
Edition January 2015

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

a
tio

ns
sy

st
e

m
e

A
G

 1
9

95

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6.

3\
_1

4
03

61
3

_x
op

en
\e

n\
xo

pe
n

_e
.v

or

English

openUTM V6.3
Creating Applications with X/Open Interfaces

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

X/Open Interfaces

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
r

20
1

5
 S

ta
nd

 0
8

:3
8.

55
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

13
_

xo
pe

n\
en

\x
op

en
_

e.
iv

z

Contents

1 Preface . 7

1.1 Summary of contents and target group . 9

1.2 Summary of contents of openUTM manuals . 10
1.2.1 openUTM documentation . 10
1.2.2 Documentation for the openSEAS product environment 15
1.2.3 Readme files . 16

1.3 Changes in openUTM V6.3 . 17
1.3.1 New server functions . 17
1.3.2 Load simulation with "Workload Capture & Replay" 20
1.3.3 New client function . 21
1.3.4 New and modified functions for openUTM WinAdmin 21
1.3.5 New functions for openUTM WebAdmin . 21

1.4 Notational conventions . 23

2 Communicating via X/Open interfaces . 25

2.1 The “Distributed Transaction Processing” reference model 26

2.2 Integrating the X/Open interfaces . 27

2.3 CPI-C , XATMI and TX under openUTM . 29

2.4 Linking server/server with CPI-C and XATMI under openUTM 30

2.5 Linking client/server with CPI-C and XATMI under openUTM 31

2.6 Fields of application for CPI-C, XATMI, TX and KDCS 32

2.7 Files and libraries for the X/Open interfaces . 33

3 X/Open CPI-C interface . 35

3.1 The X/Open interface CPI-C . 35

Contents

 X/Open Interfaces

3.1.1 Definition of terms . 36
3.1.2 Communication partners of a CPI-C application under openUTM 38
3.1.3 Linking server/server with CPI-C . 40
3.1.4 Sample application – flowchart . 42

3.2 CPI-C characteristics and functions in openUTM 44
3.2.1 Conversation characteristic conversation_type . 44
3.2.2 Conversation characteristics for addressing . 45
3.2.3 Send-receive mode and send control . 51
3.2.4 Multiple conversations in one CPI-C program . 52
3.2.5 Conversation characteristic sync_level . 54
3.2.6 Maximum message length . 55
3.2.7 Converting characteristics and user data . 55
3.2.8 States of a conversation under openUTM . 62

3.3 CPI-C in openUTM . 64
3.3.1 Supported CPI-C calls . 64
3.3.2 Restrictions in conversations via the LU6.1 and UPIC protocol 67
3.3.3 openUTM-specific special features of CPI-C calls 68
3.3.4 Interaction with the TX interface . 77
3.3.5 Behavior when non-supported CPI-C calls are used 80
3.3.6 Process or task switching . 80
3.3.7 Programming rules . 81

3.4 Creating a CPI-C application . 94
3.4.1 Compiling and linking a CPI-C application under Unix and Windows systems 94
3.4.2 Compiling and linking a CPI-C application under BS2000 systems 95
3.4.3 Generating a CPI-C application . 96

3.5 Error diagnosis in CPI-C programs . 99
3.5.1 Controlling the trace . 99
3.5.2 Name of the trace file . 99
3.5.3 Contents of the trace file . 101

4 X/Open interface XATMI . 103

4.1 Linking client/server . 104
4.1.1 Default server . 105

4.2 Communication paradigms . 106

4.3 Typed buffers . 110

4.4 Program interface . 114
4.4.1 XATMI functions . 114
4.4.2 Particularities of XATMI calls . 117

Contents

X/Open Interfaces

©
 S

ie
m

en
s

N
ix

d
or

f I
nf

or
m

at
io

ns
sy

st
em

e
 A

G
 1

99
5

P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.iv

z

4.4.3 Data transfer to the service function . 117
4.4.4 Events and error handling . 118
4.4.5 Creating typed buffers . 119
4.4.6 Characteristics of XATMI in openUTM . 121

4.5 Configuring . 122
4.5.1 Creating the local configuration file . 122
4.5.2 The xatmigen utility . 128
4.5.3 KDCDEF generation . 131
4.5.3.1 TACs with PGWT=YES . 131
4.5.3.2 Number of sessions (LU6.1) or associations (OSI TP) 131
4.5.3.3 Defining the services offered . 131
4.5.3.4 Defining the services used . 132
4.5.3.5 Example of requester generation . 133

4.6 Creating XATMI applications . 137
4.6.1 Include files and COPY elements . 137
4.6.2 Linking the application under Unix and Windows systems 138
4.6.3 Linking the application under BS2000 systems . 138

4.7 Environment or job variables for XATMI . 139
4.7.1 Environment variables under Unix and Windows systems 139
4.7.2 Setting job variables under BS2000 systems . 140

4.8 Error diagnostics in XATMI programs . 141
4.8.1 Controlling the trace . 141
4.8.2 Name of the trace file . 142

4.9 Interaction with the TX interface . 143

4.10 Messages . 144

4.11 T.61 character set . 148

5 X/Open TX interface . 149

5.1 transaction_control characteristic . 149

5.2 TX interface calls under openUTM . 150
5.2.1 Particularities of TX calls under openUTM . 150

5.3 Interaction with the CPI-C interface . 151

5.4 Interaction with the XATMI interface . 153

5.5 Examples for the use of the TX interface . 154

5.6 Creating an application with TX calls . 156

Contents

 X/Open Interfaces

5.7 Diagnosing errors in TX calls . 157
5.7.1 Controlling the trace . 157
5.7.2 Name of the trace file . 158

Glossary . 159

Abbreviations . 195

Related publications . 201

Index . 213

X/Open Interfaces 7

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

1 Preface

Modern enterprise-wide IT environments are subjected to many challenges of rapidly
increasing importance. This is the result of:

● heterogeneous system landscapes

● different hardware platforms

● different networks and different types of network access (TCP/IP, SNA, ...)

● the applications used by companies

Consequently, problems arise – whether as a result of mergers, joint ventures or labor-
saving measures. Companies are demanding flexible, scalable applications, as well as
transaction processing capability for processes and data, while business processes are
becoming more and more complex. The growth of globalization means, of course, that
applications are expected to run 24 hours a day, seven days a week, and must offer high
availability in order to enable Internet access to existing applications across time zones.

openUTM is a high-end platform for transaction processing that offers a runtime
environment that meets all these requirements of modern, business-critical applications,
because openUTM combines all the standards and advantages of transaction monitor
middleware platforms and message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

An UTM application can be run as a standalone UTM application or sumultanously on
several different computers as a UTM cluster application.

Preface

8 X/Open Interfaces

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the
Oracle Fusion middleware, openSEAS delivers all the functions required for application
innovation and modern application development. Innovative products use the sophisticated
technology of openUTM in the context of the openSEAS product offering:

● BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA)
and supports standardized connection of UTM applications to Java EE application
servers. This makes it possible to integrate tried-and-tested legacy applications in new
business processes.

● The WebTransactions member of the openSEAS family is a product that allows tried-
and-tested host applications to be used flexibly in new business processes and modern
application scenarios. Existing UTM applications can be migrated to the Web without
modification.

Preface Summary of contents and target group

X/Open Interfaces 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

1.1 Summary of contents and target group

The manual “Creating Applications with X/Open Interfaces” describes aspects that are
specific to the X/Open interfaces CPI-C, TX and XATMI within openUTM applications. It is
intended for programmers who want to use X/Open interfaces for openUTM applications.

This manual is designed as a supplement to the following four X/Open specifications
dealing with “Distributed Transaction Processing”:

– “Reference Model Version 2”

– “The CPI-C Specification, Version 2”

– “The XATMI Specification”

– “The TX (Transaction Demarcation) Specification”.

Readers are expected to be familiar with these X/Open specifications and with openUTM;
no description of the syntax of the individual calls is provided.

Chapter 2, which immediately follows this preface, provides a brief introduction to reference
model and interfaces developed by X/Open and describes how this model fits in to the
openUTM environment.

Chapters 3, 4 and 5 explain what you will need to know when working with the interfaces n
CPI-C, XATMI and TX under openUTM.

The detailed reference section at the back of the manual - including a glossary, abbrevia-
tions, a list of related publications and a keyword index - is intended to help you get the most
out of this manual.

i Wherever the term Unix system or Unix platform is used in the following, then this
should be understood to mean both a Unix-based operating system such as Solaris
or HP-UX and a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is used below, this should
be understood to mean all the variants of Windows under which openUTM runs.

Summary of contents of openUTM manuals Preface

10 X/Open Interfaces

1.2 Summary of contents of openUTM manuals

This section provides an overview of the manuals in the openUTM suite and of the various
related products.

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help systems for the
graphical administration workstation openUTM WinAdmin and the graphical administration
tool WebAdmin, and a release note for each platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000 systems,
Unix systems or Windows systems.

All the manuals are available as PDF files on the internet at

http://manuals.ts.fujitsu.com

On this site, enter the search term “openUTM V6.3“ in the Search by product field to
display all openUTM manuals of version 6.3.

The manuals are included on the Enterprise DVD with open platforms and are available on
the WinAdmin DVD for BS2000 systems.

The following sections provide a task-oriented overview of the openUTM V6.3 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related
publications at the back of the manual on page 201.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential
functions, features and areas of application of openUTM. It contains all the information
required to plan a UTM operation and to design an UTM application. The manual explains
what openUTM is, how it is used, and how it is integrated in the BS2000, Unix based and
Windows based platforms.

http://manuals.ts.fujitsu.com

Preface Summary of contents of openUTM manuals

X/Open Interfaces 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++
manual to create server applications via the KDCS interface. This manual describes the
KDCS interface as used for COBOL, C and C++. This interface provides the basic
functions of the universal transaction monitor, as well as the calls for distributed
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want
to use the X/Open interface. This manual contains descriptions of the UTM-specific
extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as notes on
configuring and operating UTM applications which use X/Open interfaces. In addition,
you will require the X/Open-CAE specification for the corresponding X/Open interface.

● If you want to interchange data on the basis of XML, you will need the document entitled
openUTM XML for openUTM. This describes the C and COBOL calls required to work
with XML documents.

● For BS2000 systems there is supplementary documentation on the programming
languages Assembler, Fortran, Pascal-XT and PL/1.

Configuration

The Generating Applications manual is available to you for defining configurations. This
describes for both standalone UTM applications and UTM cluster applications how to use
the UTM tool KDCDEF to

● define the configuration

● generate the KDCFILE

● and generate the UTM cluster files for UTM cluster applications

In addition, it also shows you how to transfer important administration and user data to a
new KDCFILE using the KDCUPD tool. You do this, for example, when moving to a new
openUTM version or after changes have been made to the configuration. In the case of
UTM cluster applications, it also indicates how you you can use the KDCUPD tool to
transfer this data to the new UTM cluster files.

Summary of contents of openUTM manuals Preface

12 X/Open Interfaces

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using openUTM Applica-
tions manual for the relevant operating system (BS2000 or Unix systems/Windows
systems). This describes how to link and start a UTM application program, how to sign on
and off to and from a UTM application and how to replace application programs dynamically
and in a structured manner. It also contains the UTM commands that are available to the
terminal user. Additionally, those issues are described in detail that need to be considered
when operating UTM cluster applications.

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for admin-
istration and the UTM administration commands. It provides information on how to
create your own administration programs for operating a standalone UTM application
or a UTM cluster application and on the facilities for administering several different
applications centrally. It also describes how to administer message queues and printers
using the KDCS calls DADM and PADM.

● If you are using the graphical administration workstation openUTM WinAdmin or the
Web application openUTM WebAdmin, which provides comparable functionality, then
the following documentation is available to you:

– A description of WinAdmin and description of WebAdmin, which provide a
comprehensive overview of the functional scope and handling of
WinAdmin/WebAdmin. These documents are shipped with the associated software
and are also available online as a PDF file.

– The respective online help systems, which provide context-sensitive help infor-
mation on all dialog boxes and associated parameters offered by the graphical user
interface. In addition, it also tells you how to configure WinAdmin or WebAdmin in
order to administer standalone UTM applications and UTM cluster applications.

i For detailed information on the integration of openUTM WebAdmin in SE Server's
SE Manager, see the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are
separate manuals for Unix systems / Windows systems and for BS2000 systems) to carry
out the tasks mentioned above. These manuals describe how to debug a UTM application,
the contents and evaluation of a UTM dump, the behavior in the event of an error, and the
openUTM message system, and also lists all messages and return codes output by
openUTM.

Preface Summary of contents of openUTM manuals

X/Open Interfaces 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

Creating openUTM clients

The following manuals are available to you if you want to create client applications for
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and
operation of client applications based on UPIC. In addition to the description of the
CPI-C and XATMI interfaces, you will find information on how you can use the C++
classes to create programs quickly and easily.

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to
install and configure OpenCPIC and configure an OpenCPIC application. It describes
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates
what needs to be taken into account when programming a CPI-C application and what
restrictions apply compared with the X/Open CPI-C interface.

● The documentation for the JUpic-Java classes shipped with BeanConnect is supplied
with the software. This documentation consists of Word and PDF files that describe its
introduction and installation and of Java documentation with a description of the Java
classes.

● The BizXML2Cobol manual describes how you can extend existing COBOL programs
of a UTM application in such a way that they can be used as an XML-based standard
Web service. How to work with the graphical user interface is described in the online
help system.

● If you want to provide UTM services on the Web quickly and easily then you need the
manual WebServices for openUTM. The manual describes how to use the software
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. The use of the graphical user interface is described in
the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the
manual Distributed Transaction Processing between openUTM and CICS, IMS and
LU6.2 Applications. This describes the CICS commands, IMS macros and UTM calls that
are required to link UTM applications to CICS and IMS applications. The link capabilities
are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and
administration.

Summary of contents of openUTM manuals Preface

14 X/Open Interfaces

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix and Windows
systems. The functions of PCMX are described in the following documents:

● CMX manual “Betrieb und Administration“ (Unix-Systeme) (only available in German)

● PCMX online help system for Windows systems

Preface Summary of contents of openUTM manuals

X/Open Interfaces 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

1.2.2 Documentation for the openSEAS product environment

The Concepts and Functions manual briefly describes how openUTM is connected to the
openSEAS product environment. The following sections indicate which openSEAS
documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect
adapter implements the connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications
in Java applications.

● The manual BeanConnect describes the product BeanConnect, that provides a JCA
1.5- and JCA 1.6-compliant adapter which connects UTM applications with applications
based on Java EE, e.g. the Oracle application server.
The manuals for the Oracle application server can be obtained from Oracle.

Connecting to the web and application integration

You require the WebTransactions manuals to connect new and existing UTM applications
to the Web using the product WebTransactions.

The manuals will also be supplemented by JavaDocs.

Summary of contents of openUTM manuals Preface

16 X/Open Interfaces

1.2.3 Readme files

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. For the BS2000 platform, you will also find
the Readme files on the Softbook DVD.

Information under BS2000 systems

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

Readme files under Unix systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under /docs/language.

Readme files under Windows systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under \Docs\language.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Changes in openUTM V6.3

X/Open Interfaces 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

1.3 Changes in openUTM V6.3

The following sections provide more detail on the innovations in the individual areas.

1.3.1 New server functions

Additional UTM system processes for internal tasks

In addition to the processes specified by means of the start parameters, UTM starts up to
three additional processes that are reserved for internal openUTM tasks or privileged jobs
issued by the administrator.

To permit this, both generation and administration interfaces have been extended:

● Generation, KDCDEF statement MAX

– New operand PRIVILEGED-LTERM, used to identify a specific LTERM as privi-
leged. When a user signs on with administration authorizations, all the user's jobs
are considered to be privileged jobs.

– TASKS operand: The maximum value has been reduced to 240 due to the
additional system processes.

● KDCADMI administration interface

– Data structure kc_max_par_str: New field privileged_lterm for the generated privi-
leged LTERM.

– Data structure kc_tasks_par_str: New fields gen_system_tasks and curr_system_tasks
for the system processes.

– Data structure kc_curr_par_str: New field curr_system_tasks for the system
processes.

Higher resolution for output of used CPU time

The used CPU time is now output in microseconds for TACs and in milliseconds for USERs.
The following interfaces have been changed to support this:

● KDCADMI

– Data structure kc_tac_str: New field taccpu_micro_sec for the average used CPU time
in microseconds.

– Data structures kc_user_str and kc_user_dyn1_str: New field cputime_msec for the
used CPU time in milliseconds.

Changes in openUTM V6.3 Preface

18 X/Open Interfaces

● KDCADM command interface

– KDCINF type=TAC: TACCPU outputs the average used CPU time in microseconds.

– KDCINF type=USER: CPUTIME outputs the used CPU time in milliseconds.

● KDCEVAL lists

– Some times are now output in microseconds in the KDCEVAL lists.

New trace functions

Additional traces can be enabled and disabled during live operation.

– ADMI trace, i.e. trace of the administration program interface (KDCADMI)
– X/Open traces (CPI-C, TX, XATMI)

The following interfaces have been extended to support this:

● Start parameters:

New start parameters ADMI-TRACE, CPIC-TRACE, TX-TRACE and XATMI-TRACE
for enabling traces.

● KDCADMI

Data structure kc_diag_and_account_par_str: New fields admi_trace, cpic_trace, tx_trace
and xatmi_trace for enabling and disabling traces.

KDCDEF input/output via LMS library elements

In BS2000 systems, it is possible to read KDCDEF statements from LMS library elements
and, in the case of inverse KDCDEF, output them to LMS library elements. The following
interfaces have been extended to support this:

● Generation

– KDCDEF statement OPTION: New operand value LIBRARY-ELEMENT(...) in the
DATA operand.

– KDCDEF statement CREATE-CONTROL-STATEMENTS: New operand value
LIBRARY-ELEMENT(...) in the TO-FILE operand.

● KDCADMI

Data structure kc_create_statements_str: New fields lib_name, elem_name, vers, type,
stmt_type and file_error_code.

Preface Changes in openUTM V6.3

X/Open Interfaces 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

● Messages

New messages K234, K519 and K520 when reading KDCDEF statements from LMS
library elements and outputting KDCDEF statements to LMS library elements.

Performance enhancements

● UTM cache

The UTM cache has been optimized in order to improve performance during intensive
use of the UTM cache (e.g. in the case of extremely extensive service data).

● UTM lock algorithm

The Compare&Swap functionality offered by the operating system is used throughout
on open platforms for concurrent access to internal UTM administration data.

● UTM network access

The network access on open platforms has been improved so that delays no longer
occur when sending data to UTM partner applications, in particular in low-load situa-
tions.

Other changes

● Messages

– The message area for system messages has been increased and now comprises
the range from K001 to K399 (previously up to K249). As a result, the following
message areas have been moved:

– The message numbers for messages exclusively output by KDCUPD now
occupy the range K800 to K899 instead of K250 to K322.

Messages output by KDCUPD and by online import are considered to be
system messages and remain unchanged.

– The message numbers for KDCCSYSL and KDCPSYSL messages now
occupy the range K600 to K649 instead of K550 to K599.

– New message K235 if name resolution for a computer takes too long.

– The default message destinations for messages K162 and K163 have been
changed.

Changes in openUTM V6.3 Preface

20 X/Open Interfaces

● KDCADMI

– The fields auto_connect in kc_lpap_str and auto_connect_number in kc_osi_lpap_str
have the property GPD instead of PD, changes to these fields always have a global
effect throughout the application. Any administrative change to the properties
"automatic establishment of connection" in the case of LPAP and "number of
connections" for OSI-LPAP remains effective beyond the end of the application.

– New field max_btrace_lth in kc_diag_and_account_par_str for the maximum length of
the recorded data when the BCAM trace function is activated.

● In the case of platforms on which UTM can run in 64-bit mode, KDCUPD makes it
possible to migrate from a 32-bit application environment to a 64-bit application
environment. At present, UTM only supports 64-bit mode on Unix platforms.

● The Oracle User ID can also be entered in lowercase in the KDCDEF statements
DATABASE and RMXA.

● The InstallAware installation procedure is used on Windows systems. As a result,
openUTM is supplied in the form of MSI files for Windows systems.

● New sample program ADJTCLT (ADJust Tac-CLass Table)

Using the C program unit ADJTCLT, users can control how the processes are
distributed to the TAC classes in the light of the current total number of processes and
the current number of asynchronous processes. To do this, the user creates a table
containing the desired settings. The settings must be chosen in such a way that there
is always at least one process free to perform other tasks, such as end-of-transaction
processing for distributed transactions for example.

1.3.2 Load simulation with "Workload Capture & Replay"

Thanks to the new Workload Capture & Replay function, it is possible to record UTM appli-
cation communications with UPIC clients and then replay these in combination with
adjustable load profiles. In this way, it is possible to test the behavior of the UTM application
at high loads under real-life conditions.

Workload Capture & Replay consists of the following components:

● UPIC Capture: Records communication with the UPIC client.

The trace function BTRACE (BCAM trace), which is present on all the server platforms,
is used to record a UPIC session.

● UPIC Analyzer: Used to analyze the recorded communication.

● UPIC Replay: Used to replay the recorded UPIC session with different load parameters
(speed, number of clients).

Preface Changes in openUTM V6.3

X/Open Interfaces 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

UPIC Analyzer and UPIC Replay are only available on 64-bit Linux systems and are supplied
with openUTM Client (UPIC).

openUTM for Unix and Windows systems also comes with the utility program kdcsort. You
can use kdcsort to sort the communication recorded by BTRACE over time if the UTM appli-
cation ran with more than one process during the recording period and multiple process-
specific files have therefore been generated.

1.3.3 New client function

On Windows systems, UPIC Client is available in both a 32-bit and a 64-bit variant.

1.3.4 New and modified functions for openUTM WinAdmin

● WinAdmin supports all the new features of UTM V6.3 relating to the administration
program interface. These include, for example, the new trace functions, the writing of
KDCDEF statements to library elements on Inverse KDCDEF runs in BS2000 or the
display of a user's used CPU time in milliseconds.

● Introduction of a lifetime for statistical values in order to limit the number of statistical
values stored in the configuration database.

1.3.5 New functions for openUTM WebAdmin

Additional functions

WebAdmin now provides additional functions that go beyond the functionality available in
the KDCADMI administration interface and which were previously available only in
WinAdmin:

● Display of message queues (DADM functionality)

● Administration of statistics collectors and tabular display of the associated values
(including the new "Lifetime for statistical values" function).

● Depiction of statistics in graphical form (graphs)

● Execution of threshold actions for statistics collectors

Changes in openUTM V6.3 Preface

22 X/Open Interfaces

Support for new features in openUTM V6.3

WebAdmin supports all the new features of UTM V6.3 relating to the administration
program interface. These include, for example, the new trace functions, the writing of
KDCDEF statements to library elements on Inverse KDCDEF runs in BS2000 or the display
of a user's used CPU time in milliseconds.

Integration in SE Server

WebAdmin can be installed as an add-on in the management unit (SE Manager) of an SE
Server. It then provides much the same range of functions as when operated outside of the
SE Manager.

Preface Notational conventions

X/Open Interfaces 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
1

1.4 Notational conventions

This symbol is used in the left-hand margin to indicate BS2000-specific elements of a
description.

This symbol is used in the left-hand margin to indicate Unix system specific elements of a
description.

This symbol is used in the left-hand margin to indicate Windows specific elements of a
description.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM in BS2000 and Unix systems.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM in BS2000 and Windows systems.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM in Unix systems and Windows systems.

 Indicates references to comprehensive, detailed information on the relevant topic.

i Indicates notes that are of particular importance.

v Indicates warnings.

utmpath
On Unix and Windows systems, designates the directory under which openUTM
was installed.

$userid
On BS2000 systems, designates the user ID under which openUTM was installed.

B

B

X

X

W

W

B/X

B/X

B/W

B/W

X/W

X/W

X/W

X/W

X/W

BB

BB

Notational conventions Preface

24 X/Open Interfaces

X/Open Interfaces 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
2

2 Communicating via X/Open interfaces

The continuing growth in the networking of computer systems represented the starting point
for the creation of new, heterogeneous application architectures on the basis of the
client/server model. The integration of differing hardware platforms and software compo-
nents is a precondition for the development of such networks.

X/Open has defined a development environment, the "Common Applications Environment
(CAE)", which provides standards and interfaces for the implementation of open systems.

The “Distributed Transaction Processing” (DTP) reference model which was developed by
X/Open as part of the ”Common Applications Environment” forms the basis for open
systems in the field of transaction processing.
The aspects of the reference model which are relevant to openUTM are presented in the
next section. For a complete description of the DTP reference model, refer to the X/Open
User Guide “Distributed Transaction Processing: Reference Model Version 2“.

openUTM not only supports the interfaces which are defined within the framework of
“Distributed Transaction Processing” but also provides an optimized range of possibilities
for the integration of existing software components such as IBM or BS2000 mainframe
services. For an overview of openUTM connectivity, refer to the openUTM manual
“Concepts und Functions”.

DTP reference model Communicating via X/Open interfaces

26 X/Open Interfaces

2.1 The “Distributed Transaction Processing” reference model

The following diagram presents an excerpt from the DTP reference model

The Transaction Manager (TM) controls global transactions in accordance with the
“Distributed Transaction Processing” model. The Transaction Manager is responsible for
starting transactions and coordinating commit and rollback decisions as well as for restarts
following malfunctions or system crashes.

Communications via two transaction applications are performed via Communication
Resource Managers (CRM). Communication Resource Managers communicate via the
OSI TP protocol (Open Systems Interconnection - Distributed Transaction Processing)
which has been defined by the ISO.
OSI TP may be based on a variety of network protocols such as TCP/IP or X.25.
The OSI TP Communication Resource Manager permits an openUTM to communicate with
other applications which also use the OSI TP protocol. In particular, it is possible to connect
an openUTM client application which is running under a Unix or Windows system with an
OpenCPIC or UPIC carrier system. For example, this allows you to provide users with a
graphical user interface.
Moreover, in openUTM the OSI TP CRM allows you to connect to applications which use
the LU 6.2 communication protocol via an LU62 gateway.

In addition to the communications via OSI TP which are requested by X/Open, CPI-C
programs and XATMI programs in openUTM are able to communicate via the protocols
LU6.1 and UPIC.

System A System B

NETWORK (e.g. TCP/IP, X.25)

XATMICPI-C

CRM 1 CRM 2

Applications

OSI TP

CPI-CXATMI

CRM 2 CRM 1

Applications

OSI TP

Communicating via X/Open interfaces Integrating the X/Open interfaces

X/Open Interfaces 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
2

Interface between application program and Transaction Manager

X/Open has defined the TX interface between the application program and the Transaction
Manager. This interface is described in the Common Applications Environment (CAE)
specification “Distributed Transaction Processing: The TX (Transaction Demarcation)
Specification”.

Interface between application program and Communication Resource Manager

X/Open has defined the CPI-C and XATMI interfaces between the application program and
the CRM. These interfaces are described in the Common Applications Environment (CAE)
specifications “Distributed Transaction Processing: The CPI-C Specification, Version 2” and
“Distributed Transaction Processing: The XATMI Specification“.

Description of X/Open interfaces in this User Guide

This User Guide describes how you can use X/Open interfaces in openUTM. The calls
themselves are not described.

Consequently it is essential that you are familiar with the relevant X/Open specifications
before you can create services in openUTM which use CPI-C, XATMI or TX calls.
Please refer to the “Related documents” section for the exact titles of the X/Open specifica-
tions.

2.2 Integrating the X/Open interfaces

In addition to the open interfaces, openUTM uses the KDCS interface to support a national
standard which provides all the calls necessary for programming a transaction application
as part of a global interface.

KDCS program interface

The KDCS interface provides extensive possibilities for transaction control and program-to-
program communications. In addition, KDCS provides transaction-oriented message
queueing which permits the time-driven transmission of messages.
You can also use KDCS calls for the transaction-oriented access to openUTM resources
such as storage areas and logfiles.

The KDCS interface is described in the openUTM manual ”Programming Applications with
KDCS”.

Integrating the X/Open interfaces Communicating via X/Open interfaces

28 X/Open Interfaces

The figure below depicts the interfaces which are provided by openUTM:

Since openUTM can be used on all the usual hardware platforms and because it provides
excellent connectivity, you can distribute your application within a heterogeneous
environment in a way which responds to the needs of your company’s working routines. You
can integrate existing application program units even if they run under different transaction
monitors. This capability protects your existing investments.

Thus the openUTM open, universal transaction monitor allows you to define the application
architecture which is best suited to your business procedures within a heterogeneous IT
world and implement this architecture with the appropriate interfaces.

XA XA+

KDCS KDCS
Tx

KDCS
CPI-C
XATMI

UTM application programs

Message queues

Local storage

Logfiles

openUTM
Resource Manager:

openUTM
Transaction

Manager

UPIC LU6.1 OSI TP

openUTM
Communication Resource

Manager:

e.g
SQL

external Resource Managers
e.g. databases

LU62
Gate

L
U

6
.2

 S
N

A

O
S

I
T

P

L
U

6
.1

 S
N

A

T
C

P
/I

P

O
S

I
S

ta
ck

CRM CRM CRM

XA

Communicating via X/Open interfaces CPI-C, XATMI and TX

X/Open Interfaces 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
2

2.3 CPI-C , XATMI and TX under openUTM

The interfaces CPI-C, XATMI and TX in openUTM meet X/Open’s CAE specifications for
CPI-C V2.0, XATMI and TX.

CPI-C and XATMI
are program interfaces for program-to-program communications across hosts. They are
available in both COBOL and C.
Under openUTM, CPI-C and XATMI can communicate using the protocols LU6.1 and
UPIC in addition to OSI TP.
CPI-C can be used for both synchronous and asynchronous communications in
Conversational Mode while XATMI can be used for both synchronous and
asynchronous communications Request/Response Mode and Conversational Mode.

TX
is a program interface used to define transaction boundaries across hosts. They are
available in both COBOL and C.
Under openUTM, TX calls are only of relevance in CPI-C program units. In XATMI
program units, you implicitly define the transaction boundaries using the XATMI call
tpreturn() (see page 141).

The figure below shows how the X/Open programming interfaces are integrated into
openUTM .

An application running in openUTM may contain program units that use the functions of the
program interfaces KDCS, CPI-C or XATMI. Only the calls of one of these interfaces can
be used within a program unit. CPI-C program units may also contain TX calls for trans-
action control. Database calls, for example, can of course be used for processing within a
program unit.

UTM

XATMICPI-C

UTM application

KDCS
program unit

CPI-C / TX
program unit

XATMI
program unit

TX

KDCS

Linking server/server with CPI-C and XTAMI Communicating via X/Open interfaces

30 X/Open Interfaces

During communication between UTM program units within a service, you may use either
KDCS calls only or CPI-C calls only or use XATMI calls only, i.e. you may use only one of
these interfaces within a service.

2.4 Linking server/server with CPI-C and XATMI under openUTM

During communications between openUTM server applications, the services (program
units) which are in communication with one another must use the same interface.

openUTM server application B

KDCS
program unit

CPI-C
program unit

XATMI
program unit

KDCS
program unit

CPI-C
program unit

XATMI
program unit

openUTM server application A

Communicating via X/Open interfaces Linking server/server with CPI-C and XTAMI

X/Open Interfaces 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
2

2.5 Linking client/server with CPI-C and XATMI under openUTM

The following communication options are available when linking the client/server, i.e. when
communicating between the openUTM client application and the openUTM server applica-
tions:
– CPI-C client programs can communicate both with KDCS program units and with

CPI-C services (program units) of the openUTM server application.
– XATMI client programs can only communicate with XATMI services (program units) of

the openUTM server application.

Client/server link

The following products from the openUTM product family are available for linking the
client/server with CPI-C and XATMI in openUTM:

● For server applications:
openUTM (BS2000)
openUTM Enterprise Edition (Unix, Linux and Windows systems)

You use these products to create server applications on hosts running BS2000, Unix,
Linux or Windows systems.

● For client applications:
openUTM-Client (BS2000)
openUTM-Client (Unix and Linux systems)
openUTM-Client (Windows systems)

You use these products to create client applications on hosts running BS2000, Unix,
Linux or Windows systems.

