
Edition January 2015

©
 S

ie
m

e
ns

 N
ix

do
rf

 I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5
 

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
14

03
60

6
_E

in
sa

tz
_U

W
\e

n
\b

et
rX

N
_e

.v
or

English

openUTM V6.3
Using openUTM Applications under Unix Systems and Windows Systems 
 

FUJITSU Software

User Guide

 



Comments… Suggestions… Corrections…
The User Documentation Department would like to know your 
opinion on this manual. Your feedback helps us to optimize our 
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to: 
manuals@ts.fujitsu.com

Certified documentation 
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which 
complies with the requirements of the standard
DIN EN ISO 9001:2008. 

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed 
on paper treated with 
chlorine-free bleach.

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de


Using openUTM under Unix Systems and Windows Systems  

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
r 

20
15

  S
ta

nd
 0

9:
23

.2
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
14

03
6

06
_

E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_

e.
iv

z

Contents

1 Preface .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  11

1.1 Summary of contents and target group  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  12

1.2 Summary of contents of the openUTM documentation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  13
1.2.1 openUTM documentation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  13
1.2.2 Documentation for the openSEAS product environment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  18
1.2.3 Readme files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  19

1.3 Innovations in openUTM V6.3   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20
1.3.1 New server functions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  20
1.3.2 Load simulation with "Workload Capture & Replay"  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  23
1.3.3 New client function  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  24
1.3.4 New and modified functions for openUTM WinAdmin  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  24
1.3.5 New functions for openUTM WebAdmin  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  24

1.4 Notational conventions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  26

2 Creating the application program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  29

2.1 Linking a UTM process under Unix systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  31
2.1.1 COBOL program units  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  31
2.1.2 Required UTM system libraries and UTM objets .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  33
2.1.3 Shared objects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  35
2.1.4 Calling the linkage editor .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  36
2.1.5 Linking with a makefile  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  36

2.2 Creating application programs under Windows systems  .  .  .  .  .  .  .  .  .  .  .  .  .  38
2.2.1 Application programs in C and C++   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  38
2.2.1.1 Setting the options of the Visual Studio   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  39
2.2.1.2 Creating projects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  40
2.2.1.3 Writing source programs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  41
2.2.1.4 Compiling and linking the application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  42
2.2.2 Creating application programs as DLLs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  47
2.2.3 COBOL application programs in Windows systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  47



Contents

  Using openUTM under Unix Systems and Windows Systems

2.2.3.1 Compiling and linking programms using the Micro Focus compiler .  .  .  .  .  .  .  .  . 47
2.2.3.2 Compiling and linking programms using the NetCOBOL compiler  .  .  .  .  .  .  .  .  . 49
2.2.4 Installing an application as a service  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 50

3 Necessary files and global system resources .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55

3.1 System files stderr and stdout  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 55

3.2 System log file SYSLOG   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 57
3.2.1 SYSLOG as a simple file  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
3.2.2 SYSLOG as a file generation group   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 58
3.2.3 The KDCSLOG tool for creating the SYSLOG-FGG  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 59
3.2.3.1 Automatic size monitoring .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 61
3.2.4 Protection against oversized SYSLOG file  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62
3.2.5 Behavior in the event of write errors   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 62

3.3 User log file   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 63
3.3.1 Response to write errors   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 65

3.4 DUMP directory   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66

3.5 Global system resources of an application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66
3.5.1 System resources required by a UTM application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 66
3.5.2 Improving performance: 

Changing the size of the data area in the IPC shared memory .  .  .  .  .  .  .  .  .  .  .  .  . 69

4 Starting a UTM application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 73

4.1 Starting a UTM application in Unix systems .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 74

4.2 Starting a UTM application in Windows systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76
4.2.1 Starting with utmmain .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 76
4.2.2 Starting as a service   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 78

4.3 Start parameter file of the application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 79
4.3.1 Start parameters for openUTM  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 80

4.4 Cold start and warm start  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92

4.5 Error messages at the application start  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 92

5 Terminating a UTM application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93

5.1 Terminating a UTM application normally .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 93



Contents

Using openUTM under Unix Systems and Windows Systems  

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e 
A

G
 1

99
5 

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
\1

40
3

60
6_

E
in

sa
tz

_U
W

\e
n\

be
tr

X
N

_e
.iv

z

5.2 The KDCSHUT tool – terminating a UTM application normally at shell level .  .  .  94

5.3 Terminating a service in Windows systems .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  95

5.4 Terminating a UTM application abnormally .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  96

5.5 The KDCREM tool .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  98

6 UTM database application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  99

6.1 Generating a UTM database connection   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  99

6.2 Linking a UTM database application in Unix systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 100

6.3 Linking a UTM database application in Windows systems   .  .  .  .  .  .  .  .  .  .  .  . 100

6.4 Starting and stopping a UTM database application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101
6.4.1 Start parameters for a UTM database application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101
6.4.1.1 Openstring and Closestring   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 101
6.4.1.2 Several instances   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
6.4.1.3 Example of Oracle start parameters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 102
6.4.1.4 Example of INFORMIX start parameters in Unix systems  .  .  .  .  .  .  .  .  .  .  .  .  . 105

