

float-value Floating point number displayed as a decimal fraction with
exponent (E); value of float-name.

AID commands %SDUMP

U2854-J-Z125-10-76 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

<CHARS(size),C>
chars-name = |string|

size Storage length in bytes.

chars-name Specifies an element of the type string, in other words an array
of the type character.

string String of printable characters (C); value of chars-name;
Non-printable characters are displayed as a hexadecimal value.

If string is longer than 80 characters, with XFLAT only the first 72
characters are output, followed by three periods ... in order to
display the incompleteness of the output. See also note 1 at the
end of the list.

<BYTES(size),X>
bytestring-name = bytestring

size Storage length in bytes.

bytestring-name Specifies an element of the type string.

bytestring String of hexadecimal bytes (X); value of bytestring-name.
Four hexadecimal bytes are combined to form a hexadecimal
word and are separated by a blank.

If the output is longer than 80 characters, with XFLAT only the
first 8 hexadecimal words (i.e. 32 hexadecimal bytes) are
output, followed by three periods ... in order to display the
incompleteness of the output. See also note 1 at the end of the
list.

<BITS(size),B>
bits-name = bitstring

size Storage length in bytes.

bits-name Specifies an element of the type bit string.

bitstring Sequence of binary numbers (B); value of bits-name.

If bitstring contains more than 80 digits, with XFLAT only the first
72 hexadecimal bytes (i.e. 8 hexadecimal words) are output
followed by three periods ... in order to display the incom-
pleteness of the output. See also note 1 at the end of the list.

<PACKED(size),D>
packed-name = packed-value

size Storage length in bytes.

packed-name Specifies an element of the type packed decimal.

packed-value Decimal value (D); value of packed-name.

<ZONED(size),D>
zoned-name = zoned-value

%SDUMP AID commands

100 U2854-J-Z125-10-76

Notes

1. Use the following syntax to query the entire content of a string, structure or array
distributed over several lines:

%SDUMP name {T | H | Fn | P} = {XMAX | MAX}

2. Use the following syntax to query the content of the array elements within the particular
area:

%SDUMP name [from:to] {T | H | Fn | P} = {XMAX | XFLAT | MAX}

Structures with XFLAT

For structures, AID generates various XFLAT data outputs depending on whether or not the
%SDUMP command contains data operands.

● %SDUMP without data operand

%SDUMP {T | H | Fn | P} = XFLAT

size Storage length in bytes.

zoned-name Specifies an element of the type zoned decimal (unpacked
decimal number)

zoned-value Decimal value (D); value of zoned-name.

<ADDR(size),X>
addr-name = addr-value

size Storage length in bytes.

addr-name Specifies an element of a relative or absolute storage address.

addr-value Hexadecimal number (X); value of addr-name.

<AREA(size),X>
area-name = area-value

size Storage length in bytes.

area-name Specifies a primary memory area.

area-value Memory dump in dump format, value of area-name. The dump
format consists of a hexadecimal (X) and alphanumeric display,
non-printable characters are displayed in the alphanumeric
display as |.|.

If the output is longer than 80 characters, with XFLAT only the
first 4 hexadecimal words are output (possibly also fewer). The
alphanumeric display contains a maximum of 16 characters
(with UTF16: 8 characters) followed by the string ETC.
See also note 1 at the end of the list.

AID commands %SDUMP

U2854-J-Z125-10-76 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Only the type tag and the name are output (level 01). The output of the structure
elements is omitted.

● %SDUMP with a structure as operand

%SDUMP structure-name {T | H | Fn | P} = XFLAT

The structure name and the structure elements are output (level 02). Elements with
elementary types are normally output, elements with array type with their name, and
elements with structure type only with their name. Each element is preceded by a type
tag. The name is extended by a number, the level of embedding.

● %SDUMP with a substructure as operand

%SDUMP structure-name.substruct-name {T | H | Fn |P} = XFLAT

Also outputs the structure elements of the substructure (level 03)

Further levels of embedding can also be specified by the other substructure names
being chained by a period:

structure-name.substruct1-name.substruct2-name.substruct3-name.

i In order to query the entire content of a structure and of its substructures, use
XMAX instead of XFLAT.

Examples

1. The following sample listings show the call hierarchy of a C++ program. The first case
reflects the output when the LSD information has been loaded. The library containing
the LSD information is then disconnected for the current work area, and the call
hierarchy is output again.

 tDDh
 3 /STOPPED AT SRC_REF: 122, SOURCE: VPTR1.C , PROC: 70::A_l::f(void) 3
 3 /%sd %nest 3
 3 *** TID: 0028024F *** TSN: 0308 ** 3
 3 /SRC_REF: 122 SOURCE: VPTR1.C PROC: 70::A_l::f(void) ************************ 3
 3 /SRC_REF: 127 SOURCE: VPTR1.C PROC: vptr1_main(int) ************************* 3
 3 /SRC_REF: 105 SOURCE: BCLB.C PROC: main ************************************* 3
 3 /ABSOLUT: V‘17432‘ SOURCE: ICS$MAI@ PROC: ICS$MAI@ *********************** 3

 tDDh
 3 /%symlib 3
 3 /%sd %nest 3
 3 /ABSOLUT: V‘534A‘ SOURCE: VPTR1&@ PROC: f ******************************* 3

3 /ABSOLUT: V‘58E0‘ SOURCE: VPTR1&@ PROC: vptr1_main ********************** 3
 3 /ABSOLUT: V‘754‘ SOURCE: BCLB&@ PROC: main ***************************** 3
 3 /ABSOLUT: V‘17432‘ SOURCE: ICS$MAI@ PROC: ICS$MAI@ *********************** 3

%SDUMP AID commands

102 U2854-J-Z125-10-76

2. %SDUMP [..] {T | H | Fn | P} = XMAX

AID generates the entire output, which is similar to the output with XFLAT. In addition,
the output with XMAX contains the entire contents of long strings, arrays and structures.

3. %SD[UMP] T=XFLAT generates the following output, for example. When large quantities
of data or complex data types are output, the command truncates certain data values
or data elements or removes these.

<INT(4),D> int_var = 5

<FLOAT(8),E> float_var = -0.123456789

<POINTER(4),X> char_ptr = 0ABC00EF

<CHARS(1),C> dollar = |$|

<CHARS(72),C> char_array =
|This is a string of 72 characters in length|

<CHARS(100),C> char_string =
|These are the first 75 characters of a string wíth 100 characters in
length.......................|

<STRUCT(128)> person

<ARRAY(1280),STRUCT> person_array(1:10)

<BITS(1),B> bit_array = 101

<BYTES(1024),X> buffer=
40…

<BITINT(1),D> bit_integer = 5

For instance, for the selective selection of components of complex data structures:

struct { struct {int x; char y;} inner[100];
 struct {float u, v;} *pointer;
 } outer [10];

%AID low=on
%OUT %SDUMP T=XFLAT

%SD
<ARRAY(8040),STRUCT> outer(0: 9)

%SD outer

AID commands %SDUMP

U2854-J-Z125-10-76 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

<ARRAY(8040),STRUCT> outer(0: 9)

%SD outer[5]
<STRUCT(804)> 01 outer(5)
<ARRAY(800),STRUCT> 02 inner(0:99)
<POINTER(4),X> 02 pointer = 0103B700

%SD outer[5].inner[15]
<STRUCT(5)> 02 outer.inner(5, 15)
<INT(4),D> 03 x = -2130463928
<CHARS(1),C> 03 y = |.|

%SD outer[5].inner[15] T=XMAX
<STRUCT(5)> 02 outer.inner(5, 15)
<INT(4),D> 03 x = -2130463928
<CHARS(1),C> 03 y = |.|

%SD outer[5].inner[15:16]
<ARRAY(16),STRUCT> outer.inner (5) (15: 16)

%SD outer[5].inner[15:16] T=XMAX
<ARRAY(16),STRUCT> outer.inner (5) (15: 16)
<STRUCT(5)> 02 inner(15)
<INT(4),D> 03 x = -2130463928
<CHARS(1),C> 03 y = |.|
<STRUCT(5)> 02 inner(16)
<INT(4),D> 03 x = 0
<CHARS(1),C> 03 y = |%|

%SET AID commands

104 U2854-J-Z125-10-76

%SET

With the %SET command you transfer memory contents or AID literals to memory locations
in the program which has been loaded. Before transfer, the storage types of sender and
receiver are checked for compatibility. The contents of sender are matched to the storage
type of receiver.

– With sender you designate the memory location to be transferred, a length, an address,
a keyword, or an AID literal. sender may be either within the virtual memory of the loaded
program or in a dump file.

– With receiver you designate the memory location to be overwritten. receiver may only be
located within the virtual memory of the program which has been loaded.

DD
Command Operand
DD

%S[ET] sender INTO receiver

DD

In contrast to the %MOVE command, the %SET command causes AID to check (prior to
transfer) whether the receiver storage type is compatible with that of sender and whether the
contents of sender match its storage type. In the event of incompatibility, AID rejects the
transfer and outputs an error message.

If sender is longer than receiver, it is truncated at the left or right, depending on its storage
type, and AID issues a warning. sender and receiver may overlap.

For numeric transfer, sender is converted to the storage type of receiver if required, and the
contents of sender are transferred to receiver with the value retained. If the value of sender
does not fully fit into receiver, AID issues a warning.

By entering the %AID CHECK=ALL command the user can activate an update dialog for
checking purposes, which shows the old and new memory contents prior to execution of
the transfer, providing the possibility of aborting the %SET command.

The %SET command does not alter the program state.

For sender and receiver the user may specify a virtual address, a complex memory reference
or a keyword for general, floating-point and AID registers, the program counter or the
execution counter. AID literals, selectors, and the keyword %MODEn can only be specified

sender INTO receiver

AID commands %SET

U2854-J-Z125-10-76 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

as sender. Note that moving or overwriting instruction code may have undesirable side-
effects if sender or receiver lies in a control-area or trace-area that was declared symbolically
(see the AID Core Manual [1]).

sender may be located either in virtual memory or in a dump file; receiver, on the other hand,
may only be located in virtual memory.

sender-OPERAND - - - - - - - - - - - - - - receiver-OPERAND - - - - - - - - -

⎧ ⎧ ⎧C=csect | COM=common⎫ ⎫ ⎫
o o okeyword o o o
o o[•][qua•]⎨ ⎬ o o
o o oV'f...f' o o ⎧C=csect | COM=common⎫ o
o o ⎩compl-memref ⎭ o okeyword o o
o ⎨ ⎬ INTO [•][qua•]⎨ ⎬ o
⎨ o%@(...) o oV'f...f' o ⎬
o o%L(...) o ⎩compl-memref ⎭ o
o o%L=(expression) o o
o o o o
o ⎩AID-literal ⎭ o
o o
⎩ %M[ODE]{24331} INTO %AMODE ⎭

- -

• If the period is in a leading position it identifies a prequalification, which must have
been defined by a preceding %QUALIFY command. A period must be inserted
between consecutive qualifications. In addition, a period must be located between
the last qualification and the subsequent operand part.

qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

{E={VM | Dn} for sender | E=VM for receiver}
A base qualification is needed only if the current base qualification is not to
apply. sender can be either in virtual memory or in a dump file. receiver, on the
other hand, can only be located in virtual memory.

