
U23110-J-Z135-1-7600 1

1 Preface
The Format Handling System (FHS) supports the exchange of formatted messages
between application programs and terminals. The use of FHS makes the application
program largely independent of the physical characteristics of terminals. FHS can be used
for application programs in inquiry and transaction processing and in timesharing modes.
The following figure illustrates the integration of FHS in the system environment:

FHS-DM in the system environment

SDF-P
procedure

TIAM
application
program

DCAM
application
program

KDCS
application
program

F H S

TIAM DCAM UTM

BCAM

IFG

FHS-DM FHS kernel

FHS-DE

2 U23110-J-Z135-1-7600

Preface

Components of FHS

FHS consists of three parts:

– The FHS kernel:
The kernel handles static formatting, i.e. links program data with a format. It produces
a message unit that can be printed on a screen or printer.
Data that is received from a display terminal is edited as defined in the format and made
available to the application. The kernel also includes some service modules.

– Connection modules to UTM application programs, including the dialog extension for
UTM.

– FHS dialog manager:
FHS-DM implements an independent connection between a TIAM application or
SDF-P procedure and a terminal.

Application programs that use the FHS kernel and the dialog extension for UTM for
formatting (TIAM, DCAM, and UTM programs) require a data transfer area to communicate
with FHS. The structure of this data transfer area is defined when creating the format with
the Interactive Format Generator (IFG). If the format is subsequently altered, the data
transfer areas may also change, in which case the application program must be recompiled
in most cases.

If data exchange is handled by the FHS dialog manager (for TIAM application programs or
SDF-P procedures), data areas defined by dialog variables are used. The dialog manager
connects dialog variables with the fields which are defined in the format and which were
assigned a name when creating the format. A variable handler establishes the data link
between the application program or SDF-P procedure and the FHS dialog manager.
As a result, the format can be changed without always needing to recompile the application
program.

The recommendations given in the “SNI Alpha Style Guide” were taken into account when
creating the formats and for the user interface of FHS-DE and FHS-DM.

Help and validation checks need not be programmed in the application program, but can
be defined in the format and executed by FHS-DE or FHS-DM.

FHS operates with formats that are prepared in advance by using the IFG.

U23110-J-Z135-1-7600 3

Preface

1.1 Target groups

This User Guide describes the dialog manager of FHS (referred to below under the name
FHS-DM). It is intended for terminal users and programmers who use the TIAM interfaces
for remote processing in BS2000. The earlier FHS interface is described in the manual
“FHS - Formatting System for UTM, TIAM, DCAM”.

In order to understand this manual, a basic knowledge of the BS2000 operating system and
of the programming language being used is required.

1.2 Summary of contents

This reference manual is arranged as follows:

● Introduction to FHS

● Introduction to dialog elements

● Data transport, validation, and editing

● Working at the terminal

● Interface to TIAM application programs

● Interface to SDF-P

● Sample programs

README file

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific README file. You will find the
README file on your BS2000 computer under the file name
SYSDOC.product.version.READ-ME.E.
The user ID under which the README file is cataloged can be obtained from your system
administrator. You can view the README file using the /SHOW-FILE command or an
editor, and print it out on a standard printer using the following command:

PRINT-FILE FILE-NAME=filename,LAYOUT-CONTROL=PARAMETERS(CONTROL-
CHARACTERS=EBCDIC)

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U23110-J-Z135-1-7600 5

2 Introduction to FHS

What is a format?

A format (also known as a mask) is a form displayed on the screen of a data display
terminal. Just like the forms we encounter every day (e.g. application forms, order forms),
a format consists of fields (boxes) in which entries can be made, and predefined texts which
are part of the form itself. Such a “form” is based on a logical data structure made up of:

– fields with predefined text (text fields)

– fields in which entries can be made by the terminal user and/or the application program
(variable fields)

– information on the position of these fields on the screen

– information on the characteristics of the format, e.g. the terminals on which the format
can be output

– information on the characteristics (attributes) of fields in the format, e.g. underlined

– information on the editing attributes of field contents

– names of fields (names of dialog variables)

– message IDs for user messages

– links to help panels

– links to function key assignments

The following figure shows an example of a format as it is displayed on the screen.

6 U23110-J-Z135-1-7600

Introduction to FHS

Example of a format

Since FHS makes application programs independent of the physical characteristics of
terminals, the user can work on different terminals without being concerned with their
individual features. The user works with “virtual” terminals, while FHS provides the interface
to the actual terminals.

 Personal Data File
--
PLEASE ENTER YOUR ADDRESS

Last name: ________________
First name:________________
Street:________________________
ZIP: 00000
City: ________________________
Phone: Area code: 00000 Number: 0000000

Customer No.: 0000000000

Command:
F1 = Help F3 = Exit F12 = Cancel

U23110-J-Z135-1-7600 7

Introduction to FHS

Which terminals does FHS-DM work with?

FHS-DM V8.1 supports the 8160, 9750, 9755, 9763, and 3270 display terminals as well as
equivalent devices and emulations .

For FHS to support the IBM System 3270, the software product TRANSIT-CD must be
installed in the front-end processor and the terminals must be generated as system device
type 3270.

Printer terminals may be connected locally to a display terminal or centrally via a printer
terminal controller.

If the terminal type is specified incorrectly in the PDN, errors may occur during formatting.
The actual terminal type and the terminal type generated in the PDN must be identical.

How does FHS-DM function?

FHS-DM supports the input and output of formatted messages that are exchanged interac-
tively (i.e. in a dialog) between the application program and terminal. It can also execute
intermediate dialogs independently without a call from the application program, e.g. to issue
error messages prompting the terminal user to correct invalid data entries or to display help
panels.

The following figure illustrates the flow of information when working with FHS-DM.

8 U23110-J-Z135-1-7600

Introduction to FHS

Application program (AP)

Data storage of the
application program

Data pool
of the
variable
handler

FHS-DM
variable
handler

Logical input and output area

TIAM

VTSU-B as of V11.0

FHS-DM

Intermediate dialog

Dialog data
from and to the
application using
dynamic data
definitions

Validation,
interpretation
of commands

U23110-J-Z135-1-7600 9

Introduction to FHS

Variable services are used to define dialog variables in the application program. When a
mask is to be output, the display service of FHS-DM is called. This service transfers the
format data (constant text and the contents of variable fields) and logical output control
characters to an output area, and the resulting output message in “extended line mode” is
then output with VTSU-B at the appropriate device.

Input messages received by FHS-DM are always device-independent. Incoming data is
associated with appropriate input fields, the entered command is then evaluated, and the
input data is checked. If help was requested or invalid data was entered, a new output is
initiated. Otherwise, if the command and the input data contain no errors, the data is passed
to the variable handler and is thus made available to the application.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U23110-J-Z135-1-7600 11

3 Introduction to the dialog extension

3.1 Structure of DE formats for the FHS dialog manager

You must create DE formats using IFG V8.1 or a later version.To receive a DE format, you
will need to specify the switch “Dialog extensions required? : Yes” explicitly in IFG (“User
Profile/Format Display Attributes”). These DE formats can then be used with FHS-DE and
FHS-DM for TIAM and for SDF-P.

There are two representations for a DE format:

– as a full format or partial format, i.e. the format occupies the entire width of the screen.

– in a box, i.e. the height and width of the format occupy only a part of the screen; see the
section on “Dialog boxes” on page 13ff.

A DE format includes additional areas that are used exclusively for user prompting. It is
usually composed of five areas and has the following structure:

 Menu bar
--
 Status area
--

 Work area

--
 COMMAND ===> Command area
 F1=HELP
--

 Message area

12 U23110-J-Z135-1-7600

DE formats Dialog extension

Menu bar

The menu bar is a one-line area, delimited by a separator line, at the top margin of the
screen. It contains menu titles. Each menu title represents a group of choices that are
displayed in the form of a pull-down menu under that menu title (see also page 29). A
menu bar is only possible in full-screen mode, not in a dialog box.

Status area

 The status area contains (centered) the title of the format (or panel). The format name
(PANELID) is additionally output at the beginning of the line if requested with the FHS
command “PANELID ON” (see the section on “FHS commands”). The title is optional
and is defined using IFG. Formats without a title do not have a status area.

Work area

The work area is the actual action area for the terminal user and contains the text fields
and variable fields (as in the case of existing FHS formats). In addition, FHS-DM may
include selection fields and output lists.

Command area

The command area contains the command line, as well as the display (one or two lines
long) of the function key assignments. The command line consists of a text field (in the
example “COMMAND ===>”) and an input field for commands known as the command
field.

Message area

Messages are displayed in this area. The message area may only be defined for full or
partial formats. Boxes do not have a message area. Long messages can be displayed
in special boxes, called message boxes; see page 18.

Of all the areas described above, the work area is the only mandatory area (and must be
included for reasons of compatibility with earlier versions). It is, however, strongly recom-
mended that the DE format be defined with all the permitted areas so that the terminal user
can be presented with a uniform and user-friendly screen interface.

U23110-J-Z135-1-7600 13

Dialog extension Dialog boxes

3.2 Data exchange using dialog variables

Dialog variables enable the exchange of data between the application program, the dialog
manager, and dialog elements. They assume the function of a data transfer area.
An important use of dialog variables is in the exchange of data between mask fields and
application program data. The names of dialog variables are assigned to the I/O fields of a
mask when defining a format with IFG,
The use of dialog variables is defined in IFG by setting the corresponding switch to “Y” in
the “Application Library Specifications” mask. The same mask also allows you to set checks
for the syntax of dialog variables or for SDF-P syntax.
When the dialog manager displays a mask, the values of the assigned dialog variables are
shown in the mask fields. Any data that is entered in an input field of a mask is then stored
as the value of the corresponding dialog variable (see also the section on “Dialog variables”
on page 98.

3.3 Dialog boxes

You can implement intermediate dialogs with FHS-DM by overlaying the underlying format
with dialog boxes; see the manual “Alpha Style Guide - Guidelines for the Design of
Character-oriented User Interfaces”. The intermediate dialog can have multiple layers, i.e.
several boxes may overlay each other on the screen.

A dialog box is a frame in the form of a “screen within a screen”. This frame, in turn, contains
a format that no longer covers the entire area of the screen. You can generate the formats
displayed in boxes by means of the IFG format generator.

A box contains the following:

– a format with input, output, and selection fields
– messages; see the section on “Message boxes”
– help texts; see the section on “Help boxes”.

Some boxes are used solely for information purposes and require no input, e.g. certain help
or message boxes. These boxes are referred to as modeless boxes. When these boxes are
displayed, entries may still be made in the underlying areas of the screen.

Modalboxes, by contrast, expect input. Once a modal box is output, all the other sections
of the screen are protected against input.

When FHS-DM is used, boxes may be output by the program or by FHS. Boxes output by
the program are referred to as explicitboxes, while those output by FHS (independently of
the program) are called implicit boxes. Help texts are typically output as implicit boxes, i.e.
you can create a complete help system without increasing the application load.

14 U23110-J-Z135-1-7600

Dialog boxes Dialog extension

The following is a simple example of full format with a dialog box.

In the first dialog step, the terminal user entered nothing in the field “Professional status”,
which was output on the screen with the default “*”. The program unit of the second dialog
step interprets the “*” character appropriately and displays the box for the selection field
“Professional status”.

Entries in dialog boxes

If one or more boxes appear on the screen (as in the example), entries are only permitted
in the uppermost modal box. All modal boxes/formats below it are inactive, i.e. the input
fields become protected fields and are displayed accordingly on the screen. An underlying
box will only be activated when all of the overlaid boxes have been removed.

If the uppermost box is modeless, e.g. a help box for a specific field, entries may be made
in the underlying box/format, provided the required input fields are not completely or partly
concealed. For input in concealed fields, the box must be first removed.

Removing dialog boxes

Implicit boxes are removed by using the FHS commands CANCEL and EXIT. CANCEL
removes the uppermost implicit box; EXIT removes all implicit boxes; see also the section
on “FHS commands” starting on page 63.

Explicit boxes can only be removed by the program units of the application.

 Address Management - Add New Entry
--

 Please enter the address data in the appropriate fields

 Lastname: Smith ----------------------- First name:Larry.........
 : Professional status :
 Street: Green Needle Dri : :
 : Please select: :
 Zip code: 21236 : _ 1. Employee : City: Baltimore............
 : 2. Wage earner :
 Phone: (410) 88 : 3. Self-employed :
 : 4. Trainee :
 Professional status: * : 5. Other : Marital status: divorced
 : :
 Children: 03 : F1=HELP F12=EXIT : Religion: catholic

--
 Command:
 F1=HELP F3=Exit F12=Cancel
--

U23110-J-Z135-1-7600 15

Dialog extension Dialog boxes

3.3.1 Explicit boxes

The dialog manager enables application programs to output masks in dialog boxes. Such
boxes are known as explicit boxes.

The position of a dialog box on the screen is defined by the application program by means
of the ADDPOP service. It can be specified with reference to the top-left corner or a field
name of the underlying mask.

The size of a box is determined by the size of the mask to be displayed; each mask shown
in a box is additionally enclosed within a frame. The width and the maximum height of the
mask are contained in the format definition. They are determined by the number of lines
and the maximum width of the fixed areas (status area, command area, etc.) in the mask.

If you are creating the mask to be shown in an explicit box yourself, you should ensure that
it fits in the box completely, since scrolling of the work area is not supported for explicit
boxes.

If the position of a box is specified explicitly by means of a row and column, the desired
position should be selected based on the size of the box so as to allow the box to be fully
displayed.

When a field name is specified as the position of a box, an attempt is made to display the
box below that field. If not enough space is available under the field, the box is positioned
about it if possible, and otherwise to the right of the field. As far as possible, the reference
field is left uncovered.

When a box is output by the application program, fields in the underlying mask are rendered
inactive, i.e. the input fields of that mask become protected fields. Color or other forms of
highlighting are reset.

A box output by an application program is always a modal box.

16 U23110-J-Z135-1-7600

Dialog boxes Dialog extension

Generating and removing explicit dialog boxes

Dialog boxes generated by the application program are usually used to extend the dialog
in the main window (full screen). The following general rules apply to these boxes:

– A dialog program must output a mask as a full screen before a box can be displayed.

– The box is always modal, i.e. the underlying mask is locked from input.

– The position of the box can be defined in relation to a field or the start of the underlying
mask (offset positioning).

The application program must first call the ADDPOP service to initialize output to a box. The
DISPLAY service must then be called to display a mask in the box. The size of the box is
determined by the size of the mask to be shown (defined using IFG). The mask output (in
a dialog box) initialized by the ADDPOP service remains in effect for all subsequent
DISPLAY calls until a REMPOP call occurs or a further ADDPOP service is invoked.

Subsequent DISPLAY calls show masks in a box with the same starting position. The output
to a box is closed by the REMPOP service; however, the box is not actually removed until
the next DISPLAY call. When a box is removed, some other mask may be displayed by
specifying its format name, or the underlying mask with its original field contents can be
shown again (by omitting the format name). Multiple ADDPOP calls, followed by one
DISPLAY call each, can be used to generate several layers of boxes (cascades).

The optional operand ALL for a REMPOP call removes all boxes up to the main window.
Without it, only the topmost box is removed. If the ALL operand is not used, the ADDPOP
and REMPOP calls must be paired.

The following example demonstrates, in simplified code, the output of a mask in the primary
window, followed by the display of two boxes in a cascade, the removal of all boxes, and a
return to the original mask in the primary window.

DISPLAY PANEL(PRIM)
 .
 .
ADDPOP
 DISPLAY PANEL(BOX1)
 ADDPOP
 DISPLAY PANEL(BOX2)
REMPOP ALL
DISPLAY

U23110-J-Z135-1-7600 17

Dialog extension Dialog boxes

3.3.2 Implicit boxes

Implicit boxes are controlled by FHS and are used to output messages and help panels. In
the case of implicit boxes, neither the name nor the fields of the format are known to the
program.

Implicit boxes are output by FHS as modal or modeless boxes. For modal boxes, the under-
lying format is inactive, whereas for modeless boxes, it is possible to make entries if the
relevant field is not concealed.

Position of implicit boxes

The position of implicit boxes is defined by FHS. Boxes that have no reference point are
output in the middle of the screen. For boxes that have reference points (e.g. field-related
help or messages), FHS first tries to display them by using the default shift, i.e. two lines
below and two columns to the right of the reference point. If there is not enough space, FHS
tries to output the box in a way that leaves the reference field completely visible. Otherwise,
if the field needs to be partly or totally concealed, the reference field becomes a protected
field for modeless boxes as well.

18 U23110-J-Z135-1-7600

Message boxes Dialog extension

3.3.3 Message boxes

A message box is an implicit box that is generated by FHS. The height and width of the
message box depend on the length of the message text. If the prescribed maximum size of
the box (six lines of 56 characters each) is exceeded due to editing, the message text is
transferred to the message box in unedited form.

The text of the message is highlighted, e.g. bright, reverse video, or in color, depending on
the terminal and the type of message. The other areas of the box are displayed with normal
intensity. The command line is only generated for modal messages.

A message may be output either by FHS (implicitly) or by the program (explicitly). See the
section on “Message output” starting on page 84 for details.

Codes to edit a message may be specified when creating a message text. The output
position of the help or message box is determined by FHS. If a field-related help or message
text is involved, the box is output at the field for which it was activated. The actual position
depends on the amount of space available above, below and on both sides of the field. An
attempt is always made to ensure that the field is not covered.

...................................
: Message code : Message identification
: Message text :
: . :
: . : Message text
: . :
: Message text :
: ==> : Command line
: F1=Help F3=. .. : Key assignments
...................................

U23110-J-Z135-1-7600 19

Dialog extension Help boxes

3.3.4 Help boxes

A help box is a modeless implicit box. You can define the size of any application-specific
help box when generating it with IFG. A help box may also occupy the entire screen.

Field-related help boxes should be smaller. As far as possible, FHS outputs them below the
field; see the section on “Position of implicit boxes”. If the field remains visible, the user can
read the help and fill the field at the same time.

The size of a help box is defined by the help panel. In the definition of the help panel you
can specify whether a help box is to have a fixed height or whether FHS-DM may increase
the height of the box depending on its position. In the latter case, the defined height is inter-
preted as the minimum height of the box. The message area of the screen is not overwritten
when extending the box, and the width of the box is not changed.

If a help text does not fit in a box, the box will include scrolling information, e.g. “More: +”.
Additional text can then be requested by using the “+” command.

A help box is generated as a DE format with IFG. You must explicitly specify that the format
is a help panel.

More information on help can be found starting on page 88.

20 U23110-J-Z135-1-7600

Frame of a box Dialog extension

3.3.5 Frame of a box

The frame of a box is created by default with periods (horizontal lines) and colons (vertical
lines). These characters may be changed as described below in the section on “Modifying
frame characters”.

FHS inserts blanks in certain places between frames and the underlying format. The
following diagram shows how a format fits in a box and how the box is positioned on the
underlying format.

In the above diagram, frame characters can be assigned for characters 1 - 8 and A - F. If
the terminal can only represent the Alpha character set, the Alpha Style Guide recommends
the use of “.” and “:” (periods and colons). If the terminal can display graphics characters,
you can use the SNI product ICE (Interactive Character Set Generator) to define frame
characters (see also page 22).
Characters A - F are ignored on 3270 terminals. Blanks are used by default.

The first and last column of the format in the box should contain blanks.

Defining characters for the frame of a box

Every box shown on the screen consists of a frame and the mask enclosed within it. On
most Alpha screens, this frame can only be constructed using characters of the normal
character set.

An application may change this default and assign other frame characters; however, an
Assembler module, which on assembly produces an R module, must be coded for this
purpose. The CSECT name IDHBORD is mandatory. The R module must be made
available in the format library.

The macro IDHMBDR is supplied to define the frame layout.

xx
xxxxxxxxxxxxxxxx underlying format xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxA15555555555555555555552Bxxxxxxxxxxxxxxxxxxxxxxx
xx

xxxxxxxxxxxxxxxxE7 8Fxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxE7 format as a box 8Fxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxE7 8Fxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxE7 8Fxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxE7 8Fxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxE7 8Fxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxC36666666666666666666664Dxxxxxxxxxxxxxxxxxxxxxxx
xx
xx

U23110-J-Z135-1-7600 21

Dialog extension Frame of a box

Multiple frame definitions may be coded in the macro to define different frames for different
types of terminals. The values specified for the DEV, DIM, CCSNAME, and COLORED
operands are used to select a frame definition. When a box is to be output, FHS-DM
compares the attributes of the current terminal with the specifications to select the frame
definition. If an appropriate frame definition is found, that definition is used to display the
box frame; otherwise, the default layout is generated.

If a 9763 terminal with a color screen is to be used when working with FHS-DM, the
following must be observed when preparing the frame definition:

1. When specifying the ICE color character set, white must be entered as the COLOR
operand.

2. The representation of color is determined by the device setting (by SIDATA). Characters
in the specified color can be shown on a black background or black characters can be
shown on a color background. In the latter case, inverse colors are used for the box
frame (e.g. yellow becomes blue and cyan becomes red). For this reason, two color
character sets for the frame definition are included in the delivery package: IDHTSD1C
should be used with a black background, and IDHCSD1D with a color background.

Note:
The best results are obtained when cyan characters are displayed in normal intensity
(SIDATA setting). White should not be specified as the „HOLE COLOR“ when defining
the format.

3. If a monochrome ICE character set is defined, the box frame is displayed in black on
white.

Character sets can be defined by using the SNI product “Interactive Character Set Editor
(ICE)”.

22 U23110-J-Z135-1-7600

Frame of a box Dialog extension

Format and operands of the macro IDHMBDR

1) also applies to other terminals with same characteristics

BORDER=frame-characters

frame-characters: 14 characters in the following order:

– 1 top left corner
– 2 top right corner
– 3 bottom left corner
– 4 bottom right corner
– 5 upper horizontal line
– 6 lower horizontal line
– 7 left vertical line
– 8 right vertical line
– A border character for top left corner
– B border character for top right corner
– C border character for bottom left corner
– D border character for bottom right corner
– E border character for left vertical line
– F border character for right vertical line

The default characters used are C’..::..:: ’.

If an ICE character set is used, these characters are the internal code.

NEXT=name
This entry must be specified if further macro definitions follow; “name” indicates the name
at which the next macro definition is specified.

Operation Operands

IDHMBDR [BORDER=frame-characters]
[,NEXT=name
[,DEV=device]
[,CCSNAME=ccsname]
[,ICENAME=icename] only for 9763 terminals 1)
[,DIM=24X80/27X132/32X80] only for 9763 terminals
[,COLORED=YES/NO/BOTH] only for 9763 terminals
[,COLOR=color] only for 9763 terminals

U23110-J-Z135-1-7600 23

Dialog extension Frame of a box

DEV=device-type
A value must be specified here if the frame characters are to be associated with a particular
type of terminal. The entry is needed if multiple frame definitions are desired. The
parameter may be omitted for the last macro definition.

CCSNAME=ccsname
Only for 8-bit terminals; specifies that the frame defined with this macro definition is to be
used when processing a format with the specified CCSNAME.

ICENAME=icename
Name of an ICE character set (for 7-bit formats only)

DIM=24X80/27X132/32X80
Dimensions of the screen (for 9763 terminals only)

COLORED=YES/NO/BOTH
Applies to color, monochrome, or both types of screens (for 9763 terminals only).

COLOR=color
color: BLUE, RED, MAGENTA, GREEN, CYAN, YELLOW, WHITE
Color of the frame characters if no ICE character set is specified.
If an ICE data set is specified, COLOR=WHITE must be coded (for 9763 terminals
only).

The example given below shows the default module for the frame definition.The module
can be found in the default format library of the software delivery package.
The following ICE character sets are supplied:

– IDHTSD1B for 9763 terminals, monochrome, screen dimensions 24x80
– IDHTSD1C for 9763 terminals, color screen, black background, 24x80
– IDHTSD1D for 9763 terminals, color screen, colored background (cyan), 24x80
– IDHTSD4B for 9763 terminals, monochrome, screen dimensions 27x132

9750
8160
9751
9752
9753
9754
9755
9763
3270

Type of terminal / device

XHCS Default definition for 8-bit terminals (last 8-bit definition)

DEF Default for all devices (only allowed in last macro call)

24 U23110-J-Z135-1-7600

Frame of a box Dialog extension

IDHBORD START
IDHBORD RMODE ANY
IDHBORD AMODE ANY
 ENTRY IDHBORD
IDHBORD CSECT
*
* Device 9763; color screen; screen dimension 24 x 80;
* ICE-Format IDHTSD1C.
* T9763BC IDHMBDR NEXT=T9763B7,DEV=9763,ICENAME=IDHTSD1C,
 BORDER=ABCDEFGHabcdef,COLOR=WHITE,COLORED=YES
*
* Device 9763; monochrome screen; screen dimension 24 x 80;
* ICE-Format IDHTSD1B.
*
T9763B7 IDHMBDR NEXT=T9763D4,DEV=9763,ICENAME=IDHTSD1B,
 BORDER=ABCDEFGHabcdef
*
* Device 9763; monochrome screen; screen dimension 27 x 132;
* ICE-Format IDHTSD4B. ´
*
T9763D4 IDHMBDR NEXT=T9758B8,DEV=9763,ICENAME=IDHTSD4B,
 BORDER=ABCDEFGHabcdef,DIM=27X132
*
* Device 9758; with CCS name
* any CCS-name
*
T9758B8 IDHMBDR NEXT=T9763B8,DEV=9755,CCSNAME=*ANY
*
* Device 9763; with CCS name; screen dimension 24 x 80;
* any CCS-name (no ICE)
*
T9763B8 IDHMBDR NEXT=DEF,DEV=9763,CCSNAME=*ANY
*
* for all other devices
* default: no ICE, no color, border signs ’..::..:: ’
*
DEF IDHMBDR DEV=DEFAULT
END

U23110-J-Z135-1-7600 25

Dialog extension Formats with CCS names / Selection fields

3.4 Formats with CCS names

When creating formats with IFG, you can assign a CCS name (coded character set) to a
format. This enables you to change or extend your character set (see the section on “Code
tables” starting on page 44). The SNI product XHCS (extended host code support) and
8-bit terminals are prerequisite to using this facility.

If formats are to be output as a box, a check is made to verify compatibility of the CCS
name. The following basic rule applies to explicit and implicit boxes:

If a format that is to be displayed as a box contains a CCS name, this CCS name must
already be used by the full screen. If no CCS name is specified in the format to be displayed
as a box, it may be output on a screen with any CCS name. The CCS name is inherited by
the box.

3.5 Selection fields

A selection field provides the terminal user with a simple way of choosing from a number of
options. There are two types of selection fields:

– single-choice field: the terminal user selects one of several options.

– multiple-choice field: the terminal user can select several entries.

A selection field is part of the work area of a format and usually has a number of lines. It
consists of a header, a series of entries, and one or more selection input fields.

Selection fields are created using IFG You can assign a help panel (defined when using
IFG) to both the selection field and each entry.

3.5.1 Single-choice field

A single-choice field always has one input field in which the terminal user enters a selection
character to indicate a particular choice.

The number of the desired option must be entered in the input selection field. The selection
is activated on pressing the ENTER key. The input selection field may consist of one or two
characters, depending on how the format was created with IFG. In accordance with the
Alpha Style Guide, digits should be used for the choices offered: one digit for up to 9
choices (see below) and two digits for 10 or more. Choices that are not available in the
current dialog situation can be identified as locked by the application program (indicated by
an exclusion character in the mask). If the input selection field remains empty, no selection
occurs.

26 U23110-J-Z135-1-7600

Selection fields Dialog extension

The input selection field can be preset to a value if a particular entry is frequently used. This
value can be modified by entering a number for some other choice or a space.

The dialog manager checks whether the entered value represents a valid choice. If it does,
the value is passed as a dialog variable to the application program for evaluation.

Example of a single-choice field:

The options are numbered 1 through 5 in this example. The user enters the appropriate
number in the input field, which is indicated by an “_” (underscore). To select “Wage earner”,
for example, a 2 must be entered in this field. Choice 4 (“Trainee”) is no longer available.
Note that help can be requested for the available choices. The characters used for the
displayed choices are specified when creating the field with IFG.

When a single-choice field is defined using IFG, a dialog variable must be assigned to each
selection field. The text for the choices can also be assigned a dialog variable. The variable
assigned to a choice is used to lock the corresponding entry in the display. In the following
description, the variables used for the selection field and for locking are referred to as the
SELVAR and LOCK variables, respectively. The LOCK variable is a control variable that is
given a name as a LOCK control variable using IFG. The name of the SELVAR variable is
defined as a field name in the format definition.

The LOCK variable should be an elementary dialog variable of type CHAR with a length of
one byte.

If one of the choices is currently unavailable to the terminal user, the value of the corre-
sponding dialog variable must be set to X’F0’. Such choices are identified in the display by
the exclusion character “*” and are locked from selection. Any change in the value of the
dialog variable will not take effect until the next DISPLAY call with the PANEL operand (see
also the description of the DISPLAY service).

If no LOCK variable was allocated to a choice when defining the format or if the corre-
sponding dialog variable does not exist, no exclusion is possible.

 Professional status

 Please select:
 _ 1. Salaried employee
 2. Wage earner
 3. Self-employed
 *. Trainee
 5. Other

 Command:
 F1=Help F3=Exit F12=Cancel

U23110-J-Z135-1-7600 27

Dialog extension Selection fields

External and internal values:

IFG can be used to define an external value as well as an optional internal value for each
selection field to be displayed.

The value entered by the terminal user in the input selection field is made available to the
application program in the dialog variable assigned to the mask field. If an internal value
exists for the entered value (external value), the internal value is transferred to the dialog
variable instead of the value entered.

When the DISPLAY service is called, the value of the SELVAR variable is used to set the
default. If an internal value was defined, the internal value must be specified, but the
external value is displayed. If the value of the dialog variable is zero, and zero does not
appear as a reference value, the selection field is displayed with fill characters. Fill
characters are also shown if the value of the dialog variable consists of blanks or has a
length of zero.

3.5.2 Multiple-choice field

A multiple-choice field consists of a title (optional) and a number of input selection fields with
appropriate entries to indicate choices. The choices are not numbered, but each choice is
preceded by an input selection field. The user selects an option by marking the corre-
sponding input field.

The DISPLAY service checks whether a legal value has been specified in the input field of
a multiple-choice field. This value can be a defined selection character or a blank.

Example of a multiple-choice field:

Mumps and Measles are childhood illnesses that were selected by the / (slash). “Other
illnesses” cannot be selected. Help on the available choices can be requested.

A SELVAR variable with a unique name must be specified for each choice of a multiple-
choice field when defining a format (see also “Single-choice field”).

 Childhood illnesses

 Please enter:
 _ Mumps
 _ Whooping cough
 / German measles
 _ Scarlet fever
 / Measles
 _ TB
 * Other illnesses

 Command:
 F1=Help F3= Exit F12=Cancel

28 U23110-J-Z135-1-7600

Selection fields Dialog extension

The corresponding elementary dialog variable should be of type CHAR with a length of 1
byte. Its name is defined using IFG as a field name for the respective input field. These
dialog variables can contain the following values before the mask is displayed:

The exclusion character “*” is output in the selection fields of locked entries when the mask
is displayed. Each such field then becomes a protected field.

Preselected entries are shown in the mask with the selection character “/” displayed in the
input selection field.

The selection characters „/“, „X“ or „x“ are accepted by the dialog manager as a selection
character on input (in accordance with the SNI Alpha Style Guide).

On returning to the application program, the SELVAR variables of selected entries will have
a value of 1. The application program must then respond accordingly.

Binary zero / Blank Selectable, not prefilled

’1’ preselected

’0’ selection locked

U23110-J-Z135-1-7600 29

Dialog extension Menu bar and pull-down menus

3.6 Menu bar and pull-down menus

Formats may include a one-line menu bar in which menu titles are shown. A menu title can
be selected by moving the cursor to that menu title and pressing the Enter key.

Positioning the cursor in the menu bar

One method of placing the cursor in the menu bar to press the F key that was assigned to
the system command ACTIONS (F10 by default).
The ACTIONS key initiates cursor positioning by FHS-DM. The current position of the
cursor is saved, and the cursor is moved to the first character of the first menu title of the
menu bar. When the ACTIONS key is pressed again, the cursor is reset to the saved initial
position.

Another method is to use the cursor keys. Since this function is implemented by hardware,
the cursor position cannot be saved by FHS-DM in this case.

Selecting a menu title

Within the menu bar, you select a menu title by moving the cursor with the Tab key or the
cursor keys to a character of the desired menu title and by pressing the Enter key. This
causes a pull-down menu for that menu title to be displayed. During the period that the pull-
down menu is shown, the cursor is positioned within the choice fields of that menu, and all

 File Project Help
--
 : _ 1. Add : inistration - Logon
 : 2. Delete :
 : 3. Print... :
 Please e: *. View : in the appropriate fields.
 :..................:

 Date : 02.12.1994

 Project name :

 Author :

 Version :

 Programming system :

 COMMAND ===> ...
 F1=Help F3=End F12=Quit

30 U23110-J-Z135-1-7600

Menu bar and pull-down menus Dialog extension

fields of the underlying mask are locked (i.e. cannot accept inputs).
Markers or inputs in the menu title are ignored, i.e. cannot be used to select another pull-
down menu.

Displaying another pull-down menu

You can switch to another pull-down menu by selecting some other menu title with the
cursor keys.

The CANCEL key can also be used to return to the menu bar when a pull-down menu is
displayed, but the pull-down menu is deleted in this case, and any selection entered in it is
ignored. The cursor is positioned at the first menu title in the menu bar, and any of the menu
titles may be then selected.

Canceling a pull-down menu and exiting the menu bar

If the ACTIONS key was used to enter the menu bar, you can cancel the displayed
pull-down menu by pressing the same key again. The pull-down menu is then deleted, and
the cursor is reset to the saved position in the work area. Any selection made in the
pull-down menu will be ignored. The CANCEL key may also be used to cancel the display
of a pull-down menu. In this case, however, the cursor is moved to the first menu title of the
menu bar, and you can then exit the menu bar by using the cursor keys.

Warning :
If you create your own key assignment table (key list), you must define an ACTIONS or
CANCEL key for a format with a menu bar!
Reason: a pull-down menu is not assigned a separate key, and no command can be
entered in the command input field when it is displayed. In other words, it is not possible
to exit the pull-down menu without the ACTIONS or CANCEL key.

Working with pull-down menus

Pull-down menus are only possible in full-screen mode. The menu bar and the pull-down
menus are generated using the Interactive Format Generator IFG. The menu titles in the
menu bar are markable input fields. When the cursor is in a pull-down menu, a selection
can be activated by entering a choice in the selection input field or by using the default value
and pressing the Enter key. Inputs and markers in menu titles are ignored; selection occurs
solely on the basis of the cursor position.

The entries made in the pull-down menu are transferred to the input fields. These entries
do not occur if the ACTIONS command was given following input in a pull-down menu or if
some other pull-down menu was selected.

One single-choice selection field can be defined in each pull-down menu. This field can be
preset to a default value, and choices can be locked. Furthermore, internal values may be
defined (see also page 27).

U23110-J-Z135-1-7600 31

Dialog extension Menu bar and pull-down menus

Processing a menu bar

When a menu bar is defined with the aid of IFG, a name of an elementary dialog variable
must be assigned for each menu title. This variable is called the CHECK variable. In
addition, each menu title must be assigned a single-choice selection field that presents the
content of the pull-down menu. The definition of the selection field for a menu title is subject
to the same conditions as for any selection field.

Within the context of processing the menu bar by the application program, an active pull-
down box can be considered an additional selection field of the format. The CHECK
variable is used to detect which menu title was selected. If this variable does not exist, it is
created implicitly as a variable of type CHAR.

All CHECK variables are set to the value 0 (C’0’) by the application program before the
DISPLAY service is called.

On return from the DISPLAY service, the CHECK variable of the selected title contains the
value 1 (C’1’).

Entries selected in pull-down boxes are processed in the same way as conventional single-
choice selection fields (see also “Single-choice selection field”).

32 U23110-J-Z135-1-7600

List processing Dialog extension

3.7 List processing

Definition of a list area

The list display outputs one or more arrays of dialog variables as a list within a list area. A
list area is a scrollable portion of the work area of a format.

The list display is implemented by means of the DISPLAY service. The format to be shown
must contain a list area.

A format may only contain one list area, and only blanks are permitted to the left and right
of that list area within the work area.

A list area consists of the following elements, which are defined using IFG:

– list title with list position and scrolling information
– column title
– list records (also called “list lines”) and list fields
– end of data marker (termination line)

List records (lines)

A list line is declared as a model line when defining a list area. The model line may consist
of input, output, and text fields. Each input, output, and text field of the model line represents
a list field. All list lines are output by the DISPLAY service in accordance with the model line.

If the name of a dialog variable that is part of an array of dialog variables is assigned to an
input or output field of a list, the values of that variable make up the list lines for that list field
(see diagram on next page). The dialog variables with the same index provide the data for
each individual list line (see also section on “Types of dialog variables”). The names of the
dialog variables are declared in the model line without an index specification (e.g. #3).

Specific conventions apply in the model line for the dialog variables of a TIAM or SDF-P
application program. These conventions are described on pages 108 (TIAM) and 187
(SDF-P).

If an elementary dialog variable is assigned to an output field in the model line, that field will
have the same value in each list line.

Text fields have the same value in each list line as in the model line. Input fields can be
modified by the terminal user of the application via entries from the keyboard. On exiting
the DISPLAY service, the values of the modified input fields will be available in the corre-
sponding dialog variables.

U23110-J-Z135-1-7600 33

Dialog extension List processing

The following diagram illustrates the relationship between an array of dialog variables and
a list field of a list line. LAST NAME, FIRST NAME, and NUM are the names of the dialog
variables that were declared in the model line for the list fields. Note that the index entry
always references the array element although it is also designated as the line number
below.

Each list record can occupy one line of the list area or be split into multiple lines (multi-line
list records). If desired, a separator line can be defined in the model line to separate the list
records. The separator line will then be displayed after each set of entries that belong to the
record.

Arrays of dialog variables (DIM(51))

LAST-NAME FIRST-NAME NUM

Smith

Smith

Smith

:

:
:

Start

Larry

Harry

:
:
:

2345

5678

Index=1

Index=50

Index=51

Phone directory

--

--

Last name First name Number
More: -

Smith
Smith

Larry
Harry

2345
5678

* * * * * * * End of data * * * * * * * *

List fields

List record

34 U23110-J-Z135-1-7600

List processing Dialog extension

The following examples show different ways of arranging list lines (records).

Example of a list with single-line records

Example of a list with multi-line records:

Scrolling in a list area

If the list contains more lines than can be simultaneously displayed in the list area, scrolling
commands can be given to display the invisible parts.

Scrolling can be achieved by entering a command in the command input area or by
pressing an appropriate function key. The DISPLAY service supports forward and backward
scrolling. The following commands are available for this purpose:

 Last name First name Phone ZIP City

 Doe John 281-6506 22181 Vienna, VA

 Doe Mary 221-6509 22181 Vienna, VA

 Last name Doe First name : John

 Telephone : 281-6506

 ZIP : 22181 City : Vienna, VA

--

 Last name : Doe First name : Mary

 Phone : 221-6509

 ZIP : 22181 City : Vienna, VA

--

FORWARD [num] / +[num] Scroll toward end of list

BACKWARD [num] / -[num] Scroll toward start of list

++ Scroll to end of list

-- Scroll to start of list

U23110-J-Z135-1-7600 35

Dialog extension List processing

The following options are available when using these commands:

– If the cursor is not in a list line

– If the cursor is not in a list line:

Before a scrolling command is executed, the values of modified list fields are checked and
stored in the appropriate dialog variables. Mask fields that do not form part of the list area
are only checked when there are no more scrolling commands. Furthermore, these field
contents are only stored in dialog variables on returning to the application. If the CANCEL
command is issued, the contents of non-list fields are not stored in dialog variables either.

FORWARD/+ Scrolls the lowest list line to the top

FORWARD num Scrolls num lines forward toward the end of the list with reference
to the topmost list line

+num Scrolls num lines forward toward the end of the list with reference
to the topmost list line

BACKWARD The topmost list line is scrolled to the bottom

BACKWARD num Scrolls num lines backward toward the start of the list with
reference to the topmost list line

-num Scrolls num lines backward toward the end of the list with
reference to the topmost list line

FORWARD/+ The list line marked by the cursor becomes the topmost line

BACKWARD/- The list line marked by the cursor becomes the lowest line

Note: If the cursor is positioned in the first or last line of the list, scrolling occurs as if
the cursor were not in a list line.

36 U23110-J-Z135-1-7600

List processing Dialog extension

Other definitions for a list

Special dialog variables to control the list display (called control variables) can be defined
when creating the format with IFG via the “control variables” field) and associated with the
list. The names of these dialog variables can be freely selected at the time of designing the
format.

The designations of the control variables described below are only used to identify them;
the actual names may be freely selected. These dialog variables serve the following
purposes:

● NUMROW variable

An elementary explicit or implicit dialog variable, preferably of type
FIXEDS(TIAM) / INTEGER(SDF-P). Its value defines the current maximum index for an
array of dialog variables. This value must be less than or equal to the dimension (DIM
operand) of the dialog variable assigned to a list field. If the value is greater than the
dimension, the value of the smallest dimension is used. This entry allows an application
program to partially fill the space defined with VDEFINE for the dialog variables of the
list fields or to partially process an SDF-P list.

If no NUMROW variable is specified in the format definition or if the declared dialog
variable does not exist, the smallest value of the dimension of the dialog variables
assigned to list fields is used instead.

U23110-J-Z135-1-7600 37

Dialog extension List processing

● TOPINDEX variable

Specifies the index (line number) of the dialog variable to be displayed as the first line
in the list area.

The TOPINDEX variable can be an elementary implicit or explicit dialog variable
(explicit variables should be preferably of type FIXEDS / INTEGER). Its value must be
a positive number and must not exceed 32767. An invalid value leads to an error. If the
value for TOPINDEX is greater than the value for NUMROW or the dimension (the
smallest dimension for multiple arrays of list data), the smallest value of these
specifications is used as the TOPINDEX.

Rules for TOPINDEX:

– The DISPLAY service or the ADDPOP service terminates with an error code if the
TOPINDEX variable exists and an index is specified that cannot be displayed in the
list area under the conditions described below, given the value of the TOPINDEX
variable.

For example, if TOPINDEX has the value 11 and the DISPLAY service is called with
an index of 15 in the MSGLOC operand (e.g. MSGLOC(FIELD3#15)), the message
box will be placed on the fifth list line in the list area. If a maximum of 10 list lines
can be shown in the list area, the index entry for the MSGLOC operand in the above
example may have the values 11 to 21.