6.4.2 Start parameters for failover with Oracle® Real Application Clusters   .  .  .  .  .  .  .  .  . 106

6.4.2.1 Special issues when connecting to Oracle®  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 109
6.4.3 Debug parameters  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 111
6.4.4 Normal termination of a UTM database application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 112
6.4.5 Abnormal termination of a UTM database application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 112

6.5 Operating a UTM database application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113
6.5.1 User sign-on and sign-off .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 113
6.5.2 Diagnostics .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 114

7 UTM cluster application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115

7.1 Properties of a UTM cluster application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 115

7.2 Installing and preparing a UTM cluster application for use   .  .  .  .  .  .  .  .  .  .  .  . 117
7.2.1 Installation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 117
7.2.1.1 Installing the UTM runtime components for Unix systems  .  .  .  .  .  .  .  .  .  .  .  .  . 117
7.2.1.2 Installing further runtime components for Unix systems  .  .  .  .  .  .  .  .  .  .  .  .  .  . 118
7.2.2 Generation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 119
7.2.2.1 Special generation statements for UTM cluster applications .  .  .  .  .  .  .  .  .  .  .  . 119
7.2.2.2 Generating reserve nodes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 120
7.2.3 Using global memory areas   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 121
7.2.4 Service restart   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 122



Contents

  Using openUTM under Unix Systems and Windows Systems

7.2.5 Runtime environment  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  124
7.2.5.1 Files .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  124
7.2.5.2 Location of the files  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  127
7.2.6 Preparation for use  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  127
7.2.7 Example for Unix systems   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  129

7.3 Configuration of a UTM cluster application with a database  .  .  .  .  .  .  .  .  .  .  .  132

7.4 Starting a UTM cluster application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  133

7.5 Monitoring of node applications and failure detection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  135
7.5.1 Application monitoring of the node applications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  135
7.5.2 Actions performed by the node applications if a failure is detected .  .  .  .  .  .  .  .  .  .  136
7.5.3 Application data after abnormal termination of a node application  .  .  .  .  .  .  .  .  .  .  138
7.5.4 Measures taken when a node application has been terminated abnormally  .  .  .  .  .  139
7.5.4.1 Measures taken for users .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  139
7.5.4.2 Measures to be taken by the administrator  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  139
7.5.4.3 Node recovery   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  140

7.6 Online import of application data .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  142

7.7 Administering a UTM cluster application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  143
7.7.1 Actions global to the cluster and actions local to a node  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  144
7.7.2 Administration journal .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  145
7.7.3 Reducing the number of nodes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  146

7.8 Shutting down a UTM cluster application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  147

7.9 Update generation in a cluster  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  148
7.9.1 Online update of the UTM cluster application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  150
7.9.1.1 Update generation of the KDCFILE without terminating the UTM cluster application

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  150
7.9.1.2 Increasing the size of the cluster page pool   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  152
7.9.1.3 Change to the application program  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  153
7.9.2 Update generation of the KDCFILE with termination of the UTM cluster application .  154
7.9.3 Update generation of the UTM cluster application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  154

7.10 Use of openUTM revision levels in the UTM cluster application .  .  .  .  .  .  .  .  .  156

7.11 Conversion of a UTM cluster application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  158
7.11.1 Conversion from a standalone UTM application to a UTM cluster application  .  .  .  .  158
7.11.2 Converting a UTM cluster application from V6.0 to V6.3  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  161
7.11.3 Converting a UTM cluster application to a standalone UTM application  .  .  .  .  .  .  .  162

7.12 Debugging a UTM cluster application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  163



Contents

Using openUTM under Unix Systems and Windows Systems  

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e 
A

G
 1

99
5 

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
\1

40
3

60
6_

E
in

sa
tz

_U
W

\e
n\

be
tr

X
N

_e
.iv

z

8 Working with a UTM application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 165

8.1 Sign-on process with user IDs .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
8.1.1 Standard sign-on process for terminals   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 166
8.1.1.1 Starting the dialog terminal processes by the user .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 167
8.1.1.2 Starting the dialog terminal process through Unix system  .  .  .  .  .  .  .  .  .  .  .  .  . 169
8.1.1.3 Standard sign-on dialog   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 170
8.1.1.4 Automatic KDCSIGN .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 175
8.1.2 Sign-on process for UPIC clients and TS applications .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 176
8.1.3 Sign-on process for OSI TP partners .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 178
8.1.4 Sign-on process in the World Wide Web via WebServices (WS4UTM)  .  .  .  .  .  .  .  . 179
8.1.5 Sign-on process in the World Wide Web via WebTransactions   .  .  .  .  .  .  .  .  .  .  .  . 180
8.1.6 Multiple sign-ons under one user ID  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 181
8.1.7 Sign-on process with sign-on services .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 182
8.1.7.1 Sign-on service for terminals .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183
8.1.7.2 Sign-on service for TS applications   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 183
8.1.7.3 Sign-on service for UPIC clients  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
8.1.7.4 Possible applications for the sign-on service .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 184
8.1.7.5 Properties of sign-on services  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 185
8.1.8 Behavior in the event of locked clients/LTERM partners .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 186

