English

Fujitsu Software BS2000

openNet Server V3.6

SOCKETS(BS2000) V2.7A

User Guide

Edition April 2015

1e8)
FUJITSU

Comments... Suggestions... Corrections...

The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN 1SO 9001:2008

To ensure a consistently high quality standard and
user-friendliness, this documentation was created to

meet the regulations of a quality management system which
complies with the requirements of the standard

DIN EN ISO 9001:2008.

cognitas. Gesellschaft fir Technik-Dokumentation mbH
www.coghitas.de

Copyright and Trademarks

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Contents

1.1
1.2
1.3
1.4
15
1.6

1.7

2.1
2.2

2.3

231
2.3.2
2.3.3

2.4
241
2.4.2
2421
2422
2.4.3

25

2.6
2.6.1

Preface o e e 9
Brief product description 9
Objectives and target groups of thismanual 9
Summary of contents 10
Changes since the last edition of themanual 12
Notational conventions 13
Compatibility of SOCKETS(BS2000) V2.7
with earlier versions e 14
License provisionso e 15
SOCKETS(BS2000) basiCs v v i i e e e e e e e s e e s 19
Network connection via the SOCKETS(BS2000) interface 20
Header files e 21
Sockettypes e e 22
Stream sockets (connection-oriented)o oL 22
Datagram sockets (connectionless) Lo oo 23
Raw sockets 23
Socket addressing e e 24
Using socket addresses e e e e 24
Addressing with an Internetaddress oo 24
sockaddr_in address structure of the AF_INET address family 25
sockaddr_in6 address structure of the AF_INET6 address family 26
sockaddr_iso address structure for the AF_ISO address family 28
Creatingasocket e e e 29
Assigninganametoasocket e 31
Assigning an address explicitly Lo 31

U41052-J-2125-9-76

Contents

2.6.2
2.6.3

2.7
27.1
2711
27.1.2
27.13
2714
2.7.2
2721
27.2.2

2.8

2.8.1
2.8.2
2.8.3

2.9
2.9.1
2.9.2

2.10
2.10.1
2.10.2

2.11
2111
2.11.2

3.1
3.2
3.3
3.4
3.5

4.1

Assigning addresses with wildcards (AF_INET, AF_INET6) 33
Direct address assignment in the domains AF_INET and AF_INET6 36
Communication in the AF_INET and AF_INET6domains 37
Connection-oriented communications in AF_INET and AF_INET6 37

Connectionrequest by theclient 37

Connection acceptance by theserver, 38

Data transfer with connection-oriented communications 39

Examples of connection-oriented client/server communications 40
Connectionless communications in AF_INET and AF_INET6 43

Data transfer with connectionless communications 43

Examples of connectionless communications 44
Communications inthe AF_ISOdomain 47
Connection request by theclient, 47
Connection acceptance by theserver. 48
Data transfer with connection-oriented communications 49
Terminating a connection and closingasocket 50
Terminating a connection in the AF_INET and AF_INET6 domains 50
Terminating a connection in the AF_ISOdomain 52
Multiplexing input/output L 53
Multiplexing input/output with the select() function 53
Multiplexing input/output with the soc_poll() function 57
Interaction of the SOCKETS interface functions 60
Interaction between functions for connection-oriented communications 60
Interaction between functions for connectionless communications 62
Address conversion with SOCKETS(BS2000) oo v .. 63
Converting host names to network addresses and viceversa 64
Converting protocol names to protocol numbers 66
Converting service names to port numbers and viceversa 67
Converting the byteorder L o 68
Example of address conversion L0 oo 69
Extended SOCKETS(BS2000) functions 71
Non-blocking sockets 72

U41052-J-2125-9-76

Contents

4.2
4.3
4.4

4.5
451
45.2

4.6
46.1
46.2

51
51.1
5.1.2

5.2
521
5.2.2

5.3
5.4

6.1

6.2
6.3

Multicast messages (AF_INET, AF_INET6) 73
Socket options L e e 75
Support of virtual hosts L 76
Handoff (move an accept socket) 77
General description L 77
Execution of the function 77
Raw sockets e 83
ICMP . 83
ICMPV6 o 84
Client/server model with SOCKETS(BS2000) 85
Connection-oriented server e 86
Connection-oriented server for AF_INET/AF INET6 86
Connection-oriented server for AF_ISO 90
Connection-oriented client 94
Connection-oriented client for AF_INET/AF_INET6 94
Connection-oriented clientfor AF_ISO 98
Connectionless server e e e e e 102
Connectionless client 108
SOCKETS(BS2000) user functions o oo 111
Descriptionformat 111
Function name - brief description of the functionality 112
Overview of functions 113
Description of functions L 119
accept() - accept a connectiononasocket, 120
bind() - assignasocketaname 123
Byte order macros - convert byteorder oL 125
connect() - initiate a connectiononasocket L. 127
freeaddrinfo() - release memory for addrinfo structure 130
freehostent() - release memory for hostent structure 131
gai_strerror() - output text for the error code of getaddrinfo() 132
getaddrinfo() - get information about host names, host addresses and services

regardless of protocol 133
getbcamhost() - get BCAM hostname 137

U41052-J-2125-9-76

Contents

getdtablesize() - get size of descriptortable 138
gethostbyaddr(), gethostbyname() - get information about host names and

addresses e 139
gethostname() - get the name of the currenthost 141
getipnodebyaddr(), getipnodebyname() - get information about host names and

addresses e e 142
getnameinfo() - get the name of the communications partner 146
getpeername() - get the remote address of the socket connection 148
getprotobyname() - get the number of the protocol 150
getservbyname(), getservbyport() - get information about services. 152
getsockname() - get local address of the socket connection 154
getsockopt(), setsockopt() - get and set socketoptions 156
if freenameindex() - release the dynamic storage occupied with if nameindex() . . 171
if _indextoname() - convert interface index to interfacename 172
if _nameindex() - list of interface names with the associated interface indexes 173
if nametoindex() - convert interface name to interfaceindex 174
inet_addr(), inet_Inaof(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa() -

manipulate IPv4 Internetaddresso 175
inet_ntop(), inet_pton() - manipulate Internet addresses 178
listen() - test a socket for pending connections 180
recv(), recvfrom() - receive a message fromasocket 182
recvmsg() - receive a message fromasocket 185
select() - multiplex input/output 189
send(), sendto() - send a message from sockettosocket 192
sendmsg() - send a message from sockettosocket 195
shutdown() - terminate full-duplex connection 198
soc_close() (close) -closesocket. 200
soc_eof(), soc_error(), soc_clearerr() (eof, error, clearerr) - get status information . 202
soc_flush () (flush) - flush data from output buffer 203
soc_getc() (getc) - get character from input buffer 204
soc_gets() (gets) - get string from inputbuffer L. 205
soc_ioctl() (ioctl) - control sockets 206
soc_poll() - multiplex input/output 217
soc_putc() (putc) - put character in outputbuffer 220
soc_puts() (puts) - put string in output buffero 221
soc_read(), soc_readv() (read, readv) - receive a message from a socket 222
soc_wake() - awaken a task waiting with select() or soc-poll() 224
soc_write(), soc_writev() (write, writev) - send a message from socket to socket . . 225
socket() - create socket L L 228

U41052-J-2125-9-76

Contents

7.1

8.1

8.2

8.2.1
8.2.2
8.2.3

8.3
8.4

8.5
8.5.1
8.5.2

SOCKETS(BS2000) interface for an external bourse 231
Description of the additional functions 232
setsockopt() - modify socket options 232
soc_getevent() - get socketevento 234
Software package SOCKETS(BS2000) V2.7« o oo .. 237
SOCKETS(BS2000) subsystems v v i it 237
SOCKETS(BS2000) programs v v v v v e i e e e e e e e e e e e 237
PINGA . . . o e e e e 237
PINGG e e e e 237
NSIOOKUP e e e e e 238
SOCKETS(BS2000) DNS @CCESS . .« v v v v v e v v e e e e e e e e e e 239
SOCKETS(BS2000) - query to FQDNfile 240
Producing the SOCKETS(BS2000) user program v v v v v v v v 241
Software requirements L e e e e 241
Programming e e e e e e e 241
Related publications 243
Index e 245

U41052-J-2125-9-76

Contents

U41052-J-2125-9-76

1 Preface

SOCKETS(BS2000) is the name for the socket functions within BS2000. These functions
provide the development environment for BS2000 users who want to write socket appli-
cation programs.

1.1 Brief product description

Sockets programming with SOCKETS(BS2000) provides a number of options for
developing communication applications. SOCKETS(BS2000) is an interface for network
programming within BS2000. It can be used to develop communication applications based
on the TCP/IP protocols.

1.2 Objectives and target groups of this manual

This manual is intended for programmers who want to use the SOCKETS(BS2000)
interface functions to develop communication applications.
Familiarity with the C programming language is required and assumed.

U41052-J-2125-9-76 9

Summary of contents Preface

1.3 Summary of contents

This manual describes and illustrates the various options available for socket programming
using simple examples. The example programs show how socket functions can be used for
connection-oriented communication applications using the TCP protocol and the ISO
service and for connectionless communication applications using the UDP protocol.

The manual is laid out as follows:

e Chapters 2 to 5 provide an introduction to developing SOCKETS(BS2000) communi-
cation applications. Sample programs are used to illustrate basic topics such as
address structures, connection setup, data transfer and client/server communications.

e Chapter 6 contains an alphabetically-ordered reference section with the user functions
of the SOCKETS(BS2000) interface.

e Chapter 7 describes the additional functions of the Socket interface under BS2000 for
the special mode using an external bourse.

e Chapter 8 contains information on the following topics:
— SOCKETS(BS2000) subsystems
— SOCKETS(BS2000) user programs

— Production of a SOCKETS(BS2000) user program
with the associated software requirements

10 U41052-J-2125-9-76

Preface

Summary of contents

Readme file

The functional changes to the current product version and revisions to this manual are
described in the product-specific Readme file.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. You will also find the Readme files on the
Softbook DVD.

I nformation under BS2000

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME .<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product>command shows the
user ID under which the product’s files are stored.

Additional product information

Currentinformation, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

U41052-J-2125-9-76 11

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last edition of the manual Preface

1.4

Changes since the last edition of the manual

e The section “License provisions” has been added.
o getsockopt() has been supplemented by the subfunction SO_KEEPALIVE.

e soc_ioctl() has been supplemented by the subfunctions SIOCGIFNETMASK,
SIOCGLIFBRDADDR, SIOCGLIFHWADDR, SIOCGLIFNETMASK.

e New diagnostic tool NSLOOKUP.
e New interface control flags IFF_CONTROLLAN, IFF_AUTOCONFIG.

e The section “Broadcast messages (AF_INET)” in the chapter “Extended
SOCKETS(BS2000) functions” has been deleted.

e Additional events for soc_getevent().

e Enhanced options for DNS access, see section “SOCKETS(BS2000) DNS access”.

12

U41052-J-2125-9-76

Preface

Notational conventions

1.5 Notational conventions

The following notational conventions are used in this manual:

i @

typewritten font
italic font

<angle brackets>

[]

For informative texts

Syntax definitions are delimited above and below with
horizontal lines. Continuation lines within syntax defini-
tions are indented.

Program text in examples; syntax illustrations.

Names of programs, functions, function parameters, files,
structures and structure components in descriptive text;
syntax variables (e.g. filename)

Identify header files in descriptive text.

Optional entries.
The square brackets are metacharacters and must not be
entered within statements.

Ellipses in syntax definitions mean that the preceding text
may be repeated as often as required. In examples, they
mean that the remaining parts are not relevant and are not
required in order to understand the example.

The ellipses are metacharacters and must not be entered
within statements.

The notational conventions for describing user functions are explained at the start of the
chapter “SOCKETS(BS2000) user functions” on page 111.

References within this manual include the page concerned in the manual and the section
or chapter as necessary. References to topics in other manuals include the brief title of the
manual concerned. You will find the full title in the list of related publications at the end of

this manual.

U41052-J-2125-9-76

13

Compatibility of SOCKETS(BS2000) V2.7 with earlier versions Preface

1.6 Compatibility of SOCKETS(BS2000) V2.7
with earlier versions

SOCKETS(BS2000) V2.7 is compatible with SOCKETS(BS2000) V2.6, V2.5, 2.4, 2.3,
V2.2, V2.1 and V2.0, i.e. existing Socket user programs can be executed in version 2.7.

If a Socket user program was produced with the user library SYSLIB.SOCKETS.027 then
the message "unresolved extern” is output in the following cases:

— if it uses the new functions soc_pall(), if _nametoindex(), if_indextoname(), if nameindex()
and if_freenameindex() and encounters a SOCKETS(BS2000) V2.0 subsystem.

— if it uses the new functions if _nametoindex(), if_indextoname(), if _nameindex(),
if_freenameindex() and encounters a SOCKETS(BS2000) V2.1 subsystem.

14 U41052-J-2125-9-76

Preface

License provisions

1.7 License provisions

SOCKETS(BS2000) uses parts of the Open Source Software bind for the DNS connection
and the Open Source Software iputils for the Ping/Ping6 program.

The relevant license texts are printed below.

L S S R S . S P T S S R . e S S S I N R S S R

Modified for AF_INET6 by Pedro Roque
<roque@di.fc.ul.pt>

Original copyright notice included bellow

Copyright (c) 1989 The Regents of the University of California.
A1l rights reserved.

This code is derived from software contributed to Berkeley by
Mike Muuss.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this Tist of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this Tist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Al1 advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ~~AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

U41052-J-2125-9-76 15

License provisions Preface

* 0UT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.

*/

#ifndef Tint

char copyrightl] =

"@(#) Copyright (c) 1989 The Regents of the University of California.\n\
A1l rights reserved.\n";

#endif /* not lint */

~
*

ook oF oF F o oF b X o o of

PING.C
Using the InterNet Control Message Protocol (ICMP) "ECHO" facility,
measure round-trip—delays and packet 1loss across network paths.
Author -

Mike Muuss

U. S. Army Ballistic Research Laboratory

December, 1983
Status —

Public Domain. Distribution Unlimited.

License—-Text arpa.nameser.h

/*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Copyright (c) 1983, 1989, 1993

The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

1. Redistributions of source code must retain the above copyright
notice, this Tist of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this Tist of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. A1l advertising materials mentioning features or use of this software
must display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.
4. Neither the name of the University nor the names of its contributors

may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ~~AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

16

U41052-J-2125-9-76

Preface

License provisions

ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Yk oF oF b o o of

*
~

S~
*

Copyright (c) 1996 by Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

ok oF b X ot

* THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE CONSORTIUM
DISCLAIMS

* ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED
WARRANTIES

* OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE

* CONSORTIUM BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
* DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR

* PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS

* SOFTWARE.

*/

/*

* From: Id: nameser.h,v 8.16 1998/02/06 00:35:58 halley Exp
* $Id: nameser.h,v 1.12 1998/06/11 08:55:15 peter Exp $

*/

License-Text Twres—client

~
*

Copyright (C) 2004, 2005 Internet Systems Consortium, Inc. ("ISC")
Copyright (C) 2000, 2001 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

Yk o oF o X o of

THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY

U41052-J-2125-9-76

17

License provisions Preface

* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,

* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM

* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.

*/

/* $1d: context.h,v 1.15.18.2 2005/04/29 00:17:21 marka Exp $ */

18 U41052-J-2125-9-76

2 SOCKETS(BS2000) basics

This chapter explains the basic terms and functions of socket programming. Program
examples for the topics handled in this chapter are summarized in the chapter
“Client/server model with SOCKETS(BS2000)” on page 85. The individual functions of the
SOCKETS(BS2000) interface are described in detail in the chapter “SOCKETS(BS2000)
user functions” on page 111.

U41052-J-2125-9-76 19

Network connection via SOCKETS SOCKETS(BS2000) basics

2.1 Network connection via the SOCKETS(BS2000) interface

The SOCKETS(BS2000) interface is one of the interfaces for network programming within
BS2000. It can be used to develop communication applications based on the TCP/IP and

OSI service definitions.

The SOCKETS(BS2000) interface is defined in separate header files.

Application with
linked-in SOCKETS(BS2000) library

)1

SOCKETS

BS2000 ¢

Figure 1: SOCKETS in BS2000

20 U41052-J-2125-9-76

SOCKETS(BS2000) basics Header files

2.2 Header files

When SOCKETS(BS2000) is installed, BSD V4.2 and RFC 2553-compliant header files are
created. The specific header file(s) to be linked by an application in order to execute a given
function can be found under the description of each socket function in the chapter
“SOCKETS(BS2000) user functions” on page 111.

SOCKETS(BS2000) provides the following header files:

arpa.inet.h
— Defines utility functions and macros for manipulating Internet addresses
— Defines the in_addr structure, as defined in <netinet.in.h>

ioctl.h
Defines the socket control functions called by soc_ioctl().

iso.h
Defines the address structure for the AF_1SO address family

net.if.h
Structures for the packet switching interface

netdb.h
— Structures and function declarations for address conversion utilities
— Defines the flags for controlling the address conversion utilities
— Defines the error messages for the address conversion utilities

netinet.in.h
— Defines the address structure for the Internet domains (AF_INET, AF_INET6)
— Symbolic constants for protocol types
— Test macros for the AF_INET6 domain

sys.poll.h
Defines the soc_poll() function

sys.socket.h
— Defines the socket address structure and other structures for socket system
functions
— Declares the socket system calls
— Symbolic constants for socket options and socket types

sys.time.h
timval structure for select() and subfunction linger

sys.uio.h
Data structure msghdr for the transfer of data in individual packets for sendmsg() and

recvmsy()

U41052-J-2125-9-76 21

Socket types SOCKETS(BS2000) basics

2.3

23.1

Socket types

A socket is a basic component for developing communications applications and serves as
a communications endpoint. A socket can be assigned a name via which it can then be
accessed and addressed.

Each socket has a specific type and belongs to a task. More than one socket may be
associated with the same task.

A socket belongs to a specific communications domain. Address and protocol families are
collected together into a communications domain. An address family comprises addresses
with the same address structure. A protocol family defines a set of protocols which
implement the socket types in the domain. Communications domains are used to group the
common characteristics of tasks that communicate via sockets. The socket interface in
BS2000 supports the Internet communications domains AF_INET and AF_INET®6, as well
as the 1ISO communications domain AF_ISO.

There are various socket types with different communications characteristics. Two different
socket types are currently supported:

— stream sockets
— datagram sockets
— raw sockets

Stream sockets (connection-oriented)

Stream sockets support connection-oriented communications. A Stream socket provides
bidirectional, secured and sequential data flow, thus ensuring that the data is only trans-
ferred once and in the correct order.

Connection-oriented transfer in the communications domains AF_INET and
AF_INET6

The record boundaries of the data are not retained for connection-oriented communication
with stream sockets. Stream sockets are used to develop connection-oriented communica-
tions applications based on the TCP protocol.

Connection-oriented transfer in the communications domain AF_ISO

Connection-oriented communication in AF_ISO is record-oriented, i.e. the record bound-
aries remain intact. The communications applications are based on the 1SO transport
service.

22

U41052-J-2125-9-76

SOCKETS(BS2000) basics Socket types

2.3.2

2.3.3

Datagram sockets (connectionless)

Datagram sockets support connectionless communications in the AF_INET and AF_INET6
address families. A datagram socket provides bidirectional data flow. However, datagram
sockets do not ensure either secure or sequential data transfer. It is also possible that the
data may be transferred more than once. A task that receives messages on a datagram
socket may therefore possibly receive messages more than once and/or in a different order
from that transmitted. The application is therefore responsible for checking and saving the
received data. One important characteristic of datagram sockets is that the record limits of
the transferred data are retained.

Datagram sockets are used to develop connectionless communications applications based
on the UDP protocaol.

Raw sockets

Raw sockets offer the option of writing and reading data at protocol header level.
SOCKETS(BS2000) permits this for the Internet Control Message Protocol (ICMP) and for
the Internet Control Message Protocol for IPv6 (ICMPV6). As a result, a sockets application
with a raw socket is able to generate an ICMP/ICMPv6 echo request and to receive an
ICMP/ICMPV6 echo reply.

U41052-J-2125-9-76 23

Socket addressing SOCKETS(BS2000) basics

2.4

24.1

24.2

Socket addressing

A socket is created initially without a name or address. After creating a socket, you will have
to use the bind() function to assign the socket a name (address) according to its address
family (see the section “Assigning a name to a socket” on page 31) so that tasks can
address it. You can then receive messages via the socket.

Using socket addresses

When the bind(), connect(), getpeername(), getsockname(), recvfrom() and sendto() functions are
called, a pointer to a name (address) is passed as the current parameter. Prior to this, the
program has to make the name available according to the address structure of the address
family used. This address structure will be different depending on the address family used.

If, at first, the address family has to be determined from the address structure in order to
continue working specific to an address family, the general sockaddr structure is used.

The sockaddr structure is defined as follows in the header file <sys.socket.h> :

struct sockaddr {
u_short sa_family; /* address family */
char sa_datal50]; /* 50 bytes for the Tongest address (sockaddr_iso) /*
b

The address structures for the AF_INET and AF_INET6 address families, as well as the
AF_1SO address family, are described in the following two sections.

Addressing with an Internet address

SOCKETS(BS2000) supports both IPv4 and IPv6 addresses. IPv4 and IPv6 addresses
have different lengths and are therefore identified by different address families:

— AF_INET supports the 4-byte IPv4 Internet address.
— AF_INET®6 supports the 16-byte IPv6 Internet address.

The structure of these addresses and the form they take are described in the “BCAM
Volume 1/2” manual.

24

U41052-J-2125-9-76

SOCKETS(BS2000) basics Socket addressing

2421

sockaddr_in address structure of the AF_INET address family

With the AF_INET address family, a name comprises a 4-byte Internet address and a port
number. You use the sockaddr_in address structure for the AF_INET address family. This
structure has a variant for #define SIN_LEN.

The sockaddr_in structure is declared in the <netinet.in.h> header as follows:

struct sockaddr_in {

short sin_family; /* address family AF_INET */
u_short sin_port; /* 16-bit port number */
struct in_addr sin_addr; /* 32-bit Internet address */
char sin_zerol81;

b
Structure variant of sockaddr_in with #define SIN_LEN set to support BSD 4.4 systems:

struct sockaddr_in {

u_char sin_len; /* structure length */

u_char sin_family; /* address family AF_INET */
u_short sin_port; /* 16 bit port number */
struct in_addr sin_addr; /* 32 bit Internet address */
char sin_zerol81;

bs

You can supply a variable server of type struct sockaddr_inwith a name by using the following
statements:

struct sockaddr_in server;
server.sin_family = AF_INET;

server.sin_port = htons(8888);
server.sin_addr.s_addr = htonl (INADDR_ANY);

A pointer to the variable server can now be passed as the current parameter, e.g. with a
bind() call, to bind the name to a socket:

bind(..., &server, ...) /* bind() call with type conversion */

The structures for host, protocol and service names are described in the chapter “Address
conversion with SOCKETS(BS2000)” on page 63.

U41052-J-2125-9-76 25

Socket addressing

SOCKETS(BS2000) basics

2.4.2.2

sockaddr_in6 address structure of the AF_INET6 address family

With the AF_INET6 address family, a name comprises a 16-byte Internet address and a
port number. You use the sockaddr_in6 address structure for the AF_INET6 address family.
This structure has additional variants for #define SCOPE_ID and #define SIN6_LEN.

The sockaddr_in6 structure is declared in the <netinet.in.h> header as follows:

struct sockaddr_iné {

short sin6_family;
u_short siné_port;
u_int sin6_flowinfo
struct in6_addr sin6_addr;
char sin6_zerol8];

by

/* address family AF_INET6 */
/* 16-bit port number */

/* IPv6 address */

Structure variant of sockaddr_in6 with #define SCOPE_ID set to support Open Source :

struct sockaddr_iné {

short sin6_family:
u_short siné_port;
u_int sin6_flowinfo
struct in6_addr sin6_addr;
u_int32_t sin6_scope_id;

by

/* address family AF_INET6 */
/* 16 bit port number */

/* IPv6 address*/

Structure variant of sockaddr_in6 with #define SIN6_LEN set to support BSD 4.4 systems:

struct sockaddr_iné {

u_int8_t sin6_Tlen;
sa_family_t sin6_family;
in_port_t sin6_port;
u_int32_t sin6_flowinfo
struct in6_addr sin6_addr;
u_int32_t sin6_scope_id;

by

/* structure length */
/* address family AF_INET6 */
/* 16 bit port number */

/* IPv6 address */

You can supply a variable server of type struct sockaddr_in6 with a name by using the

following statements:

struct sockaddr_in6 server;

struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;

server.sin6_family = AF_INET6;
server.sin6_port = htons(8888);

memcpy (server.sin6_addr.s6_addr, in6addr_any.s6_addr, 16);

26

U41052-J-2125-9-76

SOCKETS(BS2000) basics Socket addressing

A pointer to the variable server can now be passed as the current parameter, e.g. with a
bind() call, to bind the name to a socket:

bind(..., &server, ...) /* bind() call with type conversion */

Memory space allocation

Memory space allocation with associated initialization for the in6addr_any variable must
take place in the code of the application. The following declaration is made available in the
include file <netinet.in.h>:

extern const struct in6_addr in6addr_any;

in6addr_any has the value ::0. A corresponding constant INGADDR_ANY _INIT is defined in
<netinet.in.h>.

U41052-J-2125-9-76 27

Socket addressing SOCKETS(BS2000) basics

2.4.3 sockaddr_iso address structure for the AF_ISO address family

With the AF_ISO address family, the name comprises a network selector NSEL and a
transport selector TSEL. You use the sockaddr_iso address structure for the AF_1SO
address family.

The sockaddr_iso structure is declared in the <iso.h> header as follows:

struct sockaddr_iso {

u_char siso_len; /* length of this sockaddr_iso structure*/
u_char siso_family; /* AF_ISO address family */
u_char siso_plen; /* length of presentation selector */

/* (is not supported; default: 0) */
u_char siso_slen; /* length of session selector */

/* (is not supported; default: 0) */
u_char siso_tlen; /* length of transport selector */
struct iso_addr siso_addr; /* ISO application address */
u_char siso_padl6]; /* is not supported*/

bs

struct iso_addr {
u_char isoa_len; /* is not supported*/
char isoa_genaddrl[40]; /* complete address (NSEL/TSEL) */

The communications system for BS2000 expects a BCAM host name as the NSEL. The
BCAM host name has a fixed length of 8 characters. Blanks are permitted at the end of the
name, i.e. the name can be padded with blanks in order to achieve a length of 8 characters
for NSEL. The transport selector TSEL can have a maximum length of 32 bytes. Because
of the fixed length specifications for NSEL, you can use the transport selector length
siso_tlen to select the transport selector from isoa_genaddr.

BCAM host name:
The name is eight characters in length. Alphanumeric characters and
the special characters #, @, $ or blanks can be used at the end of the
name. As a rule, uppercase characters should be used, but the name is
case-sensitive. Names comprising numeric characters only are not
permitted.

28 U41052-J-2125-9-76

SOCKETS(BS2000) basics Creating a socket

2.5 Creating a socket

A socket is created with the socket() function:
int s;
s = socket(domain, type, protocol);

The socket() call creates a socket of type typein the domain domain and returns a descriptor
(integer value). The new socket can be identified in all further socket function calls via this
descriptor.

The domains are defined as fixed constants in the <sys.socket.h> header file. The following
domains are supported:

— Internet communications domain AF_INET
— Internet communications domain AF_INET6
— 1SO communications domain AF_I1SO

You must therefore specify AF_INET, AF_INET6 or AF_ISO as the domain.
The socket types type are also defined in the <sys.socket.h> file:

— Specify SOCK_STREAM for type, if you want to set up connection-oriented communi-
cations via a stream socket.

— Specify SOCK_DGRAM for type, if you want to set up connectionless communications
via a datagram socket.

— Specify SOCK_RAW for type, if you want to send an ICMP message via a raw socket.

The protocol parameter is not supported and should have the value 0.

Creating a socket in the AF_INET domain

The following call creates a stream socket in the AF_INET Internet domain:

s = socket(AF_INET, SOCK_STREAM, 0);

In this case, the underlying communications support is provided by the TCP protocol.
The following call creates a datagram socket in the AF_INET Internet domain:

s = socket(AF_INET, SOCK_DGRAM, 0);

The UDP protocol used in this case transfers the datagrams without any further
communications support to the underlying network services.

U41052-J-2125-9-76 29

Creating a socket SOCKETS(BS2000) basics

Creating a socket in the AF_INET6 domain

The following call creates a stream socket in the IPv6 Internet domain AF_INET6:

s = socket(AF_INET6, SOCK_STREAM, 0);

In this case, the underlying communications support is provided by the TCP protocol.
The following call creates a datagram socket in the IPv6 Internet domain AF_INET6:
s = socket(AF_INET6, SOCK_DGRAM, 0);

The UDP protocol used in this case transfers the datagrams without any further
communications support to the underlying network services.

Creating a socket in the AF_I1SO domain

The following call creates a socket in the ISO domain for using the ISO transport service:
s = socket(AF_ISO, SOCK_STREAM, 0);

30

U41052-J-2125-9-76

SOCKETS(BS2000) basics Assigning socket names

2.6 Assigning a name to a socket

A socket created with s=socket() initially has no name. The socket must therefore be
assigned a name, i.e. a local address. Not until this has been done can partners address
the socket and socket users set up connections and send and/or receive data. You bind a
name to the socket, i.e. you assign the socket a local address, with the bind() function.

2.6.1 Assigning an address explicitly

In this case, you call bind() as follows:
bind(s, name, namelen);

In the communications domain AF_INET, name comprises a 4-byte IPv4 address and a port
number. name is passed in a variable of the type struct sockaddr_in (see page 25). namelen
contains the length of the data structure that defines the name.

In the communications domain AF_INET6, name comprises a 16-byte IPv6 address and a
port number. name is passed in a variable of the type struct sockaddr_in6 (see page 26).
namelen contains the length of the data structure that defines the name.

In the communications domain AF_1SO, name comprises a network selector and a transport
selector. name is passed in a variable of the type struct sockaddr_iso (see page 28). namelen
contains the length of the data structure that defines the name.

Assigning an address explicitly in the domains AF_INET and AF_INET6

Assigning an address explicitly in AF_INET

The following program extract illustrates how a name is assigned to a socket in the
AF_INET domain.

#include <sys.types.h>
#include <netinet.in.h>

struct sockaddr_in sin;

int s;

sin.sin_family = AF_INET;
sin.sin_port = 0;
sin.sin_addr.s_addr = INADDR_ANY;

bind(s, &sin, sizeof sin);

U41052-J-2125-9-76 31

Assigning socket names SOCKETS(BS2000) basics

Assigning an address explicitly in AF_INET6
#include <sys.types.h>
#include <netinet.in.h>

struct sockaddr_in6 sin6;
struct in6_addr in6addr_any = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,01};
int s;

sin6.sin6_family = AF_INET6;
sin6.sin6_port = 0;
memcpy(sin6.sin6_addr.s6_addr,in6addr_any.s6_addr,16);

bind(s, &sin6, sizeof sin6);

You must note the following when selecting the port number:

e Port numbers lower than PRIVPORT# (see the “BCAM Volume 1/2” manual) are
reserved for privileged users (default; 2050).

e Certain port numbers are reserved for some standard applications:

— Port number 3161 is used by the SNMP Basic Agent BS2000 is used for internal
communications between the master agent and subagents (see the “SNMP
Management for BS2000” manual).

— Port number 1235 is required by the Domain Name Service (DNS) (see the
“interNet Services” administration manual).

— Note should be made of other well-known, registered, dynamic and/or private port
numbers, which are documented on the IANA website at
“http://www.iana.org/assignments/port-numbers”.

Assigning an address explicitly in the AF_ISO domain

The following program section illustrates how a name is assigned to a socket in the AF_1SO
domain.

#include <sys.types.h>
#include <iso.h>

struct sockaddr_iso sin;
int s;

/* The statements which supply sin with a network selector
and a transport selector must be inserted here.*/

bind(s, &sin, sizeof sin);

32

U41052-J-2125-9-76

SOCKETS(BS2000) basics Assigning socket names

2.6.2 Assigning addresses with wildcards (AF_INET, AF_INET6)

Wildcard addresses simplify local address assignment in the Internet domains AF_INET
and AF_INETS.

Assigning an Internet address with a wildcard

You use the hind() function to assign a local name (address) to a socket. Instead of a
concrete Internet address, you can also specify INADDR_ANY (for AF_INET) or
INGADDR_ANY (for AF_INET®6) as the Internet address. INADDR_ANY and
INGADDR_ANY are defined as a fixed constants in <netinet.in.h>.

When you use bind() to assign a socket s a name whose Internet address is specified as
INADDR_ANY or INGADDR_ANY, this means:

e The socket sbound to INADDR_ANY can receive messages via all the IPv4 network
interfaces of its host. This allows socket sto receive all messages addressed to the port
number of sand any valid IPv4 address of the host on which socket slies. For example,
if the host has IPv4 addresses 128.32.0.4 and 10.0.0.78, a task to which socket sis
assigned can accept connection requests which are addressed to 128.32.0.4 and
10.0.0.78.

e The socket sbound to INGADDR_ANY can receive messages via all the IPv4 and IPv6
network interfaces of its host. This allows socket s to receive all messages addressed
to the port number of sand any valid IPv4 or IPV6 address of the host on which socket
slies. For example, if the host has IPv4 or IPv6 address 128.32.0.4 or
3FFE:1:1000:1000:52C1:D5FF:FEOE:2B01, a task to which socket sis assigned can
accept connection requests which are addressed to 128.32.0.4 and
3FFE:1:1000:1000:52C1:D5FF:FEOE:2B01.

The following examples show how a task can bind a local name to a socket without an
Internet address being specified. The task only has to specify the port number:

U41052-J-2125-9-76 33

Assigning socket names

SOCKETS(BS2000) basics

For AF_INET:

#include <sys.types.h>
#include <netinet.in.h>
#define MYPORT 2222

struct sockaddr_in sin;
int s;

s = socket(AF_INET, SOCK_STREAM, 0);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = htonl (INADDR_ANY);
sin.sin_port = htons(MYPORT);

bind(s, &sin, sizeof sin);

For AF_INETG6:

#include <sys.types.h>
#include <netinet.in.h>
#define MYPORT 2222

struct in6_addr inaddr_any = IN6ADDR_ANY_INIT;
struct sockaddr_in6 sin6;
int s;

s = socket(AF_INET6, SOCK_STREAM, 0);
sin6.sin6_family = AF_INET6;

memcpy(sin6.sin6_addr.s6_addr, in6addr_any.s6_addr, 16);

sin6.sin6_port = htons(MYPORT);
bind(s, &sin6, sizeof sin6);

34

U41052-J-2125-9-76

SOCKETS(BS2000) basics Assigning socket names

Assigning a port number with a wildcard

Alocal port can remain unspecified (0 specified). In this case, the system selects a suitable
port number for it. The following examples show how a task assigns a socket a local
address without specifying the local port number:

For AF_INET:

struct sockaddr_in sin;

s=socket (AF_INET, SOCK_STREAM,0);
sin.sin_family=AF_INET;
sin.sin_addr.s_addr=hton1 (INADDR_ANY);
sin.sin_port = htons(0);

bind(s, &sin, sizeof sin);

For AF_INETG6:

struct sockaddr_in6 sin6;
struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;

s = socket(AF_INET6, SOCK_STREAM, 0);

sin6.sin6_family = AF_INET6;

memcpy (sin6.sin6_addr.s6_addr,in6addr_any.s6_addr, 16);
sin6.sin6_port = htons(0);

bind(s, &sin6, sizeof sin6);

Automatic address assignment by the system

You can still call a function for a socket which actually requires a bound socket (e.g.
connect(), sendto(), etc.) even if the socket has no address assigned to it. In this case, the
system executes an implicit bind() call with wildcards for the Internet address and port
number, i.e. the socket is bound with INADDR_ANY to all IPv4 addresses and with
IN6GADDR_ANY to all IPv6 addresses and IPv4 addresses of the host and receives a port
number from a free range.

U41052-J-2125-9-76 35

Assigning socket names SOCKETS(BS2000) basics

2.6.3 Direct address assignment in the domains AF_INET and AF_INET6

As of Version 2.2, it is possible to selectively bind a socket to a selected interface (multi-
homing support). When you do this, you should note that the required address must be
present at the host in question and the IP address/port number tuple must not be occupied

In this way, it is possible for a listen socket to listen in at a specific interface address and a
specific port. In addition, it is possible for multiple listen sockets to be bound to one interface
address each at a port

To make it possible to switch from single addressing to Anyaddr addressing and back again,
the functionality of the setsockopt() subfunction SO REUSEADDR has been extended. If the
socket is marked using this subfunction before the bind() then, if the transport system
permits it, it is possible to bind a socket to an interface address even though a socket has
already been bound to Anyaddr for this port. This also applies in the opposite direction.

36 U41052-J-2125-9-76

SOCKETS(BS2000) basics Connection-oriented communications (AF_INET)

2.7 Communication in the AF_INET and AF_INET6 domains

A distinction is made between connection-oriented and connectionless communications in
the AF_INET and AF_INET6 communications domains.

2.7.1 Connection-oriented communications in AF_INET and AF_INET6

Sockets which communicate with each other are connected via an assignment. An
assignment in the Internet domain consists of a local address and local port number and a
remote address and remote port number.

<local address, local port, foreign address, foreign port>

When setting up a socket, you must initially specify both address-pairs. The bind() call
specifies the local half of the assignment:

<local address, local port>

The calls of the connect() and accept() functions described below, complete the socket
assignment during connection setup.

The connection setup between two sockets is generally asymmetric, with one socket
assuming the role of the client and the other the role of the server.

2.7.1.1 Connection request by the client

The client requests services from the server by sending a connection request to the socket
of the server with the connect() function. On the client side, the connect() call causes a
connection to be set up.

In the Internet domain AF_INET, a connection request progresses as follows:

struct sockaddr_in server;

connect(s, &server, sizeof server);

In the Internet domain AF_INET6, a connection request progresses as follows:

struct sockaddr_in6 server;

connect(s, &server, sizeof server);

The server parameter passes the Internet address and port number of the server with which
the client wishes to communicate.

If the client’s socket has no name assigned at the time of the connect() call, the system
selects a name automatically and assigns it to the socket.