– If the TOPINDEX is 0, an index of 1 is assumed for the first line on executing a
DISPLAY call with the PANEL operand. Without the PANEL operand, the value of
the first line in the current list area is set as the TOPINDEX.

– If no TOPINDEX variable is specified in the format definition or if the declared dialog
variable does not exist, a value of 1 is assumed for it at the start of the list displayed.
If a TOPINDEX variable was not assigned in the format definition, the dialog
manager cannot return the index of the first line in the list area to the application
program. (The variable is not created automatically.)

If an index is specified in this case by the CURSOR or MSGLOC operand in a
DISPLAY call with the PANEL operand or by the POPLOC operand in an ADDPOP
call, scrolling occurs automatically.

– The value of the TOPINDEX variable is not taken into account when a DISPLAY call
with no PANEL operand is executed for a list. The list area is shown in its existing
state at the time the previous DISPLAY call was exited. Conflicts with an index entry
in the CURSOR or MSGLOC operand do not result in an error. The dialog manager
selects a representable form in such cases.

38 U23110-J-Z135-1-7600

List processing Dialog extension

● MODINDEX variable

An array of dialog variables of type FIXEDS (2 or 4 bytes) containing the indices of
dialog variables of modified list lines.

On calling the display service, the first element normally contains the value 0. Upon
return from the DISPLAY service, the elements contain the indices of the modified list
lines (the first list line has an index of 1). The sequence of indices ends with the first
element containing a 0 or at the end of the array.

If the lines with the indices 1, 3, and 51 were modified by the user in the list display, for
example, the first element of the MODINDEX variable will contain the value 1 on return
from the DISPLAY service; the second element will have the value 3, the third element
the value 51, and the fourth element the value 0 (as an end marker). The dimension of
the MODINDEX variable determines the maximum number of lines that can be reported
as modified by the dialog manager. The application program can also preset the
MODINDEX variable and then call the DISPLAY service. In this case, the corresponding
list lines are predefined as modified. This can be used by the application program in
combination with the “mandatory input” specification for a list field (defined using IFG)
to force input for a list field (see also “Checks for mandatory input in list fields”).

The values of the MODINDEX variables need not be stored in sorted order on calling
the display service. The indices are always sorted in ascending order on return from the
DISPLAY call.

If no MODINDEX variable is specified in the format definition or if the declared dialog
variable does not exist, the function associated with it cannot be used.

U23110-J-Z135-1-7600 39

Dialog extension List processing

Calling the list display

The list display is implemented by a call to the DISPLAY service. The effects of a DISPLAY
call differ depending on whether or not a PANEL operand is specified.

DISPLAY call with PANEL operand:

The following values are used by the DISPLAY service to display a list in the list area:

– The TOPINDEX variable defines the index of the elements in the list fields whose
values appear in the first line of the list area.
If the value of the index is invalid (too high or negative), the DISPLAY service terminates
with an error code.

– The remaining lines of the list area contain the values of elements with indices
incremented by 1 from the top index. If no further elements exist, the “end of data” line
if specified, is shown. Any free space that may remain in the list area is left empty.

– The position of the cursor in the displayed mask is determined by the CURSOR and
CSRPOS operands of the DISPLAY service.
If the CURSOR operand specifies the name of a dialog variable associated with a list
field, the cursor is positioned in that field. The precise line of the list area in which it is
positioned can be defined by specifying an index for the field name
(e.g. CURSOR(FIELD#3)). If no index is present, the topmost list line in the list area is
assumed. The CSRPOS operand defines the position of the cursor within the list field.

DISPLAY call with no PANEL operand:

The value of the TOPINDEX variable is ignored for a DISPLAY call with no PANEL operand.
The list area is shown in the same state in which the previous DISPLAY call was exited.
Conflicts with an index entry in the CURSOR or MSGLOC operand do not result in an error;
the dialog manager selects an appropriate form of representation in such cases.

40 U23110-J-Z135-1-7600

List processing Dialog extension

Checking list fields

A validation check for input data can be defined for input list fields when creating a format
using IFG. If such a check has been defined for a list field, every modified input field in the
list line is checked.

The validation checks are performed by the dialog manager on exiting the format upon
completion (not for the CANCEL command) and when a scrolling command is executed (for
navigation within the list area).

If an error is detected, a message is output, and the terminal user can then correct his or
her entries. The scrolling command or the command to terminate processing of the mask
must be repeated. List fields with the “mandatory input” attribute are subject to special
checks.

Checking list fields for mandatory input

Checks for mandatory input are only performed for modified list lines. A list line is
considered modified if at least one input field in it was modified by the terminal user via a
keyboard entry or if the line was predefined as modified by means of the MODINDEX
variable.

To output a list containing a field for which a data entry from the terminal user is mandatory,
for example, the application programmer can proceed as follows:

To begin with, the check for “mandatory input” must be defined for this field in the model line
in the format definition. On calling the DISPLAY service, the MODINDEX variable is
supplied with all indices of the dialog variable array (from 1 to the max. index). The list
display is implemented as follows: when the list is shown, the terminal user can begin
entering the missing data in the list lines. The user is allowed to scroll (forward or backward)
within the list without being requested for input for fields in other lines that have not yet been
filled. The modified data in the list area is written to the corresponding dialog variables
before scrolling. It is only on completion of the display (i.e. when the ENTER key is pressed)
that the dialog manager checks whether all fields marked for mandatory input have been
changed in the lines that were predefined as modified. If some unaltered fields still exist, a
message is output by the dialog manager instructing the terminal user to enter the missing
data. The first line for which data is still required is shown as the first line in the list area.
Scrolling is possible in this case as well. The check for compliance with the “mandatory
input“ attribute occurs, as described earlier, on exiting the display (but not with the CANCEL
command).

U23110-J-Z135-1-7600 41

Dialog extension List processing

Exiting a list display

A list display is exited when the mask containing the list area has been completely
processed.

Processing of the mask does not terminate on executing a command to scroll the list lines.

Return from the list display:

The following values are supplied by the DISPLAY service on completion of a mask
containing a list area:

– The TOPINDEX variable returns the index of the dialog variables that are shown in the
topmost line of the list area. This value may differ from the one passed in the DISPLAY
call as a result of scrolling commands.

– The system variables SYS-CURSOR-FIELD, SYS-CURSOR-INDEX and SYS-
CURSOR-POS contain the position of the cursor. The value of SYS-CURSOR-INDEX
is non-zero only if SYS-CURSOR-FIELD contains the name of a list field. The value is
the index of the dialog variable associated with this field.

– The indices of list lines in which an input was made or which were preset with defaults
are supplied in the elements of the MODINDEX variable. The sequence of these indices
ends with the value 0 or with the last element of the MODINDEX variable. They are
sorted in ascending order. If no inputs have occurred, the first element will already have
a value of 0.

– The values of the modified list fields are entered in the dialog variables.

42 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

3.8 Data editing and checking

The dialog manager can edit and check the field contents of a format in accordance with
certain defaults. How the field contents are to be edited and checked is defined during
format generation using IFG (see the IFG manual).

When a format is output (via a call to the DISPLAY service), data is read from the dialog
variable associated with each respective mask field and converted into its external repre-
sentation, taking the data editing attributes defined for that mask field into account. In
addition, the output data is checked for compliance with the attributes defined for the mask
field (e.g. numeric data for an arithmetic field). If an error is detected (due to incompatibility
between the data type of the mask field and that of the dialog variable, for example), it is
advisable to output an error mask before returning to the application program with a corre-
sponding error code.

As far as converting the internal form into the external representation (and vice versa) is
concerned, the application programmer should note that every dialog variable has a data
type (see also the VDEFINE service). On the other hand, attributes are also defined for a
mask field when defining a format. Consequently, compatibility between the data type of the
dialog variable and the attributes of the mask field is a factor to be considered.

When an input is made in the mask (i.e. the terminal user presses an input key) or a
scrolling command is given for a list area, the contents of mask fields are checked in accor-
dance with the attributes defined for each such field, and if an error is detected, the dialog
manager outputs a message box with an appropriate message. The user must then correct
the field in question. Control is not returned to the application until valid data has been
entered or the display is aborted. The input data is converted from its external represen-
tation to the internal format and is made available in the dialog variable corresponding to
the mask field on return to the application program.

If the display is aborted with the CANCEL command, no checking of input data occurs.

The following section shows which attributes for mask fields are supported by the dialog
manager. The meanings of the individual attributes are explained in detail in the IFG
manual.

U23110-J-Z135-1-7600 43

Dialog extension Data editing and checking

Editing attributes

The following options are available for editing mask fields:

– decimal separator
– digit separator
– representation of date
– representation of time
– alignment of the contents of a mask field
– fill characters
– zero suppression
– null-value representation as an empty field
– floating sign
– conversion to uppercase

Input validation and checking attributes

This includes the following input attributes:

– mandatory input
– minimum input length
– automatic input
– markable/non-markable field
– protected/unprotected field
– hardware-supported NUM lock

The following checks are available for field contents:

– any string
– alphabetic string
– arithmetic string

– with or without decimal places
– with or without sign
– with or without digit grouping

– date
– time
– value list
– value range
– character list

44 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

3.8.1 Code tables

Code tables are used for editing and checking data in FSH-DM. The code tables are
generated from tables of the XHCS table record.

The following tables are generated:

– table for converting lowercase letters to uppercase
– table for characters that can be represented
– table of alphabetic characters
– table for numeric characters

When creating a format with IFG, you can allocate a table record by means of a CCS name.
The creation and modification of these tables are explained in the manual “XHCS Extended
Host Code Support”.

A CCS name can also be specified via the CONTROL service of FHS-DM or may be
defined by the terminal.

If no CCS name was specified for a format or if the named CCS is not available at the XHCS
host, then tables corresponding to the CCS name EDF03IRV or the CCS name
EDF03DRV, (if a German keyboard is detected) are used.

U23110-J-Z135-1-7600 45

Dialog extension Data editing and checking

3.8.2 Data editing

The following specifications can be defined globally for all formats:

Decimal separator

The permitted characters are “.”, “,” and ‘ ‘. The decimal separator and digit separator must
not be the same. Decimal separators are used to indicate decimal places for numbers in
arithmetic mask fields (e.g. 123.45). The decimal separator is not transferred to the dialog
variable.

Digit separators

The permitted characters are “.”, “,” and ‘ ‘. The digit separator and decimal separator must
not be the same. Digit separators are used to group numbers preceding the decimal point
in arithmetic mask fields (e.g. 123,456.78). The digit separator is not transferred to the
dialog variable.

Representation of date

The following specifications must be given to represent the date in a mask field:

– order of day, month, and year
– separator for date components
– representation of year using two or four digits

Any combination may be specified for the order of the day, month, and year.

All characters except for the digits 0-9 are permitted as the separator. The separator
delimits the day, month, and year (e.g. 21.10.1994).

Representation of time

The following editing specifications are required for representation of time:

– time separator
– representation of time with or without seconds

All characters except for the digits 0-9 are permitted as the separator.

The time separator is used to delimit hours, minutes, and seconds when representing the
time (e.g. 12:24:30).

46 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

The following editing attributes can be specified for each mask field:

Alignment and fill character on output

When defining a format using IFG, you can specify if and how data is to be aligned on output
of a dialog variable to a mask field and can also define which character is to be used as a
fill character for free positions in the mask field.

The specification of an alignment and a fill character is not supported for the contents of
dialog variables, since fixed values are used for them by the dialog manager based on the
data type of the dialog variables. The fill character defined using IFG is not used by FHS-
DM. Note that the term “fill character” is used in the following text to refer to IFG output fill
characters only.

Alignment for a mask field:

The type of alignment specifies how the value of a dialog variable is to be justified in the
mask field when it is displayed (output) and also defines how fill characters in a mask field
are to be handled on input.

The following types of alignment can be set in the format definition for any alphabetic string:

– Alignment to the left
– Alignment to the right
– No alignment

Arithmetic strings are always right-aligned.

Alignment of the mask field occurs when the relevant length of the data of a dialog variable
is less than the length of the mask field. If the relevant data of the dialog variable is longer
than the mask field, the behavior of the DISPLAY service depends on whether a mask field
for input or output is involved.

In the case of an output field, the data is truncated, and processing continues with a
warning. By contrast, if an input field is too short, the DISPLAY service terminates with an
error code. The left or right alignment defines how the contents of the mask field are to be
aligned by the dialog manager when displayed on the screen. A left or right alignment
means that the data of a dialog variable of type CHAR or BINSTR is displayed without
leading blanks. If “no alignment” is specified, the leading blanks are shown, and the data is
aligned to the left.

Output fill characters:

If the data of a dialog variable does not fill the entire mask field, the output fill characters
using IFG are entered in the remaining positions in the mask field. If the dialog variable is
empty, the entire mask field will contain only fill characters when displayed.

On output to a mask field, the field is first filled with the aligned data and then with fill
characters.

U23110-J-Z135-1-7600 47

Dialog extension Data editing and checking

Fill character handling on input

The terminal user can enter data into a mask field without being concerned about the
alignment that was defined for it. When the dialog manager processes the input data, the
relevant data and its length are determined. Leading and trailing fill characters in alphabetic
or any other strings are handled as follows:

– Leading and trailing fill characters, blanks, and NULL characters are removed for left or
right-aligned mask fields.

– For a mask field that is not aligned, trailing fill characters, blanks, and NULL characters
are removed; leading fill characters, blanks, and NULL characters are converted to
blanks and stored.

– If the input field contains only blanks, fill characters or NULL characters, the resulting
length of the relevant data is zero (null value).

– Fill characters, blanks, or NULL characters enclosed within the string are never
removed.

In the case of an arithmetic mask field, leading and trailing fill characters are handled as
follows when determining the relevant data:

– The mask field is always treated as right-aligned. If the fill character is not zero, leading
and trailing fill character and NULL characters are removed.

– Leading zeros are always removed even if the fill character is zero.

– If the input field contains only blanks, fill characters or NULL characters, the resulting
length of the relevant data is zero.

Leading and trailing fill characters are removed for a command input field regardless of the
type of alignment.

After input handling, the relevant data is stored in the corresponding dialog variable in
accordance with the alignment that applies to that variable based on its data type and with
a length based on the determined relevant data. Explicit dialog variables are subsequently
padded with default fill characters if the data length is less than the defined length of the
dialog variable. Implicit dialog variables are always stored with their relevant length (except
when the length is zero).

48 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

Options for fill characters and alignment:

The data types are defined under the VDEFINE service.

Mask field Output fill character Alignment

Any string Any character right, left, or none

Alphabetic string Any character right, left, or none

Arithmetic string No digits from 1 to 9, no sign right (always)

Date No digits from 1 to 9 not possible

Time No digits from 1 to 9 not possible

Dialog variable Input fill character Alignment

CHAR / STRING blank left

BINSTR X’00’ left

NUMS X’F0’ right

NUMU X’F0’ right

FIXEDS / INTEGER X’00’ right

FIXEDU X’00’ right

PACK X’00’ right

U23110-J-Z135-1-7600 49

Dialog extension Data editing and checking

3.8.3 Input attributes

Minimum input length

The minimum input length defines the least number of characters that must be entered into
a field on input.

Mandatory input

Mandatory input for a mask field means that the terminal user must modify that field via a
keyboard entry. If this requirement is not fulfilled, the dialog manager will prompt the user
for an input by means of a message. If the mandatory input requirement for a field has been
satisfied by the terminal user, the fact that an input has occurred is registered internally so
no prompt for an input in that field is given in a following DISPLAY call without the PANEL
operand or if the same format name is specified again.

If the mandatory input attribute is to be activated again in a subsequent display of the same
format, an ATTR service must be called with TYPE(MANDATORY) for that field before the
DISPLAY call or, alternatively, the MANDATORY operand must be specified in the DISPLAY
call. Mandatory operands for list fields are subject to special handling (see “list
processing”).

50 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

3.8.4 Validation checks for the contents for mask fields

Data is checked and edited on input and output as described below.

Any string

This means that the mask field may contain any characters. No validation checks and
editing are performed by the dialog manager. Non-printable characters (other than NULL)
are represented by SUB (X’3F’).

Alphabetic string

The mask field may contain only letters included in the code tables and blanks.

Arithmetic string

In order to use the editing attributes of an arithmetic mask field meaningfully, the
corresponding dialog variable must be of type NUMS, NUMU, FIXEDS, FIXEDU or PACK.
An arithmetic mask field must not contain more than 15 digit positions. The number of digit
positions is calculated from the field length minus the number of positions for the sign,
decimal separator, and digit separator if the corresponding attributes were defined.

General input validation check:

The field may only include digits (0-9) and, depending on the set attributes for decimal
places, digit grouping, and sign, the characters “,”, “.”, “ ”, “+” , and “-” at certain positions.
Blanks, followed by output fill characters before the number, or output fill characters,
followed by blanks after the number produce an error if the output fill character is not a
blank.

Output validation check:

The dialog variable must be of type FIXEDS, FIXEDU, PACK, NUMS or NUMU and contain
type-compatible data.

U23110-J-Z135-1-7600 51

Dialog extension Data editing and checking

Arithmetic string with decimal places

The number of decimal places can be defined for a mask field.

Input validation check:

A maximum of n digits (defined using IFG) may follow the decimal separator (zeros on the
right are ignored).

Input editing:

The entered decimal places are transferred to the extreme left position for decimal places
and padded with “0”.

Output editing:

n digits on the extreme right are interpreted as decimal places and output to the right of the
defined decimal separator.

52 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

Arithmetic string with sign

This means that a sign may be specified for the field. The sign can be defined as a floating
sign.

Input validation check:

If no sign is allowed, neither “+” nor “-” may appear in the mask field. If a sign is permitted,
it may be placed to the left or right of the input. Blanks are permitted between the sign and
the number. The use of only a sign in the mask field (without digits) is illegal.

Output validation check:

The dialog variable must be of type FIXEDS, NUMS or PACK.

Input editing:

The “-” sign is set at the last position of a NUMS dialog variable; a “+” or no sign results in
a “+” at the last position.

Output editing:

A positive sign is represented as a blank (“ ”), a negative sign as “-”.

Depending on whether or not the sign was specified as “floating”, it will either be placed in
the last position of the mask field or before the number. The remaining positions on the left
are either filled with output fill characters or with blanks (for a “floating sign”).

Mask field Dialog variable

Two decimal places Type NUMS

-123 ---------> 0012300-

Dialog variable Mask field

Type NUMS Fixed sign;
output fill character ’$’;
two decimal places

0012300- ---------> $$$123,00-

Floating sign;
output fill characters are always blanks

0012300- ---------> -123,00

U23110-J-Z135-1-7600 53

Dialog extension Data editing and checking

Arithmetic string with digit grouping

Digit separators set off positions before the decimal point in groups of three digits each.

Input validation check:

The positions before the decimal point can be split in sequence from right to left by the digit
separator into groups of 3 digits each. Leading and continuous zeros are ignored. If a digit
separator appears in the field, all positions before the decimal point must be correctly
grouped.

Input editing:

The digit separators are not transferred.

Output editing:

Digit separators are inserted at the appropriate positions: the positions before the decimal
point are transferred to the field, and a digit separator is inserted before each third digit if it
is followed by a further digit. (If zero suppression is not allowed, a digit separator can also
appear at the first position of the field.)

Mask field Dialog variable

Digit grouping;
two decimal places

Type NUMS

-1,234 ---------> 0123400

Dialog variable Mask field

0123400+ ---------> 1,234.00

54 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

Arithmetic string with zero suppression

Leading zeros are omitted.

Input validation check:

Any number of fill characters may precede the number.

A leading zero before the decimal separator may be omitted; an input such as “.5”instead
of “0.5” is legal.

Input editing:

Fill characters are not transferred.

Output editing:

If zero suppression is allowed, all leading zeros in pre-decimal positions are replaced by
output fill characters; otherwise, all leading zeros are retained.

Exception:
If there is no remaining space before the decimal separator, no leading zero is placed
before it.

Value zero as blank:

The application programmer can use IFG to define whether the value zero of a numeric
dialog variable can be represented as a blank in an arithmetic mask field. Only blanks are
displayed in this case.

Dialog variable Mask field

Type NUMS Fixed sign;
output fill character;’$’;
two decimal places;
zero suppression

0000012- ---------> $$$$$0.12-

No zero suppression

0000012- ---------> 000000.12-

U23110-J-Z135-1-7600 55

Dialog extension Data editing and checking

Editing of arithmetic mask fields

Output editing occurs as shown below (always with right alignment):

Examples of values in an arithmetic mask field:

 123.5
 1,234.5
 -123
 123.4-
 000123
 000.12
 0.12

Inputs in an arithmetic mask field are possible in the following formats:

Digit grouping not allowed:

Fixed sign [F...][9...]9[D9[9...]][-]

Floating sign [b...][-][9...]9[D9[9...]]

Digit grouping allowed:

Fixed sign [F...][9[9]]9[S999...][D9[9...]][-]

Floating sign [b...][-][9[9]]9[S999...][D9[9...]]

Digit grouping not allowed:

[F...][b/n...][+/-][b...]][9...][D[9...]][b/n...][F...] or
[F...][b/n...][9...][D[9...]][b...][+/-][b/n...][F...]

Digit grouping allowed:

[F...][b/n...][+/-][b/n...][9[9[9]]][S999...][D[9...]][b/n...][F...] or
[F...][b/n...][9[9[9]]][S999...][D[9...]][b...][+/-][b/n...][F...]

56 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

Digit grouping, if allowed, is not mandatory and may be omitted on input. The following
codes are used in the format above:

n NULL (X’00’)

b Blank

9 Digits 0-9

S Digit separator

D Decimal separator

F Output fill character

Examples of valid input data (no alignment required):

 .5
1.234,5
 1.234,
.234
+ 1234
 123-

Examples of invalid input data:

1,2345
0.123
2,123,
123,

Reasons: digit grouping must occur in groups of three; too many decimal places (two were
defined); invalid separator (as per definition).

U23110-J-Z135-1-7600 57

Dialog extension Data editing and checking

Date

The mask field contains a date entry. The dialog variable for the date must be of type CHAR
and have a length of 12 or 14 bytes.

Input validation check:

The field may only include the digits 0 to9, blanks, and two occurrences of the separator for
the specified date. Leading zeros may be omitted for the day, month, and two-digit entry for
the year. The separator may be preceded and followed by blanks. The presence of blanks
followed by output fill characters before the date, or of output fill characters followed by
blanks after the date leads to an error if the output fill character is not a blank. Blanks are
allowed at the start or end of the date (regardless of the output fill character).

When the year is specified by two digits, the check for a valid date is based on the time
period from 1901 to 2099. For a four-digit year entry, the date may only lie within the period
from 10-15-1582 (start of the Gregorian Calendar) up to 12-31-2099.

Output validation check:

The dialog variable must contain a valid date in ISO or ISO4 format. The accuracy of the
current day and the last position (blank) are not verified. The (internal) representation of the
date in the dialog variable corresponds to that of the GDATE/GTIME macro (see the manual
“BS2000 Executive Macros”).

ISO format:

ISO4 format:

0 2 3 5 6 8 11

y y X’60’ m m X’60’ d d n n n X’40’

Year - Month - Day Current day of year

0 4 5 7 8 10 13

y y y y X’60’ m m X’60’ d d n n n X’40’

Year - Month - Day Current day of year

58 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

Input editing:

The dialog manager calculates the current day of the year and returns the date in ISO or
ISO4 format to the corresponding dialog variable.

Output editing:

The day, month, year, and the separators are transferred to the appropriate position of the
mark field. The current day is not output.

The positions for day, month, and year are padded with leading zeros if required so that the
output always has a length of 8 or 10 positions.

Mask field Dialog variable

Date with calendar check;
2-digit year;
Separator “/”

Type CHAR;
Length 12 BYTES

1 / 4/88 ---------> 88-04-01092

Without calendar check

33/0/88 ---------> 88-00-33000

Dialog variable Mask field

88-04-01.... ---------> 01/04/88

Without calendar check

88-00-33.... ---------> 33/00/88

U23110-J-Z135-1-7600 59

Dialog extension Data editing and checking

Time

The mask field contains a time entry. The dialog variable must be of type CHAR.

Input validation check:

Only the character defined as the time separator may appear at specific positions in the
mask field. Leading zeros may be omitted for hours, minutes, and seconds. The separator
may be preceded and followed by blanks. The presence of blanks followed by output fill
characters before the time or of output fill characters followed by blanks after the time leads
to an error if the output fill character is not a blank. Blanks are permitted at the start and end
of the time (regardless of the output fill character).

Output validation check:

The dialog variable must contain the value HH:MM:SS or HH:MM, depending on the
specification for seconds. The following values are possible: 00-23 hours for HH, 00-59
minutes for MM, and 00-59 seconds for SS.

Input editing:

A “:” is always used as the time separator.

Output editing:

The time separators are inserted at the appropriate position.

Mask field Dialog variable

Time with seconds;
Time separator “:”

Type CHAR;

12:08:36 ---------> 12:08:36

Dialog variable Mask field

Type CHAR;
length 8

Time with seconds;
Time separator “.”

12:08:36 ---------> 12.08.36

60 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

Value list

This entry is possible for every input field of the mask.

Input validation check:

The entered value must either match a value of a value list (check for “equal”) or not be
contained in the value list (check for “not equal”). The validation conditions and the value
list are specified in the format definition.

Example:

Entered value: DOG
Predefined value list: CAT DOG HEN SHEEP
Check for equal: no error

Value range

This entry is only allowed for arithmetic mask fields.

Input validation check:

The entered value must be included in a predefined numeric value range (including the
upper and lower bounds). Signs may be used. The minus sign must be specified for
negative values.

Example:

Entered value: 123
Predefined limits: 222- 222+
Result of the check: no error

Character set

This entry is possible for all input fields of a mask.

Input validation check:

All entered characters must either be contained in a character set defined using IFG (check
for “equal” or the characters must not appear in the character set (check for “not equal”).
The validation conditions and the list of characters are specified in the format definition.

Entered value: AB
Predefined character set: ABCDEF
Check for “not equal” error message

U23110-J-Z135-1-7600 61

Dialog extension Data editing and checking

Data conversions in the DISPLAY service

The following table contains the possible data conversions between dialog variables and
the mask field for TIAM.

The following table contains the possible data conversions between dialog variables and
the mask field for SDF-P.

Key:

+ Data conversion is possible (but sign errors may occur)

- Data conversion is not supported (conversion error)

1) The value of the dialog variable to be displayed must be numeric.

2) The content of the mask field on input must be numeric.

Dialog
variable

Mask field

String Arithmetic string Date Time

Signed Unsigned

CHAR + + 1) + 1) specific data specific data

BINSTR + + 1) + 1) specific data specific data

NUMS + 2) + + - -

NUMU + 2) + + - -

FIXEDS + 2) + + - -

FIXEDU + 2) + + - -

PACK + 2) + + - -

SDF-P
variable

Mask field

String Arithmetic string Date Time

Signed Unsigned

STRING + + 1) + 1) specific data specific data

INTEGER + 2) + + - -

62 U23110-J-Z135-1-7600

Data editing and checking Dialog extension

Restrictions and incompatibility

Floating sign: Only possible in combination with “sign allowed”.

Mandatory input: The “mandatory” attribute cannot be combined with the “protected”,
“markable”, and “automatic input” attributes:

Protected A “minimum input length > 0” must not be requested for a protected
field.

Automatic input: Is ignored for menu titles and input selection fields.

Zero suppression: A combination of “zero suppression” and “floating sign” is not
meaningful with output fill characters other than blanks, since
“floating sign” always uses blanks for padding. “Zero suppression”
and the output fill character “0” are mutually exclusive.

U23110-J-Z135-1-7600 63

Dialog extension Commands

3.9 Commands

The dialog manager supports the use of commands. Depending on how commands are
processed, the following options are available:

– Systems commands are processed by the dialog manager and not passed to the appli-
cation program.

– Application commands are passed to the application program and must be processed
by it.

A further distinction is made based on the method by which the command is entered. The
options in this case are:

– Input of a command in the command input field.

– Activation of a command by pressing a function key. A key assignment table in which
commands are assigned to function keys (called a key list in IFG) must be defined for
this purpose.

– Command input by combining a command activated via a function key with the input in
the command input field.

Command area

The command area in a mask is specified when defining the format using IFG. A command
area is not mandatory.

If a system command is entered in the command input field, the command is processed by
the dialog manager. The command input field is then deleted unless the command name
was entered with a preceding “&” character.

If the entered string is not a system command, it is interpreted as an application command.
The input data in the command input field is written to the dialog variable assigned to this
mask field. If the name of this dialog variable is not SYS-COMMAND, the input data is also
made available in the SYS-COMMAND dialog variable in the function pool. The variable is
created implicitly if it does not exist. SYS-COMMAND is written even if no command input
field exists and an application command is entered by means of a function key.

If the dialog variable assigned to the command input field of the mask is not empty at the
time of a DISPLAY call, its value is shown in the command area. This allows an application
program to implement a predetermined setting.

Note:
By assigning the dialog variable SYS-COMMAND to all command input fields, it is
possible to have application commands written to and read from the dialog variable
SYS-COMMAND throughout the entire application.

64 U23110-J-Z135-1-7600

Commands Dialog extension

Entering commands via function keys

System and application commands can be assigned to F keys. If there aren’t enough F keys
available, the system command SETP can be used to simulate F keys using P keys.
Pressing an F key has the same effect as entering the command in the command input field
and hitting the ENTER key. Application commands entered by this method are made
available to the application program in the system variable SYS-COMMAND.

Entering composite commands

If a command has been assigned to an F key via the key assignment table (referred to
below as the key list) and if a command input field exists in the mask, a string can be
entered in this field before pressing the F key. The dialog manager connects the data of the
F key, separated by a space, with the data from the command input field. FHS combines
the two strings with one another as follows:

Example:

– If “KEYAREA” is assigned to function key F20

– and “OFF” is entered in the command input field,

– pressing the function key F20 will execute the command “KEYAREA OFF”.

F key Command field

U23110-J-Z135-1-7600 65

Dialog extension Commands

Activating an FHS command from an application

You can activate an FHS command from an application by defining a format with a
command area and by assigning the desired command (by means of a string assignment)
to the dialog variable that is associated with the command input field. When you subse-
quently call the DISPLAY service with PANEL(name) and the operand NODISPLAY,
FHS-DM will process the command without displaying the format.

Example 1:

Let us assume you want to use P keys 1,3 and 12 to simulate F keys. The appropriate
command for this purpose is:

SETP (P1,P3,P12) ON.

Assign this string to the dialog variable associated with the command input area and
call the FHS-DM service with DISPLAY PANEL(name) NODISPLAY.

The P1, P3 and P12 keys will then be available for FHS.

Example 2:

Command “SYS”

If you assign the dialog variable the string:

“SYS FILE-STATUS A*“

and call the display service as above, all files of the specified template will be shown.
In addition, the prompt characters “ACK” will be output before the next display of the
DISPLAY service in order to obtain an input.

66 U23110-J-Z135-1-7600

Commands system commands

3.9.1 System commands of the dialog manager

System commands may be entered in lowercase or in uppercase.

The commands KEYAREA, PANELID and SETP apply to all subsequent outputs for the
entire dialog complex regardless of the communication area (see page 118). These speci-
fications are saved in the profile on a DMCLOSE for the dialog complex and supplied again
at the next DMOPEN with this profile.

Operation Meaning

ABORT Terminate application

ACTIONS Place cursor in menu bar / mask fields

CANCEL Cancel display

EXIT Exit application segment

EXTHELP Request extended help

HARDCOPY Output screen contents to printer

HELP Request help

HELPHELP Help on help system

INDEX Overview of available help

KEYAREA Turn on / turn off display of key list

KEYSHELP Help on key list

PANELID Turn on / turn off display of format name and message code

RMSG Redisplay a message

SETP Assign P keys

SYS Call BS2000 commands

RESHOW
(K key)

Redisplay previous mask

FORWARD
BACKWARD
+
-
++
--

Scrolling and navigation commands

U23110-J-Z135-1-7600 67

system commands ABORT / ACTIONS

ABORT - Terminate application

When FHS-DM detects an error that prevents normal continuation of an FHS service being
processed, an error mask can be output. The return code associated with the error is then
supplied to the application.

If the ABORT command is given when the error mask is displayed, the MAINCODE will be
set to 399999 on return to the application. The application should be terminated for this
return code. (FHS-DM does not normally terminate processing independently!)

If ABORT is entered in an error mask which was output as a result of implicit actions and
which normally allows the application to be continued, the display service terminates with
MC=399999 in this case as well.

ACTIONS - Place cursor in menu bar

ACTIONS places the cursor in the menu bar. If the cursor is already in a menu bar or in a
pull-down menu, it is returned to the field in which it was positioned before the preceding
ACTIONS command. If no preceding ACTIONS command was issued, the cursor is placed
in the first input field of the work area.
This command can only be meaningfully used as an F key (the default is F10). It has no
effect if no menu bar exists.

Operands, if specified, are ignored.

Operation Operands

ABORT

Operation Operands

ACTIONS

68 U23110-J-Z135-1-7600

CANCEL system commands

CANCEL - Exit/terminate display

If CANCEL is issued for an implicit box (i.e. with the cursor positioned in a box), the topmost
implicit box is removed, and the underlying implicit box is displayed (if one exists).
Otherwise, the basic format is shown. The application program is not notified.
In order to prevent the cursor from being inadvertently placed at an incorrect position, all
implicit boxes are removed even if the cursor is in the basic format or in an explicit box. In
this case, the command has no effect on the basic format or explicit box. It is only after
removing all implicit boxes that a repeated CANCEL command will have an effect on the
basic format.

If CANCEL is issued for a pull-down box, the pull-down box is removed, and the cursor is
placed on the first menu title. Any selection that may have been entered in the pull-down
box is ignored.

If CANCEL is issued for an explicit box or the basic format, the current display call is
terminated with an appropriate return code. All input data is lost; the input fields are not
checked by the dialog manager. On return to the application program, dialog variables have
the same contents as before the DISPLAY service, except in the case of a list. When a list
is displayed, the modified list fields are saved in the dialog variables as soon as the list is
scrolled. Consequently, it is only the current data of the list area that is not processed as a
result of a CANCEL command. The application program must respond to the return code
appropriately (e.g. go back one display step). The return codes are listed in the appendix
starting on page 233.

Operands, if specified, are ignored.

Operation Operands

CANCEL

U23110-J-Z135-1-7600 69

system commands EXIT

EXIT - Terminate application segment

If EXIT is issued for an implicit box (i.e. with the cursor positioned in a box), all the implicit
boxes are removed and the basic format is displayed. The application program is not
notified.
In order to prevent the cursor from being inadvertently placed at an incorrect position,
implicit boxes are removed even if the cursor is in the basic format or in an explicit box. In
this case, the cursor has no effect on the basic format or explicit box. It is only after
removing all implicit boxes that a repeated EXIT command will have an effect on the basic
format.

If EXIT is issued for an explicit box or the basic format, an application segment or the
application itself should be terminated. The DISPLAY call terminates and supplies the appli-
cation program with a corresponding return code (see page 233ff.). Termination of an appli-
cation segment must be implemented by the application program. If the EXIT command is
given in combination with modified input data, the input fields are checked in accordance
with the validation conditions for them. If an error is detected in this case, an error message
is issued by the dialog manager and the EXIT command is ignored. The command can be
repeated after the incorrect data has been corrected. If there are no errors in the input data,
the corresponding variables are updated.

Operands, if specified, are ignored.

Operation Operands

EXIT

70 U23110-J-Z135-1-7600

EXTHELP / HARDCOPY system commands

EXTHELP - Request extended help

Extended help returns information on the mask from which the help was requested. If there
are other help panels being displayed on the screen, they are first removed.

Specified operands, if any, are ignored.

EXTHELP in the KEYSHELP mask requests help on key assignments.

HARDCOPY - Output screen contents to printer

The current contents of the screen are output to a local hardcopy printer. The string
“HARDCOPY” is removed from the command area on execution.

Operands, if specified, are ignored.

Operation Operands

EXTHELP

Operation Operands

HARDCOPY

U23110-J-Z135-1-7600 71

system commands HELP

HELP - Request help

HELP returns field-related help on an input field, output field, menu title, markable field, or
command input field. Help can also be defined for protected output fields and text fields,
provided the cursor can be positioned on protected fields (NOAUTOTAB).

 Depending on the type of field, the following applies:

– If the cursor is on a single-choice field with a valid entry, help on that entry is returned.

– If the cursor is on an empty single-choice field, help on the entire-choice field (= global
help) is output.

– If the cursor is in an input field of a multiple-choice field, help for that input field appears.
A repeated HELP command in this case outputs global help for the multiple-choice field
(if available) or, alternatively, the extended help.

– If the cursor is in the command field, and that field is empty or contains an application
command, global help on the command field is displayed. If no such help is available,
FHS outputs the default help for the command area. If the command field contains an
FHS command, then help on that command is output.

– If no help for a normal input field exists, the extended help for the format is output. If this
is not available either, FHS issues a corresponding message.

HELP “command” returns help on the specified system “command”. If “command” is not a
system command, help on the command line is shown. The cursor must be in the command
input field.

Operation Operands

HELP command

72 U23110-J-Z135-1-7600

HELPHELP / INDEX / KEYAREA system commands

HELPHELP - Request overview of the help system

Help on the help system returns information on using the help commands HELP, EXTHELP
and KEYSHELP and on the help system itself.

Operands, if specified, are ignored.

INDEX - Display index of FHS-DM keywords

INDEX causes a help panel (IDHAIDX) to be displayed with FHS-DM keywords that are
defined as cross-references. If you place the cursor on any of these keywords and press
the ENTER or HELP key, help on that keyword is shown. You can extend this help
(IDHAIDX) by adding your own keywords.

Operands, if specified, are ignored.

KEYAREA - Activate/deactivate display of key assignments

KEYAREA can be used to toggle the display of key assignments on or off. The setting
remains in effect until the next time it is toggled and is saved in the profile pool as the system
variable SYS-KEY-AREA.

ON Turn on display of key assignments

OFF Turn off display of key assignments. This provides additional space for the output
of help texts.

If no operand is specified, the current setting is toggled.

Operation Operands

HELPHELP

Operation Operands

INDEX

Operation Operands

KEYAREA [ON / OFF]

U23110-J-Z135-1-7600 73

system commands KEYSHELP / PANELID

KEYSHELP - Help on key assignments

KEYSHELP shows a key assignment in the form of a table containing the name of the key,
the command assigned to it, and a brief designation (label) for the key.

SHORT A short form of the key assignment is shown.

PANELID - Toggle display of format name and message code

The PANELID command can be used to turn on or turn off the display of the panel ID (i.e.
the names and identifiers of formats). The setting remains in effect until the next change
and is stored in the profile pool as the system variable SYS-PANEL-ID.

ON Turns on the display

OFF Turns off the display If no operand is specified, the setting is toggled.

Operation Operands

KEYSHELP [SHORT]

Operation Operands

PANELID [ON / OFF]

74 U23110-J-Z135-1-7600

RESHOW / RMSG system commands

RESHOW - Redisplay a mask

This command is always bound to a K key; it cannot be directly entered in a format. By
default, this function is executed by pressing the K3 key (see the section on “Key lists” on
page 77ff.).
The RESHOW function causes the last output of the mask to be repeated. Inputs that were
already made on the screen are lost.

The RESHOW function is not an actual system command, since there is no string that can
be entered in the command input field. The function is always bound to a K key (usually K3)
and can only be executed by pressing that key. The function is identified by the string
“RESHOW” when it is assigned to the K key in the key assignment table (called a key list
in IFG).

RMSG - Redisplay a message

The RMSG function causes a message that was requested by the application in the
DISPLAY command to be redisplayed. If an error mask is being displayed, the message for
the error code is output.

Operands, if specified, are ignored.

Operation Operands

K key

Operation Operands

RMSG

U23110-J-Z135-1-7600 75

system commands SETP

SETP - Assign P keys

SETP can be used to bind the function performed by function keys identified by a number
to P keys with the same identification number or to cancel such assignments. The
assignment remains in effect until the next change and is stored in the profile pool as the
system variable SYS-P-KEYS-SETTING.t

Pn The P key with number n.

(Pn,..,Pm) All P keys individually listed in the form Pn, .., Pm.

(Pn-Pm) All P keys from Pn to Pm

ON Turns on the assignment for the specified keys.

OFF Turns off the assignment for the specified keys.

The operands of SETP may be specified more than once, but each such assignment must
be separated by a comma. The commas may be surrounded by any number of blanks.

Example

SETP P1 ON, P2 OFF, (P3,P7,P8) ON, (P4-P6) OFF

After this SETP command, the following assignments will take effect:

P1 - F1 P3 - F3 P7 - F7 P8 - F8

The assignments for P2, P4, P5 and P6 were removed.

Operation Operands

SETP Pn / (Pn, ... ,Pm) / (Pn-Pm) ON / OFF [, ...]

76 U23110-J-Z135-1-7600

Scrolling commands / SYS system commands

Scrolling commands

These commands can be used to scroll a list area of a mask or a help text displayed in a
panel.

The characters “++” and “--” scroll the display to the end of the text in the specified direction.

Format and operand description

The “number” operand specifies the number of lines by which the list area is to be scrolled.
If no number is specified, the FORWARD and BACKWARD commands move the lowest list
line to the top and the topmost list line to the bottom, respectively.

The dialog manager also supports scrolling based on the current cursor position. If the
cursor is located in a list line or in the help text, the “+” or FORWARD command scrolls that
line to the top of the list area or work area of the help panel, whereas “-” or BACKWARD
scrolls it to the bottom.

SYS - Execute BS2000 commands

The BS2000 command specified as an operand is executed, and the screen is then
restored to its existing state before command execution.

Any BS2000 command supported by the BS2000 macro CMD may be specified as the
operand. It is not advisable to use a /START command since that would abort the appli-
cation program.

Operation Operands

FORWARD [number]

BACKWARD [number]

+ [number]

+ +

- [number]

- -

Operation Operands

SYS BS2000 command

U23110-J-Z135-1-7600 77

Dialog extension Key lists

3.10 Key lists

Key lists are created with IFG and stored in the format library as special formats (called KEY
formats). The name of a KEY format can be assigned to any format when defining the
format with IFG. If no specific KEY format name is specified, a default KEY format is
assigned. In other words, every format is assigned a key list when it is defined with IFG.

A key list includes the following entries for each function key:

Fxx [command] [label]

“Fxx” identifies the function key; “command” is the command assigned to this key, and
“label” is a freely selectable short text (of up to 12 characters) that describes the key.