 {ALET={X'f...f' | %nAR | %nG} | SPID=X'f...f'}
Specified to reference an address in a data space, but only required when
debugging programs in AR mode.

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

%SET AID commands

106 U2854-J-Z125-10-76

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the qualifications required for a unique address.

NESTLEV= level-number

level-nummer has to be followed by dataname.
Specify NESTLEV= level-number when you want to address a data name on a
certain level in the current call hierarchy. This qualification can only be com-
bined with E=, and not with any other qualification.

 {C=csect | COM=common}
If addressing ends with a C/COM qualification, the entire selected program
segment is transferred (sender), or overwritten from the beginning (receiver).

V’f...f’ Specifies a virtual address.

compl-memref
The following operations may occur in compl-memref (see the AID Core Manual [1]
and chapter 4 in this manual for restrictions on debugging programs in AR mode):

– byte offset (•)
– indirect addressing (->)
– type modification (%T(dataname), %X, %C, %E, %P, %D, %F, %A, %S, %SX)
– length modification (%L(...), %L=(expression), %Ln)
– address selection (%@(...))

An explicit type or length modification can be used to match the storage types of
sender and receiver. Memory contents incompatible with a storage type are rejected
by AID, however, even if a type modification is used.
For each operand in a complex memory reference, the associated memory area
must not be exceeded as the result of a byte offset or length modification, otherwise
AID will not execute the command and will output an error message.

If LSD records exist, the data names and statement names defined in the source
program may also be used within compl-memref.

level-number A level number in the current call hierarchy

AID commands %SET

U2854-J-Z125-10-76 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

keyword
Designates a register, the program counter or an execution counter. The AID Core
Manual [1] describes the implicit storage types of the keywords.

In addition, the keywords for storage classes may be used (see AID Core Manual
[1]).

%@(...)
With the address selector, you can use the start address of a CSECT or a memory
area (%CLASS6, %CLASS6BELOW, %CLASS6ABOVE) or compl-memref as
sender. The address selector supplies an address constant that can be used in a
complex memory reference before a pointer operator (->). See also AID Core
Manual [1]).

%L(...)
With the length selector, you can use the length of a CSECT or a memory area
(%CLASS6, %CLASS6BELOW, %CLASS6ABOVE) as sender. The length selector
supplies an integer value, which you can use for byte offset calculation or in a length
function (see AID Core Manual [1].
Example: With %L(C=CS1) the length of CSECT CS1 is used as sender.

%L=(expression)
With the length function you can calculate the value of sender. expression consists of
the contents of memory references, constants, integers and arithmetic operators.
Only memory reference contents of type %F or %A with a length less than or equal
to 4 are permitted. The length function supplies an integer, which can be used for
byte offset calculation, in a further length function or for length modification (see AID
Core Manual [1]).
Example: With %L=(%1) the contents of register 1 are used as sender.

keyword Meaning

%PC

%n
%nD|E

%nQ
%nG
%nDG

%•[subcmdname]

Program counter

General register, 0 ≤ n ≤ 15
Floating-point register, single/double precision,
n = 0,2,4,6
Floating-point register, quadruple precision, n = 0,4
AID general register, 0 ≤ n ≤ 15
AID floating-point register, n = 0,2,4,6

Execution counter. The abbreviation %. designates the
execution counter of the currently active subcommand.

%SET AID commands

108 U2854-J-Z125-10-76

AID-literal
All AID literals listed in the AID Core Manual may be specified (note the matching of AID
literals to the respective receivers described there).

%M[ODE]{24|31}
Defines the addressing mode.

%AMODE
Is the system information field in which the addressing mode is entered.

Transfer of keyword %M{24|31} to the system information field %AMODE changes
the addressing mode of the test object. If only the address interpretation for indirect
addressing (->) is to be modified, the corresponding %AINT command should be
entered.

If the program counter is to be modified when testing a 31-bit-address program
while 24-bit mode is switched on, care must be taken to ensure that the most signi-
ficant byte has the value X’00‘.

AID literal Meaning

{C'x...x' | 'x...x'C |
'x...x'}
X'f...f' | 'f...f'X}
{B'b...b' | 'b...b'B}
[{?}]n
#'f...f'
[{?}]n.m
[{?}]mantissaE[{?}]expone
nt

Character literal
Hexadecimal literal
Binary literal
Integer
Hexadecimal number
Decimal number
Floating-point number

AID commands %SET

U2854-J-Z125-10-76 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

SET table

The following table shows how AID effects transfer, how the various storage types are
converted, and which transfers are rejected.

bin Binary transfer, left-justified
sender < receiver: padded with binary zeros on the right
sender > receiver: truncated on the right
For transfer to storage type %X a numeric literal corresponds to a signed
integer with a length of four bytes (%FL4), which are transferred in binary form.

char Character transfer, left-justified
sender < receiver: padded with blanks (X’40’) on the right
sender > receiver: truncated on the right

num(1) If a character sender consists of digits only and is no more than 18 characters in
length, it is transferred in numeric form if receiver is of the numeric type;
otherwise AID rejects transfer.

num Numeric transfer with value retained
sender is matched to the storage type of receiver if required.

– No transfer
AID issues a message as to incompatibility of the storage types.

receiver

sender %F %P %A
%n %nG
%PC %.[name]
%D %nE/D/Q %nGD

%C %X

%F %P %A
{?}n
#'f...f'
%n %nG
%PC %.[name]
%D %nE/D/Q %nGD

num - bin

{?}n.m
{?}mantE{?}exp

num - -

%C
C'x...x'

num(1) char bin

%X
X'f...f'
B'b...b'

bin bin bin

%SET AID commands

110 U2854-J-Z125-10-76

Examples

1.

 tDD?
 3 /%D V'798' 3
 3 V'00000798' = M1BS + #‘00000798' 3
 3 00000798 (00000798) 012CF000 ..0. 3
 3 /%SET V'798'%PL2 INTO %1G 3
 3 /%D %1G, %1G%F 3
 3 %1G = 0000000C 3
 3 %1G = 12 3

The contents of the first two bytes at address V’798’ are interpreted as a packed
number and transferred to AID register %1G. The AID register is of type %F (binary with
sign), the value 12 is correspondingly converted.

2.

 tDD?
 3 /%SET V'300'%PL1 INTO %1 3
 3 /%SET V'400'%PL1 INTO %2 3
 3 /%DISPLAY V'300', V'400' 3
 3 V'00000300' = M1BS + #‘00000300' 3
 3 00000300 (00000300) 1C010080 3
 3 V'00000400' = M1BS + #‘00000400' 3
 3 00000400 (00000400) 2D000000 3
 3 /%DISPLAY %1, %2 3
 3 %1 = 00000001 3
 3 %2 = FFFFFFFE 3
 3 3

The two packed contents at addresses V’300’ and V’400’ correspond to the values +1
and -2. The values are converted accordingly during transfer to a register.

3.

 tDD?
 3 /%DISPLAY V'100', V'200' 3
 3 V'00000100' = M1BS + #‘00000100' 3
 3 00000100 (00000100) F0000000 0... 3
 3 V'00000200' = M1BS + #‘00000200' 3
 3 00000200 (00000200) 01020000 3
 3 /%SET V'100'%CL1 INTO V'101'%CL2 3
 3 /%SET V'200'%XL2 INTO V'202'%XL4 3
 3 /%DISPLAY V'100', V'101'%CL2, V'200', V'202'%XL4 3
 3 V'00000100' = M1BS + #‘00000100' 3
 3 00000100 (00000100) F0F04000 00 . 3
 3 V'00000101' = M1BS + #‘00000101' 3
 3 00000101 (00000101) 0 3
 3 V'00000200' = M1BS + #‘00000200' 3
 3 00000200 (00000200) 01020102 3
 3 V'00000202' = M1BS + #‘00000202' 3
 3 00000202 (00000200) 01020000 3
 3 3

For transfer in type %C (character), the receiver is padded with blanks (X’40’) on the
right. For transfer in type %X (hexadecimal), the receiver is padded with binary zeros
(X’00’) on the right.

AID commands %SET

U2854-J-Z125-10-76 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

4.

 tDD?
 3 /%SET %1 INTO V'100'%D 3
 3 /%DISPLAY V'100', V'100'%D 3
 3 V'00000100' = M1BS + #‘00000100' 3
 3 00000100 (00000100) 41100000 3
 3 V'00000100' = M1BS + #‘00000100' 3
 3 00000100 (00000100)+.100000000000000000000000 E+001 3
 3 3

Register %1 contains the value 1 (X’00000001’), which is converted to storage type %D
(floating point) and transferred to address V’100’.

5.

 tDD?
 3 /%SET X'00' INTO V'100'%L30 3
 3 3

In contrast to %MOVE, sender is extended in %SET to the length of receiver in accor-
dance with its data type, so 30 bytes as of the address V ’100’ are overwritten with the
value ’hexadecimal zero’.

%SHOW AID commands

112 U2854-J-Z125-10-76

%SHOW

The %SHOW command allows the user to obtain information about the current definitions
relating to individual AID commands, to find out what the last entry of a command looked
like, and which command was entered last. It is also possible to use the subcommand name
to request the command in which it was defined or to output a list of all entered
subcommand names with the associated command type. Depending on how uppercase
and lowercase notation was defined in the %AID command, the original entry of the
command is either reproduced or the input string is converted to uppercase letters.

- show-target can be used to specify a command, a subcommand name or an AID keyword
for all current subcommands.

DD
Command Operand
DD

%SH[OW] [show-target]

DD

The effect of %SHOW without an operand is to output the AID command entered directly
beforehand. If no AID command has been entered for the task, an error message is issued.
A %SHOW for one of the commands for which it is not intended results in a syntax error.
The command may be used in command and subcommand strings.

%SHOW does not alter the program state.

designates an AID command, a specific subcommand or all entered subcommands. The
commands permitted for this command can also be specified in the abbreviated form in
show-target.

show-target

AID commands %SHOW

U2854-J-Z125-10-76 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Command or subcommand Information

 %AID The current valid settings for the %AID, %AINT and
%BASE commands and the version of AID loaded.

 %BASE The current settings for %BASE, %AINT and %SYMLIB,
the TSN, TID and the version of the operating
system and type of computer are output.

 %C[ONTROL] The input string is output for each registered
%CONTROLn.