8.2 Sign-on process without user IDs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 187

8.3 Calling UTM services  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188
8.3.1 Starting services from the terminal .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 188
8.3.2 Starting services from the UPIC client and OSI TP partner   .  .  .  .  .  .  .  .  .  .  .  .  .  . 190
8.3.3 Starting services from TS applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 190
8.3.4 Service restarts .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 191

8.4 Sign-on concept of openUTM   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 192

8.5 Signing off from a UTM application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 194

8.6 UTM user commands for terminals   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 196
KDCOUT - output asynchronous messages  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 197
KDCDISP - output the last dialog message   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198
KDCLAST - repeat the last output  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 198
KDCOFF - sign off from a UTM application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 199

9 Replacing programs during operation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201

9.1 Replacing an application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 201
9.1.1 Requirements for replacing an application .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 202
9.1.2 File generation group PROG .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 204
9.1.3 Process of replacing an application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 207



Contents

  Using openUTM under Unix Systems and Windows Systems

9.1.4 The KDCPROG tool .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  208
CREATE - create a file generation group (FGG)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  208
INFO - query the current state of the (FGG)   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  209
TRANSFER - transfer utmwork to the FGG .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  210
SWITCH - switch the base of the file FGG  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  212

9.1.5 Example of replacing an application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  213

9.2 Replacing shared objects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  220
9.2.1 Providing and generating shared objects  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  220
9.2.2 Start of the application   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  222
9.2.3 The replacement process .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  222
9.2.3.1 Replacing shared objects with LOAD-MODE=STARTUP .  .  .  .  .  .  .  .  .  .  .  .  .  222
9.2.3.2 Replacing shared objects with LOAD-MODE=ONCALL   .  .  .  .  .  .  .  .  .  .  .  .  .  223
9.2.4 Examples of replacing shared objects   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  224
9.2.5 Replacing an application with shared objects .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  226
9.2.6 Adding programs dynamically .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  226

10 Fault tolerance of openUTM   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  227

10.1 Errors detected by openUTM  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  228

10.2 Reaction of openUTM to signals  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  228

10.3 Termination of application by system crash / shutdown  .  .  .  .  .  .  .  .  .  .  .  .  .  230

11 Accounting .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  231

11.1 Definition of terms .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  232

11.2 Accounting phases   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  235
11.2.1 Calculation phase .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  235
11.2.2 Determining the variant of the accounting procedure .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  236
11.2.3 Accounting phase .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  238
11.2.4 Evaluation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  240
11.2.5 Error situations   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  240

11.3 Accounting with distributed processing .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  241

11.4 Restrictions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  242

12 Checking performance with openSM2 and KDCMON .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  243

12.1 Monitoring with openSM2 .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  245



Contents

Using openUTM under Unix Systems and Windows Systems  

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e 
A

G
 1

99
5 

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
\1

40
3

60
6_

E
in

sa
tz

_U
W

\e
n\

be
tr

X
N

_e
.iv

z

12.2 UTM event monitor KDCMON   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247
12.2.1 Starting and stopping data entry  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 247
12.2.2 Evaluating data with KDCEVAL   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 248
12.2.3 Processing evaluation data on the PC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 251
12.2.4 Evaluation lists  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 252

TASKS: UTILIZATION OF THE UTM TASKS   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 254
SUMM: TRANSACTION EVALUATION   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 255
TIMES: DISTRIBUTION OF PROCESSING TIMES .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 256
KCOP: UTM CALLS STATISTIC  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 257
WAIT: WAITING TIMES   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 259
TCLASS: EVALUATION OF THE TAC CLASSES  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 260
TACCL: TAC SPECIFIC TAC CLASS EVALUATION .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 262
TACPT: TAC SPECIFIC DISTRIBUTION OF PROCESSING TIMES   .  .  .  .  .  .  .  .  . 263
TACLIST: TAC SPECIFIC STATISTICS   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 264
TRACE: TASK SPECIFIC TRACES  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 265
TRACE2: TASK PERFORMANCE TRACE   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 268

13 Load simulation with Workload Capture and Replay .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 271

13.1 Recording the UPIC conversation (UPIC Capture)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 274

13.2 Merging trace entries .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 275

13.3 Preparing data using the program UpicAnalyzer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 276

13.4 Replaying the UPIC session using the program UpicReplay   .  .  .  .  .  .  .  .  .  .  . 277
13.4.1 Adapting the UPIC configuration and UTM generation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 277
13.4.2 Calling UpicReplay .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 278
13.4.3 Functioning of UpicReplay  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 279