The key list assigned to a format is displayed by the dialog manager in the key list area of
the mask. This area is optional and consists of a maximum of two lines. The key assign-
ments are displayed in the form “Fxx=label“.

Keys for which no labels have been specified in the key list are not displayed. This allows
the application programmer to display only important keys in the key list area. All key
assignments are activated even if they are not displayed in the key list area. This also
applies if no key area was defined for a format. The currently active key assignments can
be displayed as a table by means of the system command KEYSHELP.

If all keys in the key list do not fit in the key list area, the dialog manager indicates the
presence of further keys by inserting up to three periods following the last possible
complete entry.

78 U23110-J-Z135-1-7600

Key lists Dialog extension

Default key lists

Default key lists are supplied together with the dialog manager. The following KEY formats
are provided in English and German:

IDHKEYS Default KEY format

IDHKEYA KEY format for full screen with menu bar

IDHKEYF KEY format for field-related help

IDHKEYE KEY format for extended help

IDHKEYH KEY format for help on help

IDHKEYK KEY format for help on key assignments

IDHKEYM KEY format for messages in a box

IDHKEYN KEY format for message boxes without help

IDHKEYI KEY format for index format

U23110-J-Z135-1-7600 79

Dialog extension Key lists

The following key lists show the assignments for the German version (with translated
labels):

IDHKEYS - General formats

IDHKDER - Key format for error handling in dialog mode

Key Command Label

F1 HELP Help

F3 EXIT Exit

F4 HARDCOPY

F7 BACKWARD

F8 FORWARD

F11 INDEX

F12 CANCEL Cancel

K3 RESHOW

Key Command Label

F1 HELP Help

F3 EXIT Exit

F4 HARDCOPY Hardcopy

F5 RMSG Fetch message

F6 ABORT

F9 KEYSHELP Keys

F11 INDEX

F12 CANCEL Cancel

K1 ABORT

K3 RESHOW

80 U23110-J-Z135-1-7600

Key lists Dialog extension

IDHKEYA - Key format for full screen with menu bar

IDHKEYF - Field-related help

Key Command Label

F1 HELP Help

F3 EXIT Exit

F4 HARDCOPY

F7 BACKWARD

F8 FORWARD

F10 ACTIONS Menu

F11 INDEX

F12 CANCEL Cancel

K3 RESHOW

Key Command Label

F1 HELP Help

F2 EXTHELP Extended help

F3 EXIT

F4 HARDCOPY

F7 BACKWARD

F8 FORWARD

F9 KEYSHELP Keys

F12 CANCEL Remove

K3 RESHOW

U23110-J-Z135-1-7600 81

Dialog extension Key lists

IDHKEYE - Extended help

IDHKEYH - Help on help

Key Command Label

F1 HELP Help

F3 EXIT

F4 HARDCOPY

F7 BACKWARD

F8 FORWARD

F9 KEYSHELP Keys

F11 INDEX

F12 CANCEL Remove

K3 RESHOW

Key Command Label

F3 EXIT

F4 HARDCOPY

F7 BACKWARD

F8 FORWARD

F9 KEYSHELP Key

F11 INDEX

F12 CANCEL Cancel

K3 RESHOW

82 U23110-J-Z135-1-7600

Key lists Dialog extension

IDHKEYK - Help on key assignments

IDHKEYM - Message box with help

IDHKEYN - Message box without help

Key Command Label

F1 HELP Help

F2 EXTHELP Extended help

F3 EXIT

F4 HARDCOPY

F7 BACKWARD -

F8 FORWARD +

F11 INDEX

F12 CANCEL Cancel

K3 RESHOW Reshow

Key Command Label

F1 HELP Help

F3 EXIT

F4 HARDCOPY

F11 INDEX

F12 CANCEL Remove

K3 RESHOW

Key Command Label

F1 HELP

F3 EXIT

F11 INDEX

F12 CANCEL Remove

K3 RESHOW

U23110-J-Z135-1-7600 83

Dialog extension Key lists

IDHKEYI - Index format

IDHKEYU - Format for boxes

Displaying key assignments

The assignments for function keys F1, F3 and F12 are shown in the command area by
default; the assignments for F7 and F8 are also included with the output of lists. This display
can be turned on or turned off with the FHS command KEYAREA.

The key assignment for every DE format can be displayed with the FHS command
KEYSHELP.

Note:
Make sure that you reserve a K key for RESHOW!
Reason: when a mask is output several times in succession, only the variable fields are
refreshed by FHS-DM (i.e. only an “Update output” is generated). If the mask is
overwritten by an operator message, for example, it will not be refreshed at the next
output. It is only by using RESHOW that the complete mask can be redisplayed (see
also page 94).

Key Command Label

F1 HELP Help

F3 EXIT

F4 HARDCOPY

F7 BACKWARD

F8 FORWARD

F9 KEYSHELP Keys

F12 CANCEL Remove

K3 RESHOW

Key Command Label

F1 HELP Help

F3 EXIT

F12 CANCEL Cancel

K3 RESHOW

84 U23110-J-Z135-1-7600

Output of messages Dialog extension

3.11 Output of messages

FHS-DM can facilitate the work of terminal users by informing them of certain events by
means of DM messages. These DM messages (which are referred to simply as messages
below) are either output in the message area of the format or in separate message boxes.
FHS distinguishes between implicit and explicit messages.

Implicit messages are output by FHS independently of the application. Typical examples of
such messages include the messages output by FHS when checking input fields.

Explicit messages are issued by the program by means of a message code and a field
name in the MSGLOC operand in a call to the DISPLAY service.

Creating messages

Messages must be created using IFG. This is done by calling the “Edit messages” mask in
IFG and defining the text of the message in it. The message text can have a maximum
length of 256 characters. Besides the text of the message, it is also possible to define other
attributes. These include:

– the message code in the form AAAAnnn or AAAnnnn, where AAAA are alphabetic
characters (A-Z), and nnn are digits (0-9). The IDHx designations should not be used
as message codes, since they are reserved by FHS for internal messages.

– the output position of the message. This can be the message area of a format or a
modal or modeless message box. For further information, see the section on “Implicit
boxes”, on page 17ff.

If “output position = message area” was defined, but the output is not possible in the
message area, FHS outputs the message in the form of a modeless box. This can
happen, for example, if the message area is too small or if a message area has not been
defined in the format.

– the type of message: Information/Warning/Error/Danger

– the name of a help panel for the message (optional)

U23110-J-Z135-1-7600 85

Dialog extension Output of messages

Editing the message text

If the string “%%” appears in the message text, the text that follows is continued in the next
line of the message box as of column 2. This editing attribute can be used to reduce the
width of a message box. The string “%%” is replaced by a blank in the output of the
message in the message area, and the string itself is removed.
 “%%%%” generates a blank line.

The character “&” must be specified as “&&” in the message text.

The width of a message box is adjusted by FHS-DM to the message text. The minimum and
maximum widths for a mask are 20 and 56 characters, respectively. A message box can
have up to 6 text lines. A mask width of less than 56 characters is used if the message text
is shorter or if editing characters are used to set the line length. If the message text is longer,
the maximum width is selected, and the message text is adjusted to it. Separation occurs
at a blank.

If the edited message text exceeds the maximum size of a message box, the editing
characters are replaced by blanks, and the text is split after every 56 characters. If the
complete text still cannot be displayed, the last line ends with “...”.
When FHD-DM encounters “&name” in the message text, the current contents of that field
variable are inserted into the message text.

86 U23110-J-Z135-1-7600

Output of messages Dialog extension

Implicit messages

Implicit messages are output independently by the dialog manager without any action on
the part of the application program. Such messages are typically issued when input
validation checks are performed. A number of default message formats are supplied for
implicit messages. These formats must be copied into the format library of the application
or be made available as an alternative format library. The default messages have message
codes in the form IDHxnnn, where nnn is a three-digit number, and “x” stands for the letter
“F”, “I” or “S” The message text can be modified by the user with IFG.

If a field containing an error is detected by the dialog manager, a message box is output in
relation to the first invalid field unless the message area was defined as the output location.
If more than one field is invalid, all such fields are highlighted (e.g. underlined). The cursor
is placed in the first invalid field, and subsequent scrolling commands are ignored. These
commands can be repeated after the error has been corrected.

The message for the field can be specified in IFG as follows:

– *NONE or blanks: default message of FHS

– Message code: user-defined implicit message

The following additional specifications can be included for user-defined implicit messages:

&SYS-PAR0 Name of the full format or name of the active explicit box.

&SYS-PAR1 Name of the current field

&SYS-PAR2 Contents of the current field

&SYS-PAR3 Name of the current format

If the &SYS-PAR0, &SYS-PAR1, &SYS-PAR2 or &SYS-PAR3 codes are found in the
message text, they are replaced in the message text by their corresponding values. This is
only possible for messages that have message codes for which checking was defined using
IFG.

These messages are output by default in a message box; however, you can change the
output location with IFG so that the message is output in the message area of the format
instead.

U23110-J-Z135-1-7600 87

Dialog extension Output of messages

Explicit messages

When a message that refers to the content of a specific mask field (or to a specific list line
of a list field) is to be output by the application, a message box can be positioned at that
field. This is achieved by entering a message code in the MSG operand and the name of
the field to be used for positioning a message box in the MSGLOC operand of the DISPLAY
service.

If a message box was specified as the output location for a message when the message
was defined, the following variations are possible:

– If MSGLOC is not specified, the message box is output in relation to the field specified
by the CURSOR operand. If a list field is involved, the field can be specified with an
index. The cursor position is set in accordance with the entries of CURSOR and
CSRPOS.

– If the name of a field that is not a list field was specified for MSGLOC, the message box
is output in relation to that field. The cursor is positioned as defined by the entries for
CURSOR and CSRPOS.

– If the name of a list field is specified for MSGLOC, an index to select a list line can be
specified. The message box is then output in relation to this field and the list line defined
by the index. If no index is specified, the message box is output in relation to the field
of the topmost line in the list area (see also “List processing, TOPINDEX variable”).

– It is also possible to specify an absolute position ($lll#ccc) as a value for the MSGLOC
operand. The value *CENTRAL causes the message box to be output in the center of
the screen.

– If the specification for MSGLOC would cause the requested cursor position to be
covered by the message box, the MSGLOC operand is ignored, and the message box
is positioned in accordance with the cursor specification.

– If neither MSGLOC nor the cursor position are specified, the message is output in the
center of the screen.

The entry in the message definition determines whether the message box is to be output
as modal or modeless.

If the message area was defined as the output location for the message to be displayed,
the MSGLOC operand is ignored.

88 U23110-J-Z135-1-7600

Help system Dialog extension

3.12 Help system

The application developer can create an extensive help system for the terminal user with
FHS-DM. This help system can be customized for each application.

Help information is displayed in the form of implicit boxes and is itself a format. Application-
specific help panels can be created using IFG; some default help panels are supplied with
FHS. The attributes of implicit boxes are described on page 17.

The scrolling commands FORWARD and BACKWARD are permitted in help panels, since
the size of the work area may not allow all information to be completely displayed in a single
help box. The options for application developers are listed in the following section.

3.12.1 Help that can be created by the application developer

The application developer can create the following help:

– extended help on the format
– field-related help on input fields, output fields, and selection fields
– global help on selection fields and for the command area
– help on messages
– cross-references

U23110-J-Z135-1-7600 89

Dialog extension Help system

Extended help on the format

When you generate a format with IFG, you can allocate a help panel (which you also
generate with IFG) to that format. This help is output when the user:

– enters the command EXTHELP (also activated by a function key; see the section on
“FHS commands” on page 64,

– places the cursor in a help box that was requested for field-related help and presses the
“EXTHELP” key,

– places the cursor in the mask or dialog box on a field for which no field-related help
exists and activates “HELP”. If AUTOTAB is set (as it is by default), the cursor can only
be placed in unprotected input fields or in protected marked fields. Extended help may
then need to be requested as in the first case.

– places the cursor in a field for which field-related or global help is being displayed and
then presses HELP again.

If no extended help is defined but a request for it is made, a corresponding message is
output.

Field-related help

When you define a format using IFG, you can assign a help panel to each field (even a
protected output field).

If you define help on an output field, it must be possible to position the cursor on that field,
i.e. either the output field must be markable or the format must have the tab attribute
NO AUTOTAB.

The help panel is displayed when the terminal user positions the cursor in the field
concerned and enters the HELP command or presses the corresponding F key.
If the field is part of a single-choice field, the user must enter the number of the desired
choice in the appropriate input field and specify the HELP command. (If no number is
entered, global help is provided if available; see “Global help”).

90 U23110-J-Z135-1-7600

Help system Dialog extension

Global help

In terms of its information content, global help lies between the extended help provided for
a complete format and the restricted field-related help for a single field. You can create
global help by using IFG to define a help panel with the following objects :

– Single-choice field. Global help can be obtained by positioning the cursor in the empty
input field of the single-choice field and specifying the HELP command.
If no field-related help for is available for a particular choice, the global help is output
immediately; otherwise, only after the second HELP command.

– Multiple-choice field. Global help can be obtained by positioning the cursor in any input
field of the multiple-choice field and specifying the HELP command once or twice. If no
field-related help exists, the user is provided with global help immediately; otherwise,
after the second HELP command.

– Command area of a format. Global help can be obtained by specifying the HELP
command when the cursor is in the command field and command field is empty or
contains an application command.

– List area of a format. Global help can be obtained by positioning the cursor in a list field
and specifying the HELP command once or twice. If no field-related help exists, global
help is output immediately; otherwise, after the second HELP command.
Global help is also displayed if HELP is pressed when the cursor is located in the list
area outside a field.

Help is output in a box. For selection fields, the box appears below the corresponding input
field (if possible); for the command area, it always appears above the command field.

Help on messages

If you want to define a help text for a message, you must specify the required help panel
explicitly when generating the message format with IFG.

This help panel is displayed if the terminal user presses the HELP key after the message
is output. If the message is to be output in a box, the cursor must be located within the
message box.

U23110-J-Z135-1-7600 91

Dialog extension Help system

Cross-references

Cross-references are hypertext links to text fields in help panels. They are similar to field-
related help in action formats. The user can obtain information on a cross-reference by
placing the cursor in a text field for which help is defined and pressing the ENTER key or
issuing a HELP command. This causes a new help box to be output with help information
displayed in it. Further cross-references may be contained in this box.

If a hierarchy of cross-references is requested, the corresponding help boxes are always
output at the same position. Consequently, only the topmost box will be visible if all cross-
references are of the same size. This should be taken into account when designing the help
panel.

INDEX

The INDEX command allows you to search for help supplied with the FHS dialog extension.
On entering the INDEX command, you will receive a help panel containing keywords for
FHS-DE. If you place the cursor on any keyword and press the ENTER key, a new help
panel will be output with help information displayed in it. This panel may, in turn, also
contain new cross-references.

3.12.2 Help provided by FHS

A number of standard help panels are supplied with FHS. The names of these help panels
all begin with IDHx. These standard help panels are contained in the library
SYSFHS.FHS.081.FHS-DM.E. A LINK to BLSLIBxx is sufficient to link in the help
panels (xx = 00 - 99). This LINK can take the following form:

SET-FILE-LINK FILE-NAME=$.SYSFHS.FHS.081.FHS-DM.E, LINK-NAME=BLSLIB00.

FHS offers the following help to the terminal user:

– help on messages from FHS
– help on FHS commands
– help on key assignments
– help on the help system

92 U23110-J-Z135-1-7600

Help system Dialog extension

Help on messages

Help on messages from FHS is handled analogously to the help on application-specific
messages (described above).

Help on FHS commands

The user can request help on a specific FHS command by entering HELP “fhs-command”
in the command field and pressing the ENTER key or by entering the command and
pressing the HELP key. The help on FHS commands appears as global help. If application-
specific help exists for an FHS command, the user receives the application-specific help at
the first HELP call and the FHS help at the second.

Help on key assignments

Help on key assignments can be activated by two methods:

– The terminal user issues the FHS command KEYSHELP or presses the assigned F key.

– The cursor is placed in the bottom frame of the box or in the key list display and the
HELP command is issued.

FHS displays the assignments for all F keys and K keys in a table; see the description of
the KEYSHELP command. Only those keys for which entries were made when creating the
KEY format are shown. If all key assignments are not visible, you can scroll forward or
backward as required.

When the key list is displayed, extended help may be requested:

– If a help panel was defined when assigning keys, the EXTHELP command displays that
help panel. If the cursor is outside the command area, the same help can be displayed
with the HELP command.

– If no help panel was defined, the EXTHELP command displays the message “No help
exists”. If the cursor is outside the command area, the HELP command displays help
on the KEYSHELP command.

The associated default help panel ((IDHKHLP) can be modified to some extent in IFG, e.g.
by altering text fields in titles, display attributes, or the explanatory text for “*”, which is
enclosed within < >. This text appears in the command field in the first data line of
IDHTKHP.

You cannot, however, change the structure of this format. If the structure of the IDHTKHP
format is destroyed by more radical changes, the KEYSHELP function can no longer be
implemented.

U23110-J-Z135-1-7600 93

Dialog extension Cursor positioning

Help on the help system

The help on the help system contains information on the type of help available and the ways
in which it can be accessed. The FHS command HELPHELP or the corresponding F key
activates this help.

3.13 Cursor positioning

Different methods are used for positioning the cursor on input and output.

Cursor positioning on output

The cursor position can be controlled by means of the CURSOR and CSRPOS operands
of the DISPLAY service. If the CURSOR operand is not specified, the cursor is placed in
the first input field. Alternatively, if the format does not contain an input field, the cursor is
placed in the first column of the first line on the screen.

Depending on the value of CURSOR, the following rules apply:

1. CURSOR contains an absolute position ($lll#ccc). In this case, the specifications for
CSRPOS are ignored.

2. CURSOR contains a field name. If the field name is invalid, i.e. does not exist in the
current format, the DISPLAY service terminates with an error. An index may be
specified if the field name refers to a line of a list. If no index is specified in such cases,
the topmost line displayed in the list area is assumed (see also “List processing,
TOPINDEX variable”). CSRPOS specifies the offset in the field. If the value of CSRPOS
is invalid, it is set to 1.

Cursor specifications on input

The cursor position is returned in the system variables SYS-CURSOR-FIELD, SYS-
CURSOR-POS and SYS-CURSOR-INDEX. If the cursor is positioned on an unnamed
(text) field or in the intermediate space between fields, SYS-CURSOR-FIELD contains the
absolute cursor position ($lll#ccc); SYS-CURSOR-POS and SYS-CURSOR-INDEX have
undefined values.

94 U23110-J-Z135-1-7600

Update output Dialog extension

3.14 Update output

If the same format needs to be output again and no implicit actions of the dialog manager
(e.g. help requests, messages) have been executed, only an “update output” is sent to the
screen in order to reduce the transmitted message. In other words, only the modifiable input
and output fields are redisplayed; text fields are not transferred.

The display services can normally detect if an update output is possible. In some cases,
however, if output from an external source (e.g. operator messages) has been inserted, the
display services cannot assume control.

If the intermediate output is generated by the application program (directly or indirectly by
calling system programs), the CONTROL service with the REFRESH or ACK operands can
be used to prevent an update output.

In order to handle cases when unexpected messages such as operator messages are
inserted between two outputs, the RESHOW command must be assigned to a K key (K3 is
recommended) in the key format so that the terminal user can fully refresh the screen by
pressing the K key.

The DISPLAY service detects when outputs to different DMCOMM of a dialog complex are
requested, but not an output to a second dialog complex. The CONTROL service must
always be called with the REFRESH operand in such cases.

U23110-J-Z135-1-7600 95

4 Program interface for
TIAM application programs
The dialog manager offers a number of different dialog elements and services that greatly
simplify and facilitate the development of dialog applications. The actual processing is
carried out by the application program itself by using the dialog services of the dialog
manager to display masks, messages, and help text at the terminal.

The following diagram shows an overview of the dialog manager components:

Dialog manager

Control services

Display services

Variable services

Application
program

Variable pool

Format library

Profile library

Dialog

interface

Variable handler

96 U23110-J-Z135-1-7600

Dialog services Dialog extension for TIAM

The following dialog elements are available:

– formats
– messages
– help texts
– key assignment tables (also called key lists)

These dialog elements are created with the aid of the Interactive Format Generator (IFG)
and stored in a format library. In order to process dialog elements with the dialog manager,
they must be created with an IFG version as of version 8.1.

The following dialog services are available:

 Display services

Services to design the layout of the screen interface in accordance with the SNI Alpha Style
Guide.

General variable services

Services that enable the application program to define, modify, and delete dialog variables.

Variable services

Services to control an application profile.

Name Purpose

DISPLAY
ATTR
ADDPOP
REMPOP

Display a format and/or a message
Define dynamic field attributes
Initialize a dialog box
Remove a dialog box

Name Purpose

VCOPY
VDEFINE
VDELETE
VREPLACE

Read dialog variables
Define explicit dialog variables
Delete dialog variables in the function pool
Replace dialog variables

Name Purpose

VPUT
VGET
VERASE

Write dialog variables into profile pool / SDF-P-Pool
Read dialog variables from profile pool / SDF-P-Pool
Delete dialog variables in profile pool

U23110-J-Z135-1-7600 97

Dialog extension for TIAM Dialog services

Control services

Services that enable an application program to initialize and terminate dialog manager
services and set the operating mode.

Other services

Name Purpose

DMOPEN
DMCLOSE
CONTROL

Begin use of dialog services
End use of dialog services
Set operating modes

Function key support

System commands of the dialog manager Abort format display
Display format name and message key
Copy screen
Execute BS2000 commands
Request help
Display key assignments

Provision of system variables

Support for application commands

98 U23110-J-Z135-1-7600

Dialog variables Dialog extension for TIAM

4.1 Variables of the dialog manager

The following variable types are differentiated in this manual:

– dialog variables (see the following sections)

– program variables (variables that can be used in an application program)

– procedure variables / S variables (variables that can be used in an SDF-P procedure)

4.1.1 Dialog variables

Dialog variables enable the exchange of data between the application program, the dialog
manager, and dialog elements. These variables can be defined, supplied with values,
modified, and deleted by the application program with the aid of the variable services of the
dialog manager. It is also possible to define links between dialog variables and program
variables.

An important use of dialog variables is in the exchange of data between mask fields and
application program data. When a format is defined using IFG, names of dialog variables
are assigned to the I/O fields of a mask. When the dialog manager displays a mask, the
values of the assigned dialog variables are shown in the mask fields. Any data that is
entered in an input field of a mask is then stored as the value of the corresponding dialog
variable.
Besides masks, dialog variables may also appear in the operands of a call to a dialog
manager service and in message texts. Such dialog variables are replaced by their corre-
sponding values before the service is executed or the message is output.

The dialog variables of the application profile are retained beyond the scope of their current
use and are immediately available for the next start of the dialog program (by the same
terminal user).

Dialog variables can also be used for communication between and among different appli-
cation segments.

U23110-J-Z135-1-7600 99

Dialog extension for TIAM Dialog variables

Advantages of dialog variables

All FHS applications until FHS V8.0 required predefined areas (addressing aids) for the
exchange of data between the application program and mask fields. The use of dialog
variables for data transport, by contrast, has the following advantages:

– Data can be processed and prepared in the application program independently of the
arrangement and layout of its presentation. In other words, program data can be
optimally defined for each respective programming language without any constraints
imposed by the format definition (e.g. sequence of mask fields).

– It is not necessary to provide data in a specific data area for each format displayed. The
variable pool can be filled at different times and is available for every format display,
thus eliminating the timing constraints for the provision of data.

– Convenient list displays can be easily implemented using dialog variables. This facility
is an important element of the presentation.

– Dialog variables enable the substitution of variable texts in messages and help texts.
This is not possible with addressing aids, since the time of substitution is not known to
the application program.

– Dialog variables support automatic type conversion of data to be displayed (e.g. if a C
string in the program is to be output in a mask field). With addressing aids, by contrast,
the application program must perform such conversions itself.

– Permanent storage of dialog variables (memory) is easily implemented.

– Implicit dialog variables (e.g. those only specified in the format) and the transfer of their
values to another format, for instance, can be implemented without application program
code.

– System services (such as date, time) are easily available to the application program or
mask via FHS system variables.

– Intercommunication between individual program segments is facilitated.

100 U23110-J-Z135-1-7600

Dialog variables Dialog extension for TIAM

Types of dialog variables

Depending on their storage structure, dialog variables can be classified as:

– Elementary dialog variables
– Structures of elementary dialog variables
– Dialog variable arrays

Elementary dialog variables cannot be subdivided further; each such variable consists of a
single element.

Structure of elementary dialog variables:

A structure consists of elementary dialog variables that differ in data type and/or in length.
The elements of a structure must occupy contiguous storage space. The dialog variables
of a structure are addressed by their names. Structures of dialog variables must be explicit
dialog variables.

Example of the layout of a structure:

LAST-NAME, FIRST-NAME and CITY are the names of the dialog variables

Dialog variable arrays

An array consists of a single array element with multiple repetitions. Array elements must
occupy contiguous storage space. An array element may be an elementary dialog variable
or a structure of elementary dialog variables. The dialog variables of an array element are
addressed by their names and an index consisting of a positive integer.

Arrays are of particular importance for the list display facility of the dialog manager. Arrays
of dialog variables can only be explicit dialog variables.

Examples of the layout of arrays:

Array of elementary dialog variables

LAST-
NAME

FIRST-NAME CITY

NAME index=1

NAME index=2

NAME index=3

U23110-J-Z135-1-7600 101

Dialog extension for TIAM Dialog variables

Array of structures

A dialog variable has the following attributes:

– a name,
– a value of a specific length,
– a data type, and
– possibly a repetition factor

Naming conventions for dialog variables

Since dialog variables are accessed only by name, a high degree of independence is
achieved between the application program and the dialog elements (e.g. mask).

The following syntax rules must be observed when naming dialog variables:

– The name must not exceed a maximum of 255 characters.

– The first character must be a letter (A-Z).

– Subsequent characters may include any of the following:

A-Z, 0-9, - (hyphen), . (period).

The hyphen and period must not be immediately followed by another hyphen or period,
and the last character of the name must not be a hyphen or period.

– No distinction is made between uppercase and lowercase letters.

The naming conventions for dialog variables are essentially the same as the syntax rules
for variable names in SDF-P procedures, so the same mask can be used both in an S
procedure and in a program.

There is, however, a difference in the significance of the period. In contrast to SDF-P
variables, where the period serves to identify structures, the period in a dialog variable has
no special meaning.

A name conforming to the above rules may be followed by an index entry.

LAST-
NAME

FIRST-NAME CITY index=1

LAST-
NAME

FIRST-NAME CITY index=2

LAST-
NAME

FIRST-NAME CITY index=3

102 U23110-J-Z135-1-7600

Dialog variables Dialog extension for TIAM

Index entry

An index entry is identified by a “#” character, followed by an integer value (1 to 32767;
unsigned and without digit separators) or the name of an elementary dialog variable with a
value that can be converted into a 4-byte positive binary integer (of type FIXEDS).

The string following the # symbol is analyzed on reading or writing a dialog variable: if the
first character is a digit, the string is interpreted as a direct index specification.

If the first character is a letter, the string is interpreted as a variable name, and a variable
with the specified name is searched. This name must designate an elementary variable
containing a legal value.

If the dialog variable has been defined as an array of dialog variables by using the VDEFINE
service, an index may be specified in addition to the variable name.

System variables of the dialog manager (special dialog variables) begin with “SYS-“. Users
should ensure that their own dialog variables do not begin with “SYS-”.

Examples of valid names for dialog variables:

PHONE-NUMBER
 A
 A.123#5
CITY#INDEX

Value of a dialog variable

The value of a dialog variable has a specific length. This length may have a fixed value,
may be defined by a length specification, or be determined by an end marker. The possible
values for the length of a dialog variable are contingent on their data types.

Data type of a dialog variable

The data type defines whether the value of a dialog variable is typically a string, binary
number, or decimal number.

The individual data types are described under the VDEFINE service.

U23110-J-Z135-1-7600 103

Dialog extension for TIAM Dialog variables

4.1.1.1 Explicit dialog variables

An explicit dialog variable is defined by using the VDEFINE service. The VDEFINE service
is used to assign internal storage space of the application program to a dialog variable. Any
change in the content of this storage space immediately changes the value of the dialog
variable. All services of the dialog manager read and write explicit dialog variables by
directly accessing their corresponding storage space in the program.

This allows an application program to declare a program variable as a dialog variable, to
call the DISPLAY service of the dialog manager to display any mask containing this
variable, and to then process this variable as usual in the program (e.g. IF NAME =
“LARRY” THEN...,).

The variable pool contains the name and the address of the value of an explicit dialog
variable. This entry in the variable pool can be deleted by means of the VDELETE service.

Description of an explicit dialog variable:

One or more explicit dialog variables are described in a call to the VDEFINE service by one
of the following points:

– a name or a name list,
– a data type or a list of data types,
– a length or a list of length values,
– an address (the starting address of values), and
– a multiplication factor (dimension).

Names, data types and length values at the same position in lists correspond to one
another.

The address of a variable of the name list is determined from the starting address and the
lengths of all variables defined earlier in this VDEFINE service.

A single call to the VDEFINE service can thus be used to define individual sections of a
contiguous storage area as explicit dialog variables. Other sections of this storage area can
be skipped as fill areas by entering only the length of the fill area and an “*” for the name
and data type in the lists.

Such fixed sequences of program variables are essentially structures in terms of
programming languages.

104 U23110-J-Z135-1-7600

Dialog variables Dialog extension for TIAM

The following diagram illustrates the concept:

The layout of the storage area defined by the lists is repeated as required if a value greater
than 1 was specified as the multiplication factor. Each dialog variable defined in the name
list is then an indexed dialog variable.

The VDEFINE service can be used to define elementary explicit dialog variables, structures
of explicit dialog variables, and arrays of explicit dialog variables.

A single dialog variable from an array of dialog variables can be addressed by:
name_of_variable#index (e.g. VLEN(10), see next page).
The index entry identifies a specific element of an array of dialog variables. If it is omitted,
the first element is assumed.

Example for the definition of multiple explicit dialog variables:

The dialog variables VI and VC are defined by means of the following C statements:

DMCOMM dmcomm;
char buffer[255];
long buflen;
long lfield;

long vi;
char vc [50];

strcpy (buffer “VDEFINE (VI) FORMAT(FIXEDS)“);
lfield = 4;
buflen = strlen(buffer);
ispci2(&dmcomm,&buflen,buffer,&lfield,&vi);

strcpy (buffer “VDEFINE (VC) FORMAT(BINSTR)“);
lfield = 50;
buflen = strlen(buffer);
ispci2(&dmcomm,&buflen,buffer,&lfield,&vc);

The variables “vi” and “vc” are not defined within a C structure, so the location of the
storage space assigned to them is unknown to the programmer. For this reason, two
calls to the VDEFINE service are required in order to declare them as dialog variables.

var_1 var_2 fill area var_3 ...

length_1 length_2 length_fa length_3

Initial address

U23110-J-Z135-1-7600 105

Dialog extension for TIAM Dialog variables

Example for the definition of an array of structures:

The following COBOL statements declare the program variables A, B, and C of
structure S as explicit dialog variables:

01 LBUF PIC S9(7) COMP VALUE 512.
01 BUF PIC X(512) VALUE SPACE.
01 LENFELD.
 02 VLEN PIC S9(7) COMP OCCURS 3 TIMES.
01 S.
 02 SE OCCURS 3 TIMES.
 03 A PIC X(10).
 03 B PIC S9(7) COMP.
 03 C PIC X(2).

MOVE 10 TO VLEN(1).
MOVE 4 TO VLEN(2).
MOVE 2 TO VLEN(3).
MOVE ’VDEFINE (X Y Z) FORMAT(CHAR FIXEDS CHAR) DIM(3)
 OPTION(LIST)’ TO BUF.
CALL „ISPCI2“ USING DMCOMM LBUF BUF LENFELD S.

In other words, the following storage layout (with the indicated offsets) is defined:

The dialog variables X, Y, and Z form an array of structures and must occupy
contiguous storage space.

0 10 14 16

0 A(1) B(1) C(1)

16 A(2) B(2) C(2)

32 A(3) B(3) C(3)

106 U23110-J-Z135-1-7600

Dialog variables Dialog extension for TIAM

Data types of explicit dialog variables

Each explicit dialog variable is assigned a data type via the VDEFINE service. This data
type provides information on how the storage space of the dialog variable is interpreted by
the application program and thus defines the internal format of the dialog variable.

Explicit dialog variables can be defined with the following data types:

– CHAR, BINSTR, NUMS, NUMU for storage of strings,

– FIXEDS, FIXEDU for storage of binary numbers,

– PACK for storage of packed decimal numbers.

When a dialog variable is accessed, type conversions may be performed by the dialog
manager to convert different data types into one another.

This may be required in the following cases:

– when a VCOPY, VREPLACE, VPUT or VGET service is called;

– when a dialog variable is displayed in a mask or a message.

4.1.1.2 Implicit dialog variables

If the dialog manager needs to write a dialog variable that is not explicitly declared by the
application program, it defines a dialog variable implicitly, i.e. enters the name and the value
in the function pool (or in the profile pool). A read operation on an undefined dialog variable
returns the length 0 and an appropriate return code.

An implicit dialog variable is a string of type CHAR or a number of type FIXEDS (4 bytes)
and is compatible with the SDF-P variable of type STRING or INTEGER. The length of an
implicit dialog variable of type CHAR is restricted to 16383 characters.

Implicit dialog variables can only be processed by means of variable and display services.

The VCOPY and VREPLACE services can be used by a program to copy the value of an
implicit dialog variable into a program area and to modify the value or implicitly create the
dialog variable, respectively.

If an input field of a mask is associated with an implicit dialog variable, the value of the
variable may be changed by input from the keyboard.

An implicit dialog variable is always an elementary dialog variable. Implicit dialog variables
of type CHAR are always stored with a length based on their significant characters (i.e.
without trailing blanks).

U23110-J-Z135-1-7600 107

Dialog extension for TIAM Dialog variables

Dialog variables with identical names

The names of dialog variables in a variable pool must be unique. Potential violations of this
rule could occur in the following cases:

– If an explicit dialog variable and an implicit dialog variable are given the same name.
This situation occurs when the VDEFINE service is used to define a dialog variable with
a name that already exists for an implicit dialog variable. If VDEFINE is called with the
COPY operand, the value of the implicit dialog variable is copied, and the implicit dialog
variable is deleted. Without the COPY operand, the VDEFINE call terminates with an
error code.

– If two explicit dialog variables are to be assigned the same name, the VDEFINE call will
terminate with an error code.

– It is not possible for two implicit dialog variables to have the same name, since only the
value is changed.

4.1.1.3 Rules for dialog variables

The following rules apply in connection with dialog variables:

– Implicit dialog variables of type FIXEDS always have a length of 4 bytes.

– A dialog variable of type FIXEDS is created implicitly even if it has the value 0.

– A CHAR/BINSTR value becomes an implicit dialog variable only if the relevant length
of the source value is not 0.

Relevant length: length of the value of a dialog variable of type CHAR/BINSTR without
the insignificant trailing blanks. The NOBSCAN operand in the explicit definition of a
dialog variable (VDEFINE) determines whether or not trailing blanks are significant.
There are no significant trailing blanks for implicit dialog variables (since trailing blanks
are truncated on storage).

– The length of an existing implicit dialog variable of type CHAR is changed at the time of
an update (VREPLACE) in accordance with the relevant length (i.e. truncated or
extended).

– An implicit dialog variable of type FIXEDS can only be generated by VREPLACE (not
by mask fields).

– VCOPY for CHAR/BINSTR as the target type returns the relevant length and thus
changes the target field length defined by the user. The specified target field length is
not changed for other types.

– Profile dialog variables can be of type CHAR or FIXEDS.

108 U23110-J-Z135-1-7600

System variable Dialog extension for TIAM

– Implicit dialog variables can only be deleted explicitly.

– It is best to avoid frequent type conversions in the interests of clarity. If numeric values
are present and the value range is sufficient, the use of FIXEDS should be given
precedence.

4.1.1.4 System variables of the dialog manager

System variables contain globally applicable data of the dialog manager or the operating
system (e.g. the current date) and are stored in the function pool or in a special system pool.

The names of system variables of the dialog manager begin with the string “„SYS-“.

Some system variables (e.g. time) are determined on a current basis. System variables that
are contained in the function pool are treated as normal dialog variables, i.e. the variable is
defined if no variable of that name exists, and if a variable of the same name is already
present, then the existing variable is used regardless of whether an implicit or explicit dialog
variable is involved. An overview of system variables can be found in the appendix on page
261.

4.1.1.5 Conventions for dialog variables in the model line (list processing)

Name without index entry: e.g. ABC or A.B-C

Variable definition in the TIAM application program:

VDEFINE (ABC,A.B-C) FORMAT(CHAR) DIM(100)

The term dialog variables is used in this context to avoid confusion.

U23110-J-Z135-1-7600 109

Dialog extension for TIAM Variable pool

4.2 Variable pool

Dialog variables are stored in variable pools as (name,value) or (name,value-address)
combinations. Special variable pools containing the dialog variables of the application
profile are stored in a profile library.

Dialog variables for an application program are defined or created by the variable services
of the dialog manager. They are maintained in variable pools.

Function pool and profile pool

The dialog manager distinguishes two types of variable pools:

– function pool
– profile pool

The following diagram illustrates the inter-relationships. It shows the flow of execution of an
application program in which a subprogram (SP) is active and indicates when each type of
variable pool is made available (dotted line).

The function and profile pools are part of a two-level pool hierarchy in which the function
pool is searched first when reading a dialog variable and the profile pool is searched there-
after if no dialog variable was found.

Program

DMOPEN with

INIT

PROFILE(A)

CALL UP

DMCLOSE

Function
pool

Profile
pool

Functions
pool

UP:

DMOPEN

DMCLOSE

110 U23110-J-Z135-1-7600

Variable pool Dialog extension for TIAM

The existence of the function pool begins with the execution of a DMOPEN service and
ends with the execution of the associated DMCLOSE service.

When a DMOPEN service is executed with the INIT operand, a profile pool can be created
in addition to the function pool with the aid of the PROFILE operand.

The names and values of profile dialog variables are stored in a member of the user-specific
profile library. If this member exists, the profile pool being opened is initialized with the
elementary dialog variables contained in that member; otherwise, the application begins
with an empty profile pool.

The values and names of the dialog variables of the profile pool are output to the library
member on closing the pool, i.e. on terminating access to the dialog manager (DMCLOSE
service). A profile pool always contains implicit dialog variables (i.e. the pool contains the
name and value of each variable) that have values of type CHAR or FIXEDS.

If the NOSAVE operand is specified on DMCLOSE, the profile pool is not written.

The VDELETE service can be used to remove definitions of dialog variables from the
function pool. An explicit dialog variable must be deleted whenever the addressed storage
space is no longer available.

Dialog variables can be assigned values by means of the VREPLACE service; if a given
variable does not exist in the function pool, it is automatically defined as an implicit dialog
variable. Implicit dialog variables in the function pool can also be defined by the DISPLAY
service.

The values of dialog variables (e.g. of implicit variables) can be read by means of the
VCOPY service.

The profile variables of the dialog manager which are stored in an element are compatible
with a profile element generated by SDF-P (as of Version 2.0). An FHS profile element can
therefore be processed by using SDF-P commands (or an S procedure). In the following
example, a profile element with the name PROF1 is processed in the library, PROFLIB:

/OPEN-VARIABLE-CONTAINER PROF1,*LIB(PROFLIB,PROF1),
AUTOMATIC-DECLARE=*
This SDF-P command opens an SDF-P variable container with the name PROF1 and
“imports” all variables.

/SHOW-VARIABLE *ALL
The variables are displayed.

/variable-name = ’new_value’
A single variable is modified.

/SAVE-VARIABLE-CONTAINER PROF1
The modified profile element is saved.

U23110-J-Z135-1-7600 111

Dialog extension for TIAM Variable pool

Notes:
In order to process an FHS profile with SDF-P, the syntax of the variable names must corre-
spond to that of SDF-P.

The following diagram demonstrates which services are used for data communications
between the variable pools or program areas and the variable pools in which the deletion
of dialog variables occurs.

The VPUT service can be used to create a dialog variable or change its value in the profile
pool.The current value of the dialog variable is copied from the function pool into the profile
pool without changing the dialog variable in the function pool. The VGET service can be
used to copy dialog variables from the profile pool to the function pool without changing the
definitions and values in the profile pool. Dialog variables in the profile pool are deleted
using the VERASE service.

Program data

Function pool

Deletion: VDELETE

Profile pool

Deletion: VERASE

VREPLACE VDEFINE VCOPY

VPUT VGET

Key:

Transfers the value of a dialog variable

Supplies the address of a dialog variable

112 U23110-J-Z135-1-7600

Program structure of a dialog application Dialog extension for TIAM

4.3 Program structure of a dialog application

Every dialog manager application initiates communication with the dialog manager by a call
to the DMOPEN service and ends communication with a DMCLOSE call. Other services
may be invoked between these two calls.

The DMOPEN call initializes the connection to the dialog manager. The application program
cannot invoke any other dialog service unless the DMOPEN call was successful.

The INIT operand must be specified in the first DMOPEN call of a dialog manager appli-
cation. This causes the communication area (DMCOMM), which must be supplied by the
application program as a transfer parameter, to be assigned a non-initialized system
section.

This first DMOPEN call requests global storage space for subsequent operations of the
dialog manager and places the address of this area in the system section of the communi-
cation area. In addition, a flag is entered in the communication area to distinguish this
DMCOMM from others. These entries must not be altered by the application program.

The application flag of the PROFILE operand in the first DMOPEN call can be used to
optionally open a profile pool. Every DMOPEN call opens a new function pool that is concat-
enated with the profile pool. Concatenation means that the function pool is searched first
when dialog variables are to be read and, if the variable is not found there, the profile pool
is searched thereafter.

All calls for dialog services that follow the first DMOPEN call must use the communication
area initialized by the dialog manager (see page 118). This ensures that such services are
connected with a function pool and the profile pool concatenated with it.

The DMCLOSE service is also called with the communication area that was initialized with
DMOPEN. DMCLOSE closes the corresponding function pool and writes back the dialog
variables of the profile pool to the profile library. The global storage space of the dialog
manager is released.

U23110-J-Z135-1-7600 113

Dialog extension for TIAM Program structure of a dialog application

Multiple DMOPEN calls

Each application normally contains only one DMOPEN/DMCLOSE call. More complex
applications may, however, call subroutines which, in turn, can also include DMOPEN/
DMCLOSE calls. It is also possible to call a BS2000 system subprogram that invokes dialog
services. This results in the creation of a hierarchy of DMOPEN calls.