 %D[IS]A[SSEMBLE] The current number and start address (V’...’) is
output.

 %F[IND] The entered command and, if appropriate, the
virtual address of the last hit are output.

 %IN[SERT] [test-point] Without the test-point entry, all active test
points are output. Otherwise, AID shows the
entered command in which test-point was declared.

 %ON The input string is output for each active %ON
command.

 %OUT The valid medium-a-quantity values for the
commands that can be controlled via %OUT are
output.

 %OUTFILE All implicitly or explicitly entered output files
are listed, with their link names.

 %QUALIFY The last %QUALIFY command is output.

 %SYMLIB The registered libraries are output with the asso-
ciated base qualifications and the TSN.

 %TRACE The default values of the %TRACE operands are out-
put, taking into account whether the last %TRACE
was symbolic or on machine code level. In trailing
lines AID shows how many instructions or state-
ments have already been processed with the current
%TRACE and what the input string of the last
%TRACE command looked like.

 %•* The names of all active subcommands are output with
the type of the AID command in which they were
defined.

 %•subcmdname The command in which subcmdname was defined is
output.

%STOP AID commands

114 U2854-J-Z125-10-76

%STOP

With the %STOP command you direct AID to interrupt the program, to switch to command
mode and to issue a STOP message. This message indicates the address and the CSECT
where the program was interrupted.

If the command is entered at the terminal or from a procedure file, the program state is not
altered, since the program is already in the STOP state. In this case you may employ the
command to obtain localization information on the program interrupt point by referring to the
STOP message.

DD
Command Operand
DD

%STOP

DD

If the %STOP command is contained in a command sequence or subcommand, any
commands following it will not be executed.

If you set a dump file as a basic qualification with %BASE and then enter a %STOP
command, AID outputs a STOP message containing localization information for the
address at which the program was interrupted when the dump file was written.

If the program has been interrupted by pressing the K2 key, the program interrupt point is
not necessarily within the user program but may also be located in the runtime system
routines.

The %STOP command alters the program state.

A %STOP in a subcommand always refers to the loaded program.

AID commands %TITLE

U2854-J-Z125-10-76 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

%TITLE

With the %TITLE command you define the text of your own page header. AID uses this text
when the %DISASSEMBLE, %DISPLAY, %HELP, %SDUMP and %TRACE commands
write to the system file SYSLST.

– By means of the page-header operand you specify the text of the header, directing AID
to set the page counter to 1 and position SYSLST to the top of the page before the next
line to be printed.

DDD
Command Operand
DDD

%TITLE [page-header]

DDD

With a %TITLE command without a page-header operand you switch back to the AID
standard header. AID again sets the page counter to 1 and positions SYSLST to the top of
the page before the next line to be printed.

The %TITLE command does not alter the program state.

Specifies the variable part of the page title. AID completes this specification by adding the
time, date and page count.

page-header
is a character literal in the format {C’x...x’ | ’x...x’C | ’x...x’} and may have a maximum
length of 80 characters. A longer literal is rejected with an error message outputting
only the first 52 positions of the literal.

Up to 58 lines are printed on one page, not counting the title of the page.

page-header

%TRACE AID commands

116 U2854-J-Z125-10-76

%TRACE

With the %TRACE command you switch on the AID tracing function and start the program
or continue it at the interrupt point.

– By means of the number operand you define the maximum number of instructions to be
traced, i.e. executed and logged.

– By means of the continue operand you control whether the program halts after the
%TRACE terminates (default) or continues running without logging.

– By means of the criterion operand you select different types of machine instructions.
AID outputs a logging line after an instruction of the selected type has been executed.

– By means of the trace-area operand you define the program area in which the criterion
is to be taken into consideration.

DDD
Command Operand
DDD

%T[RACE] [number] [continue] [criterion][,...] [IN trace-area]

DDD

A %TRACE cannot be active in conjunction with a write-event of %ON.

On machine code level the %TRACE command has a different effect than on the symbolic
level.
In debugging on machine code level, an instruction selected with criterion is logged
following its execution and monitored also outside of the trace-area. Thus trace-area only
has an effect on logging, not on monitoring. The additional monitoring effort caused by this
slows down the program run; therefore insertion of the %TRACE command as a
subcommand of the %INSERT command directly at test points and its deletion immediately
after execution are recommended for large programs with long instruction tracts (see AID
Core Manual [1] and the %INSERT command).

The %TRACE command is interrupted by the following events during the test run:

– A subcommand containing a %STOP is executed.
– An %INSERT command terminates with a program interrupt, as the control operand is

K or S.
– The K2 key is pressed. For more information, see the section “Commands at the

beginning of a debugging session” on page 12

 The %TRACE command is terminated by the following events:

– The maximum number of instructions to be traced is reached (which is why a %TRACE
can be deleted by entering %T 1 %INSTR).

– You enter a %RESUME after one of the program interrupts described above.
– A subcommand containing a %RESUME or %TRACE command is executed.

AID commands %TRACE

U2854-J-Z125-10-76 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

If a %TRACE command has been terminated as described above, its operand values still
remain valid. They continue to apply until they are superseded by specifications in a new
%TRACE command or until end of program. AID therefore inserts the value from the
previous %TRACE command in a new %TRACE command in which an operand has not
been specified. For the trace-area operand, this is done only if the current interrupt point is
situated in the trace-area to be taken over. If there are no values to be taken over, AID
assumes 10 (for number) and the entire user program (for trace-area) by default.

With the aid of the %OUT command, you can control the information to be contained in a
line of the log and the output medium to which the log is to be directed.

If the %TRACE command is contained in a command sequence or subcommand, any
commands which follow will not be executed.

The %TRACE command alters the program state.

Specifies the maximum number of instructions of type criterion which are to be executed
and logged.

number
is an integer where 1 ≤ number ≤ 231-1.
The default value is 10. If there is no value from a previous %TRACE command, AID
inserts the default value in a %TRACE command with no number operand.

After the specified number of instructions have been traced, AID outputs a message via
SYSOUT, the program is interrupted and the user can enter AID or BS2000 commands.
The message tells you at which address and in which CSECT or COMMON the program
was interrupted.

Defines whether AID is to halt or continue program execution after the %TRACE termi-
nates. 'continue' applies until a different operand value for it is entered in a new %TRACE
or until the program terminates.

continue-OPERAND -

{S | R}

- -

continue

number

%TRACE AID commands

118 U2854-J-Z125-10-76

S The program is halted. AID issues a STOP message containing the localization
information about the interrupt point. S is the default value.

R The program is continued without a message being issued.

This is a keyword which defines the type of machine instructions to be traced after
execution. The default value is the symbolic criterion %STMT, so a criterion must always
be specified for machine-oriented debugging unless a suitable criterion declaration from a
previous %TRACE command is still valid.

Defines the program area in which tracing is to take place.
The base qualification E=VM must be set (see %BASE) or specified explicitly for %TRACE.

A trace-area definition remains effective until a new %TRACE command with its own
trace-area operand is entered,
until a %TRACE command is issued outside of this area
or until the end of the program.
 If the trace-area operand has been omitted, the area definition from an earlier %TRACE
command is assumed if the current interrupt point is located in this area. Otherwise AID
assumes the entire user program by default.

criterion Logging takes place after execution of:

%INSTR each machine instruction executed

%B each branch instruction executed (these are the machine
instructions BAL, BALR, BAS, BASSM, BASR, BC, BCR, BCT,
BCTR, BSM, BXH and BXLE)

%BAL each invocation of a subprogram (via machine instructions
BAL, BALR, BAS, BASSM and BASR).

criterion

trace-area

AID commands %TRACE

U2854-J-Z125-10-76 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

criterion continues to be monitored outside of the trace-area, but in this case the commands
which have been executed are not logged. Due to the resulting additional monitoring expen-
diture, use of the %TRACE command directly at test points and subsequent deletion are
recommended for large programs (see %INSERT).

trace-area-OPERAND -

 ⎧ C=csect | COM=common ⎫
IN [•][qua•] ⎨ (V'f...f': V'f...f') ⎬
 ⎩ keyword ⎭

- -

• If the period is in the leading position it denotes a prequalification, which must have
been defined with a preceding %QUALIFY command. Consecutive qualifications
must be separated by a period. In addition, there must be a period between the last
qualification and the following operand part.

qua One or more qualifications may be specified here if a memory object to be
addressed is not located in the current AID work area or is not unique in that area.
It is sufficient to specify only the qualifications needed for a unique address.

E=VM
Since trace-area can only be located in virtual memory of the loaded program,
the base qualification E=VM is only required if E=Dn was declared.

CTX=context
Specified only to enable unique addressing of a CSECT or a COMMON in the
program system.

[L=load-unit•][O=object-module•]
Specified only if a CSECT or COMMON to be referenced cannot be uniquely
addressed in the current context without these qualifications. You only need to
specify the qualifications required for a unique address.

{C=csect | COM=common}
The trace-area includes the entire CSECT or COMMON that was specified.

(V’f...f’ : V’f...f’)
The trace-area is defined by specifying a virtual start address and a virtual end
address. The addresses must be located in the executable part of a loaded
program. f...f is a valid hexadecimal address with up to eight digits. The start
address must be less than or equal to the end address.

%TRACE AID commands

120 U2854-J-Z125-10-76

keyword
The trace-area covers the memory area addressed by one of the following keywords
(see AID Core Manual [1]).

Output of the %TRACE listing

By default the %TRACE listing is output in extended form via SYSOUT (T=MAX). The
%OUT command can be used to define the output media and determine how AID is to
format the output lines (see chapter 7 in the AID Core Manual [1]).

AID does not take into account XMAX and XFLAT modes for outputting the %TRACE log.
Instead, it generates the default value (T=MAX).

When debugging programs in AR mode, addresses located in a data space are marked in
the %TRACE listing by an asterisk (*). In addition, the access registers (ARn=...) are
shown.

An extensive %TRACE listing (%OUT parameter T=MAX) includes the following infor-
mation (point 1 and point 4 only with output to SYSLST):

1. CSECT-relative address of the machine instruction

2. Instruction in Assembler notation

3. Condition code

4. Various information on the operands of an instruction, depending on the instruction
type:

– current operand values
– for an SVC, the associated macro name and the parameter list (up to 12 bytes)
– a conditional branch instruction is flagged by an asterisk (*) in front of the mask field

operand if the condition is satisfied, i.e. if the branch has been executed (if the mask
field contains binary zeros, the string "NOP" is output instead of the mask image)

– the EX instruction and the instruction executed by it are logged in the same format
– address operands are output with the calculated end address, which is additionally

shown as a CSECT-relative address.