14 Appendix   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 283

14.1 Installing openUTM in Unix systems   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 283
14.1.1 Installing UTM system functions in Unix systems   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 284
14.1.2 Using different socket network processes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 285
14.1.3 Installing an openSM2 connection  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 285

14.2 Installing openUTM in Windows systems .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 286
14.2.1 Installation of openUTM-Server   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 286
14.2.2 User environment   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 287

14.3 Structure of the openUTM installation directory  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 288

14.4 Environment variables of a UTM application  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 290



Contents

  Using openUTM under Unix Systems and Windows Systems

14.4.1 General environment variables for openUTM .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  291
14.4.2 Environment variables for work processes  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  295
14.4.3 Environment variables for the KDCDUMP tool  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  296
14.4.4 Environment variable for the KDCUPD tool .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  296
14.4.5 Environment variables for the X/Open interface XATMI   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  297
14.4.6 Additional environment variables for openUTM under Unix systems .  .  .  .  .  .  .  .  .  298
14.4.7 Additional environment variables for openUTM under Windows systems   .  .  .  .  .  .  299

14.5 Structure of the accounting records of openUTM .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  302
14.5.1 Structure of an accounting record .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  303
14.5.2 Structure of a calculation record   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  304

14.6 Processing print output without printer control (Unix systems) .  .  .  .  .  .  .  .  .  306

14.7 Sample programs and sample applications  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  307
14.7.1 Sample programs for a publish / subscribe server  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  307
14.7.2 Sample program for moving messages from the dead letter queue selectively   .  .  .  308
14.7.3 CPI-C sample programs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  309
14.7.4 Sample procedures in Unix systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  309
14.7.5 Sample procedures in Windows systems .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  310
14.7.6 openUTM sample application in Unix systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  310
14.7.7 openUTM Quick Start Kit in Windows systems  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  311

Glossary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  313

Abbreviations   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  349

Related publications .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  355

Index  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  365



Using openUTM under Unix Systems and Windows Systems  11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

1 Preface

Modern enterprise-wide IT environments are subjected to many challenges of rapidly 
increasing importance. This is the result of:

● heterogeneous system landscapes

● different hardware platforms

● different networks and different types of network access (TCP/IP, SNA, ...) 

● the applications used by companies

Consequently, problems arise – whether as a result of mergers, joint ventures or labor-
saving measures. Companies are demanding flexible, scalable applications, as well as 
transaction processing capability for processes and data, while business processes are 
becoming more and more complex. The growth of globalization means, of course, that 
applications are expected to run 24 hours a day, seven days a week, and must offer high 
availability in order to enable Internet access to existing applications across time zones.

openUTM is a high-end platform for transaction processing that offers a runtime 
environment that meets all these requirements of modern, business-critical applications, 
because openUTM combines all the standards and advantages of transaction monitor 
middleware platforms and message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

An UTM application can be run as a standalone UTM application or sumultanously on 
several different computers as a UTM cluster application.



Summary of contents and target group Preface

12   Using openUTM under Unix Systems and Windows Systems

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the 
Oracle Fusion middleware, openSEAS delivers all the functions required for application 
innovation and modern application development. Innovative products use the sophisticated 
technology of openUTM in the context of the openSEAS product offering:

● BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA) 
and supports standardized connection of UTM applications to Java EE application 
servers. This makes it possible to integrate tried-and-tested legacy applications in new 
business processes.

● The WebTransactions member of the openSEAS family is a product that allows tried-
and-tested host applications to be used flexibly in new business processes and modern 
application scenarios. Existing UTM applications can be migrated to the Web without 
modification.

1.1 Summary of contents and target group

This manual is aimed at UTM application planners, application developers, users, and 
support personnel.

It contains all the information you will need to create a UTM application program in 
Unix systems and Windows systems and implement a UTM application.

The first chapters of this manual provide an overview of how to structure and link a UTM 
application, and specify which files are needed to operate an application. Separate 
chapters deal with starting and stopping a UTM application, and with exchanging programs 
while the application is running. Special issues that you have to take into account when 
operating a UTM cluster application or a UTM database application are dealt with centrally 
in separate sections with corresponding names.

Full details are provided on how terminal users and other clients can sign on to a UTM appli-
cation.

There is also a separate chapter describing the tools available for running and controlling a 
production UTM application.

Knowledge of the operating system is a prerequisite.

i   Wherever the term Unix system or Unix platform is used in the following, then this 
should be understood to mean both a Unix-based operating system such as Solaris 
or HP-UX and a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is used below, this should 
be understood to mean all the variants of Windows under which openUTM runs.



Preface Summary of contents of the openUTM documentation

Using openUTM under Unix Systems and Windows Systems  13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various 
related products. 

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help systems for the 
graphical administration workstation openUTM WinAdmin and the graphical administration 
tool WebAdmin, and a release note for each platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000 systems, 
Unix systems or Windows systems. 

All the manuals are available as PDF files on the internet at 

http://manuals.ts.fujitsu.com 

On this site, enter the search term “openUTM V6.3“ in the Search by product field to 
display all openUTM manuals of version 6.3.