U41052-J-2125-9-76 37

Connection-oriented communications (AF_INET) SOCKETS(BS2000) basics

2.7.1.2

If connection setup is unsuccessful, an error code is returned. This can occur, e.g. if the
server is not ready to accept a connection (see the following section on “Connection
acceptance by the server”). However, all names assigned automatically by the system are
retained even if the connection setup fails.

Connection acceptance by the server

If the server is ready to provide its special services, it assigns one of its sockets the name
(address) defined for the service concerned. In order to be able to accept the connection
request of a client, the server must also execute the following two steps:

1. The server uses the listen() function to mark the socket for incoming connection
requests as “listening”. The server then monitors the socket, i.e. it waits passively for a
connection request for this socket. It is now possible for any partner to take up contact
with the server.

listen() also causes SOCKETS(BS2000) to place connection requests to the socket
concerned in a queue. This normally prevents any connection requests being lost while
the server processes another one.

2. The server uses accept() to accept the connection for the socket marked as “listening”.

After the connection is accepted with accept(), the connection is set up between the client
and server, and data can be transferred.

The following program extract illustrates connection acceptance by the server in the
Internet domain AF_INET:

struct sockaddr_in from;
int s, fromlen, newsock;

listen(s, 5);
fromlen = sizeof(from);
newsock = accept(s, &from, &fromlen);

The following program extract illustrates connection acceptance by the server in the
Internet domain AF_INET6:

struct sockaddr_in6 from;
int s, fromlen, newsock;

lTisten(s, 5);
fromlen = sizeof(from);
newsock = accept(s, &from, &fromlen);

The first parameter passed when listen() is called is the descriptor s of the socket on which
the connection is to be set up. The second parameter defines the maximum number of
connection requests which may be placed in the queue for acceptance by the server task.

38

U41052-J-2125-9-76

SOCKETS(BS2000) basics Connection-oriented communications (AF_INET)

2.7.1.3

Note, however, that SOCKET(BS2000) does not evaluate this parameter at present and
continues to accept connection requests until the maximum number of available sockets
have been used.

The first parameter passed when accept() is called is the descriptor s of the socket on which
the connection is to be set up. After accept() is executed, the from parameter contains the
address of the partner application, and fromlen contains the length of this address. When a
connection is accepted with accept(), a descriptor is created for a new socket. This
descriptor returns accept() as its result. Data can now be exchanged on the new socket. The
server can accept additional connections on socket s.

An accept() call normally blocks because the accept() function does not return until a
connection is accepted. When accept() is called, the server task also has no way of
indicating that it only wants to accept connection requests from one or more specific
partners. The server task must therefore note where the connection comes from and
terminate it if it does not want to communicate with the client concerned.

The following points are described in detail in the chapter “Extended SOCKETS(BS2000)
functions” on page 71:

— how a server task can accept connections on more than one socket
— how a server task can prevent the accept() call from blocking

Data transfer with connection-oriented communications

Data can be transferred as soon as a connection is set up. If the communications endpoints
of both communication partners are hard-bound with each other via the addressing-pair, a
user task can send and receive messages without having to specify the addressing-pair
every time.

There are several functions for sending and receiving data:

recv(s, buf, sizeof buf, flags);
send(s, buf, sizeof buf, flags);
soc_getc(c, s);

soc_gets(s, n, d);

soc_putc(c, s);

soc_puts(s, d);

soc_read(s, buf, sizeof buf);
soc_write(s, buf, sizeof buf);
recvmsg(s,msg,flags);
sendmsg(s,msg,flags);

The socket functions are described in detail in the section “Description of functions” from
page 119.

U41052-J-2125-9-76 39

Connection-oriented communications (examples) SOCKETS(BS2000) basics

2.7.1.4 Examples of connection-oriented client/server communications

The following two program examples illustrate how a streams connection in the Internet
domain is initialized by the client and accepted by the server:

Example 1: Initialization of a streams connection by the client

#include <sys.types.h>

#include <sys.socket.h>

#include <netinet.in.h>

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#define DATA "Half a league, half a league . . ."

~
*

This program creates a socket and initializes a connection with the
Internet address passed in the command line.

A message is sent via the connection.

The socket is then closed and the connection shut down.

The client program expects the entry of a host name and

port number. It is the host on which the server program runs and

the port number of the T1ist socket of the server program (in the example
the port number 2222).

Yk oF oF o X o of

*
~

main(argc, argv)
int argc;
char *argvl[1;

int sock;
struct sockaddr_in server;
struct hostent *hp;

/* Create a socket */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) f{
perror("opening stream socket");
exit(1);
}

/* Connection setup using the name specified in the
* command 1ine.
*/
server.sin_family = AF_INET;
hp = gethostbyname(argv[11);
it (hp == 0) {
fprintf(stderr, "%s: unknown host\n", argv[11);

40

U41052-J-2125-9-76

SOCKETS(BS2000) basics Connection-oriented communications (examples)

exit(2);

}

memcpy ((char *)&server.sin_addr, (char *)hp—->h_addr,

hp—>h_length);

server.sin_port = htons(atoi(argvl2]));

if (connect(sock, (struct sockaddr*)&server, sizeof server) < 0) {
perror("connecting stream socket");
exit(l);

}

if (send(sock, DATA, sizeof DATA, 0) < 0)
perror("writing on stream socket");

soc_close(sock);

exit(0);

Example 2: Acceptance of the streams connection by the server

#include <sys.types.h>

#include <sys.socket.h>

#include <netinet.in.h>

#include <netdb.h>

#include <stdio.h>

#include <stdlib.h>

#define TRUE 1

#define TESTPORT 2222

/*
* This program creates a socket and then goes into an endless Toop.
* With each Toop run, it accepts a connection and sends messages.
* If the connection is interrupted or a termination message is passed,
* the program accepts a new connection.
*/

main()
{
int sock, Tength;
struct sockaddr_in server, client;
int msgsock;
char bufl[10247;
int rval;
/* Create socket. */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) {
perror("opening stream socket");
exit(1l);
}
/* The socket is assigned a name using wildcards. */
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl(INADDR_ANY);

U41052-J-2125-9-76 41

Connection-oriented communications (examples)

server.sin_port = htons(TESTPORT);
if (bind(sock, (struct sockaddr*)&server, sizeof server) < 0) {
perror("binding stream socket");
exit(1);
}
/* Start acceptance of connection requests. */
listen(sock, 5);
do {
length = sizeof client;
msgsock = accept(sock, (struct sockaddr*)&client, &length);

if (msgsock == -1)
perror("accept");
else do {

memset(buf, 0, sizeof buf);
if ((rval = recv(msgsock, buf, 1024, 0)) < 0)
perror("reading stream message");
else if (rval == 0)
printf("Ending connection\n");
else
printf("=——>%s\n", buf); }
while (rval > 0);
soc_close(msgsock);
} while (TRUE);

/*

*

As this program runs in an endless loop, the socket "sock" is
never explicitly closed.

However, all sockets are closed automatically if a task is
terminated or reaches its normal conclusion.

*

*

*

*/

exit(0);

42

U41052-J-2125-9-76

SOCKETS(BS2000) basics

SOCKETS(BS2000) basics Connectionless communications

2.7.2

2721

Connectionless communications in AF_INET and AF_INET6

In addition to the connection-oriented communications described in the previous section,
connectionless communication via the UDP protocol is also supported in the AF_INET and
AF_INET6 domains.

Connectionless communications are executed via datagram sockets (SOCK_DGRAM). In
contrast to connection-oriented tasks, where the client and server communicate with each
other via a fixed connection, no connection is set up for datagram transfers. Each message
contains the destination address instead.

In the section “Creating a socket” on page 29, you will find a description of how datagram
sockets are created. If a specific local address is required, the bind() function must be called
before the first data transfer (see page 31). Otherwise, the system assigns the local Internet
address and/or port number the first time data is sent (see page 35).

Data transfer with connectionless communications

You use the sendto() function to send data from one socket to another socket:
sendto(s, buf, buflen, flags, &to, tolen);

You use the s, buf, buflen and flags parameters in exactly the same way as with connection-
oriented sockets. You pass the destination address with to and the length of the address
with tolen.

Please note that reliable data transfer cannot be guaranteed when using a datagram
interface. This means that a sendto() call can only return error information if the local system
is aware of the fact that a message could not be transferred.

You use the recvfrom() function to receive a message on a datagram socket:
recvfrom(s, buf, buflen, flags, &from, &fromlen);

The fromlen parameter initially contains the size of the from buffer. On return from the
recvfrom() function, fromlen specifies the size of the address of the socket from which the
datagram was received.

If you wish, you can define a specific destination address for a datagram socket before a
sendto() or recvfrom() call with connect(). In this case, calling sendto() or recvfrom() results in
the following behavior:

— Data which the task sends with sendto() without explicitly specifying a destination
address is sent automatically to the partner with the destination address specified in the
connect() call.

— A user task only receives data with recvfrom() from the partner with the address
specified in the connect() call.

U41052-J-2125-9-76 43

Connectionless communications (examples) SOCKETS(BS2000) basics

2.7.2.2

For a datagram socket, only one target address can be specified with connect() at any one
time. However, you can define a different destination address for the socket with an
additional connect() call.

A connect() call for a datagram socket returns immediately, and the system only stores the
address of the communications partner.

Examples of connectionless communications

The following two program examples illustrate how datagrams are received and sent with
connectionless communications:

Example 1: Receiving datagrams

#include <sys.types.h>
#include <sys.socket.h>
#include <netinet.in.h>
#include <stdio.h>
#define TESTPORT 2222

The <netinet.in.h> header file declares sockaddr_in as follows:

*
*
* struct sockaddr_in {

* short sin_family;

* u_short sin_port;

* struct in_addr sin_addr;
* char sin_zerol[81;

*

by

* This program creates a socket, assigns it a name and then reads from
* the socket.
*/

main()

{
int sock, length, peerlen;
struct sockaddr_in name, peer;
char bufl[10247;

/* Create the socket to be read from. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0) {
perror("opening datagram socket");
exit(1);

44

U41052-J-2125-9-76

SOCKETS(BS2000) basics Connectionless communications (examples)

/* Assign the socket a name using wildcards */
name.sin_family = AF_INET;
name.sin_addr.s_addr = INADDR_ANY;
name.sin_port = htons(TESTPORT);

if (bind(sock, &name, sizeof name) < 0) {
perror("binding datagram socket");
exit(l);

/* Read from socket. */

peerlen=sizeof peer;

if (recvfrom(sock, buf, 1024, &peer, &peerlen) < 0)
perror("receiving datagram packet");

else

printf("—-—>%s\n", buf);

soc_close(sock);

exit(0);

Example 2: Sending datagrams

#include <sys.types.h>

#include <sys.socket.h>

#include <netinet.in.h>

#include <netdb.h>

#include <stdio.h>

#define DATA "The sea is calm, the tide is full . . ."

/*

* This program sends a datagram to a receiver whose name is passed via
* the arguments in the command Tine.

*/

main(argc, argv)
int argc;
char *argvl[];

int sock;

struct sockaddr_in name;

struct hostent *hp;

/* Create socket on which data is to be sent */

sock = socket(AF_INET, SOCK_DGRAM, 0);

if (sock < 0) {
perror("opening datagram socket");
exit(1l);

U41052-J-2125-9-76 45

Connectionless communications (examples) SOCKETS(BS2000) basics

/*

* Construct the name of the socket on which data is to be sent
* without using wildcards. gethostbyname() returns a structure
* containing the Internet address of the specified host. The

* port number is taken over from the command Tine.

*/

hp = gethostbyname(argvl[11);

it (hp == 0) {
fprintf(stderr, "%s: unknown host\n", argv[11);
exit(2);

}

memcpy ((char *)&name.sin_addr, (char *)hp—>h_addr,

hp—>h_Tength);
name.sin_family = AF_INET;
name.sin_port = htons(atoi(argvli2]1));

/* Send message. */

if (sendto(sock, DATA, sizeof DATA , 0, &name, sizeof name) < 0)
perror("sending datagram message");

soc_close(sock);

exit(0);

46

U41052-J-2125-9-76

SOCKETS(BS2000) basics Communications (AF_1SO)

2.8

2.8.1

Communications in the AF_ISO domain

Only connection-oriented communications are supported in the AF_ISO domain. Sockets
which communicate with each other are connected via an assignment. An assignment in
AF_1SO consists of a local network selector and a local transport selector, and a remote

network selector and a remote transport selector:

<local nsel, Tlocal tsel, foreign nsel, foreign tsel>

When setting up a socket, you need not initially specify both address pairs.The bind() call
specifies one half of the assignment:

<local nsel, local tsel>

The calls of the connect() and accept() functions described below complete the name
assignment during connection setup.

The connection setup between two sockets is generally asymmetric, with one socket
assuming the role of the client and the other the role of the server.

You will find examples of communications in the AF_ISO domain on page 90 (server
example) and page 98 (client example).

Connection request by the client

The client requests services from the server by sending a connection request to the socket
of the server with the connect() function. On the client side, the connect() call causes a
connection to be set up. In the ISO domain (AF_ISO) a connection request progresses as
follows:

struct sockaddr_iso name;
struct sockaddr_iso server;

bind(s, &name, sizeof name);
connect(s, &server, sizeof server);

The server parameter passes the network and transport selectors of the server with which
the client wishes to communicate. The socket of the client must be assigned a name before
connect() is called, i.e. bind() must have been called for the socket beforehand.

If connection setup is unsuccessful, an error code is returned. This can occur, for example,
if the server is not ready to accept a connection (see the section “Connection acceptance
by the server” on page 48). However, all names assigned by bind() are retained even if the
connection setup fails.

U41052-J-2125-9-76 47

Communications (AF_1SO) SOCKETS(BS2000) basics

2.8.2 Connection acceptance by the server

If the server is ready to provide its special services, it assigns one of its sockets the name
(address) defined for the service concerned. In order to be able to accept the connection
request of a client, the server must also execute the following two steps:

1. The server uses the listen() function to mark the socket for incoming connection
requests as “listening”. The server then monitors the socket, i.e. it waits passively for a
connection request for this socket. It is now possible for any partner to take up contact
with the server. listen() also causes SOCKETS(BS2000) to place connection requests
to the socket concerned in a queue. This normally prevents any connection requests
being lost while the server processes another one.

Exception: BCAM connection timer has elapsed:

This timer must be taken into greater consideration when using the 1SO transport
service since here, unlike AF_INET and AF_INET®6, the connection setup acknow-
ledgment is not generated and sent to the partner until a send action is initiated (for
example with send()).

2. The server uses accept() to accept the connection for the socket marked as “listening”.
You can use the function getsockopt() or recvmsg() to evaluate the connection data trans-
ferred earlier for the connection request. Unlike the Internet domain, the connection is
not completely set up after cept(). The connection to the partner is not set up in its
entirety until

— user data is sent or

— CFRM data (confirm) is sent with the sendmsg() function.

The following program extract illustrates connection acceptance by the server in the
AF_1SO domain:

struct sockaddr_iso from;

Tisten(s, 5);

fromlen = sizeof(from);

newsock = accept(s, &from, &fromlen);
send(newsock, msg, len, flags);

The first parameter passed when listen() is called is the descriptor s of the socket on which
the connection is to be set up. The second parameter defines the maximum number of
connection requests which may be placed in the queue for acceptance by the server task.
Note, however, that SOCKET(BS2000) does not evaluate this parameter at present and
continues to accept connection requests until the maximum number of available sockets
have been used.

48

U41052-J-2125-9-76

SOCKETS(BS2000) basics Communications (AF_1SO)

2.8.3

The first parameter passed when accept() is called is the descriptor s of the socket on which
the connection is to be set up. After accept() is executed, the from parameter contains the
address of the partner application, and fromlen contains the length of this address. When a
connection is accepted with accept(), a descriptor is created for a new socket. This
descriptor returns accept() as its result. Once the execution of send() has set up the
connection completely, data can be exchanged on the new socket. The server can accept
additional connections on socket s.

An accept() call normally blocks because the accept() function does not return until a
connection is accepted. When accept() is called, the server task also has no way of
indicating that it only wants to accept connection requests from one or more specific
partners. The server task must therefore note where the connection comes from and
terminate it if it does not want to communicate with the client concerned.

The following points are described in detail in the chapter “Extended SOCKETS(BS2000)
functions” on page 71:

— how a server task can accept connections on more than one socket
— how a server task can prevent the accept() call from blocking

Data transfer with connection-oriented communications

Data can be transferred as soon as a connection is set up. If the communications endpoints
of both communication partners are hard-bound with each other via the addressing-pair, a
user task can send and receive messages without having to specify the addressing-pair
every time.

There are several functions for sending and receiving data:

recv(s, buf, sizeof buf, flags);
send(s, buf, sizeof buf, flags);
soc_read(s, buf, sizeof buf);
soc_write(s, buf, sizeof buf);
soc_readv(s, iov, iovcnt);
soc_writev(s, iov, iovcnt);
recvmsg(s, msg, flags);
sendmsg(s, msg, flags);

The socket functions are described in detail in the section “Description of functions” on
page 119.

U41052-J-2125-9-76 49

Closing a socket SOCKETS(BS2000) basics

2.9

29.1

Terminating a connection and closing a socket

The way in which a connection is teminated and a socket is closed differs depending on the
communication domain used (AF_INET/AF_INET6 or AF_ISO).

Terminating a connection in the AF_INET and AF_INET6 domains

In the AF_INET and AF_INET6 domains, a connection can be terminated using soc_clos&()
or shutdown(). A socket can only be closed with soc_close(), but not with shutdown().

When terminating a connection a distinction is made between a “graceful disconnect” and
an “abortive disconnect”. This is handled by the transport system or rather the TCP protocol
machine. One of the two options is selected using the soc_close() and shutdown() functions.

The following explanations of terminating a connection using soc_close() and shutdown() are
based on the situation illustrated in figure 2. A client/server connection is to be terminated
via which data has been transferred in both directions.

_ Data transfer
Client Server

C

Figure 2: Client/server connection with bidirectional data transfer

Terminating a connection (“graceful”) using soc_close()

The following steps are executed:

1. Once the last data has been sent, server S initiates the termination of a connection on
the socket in S using soc_close(). This disables writing for the socket in server S and the
partner socket in client C is informed that the socket in S will no longer send data. This
is a “graceful disconnect”. Following a “graceful disconnect”, the connection is still
maintained, however data transmission from S to C is disabled.

2. Once the signal for “graceful disconnect” has been received, the client C user program
can read all the data that has not yet been fetched until the end of the data flow is
indicated with EOF.

50

U41052-J-2125-9-76

SOCKETS(BS2000) basics Closing a socket

3. Client C calls soc_close() for the socket in C. This sends a “graceful disconnect”to S and

the connection is completely terminated. The socket is closed in C. The termination of
the connection is reported in S and the socket is closed.

i @

If C answers the “graceful disconnect” event by calling soc_close() before attempting
to read any existing data, the connection is completely terminated immediately and

data is lost.

Terminating a connection (“graceful”) using shutdown()

The following steps are carried out:

1.

Once the last data has been sent, server S initiates the termination of the connection
on the socket in Server S using shutdown(... , SHUT_WR). This disables writing for the
socket in server S and the partner socket in client C is informed that the socketin S can
no longer send data. This is a “graceful disconnect”. Following a “graceful disconnect”,
the connection is still maintained, however data transmission from S to C is disabled.

Once the signal for “graceful disconnect” has been received, the client C user program
can read all the data that has not yet been fetched until the end of the data flow is
indicated with EOF.

Client C calls shutdown(... , SHUT_WR) for the socket in C. This sends a “graceful
disconnect” to S and the connection is completely terminated.

The sockets in C and S are both closed with soc_close().

i @

If C answers the “graceful disconnect” event by calling
shutdown(... ,.SHUT_WR) before attempting to read any existing data, the connection

is completely terminated immediately and data is lost.

Terminating a connection (“abortive”) using soc_close()

The following steps are carried out:

1. Server S marks its socket interface with the SO_LINGER option of the setsockopt()

function and sets the |_linger delay interval in the linger structure to O.

When the server calls the soc_close() function, the “abortive” termination of the
connection is initiated.There is no read or write access to the socket in Server S. The
partner socket in client C is informed of the “abortive disconnect” and the socket in
server S is closed.

Once the signal for “abortive disconnect” has been received, the client C user program
can no longer read data. Any existing data that has not yet been fetched from the
transport system is lost.

U41052-J-2125-9-76 51

Closing a socket SOCKETS(BS2000) basics

2.9.2

4.

Client C can therefore only respond to the socket in server S with soc_close() and thus
close the C socket.

Terminating a connection (“abortive”) using shutdown()

The following steps are executed:

1.

Server S initiates the termination of the connection using shutdown(..., SHUT_RDWR).
There is no read or write access to the socket in server S now, and the partner socket
in client C is informed of the “abortive disconnect”.

If the client C application program has not fetched any existing data from the transport
system before receiving “abortive disconnect”, this data is lost.

It is therefore only meaningful to answer with shutdown(...,.SHUT_RDWR) in client C and
to close both sockets in server S and client C with soc_close().

Terminating a connection in the AF_ISO domain

In the AF_ISO domain, only the soc_close() function is available for terminating a
connection. The connection is completely aborted upon the first call of soc_close() for the
socket of a connection end point. Data not yet fetched on the partner side is lost.
Connection termination data, which was previously entered in the socket (see getsockopt(),
setsockopt() on page 156) can however be transmitted with the soc_close() function.

Terminating a connection (“abortive”) using soc_close()

The following steps are carried out:

1.

If required, server S writes connection termination data to the socket using the
TPOPT_DISC_DATA option of the setsockopt() function.

If the server calls the soc_close() function, the “abortive disconnect” is initiated. Here is
no read or write access to the socket in server S now. The partner socket in client C is
informed of the “abortive disconnect”. If available, the data referring to the termination
of the connection is transmitted. The socket in server S is closed.

Once the signal for “abortive disconnect” has been received, the client C application
program can read the connection abort data, if this has been transmitted from the
server. The user program can no longer read any other data. Any existing data that has
not yet been fetched from the transport system is lost.

Client C can therefore only respond to the signal of S with soc_close() and thus close the
socket in C.

52

U41052-J-2125-9-76

SOCKETS(BS2000) basics Multiplexing input/output

2.10

2.10.1

Multiplexing input/output

It is often useful to distribute inputs and outputs over several sockets. You can use either
the select() or the soc_poll() function for this type of input/output multiplexing. However, it is
recommended that you use the select() function.

Multiplexing input/output with the select() function

select() enables a program to monitor several connections simultaneously.
The following program section illustrates the use of select().

#include <sys.time.h>
#include <sys.types.h>

char *readmask, *writemask, *exceptmask;
struct timeval timeout;
int nfds:

select(nfds, readmask, writemask, exceptmask, &timeout);

The parameters required by select() are three pointers to one bit mask each, which repre-
sents a set of socket descriptors:

— sdect() uses the bit mask passed with readmask to test from which sockets data can be
read.

— sdect() uses the bit mask passed with writemask to test to which sockets data can be
written.

— sdect() uses the bit mask passed with exceptmask to test which sockets have an
exception pending.
The exceptmask parameter is not evaluated by SOCKETS(BS2000) at present.

The bit masks for the individual descriptor sets are stored as bit fields in integer strings. The
maximum required size of the bit fields can be determined via the getdtablesize() function
(see page 138). The required memory should be requested from the system dynamically.

The nfds parameter specifies how many bits or descriptors are to be tested:

select() tests bits 0 to nfds-1 in each bit mask.

If you are not interested in one of the pieces of information (read, write or pending excep-
tions), you should pass the null pointer with the select() call for the parameter concerned.

You can modify the bit masks with macros. You should, in particular, set the bit masks to 0
before modifying them. The bit mask manipulation macros are described on page 189
under the functional description of select().

U41052-J-2125-9-76 53

Multiplexing input/output SOCKETS(BS2000) basics

You can use the timeout parameter to define a timeout value if the selection process is to be
limited to a predefined time. If you pass the null pointer with timeout, the execution of select()
blocks for an unspecified time.

You can set polling by passing timeout a pointer to a timeval variable whose components are
all setto 0.

After successful execution, the value returned by select() specifies the number of selected
descriptors. The bit masks then indicate:

— which descriptors are ready for reading
— which descriptors are ready for writing

If select() terminates with a timeout, it returns the value 0. The bit masks are then
unchanged.

If select() terminates with an error, it returns the value “-1” and the appropriate error code in
errno. The bit masks are then unchanged.

After select() has been executed successfully, use the FD_ISSET(fd, &mask) macro call to
check the status of a descriptor fd. The macro returns a value not equal to 0 if fd is a member
of bit mask mask; otherwise, the value 0.

You can determine whether connection requests to a socket fd are waiting for acceptance
by accept() by checking the “read” readiness of socket fd. To do this, you call select() and
then the FD_ISSET (fd, &mask) macro. If FD_ISSET returns a value not equal to 0, this
indicates “read” readiness of socket fd: which means that a connection request is pending
on socket fd.

54

U41052-J-2125-9-76

SOCKETS(BS2000) basics

Multiplexing input/output

Example: Using select() to test for pending connection requests

The program code (for AF_INET) below results in a connection request being waited for.
When it arrives, it is accepted and the program is terminated.

#include <stdlib.h>
#include <sys.types.h>
#include <sys.socket.h>
#include <sys.time.h>
#include <netinet.in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

#define TESTPORT 5555

/*
* This program uses select() to test whether someone is trying to set up
* a connection and then calls accept().

main()

{

int sock;

struct sockaddr_in server;

struct sockaddr_in client;

int clientlen;

int msgsock;

int fdsize;

char * ready;

struct timeval to;

memset(&server, '\0',sizeof(server));
memset(&client, '\0',sizeof(client));
clientlen = sizeof(client);

/* Request memory for testing the socket descriptors using
soc_select() */

if ((fdsize = getdtablesize()) < 0) {
perror("get fd_size");
exit(1l);

if (ready = ((fd_set *) memalloc(fdsize/8) == NULL)) {
perror("no memory space");
exit(1l);

/* Create socket. */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) {

U41052-J-2125-9-76

55

Multiplexing input/output SOCKETS(BS2000) basics

}

perror("opening stream socket");
exit(l);
b

/* Assign the socket a name using wildcards */

server.sin_family = AF_INET;

server.sin_addr.s_addr = htonl (INADDR_ANY);

server.sin_port = htons(TESTPORT);

if (bind(sock, (struct sockaddr *)&server, sizeof server) < 0) {
perror("binding stream socket");
exit(1);

/* Start acceptance of connections. */
listen(sock, 5);
do {
memset(ready, 0, fdsize/8);
FD_SET(sock, (fd_set *)&ready);
to.tv_sec = b;
to.tv_usec=0;
if (select(sock + 1, (fd_set *)ready, (fd_set *)O,
(fd_set *)0, &to) < 0) {
perror("select");
continue;
}
if (FD_ISSET(sock, (fd_set *)ready)) f{
msgsock = accept(sock, (struct sockaddr *)&client, &clientlen);

if (msgsock >= 0)
{
/* Successful acceptance of request to establish connection*/
/* Follow—up processing of the data which is transferred */
/* via this connection */
printf("End of program after successful conection setup\n");
break;

else
{
/* An error has occurred */
/* Error message and possibly renewed waiting for a request */
/* to establish a connection */
printf("End of program: An error occurred during connection
setup\n");
break;
}
}
} while (TRUE)

exit(0);

56

U41052-J-2125-9-76

SOCKETS(BS2000) basics Multiplexing input/output

2.10.2

Multiplexing input/output with the soc_poll() function

soc_poll() also enables a program to monitor several connections simultaneously.
The following program section illustrates the use of soc_poall():

#include <sys.socket.h>
#include <sys.poll.h>

struct pollfd fds[31;
int timeout = 0;
unsigned long nfds = 3;

fds[OJ.events = POLLIN;
fds[1].events POLLOUT

fdsl[2].events POLLIN;

soc_poll(fds, nfds, timeout);

The socket descriptors and events to be tested are transmitted in an array of pollfd structure
elements. fdsis a pointer to this array. nfds specifies the number of structure elements.

In the example shown in this section these are descriptors 0...2 and the POLLIN and
POLLOUT events. POLLIN indicates the “read” readiness and POLLOUT the “write”
readiness of the socket.

The timeout parameter specifies how the soc_poll() function should behave if no event is to
be tested:

— Iftimeout = 0, soc_poll() tests all specified descriptors of the event to be tested only once.
soc_poll() is then reset, regardless of whether the test was successful or not.

— Iftimeout > 0 a waiting time is specified in seconds. During this waiting time soc_pall() is
blocked as long as none of the events to be tested occur.

— If timeout = -1 soc_poll() is blocked until one of the events to be tested occurs.

The return value of soc_poll() indicates the frequency of the occurrence, i.e., at least one bit
is set in the revents return field of the corresponding pollfd structure element.

pollfd structure as declared in <sys.poll.h>:

struct pollfd {

int fd; /* socket file descriptor to poll*/
short events; /* events on interest on fd*/
short revents; /* events that occurred on fd */

U41052-J-2125-9-76 57

Multiplexing input/output SOCKETS(BS2000) basics

Example: Using soc_poll() to test for pending connection requests

The following program code is the same as the previous example except that the select()
function has been replaced with the soc_poall() function.

#include <sys.types.h>
#include <stdlib.h>
#include <sys.socket.h>
#include <sys.poll.h>
#include <netinet.in.h>
#include <netdb.h>
#include <stdio.h>
#define TRUE 1

#define TESTPORT 5555

/*

* This program uses soc_poll() to check whether someone is attempting to
* establish a connection, and then calls accept().

*/

main()

{
int sock;
struct sockaddr_in server;
struct sockaddr_in client;
int clientlen;
int msgsock;
struct pollfd fds[1];
unsigned long nfds = 1;
int timeout = 5;
memset(&server, '\0',sizeof(server)); memset(&client,'\0',sizeof(client));

clientlen = sizeof(client);

/* Initialize the fds structure arrays to request the “read” readiness of the
lTisten socket */

fds[01.fd = 0;

fds[0J.events = POLLIN;

fdsl[O0J.revents = 0;

/* Create socket. */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0) {
perror("opening stream socket");
exit(1l);

58

U41052-J-2125-9-76

SOCKETS(BS2000) basics Multiplexing input/output

/* Assign the socket a name using wildcards */

server.sin_family = AF_INET;

server.sin_addr.s_addr = htonl(INADDR_ANY);

server.sin_port = htons(TESTPORT);

if (bind(sock, (struct sockaddr *)&server, sizeof server) < 0) {
perror("binding stream socket");
exit(l);

/* Start acceptance of connections. */
listen(sock, 5);

do {
fds[0l.fd = sock;
if (soc_poll(fds, nfds, timeout)) <= 0){
perror("soc_poll");
continue;
}
else

{
if (fdsCOJ.revents & POLLIN) {
fdsLO0J].revents = 0;
msgsock = accept(sock, (struct sockaddr *)&client, &clientlen);
if (msgsock >= 0)
{
/* Successful acceptance of request to establish connection*/
/* Follow—up processing of the data which is transferred */
/* via this connection */
printf("End of program after successful conection setup\n");
break;

else
{
/* An error has occurred */
/* Error message and possibly renewed waiting for a request */
/* to establish a connection */
printf("End of program: An error occurred during connection
setup\n");
break;

}
}
} while (TRUE);
exit(0);
}

U41052-J-2125-9-76 59

Interaction of the socket functions SOCKETS(BS2000) basics

2.11 Interaction of the SOCKETS interface functions

The following figures illustrate the interaction between the functions of the

SOCKETS(BS2000) interface. The individual functions are described in detail in the

chapter “SOCKETS(BS2000) user functions” on page 111.

2.11.1 Interaction between functions for connection-oriented
communications

The way in which connection-oriented communications are performed differ depending on

the communications domain used (AF_INET or AF_INETS6, or AF_ISO).

Connection-oriented communication in AF_INET and AF_INET6

Protocol: TCP
connection-oriented

J

soc_close() soc_close()

CLIENT SERVER
socket() (SOCK_STREAM) socket() (SOCK_STREAM)
[bind()] bind()
listen()
connect() -~ _ _ _ _____—_—/—_* accept() ::
sendmsg(),send(),soc_write(),soc_writev() recvmsg,recv(),soc_read(),soc_readv()
recvmsg(),recv(),soc_read(),soc_readv() sendmsg,send(),soc_write(),soc_writev()

Figure 3: Interaction of the SOCKETS(BS2000) interface functions with stream sockets (AF_INET, AF_INET6)

60

U41052-J-2125-9-76

SOCKETS(BS2000) basics Interaction of the socket functions

Connection-oriented communication AF_ISO

Protocol: ISO
connection-oriented
CLIENT SERVER
socket() socket()
bind() bind()
[setsockopt() (TPOPT_CONN_DATA)] or listen()
[sendmsg() (TPOPT_CONN_DATA)]
connect() » accept()
v

[getsockopt() (TPOPT_CONN_DATA)] or
[recvmsg() (TPOPT_CONN_DATA)]

sendmsg() (TPOPT_CFRM_DATA) or
L—send(),sendmsg(),soc_write(),soc_writev() or
setsockopt() (TPOPT_CFRM_DATA) und send()

A

[getsockopt() (TPOPT_CFRM_DATA)] or
[recvmsg() (TPOPT_CFRM_DATA)]

recv(),recvmsg(),soc_read(),sockreadv()
send(),sendmsg(),soc_write(),soc_writev()

send(),sendmsg(),soE_write(),soc_writev() l |

recv(),recvmsg,soc_read(),soc_readv()

v

[setsockopt() (TPOPT_DISC_DATA)] or
[sendmsg() (TPOPT_DISC_DATA)]

[getsockopt() (TPOPT_DISC_DATA)] or
[recvmsg() (TPOPT_DISC_DATA)]

soc_close() soc_close() <«

Figure 4: Interaction of the SOCKETS(BS2000) interface functions with stream sockets (AF_ISO)

U41052-J-2125-9-76 61

Interaction of the socket functions

SOCKETS(BS2000) basics

2.11.2

Interaction between functions for connectionless communications

The figure below illustrates the interaction of the SOCKETS(BS2000) interface functions
with datagram sockets (SOCK_DGRAM).

connectionless

socket() (SOCK_DGRAM)

bind()

sendmsg(),sendto()

recvmsg(),recvfrom()

soc_close()

Protocol: UDP

quasi-connection-oriented

socket() (SOCK_DGRAM)

bind()

connect()

send(),soc_write(),soc_writev()

recv(),soc_read(),soc_readv()

soc_close()

Figure 5: Interaction of the SOCKETS(BS2000) interface functions with datagram sockets

62

U41052-J-2125-9-76

3 Address conversion with SOCKETS(BS2000)

Ino
add

rder to allow processes to communicate with one another on sockets, network
resses need to be determined and created. The SOCKETS(BS2000) library provides

many different utility routines and macros for this purpose for the communications domains
AF_INET and AF_INET®6. These utility routines and macros are presented briefly in this

cha

pter.

All utility routines are described in detail in the chapter “SOCKETS(BS2000) user functions”
on page 111.

Before a client and server can communicate with each other, the client has to determine the
service on the remote host. The following address conversion stages are required to
determine the service concerned:

1.

The
[]
[]
[]

A service and a host are each assigned names for better legibility at the user program
level, e.g. the service login on host Monet.

The system converts a service name to a service number (port number) and a host
name to a network address (IPv4 or IPv6 address).

following conversion functions are available:

host names to network addresses, and vice versa
network names to network numbers

protocol names to protocol numbers

service names to port numbers and the relevant protocol for communicating with the
server

If you want to use one of these functions, you will need to include the <netdb.h> file.
Program examples which use the conversion functions described below can be found in
chapter “Client/server model with SOCKETS(BS2000)” on page 85.

U41052-J-2125-9-76

63

Host names / network addresses Converting

3.1 Converting host names to network addresses and vice versa

There are special socket functions for converting host names to network addresses and
vice versa in the AF_INET and AF_INET6 address families.

Socket functions for converting addresses in the AF_INET and AF_INET6 address
families

The getipnodebyname() function converts a host name to an IPv4 or IPv6 address. A host
name is passed when getipnodebyname() is called.

The getipnodebyaddr() function converts an IPv4 or IPv6 address to a host name. An IPv4
or IPv6 address is passed when getipnodebyaddr() is called.

The inet_ntop() function converts an Internet host name to a character string. This character
string is returned as follows:

— in hexadecimal colon notation for AF_INET6
— in decimal dotted notation for AF_INET

The inet_pton() function converts an Internet host address in printable representation
— from a character string in decimal dotted notation to a binary IPv4 address (AF_INET).

— from a character string in hexadecimal colon notation to a binary IPv6 address
(AF_INETS).

Abbreviated notation using two consecutive colons “::” is not supported for AF_INET6.

Socket functions address conversion which are only supported in AF_INET

The gethostbyname() function converts a host name to an IPv4 address. A host name is
passed when gethostbyname() is called.

The gethostbyaddr() function converts an IPv4 address to a host name. An IPv4 address is
passed when gethostbyaddr() is called.

gethostbyname() and gethostbyaddr(), as well as getipnodebyname() and getipnodebyaddr (),
return a pointer to an object of data type struct hostent as their result.

64 U41052-J-2125-9-76

Converting

Host names / network addresses

The hostent structure is declared in <netdb.h> as follows:

struct hostent f{

} .

char *h_name; /* official host name */

char **h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; /* Tength of the address (in bytes) */
char **h_addr_Tlist; /* 1ist of addresses for the host, */

/* terminated with the null pointer*/

#define h_addr h_addr_1ist[0] /* first address, network byte order */

The
and
the

The

hostent object returned by gethostbyname() and gethostbyaddr() and by getipnodebyname()
getipnodebyaddr () always contains the following information, if this is made available by
database:

the official name of the host

a list of the host aliases

address type (domain)

a list of addresses of variable length, terminated with the null pointer

address list is required because a host normally has several addresses which are all

assigned to the same host name. h_addr ensures backward compatibility and is defined as
the first address in the address list of the hostent structure.

The

inet_ntoa() function converts an IPv4 host address to a character string in accordance

with the normal Internet dotted notation.