The use of such multiple DMOPEN calls is explained below.

– The first DMOPEN call of an application must include the INIT operand and thus open
a dialog complex. If profile variables are to be used by the dialog complex, the PROFILE
operand must be specified.
This causes the dialog manager to open a function pool and a profile pool and to place
global information in the system section of the passed DMCOMM. The profile pool is
available to all dialog manager services of this dialog complex and is not closed until a
DMCLOSE to end the dialog complex is executed.

– A dialog complex may, for example, include subroutines that wish to use a separate
function pool. This is enabled by a DMOPEN call without the INIT operand. A DMOPEN
without INIT opens a dialog section. In the case of such DMOPEN calls without the INIT
operand, the associated DMCOMM must contain a valid system section, so the appli-
cation program must copy the system section of the DMCOMM of the first DMOPEN if
a separate DMCOMM is to be used for each DMOPEN.
The provision of a separate DMCOMM at each DMOPEN is not required for strictly
nested multiple DMOPEN calls; the DMCOMM of the first DMOPEN can be used for all
such calls. The dialog manager retains the existing system section at the DMOPEN and
saves it back at the next DMCLOSE. In this case, however, it is only possible to work
with the last opened dialog section. If different function pools are to be used simulta-
neously, the concurrent existence of multiple communication areas is essential, i.e.
copies must be passed to each DMOPEN.
A DMCLOSE with the communication area of the dialog complex (with INIT) will also
terminate all subordinate dialog sections.
Each DMOPEN call in the same dialog complex opens a separate function pool and
concatenates it with the profile pool of the dialog complex.

– DMCLOSE releases the function pool requested with DMOPEN. The DMCLOSE
associated with the first DMOPEN also releases the profile pool and writes the profile
variables into the profile library. Global storage is likewise released, and the dialog
complex is thus terminated. No further dialog service for that complex can then be
requested.

– Multiple DMOPEN calls with the INIT operand will result in the creation of multiple dialog
complexes. If such dialog complexes exist in parallel, dialog variables cannot be
exchanged among them via variable pools, i.e. each dialog complex is clearly delin-
eated from other dialog complexes and is handled independently by the dialog
manager.

114 U23110-J-Z135-1-7600

Program structure of a dialog application Dialog extension for TIAM

– If multiple dialog complexes are created with the same application flag in the PROFILE
operand, there will also be multiple profile pools corresponding to the same member of
the profile library. In such cases, closing the pool may cause the profile member
contents created by some other dialog complex to be overwritten.

Example of a dialog application:

Dialog complex 1

call subr1
Pass dmcomm1

call dialogcomplex2

ispci (dmcomm1,buflen,"DMCLOSE");

subr 1

Transfer system section to dmcomm2

Dialog complex 2 (without profile pool)

ispci (dmcomm2,buflen,"DMOPEN INIT")
ispci (dmcomm2,buflen,"DISPLAY...")
ispci (dmcomm2,buflen,"DMCLOSE")

ispci (dmcomm1,buflen,"DMOPEN INIT PROFILE(ABC)");

ispci (dmcomm1,buflen,"DMCLOSE")
ispci (dmcomm1,buflen,"DISPLAY...")
ispci (dmcomm1,buflen,"DMOPEN")

U23110-J-Z135-1-7600 115

Dialog extension for TIAM Program structure of a dialog application

Example of a dialog application with parallel dialog sections:

Dialog complex 1

call subr1
Pass dmcomm 2

call subr2

ispci (dmcomm1,buflen,"DMCLOSE");

subr1

subr2

ispci (dmcomm1,buflen,"DMOPEN INIT,PROFILE(ABC)");

dmcomm2 = dmcomm1
dmcomm3 = dmcomm1 Copies the DMCOMM

ispci (dmcomm1,buflen,"DISPLAY...")

Opens the
dialog complex
DISPLAY call

ispci (dmcomm2,buflen,"DMOPEN") Opens both dialog sections

Creates function pools 2 and 3ispci (dmcomm3,buflen,"DMOPEN")

call subr2
Pass dmcomm 3

call subr1
Pass dmcomm 2

call subr2
Pass dmcomm 3

ispci (dmcomm1,buflen,"DISPLAY...")

ispci (dmcomm2,buflen,"DISPLAY...")

Alternate operations in different
dialog sections and pools

Closes the dialog complex
including the sections

(parameter par_dmcomm)

Work with function pool 2ispci (par_dmcomm,buflen,"VDEFINE...")
ispci (par_dmcomm,buflen,"DISPLAY...")

(parameter par_dmcomm)

Work with function pool 3ispci (par_dmcomm,buflen,"VCOPY.....")
ispci (par_dmcomm,buflen,"DISPLAY...")

116 U23110-J-Z135-1-7600

Calling dialog services Dialog extension for TIAM

4.4 Calling dialog services

Dialog manager services are available to application programs.

The general format of calls within a program and the types and notation of parameters and
operands are described in this section, but without specific details on every individual
parameter or operand.

The dialog services and their parameters and operands are described in alphabetical order
starting on page 125.

4.4.1 ISPCI interface routine

Dialog manager services are invoked in a program as a CALL interface via the ISPCI
(3rd. parameter) or ISPCI2 (5th. parameter) interface routine. This interface is based on the
international recommendations for a dialog interface (SAA CPI - systems application archi-
tecture common programming interface). The following method is used for passing param-
eters at this interface:

1) These parameters are only required by some services.The entry point ISPCI2 of the
interface routine must be used for the call to these services. More details on the
meaning of these additional parameters can be found under the description of the
corresponding service. This method of passing parameters when calling subprograms
is implemented, or can at least be requested, in all compilers (CALL statement in
COBOL and FORTRAN, function call in C).

Storage space for the communication area and the operand area must be supplied by the
application program.

The operand area is a storage area that contains the name and the operands of the dialog
service. A detailed description of the operand area is provided in the sections describing
the individual dialog services.

The length of the operand area in bytes must be specified as a binary signed integer of
4-byte length (word boundary). The maximum length is equal to 512 bytes. Only legal
characters are permitted in the operand area itself (e.g. X’00’ would lead to an error).

Register 1 --> A(communication area)

A(length of operand area)

A(operand area)

A(length area) 1)

A(value area) 1)

U23110-J-Z135-1-7600 117

Dialog extension for TIAM Calling dialog services

Before the interface routine is called, the operand area must be filled with the name and the
operands of the desired service. These specifications are given as strings, thus enabling a
simple definition in the usual programming languages.

The specified length of the operand area may be greater than the number of characters
entered in it if the operand area is padded with blanks to the specified length.

The following example shows a COBOL application program section that opens access to
the dialog manager and then displays a format:

01 DMCOMM PIC X(128) VALUE SPACE.
01 BUFLEN PIC S9(7) COMP VALUE 512.
01 BUFFER PIC X(512) VALUE SPACE.

MOVE „DMOPEN INIT PROFILE(ABC)“ TO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

MOVE „DISPLAY PANEL(FORM001)“ TO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

Further examples on calling dialog services are provided under the individual descriptions
of services.

118 U23110-J-Z135-1-7600

Communication area Dialog extension for TIAM

4.4.2 Communication area

The communication area contains data that is used for communications between the
program and dialog manager. It is a storage area of the application program.

The communication area (DMCOMM) is 128 bytes long and has the following structure:

The components of the communication area have the following significance:

DMRC
The return code provides information on whether the called service was successfully or
incorrectly executed. Return information is saved by the dialog manager in the field DMRC
and in the sub-fields DMMC and DMSC1, respectively. Field DMSC2 must be treated as
reserved. SC2 is only significant for the user if SC1 has the value 0. Its value is 2 in the case
of a warning.

The main code is the main value of the return code.

Subcode1 indicates the error class to which the main value belongs.

The following error classes exist (decimal value of subcode1):

0 successful execution (including warnings)

1 parameter error (syntax error or no meaningful values)

32 internal error of the dialog manager

64 other errors

The possible values of the main code of error class 0 are given in the description of
dialog services. All return codes for unsuccessful execution of a service are included in
the appendix.

Offset Length Name Meaning

0
0
2
4
8

16
16
24

8
2
2
4
8
8
1

104

DMRC
DMSC2
DMSC1
DMMC
DMMSGID
DMFLAG
DMERR
DMSYS

Return code
Subcode2 (reserved)
Subcode1 (error class)
Main code (name value)
Message key
Flag for special services
Flag for error control
System section

U23110-J-Z135-1-7600 119

Dialog extension for TIAM Communication area

DMMSGID
DMMSGID can contain a message key after execution of a service. The associated
message explains the cause of the error for a given error code. If the return code is zero,
DMMSGID contains blanks.
If error control by the dialog manager has been set and an error leading to the output of the
error mask occurs, the message text will already be displayed in the mask.

DMFLAG
The content of this field is used as follows:

DMERR Switch to turn on/turn off error control

Y Error control for errors

W Error control for warnings and for errors

N (or blanks) No error control

Recommended setting: Y

DMSYS
Contains the system section of the communication area. This information must not be
destroyed by application programs.

Use of the communication area

The communication area must be specified in a program as a parameter when calling the
interface routine ISPCI. It can be defined in programming languages as shown for some of
the typical programming languages in the examples below. Analogous methods may be
used in other languages if available.

Communication area in COBOL:

DATA DIVISION
WORKING-STORAGE SECTION
01 DMCOMM IS COMP.
 02 DMRC.
 03 DMSC2 PIC S9(4).
 03 DMSC1 PIC S9(4).
 03 DMMC PIC S9(7).
 02 DMMSGID PIC X(8).
 02 DMFLAG.
 03 DMERR PIC X(1).
 03 FILLER PIC X(7).
 02 DMSYS PIC X(104).

120 U23110-J-Z135-1-7600

Communication area Dialog extension for TIAM

Communication area in C:

typedef struct
 {
 short int sc2;
 short int sc1;
 long int mc;
 char msgid[8];
 char dmerr;
 char filler[7];
 char sys[104];
 } DMCOMM_T;
DMCOMM_T dmcomm;

Communication area in FORTRAN:

C Definition as INTEGER*2 Field with 64 Elements
 INTEGER*2 DMCOMM(64)
 INTEGER*2 DMSC2,DMSC1
 INTEGER*4 DMMC
 EQUIVALENCE (DMCOMM(1),DMSC2),(DMCOMM(2),DMSC1)
 EQUIVALENCE (DMCOMM(3),DMMC)
 CHARACTER*8 DMMSGID
 EQUIVALENCE (DMCOMM(5),DMMSGID)
 CHARACTER*8 DMFLAG
 CHARACTER*1 DMERR
 EQUIVALENCE (DMCOMM(9),DMFLAG),(DMCOMM(9),DMERR)
 CHARACTER*104 DMSYS
 EQUIVALENCE (DMCOMM(13),DMSYS)

U23110-J-Z135-1-7600 121

Dialog extension for TIAM Error handling

4.4.3 Error handling by the dialog manager

Dialog services place a return code in the communication area. This code contains infor-
mation on the successful or unsuccessful execution of the dialog service.

The return code must be evaluated in the application program on each return from a dialog
service. This evaluation is simplified by the subdivision of return codes into classification
codes and description codes.

The dialog manager offers application programmers the option of displaying information on
errors (i.e. an error report) in a mask in the event of an error.

The following conditions must be satisfied for the dialog manager to display an error mask:

1. The DMERR switch (in DMCOMM) must be set to Y or W (recommended setting: Y).

2. Classification code SC1 must have a non-zero value (error) or SC1=0 and SC2=2
(Warning).

3. The error situation must not prevent operability of the dialog manager.

An error description is output as a mask in the main window (full-screen). The mask
contains at least the following information:

– the operand area supplied by the user, following variable substitution by the dialog
manager

– return code
– a description of the error

The description is contained in the message associated with the message code in the
communication area. Message codes (also called message IDs) are listed in the appendix
starting on page 234.

After the error is displayed, the application program may abort execution of the application
or continue with it if meaningful. If an error code > 200000 occurs, no error mask can be
shown.

The system command ABORT can be entered in the command input field of the error mask.
This causes the main code in DMCOMM to be set to 399999. The application program
should respond to this code as required.

122 U23110-J-Z135-1-7600

Operand area Dialog extension for TIAM

4.4.4 Structure of the operand area

The operand area must contain the name of the dialog service. It may include both
positional and keyword operands.

Positional operand
A positional operand is required for some variable services. It contains a list of names
enclosed within parentheses. One or more blanks, a comma, or blanks and commas
may be used as separators in the list. If the name list consists of only one name, the
parentheses may be omitted.

Examples:

The operand areas specified by the following pairs have identical contents:

VDELETE (V111,V222,V333)
VDELETE (V111 V222 V333)

VDELETE ABC
VDELETE (ABC)

Keyword operands
A keyword operand consists of a string to identify the operand and possibly a value. The
value is entered in parentheses after the keyword. (The parentheses may be entered
directly after the keyword or be separated from it by blanks.) If the value in parentheses
consists of only blanks, the operand is treated as unspecified.

Some operands allow a list of values to be specified. The values in this list are entered
without additional parentheses and may also be separated by blanks, a comma, or a
comma enclosed within blanks. Keyword operands may be specified in any order.

U23110-J-Z135-1-7600 123

Dialog extension for TIAM Variable substitution

4.4.5 Variable substitution in the operand area and in messages

If a string in the operand area or in the text of a message begins with the character “&”, the
string following that character is seen as the name of a dialog variable. The dialog manager
then assumes that the value of this dialog variable should be substituted at this position in
the operand area.

The following syntax applies to variable substitutions:

&(varname) or &(varname#index)

“varname” is the name of a dialog variable (or the name of an SDF-P application). The
dialog variable may be of any type that is convertible to a string. The substituted value is
always a string.

The parentheses may be omitted if the name of the dialog variable does not contain a
period and no index is specified. In this case, the end of the name is identified by any
character that does not conform to the rules for naming dialog variables or by a period. The
period has a special significance in such cases: it is used only as an end marker and is
dropped (compatible with earlier variable substitutions in FHS V8.0).

A single “&” followed by a blank is interpreted as the character “&” ; no substitution occurs.

A duplicated “&” (&&) becomes a “&”.

No recursive substitution occurs.

Examples:

’DISPLAY PANEL(ABC)’

A call to the display service with this operand area produces the output of format ABC.

’DISPLAY PANEL (&ABC)’ ’DISPLAY PANEL(&(A.B))’

A call to the display service with this operand area outputs the format whose name is
contained in dialog variable ABC or A.B.

’DISPLAY PANEL(&NFL#5)’

A call to the display service with this operand area outputs the format whose name is
contained in dialog variable NFL in the 5th element of the dialog variable array.

’DISPLAY PANEL(&(DEF)#5)’

A call to the display service with this operand area outputs the format whose name is
contained in the 5th array element of an array named by the value of dialog variable DEF.

124 U23110-J-Z135-1-7600

Variable substitution Dialog extension for TIAM

The following are also valid specifications:
&ABC&DEF NO&ABC.D &ABC;TEXT &(a.b).LIST

Value substitutions are not possible in the operand area of a DMOPEN service, since it is
precisely this dialog service that assigns a variable pool to the application program.

The entire operand area can be defined by a variable name.

The inserted strings are not checked for further value substitutions. The total length of the
operand area after variable substitution must not exceed 2048 characters.

U23110-J-Z135-1-7600 125

Dialog extension for TIAM Dialog services

4.5 Description of dialog services

Each dialog service is described below with a brief description of the service, the param-
eters of the interface routine, and the structure and operands of the operand area. In
addition, the function of the service is explained in detail, and examples on its use are
provided.

If one dialog service has an effect on a following dialog service, the affected dialog service
may be assumed to be in the same dialog section (same communication area) unless
explicitly specified otherwise.

Dialog services have no effect on one another, but for a few restrictions (e.g. SETP; see
below). When two DISPLAY calls of different dialog sections follow one another, no
differential output is generated even if the same format is displayed.

Notes on usage of the term “field-name”:

The name of a dialog variable to be displayed in a mask field is assigned to that field
using IFG. In order to name a field in a mask, the corresponding name of the dialog
variable is used as the field name. A field name that is followed by a “#“ and an index
designates a specific list record for a list field, since it addresses an element of an array
of dialog variables.

126 U23110-J-Z135-1-7600

ADDPOP Dialog services

4.5.1 ADDPOP - Define the position of a dialog box

ADDPOP instructs the dialog manager to display all following formats in a box. The box
initialized by the ADDPOP call remains in effect until a REMPOP call or a further ADPOP
call occurs. The effect of an ADDPOP call does not appear on the screen until the next
DISPLAY call.

The size of the dialog box is determined by the size of the mask. If the size exceeds the
space available at the desired position, the dialog manager will look for some other space,
depending on whether or not the POPLOC operand was specified (see also the section
“Creating and removing explicit dialog boxes”) on page 16.

The REMPOP service can be used to remove a dialog box. The box is actually removed at
the next DISPLAY call.

An ADDPOP call may be followed by a new ADPOP call only after a DISPLAY call with the
format name.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

field-name
 ADDPOP [POPLOC]

*CENTRTAL

 [ROW(row-num)]

 [COLUMN(col-num)]

Operands:

ADDPOP

Name of the service

U23110-J-Z135-1-7600 127

Dialog services ADDPOP

POPLOC(field-name)

POPLOC defines the reference point for field-related positioning of the dialog box.

“field-name” must be the name of a field of the current mask. The current mask is the
last output format. The reference point is the first character of the specified field.

If the field name refers to a list record, an index to define a specific list record may be
specified. If no index is specified in such cases, the topmost line in the current list area
is assumed.

The value of the TOPINDEX variable at the time of the ADDPOP call is used to define
the topmost line in the list area (top index). In the following DISPLAY call to output a
mask in a dialog box, the underlying list area is positioned in accordance with the
TOPINDEX specification (see also “List processing, TOPINDEX variable”).

If several fields of the same name exist, the first field is used.

*CENTRAL specifies that the box is to be output centered in the middle of the screen.
The ROW and COLUMN operands are ignored in this case.

If the POPLOC operand is omitted, the upper left corner (initial point) of the current
mask is taken as the reference point.

If the POPLOC operand is specified without a field name, a box may be output on an
“empty” screen, i.e. no full-screen format is required.

ROW(row-num)

Specifies the offset of the dialog box in the downward (positive value) or upward
(negative value) direction in relation to the reference point.

If the ROW operand is omitted, a downward shift of 2 lines occurs (default offset).

COLUMN(col-num)

Specifies the offset of the dialog box to the right (positive value) or left (negative value)
of the reference point.

If the COLUMN operand is omitted, a shift of 2 columns to the right occurs (default
offset).

128 U23110-J-Z135-1-7600

ADDPOP Dialog services

Example:

The following COBOL statements output the format FORM002 in a dialog box that
overlays format FORM001:

01 BUFLEN PIC S9(7) COMP VALUE 512.
01 BUFFER PIC X(512) VALUE SPACE.

MOVE „DISPLAY PANEL(FORM001)“ TO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

MOVE „ADDPOP“ TO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

MOVE „DISPLAY PANEL(FORM002)“ TO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

U23110-J-Z135-1-7600 129

Dialog services ATTR

4.5.2 ATTR - Define dynamic attributes for mask fields

The field attributes of mask fields (e.g. brightness, color, etc.) are generally static and are
set when defining a format using IFG. These attributes are stored in the format definition.
In some situations, it may, however, be necessary for the application program to change the
field attributes for specific fields.

The ATTR service enables dynamic modification of field attributes for mask fields. The
effect of an ATTR call does not appear on the screen until the next DISPLAY service is
executed and is only valid for that one call.

The ATTR service may be called more than once before a DISPLAY call. The individual
ATTR calls are then concatenated, i.e. all defined attribute assignments are collected and
take effect at the next DISPLAY call. The dynamic field attributes are given precedence over
the statically defined attributes.

The DISPLAY service deletes all dynamic attribute assignments before returning to the
application.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

130 U23110-J-Z135-1-7600

ATTR Dialog services

Structure of the operand area:

 INPUT
ï,TYPE MANDATORY ï
ï OUTPUT ï
ï ï
ï UNDERLINED [,INVERSE] ï
ï,HILITE ï
ï INVERSE [,UNDERLINED] ï
ï ï
ï HIGH [,INVISIBLE] ï
ï,INTENS LOW [,INVISIBLE] ï

field-name ï INVISIBLE ï
 ATTR field-name,..

*CURSOR ï INIT ï
ï,OUTPUT ï
ï CHECK ï
ï ï
ï RED ï
ï ï GREEN ï ï
ï ï YELLOW ï ï
ï,COLOR BLUE ï
ï ï MAGENTA ï ï
ï ï CYAN ï ï
 WHITE

Operands:

ATTR

Name of the service

field-name

Specifies the name of a masked field for which dynamic field attributes are to be
changed. A list of names (enclosed within parentheses) may be specified if the same
attributes apply to all.

If the field name refers to a list record, an index to define a specific list record may also
be specified. If the index is omitted in such cases, the topmost line in the list area is
assumed (see “List processing, TOPINDEX variable”).

It is also possible to specify an asterisk (*) as an index for list fields. This causes all
indices of the specified field (column of a list) to be assigned the same attributes. The
asterisk cannot be specified in combination with TYPE(MANDATORY).

U23110-J-Z135-1-7600 131

Dialog services ATTR

*CURSOR

The field attributes of the field in which the cursor appears at the next DISPLAY call are
to be changed. If it is determined at the next DISPLAY call that a dynamic attribute has
also been requested for the field name of the field at which the cursor was positioned,
the specifications are combined. If the specifications are the same, the *CURSOR entry
is given precedence.

TYPE()

Sets the field type:

INPUT
The corresponding mask field is set as an unprotected input field without mandatory
input. The field can be changed via the keyboard.

MANDATORY
Defines the mask field as mandatory, i.e. the field must be modified by the user at the
terminal.

OUTPUT
 The mask field is defined as an unprotected and unmarkable output field. The contents
of the field cannot be changed from the keyboard.

HILITE()

Defines the type of highlighting used for the mask field:

UNDERLINED
The field contents are shown underlined.

INVERSE
The field contents are displayed in inverse video.

Note:
If the highlighting of fields has already been set in the format definition, it is not possible
to undo the setting using dynamic attributes. Fields to be dynamically highlighted
should therefore not be highlighted when defining the format.

132 U23110-J-Z135-1-7600

ATTR Dialog services

INTENS()

Specifies the intensity of the field:

HIGH
The field is displayed with high intensity.

LOW
The field is displayed with low intensity.

INVISIBLE
The field is invisible and cannot be printed.

OUTPUT()

Defines the usage of defaults for mask fields.

Without the OUTPUT specification, default values of the mask are used if it is deter-
mined in the DISPLAY call that the dialog variable assigned to the mask field does not
exist or that its value has a relevant length of zero. On returning from the DISPLAY
service, the corresponding dialog variables will contain the default values of each
respective mask field. If a dialog variable does not exist, it is implicitly created as a
variable of type CHAR.
Default settings for list fields are ignored.

INIT
When the mask is displayed, the default value that was set when defining the format is
output for the specified field regardless of the contents of the dialog variable connected
with that mask field. If no value for the field was defined in the format, the field is shown
with fill characters.

CHECK
For existing dialog variables that have values with a relevant length greater than zero,
the default value is used only if the content of the dialog variable connected with the
mask field has the value zero.

Without the OUTPUT operand, the default setting of a mask field is always used
whenever the dialog variable connected with the mask field does not exist or has a
relevant length of zero.

U23110-J-Z135-1-7600 133

Dialog services ATTR

COLOR()

Specifies the color for the masked field. This specification is ignored for devices that
cannot display colors.

RED

GREEN

YELLOW

BLUE

MAGENTA

CYAN

WHITE

Example:

The following COBOL statements change the field attributes for some mask fields
temporarily.

01 BUFLEN PIC S9(7) COMP VALUE 512.
01 BUFFER PIC X(512) VALUE SPACE.

MOVE „ATTR FELD1,TYPE(MANDATORY),HILITE(UNDERLINED)“ INTO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

MOVE „ATTR (FELD2,FELD3),TYPE(OUTPUT)“ INTO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

134 U23110-J-Z135-1-7600

CONTROL Dialog services

4.5.3 CONTROL - Set operating modes

The CONTROL service is used to define specific processing options.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

 REFRESH
ï SAVE ï
ï RESTORE ï

CONTROL DISPLAY Î CCSN(ccsname/*EXTEND) Ï
ï NOCCSN ï
 ACK

Operands:

CONTROL

Name of the service

DISPLAY SAVE

Causes this information on the currently displayed screen to be saved. This enables a
nested display of masks in the main window.

The SAVE call must follow the DISPLAY call for which the screen is to be saved. The
display is restored by CONTROL DISPLAY RESTORE.

SAVE and RESTORE must be called in pairs and with the same communication area
that was used for the DISPLAY call.

DISPLAY RESTORE

Restores the screen to its existing status at the time of a previous CONTROL DISPLAY
SAVE. Processing can then continue as was possible before the SAVE.

U23110-J-Z135-1-7600 135

Dialog services CONTROL

DISPLAY REFRESH

Causes the screen to be fully refreshed at the next DISPLAY call (no update output).
P keys and character sets are reloaded as required. This specification is only applicable
to the next display call in the dialog complex independent of the dialog section
(communication area).

DISPLAY ACK

Causes the characters“*** ” to be displayed as an input prompt in line mode before the
output of a mask at the next DISPLAY call. It is only after the requested input is made
that a fully refreshed screen (no update output) is displayed. This enables the
application programmer to prevent messages that were not output by the dialog
manager from being overwritten before the operator can take note of them.

P keys and character sets are not reloaded (cf. REFRESH).

Causes the screen to be fully refreshed at the next DISPLAY call (no differential output).
P keys and character sets are reloaded as required. This specification is only applicable
to the next display call in the dialog complex independent of the dialog section
(communication area).

DISPLAY CCSN(ccsname)

Causes the specified ccsname to be used as the CCSNAME (Coded Character Set
Name) for all subsequent DISPLAY calls. *EXTEND specifies that the currently valid
CCSN for the terminal is to be used. If a CCSNAME for a format was set when defining
the format and if that name differs from the specified name, a warning is issued by the
DISPLAY call. The CCSNAME of the CCSN operand is given precedence.

This specification is only valid for the current dialog section and remains in effect until
a new CONTROL call with CCSN or NOCCSN and the same communication area
occurs.

A check to determine if the CCSNAME is known or the XHCS subsystem is loaded does
not occur until the next DISPLAY call.

DISPLAY NOCCSN

Cancels the definition of a CCSN. This entry is related to the communication area and
remains in effect until a new CONTROL call with CCSN or NOCCSN and the same
communication area occurs.

136 U23110-J-Z135-1-7600

CONTROL Dialog services

Example:

The following COBOL statements are used to set specific options:

01 BUFLEN PIC S9(7) COMP VALUE 25.
01 BUFFER PIC X(25) VALUE SPACE.

MOVE „CONTROL DISPLAY SAVE“ INTO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

MOVE „CONTROL DISPLAY RESTORE“ INTO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

U23110-J-Z135-1-7600 137

Dialog services DISPLAY

4.5.4 DISPLAY - Display a format and/or a message

The DISPLAY service is used to display a format and/or a message. The format definition
is, however, only read from the format library if the PANEL operand has been specified.
Once a format is loaded, it remains loaded for the entire dialog complex.

Several different options are available to the terminal user after the display. For example,
the user can change field contents and thus the values of dialog variables, initiate the output
of help panels, or request actions via the menu bar. It is only when all the user actions and
all the validation checks and processes specified in the format definition are completed that
the display service is terminated.

For information on how default values of a mask field are processed, see the ATTR service
(OUTPUT-Operand).

The following table explains the execution sequence of the DISPLAY service in combination
with the PANEL or MSG operands.

PANEL MSG Execution sequence

yes no Reads the format definition and the dialog variables

Displays the format

yes yes Reads the format definition and the dialog variables

Reads the message

Displays the format with the message in the message area or in a
message box

no yes Reads the message

Repeats the last displayed screen without re-reading the dialog
variables (including control variables) and overlays a message in the
message area or in a message box

no no Repeats the last displayed screen without re-reading the dialog
variables (including control variables)

138 U23110-J-Z135-1-7600

DISPLAY Dialog services

The DISPLAY service facilities can be exited

– by pressing the ENTER key, provided the cursor is not in the menu bar and no system
command is in the command area,

– by entering a CANCEL or EXIT command, which may also be assigned to function
keys,

– by an application command that is assigned to a function key.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

DISPLAY [PANEL(format-name)]

 field-name
 [MSG (msgid) [MSGLOC *CENTRAL]]

 $lll#ccc

 [CURSOR(field-name) [CSRPOS(pos)]]

 [LOCK] [ALARM] [HARDCOPY]

 [MANDATORY] [NOAUTOTAB]

 [NODISPLAY]

Operands:

DISPLAY

Name of the service

PANEL(format-name)

Name of the format to be displayed. If this operand is omitted, the last format specified
in the PANEL operand is reactivated without reading the dialog variables again, i.e. the
previously displayed values are shown.

U23110-J-Z135-1-7600 139

Dialog services DISPLAY

MSG(msgid)

Message key of a message to be shown together with the format.

MSGLOC(field-name)

Name of a mask field to be used for positioning a message box (see also “Output of
messages”). If the field name refers to a field of a list area, an index to define a specific
list record may also be specified (see also “List processing”).

The field must be contained in the format that is specified in the PANEL operand or, if
no PANEL operand is specified, in the format that was displayed by the last DISPLAY
call with the PANEL operand.

If multiple fields of the specified name exist in the format, the first field is used.

A message box is output 2 characters to the right and 2 lines below the field specified
in the MSGLOC operand. If the space below the defined field is insufficient for the
message to be output, the dialog manager will search for another position using a
specific algorithm (see also “Output of messages”).

If *CENTRAL is specified as the field name, a message box is output in the center of
the screen.

The $lll#ccc specification allows absolute positioning of the message box.

If the MSGLOC operand is omitted, the message box is placed with reference to the
cursor position.

CURSOR(field-name)

Name of the field in which the cursor is to be placed.

If multiple fields of the specified name exist in the format, the first field is used.

The specified name can only be the name of an input field or of a markable text field.

If the CURSOR operand is omitted, the cursor is placed in the first input field of the
format.

If the field name refers to a field of a list area, an index to define a specific list record
may be specified, e.g. CURSOR(IN-FELD#3) (see also “List processing”). If no index is
specified in such cases, the topmost line in the list area is assumed.

An absolute cursor position in the form $lll#ccc may be specified instead of the field
name, where “lll“ is the absolute line position on the screen and “ccc” the absolute
column specification.

CSRPOS(pos)

Position of the cursor in the field defined by the CURSOR operand. The first character
in the field is at position 1.

140 U23110-J-Z135-1-7600

DISPLAY Dialog services

The CSRPOS operand is only significant if the value in the CURSOR operand is the
name of an input field.

If CSRPOS is omitted or has an illegal value (less than 1 or greater than the field
length), a value of 1 is assumed.

LOCK

If this operand is specified, control is returned to the application program immediately
after the format is displayed. This function can be typically used to display a logo or a
“Please wait” message.

ALARM

This operand, if specified, issues an acoustic signal when the format is displayed.

HARDCOPY

The screen contents are automatically output on an existing hardcopy device.

MANDATORY

All mask fields with the static attribute “mandatory input” are reset. This is useful in
cases where the input requirement has been satisfied after a DISPLAY call (and is
therefore no longer in effect) but needs to be reactivated for all fields when the same
format is re-displayed. This specification has no effect for list fields.

NOAUTOTAB

The cursor can be moved to protected fields of the screen by using arrow keys. If
NOAUTOTAB is not specified, the cursor can only be moved to unprotected and
markable fields of the screen.

NODISPLAY

The screen is created internally exactly as if NODISPLAY were omitted; however, it is
not transferred to the terminal. The DISPLAY call is terminated as if the ENTER key
were pressed. If the command area was preset with an FHS system command, the
command is executed, but errors, if any, are ignored.

U23110-J-Z135-1-7600 141

Dialog services DISPLAY

Example:

The following COBOL statements display the format FORM001 and the message
MSGI123:

01 BUFLEN PIC S9(7) COMP VALUE 512.
01 BUFFER PIC X(512) VALUE SPACE.

MOVE „DISPLAY PANEL(FORM001) MSG(MSGI123) CURSOR(FELD1)“ TO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

142 U23110-J-Z135-1-7600

DMCLOSE Dialog services

4.5.5 DMCLOSE - Terminate use of dialog services

The DMCLOSE service terminates access to dialog services initialized by DMOPEN.

The DMCLOSE call releases the function pool for which a flag is entered in the system
section of the communication area. This communication area is passed to the dialog
manager with the DMCLOSE call. If a profile pool was opened by the associated DMOPEN
call (DMOPEN INIT PROFILE(...)), and if NOSAVE was not explicitly specified, the profile
variables are written back to the profile library, and all storage areas of the dialog manager
for the dialog complex and the profile pool are released. No further dialog service, except
for a new DMOPEN, may then be executed.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

DMCLOSE [NOSAVE]

Operands:

DMCLOSE
Name of the service

NOSAVE
This entry may only be specified for a final DMCLOSE that terminates the dialog
complex (analogous to DMOPEN INIT); it is otherwise ignored. NOSAVE ensures that
the profile pool is not written back to the profile library.

U23110-J-Z135-1-7600 143

Dialog services DMCLOSE

Example:

The following COBOL statements terminate the dialog that has the same communi-
cation area as specified in the COBOL variable DMCOMM:

01 BUFLEN PIC S9(7) COMP VALUE 512.
01 BUFFER PIC X(512) VALUE SPACE.

MOVE „DMCLOSE“ TO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

144 U23110-J-Z135-1-7600

DMOPEN Dialog services

4.5.6 DMOPEN - Begin use of dialog services

The first dialog service that is called by an application program must be the DMOPEN
service with the INIT operand. This DMOPEN call opens a dialog complex (see
“Opening and closing a dialog application”).

A DMOPEN call always opens a new function pool. The information on the function pool
is placed in the system section of the communication area that is passed to the dialog
manager with the DMOPEN call.

DMOPEN can also be used to open a profile pool for a dialog complex. In order to do
this, a personal profile library must be assigned to each terminal user by means of the
file link name IDHPROF before using the dialog manager. The profile library member
“member-name” contains the dialog variables of the application profile. These variables
are read into the profile pool. If no such profile library member is present, processing
begins with an empty profile pool. Subsequently, when a DMCLOSE service associated
with the DMOPEN is executed for a dialog complex, the dialog variables of the profile
pool can be written back to the existing library member (or a new library member can
be created).

A DMOPEN without INIT opens a dialog section. All dialog sections of the dialog
complex are implicitly closed by the DMCLOSE associated with the DMOPEN with INIT.

Every application program should call the DMCLOSE service before releasing the
storage space used for the communication area.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

If the INIT operand is not specified, the system section of the communication area must
be supplied initialized.

No variable substitutions are permitted in the operand area.

U23110-J-Z135-1-7600 145

Dialog services DMOPEN

Structure of the operand area:

DMOPEN [INIT [PROFILE(member-name)]]

Operands:

DMOPEN

Name of the service

INIT

Opens a dialog complex. This entry must be given with the first DMOPEN.

PROFILE(member-name)

Opens a profile pool for a dialog complex in addition to the function pool. “member-
name” specifies the library member of the profile library in which the profile variables
can be found. The naming conventions for the profile library correspond to that of
SDF-P.

If the PROFILE operand is omitted, an empty nameless profile pool is opened. This
profile pool is not saved on executing DMCLOSE.

The operands must be specified in the given order.

Example:

The following COBOL statements initiate usage of the dialog manager for a dialog
complex:

01 BUFLEN PIC S9(7) COMP VALUE 512.
01 BUFFER PIC X(512) VALUE SPACE.

MOVE „DMOPEN INIT PROFILE(ABC)“ TO BUFFER.
CALL „ISPCI“ USING DMCOMM BUFLEN BUFFER.

146 U23110-J-Z135-1-7600

REMPOP Dialog services

4.5.7 REMPOP - Remove definition of a dialog box.

The REMPOP service is used to remove the definition of the dialog box initialized by the
last ADDPOP service or to remove all definitions.

This service has no effect on the current screen content. The screen is not changed until
the next DISPLAY call. If the unaltered underlying mask is to be displayed, the DISPLAY
service must be called without the PANEL operand.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

REMPOP [ALL/*ALL]

Operands:

REMPOP

Name of the service

ALL or *ALL

The definitions of all dialog boxes are removed.

U23110-J-Z135-1-7600 147

Dialog services VCOPY

4.5.8 VCOPY - Copy value of a dialog variable into application program

The VCOPY service reads the value or values of one or more dialog variables and
copies them sequentially to the specified target storage area. The length of the values
to be written is defined by the corresponding length specification in the length area of
the call. The target area is a storage area defined in the application program.

The dialog variables are located by searching the function and profile pools in order, i.e.
the profile pool is searched only if no variable is found in the function pool. Special
system variables are always determined on a current basis.

Special system variables are always assigned current values or copied from a system
pool.

The copied value is stored in accordance with the data type specified in the FORMAT
operand. If the dialog variable to be read has a data type that differs from the type
specified for the target field, data conversion occurs.

The space specified by the length field is padded with fill characters if the value of the
dialog variable is less than the defined length. If the value is longer, it is truncated.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area
– length area
– target area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Length area

The length area is a storage area of the application program consisting of one or more
fields. Each field occupies a full word (4 bytes, word boundary) and must contain a
binary signed integer.

This area must contain a value for each name of a dialog variable in the “name-list”
operand and for each fill area. The n-th specification in the name list must match the
n-th value in the length area.

The length entries in the length area specify the maximum length of the storage space
in the “target area” that is available for the value to be copied. The target area is thus
structured by means of the length specifications in the length area.

148 U23110-J-Z135-1-7600

VCOPY Dialog services

Following the VCOPY call, each respective field in the length area will contain,
depending on the specified data type of the values in the target area for types CHAR
and BINSTR, the length of the copied dialog variable without insignificant trailing blanks
(relevant length). If the value of the dialog variable to be copied consists of only insig-
nificant blanks (see operand NOBSCAN of the VDEFINE service) or has a length of 0
as a result of the end identifier for type BINSTR, then the relevant length is 0. For other
data types, the corresponding length of field remains unchanged.

If the dialog variable exists in neither the function pool nor the profile pool, the
corresponding length field will contain the value 0 after the VCOPY call, and the
associated target area for the value will be padded with fill characters. In addition, a
return code is set as a warning.

If an * is specified as a name in the name list, a fill area of the specified length is defined.

Target area

The target area is a storage area of the application program in which the data to be
copied is to be stored. The target area is subdivided into fields for each value in
accordance with the maximum length specifications in the length area. The values are
stored in the specified format and padded to the maximum length of the field with fill
characters if required.

Structure of the operand area:

 VCOPY name-list

 CHAR
ï BINSTR ï
ï NUMS ï
ï NUMU ï

 [FORMAT(Î FIXEDS Ï,...)]
ï FIXEDU ï
ï PACK ï
 *

U23110-J-Z135-1-7600 149

Dialog services VCOPY

Operands:

VCOPY

Name of the service

name-list

One or more names of dialog variables whose values are to be copied to the target
area.

If a name is followed by a “#” character and an index, the value of the dialog variable of
the corresponding dialog variable array element is copied.

A * in the name list defines a fill area. A * may also be entered at the same position in
the list of data types. The length of the fill area is defined by a corresponding length
specification in the length area.

FORMAT(data-type)

Specifies the data type for the copied value in the target area (see also VDEFINE). If
the data types of the source and target do not match, a type conversion, if possible, is
performed.

“data-type” may be given as a single data type specification or as a list of data types.
This list must contain exactly the same number of elements as the names entered in
the name list.

If only a single value is specified, that data type applies to all dialog variables.

If the FORMAT operand is permitted, data type CHAR is assumed for all values.

An * can be specified if a fill area was defined at that position in the name list.

150 U23110-J-Z135-1-7600

VCOPY Dialog services

The permitted data types for type conversions are shown in the table below:

The following applies:

+ Data conversion possible

- Data conversion not possible

1. The value of the source field must have the following format:

[+/-]9[9...][b...] left-justified

2. The value of the source field must have the following format:

[+]9[9...][b...] left-justified

3. The value of the target field has the following format:

[-]9[9...][b...] left-justified

4. Sign errors possible

Meanings:

9 Digits 0 - 9

b Blanks (or NULL for BINSTR)

Target field
type

Type of dialog variable to be copied (source)

CHAR BINSTR NUMS NUMU FIXEDS FIXEDU PACK

CHAR + + 3) 3) 3) 3) 3)

BINSTR + + 3) 3) 3) 3) 3)

NUMS 1) 1) + + + + +

NUMU 2) 2) 4) + 4) + 4)

FIXEDS 1) 1) + + + + +

FIXEDU 2) 2) 4) + 4) + 4)

PACK 1) 1) + + + + +

U23110-J-Z135-1-7600 151

Dialog services VCOPY

Examples:

The following COBOL statements supply the program with the dialog variables ST1,
ST2 and the system variable SYS-CCS-NAME. The dialog variables have the following
values of type CHAR:

ST1 : does not exist
ST2 : Db b = blanks
SYS-CCS-NAME : EDF041bb

01 BUFLEN PIC S9(7) COMP VALUE 100.
01 BUFFER PIX X(100) VALUE SPACE.

01 LENBER.
 02 VLEN PIC S9(7) COMP OCCURS 3 TIMES.
01 TARGET.
 02 DCCS-NAME PIC X(8).
 02 VST.
 03 VST1 PIC X(6).
 03 VST2 PIC X(5).

MOVE 8 TO VLEN(1).
MOVE 6 TO VLEN(2).
MOVE 5 TO VLEN(3).

MOVE „VCOPY (SYS-CCS-NAME ST1 ST2)“ TO BUFFER.
CALL „ISPCI2“ USING DMCOMM BUFLEN BUFFER LENBER TARGET.

Following execution of the VCOPY service, the values are available in the COBOL
variables VST1, VST2 and DCCS-NAME. These values are as follows:

DCCS-NAME: EDF041bb
VST1 : bbbbbb
VST2 : Dbbbb
VLEN(1) : 6
VLEN(2) : 0
VLEN(3) : 1

152 U23110-J-Z135-1-7600

VDEFINE Dialog services

4.5.9 VDEFINE - Define explicit dialog variables

The VDEFINE service is used to define an explicit dialog variable and to assign it storage
space provided by the application program.