The manuals are included on the Enterprise DVD with open platforms and are available on 
the WinAdmin DVD for BS2000 systems.

The following sections provide a task-oriented overview of the openUTM V6.3 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related 
publications at the back of the manual on page 355.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential 
functions, features and areas of application of openUTM. It contains all the information 
required to plan a UTM operation and to design an UTM application. The manual explains 
what openUTM is, how it is used, and how it is integrated in the BS2000, Unix based and 
Windows based platforms.

http://manuals.ts.fujitsu.com


Summary of contents of the openUTM documentation Preface

14   Using openUTM under Unix Systems and Windows Systems

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++ 
manual to create server applications via the KDCS interface. This manual describes the 
KDCS interface as used for COBOL, C and C++. This interface provides the basic 
functions of the universal transaction monitor, as well as the calls for distributed 
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want 
to use the X/Open interface. This manual contains descriptions of the UTM-specific 
extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as notes on 
configuring and operating UTM applications which use X/Open interfaces. In addition, 
you will require the X/Open-CAE specification for the corresponding X/Open interface.

● If you want to interchange data on the basis of XML, you will need the document entitled 
openUTM XML for openUTM. This describes the C and COBOL calls required to work 
with XML documents. 

● For BS2000 systems there is supplementary documentation on the programming 
languages Assembler, Fortran, Pascal-XT and PL/1. 

Configuration 

The Generating Applications manual is available to you for defining configurations. This 
describes for both standalone UTM applications and UTM cluster applications how to use 
the UTM tool KDCDEF to

● define the configuration

● generate the KDCFILE

● and generate the UTM cluster files for UTM cluster applications 

In addition, it also shows you how to transfer important administration and user data to a 
new KDCFILE using the KDCUPD tool. You do this, for example, when moving to a new 
openUTM version or after changes have been made to the configuration. In the case of 
UTM cluster applications, it also indicates how you you can use the KDCUPD tool to 
transfer this data to the new UTM cluster files.



Preface Summary of contents of the openUTM documentation

Using openUTM under Unix Systems and Windows Systems  15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using openUTM Applica-
tions manual for the relevant operating system (BS2000 or Unix systems/Windows 
systems). This describes how to link and start a UTM application program, how to sign on 
and off to and from a UTM application and how to replace application programs dynamically 
and in a structured manner. It also contains the UTM commands that are available to the 
terminal user. Additionally, those issues are described in detail that need to be considered 
when operating UTM cluster applications.

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for admin-
istration and the UTM administration commands. It provides information on how to 
create your own administration programs for operating a standalone UTM application 
or a UTM cluster application and on the facilities for administering several different 
applications centrally. It also describes how to administer message queues and printers 
using the KDCS calls DADM and PADM.

● If you are using the graphical administration workstation openUTM WinAdmin or the 
Web application openUTM WebAdmin, which provides comparable functionality, then 
the following documentation is available to you:

– A description of WinAdmin and description of WebAdmin, which provide a 
comprehensive overview of the functional scope and handling of 
WinAdmin/WebAdmin. These documents are shipped with the associated software 
and are also available online as a PDF file.

– The respective online help systems, which provide context-sensitive help infor-
mation on all dialog boxes and associated parameters offered by the graphical user 
interface. In addition, it also tells you how to configure WinAdmin or WebAdmin in 
order to administer standalone UTM applications and UTM cluster applications.

i   For detailed information on the integration of openUTM WebAdmin in SE Server's 
SE Manager, see the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are 
separate manuals for Unix systems / Windows systems and for BS2000 systems) to carry 
out the tasks mentioned above. These manuals describe how to debug a UTM application, 
the contents and evaluation of a UTM dump, the behavior in the event of an error, and the 
openUTM message system, and also lists all messages and return codes output by 
openUTM. 



Summary of contents of the openUTM documentation Preface

16   Using openUTM under Unix Systems and Windows Systems

Creating openUTM clients 

The following manuals are available to you if you want to create client applications for 
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and 
operation of client applications based on UPIC. In addition to the description of the 
CPI-C and XATMI interfaces, you will find information on how you can use the C++ 
classes to create programs quickly and easily. 

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to 
install and configure OpenCPIC and configure an OpenCPIC application. It describes 
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates 
what needs to be taken into account when programming a CPI-C application and what 
restrictions apply compared with the X/Open CPI-C interface. 

● The documentation for the JUpic-Java classes shipped with BeanConnect is supplied 
with the software. This documentation consists of Word and PDF files that describe its 
introduction and installation and of Java documentation with a description of the Java 
classes.

● The BizXML2Cobol manual describes how you can extend existing COBOL programs 
of a UTM application in such a way that they can be used as an XML-based standard 
Web service. How to work with the graphical user interface is described in the online 
help system.