U41052-J-2125-9-76

65

Protocol names Converting

3.2 Converting protocol names to protocol numbers
The getprotobyname() function converts a protocol name to a protocol number. The protocol
name is passed when getprotobyname() is called.
getprotobyname() returns a pointer to an object of type struct protoent as its result.
The protoent structure is declared in <netdb.h> as follows:

struct protoent {

char *p_name; /* official protocol name */
char **p_aliases; /* alias 1list */
int p_proto; /* protocol number */

66 U41052-J-2125-9-76

Converting

Service names / port numbers

3.3

Converting service names to port numbers and vice versa

A service is expected to be on a specific port and use just one communications protocol.
This view is consistent within the Internet domain but does not apply in some other network
architectures. A service may also be available on several ports, in which case higher-level
library functions have to be forwarded or extended.

The getservbyname() function converts a service name to a port number. The service name
and, optionally, the name of a qualifying protocol are passed when getservbyname() is called.
The getservbyport() function converts a port number to a service name. The port number

and, optionally, the name of a qualifying protocol are passed when getservbyport() is called.

getservbyname() and getservbyport() return a pointer to an object of data type struct servent as
their result.

The servent structure is declared in <netdb.h> as follows:

struct servent f{

char *s_name; /> official name of the service */

char **s_aliases; /* alias list */

int s_port; /* number of the port on which the service lies*/
char *s_proto; /* protocol used */

Up to openNet Server V3.4 with SOCKETS(BS2000) V2.5, conversion took place
on the basis of a static list contained in SOCKETS(BS2000).

In openNet Server V3.5 and higher with SOCKETS(BS2000) V2.6, a services file
with the default name SYSDAT.BCAM.ETC.SERVICES is offered which is man-
aged by BCAM (see the “BCAM Volume 1/2" manual). This file is supplied with the
default assignment of ports 1-1023. If you have appropriate user rights, you can
modify this file. You can then modify default port assignments and add port assign-
ments.

i @

Example

The following program code returns the port number of the telnet service, which uses
the TCP protocol:

struct servent *sp;

sp = getservbyname("telnet", "tcp");

U41052-J-2125-9-76 67

Byte order

Converting

3.4

Converting the byte order

If you use the address conversion functions described above, you will seldom have to
directly handle addresses in an Internet user program. You can then develop services that
are independent of networks to a large extent. However, some network dependency still
remains, since the IP address has to be specified in a user program if a name is assigned
to a service or socket.

Besides the library functions for converting names to addresses, there are also some
macros which simplify the handling of names and addresses.

The host byte order and network byte order differ in some architectures. Because of this,
programs sometimes have to change the byte order. The macros summarized in the table
below convert bytes and integers from host byte order to network byte order, and vice versa.

Library macros for converting byte orders

Call Meaning

htonl(val) Convert 32-bit fields from host byte order to network byte order
htons(val) Convert 16-bit fields from host to network byte order

ntohl(val) Convert 32-bit fields from network to host byte order

ntohs(val) Convert 16-bit fields from network to host byte order

The byte order conversion macros are needed because the operating system expects the
IPv4 addresses in network byte order. The library functions which return network addresses
supply them in network byte order, allowing them to be simply copied into the structures
available to the system. You should therefore only encounter byte order problems when
interpreting network addresses.

The host and network byte orders are identical in BS2000. The macros listed in the table
are therefore defined as null macros (macros without contents). However, it is strongly
recommended that you use the macros if you want to create portable programs.

In IPv6 implementation, network addresses are always expected in network byte order, i.e.
there is no definition of a difference between host byte order and network byte order, and
there is therefore no corresponding conversion function.
If necessary, only the port number has to be converted.

68

U41052-J-2125-9-76

Converting Addresses (example)

3.5 Example of address conversion

The client program code of the remote login shown below demonstrates the address
conversion discussed in the preceding sections.

#include <sys.types.h>
#include <sys.socket.h>
#include <netinet.in.h>
#include <stdio.h>
#include <netdb.h>

main(argc, argv)
int argc;
char *argvl];

struct sockaddr_in server;
struct servent *sp;

struct hostent *hp;

int s;

sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(l);
}
hp = gethostbyname(argv[1]);
if (hp == NULL) {
fprintf(stderr, "rlogin: %s: unknown host\n", argv[1]);
exit(2);
}
memset((char *)&server, 0, sizeof server);
memcpy ((char *)&server.sin_addr, hp—>h_addr, hp—>h_length);
server.sin_family = hp—>h_addrtype;
server.sin_port = sp—>s_port;
s = socket(AF_INET, SOCK_STREAM, 0);
if (s <0) {
perror("rlogin: socket");
exit(3);
}

/* Connect does the bind for us */
if (connect(s, &server, sizeof server) < 0) {
perror("rlogin: connect");
exit(b);
}
exit(0);
}

U41052-J-2125-9-76

69

Addresses (example) Converting

70 U41052-J-2125-9-76

4 Extended SOCKETS(BS2000) functions

The procedures described in the preceding chapters will suffice in most cases for
developing distributed applications. However, it may sometimes be necessary to make
additional use of the following SOCKETS(BS2000) features:

e non-blocking sockets

e multicast messages

e socket options

e support of virtual hosts

e Handoff (move an accept socket)

e raw sockets

U41052-J-2125-9-76

Non-blocking sockets Extended SOCKETS(BS2000) functions

4.1 Non-blocking sockets

With non-blocking sockets, the accept(), connect() and all input/output functions are
terminated if they cannot be executed immediately. The function concerned then returns an
error code. In other words, in contrast to normal sockets, non-blocking sockets prevent a
process from being interrupted because it has to wait for the termination of accept(),
connect() or I/O functions. You can mark a socket created with s=socket() as non-blocking
with the soc_ioctl() function (see page 206) as follows:

#include <ioctl.h>

int s;

int block;

s = socket(AF_INET, SOCK_STREAM, 0);

block = 1;

if (soc_ioctl(s, FIONBIO, &block) < 0) {
perror("soc_ioct1(s, FIONBIO, block) <0");
exit(l);

You should particularly watch out for the EWOULDBLOCK error when executing the
accept(), connect() or I/O functions on non-blocking sockets. EWOULDBLOCK is stored in
the global errno variable and occurs if a function which normally blocks is executed on a
non-blocking socket.

The accept() and connect() functions as well as all read and write operations can return the
EWOULDBLOCK error code. Processes should therefore be prepared to handle such
return values: for example, even if the send() function is not executed completely, it may still
be meaningful with stream sockets to execute at least part of the write operations. In this
case, send() only considers the data that can be sent immediately. The return value
indicates the amount of data already sent.

The “non-blocking” property of a listen socket is not passed onto a socket created
with accept().

i @

72 U41052-J-2125-9-76

Extended SOCKETS(BS2000) functions Broadcast messages

4.2 Multicast messages (AF_INET, AF_INET6)

In contrast to unicast messages, a sender can use multicast messages to reach more than
one receiver. However, unlike with broadcast messages, a selection takes place because
each recipient must join a multicast group to receive such messages. A sender does not
log in, but it is possible to receive locally at the same time.

Multicast messages save on system resources and bandwidth in the network, especially
when an application is involved for which there is only one send direction. Practical appli-
cation scenarios for multicast messages are file streams, e.g. for music or video, video
conferences or news or stock exchange tickers.

Multicast messages are transferred using datagram packets, in other words using an
insecure service. The application must therefore guarantee that the data reaches the
receiver with its integrity ensured. And it must make sure that the data is only supplied to
authorized receivers.

Prerequisites

Separate areas are used for multicast message transfer in both the IPv4 address space and
the IPv6 address space. The communications systems used, such as BCAM in BS2000,
must permit and support multicast operation.

Multicast operation with the default settings is permitted in BCAM. If there is any doubt, the
configuration should be checked, and if necessary intervention should take place on an
administrative level. Please refer to the “BCAM Volume 1/2” manual for details.

If the messages are to leave the local area, multicast-capable routers are also required
which must be configured accordingly.

SOCKETS functions for multicast support

SOCKETS(BS2000) offers functions for transferring and receiving multicast messages and
for logging onto or logging off from multicast groups.

The address range 224.0.0.0 through 239.255.255.255 is provided for IPv4; addresses
224.0.0.0 through 224.0.0.255 are reserved for local applications and are not routed.

The multicast address range in IPv6 begins with the prefix FF, followed by 4-bit flags and a
4-bit scope. The precise assignment is described in the RFC “IP Version 6 Addressing
Architecture,” currently RFC 4291.

Reserved multicast addresses in IPv4 and IPv6 can be viewed at the Internet Assigned
Numbers Authority (IANA).

U41052-J-2125-9-76 73

Multicast messages Extended SOCKETS(BS2000) functions

Socket options for AF_INET

In the AF_INET address family, the transfer of multicast messages is supported by the
following socket options:

— IP_ADD_MEMBERSHIP: log on to a multicast group
After logging on, data of this group is delivered.
— IP_DROP_MEMBERSHIP: log off from a multicast group
— IP_MULTICAST _IF: display or define the sender interface
— IP_MULTICAST_TTL: display or define the multicast hop limit
— IP_MULTICAST_LOOP: reception is possible on the local sending host

Socket options for AF_INET6

In the AF_INET6 address family, the transfer of multicast messages is supported by the
following socket options:

— IPV6_JOIN_GROUP: log on to a multicast group
After logging on, data of this group is delivered.
— IPV6_LEAVE_GROUP: log off from a multicast group
— IPV6_MULTICAST _IF: display or define the index of the sender interface
— IPV6_MULTICAST_HOPS: display or define the multicast hop limit
— IPV6_MULTICAST_LOOP: reception is possible on the local sending host

74 U41052-J-2125-9-76

Extended SOCKETS(BS2000) functions Socket options

4.3 Socket options

You can use the setsockopt() and getsockopt() functions to set or query the current value of
various options for sockets.

For example, you set options to activate the keepalive monitoring for a socket connection or
to modify the time interval for monitoring.

For example, you can set options to identify a socket for sending broadcast messages.
The general format of the calls is as follows:
setsockopt(s, level, optname, optval, optlen);

getsockopt(s, level, optname, optval, optlen);

s designates the socket for which the option is to be set or queried.

level defines the protocol level to which the option belongs. This is normally the socket level
that is indicated by the SOL_SOCKET symbolic constant (for AF_INET and AF_INET6) or
SOL_TRANSPORT (for AF_ISO). SOL_SOCKET and SOL_TRANSPORT are defined in
<sys.socket.h>.

Other levels are SOL_GLOBAL, IP_PROTO_TCP, IP_PROTO_IPv4, IP_PROTO_IPv6,
IPPROTO_ICMP und IPPROTO_ICMPV6. For reasons of compatibility, both
IP_PROTO_IP and IP_PROTO_IPv4 are supported. You will find a description of these
levels in the description of the getsockopt() and setsockopt() functions on page 156.

The socket option is specified in optname and is also a symbolic constant defined in
<sys.socket.h>.

optval is a pointer to the option value. You use optval with setsockopt() to enable/disable the
optname option for socket s. With getsockopt(), optval informs you as to whether the optname
option is enabled or disabled for socket s.

With setsockopt(), optlen defines the length of the option value optval, With getsockopt(), optlen
is a pointer which defines the size of the memory area to which optval points. On returning
from getsockopt(), optlen points to an integer value that indicates the current length of the
option value returned in optval.

U41052-J-2125-9-76 75

Support of virtual hosts Extended SOCKETS(BS2000) functions

4.4 Support of virtual hosts

It is possible to define a number of virtual hosts in addition to a real host (standard host).
The real host and the virtual host are created using the static or dynamic generation which
BCAM offers. Additional steps must be taken in order to ensure that the applications can be
addressed. It is possible for a virtual host to have a number of IP addresses.

This functionality has no impact on existing or new standard applications. The functionality
is made available with the new subfunctions soc_ioctl() and getsockopt(), setsockopt(), which
allow the sockets user to obtain the necessary information on the configuration with virtual
hosts and to use this information appropriately in the applications.

The decision as to the host on which the application will run is taken when the bind() function
is executed. At this time, the socket must be informed of the host to be addressed.

In the event of single addressing, this is done automatically using the specified IP address,
and in the event of ANYADDR or LOOPBACK addressing, it is necessary to specify the
relevant BCAM host name. Where required, this name must be entered in the socket using
the new setsockopt() subfunction SO_VHOSTANY before bind() is executed. This is
necessary because it is not possible to uniquely assign ANYADDR or LOOPBACKADDR
to a host.

The new soc _ioctl() subfunctions SIOCGLVHNUM and SIOCGLVHCONF can be used to
determine the number of virtual hosts and the associated BCAM host names and socket
host names.

Note that it is, of course, still possible to assign sockets applications to a virtual host using
the application table in BCAM.

This is why it is also possible to address the real host using the new functionality.

BCAM host name:
The name is eight characters in length. Alphanumeric characters and
the special characters #, @, $ or blanks can be used at the end of the
name. As a rule, uppercase characters should be used, but the name is
case-sensitive. Names comprising numeric characters only are not
permitted.

By default, the HOST-ALIASING functionality is active in the BCAM transport
system. This can lead to undesired side-effects if the functionality for supporting
virtual hosts is used.

i @

HOST-ALIASING means that a request to establish a connection to a virtual
host is forwarded to a real host if the relevant port number is only open in the
real host.

HOST-ALIASING can be suppressed at the listen socket of the real host using
setsockopt(fd, SOL_SOCKET, SO_DISHALIAS, 1, 4). If this flag is set in the socket
prior to bind(), the subsequent bind() deactivates HOST-ALIASING for this port
number in the BCAM transport system.

76

U41052-J-2125-9-76

Extended SOCKETS(BS2000) functions Handoff (move an accept socket)

The result of this is that a request to establish a connection using this port
number on a virtual host can only be successful if the port with the corre-
sponding address is actually open on the virtual host. Requests are then not
forwarded to the real host for this application.

4.5 Handoff (move an accept socket)

45.1 General description

The handoff functionality makes it possible to move the endpoint of a socket connection
without the need to interrupt establishment of the connection. In other words, the appli-
cation that is actively establishing the connection does not have to repeat the process. This
is made possible by an extended functionality taking into account the ISO service function-
ality in the AF_ISO domain. In order to achieve this, it is necessary to establish a local
AF_1SO connection for internal communication.

One practical example is when connection requests are accepted by a central listener and
the endpoint is moved to an assigned server.

45.2 Execution of the function

New subfunctions for sendmsg(), recvmsg(), setsockopt() and getsockopt() are provided for this
functionality.

To achieve this, the following structures are required in the header file sys.socket.h:

/*
* struct instead of cmsghdr in case of Handoff-Handling
*/

struct red_info_tcp {

short fd; /* file descriptor (listener) */
short port; /* port number */
short domain; /* address family */
short flags; /* flags of success */
int cid; /* cid */
int if_index; /* interface index Tistener process */
int rwindow; /* max read window */
int wwindow; /* max write window */

U41052-J-2125-9-76 7

Handoff (move an accept socket) Extended SOCKETS(BS2000) functions

struct red_info_iso {

short fd; /* file descriptor (Tistener) */
short domain; /* address family */
short flags; /* flags of success */
short tsellen; /* length of TSEL */
int rwindow; /* max read window */
int wwindow; /* max write window */
char tsell[327; /* TSEL application */
char tesnl81; /* TESN hostname */

b
struct red_info_svrs {

short domain; /* domain (serverlaccept]) */
short fd_server; /* file descriptor(serverlaccept]) */
int tsor_server; /* tsap_open_reference 1. server_socket */
int cref_server; /* cref serverlaccept]_socket */

b

struct cmsg_redhdr {
u_int cmsg_len; /* data byte count, including hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type of operation */
union A{
char tsap_name[TSAPNAMMAXLENT; /* needed tsap_name for shared tsap */
struct red_info_iso red_liso; /* needed tsap_name for iso shared tsap */
struct red_info_tcp red_ltcp; /* Info of Tisten socket */
struct red_info_tcp red_ctcp; /* Info of client */
struct red_info_svrs red_svrs; /* Info of server socket ("accept") */
} cmsg_redhdr_info;
short bind_ok; /* open shared TSAP successfull */
short handoff_ok; /* handoff successfull */
short tsap_name_len; /* length of tsap_name */
short fd_server; /* file descriptor redirected socket */
short domain; /* address family */
int tsn; /* tsn server—process */

#define redhdr_tsap_name cmsg_redhdr_info.tsap_name

#define redhdr_red_liso cmsg_redhdr_info.red_1liso

#define redhdr_red_ltcp cmsg_redhdr_info.red_Ttcp

#define redhdr_red_ctcp cmsg_redhdr_info.red_ctcp

#define redhdr_red_svrs cmsg_redhdr_info.red_svrs

b

78

U41052-J-2125-9-76

Extended SOCKETS(BS2000) functions Handoff (move an accept socket)

Execution sequence

Acceptance: client = C, listener =L, server=S
The listen socket of listener L has the file descriptor fd = 1.

A connection under the AF_ISO domain is established between listener L and server S
usingfd 0 on the listener side and fd O on the server side. This connection can be estab-
lished either in blocking mode or in non-blocking mode.

In non-blocking mode, it is mandatory for pending events to be polled using select() or

soc_poll().
Listener
Client Control connection
< under AF_ISO
C S
\
~ Server
~A
S

The AF_ISO listen socket on the server side has the fd 0. The endpoint is moved in the
following stages:

a) C establishes a connection to L.

b) The connection is accepted by L and moved to S.

U41052-J-2125-9-76 79

Handoff (move an accept socket)

Extended SOCKETS(BS2000) functions

c)

d)

In L, sendmsg() is used to forward to S information on the domain of the connection
established by C and the fd of the accept socket for this connection over the local
AF_1SO connection.

int sendmsg(int s, struct msghdr * msg, int flags);

msg.msg_control is a pointer to a structure of the type cmsg_redhdr.
The length of struct cmsg_redhdr is entered in msg.msg_control_len.

cmsg_redhdr.cmsg_len = sizeof(cmsg_redhdr)
cmsg_redhdr.cmsg_level = SOL_TRANSPORT
cmsg_redhdr.cmsg_type = TPOPT_REDI_DATA

The address family of the endpoint to be moved must be entered in
cmsg_redhdr.domain and depending on this address family, the fd of the accept
socket must be entered in cmsg_redhdr.redhdr_red_liso (for AF_ISO) or
cmsg_redhdr.redhdr_red Itcp (for AF_INET or AF_INET®6) in the element fd.

The S side reads from the AF_ISO connection using recvmsg().
int recvmsg(int s, struct msghdr * msg, int flags);
msg.msg_control is a pointer to a structure of the type cmsg_redhdr.

cmsg_redhdr.cmsg_len = sizeof(cmsg_redhdr)
cmsg_redhdr.cmsg_level = SOL_TRANSPORT
cmsg_redhdr.cmsg_type = TPOPT_REDI_DATA

Action on S:

On the basis of the information from L contained in the structure of the type
cmsg_redhdr that has been passed, a new connection endpoint is generated using
an internal bind().

The fd of this endpoint is returned in cmsg_redhdr.fd_server together with the address
family in cmsg_redhdr.domain.

The S side passes the information that the new connection endpoint has been
created to the L side.

int sendmsg(int s, struct msghdr * msg, int flags);
msg.msg_control is a pointer to a structure of the type cmgs_redhdr.

cmsg_redhdr.cmsg_ len = sizeof(cmsg_redhdr)
cmsg_redhdr.cmsg_level = SOL_TRANSPORT
cmsg_redhdr.cmsg_type = TPOPT_REDI_BDOK

The address family of the socket for the new endpoint must additionally be entered
in cmsg_redhdr.domain and the fd of this socket must be entered in
cmsg_redhdr.fd_server.

80

U41052-J-2125-9-76

Extended SOCKETS(BS2000) functions Handoff (move an accept socket)

f) The L side must wait for the information that the new endpoint is available before
the end point can actually be moved.

int recvmsg(int s, struct msghdr * msg, int flags);
msg.msg_control is a pointer to a structure of the type cmsg_redhdr.

cmsg_redhdr.cmsg.len = sizeof(struct cmsg_redhdr)
cmsg_redhdr.cmsg_level = SOL_TRANSPORT
cmsg_redhdr.cmsg_type = TPOPT_REDI_BDOK

The address family of the endpoint to be moved must additionally be entered in
cmsg_redhdr.domain and depending on this address family, the fd of the accept
socket must be entered in cmsg_redhdr.redhdr_red_liso (for AF_ISO) or
cmsg_redhdr.redhdr_red ltcp (for AF_INET or AF_INET®) in the element fd.

The cmsg_redhdr.bind_ok field can be used to check whether successful creation of
the new endpoint on the S side has been acknowledged with REDBIND_OK.

A data stop is then triggered internally for this connection endpoint. This means that
data can be sent from the client, but it is no longer delivered to the old connection
end point.

g) setsockopt() is then issued on the L side to move the functionality of the endpoint.
This means that the partner information entered in the accept socket is transferred
to the socket of the new end point in the server.

int setsockopt(int s, int level, int optname, char * optval, int optlen);

optval is a pointer to a structure of the type cmsg_redhdr.
level = SOL_TRANSPORT
optname = TPOPT_REDI_CALL

cmsg_redhdr.cmsg_len = sizeof(struct cmsg_redhdr)
cmsg_redhdr.cmsg_level = SOL_TRANSPORT
cmsg_redhdr.cmsg_type = TPOPT_REDI_CALL

U41052-J-2125-9-76 81

Handoff (move an accept socket) Extended SOCKETS(BS2000) functions

h) getsockopt() is issued on the S side to wait for data from the accept socket on the L

side.
int getsockopt(int s, int level, int optname, char * optval, int* optlen);

optval is a pointer to a structure of the type cmsg_redhdr.
level = SOL_TRANSPORT
optname = TPOPT_REDI_CALL

cmsg_redhdr.cmsg_len = sizeof(struct cmsg_redhdr)
cmsg_redhdr.cmsg_level = SOL_TRANSPORT
cmsg_redhdr.cmsg_type = TPOPT_REDI_CALL

The address family must be entered in cmsg_redhdr.domain and the fd of the socket
for the new endpoint must be entered in cmsg_redhdr.fd_server.

Once the event has been received and picked up, the connection environment is
finally established and the data stop for the connection is canceled. This means that
data is now delivered to the new connection endpoint.

The accept socket of the original endpoint can now be closed with soc_closg(), as
can the AF_ISO connection for handoff communication.

82

U41052-J-2125-9-76

Extended SOCKETS(BS2000) functions Raw sockets

4.6 Raw sockets

A raw socket enables both an ICMP protocol header, e.g. for an ICMP echo request, and
an ICMPvV6 protocol header, e.g. for an ICMPv6 echo request, to be written.

46.1 ICMP

The ICMP protocol (which must always be viewed in conjunction with IPv4) enables you to
test whether a data packet reaches an end system (host) and whether it is acknowledged.
A detailed description of ICMP is provided in RFC 792.

Please note the following two special features in the format of the protocol and of the data:
e The ICMP header checksum must be generated by the application.

e The socket’s port number is expected as the identifier. Before sending the message,
you should therefore execute a bind() on the raw socket.

Before you call the bind() function to reserve a port, you must enable the delivery of possible
ICMP error messages for this socket (see page 156ff):
setsockopt(...,|IPPROTO_IPV4, IP_RECVERR....,...)

The ICMP header is four bytes long. The length of the following data is variable. The
following applies for the ECHO-REQUEST and ECHO-REPLY types: The first word
contains the identifier (port number) and the sequence number. The next two words contain
a timestamp. The time is contained in seconds in the first word and in microseconds in the
second word:

00 Type ‘ Code Checksum
04 Identifier Sequence#

08 Data (Timestamp struct timeval/tv_s)

oC Data (Timestamp struct timeval/tv_us)
10 Data (Testpattern)
14 Data (Testpattern)

The associated IPv4 header is generated by the transport system. However, the application
has the option of determining the hop limit. For this purpose you must set the raw socket
appropriately before you send the data packet (ICMP message).

To set the hop limit specifically, use the function
setsockopt(..., IPPROTO_ICMP, IP_TTL,...,...) (see page 156ff).

U41052-J-2125-9-76 83

Raw sockets Extended SOCKETS(BS2000) functions

4.6.2

The ICMP echo request message is sent using sendmsg(). The end system’s response is
received as an ICMP echo reply message using recvmsg().

ICMPV6

The ICMPvV6 protocol (which must always be viewed in conjunction with IPv6) enables you
to test whether a data packet reaches an end system (host) and whether it is acknowl-
edged. A detailed description of ICMPV6 is provided in RFC 4443.

Please note the following two special features in the format of the protocol and of the data
(as with ICMP);

e The ICMPv6 header checksum must be generated by the application.

e The socket’s port number is expected as the identifier. Before sending the message,
you should therefore execute a bind() on the raw socket.

Before you call the bind() function to reserve a port, you must enable the delivery of possible
ICMPV6 error messages for this socket (see page 156ff):
setsockopt(...,IPPROTO_IPV6, IPV6_RECVERR,...,...)

The ICMPv6 header is four bytes long. The length of the following data is variable. The
following applies for the ECHO-REQUEST and ECHO-REPLY types: The first word
contains the identifier (port number) and the sequence number. The next two words contain
a timestamp. The time is contained in seconds in the first word and in microseconds in the
second word:

00 Type ‘ Code Checksum
04 Identifier Sequence#

08 Data (Timestamp struct timeval/tv_s)

ocC Data (Timestamp struct timeval/tv_us)
10 Data (Testpattern)
14 Data (Testpattern)

The associated IPv6 header is generated by the transport system. However, the application
has the option of determining the hop limit. For this purpose you must set the raw socket
appropriately before you send the data packet (ICMPv6 message).

To set the hop limit specifically, use the function
setsockopt(..., IPPROTO_ICMPV6, IPV6_HOPLIMIT,...,...) (see page 156ff).

The ICMPvV6 echo request message is sent using sendmsg(). The end system’s response is
received as an ICMPv6 echo reply message using recvmsg().

84

U41052-J-2125-9-76

5 Client/server model with SOCKETS(BS2000)

The client/server model is the most commonly used model for developing distributed
applications. In the client/server model, client applications request services from a server.
The present chapter uses examples to describe the interaction between the client and
server in more detail and also illustrates some problems which may occur when developing
client/server applications, together with their solutions.

Before a service can be granted and accepted, the communication between client and
server needs a set of agreements known to both ends. These agreements are defined in a
protocol that must be implemented on both ends of a connection. The protocol can be
symmetric or asymmetric, depending on the conditions. In a symmetric protocol, both ends
can take on the role of either server or client. With an asymmetric protocol, one end is fixed
as the server and the other end as the client.

Regardless of whether a symmetric or asymmetric protocol is used for a service, whenever
a service is accessed, there is always a client and a server.

The following are described in the sections below:
e Connection-oriented server

e Connection-oriented client

e Connectionless server

e Connectionless client

U41052-J-2125-9-76 85

Connection-oriented server (AF_INET/AF_INET6) Client/server model

5.1 Connection-oriented server

The server normally waits on a known address for service requests. The server remains
inactive until a client sends a connection request to the address of the server. The server
then “wakes up” and serves the client by executing the relevant actions for the client
request.

The server is accessed via a known Internet address.

You will find an example of a connection-oriented server for both AF_INET and AF_INETS6,
and for AF_ISO, below.

5.1.1 Connection-oriented server for AF_INET / AF_INET6

Programming of the main program loop is shown in the following examples.
The server uses the following socket interface functions in the example programs:

— socket(): create socket

— bind(): assign a socket a name

— listen(): “listen” to a socket for connection requests
— accept(): accept a connection on a socket

— recv(): read data from a socket

— soc_close(): close socket

Example: Connection-oriented server for AF_INET

#include <stdio.h>
#include <sys.types.h>
#include <sys.socket.h>
#include <netinet.in.h>
#include <netdb.h>

main(argc, argv)
int argc;
char *argvl];
{
#define TESTPORT 2222

int sock, Tength;

struct sockaddr_in server;
struct sockaddr_in client;
int clientlen;

int msgsock;

char bufl[10247;

86 U41052-J-2125-9-76

Client/server model Connection-oriented server (AF_INET/AF_INET6)

int rval;
memset(&server, ‘\0°,sizeof(server));
memset(&client, ‘\0°‘,sizeof(client));
clientlen = sizeof(client);

/* Create socket */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0)
{ perror("Create stream socket");
exit(1);
}

/* Assign the socket a name */
server.sin_family = AF_INET;
server.sin_addr.s_addr = htonl (INADDR_ANY);
server.sin_port = htons(TESTPORT);

if (bind(sock, (struct sockaddr *)&server, sizeof (server)) < 0)
{ perror("Bind stream socket");
exit(1l);
}

/* Start acceptance of connection requests */
listen(sock, 5);

msgsock = accept(sock, (struct sockaddr *)&client, &clientlen);

if (msgsock == -1)
{ perror("Accept connection");
exit(1l);
}
else do {

memset(buf, 0, sizeof buf);
if ((rval = recv(msgsock, buf, 1024, 0)) < 0)
{ perror("Reading stream message");
exit(1);
}
if (rval == 0)
fprintf(stderr, "Ending connection\n");
else
fprintf(stdout, "—>%s\n", buf);
} while (rval != 0);

soc_close(msgsock);
soc_close(sock);

}

U41052-J-2125-9-76

87

Connection-oriented server (AF_INET/AF_INET6) Client/server model

Example: Connection-oriented server for AF_INET6

#include <stdio.h>
#include <sys.types.h>
#include <sys.socket.h>
#include <netinet.in.h>
#include <netdb.h>

main(argc, argv)
int argc;
char *argv[l;

#define TESTPORT 2222

int sock, length;

struct sockaddr_in6 server;

struct sockaddr_in6 client;

int clientlen;

struct in6_addr in6addr_any = INGADDR_ANY_INIT;
int msgsock;

char bufl[10247;

int rval;

memset(&server, ‘\0°,sizeof(server));
memset(&client, ‘\0°,sizeof(client));
clientlen = sizeof(client);

/* Create socket */

sock = socket(AF_INET6, SOCK_STREAM, 0);
if (sock < 0)
{
perror("Create stream socket");
exit(l);
}

/* Assign the socket a name */

server.sin6_family = AF_INET6;
memcpy(server.sin6_addr.s6_addr, in6addr_any,16) ;
server.sin6é_port = htons(TESTPORT);
if (bind(sock, (struct sockaddr *)&server, sizeof (server)) < 0)
{
perror("Bind stream socket");
exit(l);
}

88 U41052-J-2125-9-76

Client/server model

Connection-oriented server (AF_INET/AF_INET6)

/* Start acceptance of connection requests */

lTisten(sock, 5);
msgsock = accept(sock, (struct sockaddr *)&client, &clientlen);

if (msgsock == -1)

{

perror("Accept connection");
exit(l);

b

else do

{
memset(buf, 0, sizeof buf);
if ((rval = recv(msgsock, buf, 1024, 0)) < 0)
{
perror("Reading stream message");
exit(l);
}
else if (rval == 0)
fprintf(stderr, "Ending connection\n");
else
fprintf(stdout, "—>%s\n", buf);
}

while (rval != 0);
soc_close(msgsock);
soc_close(sock);

The following steps are executed in the program examples for AF_INET and AF_INET®6:

1. The server uses the socket() function to create a communications endpoint (socket) and
the corresponding descriptor.

2. The server socket is assigned a defined port number with the bind() function. It can then
be addressed in the network via this port number.

3. The server uses the listen() function to determine whether connection requests are

pending.

4. The server can accept connection requests with accept(). The value returned by accept()
is tested to ensure that the connection was successfully set up.

5. Assoon as the connection is set up, data is read from the socket with the recv() function.

6. The server closes the socket with the soc_close() function.

U41052-J-2125-9-76

89

Connection-oriented server (AF_ISO)

Client/server model

5.1.2

Connection-oriented server for AF_ISO

The server uses the following socket interface functions in the example program:

Example: Connection-oriented server for AF_|SO

getbcamhost(): get the host name entry

socket(): create socket

bind(): assign a socket a name

listen(): “listen” to a socket for connection requests
accept(): accept a connection on a socket

sendmsg(): send a message from socket to socket / confirm connection
recv(): read data from a socket

soc_clos(): close socket

/*

Example: ISO SERVER

1. getbcamhost — socket — bind — lTisten — accept — sendmsg

2. recv

*
*
* DESCRIPTION
*
*
* 3. soc_close

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <iso.h>
#include <netinet/in.h>
#include <netdb.h>

#define INT 5

#define MAXREC 1000000
#define MAXTSEL 32
#define MAXNSEL 9

main(argc, argv)

i

nt argc;

char *argvl];

{

void error_exit();

int sockfd, newfd, clilen,

int tsellen, nsellen;
char tsel[MAXTSEL];
char nsel[MAXNSEL];
char buffer [MAXRECI;

ret;

90

U41052-J-2125-9-76

Client/server model Connection-oriented server (AF_ISO)

struct sockaddr_iso cli_addr, serv_addr;
struct msghdr message;
struct cmsghdr cmessage;

strcpy (tsel,"SERVER");
tsellen = strien(tsel);
nsell8] = '\0';

/* Get BCAM host name */
errno = 0;
if(getbcamhost(nsel,sizeof(nsel)) < 0)
error_exit("ISO_svr: getbcamhost failed ",errno);
else
printf ("getbcamhost OK! (%s)\n",nsel);
nsellen = strien(nsel);

/* Create socket*/
errno = 0;
if((sockfd = socket(AF_ISO, SOCK_STREAM, 0)) < 0)
error_exit("ISO_svr: Socket Creation failed ",errno);
else
printf("socket OK!\n");

/* Assign the socket a name */

memset ((char *) &serv_addr, 0, sizeof(serv_addr));
serv_addr.siso_len = sizeof (struct sockaddr_iso);
serv_addr.siso_family = AF_ISO;

serv_addr.siso_plen = 0;

serv_addr.siso_slen = 0;

serv_addr.siso_tlen = tsellen;

serv_addr.siso_addr.isoa_len = tsellen + nsellen;

memcpy (serv_addr.siso_addr.isoa_genaddr,nsel,nsellen);

memcpy (serv_addr.siso_addr.isoa_genaddr + nsellen,tsel,tsellen);

errno = 0;

if(bind(sockfd, (struct sockaddr_iso *) &serv_addr, sizeof(serv_addr)) < 0)
error_exit("ISO_svr: Bind failed ",errno);
else
printf("bind OK!\n");

U41052-J-2125-9-76 91

Connection-oriented server (AF_ISO) Client/server model

/* Start acceptance of connection requests */
errno = 0;
if (1isten(sockfd, INT) < 0)
error_exit("ISO_svr: Listen failed ",errno);
else
printf("Tisten OK!\n");

errno = 0;
clilen = sizeof(cli_addr);
newfd = accept(sockfd, (struct sockaddr_iso *) &cli_addr, &clilen);
if(newfd < 0)
error_exit("ISO_svr: New Socket Creation failed",errno);
else
printf("accept OK!\n");

/* Confirm connection request (CONNECTION CONFIRM)
No actual transfer of data takes place */
memset ((char *) &message, 0, sizeof(message));
memset ((char *) &cmessage, 0, sizeof(cmessage));
message.msg_control = (char *) &cmessage;
message.msg_controllen = sizeof (struct cmsghdr);
cmessage.cmsg_level = SOL_TRANSPORT;
cmessage.cmsg_type = TPOPT_CFRM_DATA;
cmessage.cmsg_len = sizeof (struct cmsghdr);

errno = 0;
ret = sendmsg (newfd, (struct msghdr *) &message, 0);
if (ret == -1)

error_exit("ISO_svr: Sendmsg in Error", errno);
else

printf("sendmsg OK!(%Zd)\n",ret);

/* Read data from a socket */
if ((ret = recv (newfd, buffer, MAXREC, 0)) < 0)
{
if (errno != EPIPE) /* Broken Pipe */
error_exit("ISO_svr: Receive in Error", errno);
}
else
printf("recv OK!(%d)\n",ret);

/* Close socket */
errno = 0;
if (soc_close (newfd) < 0)
error_exit("ISO_svr: soc_close failed ",errno);
else
printf("soc_close (newfd) OK!\n");

92 U41052-J-2125-9-76

Client/server model Connection-oriented server (AF_ISO)

if (soc_close (sockfd) < 0)

error_exit("ISO_svr: soc_close failed ",errno);
else

printf("soc_close (sockfd) OK!\n");

b /* END MAIN */

void
error_exit(estring,erno)
char *estring;
int erno;
{
fprintf(stderr,"%s errno=%d\n",estring,erno);
perror (estring);
exit(erno);

}

The following steps are executed in the program example for AF_1SO:
1. The server determines the BCAM host name with the getbcamhost() function.

2. The server creates a communications endpoint (server socket) and the corresponding
descriptor with the socket() function.

3. The server assigns the newly created socket a name with bind().

4. The server (socket) is prepared for accepting connection requests with listen().

5. The (server) socket accepts a connection request with accept().

6. The server confirms the connection request (CFRM) with sendmsg(), i.e. the connection
has now been set up. sendmsg() does not transfer any user data.

7. The server socket receives user data from the partner socket (client socket) with recv().

8. The (server) socket is closed with the function soc_closeg().

U41052-J-2125-9-76 93

Connection-oriented client (AF_INET/AF_INET6) Client/server model

5.2 Connection-oriented client

You will find an example of a connection-oriented client for AF_INET, AF_INET6 and
AF_ISO below.

5.2.1 Connection-oriented client for AF_INET / AF_INET6

The client side was shown in the example on page 86. You can clearly see the separate,
asymmetric roles of the client and server in the program code. The server waits as a
passive instance for connection requests from the client, whereas the client initiates a
connection as the active instance.