The following additional information is included in the output to:
SYSLST (%OUT %T P=MAX):

5. Virtual address of the machine instruction

6. Instruction in hexadecimal format

keyword Meaning

%CLASS6
%CLASS6BELOW
%CLASS6ABOVE

Class 6 memory below the 16-Mb limit
Class 6 memory below the 16-Mb limit
Class 6 memory above the 16-Mb limit

AID commands %TRACE

U2854-J-Z125-10-76 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

5

Example of line format (T=MAX)

M1BS+C BALR R15,R0 3 R15=7F00000E R0=00000000
M1BS+E LM R2,R13,56(R15) 3 A2=00000064=M1BS+64
 R2=000008A0 R3=00000798
 R4=00000000 R5=00000000
 R6=00000000 R7=00000000
 R8=00000000 R9=00000000
 R10=00000000 R11=000000A8
 R12=000069D0 R13=00000A00
M1BS+12 LA R0,5(R0,R0) 3 R0=00000005
 A2=00000005=M1BS+5
M1BS+16 LA R1,3E(R0,R15) 3 R1=0000004C
 A2=0000004C=M1BS+4C
M1BS+1A L R15,94(R0,R11) 3 R15=00003868
 A2=0000013C=M1BS+13C
 O2=00003868

 %OUT %T T=MIN produces a different output format. Items 1 and 6 are not included, but
items 2, 3, 4 and 5 are always output, regardless of the type of output medium.

Example of line format (T=MIN)

0000000C BALR R15,R0 3 R15=7F00000E R0=00000000
0000000E LM R2,R13,56(R15) 3 A2=00000064 R2=000008A0 R3=00000798
 R4=00000000 R5=00000000 R6=00000000
 R7=00000000 R8=00000000 R9=00000000
 R10=00000000 R11=000000A8 R12=000069D0
 R13=00000A00
00000012 LA R0,5(R0,R0) 3 R0=00000005 A2=00000005
00000016 LA R1,3E(R0,R15) 3 R1=0000004C A2=0000004C
0000001A L R15,94(R0,R11) 3 R15=00003868 A2=0000013C O2=00003868

Examples

1. %T 3 %INSTR

The next three instructions in the current CSECT are traced. The program is then inter-
rupted, and a STOP message and END-OF-TRACE message are output.

2. %T

The operand values of the preceding %TRACE are assumed for this %TRACE. The
program is continued, and three further instructions are traced.

3. %T 10 %B IN E=VM.(V'83E4':V'8488')

If a base qualification applies to a dump file, the base qualification E=VM must be
specified for the trace-area. A maximum of 10 branch instructions are traced in the
program range V’83E4’ to V’8488’. If 10 instructions have not been logged in the first
pass of trace-area, the %TRACE remains active, and the branch instructions continue
to be monitored, even though they are not logged. This slows down the program. The
next example provides a solution to the problem.

%TRACE AID commands

122 U2854-J-Z125-10-76

4. %INSERT V‘A38‘ <%T 20 %B IN (V‘A38‘:V‘B40‘)>

%INSERT V‘B40‘ <%R>

From address V’A38’ to V’B40’, a trace line is to be output after every branch
instruction. The %TRACE command does not become active, however, until the
program run reaches address V’A38’ (%INSERT). When the trace-area is exited via
address V‘B40‘, the subcommand of the second %INSERT deletes the %TRACE.
This example is based on the assumption that the trace area has only one entry and
exit.

5. %TRACE 5 R %INSTR

5 program commands are executed and logged. After this, the program continues
without logging.

6. %C1 %CALL IN S=TESTPROG <%TRACE 1 R>

All subroutine calls by the TESTPROG module are logged. The program continues after
each respective CALL instruction is executed and logged.

U2854-J-Z125-10-76 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

6

6 Sample application

This chapter illustrates an AID debugging session for a small Assembler program. With this
debugging session as an example you can simulate the use and effect of a good number
of AID commands; the method of proceeding we selected is simple, for the sake of clarity.
The Assembler program is given in section 6.1, the debugging sequence in section 6.2.
Entries to be made are printed in bold for better legibility.

6.1 Assembler program

Objective

The program named TOTAL reads in 10 two-digit numbers and outputs the total. Input of
the number 00 serves as the end criterion. If more than 10 numbers are entered, a message
is issued and the calculated total is output.

Assembler program Sample application

124 U2854-J-Z125-10-76

Excerpt from the assembly listing

CALCULATION OF THE TOTAL OF N NUMBERS (N <= 10) 14:09:30
1995-02-21
 SYMBOL TYPE ID ADDR LENGTH A/R-MODE EXTERNAL SYMBOL DICTIONARY
 TOTAL SD 0001 00000000 000184 ANY ANY
CALCULATION OF THE TOTAL OF N NUMBERS (N <= 10) 14:09:30
1995-02-21
 LOCTN OBJECT CODE ADDR1 ADDR2 STMNT M SOURCE STATEMENT
 000000 1 TOTAL START
 2 TITLE 'CALCULATION OF THE TOTAL OF N NUMBERS (N <= 10)'
 3 PRINT NOGEN
 00000000 4 R0 EQU 0
 00000001 5 R1 EQU 1
 00000002 6 R2 EQU 2
 00000003 7 R3 EQU 3
 00000004 8 R4 EQU 4
 00000005 9 R5 EQU 5
 10 TOTAL AMODE ANY
 11 TOTAL RMODE ANY
 12 GPARMOD 31
 14 2 *,VERSION 010
 000000 0D 20 15 BASR R2,R0
 000002 00000002 16 USING *,R2
 000002 17 BEGIN WROUT MESG1,END
 46 2 *,@DCEO 999 921011 53531004
 000026 58 50 2176 00000178 49 L R5,=F'1'
 00002A 5A 50 2176 00000178 50 LOOP A R5,=F'1'
 00002E 49 50 2138 0000013A 51 CH R5,TEN
 000032 47 20 20BE 000000C0 52 BH ERROR
 000036 53 READ RDATA INPUT,END
 88 2 *,@DCEI 999 921011 53531002
 000062 D5 05 2121213A 00000123 0000013C 91 COMP CLC INPUT+4,NULL
 000068 47 80 207A 0000007C 92 BE OUT
 00006C F2 11 21232121 00000125 00000123 93 ADD PACK PACK,INPUT+4(2)
 000072 FA 31 213C2123 0000013E 00000125 94 AP SUM,PACK
 000078 47 F0 2028 0000002A 95 B LOOP
 00007C F3 63 2131213C 00000133 0000013E 96 AUS UNPK RESLT,SUM
 000082 D3 00 21372140 00000139 00000142 97 MVZ RESLT+6(1),ZONE
 000088 98 WROUT MESG2,END
 126 2 *,@DCEO 999 921011 53531004
 0000AA 129 END TERM DUMP=Y
 132 2 *,VERSION 100
 0000BE 144 ERROR WROUT MESG3,END
 173 2 *,@DCEO 999 921011 53531004
 0000E2 47 F0 207A 0000007C 176 B OUT
 177 *
 178 *
 179 * DEFINITIONS
 180 *
 0000E6 0039 181 MESG1 DC Y(L'M1+5)
 0000E8 404001 182 DC X'404001'
 0000EB C2C9E3E3C540C2C9 183 M1 DC C'PLEASE ENTER UP TO 10 TWO-DIGIT NUMBERS! END:
00'
 00011F 000000000000 184 INPUT DC XL6'00'
 000125 000C 185 PACK DC PL2'0'
 186 *
 000128 0012 187 MESG2 DC Y(L'M2+L'RESLT+5)
 00012A 404001 188 DC X'404001'
 00012D E2E4D4D4C57A 189 M2 DC C'TOTAL:'
 000133 40404040404040 190 RESLT DC CL7' '
 191 *
 00013A 000A 192 ZEHN DC H'10'
 00013C F0F0 193 NULL DC C'00'
 00013E 0000000C 194 GESAMT DC PL4'0'
 000142 F0 195 ZONE DC X'F0'
 196 *
 000144 0034 197 MESG3 DC Y(L'M3+5)
 000146 404001 198 DC X'404001'
 000149 C5E240D2D6C5D5D5 199 M3 DC C'NO MORE THAN 10 NUMBERS CAN BE PROCESSED'
 000000 200 END TOTAL
 000178 00000001 201 =F'1'
 00017C 9502211406561183 202 =X‘9502211406561183' CONSISTENCY CONSTANT FOR AID
FLAGS IN 00000 STATEMENTS, 000 PRIVILEGED FLAGS, 000 MNOTES
HIGHEST ERROR-WEIGHT : NO ERRORS
THIS PROGRAM WAS ASSEMBLED BY ASSEMBHC V 1.2A00 ON 1995-02-21 AT 14:09:30
CALCULATION OF THE TOTAL OF N NUMBERS (N <= 10)

Sample application Test run

U2854-J-Z125-10-76 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

6

6.2 Test run

Step 1

The Assembler source program TOTAL in file SOURCE.TEST is assembled using
ASSEMBH. The source program is assembled without error.

tDD?
3 /DEL-SYS-FILE OMF 3
3 /START-PROG ASSEMBH 3
3 3
3 % BLS0500 PROGRAM 'ASSEMBH', VERSION '1.2A00' OF '2014-11-11' LOADED. 3
3 % BLS0552 COPYRIGHT (C) 2015 Fujitsu Technology Solutions GmbH. ALL RIGHTS 3
3 RESERVED 3
3 % ASS6010 V 1.2A00 OF BS2000 ASSEMBH READY 3
3 3
3 //COMPILE SOURCE=SOURCE.TEST,MODULE-LIBRARY=LMSLIB 3
3 3
3 % ASS6011 ASSEMBLY TIME: 80 MSEC 3
3 % ASS6018 0 FLAGS, 0 PRIVILEGED FLAGS, 0 MNOTES 3
3 % ASS6019 HIGHEST ERROR-WEIGHT: NO ERRORS 3
3 % ASS6006 LISTING-GENERATOR TIME: 102 MSEC 3
3 3
3 //END 3
3 3
3 % ASS6012 END OF ASSEMBH 3
3 3
gDDu

Step 2

The TOTAL program is to be executed.

tDD?
3 /START-PROG *MOD(LIB=LMSLIB,ELEM=TOTAL) 3
3 % BLS0517 MODULE 'TOTAL' LOADED 3
3 3
3 PLEASE ENTER UP TO 10 TWO-DIGIT NUMBERS! END: 3
3 *05 3
3 *16 3
3 *48 3
3 *00 3
3 *0 3
3 *00 3
3 *EN 3
3 * 3
3 /%STOP 3
3 STOPPED AT V???'60?' = TOTAL + #?'60' 3
gDDu

The program always branches back to input, which means that the end-of-input indicator
‘00’ is not recognized. The program is therefore interrupted by pressing the K2 key, and the
%STOP command is used to output the address of the current interrupt point. This is
located in the RDATA handling. It is followed by the check for end-of-input with the CLC
instruction at address V’62’.