UTM server application

UTM client application

KDCS
program unit

CPI-C
program unit

XATMI
program unit

CPI-C
program

XATMI
program

Fields of application for CPI-C, XATMI, TX and KDCS Communicating via X/Open interfaces

32 X/Open Interfaces

2.6 Fields of application for CPI-C, XATMI, TX and KDCS

The following table indicates the main areas where these interfaces can be used:

Interface Fields of application

KDCS Is a complete transaction monitor interface which, in addition to functions for
program-to-program communication, contains further important transaction
functions such as functions for communicating with terminals, for creating
asynchronous jobs (background jobs and output jobs), etc.
KDCS is suitable for communication between UTM applications and IMS or CICS
via LU6.1.

CPI-C Is an interface for program-to-program communication. It is suitable for the
connection of presentation clients (PC, workstation) to UTM applications and for
communication between server applications.
Because CPI-C is also defined within the framework of IBM SAA, CPI-C is particu-
larly suitable for applications that are to be implemented in the IBM environment.

XATMI Is an interface for program-to-program communication. Since XATMI is also
supported by other transaction monitors, XATMI is particularly suitable for applica-
tions which are to communicate with such monitors, e.g. TUXDO.

TX Is an interface between program and transaction monitor and is used for controlling
global transactions.
It is particularly suitable for combining OpenCIC applications and UTM applications.

Communicating via X/Open interfaces Files and libraries

X/Open Interfaces 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
2

2.7 Files and libraries for the X/Open interfaces

Include files for C and COPY elements for COBOL are supplied to help you create
openUTM server programs which use the X/Open interfaces.

The UTM X/Open library must be linked when you link these programs.

The tool xatmigen is supplied for XATMI programs. This constructs the Local Configuration
File (LCF) and supports you during KDCDEF generation.

Unix and Windows systems

Under Unix and Windows systems you will find the files and libraries at the following
locations

● The include files in the directory

utmpath/interface/include (Unix systems)
utmpath\interface\include (Windows systems)

● The COPY elements in the directory

utmpath/interface/copy-cobol85 bzw. utmpath/interface/netcobol (Unix systems)
utmpath\interface\copy-cobol85 bzw. utmpath\interface\netcobol (Windows systems)

Here interface for the associated X/Open interface (cpic, tx or xatmi).

● The X/Open library is called

utmpath/sys/libxopen (Unix systems)

● The tool xatmigen is located in directory

utmpath/xatmi/ex (Unix systems)
utmpath\xatmi\ex (Windows systems)

BS2000 systems

Under BS2000 systems, the include files and COPY elements take the form of type S library
elements in the X/Open library

$userid.SYSLIB.UTM.063.XOPEN

The tool xatmigen can be found in the following library as a type L library element:

$userid.SYSLNK.UTM.063.UTIL

X/W

X/W

X/W

X/W

X

W

X/W

X

W

X/W

X

X

X/W

X

W

B

B

B

B

B

B

X/Open Interfaces 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3 X/Open CPI-C interface

This chapter describes the special features of CPI-C under openUTM. This description
must be viewed as an openUTM-specific supplement to “Distributed Transaction
Processing: The CPI-C Specification, Version 2”. Knowledge of the X/Open specification is
thus essential for understanding the concepts and for creating CPI-C programs under
openUTM.

3.1 The X/Open interface CPI-C

CPI-C (Common Programming Interface for Communication) is a program interface for
program-to-program communication beyond system boundaries which has been
standardized by X/Open and the CIW (CPI-C Implementor's Workshop).

Since CPI-C only supports program-to-program communication it does not offer any
functions for communication with terminals. This is the reason why you cannot start CPI-C
program units in openUTM directly from a terminal (by entering a transaction code).

This means that CPI-C applications under openUTM are always server applications, i.e.
CPI-C program units of an UTM application can only be started by service requests from
partner applications.

Service requests can arrive from openUTM clients applications or from other server appli-
cations.
In order to process these requests CPI-C program units may request openUTM services
from other UTM applications or from remote applications. In this case we speak of server/
server network where the requesting partner assumes the role of the client.

Definition of terms X/Open interface CPI-C

36 X/Open Interfaces

3.1.1 Definition of terms

Conversation

In CPI-C, the communication between two CPI-C application programs is known as a
conversation. In openUTM/KDCS terminology this is known as a service.

A conversation is established on an existing logical connection between the partner appli-
cations containing the CPI-C programs. Logical connection are called associations in
conjunction with OSI TP and sessions in conjunction with LU6.1.

Both partners of a conversation assume different roles within the conversation. One partner
initiates the conversation; this partner is referred to below as the initiator of the conversation.
The other partner accepts the conversation connect and is called the acceptor. As far as the
roles of client and server are concerned, the client is the initiator and the server is the
acceptor.

Initiator of a conversation/outgoing conversation

The initiator of a conversation actively sets up the conversation by using the CPI-C calls
Initialize_Conversation and Allocate. It initializes the conversation. The term initiator of a
conversation is equivalent to the job submitter in the openUTM/KDCS terminology.
A conversation in which the local CPI-C program is the initiator is called an outgoing conver-
sation. In the X/Open specification, the terms outbound conversation and outgoing conver-
sation are used synonymously.

Acceptor of a conversation/incoming conversation

The acceptor of a conversation accepts the conversation by using the CPI_C call
Accept_Conversation. The term acceptor of a conversation is equivalent to the term job
receiver in the openUTM/KDCS terminology.
A conversation in which the local CPI-C program is the receiver is called an incoming
conversation. In the X/Open specification, the terms inbound conversation and incoming
conversation are used synonymously.

A CPI-C program can maintain precisely one incoming and several outgoing conversations
under openUTM at any one time, i.e. within a program run the CPI-C program under
openUTM can be the acceptor in exactly one conversation and can be the initiator in a
number of conversations. The CPI-C program is started under openUTM when the incoming
conversation request is received.

X/Open interface CPI-C Definition of terms

X/Open Interfaces 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Dialog and asynchronous conversation

In openUTM, a distinction is made between a dialog conversation and an asynchronous
conversation depending on whether the acceptor is an asynchronous service or not.

In dialog conversations, both sides of the conversation can send data, i.e. both the initiator
(client) or the acceptor (server). A dialog transaction code (specify TYPE=D in KDCDEF-
control statement TAC or LTAC) must be defined in the UTM application for the acceptor of
a dialog conversation.

In asynchronous conversations, only the initiator of the conversation can send data. An
asynchronous transaction code (specify TYPE=D in KDCDEF control statement TAC or
LTAC) must be defined in the UTM application for the acceptor of an asynchronous conver-
sation.

Conversation ID

An unambiguous conversation ID is assigned locally by CPI-C to each conversation, i.e. the
initiator and the acceptor each has its own, local conversation ID which does not have to
match that of the ID of the partner. With the conversation ID, each CPI-C call within a
program is uniquely assigned to a conversation.

Conversation characteristics

Each conversation has a range of conversation characteristics. The values of the character-
istics affect the operational sequences of the conversation and the CPI-C functions
available in the conversation. Some of the characteristics only determine the operational
sequences on one side of the conversation, while others apply to both sides. When the
conversation is initialized, the characteristics are preassigned default values. The initial-
ization values of the characteristics depend on the role of the CPI-C program at the start of
the conversation, i.e. whether the program initiates or accepts the conversation. The values
of the characteristics are modified through the execution of CPI-C calls within the conver-
sation.

The current values of the characteristics can be modified explicitly using Set calls and
queried using Extract calls

The conversation characteristics that are significant for CPI-C programs under openUTM
are listed on page 54ff.

Communication partners of a CPI-C application X/Open interface CPI-C

38 X/Open Interfaces

3.1.2 Communication partners of a CPI-C application under openUTM

The following diagram indicates the possible communication partners of a CPI-C appli-
cation under openUTM. These are:

– CPI-C programs in other UTM applications in BS2000, Unix or Windows systems
systems. In this case, the local CPI-C program can act as either the initiator or the
acceptor of the conversation.

– CPI-C programs in applications on non-SNI systems that support OSI TP or LU6.1.
Here too, the local CPI-C program can act as either the initiator or the acceptor of the
conversation.

– openUTM client application with carrier system OpenCPIC.
The UTM application can act as initiator or acceptor of the conversation in openUTM
client applications with carrier system OpenCPIC.

– openUTM client application with the UPIC carrier system.
An UTM application can only hold incoming conversations with openUTM client appli-
cations with the UPIC carrier system, i.e. conversations initiated by the openUTM client
application. The UTM application is always the acceptor in conversations using the
UPIC protocol.

– LU6.2 applications in non-SNI systems.
UTM applications can, for example, hold conversations with CPI-C applications in
OS/2 systems that use the LU6.2 protocol. In this case, the connection between the
UTM application and the non-SNI system must be established via a Unix or Windows
system on which OpenCPIC and a UTM-LU62Gate gateway are installed (see
following diagram). No OpenCPIC application need be created in the Unix or Windows
system for the connection.

X/Open interface CPI-C Communication partners of a CPI-C application

X/Open Interfaces 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Communication partners of a CPI-C application under openUTM

OSI-TP

CPI-C

openUTM client
application
(carrier system
OpenCPIC)

BS2000, Unix systems, Windows system
BS2000, Unix systems,

UTM application

NETWORK

CPI-C/KDCSCPI-C/KDCS

OSI-TP/

CPI-C

UPIC

Application program units

UPIC

CPI-C

openUTM cient

CPI-C application
application
(carrier system

protocols

protocols

Third-party application

OSI-TP/

CPI-C

LU6.1

Application
program unit

 Third-party system (e.g. z/OS, AS400)

UTM application

OSI-TP/

CPI-C

LU6.1

Application
program unit

CPI-C

 UPIC)

LU6.1

UTM-LU62Gate

LU6.2

Unix, Windows system

OSI-TP

LU6.2
OSI-TP

 Third-party system (e.g. OS/2)

Windows system

BS2000, Unix,
Windows system Unix system

Linking server/server with CPI-C X/Open interface CPI-C

40 X/Open Interfaces

3.1.3 Linking server/server with CPI-C

In order for two CPI-C partners to set up a conversation, a logical connection must be estab-
lished between the application entities. The CPI-C partner applications set up the conver-
sation on this connection.

CPI-C programs under openUTM can set up conversations on OSI TP associations and
LU6.1 sessions. In this way, a CPI-C program can simultaneously hold conversations using
the OSI TP protocol and the LU6.1 protocol.

A CPI-C program under openUTM can also accept a conversation (incoming conversation)
from openUTM-Clients with the UPIC carrier system using the UPIC protocol, and simulta-
neously hold outgoing conversations with other server applications using the OSI TP and
LU6.1 protocol.

As soon as a request for a conversation is received, openUTM either establishes the
necessary association or session, or an existing association/session that has been
released by another conversation is made available to the partners for their conversation..

KDCDEF-statements for establishing an association or session

A KDCDEF generation must be present before openUTM can establish an association or
session to the partner.
For detailed information of KDCDEF generation please refer to the openUTM manual
“Generating Applications”. In the following only those statements are described which are
of relevance when you establish a conversation.

In order for openUTM to establish an association you must define the partner application
using an OSI-LPAP statement and the connection using an OSI-CON statement.

To set up an LU6.1 session, you must define the partner with an LPAP statement and the
connection with CON, SESCHA, and LSES statements.

For an openUTM-Client with the UPIC carrier system, you must specify an LTERM and a
PTERM statement in the KDCDEF generation or generate a terminal pool with a TPOOL
statement.

X/Open interface CPI-C Linking server/server with CPI-C

X/Open Interfaces 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Linking applications with CPI-C

Conversation Session/association

Application A

Application C

LU6.1
session

OSI TP
association

Application program

Application programs

Application B

LU 6.1 OSI TP

Application program

LU 6.1 OSI TP

NETWORK

CPI-C CPI-C

CPI-C CPI-C

Sample application X/Open interface CPI-C

42 X/Open Interfaces

3.1.4 Sample application – flowchart

A typical example of linking server/server with CPI-C programs under openUTM is
described below.

The CPI-C program unit of an UTM application is started by a request for a conversation (it
accepts the conversation). The requesting program which initializes the conversation may,
for example, be an openUTM-Client, or alternatively a CPI-C program of another appli-
cation which was itself started by a conversation request and assumes the role of the
initiator in the conversation to the next service. In the following flowchart, the CPI-C
program unit under openUTM is started by an openUTM-Client with the UPIC carrier
system and accepts the conversation (conversation 1).
From the point of view of the CPI-C program unit under openUTM, conversation1 is an
incoming conversation.

The CPI-C program under openUTM processes the initiator’s request and, for example,
accesses a database. To process the service request it may be necessary for this CPI-C
program itself to initiate a conversation with a CPI-C program in another application (UTM
application or application of a non-SNI system), for example because the database that has
to be accessed is located on this system (conversation2).
From the point of view of the CPI-C program unit under openUTM, conversation2 is an
outgoing conversation.

X/Open interface CPI-C Sample application

X/Open Interfaces 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

(conversation-id1,
data1,

CM_DEALLOCATE_NORMAL

Disable_UTM_UPIC

Enable_UTM_UPIC
Initialize_Conversation

conversation-id1

Allocate

Send_Data
(data1,
conversation-id1

Receive Accept_Conversation
conversation-id1
Receive (data1)

Process request from client; this
necessitates a conversation with

another partner

Initialize_Conversation
conversation-id2

Allocate

Send_Data
(data2,

conversation-id2)

Receive
(conversation-id2,

data2,
CM_DEALLOCATE_NORMAL

Send_Data
(data1,

conversation-id1)
Deallocate

Start CPI-C PROGRAM unit using a

openUTM client with
the UPIC carrier system

UTM application with
CPI-C program unit Other partner

Establish logical connection

Conversation2 terminated

Establish logical connection

Establish conversation1

Establish conversation2

Conversation1 terminated

 dialog transaction code

Characteristics and functions X/Open interface CPI-C

44 X/Open Interfaces

3.2 CPI-C characteristics and functions in openUTM

The aim of this section is to provide an overview of the functions you can use with CPI-C
under openUTM. The conversation characteristics, conversation states, and limits relevant
to CPI-C under openUTM are also listed.

3.2.1 Conversation characteristic conversation_type

When communicating via LU6.1 and OSI TP, CPI-C in openUTM supports the conversation
type mapped conversation. A mapped conversation permits the exchange of data records in
any data format which is agreed by both conversation partners.
Precisely one data record is transferred in each Send_Data call.

The conversation characteristic conversation_type can therefore only be assigned the
value CM_MAPPED_CONVERSATION.

The value CM_BASIC_CONVERSATION is rejected with
CM_PRODUCT_SPECIFIC_ERROR.

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3.2.2 Conversation characteristics for addressing

 Address information is required in order to establish a conversation. In CPI-C, the address
information is managed in the side information. The address information managed in the
side information can be retrieved from the program using a symbolic name. This name is
transferred by the program in the Initialize_Conversation call in the sym_dest_name
(symbolic destination name) parameter. The address information is read and the conver-
sation characteristics TP_name, partner_LU_name, AE_qualifier, AP_title, and
application_context_name are supplied with the data from the side information.

In openUTM, the side information is contained in the KDCFILE. The address information is
defined in the KDCDEF generation.

Incorporating the address information in the KDCFILE

At least one LPAP statement must be issued for each partner application to be communi-
cated with using the LU6.1 protocol. The LPAP statement describes the remote partner
application. You must assign CON, SESCHA, and LSES statements to the LPAP state-
ments in the KDCDEF generation. The information defined in these statements is required
by openUTM in order to establish the session to the partner application and define the
session characteristics.

At least one OSI-LPAP statement must be issued for each partner application to be commu-
nicated with using the OSI TP protocol. The OSI-LPAP statement describes the remote
partner application. You must assign an OSI-CON statement to the OSI-LPAP statement in
the KDCDEF generation. The information defined in the OSI-LPAP and OSI-CON state-
ments is required by openUTM in order to establish the associations to the partner appli-
cation and define the characteristics of the associations.

An openUTM client partner with the UPIC carrier system must be defined with an LTERM
statement and a PTERM statement or alternatively, with a TPOOL statement in the
KDCDEF generation.

At least one LTAC statement must be issued for each partner application to which a CPI-C
program under openUTM wants to establish an outgoing conversation. With the LTAC
statement, a transaction code for a service of the remote server application is defined in the
local application. The ltac name specified in this LTAC statement is the symbolic name by
which the CPI-C program can access the address information.

The LTAC statement together with the LPAP or OSI-LPAP statement contains the infor-
mation required by the CPI-C program in order to establish a conversation to the partner
application.

Characteristics and functions X/Open interface CPI-C

46 X/Open Interfaces

Multiple partner applications

Multiple partner applications can be grouped together to form a bundle using the statement
MASTER-OSI-LPAP or MASTER-LU61-LPAP.

If the program uses a MASTER-OSI-LPAP or MASTER-LU61-LPAP then UTM selects an
OSI-LPAP or LPAP from the bundle. For information on which OSI-LPAP or LPAP in a
bundle is selected by UTM, see openUTM manual “Generating Applications”, section
"Generating applications for distributed processing".

Transferring address information

To specify the address information required to establish the conversation, the program
transfers to openUTM either only the ltac name from the LTAC statement, or the ltac name
plus the lpap name from the LPAP or OSI-LPAP statement or from the MASTER-LU61-
LPAP or MASTER-OSI-LPAP statement. The way in which the partner is defined in the
KDCDEF generation determines whether only the ltac name or both names are transferred.

The programmer has the following options for specifying address information:

● In the KDCDEF generation, the operand LPAP=lpap-name (lpap-name from the LPAP
or the OSI-LPAP statement or from the MASTER-LU61-LPAP or MASTER-OSI-LPAP
statement) is specified in the LTAC statement, thereby directly assigning the LTAC an
LPAP or OSI-LPAP statement or MASTER-LU61-LPAP or MASTER-OSI-LPAP
statement that describes the partner application. In this case an Initialize_Conversation
call is sufficient, whereby the transferred sym_dest_name has to be identical to the ltac
name from the LTAC statement. The conversation characteristics TP_name,
partner_LU_name, AE_qualifier, AP_title, and application_context_name are assigned
the values defined in the LTAC and LPAP or OSI-LPAP statements.

If desired, ltac and lpap name can also be transferred by calling Set_TP_Name and
Set_Partner_LU_Name. The values of the conversation characteristics transferred in
these Set_ calls override those set with Initialize_Conversation.

● In the KDCDEF generation, the LPAP operand is not specified in the LTAC statement,
i.e. no remote application is assigned to the LTAC in the generation. LTAC must be
assigned to LPAP or OSI-LPAP in the CPI-C program. In this case, there are two ways
of supplying the address information to the conversation characteristics:

– You transfer blanks for sym_dest_name in Initialize_Conversation and then you
invoke the calls Set_TP_Name (with TP_name=ltac-name) and
Set_Partner_LU_name (with partner_LU_name= lpap-name) to supply the conver-
sation characteristics before the Allocate call;

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

– or you specify the ltac name from the LTAC statement in the sym_dest_name
parameter when you call Initialize_Conversation and you then call Set_Partner_LU-
Name (with partner_LU_name=lpap-name) to set partner_LU_name in order to
specify the missing information on the remote partner application. The call
Set_Partner_LU-Name must be invoked before the Allocate call.

The following diagrams indicate how the information in the CPI-C program and the defini-
tions in the KDCDEF generation must be coordinated for outgoing conversations to OSI TP
and LU6.1 partners. The names linked by arrows in the diagrams must match.

Characteristics and functions X/Open interface CPI-C

48 X/Open Interfaces

Coordination of CPI-C program calls with KDCDEF generation for conversations via LU6.1 (with
individual LPAPs*)

* For information on LPAP bundles, see section “Multiple partner applications” on page 46.

CPI-C program

Initialize_conversation (sym_dest_name)

Initialize_Conversation (´ ´)

Set_TP_Name (..., ,TP_name,...)

Set _Partner_LU_Name
(...,partner_LU_name,...)

Initialize_conversation (sym_dest_name)

Set _Partner_LU_Name
(...,partner_LU_name,...)

KDCDEF generation

LTAC ltac-name, LPAP= lpap-name*), ...

*) In this case, the LPAP operand must be
specified in the LTAC statement.

LTAC ltac-name[, LPAP= lpap-name], ...

LPAP lpap-name, ...

LTAC ltac-name[, LPAP= lpap-name], ...

LPAP lpap-name, ...

To establish the session between the partner applica-
tions, openUTM requires the following information

(assignment via lpap-name):

LPAP lpap-name, SESCHA=sescha-name

SESCHA sescha-name, ...

CON remote-applname, LPAP= lpap-name,
LSES sessionname,LPAP=lpap-name

Possibly further LSES and CON statements for
parallel sessions

or

or

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Coordination of CPI-C program calls with KDCDEF generation for conversations via OSI-TP
with individual OSI-LPAPs *)

* For information on OSI-LPAP bundles, see section“Multiple partner applications” on
page 46.

Initialize_conversation (sym_dest_name)

Initialize_Conversation (´ ´)

Set_TP_Name (..., ,TP_name,...)

Set _Partner_LU_Name
(...,partner_LU_name,...)

Initialize_conversation (sym_dest_name)

Set _Partner_LU_Name
(...,partner_LU_name,...)

LTAC ltac-name, LPAP= lpap-name*), ...

*) In this case, the LPAP operand must be
specified in the LTAC statement.

LTAC ltac-name[, LPAP= lpap-name], ...

OSI-LPAP lpap-name, ...

LTAC ltac-name[, LPAP= lpap-name], ...

OSI-LPAP lpap-name, ...

To establish the associations between the partner
applications, openUTM requires the following infor-

mation (assignment via lpap-name):

OSI-LPAP lpap-name, ...

OSI-CON ...,OSI-LPAP=lpap-name

or

or

Characteristics and functions X/Open interface CPI-C

50 X/Open Interfaces

Assignment of conversation characteristics when establishing a conversation

The following table describes how the conversation characteristics for addressing the
partner are assigned when establishing the conversation.

Characteristic Value of characteristic with
outgoing conversations
(initiator)

Value of characteristic with
incoming conversations
(acceptor)

LU
6

.1

partner_LU_name lpap name of the LPAP statement
which describes the remote appli-
cation.
The Extract_Partner_LU_Name call
only returns a value if
partner_LU_name has been set
explicitly with the
Set_Partner_LU_Name call.

lpap name of the LPAP statement
which describes the remote appli-
cation.

TP_Name The ltac name of the LTAC
statement.

Name of the transaction code
under which the local program was
invoked (TAC tac name).

O
S

I T
P

partner_LU_name osi-lpap name of the OSI-LPAP
statement which describes the
remote partner application.
The Extract_Partner_LU_Name call
only returns a value if
partner_LU_name has been set
explicitly with the
Set_Partner_LU_Name call.

osi-lpap name of the OSI-LPAP
statement which describes the
remote partner application.

TP_Name ltac name of the LTAC statement. TAC name of the transaction code
under which the local program was
invoked.

AE_Qualifier AEQ from the OSI-LPAP statement
which describes the partner appli-
cation.

AEQ from the OSI-LPAP statement
which describes the partner appli-
cation.

AP-Title APT from the OSI-LPAP statement
which describes the partner appli-
cation.

APT from the OSI-LPAP statement
which describes the partner appli-
cation.

application_context Value of the operand
APPLICATION-CONTEXT of the
OSI-LPAP statement.

Value of the operand
APPLICATION-CONTEXT of the
OSI-LPAP statement.

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Maximum name length

Unlike X/Open-CPI-C, the maximum length of the name specified for partner_LU_name or
TP_name is 8 bytes for CPI-C under openUTM. If a value greater than 8 bytes is specified
in a CPI-C call in the parameter partner_LU_name_length or TP_name_length, openUTM
rejects the call with the return code CM_PRODUCT_SPECIFIC_ERROR.

3.2.3 Send-receive mode and send control

CPI-C under openUTM supports half-duplex conversations, i.e. only one of the two partners
has send control at any one time. The send control can be transferred from the sending
partner to the other by setting the send_type characteristic to
CM_SEND_AND_PREP_TO_RECEIVE and then issuing a Receive call, or by calling
Receive in Send state. The non-blocking call Prepare_to_Receive is not supported in
openUTM.

Send control can only be transferred from the partner that has send control to the other
partner. The Request_to_Send call, with which a partner in Receive state can request send
control, is not supported by openUTM. If a remote non-UTM partner requests send control
by calling Request_to_Send, then request is rejected by openUTM and is not forwarded to
the local CPI-C program.

Send-receive mode is defined in the send_receive_mode characteristic. This must be
defined at initialization. The default setting of send_receive_mode is CM_HALF_DUPLEX
and cannot be modified by CPI-C programs under openUTM.

U
P

IC
 a

p
plica

tio
n

partner_LU_name

openUTM cannot establish outgoing
conversations to an openUTM-
Client with the UPIC carrier system.

Name of the LTERM partner via
which the connection was estab-
lished.

TP_Name Name of the transaction code
under which the local program was
invoked (TAC tac name).

Characteristic Value of characteristic with
outgoing conversations
(initiator)

Value of characteristic with
incoming conversations
(acceptor)

Characteristics and functions X/Open interface CPI-C

52 X/Open Interfaces

3.2.4 Multiple conversations in one CPI-C program

A CPI-C program can simultaneously hold multiple conversations within a program run.
Using the various conversation IDs, the CPI-C calls in the program run are assigned to the
individual conversations. With the maximum possible number of simultaneous conversa-
tions of a CPI-C program, a distinction is made between incoming conversations and
outgoing conversations.

Incoming conversation

Under openUTM, every new service request to a program unit causes the corresponding
program unit to be restarted, i.e. openUTM restarts the program unit as acceptor of the
incoming conversation each time a TAC transaction code (tac-name) which is assigned to
the program unit is received from a remote partner.
This means that it is not possible for a CPI-C program to process a second incoming
conversation.

A CPI-C program can therefore accept a maximum of one incoming conversation with
Accept_Conversation. A second Accept_Conversation call within a program run is
answered with CM_PROGRAM_STATE_CHECK, which means “No incoming conversation
exists”.

Outgoing conversation

The maximum number of outgoing conversations is limited by the following factors:

1. The maximum number of outgoing conversations that can exist simultaneously in a
program run of a CPI-C program..

In addition to the incoming conversation which started the program, six outgoing
conversations can exist at the same time.
If an attempt is made to establish a seventh (open) outgoing conversation, the
Initialize_Conversation call is rejected with CM_PRODUCT_SPECIFIC_ERROR
If the CPI-C program is already holding six outgoing conversations and one of these is
terminated, the program can establish a new outgoing conversation.

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

2. The maximum number of outgoing conversations that the local application can hold
simultaneously with a particular partner application.

This number is limited by the maximum permitted number of parallel OSI TP associa-
tions or LU6.1 sessions that can exist simultaneously to a partner application.
The maximum number of parallel associations to an OSI TP partner is defined in the
ASSOCIATIONS operand in the OSI-LPAP statement. The maximum number of
parallel sessions to an LU6.1 partner is limited by the number of LSES statements
assigned to the LPAP statement of the partner.

3. The maximum number of outgoing conversations that the local application can hold
simultaneously.

This number is limited by the maximum total number of associations and sessions that
the local UTM application can hold simultaneously.
This value is determined by the product derived from the sum of all generated OSI TP
associations and LU6.1 sessions (number of LSES statements) multiplied by the value
of MAXJR (specified in).
(number of associations + number of sessions) * MAXJR
 The value of MAXJR is defined in the UTMD statement in the KDCDEF generation.

If one of these values is exceeded by a requested outgoing conversation, the respective
Allocate call is rejected with the return code CM_ALLOCATE_FAILURE_NO_RETRY (for
the list of possible return codes see the comments on the Allocate call on page 69).

Characteristics and functions X/Open interface CPI-C

54 X/Open Interfaces

3.2.5 Conversation characteristic sync_level

The level of synchronization when processing between the two CPI-C programs of a
conversation is defined in the conversation characteristic sync_level. The value of sync_level
must be set before the conversation is established.

CPI-C programs under openUTM can set the value CM_NONE or
CM_SYNC_POINT_NO_CONFIRM for sync_level.

CM_NONE means that no synchronization is requested for the conversion - neither
synchronization by confirmation (request for confirmation) nor Sync Pointing (global trans-
action management).

CM_SYNC_POINT_NO_CONFIRM means that the conversation is included in a global
transaction.

If a CPI-C program under openUTM attempts to set a value other than CM_NONE or
CM_SYNC_POINT_NO_CONFIRM by calling Set_Sync_level, openUTM rejects the call
as follows:

– sync_level=CM_CONFIRM
with the return code CM_PRODUCT_SPECIFIC_ERROR

– sync_level= CM_SYNC_POINT
with the return code CM_PARM_VALUE_NOT_SUPPORTED.

Conversation with a non-UTM application

If a CPI-C program under openUTM holds a conversation with a CPI-C program of a non-
UTM application, the partner program may request synchronization of the conversation with
sync_level CM_CONFIRM or CM_SYNC_POINT.

The program running under openUTM must use Extract_Sync_Level to request the set
value and react accordingly.

– The non-UTM program has set CM_CONFIRM and requests a confirmation (receive
confirmation), e.g. by calling Set_Prepare_To_Receive _Type with
prepare_to_receive_type = CM_PREP_TO_RECEIVE_CONFIRM and then calling
Prepare_To_Receive.

In CPI-C under openUTM, the calls Confirmed and Send_Error are available and can
be used by the CPI-C program under openUTM to send a positive or negative confir-
mation to the partner program.

– The non-UTM program has set CM_SYNC_POINT for sync_level.

The CPI-C program under openUTM may not terminate the conversation itself but has
to wait until the client requests end of transaction and terminates the conversation
(CM_TAKE_COMMIT_DEALLOCATE or CM_TAKE_BACKOUT in status_received).

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3.2.6 Maximum message length

The length of messages is limited by the maximum buffer size
CM_MAXIMUM_BUFFER_SIZE. In openUTM this is set to 32767 bytes.

The maximum buffer size is relevant for the parameters buffer_length, send_length, and
requested_length. If a value outside the range 0 ≤ ..._length ≤
CM_MAXIMUM_BUFFER_SIZE is specified for one of these parameters, the call is
rejected with CM_PROGRAM_PARAMETER_CHECK.

3.2.7 Converting characteristics and user data

Converting characteristics

Some of the conversation characteristics do not define the conversation only locally. These
characteristics must be transferred to the conversation partner. They must arrive at the
partner encoded in a format that is “understood” by this partner. The characteristics must
be converted in accordance with the character sets used on the partner system. The
conversion is performed automatically and is not the programmer’s concern.

When communicating via LU6.1, the characteristic data is converted from the locally used
system code into EBCDIC, if necessary. If CPI-C receives characteristic data from the
partner, then CPI-C assumes that the data is in EBCDIC format and converts it into the
character set used on the local system.

When communicating via OSI TP, the characteristic data is converted into the transfer
syntax that was defined when generating the UTM application for associations between the
partner applications (OSI-LPAP statement, operand APPLICATION-CONTEXT). The
characteristic data is converted automatically into this transfer syntax.

Converting user data

openUTM offers the option of activating automatic code conversion for the exchanged user
data per configuration by setting the MAP=SYSTEM operand in the SESCHA or OSI-CON
statement during the KDCDEF generation. However, the automatic conversion of user data
sent with Send_Data or received with Receive is not contained in the CPI-C interface.

For converting user data, CPI-C provides the programmer with the calls Convert_Outgoing
and Convert_Incoming:

Convert_Outgoing (CMCNVO)

You can use Convert_Outgoing to convert data before sending.

Characteristics and functions X/Open interface CPI-C

56 X/Open Interfaces

CPI-C in BS2000 systems assumes that the data transferred in the “buffer” parameter is
encoded in EBCDIC.DF.04 character code and converts it into an “EBCDIC Multilingual
697/1 Code Page 500/1” character set.

CPI-C in Unix or Windows systems assumes that the data transferred in the “buffer”
parameter is encoded in ISO 8-bit code ISO 8859-1 (ASCII) and converts it into a modified
“EBCDIC Multilingual 697/1 Code Page 500/1” character set.