The steps executed by the remote login client process are looked at more closely in the
following sections. In the example programs, the client uses the following socket interface
functions:

— socket(): create socket

— gethostbyname() / getipnodebyname(): get the host name entry
— connect(): request a connection on the socket

— send(): write data to the socket

— soc_close(): close socket

Example: Connection-oriented client for AF_INET

#include <stdio.h>
#include <sys.types.h>
#include <sys.socket.h>
#include <netinet.in.h>
#include <netdb.h>
#include <sys.uio.h>

main(argc, argv)
int argc;
char *argvl];
{
#define TESTPORT 2222
#define DATA "Here's the message ..."

int sock, length;

struct sockaddr_in client;
struct hostent *hp;

char bufl[10247;

94 U41052-J-2125-9-76

Client/server model Connection-oriented client (AF_INET/AF_INET6)

/* Create socket */
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock < 0)
{ perror("Create stream socket");
exit(1);
}

/* Fill in the address structure */
client.sin_family = AF_INET;
client.sin_port = htons(TESTPORT);
hp = gethostbyname(argv[1]);
if (hp == NULL)
{ fprintf(stderr,"%s: unknown host\n", argv[11);
exit(1l);
}
memcpy((char *) &server.sin_addr, (char *)hp—>h_addr,
hp—>h_Tength);

/* Start the connection */
if (connect(sock, &server, sizeof(client)) < 0)
{ perror("Connect stream socket");
exit(1l);
}

/* Write to the socket */
if (send(sock, DATA, sizeof DATA, 0) < 0)
{ perror("Write on stream socket");
exit(1l);
}

soc_close(sock);

U41052-J-2125-9-76 95

Connection-oriented client (AF_INET/AF_INET6) Client/server model

Example: Connection-oriented client for AF_INET6

#include <stdio.h>
#include <sys.types.h>
#include <sys.socket.h>
#include <netinet.in.h>
#include <netdb.h>
#include <sys.uio.h>

main(argc, argv)
int argc;
char *argvl];

#define TESTPORT 2222

#define DATA "Here's the message ..."
int sock, Tength;

int error_num;

struct sockaddr_in6 client;

struct hostent *hp;

char bufl[10241;

/* Create socket */

sock = socket(AF_INET6, SOCK_STREAM, 0);
if (sock < 0)
{
perror("Create stream socket");
exit(1);
}

/* Fill 1in the address structure */

client.sin6_family = AF_INET6;
client.sin6_port = htons(TESTPORT);
hp = getipnodebyname(argvl[1], AF_INET6, 0, &error_num);
if ((hp == NULL) || (error_num != NETDB_SUCCESS))
{
fprintf(stderr,"%s: unknown host\n", argv[1]);
exit(1l);
}
memcpy ((char *) &CLIENT.sin6_addr, (char *)hp—>h_addr,
hp—>h_length);

/* Release the dynamic memory of hostent */
freehostent (hp);

96 U41052-J-2125-9-76

Client/server model Connection-oriented client (AF_INET/AF_INET6)

/* Start connection */

if (connect(sock, &client, sizeof(client)) < 0)
{
perror("Connect stream socket");
exit(1);
}

/* Write to the socket */

if (send(sock, DATA, sizeof DATA, 0) < 0)
{
perror("Write on stream socket");
exit(l);
}

soc_close(sock);

The following steps are executed in the program examples for AF_INET and AF_INET®6:

1.

The client creates a communications endpoint (socket) and the corresponding
descriptor with the socket() function.

The client queries the address of the host with gethostbyname() (only for AF_INET).
The host name is passed as a parameter.

The client determines the IPv6 address of the host name passed as a parameter with
getipnodebyname(). This new function could also be used for the AF_INET example. A
connection must then be set up to the server for the desired host. The client initializes
the address structure for this purpose.

The connection is set up with connect().
After connection setup, data is written to the socket with the send() function.

The created socket is closed with the soc_close() function.

U41052-J-2125-9-76 97

Connection-oriented client (AF_ISO)

Client/server model

5.2.2

Connection-oriented client for AF_ISO

In the example program, the client uses the following socket interface functions:

— getbcamhost(): get BCAM host name

— socket(): create socket

— bind(): assign a name to the socket

— connect(): request a connection on the socket
— send(): write data to the socket

— soc_closg(): close socket

Example: Connection-oriented client for AF_|SO

/*
* Example: ISO CLIENT
*
* DESCRIPTION
* 1. getbcamhost — socket — bind — connect
* 2. send
* 3. soc_close
*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <iso.h>
#include <netinet/in.h>
#include <netdb.h>

#define INT 5

#define MAXREC 1000000
#define MAXTSEL 32
#define MAXNSEL 9

main(argc, argv)

int argc;

char *argvl];

{
void error_exit();
int sockfd, ret, Tng;

int tsellen, nsellen, par_tsellen, par_nsellen;

char tsel[MAXTSEL];

char par_tsel[MAXTSEL];

char nsel[MAXNSEL];

char par_nsel[MAXNSEL];

char buffer [MAXRECI;

struct sockaddr_iso cli_addr, serv_addr;

98

U41052-J-2125-9-76

Client/server model Connection-oriented client (AF_ISO)

Tng = 1024 ;

strcpy (tsel,"CLIENT");

tsellen = strlien(tsel);

strcpy (par_tsel,"SERVER");
par_tsellen = strlen(par_tsel);
nsel [MAXNSEL-1] = '\0"';

/* Get partner host name */
if (argc > 1)
{
strcpy (par_nsel,argvl[l11);
if ((par_nsellen = strlen(par_nsel)) != MAXNSEL — 1)
{
printf ("Error: Invalid host name !!\n");
exit (-1);
b
}
else
{
printf ("Partner host name was not passed as an argument in the
command Tine !\n");
exit (-1);
}

/* Get BCAM host name*/
errno = 0;
if (getbcamhost(nsel,sizeof(nsel)) < 0)
error_exit("ISO_cli: getbcamhost failed ",errno);
else
printf ("getbcamhost OK! (%s)\n",nsel);
nsellen = strlen(nsel);

/* Create socket*/
errno = 0;
if ((sockfd = socket(AF_ISO, SOCK_STREAM, 0)) < 0)
error_exit("ISO_c1i: Socket Creation failed ",errno);
else
printf ("socket OK!\n");

/* Assign a name to the socket */

memset ((char *) &cli_addr, 0, sizeof(cli_addr));
cli_addr.siso_len = sizeof (struct sockaddr_iso);
cli_addr.siso_family = AF_ISO;

cli_addr.siso_plen = 0;

cli_addr.siso_slen = 0;

cli_addr.siso_tlen = tsellen;
cli_addr.siso_addr.isoa_len = tsellen + nsellen;

U41052-J-2125-9-76 929

Connection-oriented client (AF_ISO) Client/server model

memcpy (cli_addr.siso_addr.isoa_genaddr,nsel,nsellen);
memcpy (cli_addr.siso_addr.isoa_genaddr + nsellen,tsel,tsellen);

memset ((char *) &serv_addr, 0, sizeof(serv_addr));

serv_addr.siso_len = sizeof (struct sockaddr_iso);

serv_addr.siso_family = AF_ISO;

serv_addr.siso_plen = 0;

serv_addr.siso_slen = 0;

serv_addr.siso_tlen = par_tsellen;

serv_addr.siso_addr.isoa_len = par_tsellen + par_nsellen;

memcpy (serv_addr.siso_addr.isoa_genaddr,par_nsel,par_nsellen);

memcpy (serv_addr.siso_addr.isoa_genaddr +
par_nsellen,par_tsel,par_tsellen);

errno = 0;

if (bind (sockfd, (struct sockaddr_iso *) &cli_addr, sizeof(cli_addr)) < 0)
error_exit("ISO_cli: Bind failed ",errno);

else
printf ("bind 0OK!\n");

/* Start connection */
errno = 0;
if (connect (sockfd, (struct sockaddr_iso *) &serv_addr,
sizeof(serv_addr)) < 0)
error_exit("ISO_cli: Connect failed ",errno);
else
printf ("connect OK!\n");

sleep(2);

/* Write data to the socket */
ret = send (sockfd, buffer, Ing, 0);
if (ret == -1)
error_exit("ISO_cli: Send in Error", errno);
else
printf ("send OK!(%d)\n",ret);

/* Close socket*/
sleep (2);
errno = 0;
if (soc_close (sockfd) <0)
error_exit("Tcp_svr: soc_close failed ",errno);
else
printf ("soc_close OK!\n");

b /* END MAIN */

100 U41052-J-2125-9-76

Client/server model Connection-oriented client (AF_ISO)

void
error_exit(estring,erno)
char *estring;
int erno;
{
fprintf(stderr,"%s errno=%d\n",estring,erno);
perror (estring);
exit(erno);

}

The following steps are executed in the program:

1. The client takes the name of the partner host from the command line argument argc of
the main() function.

2. The client determines the BCAM host name with the function getbcamhost().

3. The client creates a communications endpoint (client socket) and the corresponding
descriptor with the function socket().

4. The client assigns a name to the newly created socket with bind().

The client sets up the connection to the communications partner (server socket) with
connect().

6. The client send user data to the partner socket (server socket) with send().

7. The function soc_close() closes the (client) socket.

U41052-J-2125-9-76 101

Connectionless server Client/server model

5.3 Connectionless server

Most servers operate on a connection-oriented basis, but some services are based on
using datagram sockets and are thus connectionless.

The following socket interface functions are used by the server in the example programs:

— socket(): create socket

— bind():

assign a socket a name

— recvfrom(): read a message from a socket
— soc_close(): close socket

The program is shown in two variants:

— In the first variant (examples 1 and 3), the program is terminated when a message
arrives (read()).

— Inthe second variant (examples 2 and 4), the program waits in an endless loop for
further messages after a message has been read.

Example 1: Connectionless server without a program loop for AF_INET

#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<sys.types.h>
<sys.socket.h>
<ioctl.h>
<signal.h>
<netinet.in.h>
<netdb.h>

#define TESTPORT 2222

/*

* This program creates a datagram socket, assigns it a defined
* port and then reads data from the socket.

*/

main()

{

int sock;
int length;
struct sockaddr_in server;

char

buf[10247;

102

U41052-J-2125-9-76

Client/server model Connectionless server

/* Create the socket to be read from. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0)

{ perror("Socket datagram");
exit(1);
}

/* Assign the server "server"'" a name, using wildcards
*/

server.sin_family = AF_INET;

server.sin_addr.s_addr = htonl (INADDR_ANY);
server.sin_port = htons(TESTPORT);

if (bind(sock, &server, sizeof server) < 0)
{ perror("Bind datagram socket");
exit(1);
}

/* Start reading from the server */
length = sizeof(server);
memset(buf,0,sizeof(buf));
if (recvfrom(sock, buf, 1024,0, &server, &length) < 0)

{ perror("recvfrom");

exit(1);

}

else
printf("=>%s\n", buf);

soc_close(sock);

U41052-J-2125-9-76 103

Connectionless server Client/server model

Example 2: Connectionless server with a program loop for AF_INET

#include <sys.types.h>
#include <sys.socket.h>
#include <ioctl.h>
#include <signal.h>
#include <netinet.in.h>
#include <netdb.h>
#include <stdio.h>
#define TESTPORT 2222

/* This program creates a datagram socket, assigns it a defined
* port and then reads data from the socket. */
main()
{
int sock;
int length;
struct sockaddr_in server;
char bufl[1024]1;

/* Create the socket to be read from. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0)
{ perror("Socket datagram");
exit(l);
}

/* Assign the server "server" a name using wildcards */
server.sin_family = AF_INET;

server.sin_addr.s_addr = htonl(INADDR_ANY);
server.sin_port = htons(TESTPORT);

if (bind(sock, &server, sizeof server) < 0)
{ perror("Bind datagram socket");
exit(1);
}

/* Start reading from the server */
lTength = sizeof(server);

for (;3)

{

memset (buf,0,sizeof(buf));
if (recvfrom(sock, buf, sizeof(buf),0, &server, &length) < 0)
{ perror("recvfrom");
exit(l);
}

104 U41052-J-2125-9-76

Client/server model Connectionless server

else
printf("=>%s\n",buf);
b

/* Since this program runs in an endless loop, the socket
* *“sock”™ is never explicitly closed. However, all sockets
* are closed automatically if the process is aborted.

*/

Example 3: Connectionless server without a program loop for AF_INET6

#include <stdio.h>
#include <sys.types.h>
#include <sys.socket.h>
#include <ioctl.h>
#include <signal.h>
#include <netinet.in.h>
#include <netdb.h>
#define TESTPORT 2222

/*
* This program creates a datagram socket, assigns it a defined
* port and then reads data from the socket.

*/

main()

{
int sock;
int Tength;

struct sockaddr_in6 server;
struct in6_addr in6addr_any = INGADDR_ANY_INIT;
char bufl[10247;

/* Create the socket to be read from. */
sock = socket(AF_INET6, SOCK_DGRAM, 0);
if (sock < 0)
{ perror("Socket datagram");
exit(1);
}

/* Assign the server "server' a name using wildcards */
server.sin6e_family = AF_INET6;
memcpy(server.sin6_addr.s6_addr, in6addr_any.s6_addr, 16) ;
server.sin6é_port = htons(TESTPORT);
if (bind(sock, &server, sizeof server) < 0)
{ perror("Bind datagram socket");
exit(1l);

U41052-J-2125-9-76 105

Connectionless server Client/server model

}

/* Start reading from the server */
length = sizeof(server);
memset (buf,0,sizeof(buf));
if (recvfrom(sock, buf, 1024,0, &server, &length) < 0)
{ perror("recvfrom");
exit(1l);
}
else
printf("—>%s\n",buf);
soc_close(sock);

Example 4: Connectionless server with a program loop for AF_INET6

#include <sys.types.h>
#include <sys.socket.h>
#include <ioctl.h>
#include <signal.h>
#include <netinet.in.h>
#include <netdb.h>
#include <stdio.h>

#define TESTPORT 2222

/* This program creates a datagram socket, assigns it a defined

* port and then reads data from the socket. */

main()

{

int sock;

int length;

struct sockaddr_in6 server;

struct in6_addr in6addr_any = ING6ADDR_ANY_INIT;
char bufl[102417;

/* Create the socket to be read from. */

sock = socket(AF_INET6, SOCK_DGRAM, 0);
if (sock <0)
{
perror("Socket datagram");
exit(1l);
}

106

U41052-J-2125-9-76

Client/server model Connectionless server

/* Assign the server "server" a name using wildcards */

server.sin6_family = AF_INET6;

memcpy (server.sin6_addr.s6_addr ,in6addr_any.s6_addr,16);
server.sin6é_port = htons(TESTPORT);

if (bind(sock, &server, sizeof server) < 0)

perror("Bind datagram socket");
exit(l);
}

/* Start reading from the server */

length = sizeof(server);
for (;3)
{
memset (buf,0,sizeof(buf));
if (recvfrom(sock, buf, sizeof(buf),0, &server, &length) < 0)
{
perror("recvfrom");
exit(1l);
else
printf("—>%s\n" ,buf);
}

/* Since this program runs in an endless loop, the socket
* "sock" is never explicitly closed. However, all sockets
* are closed automatically if the process is aborted.

*/

The following steps are executed in the program examples for AF_INET and AF_INET®6:

1.

The server creates a communications endpoint (socket) and corresponding descriptor
with the socket() function.

The server socket is assigned a defined port number with the bind() function so that it
can be addressed from the network via this port number.

The recvfrom() function can be used to read from a socket of type SOCK_DGRAM.

The length of the read message is returned as the result. If no message is available,
the process is blocked until a message arrives.

U41052-J-2125-9-76 107

Connectionless client Client/server model

5.4

Connectionless client

The following socket interface functions are used by the client in these program examples:

socket(): create socket

gethostbyname() / getipnodebyname(): get the host name entry
sendto(): send a message to a socket

soc_close(): close socket

Example: Connectionless client for AF_INET

#include <stdio.h>
#include <sys.types.h>
#include <sys.socket.h>
#include <ioctl.h>
#include <signal.h>
#include <netinet.in.h>
#include <netdb.h>

#define DATA " The sea is calm, the tide is full ..."
#define TESTPORT 2222

/*
* This program sends a datagram to a receiver whose name is passed
* as an argument in the command line.

main(argc,argv)

int argc;
char *argv[];

int sock;
struct sockaddr_in to;
struct hostent *hp, *gethostbyname();

/* Create the socket to be sent on. */
sock = socket(AF_INET, SOCK_DGRAM, 0);
if (sock < 0)
{ perror("Socket datagram");
exit(1l);
}

/* Construct the name of the socket to be sent on, without using

* wildcards. gethostbyname returns a structure which contains the
* network address of the specified host.

* The port number is taken from the TESTPORT constant.

*/

108

U41052-J-2125-9-76

Client/server model

Connectionless client

hp =gethostbyname(argvl1]);
if (hp == 0) {

fprintf(stderr, "%s:unknown host\n", argv[1l1);

exit(l);
}

memcpy ((char *)&to.sin_addr, (char *)hp—>h_addr,hp—>h_1length);

to.sin_family = AF_INET;
to.sin_port = htons(TESTPORT);

/* Send message. */

if (sendto(sock, DATA, sizeof DATA, 0, &to, sizeof to) < 0) {

perror("Sending datagram message");
exit(1l);
}

soc_close(sock);

Example: Connectionless client for AF_INET6

#include <stdio.h>

#include <sys.types.h>

#include <sys.socket.h>

#include <ioctl.h>

#include <signal.h>

#include <netinet.in.h>

#include <netdb.h>

#define DATA " The sea is calm, the tide is full ..."
#define TESTPORT 2222

/*

* This program sends a datagram to a receiver whose name is passed

* as an argument in the command Tine. */
main(argc,argv)

int argc;

char *argvl[l;

int sock;

int error_num;

struct sockaddr_in6 to;
struct hostent *hp;

/* Create the socket to be sent on. */
sock = socket(AF_INET6, SOCK_DGRAM, 0);
if (sock < 0)
{
perror("Socket datagram");
exit(1l);
}

U41052-J-2125-9-76

109

Connectionless client Client/server model

/* Construct the name of the socket to be sent on, without using
* wildcards. gethostbyname returns a structure which contains the
* network address of the specified host.

* The port number is taken from the TESTPORT constant.

*/
hp =getipnodebyname(argvl1], AF_INET6, 0, &error_num);
if ((hp = =0) || (error_num != NETDB_SUCCESS))

{
fprintf(stderr, "%s:unknown host\n", argv[1l1);
exit(1l);
}
memcpy((char *)&to.sin6_addr, (char *)hp—>h_addr,hp—>h_length);
to.sin6_family = AF_INET6;
to.sin6_port = htons(TESTPORT);

/* Release the dynamic memory of hostent */
freehostent(hp);

/* Send message. */
if (sendto(sock, DATA, sizeof DATA, 0, &to, sizeof to) < 0)
{
perror("Sending datagram message");
exit(1l);
}

soc_close(sock);

The following steps are executed in the program examples for AF_INET and AF_INET6:

1.

The client creates a communications endpoint (socket) and corresponding descriptor
with socket().

The client queries the address of the host with gethostbyname() (for AF_INET); the host
name is passed as a parameter.

The client queries the IPv6 address of the host name passed as a parameter with
getipnodebyname(). This new function could also be used for the AF_INET example.
The address structure is then initialized.

The client sends a datagram with sendto(), which returns the number of transferred
characters.

The client closes the socket with soc_close().

110

U41052-J-2125-9-76

6 SOCKETS(BS2000) user functions

This chapter describes the socket interface functions for BS2000.The first section describes
the format in which the individual functions are explained. The subsequent overview
collects functions together into task-oriented groups. Finally, all socket interface functions
are described in alphabetical order.

6.1 Description format

The SOCKETS(BS2000) user functions are described in a uniform format. The function
descriptions have the same format as shown on page 112.

Ensure the type conversion (Cast) is correct in ANSI mode to prevent compiler
warnings. This applies in particular to the different socket structures (sockaddr,
sockaddr_in, sockaddr_in6, sockaddr_iso):

i @

To call a function use the general sockaddr structure.

Use the specific structure of the relevant address family to enter and read socket
addresses.

U41052-J-2125-9-76 111

Description format Socket functions

Function name - brief description of the functionality

#include < ... >
#include < ... >

Function syntax

Description

Detailed description of the functionality and parameters.

Return value

List and description of all possible function return values.

Some functions have no return value. The “Return value” section is omitted in such cases
and in the descriptions of external variables.

Errors indicated by errno

List and description of the error codes in the external variable errno that can occur with an
invalid call or function. This section may be omitted.

Note

Description of terms or information on interaction with other functions, or tips for use. This
section may be omitted.

See also

Cross references to function descriptions. This section may be omitted.

112 U41052-J-2125-9-76

Socket functions

Overview of functions

6.2 Overview of functions

The following overview of the SOCKETS(BS2000) interface functions collects several

functions together into task-oriented groups.

The three columns on the right, “INET”, “INET6"”, and “ISO”, indicate the address family
(AF_INET, AF_INET6, AF_ISO) in which the function involved is supported.

Setting up and shutting down connections on sockets

Function Description See INET | INET6 | 1ISO

socket() Create socket page 228 X X X

bind() Assign a name to a socket page 123 X X X

connect() Initiate communication on a socket page 127 X X X
(e.g. by a client)

listen() Test socket for pending connections page 180 X X X
(e.g. by a server)

accept() Accept connection on a socket page 120 X X X
(e.g. by a server)

shutdown() Shut down connection in read and/or page 198 X X
write direction

soc_close() Close socket page 200 X X X

U41052-J-2125-9-76 113

Overview of functions

Socket functions

Transferring data between two sockets

Function Description See INET | INET6 | ISO
soc_read(), |Receive a message from a socket viaan |page 222 X X X
soc_readv() |established connection
recv() Receive a message from a socket viaan |page 182 X X X
established connection
recvfrom() | Receive a message from a socket page 182 X X X
recvmsg() Receive a message from a socket. page 185 X X X
AF_1SO: Receive messages (user data or
connection data) via an established
connection
send() Send a message from socket to socket via | page 192 X X X
an established connection
sendto() Send a message from socket to socket page 192 X X X
sendmsg() |Send a message from socket to socket. page 195 X X X
AF_1SO: Send messages (user data or
connection data) via an established
connection
soc_write(), |Send a message from socket to socket via | page 225 X X X
soc_writev() |an established connection
select() Multiplex input/output page 189 X X X
soc_poll() Multiplex input/output page 217 X X X
Transmitting data from/to the socket buffer
Function Description See INET | INET6 | ISO
soc_getc() |Get character from socket buffer page 204 X X
soc_gets() |Get string from socket buffer page 205 X X
soc_putc() | Put character in socket buffer page 220 X X
soc_puts() | Put string in socket buffer page 221 X X
soc_flush() |Flush socket buffer page 203 X X

114

U41052-J-2125-9-76

Socket functions

Overview of functions

Receiving information about sockets

Function Description See INET | INET6 |ISO
getdtablesize() Get size of descriptor table page 138 X X X
getsockopt() Get socket options page 156 X X X
setsockopt() Set socket options page 156 X X X
getpeername() Get name of communications page 148 X X X
partner
getsockname() Get name of socket page 154 X X X
Testing configuration values
Function Description See INET | INET6 |ISO
getaddrinfo() Get IP address and port number page 133 X X
corresponding to a host and/or
service name
gai_strerror() Get description of a getaddrinfo() page 132 X X
error code
getbcamhost() Get name of BCAM host page 137 X
gethostname() Get socket host name of current page 141 X X X
host
gethostbyaddr() Get host name belonging to an IPv4 | page 139 X
address
gethostbyname() Get IPv4 address belonging to a page 139 X
host name
getipnodebyaddr() |Get host name belongingtoan IPv4 |page 142 X X
or IPv6 address
getipnodebyname() | Get IPv4 or IPv6 address belonging | page 142 X X
to a host name
getnameinfo() Get host and service name page 146 X X
corresponding to IP address and
port number
getservbyport() Get name of a service page 152 X X
getservbyname() Get port number of a service page 152 X X
getprotobyname() | Get number of a protocol page 150 X X
if _nameindex() List with interface names and index |page 173 X X
of local host
U41052-J-2125-9-76 115

Overview of functions Socket functions

Manipulating Internet address

Function Description See INET | INET6 |ISO
inet_addr() Convert character string from dotted |page 175 X

notation to integer value (Internet

address)

inet_network() | Convert character string from dotted |page 175 X
notation to integer value (subnetwork
section)

inet_makeaddr() | Create Internet address from page 175 X
subnetwork section and subnetwork
local address section

inet_Inaof() Extract local network address in byte |page 175 X
order of host from Internet host
address

inet_netof() Extract network number in byte order |page 175 X

of host from Internet host address

inet_ntoa() Convert Internet host address into a |page 175 X
string conforming to normal Internet
dotted notation

inet_pton() Converts page 178 X X

— an IPv4 address in decimal dotted
notation or

— and IPv6 address in hexadecimal
colon notation

to the corresponding binary address.

inet_ntop() Converts a binary IPv4 or IPv6 page 178 X X

address to the corresponding

— IPv4 address in decimal dotted
notation or

— IPv6 address in hexadecimal colon
notation.

116 U41052-J-2125-9-76

Socket functions

Overview of functions

Utility functions

Function Description See INET | INET6 | ISO
freeaddrinfo() Release memory area for addrinfo | page 130 X X
structure requested by the getad-
drinfo() function.
freehostent() Release memory area for hostent page 131 X X
structure requested by the
getipnodebyaddr () and
getipnodebyname() functions.
if freenameindex() | Release memory area for array with |page 171 X X
if _nameindex() structure(s) requested
by the if_nameindex() function.
htonl() 32 bit fields page 125 X
convert from host to network byte
order
htons() 16 bit fields page 125 X X
convert from host to network byte
order
if indextoname() |Determine name corresponding to |page 172 X X
the index
if_nametoindex() |Determine name corresponding to |page 174 X X
the index
ntohl() 32 bit fields page 125 X
convert from network to host byte
order
ntohs() 16 bit fields page 125 X X
convert from network to host byte
order
Control functions
Function Description See INET | INET6 | ISO
soc_ioctl() Control sockets page 206 X X X
soc_wake() Awaken a task waiting with select() or page 224 X X X

soc_poll()

U41052-J-2125-9-76

117

Overview of functions

Socket functions

Test macros for AF_INET6

The following test macros are defined in <netinet.in.h>:

Macro

Test

IN6_IS_ADDR_UNSPECIFIED

address =0 ?

IN6_IS_ADDR_LOOPBACK

address = loopback ?

IN6_IS_ADDR_LINKLOCAL

address = IPv6 - LINKLOCAL ?

IN6_IS_ADDR_SITELOCAL

address = IPv6 - SITELOCAL ?

IN6_ADDR_V4COMPAT

address = IPv4-compatible ?

IN6_ADDR_V4MAPPED

address = IPv4-mapped

IN6_ARE_ADDR_EQUAL

addressl = address2 ?

118

U41052-J-2125-9-76

Socket functions Description of functions

6.3 Description of functions

This section describes all user functions of the SOCKETS(BS2000) interface in
alphabetical order.

U41052-J-2125-9-76 119

accept() Socket functions

accept() - accept a connection on a socket

#include <sys.types.h>
#include <sys.socket.h>

#include <netinet.in.h> /* only for AF_INET and AF_INET 6 */
#include <iso.h> /* only for AF_ISO */

Kernighan—-Ritchie-C:

int accept(s, addr, addrlen);

int s;

int *addrlen;

struct sockaddr_in *addr; /* only for AF_INET */

struct sockaddr_in6 *addr; /* only for AF_INET6 */
struct sockaddr_iso *addr; /* only for AF_ISO */

ANSI-C:
int accept(int s, struct sockaddr * addr, int* addrlen);

Description

The accept() function is used by the server task to accept a connection on socket s, as
requested by the client with the connect() function.

In order to call accept() for socket s, the following requirements must be satisfied:

— smust be s stream socket (SOCK_STREAM) that has assigned a name (address) with
bind().

— smust be marked with listen(), i.e. identified as a socket on which connection requests
can be accepted.

On returning from accept(), addr points to the address of the partner application, as known
on the communications level. The exact format of *addr (i.e. the address) is determined by
the domain in which communication takes place.

— The address returned for the AF_INET address family is of type struct sockaddr_in (see
page 25).

— The address returned for the AF_INET6 address family is of type struct sockaddr_in6
(see page 26).

— The address returned for the AF_ISO address family is of type struct sockaddr_iso (see
page 28).

120 U41052-J-2125-9-76

Socket functions accept()

addrlen points to an integer object that holds the size of the memory area referenced by
*addr (in bytes) at the time of the accept() call. When the accept() function returns, *addrlen
contains the length of the returned address in bytes.

When the queue set up by the listen() function contains at least one connection request,
accept() proceeds as follows:

1. accept() selects the first connection from the connection requests in the queue.
2. accept() creates a new socket.

3. accept() returns the descriptor of the new socket as its result.

Two cases must be considered if there are no connection requests in the queue:

— Ifthe socket is marked as blocking (standard case), accept() blocks the calling task until
a connection is possible.

— If the socket is marked as non-blocking, accept() returns an error message with
errno = EWOULDBLOCK.

You can call select() before calling accept() to test the read readiness of the socket
concerned and make sure that the accept() call will not block.

Once accept() has executed successfully, the complete connection will have been set up in
the AF_INET and AF_INET6 address families. In the AF_ISO address family, one of the two
following steps is also required to set up a complete connection (see also figure 4 on
page 61):

— send user data to the partner who requested the connection
— call sendmsg() (see page 195) (with or without sending user data)

Once a connection has been set up successfully, data can be exchanged via the new
socket created by accept() with the socket that requested the connection. Additional connec-
tions cannot be set up on the new socket. The original socket sremains open to accept
further connections.

Return value

>0:

If successful. The value is the descriptor for the accepted socket.
-1:

If errors occur. errno is set to indicate the error.

U41052-J-2125-9-76 121

accept() Socket functions

Errors indicated by errno

EBADF
sis not a valid descriptor.

EFAULT
The length of the range for accepting the address is too small.

EMFILE
The maximum number of open sockets has been reached.

ENETDOWN
The connection to the network is down.

EOPNOTSUPP
The referenced socket is not of type SOCK_STREAM or was not marked with listen()
as a socket that can accept connection requests.

EWOULDBLOCK
The socket is marked as non-blocking, and no free connections are available.

See also

bind(), connect(), listen(), select(), socket()

122 U41052-J-2125-9-76

Socket functions bind()

bind() - assign a socket a name

#include <sys.types.h>
#include <sys.socket.h>

#include <netinet.in.h> /* only for AF_INET and AF_INET6 */
#include <iso.h> /* only for AF_ISO */

Kernighan—-Ritchie-C:

int bind(s, name, namelen):
int s;

int namelen;

struct sockaddr_in *name; /* only for AF_INET */
struct sockaddr_in6 *name; /* only for AF_INET6 */
struct sockaddr_iso *name; /* only for AF_ISO */
ANSTI-C:

int bind(int s, struct sockaddr* name, int namelen);

Description

The bind() function assigns a name to a socket created with the socket() function that is
initially nameless. After a socket has been created with the socket() function, the socket
exists within a name area (address family) but it has no name.

The s parameter designates the socket to which a name is to be assigned with bind().
namelen specifies the length of the data structure which describes the name.

Return value
0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

U41052-J-2125-9-76 123

bind() Socket functions

Errors indicated by errno

EADDRINUSE
The specified hame is already in use.

EADDRNOTAVAIL
The specified hame cannot be bound to the socket by the local system.

EBADF
sis not a valid descriptor.

EFAULT
The length of the area for accepting the address is too small.

EINVAL
The socket already has a name assigned to it or namelen does not have the size of a
valid address for the specified address family.

ENETDOWN
The connection to the network is down.

See also

connect(), getsockname(), listen(), socket()

124 U41052-J-2125-9-76

Socket functions Byte order macros

Byte order macros - convert byte order

#include <sys.types.h>
#include <netinet.in.h>

u_long htonl(u_long hostlong);
u_short htons(u_short hostshort);
u_long ntohl(u_long netlong);

u_short ntohs(u_short netshort);

Description

The htonl(), htons(), ntohl() and ntohs() macros are only required in the AF_INET and
AF_INET6 address families. htonl(), htons(), ntohl() and ntohs() convert bytes and integers
of the type integer or short from host byte order to network byte order and vice versa:

— htonl() converts 32 bit fields from host to network byte order.
— htons() converts 16 bit fields from host to network byte order.
— ntohl() converts 32 bit fields from network to host byte order.
— ntohs() converts 16 bit fields from network to host byte order.

These macros are mainly used in connection with IPv4 addresses and port numbers, e.g.
as returned by the gethostbyname() function (see page 139).

With regard to IPv6 addresses, a decision was made according to RFC 2553 in favor of the
guaranteed network byte order. Therefore only the 16-bit byte order macros are required
for the port numbers for the AF_INET6 address family.

The macros are only needed on systems on which the host and network byte orders differ.
Since the host and network byte orders are identical in BS2000, the macros are supplied
as null macros (macros without a function) in the <netinet.in.h> header file.

Note, however, that the use of byte order macros is strongly recommended if you want to
create portable programs.

U41052-J-2125-9-76 125

Byte order macros Socket functions

Return value
htonl() and htons() return the input parameter after conversion into network byte order.

ntohl() and ntohs() return the input parameter after conversion into host byte order.

See also

gethostbyaddr(), gethostbyname(), getservbyname()

126 U41052-J-2125-9-76

Socket functions connect()

connect() - initiate a connection on a socket

#include <sys.types.h>
#include <sys.socket.h>

#include <netinet.in.h> /* only for AF_INET and AF_INET6 */
#include <iso.h> /* only for AF_ISO */

Kernighan—-Ritchie-C:

int connect(s, name, namelen);
int s;

int namelen;

struct sockaddr_in *name; /* only for AF_INET */
struct sockaddr_in6 *name; /* only for AF_INET6 */
struct sockaddr_iso *name; /* only for AF_ISO */
ANSTI-C:

int connect(int s, struct sockaddr* name, int namelen);

Description

A task uses connect() to initiate communications with a partner socket via socket s of type
SOCK_STREAM. If the partner socket is of type SOCK_DGRAM, the partner information
is only saved in socket s.

The s parameter designates the socket on which the task initiates communications with
another socket. name is a pointer to the address of the communications partner. The
communications partner is a socket which belongs to the same address family. In the
AF_1SO address family both sockets must belong to the same address family.

Communication in both directions is possible between the AF_INET and AF_INET6
address families with the help of IPv4-mapped IPv6 addresses, i.e. itis possible to establish
a connection between an AF_INET socket on a host, which only has IPv4 addresses, and
an AF_INET®6 partner socket on a host, which exclusively or partly has IPv6 addresses.

*name is an address in the address range of the socket to which the connection is to be
initiated. Each address range interprets the name parameter in its own way.
namelen contains the length of the address of the communications partner in bytes.

U41052-J-2125-9-76 127

connect() Socket functions

The exact functionality of connect() is determined by the address family used.

connect() for AF_INET and AF_INET6

The manner in which connect() proceeds differs according to whether the socket type is
SOCK_STREAM or SOCK_DGRAM.

e With a socket of type SOCK_STREAM (stream socket), connect() sends a connection
request to a partner and tries in this way to set up a connection to this partner. The
partner is specified with the name parameter. For example, a client task uses connect()
to initiate a connection to a server on a stream socket.

Stream sockets can generally set up a connection with connect() only once.

e With a socket of type SOCK_DGRAM (datagram socket), a task uses connect() to define
the name of the communications partner with which data is to be exchanged. The task
then sends the datagrams to this communications partner. This communications
partner is also the only socket from which the task can receive datagrams.

If both an IP address and a port not equal to 0 are specified, the transport system
generates a route to which it assigns a local interface. This local interface can be
inquired using getsockname().

connect() can be used several times with datagram sockets to change the communica-
tions partner. The assignment to a specific partner can be terminated by entering a null
pointer for the name parameter.

connect() for AF_1SO

connect() is used to set up the connection to an ISO partner. The partner must not only
accept the connection request with accept(), but must also call a transfer function (send() or
sendmsg()) as confirmation. However, no data need be sent with the transfer function. This
can, for example, be done with a sendmsg() call.

Here again, the connection between two end points can only be set up once by connect().

Return value
0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

128 U41052-J-2125-9-76

Socket functions connect()

Errors indicated by errno

EADDRINUSE
The specified address is already in use.

EAFNOSUPPORT
Addresses in the specified address family cannot be used with this socket.

EBADF
sis not a valid descriptor.

ECONNREFUSED
The connection attempt was rejected, probably because the requested service was not
available at the time of the function call.

EFAULT
The length of the area for accepting the address is too small.

EINPROGRESS
Connection setup has not yet been completed successfully.

EISCONN
The socket already has a connection.

ENETDOWN
The connection to the network is down.

Note

If the connection is established with a non-blocking socket of the type SOCK_STREAM
(either with soc_ioctl() NONBLOCKING being set or by using an external bourse), in the
case of an application produced with Sockets > V2.6 a return value of -1 can occur with
errno EINPROGRESS. This means that the connection has not been successfully estab-
lished at the time control is returned to the caller. Consequently, before this socket is used
you must use select() or soc_poll() to check that it can be written to.

When a write/read access takes place before the connection has been fully established, it
is rejected with a return value of -1 and the errno EWOULDBLOCK.

See also

accept(), getsockname() select(), soc_close(), socket()

U41052-J-2125-9-76 129

freeaddrinfo()

Socket functions

freeaddrinfo() - release memory for addrinfo structure

#include <sys.socket.h>
#include <netdb.h>

Kernighan—-Ritchie-C:
int freeaddrinfo(ai);

struct addrinfo *ai;

ANSI-C:

int freeaddrinfo(struct addrinfo* ai);

Description

The freeaddrinfo() function release memory area for a concatenated list of struct addrinfo
objects which was requested beforehand with the getaddrinfo() function.

The ai parameter is a pointer to the first addrinfo object in a list of several concatenated

addrinfo objects.

The addrinfo structure is declared as follows:

struct addrinfo {

int ai_flags; /*
int ai_family; /*
int ai_socktype; /*
int ai_protocol; /*
size_t ai_addrlen; /*
char* ai_canonname; /*
struct sockaddr *ai_addr; /*

/*

struct addrinfo *ai_next; /*

bs

See also

getipnodebyname(), getipnodebyaddr()

AT_PASSIVE,AI_CANONNAME ,AI_NUMERICHOST*/
PF_INET,PF_INET6 */

SOCK_STREAM, SOCK_DGRAM*/

0 (not supported in SOCKETS) */

length of the address */

canon name of the node */

socket address structure of address */
family AF_INET or AF_INET6 */

next structure in concatenated list */

130

U41052-J-2125-9-76

Socket functions

freehostent()

freehostent() - release memory for hostent structure

#include <netdb.h>

Kernighan—-Ritchie-C:
void freehostent(ptr);

struct hostent *ptr;

ANSI-C:

void freehostent(struct hostent* ptr);

Description

The freehostent() function releases memory for an object of the type struct hostent which was
requested beforehand with the getipnodebyname() or getipnodebyaddr() function.

The ptr parameter points to an object of the type struct hostent.