Test run Sample application

126 U2854-J-Z125-10-76

Step 3

tDD?
3 /LOAD-PROG *MOD(LIB=LMSLIB,ELEM=TOTAL) 3
3 3
3 % BLS0517 MODULE 'TOTAL' LOADED 3
3 3
3 /%SET #'62' INTO %1G 3
3 /%INSERT %1G-> <%D V'11F'%L6;%STOP> 3
3 /%R 3
3 3
gDDu

The program is loaded again and a test point is set for the CLC instruction. The address at
which the CLC instruction is located is stored in AID register %1G, since this address is
often used. Each time the program run reaches this address, the contents of the field INPUT
(address V’11F’) are to be output. Subsequent to output, the program is to switch to the
STOP state so that new commands may be entered.

The %RESUME command is used to start the loaded program.

Step 4

tDD?
3 PLEASE ENTER UP TO 10 TWO-DIGIT NUMBERS! END: 3
3 *05 3
3 3
3 *** TID: 0001020D *** TSN: 2069 *** 3
3 CURRENT PC: 00000062 CSECT: TOTAL ************************************** 3
3 V'0000011F' = TOTAL + #‘0000011F' 3
3 0000011F (0000011F) 00060000 F0F5 05 3
3 STOPPED AT V'62' = TOTAL + #‘62' 3
3 3
3 /%R 3
3 *00 3
3 V'0000011F' = TOTAL + #‘0000011F' 3
3 0000011F (0000011F) 00060000 F0F0 00 3
3 STOPPED AT V'62' = TOTAL + #‘62' 3
3 3
gDDu

Following the input of a normal number, the end-of-input indicator “00” is entered in
response to the second prompt to enter a number.

Sample application Test run

U2854-J-Z125-10-76 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

6

Step 5

tDD?
3 /%T 3 %INSTR 3
3 TOTAL+62 CLC 121(6,R2),13A(R2) 2 A1=00000123=TOTAL+123 3
3 A2=0000013C=TOTAL+13C 3
3 O1=F0F0055D 0000 3
3 O2=F0F00000 041D 3
3 TOTAL+68 BC B‘1000‘,7A(R0,R2) 2 M=0 3
3 A1=0000007C=SUMME+7C A1=0000007C=SUMME+7C 3
31=0000007C=SUMME+7C A1=0000007C=SUMME+7C A1=0000007C=TOTAL+7C 3
3 TOTAL+6C PACK 123(2,R2),121(2,R2) 2 A1=00000125=TOTAL+125 3
3 A2=00000123=TOTAL+123 3
3 O1=000F O2=F0F0 3
3 STOPPED AT V‘72‘ = TOTAL + #‘72‘ , END OF TRACE 3
3 3
3 /%D V‘64‘%S->%L6 3
3 V‘00000123‘ = TOTAL + #‘00000123‘ 3
3 00000123 (00000123) F0F0005F 0000 00.).. 3
3 3
3 /%D V‘66‘%S->%L6 3
3 V‘0000013C‘ = TOTAL + #‘0000013C‘ 3
3 0000013C (0000013C) F0F00000 005C 00...* 3
3 3
gDDu

The check for end-of-input is now followed using %TRACE. When 3 Assembler instructions
have been traced, the %TRACE terminates with a STOP message. The end-of-input
indicator ‘00’ was not recognized, and the program continued in the branch to “add the input
value”. The two following %DISPLAY commands output the memory contents compared in
the CLC. The addresses are calculated directly from parts of the instruction by means of
the type modification %S with the following pointer operator. The CLC instruction uses the
implicit length 6 of the first address operand (INPUT), but the matching field NULL was only
defined for 2 digits and the input also comprises only 2 digits, so no match can be recog-
nized by the CLC instruction.

The correct Assembler command should read:

COMP CLC INPUT+4(2),NULL

Test run Sample application

128 U2854-J-Z125-10-76

Step 6

This error can be temporarily eliminated by using the %MOVE command. The program is
loaded again, and the update dialog is activated with %AID.

tDD?
3 /LOAD-PROG *mod(lib=bib,elem=TOTAL) 3
3 % BLS0517 MODULE 'TOTAL' LOADED 3
3 3
3 /%AID CHECK=ALL 3
3 /%MOVE X'01' INTO %1G->.1 3
3 3
3 OLD CONTENT: 3
3 05 3
3 NEW CONTENT: 3
3 01 3
3 % AID0274 Change desired? Reply (Y=Yes; N=No)? 3
3 /Y 3
3 /%R 3
3 3
gDDu

The %MOVE command changes the length specification of the CLC instruction from ’05’ to
’01’. This is verified in an update dialog, and the program is then started with %RESUME.

tDD?
3 *05 3
3 *16 3
3 *48 3
3 *12 3
3 *10 3
3 *15 3
3 *17 3
3 *19 3
3 *29 3
3 NO MORE THAN 10 NUMBERS CAN BE PROCESSED 3
3 TOTAL:0000171 3
3 3
gDDu

Another program error has been found, as the user entered only nine numbers and not ten.

Sample application Test run

U2854-J-Z125-10-76 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

u
ne

 2
0

18
 S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

oc
s_

P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
en

co
de

\e
n\

ai
d

m
c_

e.
k0

6

Step 7

tDD?
3 /LOAD-PROG *MOD(LIB=BIB,ELEM=TOTAL) 3
3 % BLS0517 MODULE 'TOTAL' LOADED 3
3 3
3 /%AID CHECK 3
3 /%M X'01' INTO %1G->.1 3
3 /%T 4 %INSTR IN (V'26':V'36') 3
3 PLEASE ENTER UP TO 10 TWO-DIGIT NUMBERS! END: 3
3 TOTAL+26 L R5,176(R0,R2) 0 R5=00000001 3
3 A2=00000178=TOTAL+178 3
3 O2=00000001 3
3 TOTAL+2A A R5,176(R0,R2) 2 R5=00000002 3
3 A2=00000178=TOTAL+178 3
3 O2=00000001 3
3 TOTAL+2E CH R5,138(R0,R2) 1 R5=00000002 3
3 A2=0000013A=TOTAL+13A 3
3 O2=000A 3
3 TOTAL+32 BC B?0010?,BE(R0,R2) 1 M=2 3
3 A1=000000C0=TOTAL+C0 3
3 STOPPED AT V‘36‘ = TOTAL + #‘36‘ , END OF TRACE 3
3 3
gDDu

%AID is used to deactivate the update dialog.
%MOVE is used to repeat the tentative correction.
%TRACE monitors and traces the program segment V'26' to V'36'. The %TRACE listing
shows that register 5 was loaded with a value of 1 at the start and thus contained the value
‘2’ even before the first number was read. The correct instruction with address V’26’ should
read:

L R5,=F'0'

Test run Sample application

130 U2854-J-Z125-10-76

Step 8

This error can be temporarily removed by means of the %SET command. The program is
then reloaded.

The correction of the CLC instruction with %MOVE is repeated, but this time with the correct
address.

tDD?
3 /LOAD-PROG *MOD(LIB=BIB,ELEM=TOTAL) 3
3 % BLS0517 MODULE 'TOTAL' LOADED 3
3 3
3 /%M X'01' INTO V?'63' 3
3 /%INSERT V‘2A‘ <%SET 0 INTO %5; %REM %INSERT> 3
3 /%R 3
3 3
gDDu

%INSERT sets a test point after the incorrect load instruction with address V‘26‘. A %SET
in the subcommand of %INSERT sets register 5 to ‘0’. The %INSERT is deleted with
%REMOVE, and the program is then continued. An alternative solution would be to alter
the load instruction directly (as shown earlier for the length in the CLC) so that register 5 is
correctly loaded from the start. Since the INPUT field (address V’11F’) is loaded with X’00’,
you could then specify:
%MOVE X‘211F‘ INTO V‘28‘

tDD?
3 PLEASE ENTER UP TO 10 TWO-DIGIT NUMBERS! END: 3
3 *05 3
3 *16 3
3 *48 3
3 *12 3
3 *10 3
3 *15 3
3 *17 3
3 *19 3
3 *29 3
3 *11 3
3 NO MORE THAN 10 NUMBERS CAN PROCESSED 3
3 TOTAL:0000182 3
3 3
gDDu

Once this correction has been made the program executes without errors, and permanent
error recovery can be effected in the source program.

U2854-J-Z125-10-76 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

19
.5

5
P

fa
d

: P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

01
1

00
_

A
ID

_M
a

sc
h

in
en

co
de

\e
n\

ai
dm

c_
e

.m
ix

Glossary

Access register
%nAR, 0 ≤ n ≤ 15. Access registers are available in parallel to multipurpose regis-
ters. They are required for addressing data spaces. An ALET (assess list entry to-
ken) referring to a data space via the access list is entered into them. If AR mode
is activated, the access registers are evaluated at the same time as the addresses
are converted.

addressing mode
The addressing mode determines how addresses are to be converted for the exe-
cution of machine instructions. By default, AID assumes the addressing mode of the
object being debugged. This applies to the address length (24 or 31 bits)
(%AMODE) and also to the addressing of data spaces (%ASC).
System information on the address length can be referenced with the keyword
%AMODE. This setting can be checked with %DISPLAY and modified with
%MOVE %MODE{24|31} INTO %AMODE.
The keyword %ASC (access space control mode) references the system informa-
tion for the AR mode (access register mode). It returns information on whether ac-
cess registers for addressing data spaces are included in the address conversion.
This setting can also be checked with %DISPLAY.

address operand
This is an operand used to address a memory location or a memory area. Virtual
addresses, data names, statement names, source references, keywords, complex
memory references, a C qualification (debugging on machine code level) or a
PROG qualification (symbolic debugging) may be specified. The memory location/
area is situated either in the loaded program or in a memory dump in a dump file.
If a name has been assigned more than once in a user program and thus no unique
address reference is possible, area qualifications or an identifier (COBOL) can be
used to assign the name unambiguously to the desired address.

AID default address interpretation
Indirect addresses, i.e. addresses preceding a pointer operator, are interpreted
according to the currently valid addressing mode of the test object by default.
%AINT can be used to deviate from the default address interpretation and to define
whether AID is to use 24-bit or 31-bit addresses in indirect addressing.

Glossary

132 U2854-J-Z125-10-76

AID input files
AID input files are files which AID requires to execute AID functions, as distin-
guished from input files which the program requires. AID processes disk files only.
AID input files include:

1. Dump files containing memory dumps (%DUMPFILE)

2. PLAM libraries containing object modules (OMs) or link and load modules
(LLMs). If the library has been assigned with the %SYMLIB command, LSD re-
cords can be dynamically loaded by AID.