● If you want to provide UTM services on the Web quickly and easily then you need the 
manual WebServices for openUTM. The manual describes how to use the software 
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. The use of the graphical user interface is described in 
the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the 
manual Distributed Transaction Processing between openUTM and CICS, IMS and 
LU6.2 Applications. This describes the CICS commands, IMS macros and UTM calls that 
are required to link UTM applications to CICS and IMS applications. The link capabilities 
are described using detailed configuration and generation examples. The manual also 
describes communication via openUTM-LU62 as well as its installation, generation and 
administration.



Preface Summary of contents of the openUTM documentation

Using openUTM under Unix Systems and Windows Systems  17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix and Windows 
systems. The functions of PCMX are described in the following documents:

● CMX manual “Betrieb und Administration“ (Unix-Systeme) (only available in German)

● PCMX online help system for Windows systems



Summary of contents of the openUTM documentation Preface

18   Using openUTM under Unix Systems and Windows Systems

1.2.2 Documentation for the openSEAS product environment 

The Concepts and Functions manual briefly describes how openUTM is connected to the 
openSEAS product environment. The following sections indicate which openSEAS 
documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect 
adapter implements the connection between conventional transaction monitors and 
Java EE application servers and thus permits the efficient integration of legacy applications 
in Java applications.

● The manual BeanConnect describes the product BeanConnect, that provides a JCA 
1.5- and JCA 1.6-compliant adapter which connects UTM applications with applications 
based on Java EE, e.g. the Oracle application server.
The manuals for the Oracle application server can be obtained from Oracle.

Connecting to the web and application integration

You require the WebTransactions manuals to connect new and existing UTM applications 
to the Web using the product WebTransactions.

The manuals will also be supplemented by JavaDocs.



Preface Summary of contents of the openUTM documentation

Using openUTM under Unix Systems and Windows Systems  19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

1.2.3 Readme files

Information on any functional changes and additions to the current product version 
described in this manual can be found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the 
various products at http://manuals.ts.fujitsu.com. 

Additional product information 

Current information, version and hardware dependencies, and instructions for installing and 
using a product version are contained in the associated Release Notice. These Release 
Notices are available online at http://manuals.ts.fujitsu.com. 

Readme files under Unix systems

The Readme file and any other files, such as a manual supplement file, can be found in the 
utmpath under /docs/language.

Readme files under Windows systems

The Readme file and any other files, such as a manual supplement file, can be found in the 
utmpath under \Docs\language.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com


Innovations in openUTM V6.3 Preface

20   Using openUTM under Unix Systems and Windows Systems

1.3 Innovations in openUTM V6.3

The following sections provide more detail on the innovations in the individual areas.

1.3.1 New server functions

Additional UTM system processes for internal tasks

In addition to the processes specified by means of the start parameters, UTM starts up to 
three additional processes that are reserved for internal openUTM tasks or privileged jobs 
issued by the administrator.

To permit this, both generation and administration interfaces have been extended:

● Generation, KDCDEF statement MAX

– New operand PRIVILEGED-LTERM, used to identify a specific LTERM as privi-
leged. When a user signs on with administration authorizations, all the user's jobs 
are considered to be privileged jobs.

– TASKS operand: The maximum value has been reduced to 240 due to the 
additional system processes.

● KDCADMI administration interface

– Data structure kc_max_par_str: New field privileged_lterm for the generated privi-
leged LTERM. 

– Data structure kc_tasks_par_str: New fields gen_system_tasks and curr_system_tasks 
for the system processes.

– Data structure kc_curr_par_str: New field curr_system_tasks for the system 
processes.

Higher resolution for output of used CPU time

The used CPU time is now output in microseconds for TACs and in milliseconds for USERs. 
The following interfaces have been changed to support this:

● KDCADMI 

– Data structure kc_tac_str: New field taccpu_micro_sec for the average used CPU time 
in microseconds.

– Data structures kc_user_str and kc_user_dyn1_str: New field cputime_msec for the 
used CPU time in milliseconds.



Preface Innovations in openUTM V6.3

Using openUTM under Unix Systems and Windows Systems  21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

● KDCADM command interface

– KDCINF type=TAC: TACCPU outputs the average used CPU time in microseconds.

– KDCINF type=USER: CPUTIME outputs the used CPU time in milliseconds.

● KDCEVAL lists

– Some times are now output in microseconds in the KDCEVAL lists. 

New trace functions

Additional traces can be enabled and disabled during live operation.

– ADMI trace, i.e. trace of the administration program interface (KDCADMI)
– X/Open traces (CPI-C, TX, XATMI)

The following interfaces have been extended to support this:

● Start parameters:

New start parameters ADMI-TRACE, CPIC-TRACE, TX-TRACE and XATMI-TRACE 
for enabling traces.

● KDCADMI 

Data structure kc_diag_and_account_par_str: New fields admi_trace, cpic_trace, tx_trace 
and xatmi_trace for enabling and disabling traces.

KDCDEF input/output via LMS library elements

In BS2000 systems, it is possible to read KDCDEF statements from LMS library elements 
and, in the case of inverse KDCDEF, output them to LMS library elements. The following 
interfaces have been extended to support this:

● Generation

– KDCDEF statement OPTION: New operand value LIBRARY-ELEMENT(...) in the 
DATA operand.