After an explicit dialog variable has been defined, the function pool contains its name, data
type, repetition factor, and the address of its value.

A single VDEFINE call may be used to define a list of dialog variables. Each dialog variable
in this list may have a separate data type and a separate length, but it is also possible to
define all variables with the same data type and the same length.

The storage space for all variables to be defined by calling the VDEFINE service must be
contiguous. Individual sections of the storage area can also be defined as fill areas.

The DIM operand can be used to define an array of dialog variables.

Parameters of the interface routine (ISPCI2):

– communication area
– length of the operand area
– operand area
– length area
– value area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Length area

Is a storage area of the application program with one or more fields. Each field consists
of a full word (4 bytes, word boundary) and must contain a binary signed integer.

If LIST is specified in the OPTION operand, this area must contain a value for each
name in the “name-list” operand. The n-th name in the name list corresponds to the
n-th value in the length area.

If LIST is not specified in the OPTION operand, only one field is required in this area.
The value then applies to all dialog variables in the name list.

U23110-J-Z135-1-7600 153

Dialog services VDEFINE

The values in the length area determine the lengths of the storage areas in the value
area. In other words, the value area is structured by means of the length area.

If an * character is specified as a name in the name list, a fill area of the specified length
is defined.

Value area

The value area is a storage area of the application program. It contains the values of
the specified dialog variables.

The application program must ensure that the values of the dialog variables are located
in this storage area in the specified order and in the specified format. The length of the
n-th value in the value area is defined by the content of the n-th field in the length area.

Some programming languages offer “structures” as a language element for this
purpose. In COBOL, the COBOL program variables to be declared as explicit dialog
variables using a VDEFINE service must be defined in succession. It is important to
ensure that the values are stored contiguously in memory.

Structure of the operand area:

VDEFINE name-list

 CHAR
ï BINSTR ï
ï NUMS ï
ï NUMU ï

 [FORMAT(Î FIXEDS Ï,...)]
ï FIXEDU ï
ï PACK ï
 *

 [DIM (number)]

 COPY
 [OPTION(NOBSCAN ,...)]

 LIST

154 U23110-J-Z135-1-7600

VDEFINE Dialog services

Operands:

VDEFINE

Name of the service

name-list

The names specified in this list define explicit dialog variables, i.e. associate a variable
name with storage space of the program.

No index entries are permitted.

An * in the name list defines a fill area. An * may also be entered at the same position
in the list of data types. The length of the fill area is determined by the corresponding
value in the length area.

FORMAT(data-type)

Specifies the representation of the value in the value area. “data-type” may be a single
data type specification or a list of data types. This list must contain exactly the same
number of elements as the names entered in the name list.

If only a single value is specified, all defined dialog variables have the same data type.

An * may be specified if a fill area was defined at that position in the name list.

The permitted data types are dealt with individually below.

DIM(number)

The DIM operand (repetition factor) indicates that the storage layout defined by the
variable name, the data types, and the values in the length area occurs more than once.
In other words, an array of dialog variables is defined (see also “Types of dialog
variables”). If “namelist” consists of multiple names, an array of structures is defined.
“number” specifies the number of array elements. If “name-list” consists of only a single
name, the array is made up of elementary dialog variables.

Every dialog variable specified in the name list has “number” elements. These elements
can be addressed in some dialog services as indexed dialog variables.

The COPY entry in the OPTION operand is ignored if DIM is specified.

The value of “number” can be from 1- 32767.

U23110-J-Z135-1-7600 155

Dialog services VDEFINE

OPTION(option)

A combination of the following values may be specified as an “option”:

COPY
Obtains values for the explicit dialog variables defined by this VDEFINE service by
copying the values of identically-named implicit dialog variables in the function pool or
the values of identically-named dialog variables that are present in the profile pool or
the values of identically-named system variables of the system pool (see appendix). If
required, data conversions are performed when copying values. The function pool is
searched first, followed by the system pool and the profile pool in that order. Implicit
dialog variables are deleted from the function pool after their values are copied. This
prevents naming conflicts. If the DIM operand is specified, COPY is ignored.

NOBSCAN
This value is only significant for the data types CHAR and BINSTR.

If an explicit dialog variable is defined with the attribute NOBSCAN, trailing blanks are
treated as significant: when these variables are read, the length defined by VDEFINE
is returned as the data length for CHAR, and a length corresponding to the C function
strlen is returned for BINSTR. If NOBSCAN is not defined, trailing blanks are treated as
insignificant, and the data length without trailing blanks is supplied as the length. The
difference can be conceptually understood in terms of fixed or variable-length data.

The following examples illustrate the difference:

 Data in the Length on reading the
 variable dialog variable

VDEFINE ... CHAR 4 NOBSCAN Abbb 4
VDEFINE ... CHAR 4 Abbb 1
VDEFINE ... CHAR 4 NOBSCAN bbbb 4
VDEFINE ... CHAR 4 bbbb 0
VDEFINE ... BINSTR 5 NOBSCAN Abbb0 4
VDEFINE ... BINSTR 5 Abbb0 1
VDEFINE ... BINSTR 5 NOBSCAN bbbb0 4
VDEFINE ... BINSTR 5 bbbb0 0
VDEFINE ... BINSTR 5 NOBSCAN A0000 1
VDEFINE ... BINSTR 5 A0000 1
VDEFINE ... BINSTR 5 NOBSCAN 00000 0
VDEFINE ... BINSTR 5 00000 0

This operand is relevant in connection with VCOPY and the display of dialog variables
in a mask field and for variable substitution.

156 U23110-J-Z135-1-7600

VDEFINE Dialog services

LIST

LIST must be specified if the dialog variables of the name list have different lengths. It
allows each dialog variable of the name list to be assigned a separate length.

If LIST is not specified, all variables of the name list have the same length. If more than
one length is specified in this case, the first length specification is used for all variables
of the name list, and the other entries are ignored.

Fill areas can be used in the structure of dialog variables to be defined only if LIST has
been specified.

Data types:

The length restrictions given in the data type definitions apply to the dialog manager.
Stricter limitations may apply in the application program as a result of the programming
language being used.

When an explicit dialog variable is to be displayed in a mask by using the DISPLAY
service, a conversion into a string designated as an external format must occur when
reading the variable. In the reverse case, when a value entered in the mask is stored in
an explicit dialog variable, the string specified as an external format must be converted
into the internal format of the dialog variable (see also “Usage of display services”).

Data conversions may also be required when copying or substituting values for dialog
variables.

The representations of internal values for different data types are shown below:

CHAR

String; left-justified and padded with blanks.

CHAR variables can have a length of 1 - 32767 bytes.

No validation check for legal characters is performed when accessing the dialog
variable.

NUMS

Signed numeric string; only the digits 0 through 9 and the sign (+/-) are permitted.
The value is right-justified and padded with zeros (C’0’). The sign is placed
immediately to the right of the last digit.

A NUMS variable can have a length of 2-16 bytes.

This variable type supports the previous numeric data representation in FHS
addressing aids. The external representation of such variables is only possible in
an arithmetic mask field with corresponding editing attributes.

U23110-J-Z135-1-7600 157

Dialog services VDEFINE

NUMU

Unsigned numeric string; only the digits 0 through 9 are allowed. The value is right-
justified and padded with zeros (C’0’).

A NUMU variable can have a length of 1-15 bytes.

This variable type supports the previous numeric data representation in FHS
addressing aids. The external representation of such variables is only possible in
an arithmetic mask field with corresponding editing attributes.

FIXEDS

Signed binary integer that can occupy 2 or 4 bytes.

FIXEDU

Unsigned binary integer that can occupy 2 or 4 bytes.

BINSTR

This variable type differs from type CHAR only with respect to the fill character. The
fill character used here is X’00’.

When the value of a BINSTR variable is stored, the value is entered into the space
reserved for it up to the maximum length-1; the last character contains the fill
character. When reading a BINSTR variable, the first X’00’ character marks the end
of the value.

This data type supports the type STRING in C.

PACK

Packed decimal number that can occupy 1 - 8 bytes.

The value is positive if the last half-byte contains X’C’, and negative if it contains
X’D’. For any other contents, the value of the variable is treated as unsigned.

This data type supports the type PACKED DECIMAL in COBOL.

158 U23110-J-Z135-1-7600

VDEFINE Dialog services

Examples:

1. The following COBOL statements declare an array of dialog variables X, Y, and Z
in the structure S:

01 LBUF PIC S9(7) COMP VALUE 512.
01 BUF PIC X(512) VALUE SPACE.
01 LENFELD.
 02 VLEN PIC S9(7) COMP OCCURS 3 TIMES.
01 S.
 02 SE OCCURS 3 TIMES.
 03 A PIC X(10).
 03 B PIC S9(7) COMP.
 03 C PIC X(2).

MOVE 10 TO VLEN(1).
MOVE 4 TO VLEN(2).
MOVE 2 TO VLEN(3).
MOVE ’VDEFINE (X Y Z) FORMAT(CHAR FIXEDS CHAR) DIM(3)
 OPTION(LIST)’ TO BUF.
CALL „ISPCI2“ USING DMCOMM LBUF BUF LENFELD S.

2. The following COBOL statements declare the dialog variable TEXT, which is
addressed in the COBOL program as the variable ERRORS.

01 LBUF PIC S9(7) COMP VALUE 512.
01 BUF PIC X(512) VALUE SPACE.
01 ERROR PIC X(80).
01 VLEN PIC S9(7) COMP VALUE 80.

MOVE ’VDEFINE TEXT FORMAT(CHAR)’ TO BUF.
CALL „ISPCI2“ USING DMCOMM LBUF BUF VLEN ERRORS.

U23110-J-Z135-1-7600 159

Dialog services VDELETE

4.5.10 VDELETE - Delete dialog variables in function pool

The VDELETE service can be used by the application program to delete implicit or explicit
dialog variables in the function pool.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

 name-list
VDELETE

 *ALL

Operands:

VDELETE

Name of the service

name-list

Lists names of dialog variables to be deleted.

If a structure of dialog variables is to be deleted, all names of the dialog variables in the
structure must be specified.

If an array of dialog variables is to be removed, all names of the dialog variables of an
array element (structure or elementary dialog variables must be specified, but not be
indexed).

*ALL

All definitions of dialog variables in the function pool are deleted.

160 U23110-J-Z135-1-7600

VDELETE Dialog services

Example:

01 LBUF PIC S9(7) COMP VALUE 512.
01 BUF PIC X(512) VALUE SPACE.

MOVE ’VDELETE *ALL’ TO BUF.
CALL „ISPCI“ USING DMCOMM LBUF BUF.

U23110-J-Z135-1-7600 161

Dialog services VERASE

4.5.11 VERASE - Delete dialog variables in profile pool

The VERASE service can be used by the application program to delete dialog variables
from the profile pool.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

 name-list
VERASE

 *ALL

Operands:

VERASE

Name of the service

name-list

Specifies the names of dialog variables to be deleted from the profile pool. No index
entry is allowed.

*ALL

All dialog variables in the profile pool are deleted.

162 U23110-J-Z135-1-7600

VGET Dialog services

4.5.12 VGET - Copy variables from profile pool to function pool.

The values of dialog variables from the profile pool or of S variables from an SDF-P variable
pool are copied to the function pool.

If an identically-named dialog variable is already present in the function pool, only its value
is changed. Data conversion occurs if the types of the variables do not match.

If one of the specified dialog variables does not exist in the function pool, it is created
implicitly and assigned the value to be copied.

If a dialog variable or S variable to be copied does not exist, and an identically named dialog
variable is present in the function pool, that variable is not changed, i.e. no implicit dialog
variable is created.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

 PROFILE
VGET name-list[PROCEDURE]

 TASK

Operands:

VGET

Name of the service

name-list

Lists the names of dialog variables (or S variables) whose values are to be copied to
the function pool. No index entry is allowed.

PROFILE

The dialog variables specified in the name list are to be read from the profile pool. This
entry is the default value and may be omitted.

U23110-J-Z135-1-7600 163

Dialog services VGET

PROCEDURE

The S variables specified in the name list are to be copied from the current SDF-P
procedure pool.

TASK

The S variables specified in the name list are to be copied from the task-specific
SDF-P pool.

164 U23110-J-Z135-1-7600

VPUT Dialog services

4.5.13 VPUT - Copy variables from function pool to profile pool
or to the SDF-P variable pool

The current values of dialog variables of the function pool are copied to the profile pool
or to the SDF-P variable pool.

If an identically-named dialog variable already exists in the target pool, only its value is
changed. A data conversion is performed if the data types of the variables do not match.
If the target is the profile pool, an implicit dialog variable is created in the profile pool if
no such variable exists in it. This implicit dialog variable is assigned the data type
FIXEDS if the variable to be copied is of type FIXEDS or FIXEDU. Otherwise, type
CHAR is assigned.

If a specified dialog variable does not exist in the function pool or in an SDF-P variable
pool, a warning is issued by means of an appropriate return code.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Structure of the operand area:

 PROFILE
VPUT name-list[PROCEDURE]

 TASK

Operands:

VPUT

Name of the service

name-list

Lists the names of dialog variables whose values are to be copied. No index entry is
allowed.

U23110-J-Z135-1-7600 165

Dialog services VPUT

PROFILE

The dialog variables specified in the name list are to be copied to the profile pool. This
entry is the default value and may be omitted.

PROCEDURE

The dialog variables specified in the name list are to be copied to the current SDF-P
procedure pool.

TASK

The dialog variables specified in the name list are to be written to the task-specific
SDF-P pool.

The following length restrictions apply:

– Profile pool: the maximum length for the data type CHAR is 16383;
– SDF-P variable pool: the maximum length is 4096.

166 U23110-J-Z135-1-7600

VREPLACE Dialog services

4.5.14 VREPLACE - Replace values of dialog variables in function pool

The VREPLACE service is used to modify the values of implicit or explicit dialog variables
in the function pool.

The dialog variable to be modified may be a variable that was defined earlier as an explicit
or implicit dialog variable. If one of the specified dialog variables does not exist, it is created
as an implicit dialog variable.

The implicit dialog variable is assigned the data type FIXEDS if the type of the new value
(source value) is FIXEDS or FIXEDU. Otherwise, the implicit dialog variable is assigned
type CHAR.

If one of the dialog variables to be modified has a type that defers from that of the new value,
a data conversion is performed in order to store the new value. The existing dialog variable
retains its data type.

An existing implicit dialog variable is removed if the new value has a length of 0.

Parameters of the interface routine (ISPCI):

– communication area
– length of the operand area
– operand area
– length area
– value area

Description of parameters:

The parameters must be specified as described in the section “ISPCI interface routine”
on page 116.

Length area

Is a storage area of the application program with one or more fields. Each field consists
of a full word (4 bytes, word boundary) and must contain a binary signed integer.

This area must contain a value for each name of a dialog variable specified in the
“name-list” operand. The n-th name in the name list corresponds to the n-th value in the
length area.

These values specify the length of values in the value area.

U23110-J-Z135-1-7600 167

Dialog services VREPLACE

Value area

The value area is a storage area in the application program that contains the new
values (source values) for the dialog variables. There must be one value present for
each name in the name list.

The application program must ensure that the values of the dialog variables are stored
contiguously in the order defined by the name list and in the specified format in disk
storage area.

The length of the n-th value is defined by the contents of the n-th field of the length area.

Structure of the operand area:

VREPLACE name-list

 CHAR
ï BINSTR ï
ï NUMS ï
ï NUMU ï

 [FORMAT(Î FIXEDS Ï,...)]
ï FIXEDU ï
ï PACK ï
 *

Operands:

VREPLACE

Name of the service

name-list

Lists the names of one or more dialog variables for which values in the function pool are
to be modified.

If a name is followed by a “#” and an index, the value of the dialog variable of the
corresponding element in an array of dialog variables is modified.

A * in the name list defines a fill area. An * character may also be entered at the same
position in the list of data types. The length of the fill area is defined by the
corresponding value in the length area.

168 U23110-J-Z135-1-7600

VREPLACE Dialog services

FORMAT(data type)

Specifies the data type for the copied value in the target area (see also VDEFINE). If
the data types of the source and target do not match, a type conversion, if possible, is
performed.

“data-type” may be given as a single data type specification or as a list of data types.
This list must contain exactly the same number of elements as the names entered in
the name list.

If only a single value is specified, that data type applies to all dialog variables.

If the FORMAT operand is permitted, data type CHAR is assumed for all values.

An * can be specified if a fill area was defined at that position in the name list.

The permissible data types for data conversions are shown in the table below:

The following applies:

+ Data conversion possible

- Data conversion not possible

1. The value of the source field must have the following format:

[+/-]9[9...][b...] left-justified

2. The value of the source field must have the following format:

[+]9[9...][b...] left-justified

3. The value of the target field has the following format:

[-]9[9...][b...] left-justified

Source
value
type

Type of dialog variable (target) to be substituted: Implicit
dialog
variable

CHAR BINSTR NUMS NUMU FIXEDS FIXEDU PACK

CHAR + + 1) 2) 1) 2) 1) CHAR

BINSTR + + 1) 2) 1) 2) 1) CHAR

NUMS 3) 3) + 4) + 4) + CHAR

NUMU 3) 3) + + + + + CHAR

FIXEDS 3) 3) + 4) + 4) + FIXEDS

FIXEDU 3) 3) + + + + + FIXEDS

PACK 3) 3) + 4) + 4) + CHAR

U23110-J-Z135-1-7600 169

Dialog services VREPLACE

4. Sign errors possible

Meanings:

9 Digits 0 - 9

b Blanks (or NUL for BINSTR)

Examples:

01 LBUF PIC S9(7) COMP VALUE 512.
01 BUF PIC X(512) VALUE SPACE.
01 VALUES PIC X(80).
01 VLEN.
03 LV PIC S9(7) COMP OCCURS 4 TIMES.
MOVE ’1234567890ABCDEFGHIJKL’ TO VALUES.
MOVE 10 TO LV(1).
MOVE 10 TO LV(2).
MOVE ’VREPLACE (V1 V2)’ TO BUF.
CALL „ISPCI2“ USING DMCOM LBUF BUF VLEN VALUES.
MOVE 5 TO LV(1).
MOVE 10 TO LV(2).
MOVE ’VREPLACE (V3 V4) FORMAT(CHAR)’ TO BUF.
CALL „ISPCI2“ USING DMCOMM LBUF BUF VLEN VALUES.

After the VREPLACE service is executed, the dialog variables have the following
values:

Values:

V1 1234567890
V2 ABCDEFGHIJ
V3 12345
V4 67890ABCDE

170 U23110-J-Z135-1-7600

libraries Dialog services

4.6 Assigning libraries

The following libraries are required when working with the dialog manager and must be
assigned at the first call to a dialog service. The assignment remains in effect till the end of
the session.

– Format library

The format library contains all the required dialog elements and must be assigned as a
primary library with the file link name IDHPLIB. Alternative libraries may be assigned
via a file link name BLSLIBnn, where nn is a number from 00 to 99. The libraries are
searched by number in ascending order. It is not necessary to have a continuous
sequence.

– Profile library

The profile library contains the profile variables and is user-specific. Each terminal user
must be assigned his or her profile library with the file link name IDHPROF. The
language-specific parts for the use of different international languages (formats, key
assignments, help and messages) are located in a format library. The specific language
variant required for each terminal user can then be activated by assigning the
respective language-specific format library when calling FHS-DM.

U23110-J-Z135-1-7600 171

Dialog services Compatibility

4.7 Compatibility

The dialog manager of FHS can only be used for TIAM applications. It is not compatible
with application programs that use FHS as before. Such applications are, however, still
executable without restrictions.

The dialog manager can only be used with formats that were generated with IFG as of
Version V08.1A for explicit use with the dialog manager. These formats are called DM
formats.

DE formats that were generated for the dialog extension FHS Version V8.0 for use under
UTM can only be processed to a restricted extent by the dialog manager. This is generally
not very meaningful, since DE formats are intended for UTM applications.

DM formats are extended DE formats with the following differences:

– The assignment for field names for all I/O fields and for markable text fields is checked
by IFG. This is mandatory due to the connection with dialog variables.

– DM formats have additional names for dialog variables, selection fields, list areas, and
pull-down boxes. Without these specifications, the dialog manager can only process
such elements to a limited extent.

– Guidance text is provided for scrolling information in help panels.

There are no differences with respect to messages and key assignment tables (key lists).

Since addressing aids have been dropped, it is no longer possible to work with global and
field-related attributes as before. Other features are offered instead by the dialog manager.

Not all of the functions that are definable with IFG are processed by the dialog manager.
The following options are ignored:

– Specifications for input fill characters
– Specification of undefined values
– Provision of an exit routine

172 U23110-J-Z135-1-7600

SDF-P variables Dialog services

4.8 SDF-P variables in FHS-TIAM programs

Access to SDF-P variables

The variable services VGET and VPUT enable an application program to read and write
elementary SDF-P variables. This permits communication between an SDF-P procedure
and an application program called from within that procedure. The use of SDF-P variables
is described in detail in the next chapter.

U23110-J-Z135-1-7600 173

5 SDF-P interface
As of FHS V8.1, FHS can also assume the role of the output server for S variable streams.
In addition, applications for FHS V8.1 can be used and controlled with the aid of
S procedures.

Both these functions are described below in the following two sections.

5.1 FHS as an output server

FHS is available as an output server on both the program and the command level in the
SDF-P context, i.e.:

– FHS-PRIV V8.1 can be called on the command level using TRANSMIT-BY-STREAM.

– FHS-PRIV V8.1 can be called by a TU program using a TRANSVV SVC.

As a prerequisite to both options, the variable stream used by the program must be
assigned to FHS in the SERVER operand of the ASSIGN-STREAM command.

When information for FHS V8.1 is received via a TRANSMIT-BY-STREAM command FHS
provides display services that correspond to the DISPLAY, ADDPOP and REMPOP
services which it offers in TU mode.

174 U23110-J-Z135-1-7600

ASSIGN-STREAM SDF-P interface

5.1.1 ASSIGN-STREAM

In order to assign FHS as a Server for S variable streams, FHS must be specified in the
SERVER(...) assignment of the TO operand in the ASSIGN-STREAM command. You can
assign your own S variable streams for FHS applications in the STREAM-NAME operand.
More information on this subject can be found in the manual “SDF-P V2.0“.

Example:

ASSIGN-STREAM STREAM-NAME=<strutured-name 1...20>
 TO=*SERVER(SERVER-NAME=FHS,
 SERVER-INFORMATION=’FHS-LIB=format library
 [,P-KEY-SETTING=(P1,....,P20)]’)

When this command is entered in SDF-P, FHS is called. The specification in
SERVER-INFORMATION is then evaluated by FHS:

– FHS-LIB is the format library of FHS. The name of the FHS library must be specified as
follows:

SERVER-INFORMATION = ’FHS-LIB=$USER-ID.library-name’.

You must specify the name of a format library here. If desired, you can also specify
some other format library by using a LINK command (e.g. to link the German standard
formats IDHx.... from $.SYSFHS.FHS.081.FHS-DM.D).

The formats are searched in the library specified under SERVER-INFORMATION and
then loaded into the BLSLIBxx (00 -99) being used.

– P-KEY-SETTING specifies which F key is simulated by a P key. This entry is optional;
it is only shown here to illustrate the complete scope of the ASSIGN-STREAM com-
mand.

U23110-J-Z135-1-7600 175

SDF-P interface TRANSMIT-BY-STREAM

5.1.2 TRANSMIT-BY-STREAM

The transfer of S variables is controlled in S procedures with the TRANSMIT-BY-STREAM
command. This command controls the transfer of variables to and from the specified server
via a selected S variable stream from the client side.

The selected variable stream is specified in the STREAM-NAME operand.

The remaining operands define which variables are to be transferred to or from the server
in accordance with the setting for ASSIGN-STREAM ...,TO=*VARIABLE(). In other words,
these variables specified here must be declared as structures as in the case of ASSIGN-
STREAM.

Example

 TRANSMIT-BY-STREAM STREAM-NAME = <strutured-name 1...20>
 ,VARIABLE-NAME = <composed-name 1..255>
 ,RETURN-VARIABLE-NAME = *SAME / <composed-name 1..255>
 ,CONTROL-VAR-NAME = <composed-name 1..255>
 ,RET-CONTROL-VAR-NAME = *SAME / <composed-name 1..255>

If this command is entered in SDF-P and FHS is assigned as the server, FHS is called and
the contents of the S variable streams are output to FHS masks.

FHS can itself generate variables that are returned to the caller. The source of such vari-
ables may be input fields (values entered by the terminal user) or FHS system parameters
(e.g. cursor position,...).

The variables can be classified by content into two types:

– Data
– Control variables

The control variables for FHS are defined in the S variable SYSFHS-CONTROL (see also
page 193).

The layout is supplied as a procedure in the library SYSPRC.FHS.081 in the member
DISPLAY-CONTROL. The members have reserved names with fixed semantics. Variables
declared with this procedure must be defined with SCOPE=VISIBLE.

176 U23110-J-Z135-1-7600

SYSFHS-CONTROL SDF-P interface

 SYSFHS-CONTROL includes the following 7 information categories:

– layout and version
– information on display services
– specifications for the output location
– ispecifications for the format
– information on field attributes
– information on input
– FHS return codes

After the call, FHS resets the elements of the control variables to default values, if such
values have been defined.

U23110-J-Z135-1-7600 177

FHS services Layout and version

5.2 FHS services for SDF-P applications

In order to call a variable service from an SDF-P procedure, you must insert the appropriate
value in the variable structure defined in the TRANSMIT-BY-STREAM command. The
possible values are listed in the following section.

For the sake of clarity, the single quotes for string values have been omitted in the following
tables. Please note that values assigned to string variables must be enclosed within single
quotes.

Example:

/MYFHS-CONTROL.SERVICE = ’*ADD-POPUP’
/MYFHS-CONTROL.POP-LOCATION = ’MYFIELD’

When working with lists, an index may be entered at positions where a field name can be
specified. The index must be replaced by an “*” (asterisk), and then specified as a value.

5.2.1 Layout and version

These variables are supplied in the standard header of SDF-P. The values of FHS are listed
below. Layout version 1 is implemented in FHS V8.1.

Name Type Possible value

UNIT string ’FHS’

FUNCTION string ’DISPLAY’

VERSION integer 1

178 U23110-J-Z135-1-7600

Information on display services FHS services

5.2.2 Information on display services

In order to call a variable service (DISPLAY-, ADDPOP, and REMPOP) from an SDF-P
procedure, you must enter the desired service in the service specification of the
TRANSMIT-BY-STREAM command. The following entries are possible.

SERVICE:
The service to be executed by FHS:

*DISPLAY Outputs a format of the current box hierarchy level (as for TU-FHS,
see page 137).

*ADD-POPUP Adds a pop-up hierarchy (as for TU-FHS, se page 126).

*REMOVE-POPUP
Removes/deletes a pop-up hierarchy (as for TU-FHS,
see page 146).

*ADDPOP-DISPLAY
Combined action; adds a pop-up hierarchy and outputs a format of
that hierarchy level.

*REMPOP-DISPLAY
Combined action; deletes a pop-up hierarchy and outputs a format
of a lower hierarchy level.

DIAGINFO
Displays additional diagnostic information (e.g. DMERR for TU-FHS).

*NO No diagnostic information

*YES Diagnostic information for errors

*WARNING Diagnostic information for errors and warnings

Name Type Default value Possible value

SERVICE string *DISPLAY *ADD-POPUP / *REMOVE-POPUP /
*ADDPOP-DISPLAY / *REMPOP-DISPLAY

DIAGINFO string *NO *YES / *WARNING

POP-LOCATION string *NONE <field-name 1..255> / *CENTRAL

POP-LOC-IND integer 0 <integer>

ROW integer 2 <integer>

COLUMN integer 2 <integer>

U23110-J-Z135-1-7600 179

FHS services Information on display services

POP-LOCATION:
defines the reference point of a box.

 *NONE The reference point is the upper left corner of the current format.

<field name 1..255>
Name of the field whose first letter represents the starting point for
the box.

*CENTRAL The center of the screen.

POP-LOC-IND:
Index entry for POP-LOCATION

If the field name refers to a field of a list area, you can enter an index to define a
specific list line.

Example:

The following must be specified for POP-LOCATION:

POP-LOCATION = ’A#*’
POP-LOC-IND = 4

ROW:
Vertical offset of the box to the reference point:
positive value: under; negative value: above.

COLUMN:
Horizontal offset of the box to the reference point:
positive value: to the right; negative value: to the left.

180 U23110-J-Z135-1-7600

Information on output location FHS services

5.2.3 Specifications for the output location

These variables define the IFG format, the message (if present), and the output location.

RESOURCE:
Name of the format.

*SAME Redisplays the last format that was output

<panel-name> Name of the format

*ALL Is used by the REMPOP service to remove all formats.

MESSAGE-ID:
Identifies the message to be output/displayed in the format

MESSAGE-FIELD:
Name of the field for which the message is to be output/displayed.

*NONE The reference point is the top left corner of the current format.

<field-name 1..255>
Name of the field whose first letter represents the starting point for
the box.

$lll#ccc Coordinates of the field (lll = line, ccc = column)

*CENTRAL Central point of the screen.

MSG-FIELD-IND
Index entry for MESSAGE-FIELD.Specifications for the format

These variables define the output attributes of a format.

Name Type Default value Possible values

RESOURCE string *SAME <panel-name> / *ALL

MESSAGE-ID string *NONE <msg-id>

MESSAGE-FIELD string *NONE <field-name 1..255> / $lll#ccc /
*CENTRAL

MSG-FIELD-IND integer 0 <integer>

Name Type Default value Possible values

CURSOR-OUTPUT-INDEX integer 0 <integer>

CURSOR-OUTPUT string *NONE <field-name 1..255> / $lll#ccc

CURSOR-OUTPUT-POS integer 0 <integer>

LOCK string *NO *YES

ALARM string *NO *YES

U23110-J-Z135-1-7600 181

FHS services Format specifications

CURSOR-OUTPUT-INDEX:
Index entry for CURSOR-OUTPUT.

If the field name references a field of a list area, you can include an index to specify a
particular list line.

 CURSOR-OUTPUT:
Name of the field in which the cursor is to be placed on output:

*NONE The cursor is placed in the first field.

<field-name 1..255>
Name of the field.

$lll#ccc Coordinates of the field (lll = line, ccc = column).

CURSOR-OUTPUT-POS:
Position of the cursor within the field defined by the CURSOR operand. The first
character in the field is at position 1.

The CSRPOS operand is only significant if the value in the CURSOR operand is the
name of an input field.

If CSRPOS is omitted or has an illegal value (less than 1 or greater than the field
length), a value of 1 is assumed.

HARDCOPY string *NO *YES

AUTOTAB string *YES *NO

MANDATORY string *NO *YES

REFRESH string *NO *YES

ACK string *NO *YES

Name Type Default value Possible values

182 U23110-J-Z135-1-7600

Format specifications FHS services

LOCK:
*YES: If this operand is specified, control is returned to the application program
immediately after the format is displayed. This function can be typically used to display
a logo or a “Please wait” message.

ALARM:
*YES: If this operand is specified, an acoustic signal (beep) is used at the terminal to
indicate that the format is displayed.

HARDCOPY:
*YES: If this value is specified, the contents of the screen are automatically output to an
available hardcopy device.

AUTOTAB:
*YES: The cursor skips automatically from field to field.
*NO: The cursor can be positioned on protected fields of the format by using the arrow
keys.

MANDATORY:
*YES: Fields defined with the attribute “Mandatory input” retain that attribute when the
same format is output again.

REFRESH:
*YES: The screen is refreshed (no differential output)

ACK:
Before the format is output, “ACK” is displayed as an input prompt in line mode, and the
system waits for an acknowledgment from the user.

U23110-J-Z135-1-7600 183

FHS services Information on field attributes

5.2.4 Information on field attributes (TU ATTR)

These variables enable dynamic modification of some field attributes.

ATTR: List of fields to be modified during a DISPLAY service. The attributes are contained
in the structure that follows.

FIELD:
Name of the field to be modified.

 *CURSOR The field for which attributes are to be modified is the field in which
the cursor will be displayed at the next DISPLAY call. If it is deter-
mined at the next DISPLAY call that a dynamic attribute has also
been requested for the field name of the field on which the cursor is
positioned, the specifications are combined. If the entries are the
same, the *CURSOR entry is given precedence.

<field-name 1..255> / (field-name1,....,field-name8)
Specifies the name of the field to be modified.

FIELD-IND:
Index entry for the field specified in FIELD.

If the field name references a field of a list area, you can include an index to specify a
particular list line.

TYPE:

Specifies the type of attribute to be set for the field.

Name Type Default value Possible values

ATTR list <list of structure>

FIELD string *CURSOR <field-name 1..255> /
(field-name1,....,field-name8)

FIELD-IND 0 <integer> / (<integer1>,....,<integer8>)

TYPE string *UNCHANGED *INPUT / *OUTPUT / *MANDATORY

HILITE string *UNCHANGED *UNDERLINE / *INVERSE / *INV-UND

INTENSITY string *UNCHANGED *HIGH / *LOW / *INVISIBLE / *HIGH-INV /
*LOW-INV

OUTPUT string *UNCHANGED *INIT / *CHECK

COLOR string *UNCHANGED *RED / *GREEN / *YELLOW / *BLUE / *MA-
GENTA / *CYAN / *WHITE

184 U23110-J-Z135-1-7600

Information on field attributes FHS services

*INPUT
The corresponding mask field becomes an unprotected input field without the “manda-
tory” attribute. The field can be modified via the keyboard.

*MANDATORY
Input for the mask field is mandatory, i.e. the field must be modified by the user at the
terminal.

*OUTPUT
 The mask field becomes a unmarkable output field. Its contents cannot be modified via
the keyboard.

HILITE:

Defines how mask fields are to be highlighted.

*UNDERLINED
The field contents are shown underlined.

*INVERSE
The field contents are displayed in reverse video.

*INV-UND
The field contents are displayed underlined and in reverse video.

Note:
If a method of highlighting fields was defined in the format definition itself, dynamic
attributes cannot be used to cancel the existing definition. Fields to be dynamically high-
lighted should therefore be excluded from highlighting specifications in the format defi-
nition.

INTENSITY:

Specifies the intensity level (brightness) of the field.

*HIGH
The field is shown with high intensity.

*LOW
The field is shown with normal intensity.

*INVISIBLE
The field contents are invisible and cannot be printed.

*HIGH-INV
The background is displayed with high intensity.

*LOW-INV
The background is displayed with normal intensity.

U23110-J-Z135-1-7600 185

FHS services Information on field attributes

OUTPUT:

Defines the use of default values for mask fields.

Without the OUTPUT specification, default values for the mask are always used if the
dialog variable assigned to a mask field does not exist or has a relevant length of 0 on
executing the DISPLAY call. On return from the DISPLAY service, the corresponding
dialog variables contain the default value for each respective mask field. If a dialog vari-
able does not exist, a variable of type CHAR is created implicitly.
Specifications for defaults are ignored for list fields.

*INIT
The dialog variables are initialized, i.e. the default value that was set for the specified
field on defining the format is output when displaying the mask regardless of the current
contents of the dialog variable associated with that mask. If there is no default value in
the format for the variable, the field is displayed with fill characters.

*CHECK
For an existing dialog variable that has a value with a relevant length greater than zero,
the default value is only used if the content of the dialog variable associated with the
mask field has the value zero.

Without the OUTPUT operand, defaults for mask fields are always used if the dialog
variables associated with the masked fields do not exist or have a relevant length of ze-
ro.

COLOR:

Specifies the color for the mask field. This entry is ignored for devices on which no color
can be represented.

*RED

*GREEN

*YELLOW

*BLUE

*MAGENTA

*CYAN

*WHITE

186 U23110-J-Z135-1-7600

Input formatting / Return values FHS services

5.2.5 Information on input

These variables define the information returned by FHS after formatting. There are no de-
fault values here, since these values are returned by FHS.

COMMAND:
Scrolling or application command to which the application must respond.

FHS-VERSION:
Version of the dialog manager.

CURSOR-INPUT:
Name of the field in which the cursor is located. If the cursor is in an unknown field or
between fields, “$LLL#CCC” is returned, where l stands for line and c for column.

CURSOR-INPUT-INDEX:
Index of the cursor in a list.

CURSOR-INPUT-POS:
Position of the cursor in the field defined by CURSOR-POSITION.

5.2.6 FHS return codes

These variables are output in a standard header of SDF-P. FHS uses them to return output
information.

Name Type Return value

COMMAND string <string 1..255>

FHS-VERSION string <string 1..30>

CURSOR-INPUT string <string 1..255>

CURSOR-INPUT-INDEX integer <integer>

CURSOR-INPUT-POS integer <integer>

Name Type Return code

SUBCODE2 integer <integer>

SUBCODE1 integer <integer>

MAINCODE string <name 1..7>

U23110-J-Z135-1-7600 187

FHS services List processing

5.3 Naming conventions for list processing

Conventions SDF-P variables in the model line (list processing)

Name with no index

Example: ABC

ABC: is the current list

SDF-P variable definition:

/ declare-variable name = ABC (type=*string),-
/ multiple-elements = *list(limit=100)

Structured name with no index

Example: A.B-C

B-C: is the current list

SDF-P variable definition:

/ declare-variable name = A (type = *structure(*by-syscmd))
/ begin-structure
/ declare-element name = B-C (type=*string),-
/ multiple-elements = *list(limit=100)
/ end-structure

Structured name with constant index

Example: A#3.B-C

A: list or array of structures which themselves contain a list (index=3)

B-C: current list to be displayed

SDF-P variable definition:

/ declare-variable name = A (type = *structure(*by-syscmd)),-
/ multiple-elements = *array(upper-bound = 10)
/ begin-structure
/ declare-element name = B-C (type=*string),-
/ multiple-elements = *list(limit=100)
/ end-structure

188 U23110-J-Z135-1-7600

List processing FHS services

Structured name with variable index

Example: A#*.B-C

A: is the current list

B-C: is scalar

SDF-P variable definition:

/ declare-variable name = A (type = *structure(*by-syscmd)),-
/ multiple-elements = *list (limit = *NONE)
/ begin-structure
/ declare-element name = B-C (type=*string)
/ end-structure

Structured name with variable and constant index

Example: A#*.B-C#3

A: current list; list of structures from which one element is to be displayed

B-C: list (constant index)

SDF-P variable definition:

/ declare-variable name = A (type = *structure(*by-syscmd)),-
/ multiple-elements = *list (limit = *NONE)
/ begin-structure
/ declare-element name = B-C (type=*string),-
/ multiple-elements = *list (limit=100)
/ end-structure

U23110-J-Z135-1-7600 189

SDF-P interface Controlling FHS applications

5.4 Controlling FHS applications using S procedures

5.4.1 Outputting S variables with FHS 8.1

The commands ASSIGN-STREAM and TRANSMIT-BY-STREAM can be used by S
procedures to start a dialog with the terminal user by means of FHS format fields that are
filled with FHS dialog variables.

5.4.2 Outputting and generating S variables in FHS-TIAM programs

The variable services VGET and VPUT in FHS V8.1 enable an application program to read
and write elementary S variables. This makes communication possible between an S
procedure and an application program that is called by it.

The following figure shows the exchange between an application program and an S
procedure.

190 U23110-J-Z135-1-7600

Controlling FHS applications SDF-P interface

Function
pool

Profile
pool

Fun
pool

Function
pool

SDF-P procedure

DCL-VAR PC1
DCL-VAR PM1

PC1 = value

START-PROGRAM

IF (PM1=´?´)

START-PROGRAM

END-IF

START-PROGRAM

Application program

DMOPEN INIT PROFILE(ABC)

VGET (PC1) PROCEDURE

VPUT (PM1) PROCEDURE

DMCLOSE

Application program

DMOPEN INIT

VGET (PM1) PROCEDURE

DMCLOSE

SCOPE=TASK

Variable pool
of procedure
SCOPE=PROC

U23110-J-Z135-1-7600 191

SDF-P interface Controlling FHS applications

5.4.3 Controlling FHS applications in nested S procedures

Assignments of S variable streams are stacked in nested S procedures exactly as for sys-
tem files (SYSDTA,SYSOUT,..). You should therefore use the operand setting SYSTEM-
FILE-CONTEXT=STD or OWN in the SET-PROCEDURE-OPTIONS command if you want
your string statements to also be processed in a stack.

In TPR mode, FHS saves its display environment in accordance with the S variable stream
assignment in the TRANSMIT-BY-STREAM command. A context specific to the variable
stream is initialized by FHS at the time of assignment and automatically used thereafter for
every FHS operation with the same variable stream. This occurs until the assignment is
terminated (e.g. if *DUMMY or another server is assigned to the same variable stream) ex-
plicitly or implicitly at the end of the procedure (as defined by the SYSTEM-FILE-CONTEXT
assignment).

This mechanism allows nested procedures to be coded independently without overlapping
display instructions in different FHS contexts.

To ensure the independence of the calling procedure, the variable SYSFHS-CON-
TROL.REFRESH must be set to the value *YES* to enable the output of a control panel
after the call to this procedure.

Example

In procedure P1, FHS is assigned to variable stream S1, and control panel D1 is
displayed. P1 calls procedure P2. In procedure P2, FHS is likewise assigned to the
variable stream S2, and control panel D2 is displayed. Consequently, D1 is completely
overwritten by D2.

Proc P1 : assign S1 -----> FHS
 displays D1
 calls P2
 pop-up D11

Proc P2 : assign S2 -----> FHS
 displays D2
 exit

On termination of P2, FHS returns to the display environment of S1. In order to do this,
the pop-up menu on the current screen (e.g. control panel D11) is implicitly refreshed
(with or without a branch) on the current control panel of P1 (D1).

192 U23110-J-Z135-1-7600

Controlling FHS applications SDF-P interface

Control panel D2 is deleted, and control panel D1 is restored at the next display of proce-
dure P1.

Note:

Variables to be displayed in a control panel must be visible in the current S procedure
(see the section on “Scope of variables” in the chapter “Using variables in S
procedures”).

proc P1: display D1 call P2

display D2 exit

display D11

D1 D2 D1

D11

proc P2

U23110-J-Z135-1-7600 193

SDF-P interface SYSFHS

5.5 SYSFHS-CONTROL - Structure for layout and initialization

The following S procedure is supplied with FHS. It defines the layout of the control variables
and initializes them.