The EBCDIC Multilingual 697/1 Code Page 500/1 character set (referred to below as simply
EBCDIC Code Page 500/1) is described in “X/Open CAE Specification CPI-C”, Appendix A
“Character Sets“ . n
This character set was modified for openUTM on Unix and Windows systems in such a way
that the new-line character (\n) functions in the same way on Unix or Windows systems and
BS2000 systems following conversion. This was achieved by swapping the location of the
characters 0x15 and 0x25 in the code table.

Convert_Incoming (CMCNVI)

The data received can be converted with the Convert_Incoming call. CPI-C assumes that
the data is encoded in the character set EBCDIC Code Page 500/1.

Under BS2000 systems this call converts the data into the EBCDIC.DF.04 character set.

Under Unix or Windows systems this call converts the data into the ISO 8859-1 (ASCII)
character set.

Homogenous link

With an homogenous link between two BS2000 computers or two Unix or Windows
computers, conversion is permitted but is not necessary. In this case, however, both
partners must do the same thing, i.e. both convert or neither converts. If, for example, one
side converts and the other does not in a link between two Unix or Windows partners, the
result may be an indecipherable code.

Heterogeneous link

With a heterogeneous link, e.g. BS2000 with Unix or Windows systems, the sender should
encode the data with the Convert_Outgoing call and the receiver should do the same with
the Convert_Incoming call.

The EBCDIC variants EBCDIC.DF.04 and EBCDIC Code Page 500/1 differ in 17 characters
(e.g. in [] { } \ | !, see code conversion table on page 58). If these characters do not exist in
the user data then conversion is not necessary, e.g., for communication between a BS2000
and a Unix system.

B
B

B

X

X

X

X

X

X

X

X

X

X

B

X

X

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Important:

If the calls Convert_Incoming and Convert_Outgoing are used for data conversion, no
automatic conversion can be generated by openUTM, i.e. MAP=SYSTEM must not be
specified in the OSI-CON statement (with OSI TP partners) or in the SESCHA
statement (with LU6.1 partners) when generating the connections to the partner appli-
cation.

When you use the conversion calls please make sure that the calls are used in the
correct sequence since data which is converted repeatedly with Convert_Incoming or
Convert_Outgoing can no longer be interpreted in the target system. The CPI-C trace
will indicate whether Convert_Incoming and Convert_Outgoing are correctly coordi-
nated at both partners.

Characteristics and functions X/Open interface CPI-C

58 X/Open Interfaces

Code conversion tables

This section contains the code conversion tables used by CPI-C in the calls
Convert_Incoming and Convert_Outgoing. The conversion tables shown are those used in
openUTM on BS2000 systems and openUTM on Unix and Windows systems.

Conversion tables for openUTM on BS2000 systems

The following table lists only those 17 characters that have different codes in
EBCDIC.DF.04 and EBCDIC Code Page 500/1. Convert_Incoming and Convert_Outgoing
convert only these characters.

Code conversion with Convert_Outgoing (BS2000 systems)

Code conversion table EBCDIC Code Page EBCDIC.DF.04 → 500/1 (EBCDIC)

EBCDIC.DF.04 EBCDIC
Code Page 500/1

0x4A 0x79

0x4F 0xBB

0x5A 0x4F

0x5F 0xFF

0x6A 0x5F

0x79 0xBD

0xA1 0xBC

0xBB 0x4A

0xBC 0xE0

0xBD 0x5A

0xC0 0xDD

0xD0 0x6A

0xDD 0xFB

0xE0 0xFD

0xFB 0xC0

0xFD 0xD0

0xFF 0xA1

Code conversion with Convert_Outgoing

B

B

B

BB
B

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

B

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Code conversion with Convert_Incoming (BS2000 systems)

Code conversion table EBCDIC Code Page 500/1 (EBCDIC) → EBCDIC.DF.04

EBCDIC
Code Page 500/1

EBCDIC.DF.04

0x4A 0xBB

0x4F 0x5A

0x5A 0xBD

0x5F 0x6A

0x6A 0xD0

0x79 0x4A

0xA1 0xFF

0xBB 0x4F

0xBC 0xA1

0xBD 0x79

0xC0 0xFB

0xD0 0xFD

0xDD 0xC0

0xE0 0xBC

0xFB 0xDD

0xFD 0xE0

0xFF 0x5F

Code conversion with Convert_Incoming

B

B

B
B
B

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

B

Characteristics and functions X/Open interface CPI-C

60 X/Open Interfaces

openUTM) conversion tables (Unix and Windows systems)

Code conversion with Convert_Outgoing (Unix and Windows systems)

Code conversion table ISO8859-1 → modified EBCDIC Code Page 500/1
(the fields with a gray background indicate modification compared to EBCDIC Code Page
500/1)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 37 2D 2E 2F 16 05 15 0B 0C 0D 0E 0F

1 10 11 12 13 3C 3D 32 26 18 19 3F 27 1C 1D 1E 1F

2 40 4F 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61

3 F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F

4 7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6

5 D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 4A E0 5A 5F 6D

6 79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96

7 97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 6A D0 A1 07

8 20 21 22 23 24 25 06 17 28 29 2A 2B 2C 09 0A 1B

9 30 31 1A 33 34 35 36 08 38 39 3A 3B 04 14 3E FF

A 41 AA B0 B1 9F B2 BB B5 BD B4 9A 8A BA CA AF BC

B 90 8F EA FA BE A0 B6 B3 9D DA 9B 8B B7 B8 B9 AB

C 64 65 62 66 63 67 9E 68 74 71 72 73 78 75 76 77

D AC 69 ED EE EB EF EC BF 80 FD FE FB FC AD AE 59

E 44 45 42 46 43 47 9C 48 54 51 52 53 58 55 56 57

F 8C 49 CD CE CB CF CC E1 70 DD DE DB DC 8D 8E DF

X

X

X

X

X

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Code conversion with Convert_Incoming (Unix and Windows systems)

Code conversion table modified EBCDIC Code Page 500/1 (EBCDIC) → ISO 8859-1
(the fields with a gray background indicate modification compared to EBCDIC Code Page
500/1)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 9C 09 86 7F 97 8D 8E 0B 0C 0D 0E 0F

1 10 11 12 13 9D 0A 08 87 18 19 92 8F 1C 1D 1E 1F

2 80 81 82 83 84 85 17 1B 88 89 8A 8B 8C 05 06 07

3 90 91 16 93 94 95 96 04 98 99 9A 9B 14 15 9E 1A

4 20 A0 E2 E4 E0 E1 E3 E5 E7 F1 5B 2E 3C 28 2B 21

5 26 E9 EA EB E8 ED EE EF EC DF 5D 24 2A 29 3B 5E

6 2D 2F C2 C4 C0 C1 C3 C5 C7 D1 7C 2C 25 5F 3E 3F

7 F8 C9 CA CB C8 CD CE CF CC 60 3A 23 40 27 3D 22

8 D8 61 62 63 64 65 66 67 68 69 AB BB F0 FD FE B1

9 B0 6A 6B 6C 6D 6E 6F 70 71 72 AA BA E6 B8 C6 A4

A B5 7E 73 74 75 76 77 78 79 7A A1 BF D0 DD DE AE

B A2 A3 A5 B7 A9 A7 B6 BC BD BE AC A6 AF A8 B4 D7

C 7B 41 42 43 44 45 46 47 48 49 AD F4 F6 F2 F3 F5

D 7D 4A 4B 4C 4D 4E 4F 50 51 52 B9 FB FC F9 FA FF

E 5C F7 53 54 55 56 57 58 59 5A B2 D4 D6 D2 D3 D5

F 30 31 32 33 34 35 36 37 38 39 B3 DB DC D9 DA 9F

X

X

X

X

X

XXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

XXXXXXXXXXXXXXXXX

Characteristics and functions X/Open interface CPI-C

62 X/Open Interfaces

3.2.8 States of a conversation under openUTM

In a conversion, the function calls of both partner programs must be coordinated. A CPI-C
program executes a function knowing that the partner program will respond by executing a
further function for the same conversation. To aid comprehension of the programming rules
on both sides of the conversation, a state is introduced for the conversation. The set of
follow-up actions within a conversation depends on the respective state of the conversation.
Function calls cause the conversation to switch from the current state to another state. This
switchover is called a transition.

Under openUTM, a conversation can assume the following states:

Reset
No conversation is assigned to the conversation_ID.

Initialize
The Initialize_Conversation call has been terminated successfully and a
conversation_ID was assigned to the conversation.

Send
The program is permitted to send data via the conversation (send control).

Receive
The program can receive data from the partner via the conversation.

Send-Pending
In the last Receive call, the program received data from the partner and simultaneously
received send control.

Confirm-Send
The local program received a confirmation request and send control from the partner.
The local program must respond with a Confirmed call, and then switches to Send state.

With CPI-C programs under openUTM, this state can only occur in conversations with
non-UTM applications.

Confirm-Deallocate
The local program received a request for receive confirmation from the partner along
with the Deallocate notification. The local program must respond with a Confirmed call,
and then switches to Reset state.

In CPI-C programs under openUTM, this state can only occur in conversations with
non-UTM applications.

X/Open interface CPI-C Characteristics and functions

X/Open Interfaces 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Defer-Deallocate
The local program received a request for end of transaction from the partner along with
the Deallocate notification. The local program must respond with the corresponding
transaction call, and then switches to Reset state.

At the beginning, a conversation is in Reset state. It then enters various follow-up states,
depending on the particular function calls and on the information received from the partner.
The current state of a conversation can be queried with the Extract_Conversation_State
call. The state transitions are described in the appendix of the X/Open specification.

If a function is called that is illegal in the currently valid state, the calling program receives
the return code CM_PROGRAM_STATE_CHECK. The function is not executed.

Supported CPIC calls X/Open interface CPI-C

64 X/Open Interfaces

3.3 CPI-C in openUTM

This section contains the following information:

– Under “Supported CPI-C calls” you will find a list of the CPI-C calls available in
openUTM.
Of the calls defined in the X/Open specification on CPI-C, only the most important ones
are available in openUTM. Only some of these can be used for communication via the
OSI TP protocol.

– The subsection “Restrictions in conversations via the LU6.1 and UPIC protocol” lists the
calls that must not be used in conversations with LU6.1 partner applications and
openUTM-Clients with the UPIC carrier system.

– “openUTM-specific features of calls” describes the special features that must be noted
when calling CPI-C functions under openUTM.

– Under “Behavior when non-supported CPI-C calls are used” you will find a list of the
return codes supplied by openUTM if a call that is not available in openUTM is issued
in a CPI-C program.

– “Programming rules” describes the rules that must be observed when creating CPI-C
programs

3.3.1 Supported CPI-C calls

This section provides an overview of the calls available in openUTM at the CPI-C program
interface. The overview is in tabular form, whereby the calls are arranged according to task
areas. The calls are listed alphabetically in relation to the function name.

The full functionality described here can only be used in conversations to OSI TP partners.
In conversations to LU6.1 partners and openUTM-Clients with the UPIC carrier system, the
calls Confirmed and Send_Error cannot be used (see section “Restrictions in conversations
via the LU6.1 and UPIC protocol” on page 67).

The CPI-C calls available in openUTM are listed in the following tables.

X/Open interface CPI-C Supported CIPI-C calls

X/Open Interfaces 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Starter set calls

Calls for error and confirmation handling

Calls for data conversion

Function Call Description

Accept_Conversation CMACCP Accept incoming conversation

Allocate CMALLC Set up outgoing conversation

Deallocate CMDEAL Terminate conversation (normally)

Initialize_Conversation CMINIT Establish outgoing conversation,
initialize conversation characteristics

Receive CMRCV Receive data

Send_Data CMSEND Send data

Function Call Description

Cancel_Conversation CMCANC Cancel a conversation

Confirmed CMCFMD Send a positive confirmation to the partner

Send_Error CMSERR Send error message, negative confirmation

Function Call Description

Convert_Incoming CMCNVI Convert received data from EBCDIC format into the
character set used on the local system

Convert_Outgoing CMCNVO Convert the data to be sent from the character set
used on the local system into EBCDIC format

Supported CIPI-C calls X/Open interface CPI-C

66 X/Open Interfaces

Calls for querying information on conversation characteristics

Calls for modification of conversation characteristics

Function Call Description

Extract_Conversation_State CMECS Query the current state of the conversation

Extract_Conversation_Type CMECT Query the current value of the characteristic
conversation_type

Extract_Maximum_Buffer_Size CMEMBS Query the maximum length of the data that can be
sent or received

Extract_Partner_LU_Name CMEPLN Query the name of the current partner (value of the
characteristic partner_LU_name)

Extract_Sync_Level CMESL Query the current value of the characteristic sync-
level

Extract_TP_Name CMETPN Query the current value of the characteristic
TP_name (name of the current partner program /
transaction code)

Function Call Description

Set_Conversation_Type CMSCT Set a value for the characteristic conversation_type

Set_Deallocate_Type CMSDT Set a value for the characteristic deallocate_type

Set_Partner_LU_Name CMSPLN Set a value for the characteristic partner_LU_name

Set_Receive_Type CMSRT Set a value for the characteristic receive_type

Set_Send_Type CMSST Set a value for the characteristic send_type

Set_Sync_Level CMSSL Set a value for the characteristic sync_level

Set_TP_Name CMSTPN Set a value for the characteristic TP_name

X/Open interface CPI-C Restrictions in conversations

X/Open Interfaces 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3.3.2 Restrictions in conversations via the LU6.1 and UPIC protocol

The calls CFMD (Confirmed) and CMSERR (Send_Error) must not be used in conversa-
tions with LU6.1 partners and openUTM-Clients with the UPIC carrier system:

Confirmed (CMCFMD)
This call is used for sending a receive confirmation. It is only permitted if the conver-
sation is in Confirm-Send or Confirm-Deallocate state, i.e. if a confirmation request
has been received from the remote partner. This cannot occur in conversations to
LU6.1 partners and openUTM client applications with the UPIC carrier system. In
this case, the Confirmed call is rejected with the return code
CM_PROGRAM_STATE_CHECK.

Send_Error (CMSERR)
This is used to respond negatively to the request for receive confirmation (sending
of a negative confirmation).
A Send_Error call in a conversation to an LU6.1 partner or an openUTM-Client with
the UPIC carrier system results in a program abort and the loss of all conversations
being held by the program at this time. In this case, the effect of the Send_Error call
corresponds to that of a Cancel-Conversation call.

openUTM-specific special features X/Open interface CPI-C

68 X/Open Interfaces

3.3.3 openUTM-specific special features of CPI-C calls

This section describes the openUTM-specific special features of the CPI-C calls available
in openUTM. The calls themselves are described with the associated error and return
codes in X/Open Preliminary Specification: “The CPI-C Specification Version 2 (1994)”.
Knowledge of this specification is essential for creating CPI-C programs.

Accept_Conversation (CMACCP)

Accepts an incoming conversation, i.e. a conversation initiated by a partner.

CMACCP can only be called once within a program run of the CPI-C program under
openUTM. If the program code of the CPI-C program contains more than one CMACCP
call, the sequencing logic of the program must ensure that the CMACCP call is executed
only once in a program run.

If the CPIC program is started by openUTM with a dialog transaction code, then CMACCP
must be called exactly once in this program run.

If the CPIC program is started by openUTM with an asynchronous transaction code, then
the CMACCP call can be omitted. In this case, however the conversation cannot be
accessed, i.e. no data can be received from the initiator.

If CMACCP is called a second time in a program run, the call is rejected with the return code
CM_PROGRAM_STATE_CHECK. See also section “Multiple conversations in one CPI-C
program” on page 52.

X/Open interface CPI-C openUTM-specific special features

X/Open Interfaces 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Allocate (CMALLC)

Establish an outgoing conversation to a partner. The following must be noted for this call:

– A maximum of six open outgoing conversations is permitted within a program run.

– The maximum number of parallel OSI TP associations/LU6.1 sessions that can exist
between the local UTM application and a remote partner application is limited. This is
defined in the KDCDEF generation. If all associations or sessions are taken up with
other conversations when the Allocate call is issued, the call is rejected with the return
code CM_ALLOCATE_FAILURE_NO_RETRY.

– The maximum number of associations and sessions that can be maintained simultane-
ously by the local UTM application depends on the generation.
If the maximum number of associations and sessions is already reached with other
conversations at the time of the Allocate call, the call is rejected with the return code
CM_ALLOCATE_FAILURE_NO_RETRY

The CMALLC call is mapped to KDCS APRO call. Return codes are converted as follows: :

Cancel_Conversation (CMCANC)

Abort a conversation. In openUTM, the program run and all conversations that exist at the
time are aborted.

The call is mapped to PEND FR, i.e. the program is terminated with errors and the local
transaction is reset. If the CPI-C trace is activated with level DUMP or ALL, the call is
aborted internally with PEND ER and a dump is created. In the event of serious errors, it
may happen that openUTM initiates a PEND ER dump itself even though the job or
environment variable CPICDUMP is not set. See also section “Error diagnosis in CPI-C
programs” on page 99.

Calling Cancel_Conversation may result in the loss of messages which have already been
sent to the initiator.

KDCS return code CPI-C return code

APRO 40Z KD10 CM_ALLOCATE_FAILURE_RETRY

APRO 40Z remaining DC-Codes CM_ALLOCATE_FAILURE_NO_RETRY

APRO 44Z KD04 CM_PRODUCT_SPECIFIC_ERROR

APRO 44Z remaining DC-Codes CM_PARAMETER_ERROR

APRO 46Z CM_PARAMETER_ERROR

APRO remaining CC-Codes CM_PRODUCT_SPECIFIC_ERROR

openUTM-specific special features X/Open interface CPI-C

70 X/Open Interfaces

Confirmed (CMCFMD)

Results in the transmission of a receive confirmation (positive confirmation).

This call is not permitted in a conversation with an LU6.1 or openUTM client partner with
the UPIC carrier system.

It is supported in openUTM in order to respond to the confirmation request of a remote
partner on a non-UTM system. CPI-C programs under openUTM cannot request confirma-
tions (the statement sync_level=CM_Confirm is not permitted under openUTM). If both
partner programs of the conversation are running under UTM, the Confirmed call has no
effect.

Convert_Incoming (CMCNVI)

Convert the data received with CMRCV (Receive) into the local character set.
CMCNVI assumes that the data transferred in the buffer parameter is present in character
set EBCDIC Code Page 500/1 format, and converts it into the characters set used by the
local system.

Under BS2000 systems, CPI-C assumes that the character set used locally is
EBCDIC.DF.04.
Under Unix and Windows systems, CPI-C assumes that the character set used locally is
ISO 8859-1, i.e.
ISO 8-bit code (ASCII)

With a heterogeneous link, the sender and the receiver should convert the data. With an
homogenous link, no conversion is necessary. However, it is essential that both sender and
receiver do not convert. See section “Converting characteristics and user data” on page 55.

Convert_Outgoing (CMCNVO)

Convert the data into the EBCDIC Code Page 500/1 character set before it is sent with
CMSEND (Send_Data).
CMCNVO assumes that the data transferred in the buffer parameter is present in the
character set used locally and converts it into character set EBCDIC Code Page 500/1.

Under BS2000 systems, CPI-C assumes that the character set used locally is
EBCDIC.DF.04.
Under Unix and Windows systems, CPI-C assumes that the character set used locally is
ISO 8859-1, i.e.
ISO 8-bit code (ASCII).

With a heterogeneous link, the sender and the receiver should convert the data. With an
homogenous link, no conversion is necessary. However, it is essential that both sender and
receiver do not convert. See section “Converting characteristics and user data” on page 55.

X/Open interface CPI-C openUTM-specific special features

X/Open Interfaces 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Deallocate (CMDEAL)

Terminate a conversation and release the conversation ID.

If the conversation characteristic deallocate_type has the value
CM_DEALLOCATE_SYNC_LEVEL or CM_DEALLOCATE_FLUSH, the following applies:

– In an asynchronous conversation, only the initiator (client) can terminate the conver-
sation normally and call CMDEAL.

– In a dialog conversation, only the acceptor (server) can terminate the conversation
normally and call CMDEAL. In addition, the acceptor must send at least one message
with the Send_Data call to the initiator between the transition of the conversation to
Send state or Send-Pending state and the CMDEAL call.

See also section “Programming rules” on page 81.

If the conversation characteristic deallocate_type has the value
CM_DEALLOCATE_ABEND, a Deallocate call will terminate the calling program with all
conversations it is holding at that time. The Deallocate call then has the same effect as the
Cancel_Conversation call.

Extract_Conversation_State (CMECS)

Query the current state of the conversation.

There are no restrictions on this call in openUTM.

Extract_Conversation_Type (CMECT)

Query the current value of the conversation characteristic conversation_type.

With CPI-C under openUTM, the result of this call can only ever be the value
CM_MAPPED_CONVERSATION.

openUTM-specific special features X/Open interface CPI-C

72 X/Open Interfaces

Extract_Maximum_Buffer_Size (CMEMBS)

Query the maximum length of the data that can be sent with Send_Data call or received
with the Receive call.

In openUTM, the maximum buffer size is set to 32767 bytes (as proposed by X/Open). If a
value greater than the buffer size received through the call is specified in CPI-C calls for the
parameters buffer_length, request_length, or send_length, the corresponding CPI-C call is
rejected with CM_PROGRAM_PARAMETER_CHECK.

The following must thus apply:

0 ≤ ..._length ≤ CM_MAXIMUM_BUFFER_SIZE

Extract_Partner_LU_Name (CMEPLN)

Query the current value of the conversation characteristic partner_LU_name.

With incoming conversations, the call returns the name of the partner application. In
openUTM, the name of the LTERM partner is returned for conversations via the UPIC
protocol, the name of the LPAP partner is returned for communication via LU6.1, and the
name of the OSI-LPAP partner is returned for communication via OSI TP (see page 45f).

With outgoing conversations, the call only returns the name of the partner application if the
conversation characteristic partner_LU_name has previously been set with the
Set_Partner_LU-Name call. Otherwise, blanks are returned.

Extract_Sync_Level (CMESL)

Query the current value of the conversation characteristic sync_level.

There are no restrictions on this call in openUTM.

Extract_TP_Name (CMETPN)

Query the current value of the conversation characteristic TP_name.

With an incoming conversation, the call returns the transaction code with which the local
program was started. If you defined several transaction codes for a CPI-C program, you can
use CMETPN to determine the transaction code with which the program was started.

With outgoing conversations, the LTAC name of the partner, which was set using the
CMSTPN (Set_TP_Name) call, is returned. If TP_Name was not explicitly called for the
conversation, the value transferred with the CMINIT (Initialize_Conversation) in the
sym_dest_name parameter is returned.

X/Open interface CPI-C openUTM-specific special features

X/Open Interfaces 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Initialize_Conversation (CMINIT)

Initialize the conversation characteristics of an outgoing conversation.

The symbolic partner name sym_dest_name must be generated as the LTAC name in
openUTM (see also section “Conversation characteristics for addressing” on page 45).
Whether sym_dest_name is a valid LTAC name is not checked until Allocate is called.

A maximum of six open outgoing conversations is permitted at any one time within a
program run. If the CPI-C program is holding six open outgoing conversations and if an
attempt is made with CMINIT to initialize a seventh conversation, then the call is rejected
with the return code CM_PRODUCT_SPECIFIC_ERROR (see also section “Multiple
conversations in one CPI-C program” on page 52).

Receive (CMRCV)

Receive data from partner

In conversations with sync_level = CM_SYNC_POINT or sync_level =
CM_SYNC_POINT_NO_CONFIRM the value CM_TAKE_COMMIT, or
CM_TAKE_COMMIT_DEALLOCATE or CM_TAKE_BACKOUT, or
CM_TAKE_BACKOUT_DEALLOCATE is returned for the parameter status_received.

In openUTM, the Receive call is not permitted in Send-Pending state. In Send state, the call
is only permitted if CMSEND (Send_Data) was already called in this state or if Send state
has come from Send_Pending state.

If a CPI-C server program under openUTM transfers send control to the remote partner, i.e.
if it calls CMRCV in Send state or following a CMSEND with send_type =
CM_SEND_AND_PREP_TO_RECEIVE, it may happen that the program does not return
from this Receive call and is aborted by openUTM.

This may be caused by the following:

– The logical connection to the partner via which the conversation is established has been
lost.

– The partner terminated the conversation abnormally.

– The maximum time for which the local CPI-C program unit can wait for a message from
the partner has expired without the partner sending a message. This maximum wait
time is defined by the generation parameter MAX PGWTTIME=.

openUTM writes a message in the SYSLOG file with the reason for the termination of the
program run.

The Receive call is mapped to the KDCS call MGET. If the return code with MGET is not
equal to 000, 01Z, 03Z, 10Z or 12Z, the program is terminated with PEND ER abnormally.

openUTM-specific special features X/Open interface CPI-C

74 X/Open Interfaces

Send_Data (CMSEND)

Send data to partner.

The CMSEND call is mapped to the FPUT KDCS call. If the return code resulting from
FPUT is not equal to 000, the CPI-C return code CM_PRODUCT_SPECIFIC_ERROR is
generated and the UTM error 40Z is logged with K704 in CPI-C trace.

Send_Error (CMSERR)

Send an error message to the remote partner.

The call may only be used in a dialog conversation.

 This call is not permitted in conversations via the LU6.1 or UPIC protocol.

Set_Conversation_Type (CMSCT)

Set the conversation characteristic conversation_type.

The call parameter conversation_type can only have the value
CM_MAPPED_CONVERSATION. The value CM_BASIC_CONVERSATION is not
supported by openUTM and is rejected with the return code
CM_PRODUCT_SPECIFIC_ERROR.

X/Open interface CPI-C openUTM-specific special features

X/Open Interfaces 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Set_Deallocate_Type (CMSDT)

Set the conversation characteristic deallocate_type.

For the deallocate_type parameter, only one of the following values can be specified in
openUTM:
– CM_DEALLOCTE_SYNC_LEVEL,
– CM_DEALLOCATE_FLUSH, or
– CM_DEALLOCATE_ABEND

If CM_DEALLOCATE_ABEND is specified, the subsequent Deallocate call results in the
termination of the program with all conversations. The effect of this Deallocate call then
corresponds to that of a Cancel_Conversation call.

The parameter value CM_DEALLOCATE_CONFIRM is rejected by openUTM with the
return code CM_PRODUCT_SPECIFIC_ERROR.

Set_Partner_LU_Name (CMSPLN)

Set the conversation characteristic partner_LU_name.

The value specified in the partner_LU_name parameter can be up to 8 bytes long.
It must be defined as the LPAP name or the OSI-LPAP name in the KDCDEF generation of
the application. If a value greater than 8 bytes is specified in the partner_LU_name_length
parameter, the call is rejected by openUTM with the return code
CM_PRODUCT_SPECIFIC_ERROR.

Set_Receive_Type (CMSRT)

Set the conversation characteristic receive_type.

If the conversation is in Receive state, the value of receive_type has no significance
because a CPI-C program is not called by openUTM until all messages have been
received.

The setting of receive_type is only effective in openUTM if the Receive call is issued in Send
state or Send-Pending state. In this case, a call with
receive_type=CM_RECEIVE_IMMEDIATE is rejected with the return code
CM_PROGRAM_STATE_CHECK.

openUTM-specific special features X/Open interface CPI-C

76 X/Open Interfaces

Set_Send_Type (CMSST)

Set the conversation characteristic send_type.

Only the following values can be specified for the call parameter send_type in openUTM:
– CM_BUFFER_DATA,

Send data to the partner without additional information.
– CM_SEND_AND_PREP_TO_RECEIVE,

The data transferred is sent to the partner program immediately; send control is trans-
ferred to the partner.

– CM_SEND_AND_DEALLOCATE,
Send data and terminate the conversation normally.

The values CM_SEND_AND_FLUSH and CM_SEND_AND_CONFIRM are not permitted
and are rejected with the return code CM_PRODUCT_SPECIFIC_ERROR.

Set_Sync_Level (CMSSL)

Set the conversation characteristic sync_level.

For the call parameter sync_level only the following values are permitted in openUTM:
– CM_NONE

no synchronization is requested for the conversation.
– CM_SYNC_POINT_NO_CONFIRM

the conversation is included in a global transaction

The value CM_CONFIRM is rejected with return code
CM_PRODUCT_SPECIFIC_ERROR; the value CM_SYNC_POINT is rejected with return
code CM_PARM_VALUE_NOT_SUPPORTED.

Set_TP_Name (CMSTPN)

Set the conversation characteristic TP_Name.

The value specified for the TP_Name call parameter must be defined as the LTAC name in
openUTM and may not be longer than 8 bytes.

If the length specification in TP_name_length is greater than 8 bytes, the call is rejected by
openUTM with the return code CM_PRODUCT_SPECIFIC_ERROR.

X/Open interface CPI-C Interaction with TX

X/Open Interfaces 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3.3.4 Interaction with the TX interface

openUTM supports global transactions in conversations via the TX interface. The TX
interface is described in chapter 5.

Please note: If you use the TX interface and include UTM server programs in a
global transaction, existing UTM server programs behave differently from when
they are not included in a global transaction.

In particular, end of transaction may only be requested by the client program!

The following diagrams depict the sequence for a single-step and a multiple-step trans-
action.

!

Interaction with TX X/Open interface CPI-C

78 X/Open Interfaces

1) Single-step transaction

tx_begin
(Start global transaction)

tx_set_transaction_control
 (TX_CHAINED)

Set_Transaction_Control
 (CM_CHAINED_TRANSACTIONS)

("Chained Transaction" mode both
as TX and as CPI-C call)

Initialize_Conversation

Set_Sync_Level
CM_SYNC_POINT_NO_CONFIRM

(Include partner in transaction)

Allocate

Send_Data

Receive

Defer_Deallocate
tx_commit

OSI TP client

Accept_Conversation

Extract_Sync_Level
CM_SYNC_POINT_NO_CONFIRM

Receive

Send_Data

Receive

(the partner program receives
Deallocate- and Commit information
via the value in status_received:)

CM_TAKE_COMMIT_DEALLOCATE

tx_commit

openUTM server

X/Open interface CPI-C Interaction with TX

X/Open Interfaces 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

2) Multi-step transaction

tx_begin
(Start global transaction)

tx_set_transaction_control
(TX_CHAINED)

Set_Transaction_Control
 (CM_CHAINED_TRANSACTIONS)

("Chained Transaction" mode both
as TX and as CPI-C call)

Initialize_Conversation

Set_Sync_Level
CM_SYNC_POINT_NO_CONFIRM

(Include partner in transaction)

Allocate

Send_Data
)

Receive

tx_commit

Send_Data

Receive

Defer_Deallocate
tx_commit

OSI-TP-Client

Accept_Conversation

Extract_Sync_Level
CM_SYNC_POINT_NO_CONFIRM

Receive

Send_Data

Receive
(Value in status_received:)

CM_TAKE_COMMIT

tx_commit

Receive

Send_Data

Receive

(Value in status_received:)
CM_TAKE_COMMIT_DEALLOCATE

tx_commit

openUTM-Server

Non-supported CPI-C calls X/Open interface CPI-C

80 X/Open Interfaces

3.3.5 Behavior when non-supported CPI-C calls are used

If a CPI-C program under openUTM contains CPI-C calls that are not supported by
openUTM, the CPI-C program can be linked with openUTM, but it cannot run under
openUTM.

The following calls are rejected with the return code CM_PRODUCT_SPECIFIC_ERROR:

The following call is rejected with the return code CM_PROGRAM_PARAMETER_CHECK
because it is only permitted with Basic Conversation and openUTM does not support any
Basic Conversation.

All other optional CPI-C calls not supported by openUTM are rejected with the return code
CM_CALL_NOT_SUPPORTED.

3.3.6 Process or task switching

There is no process switching within a CPI-C program run. A conversation is linked to a
process.

There is no task switching within a CPI-C program run. A conversation is linked to a task.