The hostent structure is declared as follows:

struct hostent {

char *h_name; /*
char **h_aliases; /*
int h_addrtype; /*

int h_length; /*
char **h_addr_list; /*
/~k

socket host name */

alias list */

address type */

length of address (in bytes) */
1ist of addresses for the host */
terminated with a null pointer */

U41052-J-2125-9-76

131

gai_strerror() Socket functions

gai_strerror() - output text for the error code of getaddrinfo()

#include <netdb.h>

Kernighan—-Ritchie-C:
char* gai_strerror(ecode);

int ecode;

ANSI-C:
char* gai_strerror(int ecode);

Description

The gai_strerror() function outputs an explanatory text string for an error code defined in
<netdb.h>. The ecode parameter specifies an error code defined in <netdb.h>.

Return value

gai_strerror() returns a pointer to the string containing the explanatory text. If the value for
ecodedoes not match any of the error codes for getaddrinfo() defined in <netdb.h>, the return
value is a pointer to a string indicating an unknown error.

132 U41052-J-2125-9-76

Socket functions getaddrinfo()

getaddrinfo() - get information about host names, host
addresses and services regardless of protocol

#include <sys.socket.h>
#include <netdb.h>

Kernighan—-Ritchie-C:
int getaddrinfo(nodename, servname, hints, res);

const char *nodename;

const char *servname;

const struct addrinfo *hints;
const struct addrinfo **res;

ANSI-C:
int getaddrinfo(const char* nodename, const char* servname, const struct
addrinfo* hints, const struct addrinfo** res);

Description

The getaddrinfo() function allows host information for the AF_INET and AF_INET6 address
families to be queried regardless of the protocol involved.

nodename and servname parameters

When getaddrinfo() is called, at least one of the parameters nodename or servname must be
not be the null pointer. nodename and servnameare either a null pointer or a string terminated
with the null byte. The nodename parameter can be a name or an IPv4 address in decimal
dotted notation or an IPv6 address in hexadecimal colon notation. The servname parameter
can be either a service name or a decimal port number.

hints parameter

The hints parameter can be used to pass an addrinfo structure if desired. If not, the hints
parameter must be the null pointer.

U41052-J-2125-9-76 133

getaddrinfo() Socket functions

The addrinfo structure is declared as follows:

struct addrinfo {

int ai_flags; /* AT_PASSIVE,AI_CANONNAME ,AT_NUMERICHOST*/
/* AT_NUMERICSERV,AI_VAMAPPED,AT_ALL */
/* AT_NUMERICHOST*/

int ai_family; /* PF_INET,PF_INET6 */

int ai_socktype; /* SOCK_STREAM,SOCK_DGRAM*/

int ai_protocol; /* 0 (not supported in SOCKETS) */

size_t ai_addrlen; /* length of the address */

char ai_canonname; /* canon name of the node */

struct sockaddr *ai_addr; /* socket address structure of the address*/
/* family AF_INET or AF_INET6 */

struct addrinfo ai_next; /* next structure in concatenated list */

bs

All the elements in the object of the type struct addrinfo passed with hints except ai_flags,
ai_family, ai_socktype must have the value 0 or must be the null pointer.

A selection is made with the values for the addrinfo components ai_flags, ai_family and
ai_socktype:

e ai_family = PF_UNSPEC means that any protocol family is desired.

e ai_socktype = 0 means that an addrinfo structure is to be created for each socket type
with the required service.

e ai_flags= Al_PASSIVE means that the returned socket address structure is to be used
for a bind() call. If nodename = NULL (see above), the IP address element is set to
INADDR_ANY for an IPv4 address and to INGADDR_ANY for an IPv6 address.

e Ifthe Al_PASSIVE bit is not set, the returned socket address structure is used

— for a connect() call if ai_socktype = SOCK_STREAM
— for a connect()-, sendto()-, sendmsg() call if ai_socktype = SOCK_DGRAM

If, in these cases, nodename is the null pointer, the IP address of sockaddr is supplied
with the value of the loopback address.

e Ifthe AL CANONNAME bitis setin the ai_flags of the hintsstructure and getaddrinfo() is
executed successfully, at least the first returned addrinfo structure in the element
ai_canonname contains the pointer to the canon name terminated with the null byte of
the selected host.

. The ai_canonname is determined by a reverse lookup. If this reverse lookup is
1 not successful, i.e. no name is found for the specified address, no error is
reported, but the content of the nodename parameter is copied into the
ai_canonname element if it is not equal to the null pointer. If nodenameis a null

134

U41052-J-2125-9-76

Socket functions getaddrinfo()

pointer, a null pointer is entered in the ai_canonname element.
Please note that the content of nodename can also be an address! This is then
also copied.

e Ifthe AL NUMERICHOST bit is set in the ai_flags of the hints structure, a nodename
which is not the null pointer must be an IPv4 address string in decimal dotted notation
or an IPv6 address string in hexadecimal colon notation. Otherwise, the return value is
EAI_NONAME. The flag prevents a call that would resolve the name via a DNS service
or internal host table.

e |Ifthe Al_VAMAPPED bitis setinthe ai_flagsof the hintsstructure together with ai_family
= PF_INET6 and no IPv6 addresses are supplied for the name, IPv4 addresses con-
tained in the output list are entered in the form of IPv4-mapped IPv6 addresses.

If the Al_ALL bit is also set, both IPv6 and the IPv4-mapped IPv6 addresses are
entered.

e Ifthe Al ADDRCONFIG bitis set in the ai_flags of the hints structure, IPv4 or IPv6
addresses which belong to the name are output only if a corresponding interface
address is defined on the local computer. The loopback address does not count as a
configured interface address here.

e Ifthe Al NUMERICSERYV bitis set in the ai_flags of the hints structure, the pointer of
servname which is not a null pointer must point to a numerical port number string. If this
is not the case, an error message (EAI_NONAME) is returned.

hints = NULL has the same effect as an addrinfo structure initialized with 0 and
ai_family = PF_UNSPEC.

res parameter

If getaddrinfo() is executed successfully, a pointer to one or more concatenated addrinfo
structures is passed in res, where the element ai_next = NULL indicates the last element in
the chain. Each of the returned addrinfo structures contains a value corresponding to the
socket() call in the elements ai_family and ai_socktype. ai_addr always points to a socket
address structure whose length is specified in ai_addrlen.

Return value
0:
If successful.

>0:

If errors occur. Return value is an error code EAI_xxx defined in <netdb.h>.
-1:

If errors occur. errno is set to indicate the error.

U41052-J-2125-9-76 135

getaddrinfo() Socket functions

Error code defined in <netdb.h>:

EAI_ADDRFAMILY
The Internet address families are not supported for the specified host.

EAI_AGAIN
Temporary error while accessing the host name information (e.g. DNS error).
The function should be called again.

EAI_BADFLAGS
Invalid value for the ai_flags parameter.

EAI_FAIL

Error while accessing the host name information
EAI_FAMILY

The protocol family is not supported.
EAI_MEMORY

Error when requesting memory.
EAI_NODATA

No address corresponding to the host name was found.
EAI_NONAME

Host or service hame is not supported or is unknown.
EAI_SERVICE

Service is not supported for this socket type.

EAI_SOCKTYPE
The socket type is not supported.

EAI_SYSTEM
System error; is specified in more detail in errno.

Note

Memory for the addrinfo structures returned by the getaddrinfo() function is requested
dynamically and must be released again with the freeaddrinfo() function.

In SOCKETS(BS2000), PF_UNSPEC = AF_UNSPEC.

If you are not using DNS, do not specify a fully-qualified-domain-name but rather a host name
if you want to be able to use the BCAM processor table (e.g. host instead of
host.mydomain.net).

The LWRESD resolver which is common to the SOCKETS(BS2000), BCAM and POSIX
sockets is used to access the DNS. For more details, see the manual “BCAM Volume 1/2".

136

U41052-J-2125-9-76

Socket functions getbcamhost()

getbcamhost() - get BCAM host name

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int getbcamhost(bcamname, bcamnamelen);

char *bcamname;
int bcamnamelen;

ANSI-C:
int getbcamhost(char* bcamname, int bcamnamelen);

Description

Use of the getbcamhost() function only makes sense in the AF_ISO address family.

getbcamhost() returns the BCAM host name in the bcamname parameter. The BCAM host
name is used for the ISO transport service in the AF_ISO address family and corresponds
to the local network selector NSEL. The BCAM host name has a fixed length of 8
characters; blanks are permitted at the end of the name.

The length of the bcamname string variable must be specified in the bcamnamelen parameter
in the getbcamhost() call.

If the length of the bcamname string variable specified by bcamnamelen is sufficient to accept
the host name, the host name is terminated with a null byte. Otherwise, the excess host
name characters are truncated, and it is then undefined whether the host name returned in
this way is terminated by a null byte.

Definition of BCAM host name: see getsockopt() on page 156

Return value
0:
If successful.

-1:
If errors occur. errno is not set.

U41052-J-2125-9-76 137

getdtablesize() Socket functions

getdtablesize() - get size of descriptor table

#include <sys.socket.h>
Kernighan—-Ritchie-C:
int getdtablesize();

ANSI-C:
int getdtablesize();

Description

The getdtablesize() function returns the size of the socket descriptor table in bits. The table
is valid for all the supported address families, i.e. it contains all the possible descriptors for
all the address families.

Return value

0:
If successful.

-1:
If errors occur. &rno is not set.

See also

select()

138 U41052-J-2125-9-76

Socket functions gethostbyaddr(), gethostbyname()

gethostbyaddr(), gethostbyname() - get information about
host names and addresses

#include <sys.socket.h>
#include <netdb.h>

Kernighan—-Ritchie-C:
struct hostent *gethostbyaddr(addr, len, type);

char *addr;
int Ten;
int type;

struct hostent *gethostbyname(name);
char *name;
ANSI-C:

struct hostent* gethostbyaddr(char* addr, int len, int type);
struct hostent* gethostbyname(char* name);

Description

Use of the gethostbyaddr() and gethostbyname() functions only makes sense in the AF_INET
address family.

The gethostbyaddr() and gethostbyname() functions return current information on all known
hosts on the network by obtaining the required information (host name and host address)
from a DNS server. Otherwise, i.e. only in cases where this is not successful, the infor-
mation taken from the BCAM processor table (see the “BCAM Volume 1/2” manual for
details).

For gethostbyaddr(), addr is a pointer to the host address. This host address must be
available in binary format with the length len. The only valid entry for type is AF_INET.
For gethostbyname(), the host name must be specified for name.

The gethostbyaddr() and gethostbyname() functions return a pointer to an object with the
hostent structure described below.

U41052-J-2125-9-76 139

gethostbyaddr(), gethostbyname() Socket functions

The hostent structure is declared as follows:

struct hostent {

char *h_name; /* socket host name */

char **h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; /* length of the address in bytes */
char **h_addr_1list; /* 1ist of addresses for the host, */

/* terminated by the null pointer */
b

#define h_addr h_addr_1ist[0]; /* first address, network byte order */
Description of hostent components:

h_name
Name of the host

h_aliases
A list of alternative names (aliases) for the host, terminated with null.
Aliases are currently not supported.

h_addrtype
Type of the returned address (always AF_INET)

h_length
Length of the address in bytes

**h_addr_list
A pointer to a null-terminated list of network addresses for the host. These addresses
of length h_length are returned in network byte order.

Return value

The null pointer is returned if errors occur or the end of the file is reached.

Note

The data returned in the hostent object is supplied in a static area that is overwritten with
each new gethostby...() call. It must therefore be copied if it needs to be saved.

As of version V2.2, the LWRESD resolver which is common to SOCKETS(BS2000), BCAM
und POSIX sockets is used to access the DNS in the case of gethostbyname() and
gethostbyaddr (). For more details, see the manual “BCAM Volume 1/2".

The POSIX resolver daemon dnsd is no longer used.

140

U41052-J-2125-9-76

Socket functions gethostname()

gethostname() - get the name of the current host

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int gethostname(name, namelen);

char *name;
int namelen;

ANSI-C:
int gethostname(char* name, int namelen);

Description

Use of the gethostname() function only makes sense in the AF_INET and AF_INET6 address
families.

The gethostname() function returns the socket host name in the name parameter. Socket host
names are unique network-wide and are assigned in TCP/IP networks to all hosts that can
be reached via a TCP/IP route (see the “BCAM Volume 1/2” manual for details).

The length of the name string variable must be specified in the namelen parameter in the
gethostname() call.

If the length of the name string variable specified by namelen is sufficient to accept the host
name, the host name is terminated with a null byte. Otherwise, the excess host name
characters are truncated, and it is then undefined whether the host name returned in this
way is terminated by a null byte.

Return value
0:
If successful.

-1:
If errors occur. errno is not set.

U41052-J-2125-9-76 141

getipnodebyaddr(), getipnodebyname() Socket functions

getipnodebyaddr(), getipnodebyname() - get information
about host names and addresses

#include <sys.socket.h>
#include <netdb.h>

Kernighan—-Ritchie-C:
struct hostent *getipnodebyaddr(addr, len, type, error_num);

char *addr;

int len;

int type;

int *error_num;

struct hostent *getipnodebyname(name, af, flags, error_num);

char *name;

int af;

int flags;

int *error_num;

ANSI-C:
struct hostent* getipnodebyaddr(char* addr, int Ten, int type, int*
error_num) ;

struct hostent* getipnodebyname(char* name, int af, int flags, int*
error_num);

Description

Use of the getipnodebyaddr() and getipnodebyname() functions only makes sense in the
AF_INET and AF_INET®6 address families. getipnodebyaddr() and getipnodebyname() are
extensions of the functions gethostbyaddr() and gethostbyname() for IPv6 support.

The getipnodebyaddr() and getipnodebyname() functions return current information on all
known hosts on the network by obtaining the required information (host name and host
address) from a DNS server. Otherwise, i.e. only in cases where this is not successful, the
information taken from the BCAM processor table (see the “BCAM Volume 1/2” manual for
details).

142

U41052-J-2125-9-76

Socket functions getipnodebyaddr(), getipnodebyname()

For getipnodebyaddr(), addr is a pointer to the host address. This host address must be
available in binary format with the length len. The only valid entry for type is AF_INET or
AF_INETS.

For getipnodebyname(), the host name (socket host name) must be specified for name. You
can specify the name

— as a fully-qualified DNS name, i.e. including host name and domain part (e.g.
hostname.company.com) or

— as a partially-qualified DNS name (e.g. hostname) or

— only as a host name (e.g. hostname).

You can also specify an IPv4 address in decimal dotted notation or an IPv6 address in
hexadecimal colon notation. If you do so, the corresponding address families must be
specified for af. In this case, the converted binary address is returned in the hostent return
structure. If an IPv4 address in decimal dotted notation and af = AF_INET6 and

flags = Al_VAMAPPED is specified, a binary IPv4-mapped IPv6 address is returned in the
output structure.

The af parameter in the call is used to specify the address family (AF_INET or AF_INETS).

The flags parameter can be used to control the output of the desired address family. If flags
has the value 0, an address appropriate to the address family specified in ai is returned.

In the address family af, flags can be used to specify different options (they are defined in
<netdb.h>):

Al_VAMAPPED
The caller accepts IPv4-mapped addresses if no IPv6 address is available.

Al_ALL
IPv6 addresses and IPv4-mapped addresses are returned if available. af must have the
value AF_INET®6.

Al_ADDRCONFIG
Depending on the value of af, only an IPv6 or IPv4 address is returned if the host on
which the function is called has an interface address of the same type.

Al_DEFAULT
is the same as Al_ ADDRCONFIG || Al_V4MAPPED.
— If af = AF_INET®6 is set and the host on which the function is called has an IPv6
address, an IPv6 address is returned for the specified host name.
— If the host on which the function is called has only an IPv4 interface address, an
IPv4-mapped IPv6 address is returned.

The getipnodebyaddr() and getipnodebyname() functions return a pointer to an object of the
hostent structure described below. Memory for this object is requested dynamically and must
be released again by the caller with the freehostent() function.

U41052-J-2125-9-76 143

getipnodebyaddr(), getipnodebyname() Socket functions

The hostent structure is declared as follows:

struct hostent {

char *h_name; /* socket host name */

char **h_aliases; /* alias list */

int h_addrtype; /* address type */

int h_length; /* length of the address (in bytes) */
char **h_addr_1list; /* 1ist of addresses for the host */

/* terminated with the null pointer */

bs
#define h_addr h_addr_1ist[0]; /* first address, network byte order */
Description of hostent components:

h_name
Name of the host

h_aliases
A list of alternative names (aliases) for the host, terminated with null.
Aliases are currently not supported.

h_addrtype
Type of the returned address (always AF_INET)

h_length
Length of the address in bytes

**h_addr_list
A pointer to a null-terminated list of network addresses for the host. These addresses
of length h_length are returned in network byte order.

Return value

Pointer to an object of the type struct hostent. If an error occurs, the null pointer is returned
and the variable errnumis supplied with one of the following values. These values are
defined in <netdb.h>.

HOST_NOT_FOUND
Host unknown.

NO_ADDRESS
No host address is available for the specified name.

NO_RECOVERY
An unrecoverable server error has occurred.

TRY_AGAIN
Access must be repeated.

144

U41052-J-2125-9-76

Socket functions getipnodebyaddr(), getipnodebyname()

Note

When DNS is not used, as a rule it makes sense not to specify a Fully Qualified Domain
Name (FQDN), but only the host name in order to obtain the corresponding addresses from

BCAM (e.g. host instead of host.mydomain.net).
The use of FQDNs makes sense on systems on which DNS is not used only when an FQDN

file with entries exists.

The LWRESD resolver which is common to the SOCKETS(BS2000), BCAM and POSIX
sockets is used to access the DNS. For more details, see the manual “BCAM Volume 1/2”".

U41052-J-2125-9-76 145

getnameinfo() Socket functions

getnameinfo() - get the name of the communications partner

#include <sys.socket.h>
#include <netdb.h>

Kernighan—-Ritchie-C:
int getnameinfo (sa, salen, host, hostlen, serv, servlen, flags);

const struct sockaddr *sa;
socklen_t salen;

char *host;

size_t hostlen;

char *serv;

size_t servlen;

int flags;

ANST-C:
int getnameinfo (const struct sockaddr* sa, socklen_t salen, char* host,
size_t hostlen, char* serv, size_t servlen, int flags);

Description

The getnameinfo() function returns the name assigned to the IP address and port number
specified in the call as a text string. The values are determined using either the DNS service
or system-specific tables.

The sa parameter is a pointer to a sockaddr_in structure (for IPv4) or a sockaddr_in6 structure
(for IPv6), which contains the IP address and port number.
salen indicates the length of these structures.

If getnameinfo() is executed successfully, host is a pointer to the socket host name which
corresponds to the specified IP address. The socket host name is terminated with the null
byte, and its length corresponds to the value of hostlen. The same applies to the service
name which corresponds to the specified port number. This is the service name to which
the pointer serv points, and its length (including the null byte) corresponds to the value of
servien.

If the value 0O is specified for hostlen or servien when getnameinfo() is called, this indicates that
no name is to be returned in the corresponding host parameter or no service name or port
number is to be returned in the serv parameter respectively.

However, a sufficiently large buffer, which can accommodate the host and service names
including the null byte, must be made available for the desired information.

146

U41052-J-2125-9-76

Socket functions getnameinfo()

Specification of the maximum lengths for DNS and service nhames in <netdb.h>:

#define NI_MAXHOST 1025
#define NI_MAXSERV ~ 32

The flags parameter changes how getnameinfo() is executed. Normally, the fully-qualified
domain name of the host is determined from the DNS and returned. Depending on the value
of flags, a distinction is made between the following cases:

If the flags bit NI_NOFQDN is set, only the host name part of an FQDN is returned.

. The LWRESD resolver which is common to the SOCKETS(BS2000), BCAM
1 and POSIX sockets is used to access the DNS. For more details, see the
manual “BCAM Volume 1/2".

If the flags bit NI_NUMERICHOST is set, or it is impossible to determine the host name
in the DNS or using local information, the numeric host name is returned in printable
format after address conversion.

— If the flags bit NI_NAMEREQD is set, an error is reported if the host name cannot be
determined in the DNS.
If the flags bit NI_NAMEREQD is set in combination with NI_NOFQDN, the bit has no
effect.

— Ifthe flagsbit NI_NUMERICSERY is set, the port number is returned in printable format
instead of the service name.

— If the flags bit NI_DGRAM is set, the service name for the udp protocol is returned. If
NI_DGRAM is not specified, the service name for the tcp protocol is always returned.

Return value

0:
If successful.

>0:
If an error occurs
As thread savety is required for the DNS Resolver, errnos cannot be set.
If the return value > 0, it corresponds to the value of an EAI_xxx error code as defined
in <netdb.h>.

<0:
If an error occurs
An error has occurred, which prevents execution of the function. Therefore errno is set.

U41052-J-2125-9-76 147

getpeername() Socket functions

getpeername() - get the remote address of the socket
connection

#include <sys.socket.h>

#include <netinet.in.h> /* nur bei AF_INET und AF_INET6 */
#include <iso.h> /* nur bei AF_ISO */

Kernighan—-Ritchie-C:

int getpeername(s, name, namelen);
int s;

int *namelen;

struct sockaddr_in “*name; /* only for AF_INET */
struct sockaddr_in6 *name; /* only for AF_INET6 */
struct sockaddr_iso *name; /* only for AF_ISO */
ANSI-C:

int getpeername(int s, struct sockaddr* name, int* namelen);

Description

The getpeername() function returns the name of the communications partner connected to
socket sin the name parameter.

name points to a memory area. After getpeername() has been executed successfully, *name
contains the name (address) of the communications partner.

The integer variable to which the namelen parameter points must be assigned the maximum
possible address length (in bytes) before getpeername() is called. After the function returns,
*namelen contains the current size of the returned name in bytes.

Return value
0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

148

U41052-J-2125-9-76

Socket functions getpeername()

Errors indicated by errno
EBADF
The s parameter is not a valid descriptor.

EFAULT
The length of the area for accepting the address is too small.

ENOBUFS
There is not enough storage space in the buffer.

ENOTCONN
The socket has no connection.

EOPNOTSUPP
Socket sis not of type SOCK_STREAM, and the operation is not supported for the
socket type of s.

See also

accept(), bind(), getsockname(), socket()

U41052-J-2125-9-76 149

getprotobyname() Socket functions

getprotobyname() - get the number of the protocol

#include <netdb.h>

Kernighan—-Ritchie-C:
struct protoent *getprotobyname(name);

char *name;

ANSI-C:
struct protoent* getprotobyname(char* name);

Description

Use of the getprotobyname() function only makes sense in the AF_INET and AF_INET
address families.

The getprotobyname() function returns a pointer to an object with the protoent structure
described below. This structure contains the protocol number associated with the protocol
name name.

The protoent structure is declared in <netdb.h> as follows:

struct protoent {

char *p_name; /* official name of the protocol*/
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

Description of protoent components:

p_name
Name of the protocol

p_aliases
A list of alternative names (aliases) for the protocol, terminated with null.
Aliases are currently not supported.

p_proto
Number of the protocol; result field of getprotobyname().

150

U41052-J-2125-9-76

Socket functions getprotobyname()

Return value
Pointer to an object of type struct protoent. The null pointer is returned if an error occurs.

Note

The data returned in the protoent object is supplied in a static area that is overwritten with
each new getprotobyname() call. It must therefore be copied if it needs to be saved.

U41052-J-2125-9-76 151

getservbyname(), getservbyport() Socket functions

getservbyname(), getservbyport() - get information about
services

#include <netdb.h>

Kernighan—-Ritchie-C:
struct servent *getservbyname(name, proto);

char *name;
char *proto;

struct servent *getservbyport(port, proto);

int port;
char *proto;

ANSI-C:
struct servent* getservbyname(char* name, char* proto);

struct servent* getservbyport(int port, char* proto)

Description

Use of the getservbyname() and getservbyport() functions only makes sense in the AF_INET
and AF_INET6 address families.

The getservbyname() and getservbyport() functions return information on the available
services from the services file with the default name SYSDAT.BCAM.ETC.SERVICES
which is managed by BCAM (see the “BCAM Volume 1/2” manual). Both function return a
pointer to an object with the servent structure described below.

getservbyname() returns the port number associated with the service name name and the
protocol proto in the servent object. If NULL is specified for proto, the service name and the
port number of the first protocol found in the list are output.

getservbyport() returns the service name associated with the port number port and the
protocol proto in the servent object, as well as the (up to) four aliases which can be entered.
If NULL is specified for proto, the service name and the aliases of the first protocol found in
the list are output for the specified port number.

152

U41052-J-2125-9-76

Socket functions getservbyname(), getservbyport()

The servent structure is declared in <netdb.h> as follows:

struct servent f{

char *s_name; /* name of the service */

char **s_aliases; /* alias list */

int s_port; /* number of the port on which the service lies*/
char *s_proto; /* protocol used */

Description of servent components:

S_name
Name of the service

s_aliases
A list of alternative names (aliases) for the service, terminated with null

s_port
Port number assigned to the service. Port numbers are returned in network byte order.

s_proto
Name of the protocol that must be used to access the service.

As long as a protocol name (not NULL) is specified, getservbyname() and getservbyport()
search for the service that uses the matching protocol.

Return value

The null pointer is returned if the search reaches the end of the file.

Note

The data returned in the servent object is supplied in a static area and must therefore be
copied if it needs to be saved.

U41052-J-2125-9-76 153

getsockname() Socket functions

getsockname() - get local address of the socket connection

#include <sys.socket.h>

#include <netinet.in.h> /* only for AF_INET and AF_INET6 */
#include <iso.h> /* only for AF_ISO */

Kernighan—-Ritchie-C:

int getsockname(s, name, namelen);

int s;

int *namelen;

struct sockaddr_in *name; /* only for AF_INET */

struct sockaddr_in6 *name; /* only for AF_INET6 ~*/
struct sockaddr_iso *name; /* only for AF_ISO */

ANSI-C:
int getsockname(int s, struct sockaddr* name, int* namelen);

Description

The getsockname() function returns the current name for socket sin the name parameter.

name points to a memory area. On successful execution of getsockname(), *name contains
the name (address) of socket s. Before calling getsockname(), the integer variable to which
the namelen parameter points must be supplied with the address length (in bytes). When the
function returns, *namelen contains the current size of the returned name in bytes.

Return value
0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

154 U41052-J-2125-9-76

Socket functions getsockname()

Errors indicated by errno

EBADF
The s parameter is not a valid descriptor.

EFAULT
The length of the area for accepting the address is too small.

EOPNOTSUPP
Socket sis not of type SOCK_STREAM, and the operation is not supported for the
socket type of s.

See also

bind(), getpeername(), socket()

U41052-J-2125-9-76 155

getsockopt(), setsockopt() Socket functions

getsockopt(), setsockopt() - get and set socket options

#include <sys.types.h>
#include <sys.socket.h>
#include <netinet.in.h> /* only for AF_INET or AF_INET6 */

Kernighan—-Ritchie-C:
int getsockopt(s, Tevel, optname, optval, optlen);

int s;

int level;
int optname;
char *optval;
int *optlen;

int setsockopt(s, Tevel, optname, optval, optlen);

int s;

int level;
int optname;
char *optval;
int optlen;

ANSI-C:
int getsockopt(int s, int level, int optname, char* optval, int* optlen);

int setsockopt(int s, int Tevel, int optname, char* optval, int optlen);

Description

The getsockopt() function can be used to get the properties (options) of the socket interface
or of a single socket svia the optname, optval and optlen parameters.

The setsockopt() function can be used to set the properties (options) of the socket interface
or of a single socket svia the optname, optval and optlen parameters.

You can use the level parameter to specify whether you want to get or set the options of the
socket interface or of a single socket.

156

U41052-J-2125-9-76

Socket functions getsockopt(), setsockopt()

The following values are allowed as the current value for level:

SOL_GLOBAL (page 158)
Debugging outputs are enabled.

SOL_SOCKET (page 159)
Get or set options of socket s of the AF_INET or AF_INET6 address family.

SOL_TRANSPORT (page 168)
Get or set options of socket s of the AF_ISO address family.

IPPROTO_TCP (page 167)
Get or set options of socket sin the AF_INET or AF_INET6 address family for modifying
the protocol behavior of the TCP protocol.

IPPROTO_IPV4 (page 163)
Get or set options of socket sin the AF_INET address family for modifying the protocol
behavior of the IPv4 protocol. For reasons of compatibility, both IPPROTO _IP and
IPPROTO_IPV4 are evaluated.

IPPROTO_IPV6 (page 165)
Query or modify options for the socket sin the address family AF_INET6 for modifying
the behavior of the IP protocol.

IPPROTO_ICMP (page 167)
Query or modify options for the socket sin the address family AF_INET of the type
SOCK_RAW for modifying the protocol behavior of the IP protocol in conjunction with
the ICMP protocol.

IPPROTO_ICMPV6 (page 168)
Query or modify options for the socket sin the address family AF_INET6 of the type
SOCK_RAW for modifying the protocol behavior of the IP protocol in conjunction with
the ICMPV6 protocol.

U41052-J-2125-9-76 157

getsockopt(), setsockopt() Socket functions

Options for the SOL_GLOBAL level
At SOL_GLOBAL level operand s is meaningless and should be assigned the value 0.

optname = SO_DEBUG enables debugging outputs with verious depths of detail to be en-
abled.

With getsockopt() and optlen with a value of 4 (sizeof int), the value of the debugging output
level currently set is output in optval.

The value 0 disables the debugging output.

With setsockopt() and optlen with a value of 4, the following debugging output level shown in
the table below can be specified in optval

*optval > 1: Function calls

*optval > 6: Function calls + additional informa-
tion

*optval = 8: Function calls + additional informa- + BCAM parameter area after call
tion

*optval =9: Function calls + additional informa- + BCAM parameter area after call
tion + BCAM parameter area before call

With setsockopt() and optname = SO_ASYNC and optlen = 4 and optval with a pointer to the
short ID of the event ID of the external bourse to be used, an external wait point is config-
ured for SOCKETS(BS2000) when this is the first socket call of the subsystem (see

page 232).
optname *optlen Value range of optval
SO_ASYNC 4 Pointer to short ID of the event ID

158 U41052-J-2125-9-76

Socket functions

getsockopt(), setsockopt()

Options for the SOL_SOCKET (AF_INET, AF_INET6) level

In this case, s specifies the socket for which the options are to be retrieved or set, and
optname specifies the name of the option for which a value is to be retrieved or set.

With getsockopt(), optval and optlen identify the respective buffers in which the value of the
desired option is returned. *optlen initially contains the size of the buffer to which optval
points. When the getsockopt() function returns, *optlen contains the current size of the
returned buffer. If the option in question has no value that can be returned, *optval contains

the value 0.

The following values can be returned by getsockopt() for optname and optlen in the AF_INET

and AF_INET6 address families:

optname *optlen Output format in optval
SO_DEBUG 4 int
SO_DISHALIAS 4 int
SO_ERROR 4 int
SO_KEEPALIVE 4 int
SO_OUTPUTBUFFER 4 int
SO_RCVBUF 4 int
SO_SNDBUF 4 int
SO_TSTIPAD 4 int
SO_TYPE 4 int
SO_VHOSTANY 8 *(char[8])

SO_KEEPALIVE

i @

An output value >0 specifies that a timer value has been set with setsockopt(). The

caller cannot recognize the connection status for the selected socket. If the connec-
tion is active, the timer value is determined by BCAM from the connection informa-
tion. If the connection is not yet active, the timer value is read from the socket.

If a timer value = 0 is output, this does not necessarily mean that KEEPALIVE is dis-
abled! A global setting of the KEEPALIVE timer by the BCAM administration cannot
be seen by means of this function.

U41052-J-2125-9-76

159

getsockopt(), setsockopt() Socket functions

The setsockopt() function can be used to set or change option values via the optval and optlen
parameters. You can specify the following values for optname, optlen and optval in the
AF_INET and AF_INET6 address families:

optname optlen optval
SO_BROADCAST 4

(only AF_INET)

SO_DEBUG 4 0< optval < 9
SO_DISHALIAS 4 0,1
SO_KEEPALIVE 4 0; 120...32767
SO_LINGER > sizeof(struct linger) *(struct linger)
SO_REUSEADDR 4 0,1
SO_VHOSTANY 4 *(char[9])

The valid value range of optval for the SO_KEEPALIVE option is 0 and 120 ... 32767:
— If the value is 0, the timer is switched off.

— If the value is in the range of 120 ... 32767, the timer is switched on and the timer
interval is set with the specified value (unit of measurement: seconds).

If a value outside the valid range is specified, the timer interval is set with the default value
of the transport system.

SO_BROADCAST (only AF_INET)
This option has no functional meaning for sockets. Only a syntax check is performed.

If the syntax is valid, the value 0 is returned; otherwise, -1.

SO_DEBUG
If level = SOL_GLOBAL, this option defines the debugging level for the sockets of the
active task.
If level = SOL_SOCKET, this option has no functional significance; only a syntax check
is performed.

If the syntax is valid, the value 0 is returned; otherwise, -1.
SO_DISHALIAS

A value >0 makes an entry in the socket that host aliasing is to be deactivated for this
application with the bind() call.

SO_ERROR
Shows the number of the last error issued.

160

U41052-J-2125-9-76

Socket functions getsockopt(), setsockopt()

SO_KEEPALIVE
Specifies whether TCP-KEEPALIVE monitoring is to be performed on this connection.

In particular it specifies:

— Whether KEEPALIVE monitoring should be activated in the TCP protocol machine
for the current connection.

— Which time interval (in seconds) should be selected for this monitoring.
The effect of SO_KEEPALIVE depends on the status of the corresponding socket:

— If an active connection is not established for the socket, the desire to activate
KEEPALIVE monitoring with the corresponding value of the timer interval is noted
in the socket structure and transferred to the transport system when a connection
is established.

With a server application, i.e. in the case of a passive connection establishment, the
active listen() socket must be executed with SO_KEEPALIVE, so that monitoring is
automatically switched on every time a connection is established.

— If an active connection already exists for the socket, the information is transmitted
to the TCP protocol machine using an internal transport system call.

If the time interval value is 0, monitoring is deactivated:
— If a connection already exists, monitoring is deactivated immediately.

— If no connection exists, monitoring is deactivated when a connection is established.
With the server, the listen() socket must be marked accordingly.

Due to the various ways in which TCP protocol machines are implemented, it

1 cannot be guaranteed that the connections are maintained (see also RFC
1122).
SO_LINGER

The SO_LINGER option uses a parameter of data type struct linger. This parameter
specifies the desired option status and the delay interval.

The linger structure is defined in <sys.socket.h>.

struct linger {

int 1_onoff; /* option on/off */

int 1_Tlinger; /* linger time */

b

The |_linger parameter specifies the maximum time for executing soc_closg(), |_onoff
activates and deactivates the linger function (0 = OFF, >0 = ON).

SO_OUTPUTBUFFER
Shows the user data accepted by the socket interface but not yet acknowledged by the
partner transport system.

U41052-J-2125-9-76 161

getsockopt(), setsockopt() Socket functions

SO_RCVBUF

Shows the size of the receive (input) buffer.

SO_REUSEADDR

This option has no functional significance if the application was produced with
SOCKETS(BS2000) version £V2.1 or encounters BCAM < V18 ; only a syntax check
is performed.

If the application was produced as of SOCKETS(BS2000) V.2.2 then the
SO_REUSEADDR functionality is required as part of multihoming support.
SO_REUSEADDR only affects the specified socket and must be set before bind().

SO_REUSEADDR is set with optval = 1 and reset with optval = 0.

If the syntax is valid, the value 0 is returned; otherwise, -1.

SO_SNDBUF

Shows the size of the send (output) buffer.

SO_TSTIPAD

Compares the transferred IP address with the interface addresses of the socket host,
on which the socket application runs. SO_TSTIPAD reports the comparison result via
optval.

The IP address is transferred as an IPv4 or IPv6 address via the optval pointer that
points to a struct in_addr or struct in6_addr structure.

The specified socket may not exist. However, the file descriptor must be in the permitted
value range.

The value of the optlen parameter specifies whether it is an IPv4 or IPv6 address.
Therefore the value of optlen must correspond to the length of struct in_addr or

struct in6_addr depending on the address type used.

When used as a return value the first 4 bytes of the address structure passed at the call
are overwritten.

Return value of optval:
0: The specified IP address is a separate interface address.

1: The specified IP address is not a separate interface address.

SO_TYPE

Shows the socket type.

SO_VHOSTANY

The BCAM host name of the real or virtual host is specified in the string pointed to by
optval. This is then entered in the socket.

This makes it possible to address a virtual host with an ANYADDR or
LOOPBACKADDR or to read the data from a virtual host with soc ioctl(...,

162

U41052-J-2125-9-76

Socket functions getsockopt(), setsockopt()

SOCGLIFCONF,....). It is also possible to address a real host if you are working under
an ID assigned to a virtual host by an entry in the BCAM application table.
The name of the BCAM host as entered in the socket is output on reading.

BCAM host name:
The name is eight characters in length. Alphanumeric characters and
the special characters #, @, $ or blanks can be used at the end of the
name. As arule, uppercase characters should be used, but the name is
case-sensitive. Names comprising numeric characters only are not
permitted.

Options for the IPPROTO_IPV4 (AF_INET) level

The getsockopt() function can be used to specify the following values for optname and optlen
in the AF_INET address family:

optname *optlen Output format in optval
IP_MULTICAST_TTL 4 int
IP_MULTICAST _IF > sizeof(struct in_addr) *(struct in_addr)
IP_MULTICAST_LOOP 4 int
IP_RECVERR 4 int

Return value of IP_MMULTICAST_TTL:
Value of the selected hop limit.

Return value of IP_MULTICAST _IF:
IPv4 address of the interface to be used for sending

Return value of IP_MULTICAST_LOOP:
0: Loopback OFF
1: Loopback ON

Return value of IP_RECVERR:
0: The flag is not set
1: The flag is set

The setsockopt() can be used to modify option values via the optval() and optlen() param-
eters. You can specify the following values in the AF_INET address family:

optname optlen optval
IP_ADD_MEMBERSHIP > sizeof(struct ip_mreq) *(struct ip_mreq)
IP_DROP_MEMBERSHIP > sizeof(struct ip_mreq) *(struct ip_mreq)
IP_MULTICAST _TTL 4 0 < optval < 255
IP_MULTICAST _IF > sizeof(struct in_addr) *(struct in_addr)

U41052-J-2125-9-76 163

getsockopt(), setsockopt() Socket functions

optname optlen optval
IP_MULTICAST_LOOP 4 >0
IP_RECVERR 4 >0

The IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP options use a parameter of
the type struct ip_mreq. This parameter specifies the IPv4 address of the desired multicast
group and the local IPv4 address.