/set-procedure-options caller=include
/begin-parameter-declaration
/ declare-parameter -
/ „------------ std param --------------------------------*“-
/ (PREFIX (type=string,init=’SYSFHS-’) -
/ ,INCLUDE-FORM (type=string,init=’LAYOUT’) „/initialize“ -
/ ,VARIABLE-NAME(type=string,init=’’) -
/ „------------ include specific param -------------------*“-
/ „ action variables „ -
/ ,SERVICE (type=string,init=’*DISPLAY’) -
/ ,DIAGINFO (type=string,init=’*NO’) -
/ ,POP-LOCATION (type=string,init=’*NONE’) -
/ ,POP-LOC-IND (type=integer,init=0) -
/ ,ROW (type=integer,init=2) -
/ ,COLUMN (type=integer,init=2) -
/ „ resource variables „ -
/ ,RESOURCE (type=string,init=’*SAME’) -
/ ,MESSAGE-ID (type=string,init=’*NONE’) -
/ ,MESSAGE-FIELD (type=string,init=’*NONE’) -
/ ,MSG-FIELD-IND (type=integer,init=0) -
/ „ panel variables „ -
/ ,CURSOR-OUTPUT-INDEX (type=integer,init=0) -
/ ,CURSOR-OUTPUT (type=string,init=’*NONE’) -
/ ,CURSOR-OUTPUT-POS (type=integer,init=0) -
/ ,LOCK (type=string,init=’*NO’) -
/ ,ALARM (type=string,init=’*NO’) -
/ ,HARDCOPY (type=string,init=’*NO’) -
/ ,AUTOTAB (type=string,init=’*YES’) -
/ ,MANDATORY (type=string,init=’*NO’) -
/ ,REFRESH (type=string,init=’*NO’) -
/ ,ACK (type=string,init=’*NO’) -
/ „ field attributes „ -
/ ,ATTR-LIST (type=integer,init=0) -
/ „ number of list elements to reset „-
/ ,FIELD (type=string,init=’*CURSOR’) -
/ ,FIELD-IND (type=string,init=’0’) -
/ ,TYPE (type=string,init=’*UNCHANGED’) -
/ ,HILITE (type=string,init=’*UNCHANGED’) -
/ ,INTENSITY (type=string,init=’*UNCHANGED’) -
/ ,COLOR (type=string,init=’*UNCHANGED’) -
/ ,OUTPUT (type=string,init=’*UNCHANGED’) -

194 U23110-J-Z135-1-7600

SYSFHS SDF-P interface

/ „ input information „ -
/ ,COMMAND (type=string,init=’’) -
/ ,FHS-VERSION (type=string,init=’’) -
/ ,CURSOR-INPUT (type=string,init=’’) -
/ ,CURSOR-INPUT-INDEX (type=integer,init=0) -
/ ,CURSOR-INPUT-POS (type=integer,init=0) -
/)
/end-parameter-declaration
/
/if (upper-case(INCLUDE-FORM) == ’LAYOUT’)
/
/begin-structure ATTR,scope=proc
/ declare-element -
/ (FIELD (type=string) -
/ ,FIELD-IND (type=string) -
/ ,TYPE (type=string) -
/ ,HILITE (type=string) -
/ ,INTENSITY (type=string) -
/ ,COLOR (type=string) -
/ ,OUTPUT (type=string) -
/)
/end-structure//begin-structure name=&PREFIX.LAYOUT,scope=proc
/ declare-element STD-HEADER(type=structure(&PREFIX.FHDR))
/ declare-element -
/ „ action variables „ -
/ (SERVICE (type=string) -
/ ,DIAGINFO (type=string) -
/ ,POP-LOCATION (type=string) -
/ ,POP-LOC-IND (type=integer) -
/ ,ROW (type=integer) -
/ ,COLUMN (type=integer) -
/ „ resource variables „ -
/ ,RESOURCE (type=string) -
/ ,MESSAGE-ID (type=string) -
/ ,MESSAGE-FIELD (type=string) -
/ ,MSG-FIELD-IND (type=integer) -
/ „ panel variables „ -
/ ,CURSOR-OUTPUT-INDEX (type=integer) -
/ ,CURSOR-OUTPUT (type=string) -
/ ,CURSOR-OUTPUT-POS (type=integer) -
/ ,LOCK (type=string) -
/ ,ALARM (type=string) -
/ ,HARDCOPY (type=string) -
/ ,AUTOTAB (type=string) -
/ ,MANDATORY (type=string) -
/ ,REFRESH (type=string) -
/ ,ACK (type=string) -
/)

U23110-J-Z135-1-7600 195

SDF-P interface SYSFHS

/ „ field attributes „
/ declare-element ATTR (type=struc(attr))-
/ ,mult-elem=list
/
/ „ input information „ -
/ declare-element -
/ (COMMAND (type=string) -
/ ,FHS-VERSION (type=string) -
/ ,CURSOR-INPUT (type=string) -
/ ,CURSOR-INPUT-INDEX (type=integer) -
/ ,CURSOR-INPUT-POS (type=integer) -
/)
/end-structure
/
/else-if (upper-case(INCLUDE-FORM) == ’INITIALIZE’)
/
/ if (VARIABLE-NAME == ’’)
/ write-text ’% mandatory parameter variable-name missing.’
/ raise-error
/ end-if
/ declare-variable PARAM(type=string)
/ include-procedure *lib-elem(lib=$.SYSPRC.SDF-P-BASYS.020,el=FHDR) -
/ „------------ std param --------------------------------*“-
/ ,(INCLUDE-FORM=’INITIALIZE’ -
/ ,VARIABLE-NAME=’&VARIABLE-NAME..STD-HEADER’ -
/ „------------ include specific param -------------------*“-
/ ,UNIT =’FHS’, „fhs unit name“ -
/ ,FUNCTION =’DISPLAY’, „fhs fc for display?“ -
/ ,VERSION = 1 „control variable layout version“-
/)
/
/ for PARAM = -
/ (’SERVICE’ -
/ ,’DIAGINFO’ -
/ ,’POP-LOCATION’ -
/ ,’POP-LOC-IND’ -
/ ,’ROW’ -
/ ,’COLUMN’ -
/ ,’RESOURCE’ -
/ ,’MESSAGE-ID’ -
/ ,’MESSAGE-FIELD’ -
/ ,’MSG-FIELD-IND’ -
/ ,’CURSOR-OUTPUT-INDEX’ -
/ ,’CURSOR-OUTPUT’ -
/ ,’CURSOR-OUTPUT-POS’ -
/ ,’LOCK’ -
/ ,’ALARM’ -
/ ,’HARDCOPY’ -

196 U23110-J-Z135-1-7600

SYSFHS SDF-P interface

/ ,’AUTOTAB’ -
/ ,’MANDATORY’ -
/ ,’REFRESH’ -
/ ,’ACK’ -
/ ,’COMMAND’ -
/ ,’FHS-VERSION’ -
/ ,’CURSOR-INPUT’ -
/ ,’CURSOR-INPUT-INDEX’ -
/ ,’CURSOR-INPUT-POS’ -
/)
/ &VARIABLE-NAME..&PARAM = &PARAM
/ end-for
/
/ if (ATTR-LIST > 0)
/ I = 1
/ while (I <= ATTR-LIST)
/ for PARAM = -
/ (’FIELD’ -
/ ,’FIELD-IND’ -
/ ,’TYPE’ -
/ ,’HILITE’ -
/ ,’INTENSITY’ -
/ ,’COLOR’ -
/ ,’OUTPUT’ -
/)
/ &VARIABLE-NAME..ATTR#I.&PARAM = &PARAM
/ end-for
/ I=I+1
/ end-while
/ end-if
/
/else
/ write-text ’% form=&INCLUDE-FORM not supported; include aborts’
/ raise-error
/end-if
/EXIT-PROCEDURE

Note:

The standard header is linked in this procedure in an include. This is an S procedure
that is supplied with SDF-P and is responsible for function identifications and return
code and information (see TRANSMIT-BY-STREAM in the chapter on “SDF-P com-
mands” for details).

U23110-J-Z135-1-7600 197

SDF-P interface Standard header

Include for the standard header

This standard header is supplied with SDF-P. It is called in the procedure SYSFHS
(with /INCLUDE-PROCEDURE).
The procedure is stored in the member FHDR in the library SYSPRC.SDF-P-BASYS.020.

This standard header can be defined as the first element of the structure of control
variables.

/SET-PROCEDURE-OPTIONS &* CALLER=INCLUDE
/“NOT SUPPORTED BY SDF-P-BASYS“
/BEGIN-PARAMETER-DECLARATION
/ /DECLARE-PARAM -
/ “----------------------- STD PARAM ----------------------------------*“-
/ (PREFIX (INITIAL-VALUE=´SYSSDP´) -
/ ,INCLUDE-FORM (INITIAL-VALUE=´LAYOUT´) “INITIALIZE“ -
/ ,VARIABLE-NAME (INITIAL-VALUE=´´) -
/ “----------------------- INCLUDE SPSECIFIC PARAM --------------------*“-
/ ,UNIT (INITIAL-VALUE=´´) -
/ ,FUNCTION (INITIAL-VALUE=´´) -
/ ,VERSION (INITIAL-VALUE=0) -
/ ,SUBCODE2 (INITIAL-VALUE=0) -
/ ,SUBCODE1 (INITIAL-VALUE=0) -
/ ,MAINCODE (INITIAL-VALUE=´CMD0001´) -
/)
/END-PARAMETER-DECLARATION
/
/IF (NOT IS-SDF-P())
/ EXIT-PROCEDURE ERROR=*YES(SUBCODE1=41,MAINCODE=CMD2241)
/END-IF
/
/IF (UPPPER-CASE(INCLUDE-FORM) == ´LAYOUT´)
/
/BEGIN-STRUCTURE NAME=&PREFIX.IFID-MDL,SCOPE=*PROCEDURE
/ DECLARE-ELEMENT -
/ (UNIT (TYPE=*STRING) -
/ ,FUNCTION (TYPE=*STRING) -
/ ,VERSION (TYPE=*INTEGER) -
/)
/END-STRUCTURE
/BEGIN-STRUCTURE NAME=&PREFIX.RETC-MDL,SCOPE=*PROCEDURE
/ DECLARE-ELEMENT -
/ ,SUBCODE2 (TYPE=*INTEGER) -
/ ,SUBCODE1 (TYPE=*INTEGER) -
/ ,MAINCODE (TYPE=*STRING) -
/)
/END-STRUCTURE
/BEGIN-STRUCTURE NAME=&PREFIX.FHDR,SCOPE=*PROCEDURE

198 U23110-J-Z135-1-7600

Standard header SDF-P interface

/ DECLARE-ELEMENT INTERFACE-ID(TYPE=*STRUCTURE(&PREFIX.IFID-MDL))
/ DECLARE-ELEMENT RETURNCODE(TYPE=*STRUCTURE(&PREFIX.RETC-MDL))
/END-STRUCTURE
/
/ELSE-IF (UPPER-CASE(INCLUDE-FORM) == ´INITIALIZE´)
/
/ IF (VARIABLE-NAME == ´´)
/ WRITE-TEXT ´% OBLIGATORISCHER OPERAND VARIABLE-NAME GEHT AB.´
/ RAISE-ERROR
/ END-IF
/ DECLARE-VARIABLE PARAM(TYPE=*STRING)
/ FOR PARAM = (´UNIT´,´FUNCTION´)
/ &VARIABLE-NAME..INTERFACE-ID.&PARAM = &PARAM
/ END-FOR
/ &VARIABLE-NAME..INTERFACE-ID.VERSION=INTEGER(VERSION)
/ FOR PARAM = (´SUBCODE2´,´SUBCODE1´)
/ &VARIABLE-NAME..RETURNCODE.&PARAM = INTEGER(&PARAM)
/ END-FOR
/ &VARIABLE-NAME..RETURNCODE.MAINCODE=MAINCODE
/ELSE
/ WRITE-TEXT ´% FORM = &INCLUDE-FORM WIRD NICHT UNTERSTUETZT; -
/INCLUDE WIRD ABGEBROCHEN´
/ RAISE-ERROR
/END-IF
/EXIT-PROCEDURE

The server does not check whether this header exists, so the header may be omitted when
specifying the control variables.

Description of parameters

UNIT (type=string)
Specifies the server that has defined the control variable. This should be the same name
as the one specified with /ASSIGN-STREAM.

FUNCTION (type=string)
Specifies the function for which the server has defined the layout of the control variables.
The name is defined and processed by the server.

VERSION (type=integer)
Version of the control variables. This allows earlier versions of the control variables to be
compatibly supported by the server.

SUBCODE2 (type=integer)
“Subcode2” value returned by the server (in RET-CONTROL-VAR-NAME).

SUBCODE1 (type=integer)
“Subcode1” value returned by the server (in RET-CONTROL-VAR-NAME).

U23110-J-Z135-1-7600 199

SDF-P interface Standard header

MAINCODE (type=string)
Message ID returned by the server (in RET-CONTROL-VAR-NAME).

The parameters SUBCODE2, SUBCODE1, and MAINCODE are subject to the same
conventions that apply to the command return code, e.g. IDHA001 (see page 234).

These control variables should be returned by the server in order to enable more precise
error handling than is possible with the return codes of the TRANSMIT-BY-STREAM or
TRANSVV commands.

200 U23110-J-Z135-1-7600

Standard header SDF-P interface

5.6 Differences between FHS-DM and FHS-PRIV

P key assignments

In contrast to FHS-TU, the value of P-KEY setting cannot be stored in a user file.

The system variables KEY-LIST and KEY-AEREA do not exist.

CCS name and 8-bit mode

The CCS name cannot be specified; the system variable CCSNAME does not exist.

Users who wish to work in 8-bit mode must enter the command “MODIFY-TERMINAL-OP-
TION“” before the assignment.

SYS command

The SYS command is rejected in TPR mode.

U23110-J-Z135-1-7600 201

6 Sample programs
The following is a COBOL example that uses FHS-DM as a user interface.

IDENTIFICATION DIVISION.
PROGRAM-ID. COB7.
**
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 TERMINAL IS VIDEO.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 DMCOMM.
 02 DMRC IS COMP.
 03 DMSC2 PIC S9(4).
 03 DMSC1 PIC S9(4).
 03 DMMC PIC S9(7).
 02 DMMSGID PIC X(8).
 02 DMFLAG.
 03 DMERR PIC X(1).
 03 FILLER PIC X(7).
 02 DMSYS PIC X(104).
77 BUFFER PIC X(512).
77 LEN PIC S9(5) COMP VALUE 512.
77 VAR1 PIC X(6).
77 VAR1LEN PIC S9(5) COMP.
*
************************************** PROGRAM START
*
PROCEDURE DIVISION.
**
CONTR SECTION.
CONTR-0.
PERFORM MAIN.
CONTR-9.
DISPLAY „PROGRAM COB7 TERMINATED“ UPON VIDEO.
STOP RUN.
**

202 U23110-J-Z135-1-7600

COBOL program sample programs

MAIN SECTION.

MAIN-0.
*
 MOVE „ DMOPEN INIT PROFILE(DATA1)“ TO BUFFER.
 CALL „ISPCI“ USING DMCOMM LEN BUFFER.
 PERFORM CHECK-FHS-RC.
*
 MOVE „ VDEFINE VAR1 FORMAT(CHAR)“ TO BUFFER.
 MOVE 6 TO VAR1LEN.
 CALL „ISPCI2“ USING DMCOMM LEN BUFFER VAR1LEN VAR1.
 PERFORM CHECK-FHS-RC.
*
 MOVE „ VGET VAR1 PROFILE „ TO BUFFER.
 CALL „ISPCI“ USING DMCOMM LEN BUFFER.
 PERFORM CHECK-FHS-RC.
* .
* .
* .
* vdefine of other variables
* .
* .
* .
*
* See Explanation (1)
 MOVE „ DISPLAY PANEL(V81) „ TO BUFFER.
 CALL „ISPCI“ USING DMCOMM LEN BUFFER.
 PERFORM CHECK-FHS-RC.
*
 MOVE „ ADDPOP „ TO BUFFER.
 CALL „ISPCI“ USING DMCOMM LEN BUFFER.
 PERFORM CHECK-FHS-RC.

* See Explanation (2)
 MOVE „ DISPLAY PANEL(BOXV81) „ TO BUFFER.
 CALL „ISPCI“ USING DMCOMM LEN BUFFER.
 PERFORM CHECK-FHS-RC.
* See Explanation (3)
 MOVE „ DISPLAY MSG(IDHT017) „ TO BUFFER.
 CALL „ISPCI“ USING DMCOMM LEN BUFFER.
 PERFORM CHECK-FHS-RC.
*
 MOVE „ VPUT VAR1 PROFILE „ TO BUFFER.
 CALL „ISPCI“ USING DMCOMM LEN BUFFER.
 PERFORM CHECK-FHS-RC.
*

U23110-J-Z135-1-7600 203

sample programs COBOL program

 MOVE „ DMCLOSE „ TO BUFFER.
 CALL „ISPCI“ USING DMCOMM LEN BUFFER.
 PERFORM CHECK-FHS-RC.
 EXIT.
*
**
 CHECK-FHS-RC SECTION.
 CHECK-0.
 IF DMSC1 IN DMRC IN DMCOMM NOT = 0
 THEN DISPLAY „RETURNCODE:“ DMSC2 „/“
 DMSC1 „/“ DMMC „ „
 DMMSGID UPON VIDEO.
 EXIT.

204 U23110-J-Z135-1-7600

ASSEMBLER program sample programs

A corresponding sample program in ASSEMBLER

 MACRO
 FILLBUF &STMT
 MVI BUFFER,’ ’
 MVC BUFFER+1(L’BUFFER-1),BUFFER
 MVC BUFFER(L’&STMT),&STMT
 MEND
*
ASM7 CSECT
ASM7 AMODE ANY
ASM7 RMODE ANY
 USING *,10
 BALR 10,0
 BCTR 10,0
 BCTR 10,0
R1 EQU 1
R2 EQU 2
R7 EQU 7
R14 EQU 14
R15 EQU 15
*
 LA R1,PL
*
 L R15,ISPCI@
 FILLBUF STMT1
 BASR R14,R15
 BAL R7,CHECKRC
*
 L R15,ISPCI2@
 LA R2,VAR1
 ST R2,OPER2@
 LA R2,VAR1L
 ST R2,OPER2L@
 FILLBUF STMT2
 BASR R14,R15
 BAL R7,CHECKRC
*
 L R15,ISPCI@
 FILLBUF STMT3
 BASR R14,R15
 BAL R7,CHECKRC
* .
* .
* .
* vdefine of other variables

U23110-J-Z135-1-7600 205

sample programs ASSEMBLER program

* .
* .
* .
*
* See Explanation (1)
 FILLBUF STMT4
 BASR R14,R15
 BAL R7,CHECKRC
*
 FILLBUF STMT5
 BASR R14,R15
 BAL R7,CHECKRC
* See Explanation (2)
 FILLBUF STMT6
 BASR R14,R15
 BAL R7,CHECKRC
* See Explanation (3)
 FILLBUF STMT7
 BASR R14,R15
 BAL R7,CHECKRC
*
 FILLBUF STMT8
 BASR R14,R15
 BAL R7,CHECKRC
*
 FILLBUF STMT9
 BASR R14,R15
 BAL R7,CHECKRC*
 TERM
*---
CHECKRC DS 0H
 CLC DMSC1,=X’0000’
 BE OK
 TERMD
OK BR R7
*---
*
STMT1 DC C’DMOPEN INIT PROFILE (DATA1)
STMT2 DC C’VDEFINE VAR1 FORMAT(CHAR)
STMT3 DC C’VGET VAR1 PROFILE
* .
* .
* .
* other „vdefine“ statements
* .
* .
* .
STMT4 DC C’DISPLAY PANEL(V81)

206 U23110-J-Z135-1-7600

ASSEMBLER program sample programs

STMT5 DC C’ADDPOP
STMT6 DC C’DISPLAY PANEL(BOXV81)
STMT7 DC C’DISPLAY MSG(IDHT017)
STMT8 DC C’VPUT VAR1 PROFILE
STMT9 DC C’DMCLOSE
*
PL DS 5A
 ORG PL
DMCOMM@ DC A(DMCOMM)
BUFLEN@ DC A(BUFLEN)
BUFFER@ DC A(BUFFER)
OPER2L@ DC A(0)
OPER2@ DC A(0)
 ORG
*
DMCOMM DS 0F
DMSC2 DS H
DMSC1 DS H
DMMC DS F
DMMSGID DS CL8
DMERR DS C
RESERVD1 DS XL7
DMSYS DS XL104
*
VAR1 DS CL6
VAR1L DC A(L’VAR1)
BUFLEN DC A(L’BUFFER)
BUFFER DC CL256’ ‘
*
ISPCI@ DC V(ISPCI)
ISPCI2@ DC V(ISPCI2)
*

 END

U23110-J-Z135-1-7600 207

sample programs Calling FHS-DM as a subsystem

6.1 Calling FHS-DM as a subsystem

If FHS-DM is loaded as a subsystem, it can be called from any main program that calls un-
resolved ISPCI and ISPCI2 calls.

Make sure that these external references are dynamically resolved at runtime by the dy-
namic binder loader DBL!

If the FHS-DM V8.1 subsystem was loaded at an address within or above the 16MB
address space, the application of the user must be created with AMODE=ANY and started
with /START-PROGRAM xxx, PROGRAM-MODE=ANY

If FHS-DM V8.1 was loaded as a subsystem exclusively below the 16 MB address space,
the PROGRAM-MODE parameter need not be specified in the /START-PROGRAM
command.

If FHS has already been linked with the application statically, it will not be possible to call
the FHS subsystem (see also the next section).

Examples of link procedures

A. Main program in COBOL

 /ASSIGN-SYSLST COB7.LNKLST
 /ASSIGN-SYSDTA *SYSCMD
 /START-BINDER
 //START-LLM-CREATION INTER-NAME=TESTCOB
 //BEGIN-SUB-LLM APPLIC
(1) //INCLUDE-MODULE LIB=COB.LIB,E=COB7,TYPE=R
 //END-SUB-LLM
 //BEGIN-SUB-LLM RT
(2) //RESOLVE-BY-AUTOLINK $.SYSLNK.CRTE,TYPE=R,SCOPE=*WHOLE-LLM
 //END-SUB-LLM
 //SAVE-LLM LIBRARY=COB.LIB,ELEM=TESTCOB,MAP=YES
 //END
 /ASSIGN-SYSLST *PRIMARY
 /ASSIGN-SYSDTA *PRIMARY

208 U23110-J-Z135-1-7600

Calling FHS-DM as a subsystem sample programs

B. Main program in ASSEMBLER

 /ASSIGN-SYSLST ASM7.LNKLST
 /ASSIGN-SYSDTA *SYSCMD
 /START-BINDER
 //START-LLM-CREATION INTER-NAME=TESTASM
 //BEGIN-SUB-LLM APPLIC
(1) //INCLUDE-MODULE LIB=ASM.MODLIB,E=ASM7,TYPE=R
 //END-SUB-LLM
 //SAVE-LLM LIBRARY=ASM.MODLIB,ELEM=TESTASM,MAP=YES
 //END
 /ASSIGN-SYSLST *PRIMARY
 /ASSIGN-SYSDTA *PRIMARY

(1) Your application program

(2) The CRTE runtime system for COBOL

This program produces two unresolved external references at ISPCI and ISPCI2.
These external references are resolved at runtime with the FHS-DM subsystem.

You can start these programs with the following command:

/START-PROG *M(library,element,RUN-MODE=ADV)

U23110-J-Z135-1-7600 209

sample programs Calling FHS-DM as a subsystem

Explanation (1)

Management View Run

 F I L E M A N A G E R

FILE(S) SELECTION From:
To :

1
13

Total:
More :

13

? Size Cat. UserId File name

381
381
732
573
228
39579
2973
585
228
987
27
12
303

P
P
P
P
P
P
P
P
P
P
P
P
P

SWN24FHS SM.SS.FHS.V08.0A70.GCLIB.P
SWN24FHS SM.SS.FHS.V08.0A70.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.0A70.SRC
SWN24FHS SM.SS.FHS.V08.1A50.GCLIB.P
SWN24FHS SM.SS.FHS.V08.1A50.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.1A70.LIST
SWN24FHS SM.SS.FHS.V08.1A70.SRC
SWN24FHS SM.SS.FHS.V08.1A80.GCLIB.P
SWN24FHS SM.SS.FHS.V08.1A80.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.1A80.LIB
SWN24FHS SM.SS.FHS.V08.1A80.LIST
SWN24FHS SM.SS.FHS.V08.1A80.SRC
SWN24FHS SM.SS.PROSOS-TU.V07.0A00.LIB

COMMAND ==>

F1=HELP F3=EXIT F7=BACKWARD F8=FORWARD F10=MENU F12=CANCEL

210 U23110-J-Z135-1-7600

Calling FHS-DM as a subsystem sample programs

Explanation (2)

Management View Run

 F I L E M A N A G E R

FILE(S) SELECTION From:
To :

1
13

Total:
More :

13

? Size Cat. UserId File name

381
381
732
573
228
39579
2973
585
228
987
27
12
303

P
P
P
P
P
P
P
P
P
P
P
P
P

SWN24FHS SM.SS.FHS.V08.0A70.GCLIB.P
SWN24FHS SM.SS.FHS.V08.0A70.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.0A70.SRC
SWN24FHS SM.SS.FHS.V08.1A50.GCLIB.P
SWN24FHS SM.SS.FHS.V08.1A50.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.1A70.LIST
SWN24FHS SM.SS.FHS.V08.1A70.SRC
SWN24FHS SM.SS.FHS.V08.1A80.GCLIB.P
SWN24FHS SM.SS.FHS.V08.1A80.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.1A80.LIB
SWN24FHS SM.SS.FHS.V08.1A80.LIST
SWN24FHS SM.SS.FHS.V08.1A80.SRC
SWN24FHS SM.SS.PROSOS-TU.V07.0A00.LIB

COMMAND ==>

F1=HELP F3=EXIT F7=BACKWARD F8=FORWARD F10=MENU F12=CANCEL

 CONFIRMATION

 Name: :P:$SWN24FHS.SM.SS.FHS.V08.1A50.GCLIB.P

 is going to be deleted. Continue: _ (Yes/No)

U23110-J-Z135-1-7600 211

sample programs Calling FHS-DM as a subsystem

Explanation (3)

Management View Run

 F I L E M A N A G E R

FILE(S) SELECTION From:
To :

1
13

Total:
More :

13

? Size Cat. UserId File name

381
381
732
573
228
39579
2973
585
228
987
27
12
303

P
P
P
P
P
P
P
P
P
P
P
P
P

SWN24FHS SM.SS.FHS.V08.0A70.GCLIB.P
SWN24FHS SM.SS.FHS.V08.0A70.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.0A70.SRC
SWN24FHS SM.SS.FHS.V08.1A50.GCLIB.P
SWN24FHS SM.SS.FHS.V08.1A50.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.1A70.LIST
SWN24FHS SM.SS.FHS.V08.1A70.SRC
SWN24FHS SM.SS.FHS.V08.1A80.GCLIB.P
SWN24FHS SM.SS.FHS.V08.1A80.GCLIB.UR
SWN24FHS SM.SS.FHS.V08.1A80.LIB
SWN24FHS SM.SS.FHS.V08.1A80.LIST
SWN24FHS SM.SS.FHS.V08.1A80.SRC
SWN24FHS SM.SS.PROSOS-TU.V07.0A00.LIB

COMMAND ==>

F1=HELP F3=EXIT F7=BACKWARD F8=FORWARD F10=MENU F12=CANCEL

 CONFIRMATION

 Name: :P:$SWN24FHS.SM.SS.FHS.V08.1A50.GCLIB.P

 is going to be deleted. Continue: _ (Yes/No)

 IDHT017
 The specified character string contains at least one
 unallowed character. Only the following characters are
 allowed in this field :
 ‘ NY‘

 F12=Remove

212 U23110-J-Z135-1-7600

Sample procedures sample programs

6.2 Sample procedures for FHS in SDF-P

The following example shows the declaration and initialization of the variable MYVAR
(without the ATTR-LIST element):

/include-procedure *lib-elem(lib=$.SYSPRC.SDF-P-BASYS.020,el=FHDR) -
/ ,(PREFIX=’SYSFHS-’)
/include-procedure *lib-elem(lib=$.SYSPRC.FHS.081,el=SYSFHS-CONTROL)
/declare-variable MYVAR (type = *struct(SYSFHS-LAYOUT))
/include-procedure *lib-elem(lib=$.SYSPRC.FHS.081,el=SYSFHS-CONTROL) , -
/ (include-form=’INITIALIZE’,variable-name=’MYVAR’, -
/ attr-list = 2)
/
/show-variable MYVAR

The variable is then generated and initialized as follows:

MYVAR.STD-HEADER.INTERFACE-ID.UNIT = FHS
MYVAR.STD-HEADER.INTERFACE-ID.FUNCTION = DISPLAY
MYVAR.STD-HEADER.INTERFACE-ID.VERSION = 1
MYVAR.STD-HEADER.RETURNCODE.SUBCODE2 = 0
MYVAR.STD-HEADER.RETURNCODE.SUBCODE1 = 0
MYVAR.STD-HEADER.RETURNCODE.MAINCODE = CMD0001
MYVAR.SERVICE = *DISPLAY
MYVAR.DIAGINFO = *NO
MYVAR.POP-LOCATION = *NONE
MYVAR.POP-LOC-IND = 0
MYVAR.ROW = 2
MYVAR.COLUMN = 2
MYVAR.RESOURCE = *SAME
MYVAR.MESSAGE-ID = *NONE
MYVAR.MESSAGE-FIELD = *NONE
MYVAR.MSG-FIELD-IND = 0
MYVAR.CURSOR-OUTPUT-INDEX = 0
MYVAR.CURSOR-OUTPUT = *NONE
MYVAR.CURSOR-OUTPUT-POS = 0
MYVAR.LOCK = *NO
MYVAR.ALARM = *NO
MYVAR.HARDCOPY = *NO
MYVAR.AUTOTAB = *YES
MYVAR.MANDATORY = *NO
MYVAR.REFRESH = *NO
MYVAR.ACK = *NO
MYVAR.ATTR(*LIST).FIELD = *CURSOR
MYVAR.ATTR(*LIST).FIELD-IND = 0
MYVAR.ATTR(*LIST).TYPE = *UNCHANGED
MYVAR.ATTR(*LIST).HILITE = *UNCHANGED
MYVAR.ATTR(*LIST).INTENSITY = *UNCHANGED

U23110-J-Z135-1-7600 213

sample programs Sample procedures

MYVAR.ATTR(*LIST).COLOR = *UNCHANGED
MYVAR.ATTR(*LIST).OUTPUT = *UNCHANGED
MYVAR.ATTR(*LIST).FIELD = *CURSOR
MYVAR.ATTR(*LIST).FIELD-IND = 0
MYVAR.ATTR(*LIST).TYPE = *UNCHANGED
MYVAR.ATTR(*LIST).HILITE = *UNCHANGED
MYVAR.ATTR(*LIST).INTENSITY = *UNCHANGED
MYVAR.ATTR(*LIST).COLOR = *UNCHANGED
MYVAR.ATTR(*LIST).OUTPUT = *UNCHANGED
MYVAR.COMMAND =
MYVAR.FHS-VERSION =
MYVAR.CURSOR-INPUT =
MYVAR.CURSOR-INPUT-INDEX =
MYVAR.CURSOR-INPUT-POS =

214 U23110-J-Z135-1-7600

Examples sample programs

6.2.1 Examples of working with FHS using S procedures

The next example shows how an FHS V8.1 application (that uses “FHS dialog variables”)
can be controlled by means of an S procedure. The S procedure controls the fields of the
IFG masks that are used by the FHS application. The “FHS formats” are simulated by
means of “variable containers”. The following formats are used:

SCREEN1:

SCREEN2:

File Selection

Select the file name (*=wildcard)

a*

CMD:==>
F1=Help F3=Exit F12=Cancel

CMD:==>
F1=Help F3=Exit F12=Cancel

Action

File Management System

File list
? Size Cat UserId File name

Lines 7 to 8 of 8 More:

3 X XXXXXX AX
XXXXXX AXXX3

***************************************End of list***

U23110-J-Z135-1-7600 215

sample programs Examples

/“main“ set-procedure-options
/
/include-procedure *lib-elem(lib=$.SYSPRC.SDF-P-BASYS.020,el=FHDR) -
/ ,(PREFIX=’SYSFHS-’)
/include-procedure *lib-elem(lib=$.SYSPRC.FHS.081,el=SYSFHS-CONTROL)
/declare-variable SYSPINFO (type = *struct(SYSFHS-LAYOUT))
/include-procedure *lib-elem(lib=$.SYSPRC.FHS.081,el=SYSFHS-CONTROL) , -
/ (include-form=’INITIALIZE’,variable-name=’SYSPINFO’)
/
/declare-variable SCREEN1(type=*structure(*by-syscmd))
/begin-structure
/ declare-element FILE-NAME
/end-structure
/
/declare-variable SCREEN2(type=*structure(*by-syscmd))
/begin-structure
/ declare-element name = FILELIST (type = *structure(*dynamic)) -
/ , multiple-elements = *list
/ declare-element name = SDFPLIST-MODINDEX (type = integer) -
/ , multiple-elements = *list‘
/ declare-element SDFPLIST-TOPINDEX
/ declare-element ACTION-CHOICE
/ declare-element ACTION-NUMBER
/ declare-element ACTION
/end-structure
/
/NUMBER-OF-ATTEMPT = 1
/
/ „Initialize MODINDEX List for 30 elements „
/LOOP: while (NUMBER-OF-ATTEMPT <= 30)
/ SCREEN2.SDFPLIST-MODINDEX#&(NUMBER-OF-ATTEMPT) = 0
/ NUMBER-OF-ATTEMPT = NUMBER-OF-ATTEMPT + 1
/end-while LOOP
/
/assign-stream -
/ stream-name = PRESENTATION,-
/ to = *SERVER(FHS,-
/ server-info = ’FHS-LIB = MAPLIB’)
/
/SYSPINFO.RESOURCE = ’SDFPFILE’
/SYSPINFO.SERVICE = ’*DISPLAY’
/SYSPINFO.REFRESH = ’*YES’
/SYSPINFO.ACK = ’*YES’
/
/transmit-by-stream variable-name = SCREEN1, -
/ stream-name = PRESENTATION,-
/ control-var-name = SYSPINFO
/

216 U23110-J-Z135-1-7600

Examples sample programs

/if (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE NE ’IDH0000’)
/show-variable SYSPINFO.STD-HEADER
/ end-if
/
/if ((SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE EQ ’IDH0004’) -
/ OR (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE EQ ’IDH0008’))
/ exit-procedure
/ end-if
/
/execute-cmd cmd=(SHOW-FILE-ATTRIBUTES f-name=&(SCREEN1.FILE-NAME) -
/ ,INFO=NAME-AND-SPACE) -
/ , text-output = *NONE -
/ , structure-output = SCREEN2.FILELIST
/
/repeat
/
/ SYSPINFO.RESOURCE = ’SDFPLIST’
/ SYSPINFO.REFRESH = ’*YES’
/ SYSPINFO.ACK = ’*YES’
/ SYSPINFO.SERVICE = ’*DISPLAY’
/ SYSPINFO.ACK = ’*YES’
/ SCREEN2.SDFPLIST-TOPINDEX = 2
/
/ transmit-by-stream variable-name = SCREEN2, -
/ stream-name = PRESENTATION,-
/ control-var-name = SYSPINFO
/
/ if (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE NE ’IDH0000’)
/ show-variable SYSPINFO.STD-HEADER
/ end-if
/
/until ((SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE EQ ’IDH0004’) -
/ OR (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE EQ ’IDH0008’))
/
/assign-stream stream-name = PRESENTATION, to = *dummy
/
/exit-procedure

U23110-J-Z135-1-7600 217

sample programs Examples

Example of the use of field attributes:

/“attt“ set-procedure-options
/
/include-procedure *lib-elem(lib=$.SYSPRC.SDF-P-BASYS.020,el=FHDR) -
/ ,(PREFIX=’SYSFHS-’)
/include-procedure *lib-elem(lib=$.SYSPRC.FHS.081,el=SYSFHS-CONTROL)
/declare-variable SYSPINFO (type = *struct(SYSFHS-LAYOUT))
/include-procedure *lib-elem(lib=$.SYSPRC.FHS.081,el=SYSFHS-CONTROL) , -
/ (include-form=’INITIALIZE’,variable-name=’SYSPINFO’,-
/ attr-list=3)
/
/declare-variable SCREEN1(type=*structure(*by-syscmd))
/begin-structure
/ declare-element INPUT-FLD
/end-structure
/
/
/assign-stream -
/ stream-name = PRESENTATION,-
/ to = *SERVER(FHS,-
/ server-info = ’FHS-LIB = MAPLIB’)
/
/repeat
/
/SYSPINFO.RESOURCE = ’V03 ’
/SYSPINFO.SERVICE = ’*DISPLAY’
/SYSPINFO.ATTR#1.FIELD = ’(SYS-DATE,SYS-DAY)’
/SYSPINFO.ATTR#1.FIELD-IND = ’0’
/SYSPINFO.ATTR#1.HILITE = ’*UNDERLINE’
/SYSPINFO.ATTR#2.FIELD = ’SYS-TIME’
/SYSPINFO.ATTR#2.INTENSITY = ’*INVISIBLE’
/
/transmit-by-stream variable-name = SCREEN1, -
/ stream-name = PRESENTATION,-
/ control-var-name = SYSPINFO
/
/if (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE NE ’IDH0000’)
/show-variable SYSPINFO.STD-HEADER
/ end-if
/
/if (SYSPINFO.COMMAND = ’usercmd’)
/ include-procedure *l(lib=userlib,el=userelem)
/ end-if
/

218 U23110-J-Z135-1-7600

Examples sample programs

/until ((SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE EQ ’IDH0004’) -
/ OR (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE EQ ’IDH0008’))
/
/
/assign-stream stream-name = PRESENTATION, to = *dummy
/
/exit-procedure

U23110-J-Z135-1-7600 219

sample programs creating a graphics-based library manager

6.3 Application example: creating a graphics-based library
manager

This section contains a detailed application example to demonstrate how the interaction
between S procedures, S variable streams, and FHS can be used to create a graphics-
based library manager.

The individual S procedures for this purpose are maintained (internally) in the library
LIBRARY-MANAGER.PL as members of type J under the names RUN, SCREEN01, and
SCREEN02 , respectively. RUN is the controlling S procedure that is called by
CALL-PROCEDURE, while SCREEN01 and SCREEN02, by contrast, handle the two
default screen displays under its control.

A listing of each of these three procedures is provided below, followed by some applications
to demonstrate how the FHS-supported library manager can be used.