Name of function Call

Confirm CMCFM

Extract_Mode_Name CMEMN

Flush CMFLUS

Prepare_To_Receive CMPTR

Request_To_Send CMRTS

Set_Log_Data CMSLD

Set_Mode_Name CMSMN

Set_Return_Control CMSRC

Test_Request_To_Send_Received CMTRTS

Name of function Call

Set_Fill CMSF

X

X

B

X/Open interface CPI-C Programming rules

X/Open Interfaces 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3.3.7 Programming rules

The rules described below must be observed when creating CPI-C program units under
openUTM. The rules refer to conversations with OSI TP partners. Additional restrictions
apply in the case of conversations with LU6.1 partners and openUTM-Clients with the UPIC
carrier system. These restrictions are summarized on page 67.

When creating CPI-C program units, a distinction must be made between dialog conversa-
tions and asynchronous conversations.

With dialog conversations, both sides of the conversation can send data, i.e. both the initiator
(client) and the acceptor (serve). The acceptor of a dialog conversation must be assigned
a dialog transaction code in the UTM application. Dialog transaction codes are all
generated transaction codes to which the TYPE=D parameter is assigned (default setting).

You must therefore specify the following in the KDCDEF generation:

– TAC tac-name,...[,TYPE=D]
if the local CPI-C program is the acceptor (server) of the dialog conversation

– LTAC ltac-name,...[,TYPE=D]
if the partner program is the acceptor (server) of the dialog conversation.

With asynchronous conversations, only the initiator (client) of the conversation can send data.
The acceptor (server) of an asynchronous conversation must be assigned an
asynchronous transaction code in the UTM application. Asynchronous transaction codes
are all generated transactions to which the TYPE=A parameter is assigned.

You must therefore specify the following in the KDCDEF generation:

– TAC tac-name,...,TYPE=A
if the local CPI-C program is the acceptor (server) of the asynchronous conversation

– LTAC ltac-name,...,TYPE=A
if the partner program is the acceptor (server) of the asynchronous conversation

The structure of a CPI-C program within a conversation depends on whether the conver-
sation is asynchronous or dialog and whether the CPI-C program is the initiator or the
acceptor of the conversation.

Programming rules X/Open interface CPI-C

82 X/Open Interfaces

A distinction must be made between the following cases:

1. The CPI-C program is the initiator of a dialog conversation (outgoing conversation).

2. The CPI-C program is the acceptor of a dialog conversation (incoming conversation).

3. The CPI-C program is the initiator of an asynchronous conversation (outgoing conver-
sation).

4. The CPI-C program is the acceptor of an asynchronous conversation (incoming conver-
sation).

The programming rules for these four cases are listed below. A distinction is made here
between the rules for CPI-C programs running under openUTM and CPI-C programs that
do not run under openUTM but hold conversations with CPI-C programs under openUTM
(such as openUTM-Clients that use the CPI-C interface).

The programming rules always apply to one conversation. Each program can hold multiple
conversations. A different one of the four cases above may apply to each of these conver-
sations.

This fact is illustrated in the following diagram by way of an example.
Program A is a CPI-C program under openUTM which is generated using a dialog trans-
action code. It is started by the request from program B. Program A is thus the acceptor
(server) of a dialog conversation. Program A establishes other conversations: a dialog
conversation with program C and an asynchronous conversation with program D. In these
conversations, program A is the initiator (client).

X/Open interface CPI-C Programming rules

X/Open Interfaces 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Program B

(generated with TAC ...,TYPE=D) (generated with

Program A Program C

Program D

Terminate conversationX

Establish (dialog) conversationX

Establish (dialog) conversationY

Terminate conversationY

Establish (asynchronous) conversationZ

Terminate conversationZ

Server

Server side
Rules

for case 2

Client side
Rules

for case 1

Client side
Rules

for case 3

LTAC ...,TYPE=D)

(generated with
LTAC ...,TYPE=A)

Programming rules X/Open interface CPI-C

84 X/Open Interfaces

Case 1: Initiator of a dialog conversation

The following programming rules apply to the side of the conversation shaded in the
diagram.

The following rules apply under openUTM for the initiator of a dialog conversation:

Rule 1:
After the conversation is initialized and established, the initiator must send at least one
message (possibly of length 0) with the Send_Data call to the partner program before
it is permitted to exit Send state (The initiator switches to Send state after a successful
Allocate call).

The following call sequence is thus not permitted.

Initialize_Conversation
Allocate
Receive

Rule 2:
In this case, the conversation can only be terminated normally by the acceptor (server),
i.e. the initiator can only terminate the conversation abnormally with:

Cancel_conversation

or

Set_Deallocate_Type (deallocate_type=CM_DEALLOCATE_ABEND)
Deallocate

However, in this case all conversations held by the program at this time are cancelled
under openUTM and the program run is terminated.

CPI-C program
in the local UTM application

Dialog
conversation

Remote CPI-C program
(in the local UTM application

defined with LTAC ...,TYPE=D)

Initiator (client) Acceptor (server)

X/Open interface CPI-C Programming rules

X/Open Interfaces 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

The initiator of a dialog conversation must therefore have the following program structure:

To query information, the following CPI-C calls can also be issued at any point within a
conversation:

– Extract_Conversation_State
– Extract_Maximum_Buffer_Size

In the event of error, the following CPI-C calls can be used:

– Send_Error
(Not permitted with conversations to LU6.1 partners or openUTM-Clients with the UPIC
carrier system. In this case the call results in a program abort and the loss of all conver-
sations.)

– Cancel_Conversation
– Set_Deallocate_Type with deallocate_type=CM_DEALLOCATE_ABEND followed by

Deallocate

If the initiator of the conversation is not running under openUTM (but the acceptor (server)
is a CPI-C program under openUTM), rule 1 does not apply.

If the initiator exits the Send state following Allocate but without first sending a message to
the acceptor under openUTM with the Send_Data call, the acceptor receives a message of
length zero from openUTM.

Initialize_Conversation
........possibly Set_Partner_LU_Name
........possibly Set_TP_Name
Allocate
.......possibly Convert_Outgoing
Send_Data
......possibly further Send_Data
Receive
.....possibly Convert_Incoming
.....possibly further Receive to receive data
.....possibly further sequences of Send_Data and Receive
Receive to wait for return_code CM_DEALLOCATED_NORMAL

Programming rules X/Open interface CPI-C

86 X/Open Interfaces

The following program run applies:

Initialize_Conversation
Allocate

Receive
:
:
:
:

Initiator (client)

Accept_Conversation
Receive

(blank message with
status_received=

CM_SEND_RECEIVED)
Send_Data

:
:
:

Blank message

openUTM
Dialog transaction code of a
UTM application

Acceptor (server)

CPIC program of a
non-UTM application

Establish logical connection

Request to send

X/Open interface CPI-C Programming rules

X/Open Interfaces 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Case 2: Acceptor of a dialog conversation

The following programming rules apply to the side of the conversation shaded in the
diagram.

The following rules apply under openUTM for the acceptor of a dialog conversation:

Rule 1:
Accept_Conversation (CMACCP) must be called as the first function. This call opens
the conversation to the initiator.

Rule 2:
After the Accept_Conversation call, the acceptor must continue to read with the
Receive (CMRCV) call until it receives send control. Thereafter, send control can be
switched as often as desired using the Send_Data (CMSEND) and Receive (CMRCV)
calls.

Rule 3:
The acceptor must at some time actively close the conversation with the Deallocate
(CMDEAL) or Cancel_Conversation (CMCANC) call, provided the conversation is not
terminated abnormally by the initiator or the transport system. An abnormal termination
by the initiator or the transport system only occurs if a CPI-C call for this conversation
returns with a return code that switches the conversation to Reset state (for information
on state transitions, see “X/Open Preliminary Specification CPI-C The Specification
Version 2 (1994)”, State Tables in Appendix C).

Rule 4:
Between entering Send state and calling Deallocate, the program must send at least one
message (possibly with length zero) to the initiator using Send_Data, as otherwise the
Deallocate call will be rejected with CM_PRODUCT_SPECIFIC_ERROR.

Remote CPI-C program Dialog
conversation

CPI-C program in the local
UTM application

(defined with TAC ...,TYPE=D)

Initiator(client) Acceptor (server)

Programming rules X/Open interface CPI-C

88 X/Open Interfaces

The following call sequence is therefore not permitted:

Receive
CM_SEND_RECEIVED

Deallocate

The acceptor of a dialog conversation must therefore have the following program structure:

You can also invoke the following CPI-C calls at any point within the conversation in order
to query information:

– Extract_Conversation_State
– Extract_Maximum_Buffer_Size

Accept_Conversation
........possibly Extract_Partner_LU_Name
........possibly Extract_TP_Name
........possibly Extract_Sync_Level
Receive
........possibly Convert_Incoming
........possibly further Receive to receive data
Receive to wait for status_received=CM_SEND_RECEIVED
........possibly Convert_Outgoing
Send_Data
........possibly further sequences of Receive and Send_Data

Deallocate

or

Set_Send_Type (send_type=CM_SEND_AND_DEALLOCATE)
Send_Data

X/Open interface CPI-C Programming rules

X/Open Interfaces 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

In the event of error, the following CPI-C calls can be used:

– Send_Error
(Not permitted in conversations to LU6.1 partners or openUTM-Clients with the UPIC
carrier system. In this case, it results in a program abort and the loss of all conversa-
tions.)

– Cancel_Conversation
– Set_Deallocate_Type with deallocate_type=CM_DEALLOCATE_ABEND followed by

Deallocate

If the acceptor of the conversation is not running under openUTM, rule 4 does not apply.
If the acceptor does not send any message to the initiator running under openUTM between
entering Send state and issuing the Deallocate call, openUTM sends a message of length
zero to the initiator.

Programming rules X/Open interface CPI-C

90 X/Open Interfaces

Case 3: Initiator of an asynchronous conversation

The following programming rules apply to the side of the conversation shaded in the
diagram.

The following rules apply under openUTM for the initiator of an asynchronous conversation:

Rule 1:
The initiator must not use the following CPI-C calls:

CMCFMD (Confirmed)
Confirmed is only permitted in the states Confirm-Send and Confirm-
Deallocate. These states cannot occur at the initiator of an asynchronous
conversation because the acceptor cannot send a confirmation request to
the initiator.

If the initiator of the conversation is not running under openUTM, this
program may still contain the Deallocate call with deallocate_type=
CM_DEALLOCATE_CONFIRM. However, in this case openUTM does not
deliver the confirmation request to the acceptor under its management.
Instead, openUTM itself sends a positive confirmation to the initiator as
soon as the acceptor (server) of the conversation has accepted all
messages.

CMRCV (Receive)
The acceptor (server) of an asynchronous conversation does not send any
messages to the initiator. A Receive call in the initiator is thus useless and
is rejected with CM_PRODUCT_SPECIFIC_ERROR.

CMSERR (Send_Error)
The Send_Error call is rejected with the return code
CM_PRODUCT_SPECIFIC_ERROR.

CMSST (Set_Send_Type) with send_type=CM_SEND_AND_PREP_TO_RECEIVE
The acceptor of the conversation does not send any messages to the
initiator of the conversation. For this reason, any attempt to transfer send
control to the acceptor (server) is rejected with the return code
CM_PRODUCT_SPECIFIC_ERROR

CPI-C program
in the local UTM application Asynchronous

conversation

Remote CPI-C program
(in the local UTM application

defined with LTAC ...,TYPE=A)

Initiator (client) Acceptor (server)

X/Open interface CPI-C Programming rules

X/Open Interfaces 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Rule 2:
If both the initiator and the acceptor of the conversation are running under openUTM,
the initiator must send at least one message to the acceptor using the Send_Data call
at least once (possibly with length 0). This means that the acceptor cannot be started
using the following simple call sequence:

Initialize_Conversation
Allocate
Deallocate

If the acceptor is not running under openUTM, this rule does not apply.

The client side of an asynchronous conversation must thus have the following program
structure:

To query information, the following CPI-C calls can also be issued at any point within the
conversation:

– Extract_Conversation_State
– Extract_Maximum_Buffer_Size

In the event of error, the following CPI-C calls can be used:

– Cancel_Conversation
– Set_Deallocate_Type with deallocate_type=CM_DEALLOCATE_ABEND followed by

Deallocate

Initialize_Conversation
........possibly Set_Partner_LU_Name
........possibly Set_TP_Name
Allocate
........possibly Convert_Outgoing
Send_Data
........possibly further Send_Data

Deallocate
or
Set_Send_Type (send_type=CM_SEND_AND_DEALLOCATE)
Send_Data

Programming rules X/Open interface CPI-C

92 X/Open Interfaces

Case 4: Acceptor of an asynchronous conversation

The following programming rules apply to the side of the conversation shaded in the
diagram.

The following rules apply under openUTM for the acceptor of an asynchronous conver-
sation:

Rule 1:
The acceptor must not use the following CPI-C calls:

Confirmed (CMCFMD)
Confirmed is only permitted in the states Confirm-Send and Confirm-
Deallocate. These states cannot occur at the acceptor of an asynchronous
conversation under openUTM for the following reason:

If an initiator not running under openUTM and connected via the OSI TP
protocol sends a Deallocate request with a Confirm request to an acceptor
of an asynchronous conversation running under openUTM, this is not
reported to the CPI-C program under openUTM in the usual way as with a
Receive call with status_received =
CM_CONFIRM_DEALLOC_RECEIVED, rather with return_code =
CM_DEALLOCATED_NORMAL. openUTM itself sends a positive confir-
mation to the initiator as soon as the run of the local CPI-C program has
ended.

Send_Data (CMSEND)
The call is rejected with the return code
CM_PRODUCT_SPECIFIC_ERROR.

Send_Error (CMSERR)
The call is rejected with the return code
CM_PRODUCT_SPECIFIC_ERROR.

Set_Conversation_Type (CMSCT)
The call is only permitted in Initialize state. This state cannot occur in this
case.

Remote CPI-C program Asynchronous
conversation

CPI-C program of the local
UTM application

(defined with TAC ...,TYPE=A)

Initiator (client)
Acceptor (server)

X/Open interface CPI-C Programming rules

X/Open Interfaces 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Rule 2:
In an asynchronous conversation, only the initiator can terminate the conversation
normally. The acceptor under openUTM can only call Deallocate (CMDEAL) if the
conversation characteristic deallocate_type was previously set to
CM_DEALLOCATE_ABEND with the Set_Deallocate_Type call.

The acceptor (server) of an asynchronous conversation must thus have the following
program structure:

To query information, the following CPI-C calls can also be issued at any point within the
conversation:

– Extract_Conversation_State
– Extract_Maximum_Buffer_Size

In the event of error, the following CPI-C calls can be used:

– Cancel_Conversation
– Set_Deallocate_Type with deallocate_type=CM_DEALLOCATE_ABEND followed by

Deallocate

If the acceptor is not running under openUTM, then it does not finally receive the return
code CM_DEALLOCATED_NORMAL, it rather receives the value
CM_CONFIRM_DEALLOC_RECEIVED in the status_received parameter. It must then
give a positive confirmation with Confirmed (CMCFMD) or a negative confirmation with
Send_Error (CMSERR). However, a negative confirmation is not delivered to the initiator
(i.e. the CPI-C program under openUTM), rather causes the job to be repeated

Accept_Conversation
........possibly Extract_Partner_LU_Name
........possibly Extract_TP_Name
........possibly Extract_Sync_Level
Receive
........possibly Convert_Incoming
........possibly further Receive to receive data
Receive to wait for return_code CM_DEALLOCATED_NORMAL

Creating a CPI-C application X/Open interface CPI-C

94 X/Open Interfaces

3.4 Creating a CPI-C application

CPI-C program units under openUTM must always be subroutines. openUTM does not
transfer any parameters to the CPI-C program unit, i.e. the usual transfer parameters for
KDCS program units under openUTM, namely KB, SPAB, and possibly SPAB extensions,
must not be used by CPI-C programs.

openUTM then starts a CPI-C program when an incoming conversation for this program is
initiated by a partner program.

3.4.1 Compiling and linking a CPI-C application under Unix and Windows
systems

CPI-C program units can be created in any programming language.

● An include file is supplied with openUTM for the creation of CPI-C program units in C:

– utmpath/cpic/include/cpic.h (Unix systems)

– utmpath\cpic\include\cpic.h (Windows systems)

● A COPY element is supplied for COBOL

– utmpath/cpic/copy-cobol85/CMCOBOL or utmpath/cpic/netcobol/CMCOBOL
(Unix systems)

– utmpath\cpic\copy-cobol85\CMCOBOL or utmpath\cpic\netcobol\CMCOBOL
(Windows systems)

● The following XOPEN library is available for linking CPI-C programs on Unix systems.

– utmpath/sys/libxopen

● When you link a CPI-C application, the following libraries must be also be linked:

– the user library with the CPI-C program units and modules

– the UTM library

– die XOPEN library (Unix systems)

If you want to create a CPIC trace while the application is running, you can activate the trace
by means of the start parameters or activate it and deactivate it using the administration
functions (see section “Controlling the trace” on page 99).

X/W

X/W

X

W

X/W

X

X

W

W

X

X

X/W

X/W

X/W

X

X/W

X/W

X/W

X/W

X/Open interface CPI-C Creating a CPI-C application

X/Open Interfaces 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3.4.2 Compiling and linking a CPI-C application under BS2000 systems

CPI-C program units can be created in any programming language.

An include file is supplied with openUTM for the creation of CPI-C program units in C and
a COPY element is supplied for COBOL.

The library
$userid.SYSLIB..UTM.063.XOPEN is available for linking CPI-C programs.

The include file for C (CPIC.H) and the COPY element for COBOL (CMCOBOL) are also
present as type S elements in this library.

When linking a CPI-C application, the following libraries must be also be linked:

– the user library with the CPI-C program units and modules
– the UTM library
– the XOPEN library $userid.SYSLIB.UTM.063.XOPEN
– the libraries SYSLNK.CRTE or SYSLNK.CRTE.PARTIAL-BIND for language environment and

runtime system.

If a CPIC trace is to be created while the application is running, you can activate the trace
by means of the start parameters or activate it and deactivate it using the administration
functions (see section “Controlling the trace” on page 99).

Note when changing from openUTM V3.4 to V4.0:
Use the new library which is used for all XOPEN interfaces when linking!

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

iB

B

Creating a CPI-C application X/Open interface CPI-C

96 X/Open Interfaces

3.4.3 Generating a CPI-C application

The following special features must be noted when generating an UTM application with
CPI-C program units:

Generate local CPI-C program units and associated transaction codes

Each program unit of an UTM application must be defined with a PROGRAM statement.

Under BS2000- systems, you have to specify ILCS as compiler:

PROGRAM programname,COMP=ILCS....

Transaction codes implemented in the CPI-C program units must be generated with

TAC tacname, PROGRAM=programname, API=(XOPEN,CPIC), ...

(where programname=name of the CPI-C program from the PROGRAM statement).

You can assign several transaction codes to a CPI-C program unit. The program run can
then be controlled using the transaction code with which the program was started. The
transaction code with which the CPI-C program was started is contained in the conversation
characteristic TP_Name.

Generate PGWT-TAC class

If a CPI-C program unit is to hold dialog conversations in which the send control is trans-
ferred to the conversation partner by calling Set_Send_Type with
send_type=CM_SEND_AND_PREP_TO_RECEIVE or by calling Receive in Send state,
then, in applications that work with process limit-based job control, the transaction code of
this CPI-C program unit must be assigned to a TAC class which is generated with
PGWT=YES. For example:

MAX TASKS=2
MAX TASKS-IN-PGWT=1
TACCLASS 1,TASKS=1,PGWT=YES
TAC CPIC1,PROGRAM=xyz,API=(XOPEN,CPIC),TACCLASS=1

In applications that use priority-based job control, you must generate the transaction code
of this CPI-C program unit using PGWT =YES:
MAX TASKS=2
MAX TASKS-IN-PGWT=1
TAC CPIC1,PROGRAM=xyz,API=(XOPEN,CPIC), PGWT=YES

B

B

X/Open interface CPI-C Creating a CPI-C application

X/Open Interfaces 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

Specifications for associations with OSI TP partners and openUTM client partners with the
OpenCPIC carrier system

The information required for setting up OSI TP associations between the local application
and the partner application must be specified in ACCESS-POINT, OSI-LPAP, and OSI-CON
statements as follows, for example:

* name of the local access point
ACCESS-POINT cpicap,\

P-SEL = NONE, S-SEL = NONE, T-SEL = C'tse',

* local name of remote partner
OSI-LPAP cpiclpap,\

ASSOCIATION-NAMES = assoname,\
ASSOCIATIONS = 2, CONTWIN = 1, CONNECT = 1,\
APPLICATION-CONTEXT = UDTAC or UDTDISAC

* local name of connection
OSI-CON cpiccon,\

P-SEL=NONE, S-SEL=NONE,\
T-SEL=C'tsel', N-SEL=C'nsel',\
LOCAL-ACCESS-POINT = cpicap,\
OSI-LPAP = cpiclpap

When communicating with partners on non-SNI systems, it may happen that the Application
Entity Title must also be defined for the local and remote application.

Specifications for sessions with LU6.1 partners

The information required for setting up LU6.1 sessions between the local application
(BCAMAPPL) and the partner application must be specified in BCAMAPPL, LPAP, CON,
SESCHA, and LSES statements.

Notes on data conversion

If the calls Convert_Incoming (CMCNVI) and Convert_Outgoing (CMCNVO) are used for
data conversion, MAP=SYSTEM must not be specified in the OSI-CON statement when
generating the connections to the partner application.

X/W

X

X

X

Creating a CPI-C application X/Open interface CPI-C

98 X/Open Interfaces

Specifications for connections to openUTM client partners with the UPIC carrier system

You must issue a PTERM and an LTERM statement for each openUTM client partner with
the UPIC carrier system, for example:

PTERM UPICTTY, PTYPE=UPIC-R, LTERM=UPICLT, BCAMAPPL=CPICBA, PRONAM=PGTR0175
LTERM UPICLT

Alternatively you can also connect via TPOOL.

If an openUTM client partner with the UPIC carrier system is implementing the user concept
of openUTM, a USER statement must also be issued.

Definition of TP names of remote CPI-C programs

You must issue an LTAC statement for each CPI-C program of a remote application to which
a local CPI-C program wants to set up an outgoing conversation.

The LPAP= operand and possibly other operands such as RTAC= or TYPE= must be
specified in the LTAC statement. The ltac name of the LTAC statement must be specified in
the Initialize_Conversation call in the sym_dest_name parameter.

The above-mentioned KDCDEF statements are described in the openUTM manual “Gener-
ating Applications”.

X/Open interface CPI-C Error diagnosisin CPI-C programs

X/Open Interfaces 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3.5 Error diagnosis in CPI-C programs

CPI-C calls are mapped to KDCS calls. The UTM dump therefore contains only the KDCS
calls, even with CPI-C program units. However, to diagnose CPI-C programs you can
create a trace of CPI-C calls in addition to the UTM dump.

3.5.1 Controlling the trace

The CPI-C trace can be controlled as follows:

● The UTM start parameter CPIC-TRACE can be used to enable the trace when the appli-
cation is started, see the relevant
openUTM manual “Using openUTM Applications”.

● The trace can be enabled or disabled during operation using WinAdmin or WebAdmin.
To do this go to the dialog Properties of UTM Application, tab Diagnosis and Account, field
CPIC Trace.

● The trace can be enabled or disabled during operation via the KDCADMI administration
program interface. This is done using the field cpic_trace in the data structure
kc_diag_and_account_par_str, see openUTM manual “Administering Applications”.

You can set the following trace levels:

3.5.2 Name of the trace file

Trace file under Unix and Windows systems

The trace records are written to the file KDC.TRC.CPIC.appliname.hostname.pid in the
directory filebase. Where:

appliname
Name of the application

Level Meaning

TRACE The content of the input and output parameters is output for each CPI-C function call.
Only the first 16 bytes are output from the data buffers. The return codes of the KDCS
calls to which the CPI-C calls are mapped are output.

BUFFER Includes the TRACE level. However, the data buffers are logged in their full length.

DUMP Includes the TRACE level and also writes diagnostic information to the trace file.

ALL Includes the BUFFER, DUMP and TRACE levels.

OFF Trace is disabled.

X

X/W

X/W

X/WX/W

X/W

Error diagnosisin CPI-C programs X/Open interface CPI-C

100 X/Open Interfaces

hostname
Name of the host on which the application is running.

pid PID of the process.

Trace file in BS2000 systems

By default the trace records are written to the file KDC.TRC.CPIC.appliname.hostname.tsn.
Where:

appliname
Name of the application

hostname
Name of the host on which the application is running.

tsn TSN of the UTM task

In the UTM start procedure, you can also set up a different trace file for each task and use
the SET-FILE-LINK command to assign it the link name KDCCPIC.

X/WX/W
X/W

X/WX/W

B

B

B

BB

B

BB

B

BB

B

B

X/Open interface CPI-C Error diagnosisin CPI-C programs

X/Open Interfaces 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
3

3.5.3 Contents of the trace file

The CPI-C calls are logged as follows:

--->IN functionname: input parameters

The responses to the function calls are logged as follows:

<---OUT functionname: return_code = returncode other output parameters

returncode is the return code of the call. The other output parameters are only output if
return_code = CM_OK.

In addition, the responses to the KDCS calls are written to the trace file.

Error diagnosisin CPI-C programs X/Open interface CPI-C

102 X/Open Interfaces

X/Open Interfaces 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4 X/Open interface XATMI

XATMI has been standardized by X/Open and is a program interface for a communication
resource manager which enables transaction-logged client/server communication.

The XATMI program interface is based on the X/Open CAE Specification ”Distributed
Transaction Processing: The XATMI Specification” of November 1995. Knowledge of this
specification is essential for understanding this chapter.

This chapter describes the XATMI interface for programs under openUTM.
XATMI programs under openUTM are always server programs.

Supported protocols

Under openUTM, XATMI applications can communicate via OSI TP or via the LU6.1
protocol.

Terms

The following terms are used in this description:

Service A service function that is programmed in C or COBOL in accordance with
the XATMI specification.
XATMI distinguishes between two different types of services: end Services
and intermediate Services.

An “end” service is linked only to its client and does not call any other
services.

An “intermediate” service calls one or more other services.

Client An application that calls service functions.

Server An UTM application containing the service functions in C and/or COBOL.
The service functions can comprise a number of program units.

Request A request is a service call. This call can be initiated by a client or by an inter-
mediate service.

Requester The XATMI specification uses the term “requester” to refer to the application
that calls a service. A requester can be either a client or a server.

Linking client/server X/Open interface XATMI

104 X/Open Interfaces

Typed buffers
Buffers for exchanging type-encoded and structured data between commu-
nication partners. With these typed buffers, the structure of the exchanged
data is implicitly known to the carrier system and the application, and is also
adapted automatically (encoded, decoded) in heterogeneous connections.

4.1 Linking client/server

The diagram below shows the connection of client/server applications, linking the client,
server, and requester. Clients kcan also be located on BS2000 systems.

The individual applications contain XATMI calls and exchange their type-encoded data
structures (typed buffers) in accordance with the protocol of the “XATMI U-ASE Definition”.

Client 1 Client 2

Requester 1

Server 1 Server 2

Client-
applications

UTM-requester-
application

UTM-Server-
applications

XATMI U-ASE

XATMI U-ASE

Con11

Con13

Con22

Con21

Conyz: Verbindung yz

Windows system Unix system

LC-
File
1

LC-
File
1,2

LC-

File
3

LC-

File
2

LC-

File
1,3

X/Open interface XATMI Linking client/server

X/Open Interfaces 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

With any heterogeneous application link, a local configuration must be provided both for the
servers and the clients. This configuration is defined in the local configuration file (LCF).
The local configuration describes the respective services and their associated data struc-
tures, namely:

– in the case of a server, all available services
– in the case of a client, the services of all servers to which the client is connected
– in the case of a requester (intermediate service), all services available as well as all

services used

The local configurations of all applications involved must be coordinated with each other.

A number of communication paradigms are available for client-server communication (see
section “Communication paradigms” on page 106.

4.1.1 Default server

To simplify the client/server configuration openUTM allows you to declare a default server
using the statement DEST=.DEFAULT in the SVCU statement of the local configuration file
(see page 122).

If the calls tpcall, tpacall or tpconnect use a service svcname2 to which there is no
SVCU entry in the local configuration file, the following entry is used automatically:

SVCU svcname2, RSN=svcname2, TAC=scvname2, DEST=.DEFAULT, MODE=RR

In this case openUTM expects a default server entry in the KDCDEF input file, i.e.

LTAC svcname2, ... , LPAP=BRANCH9

The partner, in this case BRANCH9, must, of course, still be known to openUTM.

Communication paradigms X/Open interface XATMI

106 X/Open Interfaces

4.2 Communication paradigms

The programmer can choose from three communication paradigms for client/server
communication:

– synchronous request response paradigm: single-step dialog.
The client is blocked after sending the service request until it receives a response.

– asynchronous request response paradigm: single-step dialog.
The client is not blocked after sending the service request.

Special case:
Single request paradigm: communication in one direction only.
The client requests a service, but does not expect a response.

– conversational paradigm: multi-step dialog.
Client and server can exchange data in any way required.

The XATMI functions required for these communication paradigms are described only
briefly below; C notation is used here. An exact description of the XATMI functions can be
found in the X/Open Specification "Distributed Transaction Processing: The XATMI Speci-
fication”.

Depending on the paradigm, the communication is started by a tpcall(), tpacall() or a
tpconnect() XATMI call.

On each XATMI tpcall(), tpacall() and tpconnect() call in the UTM application, UTM
addresses a service (KDCS call APRO) and occupies a session or association for the
duration of the communication. It is necessary to generate as many sessions or associa-
tions as the maximum number of services that are addressed simultaneously.

X/Open interface XATMI Communication paradigms

X/Open Interfaces 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

Synchronous request response paradigm

Only a single tpcall() call is required for the communication with this type of service.
The tpcall() call addresses the services, sends precisely one message to this service, and
waits until it receives a response, i.e. tpcall() has a blocking effect.

In this diagram, svc is the internally used service name, svcinfo is the service info structure
with the service name, and tpservice is the program name of the service routine. The
tpservice() template is available for this purpose for the programming language C. The
XATMI call TPSVCSTART must be used for COBOL, see page 117. The service info
structure is defined in the XATMI interface and is supplied internally by XATMI.

With this paradigm, a dialog TAC for the requested service has to be generated at the
openUTM server.

Asynchronous request response paradigm

With this paradigm, communication is handled in two steps. In the first step, a tpacall() call
is used to address the service and send the message. In the second the response is fetched
with tpgetrply() at a later stage. The tpacall() is non-blocking, i.e. the client can continue to
perform local processing tasks after the call. Further (up to 64) connections are also
possible.

Client Server

tpcall (svc, ...) tpservice (svcinfo, ..)

....

tpreturn (...)

(next statement)

....

Communication paradigms X/Open interface XATMI

108 X/Open Interfaces

In this paradigm, multiple services can be requested in parallel, see the figure below.

In this diagram, svc1, svc2 refer to the internally used service names, cd1, cd2 are the
communication descriptors in the specific process, svcinfo1, svcinfo2 are the service info
structures with the service names, and tpservice1, tpservice2 are the program names of the
service routines.

Unlike tpacall, tpgetrply() is blocking, which means that the client waits until the response is
received.

With this paradigm, a dialog TAC must be generated for the requested service on the
openUTM server side (as with synchronous request response)

Special cases of this paradigm are single request and request with no response.

Client Server 1 Server 2

...
cd1=tpacall (svc1,.)

...

cd2=tpacall (svc2,.)

...

tpgetrply (cd1,..)

...

tpgetrply (cd2,..)

...

...
tpservice1 (svcinfo1,)

...

...

tpreturn (..)

tpservice2 (svcinfo2,)

...

tpreturn (..)

X/Open interface XATMI Communication paradigms

X/Open Interfaces 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

Single request paradigm

With this paradigm, a service is requested with tpacall(). However, no response is expected
(indicated by the TPNOREPLY flag).

In this diagram, svc1, svc2 refer to the internally used service names, cd1, cd2 are the
communication descriptors in the specific process, svcinfo1, svcinfo2 are the service info
structures with the service names, and tpservice1, tpservice2 are the program names of the
service routines.