AID literal
AID provides the user with both alphanumeric and numeric literals (see chapter 9
in the AID Core Manual [1]):

{C'x...x' | 'x...x'C | 'x...x'} Character literal
{X'f...f' | 'f...f'X} Hexadecimal literal
{B'b...b' | 'b...b'B} Binary literal
[{???]n Integer
#'f...f' Hexadecimal number
[{????}]n.m Decimal number
[{????}]mantissaE[{???}]exponent Floating-point number

AID output files
These are files to which the output of the %DISASSEMBLE, %DISPLAY, %HELP,
%MOVE, %SDUMP and %TRACE commands may be written. The files are refer-
enced via their link names F0 through F7 (see %OUT and %OUTFILE).
The REP records are written to the file assigned to link name F6 (see %AID
REP=YES and %MOVE).
There are three ways of creating an output file, or of assigning an output file:

1. %OUTFILE command with link name and file name

2. ADD-FILE-LINK command with link name and file name

3. AID issues a FILE macro with the file name AID.OUTFILE.Fn for a link name to
which no file name has been assigned.

An AID output file always has the format FCBTYPE=SAM, RECFORM=V, and is
opened with MODE=EXTEND.

AID standard address interpretation
Indirect addresses, i.e. addresses which precede a pointer operator, are interpreted
by default in accordance with the currently valid addressing mode of the debugged
object. The %AINT command allows you to deviate from the default address inter-
pretation of AID, i.e. to define whether AID is to work with 24-bit or 31-bit addresses
in the case of indirect addressing.

Glossary

U2854-J-Z125-10-76 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

19
.5

5
P

fa
d

: P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

01
1

00
_

A
ID

_M
a

sc
h

in
en

co
de

\e
n\

ai
dm

c_
e

.m
ix

AID standard work area
In conjunction with debugging on machine code level this is the non-privileged area
of the virtual memory in a user task, which is occupied by the program and all its
connected subsystems.
If no declaration has been made via %BASE and no base qualification has been
specified, the AID standard work area applies by default.

AID work area
The AID work area is the address space in which memory locations can be refer-
enced without specifying any qualifications.
In the case of debugging on machine code level, this is the non-privileged part of
virtual memory in the user task, which is occupied by the program and all its
connected subsystems, or the corresponding area in a memory dump.
Deviation from the AID work area is possible by specifying a base qualification in
the address operand of a command. The %BASE command can be used to shift
the AID work area from the loaded program to a dump and vice versa.

ALET
The ALET (access list entry token) is a sort of pointer to the access list (AL), via
which access to a data space is managed. ALETs are contained in access registers
and can be specified in the ALET qualification.

area check
For byte offset and length modification operations and for receiver in the %MOVE
command, AID checks whether the area limits of the referenced memory objects
are exceeded, in which case an error message is issued.

area limits
Each memory object is assigned a particular area, which is defined by the address
and length attributes in the case of data names and keywords.
For virtual addresses, the area limits are between V’0’ and the last address in virtual
memory (V’7FFFFFFF’).
The area limits for a CSECT or a COMMON as a memory object are determined by
the start and end addresses of the CSECT/COMMON (see the AID Core Manual
[1]).

AR mode
AR (access register) mode decides whether access registers should be evaluated
at the same time as addresses are converted. If %DISPLAY %ASC outputs the
hexadecimal value X‘01‘ AR mode is set, access registers are evaluated and
addresses can be accessed in data spaces.

Glossary

134 U2854-J-Z125-10-76

attributes
Each memory object has up to six attributes:

address, name (opt), content, length, storage type, output type.

The address, length and storage type can be accessed using selectors. AID uses
the name to locate (and analyze) all the associated attributes in the LSD records.
Address constants and constants from the source program have only up to five attri-
butes:
name (opt), value, length, storage type, output type.
They have no address. When a constant is referenced, AID does not access a
memory object but merely inserts the value stored for the constant.

base qualification
This is the qualification designating either the loaded program or a memory dump
in a dump file. It is specified via E={VM | Dn}.
The base qualification may be globally declared by means of %BASE or specified
in the address operand for a single memory reference.

command mode
The term "command mode" in the AID manuals designates the EXPERT mode of
the SDF command language. Users who are working in a different mode
(GUIDANCE={MAXIMUM | MEDIUM | MINIMUM | NO}) should select the EXPERT
mode by issuing the command MODIFY-SDF-OPTIONS GUIDANCE=EXPERT when
they wish to enter AID commands.
AID commands are not supported by SDF syntax, i.e.

– operands cannot be entered via menus and
– AID issues error messages but does not offer a correction dialog.

The system prompt for command input in EXPERT mode is "/".

command sequence
Several commands separated by semicolons (;) form a command sequence, which
is processed from left to right. Like a subcommand, a command sequence may
contain both AID and BS2000 commands. Certain commands are not permitted in
command sequences: this applies to the AID commands %AID, %BASE,
%DUMPFILE, %HELP, %OUT, %QUALIFY and the BS2000 commands listed in the
appendix of the AID Core Manual [1].
If a command sequence contains one of the commands for runtime control, the
command sequence is aborted at that point and the program is started
(%CONTINUE, %RESUME, %TRACE) or halted (%STOP). Any subsequent
commands in the command sequence are not executed.

Glossary

U2854-J-Z125-10-76 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

19
.5

5
P

fa
d

: P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

01
1

00
_

A
ID

_M
a

sc
h

in
en

co
de

\e
n\

ai
dm

c_
e

.m
ix

constant
A constant represents a value which is not accessible via an address in program
memory.
The term "constants" includes the symbolic constants defined in the source
program, the results of length selection, length function and address selection, as
well as the statement names and source references.

An address constant represents an address. This subset includes statement
names, source references, and address selection results. An address constant in a
complex memory reference must be followed by a pointer operator (->).

CSECT information
Information contained in the object structure list.

current call hierarchy
The current call hierarchy represents the status of subprogram nesting at the
interrupt point. It ranges from the subprogram level at which the program was inter-
rupted, to the hierarchically intermediate subprograms exited by means of CALL
statements, to the main program.
The hierarchy is output using the %SDUMP %NEST command.

current CSECT
This is the CSECT in which the program was interrupted. Its name is output in the
STOP message.

current program
The current program is the one which is loaded in the task in which the user enters
AID commands.

data name
The dataname operand stands for all names assigned to data in the source program,
i.e. for all variables and constants. Items in structures/tables can be referenced just
like in the relevant programming language by means of an identifier or index.

data space
Ther are facilities for using other address spaces for data (data spaces), in addition
to the program space. Memory objects in a data space can be addressed on
machine code level via a virtual address with ALET/SPID qualification. Addressing
wthin one of these data spaces is implemented via access registers. When AR
mode is activated, the access register corresponding to the basic register is
evaluated simultaneously by means of a single command when addresses are
converted.

Glossary

136 U2854-J-Z125-10-76

data type
In accordance with the data type declared in the source program, AID assigns one
of the following AID storage types to each data item:

– binary string (ï %X)
– character (ï %C)
– numeric (not all data types treated numerically in the relevant programming lan-

guage correspond to a numeric storage type in AID; see the individual lan-
guage-specific AID manuals).

Each storage type corresponds to an output type that determines how the data item
is output by %DISPLAY or %SDUMP (symbolic debugging).

ESD
The External Symbol Dictionary (ESD) lists the external references of a module. It
is generated by the compiler and contains, among other things, information on
CSECTs, DSECTs and COMMONs. The linkage editor accesses the ESD when
creating the object structure list.

ESV
(External Symbol Vector) is a list of external references for a link and load module
(LLM). See also ESD.

external symbol dictionary
If the generation of an external symbol dictionary has not been suppressed, the link
editor BINDER will create one on the basis of the ESV (External Symbols Vector).
If the external symbol dictionary was subsequently loaded, you can use %SDUMP
%NEST to output the current call hierarchy even if the LSD information was not
loaded at the same time

global settings
AID offers commands which serve to adapt the behavior of AID to particular user
requirements, save input efforts and facilitate addressing. The global presettings
made via these commands are valid throughout the debugging session if not
explicitly modified (see %AID, %AINT, %BASE, %OUT and %QUALIFY).

index
An index is part of an address operand and defines the position of an item in a table.
It may be specified in the same way as in the programming language or by means
of an arithmetic expression from which AID calculates the value of the index.

input buffer
AID has an internal input buffer. If this buffer is not large enough to accommodate
a command input, the command is rejected with an error message identifying it as
too long. You will then need to abbreviate the command or command sequence or
distribute the function over multiple commands.

Glossary

U2854-J-Z125-10-76 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

19
.5

5
P

fa
d

: P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

01
1

00
_

A
ID

_M
a

sc
h

in
en

co
de

\e
n\

ai
dm

c_
e

.m
ix

interrupt point
The address at which a program is interrupted is known as the interrupt point. The
STOP message reports the address and the program segment where the interrupt
point is located. The program is then continued there. For COBOL85 and FOR1
programs a different continuation address can be specified via %JUMP.

LIFO
Last In First Out principle. If statements from different inputs concur at a test point
(%INSERT) or upon occurrence of an event (%ON) the statements entered last are
processed first (see the AID Core Manual [1]).

localization information
Static program nesting for a given memory location is output by AID with
%DISPLAY %HLLOC(memref) for the symbolic level and
%DISPLAY %LOC(memref) for the machine code level.
Conversely, %SDUMP %NEST outputs the dynamic program nesting, i.e. the call
hierarchy for the current program interrupt point.

LSD
The List for Symbolic Debugging (LSD) stores the data/statement names defined in
the module as well as the compiler-generated source references. The LSD records
are created by the compiler and stored in the object module. They are used by AID
to retrieve the information required for symbolic addressing.

memory object
A memory object is constituted by a set of contiguous bytes in memory. At the
program level, this comprises the program data (provided it has been assigned a
memory area) and the instruction code. All registers, the program counter and all
other areas which can only be referenced via keywords are likewise memory
objects.
Any constants defined in the program, the statement names, source references,
results of address selection, length selection and length function and AID literals do
not constitute memory objects, however, because they represent a value which
cannot be changed.

memory reference
A memory reference addresses a memory object. There are two types of memory
reference: simple and complex.
Simple memory references include virtual addresses, a closing C or COM qualifi-
cation, names for which the address can be obtained by AID from the LSD infor-
mation, and keywords. Statement names and source references are allowed as
memory references in the AID commands %CONTROLn, %DISASSEMBLE,
%INSERT, %JUMP, %REMOVE and %TRACE although they are merely address
constants.