The ip_mreq structure is defined in <netinet.in.h>.

struct ip_mreq f{
struct in_addr imr_multiaddr; /* IP multicast address of group */
struct in_addr imr_interface; /* local IP address of interface */

IP_MULTICAST_TTL
Shows or sets the multicast hop limit.
Hop limit values:
0: Send only within the local host (loopback)
1: Send within the local subnetwork
>1: Send beyond router boundaries

IP_ADD_MEMBERSHIP
Activates the delivery of messages of a selected multicast group to this socket.
Specifies the multicast or local interface address (IPv4 address or INADDR_ANY, not
INADDR_LOOPBACK).
INADDR_ANY is the default interface of BCAM for receiving multicast data.

IP_DROP_MEMBERSHIP
Deactivates delivery of messages of a selected multicast group to this socket.
Specifies the multicast and local interface addresses (IPv4 address or INADDR_ANY,
not INADDR_LOOPBACK).
INADDR_ANY is the default interface of BCAM for receiving multicast data.

IP_MULTICAST_IF
IPv4 address of the interface over which transfer is to take place.

IP_MULTICAST_LOOP
Is set by the sender of the messages and enables reception on the local sending host.
0: OFF, 1: ON (default: ON)

IP_RECVERR
Activates the delivery of ICMP error messages to this socket if the option was set before
bind().

164

U41052-J-2125-9-76

Socket functions

getsockopt(), setsockopt()

Options for the IPPROTO_IPV6 (AF_INET®6) level

In the case of getsockopt(), you can enter the following values for optname and optlen in the

address family AF_INET6:

optname *optlen Output format of optval
IPV6_MULTICAST_HOPS 4 int
IPV6_MULTICAST_IF 4 int
IPV6_MULTICAST_LOOP 4 int
IPV6_RECVERR 4 int
IPV6_V60ONLY 4 int

Return value of IPV6_MULTICAST_HOPS:
Value of the selected hop limit.

Return value of IPV6_MULTICAST _IF:
Index of the sender interface.

Return value of IPV6_MULTICAST _LOOP:

0: Loopback OFF
1: Loopback ON

Return value of IPV6_RECVERR and IPV6_V60ONLY:

0: The flag is not set
1: The flag is set

In the case of setsockopt(), you can enter the following values for optname and optlen in the

address family AF_INET6:

optname

optlen

optval

IPV6_JOIN_GROUP

> sizeof(struct ipv6_mreq)

*(struct ipv6_mreq)

IPV6_LEAVE_GROUP

> sizeof(struct ipv6_mreq)

*(struct ipv6_mreq)

IPV6_MULTICAST_HOPS 4 0..255
IPV6_MULTICAST_IF 4 1..255
IPV6_MULTICAST_LOOP 4 20
IPV6_RECVERR 4 >0
IPV6_V60ONLY 4 20

U41052-J-2125-9-76

165

getsockopt(), setsockopt() Socket functions

The IPV6_JOIN_GROUP and IPV6_LEAVE_GROUP options use a parameter of the data
type struct ipv6_mreg. This parameter specifies the IPv6 address of the required multicast
group and the index of the local interface.

The ipv6_mreq structure is defined in <netinet.in.h>:

struct ipvé_mreq f{
struct in6_addr ipvemr_multiaddr; /* IPv6 multicast addr */
int ipvemr_interface; /* interface index */

bs

IPV6_MULTICAST_HOPS
Displays or sets the multicast hop limit.
Hop limit values:
0: Send only within the local host (loopback)
1: Send within the local subnetwork
>1: Send beyond router boundaries

IPV6_JOIN_GROUP
Activates the delivery of messages of a selected multicast group to this socket.
Specifies the IPv6 multicast address and the index of the local interface address (index
for IPv6 address or index 0, no index for loopback).
Index O stands for the default interface of BCAM for receiving multicast data.

IPV6_LEAVE_GROUP
Deactivates the delivery of messages of a selected multicast group to this socket.
Specifies the IPv6 multicast address and the index of the local interface address (index
for IPv6 address or index 0, no index for loopback).
Index O stands for the default interface of BCAM for receiving multicast data.

IPV6_MULTICAST_IF
Index of the IPv6 interface over which transfer is to take place.

IPV6_MULTICAST_LOOP
Is set by the sender of the messages and enables reception on the local sending host.
0: OFF, 1: ON (default: ON)

IPV6_RECVERR
Activates the delivery of ICMP error messages to this socket if the option was set before
bind().

IPV6_V60ONLY
Using the IPV6_V60ONLY option, it is possible to restrict a socket to the use of genuine
IPv6 addresses (optval >1) if it is set ahead of bind() in the socket. This makes it possible
to provide server applications which open a listen socket in the domains AF_INET and
AF_INET6 using the same port number.

166

U41052-J-2125-9-76

Socket functions getsockopt(), setsockopt()

Options for the IPPROTO_TCP (AF_INET, AF_INET®6) level

Calling the getsockopt() function you can specify the following values for optname and optlen
in the AF_INET and AF_INET6 address families:

optname *optlen Output format in optval
SO_TCP_NODELAY 4 int

The setsockopt() function can be used to modify option values via the optval () and optlen()
parameters. You can specify the following values in the AF_INET and AF_INET6 address

families:

optname optlen optval
SO_TCP_NODELAY 4 1 or O (reset/set)
TCP_DELAY 4 1 or O (reset/set)

SO_TCP_NODELAY (TCP_NODELAY)
Allows the Nagle algorithm of the TCP protocol to be deactivated. If this option is set in
the socket (connect() or listen()), the action is activated on connect() or when the
connection is acknowledged.
If the connection has already been established, the option takes effect immediately.

TCP_DELAY
Enable or disable the Delayed-Ack timer for a connection. If optval >0, delayed acknowl-
edgements are disabled and if optval = 0, they are enabled again.
The connection must have been established.

Optionsfor the IPPROTO_ICMP (AF_INET) level

In the case of setsockopt(), you can modify option values using the optval() and optlen()
parameters. You can specify the following values in the AF_INET address family:

optname optlen optval

IP_TTL 4 1..255

IP_MTU_DISCOVER 4 IP_PMTUDISC_DO
IP_PMTUDISC_DONT

IP_TTL
Modifies the hop limit in the corresponding field of the ICMP echo request packet’s IP
protocol header.

IP_MTU_DISCOVER

U41052-J-2125-9-76 167

getsockopt(), setsockopt() Socket functions

Sets the DF flag in the IPv4 protocol header which permits or prevents fragmentation of
an ICMP echo request packet.

IP_PMTUDISC_DONT Fragmentation permitted
IP_PMTUDISC_DO Fragmentation is to be prevented

Options for the IPPROTO_ICMPV6 (AF_INET6) level

In the case of setsockopt(), you can modify option values using the optval() and optlen()
parameters. You can specify the following values in the AF_INET6 address family:

optname optlen Output format in optval

IPV6_HOPLIMIT 4 1...255

IPV6_MTU_DISCOVER 4 IP_PMTUDISC_DO
IP_PMTUDISC_DONT

IPV6_HOPLIMIT
Modifies the hop limit in the corresponding field of the ICMPv6 echo request packet’s
IPv6 protocol header.

IPV6_MTU_DISCOVER

IP_PMTUDISC_DONT Fragmentation permitted
IP_PMTUDISC_DO Fragmentation is to be prevented

This function has no effect because on the IPv6 protocol level, in contrast to IPv4, no
flag is envisaged which could prevent fragmentation. The end systems are obliged to
perform fragmentation by the IPv6 protocol definition.

Options for the SOL_TRANSPORT level (only for AF_1SO)

In this case, s specifies the socket for which the options are to be retrieved or set, and
optname specifies the name of the option for which a value is to be retrieved or set.

With getsockopt(), optval and optlen identify the respective buffers in which the value of the
desired option is returned. *optlen initially contains the size of the buffer to which optval
points. When the getsockopt() function returns, *optlen contains the current size of the
returned buffer. If the option in question has no value that can be returned, *optval contains
the value 0.

168

U41052-J-2125-9-76

Socket functions getsockopt(), setsockopt()

The following values can be returned by getsockopt() for optname and *optlen in the AF_ISO
address family:

optname *optlen Output format in optval
TPOPT_CONN_DATA 0..33 string incl. null byte
(length as specified in optlen)
TPOPT_CFRM_DATA 0..33 string incl. null byte
(length as specified in optlen)
TPOPT_DISC_DATA 0..33 string incl. null byte
(length as specified in optlen)
TPOPT_REDI_CALL sizeof(struct cmsg_redhdr) struct cmsg_redhdr

The actual length of the connection data is specified in *optlen. The value range for optlen
is 0..33 since the maximum length of the connection data is 32 bytes.

setsockopt() can be used in the AF_ISO address family to write connection data to the socket

depending on the socket status. The options described below are known on the socket
level.

Description of the socket options for AF_ISO:

TPOPT_CONN_DATA

The socket s has been created and has received an address with bind(), but connect()

has not yet been executed:

You can enter the connection data to be sent to the partner when connect() is called in

the socket sby using TPOPT_CONN_DATA as the current parameter value for optname.
TPOPT_CFRM_DATA

A connection request is received for the socket s, and the socket shas not yet accepted

it:

You can enter the connection data to be sent for accepting the connection to the partner

in the socket s by using TPOPT_CFRM_DATA as the current parameter value for
optname (see also figure 4 on page 61).

U41052-J-2125-9-76 169

getsockopt(), setsockopt() Socket functions

TPOPT_DISC_DATA
The connection to the partner socket has been set up completely:
You can enter the connection data to be sent to the partner for soc_close() in the socket
s by using TPOPT_DISC_DATA as the current parameter value for optname.

The actual length of the connection data is specified in *optlen. The value range for optlen
is 1..32 since the maximum length of the connection data is 32 bytes and the minimum
length is 1 byte.

TPOPT_REDI_CALL

This is required for the handoff procedure (see chapter “Extended SOCKETS(BS2000)
functions” on page 71).

Return value
0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

Errors indicated by errno

ENOPROTOOPT
The option is not supported by the protocol, or
an invalid value was specified for level, optname, optvalue or optlen.

ENOTSOCK
Descriptor sdoes not point to a socket.

See also

socket()

170 U41052-J-2125-9-76

Socket functions if freenameindex()

if _freenameindex() - release the dynamic storage occupied
with if _nameindex()

#include <sys.socket.h>

void if_freenameindex(struct if_nameindex *ptr);

Description

The function if_freenameindex() is required in order to release the storage which is dynami-
cally requested for the return informationfrom if_nameindex().

U41052-J-2125-9-76 171

if _indextoname() Socket functions

if_indextoname() - convert interface index to interface name

#include <sys.socket.h>
#include <net.if.h>

char * if_indextoname(unsigned int ifindex, char * ifname);

Description

The function if_indextoname() returns the interface name corresponding to the specified
interface index. To achieve this, a pointer to a buffer of minimum length IF_NAMESIZE
(present in <net.if.h>) is supplied in ifname.

Return value

If execution is successful, if_indextoname() returns the interface name stored in ifname.
Otherwise a NULL pointer is returned

Errors indicated by errno

ENXIO
No interface name corresponding to the specified index was found.

172 U41052-J-2125-9-76

Socket functions if_ nameindex()

if_nameindex() - list of interface names with the associated
interface indexes

#include <net.if.h>

struct * if_nameindex if_nameindex(void);

Description

The function if_nameindex() generates an array consisting of the interface names and the
associated interface index.

For each interface present, an if_nameindex structure is created.
The if_nameindex structure is declared in b<net.if.h> as follows:

struct if_nameindex {
unsigned int if_index; /*1, 2, */
char * if_name; /* name terminated with null byte*/

Return value

An array with structures of type if_nameindex is returned as the result. The end of the array
is indicated by the fact that the last if _nameindex structure contains the values 0 for if_index
and NULL for if_name.

If an error occurs then a NULL pointer is returned and errno is set accordingly

Errors indicated by errno
EINVAL

No interface information is available
Note

The storage required for the array is requested dynamically and must be released again
using the function if_freenameindex().

U41052-J-2125-9-76 173

if nametoindex() Socket functions

iIf_ nametoindex() - convert interface name to interface index

#include <net.if.h>

unsigned int if_nametoindex(const char * ifname);

Description

The function if_nametoindex() returns the interface index corresponding to the specified
interface name. ifname is a null-terminated string containing the interface name.

Return value

If execution is successful, if nametoindex() returns the interface index. Otherwise 0 is
returned

Errors indicated by errno

No errors are defined.

174

U41052-J-2125-9-76

Socket functions inet_addr() ... inet_ntoa()

inet_addr(), inet_Inaof(), inet_makeaddr(), inet_netof(),
inet_network(), inet_ntoa() - manipulate IPv4 Internet
address

#include <sys.socket.h>
#include <netinet.in.h>
#include <arpa.inet.h>

Kernighan—-Ritchie-C:
unsigned long inet_addr(cp);
char *cp;

int inet_Inaof(in);
struct in_addr in;

struct in_addr inet_makeaddr(net, 1na);
int net;
int Tna;

int inet_netof(in);
struct in_addr in;

unsigned Tong inet_network(cp);
char *cp;

char *inet_ntoa(in);
struct in_addr in;

ANST-C:

unsigned Tong inet_addr(char* cp);

int inet_lnaof(struct in_addr in);

struct in_addr inet_makeaddr(int net, int 1na);
int inet_netof(struct in_addr in);

unsigned long inet_network(char* cp);

char* inet_ntoa(struct in_addr in);

U41052-J-2125-9-76 175

inet_addr() ... inet_ntoa() Socket functions

Description

Use of the inet_addr(), inet_Inaof(), inet_makeaddr (), inet_netof() inet_network() and inet_ntoa()
functions only makes sense in the AF_INET address family.

The inet_addr() function converts the character string to which the cp parameter points
from the normal Internet dotted notation to an integer value which can then be used as
the Internet address.

The inet_Inaof() function extracts the local network address in the byte order of the host
from the Internet host address passed in the in parameter.

The inet_makeaddr() function creates an Internet address from the following

— the subnetwork section of the Internet address specified in the net parameter and
— the subnetwork local address section specified in the Ina parameter.

The subnetwork section of the Internet address and subnetwork local address section
are both passed in the byte order of the host.

The inet_netof() function extracts the network number in the byte order of the host from
the Internet host address passed in the in parameter.

The inet_network() function converts the character string to which pointer cp points from
the normal Internet dotted notation to an integer value which can then be used as the
subnetwork section of the Internet address.

The inet_ntoa() function converts the Internet host address passed in the in parameter
into a character string in the normal Internet dotted notation.

All Internet addresses are returned in network byte order in which the bytes are arranged
from left to right.

Values can be specified in the following dotted notation formats:

a.b.cd
If a four-part address is specified, each part is interpreted as one data byte and
assigned from left to right to the four bytes of an Internet address.

a.b.c

If a three-part address is specified, the last part is interpreted as a 16-bit sequence and
transferred to the two right bytes of the Internet address. This allows three-part address
formats to be used without problems for specifying class B addresses

(e.g. 128.net.host).

a.b

If a two-part address is specified, the last part is interpreted as a 24-bit sequence and
transferred to the right three bytes of an Internet address. This allows two-part address
formats to be used without problems for specifying class A addresses (e.g. net.host).

176

U41052-J-2125-9-76

Socket functions inet_addr() ... inet_ntoa()

- a
If a single-part address is specified, the value is transferred without changing the byte
order directly to the network address.

The numbers specified as address parts in dotted notation may be either decimal, octal or
hexadecimal numbers:

— Numbers not prefixed with either 0, Ox or 0X are interpreted as decimal numbers.
— Numbers prefixed with 0 are interpreted as octal numbers.

— Numbers prefixed with 0x or 0X are interpreted as hexadecimal numbers.

Return value

— After successful execution, inet_addr() returns the Internet address.
Otherwise, -1 is returned.

— Atfter successful execution, inet_network() returns the subnetwork portion of the Internet
address. Otherwise, -1 is returned.

— The inet_makeaddr() function returns the created Internet address.
— The inet_Inaof() returns the local network address.
— The inet_netof() function returns the network number.

— The inet_ntoa() returns a pointer to the network address in the normal Internet dotted
notation.

Errors indicated by errno

No errors are defined.

Note

The return value of inet_ntoa() points to static data that may be overwritten by subsequent
inet_ntoa() calls. This information must therefore be copied if it needs to be saved.

U41052-J-2125-9-76 177

inet_ntop(), inet_pton() Socket functions

inet_ntop(), inet_pton() - manipulate Internet addresses

#include <sys.socket.h>
#include <netinet.in.h>
#include <arpa.inet.h>

Kernighan—-Ritchie-C:
char *inet_ntop(af, addr, dst, size);

int af;
char *addr;
char *dst;
int size;

int inet_pton(af, addr, dst);

int af;
char *addr;
char *dst;

ANSI-C:
char* inet_ntop(int af, char* addr, char* dst, int size);
int inet_pton(int af, char* addr, char* dst);

Description

The use of the inet_ntop() and inet_pton() functions only makes sense in the AF_INET and
AF_INET6 address families.

The inet_ntop() function converts the binary IP address to which the addr parameter is
pointing to printable notation. The value passed in the af parameter indicates whether the
address involved is an IPv4 address or an IPv6 address:

— If the value AF_INET is passed in af, a binary IPv4 address is converted to printable
decimal dotted notation.

— If the value AF_INET6 is passed in af, a binary IPv6 address is converted to printable
hexadecimal colon notation.

178

U41052-J-2125-9-76

Socket functions inet_ntop(), inet_pton()

inet_ntop() returns the printable address in the buffer of the length size to which the pointer
dst is pointing. You can ensure that the buffer is big enough by using the integer constant
INET_ADDRSTRLEN (for IPv4 addresses) or INET6_ ADDRSTRLEN (for IPv6 addresses)
as the current value for size when you call inet_ntop(). Both constants are defined in
<netinet.in.h>.

The inet_pton() function converts an IPv4 address in decimal dotted notation or an IPv6
address in hexadecimal colon notation to a binary address. The value passed in the af
parameter indicates whether the address involved is an IPv4 address or an IPv6 address:

— Ifthe value AF_INET is passed in af, an IPv4 address is converted.
— Ifthe value AF_INETS6 is passed in af, an IPv6 address is converted.

inet_pton() returns the binary address to the buffer to which the pointer dst is pointing. The
buffer must be sufficiently large: 4 bytes for AF_INET and 16 bytes for AF_INET6. The
conversion of IPv6 addresses in abbreviated notation with two colons (“::") is not supported.

Note

If the output of inet_pton() is used as the input for a new function, make sure that the starting
address of the destination area dst has doubleword alignment.

Return value

If the inet_pton() function is executed successfully, it returns a pointer to the buffer in which
the text string is stored. The null pointer is returned if an error occurs.

inet_ntop() returns the following values:

1:

If conversion is successful.
0:

If the input is an invalid address string.
-1:

If a parameter is invalid.

Errors indicated by errno

EAFNOSUPPORT
lllegal operand.

ENOSPC
The result buffer is too small.

U41052-J-2125-9-76 179

listen()

Socket functions

listen() - test a socket for pending connections

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int Tisten(s, backlog);

int s;
int backlog;

ANSI-C:
int Tisten(int s, int backlog);

Description

The listen() function is supported in the AF_INET and AF_INET6 address families (only for
sockets of the type SOCK_STREAM), and in the AF_ISO address family.

The listen() function authorizes socket sto accept connection requests and then tests the
socket for pending connection requests. To do this, listen() sets up a queue for incoming
connection requests for socket s.

The user can define the maximum number of connection requests that the queue can hold
by using the backlog parameter.

Note, however, that SOCKETS(BS2000) does not evaluate the backlog parameter at
present and continues to accept connection requests until the maximum number of
available sockets have been used.

The following steps are required to enable a task to communicate on a socket with the
partner that sends connection requests:

1. Create a socket (socket()) and bind it (bind())

2. Specify an incoming connection request queue for the socket with listen().
3. Accept the connection requests with accept().
4

In AF_ISO, you also have to send user data or confirm data (CFRM data, sendmsg())
(see also figure 4 on page 61).

You can only use connect() to initiate connections between two sockets of the AF_ISO
address family, or between two sockets of the AF_INET address family or AF_INET6
address family, or between a socket of the AF_INET address family and a socket of the
AF_INET6 address family.

180

U41052-J-2125-9-76

Socket functions listen()

Therefore, if you are using all the address families, you should set up a listen() socket of the
AF_1SO address family, as well as a listen() socket of the AF_INET or AF_INET6 address
family. This ensures that connections to every supported address family can be set up.

Return value
0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

Errors indicated by errno

EBADF
The s parameter is not a valid descriptor.

EISCONN
The socket already has a connection.

EOPNOTSUPP
The socket is not of type SOCK_STREAM and is not supported by listen().

See also

accept(), connect(), socket()

U41052-J-2125-9-76 181

recv(), recvfrom() Socket functions

recv(), recvfrom() - receive a message from a socket

#include <sys.types.h>
#include <sys.socket.h>

#include <netinet.in.h> /* AF_INET, AF_INET6 and connectionless operation*/

Kernighan—-Ritchie-C:
int recv(s, buf, len, flags);

int s;
char *buf;
int len;
int flags;

int recvfrom(s, buf, len, flags, from, fromlen);

int s;
char *buf;
int Ten;
int flags;

struct sockaddr_in *from; /* AF_INET */
struct sockaddr_in6 *from; /* AF_INET6 */
int *fromlen;

ANST-C:

int recv(int s, char* buf, int len, int flags);

int recvfrom(int s, char* buf, int Ten, int flags, struct sockaddr* from,
int* fromlen);

Description

The recv() and recvfrom() functions receive messages from a socket.

recv() can only receive messages from a socket on which a connection has already been
set up (see the connect() function on page 127).

recvfrom() can receive messages from a socket with or without a connection.
The function call recvfrom() with from = null pointer and fromlen = null pointer is only
supported for datagrams.

182

U41052-J-2125-9-76

Socket functions recv(), recvfrom()

The s parameter designates the socket from which the message is received.
buf specifies the storage area in which the data is to be received.
len specifies the length of this buffer.

If the from parameter is not the null pointer (connectionless operation), the address of the
message sender is stored in the address area referenced by from.

fromlen is a result parameter. Before the function is called, the integer variable to which
fromlen points must contain the size of the buffer referenced by from. After the function
returns, *fromlen contains the current length of the address stored in *from.

The function returns the length of the message.

The flags parameter is currently only supported with a datagram socket with the
MSG_PEEK flag in the AF_INET and AF_INET6 address families. In the other cases flags
should be supplied with the value 0.

MSG_PEEK allows data to be read without it being deleted at the source. This means that
a repeat read operation is necessary.

The complete message must be read in a single operation with a datagram socket (only
AF_INET, AF_INET®). If the specified message buffer is too small, the data extending
beyond the buffer size is deleted.

Message limits are ignored with a stream socket (AF_INET, AF_INET®6). As soon as data
is available, it is returned to the caller, and no data is deleted.

Message limits are observed for a socket belonging to the AF_ISO address family. As soon
as data is available, it is returned to the caller, and no data is deleted.

If no messages are available on the socket, the receive call waits for an incoming message
unless the socket is non-blocking (see page 206 soc _ioctl()). In this case, -1 is returned,
and the errno variable is set to the value EWOULDBLOCK.

The select() function can be used to determine when further data arrives.

Return value

>0:
If successful. The value indicates the number of received bytes.

If successful.
No more data can be received by sockets of type SOCK_STREAM or sockets
belonging to the AF_ISO address family. The partner has closed his connection.

Sockets of type SOCK_DGRAM receive a data packet with the length 0 or the data is
deleted by the transport system for a timeout.

If errors occur. errno is set to indicate the error.

U41052-J-2125-9-76 183

recv(), recvfrom() Socket functions

Errors indicated by errno

EBADF
The s parameter is not a valid descriptor.

ECONNRESET
The connection to the partner was interrupted (only with sockets of type
SOCK_STREAM).

EFAULT
The length of the area for accepting the address is too small.

EIO
User data has been lost.

ENETDOWN
The connection to the network is down.

ENOTCONN
No connection exists for the socket.

EOPNOTSUPP
— The flags parameter contains a non-zero value.
or
— The socket is not of type SOCK_STREAM, and recv() supports only stream sockets.

EWOULDBLOCK
The socket is marked as non-blocking, and the requested operation would block.

See also

connect(), getsockopt(), select(), send(), soc_ioctl(), soc_read(), soc_readv(), socket()

184 U41052-J-2125-9-76

Socket functions recvmsg()

recvmsg() - receive a message from a socket

#include <sys.types.h>
#include <sys.socket.h>
#include <sys.uio.h>

Kernighan—-Ritchie-C:
int recvmsg(s, msg, flags);

int s; flags
struct msghdr *msg;

ANSI-C:
int recvmsg(int s, struct msghdr* msg, int flags);

Description

The recvmsg() function is supported in the AF_INET, AF_INET6 and AF_ISO address
families and provides the following functionality depending on the parameterization

(msg parameter):
— recvmsg() can be used to receive user data from the partner socket on socket s.

— Only in AF_ISO: recvmsg() can be used to read connection data from socket s.

A pointer to an object of the data type struct msghdr must be specified as the current
parameter for msg. The desired functionality for recvmsg() is selected via the component
msg->msg_control (data type caddr_t or char *)

— If msg->msg_control is the null pointer, user data is received.

— Only in AF_ISO: If msg->msg_control is not the null pointer, msg->msg_contral is inter-
preted as a pointer to a storage area with the structure cmsghdr, and connection data is
read from the socket.

Due to the internal socket status for s, recvmsg() selects the connection data type
(CONN_DATA, CFRM_DATA or DISC_DATA) and writes the relevant data in
msg->msg_control->cmsg_data[| (see msghdr and cmsghdr structures on the next page).

TPOPT_REDI_DATA and TPOPT_REDI_BDOK are provided for the handoff
procedure. In this case, the structure cmsg_redhdr is required. Refer to chapter
“Extended SOCKETS(BS2000) functions” on page 71 for a description.

U41052-J-2125-9-76 185

recvmsg()

Socket functions

msghdr structure
The msghdr structure is declared in <sys.socket.h> as follows:

struct msghdr {

caddr_t msg_name; /* optional address */
int msg_namelen; /* length of the address */
struct iovec *msg_iov; /* scatter/gather fields */
int msg_iovilen; /* number of elements in msg_iov */
caddr_t msg_control; /* auxiliary data*/
int msg_controllen; /* length of the buffer for */
/* auxiliary data */
int msg_flags; /* flag for received message */

bs
struct msghdr *msg;

msg->msg_hame and msg->msg_namelen are only interpreted in the AF_INET and AF_INET6
address families with the socket type SOCK_DGRAM.

If msg_name is not null then the content is interpreted as the pointer to a buffer in which the
partner’s address information is entered. msg_namelen specifies the length of this buffer. If
the socket is “non-connected” then the sender’s address information is stored using a
sockaddr structure and msg_namelen contains the length of this structure.

If these parameters are not to be used, msg_name should have the value of the null pointer
and msg_namelen the value 0.

msg->msg_iov is a pointer to a storage area with objects of the type struct iovec.
msg->msg_iovlen indicates the number of elements (max. 16) in this storage area.
msg->msg_control is a pointer to an object of the type struct cmsghdr in which recvmsg() enters
the expected connection data.

msg->msg_controllen indicates the length of *msg->msg_contral.

msg->msg_flags= MSG_EOR indicates the end of a record (only AF_1SO).

iovec structure

The iovec structure is declared in <sys.uio.h> as follows:

struct jovect
caddr_t iov_base; /* buffer for auxiliary data */
int iov_len; /* buffer length */

186

U41052-J-2125-9-76

Socket functions recvmsg()

cmsghdr structure
The cmsghdr structure is declared in <sys.socket.h> as follows:

struct cmsghdr {

u_int cmsg_len; /* number of data bytes incl. header */
int cmsg_Tlevel; /* generating protocol */

int cmsg_type; /* protocol-specific type */

u_char cmsg_datal33] /* character string for connection data */

b
struct cmsghdr *cmsg;

cmsg->cmsg_len contains the length of the storage area of *msg->msg_contral.

In cmsg->cmsg_level, SOL_TRANSPORT is entered for the ISO transport service (only
AF_ISO).

cmsg->cmsg_type indicates the connection data type (TPOPT_CONN_DATA,
TPOPT_CFRM_DATA, TPOPT_DISC_DATA).

Connection data with a maximum length of 32 bytes and the final null byte are entered in
cmsg->cmsg_data.

The flags parameter is currently only supported for a datagram socket with the flag
MSG_PEEK in the address families AF_INET and AF_INET®6. In all other cases, flags
should be assigned the value 0.

MSG_PEEK allows the data to be read without it being deleted at the source. This means
that a repeat read operation is necessary.

Return value

>0:
If successful:
Number of bytes of the received user data

— only AF_ISO
for connection data (CONN_DATA, CFRM_DATA, DISC_DATA)

— AF_INET, AF_INET6
No more data can be received. The partner has closed his connection correctly
(only for sockets of the type SOCK_STREAM).

Sockets of type SOCK_DGRAM receive a data packet with the length 0 or the data
is deleted by the transport system for a timeout.
-1:
If errors occur. errno is set to indicate the error.

U41052-J-2125-9-76 187

recvmsg() Socket functions

Errors indicated by errno

EBADF

The s parameter is not a valid descriptor.
ECONNRESET

The connection to the partner was interrupted.
EINVAL

A parameter specifies an invalid value.
ENETDOWN

The connection to the network is down.
ENOTCONN

No connection exists for the socket.
EOPNOTSUPP

The function call includes illegal attributes
EPIPE

The partner has interrupted the connection.
EWOULDBLOCK

The socket is marked as non-blocking, and the requested operation would block.

188 U41052-J-2125-9-76

Socket functions select()

select() - multiplex input/output

#include <sys.time.h>
#include <sys.socket.h>

Kernighan—-Ritchie-C:
int select(nfds, readfds, writefds, exceptfds, timeout);

int nfds;
fd_set *readfds, *writefds, *exceptfds;
struct timeval *timeout;

FD_SET(fd, &fdset);
FD_CLR(fd, &fdset);
FD_ISSET(fd, &fdset);
int fd;

fd_set fdset;

ANSI-C:
int select(int nfds, fd_set* readfds, fd_set* writefds, fd_set* exceptfds,
struct timeval* timeout);

FD_SET(fd, &fdset);
FD_CLR(fd, &fdset);
FD_ISSET(fd, &fdset);

int fd;
fd_set fdset;

Description

The select() function tests three different sets of socket descriptors passed with the readfds,
writefds and exceptfds parameters.
select() determines

— which descriptors in the set passed with readfds are ready for reading,
— which descriptors in the set passed with writefds are ready for writing,
— for which descriptors in the set passed with exceptfds a pending exception exists.

The exceptfds parameter is not evaluated by SOCKETS(BS2000) at present.

U41052-J-2125-9-76 189

select() Socket functions

The bit masks for the individual descriptor sets are stored as bit fields in integer strings. The
maximum size of the bit fields should be determined by using the getdtablesize() function
(see page 138). The required memory should be requested from the system dynamically.

The nfds parameter specifies how many bits are to be tested in each bit mask. select() tests
bits 0 to nfds-1 in the individual bit masks.

select() replaces the descriptor sets passed in the call with the appropriate subsets. These
subsets include all the respective descriptors that are ready for the operation involved.

You can use the following macros to manipulate bit masks or descriptor sets:

FD_SET(fd, &fdset)
Extends the descriptor set fdset by descriptor fd.

FD_CLR(fd, &fdset)
Removes descriptor fd from descriptor set fdset.

FD_ISSET(fd, &fdset)
Tests whether descriptor fd is a member of descriptor set fdset:

— Return value '=0: fdis a member of fdset.
— Return value == 0: fd is not a member of fdset.

The behavior of these macros is undefined if the descriptor value is <0 or greater than the
maximum size for bit fields that was determined with the getdtablesize() function.

The timeout parameter defines the maximum time that the select() function has to complete
the selection of the ready descriptors. If timeout is the null pointer, select() blocks for an
undefined time.

You can enable polling by passing a pointer for timeout to a timeval object whose
components all have the value 0.

If the descriptors are of no interest, the null pointer can be passed as the current parameter
for readfds, writefds and exceptfds.

If select() determines the “read” readiness of a socket descriptor after calling listen(), this
indicates that a subsequent accept() call for this descriptor will not block.

190 U41052-J-2125-9-76

Socket functions select()

Return value

>0:
The positive number indicates the number of ready descriptors in the descriptor set.

Indicates that the timeout limit has been exceeded. The descriptor sets are then
undefined.

-1:
If errors occur. errno is set to indicate the error. The descriptor sets are then undefined.

7F000000:
Trace event for user sockets trace.

Errors indicated by errno
EBADF
One of the descriptor sets specified an invalid descriptor.

EINTR
The select() call was interrupted by soc_wake().

ENETDOWN
The connection to the network is down.

. When virtual hosts are used, ENETDOWN does not necessarily mean that the
1 entire network is down. It can also mean that only the network of a virtual host has
failed.
Note

In rare circumstances, select() may indicate that a descriptor is ready for writing, although a
write attempt would actually block. This can occur if the system resources required for
writing are exhausted or not present. If it is critical for your application that writes to a file
descriptor do not block, you should set the descriptor to non-blocking input/output with a
soc_ioctl() call.

See also

accept(), connect(), listen(), recv(), send(), soc_ioctl(), soc_write(), soc_writev()

U41052-J-2125-9-76 191

send(), sendto()

Socket functions

send(), sendto() - send a message from socket to socket

#include <sys.types.h>
#include <sys.socket.h>

#include <netinet.in.h> /* AF_INET, AF_INET6 and connectionless operation */

Kernighan—-Ritchie-C:
int send(s, msg, len, flags);

int s;
char *msg;
int len, flags;

int sendto(s, msg, len, flags, to, tolen);

int s;
char *msg;
int len, flags;

struct sockaddr_in *to;
struct sockaddr_in6 *to;
int tolen;

/* AF_INET */
/* AF_INET6 */

ANSI-C:

int send(int s, char* msg, int len, int flags);

int sendto(int s, char* msg, int len, int flags,
int tolen);

struct sockaddr* to,

192

U41052-J-2125-9-76

Socket functions send(), sendto()

Description

The send() and sendto() functions send messages from one socket to another. send() can
only be used with a socket on which a connection is set up (see the connect() function on
page 127).

sendto() can also be used during connectionless operation. The function call sendto() with to
= null pointer and tolen = 0 is only supported for datagrams.

The s parameter designates the socket from which a message is sent. The destination
address is passed with to, where tolen specifies the length of the destination address.

The length of the message is specified with len. If the message is too long to be transported
completely by the underlying protocol level, error SCEMSGSIZE is returned and the
message is not transferred for datagram sockets (i.e. only AF_INET and AF_INET®6).

The flags parameter is currently not supported and should be supplied with the value 0. A
value not equal to O leads to an error, and the errno variable is set to the value
EOPNOTSUPP.

If the message cannot be sent immediately, send() blocks if the socket was not set to the
non-blocking input/output mode. You can use select() to determine when further data can be
sent.

Return value

>0:

If successful. The value indicates the number of sent bytes.
-1:

If errors occur. errno is set to indicate the error.

Errors indicated by errno

EBADF
The s parameter is not a valid descriptor.

EFAULT
The length of the area for accepting the address is too small, or the length of the area
for the message is too small.

EIO
I/O error. The message could not be passed to the transport system.

EMSGSIZE
The message is too long to be sent in one piece.

ENETDOWN
The connection to the network is down.

U41052-J-2125-9-76 193

send(), sendto() Socket functions

ENOTCONN
No connection exists for the socket. A read/write attempt was rejected.

EOPNOTSUPP
— The flags parameter was specified with a non-zero value, and this is not supported.
or
— The socket is not of type SOCK_STREAM, and the operation is supported only for
stream sockets.

EWOULDBLOCK
The socket is marked as non-blocking, and the requested operation would block.
Note

If the connection is established with a non-blocking socket then errno EINPROGRESS may
occur on the next function call. This message indicates that the connection is not yet in a
state which permits a data transfer phase.

See also

connect(), getsockopt(), recv(), select(), soc_ioctl(), soc_write(), socket()

194

U41052-J-2125-9-76

Socket functions sendmsg()

sendmsg() - send a message from socket to socket

#include <sys.types.h>
#include <sys.socket.h>
#include <sys.uio.h>

Kernighan—-Ritchie-C:
int sendmsg(s, msg, flags);

int s, flags;
struct msghdr *msg;

ANSI-C:
int sendmsg(int s, struct msghdr* msg, int flags);

Description

The sendmsg() function is supported in the AF_INET, AF_INET6 and AF_ISO address
families and provides the following functionality depending on the parameterization

(msg parameter):
— sendmsg() can be used to send user data from a socket to a partner socket.

— Only in AF_ISO: sendmsg() can be used to write connection data to socket s.

A pointer to an object of the data type struct msghdr must be specified as the current
parameter for msg. The desired functionality for sendmsg() is selected via the component
msg->msg_control (data type caddr_t or char *)

— If msg->msg_control is the null pointer, user data is sent.

— Only in AF_ISO: If msg->msg_control is not the null pointer, msg->msg_contral is inter-
preted as a pointer to a storage area with the structure cmsghdr, and connection data is
written to the socket.

This allows sendmsg() to send an acknowledgment of the connection request to the
communications partner without transferring user data or connection data.

U41052-J-2125-9-76 195

sendmsg()

Socket functions

msghdr structure
The msghdr structure is declared in <sys.socket.h> as follows:

struct msghdr {

caddr_t msg_name; /* optional address */
int msg_namelen; /* length of the address */
struct iovec *msg_iov; /* scatter/gather fields */
int msg_iovilen; /* number of elements in msg_iov */
caddr_t msg_control; /* auxiliary data */
int msg_controllen; /* length of the buffer for */
/* auxiliary data */
int msg_flags; /* flag for received message */

bs
struct msghdr *msg;

msg->msg_hame and msg->msg_namelen are only interpreted in the AF_INET and AF_INET6
address families with the socket type SOCK_DGRAM. msg_name indicates the address of
a socket address structure, and msg_namelen indicates the length of this address structure.
If these parameter are not to be used, msg_name should have the value of the null pointer
and msg_namelen the value 0.

msg->msg_iov is a pointer to a storage area with objects of the type struct iovec.
msg->msg_iovlen indicates the number of elements (max. 16) in this storage area.
msg->msg_control is a pointer to an object of the type struct cmsghdr which must be supplied
with the connection data to be written before sendmsg() is called (only AF_ISO).
msg->msg_controllen indicates the length of *msg->msg_contral.