With this paradigm, an asynchronous TAC must always be generated on the openUTM
server side.

This paradigm can only be used if the client is a UTM requester application.

Conversational paradigm

XATMI offers the conversational paradigm for connection-oriented tasks (“conversation”).

This paradigm can be used, for example, to transfer large volumes of data in several
substeps. This avoids problems which can occur in the synchronous request response
paradigm (function tpcall()) due to the limited size of the data buffers.

In the conversational paradigm, the conversation is explicitly established to a service with
the tpconnect() call. As long as the conversation exists, the client and server can exchange
data with tpsend() and tprecv(). Only one transaction can be handled within a dialog.
The conversation is terminated when the server signals the end with tpreturn(); the client
then receives a corresponding code with tprecv() in the tperrno variable.
The client program must therefore contain at least one tprecv() call.

Client Server 1 Server 2

...
cd1=tpacall (svc1,.
 ...,TPNOREPLY)

...

cd2=tpacall (svc2,.
 ...,TPNOREPLY)

...
tpservice1 (svcinfo1,)

...

tpservice2 (svcinfo2,)

Typed buffers X/Open interface XATMI

110 X/Open Interfaces

In this diagram, svc refers to the local name of the service, cd is the communication
descriptor in the specific process, tpservice is the program name of the service routine, and
svcinfo is the service info structure with the service name and the communication descriptor.

With this paradigm, a dialog TAC must be generated for the requested service on the
openUTMserver side.

In the event of errors, the client can force a conversation abort with the tpdiscon() call.

4.3 Typed buffers

XATMI applications exchange messages using “typed data buffers”. This ensures that the
data sent over the network is transferred correctly between applications, i.e. in accordance
with the data structure - and associated data types - which is identified by the buffer name.

The advantage of this is that the applications need not take account of any machine depen-
dencies, such as Big Endian/Little Endian representations, ASCII/EBCDIC conversions, or
alignments with word limits. This means that data types such as int, long, float, etc. can be

Client Server

...
cd=tpconnect (svc,..)

...

tpsend (cd,..)

loop {

 tprecv (cd,...)

...

} until tperrno==TPEEVENT

...

tpservice (svcinfo->svc,...)

...

tprecv (svcinfo->cd,...)

loop {

 tpsend (svcinfo->cd,...)

} until ready

...

tpreturn (...)

X/Open interface XATMI Typed buffers

X/Open Interfaces 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

transferred as such. There is no need for any encoding/decoding by the applications
because this is carried out by XATMI (in accordance with the rules of the XATMI U-ASE
definition).

A data buffer object comprises four components:

– type: defines the type of buffer; there are three types (see below)
– subtype: defines the object of the class, i.e. the actual data structure
– length specification
– data contents

This type of data buffer is created at runtime and can then be addressed by its variable
name (= subtype name). In C programs, these buffers are created dynamically with
tpallcoc() and are then called “typed buffers”; in COBOL programs, these buffers are defined
statically and are then called “typed records”.

Types

The data buffer type defines which elementary data types of the employed programming
language are permitted. This enables a shared data understanding in a heterogeneous
client/server network.

Three types are defined in XATMI:

X_OCTET Non-typed data stream of bytes (“user buffer”). This type has no
subtypes. No conversion takes place.

X_COMMON All data types that can be used in common by C and COBOL.
Conversion is carried out by XATMI.

X_C_TYPE All elementary C data types, with the exception of pointers.
Conversion is carried out by XATMI.

Subtypes

A subtype has a name of up to 16 characters, with which it is addressed in the application
program. Each subtype is assigned a data structure (C structure or COBOL record) which
determines the syntax of the subtype, see page 119.
The data types must not be nested.

Typed buffers X/Open interface XATMI

112 X/Open Interfaces

The structure of a subtype is represented by a syntax string in the local configuration. In this
string each elementary data type (basic type) is identified by a code which, if necessary,
may also contain the field length specification (<m> and <n>).
The table below provides an overview of the elementary data types (basic types), their
codes, and the character set of the string types::

Code1 Meaning ASN.1 type X_C_TYP
E

X_COMMON

s short integer INTEGER short S9(4) COMP-5

S<n> short integer array SEQUENCE OF INTEGER short[n] S9(4) COMP-5 ...

i integer INTEGER integer --2

I<n> integer array SEQUENCE OF INTEGER integer[n] --

l long integer INTEGER long S9(9) COMP-5

L<n> long integer array SEQUENCE OF INTEGER long[n] S9(9) COMP-5 ...

f float REAL float --

F<n> float array SEQUENCE OF REAL float[n] --

d double REAL double --

D<n> double array SEQUENCE OF REAL double[n] --

c character OCTET STRING char PIC X

t character T.61-String char PIC X

C<n> character array:
All values from 0 thru
255 (decimal)

OCTET STRING char[n] PIC X(n)

C!<n> character array, termi-
nated by null ('\0')

OCTET STRING char[n] --

C<m>:<n> character matrix3 SEQUENCE OF OCTET
STRING

char [m][n] --

C!<m>:<n> character matrix, termi-
nated by null ('\0')

SEQUENCE OF OCTET
STRING

char [m][n] --

T<n> The printable characters
A-Z, a-z, and 0-9 plus4 a
range of special
characters and control
characters, see
page 148.

T.61 string char[n] PIC X(n)

T!<n> character array, termi-
nated by null ('\0')

T.61-String t61str[n] --

T<m>:<n> character matrix SEQUENCE OF
T.61-String

t61str[m][n] --

X/Open interface XATMI Typed buffers

X/Open Interfaces 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

The assignment between data structures, subtypes, and desired services is defined in the
local configuration, see page 122.

Character set conversion with X_C_TYPE and X_COMMON

The data buffers are transmitted over the network encoded in the ASCII character set.

However, a partner can use a character set encoding other than ASCII. For example a
BS2000 application may use EBCDIC. In this case, the BS2000 XATMI library converts the
ASN.1 type T.61 string from ASCII to EBCDIC and vice versa for all incoming and outgoing
data. This means that no automatic conversion may be generated for the associated carrier
system (UTM/UPIC/OpenCPIC).

In particular, MAP=SYSTEM must not be set for the KDCDEF statements OSI-CON and
SESCHA.

The OCTET STRING data type is not converted.

T!<m>:<n> character matrix, termi-
nated by null ('\0')

SEQUENCE OF
T.61-String

t61str[m][n] --

1 used in the local configuration to describe the data structures
2 -- : not available in X_COMMON
3 character matrix: twodimensional character array
4 in accordance with CCITT Recommendation T.61 or ISO 6937

Code1 Meaning ASN.1 type X_C_TYP
E

X_COMMON

Program interface X/Open interface XATMI

114 X/Open Interfaces

4.4 Program interface

The following sections provide an overview of the XATMI program interface for the server
and requester. A detailed description of the program interface as well as the error and return
codes can be found in the X/Open specification “Distributed Transaction Processing: The
XATMI Specification“. Knowledge of this specification is essential for creating XATMI
programs.

The program interface is available in both C and COBOL.

4.4.1 XATMI functions

The following tables list all XATMI calls permitted under openUTM and indicate the role in
which they can be called (C = Client or S = Server) and the communication paradigm with
which they are permitted

X/Open interface XATMI Program interface

X/Open Interfaces 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

Calls of the request/response paradigm

Calls for the conversational paradigml

Calls for typed buffers

C call COBOL call Call in
Client/
Server

Description

tpcall TPCALL C Service request in synchronous request/response
paradigm

tpacall TPACALL C Service request in asynchronous request/response
paradigm or
single request paradigm (flag TPNOREPLY set)

tpgetreply TPGETRPLY C Response request in synchronous request/
response paradigm

tpcancel TPCANCEL C deletes an asynchronous service request before the
requested response is received

C call COBOL call Call in
Client/
Server

Description

tpconnect TPCONNECT C establishes a connection for message exchange

tpsend TPSEND C, S sends a message

tprecv TPRECV C, S receives a message

tpdiscon TPDISCON C closes down a connection for message exchange

C call COBOL call Call in
Client/
Server

Description

tpalloc -- C, S reserves memory area for a typed buffer

tprealloc -- C, S modifies the size of a typed buffer

tpfree -- C, S releases a typed buffer

tptypes -- C, S ascertains the type of a typed buffer

Program interface X/Open interface XATMI

116 X/Open Interfaces

General calls for service routines

C call COBOL call Call in
Client/
Server

Description

(tpservice) TPSVCSTART S makes available a template for service routines

tpreturn TPRETURN S ends a service routine

tpadvertise
tpunadvertise

TPADVERTISE
TPUNADVERTISE

S only supported syntactically in openUTM
(ascertains the name of a service routine)

X/Open interface XATMI Program interface

X/Open Interfaces 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.4.2 Particularities of XATMI calls

This section describes the special features of XATMI calls under openUTM.

tpcancel

When communication is performed using transport protocol LU6.1,
the tpcancel() call to an existing call descriptor does not, unlike to X/Open CAE Speci-
fication for XATMI, delete this decriptor. Instead, it ends the conversation, i.e. all connec-
tions are reset when tpreturn() is called. The XATMI calls are mapped to the generation-
depended RSET and PEND FR under openUTM.

When communication is performed using transport protocol OSI TP,
tpcancel() deletes the descriptor. The XATMI calls are mapped to CTRLAB under openUTM.

tpdiscon

When communication is performed using transport protocol LU6.1 (with or without Commit),
the tpdiscon() call to an existing call descriptor does not, unlike to X/Open CAE Speci-
fication for XATMI, delete this decriptor. Instead, it ends the conversation, i.e. all connec-
tions are reset when tpreturn() is called. The XATMI calls are mapped to the generation-
depended RSET and PEND FR under openUTM

When communication is performed using transport protocol OSI TP without Commit
tpdiscon() has the same effect as with communication via LU6.1.

When communication is performed using transport protocol OSI TP with Commit
tpreturn() calls the KDCTXCOM or KDCTXRLB dialog TACs with PEND KP on the UTM
server side. In the case of a single request service (tpacall TPNOREPLY) PEND FR or
PEND FI is called.

4.4.3 Data transfer to the service function

A service function is a program unit that is started by a transaction code, as is usual in
openUTM. This transaction code must be generated with TAC... API=(XOPEN,XATMI) and
can only be called by an XATMI client or requester, not from a terminal.

The client/requester information is transferred to the service by means of the “service info
structure” TPSVCINFO. This structure is part of the XATMI interface. Transfer to the service
is different in C and COBOL:

● In C, the only parameter which the service function contains is a pointer to the service
info structure. This structure is supplied immediately after the service function is started.
The tpservice() template for the service function is described in the X/OPEN XATMI
specification.

Program interface X/Open interface XATMI

118 X/Open Interfaces

TPSVCINFO has the following structure:

typedef struct {
 char name[XATMI_SERVICE_NAME_LENGTH]; /* service name */
 char *data; /* pointer to data area */
 long len; /* length of data buffer transferred */
 long flags; /* flags for call control*/
 int cd; /* conversation descriptor in
 conversational mode, otherwise
 undefined */
} TPSVCINFO

In COBOL, the structure is supplied by the XATMI call TPSVCSTART. This call must be the
first XATMI call of a service routine. Further details can be found in the X/Open specification
“Distributed Transaction Processing: The XATMI Specification” in the description of
TPSVCSTART.

4.4.4 Events and error handling

When an event or an error occurs, XATMI functions return the return code -1. The program
must evaluate the tperrno variable to determine the event or error more precisely.

With the conversational function tprecv, tperrno=TPEEVENT indicates that an event has
occurred. This event can be determined by evaluating the tprevc parameter revent. For
example, the successful termination of a conversational service is indicated as follows:

Return code of tprecv =-1
tperrno=TPEEVENT
revent=TPEV_SVCSUCC

The revent parameter is of no significance with the tpsend function.

Furthermore, at the end of the service function the service program can return a freely
defined error code with tpreturn in the rcode parameter; this error code can be evaluated on
the client side using the external variable tpurcode, see “Distributed Transaction Processing:
The XATMI Specification”.

X/Open interface XATMI Program interface

X/Open Interfaces 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.4.5 Creating typed buffers

Typed buffers are defined by data structures in include files (in C) or COPY elements (in
COBOL), which must be used in the participating programs.

Data is exchanged between the programs on the basis of these data structures, which must
therefore be known to both the client and the server. All data types described in the table
on page 112 or in the X/Open specification “Distributed Transaction Processing: The XATMI
Specification” may be used.

The header files or COBOL COPY files in which the typed buffers are described serve as
input for the generation program xatmigen, see page 128 for further information.

The following rules apply to these files:

– C and COBOL data structures must be contained in separate files. A file that contains
both C includes and COBOL COPY elements is not permitted as input.

– The files can only contain definitions of data structures, blank lines, and comment state-
ments. Include files (in C) may also contain Macro statements, i.e. statements
beginning with ‘#’.

– The data structure definitions must be specified in full. In particular, COBOL data
records must begin with the level number “01”.

– The data structures must not be nested.

– Only absolute values are permitted as field lengths, macro constants are not accepted.

– Only the data types listed in the table on page 112 are permitted. In particular, no pointer
types are permitted in C.

The user may have to use the generation tool xatmigen to map the character arrays to
ASN.1 string types because neither C nor COBOL recognizes these data types; see section
“The xatmigen utility” on page 128.

XATMI calls for memory allocation are available for C (tpalloc ...).

Two simple examples are provided below for C and COBOL respectively.

Program interface X/Open interface XATMI

120 X/Open Interfaces

Example

1. C include for typed buffer

1.
C include for typed buffer

typedef struct {
char name[20]; /* person’s name */
int age; /* age */

 char sex;
 long shoesize;
} t_person;

struct t_city {
char name[32]; /* name of city */
char country;
long inhabitants;

 short churches[20];
 long founded;
}

2. COBOL COPY for typed record

***** Personal record
 01 PERSON-REC.
 05 NAME PICTURE X(20).
 05 AGE PIC S9(9) COMP-5.
 05 SEX PIC X.

 05 SHOESIZE PIC S9(9) COMP-5.

***** City record
01 CITY-REC.
 05 NAME PIC X(32).
05 COUNTRY PIC X.
05 INHABITANTS PIC S9(9) COMP-5.
05 CHURCHES PIC S9(4) COMP-5 OCCURS 20 TIMES.
05 FOUNDED PIC S9(9) COMP-5.

Further examples can be found in the X/Open XATMI Specification.

X/Open interface XATMI Program interface

X/Open Interfaces 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.4.6 Characteristics of XATMI in openUTM

This section describes the distinctive features that arise when implementing the XATMI
interface in openUTM.

● All XATMI calls are supported. However, the two calls tpadvertise() and tpunadvertise()
are only supported syntactically because they are process- or task related and these
calls are ineffective in the BS2000 multitask environment or the openUTM work process
environment on Unix and Windows systems.

● An intermediate service can call up to 64 services in parallel via the Asynchronous
Request-Response Model or the Conversational Model.

● A maximum of 100 buffer entities can be used simultaneously per service. For example,
with a service function in C this is a maximum of 100 tpalloc() calls without tpfree() call.

● The maximum message length is 32000 bytes. However, this value is also limited by
the following parameters in UTM generation:

MAX NB: maximum length of logical messages
MAX TRMSGLTH: maximum length of physical messages

The maximum size of a typed buffer is always less than the maximum possible
message length because the messages contain an “overhead” in addition to the net
data. The more complex the buffer, the bigger the overhead.

The following applies as a rule of thumb: max. buffer size = 2/3 of max. message length

With larger data volumes, the conversational paradigm (tpsend/tprecv) should thus
always be used.

● The following limits apply to name lengths:

service name: 16 bytes
buffer name: 16 bytes

In accordance with the standard, service names can be 32 bytes long
(XATMI_SERVICE_NAME_LENGTH constant) where only the first 16 bytes are
relevant . It is therefore advisable to use no more than 16 bytes for service names.

● Process switching (Unix and Windows systems) or task switching (BS2000 systems):
A service or request is linked to a process or task, i.e. there is no process or task
switching within a service or request. Requests and conversational services must
therefore run within one PGWT-TAC class (see section “TACs with PGWT=YES” on
page 131).

Configuring X/Open interface XATMI

122 X/Open Interfaces

4.5 Configuring

The user must create a local configuration for each XATMI application. This describes the
services provided and used, together with their target addresses, and also describes the
typed buffers used with their syntax. The information is stored in a file, known as the local
configuration file (LCF), which is read once by the application at startup. An LCF is required
both for the client and the service side.

4.5.1 Creating the local configuration file

As users, you must create an input file known as the local configuration definition file. This
input file must be made up of individual lines that comply with the following syntax:

– A line begins with an SVCU, SVCP, REQP, or BUFFER statement. The following are
specified with these statements:

SVCU service used
SVCP service offered
REQP request offered
BUFFER subtype (=typed buffer)

– Two operands are separated by a comma.

– A statement is concluded by a semicolon (‘;’).

– If the operands occupy more than one line, the continuation character ‘\’ (backslash)
must appear at the end of each line.

– A comment line begins with the ‘#’ character in column 1.

– Blank lines can be inserted, e.g. to improve legibility.

Using the xatmigen tool, you create the actual local configuration file (page 128) from the
file which contains the local configuration definition.

The four statements are described below.

SVCU statement: Define available service

In an SVCU statement, the characteristics required to call a service in the partner appli-
cation are described for the client/requester. You must specify an SVCU statement for each
service used if no default server is used.

You do not have to specify the SVCU statement if XATMI works with the UPIC carrier
system and a default server is specified in the UPIC Sideinformation file for which
transaction-code = remote-service-name = internal-service-name
and if the default settings are sufficient for the remaining parameter values.

X/Open interface XATMI Configuring

X/Open Interfaces 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

–

Default-Server:

To simplify the client server configuration openUTM allows to specify a default server in the
local configuration file by entering DEST=.DEFAULT in the SVCU statement.

If the calls tpcall, tpacall or tpconnect use a service svcname2 for which there is no
SVCU entry in the local configuration file, the following entry is used automatically:

SVCU svcname2, RSN=svcname2, TAC=scvname2, DEST=.DEFAULT, MODE=RR

In this event openUTM expects an appropriate default server entry in the KDCDEF file, for
example:

LTAC svcname2, ... , LPAP=BRANCH9

The partner, in this case BRANCH9, must, of course, still be known to openUTM.

internal-service-name
A name of up to 16 bytes under which a (remote) service can be addressed in the
local application. This name must be unique within the application.

Multiple definitions are not verified. The first internal-service-name is valid, any others
of the same name are ignored.

Mandatory operand!

RSN=remote-service-name
A name of up to 16 bytes of a service in the remote application. This name is trans-
ferred to the remote application (TPSVCINFO structure); it can appear repeatedly
in the LCF.

If this operand is omitted, the tool xatmigen sets the value internal-service-name for
RSN.

Operator Operand Explanation

SVCU internal-service-name maximum 16 bytes

[,RSN=remote-service-name] default: internal-service-name

[,TAC=transaction-code] default: internal-service-name

,DEST=destination-name partner application

[,MODE=RR / RN / CV]
RR=request/response, default
RN=request no response
CV=conversation

[,BUFFERS=(subtype-1,...,subtype-n)] default: no subtype

Configuring X/Open interface XATMI

124 X/Open Interfaces

TAC=transaction-code
A transaction code of up to 8 bytes with which the service is addressed in the local
application. You can use the utility program xatmigen to convert this transaction code
into an LTAC statement for KDCDEF generation. The corresponding naming
conventions in openUTM apply.

If this operand is omitted, the tool xatmigen sets the value internal-service-name for
TAC and, if necessary, truncates this to the first 8 bytes.

DEST= destination-name
A partner application identification of up to 8 bytes.

You must generate this name as lpapname in an OSI-LPAP or LPAP statement or in
a MASTER-OSI-LPAP or MASTER-LU61-LPAP statement.

.DEFAULT A default server is used.

mandatory operand!

MODE=RR / RN / CV
Determines which communication paradigm is used for the service:

RR request response paradigm (default value)
RN request with no response paradigm (single request), initiates the

start of an asynchronous TAC on the openUTM side
CV conversational paradigm

BUFFERS=(subtype-1,...,subtype-n
List of subtype names that can be sent to the service (the type X_OCTET is always
permitted). Each name can be up to 16 bytes long.

A separate BUFFER statement, which defines the characteristics of the particular
subtype, must be specified for each of the subtypes listed here (see BUFFER
statement page 126).

The BUFFERS= operand is sensitive to position and must (if specified) be the last
operand of the statement.

If BUFFERS= is omitted, only a buffer of type X_OCTET should be sent to the
service (no type verification is performed).

SVCP and REQP statement: Define service/request offered

● With an SVCP statement, the characteristics of an available end service are described
for the server. This service does not call any other services. An end service with the
conversational paradigm must be generated with PGWT-TAC classes (see page 131).

● With an REQP statement, the characteristics of an available intermediate service are
described for the server. This service in turn calls another service. Such services must
be generated with PGWT-TAC classes (see page 131).

X/Open interface XATMI Configuring

X/Open Interfaces 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

SVCP and REQP statements are optional serve generation to simplify UTM generation for
the user. If they are specified, you can use the tool xatmigen to create the suitable
KDCDEF statements for the services, see page 128 and page 131. Otherwise, users must
do this themselves.

SVCP The statement 'Service Provided' defines end services.

REQP The statement 'Request Provided' defines intermediate services.

internal-service-name
A name of up to 16 bytes under which a (remote) service is addressed in the local
application. This name must be unique within the application.

Multiple definitions are not verified. The first internal-service-name is valid, others of
the same name are ignored.

Mandatory operand!

TAC=transaction-code
A transaction code of up to 8 bytes with which the service program unit is started.
The naming conventions of openUTM apply.

You can use the utility program xatmigen to generate a communication model-
dependent TAC statement for KDCDEF generation, possibly with an associated
TACCLASS statement.

If this operand is omitted, xatmigen sets TAC=internal-service-name and, if
necessary, truncates this to the first 8 bytes.

PROG=program-name
A name of up to 8 bytes for the program unit that provides the service function. This
name is converted into a PROGRAM statement. You can use the utility program
xatmigen to convert this name into a PROGRAM statement for KDCDEF gener-
ation.

The naming conventions of openUTM apply.

Operator Operand Explanation

SVCP
REQP

internal-service-name maximum 16 bytes

[,TAC=transaction-code] default: internal-service-name

[,PROG=program-name] default: internal-service-name

[,COMP=compiler-language] default: C (under Unix and
Windows systems)
ILCS (unter BS2000 systems)

[,MODE=RR / RN / CV]
RR=request/response, default
RN=request no response
CV=conversation

Configuring X/Open interface XATMI

126 X/Open Interfaces

COMP=compiler-language
Describes the programming language of the service program unit and is converted
into the COMP= operand in the PROGRAM statement:

C C program, default value under Unix and Windows systems

COB2/MFCOBOL/NETCOBOL
COBOL program

CPP C++ program

ILCS Linkage via ILCS, default value under BS2000 systems

Only COMP=ILCS may be used under BS2000 systems.

MODE=RR / RN / CV
Determines which communication paradigm is used for the service:

RR request response paradigm, default value.
RN request with no response paradigm (single request). An

asynchronous TAC is generated in this case
CV conversational paradigm

BUFFER statement

A BUFFER statement defines a typed buffer. Buffers of the same name must be defined in
the same way on both the client side and the server side.
Multiple definitions are not verified. The first buffer entry is valid, all others are ignored.

Buffers of type “X_OCTET” have no special features and therefore do not require any
definition. Typed buffers are defined using the following parameters:

subtype-name
A buffer name of up to 16 bytes which must also be specified in the BUFFERS=
operand in the SVCU statement. The name must be unique in the application.

REC=referenced-record-name
Name of the data structure for the buffer, e.g. with C structures this is the name of
“typedef” or the “struct name”.

If the operand is omitted, xatmigen sets REC=subtype-name.

Operator Operand Explanation

BUFFER subtype-name maximum 16 bytes

[,REC=referenced-record-name] default: subtype-name

[,TYPE=X_COMMON / X_C_TYPE] default: xatmigen sets TYPE automati-
cally

X/W

X/W

X/W

B

B

B

X/Open interface XATMI Configuring

X/Open Interfaces 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

TYPE=
Type of buffer; for further details on types see page 111.

If the operand is omitted, xatmigen sets the type to X_C_TYPE or X_COMMON,
depending on which elementary data types were used.

TYPE is ignored if neither X_COMMON or X_C_TYPE is set for TYPE or if the data
structure is not of the specified buffer type.

In the generation run, the xatmigen tool also creates two additional operands with the
following meaning:

LEN=length length of the data buffer

SYNTAX=code syntax description of the data structure in code representation, as
specified in the table on page 112.

Configuring X/Open interface XATMI

128 X/Open Interfaces

4.5.2 The xatmigen utility

The xatmigen utility creates a local configuration file (LCF) from a file containing the local
configuration definition (LC definition file) and one or more files containing C or COBOL
data structures (LC description files), see diagram below:

The local configuration file is structured in the same way as the LC definition file, and differs
from this only in the additional descriptions of the buffer type, buffer length, and buffer
syntax string. In other words, the operands LEN=, SYNTAX=, and possibly TYPE= are
added to the BUFFER statements compared to the definition file.

If the buffer type is not specified in the LC definition file, xatmigen generates the “smallest”
value range for the buffer type, i.e. first the type X_COMMON.

All file names must be specified explicitly. If desired, a file can be created which contains
the generation statements for KDCDEF.

Success and error messages are written to stdout and stderr under Unix and Windows
systems.

Success and error messages are written to SYSOUT and SYSLST under BS2000 systems.

Although in principle it is possible to edit the LCF, you are strongly advised not to do this.

Calling xatmigen

Under Unix and Windows systems, xatmigen is called with

xatmigen parameter

xatmigen

Local configuration file
(LCF)

Input for KDCDEF

data structures
LC

(optional)

definition file
Files containing

X/W

X/W

B

X/W

X/W

X/Open interface XATMI Configuring

X/Open Interfaces 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

xatmigen can be found in themfollowing directory:

utmpath/xatmi/ex (Unix systems) or

utmpath\xatmi\ex (Windows systems)

Under BS2000, you start xatmigen with the SDF command START-XATMIGEN.
Alternatively, you can also start xatmigen using the following command:

/START-EXECUTABLE-PROGRAM FROM-FILE=*LIB
ELEM(LIBRARY=$userid.SYSLNK.UTM.063.UTIL,ELEMENT-OR-SYMBOL=XATMI-GEN)

You can specify the following parameters; the switches (-d, -l, -i, -c) must be written in
lowercase:

[utm]
Ë-dËlcdf-name
[Ë-lËlcf-name]
[Ë-i]
[Ë-cËstringcode]
[Ëdescript-file-1]... [Ëdescript-file-n]

utm If “utm” is specified, xatmigen creates a file with generation statements for
KDCDEF from the SVCU, SVCP, and REQP statements. xatmigen only generates
TAC and TACCLASS statements for applications with process limitation-based job
control. The generation statements created by xatmigen must be supplemented
before the UTM generation, see page 131.

If specified, utm must always be the first xatmigen parameter. If it is not specified,
no generation statements are created.

the generated file has the name xtutm.def. The file is written into the current
directory (Unix systems) or into the current user ID (BS2000 systems).

-dËlcdf-name
Name of the LC definition file; mandatory specification.

-lËlcf-name
Name of the local configuration file to be created. The name must comply with the
conventions of the operating system in question.

If the LCF is used simultaneously for a Unix and Windows system oder for a
BS2000 and Windows system, it is advisable to choose a name with a maximum of
8 characters and add the extension “.lcf”.

Any existing LCF of the same name is automatically overwritten.

If the switch is omitted, xatmigen creates the xatmilcf file in the current directory
(Unix-/Windows system) or in the current user ID (BS2000 system).

X/W

X

W

B

B

B
B

Configuring X/Open interface XATMI

130 X/Open Interfaces

-i Interactive mode: the string code is queried for each typed buffer containing a
character array. The possible specifications for the string code are described under
the “-c” switch.

The -i switch takes priority over a -c switch, if this is specified.

If xatmigen is running in the background or in batch mode, the -i switch must not
be specified.

-cËstringcode
the specified string type applies for the entire xatmigen run, i.e. for all character
arrays. In interactive mode (“-i”), the “-c” switch is ignored.

The following can be specified for stringcode (see table on page 112):

C octet string
C! octet string, terminated by '\0'
T T.61 string
T! T.61 string, terminated by '\0'

If no value is specified, T! is used.

Single characters are also interpreted as T.61 string (stringcode= t).

descript-file-1... Ëdescript-file-n
List of files containing the include files or COPY elements with the data structures
of the typed buffers.

If this statement is not present, only buffer type X_OCTET is permitted.

Note

The -d switch and, if specified, the -l and -c switches must each be followed by the
associated parameter. Specification of the switch without this parameter is not permitted.

X/Open interface XATMI Configuring

X/Open Interfaces 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.5.3 KDCDEF generation

For an XATMI application to be functional, you must carry out the following steps:

– generate TAC classes for which PGWT is permitted in applications with process
limitation

– generate TACs for which PGWT is permitted in applications with priority-based control

– define the program units of the services offered locally
(TAC and PROGRAM statements)

– define the services used on the remote system
(LTAC statements)

– generate the OSI TP or LU6.1 connections

4.5.3.1 TACs with PGWT=YES

A service is always linked to a work process (Unix and Windows systems) or task (BS2000
systems). As soon as both requests and conversational services are contained in a server
application, at least two work processes or tasks must be started and a TAC class for which
PGWT calls must be permitted for the TAC.

This is not necessary for an application that contains only request/response services.

4.5.3.2 Number of sessions (LU6.1) or associations (OSI TP)

With each XATMI call tpcall(), tpacall() and tpconnect() a service is addressed in openUTM
(KDCS APRO call). This means that a separate session or association must be generated
for each of these XATMI calls.

4.5.3.3 Defining the services offered

The following KDCDEF statements must be specified for the services offered:

● A PROGRAM and TAC statement for each program unit that provides a service
function. The TAC statement must contain the operand API=(XOPEN,XATMI).

If “utm” is specified as the carrier system parameter in the xatmigen utility, a PROGRAM
statement and a TAC statement are created for each SVCP or REQP statement. These
statements can be used in unchanged form as KDCDEF input.

Example:

PROGRAM svcproc1, COMP = ILCS
TAC service1, PROGRAM = svcproc1, API = (XOPEN,XATMI)
PROGRAM svcproc2, COMP = ILCS
TAC service2, PROGRAM = svcproc2, API = (XOPEN,XATMI)

Configuring X/Open interface XATMI

132 X/Open Interfaces

● The corresponding statements must be specified for each connection to a remote
partner:

– The statements ACCESS-POINT, OSI-LPAP, and OSI-CON for OSI TP connections
to an openUTM or OpenCPIC partner, e.g. as follow:

* name of local access point
ACCESS-POINT server,

P-SEL = *NONE, S-SEL = *NONE, T-SEL = C'tsel',

* local name of remote partner
OSI-LPAP lcltname,

ASSOCIATION-NAMES = assoname,
ASSOCIATIONS = 2, CONTWIN = 1, CONNECT = 1,
APPLICATION-CONTEXT = {XATMIAC| XATMICCR}

* local name of connection
OSI-CON lconname,

P-SEL=*NONE, S-SEL=*NONE,
T-SEL=C'tsel', N-SEL=C'machname',
LOCAL-ACCESS-POINT = server,
OSI-LPAP = lcltname

– The statements CON, LPAP and LSES must be specified for LU6 connections to an
openUTM or OpenCPIC partner, see the openUTM manual “Generating Applica-
tions”.

– No automatic conversion may be generated, i.e. MAP = SYSTEM may not be set
for the OSI-CON or SESCHA statement.

– A PTERM statement must be specified for each UPIC partner, e.g. :

PTERM tnsclient, PTYPE=UPIC-R, PRONAM=DxxxSyyy (with UPIC-Remote)
PTERM client1, PTYPE=UPIC-L (with UPIC-Local)

If the client transfers security-related data (user, password), a USER statement is
also required.