Glossary

138 U2854-J-Z125-10-76

Complex memory references constitute instructions for AID indicating how to
calculate the desired address and which type and length are to apply. The following
operations may occur in a complex memory reference: byte offset, indirect
addressing, type/length modification and address selection.

monitoring
%CONTROLn, %INSERT and %ON are monitoring commands. When a statement
or instruction of the selected group (%CONTROLn) or the defined program address
(%INSERT) is encountered in the program sequence or if the selected event occurs
(%ON), program execution is interrupted and the specified subcommand is
processed by AID.

name range
Comprises all the data and statement names stored for a program segment in the
LSD records.

object structure list
If the object structure list was subsequently loaded, you can use %SDUMP %NEST
to output the current call hierarchy even if the LSD information was not loaded at
the same time (see also external symbol dictionary).
Note, however, that this output will not include details (e.g. source references) for
which LSD information is required.

output type
This is an attribute of a memory object and determines how AID outputs the
memory contents. Each storage type has its corresponding output type. A list of all
AID-specific storage types together with their output types can be found in the AID
Core Manual [1]. A similar assignment applies to the various data types in different
programming languages. A type modification in %DISPLAY and %SDUMP causes
the output type to be changed.

pointer operator
This is the string ->, which you enter in an address operand when the contents of a
memory object or the value of a constant is used for indirect addressing (see
section 7.2.4.2 in the AID Core Manual [1]). The addressing mode is also taken into
account for indirect addressing.

program space
This is the address space in which the program is running and which also contains
data. In addition, there are data spaces for programs in AR mode.

Glossary

U2854-J-Z125-10-76 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

19
.5

5
P

fa
d

: P
:\

F
T

S
-B

S
\C

om
pi

le
r\

A
ID

\V
34

B
30

\D
oc

s_
P

ro
d

uk
tio

n\
18

01
1

00
_

A
ID

_M
a

sc
h

in
en

co
de

\e
n\

ai
dm

c_
e

.m
ix

program state
AID makes a distinction between three program states which the program being
tested may assume:

1. The program has stopped.
The %STOP command, the K2 key, the completion of a %TRACE, or the occur-
rence of a condition specified with the control operand (%INSERT, %ON) has
interrupted the program. The task is in command mode.

2. The program is running without tracing.
The program was loaded and started with START-EXECUTABLE-PROGRAM
or started or continued with %RESUME . If no %TRACE has been defined,
%CONTINUE can be used for the same purpose.

3. The program is running with tracing.

%TRACE started or continued the program. The program sequence is logged in
accordance with the declarations in the %TRACE command. %CONTINUE has the
same effect if a %TRACE is still active.

qualification
A qualification addresses a memory location which is not in the AID work area or
not unique therein. The base qualification specifies whether the memory reference
is located in the loaded program or in a dump.
Area qualifications specify the path to the program segment containing a memory
reference or restrict the effect of a command to the designated area.
If an operand qualification is found to be superfluous or contradictory it is ignored.
This is the case, for example, if an area qualification is specified for a virtual
address.

source reference
A source reference designates an executable statement. It is specified as
S’number/name’. number/name is generated by the compiler and stored in the LSD
records.

SPID
(SPace IDentification) is a unique, system-wide identifier for a data space. The
SPID is assigned when a data space is created.

statement name
Name assigned to a statement in the source program. This includes the names of
labels, entries, paragraphs, sections, etc. An address constant for the name is
stored in the LSD records and can be used to address the corresponding memory
location.

Glossary

140 U2854-J-Z125-10-76

storage type
This is either the data type defined in the source program or the one selected by
way of type modification. AID recognizes the general storage types %X, %C, %E,
%P, %D, %F and %A and the special storage types %SX and %S for the interpre-
tation of machine instructions (see %SET and the AID Core Manual).

subcommand
A subcommand is an operand of the monitoring commands %CONTROLn,
%INSERT and %ON. A subcommand consists of a command section which may
optionally be preceded by a name and a condition. The command section may
consist of a single command or a command sequence and may contain both AID
and BS2000 commands. Each subcommand has an execution counter. Infor-
mation on how an execution condition is formulated, how the names and execution
counters are assigned and addressed, and which commands are not permitted
within subcommands can be found in the AID Core Manual [1].
The command section of a subcommand is executed if the monitoring condition
(criterion, test-point, event) of the corresponding command is satisfied and any
execution condition defined has been met.

tracing
%TRACE is a tracing command. You use it to define the type and number of state-
ments (symbolic debugging) or instructions (machine code level) to be logged.
Program execution is normally traced at the screen, but %OUT %TRACE may be
specified to redirect the output to some other output medium.

update dialog
The %AID CHECK=ALL command initiates the update dialog, which takes effect
when a %MOVE or %SET is executed. AID queries during the dialog whether
updating of the memory contents really is to take place. If N is entered as a
response, no modification is carried out; if Y is entered, AID performs the transfer.

user area
Area in virtual memory which is occupied by the loaded program with all its
connected subsystems. Corresponds to the area represented by the keyword
%CLASS6, %CLASS6ABOVE or %CLASS6BELOW.

U2854-J-Z125-10-76 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

un
e

20
18

S

ta
nd

 1
2:

19
.5

5
P

fa
d:

 P
:\

F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

34
B

30
\D

oc
s_

P
ro

du
kt

io
n\

18
01

1
00

_A
ID

_M
a

sc
h

in
en

co
de

\e
n\

ai
dm

c_
e

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

[1] AID (BS2000)
Advanced Interactive Debugger
Core Manual
User Guide

[2] AID (BS2000)
Advanced Interactive Debugger
Debugging of COBOL Programs
User Guide

[3] AID (BS2000)
Advanced Interactive Debugger
Debugging of FORTRAN Programs
User Guide

[4] AID (BS2000)
Advanced Interactive Debugger
Debugging under POSIX
User Guide

[5] AID (BS2000)
Advanced Interactive Debugger
Debugging of ASSEMBH Programs

[6] AID (BS2000)
Advanced Interactive Debugger
Debugging of C/C++ Programs
User Guide

[7] AID (BS2000)
Advanced Interactive Debugger
Ready Reference

http://manuals.ts.fujitsu.com

Related publications

142 U2854-J-Z125-10-76

[8] BS2000 OSD/BC
User Commands (SDF Format)
User Guide

[9] BS2000 OSD/BC
Executive Macros
User Guide

[10] BS2000 OSD/BC
Programmiersystem
(Programming System, Technical Description)

[11] ASSEMBH
Reference Manual

[12] ASSEMBH
User Guide

[13] XHCS
8-Bit Code and Unicode Processing in BS2000
User Guide

U2854-J-Z125-10-76 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

9.
55

P
fa

d:
 P

:\F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

o
cs

_P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
e

nc
od

e
\e

n\
ai

d
m

c_
e.

si
x

Index

%? 66
%• 113
%•subcmdname 48, 113
%0G 60
%1G 60
%AID 21, 73, 77, 113, 129
%AINT 27, 132
%AMODE 27, 131
%ASC 131
%BASE 30, 38, 113
%CLASS6 36, 40, 63, 81, 120
%CLASS6ABOVE 81
%CLASS6BELOW 81
%CONTINUE 32, 36, 71
%CONTROLn 33, 93, 113
%DISASSEMBLE 38, 86, 88, 113, 115
%DISASSEMBLE listing 41
%DISPLAY 27, 44, 86, 88, 115
%DISPLAY %DS 16
%DISPLAY %HLLOC 137
%DS 48
%DUMPFILE 30, 54, 58
%ERRFLG 94
%FIND 60, 113
%H %? 66
%H? 66
%HELP 66, 86, 88, 115
%HELP information

English or German 21
%INSERT 33, 68, 93, 113, 116, 130

set testpoint 126
%LOC 14, 53
%LPOV 94
%MAP 48

%MODE24 28
%MODE31 28
%MOVE 21, 27, 73, 128, 129, 130
%n 76, 107
%nAR 15
%nD 76, 107
%nE 76, 107
%NEST 97
%nG 15, 76, 107
%nQ 76, 107
%ON 79, 93, 113
%OUT 38, 44, 50, 66, 67, 86, 97, 113, 117, 120

%DISASSEMBLE 41
%TRACE 140

%OUTFILE 23, 78, 88, 113
%PC 47, 76, 77, 94, 107, 108
%PCB 53
%QUALIFY 40, 46, 62, 69, 90, 113, 119

CTX qualification 14
%REMOVE 33, 93, 130
%RESUME 36, 71, 96
%S

type modification 127
%SDUMP 97
%SET 21, 104, 130
%SHOW

%INSERT 113
%STOP 36, 68, 71, 79, 114

within a command sequence 114
within a subcommand 114

%subcommand 32
%SVC 94
%SYMLIB 113
%TITLE 115

Index

144 U2854-J-Z125-10-76

%TRACE 32, 36, 71, 86, 88, 96, 113, 115, 116,
127, 129

%TRACE listing 129
elements 120

%WRITE, %REMOVE 94

24-bit address 27
31-bit address 27

A
access register 15, 131
activate

tracing 116
additional information 86, 87
additional monitoring efforts 116
address 70, 104

in the data space 18
in the program area 18

address area 35, 75, 106
address operand 131
address selection 18, 41, 48, 63, 70, 75, 81, 92,

106
address selector 49, 76, 107
address V'0' 39
addressing

%MODE{24|31} 131
data regions 131
XS systems 131

addressing error 70
addressing mode 27, 76, 77, 107, 108, 138

of the test object 27
adressing mode 131
AID address interpretation 27
AID commands

help texts 66
AID input files 132
AID literal 44, 50, 77, 108, 132
AID messages 66
AID messages, in German 25
AID mode 27
AID output 44, 50, 67

delimiter 21
AID output file 78

AID output files 132
AID register 15, 47, 60, 76, 107
AID standard address interpretation 28, 132
AID standard work area 133
AID work area 14, 27, 30, 58, 87, 133
AIDSYS messages 66
ALET 57, 133
ALET qualification 15, 57, 91
ALET/SPID information 16
ALET=

%nAR 15
%nG 15
X’f...f’ 15

alignment 60, 64
ALL 39, 60
AR 133
AR mode 15, 16, 133

example 55, 56, 57
area check 133
area limits 133

CSECT/COMMON 17
area qualification

COMMON 14
CSECT 14
load unit 14
object module 14

area qualifications 14
Assembler program 123
assembly listing 11, 124
assign

link name 58, 88
output file 88

attributes 134

B
base qualification 14, 27, 30, 35, 46, 69, 74, 105,

119, 134
BINDER 136
brief description

of command 66
byte boundary

search at 64
byte offset 18, 41, 48, 63, 70, 75, 81, 92, 106

Index

U2854-J-Z125-10-76 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

9.
55

P
fa

d:
 P

:\F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

o
cs

_P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
e

nc
od

e
\e

n\
ai

d
m

c_
e.

si
x

C
C qualification 35, 75, 106
C/COM qualification 17
C=csect 14, 35, 40, 47, 63, 70, 75, 81, 106

memory reference 17
C=N’...’