In msg->msg_flags, sendmsg() indicates the end of a record with MSG_EOR (only AF_ISO).

iovec structure

The iovec structure is declared in <sys.uio.h> as follows:

struct iovec{
caddr_t iov_base; /* buffer for auxiliary data */
int iovlen; /* buffer length */

b

cmsghdr structure

The cmsghdr structure is declared in <sys.socket.h> as follows:

struct cmsghdr f{

u_int cmsg_Tlen; /* number of data bytes incl. header */
int cmsg_Tlevel; /* generating protocol */

int cmsg_type; /* protocol-specific type * */

u_char cmsg_datal33] /* character string for connection data */

bs

struct cmsghdr *cmsg;

196

U41052-J-2125-9-76

Socket functions sendmsg()

cmsg->cmsg_len contains the length of the storage area of *msg->msg_contral.
SOL_TRANSPORT is entered for the ISO transport service in cmsg->cmsg_level.
cmsg->cmsg_type indicates the connection data type (TPOPT_CONN_DATA,
TPOPT_CFRM_DATA, TPOPT_DISC_DATA).

Connection data with a maximum length of 32 bytes and the final null byte are entered in

cmsg->cmsg_data.

TPOPT_REDI_DATA and TPOPT_REDI_BDOK are provided for the handoff procedure. In
this case, the structure cmsg_redhdr is required. Refer to chapter “Extended
SOCKETS(BS2000) functions” on page 71 for a description.

Return value

>0:
Number of bytes of user data sent.

AF_1SO: 0 for connection data (CONN_DATA, CFRM_DATA, DISC_DATA)
-1:
If errors occur. errno is set to indicate the error.

Errors indicated by errno

EBADF

The s parameter is not a valid descriptor.
ECONNRESET

The connection to the partner was interrupted.
EINVAL

A parameter specifies an invalid value.
EIO

I/O error. The message could not be passed to the transport system.
ENETDOWN

The connection to the network is down.
ENOTCONN

No connection exists for the socket.
EOPNOTSUPP

The function call includes illegal attributes
EPIPE

The partner has interrupted the connection.
EWOULDBLOCK

The socket is marked as non-blocking, and the requested operation would block.

U41052-J-2125-9-76 197

shutdown() Socket functions

shutdown() - terminate full-duplex connection

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int shutdown(s, how);

int s, how;

ANSI-C:
int shutdown(int s, int how);

Description

The shutdown() function limits the functionality of the socket and terminates the connection
completely or in part. However, the socket still remains. The socket can be closed with the
soc_closg() function.

The shutdown() function is supported in the AF_INET and AF_INET6 address families.

The how parameter controls how the connection belonging to socket s should be termi-
nated. The following values of how can be used:

SHUT_RD:
Read access is not possible for the socket, i.e. a read function can no longer be
executed. This functionality can cause problems in the application because the partner
socket is not informed of this limitation.

. If the partner socket continues to send data, this can lead to a jam situation: The
1 sent data uses memory in the transport system and these resources cannot be
released because the data has not been fetched by the receiver. If the memory
resources are used up, data can also no longer be sent.

SHUT_WR:
Write access is not possible for the socket. The partner socket is informed that data can
no longer be sent from this socket. This corresponds to a “ graceful disconnect”.

SHUT_RDWR:
Read and write access are not possible for the socket. The partner socket is informed
that data cannot be sent or read. This is corresponds to an “abortive disconnect”.

198 U41052-J-2125-9-76

Socket functions shutdown()

Return value

0:
If successful

-1:
If errors occur. errno is set to indicate the error.

Errors indicated by errno

EBADF
The s parameter is not a valid descriptor.

ENOTCONN
No connection exists for the socket.
Note

Up to SOCKETS(BS2000) < V.2.1 the shutdown() function was supported without function-
ality, i.e. the call was not rejected, however no action was executed.

The functionality described above is provided if the user program has been compiled with
the user library of SOCKETS(BS2000) as of version 2.1.

See also

soc_close()

U41052-J-2125-9-76 199

soc_close() Socket functions

soc_close() (close) - close socket

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int soc_close(s);

int s;

ANSI-C:
int soc_close(int s);

Description

The exact functionality of soc_close() is determined by the address family used.

soc_close() for AF_INET and AF_INET6

soc_close() closes socket s depending on the SO_LINGER option (see the setsockopt()
function on page 156).

If soc_close() is used with the SO_LINGER option, soc_close() will try to shut down the
connection within the time specified by SO_LINGER after sending all pending data.
soc-close() for AF_1SO

soc_close() closes the socket s. Any data in the network and in BCAM is lost.

Return value
0:
If successful.

-1:
If errors occur. errno is set to indicate the error.

200 U41052-J-2125-9-76

Socket functions

soc_close()

Errors indicated by errno

EBADF

The s parameter is not a valid descriptor.

See also

setsockopt()

U41052-J-2125-9-76

201

soc_eof(), soc_error(), soc_clearerr() Socket functions

soc_eof(), soc_error(), soc_clearerr() (eof, error, clearerr) -
get status information

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int soc_eof(s);

int s;

int soc_error(s);
int s;

int soc_clearerr(s);
int s;

ANSI-C:

int soc_eof(int s);

int soc_error(int s);
int soc_clearerr(int s);

Description and return value

The soc_eof() function returns a value =0 if the EOF condition applies to socket s; otherwise,
soc_eof() returns the value 0.

The soc_error() function returns a value =0 if a read or write error has occurred on socket s;
otherwise, soc_error() returns the value 0. The error indicator remains set until it is deleted
with the soc_clearerr() function.

The soc_clearerr() function deletes the error indicator for socket s.

202 U41052-J-2125-9-76

Socket functions soc_flush()

soc_flush () (flush) - flush data from output buffer

#include <sys.socket.h>

Kernighan—-Ritchie-C:
soc_flush(s);
int s;

ANSI-C:
int soc_flush(int s);

Description

The soc_flush() function is only supported in the AF_INET and AF_INET6 address families.

soc_flush() flushes all the data associated with socket s from the output buffer in the
transport system.

Return value
0:
If the buffer was flushed or was empty.

EOF:
If the socket descriptor is invalid or the data transfer to the transport system failed.

U41052-J-2125-9-76 203

soc_getc() Socket functions

soc_getc() (getc) - get character from input buffer

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int soc_getc(s);
int s;

ANSI-C:
int soc_getc(int s);

Description

The soc_getc() function is only supported in the AF_INET and AF_INET6 address families
and can only be used on stream sockets.

The soc_getc() function reads the next character from the input buffer of socket sand returns
the character as the result.

Return value

Integer value of the read character:
If successful.

EOF:
If no character could be read due to the end-of-file (EOF) condition.

Errors indicated by errno

EWOULDBLOCK
The socket is marked as non-blocking, and the requested operation would block.

204 U41052-J-2125-9-76

Socket functions soc_gets()

soc_gets() (gets) - get string from input buffer

#include <sys.socket.h>

Kernighan—-Ritchie-C:
char *soc_gets(s, n, d);

char *s;
int n, d;

ANSI-C:
char* soc_gets(char* s, int n, int d);

Description

The soc_gets() function is only supported in the AF_INET and AF_INET6 address families
and can only be used on stream sockets.

The soc_gets() function reads a character string of up to n-1 characters from the start of the
input buffer of socket d into the buffer s. The maximum possible characters are read up to
the first newline (represented by the sequence 0x15 in EBCDIC) or to the end of the input
buffer of socket d or until n-1 characters are reached. The string returned in the buffer sis
terminated with a null byte.

Return value

Pointer to the result string:
If successful.

Null pointer:
If read errors occur.

Errors indicated by errno

EWOULDBLOCK
The socket is marked as non-blocking, and the requested operation would block.

U41052-J-2125-9-76 205

soc_ioctl()

Socket functions

soc_ioctl() (ioctl) - control sockets

#include <sys.socket.h>
#include <ioctl.h>
#include <net.if.h>

Kernighan—-Ritchie-C:

int soc_ioctl(s, request, argp);
int s;

unsigned long request;

char *argp;

ANSI-C:
int soc_ioctl(int s, unsigned long request, char* argp);

Description

The soc_ioctl() function executes control functions for sockets.
s designates the socket descriptor.

The following control functions are supported for sockets in the AF_INET address family:

request *arg Function

FIONBIO int Enable/disable blocking mode
FIONREAD int Get message length in buffer
SIOCGIFCONF struct ifconf Get interface configuration

SIOCGIFADDR

struct ifreq

Get Internet address of interface

SIOCGIFBRDADDR

struct ifreq

Get interface broadcast address

SIOCGIFFLAGS

struct ifreq

Get interface flags

SIOCGIFNETMASK

struct ifreq

Determine net mask for the interface

SIOCGLIFADDR

struct lifreq

Determine interface address

SIOCGLIFBRDADDR

struct lifreq

Determine broadcast address of the interface

SIOCGLIFCONF

struct lifconf

Output interface configuration list

SIOCGLIFFLAGS

struct lifreq

Determine interface flags

SIOCGLIFHWADDR

struct lifreq

Determine MAC address for the interface

SIOCGLIFINDEX

struct lifreq

Determine interface index

SIOCGLIFNETMASK

struct lifreq

Determine net mask for the interface

206

U41052-J-2125-9-76

Socket functions

soc_ioctl()

SIOCGLIFNUM struct lifnum

Determine number of interfaces

SIOCGLAHCONF struct Ivhost

Output list of all active hosts

SIOCGLVHCONF struct Ivhost

Output list of active virtual hosts

SIOCGLVHNUM int

Determine number of active virtual hosts

The following control functions are supporte

d for sockets in the AF_INET6 address family:

request *argp Function
FIONBIO int Enable/disable blocking mode
FIONREAD int Get message length in buffer

SIOCGLIFADDR struct lifreq

Determine interface address

SIOCGLIFBRDADDR struct lifreq

Determine broadcast address of the interface

SIOCGLIFCONF struct lifconf

Output interface configuration list

SIOCGLIFFLAGS struct lifreq

Determine interface flags

SIOCGLIFHWADDR struct lifreq

Output MAC address for the interface

SIOCGLIFINDEX struct lifreq

Determine interface index

SIOCGLIFNETMASK struct lifreq

Determine MAC address for the interface

SIOCGLIFNUM struct lifnum

Determine number of interfaces

SIOCGLAHCONF struct Ivhost

Output list of all active hosts

SIOCGLVHCONF struct Ivhost

Output list of active virtual hosts

SIOCGLVHNUM int

Determine number of active virtual hosts

The following control functions are supported for sockets in the AF_ISO address family:

request *argp Function
FIONBIO int Enable/disable blocking mode
FIONBIO

This option affects the execution behavior of socket functions on socket swith data flow
control enabled and for actions of the communications partner that have not yet been

completed.

*argp = O:

Socket functions block until the function can be executed.

U41052-J-2125-9-76

207

soc_ioctl()

Socket functions

— *argp =0:
Socket functions return with the errno code EWOULDBLOCK if the function cannot
be executed immediately. The select() or soc_pall() function can be used to
determine which sockets are ready for reading or writing.
Default case: FIONBO is not set.
FIONREAD
Returns the length of the message currently in the input buffer (in bytes).

208

U41052-J-2125-9-76

Socket functions

soc_ioctl()

SIOCGIFCONF
An output list is created in the form of non-concatenated elements of the type structifreq
(see SIOCGIFADDR option). The caller provides the corresponding memory area for
this list by entering the start address and the length in the relevant fields of the ifconf
structure.
Only as many elements of the type struct ifreq are output as fit into the buffer made avail-
able.
These interfaces belong to a host, normally to the standard host. If virtual hosts are also
configured, you can receive the corresponding interfaces in the following way:

If the application is started under an ID relocated to a virtual host by an entry in the
BCAM application table, the information about this virtual host is output.

The setsockopt() subfunction SO_VHOSTANY can be used to select, before calling
soc_ioctl(), the host for which information is to be output.
The ifconf structure is declared in <net.if.h> as follows:

struct ifconf {
int ifc_len;
union {
caddr_t ifcu_buf;
struct ifreqg *ifcu_req;
} ifc_ifcu;
#define ifc_buf ifc_ifcu.ifcu_buf
#define ifc_req ifc_ifcu.ifcu_req

bs

SIOCGIFADDR
Returns the Internet address for the interface specified in the ifreq structure with the
interface name ifr_name.

The ifreq structure is declared in <net.if.h> as follows:

struct ifreqg {

#define IFNAMSIZ 16
char ifr_namelIFNAMSIZ]; /* Interfacename z.B. IF000003* */
union {

struct sockaddr ifru_addr;
struct sockaddr ifru_dstaddr;
struct sockaddr ifru_broadaddr;
short ifru_flags;
int ifru_metric;
caddr_t ifru_data;

b oifr_ifru;

#define ifr_addr ifr_ifru.ifru_addr /* address */

#define ifr_dstaddr ifr_ifru.ifru_dstaddr /* dest. addr. of conn, */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr /* broadcast address */
#define ifr_flags ifr_ifru.ifru_flags /* flags */

#define ifr_metric ifr_ifru.ifru_metric /* metric */

U41052-J-2125-9-76

209

soc_ioctl() Socket functions

#define ifr_data ifr_ifru.ifru_data /* for use by interface */
b
Note that SOCKETS(BS2000) only returns information on one interface at present.

SIOCGIFBRDADDR
Returns the broadcast address specified for the interface in the ifreq structure (see
SIOCGIFADDR option) when an IPv4 interface is concerned and when the
IFF_BROADCAST flag is set. This is normally not the case because no broadcast can
be generated with socket language means and transport system support.

SIOCGIFFLAGS
Returns the interface flags in the ifr_flags element for the interface name specified in

the struct ifreq:

— IFF_UP - if the interface is active

— IFF_BROADCAST - if broadcast messages can be sent via this interface

— IFF_MULTICAST - if multicast messages can be sent via this interface

— IFF_LOOPBACK - if messages can be sent to loopback via this interface

— IFF_CONTROLLAN - if communication with the CONTROLLAN is possible via this
interface

SIOCGIFNETMASK
Outputs the subnet mask in the form of bits of the network share of the subnet mask set
to “1” (e.g. “FFFFFF0Q”) in the ifr_addr element for the IPv4 interface specified in the
ifreq structure.

210 U41052-J-2125-9-76

Socket functions soc_ioctl()

SIOCGLIFADDR
Returns the interface address for the name specified in struct lifreq. The lifreq structure
is an ifreq structure enhanced particularly with respect to IPv6.

SIOCGLIFBRDADDR
Returns the broadcast address for the interface specified in the Ifreq structure when the
IFF_BROADCAST flag is set for this interface. This is normally not the case because
no broadcast can be generated with socket language means and transport system sup-
port.
Separate subfunctions under getsockopt() / setsockopt() are provided for the use of MUL-
TICAST (see page 156).

SIOCGLIFCONF
An output list is created in the form of non-concatenated elements of the type struct li-
freq. The caller provides the corresponding memory area for this list by entering the start
address and the length in the relevant fields of the lifconf structure.
Only as many elements of the type struct lifreq are output as fit into the buffer made
available. The output can be filtered by means of the assignments of the lifc_family and
lifc_flags elements.
Values for lifc_family: AF_INET, AF_INET6, AF_UNSPEC
Values for lifc_flags: see SIOCGLIFFLAGS

These interfaces belong to a host, normally to the standard host. If virtual hosts are
configured, you can receive the corresponding interfaces in the following way:

— If the application is started under an ID relocated to a virtual host by an entry in the
BCAM application table, the information is output about this virtual host.

— The setsockopt() subfunction SO_VHOSTANY can be used to select, before calling
soc_ioctl(), the host for which information is to be ourput.
The lifconf structure is declared in <net.if.h> as follows:

struct Tifconf {

sa_family_t Tifc_family:
int lifc_flags;
int Tifc_len;
union {

caddr_t 1ifcu_buf;
struct T1lifreq *Tifcu_req;
} Tifc_Tifcu;
#define 1ifc_buf Tifc_Tifcu.lifcu_buf
#define Tifc_req lifc_lifcu.lifcu_req
bs

SIOCGLIFFLAGS
Returns the interface flags in the lifr_flags element for the interface name specified in
the lifreq structure:

— IFF_UP - if the interface is active

U41052-J-2125-9-76 211

soc_ioctl()

Socket functions

— IFF_BROADCAST - if broadcast messages can be sent via this interface

— IFF_MULTICAST - if multicast messages can be sent via this interface

— IFF_LOOPBACK - if messages can be sent to loopback via this interface

— IFF_CONTROLLAN - if communication with the CONTROLLAN is possible via this
interface

— IFF_AUTOCONFIG - if this interface was supplied with an address generated by
IPv6 autoconfig. This also includes the IPv6 link local address with the prefix
FE80::/10 created locally in the host.

SIOCGLIFHWADDR
Outputs the MAC address for the interface name specified in the lifreq structure.

SIOCGLIFINDEX
Outputs the index for the interface name specified in lifreq structure.

SIOCGLIFNETMASK
Outputs the the subnet mask in the lifr_addr element and the prefix length in bits in the
ifr_addrlen element for the interface name lifr_name specified in the lifreq structure.
When an IPv4 interface is involved, the output takes place in the form of all bits con-
cerned of the network share being setto “1” (e.g. “FFFFFF00"). When an IPv6 interface
is involved, the network share is output as the original address and the following bits
are then set to “0” (e.g. “FD11F052433485AA000000000000").

SIOCGLIFNUM
Outputs the number of interfaces for the address family specified in the lifnumstructure.

SIOCGLAHCONF
A non-concatenated list containing elements of the type struct Ivhost is returned. These
contain the socket host name, the BCAM host name, the host number and an active
flag of the real host and, if present, also of virtual hosts. The user must transfer the
memory space for this list in *argp with the type struct Ivhost. The length must be entered
in the Ivhostlen field.
If information on all hosts is to be output, a memory space of n x sizeof(struct Ivhost) is
required, where n is the maximum possible number of active hosts.
The return information can be accessed by direct addressing or using indexes. The
number of returned list elements of the type struct Ivhost is entered in the vhostsum field
of the first element. In the last list element, the vhostlast field is flagged with “1”.
If the memory space provided is not large enough, the vhostlast field in the last list
element is flagged with “1”.

SIOCGLVHCONF
A non-concatenated list containing elements of the type struct Ivhost is returned, which
in contrast to SIOCGLAHCONF contains only the information about the virtual hosts.
The user must pass the memory space for this list with *argp of the type struct Ivhost.
The length must be entered in the field Ivhostlen. If information on all virtual hosts is to
be output, a memory space of n x sizeof(struct Ivhost) is required, where n is the return
value from SIOCGLVHNUM.

212

U41052-J-2125-9-76

Socket functions soc_ioctl()

The return information can be accessed by direct addressing or using indexes. The
number of returned list elements of the type struct Ivhost is entered in the field vhostsum.
In the last list element, the vhostlast field is flagged with "1".

U41052-J-2125-9-76 213

soc_ioctl() Socket functions

The structure Ivhost is declared in <net.if.h> as follows:
struct Tvhost {

int lTvhostlen; /* length of memory for lvhostlist */
unsigned short vhostsum; /* number of vhosts delivered */
unsigned short vhostlast; /* last element if not zero */
int vhost_num; /* vhost number, must be greater 1 */
short vhost_flag; /* vhost active ? */
char vsockethost[33]; /* sockethostname of vhost */
char vbcamhost[9]; /* bcamhostname of vhost */

bs

SIOCGLVHNUM
Returns the number of active virtual hosts.

The structure lifreq is declared as follows in <net.if.h>:

struct lifreq f{
#define LIFNAMSIZ 32

char Tifr_name[LIFNAMSIZ];
union {
int Tifru_addrlen;
unsigned int Tifru_ppa;

b Tifr_Tifrul;
#define 1ifr_addrien Tifr_lifrul.lifru_addrien

#define 1ifr_ppa Tifr_lifrul.lifru_ppa
unsigned int 1ifr_movetoindex;
union {

struct sockaddr_storage Tifru_addr;
struct sockaddr_storage T1ifru_dstaddr;
struct sockaddr_storage T1ifru_broadaddr;
struct sockaddr_storage T1ifru_token;
struct sockaddr_storage T1ifru_subnet;

struct sockaddr Tifru_hwaddr;
int Tifru_index;
union {
unsigned int lTifru_flags_0O,lifru_flags_1;
u_int64_t lifru_flags;
} lifr_lifruflags;
int Tifru_metric;
unsigned int Tifru_mtu;
char Tifru_datalll;
char lifru_enaddrl61;
int Tif_muxidl2];
struct 1if_nd_req Tifru_nd_req;
struct Tif_ifinfo_req Tifru_ifinfo_req;
char Tifru_groupnamel LIFNAMSIZ];
unsigned int Tifru_delay;

b} lifr_Tifru;

214 U41052-J-2125-9-76

Socket functions

soc_ioctl()

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
b

1ifr_addr
1ifr_dstaddr
1ifr_broadaddr
1ifr_token
1ifr_subnet
1ifr_index
Tifr_flags
Tifr_flags_]1
Tifr_flags_h
Tifr_metric
T1ifr_mtu
1ifr_data
1ifr_enaddr
Tifr_index
Tifr_ip_muxid
1ifr_nd
Tifr_ifinfo
1ifr_groupname
Tifr_delay
1ifr_hwaddr

Tifr_Tlifru
Tifr_Tlifru
Tifr_lifru
Tifr_Tifru
Tifr_Tifru
Tifr_Tifru
Tifr_Tlifru
Tifr_lifru
Tifr_Tifru
Tifr_Tifru
Tifr_Tifru
Tifr_Tifru
Tifr_lifru
Tifr_Tifru
Tifr_Tifru
Tifr_Tifru
Tifr_Tifru
Tifr_Tifru
Tifr_Tlifru

.1Tifru_addr
.lifru_dstaddr

.1ifru_broadaddr

.lifru_token
.lifru_subnet
.lifru_index

Llifr_lifruflags
Llifr_lifruflags
Llifr_lifruflags

.lifru_metric
lifru_mtu
.lifru_data
.Tifru_enaddr
.Tifru_index
Lif_muxidl0]
.lifru_nd_req

.lifru_flags
.lifru_flags_1

.lifru_flags_0

.lifru_ifinfo_req

.lifru_groupname

.lifru_delay

Tifr_Tlifru.lifru.lifru_hwaddr

The structure sockaddr_storage is declared as follows in <sys.socket.h>:

#define
#define

_SS_MAXSIZE
_PADSIZE

128

struct sockaddr_storage {

#define

sa_family_t

__ss_family
char
u_inte4_t
char

ss_family;

ss_family
resl6];
addr;

padl[_PADSIZE];

/* Implementation specific max size */

(_SS_MAXSIZE - (sizeof(u_int64_t) + 8))

/*

/*k
/*
/*

address family */

reserved for alignment */
address */
pad up to max size */

U41052-J-2125-9-76

215

soc_ioctl() Socket functions

The structure lifconf is declared as follows in <net.if.h>:
struct Tifconf {

sa_family_t Tifc_family;
int Tifc_flags;
int 1ifc_len;
union {

caddr_t 1ifcu_buf;
struct T1lifreq *Tifcu_req;
} Tifc_1ifcu;
#define 1ifc_buf Tifc_lifcu.lifcu_buf
#define lifc_req 1ifc_lifcu.lifcu_req
bs

The structure lifnumis declared as follows in <net.if.h>:

struct T1ifnum {

sa_family_t Tifn_family;
int Tifn_flags;
int Tifn_count;

Return value

-1:
If errors occur. erno is set to indicate the error.

Errors indicated by errno

EBADF
The s parameter is not a valid descriptor.

EINVAL
request or arg are not valid for this device (interface, socket).

216 U41052-J-2125-9-76

Socket functions soc_poll()

soc_poll() - multiplex input/output

#include <sys.socket.h>
#include <sys.poll.h>

Kernighan—-Ritchie-C:
int soc_poll(fds, nfds, timeout);

struct pollfd fdslJ;
unsigned long nfds;
int timeout;

ANSI-C:
int soc_poll(struct pollfd fds[l1, unsigned long nfds, int timeout);

Description

The soc_poall() function tests a set of socket descriptors, which are transmitted with an array
of structure elements of type pollfd. Depending on the desired test, each descriptor-specific
structure element states whether messages can be received or sent on this socket
descriptor or whether specific events have occured.

The soc_pall() function is supported in the AF_INET, AF_INET6 and AF_ISO address
families.

The fds parameter is a pointer to the array to be sent by the caller with an element of type
struct pollfd for each socket descriptor to be tested.

The nfds parameter specifies the set of descriptors to be tested.

The timeout parameter specifies the maximum waiting time in seconds that the soc_poll()
function is available for testing the descriptors, if no event occurs:

— If timeout = 0: No waiting time, only all marked file descriptors are tested.

— Iftimeout = -1: soc_poall() is blocked, until an event occurs in at least one of the selected
file descriptors.

pollfd structure

The pollfd structure is declared in <sys.poll.h> as follows:

U41052-J-2125-9-76 217

soc_poll()

Socket functions

struct pollfd {

int fd; /* socket file descriptor to poll*/
short events; /* events on interest on fd*/
short revents; /* events that occured on fd */

bs
The fd socket descriptor designates the socket to be tested.
events designates the events to be tested on this socket.

revents returns the test result. The POLLNVAL, POLLERR, POLLHUP bits are always setin
revents, if the conditions for this are met, regardless of the bits set in events.

Events can be requested in the events element field using the following bit masks:
— POLLIN
— POLLOUT

The following bit masks are not supported in the events element field and are not set in the
revents element field:

— POLLPRI

— POLLRDNORM
— POLLWRNORM
— POLLRDBAND
— POLLWRBAND

The following events can be displayed in the bit mask of the revents element field:

POLLIN
With an existing connection data can be read non-blocking.

POLLOUT
With an existing connection data can be written non-blocking.

POLLNVAL
The socket selected with the socket descriptor is not available, it is not of type
SOCK_STREAM or it does not have the status that displays an active connection.
This flag is only written as a result in the revents field.

218

U41052-J-2125-9-76

Socket functions soc_poll()

POLLERR
An error has been reported to the socket selected and the connection is inactive. This
flag is only written as a result in the revents field.

POLLHUP
The application or the transport system have closed the connection.
This flag is only written as a result in the revents field.

If a negative value is specified for an fd socket descriptor, this value will be ignored and the
revents field will be set to 0.

Return value

0:
The time specified in the timeout parameter has elapsed without an event display being
set.

>0
The positive value indicates the number of socket descriptors when at least one event
display has been set in the revents field.

-1
If errors occur. errno is set to indicate the error.

Errors

EACCES
The socket function is not supported by the called subsystem.

EINTR
The soc_pall() call was interrupted by soc_wake().

EINVAL
The value of nfdsis greater than the maximum number permitted of socket descriptors.
The maximum value is determined by calling getdtablesize().

See also

select()

U41052-J-2125-9-76 219

soc_putc()

Socket functions

soc_putc() (putc) - put character in output buffer

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int soc_putc(c, s);

char c;
int s;

ANSI-C:
int soc_putc(char c, int s);

Description

The soc_putc() function is only supported in the AF_INET and AF_INET6 address families
and can only be used on stream sockets.

The soc_putc() function writes the character c to the output buffer of socket s.

The characters are written to the output buffer of the socket up to the maximum capacity of
32760 bytes before being automatically transmitted to the BCAM transport system. If
desired, the output buffer intended for BCAM can be cleared unconditionally by using the
socket function soc_flush().

Return value

#EOF:
If successful.

EOF:
If nothing could be written to the buffer due to the end-of-file (EOF) condition.

See also

soc_flush()

220

U41052-J-2125-9-76

Socket functions soc_puts()

soc_puts() (puts) - put string in output buffer

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int soc_puts(s, d);

char *s;
int d;

ANSTI-C:
int soc_puts(char* s, int d);

Description

The soc_puts() function is only supported in the AF_INET and AF_INET6 address families
and can only be used on stream sockets.

The soc_puts() function writes the character string sto the output buffer of socket d.

Return value

Null pointer:
If successful.

EOF:
If nothing could be written to the buffer due to the end-of-file (EOF) condition, or if errors
occur.

See also

soc_flush()

U41052-J-2125-9-76 221

soc_read(), soc_readv() Socket functions

soc_read(), soc_readv() (read, readv) - receive a message
from a socket

#include <sys.types.h>
#include <sys.socket.h>
#include <sys.uio.h>

Kernighan—-Ritchie-C:

int soc_read(s, buf, nbytes);
int s;

char *buf;

int nbytes;

int soc_readv(s, iov, jovcnt);
int s;

struct iovec *ijov;

int iovcnt;

ANSI-C:
int soc_read(int s, char* buf, int nbytes);
int soc_readv(int s, struct iovec* jov, int iovcnt)

Description

The soc_read() and soc_readv() functions read messages

— from a stream socket sin the AF_INET or AF_INET6 address family or
— from a socket sin the AF_ISO address family.

soc_read() and soc_readv() can only be used with a socket for which a connection has
already been set up.

For soc_read(), the buf parameter points to the first byte of the receive buffer buf.
nbytes specifies the length (in bytes) of the receive buffer, and thus the maximum message
length.

For soc_readv(), the received data is placed in a vector with the elements
iov[0], iov[1], ..., iov[iovent-1]. The vector elements are objects of type struct iovec.
iovent indicates the number of vector elements.

222

U41052-J-2125-9-76

Socket functions soc_read(), soc_readv()

The iovec structure is declared in <sys.uio.h> as follows:

struct iovec
{

caddr_t iov_base; /* buffer for auxiliary data */
int iovlen; /* buffer length */
b

The address of the vector is passed in the parameter iov. Each vector element specifies the
address and length of a storage area in which soc_readv() places the data received from
socket s. The soc_readv() function fills these areas with data sequentially and only moves
to the next area when the current area has been totally filled.

Return value

>0:
If successful (number of received bytes).

-1:
If errors occur. errno is set to indicate the error.

Errors indicated by errno

EBADF
The s parameter is not a valid descriptor.
EIO
There is no available user data to be read.
ENETDOWN
The connection to the network is down.
ENOTCONN
No connection exists for the socket.
EOPNOTSUPP
The socket type is not supported. The socket is not of type SOCK_STREAM.
EWOULDBLOCK
The socket is marked as non-blocking, and the requested operation would block.
EPIPE

The connection has been shut down.

See also

connect(), getsockopt(), recv(), select(), send(), soc_ioctl(), soc_read(), soc_write(),
soc_writev(), socket()

U41052-J-2125-9-76 223

soc_wake()

Socket functions

soc_wake() - awaken a task waiting with select() or
soc-poll()

#include <sys.socket.h>

Kernighan—-Ritchie-C:
int soc_wake(pid);
int *pid;

ANSI-C:
int soc_wake(int* pid);

Description

The soc_wake() function can be used to awaken the task identified by *pid if the task is
currently waiting with select() or soc_poll(). The soc_wake() call causes salect() or soc_poall() to
exit with a return value of “-1” and the error EINTR.

soc_wake() can awaken another task with the same user ID and, if called from a signal
routine, can also awaken its own task.

*pid is a variable which must be supplied with the task sequence number (TSN) of the
waiting task.

The task *pid must exist at the time of the soc_wake() call and have an opened socket. If the
task *pid is not waiting with select(), the signal set by soc_wake() is assigned to the next
select() call.

Return value
0:
If successful

-1:
If errors occur. errno is set to indicate the error.

Errors indicated by errno

ESRCH
There is no task with the number *pid. This may be either because *pid is an invalid task
number or because the SOCKETS(BS2000) program has not yet been loaded.

EACCES
No access authorization. The task *pid has another user ID.

224

U41052-J-2125-9-76

Socket functions soc_write(), soc_writev()

soc_write(), soc_writev() (write, writev) - send a message
from socket to socket

#include <sys.socket.h>

Kernighan—-Ritchie-C:

int soc_write(s, buf, nbytes);
int s;

char *buf;

int nbytes;

#include <sys.types.h>
#include <sys.uio.h>

int soc_writev(s, iov, iovcnt)

int s;
struct iovec *jov;
int iovent;

ANSI-C:
int soc_write(int s, char* buf, int nbytes);
int soc_writev(int s, struct iovec* iov, int iovcnt);

Description

The soc_write() and soc_writev() functions support the following means of message transfer:
— Messages from a stream socket sto another stream socket (AF_INET, AF_INET6)
— Message from a connected datagram socket to another socket (AF_INET, AF_INET6)

— From a socket s belonging to the AF_ISO address family to another socket belonging
to the same address family.

soc_write() and soc_writev() can only be used if a connection between the two sockets has
already been established.

For soc_write(), the buf parameter points to the first byte of the send buffer, and nbytes
specifies the length (in bytes) of the send buffer.

For soc_writev(), the data to be sent is supplied in the vector with the elements
iov[0], iov[1], ... ,iov[iovent-1]. The vector elements are objects of type struct iovec.
iovent indicates the number of vector elements.

U41052-J-2125-9-76 225

soc_write(), soc_writev() Socket functions

The iovec structure is declared in <sys.uio.h> as follows:

struct iovec{
caddr_t iov_base; /* buffer for auxiliary data */
int iovlen; /* buffer length */

bs

The address of the vector is passed in the iov parameter. Each vector element specifies the
address and length of a storage area from which soc_writev() reads the data to be sent to
the receiving socket s.

Return value
>0:
If successful (humber of bytes actually sent).

-1:
If errors occur. errno is set to indicate the error.

Errors indicated by errno

EBADF
The s parameter is not a valid descriptor.

ECONNRESET
The connection to the partner was interrupted (only with sockets of type
SOCK_STREAM).

EINVAL

A parameter has specified an illegal value.
EIO

I/O error. The message could not be passed to the transport system.
ENETDOWN

The connection to the network is down.
ENOTCONN

No connection exists for the socket.
EOPNOTSUPP

The socket type is not supported. The socket is not of type SOCK_STREAM.
EPIPE

The socket is not activated for writing, or the socket is connection-oriented and the
partner has shut the connection down.

EWOULDBLOCK
The socket is marked as non-blocking, and the requested operation would block.

226

U41052-J-2125-9-76

Socket functions soc_write(), soc_writev()

Note

If the connection is established with a non-blocking socket then errno EINPROGRESS may
occur on the next function call. This message indicates that the connection is not yet in a
state which permits a data transfer phase.

See also

connect(), getsockopt(), recv(), select(), soc_read(), soc_readv(), socket()

U41052-J-2125-9-76 227

socket()

Socket functions

socket() - create socket

#include <sys.types.h>
#include <sys.socket.h>

Kernighan—-Ritchie-C:
int socket(domain, type, protocol);

int domain, type, protocol;

ANST-C:
int socket(int domain, int type, int protocol);

Description

The socket() function creates a communications endpoint and returns a descriptor.

The domain parameter defines the communications domain in which communications are
to take place. This also defines the protocol family to be used and thus the family of the
addresses used for later operations on the socket. These families are defined in the
<sys/socket.h> header file. The AF_INET, AF_INET6 and AF_ISO address families are
supported.

The type parameter defines the type of the socket and the semantics of the
communications. The following socket types are currently defined:

— SOCK_STREAM
— SOCK_DGRAM
— SOCK_RAW

Each of these types is supported in the AF_INET and AF_INET6 address families. Only the
type SOCK_STREAM is defined in the AF_ISO address family.

The protocol parameter is not evaluated.

Socket operations are controlled by socket level options and defined in the <sys.socket.h>
header file. The user can get and set these options with the getsockopt() and setsockopt()
functions, respectively.

228

U41052-J-2125-9-76

Socket functions socket()

AF_INET and AF_INET 6 address families

A socket of type SOCK_STREAM provides a secured and bidirectional connection on
which data is transmitted sequentially. A stream socket must be connected to another
stream socket before any data can be sent or received on it.

A connection to another socket is set up when one socket requests a connection to a
partner socket with connect(), and the partner system confirms the connection with accept().
After the connection has been successfully established, both partners can transmit data
with soc_read() or soc_readv() and soc_write() or soc_writev() or similar calls such as send()
and recv().

A socket of type SOCK_DGRAM supports the transmission of datagrams. A datagram is a
connectionless, unsecured message with a fixed maximum length. The sendto() function
sends datagrams from one datagram socket to another datagram socket specified in the
sendto() call. Conversely, datagrams are received with the recvfrom() function. recvfrom()
returns the next datagram together with the address of the sender.

If the communications partner for a datagram socket has been preset with the function
connect(), the functions send() and recv() can also be used for this datagram socket.

A socket of the type SOCK_RAW supports the transmission of ICMP/ICMPv6 messages.

AF_1S0 address family

A socket of type SOCK_STREAM provides a secured and bidirectional connection on
which a record-oriented and sequential transfer of data takes place. A stream socket must
be connected to another stream socket before any data can be sent or received on it.

A connection to another socket is set up when one socket requests a connection to a
partner socket with connect(), and the partner system confirms the connection with accept()
and one of the functions send(), soc_write() or sendmsg().

After the connection has been successfully established, both partners can transmit data
with soc_read() or soc_readv() and soc_write() or soc_writev() or similar calls such as send()
and recv() or sendmsg() and recvmsg().

Return value
>0:
Designates a non-negative descriptor if successful.

-1:
If errors occur. errno is set to indicate the error.

U41052-J-2125-9-76 229

socket()

Socket functions

Errors indicated by errno

EMFILE
The table of descriptors per task is full; the maximum number of socket descriptors that
can be processed concurrently has been reached. This maximum value can be
determined with the getdtablesize() function.

ENOBUFS
There is not enough storage space in the buffer. The socket cannot be created until
sufficient storage resources have been freed.

EAFNOSUPPORT
The address family is not supported by this protocol family. The specified address is
incompatible with the protocol used.

ENOMEM
Memory bottleneck. Not enough virtual storage space could be assigned when
executing the function.

EPROTONOSUPPORT
The socket type is not supported in this domain.