4.5.3.4 Defining the services used

An LTAC statement must be specified for each service called. If xatmigen is called with the
“utm” carrier system, xatmigen automatically creates an LTAC statement of the form LTAC
ltac for each SVCU statement.

You must still supplement these LTAC statements with the operand LPAP= and possibly
other operands such as RTAC= or TYPE=. All other KDCDEF statements for the remote
partner, such as LPAP or OSI-LPAP, must likewise be inserted.

X/Open interface XATMI Configuring

X/Open Interfaces 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.5.3.5 Example of requester generation

The example below illustrates the steps involved in XATMI requester generation. The
generation is for a central “hotel reservation application” “BOOKER” (requester) which is
linked on the one hand to “TRAVEL-AGENCY” client applications in the travel agency and
on the other hand to the two hotel management applications “JUPITER” and “SATURN”
(servers) in the hotels.

BOOKER offers the services “inquiry”, “booking”, and “bookinit”, which can be called by the
clients; each of the two servers offers the end services “freerooms” and “occupy_rooms”.
The following apply:

– “bookinit” is an end service and is used to initialize BOOKER.

– “inquiry” and “booking” are intermediate services which request rooms in the various
hotels and then book the room. They are implemented as the functions “inqproc” and
“bookproc”.

– “inquiry” uses the conversational paradigm and calls the end services “freerooms” in the
two hotels. “freerooms” is addressed in BOOKER by “sat_freerooms” or
“jup_freerooms”. The “freerooms” service does not require typed buffers.

– “booking” uses the synchronous request/response paradigm and calls the end services
“occupy_rooms” in the two hotels. “occupy_rooms” is addressed in BOOKER by
“sat_occupy” or “jup_occupy”. The “occupy-rooms” service requires a personal data
record “t_person” under the buffer name “personbuffer”.

The generation is carried out in the following steps:

1. Supply data structures (LC description files).

Client

booking
bookinit

inquiry

TRAVEL-

BOOKER

sat_freerooms
sat_occupy

jup_occupy
jup_freerooms SATURN

Requester Server

occupy_rooms
freerooms

AGENCY

JUPITER

occupy_rooms
freerooms

booking
bookinit

inquiry

calls:

Configuring X/Open interface XATMI

134 X/Open Interfaces

The participating partners must agree on uniform data structures and each must make
itself known to the others. These data structures (in C or COBOL) describe the typed
buffers:

userbuf.h file

typedef struct {
char name[20];
char sex;
short persons;
float huge;
int duration_of_last_visits[16];

} t_person;

2. Create the input file for the local configuration file (LC definition file).

The services and buffers used are defined in this file:

booker.def file

services provided:
SVCP bookinit;
REQP inquiry, PROG=inqproc, MODE=CV;
REQP booking, TAC=booktac, PROG=bookproc, MODE=RR;

services called:
SVCU sat_freerooms, RSN=freerooms, TAC=frmtac, DEST=SATURN;
SVCU sat_occupy, RSN=occupy_room, TAC=occtac, DEST=SATURN \

BUFFERS=(personbuffer);
SVCU jup_freerooms, RSN=freerooms, TAC=frmtac, DEST=JUPITER;
SVCU jup_occupy, RSN=occupy_room, TAC=occtac, DEST=JUPITER \

BUFFERS=(personbuffer);

subtypes used:
BUFFER personbuffer, REC=t_person;

X/Open interface XATMI Configuring

X/Open Interfaces 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

3. Generate the local configuration

The local configuration is created with the xatmigen utility program. When called, the
input files for the typed buffer and for the LCF must be specified. If the generation run
is error-free, xatmigen creates the local configuration file, in this example together with
the frame for KDCDEF.

Call under Unix and Windows systems:
xatmigen utm -c C -l booker.lcf -d booker.def userbuf.h

Call under BS2000 systems:
/START-XATMIGEN
% ENTER CCM0001 PARAMETER:
* params utm -c C -l BOOKER.LCF -d BOOKER.DEF USERBUF.H

xatmigen creates the following files:

booker.lcf file:

services provided:
SVCP bookinit TAC=bookinit PROG=bookinit COMP=C MODE=RR;
REQP inquiry TAC=inquiry PROG=inqproc COMP=C MODE=CV;
REQP booking TAC=booktac PROG=bookproc COMP=C MODE=RR;
COMP = ILCS under BS2000 systems

services called:
SVCU sat_freerooms RSN=freerooms TAC=frmtac DEST=SATURN MODE=RR;
SVCU sat_occupy RSN=occupy_room TAC=occtac DEST=SATURN MODE=RR \

BUFFERS=(personbuffer);
SVCU jup_freerooms RSN=freerooms TAC=frmtac DEST=JUPITER MODE=RR;
SVCU jup_occupy RSN=occupy_room TAC=occtac DEST=JUPITER MODE=RR \

BUFFERS=(personbuffer);

subtypes used:
BUFFER personbuffer REC=t_person TYPE=X_C_TYPE LEN=91 \

SYNTAX=C20csfI16;

xtutm.def file:

*#services provided:
TAC bookinit, PROGRAM = bookinit, API = (XOPEN,XATMI)
PROGRAM bookinit, COMP = C // COMP = ILCS under BS2000 systems
MAX TASKS-IN-PGWT=1
TACCLASS 1, TASKS-FREE=1, PGWT=YES
TAC inquiry, PROGRAM = inqproc, API = (XOPEN,XATMI)
PROGRAM inqproc, COMP = C // COMP = ILCS under BS2000 systems
TAC booktac, PROGRAM = bookproc, API = (XOPEN,XATMI)
PROGRAM bookproc, COMP = C // COMP = ILCS under BS2000 systems
* #services called:
LTAC frmtac , WAITTIME=(10,30)

X/W

X/W

B
B
B
B

Configuring X/Open interface XATMI

136 X/Open Interfaces

LTAC occtac , WAITTIME=(10,30)
LTAC frmtac , WAITTIME=(10,30) // delete afterwards
LTAC occtac , WAITTIME=(10,30) // delete afterwards
*# used buffer

4. Generating the UTM application

First of all, the input file of the KDCDEF run must be created (e.g. using an editor). As
a template use the “xtutm.def” file, generate the connection to the HOTEL application,
and add all other necessary KDCDEF statements; see the openUTM manual “Gener-
ating Applications”. A mixture of XATMI program units, CPI-C program units, and KDCS
program units is permitted in an UTM application.

Then proceed with the UTM application as with any other UTM application, i.e. generate
with KDCDEF, link the application, and start it.

X/Open interface XATMI Creating XATMI applications

X/Open Interfaces 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.6 Creating XATMI applications

An XATMI application is an UTM application containing XATMI program units. It is therefore
started in the same way as any “normal” UTM application.

Include files for C programs and COPY elements for COBOL programs are available for
creating XATMI applications under openUTM.

The library which you need for linking is described in the sections "Linking the application
under Unix and Windows systems" and "Linking the application under BS2000 systems".

4.6.1 Include files and COPY elements

The following include files are required in C modules with XATMI calls:

● Under Unix and Windows systems the include file xatmi.h which is located in teh
following drectory:

– utmpath/xatmi/include (Unix systems)

– utmpath\xatmi\include (Windows systems)

xatmi.h includes the supplied xatmidef.h file, located in the same directory.

● Under BS2000 systesm, the XATMI.H. include file
This file is contained in the $userid.SYSLIB.UTM-D.063.XOPEN library.
(XATMI.H includes the XATMIDEF.H file which is part of delivery and located in the
same library).

● The file(s) with the data structures for all typed buffers used in the module, see also
page 110.

The following COPY elements are required for COBOL modules with XATMI calls:

● The TPSTATUS, TPTYPE, TPSVCDEF, TPSVCRET COPY elements and
TPRETURN.

● Under Unix and Windows systems the include file xatmi.h which is located in teh
following drectory:

– utmpath/xatmi/copy-cobol85 bzw. utmpath/xatmi/netcobol (Unix systems)

– utmpath\xatmi\copy-cobol85 bzw. utmpath\xatmi\netcobol (Windows systems)

Under BS2000 systems, these COPY elements are in the
$userid.SYSLIB.UTM.063.XOPEN library.

● The file(s) with the data structures for all “typed records” used in the module.

X/W

X/W

X

W

X/W

B

B

B

B

X/W

X/W

X

W

B

B

Creating XATMI applications X/Open interface XATMI

138 X/Open Interfaces

Under BS2000 systems, all program units must be compiled with the LINKAGE option for
ILCS.

4.6.2 Linking the application under Unix and Windows systems

When you link an XATMI server application, the following libraries must also be linked.

● All service program units and modules

● On Unix systems, the XATMI server library utmpath/sys/libxopen

● The OSS library; (required for OSI TP protocol only)

● The openUTM library

● On Unix systems, the mathematical library (-lm statement)

4.6.3 Linking the application under BS2000 systems

When linking an XATMI server application, the following libraries must also be linked.

1. all service program units and modules

2. The $userid.SYSLIB.UTM.063.XOPEN XATMI server library

3. The libraries for CRTE, e.g. SYSLNK.CRTE

4. The openUTM library

B
B

X/W

X/W

X

X

X/W

X

B

B

B

B

B

X/Open interface XATMI Environment or job variables for XATMI

X/Open Interfaces 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.7 Environment or job variables for XATMI

openUTM evaluates a number of environment variables (under Unix and Windows
systems) or job variables (under BS2000 systems) for XATMI applications. The
environment variables or job variables must be set before the application is started.

Traces can be activated for error diagnosis during application runtime, see see section
“Controlling the trace”.

4.7.1 Environment variables under Unix and Windows systems

For an XATMI application, the following environment variables are evaluated:

XTLCF Name of the local configuration file (LCF)
The file name of the local configuration file must comply with the operating
system conventions.

If this variable is not set, a search is made under the name xatmilcf in the
current directory.

XTPALCF Defines the search path for additional descriptions of typed buffers.
The buffer descriptions are read from local configuration files with the name
xatmilcf or from the name specified in XTLCF.

A search for all important XATMI generations (e.g. SVCU ...) is performed
in the local configuration file specified using XTLCF.

A search for local configuration files is performed in all the directories
specified in XTPALCF and the typed buffer descriptions are gathered inter-
nally (If multiple buffers have the same name only the first buffer description
is used).

The search path structure is exactly the same as in the PATH environment
variable:

directory1:directory2: ... (Unix systems)

directory1;directory2; ... (Windows systems)

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X

W

Environment or job variables for XATMI X/Open interface XATMI

140 X/Open Interfaces

4.7.2 Setting job variables under BS2000 systems

For an XATMI application, you can set job variables which are linked with the application
via the following names (link names):

XTLCF Link to job variable containing the file name of the local configuration file
(LCF).
The file name of the local configuration file must comply with the operating
system conventions.
A search is performed for the file in the current user ID.

If XTLCF is not allocated to a job variable, a search is performed under the
name XATMILCF in the current user ID.

XTPALCF Link to job variable containing the search path for additional descriptions of
typed buffers.
The buffer description are read from local configuration files with the name
XATMILCF or from the name specified in XTLCF.

A search for all important XATMI generations (e.g. SVCU ...) is performed
in the local configuration file specified via XTLCF.

A search for local configuration files is performed in all the user IDs
specified in the search path and the typed buffer descriptions are gathered
internally from these files (If multiple buffers have the same name, only the
first buffer description is used).

The search path is specified in the format id1:id2:

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

X/Open interface XATMI Interaction with the TX interface

X/Open Interfaces 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.8 Error diagnostics in XATMI programs

XATMI calls are mapped to KDCS calls. The UTM dump therefore also contains only the
KDCS calls in the case of XATMI program units. However, for the purpose of diagnosing
XATMI programs, you can also generate a trace of the XATMI calls in addition to the UTM
dump.

4.8.1 Controlling the trace

The XATMI trace can be controlled as follows:

● The UTM start parameter XATMI-TRACE can be used to enable the trace when the
application is started, see the relevant
openUTM manual “Using openUTM Applications”.

● The trace can be enabled or disabled during operation using WinAdmin or WebAdmin.
To do this go to the dialog Properties of UTM Application, tab Diagnosis and Account, field
XATMI Trace.

● The trace can be enabled or disabled during operation via the KDCADMI administration
program interface. This is done using the field xatmi_trace in the data structure
kc_diag_and_account_par_str, see openUTM manual “Administering Applications”.

You can set the following trace levels:

Level Meaning

ERROR Only errors are logged.

INTERFACE Includes the ERROR level. XATMI calls are also logged.

FULL Includes the INTERFACE level. All KDCS calls to which the XATMI calls are
mapped are also logged.

DEBUG Includes the FULL level. Diagnostic information is also logged.

OFF Trace is disabled.

Interaction with the TX interface X/Open interface XATMI

142 X/Open Interfaces

4.8.2 Name of the trace file

Trace file under Unix and Windows systems

The trace records are written to the file KDC.TRC.XATMI.appliname.hostname.pid in the
directory filebase. Where:

appliname
Name of the application

hostname
Name of the host on which the application is running.

pid PID of the process.

Trace file under BS2000 systems

By default, the trace records are written to the file
KDC.TRC.XATMI.appliname.hostname.tsn. Where:

appliname
Name of the application

hostname
Name of the host on which the application is running.

tsn TSN of the UTM task

In the UTM start procedure, you can also set up a different trace file for each task and use
the SET-FILE-LINK command to assign it the link name KDCXATMI.

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

B

B

B

BB

B

BB

B

BB

B

B

X/Open interface XATMI Interaction with the TX interface

X/Open Interfaces 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

4.9 Interaction with the TX interface

For a description of the TX interface under openUTM please see chapter 5.

Under openUTM, XATMI programs are always servers. XATMI programs under openUTM
contain no TX calls since only XATMI client programs require TX calls for transaction
control.

When an XATMI service is called, the client uses the call parameter flag (in C) or the
TPTRAN-FLAG (in COBOL) to control whether or not a called UTM service is included in
the global transaction.
The XATMI-C interface includes the service in the global transaction by default. In order to
exclude the service from the global transaction, you must set the TPNOTRAN flag explicitly.
No default value exists for the XATMI-COBOL interface, you must set either TPTRAN or
TPNOTRAN.

If the service is started with the TPTRAN flag, it is included in the global transaction and TX
calls are not required.
When using the tpreturn() call, the parameter rval returns the values TPSUCCESS or
TPFAIL. This determines whether the transaction is terminated successfully or reset.

For further information on the interaction between the TX and XATMI interfaces refer to the
X/OPEN specification “Distributed Transaction Processing: The XATMI Specification”,
section "Transaction Functions Affecting the XATMI Interface".

Messages X/Open interface XATMI

144 X/Open Interfaces

4.10 Messages

The messages for XATMI and xatmigen are listed below.

XATMI messages

XATMI messages have the form XTnn messagetext... and are output to stderr under Unix
and Windows systems or SYSOUT under BS2000 systems.

XT01 KATMI(&PID) SERVER initiated
LC-file : &LCF
Tracefile: &TRACEFILE

Meaning
Start message:
&PID Process ID (under Unix and Windows systems) or task number (under
BS2000s ystems)
&LCF Name of the local configuration file
&TRACEFILE Name of trace file without generation number

XT02 KATMI(&PID) Local configuration: &ERRTXT

Meaning
Error in the local configuration file. &ERRTXT returns a supplementary text.

XT03 XATMI(&PID) Error: &ERRTXT

Meaning
Error when calling an XATMI function. &ERRTXT returns a supplementary text.

XT04 KATMI(&PID) System error: &ERRTXT

Meaning
System error

xatmigen messages

xatmigen messages have the form XGnn messagetext... and are output to stderr under
Unix and Windows systems or SYSOUT under BS2000 systems.

Under Unix systems, use the LANG environment variable to control whether you want
German or English messages.

In BS2000 systems you can assign the link name LANG to different job variables on a task-
specific basis and set the value 'D' or 'E' as the language identifier. In this way, you can
specify whether you want to receive German or English messages.

X

X

B

B

B

X/Open interface XATMI Messages

X/Open Interfaces 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

XG01 Generation of the local configuration files: &LCF / &DEF / &CODE

Meaning
Start message of Tool.
&LCF name of local configuration file created
&DEF name of generation fragment created
&CODE string code for character array

XG02 Generation terminated successfully

Meaning
The LCF was created; generation was terminated successfully.

XG03 Generation terminated successfully with warnings

Meaning
The LCF was created. Nevertheless, a warning is output because unnecessary files were
specified, for example. However, this warning has no effect on the generation.

XG04 Generation terminated by error
No file created.

Meaning
The LCF was not created; the generation could not be performed. The cause can be deter-
mined from previous messages

XG05 &FTYPE file'&FNAME'

Meaning
This message specifies the file currently being edited, in the following form:
&FTYPE: “description” file contains data structures

“definition” file contains the LCF input
“LC” file contains the local configuration

&FNAME: Filename

XG10 Call: &PARAM

Meaning
Syntax error when calling XATMIGEN:
PARAM: possible call parameters and switches

XG11 [Error] Cannot create &FTYPE file 'FNAME
&REASON

Meaning
The &FNAME file of type &FTYPE cannot be created
&REASON contains a more precise explanation.
&FTYPE: GEN = generation fragment file (=generation statements)

LC = local configuration file

Messages X/Open interface XATMI

146 X/Open Interfaces

XG12 [Warning] File not found.

Meaning
The definition file or a description file was not found; perhaps the file does not exist.

XG13 [Warning] Too many &OBJECTS, Maximum: &MAXNUM

Meaning
Message indicating that too many objects were found.
&OBJECTS: subtypes
&MAXNUM: maximum number

XG14 [Error] Line &LINE: Syntaxerror, &helptext

Meaning
Syntax error in line &LINE of the LC definition file
&HELPTEXT: help text

XG15 [Error] Line &LINE: No record definition found for buffer &BUFF

Meaning
No associated record definition could be found for the buffer &BUFF in line &LINE.

XG16 [Error] Line &LINE: Basictype error in buffer &BUFF

Meaning
The syntax description of the buffer &BUFF in line &LINE of the LCF contains an incorrect
basic type (int, short, etc.).

XG17 [Error] Cannot open &FTYPE file '&FNAME’.
&REASON

Meaning
The &FNAME file of type &FTYPE cannot be opened..
&REASON: contains a more detailed explanation.
&FTYPE: DEF (= LC definition file)

XG18 [Error] &REASON

Meaning
General error.
&REASON contains a detailed reason for the error.

XG19 [Message] Created new buffer: '&BUFF'

Meaning
&BUFF: created buffer

XG20 [Message] Service name '&SVC' truncated to 16 characters!

Meaning
&SVC : service name.

X/Open interface XATMI Messages

X/Open Interfaces 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
4

XG21 [Message] Line &LINE: unknown statement line '&HELPTEXT'

Meaning
Message for the line &LINE in the LC definition file
&HELPTEXT: help text (part of LC-line)

XG22 [Message] Line &LINE: Default set MODE='&TEXT'

Meaning
Message for the line &LINE in the LC definition file
&TEXT: set default mode

T.61 character set X/Open interface XATMI

148 X/Open Interfaces

4.11 T.61 character set

Meaning of abbreviations:

0 1 2 3 4 5 6 7 8 9 ... F

0 SP 0 @ P p

1 ! 1 A Q a q

2 " 2 B R b r

3 # 3 C S c s

4 ¤ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7 ´ 7 G W g w

8 BS (8 H X h x

9 SS2) 9 I Y i y

A LF SUB * : J Z j z

B ESC + ; K [k PLD CSI

C FF , < L l | PLU

D CR SS3 - = M] m

E LS1 . > N n

F LS0 / ? O - o

Code table T.61 in accordance with CCITT recommendation

BS= BACKSPACE SUB= SUBSTITUTE CHARACTER

LF= LINE FEED ESC= ESCAPE

FF= FORM FEED SS3= SINGLE-SHIFT THREE

CR= CARRIAGE RETURN SP= SPACE

LS1= LOCKING SHIFT ONE PLD= PARTIAL LINE DOWN

LS0= LOCKING SHIFT ZERO PLU= PARTIAL LINE UP

SS2= SINGLE-SHIFT TWO CSI= CONTROL SEQUENCE INTRODUCER

X/Open Interfaces 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
5

5 X/Open TX interface

TX (Transaction Demarcation Interface) is a standardized X/Open program interface for
defining transactions across hosts. It is available in both COBOL and C.

This chapter describes the particularities of the TX interface under openUTM. For a detailed
description of the TX interface and the call formats, refer to the X/Open CAE specification
“Distributed Transaction Processing: The TX (Transaction Demarcation) Specification” of
April 1995.
Below it is assumed that readers are familiar with this specification.

5.1 transaction_control characteristic

The TX interface allows you to execute transactions either chained or unchained.

If the transaction_control characteristic has the value TX_CHAINED, then you need only
start the first transaction explicitly: the end of transaction implicitly marks the start of the
next transaction.

If the transaction_control characteristic has the value TX_UNCHAINED, then you have to
mark the start of each transaction explicitly.

openUTM always works with transaction_control=TX_CHAINED.
When a service starts under openUTM a transaction is automatically initiated. This means
that it is also unnecessary to mark the first transaction.

TX interface calls under openUTM X/Open TX interface

150 X/Open Interfaces

5.2 TX interface calls under openUTM

The table below lists all the TX calls which are available under openUTM.

5.2.1 Particularities of TX calls under openUTM

tx_commit, tx_rollback

If reception of the value CM_TAKE_COMMIT_DEALLOCATE in status_received results in a
tx_commit or tx_rollback call, then control is not returned to the CPI-C program unit.
tx_commit() or tx_rollback() is internally mapped to the KDCS PEND call and the server
program is terminated.

The tx_commit and tx_rollback calls are not permitted if one or more of the partners
involved in the global transaction are communicating via the LU6.1 protocol.

tx_set_commit_return

Under openUTM the only value permitted is TX_COMMIT_COMPLETED.

The value TX_COMMIT_DECISION_LOGGED is rejected with TX_NOT_SUPPORTED.

tx_set_transaction_control

Under openUTM the only value permitted is TX_CHAINED.

The value TX_UNCHAINED is rejected with TX_PROTOCOL_ERROR.

tx_open

Always returns the value TX_OK.

C call COBOL call Description

tx_commit TXCOMMIT terminate global transaction successfully

tx_rollback TXROLLBACK reset global transaction

tx_info TXINFORM query global transaction information

tx_set_commit_return TXSETCOMMITRET set commit_return characteristic

tx_set_transaction_control TXSETTRANCTL set transaction_control characteristic

tx_set_transaction_timeout TXSETTIMEOUT set transaction_timeout characteristic

tx_open TXOPEN open set of Resource Managers

X/Open TX interface Interaction with the CPI-C interface

X/Open Interfaces 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
5

Unsupported calls

tx_begin

This call is rejected with TX_PROTOCOL_ERROR since openUTM automatically opens a
transaction when a service is started.

tx_close

This call is rejected with TX_PROTOCOL_ERROR since it is only permitted when no trans-
action is being processed. However, a transaction is always open under openUTM.

5.3 Interaction with the CPI-C interface

In CPI-C program units, the conversation characteristic Sync_Level controls the integration
of a service into a global transaction. If Sync_Level has the value CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM the service is integrated into the global transaction.

If the CPI-C interface is used, the end of transaction is always requested by the client.

Services are not restarted at the CPI-C interface following a malfunction or system crash
as they are at the KDCS interface.

Under openUTM it is necessary to distinguish between two Cases of TX call functionality in
CPI-C services:

Case 1: the initiator integrates the acceptor into a global transaction

If a client (initiator) integrates a CPI-C service which is running under openUTM into a global
transaction then the TX calls in a CPI-C service running under openUTM are used for confir-
mation purposes.

In this case, the acceptor (server) receives the value CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM in the Extract_Sync_Level call. In the event of a
Receive call, the value passed by the client to the status_received field determines whether
a tx_commit() or tx_rollback() is required in the called service.

Interaction with the CPI-C interface X/Open TX interface

152 X/Open Interfaces

Case 1 occurs if the client

– is an UTM application which has established the connection via the OSI TP protocol
and has selected the COMMIT Functional Unit

– is an OpenCPIC application which has established the conversation with Sync_Level
CM_SYNC_POINT or CM_SYNC_POINT_NO_CONFIRM

– is an external application which is using the CPI-C interface and has established the
conversation with Sync_Level CM_SYNC_POINT or
CM_SYNC_POINT_NO_CONFIRM

Case 2: the initiator does not integrate the acceptor into a global transaction

If a client (initiator) does not integrate a CPI-C service which is running under openUTM into
a global transaction then the called server program implicitly becomes the root of a global
transaction. The TX calls then function as requests and control the global transaction.

In this case, the acceptor (server) receives the value CM_NONE or CM_CONFIRM in the
Extract_Sync_Level call. In the server program, the tx_commit() and tx_rollback() calls
determine whether the global transaction is successfully concluded or reset.

Case 2 occurs if the client

– is an UTM application which has established the connection via the OSI TP protocol
and has not selected the COMMIT Functional Unit

– is an OpenCPIC application which has established the conversation with Sync_Level
CM_NONE or CM_CONFIRM

– is an UPIC application

– is an external application which is using the CPI-C interface and has established the
conversation with Sync_Level CM_NONE or CM_CONFIRM

For further information on interaction between the TX and CPI-C interfaces, refer to the
X/Open specification “Distributed Transaction Processing: The CPI-C Specification,
Version 2”, section "Effects of Calls on Half-Duplex Conversations to X/Open TX Interface".

The chapter entitled "Program-to-Program Communication Tutorial" in the X/Open specifi-
cation also contains two example scenarios for the use of TX calls in CPI-C programs.
These examples correspond to the processing sequence under openUTM: "Sending
Program Issues a Commit" and "Two Chained Transactions".
In these examples, openUTM is always "System Y", that is to say the server.

The functionality of the TX interface in openUTM client programs is described in the User
Guide “openUTM Client V4.0, OpenCPIC Carrier System”.

X/Open TX interface Interaction with the XATMI interface

X/Open Interfaces 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
5

5.4 Interaction with the XATMI interface

TX calls are not needed for transaction control in XATMI services under openUTM.

The call parameter flag (in C) or the TPTRAN-FLAG field (in COBOL) determine whether or
not XATMI services are integrated into global transactions.

The XATMI call tpreturn() determines whether a transaction is successfully terminated or
reset. No TX calls are required.
The transaction is successfully terminated or reset depending on whether the value
TPSUCCESS or TPFAIL is returned in the rval parameter.

The service is integrated into the global transaction by default at the XATMI-C interface. If
you do not want to integrate the service into the global transaction, you must specify this
explicitly by setting the TPNOTRAN flag.
There is no default value for the XATMI-COBOL interface and you must set either TPTRAN
or TPNOTRAN.

For further information on the interaction between the TX and XATMI interfaces, refer to the
X/Open specification “Distributed Transaction Processing: The XATMI Specification”,
section “Transaction Functions Affecting the XATMI Interface”.

Examples for the use of the TX interface X/Open TX interface

154 X/Open Interfaces

5.5 Examples for the use of the TX interface

The two flow charts below indicate how the CPI-C and TX interfaces have to be coordinated
if the client is to integrate the called service into a global transaction.

1. Server program is integrated into the global transaction and the transaction is termi-
nated successfully

tx_begin
(start global transaction)

tx_set_transaction_control
(TX_CHAINED)

Set_Transaction_Control
 (CM_CHAINED_TRANSACTIONS)

("Chained Transaction" mode for
both TX and CPI-C call)

Initialize_Conversation

Set_Sync_Level
CM_SYNC_POINT_NO_CONFIRM

(Integrate partner in transaction)

Allocate

Send_Data

Receive

Defer_Deallocate
tx_commit

TX_OK

OSI TP client

Accept_Conversation

Extract_Sync_Level
CM_SYNC_POINT_NO_CONFIRM

Receive

Send_Data

Receive

(The partner program receives the
Deallocate and Commit information
via the value in status_received:)

CM_TAKE_COMMIT_DEALLOCATE

tx_commit

return

openUTM server

X/Open TX interface Examples for the use of the TX interface

X/Open Interfaces 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
5

2. The server program is integrated into the global transaction and the transaction is reset

tx_begin
(start global transaction)

tx_set_transaction_control
(TX_CHAINED)

Set_Transaction_Control
 (CM_CHAINED_TRANSACTIONS)

("Chained Transaction" mode for
both TX and CPI-C call)

Initialize_Conversation

Set_Sync_Level
CM_SYNC_POINT_NO_CONFIRM

(Integrate partner in transaction)

Allocate

Send_Data

Receive

tx_rollback

TX_OK

Send_Data

Receive

OSI TP client

Accept_Conversation

Extract_Sync_Level
CM_SYNC_POINT_NO_CONFIRM

Receive

Send_Data

Receive

(The partner program receives the
backout information via the value
in status_received:)

CM_TAKE_BACKOUT

tx_rollback

Receive

Send_Data

openUTM server

Creating an application with TX calls X/Open TX interface

156 X/Open Interfaces

Note:

In the case of multi-step transactions, you should query the status of the conversation with
which you want to maintain communication after every TX transaction control call
(Extract_Conversation_State). The returned status informs you whether the conversation is
in Send or Receive state. You can then continue the program run with a Receive or Send call
as appropriate.
This query prevents CM_STATE_CHECK errors which can occur if the sequence of Send
and Receive calls in incorrect.

5.6 Creating an application with TX calls

An include file is supplied with openUTM to support you when creating programs containing
TX calls in C. COPY elements are supplied for COBOL.

Files and libraries for the TX interface under Unix and Windows systems

● The include file tx.h is supplied for C. This file is located under:

– utmpath/tx/include/tx.h (Unix systems)

– utmpath\tx\include\tx.h (Windows systems)

● The COPY elements TXSTATUS and TXINFDEF are supplied for COBOL. These files are
located under:

– utmpath/tx/copy-cobol85 or utmpath/tx/netcobol (Unix systems)

– utmpath\tx\copy-cobol85 or utmpath\tx\netcobol (Windows systems)

● You must use the following library to link the programs on Unix systems

– utmpath/sys/libxopen

Files and libraries for the TX interface under BS2000 systems

The library $userid.SYSLIB.UTM-D.063.XOPEN is supplied under BS2000 systems.

You must use this library to link the programs.

The include file for C (TX.H) and the COPY elements for COBOL (TXSTATUS and
TXINFDEF) are also present in this library as type S elements.

X/W

X/W

X

W

X/W

X/W

X

W

X

X

B

B

B

B

B

X/Open TX interface Diagnosing errors in TX calls

X/Open Interfaces 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

08
:3

8.
55

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e.

k0
5

Generating an application with TX calls

No special generation is necessary when you use the TX interface.

Under openUTM, TX calls are only of use in CPI-C programs. To generate CPI-C applica-
tions, refer to section “Generating a CPI-C application” on page 96.

The TX library does not issue any messages.

5.7 Diagnosing errors in TX calls

TX calls are mapped to KDCS calls. Consequently, the UTM dump only contains KDCS
calls. However, you can generate a TX call trace in addition to the UTM dump in order to
diagnose errors which occur during transaction control.

5.7.1 Controlling the trace

The TX trace can be controlled as follows:

● The UTM start parameter TX-TRACE can be used to enable the trace when the appli-
cation is started, see the relevant openUTM manual “Using openUTM Applications”.

● The trace can be enabled or disabled during operation using WinAdmin or WebAdmin.
To do this go to the dialog Properties of UTM Application, tab Diagnosis and Account, field
TX Trace.

● The trace can be enabled or disabled during operation via the KDCADMI administration
program interface. This is done using the field tx_trace in the data structure
kc_diag_and_account_par_str, see openUTM manual “Administering Applications”.

You can set the following trace levels:

Level Meaning

ERROR Only errors are logged.

INTERFACE Includes the ERROR level. TX calls are also logged.

FULL Includes the INTERFACE level. All KDCS calls to which the TX calls are mapped
are also logged.

DEBUG Includes the FULL level. Diagnostic information is also logged.

OFF Trace is disabled.