– KDCDEF statement CREATE-CONTROL-STATEMENTS: New operand value 
LIBRARY-ELEMENT(...) in the TO-FILE operand. 

● KDCADMI 

Data structure kc_create_statements_str: New fields lib_name, elem_name, vers, type, 
stmt_type and file_error_code. 



Innovations in openUTM V6.3 Preface

22   Using openUTM under Unix Systems and Windows Systems

● Messages

New messages K234, K519 and K520 when reading KDCDEF statements from LMS 
library elements and outputting KDCDEF statements to LMS library elements.

Performance enhancements

● UTM cache

The UTM cache has been optimized in order to improve performance during intensive 
use of the UTM cache (e.g. in the case of extremely extensive service data).

● UTM lock algorithm

The Compare&Swap functionality offered by the operating system is used throughout 
on open platforms for concurrent access to internal UTM administration data.

● UTM network access

The network access on open platforms has been improved so that delays no longer 
occur when sending data to UTM partner applications, in particular in low-load situa-
tions.

Other changes

● Messages

– The message area for system messages has been increased and now comprises 
the range from K001 to K399 (previously up to K249). As a result, the following 
message areas have been moved:

– The message numbers for messages exclusively output by KDCUPD now 
occupy the range K800 to K899 instead of K250 to K322.

Messages output by KDCUPD and by online import are considered to be 
system messages and remain unchanged.

– The message numbers for KDCCSYSL and KDCPSYSL messages now 
occupy the range K600 to K649 instead of K550 to K599.

– New message K235 if name resolution for a computer takes too long.

– The default message destinations for messages K162 and K163 have been 
changed.



Preface Innovations in openUTM V6.3

Using openUTM under Unix Systems and Windows Systems  23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

● KDCADMI

– The fields auto_connect in kc_lpap_str and auto_connect_number in kc_osi_lpap_str 
have the property GPD instead of PD, changes to these fields always have a global 
effect throughout the application. Any administrative change to the properties 
"automatic establishment of connection" in the case of LPAP and "number of 
connections" for OSI-LPAP remains effective beyond the end of the application.

– New field max_btrace_lth in kc_diag_and_account_par_str for the maximum length of 
the recorded data when the BCAM trace function is activated.

● In the case of platforms on which UTM can run in 64-bit mode, KDCUPD makes it 
possible to migrate from a 32-bit application environment to a 64-bit application 
environment. At present, UTM only supports 64-bit mode on Unix platforms.

● The Oracle User ID can also be entered in lowercase in the KDCDEF statements 
DATABASE and RMXA.

● The InstallAware installation procedure is used on Windows systems. As a result, 
openUTM is supplied in the form of MSI files for Windows systems.

● New sample program ADJTCLT (ADJust Tac-CLass Table)

Using the C program unit ADJTCLT, users can control how the processes are 
distributed to the TAC classes in the light of the current total number of processes and 
the current number of asynchronous processes. To do this, the user creates a table 
containing the desired settings. The settings must be chosen in such a way that there 
is always at least one process free to perform other tasks, such as end-of-transaction 
processing for distributed transactions for example.

1.3.2 Load simulation with "Workload Capture & Replay"

Thanks to the new Workload Capture & Replay function, it is possible to record UTM appli-
cation communications with UPIC clients and then replay these in combination with 
adjustable load profiles. In this way, it is possible to test the behavior of the UTM application 
at high loads under real-life conditions. 

Workload Capture & Replay consists of the following components: 

● UPIC Capture: Records communication with the UPIC client. 

The trace function BTRACE (BCAM trace), which is present on all the server platforms, 
is used to record a UPIC session.

● UPIC Analyzer: Used to analyze the recorded communication. 

● UPIC Replay: Used to replay the recorded UPIC session with different load parameters 
(speed, number of clients).



Innovations in openUTM V6.3 Preface

24   Using openUTM under Unix Systems and Windows Systems

UPIC Analyzer and UPIC Replay are only available on 64-bit Linux systems and are supplied 
with openUTM Client (UPIC).

openUTM for Unix and Windows systems also comes with the utility program kdcsort. You 
can use kdcsort to sort the communication recorded by BTRACE over time if the UTM appli-
cation ran with more than one process during the recording period and multiple process-
specific files have therefore been generated.

1.3.3 New client function 

On Windows systems, UPIC Client is available in both a 32-bit and a 64-bit variant.

1.3.4 New and modified functions for openUTM WinAdmin

● WinAdmin supports all the new features of UTM V6.3 relating to the administration 
program interface. These include, for example, the new trace functions, the writing of 
KDCDEF statements to library elements on Inverse KDCDEF runs in BS2000 or the 
display of a user's used CPU time in milliseconds.

● Introduction of a lifetime for statistical values in order to limit the number of statistical 
values stored in the configuration database. 