Procedure: RUN

/SET-PROCEDURE-OPTIONS CALLER=CALL
/
/"--"
/"FIRST EXTRACT LIBRARY NAME FROM WHICH THIS PROCEDURE IS CALLED"
/"--"
/DECLARE-VARIABLE SYSOUT(TYPE=*STRING),MULTIPLE-ELEMENTS=*LIST
/ASSIGN-SYSOUT TO=*VARIABLE(SYSOUT)
/SHOW-SYSTEM-FILE-ASSIGNMENT SYSTEM-FILE=*SYSCMD
/ASSIGN-SYSOUT *PRIMARY
/
/LIB-ELEM-POS = INDEX(SYSOUT#2,'*LIB-ELEM')
/LIBRARY-NAME = SUBSTRING(SYSOUT#2,LIB-ELEM-POS + LENGTH('*LIB-ELEM('))
/COMMA = INDEX(LIBRARY-NAME,',')
/LIBRARY-NAME = SUBSTRING(LIBRARY-NAME,1,COMMA - 1)
/
/"--"
/"INITIALIZE FHS CONTROL VARIABLES "
/"--"
/WRITE-TEXT 'LIBRARY MANAGER V1.0 - LOADING'
/INCLUDE-PROCEDURE *LIBRARY-ELEMENT(LIBRARY = $.SYSPRC.SDF-P-BASYS.020 -
/ ,ELEMENT = FHDR) -
/ ,PROCEDURE-PARAMETERS = (PREFIX = 'SYSFHS-')
/INCLUDE-PROCEDURE *LIBRARY-ELEMENT(LIBRARY = $.SYSPRC.FHS.081 -
/ ,ELEMENT = SYSFHS-CONTROL)
/DECLARE-VARIABLE SYSPINFO (TYPE = *STRUCTURE(SYSFHS-LAYOUT))
/DECLARE-VARIABLE SYSPINFO-SAVE (TYPE = *STRUCTURE(SYSFHS-LAYOUT))
/INCLUDE-PROCEDURE *LIBRARY-ELEMENT(LIBRARY = $.SYSPRC.FHS.081 -
/ ,ELEMENT = SYSFHS-CONTROL) -
/ ,PROCEDURE-PARAMETERS = (INCLUDE-FORM='INITIALIZE' -

220 U23110-J-Z135-1-7600

creating a graphics-based library manager sample programs

/ ,VARIABLE-NAME='SYSPINFO')
/
/"--"
/"ASSIGN THE STREAM TO FHS "
/"--"
/ASSIGN-STREAM STREAM-NAME = PRESENTATION -
/ ,TO = *SERVER(FHS -
/ ,SERVER-INFO = 'FHS-LIB = &LIBRARY-NAME.')
/
/"--"
/"START LMS V3.0 "
/"--"
/ASSIGN-SYSOUT TO=*DUMMY
/START-LMS
/HOLD-PROGRAM
/ASSIGN-SYSOUT TO=*PRIMARY
/
/"---"
/"SET TIMEOUT TO 0 WHEN SWITCHING FROM LINE MODE TO FULL SCREEN "
/"---"
/MODIFY-TERMINAL-OPTIONS OVERFLOW-CONTROL = *TIME(TIMEOUT = 0)
/
/"--"
/"CALL MAIN PROCEDURE (SCREEN01) "
/"--"
/INCLUDE-PROCEDURE *LIBRARY-ELEMENT(LIBRARY = &LIBRARY-NAME. -
/ ,ELEMENT = SCREEN01)
/
/"--"
/"STOP LMS V3.0 "
/"--"
/RESUME-PROGRAM
//END

U23110-J-Z135-1-7600 221

sample programs creating a graphics-based library manager

Procedure: SCREEN01

/DECLARE-VARIABLE SCREEN01(TYPE=*STRUCTURE(*BY-SYSCMD))
/BEGIN-STRUCTURE
/ DECLARE-ELEMENT NAME = FILELIST (TYPE = *STRUCTURE(*BY-SYSCMD)) -
/ ,MULTIPLE-ELEMENTS = *LIST
/ BEGIN-STRUCTURE
/ DECLARE-ELEMENT CHOICE
/ DECLARE-ELEMENT F-SIZE
/ DECLARE-ELEMENT CAT-ID
/ DECLARE-ELEMENT USER-ID
/ DECLARE-ELEMENT SHORT-F-NAME
/ END-STRUCTURE
/ DECLARE-ELEMENT NAME = SDFPLIST-MODINDEX (TYPE = INTEGER) -
/ ,MULTIPLE-ELEMENTS = *LIST
/ DECLARE-ELEMENT SDFPLIST-TOPINDEX(INITIAL-VALUE = 1)
/ DECLARE-ELEMENT SDFPLIST-BOTINDEX
/ DECLARE-ELEMENT SDFPLIST-NUMROW
/ DECLARE-ELEMENT FILE-MENU
/ DECLARE-ELEMENT FILE-CHOICE
/END-STRUCTURE
/
/DECLARE-VARIABLE I(TYPE = *INTEGER)
/
/WHILE (TRUE)
/
/ "INITIALIZE MODINDEX LIST FOR 50 ELEMENTS "
/ " (FHS REQUIREMENT) "
/ I = 1
/ WHILE (I <= 50)
/ SCREEN01.SDFPLIST-MODINDEX#&(I) = 0
/ I = I + 1
/ END-WHILE
/
/ "GET LIBRARY NAMES"
/ EXEC-CMD CMD=(SHOW-FILE-ATTRIBUTES -
/ SELECT=*BY-ATTRIBUTES(TYPE-OF-FILES = *PLAM-LIBRARY) -
/ ,INFO=*NAME-AND-SPACE -
/) -
/ ,STRUCTURE-OUTPUT=SCREEN01.FILELIST -
/ ,TEXT-OUTPUT=*NONE -
/ ,RETURNCODE=*VARIABLE(SUBCODE2=SUB2 -
/ ,SUBCODE1=SUB1 -
/ ,MAINCODE=MAIN)
/
/ IF (SUB1 NE 0)
/ WRITE-TEXT 'ERROR &SUB2 &SUB1 &MAIN RETURNED BY EXEC-CMD'
/ WRITE-TEXT 'LIBRARY MANAGER V1.0 ABNORMALLY TERMINATED

222 U23110-J-Z135-1-7600

creating a graphics-based library manager sample programs

/ EXIT-PROCEDURE
/ END-IF
/
/ "FOLLOWING LOOP IS ONLY NECESSARY TO REP A PROBLEM BETWEEN"
/ "FHS AND VAS. CORRECTION IN VAS V02.0A85, FHS V08.1A75"
/ I = 1
/ WHILE (I <= SIZE('SCREEN01.FILELIST'))
/ SCREEN01.FILELIST#I.CHOICE = ' '
/ I = I + 1
/ END-WHILE
/
/ SYSPINFO.RESOURCE = 'SCREEN01'
/ SYSPINFO.SERVICE = '*DISPLAY'
/ SYSPINFO.REFRESH = '*YES'
/ SYSPINFO.COMMAND = ''
/ SCREEN01.SDFPLIST-NUMROW = SIZE('SCREEN01.FILELIST')
/ SCREEN01.FILE-MENU=0
/ SCREEN01.FILE-CHOICE=0
/ TRANSMIT-BY-STREAM VARIABLE-NAME = SCREEN01 -
/ ,STREAM-NAME = PRESENTATION -
/ ,CONTROL-VAR-NAME = SYSPINFO
/
/ IF ((SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE == 'IDH0004') -
/ OR (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE == 'IDH0008'))
/ WRITE-TEXT 'LIBRARY MANAGER V1.0 NORMALLY TERMINATED'
/ EXIT-PROCEDURE
/ END-IF
/
/ IF (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE NE 'IDH0000')
/ SUB2 = SYSPINFO.STD-HEADER.RETURNCODE.SUBCODE2
/ SUB1 = SYSPINFO.STD-HEADER.RETURNCODE.SUBCODE1
/ MAIN = SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE
/ WRITE-TEXT 'ERROR &SUB2 &SUB1 &MAIN RETURNED BY FHS SERVER'
/ WRITE-TEXT 'LIBRARY MANAGER V1.0 ABNORMALLY TERMINATED'
/ EXIT-PROCEDURE
/ END-IF
/
/ IF SCREEN01.FILE-MENU NE 0
/ IF SCREEN01.FILE-CHOICE == 9
/ WRITE-TEXT 'LIBRARY MANAGER V1.0 NORMALLY TERMINATED'
/ EXIT-PROCEDURE
/ ELSE-IF SCREEN01.FILE-CHOICE == 1
/ I = 1
/ WHILE (SCREEN01.SDFPLIST-MODINDEX#I NE 0)
/ SCREEN01-CURR-INDEX = SCREEN01.SDFPLIST-MODINDEX#I
/ IF SCREEN01.FILELIST#SCREEN01-CURR-INDEX.CHOICE == '/
/ SYSPINFO-SAVE = SYSPINFO
/ INCLUDE-PROCEDURE -

U23110-J-Z135-1-7600 223

sample programs creating a graphics-based library manager

/ NAME=*LIBRARY-ELEMENT(&LIBRARY-NAME. -
/ ,SCREEN02) -
/ ,PROCEDURE-PARAMETERS=(&(SCREEN01.FILELIST#SCREEN01-
 CURR-INDEX.SHORT-F-NAME))
/ IF-CMD-ERROR
/ WRITE-TEXT 'LIBRARY MANAGER V1.0 ABNORMALLY TERMINATED'
/ EXIT-PROCEDURE
/ ELSE
/ SAVE-RETURNCODE
/ IF (MAINCODE() = 'STOP0OK')
/ WRITE-TEXT 'LIBRARY MANAGER V1.0 NORMALLY TERMINATED'
/ EXIT-PROCEDURE
/ END-IF
/ END-IF
/ SYSPINFO = SYSPINFO-SAVE
/ END-IF
/ I = I + 1
/ END-WHILE
/ END-IF
/ END-IF
/
/ IF (SYSPINFO.COMMAND NE '')
/ EXEC-CMD CMD=(&(SYSPINFO.COMMAND)) -
/ ,TEXT-OUTPUT=*NONE -
/ ,RETURNCODE=*VARIABLE(SUBCODE2=SUB2 -
/ ,SUBCODE1=SUB1 -
/ ,MAINCODE=MAIN)
/
/ IF (SUB1 NE 0)
/ WRITE-TEXT 'ERROR &SUB2 &SUB1 &MAIN RETURNED BY COMMAND SERVER'
/ WRITE-TEXT 'LIBRARY MANAGER V1.0 ABNORMALLY TERMINATED'
/ EXIT-PROCEDURE
/ END-IF
/ END-IF
/END-WHILE

224 U23110-J-Z135-1-7600

creating a graphics-based library manager sample programs

Procedure: SCREEN02

/BEGIN-PARAMETER-DECLARATION
/ DECLARE-PARAMETER LIBRARY
/END-PARAMETER-DECLARATION
/
/DECLARE-VARIABLE SCREEN02(TYPE=*STRUCTURE(*BY-SYSCMD))
/BEGIN-STRUCTURE
/ DECLARE-ELEMENT NAME = ELEMLIST(TYPE = *STRUCTURE(*DYNAMIC)) -
/ ,MULTIPLE-ELEMENT = *LIST
/ DECLARE-ELEMENT NAME = SDFPLIST-MODINDEX(TYPE = *INTEGER) -
/ ,MULTIPLE-ELEMENT = *LIST
/ DECLARE-ELEMENT SDFPLIST-TOPINDEX(INITIAL-VALUE = 1)
/ DECLARE-ELEMENT SDFPLIST-BOTINDEX
/ DECLARE-ELEMENT SDFPLIST-NUMROW
/ DECLARE-ELEMENT FILE-MENU
/ DECLARE-ELEMENT FILE-CHOICE
/END-STRUCTURE
/
/DECLARE-VARIABLE SYSOUT(TYPE = *STRING), MULTIPLE-ELEMENTS = *LIST
/DECLARE-VARIABLE ERROR-ON-PRINT(TYPE = *BOOLEAN, INITIAL-VALUE = FALSE)
/DECLARE-VARIABLE I(TYPE = *INTEGER)
/
/RESUME-PROGRAM
//OPEN-LIBRARY LIBRARY = &LIBRARY.,MODE = *UPDATE
/HOLD-PROGRAM
/
/WHILE (TRUE)
/
/ "INITIALIZE MODINDEX LIST FOR 50 ELEMENTS "
/ " (FHS REQUIREMENT) "
/ I = 1
/ WHILE (I <= 50)
/ SCREEN02.SDFPLIST-MODINDEX#&(I) = 0
/ I = I + 1
/ END-WHILE
/
/ ASSIGN-SYSOUT TO = *VARIABLE(SYSOUT)
/ RESUME-PROGRAM
// SHOW-ELEMENT-ATTRIBUTES -
// ELEMENT = *LIBRARY-ELEMENT(LIBRARY = *STD -
// ,ELEMENT = *ALL (VERSION = *ALL) -
// ,TYPE = *ALL) -
// ,INFORMATION = *MAXIMUM -
// ,SORT = *BY-NAME -
// ,STRUCTURE-OUTPUT = SCREEN02.ELEMLIST
/ HOLD-PROGRAM
/ ASSIGN-SYSOUT TO = *PRIMARY

U23110-J-Z135-1-7600 225

sample programs creating a graphics-based library manager

/
/ IF (STMT-SPINOFF() == 'YES')
/ SHOW-VARIABLE SYSOUT, INFORMATION = *PARAMETERS(NAME = *NONE)
/ MAINCODE = 'LMS0ERR'
/ GOTO END
/ END-IF
/
/ "FOLLOWING LOOP IS ONLY NECESSARY TO REP A PROBLEM BETWEEN"
/ "FHS AND VAS. CORRECTION IN VAS V02.0A85, FHS V08.1A75"
/ I = 1
/ WHILE (I <= SIZE('SCREEN02.ELEMLIST'))
/ SCREEN02.ELEMLIST#I.CHOICE = ' '
/ I = I + 1
/ END-WHILE
/
/ SYSPINFO.RESOURCE = 'SCREEN02'
/ SYSPINFO.SERVICE = '*DISPLAY'
/ SYSPINFO.REFRESH = '*YES'
/ SYSPINFO.COMMAND = ''
/ SCREEN02.SDFPLIST-NUMROW = SIZE('SCREEN02.ELEMLIST')
/ SCREEN02.FILE-MENU=0
/ SCREEN02.FILE-CHOICE=0
/ TRANSMIT-BY-STREAM VARIABLE-NAME = SCREEN02 -
/ ,STREAM-NAME = PRESENTATION -
/ ,CONTROL-VAR-NAME = SYSPINFO
/
/ IF ((SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE == 'IDH0004') -
/ OR (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE == 'IDH0008'))
/ MAINCODE = 'FHSEXIT'
/ GOTO END
/ END-IF
/
/ IF (SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE NE 'IDH0000')
/ SUB2 = SYSPINFO.STD-HEADER.RETURNCODE.SUBCODE2
/ SUB1 = SYSPINFO.STD-HEADER.RETURNCODE.SUBCODE1
/ MAIN = SYSPINFO.STD-HEADER.RETURNCODE.MAINCODE
/ WRITE-TEXT 'ERROR &SUB2 &SUB1 &MAIN RETURNED BY FHS SERVER
/ MAINCODE = 'FHS0ERR'
/ GOTO END
/ END-IF
/
/ IF SCREEN02.FILE-MENU NE 0
/ IF SCREEN02.FILE-CHOICE == 9
/ MAINCODE = 'FHS0RET'
/ GOTO END
/ ELSE
/ I = 1
/ WHILE (SCREEN02.SDFPLIST-MODINDEX#I NE 0)

226 U23110-J-Z135-1-7600

creating a graphics-based library manager sample programs

/ SCREEN02-CURR-INDEX = SCREEN02.SDFPLIST-MODINDEX#I
/ IF SCREEN02.ELEMLIST#SCREEN02-CURR-INDEX.CHOICE == '/'
/ ELEMENT = SCREEN02.ELEMLIST#SCREEN02-CURR-INDEX.ELEM
/ VERSION = SCREEN02.ELEMLIST#SCREEN02-CURR-INDEX.VERSION
/ TYPE = SCREEN02.ELEMLIST#SCREEN02-CURR-INDEX.TYPE
/ IF SCREEN02.FILE-CHOICE == 1 "DELETE ELEMENT"
/ ASSIGN-SYSOUT TO = *VARIABLE(SYSOUT)
/ RESUME-PROGRAM
// DELETE-ELEMENT ELEMENT = *LIBRARY-ELEMENT -
// (LIBRARY = *STD -
// , ELEMENT = &ELEMENT.-
// (VERSION = &VERSION.) -
// , TYPE = &TYPE.)
/ HOLD-PROGRAM
/ ASSIGN-SYSOUT *PRIMARY
/ ELSE-IF SCREEN02.FILE-CHOICE == 2 "EDIT ELEMENT"
/ ASSIGN-SYSOUT TO = *VARIABLE(SYSOUT)
/ RESUME-PROGRAM
// EDIT-ELEMENT ELEMENT = *LIBRARY-ELEMENT -
// (LIBRARY = *STD -
// , ELEMENT = &ELEMENT. -
// (VERSION = &VERSION.) -
// , TYPE = &TYPE.)
/ HOLD-PROGRAM
/ ASSIGN-SYSOUT *PRIMARY
/ ELSE-IF SCREEN02.FILE-CHOICE == 3 "COPY ELEMENT"
/ WRITE-TEXT 'FUNCTION NOT IMPLEMENTED'
/ ELSE-IF SCREEN02.FILE-CHOICE == 4 "PRINT ELEMENT"
/ ASSIGN-SYSOUT TO = *VARIABLE(SYSOUT)
/ PRINT-FILE *LIBRARY-ELEMENT -
/ (LIBRARY = &LIBRARY. -
/ , ELEMENT = &ELEMENT. -
/ (VERSION = &VERSION.) -
/ , TYPE = &TYPE.)
/ IF-CMD-ERROR
/ ERROR-ON-PRINT = TRUE
/ END-IF
/ ASSIGN-SYSOUT *PRIMARY
/ ELSE-IF SCREEN02.FILE-CHOICE == 5 "SELECT ELEMENT"
/ ASSIGN-SYSOUT TO = *VARIABLE(SYSOUT)
/ RESUME-PROGRAM
// EXTRACT-ELEMENT ELEMENT = *LIBRARY-ELEMENT -
// (LIBRARY = *STD -
// , ELEMENT = &ELEMENT. -
// (VERSION = &VERSION.) -
// , TYPE = &TYPE.) -
// ,TO-FILE = *STD
/ HOLD-PROGRAM

U23110-J-Z135-1-7600 227

sample programs creating a graphics-based library manager

/ ASSIGN-SYSOUT *PRIMARY
/ ELSE-IF SCREEN02.FILE-CHOICE == 6 "ADD ELEMENT"
/ WRITE-TEXT 'FUNCTION NOT IMPLEMENTED'
/ END-IF
/
/ IF (ERROR-ON-PRINT)
/ SHOW-VARIABLE SYSOUT, INFORMATION = *PARAMETERS(NAME =
*NONE)
/ MAINCODE = 'PRT0ERR'
/ GOTO END
/ END-IF
/
/ IF (STMT-SPINOFF() == 'YES')
/ SHOW-VARIABLE SYSOUT, INFORMATION = *PARAMETERS(NAME =
*NONE)
/ MAINCODE = 'LMS0ERR'
/ GOTO END
/ END-IF
/ END-IF
/ I = I + 1
/ END-WHILE
/ END-IF
/ END-IF
/
/ IF (SYSPINFO.COMMAND NE '')
/ EXEC-CMD CMD=(&(SYSPINFO.COMMAND)) -
/ ,TEXT-OUTPUT=*NONE -
/ ,RETURNCODE=*VARIABLE(SUBCODE2=SUB2 -
/ ,SUBCODE1=SUB1 -
/ ,MAINCODE=MAIN)
/
/ IF (SUB1 NE 0)
/ WRITE-TEXT 'ERROR &SUB2 &SUB1 &MAIN RETURNED BY COMMAND SERVER'
/ MAINCODE = 'CMD0ERR
/ GOTO END
/ END-IF
/ END-IF
/END-WHILE
/
/
/END:
/IF ((MAINCODE = 'CMD0ERR') -
/ OR (MAINCODE = 'PRT0ERR') -
/ OR (MAINCODE = 'LMS0ERR') -
/ OR (MAINCODE = 'FHS0ERR') -
/)
/ EXIT-PROCEDURE ERROR = *YES(SUBCODE2 = 0 -
/ ,SUBCODE1 = 64 -

228 U23110-J-Z135-1-7600

creating a graphics-based library manager sample programs

/ ,MAINCODE = STOPERR)
/ELSE-IF (MAINCODE = 'FHSEXIT')
/ EXIT-PROCEDURE ERROR = *YES(SUBCODE2 = 0 -
/ ,SUBCODE1 = 0 -
/ ,MAINCODE = STOP0OK)
/ELSE-IF (MAINCODE = 'FHS0RET')
/ EXIT-PROCEDURE
/ELSE
/ WRITE-TEXT 'ERROR &(SC2()) &(SC1()) &(MC()) REPORTED'
/ EXIT-PROCEDURE ERROR = *YES(SUBCODE2 = 0 -
/ ,SUBCODE1 = 64 -
/ ,MAINCODE = STOPERR)
/END-IF

U23110-J-Z135-1-7600 229

sample programs creating a graphics-based library manager

Assuming that FHS-PRIV is loaded, the library manager can be called as follows

CALL-PROCEDURE FROM-FILE=*LIBRARY-ELEMENT(LIBRARY-MANAGER.PL, RUN)

A screen display (using SCREEN01) listing the names of the libraries contained under the
user ID should appear. A typical screen is shown below:

It is now possible to open one of the listed libraries in order to view the members in it. The
user marks the library to be opened by entering a “/” (slash) at the start of the corresponding
line, then skips to the “FILE” field (top left) with the Tab key, presses the DUE (SEND) key,
and enters a “1” in the pull-down menu that appears. The following screen output illustrates
the process:

 File
 --
 L I B R A R Y M A N A G E R
 --
 FILE(S) SELECTION From: 1 Total: 5
 To : 5 More :
 ? Size Cat. UserId File name

 210 2OS2 QM211 ALF.ASS.PLAMLIB
 30 2OS2 QM211 ALF.LIB
 342 2OS2 QM211 LIB-MAN
 342 2OS2 QM211 LIBRARY-MANAGER.PL
 12 2OS2 QM211 SCREEN02
 ====================[N O M O R E D A T A]==================

 --
 COMMAND ===>
 F1=HELP F3=EXIT

LTG TAST

230 U23110-J-Z135-1-7600

creating a graphics-based library manager sample programs

If the DUE (SEND) key is pressed again, a further screen (using SCREEN02) containing
the names of members of this library (along with the respective date and time of creation,
type, etc.) is displayed.

 File
 --
 : 1 1. Open library : A R Y M A N A G E R
 : 9. Exit Library-manager : --
 :...........................: From: 1 Total: 5
 To : 5 More :
 ? Size Cat. UserId File name

 210 2OS2 QM211 ALF.ASS.PLAMLIB
 30 2OS2 QM211 ALF.LIB
 / 342 2OS2 QM211 LIB-MAN
 342 2OS2 QM211 LIBRARY-MANAGER.PL
 12 2OS2 QM211 SCREEN02
 ====================[N O M O R E D A T A]==================

 --
 COMMAND ===>
 F1=HELP F3=EXIT

 File
 --
 L I B R A R Y M A N A G E R
 --
 ELEMENT(S) SELECTION From: 1 Total: 86
 To : 6 More : +
 ? Element Type
 Version Date Time
 --
 LISTHLP F
 *UP-LIM 1994-10-06 14:11:07
 PHKEY F
 001 1994-10-06 14:17:57
 SCREEN01 F
 001 1994-10-06 14:10:19
 SCREEN02 F
 001 1994-10-06 14:10:28
 --
 COMMAND ==>
 F1=HELP F3=EXIT

U23110-J-Z135-1-7600 231

sample programs creating a graphics-based library manager

It is now possible to process one of the listed members. This can be done by marking the
member to be processed (with a “/” at the start of the line), tabbing to the “FILE” field, press-
ing the DUE (SEND) key, and entering an appropriate number in the pull-down menu to
specify how the member is to be processed (e.g. “4” to print).

The specified action is executed on pressing the DUE (SEND) key.

Here are some further options: the F3 key can be used to exit the library manager and to
return to the initial menu. Scrolling is done by entering a “+” or “-” in the “COMMAND” line
after the arrow. A Help panel can be displayed by pressing the F1 key.

 File
 --
 : 4 1. Delete : R A R Y M A N A G E R
 : 2. Edit : ---
 : 3. Copy : From: 1 Total: 86
 : 4. Print : To : 6 More : +
 : 5. Select element : Type
 : 6. Add element : Date Time
 : 9. Return to main menu : --
 :..........................: F
 *UP-LIM 1994-10-06 14:11:07
 / PHKEY F
 001 1994-10-06 14:17:57
 SCREEN01 F
 001 1994-10-06 14:10:19
 SCREEN02 F
 001 1994-10-06 14:10:28
 --
 COMMAND ==>
 F1=HELP F3=EXIT

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U23110-J-Z135-1-7600 233

7 Appendix

7.1 Overview of return codes

The primary value of the return code in DMCOMM is a decimal number with the following
structure: gffnnn, where g indicates the error type, ff indicates the function group, and nnn
the error number.

The messages are derived from the return code and have the following format:
IDHxnnn (x and nnn are explained above).

Error type Meaning

0 No error

1 Error/Warning (error flag possible)

2 Error (error flag not possible)

3 Fatal error (e.g. ABORT command)

Function
group

Meaning Fourth character of the
message code (x)

00 DM command (CANCEL/EXIT)

01 General error Z

02 Syntax check A

03 DISPLAY service D

04 Other services U

05 DMOPEN , B

06 SDF-P interface (FHS-PRIV) P

07 Variable services V

08 Reserved O

09 DOORS C

234 U23110-J-Z135-1-7600

List of message Appendix

7.2 List of messages

The messages listed below have the following format:

Message ID (decimal number)
Message text.

IDHA001 (102001)
The application has provided a buffer length greater than allowed. Please
contact the developer of the application program

IDHA002 (102002)
A null byte has been detected inside the statement in the operand area or
inside a substituted variable. Please contact the developer of your applica-
tion program.

IDHA003 (102003)
An incorrect variable name syntax has been detected. Please contact the
developer of your application program.

IDHA004 (102004)
The statement is larger than allowed after substitution of all variables (max-
imum 2048 characters). Please contact the developer of your application
program.

IDHA005 (102005)
Incorrect statement in operand area. Please contact the developer of your
application program.

IDHA006 (102006)
The statement in the operand area is empty. Please contact the developer
of your application program.

IDHA007 (102007)
An operand has been specified more than once. Please contact the devel-
oper of your application program.

IDHA008 (102008)
A left parenthesis is expected but not found. Please contact the developer
of your application program.

IDHA009 (102009)
A right parenthesis is expected but not found. Please contact the developer
of your application program.

U23110-J-Z135-1-7600 235

Appendix List of message

IDHA010 (102010)
An invalid dialog variable name syntax has been detected. Please contact
the developer of your application program.

IDHA011 (102011)
The character “*” is not allowed here as index. Please contact the developer
of your application program.

IDHA012 (102012)
The ROW operand has a value out of range [-43..43]. Please contact the
developer of your application program.

IDHA013 (102013)
The COLUMN operand has a value out of range [-132..132]. Please contact
the developer of your application program.

IDHA014 (102014)
An unknown operand has been detected. Please contact the developer of
your application program.

IDHA015 (102015)
No variable name has been detected where at least one is expected.
Please contact the developer of your application program.

IDHA016 (102016)
An unexpected left parenthesis has been detected. Please contact the
developer of your application program.

IDHA017 (102017)
An unknown value has been detected. Please contact the developer of your
application program.

IDHA018 (102018)
Two exclusive values have been detected or one value has been specified
twice. Please contact the developer of your application program.

IDHA020 (102020)
The operand DISPLAY has not been detected. Please contact the develop-
er of your application program.

IDHA021 (102021)
The Coded character set name syntax is incorrect. Please contact the
developer of your application program.

IDHA022 (102022)
No operand has been detected where at least one was expected. Please
contact the developer of your application program.

236 U23110-J-Z135-1-7600

List of message Appendix

IDHA023 (102023)
The PANEL name syntax is incorrect. Please contact the developer of your
application program.

IDHA024 (102024)
The message number syntax in the MSG operand is incorrect. Please
contact the developer of your application program.

IDHA025 (102025)
The operand MSGLOC has been detected but MSG has not been specified.
Please contact the developer of your application program.

IDHA026 (102026)
The syntax of the MSGLOC operand is not correct. Please contact the
developer of your application program.

IDHA027 (102027)
The syntax of the CURSOR operand is not correct. Please contact the
developer of your application program.

IDHA028 (102028)
The operand CSRPOS has been detected but CURSOR has not been
specified. Please contact the developer of your application program.

IDHA029 (102029)
The CSRPOS operand is not a valid integer. Please contact the developer
of your application program.

IDHA030 (102030)
The CSRPOS operand is out of the range [1..32767]. Please contact the
developer of your application program.

IDHA031 (102031)
A profile has been specified but the INIT operand has not been detected yet.
Please contact the developer of your application program.

IDHA032 (102032)
The profile name syntax is incorrect. Please contact the developer of your
application program.

IDHA033 (102033)
At least one FORMAT value is incorrect. Please contact the developer of
your application program.

U23110-J-Z135-1-7600 237

Appendix List of message

IDHA034 (102034)
There is more than one FORMAT value but their total does not correspond
to the total of variables specified. Please contact the developer of your
application program.

IDHA035 (102035)
When the FORMAT operand has the value “*” (filler), the corresponding
variable must also have the value “*” (filler). Please contact the developer
of your application program.

IDHA036 (102036)
The value for the DIM operand is not an integer. Please contact the devel-
oper of your application program.

IDHA037 (102037)
The DIM operand value is not in the range [1..32767]. Please contact the
developer of your application program.

IDHA038 (102038)
Extra characters have been found at the end of the statement. Please
contact the developer of your application program.

IDHA039 (102039)
An index is not allowed in the variable names for this statement. Please con-
tact the developer of your application program.

IDHA040 (1020400)
The “*” character is not allowed as index in the variables name for this
statement. Please contact the developer of your application program.

IDHA041 (102041)
The internal table for memory management is full. Please contact the devel-
oper of your application program.

IDHA042 (102042)
The statement in the operand area requires a call via the ISPCI2 entry point.
Please contact the developer of your application program.

IDHA043 (102043)
The dialog variable specified for string replacement in the statement in the
operand area does not exist. Please contact the developer of your applica-
tion program.

IDHA044 (102044)
The FORMAT has the value “*” (filler) but you are not currently defining a
list. Please contact the developer of your application program.

238 U23110-J-Z135-1-7600

List of message Appendix

IDHA045 (102045)
No FORMAT has been specified. Please contact the developer of your
application program.

IDHA046 (102046)
An invalid SDF-P variable name syntax has been detected. Please contact
the developer of your application program.

IDHA047 (102047)
The application has provided a buffer length that is negative or equal to 0.
Please contact the developer of the application program

IDHA048 (102048)
A variable index is not allowed in an SDF-P variable name. Please contact
the developer of the application program

IDHA049 (102049)
No variable substitution is allowed in the DMOPEN command. Please
contact the developer of the application program

IDHD000 No error.

IDHD004 No error. The command CANCEL was specified.

IDHD008 No error. The command EXIT was specified.

IDHD021 (103021)
The DISPLAY service was specified without the PANEL operand to redis-
play the previous screen. However, no previous screen that can be
displayed exists.

IDHD022 (103022)
Internal error. Diagnosis: the internal field list is corrupted. Please inform
your system administrator.

IDHD023 (103023)
Internal error. Diagnosis: the created screen message contains a position
located after the last screen line. Please inform your system administrator.

IDHD024 (103024)
Internal error. Diagnosis: backward positioning in the internal field list.
Please inform your system administrator.

IDHD025 (103025)
Internal error. Diagnosis: backward positioning in the created screen
message. Please inform your system administrator.

U23110-J-Z135-1-7600 239

Appendix List of message

IDHD026 (103026)
Internal error. Diagnosis: wrong level in stack. Please inform your system
administrator.

IDHD027 (103027)
The format &SYS-PAR0 is defined as a box but no background format
presently exists.

IDHD028 (103028)
A box should be displayed, but the format &SYS-PAR0 is not defined as a
box.

IDHD029 (103029)
Internal error. Diagnosis: all implicit boxes are not closed before returning
to the application. Please inform your system administrator.

IDHD030 (103030)
Error &SYS-PAR7 when displaying a message. The error occurred during
error processing.

IDHD031 (103031)
Error in error processing. Error “&SYS-PAR7” during data preparation.

IDHD032 (103032)
When calling the DISPLAY service with the operand “LOCK“ or “NODIS-
PLAY”, an action or an FHS-DM message was requested because of
checks. MSGID=&SYS-PAR7, PAR1=&SYS-PAR1, PAR2=&SYS-PAR2,
PAR3=&SYS-PAR3.

IDHD033 (103033)
The field name &SYS-PAR1 was specified in a previous ATTR call, but the
format &SYS-PAR0 does not contain any field with this name.

IDHD034 (103034)
Internal error. Diagnosis: wrong input in ATTR control block. Please inform
your system administrator.

IDHD035 (103035)
The internal service &SYS-PAR2 gives a return code &SYS-PAR1.

IDHD036 (103036)
Some dynamic field attributes should be modified during the display of the
format &SYS-PAR0. The attributes for the field &SYS-PAR1 are not al-
lowed. Please inform the application developer.

IDHD037 (103037)
Return code &SYS-PAR3 when loading the format &SYS-PAR1.

240 U23110-J-Z135-1-7600

List of message Appendix

IDHD038 (103038)
Format &SYS-PAR1 cannot be found.

IDHD042 (203042)
Format &SYS-PAR0 should be displayed. Return code “&SYS-PAR1“
returned by the WRTRD call.

IDHD044 (103044)
Warning. Error when loading the character set format &SYS-PAR9. The for-
mat does not exist or is not a character set format. The character set is not
loaded.

IDHD070 (103070)
Internal return code. The message IDHF186, “Syntax error in SETP com-
mand” should be displayed.

IDHD071 (103071)
Internal return code. The message IDHF184, “Syntax error in PANELID
command“ should be displayed.

IDHD072 (103072)
Internal return code. The message IDHF185, “Syntax error in KEYAREA
command” should be displayed.

IDHD075 (103075)
Internal return code. The message IDHF192, “Error in single choice input
field“ should be displayed.

IDHD076 (103076)
Internal return code. The message IDHF094, “Error in multiple choice input
field” should be displayed.

IDHD078 (103078)
Internal return code. The message IDHF198, “Index not found” should be
displayed.

IDHD079 (103079)
Internal return code. The message IDHF188, “Help not available” should be
displayed.

IDHD080 (103080)
Internal return code. The message IDHF191, “Help not found” should be
displayed.

IDHD081 (103081)
Internal return code. The message IDHF180, “Wrong command” should be
displayed.

U23110-J-Z135-1-7600 241

Appendix List of message

IDHD082 (103082)
Internal return code. The message IDHF193, “Wrong cursor position in
menu bar” should be displayed.

IDHD083 (103083)
Internal return code. The message IDHF194, “Wrong command in menu
bar” should be displayed.

IDHD084 (103084)
Internal return code. The message IDHF187, “Wrong scroll command”
should be displayed.

IDHD090 (103090)
Internal error. Diagnosis: the image stack is corrupted. There is no explicit
image. Please inform your system administrator.

IDHD099 (103099)
The format &SYS-PAR1 is corrupted. Please create this format again.
Diagnosis-reason: &SYS-PAR4 wrong or missing.

IDHD120 (103120)
The version of format &SYS-PAR1 cannot be processed. Please inform the
application developer.

IDHD121 (103121)
The format &SYS-PAR1 is corrupted. Inconsistency between the specified
and the actual number of lines in the mask. Please create the format again.

IDHD122 (103122)
During the processing of the format &SYS-PAR1, an overflow of the internal
table occurred (&SYS-PAR4). A format with fewer fields should be used.

IDHD123 (103123)
The format &SYS-PAR1 is corrupted. Please create the format again.
Information for diagnosis: wrong type in MDBE11.

IDHD124 (103124)
The format &SYS-PAR1 is corrupted. Please create the format again.
Information for diagnosis: wrong FDB chain for pulldown menu.

IDHD125 (103125)
Warning! The format &SYS-PAR1 contains fields with no name. Entered
data is ignored for these fields.

IDHD126 (103126)
In the format &SYS-PAR1 the command input field or a choice input field is
a protected field (field name: &SYS-PAR2). Please correct the format.

242 U23110-J-Z135-1-7600

List of message Appendix

IDHD127 (103127)
The format &SYS-PAR1 is corrupted. Information for diagnosis: the work
area of the mask is too small.

IDHD128 (103128)
The format &SYS-PAR1 is corrupted. Please create the format again.
Information for diagnosis: variable field in help format.

IDHD129 (103129)
The format &SYS-PAR0 is corrupted. Diagnosis: for a list, the information
“number of line/column” is missing. Please create the format again.

IDHD130 (103130)
The format &SYS-PAR1 is corrupted. Diagnosis: inconsistency between
MDBE7 and the MDBE chain. Please create the format again.

IDHD131 (103131)
Internal error. Diagnosis: NULL or NULL-1 as format address in stack.
Please inform your system administrator.

IDHD132 (103132)
The format &SYS-PAR0 is corrupted. Please create the format again.
Diagnosis: at least one line is longer than the format.

IDHD133 (103133)
An image with a box (or with a pulldown menu) must be created with more
than seven character sets. (Format: &SYS-PAR0)

IDHD201 (103201)
The format &SYS-PAR0 is corrupted. Please create the format again. Diag-
nosis: an index for an edit rule is defined in FDB, but there is no MDBE2.

IDHD202 (103202)
The format &SYS-PAR0 is corrupted. Please create the format again.
Diagnosis: requested edit- or check rule is missing in MDBE2.

IDHD203 (103203)
Internal return code for processing error in format &SYS-PAR0. The unex-
pected value “&SYS-PAR2” was specified in the field &SYS-PAR1. This
message is normally replaced by a more explicit one.

IDHD204 (103204)
The format &SYS-PAR0 is wrong. For the field &SYS-PAR1, the compari-
son value used for the check of value does not satisfy the preparation rule.
Value: “&SYS-PAR2”, EDIT-RC=&SYS-PAR3 (see help)!

U23110-J-Z135-1-7600 243

Appendix List of message

IDHD205 (103205)
The format &SYS-PAR0 cannot be displayed because the value of the dia-
log variable “&SYS-PAR1” does not satisfy the requested check. Value:
“&SYS-PAR2”, EDIT-RC=&SYS-PAR3 (see help). Please inform the appli-
cation developer.

IDHD206 (103206)
The format &SYS-PAR0 is corrupted. Please create the format again.
Diagnosis: error in MDBE2 for field &SYS-PAR1.

IDHD208 (103208)
The CCS-name &SYS-PAR3 is used in the format &SYS-PAR0 but is un-
known in this system.

IDHD209 (103209)
Return code &SYS-PAR3 when calling XHCS for processing format
&SYS-PAR0.

IDHD210 (103210)
The format &SYS-PAR0 is corrupted. Please create the format again.
Diagnosis: error in MDBE11.

IDHD211 (103211)
XHCS not available for the output processing of format &SYS-PAR0
(RC = &SYS-PAR3).

IDHD212 (103212)
Error &SYS-PAR3 when attempting to write the value “&SYS-PAR2” in the
dialog variable &SYS-PAR1.

IDHD213 (103213)
Return code &SYS-PAR3 when reading the dialog variable &SYS-PAR1 in
format &SYS-PAR0.

IDHD214 (003214)
Value of a dialog variable truncated for an output field of format
&SYS-PAR0.

IDHD215 (003215)
CCS name of format &SYS-PAR0 is ignored.

IDHD217 (103217)
Internal error. Diagnosis: In format &SYS-PAR0, the FDB for the field &SYS-
PAR1 contains wrong information. Please inform your system administrator.

244 U23110-J-Z135-1-7600

List of message Appendix

IDHD218 (103218)
The specified first line to be displayed in the list does not match the speci-
fied &SYS-PAR4. Index of first line: &SYS-PAR5 Index of &SYS-PAR4:
&SYS-PAR7

IDHD219 (103219)
Internal error. Diagnosis: wrong internal image for a list (error in list header).
Please inform your system administrator.

IDHD220 (103220)
Internal error. Diagnosis: wrong internal image for a list (error when scroll-
ing). Please inform your system administrator.

IDHD221 (103221)
The format &SYS-PAR0 contains a list that was shortened since its last
display (last displayed line: &SYS-PAR5, present list end: &SYS-PAR7)
(See also help on message)

IDHD222 (103222)
Internal error. Diagnosis: wrong image stack level or deleted format when
writing dialog variables. Please inform your system administrator.

IDHD223 (103223)
The control variable &SYS-PAR1 is negative or too large. Format:
“&SYS-PAR0”.

IDHD224 (103224)
The format &SYS-PAR0 is wrong. The model line for a list does not contain
any variable field. Please correct the format.

IDHD225 (103225)
Internal error. Diagnosis: the internal service IDHHLST was called with
wrong parameters. Please inform your system administrator.

IDHD226 (103226)
Internal error. Diagnosis: wrong value for SCROLL lines in CPXCA. Please
inform your system administrator.

IDHD227 (103227)
Internal error. Diagnosis: wrong value for SCROLL direction in CPXCA.
Please inform your system administrator.

IDHD228 (103228)
Warning. Error when writing the global mark variable of the format “&SYS-
PAR0”. The application did not receive information on the marked fields.

U23110-J-Z135-1-7600 245

Appendix List of message

IDHD229 (103229)
Warning. The global mark variable of the format “&SYS-PAR0” is not cor-
rectly defined. The application did not receive information on the marked
fields.

IDHD230 (103230)
Internal error. Diagnosis: wrong variable length (<0> or maximum) when
reading the dialogue variable &SYS-PAR1. Please inform your system ad-
ministrator.

IDHD231 (103231)
Wrong number of elements in dialogue variable array (internal return code
= &SYS-PAR3).

IDHD232 (103232)
Warning. Value of dialogue variable &SYS-PAR1 truncated for output.

IDHD233 (103233)
Internal error. Diagnosis: attempt to write after list end.

IDHD234 (103234)
The format &SYS-PAR0 is corrupted. Diagnosis: the format contains FDBs
with wrong line or column number. Please correct the format or inform your
system administrator.

IDHD241 (103241)
Internal error. Diagnosis: IDHRKEY wrong function. Please inform your sys-
tem administrator.

IDHD242 (103242)
Internal error. Diagnosis: IDHRKEY no keylist name specified. Please in-
form your system administrator.

IDHD243 (103243)
Internal error. Diagnosis: IDHRKEY wrong key number. Please inform your
system administrator.

IDHD244 (103244)
Internal error. Diagnosis: IDHRKEY wrong key description. Please inform
your system administrator.

IDHD246 (103246)
Internal RC. No entry for the key in the key description.

IDHD249 (103249)
The format &SYS-PAR9 was created as a partial format. Partial formats are
not supported by FHS-DM. Please correct the format.

246 U23110-J-Z135-1-7600

List of message Appendix

IDHD250 (103250)
The standard format &SYS-PAR9 is corrupted. Diagnosis: error because of
&SYS-PAR3. Please create the format again.

IDHD251 (103251)
Internal error. Diagnosis: IDHRKEY error in error processing (&SYS-PAR9)
Please inform your system administrator.

IDHD252 (103252)
The format &SYS-PAR0 cannot be displayed because the standard format
for the keylist IDHKEYA cannot be loaded. Please inform the developer of
the application.

IDHD253 (103253)
Internal error. Diagnosis: IDHRKEY- the box type stored in the STE is un-
known. Please inform your system administrator.

IDHD271 (103271)
The format &SYS-PAR9 should be displayed. The CCSNAME &SYS-PAR4
is different from the CCSNAME of the screen image (&SYS-PAR5). Please
inform the developer of the application.

IDHD272 (103272)
Internal error. Diagnosis: the load service did not return a correct module
name. Please inform your system administrator.

IDHD273 (103273)
Internal error. Diagnosis: wrong parameter to load service. Please inform
your system administrator.

IDHD275 (103275)
The format &SYS-PAR9 was replaced during the display by a new version
(&SYS-PAR4-> &SYS-PAR5).

IDHD276 (103276)
Unknown device group in format &SYS-PAR9. Please create the format
again.

IDHD277 (103277)
The format &SYS-PAR9 cannot be displayed on this terminal because it
was created with a device group that does not contain this terminal.

IDHD278 (103278)
The format &SYS-PAR9 cannot be processed with the current FHS-DM. Di-
agnosis: wrong version in MDBE7 Please inform the developer of the appli-
cation.

U23110-J-Z135-1-7600 247

Appendix List of message

IDHD279 (103279)
The format &SYS-PAR9 should be used as a map description format. The
format found has the type “&SYS-PAR4” (see help) and does not match the
expected type. Please inform the developer of the application.

IDHD280 (103280)
The format &SYS-PAR9 should be used as a map layout description. The
format found has the type “&SYS-PAR4” (see help) and does not match the
expected type. Please inform the developer of the application.

IDHD281 (103281)
The format &SYS-PAR9 should be used as a map layout (DE, without help).
The format found has the type “&SYS-PAR4” (see help) and does not match
the expected type. Please inform the developer of the application.

IDHD282 (103282)
The format &SYS-PAR9 should be used as a help format. The format found
has the type “&SYS-PAR4” (see help) and does not match the expected
type. Please inform the developer of the application.

IDHD283 (103283)
The format &SYS-PAR9 should be used as a keylist. The format found has
the type “&SYS-PAR4” (see help) and does not match the expected type.
Please inform the developer of the application.

IDHD284 (103284)
The format &SYS-PAR9 should be used as a message member. The format
found has the type “&SYS-PAR4” (see help) and does not match the expect-
ed type. Please inform the developer of the application.

IDHD285 (103285)
The format &SYS-PAR9 should be used as an ICE character set format.
The format found has the type “&SYS-PAR4” (see help) and does not match
the expected type. Please inform the developer of the application.

IDHD286 (103286)
The format &SYS-PAR9 should be used as a border description format. The
format found has the type “&SYS-PAR4” (see help) and does not match the
expected type. Please inform the developer of the application.