Diagnosing errors in TX calls X/Open TX interface

158 X/Open Interfaces

5.7.2 Name of the trace file

Trace file under Unix and Windows systems

The trace records are written to the file KDC.TRC.TX.appliname.hostname.pid in the directory
filebase. Where:

appliname
Name of the application

hostname
Name of the host on which the application is running.

pid PID of the process.

Trace file under BS2000 systems

By default the trace records are written to the file KDC.TRC.TX.appliname.hostname.tsn.
Where:

appliname
Name of the application

hostname
Name of the host on which the application is running.

tsn TSN of the UTM task

In the UTM start procedure, you can also set up a different trace file for each task and use
the SET-FILE-LINK command to assign it the link name KDCTX.

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

B

B

B

BB

B

BB

B

BB

B

B

X/Open Interfaces 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

abnormal termination of a UTM application
Termination of a UTM application, where the KDCFILE is not updated. Abnormal
termination is caused by a serious error, such as a crashed computer or an error
in the system software. If you then restart the application, openUTM carries out
a warm start.

abstract syntax (OSI)
Abstract syntax is defined as the set of formally described data types which can
be exchanged between applications via OSI TP. Abstract syntax is independent
of the hardware and programming language used.

acceptor (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The acceptor accepts the conversation initiated by the initiator
with Accept_Conversation.

access list
An access list defines the authorization for access to a particular service, TAC
queue or USER queue. An access list is defined as a key set and contains one or
more key codes, each of which represent a role in the application. Users or
LTERMs or (OSI) LPAPs can only access the service or TAC queue/USER queue
when the corresponding roles have been assigned to them (i.e. when their key
set and the access list contain at least one common key code).

access point (OSI)
See service access point.

ACID properties
Acronym for the fundamental properties of transactions: atomicity, consistency,
isolation and durability.

administration
Administration and control of a UTM application by an administrator or an
administration program.

Glossary

160 X/Open Interfaces

administration command
Commands used by the administrator of a UTM application to carry out adminis-
tration functions for this application. The administration commands are imple-
mented in the form of transaction codes.

administration journal
See cluster administration journal.

administration program
Program unit containing calls to the program interface for administration. This can
be either the standard administration program KDCADM that is supplied with
openUTM or a program written by the user.

administrator
User who possesses administration authorization.

AES
AES (Advanced Encryption Standard) is the current symmetric encryption stan-
dard defined by the National Institute of Standards and Technology (NIST) and
based on the Rijndael algorithm developed at the University of Leuven (Bel-
gium). If the AES method is used, the UPIC client generates an AES key for
each session.

Apache Axis
Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the
design of Web services and client applications. There are implementations in
C++ and Java.

Apache Tomcat
Apache Tomcat provides an environment for the execution of Java code on Web
servers. It was developed as part of the Apache Software Foundation's Jakarta
project. It consists of a servlet container written in Java which can use the JSP
Jasper compiler to convert JavaServer pages into servlets and run them. It also
provides a fully featured HTTP server.

application cold start
See cold start.

application context (OSI)
The application context is the set of rules designed to govern communication
between two applications. This includes, for instance, abstract syntaxes and
any assigned transfer syntaxes.

Glossary

X/Open Interfaces 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

application entity (OSI)
An application entity (AE) represents all the aspects of a real application which
are relevant to communications. An application entity is identified by a globally
unique name (“globally” is used here in its literal sense, i.e. worldwide), the
application entity title (AET). Every application entity represents precisely one
application process. One application process can encompass several application
entities.

application entity qualifier (OSI)
Component of the application entity title. The application entity qualifier identifies
a service access point within an application. The structure of an application entity
qualifier can vary. openUTM supports the type “number”.

application entity title (OSI)
An application entity title is a globally unique name for an application entity
(“globally” is used here in its literal sense, i.e. worldwide). It is made up of the
application process title of the relevant application process and the application entity
qualifier.

application information
This is the entire set of data used by the UTM application. The information com-
prises memory areas and messages of the UTM application including the data
currently shown on the screen. If operation of the UTM application is coordi-
nated with a database system, the data stored in the database also forms part
of the application information.

application process (OSI)
The application process represents an application in the OSI reference model. It
is uniquely identified globally by the application process title.

application process title (OSI)
According to the OSI standard, the application process title (APT) is used for
the unique identification of applications on a global (i.e. worldwide) basis. The
structure of an application process title can vary. openUTM supports the type
Object Identifier.

application program
An application program is the core component of a UTM application. It com-
prises the main routine KDCROOT and any program units and processes all jobs
sent to a UTM application.

application restart
see warm start

Glossary

162 X/Open Interfaces

application service element (OSI)
An application service element (ASE) represents a functional group of the appli-
cation layer (layer 7) of the OSI reference model.

application warm start
see warm start.

association (OSI)
An association is a communication relationship between two application enti-
ties. The term “association” corresponds to the term session in LU6.1.

asynchronous conversation
CPI-C conversation where only the initiator is permitted to send. An asynchro-
nous transaction code for the acceptor must have been generated in the UTM
application.

asynchronous job
Job carried out by the job submitter at a later time. openUTM includes message
queuing functions for processing asynchronous jobs (see UTM-controlled queue
and service-controlled queue). An asynchronous job is described by the asynchro-
nous message, the recipient and, where applicable, the required execution time.
If the recipient is a terminal, a printer or a transport system application, the asyn-
chronous job is a queued output job. If the recipient is an asynchronous service of
the same application or a remote application, the job is a background job.
Asynchronous jobs can be time-driven jobs or can be integrated in a job complex.

asynchronous message
Asynchronous messages are messages directed to a message queue. They are
stored temporarily by the local UTM application and then further processed
regardless of the job submitter. Distinctions are drawn between the following
types of asynchronous messages, depending on the recipient:
– In the case of asynchronous messages to a UTM-controlled queue, all further

processing is controlled by openUTM. This type includes messages that
start a local or remote asynchronous service (see also background job) and
messages sent for output on a terminal, a printer or a transport system
application (see also queued output job).

– In the case of asynchronous messages to a service-controlled queue, further
processing is controlled by a service of the application. This type includes
messages to a TAC queue, messages to a USER queue and messages to a
temporary queue. The USER queue and the temporary queue must belong
to the local application, whereas the TAC queue can be in both the local
application and the remote application.

Glossary

X/Open Interfaces 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

asynchronous program
Program unit started by a background job.

asynchronous service (KDCS)
Service which processes a background job. Processing is carried out indepen-
dently of the job submitter. An asynchronous service can comprise one or more
program units/transactions. It is started via an asynchronous transaction code.

audit (BS2000 systems)
During execution of a UTM application, UTM events which are of relevance in
terms of security can be logged by SAT for auditing purposes.

authentication
See system access control.

authorization
See data access control.

Axis
See Apache Axis.

background job
Background jobs are asynchronous jobs destined for an asynchronous service of
the current application or of a remote application. Background jobs are particu-
larly suitable for time-intensive processing or processing which is not time-crit-
ical and where the results do not directly influence the current dialog.

basic format
Format in which terminal users can make all entries required to start a service.

basic job
Asynchronous job in a job complex.

browsing asynchronous messages
A service sequentially reads the asynchronous messages in a service-controlled
queue. The messages are not locked while they are being read and they remain
in the queue after they have been read. This means that they can be read simul-
taneously by different services.

bypass mode (BS2000 systems)
Operating mode of a printer connected locally to a terminal. In bypass mode,
any asynchronous message sent to the printer is sent to the terminal and then redi-
rected to the printer by the terminal without being displayed on screen.

Glossary

164 X/Open Interfaces

cache
Used for buffering application data for all the processes of a UTM application.
The cache is used to optimize access to the page pool and, in the case of UTM
cluster applications, the cluster page pool.

CCS name (BS2000 systems)
See coded character set name.

client
Clients of a UTM application can be:
– terminals
– UPIC client programs
– transport system applications (e.g. DCAM, PDN, CMX, socket applications

or UTM applications which have been generated as transport system applica-
tions).

Clients are connected to the UTM application via LTERM partners.
openUTM clients which use the OpenCPIC carrier system are treated just like
OSI TP partners.

client side of a conversation
This term has been superseded by initiator.

cluster
A number of computers connected over a fast network and which in many cases
can be seen as a single computer externally. The objective of clustering is gen-
erally to increase the computing capacity or availability in comparison with a sin-
gle computer.

cluster administration journal
The cluster administration journal consists of:
– two log files with the extensions JRN1 and JRN2 for global administration

actions,
– the JKAA file which contains a copy of the KDCS Application Area (KAA).

Administrative changes that are no longer present in the two log files are
taken over from this copy.

The administration journal files serve to pass on to the other node applications
those administrative actions that are to apply throughout the cluster to all node
applications in a UTM cluster application.

cluster configuration file
File containing the central configuration data of a UTM cluster application. The
cluster configuration file is created using the UTM generation tool KDCDEF.

Glossary

X/Open Interfaces 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

cluster filebase
Filename prefix or directory name for the UTM cluster files.

cluster GSSB file
File used to administer GSSBs in a UTM cluster application. The cluster GSSB
file is created using the UTM generation tool KDCDEF.

cluster lock file
File in a UTM cluster application used to manage cross-node locks of user data
areas.

cluster page pool
The cluster page pool consists of an administration file and up to 10 files con-
taining a UTM cluster application’s user data that is available globally in the clus-
ter (service data including LSSB, GSSB and ULS). The cluster page pool is cre-
ated using the UTM generation tool KDCDEF.

cluster start serialization file
Lock file used to serialize the start-up of individual node applications (only in
Unix systems and Windows systems).

cluster ULS file
File used to administer the ULS areas of a UTM cluster application. The cluster
ULS file is created using the UTM generation tool KDCDEF.

cluster user file
File containing the user management data of a UTM cluster application. The
cluster user file is created using the UTM generation tool KDCDEF.

coded character set name (BS2000 systems)
If the product XHCS (eXtended Host Code Support) is used, each character set
used is uniquely identified by a coded character set name (abbreviation: “CCS
name” or “CCSN”).

cold start
Start of a UTM application after the application terminates normally (normal ter-
mination) or after a new generation (see also warm start).

communication area (KDCS)
KDCS primary storage area, secured by transaction logging and which contains
service-specific data. The communication area comprises 3 parts:
– the KB header with general service data
– the KB return area for returning values to KDCS calls

Glossary

166 X/Open Interfaces

– the KB program area for exchanging data between UTM program units
within a single service.

communication resource manager
In distributed systems, communication resource managers (CRMs) control
communication between the application programs. openUTM provides CRMs
for the international OSI TP standard, for the LU6.1 industry standard and for
the proprietary openUTM protocol UPIC.

configuration
Sum of all the properties of a UTM application. The configuration describes:
– application parameters and operating parameters
– the objects of an application and the properties of these objects. Objects

can be program units and transaction codes, communication partners,
printers, user IDs, etc.

– defined measures for controlling data and system access.
The configuration of a UTM application is defined at generation time (static con-
figuration) and can be changed dynamically by the administrator (while the
application is running, dynamic configuration). The configuration is stored in the
KDCFILE.

confirmation job
Component of a job complex where the confirmation job is assigned to the basic
job. There are positive and negative confirmation jobs. If the basic job returns a
positive result, the positive confirmation job is activated, otherwise, the negative
confirmation job is activated.

connection bundle
see LTERM bundle.

connection user ID
User ID under which a TS application or a UPIC client is signed on at the UTM
application directly after the connection has been established. The following
applies, depending on the client (= LTERM partner) generation:
– The connection user ID is the same as the USER in the LTERM statement

(explicit connection user ID). An explicit connection user ID must be
generated with a USER statement and cannot be used as a “genuine” user
ID.

Glossary

X/Open Interfaces 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

– The connection user ID is the same as the LTERM partner (implicit
connection user ID) if no USER was specified in the LTERM statement or if
an LTERM pool has been generated.

In a UTM cluster application, the service belonging to a connection user ID
(RESTART=YES in LTERM or USER) is bound to the connection and is there-
fore local to the node.
A connection user ID generated with RESTART=YES can have a separate ser-
vice in each node application.

contention loser
Every connection between two partners is managed by one of the partners. The
partner that manages the connection is known as the contention winner. The
other partner is the contention loser.

contention winner
A connection's contention winner is responsible for managing the connection.
Jobs can be started by the contention winner or by the
contention loser. If a conflict occurs, i.e. if both partners in the communication
want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation
In CPI-C, communication between two CPI-C application programs is referred
to as a conversation. The communication partners in a conversation are
referred to as the initiator and the acceptor.

conversation ID
CPI-C assigns a local conversation ID to each conversation, i.e. the initiator and
acceptor each have their own conversation ID. The conversation ID uniquely
assigns each CPI-C call in a program to a conversation.

CPI-C
CPI-C (Common Programming Interface for Communication) is a program
interface for program-to-program communication in open networks standard-
ized by X/Open and CIW (CPI-C Implementor's Workshop).
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE
Specification. The interface is available in COBOL and C. In openUTM, CPI-C
can communicate via the OSI TP, LU6.1 and UPIC protocols and with
openUTM-LU62.

Cross Coupled System / XCS
Cluster of BS2000 computers with the Highly Integrated System Complex Multiple
System Control Facility (HIPLEX® MSCF).

Glossary

168 X/Open Interfaces

data access control
In data access control openUTM checks whether the communication partner is
authorized to access a particular object belonging to the application. The
access rights are defined as part of the configuration.

dead letter queue
The dead letter queue is a TAC queue which has the fixed name
KDCDLETQ. It is always available to save queued messages sent to transac-
tion codes or TAC queues but which could not be processed. The saving of
queued messages in the dead letter queue can be activated or deactivated for
each message destination individually using the TAC statement's
DEAD-LETTER-Q parameter.

DES
DES (Data Encryption Standard) is an international standard for encrypting
data. One key is used in this method for encoding and decoding. If the DES
method is used, the UPIC client generates a DES key for each session.

dialog conversation
CPI-C conversation in which both the initiator and the acceptor are permitted to
send. A dialog transaction code for the acceptor must have been generated in
the UTM application.

dialog job, interactive job
Job which starts a dialog service. The job can be issued by a client or, when two
servers communicate with each other (server-server communication), by a differ-
ent application.

dialog message
A message which requires a response or which is itself a response to a request.
The request and the response both take place within a single service. The
request and reply together form a dialog step.

dialog program
Program unit which partially or completely processes a dialog step.

dialog service
Service which processes a job interactively (synchronously) in conjunction with
the job submitter (client or another server application) . A dialog service pro-
cesses dialog messages received from the job submitter and generates dialog
messages to be sent to the job submitter. A dialog service comprises at least
one transaction. In general, a dialog service encompasses at least one dialog
step. Exception: in the event of service chaining, it is possible for more than one
service to comprise a dialog step.

Glossary

X/Open Interfaces 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

dialog step
A dialog step starts when a dialog message is received by the UTM application. It
ends when the UTM application responds.

dialog terminal process (Unix systems/Windows systems)
A dialog terminal process connects a terminal of a Unix system or a Windows
system with the work processes of the UTM application. Dialog terminal pro-
cesses are started either when the user enters utmdtp or via the LOGIN shell.
A separate dialog terminal process is required for each terminal to be con-
nected to a UTM application.

Distributed Lock Manager / DLM (BS2000 systems)
Concurrent, cross-computer file accesses can be synchronized using the
Distributed Lock Manager.
DLM is a basic function of HIPLEX® MSCF.

distributed processing
Processing of dialog jobs by several different applications or the transfer of back-
ground jobs to another application. The higher-level protocols LU6.1 and OSI TP
are used for distributed processing. openUTM-LU62 also permits distributed
processing with LU6.2 partners. A distinction is made between distributed pro-
cessing with distributed transactions (transaction logging across different applica-
tions) and distributed processing without distributed transactions (local transac-
tion logging only). Distributed processing is also known as server-server
communication.

distributed transaction
Transaction which encompasses more than one application and is executed in
several different (sub)-transactions in distributed systems.

distributed transaction processing
Distributed processing with distributed transactions.

dynamic configuration
Changes to the configuration made by the administrator. UTM objects such as
program units, transaction codes, clients, LU6.1 connections, printers or user IDs can
be added, modified or in some cases deleted from the configuration while the
application is running. To do this, it is necessary to create separate administra-
tion programs which use the functions of the program interface for administration.
The WinAdmin administration program or the WebAdmin administration pro-
gram can be used to do this, or separate administration programs must be cre-
ated that utilize the functions of the administration program interface.

Glossary

170 X/Open Interfaces

encryption level
The encryption level specifies if and to what extent a client message and pass-
word are to be encrypted.

event-driven service
This term has been superseded by event service.

event exit
Routine in an application program which is started automatically whenever cer-
tain events occur (e.g. when a process is started, when a service is terminated).
Unlike event services, an event exit must not contain any KDCS, CPI-C or XATMI
calls.

event function
Collective term for event exits and event services.

event service
Service started when certain events occur, e.g. when certain UTM messages are
issued. The program units for event-driven services must contain KDCS calls.

filebase
UTM application filebase
In BS2000 systems, filebase is the prefix for the KDCFILE, the user log file
USLOG and the system log file SYSLOG.
In Unix and Windows systems, filebase is the name of the directory under which
the KDCFILE, the user log file USLOG, the system log file SYSLOG and other
files relating to to the UTM application are stored.

generation
Static configuration of a UTM application using the UTM tool KDCDEF and cre-
ation of an application program.

global secondary storage area
See secondary storage area.

hardcopy mode
Operating mode of a printer connected locally to a terminal. Any message which
is displayed on screen will also be sent to the printer.

heterogeneous link
In the case of server-server communication: a link between a UTM application and
a non-UTM application, e.g. a CICS or TUXEDO application.

Glossary

X/Open Interfaces 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

Highly Integrated System Complex / HIPLEX®
Product family for implementing an operating, load sharing and availability clus-
ter made up of a number of BS2000 servers.

HIPLEX® MSCF
(MSCF = Multiple System Control Facility)
Provides the infrastructure and basic functions for distributed applications with
HIPLEX®.

homogeneous link
In the case of server-server communication: a link between two UTM applications.
It is of no significance whether the applications are running on the same oper-
ating system platforms or on different platforms.

inbound conversation (CPI-C)
See incoming conversation.

incoming conversation (CPI-C)
A conversation in which the local CPI-C program is the acceptor is referred to as
an incoming conversation. In the X/Open specification, the term “inbound con-
versation” is used synonymously with “incoming conversation”.

initial KDCFILE
In a UTM cluster application, this is the KDCFILE generated by KDCDEF and
which must be copied for each node application before the node applications
are started.

initiator (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The initiator sets up the conversation with the CPI-C calls
Initialize_Conversation and Allocate.

insert
Field in a message text in which openUTM enters current values.

inverse KDCDEF
A function which uses the dynamically adapted configuration data in the KDC-
FILE to generate control statements for a KDCDEF run. An inverse KDCDEF
can be started “offline” under KDCDEF or “online” via the program interface for
administration.

Glossary

172 X/Open Interfaces

JDK
Java Development Kit
Standard development environment from Sun Microsystems for the develop-
ment of Java applications.

job
Request for a service provided by a UTM application. The request is issued by
specifying a transaction code. See also: queued output job, dialog job, background
job, job complex.

job complex
Job complexes are used to assign confirmation jobs to asynchronous jobs. An
asynchronous job within a job complex is referred to as a basic job.

job-receiving service (KDCS)
A job-receiving service is a service started by a job-submitting service of another
server application.

job-submitting service (KDCS)
A job-submitting service is a service which requests another service from a dif-
ferent server application (job-receiving service) in order to process a job.

KDCADM
Standard administration program supplied with openUTM. KDCADM provides
administration functions which are called with transaction codes (administration
commands).

KDCDEF
UTM tool for the generation of UTM applications. KDCDEF uses the configuration
information in the KDCDEF control statements to create the UTM objects KDC-
FILE and the ROOT table sources for the main routine KDCROOT.
In UTM cluster applications, KDCDEF also creates the cluster configuration file,
the cluster user file, the cluster page pool, the cluster GSSB file and the cluster ULS
file.

KDCFILE
One or more files containing data required for a UTM application to run. The
KDCFILE is created with the UTM generation tool KDCDEF. Among other
things, it contains the configuration of the application.

KDCROOT
Main routine of an application program which forms the link between the program
units and the UTM system code. KDCROOT is linked with the program units to
form the application program.

Glossary

X/Open Interfaces 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

KDCS message area
For KDCS calls: buffer area in which messages or data for openUTM or for the
program unit are made available.

KDCS parameter area
See parameter area.

KDCS program interface
Universal UTM program interface compliant with the national DIN 66 265 stan-
dard and which includes some extensions. KDCS (compatible data communi-
cations interface) allows dialog services to be created, for instance, and permits
the use of message queuing functions. In addition, KDCS provides calls for distrib-
uted processing.

Kerberos
Kerberos is a standardized network authentication protocol (RFC1510) based
on encryption procedures in which no passwords are sent to the network in
clear text.

Kerberos principal
Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two loca-
tions, namely with the key owner (principal) and the KDC (Key Distribution Cen-
ter).

key code
Code that represents specific access authorization or a specific role. Several
key codes are grouped into a key set.

key set
Group of one or more key codes under a particular a name. A key set defines
authorization within the framework of the authorization concept used (lock/key
code concept or access list concept). A key set can be assigned to a user ID, an
LTERM partner an (OSI) LPAP partner, a service or a TAC queue.

linkage program
See KDCROOT.

local secondary storage area
See secondary storage area.

Glossary

174 X/Open Interfaces

Log4j
Log4j is part of the Apache Jakarta project. Log4j provides information for log-
ging information (runtime information, trace records, etc.) and configuring the
log output. WS4UTM uses the software product Log4j for trace and logging func-
tionality.

lock code
Code protecting an LTERM partner or transaction code against unauthorized
access. Access is only possible if the key set of the accesser contains the appro-
priate key code (lock/key code concept).

logging process
Process in Unix and Windows systems that controls the logging of account
records or monitoring data.

LPAP bundle
LPAP bundles allow messages to be distributed to LPAP partners across sev-
eral partner applications. If a UTM application has to exchange a very large
number of messages with a partner application then load distribution may be
improved by starting multiple instances of the partner application and distribut-
ing the messages across the individual instances. In an LPAP bundle, openUTM
is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The
slave LPAPs are assigned to the master LPAP on generation. LPAP bundles
exist for both the OSI TP protocol and the LU6.1 protocol.

LPAP partner
In the case of distributed processing via the LU6.1 protocol, an LPAP partner for
each partner application must be configured in the local application. The LPAP
partner represents the partner application in the local application. During com-
munication, the partner application is addressed by the name of the assigned
LPAP partner and not by the application name or address.

LTERM bundle
An LTERM bundle (connection bundle) consists of a master LTERM and multi-
ple slave LTERMs. An LTERM bundle (connection bundle) allows you to distrib-
ute queued messages to a logical partner application evenly across multiple
parallel connections.

LTERM group
An LTERM group consists of one or more alias LTERMs, the group LTERMs
and a primary LTERM. In an LTERM group, you assign multiple LTERMs to a
connection.

Glossary

X/Open Interfaces 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

LTERM partner
LTERM partners must be configured in the application if you want to connect cli-
ents or printers to a UTM application. A client or printer can only be connected if
an LTERM partner with the appropriate properties is assigned to it. This assign-
ment is generally made in the configuration, but can also be made dynamically
using terminal pools.

LTERM pool
The TPOOL statement allows you to define a pool of LTERM partners instead
of issuing one LTERM and one PTERM statement for each client. If a client
establishes a connection via an LTERM pool, an LTERM partner is assigned to
it dynamically from the pool.

LU6.1
Device-independent data exchange protocol (industrial standard) for transac-
tion-oriented server-server communication.

LU6.1-LPAP bundle
LPAP bundle for LU6.1 partner applications.

LU6.1 partner
Partner of the UTM application that communicates with the UTM application via
the LU6.1 protocol.
Examples of this type of partner are:
– a UTM application that communicates via LU6.1
– an application in the IBM environment (e.g. CICS, IMS or TXSeries) that

communicates via LU6.1

main process (Unix systems / Windows systems)
Process which starts the UTM application. It starts the work processes, the UTM
system processes, printer processes, network processes, logging process and the timer
process and monitors the UTM application.

main routine KDCROOT
See KDCROOT.

management unit
SE Servers component; in combination with the SE Manager, permits centralized,
web-based management of all the units of an SE server.

mapped host name
Mapping of the partner application's UTM host name to a real host name or vice
versa.

Glossary

176 X/Open Interfaces

message definition file
The message definition file is supplied with openUTM and, by default, contains
the UTM message texts in German and English together with the definitions of
the message properties. Users can take this file as a basis for their own mes-
sage modules.

message destination
Output medium for a message. Possible message destinations for a message
from the openUTM transaction monitor include, for instance, terminals, TS appli-
cations, the event service MSGTAC, the system log file SYSLOG or TAC queues,
asynchronous TACs, USER queues, SYSOUT/SYSLST or stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/
SYSLST and stderr/stdout.

message queue
Queue in which specific messages are kept with transaction management until
further processed. A distinction is drawn between service-controlled queues and
UTM-controlled queues, depending on who monitors further processing.

message queuing
Message queuing (MQ) is a form of communication in which the messages are
exchanged via intermediate queues rather than directly. The sender and recip-
ient can be separated in space or time. The transfer of the message is indepen-
dent of whether a network connection is available at the time or not. In
openUTM there are UTM-controlled queues and service-controlled queues.

message router (BS2000 systems)
Device in a central host or a communication computer which distributes queued
input messages to different UTM applications which can be located on different
computers. The message router also allows you to work with multiplex connec-
tions.

MSGTAC
Special event service that processes messages with the message destination
MSGTAC by means of a program. MSGTAC is an asynchronous service and is
created by the operator of the application.

multiplex connection (BS2000 systems)
Special method of connecting terminals to a UTM application. A multiplex con-
nection enables several terminals to share a single transport connection.

multi-step service (KDCS)
Service carried out in a number of dialog steps.

Glossary

X/Open Interfaces 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

multi-step transaction
Transaction which comprises more than one processing step.

Network File System/Service / NFS
Allows Unix systems to access file systems across the network.

network process (Unix systems / Windows systems)
A process in a UTM application for connection to the network.

network selector
The network selector identifies a service access point to the network layer of the
OSI reference model in the local system.

node
Individual computer of a cluster.

node application
UTM application that is executed on an individual node as part of a UTM cluster
application.

node bound service
A node bound service belonging to a user can only be continued at the node
application at which the user was last signed on. The following services are
always node bound:
– Services that have started communications with a job receiver via LU6.1 or

OSI TP and for which the job-receiving service has not yet been terminated
– Inserted services in a service stack
– Services that have completed a SESAM transaction
In addition, a user’s service is node bound as long as the user is signed-on at
a node application.

node filebase
Filename prefix or directory name for the node application's KDCFILE, user log
file and system log file.

node recovery
If a node application terminates abnormally and no rapid warm start of the appli-
cation is possible on its associated node computer then it is possible to perform
a node recovery for this node on another node in the UTM cluster. In this way,
it is possible to release locks resulting from the failed node application in order
to prevent unnecessary impairments to the running UTM cluster application.

Glossary

178 X/Open Interfaces

normal termination of a UTM application
Controlled termination of a UTM application. Among other things, this means
that the administration data in the KDCFILE are updated. The administrator ini-
tiates normal termination (e.g. with KDCSHUT N). After a normal termination,
openUTM carries out any subsequent start as a cold start.

object identifier
An object identifier is an identifier for objects in an OSI environment which is
unique throughout the world. An object identifier comprises a sequence of inte-
gers which represent a path in a tree structure.

open terminal pool
Terminal pool which is not restricted to clients of a single computer or particular
type. Any client for which no computer- or type-specific terminal pool has been
generated can connect to this terminal pool.

online import
In a UTM cluster application, online import refers to the import of application data
from a normally terminated node application into a running node application.

online update
In a UTM cluster application, online update refers to a change to the application
configuration or the application program or the use of a new UTM revision level
while a UTM cluster application is running.

OpenCPIC
Carrier system for UTM clients that use the OSI TP protocol.

OpenCPIC client
OSI TP partner application with the OpenCPIC carrier system.

openSM2
The openSM2 product line offers a consistent solution for the enterprise-wide
performance management of server and storage systems. openSM2 offers the
acquisition of monitoring data, online monitoring and offline evaluation.

openUTM application
See UTM application.

openUTM cluster
From the perspective of UPIC clients, not from the perspective of the server:
Combination of several node applications of a UTM cluster application to form
one logical application that is addressed via a common symbolic destination
name.

Glossary

X/Open Interfaces 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

openUTM-D
openUTM-D (openUTM distributed) is a component of openUTM which allows
distributed processing. openUTM-D is an integral component of openUTM.

OSI-LPAP bundle
LPAP bundle for OSI TP partner applications.

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI TP partners generated in
openUTM. In the case of distributed processing via the OSI TP protocol, an OSI-
LPAP partner for each partner application must be configured in the local appli-
cation. The OSI-LPAP partner represents the partner application in the local
application. During communication, the partner application is addressed by the
name of the assigned OSI-LPAP partner and not by the application name or
address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization,
described this model in the ISO IS7498 standard. The OSI reference model
divides the necessary functions for system communication into seven logical
layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP
Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner
Partner of the UTM application that communicates with the UTM application via
the OSI TP protocol.
Examples of such partners are:
– a UTM application that communicates via OSI TP
– an application in the IBM environment (e.g. CICS) that is connected via

openUTM-LU62
– an application of the OpenCPIC carrier system of the openUTM client
– applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)
See outgoing conversation.

outgoing conversation (CPI-C)
A conversation in which the local CPI-C program is the initiator is referred to as
an outgoing conversation. In the X/Open specification, the term “outbound con-
versation” is used synonymously with “outgoing conversation”.

Glossary

180 X/Open Interfaces

page pool
Part of the KDCFILE in which user data is stored.
In a standalone application this data consists, for example, of dialog messages,
messages sent to message queues, secondary memory areas.
In a UTM cluster application, it consists, for example, of messages to message
queues, TLS.

parameter area
Data structure in which a program unit passes the operands required for a UTM
call to openUTM.

partner application
Partner of a UTM application during distributed processing. Higher communica-
tion protocols are used for distributed processing (LU6.1, OSI TP or LU6.2 via
the openUTM-LU62 gateway).

postselection (BS2000 systems)
Selection of logged UTM events from the SAT logging file which are to be eval-
uated. Selection is carried out using the SATUT tool.

prepare to commit (PTC)
Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system
waits for the partner to confirm the end of the transaction.

preselection (BS2000 systems)
Definition of the UTM events which are to be logged for the SAT audit. Preselec-
tion is carried out with the UTM-SAT administration functions. A distinction is
made between event-specific, user-specific and job-specific (TAC-specific) pre-
selection.

presentation selector
The presentation selector identifies a service access point to the presentation
layer of the OSI reference model in the local system.

primary storage area
Area in main memory to which the KDCS program unit has direct access, e.g.
standard primary working area, communication area.

print administration
Functions for print control and the administration of queued output jobs, sent to a
printer.

Glossary

X/Open Interfaces 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

print control
openUTM functions for controlling print output.

printer control LTERM
A printer control LTERM allows a client or terminal user to connect to a UTM
application. The printers assigned to the printer control LTERM can then be
administered from the client program or the terminal. No administration rights
are required for these functions.

printer control terminal
This term has been superseded by printer control LTERM.

printer group (Unix systems)
For each printer, a Unix system sets up one printer group by default that con-
tains this one printer only. It is also possible to assign several printers to one
printer group or to assign one printer to several different printer groups.

printer pool
Several printers assigned to the same LTERM partner.

printer process (Unix systems)
Process set up by the main process for outputting asynchronous messages to a
printer group. The process exists as long as the printer group is connected to the
UTM application. One printer process exists for each connected printer group.

process
The openUTM manuals use the term “process” as a collective term for pro-
cesses (Unix systems / Windows systems) and tasks (BS2000 systems).

processing step
A processing step starts with the receipt of a dialog message sent to the UTM
application by a client or another server application. The processing step ends
either when a response is sent, thus also terminating the dialog step, or when a
dialog message is sent to a third party.

program interface for administration
UTM program interface which helps users to create their own administration pro-
grams. Among other things, the program interface for administration provides
functions for dynamic configuration, for modifying properties and application
parameters and for querying information on the configuration and the current
workload of the application.