CSECT name with special characters 15
call hierarchy 135

%SDUMP %NEST 137
cataloging

the output file 88, 89
CCS 21, 22

example 57
chain

subcommands 79
char-variables

ouput character set 45
character literal 60, 61, 115
character output

CCS (example) 57
character set

data 44
ouput of char variables 45
ouput of data 45
output 44

character sets
data output 44

CHECK 21
checking

the storage types 104
close

dump file 58
output file 88

CMD macro 23
COM qualification 15, 35
COM=common 14, 15, 17, 35, 40, 47, 63, 70, 75,

81, 91, 106, 119
memory reference 17

command mode 114, 134
command sequence 36, 85, 134
COMMON 15

control-area 35
compl-memref 41, 48, 63, 70, 75, 92, 106

ESA programs 18

complex memory reference 17, 18, 81
ALET/SPID qualification 18

constant 135
context 14

shared code program 14
continuation address

%FIND 60
continue

program 32, 71, 96, 116
trace 32

control 68
of the output file 86

control operand
%INSERT 32

control-area 33, 34, 35
COMMON 35
CSECT 35

creating
an AID output file 88

criterion 33, 116
CSECT 35, 75, 78, 91, 119

control-area 35
current 135
in multiple contexts 14
not current interrupt point 14

CSECT information 135
CSECT name from

BINDER run 15
LMS run 15

CSECT name from source program 15
CSECT name with special characters

C=N’...’ 15
CSECT names in test object

%DISPLAY %MAP 15
%DISPLAY %SORTEDMAP 15

CSECT, entire
%CONTROLn 15
%DISPLAY 15
%FIND 15
%MOVE 15
%SET 15
%TRACE 15

CTX qualification
%QUALIFY 14

Index

146 U2854-J-Z125-10-76

CTX=context 14, 35, 40, 46, 62, 69, 75, 81, 91,
105, 119

current
call hierarchy 135
CSECT 135
interrupt point 87, 114, 117, 118
program 135

current work area 44

D
data

character set 44
editing 48

data error 70
data name 49, 76, 106, 135
data output 44, 86
data sapce

designation via ALET 15
designation via SPID 16

data space 135
data type 136
data types 98
debugging

on machine code level 116
on symbolic level 116

declare
global settings 21

default address interpretation 131
default context name

LOCAL#DEFAULT 14
define

address 90
event 79
global declarations 27
page header for SYSLST 115
qualification 90
subcommand 79

delete
%CONTROLn declarations 93
%INSERT declarations 94
events 94
subcommand 71
subcommand name 94
test declarations 93

test point 71, 94
write-event 94

DELIM 21, 25
delimiter

of AID output fields 21
disassembly

of memory contents 38
display

addresses 44
lengths 44
memory contents 44
system information 44

Dn, dump file 14
documentation

for debugging 11
doubleword boundary

search at 64
dump area 97
dump file 14, 30

E
E qualification 14, 35, 40, 46, 62, 74, 91, 105
error message 66
ESA programs

compl-memref 18
ESD

External Symbol Dictionary 136
external symbol dictionary 136

event 79
remove 79

event table 83
exceeding

the area limits 75, 106
execution condition 36, 70, 85
execution control 85, 114, 116
execution counter 36, 47, 70, 76, 85, 96, 104,

107
external symbol dictionary

ESD 136

F
F6

link name 23, 78, 88
feed control 50

Index

U2854-J-Z125-10-76 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

9.
55

P
fa

d:
 P

:\F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

o
cs

_P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
e

nc
od

e
\e

n\
ai

d
m

c_
e.

si
x

file output 87, 98
find-area 60, 62

G
global settings 136

H
halfword boundary

search at 64
hardcopy output 87, 98
help texts 66
hexadecimal literal 60, 61
hit address 60

I
In message number 67
index 136
indirect addressing 18, 41, 48, 63, 70, 75, 81, 92,

106, 132
individual command 86
info-target 66
information on

ALET qualifications 16
SPID qualifiacations 16
the operation of AID 66

input buffer 136
input files 132
interpretation

of indirect addresses 27
of the hyphen 21

interrupt
%TRACE 116

interrupt point 34, 137
interrupting

the program 114

K
K2 key 114, 116
keyword 17, 18, 27, 28, 34, 36, 40, 47, 63, 76, 83,

107, 120
memory classes 81

L
L qualification 14, 35

L=load-unit 14, 35, 40, 46, 63, 69, 75, 81, 91,
106, 119

LANG 21
length 39, 104
length function 49, 76, 107
length modification 18, 41, 48, 63, 70, 75, 81, 92,

106
length selector 49, 76, 107
LEV 21, 26
level number 16
LIFO 137
LIFO rule 68, 79
limit

%FIND %CLASS6 63
%FIND 64 KB 63

line feed 50
link name 58, 88

F6 23, 78
linkage editor listing 11
literal 132
LMS UPDR record 78
LOCAL#DEFAULT 14

default context name 14
localization information

%DISPLAY %HLLOC 137
%DISPLAY %LOC 137

locator map 11
logging

program execution 116
logic value 104
LOW 21
lowercase/uppercase 21
LSD 106

List for Symbolic Debugging 137
LSD records 17, 45, 49, 76

M
machine instructions types 34
maschine instruction types 34
matching

numeric values 104
medium-a-quantity 44, 66, 86, 87, 97
memory area 62, 63
memory class 47

Index

148 U2854-J-Z125-10-76

memory contents
modify 73, 104

memory location
reference by C qualification 17
reference by keyword 17
reference by virtual address 17

memory object 35, 40, 46, 62, 69, 74, 80, 105,
119, 137
data sapce 18
program area 18

memory reference 137
C=csect 17
COM=common 17

message code IDA0nnn 66
message number

AID0n 66
messages

from AIDSYS 66
metasyntax 9
minimizing

additional monitoring efforts 116
MODIFY-ELEMENT statement 23
modifying

memory contents 73, 104
monitor

events 79
program addresses 68

monitoring 138
%INSERT 138
command types 33
machine instructions 34
program area 34

monitoring command
%CONTROLn 138
%INSERT 138
%ON 138

monitoring function 33
multiple contexts 14
multiple subcommands

processing sequence 68

N
name range 138
NESTLEV qualification 16, 46, 75, 106

number 39
of lines per print page 115

O
O qualification 14, 15, 35
O=object-module 14, 35, 40, 46, 63, 69, 75, 81,

91, 106, 119
object listing 11
object module (OM) 15
object structure list 15, 23, 78, 97, 138
open

dump file 58
output file 88

opening
the output file 89

output
%DISASSEMBLE listing 41
%TRACE listing 120
character set 44
control 44
literals 60
medium 44
memory contents 44
of disassembled commands 38

output command
%DISASSEMBLE 38, 86
%DISPLAY 44, 86
%HELP 66, 86
%TRACE 86, 116

output control 41, 86
output files 132
output help texts 66
output medium 50, 66, 67, 86, 87, 97
output of hits

%FIND 60
output type 138
output-quantity 38, 39
output, file 51, 87
output, hardcopy 51, 87
output, terminal 51, 87
OV 21
overlay 21
overlay structure 80

Index

U2854-J-Z125-10-76 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ju

ne
 2

01
8

 S
ta

n
d

12
:1

9.
55

P
fa

d:
 P

:\F
T

S
-B

S
\C

o
m

pi
le

r\
A

ID
\V

3
4B

30
\D

o
cs

_P
ro

du
kt

io
n

\1
80

11
00

_A
ID

_
M

as
ch

in
e

nc
od

e
\e

n\
ai

d
m

c_
e.

si
x

P
page counter 115
page feed 50
page header 115
pass

control 71
period 35, 46, 62, 69, 74, 91, 105, 119
permissible combinations for %SET 109
pointer operator 18, 127, 132, 138
prequalification 28, 35, 40, 46, 62, 69, 74, 90, 91,

105, 119
program

area to be monitored 117
current 135
with overlay structure 80

program area
for trace 118
monitoring 34

program counter 76, 77, 107, 108
program error 79
program state

change 32, 96, 114, 116
program termination

abnormal 79
normal 79

programs
with overlay structure 21

Q
qualification 139

R
Readme file 7
receiver 73, 74, 104
register 47, 76, 107
REP file 78
REP records 21, 73, 77
runtime control 36
runtime system 114

S
sample application 124
search

for a literal 60

search criterion 60
search string 60

length 60
sender 73, 74, 104
sequence control 71
show-target 112
show-target#k 112
source reference 139
SPID 139
SPID qualification 16, 57, 91

SPID=X’f...f’ 16
standard address interpretation 27
start 38, 39

%TRACE 116
program 32, 96, 116

start address 70
for byte offset 91

start address of CSECT
%DISASSEMBLE 15
%INSERT 15

statement name 49, 76, 106, 139
STOP message 114
storage type 44, 76, 107, 140
storage types

check 73
subcmd 33, 68, 70, 79
subcommand 36, 60, 70, 83, 96, 114, 116, 140

chaining 68, 71, 85
name 36, 85
nesting 71, 85

supervisor call (SVC) 79
SYMCHARS 21
SYSLST 44, 50, 51, 87, 98, 115
SYSOUT 60, 87
system information 47

T
target 93
target command 86
target-cmd 86
terminal output 87, 98
terminate

%TRACE 116
test object 38

Index

150 U2854-J-Z125-10-76

test point
%INSERT 126
define 68
delete 68

test run 125
trace

continue 32
trace function

activate 116
trace-area 116, 117, 118, 119
tracing 96, 140
type

data 136
type modification 18, 41, 48, 63, 70, 75, 81, 92,

106, 127

U
update dialog 21, 73, 104, 140
uppercase/lowercase 21
user area 140

V
V address 40, 81
virtual address 17, 47, 70, 75, 91, 106
virtual end address 35, 63, 119
virtual start address 35, 63, 119

W
wildcard symbol 61
word boundary

search at 64
write-event 79

deleting 94

	Contents
	Preface
	Objectives and target groups of the AID documentation
	Structure of the AID documentation
	Changes since the last edition of this manual
	Notational conventions

	Metasyntax
	Prerequisites for debugging
	Compiling, linking and loading
	Commands at the beginning of a debugging session

	Machine-code-specific addressing
	Qualifications
	Base qualification
	Area qualifications

	Memory references

	AID commands
	%AID
	%AINT
	%BASE
	%CONTINUE
	%CONTROLn
	%DISASSEMBLE
	%DISPLAY
	%DUMPFILE
	%FIND
	%HELP
	%INSERT
	%MOVE
	%ON
	%OUT
	%OUTFILE
	%QUALIFY
	%REMOVE
	%RESUME
	%SDUMP
	%SET
	%SHOW
	%STOP
	%TITLE
	%TRACE

	Sample application
	Assembler program
	Test run

	Glossary
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