IDHD301 (103301)
A call to ADDPOP function with the POPLOC(<name>) operand is made
but there is no background image.

248 U23110-J-Z135-1-7600

List of message Appendix

IDHD302 (103302)
A field name is specified in operand &SYS-PAR2. The format &SYS-PAR0
does not contain any field with this name.

IDHD303 (103303)
The name &SYS-PAR1 in operand &SYS-PAR2 is not found in format
&SYS-PAR0.

IDHD304 (103304)
A box level should be removed with a REMPOP (without ALL operand) but
no box exists. Note: maybe the box has been removed because of a previ-
ous erroneous call to DISPLAY service.

IDHD305 (103305)
Internal error. Diagnosis: DMOPEN error. Please inform your system ad-
ministrator.

IDHD306 (103306)
Internal error. Diagnosis: SCTCA not found (SeCTion Communication Ar-
ea). Please inform your system administrator.

IDHD307 (103307)
Call to ADDPOP function in a wrong sequence (e.g. two ADDPOP in se-
quence or ADDPOP with POPLOC without previous DISPLAY).

IDHD308 (103308)
Call to REMPOP function in a wrong sequence (e.g. REMPOP after
ADDPOP without DISPLAY in between).

IDHD309 (103309)
A call “CONTROL DISPLAY RESTORE” was made, but no saved image
exists.

IDHD311 (103311)
Internal error. Diagnosis: error in cursor positioning after list processing.
Please inform your system administrator.

IDHD401 (103401)
Warning. Error in message processing. A substitute message was dis-
played.

IDHD411 (103411)
The position of the box &SYS-PAR1 was specified by the application. The
box cannot be displayed at this position.

U23110-J-Z135-1-7600 249

Appendix List of message

IDHD412 (103412)
The box &SYS-PAR1 is larger than the screen format.

IDHD413 (103413)
Internal error. Diagnosis: no MSGB found when creating a message box.
Please contact your system administrator.

IDHD414 (103414)
Internal error. Diagnosis: internal name table does not exist. Please contact
your system administrator.

IDHD415 (103415)
Internal error. Diagnosis: name not found. Please contact your system ad-
ministrator.

IDHD501 (103501)
Implementation restriction. Attempt to dynamically modify the attributes of
too many fields.

IDHD502 (103502)
Implementation restriction. The length of field name whose attributes are to
be modified dynamically cannot be stored in the internal name table.

IDHD800 (103800)
RESHOW internal return code.

IDHD801 (103801)
Input from terminal cannot be processed. Repeating the input was not
successful. Please contact the application developer.

IDHD901 (103901)
Internal error. Diagnosis: CONTROL service called with a wrong control
block. Please contact your system administrator.

IDHD916 (103916)
Internal error. Diagnosis:. Please contact your system administrator.

IDHD917 (103917)
Internal error. Diagnosis: the display service was called with a wrong
opcode. Please contact your system administrator.

IDHD918 (103918)
Internal error. Diagnosis: memory not available. Please contact your system
administrator.

250 U23110-J-Z135-1-7600

List of message Appendix

IDHD919 (103919)
Implemention restriction. Overflow in internal stack. Please inform the
application developer.

IDHD920 (103920)
Internal error. Diagnosis:. Please contact your system administrator.

IDHD921 (103921)
Internal error. Diagnosis: memory overflow in &SYS-PAR4. Please contact
your system administrator.

IDHD999 (103999)
Error in error processing. Processing stops. Please inform the application
developer.

IDHF000 Error in error processing

IDHF001 The message with the message number &SYS-PAR1 should be displayed.
The message cannot be found in the used library element. Please inform
the application developer. Continue with ENTER.

IDHF002 The message with the message number &SYS-PAR1 should be displayed.
The message number is syntactically wrong. Please inform the application
developer. Continue with ENTER.

IDHF003 The message with the message number &SYS-PAR1 should be displayed.
The library element containing this message cannot be loaded. Please
inform the application developer. Continue with ENTER.

IDHF004 The specified TOPINDEX variable (&SYS-PAR5) and the index specified in
CURPOS (&SYS_PAR7) are inconsistent. Please inform the application
developer. Continue with ENTER.

IDHF005 Error during explicit action in display service. Internal return code: &SYS-
PAR6, MSGID: &SYS-PAR5. Please inform the application developer. Con-
tinue with ENTER.

IDHF006 Error during implicit action in display service. Internal return code: &SYS-
PAR6. Please inform the application developer. Continue with ENTER.

IDHF007 Warning! Return code &SYS-PAR3 when reading the &SYS-PAR1 control
variable for the choice field. The error is ignored.

IDHF010 Warning! The format &SYS-PAR0 contains fields that cannot be accessed
by the application (field without name). The first field is located in position
&SYS-PAR3! More information in help on message.

U23110-J-Z135-1-7600 251

Appendix List of message

IDHF011 No message available.

IDHF180 Unknown command was specified in help (or message box.

IDHF182 The SYS command is not allowed in this environment (SDF-P procedure).

IDHF184 The command PANELID contains a syntax error.

IDHF185 The command KEYAREA contains a syntax error.

IDHF186 The command SETP contains a syntax error.

IDHF187 The specified scroll command is not allowed.

IDHF188 No help available.

IDHF191 The help format &SYS-PAR1 does not exist or was not created as a help
format.

IDHF192 The specified value is not allowed for a choice. For this reason, no help can
be found. Please clear the entry field or specify a correct value before
requesting help.

IDHF193 The cursor is located in the menu bar but not in a menu title. Please position
the cursor on a menu title or outside the menu bar.

IDHF194 The command that you specified by using a function key is not allowed
when the cursor is located in the menu list.

IDHF198 The INDEX format &SYS-PAR1 does not exist.

IDHP001 (106001)
The control variable is not valid. Please contact the developer of the
application.

IDHP002 (106002)
The control variable SERVICE is not correct. application.

IDHP003 (106003)
The control variable RESOURCE is not valid. Please contact the developer
of the application.

IDHP004 (106004)
The control variable MESSAGE-ID is not valid. Please contact the develop-
er of the application.

IDHP005 (106005)
The control variable MESSAGE-FIELD is not valid. Please contact the
developer of the application.

252 U23110-J-Z135-1-7600

List of message Appendix

IDHP006 (106006)
The SDF-P name in the control variable MESSAGE-FIELD is not valid.
Please contact the developer of the application.

IDHP007 (106007)
The control variable MSG-FIELD-IND is not valid. Please contact the devel-
oper of the application.

IDHP008 (106008)
The control variable CURSOR-OUTPUT is not valid. Please contact the
developer of the application.

IDHP009 (106009)
The SDF-P name in the control variable CURSOR-OUTPUT is not valid.
Please contact the developer of the application.

IDHP010 (106010)
The control variable CURSOR-OUTPUT-INDEX is not valid. Please contact
the developer of the application.

IDHP011 (106011)
The control variable CURSOR-OUTPUT-POS is not valid. Please contact
the developer of the application.

IDHP012 (106012)
The control variable LOCK is not valid. Please contact the developer of the
application.

IDHP013 (106013)
The control variable ALARM is not valid. Please contact the developer of
the application.

IDHP014 (106014)
The control variable AUTOTAB is not valid. Please contact the developer of
the application.

IDHP015 (106015)
The control variable MANDATORY is not valid. Please contact the develop-
er of the application.

IDHP016 (106016)
The control variable HARDCOPY is not valid. Please contact the developer
of the application.

IDHP017 (106017)
The control variable ROW is not valid. Please contact the developer of the
application.

U23110-J-Z135-1-7600 253

Appendix List of message

IDHP018 (106018)
The control variable COLUMN is not valid. Please contact the developer of
the application.

IDHP019 (106019)
The control variable POP-LOCATION is not valid. Please contact the devel-
oper of the application.

IDHP020 (106020)
The SDF-P name in the control variable POP-LOCATION is not valid.
Please contact the developer of the application.

IDHP021 (106021)
The control variable POP-LOC-IND is not valid. Please contact the devel-
oper of the application.

IDHP022 (106022)
The control variable ATTR.FIELD is not valid. Please contact the developer
of the application.

IDHP023 (106023)
The control variable ATTR.FIELD-INDEX is not valid. Please contact the
developer of the application.

IDHP024 (106024)
The control variable ATTR.TYPE is not valid. Please contact the developer
of the application.

IDHP025 (106025)
The control variable ATTR.HILITE is not valid. Please contact the developer
of the application.

IDHP026 (106026)
The control variable ATTR.INTENSITY is not valid. Please contact the
developer of the application.

IDHP027 (106027)
The control variable ATTR.COLOR is not valid. application.

IDHP028 (106028)
The control variable ATTR.OUTPUT is not valid. Please contact the
developer of the application.

IDHP029 (106029)
The control variable REFRESH is not valid. Please contact the developer of
the application.

254 U23110-J-Z135-1-7600

List of message Appendix

IDHP030 (106030)
The control variable ACK is not valid. Please contact the developer of the
application.

IDHP031 (106031)
The FHSTABLE is not valid due to an internal error. Please contact your
system administrator.

IDHP032 (106032)
The library in the server info parameter is not correct. Please modify your
ASSIGN-COMMAND.

IDHP033 (106033)
The information in the server info parameter is not correct. Please modify
your ASSIGN-COMMAND.

IDHP034 (106034)
The control variable ATTR is not a list. Please contact the developer of the
application.

IDHT000 No error.

IDHT009 Mandatory input in this field.

IDHT010 This field contains at least one wrong character.

IDHT011 The specified value is lower than allowed. The limit values are:
“&SYS-PAR3”

IDHT012 The specified value is greater than allowed. The limit values are:
“&SYS-PAR3”

IDHT013 Only digits or a sign as last character are allowed. The sign is not
mandatory.

IDHT014 Only the following values are allowed for this field: “&SYS-PAR3”

IDHT015 The following values are not allowed for this field: “&SYS-PAR8”

IDHT017 The specified character string contains at least one unallowed character.
Only the following characters are allowed in this field: “&SYS-PAR3”

IDHT018 The specified character string contains at least one unallowed character.
The following characters are not allowed in this field: “&SYS-PAR3”

IDHT020 This field does not contain enough relevant characters.

IDHT030 Error in date or time (input too short or wrong separator).

U23110-J-Z135-1-7600 255

Appendix List of message

IDHT031 The specified date is outside the allowed range (before 1582-10-15 or
after 2099-12-31).

IDHT032 Wrong day in date.

IDHT033 Wrong month in date.

IDHT034 Wrong year in date.

IDHT035 The separator in date or time is wrong or missing. Expected separator:
“&SYS-PAR3”

IDHT037 Wrong hour in time.

IDHT038 Wrong minute in time.

IDHT039 Wrong second in time.

IDHT040 The specified value is too large. Please ensure that space for a decimal
separator, for a thousand separator or for a sign is reserved in the field.
Defined model: “&SYS-PAR3”

IDHT050 Too many decimal positions in arithmetical field. Defined model:
“&SYS-PAR3”

IDHT060 This arithmetical field cannot contain any sign.

IDHT061 More than one sign entered in an arithmetical field.

IDHT063 Only signs have been entered in an arithmetical field.

IDHT070 This arithmetical field cannot contain any separator. Defined model:
“&SYS-PAR3”

IDHT071 Error in digit grouping in an arithmetical field.

IDHT080 No decimal separator can be entered in this arithmetical field. Defined
model: “&SYS-PAR3”

IDHT090 Error in arithmetical field. Defined model: “&SYS-PAR3”

IDHT092 The requested choice is presently locked.

IDHT093 The entered value is not allowed for a choice.

IDHT094 Wrong character specified for a choice.. Correct character for choice:
“&SYS-PAR3”

IDHU001 (204001)
The DMCOMM is invalid. Please recall the function with a valid DMCOMM.

256 U23110-J-Z135-1-7600

List of message Appendix

IDHU002 (204002)
FHS doesn´t run with a VTSU-B version lower than 11.0. Please contact the
system administrator to install this version.

IDHU003 (204003)
FHS doesn´t run on a BS2000 version lower than 10.0. Please use another
version of BS2000.

IDHU004 (204004)
A problem occurs during initialisation of the run time system. Please contact
the system administrator.

IDHU005 (204005)
The number of DMOPEN is too high. Only 29 DMOPEN are possible.
Please modify your program.

IDHU006 (204006)
The address of the parameter list is not aligned on a full word. Please mod-
ify your program.

IDHU007 (204007)
The address of the length operand is not aligned on a full word. Please mod-
ify your program.

IDHU008 (204008)
The address of the value length operand is not aligned on a full word.
Please modify modify your program.

IDHU009 (004009)
FHS-DOORS is not available. There is no display. Please add the FHS-
DOORS module. (IDHIO).

IDHU010 (204010)
The DMCOMM is already closed. Please recall the function with a valid
DMCOMM.

IDHV001 (007001)
The profile element &SYS-PAR17 cannot be found in the library with
IDHPROF link name. An empty profile will be created.

IDHV002 (107002)
The profile element &SYS-PAR17 cannot be read from the library with
IDHPROF link name. Check the consistency of the profile in the library.

IDHV003 (107003)
The profile element &SYS-PAR17 cannot be written in the library with
IDHPROF link name. Check if the library and the element can be updated.

U23110-J-Z135-1-7600 257

Appendix List of message

IDHV011 (107011)
Internal error. ILAM initialization error &SYS-PAR12. Please contact your
system administration or maintenance.

IDHV012 (107012)
The library with the IDHPROF link name cannot be found. Check the link
name and the library.

IDHV031 (107031)
The variable &SYS-PAR13 is already defined as an explicit variable. It can-
not be defined again. Please contact the developer of the application
program.

IDHV032 (107032)
The variable &SYS-PAR13 has an invalid length for its format. Please con-
tact the developer of the application program.

IDHV101 (107101)
Conversion error for the variable &SYS-PAR13. Check the variable defini-
tion if possible. System diagnosis: internal conversion error from the type
&SYS-PAR14 into the type &SYS-PAR15, value &sys-par16 of length
&sys-par17 to length &sys-par18.

IDHV102 (107102)
The variable &SYS-PAR13 is an implicit variable. It cannot be an array.
Please contact the developer of the application program.

IDHV103 (107103)
The explicit variable &SYS-PAR13 is not an array. It cannot be read with the
specified index. Please contact the developer of the application program.

IDHV104 (107104) Internal error. Error during VAS processing. Vas return code
&SYS-PAR12 on calling the VAS &SYS-PAR11 function. Please contact
your system administration or maintenance.

IDHV106 (107106)
The system variable &SYS-PAR13 cannot be updated.

IDHV107 (107107)
Internal error. Invalid pool specification for variable access. Please contact
your system administration or maintenance.

IDHV111 (107111)
Read error for the variable &SYS-PAR13 which is read with an invalid VAS
user type. Please contact your system administration or maintenance.

258 U23110-J-Z135-1-7600

List of message Appendix

IDHV112 (107112)
Read error for the variable &SYS-PAR13 which is read in an invalid VAS
variable type. Please contact your system administration or maintenance.

IDHV113 (107113)
The function cannot be processed as the variable &SYS-PAR13 does not
exist. Please contact the developer of the application program.

IDHV114 (107114)
The function cannot be processed as the S variable &SYS-PAR13 does not
exist. Please contact the developer of the application program.

IDHV115 (107115)
Read error for the S variable &SYS-PAR13 which is read in an unsupported
S variable type (not string or integer). Please contact the developer of the
application program.

IDHV116 (107116)
Internal error. Invalid container. Only PROFILE, TASK or PROCEDURE are
supported. Please contact your system administration or maintenance.

IDHV117 (007117)
The dialog variable &SYS-PAR13 does not exist. Please contact the devel-
oper of the application program.

IDHV118 (007118)
The S variable &SYS-PAR13 does not exist. Please contact the developer
of the application program.

IDHV120 (007120)
The variable &SYS-PAR13 has a dimension of &SYS-PAR16. Access is not
possible with an index greater than this value. Please contact the developer
of the application program.

IDHV121 (007121)
Truncation during conversion of the variable &SYS-PAR13 from the
&SYS-PAR14 type into the &SYS-PAR15 type, value &SYS-PAR16 of
length &SYS-PAR17 to length &SYS-PAR18. Please contact the developer
of your application program.

IDHV126 (107126)
The S variable &SYS-PAR13 cannot be put. PUTVAR error &SYS-PAR15.
Please contact the developer of the application program.

U23110-J-Z135-1-7600 259

Appendix List of message

IDHV127 (107127)
The S variable &SYS-PAR13 cannot be got. GETVAR error &SYS-PAR15.
Please contact the developer of the application program.

IDHV131 (107131)
The variable &SYS-PAR13 can be displayed in a list only if the variable is
already generated as a list by SDF-P. Please contact the developer of the
application.

IDHV132 (107132)
The variable &SYS-PAR13 can be displayed as a simple variable only if the
variable is a simple S variable string or integer. Please contact the develop-
er of the application.

IDHV133 (107133)
Internal error. The variable &SYS-PAR13 is read with a variable type that is
not supported. Please contact your system administration or maintenance.

IDHV134 (107134)
The extension of a list of S variables is not supported by this version of FHS.
The concerned variable is &SYS-PAR13. Please contact the developer of
the application.

IDHZ001 (101001)
The format &SYS-PAR18 cannot be loaded. Check the format in the library
hierarchy. (Return code &SYS-PAR15 from BIND or $PBBND1)

IDHZ002 (001002)
The format &SYS-PAR18 cannot be unloaded. Check the format in the
library hierarchy. (Return code &SYS-PAR15 from UNBIND or $PBUNL1)

IDHZ003 (001003)
Internal warning. The format &SYS-PAR18 cannot be unloaded. It cannot
be found in the internal table.

IDHZ004 (101004)
Internal error. Invalid action requested from the loader service.

IDHZ005 (101005)
You have reached the maximum number of BLS contexts used simulta-
neously as one BLS context is associated with each FHS complex
(“DMOPEN INIT”). Please contact the developer of the application program.

IDHZ006 (101006)
Internal error. Error detected by the loader service. Return code
&SYS-PAR15 from ($)VSVI1 for the format &SYS-PAR18.

260 U23110-J-Z135-1-7600

List of message Appendix

IDHZ007 (101007)
The Format &SYS-PAR18 has been loaded correctly, but in the structure of
the format an error has been detected. Please check the format.

IDHZ011 (201011)
Additional memory cannot be requested. Return code &SYS-PAR18 from
system call &SYS-PAR15. You have already requested all your available
memory space. Check your addressing space size with your system admin-
istrator.

IDHZ012 (201012)
Additional memory cannot be requested. Return code &SYS-PAR18 from
system call &SYS-PAR15.

IDHZ013 (101013)
Internal error. No such memory has been requested with this id. Conse-
quently, it cannot be released.

IDHZ014 (101014)
Internal error. The memory manager has been called for an unknown
action.

IDHZ015 (101015)
Internal error. Error by error processing of memory manager. Return code
&SYS-PAR18 from system call &SYS-PAR15.

IDHZ016 (001016)
Error during release memory processing.

U23110-J-Z135-1-7600 261

Appendix Overview: system variables of the dialog manager

7.3 Overview: system variables of the dialog manager

All system variables are in string format. They are contained in different pools. The following
codes are used in the tables below:

F - Function pool
P - Profile pool
S - System pool (read-only).
C - Current value determined
I - Internal diagnostic information

General system variables

1) Key to the characters used in the formats described above:

Y Year
M Month (in date specifications)
D Day
H Hours
M Minutes (in time specifications)
S Seconds
iii Current day of year
b Blank

Name Pool Type Length Meaning

SYS-DATE C CHAR 12 Current date in the ISO format
YY-MM-DDiiib 1)

SYS-STDDATE C CHAR 14 Current date in the ISO4 format
YYYY-MM-DDiiib 1)

SYS-TIME C CHAR 5 Current time in 24-hour format: HH:MM 1)

SYS-STDTIME C CHAR 8 Current time in the 24 hour format with
seconds: HH:MM:SS (1)

SYS-DAY C CHAR 2 Day of the month (2 digits)

SYS-MONTH C CHAR 2 Month (2 digits)

SYS-YEAR C CHAR 2 Year (2 digits)

SYS-STDYEAR C CHAR 4 Year (2 digits)

262 U23110-J-Z135-1-7600

Overview: system variables of the dialog manager Appendix

System variables of the dialog manager

The profile variables are searched in the profile pool on a DMOPEN with INIT. If they are
not present, a default is generated. The variables are written back on a DMCLOSE for the
dialog complex. The content of these variables can only be changed by means of DM
system commands.

Name Pool Type Length Meaning

SYS-COMMAND F CHAR 255 Application command that can be processed by
the application program.

SYS-FHS-VER-
SION

S CHAR 6 Version of the dialog managers

SYS-P-KEYS-
SETTING

P CHAR 24 Define P-KEY assignments. The value can be
changed using the system command SETP

SYS-KEY-AREA P CHAR 1 Display mode for key assignments
- 0: Key assignments not shown (Default)
- 1: Key assignments shown.
 The value can be changed by using the system
command KEYAREA

SYS-PANEL-ID P CHAR 1 Display mode for format name and message ID
- 0: Format name and message ID not shown
- 1: Format name and message key shown
The value can be changed by using the system
command PANELID

U23110-J-Z135-1-7600 263

Appendix Overview: system variables of the dialog manager

The system variables in the following tables will have the specified values only on exiting
the displayed format.

Diagnostic variables of the dialog manager

The following information is stored in info variables when fields are checked. These entries
can be accessed in private messages, which can be defined using IFG.

SYS-PAR1 Name of the current field

SYS-PAR2 Content of the current field

SYS-PAR3 Additional information on edit errors: EDIT error number
Check for CCS name: CCS name

The names, ZPAR1, ZPAR2 and ZPAR3 have been mapped to SYS-PAR1, SYS-PAR2 and
SYS-PAR3 for compatibility with FHS-UTM. These names should no longer be used.

Name Pool Type Length Meaning

SYS-CURSOR-
FIELD

F CHAR 255 Name of the mask field containing the cursor or
’$lll#ccc’, if the cursor is on an unnamed field or
in a space between fields

SYS-CURSOR-IN-
DEX

F FIXEDS 2/4 Index of the list line of a displayed list contain-
ing the cursor. This value only applies if SYS-
CURSOR-FIELD contains the name of a list
field

SYS-CURSOR-
POS

F FIXEDS 2/4 Position of the cursor in the field named in SYS-
CURSOR-FIELD

SYS-CCS-NAME F CHAR 8 CCSNAME that was used by the DISPLAY
service to display the last format

Name Pool Type Length Meaning

SYS-PARxx I CHAR <80 xx = 0 - 20
 0 - 9: for diagnostics in display services
10 - 20: diagnostics in variable services
internal diagnostic information that is used in mes-
sages

SYS-PAR0 I CHAR 8 Name of the current explicit format

SYS-PAR9 I CHAR 8 Name of the active format

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U23110-J-Z135-1-7600 265

Glossary

ADDPOP

Generation of dialog boxes.

attribute

Characteristic relating to the display, editing or checking of a format or field. An attribute
is defined either during format generation using IFG (static attribute) or in the applica-
tion program by way of the global and field attributes (dynamic attributes).

basic format

Format output by the application and that can be overlaid by dialog boxes.

box

Abbreviation of dialog box; see relevant entry.

character set file

File containing the character sets generated using ICE.

control block

Memory area used to store formatting parameters and acknowledgments.

DE format

Format that can use the functions of the dialog extension. The attribute "DE format",
must be explicitly specified during generation with IFG.

dialog box

Square frame on the screen which contains a DE format.

266 U23110-J-Z135-1-7600

Glossary

dialog extension

Component of FHS which allows formats conforming to the Alpha Style Guide to be dis-
played on the screen. Dialog extension enables multilevel intermediate dialog, com-
mand input, extended input checks, and an application-specific help system and mes-
sages, amongst other things.

dialog variable

Dialog variables are used in data exchange between an application program, FHS-DM
and dialog elements. Dialog variables perform the function of the data transfer area.

differential output

Output of a format in which only those fields that have been changed by the application
program are output afresh on the data display terminal.

exclusion character

Character on the screen which indicates a locked selection of a selection field.

explicit box

Dialog box that is output by the application.

FHS-DM

Format Handling System - Dialog Manager

format

Logical data structure that describes a "form".

format application fiel

Library used to store the format definitions.

global help

Help for the objects of a DE format that consist of several components, such as single-
choice or multiple-choice selection fields.

U23110-J-Z135-1-7600 267

Glossary

help box

Dialog box containing help information; output by FHS.

implicit box

Dialog box output by FHS, e.g. for messages or help information.

input field

Field in which data for the application program is entered by the terminal operator.

KEY format

Format containing the assignment of function keys.

modal box

Dialog box that expects an entry from the user. The underlying box or format is inactive.

modeless box

Dialog box that does not expect direct user action. The underlying box or format re-
mains active.

output field

Field into which data is output by the application program.

REMPOP

Removes boxes; the previous background is displayed again.

screen restart

Fresh output of the most recent, completely formatted screen after an interruption.

S-variable

Variable for SDF-P.

text field

Field containing fixed text that is defined during format generation.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U23110-J-Z135-1-7600 269

Related publications
FHS - Format Handling System for UTM, TIAM, DCAM (TRANSDATA)

User Guide

IFG for FHS (TRANSDATA)

User Guide

ICE (TRANSDATA) Interactive Character Editor
User Guide

FHS-DOORS (SINIX, BS2000)

User Guide

SDF-P V2.0 (BS2000/OSD)

User Guide

RPG3 (BS2000)

RPG Compiler

User Guide

TIAM (TRANSDATA, BS2000)

User Guide

BS2000/OSD-BC V1.0

Executive Macros

User Guide

270 U23110-J-Z135-1-7600

Related publications

TRANSVIEW-NMA (PDN)

TRANSVIEW-NMAE (PDN)

Network Management and Measurement Data Compilation in PDN
(TRANSDATA, PDN)

Commands

User Guide

TRANSVIEW-NMA (PDN)

TRANSVIEW-NMAE (PDN)

Network Management and Measurement Data Compilation in PDN
(TRANSDATA, PDN)

Functions and Facilities

User Guide

Network Management in BS2000 (TRANSDATA)

User Guide

BS2000/OSD-BC V1.0

User Commands (SDF Format)

User Guide

COBOL85 (BS2000)

COBOL Compiler

User Guide

TRANSIT-CD (TRANSDATA)

User Guide

9749, 9750, 9752 Data Display Terminals (TRANSDATA)

Interface for Programmers

User Guide

U23110-J-Z135-1-7600 271

Related publications

BS2000 Data Communication System

Technical Description

Alpha Style Guide

Guidelines for the Design of Character-oriented User Interfaces

User Guide

Ordering manuals

The manuals listed above and the corresponding order numbers can be found in the
Siemens Nixdorf List of Publications, in which the ordering procedure is also explained. New
publications are described in the Druckschriften-Neuerscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name placed on
the appropriate mailing list. Please apply to your local office, where you can also order the
manuals.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U23110-J-Z135-1-7600 273

Index
A
ABORT 67
ACTIONS 29, 67
ADDPOP 96, 126
application commands 63
ASSEMBLER example 204
assignment of P keys to F keys 75
ASSIGN-STREAM 174
ATTR 96, 129

B
box

explicit 13
implicit 13, 17
modal 13
modeless 13

BS2000 commands 76

C
calling the list display 39
CCS name 25, 200
character set for frame 20
check for mandatory input 40
COBOL example 201
column title 32
command

area 12, 63
field 12
line 12
via function keys 64

command area
global help 90

commands
BS2000 76
scrolling 76

communication area 118

274 U23110-J-Z135-1-7600

Index

compatibility 171
components of the dialog manager 95
composite commands 64
concealed fields 14
CONTROL 97, 134
control services 96, 97
control variables 36
controlling the list display 36
copy dialog variables 162
creating a help box 19
cross-references 91
CSRPOS 39, 93
CURSOR 39, 93
CURSOR operand 39
cursor positioning 93

D
data conversions 150, 168

in the DISPLAY service 61
DE messages 84
default assignments for F keys 83
default key lists 78
definition of a list area 32
delete dialog variables in function pool 159
delete dialog variables in profile pool 161
dialog

complex 113
elements 95, 96
manager 95
services 95, 96
variable 98

dialog extension TIAM 95
dialog services

call 116
description 125

DISPLAY 96, 137
service 103

display
a format 137
a message 137
services 96

display services 178
DMCLOSE 97, 112, 142
DMOPEN 97, 112, 144

U23110-J-Z135-1-7600 275

Index

dynamic attributes
define 129

E
editing message text 85
end of data marker 32
entries

in boxes 14
error handling 121
example

ASSEMBLER 204
COBOL 201
creating a graphics-based library manager 219
FHS-DM as a subsystem 207
of a dialog application 114
of a parallel dialog application 115
using S procedures 214

execution of the DISPLAY service 137
EXIT 69
explicit box 13

remove 14
explicit dialog variable

define 152
explicit dialog variables 103
explicit message

create 84
explicit messages 84

output 87
extended help 70, 89
extended help on formats 89
EXTHELP 70, 89

F
FHS as output server 173
FHS return codes 186
FHS-DM as a subsystem 207
FHS-PRIV 200
field attributes 183
field-related help 89
field-related help box 19
format 5

name 12
title 12

frame characters 22

276 U23110-J-Z135-1-7600

Index

full format, FHS-DE 11
function key 63, 77
function pool 109

release 113

G
generating S variables 189
global help 90

H
HARDCOPY 70
HELP 71, 89, 90
help

for output field 89
global 90
on FHS commands 92
on format 89
on help system 93
on key assignments 92
on messages 90
panels 88
single-choice field 71
system 88

help box 19
help panels

default 91
HELPHELP 72, 93

I
ICE 20
IDHKEYA 79, 80, 83
IDHKEYE 81
IDHKEYF 80
IDHKEYH 81
IDHKEYI 83
IDHKEYK 82
IDHKEYM 82
IDHKEYN 82
IDHKEYS 79
IDHKHLP 92
IDHMBDR 22
IDHx 91
IFG 2

U23110-J-Z135-1-7600 277

Index

implicit box 13, 17
position 17
remove 14

implicit dialog variable 106
implicit messages 84, 86
INDEX 72, 91
INIT 112
input field

help 89
single-choice field 26

interactive character set generator 20
Interactive Format Generator 2
interface routine ISPCI 116
intermediate dialog 13
ISPCI 116

K
key assignment table (key list) 63, 77
key assignments 77

show 83
KEY formats 77
key list 63
key lists (key assignment tables) 77
KEYAREA 72, 83
KEYSHELP 73, 83, 92

L
layout and version 177
libraries

assign 170
list

area 32
display 32
field 32
line 32
title 32

M
menu bar 12, 29
menu titles 29
message 84

create 84
message area 12
message box 18

278 U23110-J-Z135-1-7600

Index

message code 84
message type 84
modal box 13
model line 32
modeless box 13
multi-layer intermediate dialog 13
multi-line records

in lists 34
multiple DMOPEN 113
multiple-choice field 25

global help 90

N
names

dialog variables 101
naming conventions

for list processing 187
nested DMOPEN 113
nested S procedures 191
NO AUTOTAB 89
NUMROW variable 36

O
operand area 122
output field

help 89
output locatio 180
output position of a message 84
outputting S variables 189

P
P key assignments 75
PANELID 73
partial format, FHS-DE 11
PCL printers 7
pool hierarchy 109
position of a dialog box

define 126
position of implicit boxes 17
positioning the cursor 93
procedure variable 98
processing options

define 134
profile pool 109

U23110-J-Z135-1-7600 279

Index

program structure 112
program variable 98

R
redisplay a mask 74
redisplay a message 74
remove

a dialog box 146
explicit box 14
implicit box 14

REMPOP 96, 146
RESHOW 74
RMSG 74
rules for dialog boxes 16

S
S variable 98

in FHS-TIAM programs 189
sample procedures for FHS in SDF-P 212
sample programs 201
screen contents

printing 70
screen width

dialog box 13
scrolling commands 76
SDF-P interface 173
SDF-P variable 98, 172
select

input field 26
selection fields 25
SERVER-INFORMATION 174
services 111
SETP 75
show key assignments 83
simulation of an F key

cancel 75
single-choice field 25

global help 90
single-line records

in lists 34
size of a help box 19
standard header 197
status area 12
structure of a message box 18

280 U23110-J-Z135-1-7600

Index

structure of DE format 11
SYS 76, 108
SYSFHS-CONTROL 176, 193
system commands 63
system variable 108

T
terminals 7
termination line 32
text fields 32
TOPINDEX

rules 37
variable 37

TRANSMIT-BY-STREAM 175
type

of message 84

U
update output 94
use of the communication area 119

V
validation of list fields 40
variable

pool 99, 109
services 98
substitution 123

variable services, general 96
VCOPY 96, 147
VCOPY service 106
VDEFINE 96, 152
VDEFINE service 103
VDELETE 96, 159
VERASE 96, 161
VGET 96, 162
VPUT 96, 164
VREPLACE 96, 166
VREPLACE service 106

W
work area 12
working with boxes 14

U23110-J-Z135-1-7600 281

Contents
1 Preface . 1
1.1 Target groups . 3
1.2 Summary of contents . 3

2 Introduction to FHS . 5

3 Introduction to the dialog extension . 11
3.1 Structure of DE formats for the FHS dialog manager . 11
3.2 Data exchange using dialog variables . 13
3.3 Dialog boxes . 13
3.3.1 Explicit boxes . 15
3.3.2 Implicit boxes . 17
3.3.3 Message boxes . 18
3.3.4 Help boxes . 19
3.3.5 Frame of a box . 20
3.4 Formats with CCS names . 25
3.5 Selection fields . 25
3.5.1 Single-choice field . 25
3.5.2 Multiple-choice field . 27
3.6 Menu bar and pull-down menus . 29
3.7 List processing . 32
3.8 Data editing and checking . 42
3.8.1 Code tables . 44
3.8.2 Data editing . 45
3.8.3 Input attributes . 49
3.8.4 Validation checks for the contents for mask fields . 50
3.9 Commands . 63
3.9.1 System commands of the dialog manager . 66

ABORT - Terminate application . 67
ACTIONS - Place cursor in menu bar . 67
CANCEL - Exit/terminate display . 68
EXIT - Terminate application segment . 69
EXTHELP - Request extended help . 70
HARDCOPY - Output screen contents to printer . 70
HELP - Request help . 71
HELPHELP - Request overview of the help system . 72

282 U23110-J-Z135-1-7600

Contents

INDEX - Display index of FHS-DM keywords . 72
KEYAREA - Activate/deactivate display of key assignments . 72
KEYSHELP - Help on key assignments . 73
PANELID - Toggle display of format name and message code 73
RESHOW - Redisplay a mask . 74
RMSG - Redisplay a message . 74
SETP - Assign P keys . 75
Scrolling commands . 76
SYS - Execute BS2000 commands . 76

3.10 Key lists . 77
3.11 Output of messages . 84
3.12 Help system . 88
3.12.1 Help that can be created by the application developer . 88
3.12.2 Help provided by FHS . 91
3.13 Cursor positioning . 93
3.14 Update output . 94

4 Program interface forTIAM application programs . 95
4.1 Variables of the dialog manager . 98
4.1.1 Dialog variables . 98
4.1.1.1 Explicit dialog variables . 103
4.1.1.2 Implicit dialog variables . 106
4.1.1.3 Rules for dialog variables . 107
4.1.1.4 System variables of the dialog manager . 108
4.1.1.5 Conventions for dialog variables in the model line (list processing) 108
4.2 Variable pool . 109
4.3 Program structure of a dialog application . 112
4.4 Calling dialog services . 116
4.4.1 ISPCI interface routine . 116
4.4.2 Communication area . 118
4.4.3 Error handling by the dialog manager . 121
4.4.4 Structure of the operand area . 122
4.4.5 Variable substitution in the operand area and in messages . 123
4.5 Description of dialog services . 125
4.5.1 ADDPOP - Define the position of a dialog box . 126
4.5.2 ATTR - Define dynamic attributes for mask fields . 129
4.5.3 CONTROL - Set operating modes . 134
4.5.4 DISPLAY - Display a format and/or a message . 137
4.5.5 DMCLOSE - Terminate use of dialog services . 142
4.5.6 DMOPEN - Begin use of dialog services . 144
4.5.7 REMPOP - Remove definition of a dialog box. . 146
4.5.8 VCOPY - Copy value of a dialog variable into application program 147
4.5.9 VDEFINE - Define explicit dialog variables . 152
4.5.10 VDELETE - Delete dialog variables in function pool . 159

U23110-J-Z135-1-7600 283

Contents

4.5.11 VERASE - Delete dialog variables in profile pool . 161
4.5.12 VGET - Copy variables from profile pool to function pool. 162
4.5.13 VPUT - Copy variables from function pool to profile pool or to the SDF-P

variable pool . 164
4.5.14 VREPLACE - Replace values of dialog variables in function pool 166
4.6 Assigning libraries . 170
4.7 Compatibility . 171
4.8 SDF-P variables in FHS-TIAM programs . 172

5 SDF-P interface . 173
5.1 FHS as an output server . 173
5.1.1 ASSIGN-STREAM . 174
5.1.2 TRANSMIT-BY-STREAM . 175
5.2 FHS services for SDF-P applications . 177
5.2.1 Layout and version . 177
5.2.2 Information on display services . 178
5.2.3 Specifications for the output location . 180
5.2.4 Information on field attributes (TU ATTR) . 183
5.2.5 Information on input . 186
5.2.6 FHS return codes . 186
5.3 Naming conventions for list processing . 187
5.4 Controlling FHS applications using S procedures . 189
5.4.1 Outputting S variables with FHS 8.1 . 189
5.4.2 Outputting and generating S variables in FHS-TIAM programs 189
5.4.3 Controlling FHS applications in nested S procedures . 191
5.5 SYSFHS-CONTROL - Structure for layout and initialization . 193
5.6 Differences between FHS-DM and FHS-PRIV . 200

6 Sample programs . 201
6.1 Calling FHS-DM as a subsystem . 207
6.2 Sample procedures for FHS in SDF-P . 212
6.2.1 Examples of working with FHS using S procedures . 214
6.3 Application example: creating a graphics-based library manager 219

7 Appendix . 233
7.1 Overview of return codes . 233
7.2 List of messages . 234
7.3 Overview: system variables of the dialog manager . 261

Glossary . 265

Related publications . 269

Index . 273

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U23110-J-Z135-1-7600 285

FHS V8.1A (BS2000/OSD, TRANSDATA)

Dialog Extension for TIAM and SDF-P

User Guide

Target group
Application developers
Contents
The manual describes the program interface for using the FHS dialog manager in TIAM and
SDF-P applications.

Edition: December 1994

File: FHS_DM.PDF

BS2000 is registered trademarks of Siemens Nixdorf Informationssyteme AG.

Copyright © Siemens Nixdorf Informationssysteme AG, 1997.

All rights, including rights of translation, reproduction by printing, copying or similar
methods, even of parts, are reserved.

Offenders will be liable for damages. All rights, including rights created by patent grant or
registration of a utility model or design, are reserved.

Delivery subject to availability; right of technical modifications reserved.

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Target groups
	Summary of contents

	Introduction to FHS
	Introduction to the dialog extension
	Structure of DE formats for the FHS dialog man...
	Data exchange using dialog variables
	Dialog boxes
	Explicit boxes
	Implicit boxes
	Message boxes
	Help boxes
	Frame of a box

	Formats with CCS names
	Selection fields
	Single-choice field
	Multiple-choice field

	Menu bar and pull-down menus
	List processing
	Data editing and checking
	Code tables
	Data editing
	Input attributes
	Validation checks for the contents for mask ...

	Commands
	System commands of the dialog manager
	ABORT - Terminate application
	ACTIONS - Place cursor in menu bar
	CANCEL - Exit/terminate display
	EXIT - Terminate application segment
	EXTHELP - Request extended help
	HARDCOPY - Output screen contents to printer
	HELP - Request help
	HELPHELP - Request overview of the help system
	INDEX - Display index of FHS-DM keywords
	KEYAREA - Activate/deactivate display of key assig...
	KEYSHELP - Help on key assignments
	PANELID - Toggle display of format name and messag...
	RESHOW - Redisplay a mask
	RMSG - Redisplay a message
	SETP - Assign P keys
	Scrolling commands
	SYS - Execute BS2000 commands

	Key lists
	Output of messages
	Help system
	Help that can be created by the application...
	Help provided by FHS

	Cursor positioning
	Update output

	Program interface for TIAM application programs
	Variables of the dialog manager
	Dialog variables
	Explicit dialog variables
	Implicit dialog variables
	Rules for dialog variables
	System variables of the dialog manager
	Conventions for dialog variables in the mo...

	Variable pool
	Program structure of a dialog application
	Calling dialog services
	ISPCI interface routine
	Communication area
	Error handling by the dialog manager
	Structure of the operand area
	Variable substitution in the operand area an...

	Description of dialog services
	ADDPOP - Define the position of a dialog box...
	ATTR - Define dynamic attributes for mask fi...
	CONTROL - Set operating modes
	DISPLAY - Display a format and/or a message
	DMCLOSE - Terminate use of dialog services
	DMOPEN - Begin use of dialog services
	REMPOP - Remove definition of a dialog box.
	VCOPY - Copy value of a dialog variable into...
	VDEFINE - Define explicit dialog variables
	VDELETE - Delete dialog variables in functi...
	VERASE - Delete dialog variables in profile...
	VGET - Copy variables from profile pool to ...
	VPUT - Copy variables from function pool to...
	VREPLACE - Replace values of dialog variabl...

	Assigning libraries
	Compatibility
	SDF-P variables in FHS-TIAM programs

	SDF-P interface
	FHS as an output server
	ASSIGN-STREAM
	TRANSMIT-BY-STREAM

	FHS services for SDF-P applications
	Layout and version
	Information on display services
	Specifications for the output location
	Information on field attributes (TU ATTR)
	Information on input
	FHS return codes

	Naming conventions for list processing
	Controlling FHS applications using S procedure...
	Outputting S variables with FHS 8.1
	Outputting and generating S variables in FHS...
	Controlling FHS applications in nested S pro...

	SYSFHS-CONTROL - Structure for layout and init...
	Differences between FHS-DM and FHS-PRIV

	Sample programs
	Calling FHS-DM as a subsystem
	Sample procedures for FHS in SDF-P
	Examples of working with FHS using S procedu...

	Application example: creating a graphics-based...

	Appendix
	Overview of return codes
	List of messages
	Overview: system variables of the dialog manag...

	Glossary
	Related publications
	Index
	A-C
	D
	E-F
	G-I
	K-M
	N-P
	R-S
	T-W