Glossary

182 X/Open Interfaces

program unit
UTM services are implemented in the form of one or more program units. The
program units are components of the application program. Depending on the
employed API, they may have to contain KDCS, XATMI or CPIC calls. They can
be addressed using transaction codes. Several different transaction codes can
be assigned to a single program unit.

queue
See message queue.

queued output job
Queued output jobs are asynchronous jobs which output a message, such as a
document, to a printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it
is not necessary to create program units to process them.

Quick Start Kit
A sample application supplied with openUTM (Windows systems).

redelivery
Repeated delivery of an asynchronous message that could not be processed cor-
rectly because, for example, the transaction was rolled back or the asynchronous
service was terminated abnormally. The message is returned to the message
queue and can then be read and/or processed again.

reentrant program
Program whose code is not altered when it runs. In BS2000 systems this con-
stitutes a prerequisite for using shared code.

request
Request from a client or another server for a service function.

requestor
In XATMI, the term requestor refers to an application which calls a service.

resource manager
Resource managers (RMs) manage data resources. Database systems are
examples of resource managers. openUTM, however, also provides its own
resource managers for accessing message queues, local memory areas and
logging files, for instance. Applications access RMs via special resource man-
ager interfaces. In the case of database systems, this will generally be SQL and
in the case of openUTM RMs, it is the KDCS interface.

Glossary

X/Open Interfaces 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

restart
See screen restart,
see service restart.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to
the TCP/IP family that implements the ISO transport services (transport
class 0) based on TCP/IP.

RSA
Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir
and Adleman). This method uses a pair of keys that consists of a public key and
a private key. A message is encrypted using the public key, and this message
can only be decrypted using the private key. The pair of RSA keys is created by
the UTM application.

SAT audit (BS2000 systems)
Audit carried out by the SAT (Security Audit Trail) component of the BS2000
software product SECOS.

screen restart
If a dialog service is interrupted, openUTM again displays the dialog message of
the last completed transaction on screen when the service restarts provided that
the last transaction output a message on the screen.

SE manager
Web-based graphical user interface (GUI) for the SE series of Business
Servers. SE Manager runs on the management unit and permits the central
operation and administration of server units (with /390 architecture and/or x86
architecture), application units (x86 architecture), net unit and peripherals.

SE server
A Business Server from Fujitsu's SE series.

secondary storage area
Memory area secured by transaction logging and which can be accessed by the
KDCS program unit with special calls. Local secondary storage areas (LSSBs)
are assigned to one service. Global secondary storage areas (GSSBs) can be
accessed by all services in a UTM application. Other secondary storage areas
include the terminal-specific long-term storage (TLS) and the user-specific long-term
storage (ULS).

Glossary

184 X/Open Interfaces

selector
A selector identifies a service access point to services of one of the layers of the
OSI reference model in the local system. Each selector is part of the address of
the access point.

semaphore (Unix systems / Windows systems)
Unix systems and Windows systems resource used to control and synchronize
processes.

server
A server is an application which provides services. The computer on which the
applications are running is often also referred to as the server.

server-server communication
See distributed processing.

server side of a conversation (CPI-C)
This term has been superseded by acceptor.

service
Services process the jobs that are sent to a server application. A service of a
UTM application comprises one or more transactions. The service is called with
the service TAC. Services can be requested by clients or by other servers.

service access point
In the OSI reference model, a layer has access to the services of the layer
below at the service access point. In the local system, the service access point
is identified by a selector. During communication, the UTM application links up to
a service access point. A connection is established between two service access
points.

service chaining (KDCS)
When service chaining is used, a follow-on service is started without a dialog
message specification after a dialog service has completed .

service-controlled queue
Message queue in which the calling and further processing of messages is con-
trolled by services. A service must explicitly issue a KDCS call (DGET) to read
the message. There are service-controlled queues in openUTM in the variants
USER queue, TAC queue and temporary queue.

Glossary

X/Open Interfaces 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

service restart (KDCS)
If a service is interrupted, e.g. as a result of a terminal user signing off or a UTM
application being terminated, openUTM carries out a service restart. An asynchro-
nous service is restarted or execution is continued at the most recent synchroni-
zation point, and a dialog service continues execution at the most recent synchro-
nization point. As far as the terminal user is concerned, the service restart for a
dialog service appears as a screen restart provided that a dialog message was
sent to the terminal user at the last synchronization point.

service routine
See program unit.

service stacking (KDCS)
A terminal user can interrupt a running dialog service and insert a new dialog ser-
vice. When the inserted service has completed, the interrupted service contin-
ues.

service TAC (KDCS)
Transaction code used to start a service.

session
Communication relationship between two addressable units in the network via
the SNA protocol LU6.1.

session selector
The session selector identifies an access point in the local system to the services
of the session layer of the OSI reference model.

shared code (BS2000 systems)
Code which can be shared by several different processes.

shared memory
Virtual memory area which can be accessed by several different processes
simultaneously.

shared objects (Unix systems / Windows systems)
Parts of the application program can be created as shared objects. These objects
are linked to the application dynamically and can be replaced during live oper-
ation. Shared objects are defined with the KDCDEF statement SHARED-
OBJECT.

sign-on check
See system access control.

Glossary

186 X/Open Interfaces

sign-on service (KDCS)
Special dialog service for a user in which program units control how a user signs
on to a UTM application.

single-step service
Dialog service which encompasses precisely one dialog step.

single-step transaction
Transaction which encompasses precisely one dialog step.

SOA
(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the
form of re-usable, technically independent, loosely coupled services. Services
can be called independently of the underlying implementations via interfaces
which may possess public and, consequently, trusted specifications. Service
interaction is performed via a communication infrastructure made available for
this purpose.

SOAP
SOAP (Simple Object Access Protocol) is a protocol used to exchange data
between systems and run remote procedure calls. SOAP also makes use of the
services provided by other standards, XML for the representation of the data
and Internet transport and application layer protocols for message transfer.

socket connection
Transport system connection that uses the socket interface. The socket inter-
face is a standard program interface for communication via TCP/IP.

standalone application
See standalone UTM application.

standalone UTM application
Traditional UTM application that is not part of a UTM cluster application.

standard primary working area (KDCS)
Area in main memory available to all KDCS program units. The contents of the
area are either undefined or occupied with a fill character when the program unit
starts execution.

start format
Format output to a terminal by openUTM when a user has successfully signed
on to a UTM application (except after a service restart and during sign-on via the
sign-on service).

Glossary

X/Open Interfaces 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

static configuration
Definition of the configuration during generation using the UTM tool KDCDEF.

SYSLOG file
See system log file.

synchronization point, consistency point
The end of a transaction. At this time, all the changes made to the application
information during the transaction are saved to prevent loss in the event of a
crash and are made visible to others. Any locks set during the transaction are
released.

system access control
A check carried out by openUTM to determine whether a certain user ID is
authorized to work with the UTM application. The authorization check is not car-
ried out if the UTM application was generated without user IDs.

system log file
File or file generation to which openUTM logs all UTM messages for which
SYSLOG has been defined as the message destination during execution of a UTM
application.

TAC
See transaction code.

TAC queue
Message queue generated explicitly by means of a KDCDEF statement. A TAC
queue is a service-controlled queue that can be addressed from any service using
the generated name.

temporary queue
Message queue created dynamically by means of a program that can be deleted
again by means of a program (see service-controlled queue).

terminal-specific long-term storage (KDCS)
Secondary storage area assigned to an LTERM, LPAP or OSI-PAP partner and
which is retained after the application has terminated.

time-driven job
Job which is buffered by openUTM in a message queue up to a specific time until
it is sent to the recipient. The recipient can be an asynchronous service of the
same application, a TAC queue, a partner application, a terminal or a printer.
Time-driven jobs can only be issued by KDCS program units.

Glossary

188 X/Open Interfaces

timer process (Unix systems / Windows systems)
Process which accepts jobs for controlling the time at which work processes are
executed. It does this by entering them in a job list and releasing them for pro-
cessing after a time period defined in the job list has elapsed.

TNS (Unix systems / Windows systems)
Abbreviation for the Transport Name Service. TNS assigns a transport selector
and a transport system to an application name. The application can be reached
through the transport system.

Tomcat
see Apache Tomcat

transaction
Processing section within a service for which adherence to the ACID properties
is guaranteed. If, during the course of a transaction, changes are made to the
application information, they are either made consistently and in their entirety or
not at all (all-or-nothing rule). The end of the transaction forms a synchronization
point.

transaction code/TAC
Name which can be used to identify a program unit. The transaction code is
assigned to the program unit during static or dynamic configuration. It is also pos-
sible to assign more than one transaction code to a program unit.

transaction rate
Number of transactions successfully executed per unit of time.

transfer syntax
With OSI TP, the data to be transferred between two computer systems is con-
verted from the local format into transfer syntax. Transfer syntax describes the
data in a neutral format which can be interpreted by all the partners involved.
An Object Identifier must be assigned to each transfer syntax.

transport selector
The transport selector identifies a service access point to the transport layer of
the OSI reference model in the local system.

transport system application
Application which is based directly on a transport system interface (e.g. CMX,
DCAM or socket). When transport system applications are connected, the part-
ner type APPLI or SOCKET must be specified during configuration. A transport
system application cannot be integrated in a distributed transaction.

Glossary

X/Open Interfaces 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

TS application
See transport system application.

typed buffer (XATMI)
Buffer for exchanging typed and structured data between communication part-
ners. Typed buffers ensure that the structure of the exchanged data is known to
both partners implicitly.

UPIC
Carrier system for openUTM clients. UPIC stands for Universal Programming
Interface for Communication.

UPIC Analyzer
Component used to analyze the UPIC communication recorded with UPIC
Capture. This step is used to prepare the recording for playback using UPIC
Replay.

UPIC Capture
Used to record communication between UPIC clients and UTM applications so
that this can be replayed subsequently (UPIC Replay).

UPIC client
The designation for openUTM clients with the UPIC carrier system.

UPIC Replay
Component used to replay the UPIC communication recorded with UPIC
Capture and prepared with UPIC Analyzer.

user exit
This term has been superseded by event exit.

user ID
Identifier for a user defined in the configuration for the UTM application (with an
optional password for system access control) and to whom special data access
rights (system access control) have been assigned. A terminal user must specify
this ID (and any password which has been assigned) when signing on to the
UTM application. In BS2000 systems, system access control is also possible
via Kerberos.
For other clients, the specification of a user ID is optional, see also connection
user ID.
UTM applications can also be generated without user IDs.

Glossary

190 X/Open Interfaces

user log file
File or file generation to which users write variable-length records with the
KDCS LPUT call. The data from the KB header of the KDCS communication area
is prefixed to every record. The user log file is subject to transaction manage-
ment by openUTM.

USER queue
Message queue made available to every user ID by openUTM. A USER queue is
a service-controlled queue and is always assigned to the relevant user ID. You
can restrict the access of other UTM users to your own USER queue.

user-specific long-term storage
Secondary storage area assigned to a user ID, a session or an association and which
is retained after the application has terminated.

USLOG file
See user log file.

UTM application
A UTM application provides services which process jobs from clients or other
applications. openUTM is responsible for transaction logging and for managing
the communication and system resources. From a technical point of view, a
UTM application is a process group which forms a logical server unit at runtime.

UTM cluster application
UTM application that has been generated for use on a cluster and that can be
viewed logically as a single application.
In physical terms, a UTM cluster application is made up of several identically
generated UTM applications running on the individual cluster nodes.

UTM cluster files
Blanket term for all the files that are required for the execution of a UTM cluster
application. This includes the following files:
– Cluster configuration file
– Cluster user file
– Files belonging to the cluster page pool
– Cluster GSSB file
– Cluster ULS file
– Files belonging to the cluster administration journal*
– Cluster lock file*
– Lock file for start serialization* (only in Unix systems and Windows systems)
The files indicated by * are created when the first node application is started. All
the other files are created on generation using KDCDEF.

Glossary

X/Open Interfaces 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

UTM-controlled queue
Message queues in which the calling and further processing of messages is
entirely under the control of openUTM. See also asynchronous job, background job
and asynchronous message.

UTM-D
See openUTM-D.

UTM-F
UTM applications can be generated as UTM-F applications (UTM fast). In the
case of UTM-F applications, input from and output to hard disk is avoided in
order to increase performance. This affects input and output which UTM-S uses
to save user data and transaction data. Only changes to the administration data
are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-
MODE=FAST), application data that is valid throughout the cluster is also
saved. In this case, GSSB and ULS data is treated in exactly the same way as
in UTM cluster applications generated with UTM-S. However, service data relat-
ing to users with RESTART=YES is written only when the relevant user signs
off and not at the end of each transaction.

UTM message
Messages are issued to UTM message destinations by the openUTM transaction
monitor or by UTM tools (such as KDCDEF). A message comprises a message
number and a message text, which can contain inserts with current values.
Depending on the message destination, either the entire message is output or
only certain parts of the message, such as the inserts).

UTM page
A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone
UTM applications, the size of a UTM page on generation of the UTM application
can be set to 2K, 4K or 8 K. The size of a UTM page in a UTM cluster application
is always 4K or 8 K. The page pool and the restart area for the KDCFILE and
UTM cluster files are divided into units of the size of a UTM page.

utmpath (Unix systems / Windows systems)
The directory under which the openUTM components are installed is referred to
as utmpath in this manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH
must be set to the value of utmpath. On Unix systems, you must set UTMPATH
before a UTM application is started. On Windows systems, UTMPATH is set on
installation.

Glossary

192 X/Open Interfaces

UTM-S
In the case of UTM-S applications, openUTM saves all user data as well as the
administration data beyond the end of an application and any system crash
which may occur. In addition, UTM-S guarantees the security and consistency
of the application data in the event of any malfunction. UTM applications are
usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)
UTM-SAT administration functions control which UTM events relevant to secu-
rity which occur during operation of a UTM application are to be logged by SAT.
Special authorization is required for UTM-SAT administration.

UTM system process
UTM process that is started in addition to the processes specified via the start
parameters and which only handles selected jobs. UTM system processes
ensure that UTM applications continue to be reactive even under very high
loads.

UTM terminal
This term has been superseded by LTERM partner.

virtual connection
Assignment of two communication partners.

warm start
Start of a UTM-S application after it has terminated abnormally. The application
information is reset to the most recent consistent state. Interrupted dialog ser-
vices are rolled back to the most recent synchronization point, allowing processing
to be resumed in a consistent state from this point (service restart). Interrupted
asynchronous services are rolled back and restarted or restarted at the most
recent synchronization point.
For UTM-F applications, only configuration data which has been dynamically
changed is rolled back to the most recent consistent state after a restart due to
a preceding abnormal termination.
In UTM cluster applications, the global locks applied to GSSB and ULS on
abnormal termination of this node application are released. In addition, users
who were signed on at this node application when the abnormal termination
occurred are signed off.

WebAdmin
Web-based tool for the administration of openUTM applications via a Web
browser. WebAdmin includes not only the full function scope of the adminis-
tration program interface but also additional functions.

Glossary

X/Open Interfaces 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

61
3_

xo
p

en
\e

n\
xo

pe
n_

e
.m

ix

Web service
Application which runs on a Web server and is (publicly) available via a stan-
dardized, programmable interface. Web services technology makes it possible
to make UTM program units available for modern Web client applications inde-
pendently of the programming language in which they were developed.

WinAdmin
Java-based tool for the administration of openUTM applications via a graphical
user interface. WinAdmin includes not only the full function scope of the admin-
istration program interface but also additional functions.

work process (Unix systems / Windows systems)
A process within which the services of a UTM application run.

workload capture & replay
Family of programs used to simulate load situations; consisting of the main
components UPIC Capture, UPIC Analyzer and Upic Replay (on Unix and
Windows systems) the utility program kdcsort. Workload Capture & Replay can
be used to record UPIC sessions with UTM applications, analyze these and
then play them back with modified load parameters.

WS4UTM
WS4UTM (WebServices for openUTM) provides you with a convenient way of
making a service of a UTM application available as a Web service.

XATMI
XATMI (X/Open Application Transaction Manager Interface) is a program inter-
face standardized by X/Open for program-program communication in open net-
works.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI
CAE Specification. The interface is available in COBOL and C. In openUTM,
XATMI can communicate via the OSI TP, LU6.1 and UPIC protocols.

XHCS (BS2000 systems)
XHCS (Extended Host Code Support) is a BS2000 software product providing
support for international character sets.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by the
W3C (WWW Consortium) in which the interchange formats for data and the
associated information can be defined.

Glossary

194 X/Open Interfaces

X/Open Interfaces 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3\

_
14

0
36

1
3_

xo
pe

n
\e

n\
xo

pe
n_

e.
ab

k

Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used
in the original German product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000)

DB Database

DC Data Communication

DCAM Data Communication Access Method

Abbreviations

196 X/Open Interfaces

DES Data Encryption Standard

DLM Distributed Lock Manager (BS2000)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

Abbreviations

X/Open Interfaces 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3\

_
14

0
36

1
3_

xo
pe

n
\e

n\
xo

pe
n_

e.
ab

k

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000)

RTS Runtime System

SAT Security Audit Trail (BS2000)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

Abbreviations

198 X/Open Interfaces

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 (Task User)

TX Transaction Demarcation (X/Open)

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

Abbreviations

X/Open Interfaces 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3\

_
14

0
36

1
3_

xo
pe

n
\e

n\
xo

pe
n_

e.
ab

k

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Process-
ing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

Abbreviations

200 X/Open Interfaces

X/Open Interfaces 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e

.li
t

Related publications
You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

i PDF files of all openUTM manuals are included on the openUTM Enterprise DVD
with open platforms and on the openUTM WinAdmin DVD (for BS2000 systems).

openUTM documentation

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Using openUTM Applications under BS2000 Systems
User Guide

openUTM
Using openUTM Applications under Unix Systems and Windows Systems
User Guide

openUTM
Administering Applications
User Guide

openUTM
Messages, Debugging and Diagnostics in BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com

Related publications

202 X/Open Interfaces

openUTM
Messages, Debugging and Diagnostics in Unix Systems and Windows Systems
User Guide

openUTM
Creating Applications with X/Open Interfaces
User Guide

openUTM
XML for openUTM

openUTM Client (Unix systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

Related publications

X/Open Interfaces 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e

.li
t

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

openUTM
Master Index

Related publications

204 X/Open Interfaces

Documentation for the openSEAS product environment

BeanConnect
User Guide

JConnect
Connecting Java Clients to openUTM
User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Related publications

X/Open Interfaces 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e

.li
t

Documentation for the BS2000 environment

AID
Advanced Interactive Debugger
Core Manual
User Guide

BCAM
BCAM Volume 1/2
User Guide

BINDER
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BS2000
BLSSERV
Dynamic Binder Loader / Starter
User Guide

DCAM
COBOL Calls
User Guide

DCAM
Macros
User Guide

DCAM
Program Interfaces
Description

FHS
Format Handling System for openUTM, TIAM, DCAM
User Guide

IFG for FHS
User Guide

Related publications

206 X/Open Interfaces

HIPLEX AF
High-Availability of Applications in BS2000/OSD
Product Manual

HIPLEX MSCF
BS2000 Processor Networks
User Guide

IMON
Installation Monitor
User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU (BS2000)
Functions and Commands
User Guide

OMNIS/OMNIS-MENU (BS2000)
Administration and Programming
User Guide

OSS (BS2000)
OSI Session Service
User Guide

RSO
Remote SPOOL Output
User Guide

SECOS
Security Control System
User Guide

SECOS
Security Control System
Ready Reference

SESAM/SQL
Database Operation
User Guide

Related publications

X/Open Interfaces 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e

.li
t

openSM2
Software Monitor
Volume 1: Administration and Operation

TIAM
User Guide

UDS/SQL
Database Operation
User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support
User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD
User Guide

Related publications

208 X/Open Interfaces

Documentation for the Unix system environment

CMX V6.0 (Unix systems)
Betrieb und Administration (only available in German)
User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2
The documentation of openSM2 is provided in the form of detailed online help systems,
which are delivered with the product.

Related publications

X/Open Interfaces 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e

.li
t

Other publications

XCPI-C (X/Open)
Distributed Transaction Processing
X/Open CAE Specification, Version 2
ISBN 1 85912 135 7

Reference Model Version 2 (X/Open)
Distributed Transaction Processing
X/Open Guide
ISBN 1 85912 019 9

TX (Transaction Demarcation) (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 094 6

XTAMI (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)
Web page: http://www.w3.org/XML

http://www.w3.org/XML

Related publications

210 X/Open Interfaces

Related publications

X/Open Interfaces 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
n

d
08

:3
8.

55
P

fa
d:

 P
:\F

T
S

-B
S

\o
p

en
S

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

36
1

3_
xo

pe
n

\e
n\

xo
pe

n_
e

.li
t

X/Open Interfaces 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

a
nu

a
ry

 2
01

5
 S

ta
nd

 0
8

:3
8.

55
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

13
_

xo
pe

n\
en

\x
op

en
_

e.
si

x

Index

A
acceptor 36
address information (conversation) 45
administration journal 164
alignment 110
ASCII conversion 113
ASN.1 type 112
association 36, 40

characteristics 45
generation specifications 97
maximum number 53

associations (XATMI) 131
asynchronous conversation 37, 81
asynchronous request-response paradigm 107
asynchronous single request 108
asynchronous TAC 109
automatic conversion 113

B
big endian 110
buffer

define 126
buffer size

maximum 121
maximum, CPI-C 55

BUFFER statement 126

C
C data types 111
CAE (Common Application Environment) 25
call

service 117
carrier system

automatic conversion 113
changes

in openUTM V4.0 17
character set 55
character set conversion 113
character set encoding 113
characteristic

commit_return 150
conversation_type 44
conversion of 55
transaction_control 149
XATMI 121

client
XATMI 103

client side of conversation see initiator
client/server link

CPI-C, XATMI 31
cluster administration journal 164
code

data types 112, 127
code conversion tables 58
comment line

LCF 122
commit_return characteristic 150
Common Application Environment (CAE) 25
common data types 111
communication paradigm

asynchronous request-response 107
conversational 109
single request 108, 109
synchronous request-response 107

communication partner, CPI-C 38
communication resource manager 103
Communication Resource Manager (CRM) 26
COMP 126
compiler 126
configure XATMI 122

Index

214 X/Open Interfaces

Confirm-Deallocate (conversation state) 62
Confirm-Send (conversation state) 62
confirmation 54
confirmation request (CIPIC) 54
continuation character 122
conversation 36, 109

acceptor 36
asynchronous 37
dialog 37
half-duplex 51
initiator 36
maximum number 121
multiple in one program 52

conversation characteristic 37
addressing 50
conversation_type 44
sync_level 54

conversation ID 37
conversation states 62
conversation type 44
conversational 124, 126
conversational paradigm 109
conversion 113
conversion tables 58
convert

characteristics 55
convert user data 55
COPY element

CPI-C 94
directory 33
TX 156
XATMI 137

CPI-C
address communication partners 45
client/server link 31
communication partners 38
flowchart 42
Integration in openUTM 29
linking applications 40
sample application 42
server/server link 30
standard 35

CPI-C application
create 94

generate 96
link 94, 95

CPI-C calls
available in UTM 64
not available in UTM 80
UTM-specific features 68

CPI-C program
error diagnosis 99
start 94
with asynchronous transaction code 37, 81
with dialog transaction code 37, 81

CPI-C program unit 94
CPI-C program with asynchronous transaction

code 81
create

LCF 128
TX application 156
XATMI application 137

create CPI-C application 94
CRM (Communication Resource Manager) 26

D
data buffer, XATMI 111
data structure

name 126
data transfer

service routine 117
data types

XATMI 111
data volumes, large 121
define service 122
dialog conversation 37, 81
Distributed Transaction Processing (DTP) 26
documentation

summary 10
DTP (Distributed Transaction Processing) 26
DTP reference model 26

E
EBCDIC conversion

CPI-C 55
XATMI 113

end service 103, 124
error diagnosis

Index

X/Open Interfaces 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

a
nu

a
ry

 2
01

5
 S

ta
nd

 0
8

:3
8.

55
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

13
_

xo
pe

n\
en

\x
op

en
_

e.
si

x

TX 157
XATMI 139

error handling 118

F
fields of application (interfaces) 32
flowchart, CPI-C 42

G
generate

CPI-C application 96
LCF 128
XATMI application 131

global transaction
CPIC and TX 151
XATMI and TX 153

H
half-duplex conversation 51
HP-UX 9

I
inbound conversation 36
include file

Directory 33
for CPI-C 95
for CPIC 94
for TX 156
for XATMI 137

incoming conversation 36, 52
Initialize (conversation state) 62
initiator 36
interfaces in openUTM 28
intermediate service 103
internal-service-name 123, 125

J
job variable

XATMI 139, 140

K
KDCDEF generation

XATMI 131
KDCS program interface 27

L
large data volumes 121
LC definition file 128
LC description files 128
LCF 105, 122, 128

create 128
generate 128

library for X/Open interfaces 33
linking

CPI-C application 94, 95
linking client/server

XATMI 104
Linking client/server with CPI-C and XTAMI 31
linking server/server 40
Linux distribution 9
little endian 110
local configuration

code for syntax 112
local configuration definition file 122
local configuration file 105, 128

create 128
generate 128

LTAC
XATMI 98, 132

LTAC statement
CPIC 45

LU6.1 protocol 26, 29
LU6.1 session 40

M
machine dependencies 110
mapped conversation 44
MAX NB

XATMI 121
MAX TRMSGLTH

XATMI 121
maximum buffer size 121
maximum lengths 121
maximum message length 121
message length

maximum, CPI-C 55
maximum, XATMI 121

messages
XATMI 144

Index

216 X/Open Interfaces

xatmigen 144
MODE

communication paradigm 124, 126
MSCF 167
multiple conversations 52

N
name

data structure 126
name length for partner names

CPI-C 51
notational conventions 23
number of sessions/associations (XATMI) 131

O
OCTET STRING 112
openUTM client application 31
openUTM server application 31
OSI-TP association 40
outbound conversation 36, 52
outgoing conversation 36
overhead, buffer 121

P
parallel jobs 108
PCMX 14
PGWT-TAC classes 131
process switching

service 121
PROG 125
program interface

CPI-C 35
TX 150
XATMI 114

program name
service 125

programming languages
CPI-C 94
TX 149

programming rules
CPI-C programs 81

protocol 26
protocols

XATMI 103

R
Readme files 16
Receive (conversation state) 62
Red Hat 9
reference model (DTP) 26
remote-service-name 123
REQP 124
request 103
request offered 124
request with no response 109
request-response 124, 126
requester 103
Reset (conversation state) 62
return value 118
revent 118

S
sample application, CPI-C 42
Send (conversation state) 62
send and receive mode 51
send control 51
Send-Pending (conversation state) 62
server side of conversation see acceptor
server/server link 30
server/server network 35
service

call 117
data transfer 117
initialize 117
XATMI 103

service info structure 117
service offered 124
session 36, 40

characteristics 45
generation specifications 97
maximum number 53

sessions (XATMI) 131
side information 45
single request 108, 109, 124, 126
Solaris 9
standalone UTM application 7
start

XATMI application 137
subtypes 111

Index

X/Open Interfaces 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

1.
 J

a
nu

a
ry

 2
01

5
 S

ta
nd

 0
8

:3
8.

55
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

13
_

xo
pe

n\
en

\x
op

en
_

e.
si

x

SUSE 9
SVCP 124
SVCU 122
sync pointing 54
sync_level, CPI-C 54
synchronization of processing

CPI-C 54
synchronous request-response paradigm 107
syntax

LCF definition file 122

T
T.61 character set 148
T.61 string 112
TAC

XATMI service 117
tasks

number 131
TM (Transaction Manager) 26
tpacall 107
tpcall 107
tpconnect 109
tpdiscon 110
TPEEVENT 118
tperrno 118
tpgetrply 108
tprecv 109
tpsend 109
tpservice 117
TPSVCSTART 118
trace

CPI-C program 99
TX program 157
XATMI program 141

trace file
name in TX programs 158
name in XATMI programs 142

transaction code
for CPI-C program unit 96
XATMI 124, 125

Transaction Manager (TM) 26
transaction_control characteristic 149
transition 62
TX

Integration in openUTM 29
typed buffer 104, 110, 119

rules 119
types 111

typed record 111
types

XATMI 111

U
Unix platform 9
UPIC protocol 26, 29
usage, typed buffer 119
user buffer 111
user data, convert 55
UTM cluster application 7

cluster administration journal 164

W
Windows system 9

X
X_C_TYPE 111, 112

conversion 113
X_COMMON 111, 112

conversion 113
X_OCTET 111

BUFFERS operand 124
XATMI 103

client/server link 31
Integration in openUTM 29
KDCDEF generation 131
messages 144
program interface 114
server/server link 30

XATMI program
error diagnostics 141

XATMI U-ASE 104, 111
XATMI-TRACE 141
XATMIGEN 128
xatmigen

messages 144

Index

218 X/Open Interfaces

	Contents
	Preface
	Summary of contents and target group
	Summary of contents of openUTM manuals
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Changes in openUTM V6.3
	New server functions
	Load simulation with "Workload Capture & Replay"
	New client function
	New and modified functions for openUTM WinAdmin
	New functions for openUTM WebAdmin

	Notational conventions

	Communicating via X/Open interfaces
	The “Distributed Transaction Processing” reference model
	Integrating the X/Open interfaces
	CPI-C , XATMI and TX under openUTM
	Linking server/server with CPI-C and XATMI under openUTM
	Linking client/server with CPI-C and XATMI under openUTM
	Fields of application for CPI-C, XATMI, TX and KDCS
	Files and libraries for the X/Open interfaces

	X/Open CPI-C interface
	The X/Open interface CPI-C
	Definition of terms
	Communication partners of a CPI-C application under openUTM
	Linking server/server with CPI-C
	Sample application – flowchart

	CPI-C characteristics and functions in openUTM
	Conversation characteristic conversation_type
	Conversation characteristics for addressing
	Send-receive mode and send control
	Multiple conversations in one CPI-C program
	Conversation characteristic sync_level
	Maximum message length
	Converting characteristics and user data
	States of a conversation under openUTM

	CPI-C in openUTM
	Supported CPI-C calls
	Restrictions in conversations via the LU6.1 and UPIC protocol
	openUTM-specific special features of CPI-C calls
	Interaction with the TX interface
	Behavior when non-supported CPI-C calls are used
	Process or task switching
	Programming rules

	Creating a CPI-C application
	Compiling and linking a CPI-C application under Unix and Windows systems
	Compiling and linking a CPI-C application under BS2000 systems
	Generating a CPI-C application

	Error diagnosis in CPI-C programs
	Controlling the trace
	Name of the trace file
	Contents of the trace file

	X/Open interface XATMI
	Linking client/server
	Default server

	Communication paradigms
	Typed buffers
	Program interface
	XATMI functions
	Particularities of XATMI calls
	Data transfer to the service function
	Events and error handling
	Creating typed buffers
	Characteristics of XATMI in openUTM

	Configuring
	Creating the local configuration file
	The xatmigen utility
	KDCDEF generation
	TACs with PGWT=YES
	Number of sessions (LU6.1) or associations (OSI TP)
	Defining the services offered
	Defining the services used
	Example of requester generation

	Creating XATMI applications
	Include files and COPY elements
	Linking the application under Unix and Windows systems
	Linking the application under BS2000 systems

	Environment or job variables for XATMI
	Environment variables under Unix and Windows systems
	Setting job variables under BS2000 systems

	Error diagnostics in XATMI programs
	Controlling the trace
	Name of the trace file

	Interaction with the TX interface
	Messages
	T.61 character set

	X/Open TX interface
	transaction_control characteristic
	TX interface calls under openUTM
	Particularities of TX calls under openUTM

	Interaction with the CPI-C interface
	Interaction with the XATMI interface
	Examples for the use of the TX interface
	Creating an application with TX calls
	Diagnosing errors in TX calls
	Controlling the trace
	Name of the trace file

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	X