See also

accept(), bind(), connect(), getsockname(), getsockopt(), listen(), recv(), recvfrom(),
select(), send(), sendto(), soc_close(), soc_ioctl(), soc_read(), soc_readv(), soc_write(),
soc_writev()

230

U41052-J-2125-9-76

7 SOCKETS(BS2000) interface for an external
bourse

This chapter describes the additional functions of the socket interface for BS2000 in the
special mode for using an external bourse. This makes it possible to coordinate various
events by specifying an external bourse with a common wait point.

The socket mode (external wait point or not) is set with the first socket call and is then static.
The setting is made with a setsockopt() subfunction.

The additional function soc_getevent() and the subfunction SO_ASYNC for setsockopt() are
provided to achieve this functionality.

U41052-J-2125-9-76 231

setsockopt() SOCKETS(BS2000) interface for SAG

7.1 Description of the additional functions

setsockopt() - modify socket options

#include <sys.types.h>
#include <sys.socket.h>
#include <netinet.in.h> /* only with AF_INET or AF_INET6 */

Kernighan—-Ritchie-C:

int setsockopt(s, Tevel, optname, optval, optlen);

int s;

int level;
int optname;
char *optval;
int optlen;

ANSI-C:
int setsockopt(int s, int level, int optname, char* optval, int optlen);

Description

The level, optname, optval and optlen parameters of the setsockopt() function allow users to
modify the properties (options) of the socket interface or of an individual socket s.

level SOL_GLOBAL

In this case, the current parameter value for sis of no significance. For this reason, the value
0 should be specified for s.

optname *optlen Value range of optval
SO_ASYNC |4 Pointer to short ID of the event ID

232 U41052-J-2125-9-76

SOCKETS(BS2000) interface for SAG setsockopt()

The subfunction SO_ASYNC is only permitted for setsockopt() and is only effective when the
user calls the subsystem for the first time.

If this is the case, then the subsystem for this user is switched to an operating mode which
permits coordination with other events via a common wait point. optval must then be used
to specify the short ID of the bourse’s event ID to which the sockets should send the

communication events. These events can then be retrieved with the soc_getevent function.

Comment

In this operating mode, the sockets generated with socket() are automatically generated
in non-blocking mode.

U41052-J-2125-9-76 233

soc_getevent() SOCKETS(BS2000) interface for SAG

soc_getevent() - get socket event

#include <sys.socket.h>

ANSI-C:
int soc_getevent(struct aevent * exb_event);

Description

The function soc_getevent() provides the caller with information about a delivered event
signaled to the bourse used by the caller.
Standard data and event-specific data are stored in the output structure aevent.

The signal to the bourse transfers a 2-word post code with the following structure:
Word 1:

Byte 1: Event code X'3E'

Byte 2: User Call Indicator

X'14' = IPv4 event
X'15' = IPv6 event

Byte 3: Event Indicator

C'E’'= Normal event (see list of possible events on page 235)

C'W’' = Event was triggered by a Wake incident
User Call Indicator = X'00".

C'S'= Eventwas triggered by BCEND.
User Call Indicator = X‘00‘ and word 2 = X‘00000000".

Byte 4: X‘00*
Word 2:
Undefined

234 U41052-J-2125-9-76

SOCKETS(BS2000) interface for SAG soc_getevent()

The aevent is declared as follows in <sys.socket.h>

struct aevent {

int fd; /* socket filedescriptor */

int event; /* transport system event*/

int subevent; /* additional information about the event*/
int datalen; /* data length transferred to caller*/

int fd_errno; /* errno */

int fd_array_cnt; /* number of FD’s, if ECLS event*/

int fd_array[FD_MAX]; /* FD’s for ECLS event*/
}

Return value

0:
Success

Error

Possible events

EXB_ECLS
TSAP Termination Indication, forced termination of the TSAP by the transport system.
Data: fd, event, fd_array cnt, fd_array
EXB_ERQQ
Connection Request Indication, connection request.
Data: fd, event
EXB_ERSP
Connection Response Indication, partner’s acknowledgment of connection request.
Data: fd, event
EXB_EDIS
Disconnect Indication, disconnection request.
Data: fd, event

EXB_EDTA
Data Indication, TCP data reception
Data: fd, event, datalen

EXB_EDTU

Unitdata Indication, UDP data reception.
Data: fd, event, datalen

U41052-J-2125-9-76 235

soc_getevent() SOCKETS(BS2000) interface for SAG

EXB_EERR
Error Report Indication
ICMP error message

EXB_EGOD
Data Go Indication, data transfer can be continued.
Data: fd, event

EXB_NOEV
No event present.
The return value is set to 1.

EXB_TRYL
No event can currently be retrieved.
However, another attempt can be made later.
The return value is set to 1.

EXB_SHUT
The BCAM transport system has been terminated or is currently in the
termination phase.
The application must also be terminated.
The return value is set to 1.

The errno is set if an error occurs.

236 U41052-J-2125-9-76

8 Software package SOCKETS(BS2000) V2.7

8.1 SOCKETS(BS2000) subsystems

SOC-TP Subsystem for system program

SOC6 Subsystem for user programs on all hardware platforms

SOC6-SP Subsystem for special programs on SX servers

SOC6-X8 Subsystem for special programs on SE series with SU x86 and on SQ
servers

8.2 SOCKETS(BS2000) programs

8.2.1 ping4

Autonomous diagnostic program for determining the availability of a host in an IPv4 net-
work. An ICMP echo request is sent and a test is made to see whether the host answers
with an ICMP echo reply.

Online help: ping4 -h
Description: See the “BCAM Volume 1/2" manual

8.2.2 ping6

Autonomous diagnostic program for determining the availability of a host in an IPv6 net-
work. An ICMPv6 echo request is sent and and a test is made to see whether the host an-
swers with an ICMPv6 echo reply.

Online help: ping6 -h
Description: See the “BCAM Volume 1/2" manual

U41052-J-2125-9-76 237

SOCKETS(BS2000) programs Software package SOCKETS(BS2000) V2.7

8.2.3

nslookup

Autonomous program for converting DNS names to IPv4/IPv6 addresses (lookup) and vice
versa (reverse lookup).

Starting nslookup

start-nslookup [-server address | namel address | name
or
nslookup [-server address | namel address | name

Help: nsTookup -h
Usage: [—server address | namel address | name

You use the —server option to define the DNS name or IPv4/IPv6 address of the name serv-
er which is to be used. When this option is not specified, nslookup uses the first name server
which can be reached and is entered in the LWRESD configuration file SYS-

DAT.LWRESD.nnn.RESOLV.CONF. nnnis the LWRESD version, the current one being 013.

When DNS names are converted to addresses, ndookup outputs both IPv4 and IPv6 ad-
dresses, if these are available.

nslookup can also be executed in interactive mode. This can be useful when multiple queries
are to be started because the time required for starting the program need only be waited
once.

Starting nslookup in interactive mode

start-nslookup or nslookup

Commands permitted:

server: Outputs the name servers entered in sysdat.lwresd.nnn.resolv.conf.

If no name server is entered, the loopback addresses 172.0.0.1 and ::1 are
output.
The first reachable name server is always used for queries.

server name or address: The specified server is used from now on.

address or name: The name server set is queried because of the conversion of
the address or name.

help or ?: A usage output takes place

exit or end: nslookup is terminated

238

U41052-J-2125-9-76

Software package SOCKETS(BS2000) V2.7 SOCKETS(BS2000) DNS access

8.3 SOCKETS(BS2000) DNS access

Access to DNS takes place using the software package openNet Server V3.6, which
contains SOCKETS(BS2000) V2.7, using the Light Weight RESolver Daemon (LWRESD)
program on the basis of the software package bind9.x (see the “BCAM Volume 1/2”
manual).

SOCKETS(BS2000) V2.7 establishes the connection to LWRESD using an integrated
LWRES client.

If DNS does not provide any corresponding information for the DNS information function
which is called, an attempt is made to obtain this information from the BCAM transport
system.

This applies both for implementing host names and for the FQDN (Fully Qualified Domain
Name).

In the standard configuration the LWRESD is reachable under the local loopback address
and port 921.

For a workaround made necessary for production reasons or for an additional special local
private DNS configuration, it may be necessary to start a second LWRESD in parallel mode.
This is achieved with an additional SCOPE command operand in the relevant administra-
tion commands for the LWRESD (see the manual “BCAM Volume 1/27).

The values for the SCOPE operand are:

*STD: The default setting; there is only one LWRESD; or the standard
LWRESD is selected.

*LWRES-NAS Workaround for a second LWRESD which is addressed with the loop-
back address and the standard port 921.

*LOCAL-DNS Selection of a second LWRESD which communicates with a
DNS server for a special local network (full support only in
openNet Server > V3.6).

If two LWRESDs are active, these must be reachable via different addreses and/or ports.

To be able to offer noew configuration options with one LWRESD, the selection of the pos-
sible keywords in the LWRESD configuration file SYSDAT.LWRESD.nnn.RESOLV.CONF
has been extended. nnn is the LWRESD version, the current one being 013.

The additional keywords are:

Iwserver IPv4 or IPv6 address

The list socket of the LWRESD is opened under this address so that it can be
reached by the LWRES client.

U41052-J-2125-9-76 239

SOCKETS(BS2000) - query to FQDN file Software package SOCKETS(BS2000) V2.7

8.4

Iwlport port number
The list socket of the LWRESD is opened under this port number.
destport port number

A port deviating from the standard port number 53 can be specified for the entered
name servers here. This enables tests of name servers which were started for this
purpose under a non-standard port number.

Changes under lwserver, Iwlport or destport cannot be enabled dynamically by reading in the
LWRESD configuration file again (RELOAD-LWRESD command).

An LWRESD reboot is required, which can be initiated with the command sequence STOP-
LWRESD and START-LWRESD or with the RESTART-LWRESD command.

The IPv4 or IPv6 address and the UDP port under which the selected LWRESD can be
reached are stored in BCAM and can be read out or modified using the BCAM commands
SHOW-DNS-ACCESS and MODIFY-DNS-ACCESS. This data is used starting with the
next DNS access of SOCKETS(BS2000). It is no longer necessary to reboot SOCK-
ETS(BS2000) after modifying the address.

The getsockopt() / setsockopt() subfunctions SO_LWRESDINFO; SO_LWADDR;
SO_LWADACT enable a sockets program to test an LWRESD other than that configured.

SOCKETS(BS2000) - query to FQDN file

In openNet Server V3.5 and higher an FQDN file exists which is managed by BCAM. With
an entry in this file an FQDN can be converted to a BCAM name. This information is taken
into account when SOCKETS(BS2000) issues a request to BCAM because no DNS server
was available or because DNS was unable to supply any information in response to a
request (see the “BCAM Volume 1/2” manual).

240

U41052-J-2125-9-76

Software package SOCKETS(BS2000) V2.7 Producing the SOCKETS(BS2000) user program

8.5 Producing the SOCKETS(BS2000) user program

The SOCKETS(BS2000) V2.7 subsystem SOC6 is compatible with the predecessor
version.

In SOCKETS(BS2000) V2.1 and higher the include files of the user program library are
compatible for den Kernighan-Ritchie, ANSI-C and den C++ modes, i.e. corresponding
defines have been implemented in the include files.

8.5.1 Software requirements

The following software is required to use SOCKETS(BS2000) V2.7:
e openNet Server V3.6
e BS2000 C-Compiler > V3.0

8.5.2 Programming

e For the compiler run, only the header file library SYSLIB.SOCKETS.027 is required in
addition to the libraries with the private header files and the header files of the C runtime
system of SOCKETS(BS2000).

e When linking, no resolve library of SOCKETS-BS2000 is required.

. The subsystem entries of the SOCKETS(BS2000) functions used are reported
1 by the linkage editor as unresolved externs. However, at the time the program
executes, they are resolved by the Sockets subsystem.

U41052-J-2125-9-76 241

Producing the SOCKETS(BS2000) user program Software package SOCKETS(BS2000) V2.7

242 U41052-J-2125-9-76

Related publications

You will find the manuals on the internet at http://manual s.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

C/C++
C/C++ Compiler
User Guide

C/C++

C Library Functions
User Guide
openNet Server
BCAM Volume 1/2
User Guide

interNet Services
Administrator Guide

interNet Services
User Guide

SNMP Management for BS2000
User Guide

RFCs

You can find complete information about the Request for Comments (RFCs) on the home
page of the Internet Engineering Task Force (IETF):

www.ietf.org

U41052-J-2125-9-76 243

http://www.ietf.org
http://manuals.ts.fujitsu.com

Related publications

244 U41052-J-2125-9-76

Index

<arpa.inet.h> 21
<ioctl.h> 21
<iso.h> 21
<net.if.h> 21
<netdb.h> 21, 63
<netinet.in.h> 21
<sys.pollL.h> 21
<sys.socket.h> 21
<sys.time.h> 21
<sys.uio.h> 21

A
abortive disconnect 198
accept
connection 38, 48, 120
connection (server example) 41
accept socket 80
accept() 38,48, 72, 86, 90
example 38, 48
functions description 120
address 22
assign 31,123
assign automatically 35, 37
convert 63
INADDR_ANY 33
INADDR6_ANY 33
Internet 64
local 37
network 63, 64
protocol 66
socket 24,31
wildcard 33

address assignment, get 146
address conversion with SOCKETS(BS2000) 63
example 69
address family 22, 24, 228
AF_INET 22,195
AF_INET6 195
address family, see also domain
address range
multicast (IPv4) 73
multicast (IPv6) 73
address structure 22, 24
sockaddr_in 25, 31
sockaddr_in6 26, 31
sockaddr_iso 28, 31
address, see also name
addressing-pair 37
addressing, socket 24
addrinfo structure 130, 134
release memory 130
AF_INET 25, 29, 31, 33, 37, 55, 60, 63, 74, 86,
94, 128, 185, 195, 200, 225, 228, 229
address conversion 64
communications 37
connection termination 50
domain 222
AF_INET domain, AF_INET 113
AF_INET6 22, 26, 29, 30, 31, 33, 37, 60, 63, 74,
86, 94, 113, 128, 185, 195, 225
address conversion 64
communications 37
connection terminating 50
domain 222
AF_INET6 communications domain 30
AF_ISO 22,28, 29, 30, 32, 48, 61, 90, 113, 128,
185, 195, 200, 222, 225, 229

U41052-J-2125-9-76

245

Index

communications 47
connection terminating 52

assign
address 123
name 33, 37
asymmetric
connection 37
protocol 85

automatic address assignment 35, 37

B
basics of SOCKETS(BS2000) 19
BCAM host name 28, 162
get 137
bidirectional data transfer 22
bind socket
see assign name or address
bind() 31, 33
example 31, 86, 90, 98, 102
function description 123
bit fields 190
bit mask 53
block 190, 191
blocking 72
broadcast
messages 73,75
byte order 125
convert 68, 125
host 68, 125, 176
network 68, 125, 176

C

C header file see include file

C include file see include file

C Kernighan/Ritchie 241

CFRM_DATA 185

character
read from input buffer 204
write to output buffer 220

character string 176

client 37, 40, 69, 94
connection-oriented (example) 94
connectionless (example) 108
initiate connection 128

request connection (example) 40
task 85
client/server model 85
communications (example) 40
close
socket 50
close socket 200
cmsghdr structure 187, 196
communication application 9, 20
communications
connection-oriented 22, 37, 47, 49
connection-oriented (examples) 40
connectionless 23, 43, 62
connectionless (examples) 44
in AF_INET 37
in AF_ISO 47
communications domain, see domain
communications endpoint 22
see also socket
communications partner
get name 148
CONN_DATA 185
connect() 37,43,47,72
example 37, 94, 98
function description 127
connection 85, 113
accept 38, 48, 113, 120
accept (server example) 41
asymmetric 37
initiate, see request connection
pending, see connection request
request 37, 47, 86, 113, 127
request (client example) 40
request status 58
settingup 37, 113
shutting down 113
terminating 50
terminating (AF_INET) 50
terminating (AF_INET6) 50
terminating (AF_ISO) 52
connection acceptance 38
connection data 185, 195
connection data type
CFRM_DATA 185

246

U41052-J-2125-9-76

Index

CONN_DATA 185
DISC_DATA 185
TPOPT_CFRM_DATA 197
TPOPT_CONN_DATA 197
TPOPT_DISC_DATA 197
connection request 38, 48, 127
pending 180
request status 58
send 128
wait for 180
connection requirement 113
connection setup 37
error 38
connection-oriented 22
client (example) 94
communications 22, 37, 47, 49
communications (examples) 40
server (example) 86
socket 22
connectionless
client (example) 108
communications 23, 43, 62
communications (examples) 44
server (example) 102
socket 23, 29, 43, 62
control function (for sockets) 117, 206
conventions, notational 13
convert
address 63
address (example) 69
byte order 68, 125
host name 64
network address 64
protocol name 66
service name 67
create socket 228

D
data
receive 182,222
send 192,225
data transfer
bidirectional 22
secured and sequential 22

data transmission
from output buffer 203
datagram 229
receive 182
receive (example) 44
send 193

datagram socket 23, 29, 43, 62, 128, 183, 187

characteristics 23

create 29, 30, 229

properties 229

see also SOCK_DGRAM
debugging output level, specify 158
delay interval 161
description format, socket functions 111
descriptor 29, 110

test exception 189

test read readiness 189

test write readiness 189
descriptor set 53, 190

manipulate 190
DISC_DATA 185
disconnect

abortive 198

graceful 198

disconnect see also terminate a connection

DNS Resolver
functionality 239
domain 22, 29, 38

AF_INET 22,29, 31, 37, 55, 60, 63, 86, 94,

128, 185, 200, 222, 225, 229

AF_INET6 29, 30, 31, 37, 60, 63, 86, 94, 113,

128, 185, 222, 225

AF_ISO 22, 29, 30, 32, 47, 48, 61, 90, 113,

128, 185, 195, 200, 222, 225, 229

define 228
dotted notation (Internet address) 176
dynamic storage

release 171

E

error code getaddrinfo() 132

error during connection setup 38, 47
extended socket functions 71

U41052-J-2125-9-76

247

Index

F
FD_CLR 190
FD_ISSET 54,190
FD_SET 190
file, header 21
file, include 241
flags 187
FQDN
Fully Qualified Domain Name 145
FQDN file 240
freeaddrinfo()
function description 130
freehostent()
function description 131
full-duplex connection
termination 198
Fully Qualified Domain Name (FQDN) 145
function, see socket function

G
gai_strerror()
function description 132
get
address assignment 146
BCAM host name 137
host address 133
host name 133
information about protocol 146
information about protocols 148
local address of the socket connection 154
name of communication partner 148
name/adddress of a socket 154
port number 152
protocol number 150
service name 152
services 133
status information 202
get remote address of sockets connection 148
getaddrinfo()
error code 132
function description 133
getbcamhost()
example 90, 98
function description 137

getdtablesize()

function description 138
gethostbyaddr() 64

function description 139
gethostbyname() 64

example 94, 108

function description 139
gethostname()

function description 141
getipnodebyaddr() 64

function description 142
getipnodebyname() 64

function description 142
getnameinfo()

function description 146
getpeername()

function description 148
getprotobyname()

function description 150
getservbyname() 67

application example 67

function description 152
getservbyport() 67

function description 152
getsockname()

function description 154
getsockopt() 75

example 75

function description 156, 232
graceful disconnect 198

H

Handoff 77, 197

handoff procedure 170

header file 21
arpa.inet.h 21

ioctL,h 21
iso.h 21
net.if.h 21

netdb.h 21, 63
netinet.in.h 21
sys.poll.h 21
sys.socket.h 21
sys.time.h 21

248

U41052-J-2125-9-76

Index

sys.uio.h 21
header file see include file
hop limit (multicast) 164, 166
host
byte order 68, 125, 176
convert name 64
get address 139
get information about address 139
get information about name 139
getname 139
information about 139
name conversion 139, 142
host address, get 133
host name
see also BCAM host name
host name, get 133
HOST-ALIASING 76
hostent structure 64, 131, 140, 144
release memory 131, 132
htonl() 68
description 125
htons() 68
description 125

I
I/O multiplexing
example 55, 58
select() 53,189
timeout 190
ICMP
Internet Control Message Protocol 23
ICMP echo request 83
ICMP error messages 164, 166
ICMP protocol 83

socket 23
ICMP protocol header 83
ICMPV6
Internet Control Message Protocol for
IPv6 23

ICMPvV6 echo request 83
ICMPV6 protocol 84
ICMPV6 protocol header 83
if_freenameindex()

function description 171

if_indextoname()

function description 172
if nameindex()

function description 173
if nametoindex()

function description 174
ifname 174
INADDR_ANY 33
INADDR6_ANY 33
include file 241
inet_addr()

function description 175
inet_Inaof()

function description 175
inet_makeaddr()

function description 175
inet_netof()

function description 175
inet_network()

function description 175
inet_ntoa()

function description 175
inet_ntop() 64

function description 178
inet_pton() 64

function description 178
input buffer 204, 205
input multiplexing 217
input/output multiplexing 53

select() 53
installing, SOCKETS(BS2000) 237
interaction

socket functions (connection-oriented) 60

socket functions (connectionless) 62

socket functions (quasi-connection-

oriented) 62

interface index 172,173

output 174
interface name

output 172
interface names

output list 173
Internet address 26, 31, 64

assign automatically 35

U41052-J-2125-9-76

249

Index

assign with wildcard 33
dotted notation 176
manipulate 116, 175, 176, 178

Internet Control Message Protocol (ICMP) 23

Internet Control Message Protocol for IPv6
(ICMPv6E) 23
Internet domain 22, 29, 37, 38, 228
iovec structure 186, 196, 223, 226
IP address, see Internet address
IP_ADD_MEMBERSHIP 164
IP_DROP_MEMBERSHIP 164
IP_MULTICAST IF 164, 166
IP_MULTICAST _LOOP 164, 166
IP_MULTICAST TTL 164
IP_RECVERR 164
IPv4 address
convert to host name 65
IPv6 address
convert to host name 64
IPV6_JOIN_GROUP 166
IPV6_LEAVE_GROUP 166
IPV6_MULTICAST _HOPS 166
IPV6_RECVERR 166
IPV6_V60ONLY 166
ISO communications domain 29, 30
see also AF_ISO
ISO transport service 22, 30

K
Kernighan/Ritchie C 241

L
library, SOCKETS- 63
linger structure 161
listen socket 79
listen sockets
multiple at one address 36
listen() 38
example 38, 48, 86, 90
function description 180
local
address 37
name 31
port number 37

lock 39, 49

M
macro

FD_CLR 190

FD_ISSET

54, 190

FD_SET 190

htonl() 68,

htons() 68,

ntohl() 68,

ntohs() 68,

manipulate

125
125

125
125

descriptor set 190
Internet address 116, 175, 178

message

receive 182, 185, 222
send 193, 195, 225
MSG_PEEK 183
msghdr structure 186, 196

multicast group

164, 166

multicast hop limit 164, 166
multicast messages 73
multihoming 162
multihoming support 36

multiplexing /10

53

example 55, 58
with select() 53, 189
with soc_poll 57

multiplexing, input/output

N
name
assign 31,

33, 37,123

communications partner

host 64
local 31

of socket, get 154
protocol 66

service 67
socket 24

name, see also address

network

address 63, 64, 177

byte order

68, 125, 176

217

148

250

U41052-J-2125-9-76

Index

connection 20

number 177

programming 20
network selector NSEL 28, 31, 47, 137
non-blocking

input/output 191, 193

socket 72,183, 193
notational conventions 13
NSEL 28, 31, 47, 137
nslookup 238
ntohl() 68

description 125
ntohs() 68

description 125
number of protocol 66, 150

o]

options, socket 75

output buffer 203, 220, 221
output multiplexing 217
overview, socket functions 113

P

pending connection request
checking for 55
testing for 58

pingd 237

ping6 237, 238

pollfd structure 217

port number 25, 26, 31
assign with wildcard 35
get 152
local 37

producing, user program 241

protocol 85
asymmetric 85
convert name 66
family 22,228
information about number 150
number 66
symmetric 85
TCP 22
UDP 23,43, 62

protoent structure 66

Q
guasi-connection-oriented 62
query

socket option 75

R
raw socket 23, 29, 83
raw socket see also SOCK_RAW
read

character from input buffer 204

string from input buffer 205
read readiness, test (descriptor) 189
Readme file 11
readme file 11
receive

data 182, 222

datagram 182

datagram (example) 44

message 185, 222
record limit (of transferred data) 23
recv() 39

example 39, 86, 90

function description 182
recvfrom() 43

example 43, 102

function description 182
recvmsg() 39, 48

example 39, 49

function description 185
release dynamic storage 171
release memory

addrinfo structure 130

hostent structure 131
request

connection 37, 47, 86, 113, 127

connection (client example) 40

host address 142

host name 141, 142

status (connection request) 58
request host address 142
request host name 141, 142
requirements

software 241
Resolver functionality 239

U41052-J-2125-9-76

251

Index

S
secured data transfer 22
select() 53,55, 57, 224
example 53, 55, 57
function description 189
send
data 192, 225
datagram 193
message 193, 195, 225
send() 39,72
example 39, 94, 98
function description 192
sendmsg() 39, 48
example 39, 49, 90
function description 195
sendto() 43
example 43, 108
function description 192
sequential data transfer 22
servent structure 67, 153
server 38, 86, 90

accept connection (example) 41
connection-oriented (example) 86

connectionless (example) 102

task 85
service

convert name 67

get name 152

information 152

request 86
service number, see port number
services, get 133
set socket option 156, 232
set up connection 37, 113
setsockopt() 75

application example 75

function description 156, 232
shut down connection 113
shut down socket, see close socket
shutdown() 50

function description 198
shutting down, connection 113
SO_BROADCAST 160
SO_DEBUG 160

SO_DISHALIAS 160
SO_ERROR 160
SO_KEEPALIVE 159, 161
SO_LINGER 161
SO_OUTPUTBUFFER 161
SO_RCVBUF 162
SO_REUSEADDR 36, 162
SO_SNDBUF 162
SO_TCP_NODELAY 167
SO_TSTIPAD 162
SO_VHOSTANY 162
soc_clearerr()

function description 202
soc_close() 50

example 86, 90, 94, 98, 102, 108

function description 200
soc_eof()

function description 202
soc_error()

function description 202
soc_flush()

function description 203
soc_getc()

function description 204
soc_gets()

function description 205
soc_ioctl() 72,191

function description 206
soc_poll()

example 58

function description 217
soc_puts()

function description 221
soc_read()

example 39

function description 222
soc_readv()

function description 222
soc_wake()

function description 224
soc_write() 39

example 39

function description 225
soc_writev()

252

U41052-J-2125-9-76

Index

function description 225 getaddrinfo() 133
SOCK_DGRAM 43,62, 128 getbcamhost() 90, 98, 137

see also datagram socket getdtablesize() 138
SOCK_RAW 29, 157, 229 gethostbyaddr() 64, 139
SOCK_STREAM 128, 180, 204, 205, 220, 221, gethostbyname() 64, 94, 108, 139

225 gethostname() 141
sockaddr_in structure 25, 31 getipnodebyaddr() 64, 142
sockaddr_in6 structure 26, 31 getipnodebyname() 64, 142
sockaddr_iso structure 28, 31 getnameinfo() 146
socket getpeername() 148

address 24 getprotobyname() 150

addressing 24 getservbyname() 67, 152

assign name 31, 123 getservbyport() 67, 152

close 200 getsockname() 154

connection-oriented 22, 29, 38, 48 getsockopt() 75, 156, 232

connectionless 23, 29, 43, 62 if freenameindex() 171

control functions 206 if indextoname() 172

create 29 if_ nameindex() 173

datagram 23 if_ nametoindex() 174

definition 22 inet_addr() 175

getname 154 inet_Inaof() 175

ICMP protocol inet_makeaddr() 175

listen 38, 48 inet_netof() 175

non-blocking 72, 183, 193 inet_network() 175

options 75, 232 inet_ntoa() 175

raw socket 83 inet_ntop() 64, 178

receive message 182, 185, 222 inet_pton() 64, 178

send message 195, 225 interaction 60

stream 22, 204, 205, 220, 221 listen() 38, 86, 90, 180

test exception 189 overview 113

test for pending connections 180 recv() 39, 86, 90, 182

test read readiness 189 recvfrom() 43, 102,182

test write readiness 189 recvmsg() 39, 48, 49, 185
socket close 50 select() 53,55, 57, 189, 224
socket descriptor, see descriptor send() 39, 72,94, 98, 192
socket function sendmsg() 39, 48, 49, 90, 195

accept() 38,48, 72, 86, 90, 120 sendto() 43, 108, 192

bind() 31, 33, 86, 90, 98, 102, 123 setsockopt() 75, 156, 232

connect() 37,43,47,72,94,98, 127 shutdown() 50, 198

control 117 soc_clearerr() 202

for address conversion 63 soc_close() 50, 86, 90, 94, 98, 102, 108, 200

freeaddrinfo() 130 soc_eof() 202

freehostent() 131 soc_error() 202

gai_strerror() 132 soc_flush() 203

U41052-J-2125-9-76 253

Index

soc_getc() 204
soc_gets() 205
soc_ioctl() 72,191, 206
soc_poll() 58, 217
soc_putc() 220
soc_puts() 221
soc_read() 39, 222
soc_readv() 222

TPOPT_CONN_DATA 169
TPOPT_DISC_DATA 170

socket type 22

datagram socket, see SOCK_DGRAM
raw socket 23

raw socket see SOCK_RAW
SOCK_DGRAM 23, 29, 43, 62, 128, 229
SOCK_RAW 29, 157, 229

soc_wake() 224 SOCK_STREAM 22, 29, 128, 180, 225, 229
soc_write() 39, 225 stream socket, see SOCK_STREAM
soc_writev() 225 Socket user program
socket() 29, 86, 90, 94, 98, 102, 108, 228 see user program
utility function 117 Socket-Option

socket functions 9 SO_KEEPALIVE 159

socket host name 141 socket() 29

socket interface 9, 20 example 29, 30, 86, 90, 94, 98, 102, 108

socket library 63 function description 228

socket name, see also name SOCKETS(BS2000) 9

socket option installing 237
IP_AD_MEMBERSHIP 164 producing user program 241
IP_DROP_MEMBERSHIP 164 SOCKETS(BS2000) subsystems 237
IP_MULTICAST IF 164, 166 software requirements 241
IP_MULTICAST_LOOP 164, 166 SOL_SOCKET 75
IP_MULTICAST_TTL 164 starting
IPV6_JOIN_GROUP 166 nslookup 238
IPV6_LEAVE_GROUP 166 status information 202
IPV6_MULTICAST_HOPS 166 stream socket 128, 183, 204, 205, 220, 221, 225
query 75, 232 characteristics 22
set 75 create 29,30
setting 232 properties 229
SO_BROADCAST 160 stream socket, see also SOCK_STREAM
SO_DEBUG 160 streams connection
SO_DISHALIAS 160 accept (example) 41
SO_ERROR 160 initiate (example) 40
SO_KEEPALIVE 161 string
SO _LINGER 161 read from input buffer 205
SO_OUTPUTBUFFER 161 write to output buffer 221
SO_RCVBUF 162 structure
SO_REUSEADDR 162 addrinfo 130, 134
SO_SNDBUF 162 cmsghdr 187, 196
SO_TCP_NODELAY 167 hostent 64, 131, 140, 144
SO_TESTIPAD 162 iovec 186, 196, 223, 226
SO_TSTIPAD 162 linger 161
TPOPT_CFRM_DATA 169 msghdr 186, 196

254 U41052-J-2125-9-76

Index

pollifd 217

protoent 66

servent 67, 153

sockaddr_in 25, 31

sockaddr_in6 26, 31

sockaddr_iso 28, 31
subsystems

see SOCKETS(BS2000) subsystems
symmetric protocol 85

T
task
client 85
server 85
TCP 22

TCP_DELAY 167, 168
TCP_NODELAY 167
TCP/IP 9, 20
terminate
full-duplex connection 198
terminating
connection 50
connection (abortive) 52
connection (graceful) 50
terminating connection (abortive) 51
test

socket for pending connection requests 180

test exception (descriptor) 189
test macros for AF_INET6 118
test, see get

timeout (I/O multiplexing) 54, 190
TPOPT_CFRM_DATA 169, 197
TPOPT_CONN_DATA 169, 197
TPOPT_DISC_DATA 170, 197
TPOPT_REDI_CALL 170
transfer data 39, 43, 49

connection-oriented communications 39, 49

connectionless communications 43
transferring, see also send/receive
transmit data from output buffer 203
transport selector TSEL 28, 47
TSEL 28, 47

U

UDP 23,43,62

user program
producing 241

utility functions 117

\Y
virtual host 76, 162

w
wildcard
address 33
port number 35
write
character to output buffer 220
string to output buffer 221
write readiness
test (descriptor) 189

U41052-J-2125-9-76

255

Index

256 U41052-J-2125-9-76

	Contents
	Preface
	Brief product description
	Objectives and target groups of this manual
	Summary of contents
	Changes since the last edition of the manual
	Notational conventions
	Compatibility of SOCKETS(BS2000) V2.7 with earlier versions
	License provisions

	SOCKETS(BS2000) basics
	Network connection via the SOCKETS(BS2000) interface
	Header files
	Socket types
	Stream sockets (connection-oriented)
	Datagram sockets (connectionless)
	Raw sockets

	Socket addressing
	Using socket addresses
	Addressing with an Internet address
	sockaddr_in address structure of the AF_INET address family
	sockaddr_in6 address structure of the AF_INET6 address family

	sockaddr_iso address structure for the AF_ISO address family

	Creating a socket
	Assigning a name to a socket
	Assigning an address explicitly
	Assigning addresses with wildcards (AF_INET, AF_INET6)
	Direct address assignment in the domains AF_INET and AF_INET6

	Communication in the AF_INET and AF_INET6 domains
	Connection-oriented communications in AF_INET and AF_INET6
	Connection request by the client
	Connection acceptance by the server
	Data transfer with connection-oriented communications
	Examples of connection-oriented client/server communications

	Connectionless communications in AF_INET and AF_INET6
	Data transfer with connectionless communications
	Examples of connectionless communications

	Communications in the AF_ISO domain
	Connection request by the client
	Connection acceptance by the server
	Data transfer with connection-oriented communications

	Terminating a connection and closing a socket
	Terminating a connection in the AF_INET and AF_INET6 domains
	Terminating a connection in the AF_ISO domain

	Multiplexing input/output
	Multiplexing input/output with the select() function
	Multiplexing input/output with the soc_poll() function

	Interaction of the SOCKETS interface functions
	Interaction between functions for connection-oriented communications
	Interaction between functions for connectionless communications

	Address conversion with SOCKETS(BS2000)
	Converting host names to network addresses and vice versa
	Converting protocol names to protocol numbers
	Converting service names to port numbers and vice versa
	Converting the byte order
	Example of address conversion

	Extended SOCKETS(BS2000) functions
	Non-blocking sockets
	Multicast messages (AF_INET, AF_INET6)
	Socket options
	Support of virtual hosts
	Handoff (move an accept socket)
	General description
	Execution of the function

	Raw sockets
	ICMP
	ICMPv6

	Client/server model with SOCKETS(BS2000)
	Connection-oriented server
	Connection-oriented server for AF_INET / AF_INET6
	Connection-oriented server for AF_ISO

	Connection-oriented client
	Connection-oriented client for AF_INET / AF_INET6
	Connection-oriented client for AF_ISO

	Connectionless server
	Connectionless client

	SOCKETS(BS2000) user functions
	Description format
	Function name - brief description of the functionality
	Overview of functions
	Description of functions
	accept() - accept a connection on a socket
	bind() - assign a socket a name
	Byte order macros - convert byte order
	connect() - initiate a connection on a socket
	freeaddrinfo() - release memory for addrinfo structure
	freehostent() - release memory for hostent structure
	gai_strerror() - output text for the error code of getaddrinfo()
	getaddrinfo() - get information about host names, host addresses and services regardless of protocol
	getbcamhost() - get BCAM host name
	getdtablesize() - get size of descriptor table
	gethostbyaddr(), gethostbyname() - get information about host names and addresses
	gethostname() - get the name of the current host
	getipnodebyaddr(), getipnodebyname() - get information about host names and addresses
	getnameinfo() - get the name of the communications partner
	getpeername() - get the remote address of the socket connection
	getprotobyname() - get the number of the protocol
	getservbyname(), getservbyport() - get information about services
	getsockname() - get local address of the socket connection
	getsockopt(), setsockopt() - get and set socket options
	if_freenameindex() - release the dynamic storage occupied with if_nameindex()
	if_indextoname() - convert interface index to interface name
	if_nameindex() - list of interface names with the associated interface indexes
	if_nametoindex() - convert interface name to interface index
	inet_addr(), inet_lnaof(), inet_makeaddr(), inet_netof(), inet_network(), inet_ntoa() - manipulate IPv4 Internet address
	inet_ntop(), inet_pton() - manipulate Internet addresses
	listen() - test a socket for pending connections
	recv(), recvfrom() - receive a message from a socket
	recvmsg() - receive a message from a socket
	select() - multiplex input/output
	send(), sendto() - send a message from socket to socket
	sendmsg() - send a message from socket to socket
	shutdown() - terminate full-duplex connection
	soc_close() (close) - close socket
	soc_eof(), soc_error(), soc_clearerr() (eof, error, clearerr) - get status information
	soc_flush () (flush) - flush data from output buffer
	soc_getc() (getc) - get character from input buffer
	soc_gets() (gets) - get string from input buffer
	soc_ioctl() (ioctl) - control sockets
	soc_poll() - multiplex input/output
	soc_putc() (putc) - put character in output buffer
	soc_puts() (puts) - put string in output buffer
	soc_read(), soc_readv() (read, readv) - receive a message from a socket
	soc_wake() - awaken a task waiting with select() or soc-poll()
	soc_write(), soc_writev() (write, writev) - send a message from socket to socket
	socket() - create socket

	SOCKETS(BS2000) interface for an external bourse
	Description of the additional functions
	setsockopt() - modify socket options
	soc_getevent() - get socket event

	Software package SOCKETS(BS2000) V2.7
	SOCKETS(BS2000) subsystems
	SOCKETS(BS2000) programs
	ping4
	ping6
	nslookup

	SOCKETS(BS2000) DNS access
	SOCKETS(BS2000) - query to FQDN file
	Producing the SOCKETS(BS2000) user program
	Software requirements
	Programming

	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