1.3.5 New functions for openUTM WebAdmin

Additional functions

WebAdmin now provides additional functions that go beyond the functionality available in 
the KDCADMI administration interface and which were previously available only in 
WinAdmin:

● Display of message queues (DADM functionality) 

● Administration of statistics collectors and tabular display of the associated values 
(including the new "Lifetime for statistical values" function).

● Depiction of statistics in graphical form (graphs)

● Execution of threshold actions for statistics collectors



Preface Innovations in openUTM V6.3

Using openUTM under Unix Systems and Windows Systems  25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

Support for new features in openUTM V6.3

WebAdmin supports all the new features of UTM V6.3 relating to the administration 
program interface. These include, for example, the new trace functions, the writing of 
KDCDEF statements to library elements on Inverse KDCDEF runs in BS2000 or the display 
of a user's used CPU time in milliseconds.

Integration in SE Server

WebAdmin can be installed as an add-on in the management unit (SE Manager) of an SE 
Server. It then provides much the same range of functions as when operated outside of the 
SE Manager.



Notational conventions Preface

26   Using openUTM under Unix Systems and Windows Systems

1.4 Notational conventions

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this 
manual:

Representation  Meaning Example 

UPPERCASE 
LETTERS

Uppercase letters denote constants 
(names of calls, statements, field 
names, commands and operands 
etc.) that are to be entered in this 
format.

LOAD-MODE=STARTUP

lowercase letters In syntax diagrams and operand 
descriptions, lowercase letters are 
used to denote place-holders for the 
operand values.

KDCFILE=filebase 

lowercase letters in italics In running text, variables and the 
names of data structures and fields 
are indicated by lowercase letters in 
italics.

utm-installationdirectory is the UTM 
installation directory

Typewriter font Typewriter font (Courier) is used in 
running text to identify commands, 
file names, messages and 
examples that must be entered in 
exactly this form or which always 
have exactly this name or form.

The call tpcall

{  } and | Curly brackets contain alternative 
entries, of which you must choose 
one. The individual alternatives are 
separated within the curly brackets 
by pipe characters.

STATUS={ ON | OFF }

[  ] Square brackets contain optional 
entries that can also be omiited.

KDCFILE=( filebase 
[, { SINGLE| DOUBLE} ] )

( ) Where a list of parameters can be 
specified for an operand, the 
individual parameters are to be 
listed in parentheses and separated 
by commas. If only one parameter is 
actually specified, you can omit the 
parentheses.

KEYS=(key1,key2,...keyn)

Underscoring Underscoring denotes the default 
value.

CONNECT= { A/YES | NO }



Preface Notational conventions

Using openUTM under Unix Systems and Windows Systems  27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
1

Other symbols

This symbol is used in the left-hand margin to indicate Unix system specific elements of a 
description. 

This symbol is used in the left-hand margin to indicate Windows specific elements of a 
description. 

  Indicates references to comprehensive, detailed information on the relevant topic.

i   Indicates notes that are of particular importance.

v   Indicates warnings.

utmpath  
On Unix and Windows systems, designates the directory under which openUTM 
was installed.

abbreviated form The standard abbreviated form of 
statements, operands and operand 
values is emphasized in boldface 
type. The abbreviated form can be 
entered in place of the full desig-
nation.

TRANSPORT-SELECTOR=c‘C‘

. . . An ellipsis indicates that a syntac-
tical unit can be repeated.
It can also be used to indicate 
sections of a program or syntax 
description etc.

Start KDCDEF
:
:

OPTION DATA=statement_file
:

END

Representation  Meaning Example 

X

X

W

W



Notational conventions Preface

28   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

2 Creating the application program

A UTM application program is made up of a set of modules which must be linked as a 
program at runtime or before. 

Before starting the application, you must create and compile program units. The program 
units define the application logic. Further information can be found in the openUTM manual 
„Programming Applications with KDCS”. 

To ensure that the program units will run under openUTM, the UTM application program 
must be created as follows: 

● compile the ROOT table source generated by KDCDEF 

● link ROOT tables, UTM main routine, UTM system modules for the main routine 
KDCROOT, the C runtime system and any other runtime systems, the message 
module, user libraries and program units. 

The program units can also be linked as shared objects. Shared objects can be exchanged 
dynamically during operation. 

  Information on exchanging programs with shared objects can be found in chapter 
“Replacing programs during operation” on page 201.

The diagram below shows the individual steps involved in creating a UTM application 
program.



Creating the application program

30   Using openUTM under Unix Systems and Windows Systems

Figure 1: Overview: creating the UTM application program 

Main routine KDCROOT

Based on the ROOT tables, the UTM main routine that is created during installation of 
openUTM and the UTM system functions, the main routine KDCROOT is generated as part 
of the application program during the link procedure. When running the application, 
KDCROOT acts as the main control program. Its tasks include:

– linking program units and UTM system functions
– coordinating the execution of program units in different programming languages
– connecting to databases

KDCROOT also contains the variable data and message areas. Further information on the 
main routine KDCROOT can be found in the openUTM manual „Programming Applications 
with KDCS”. 

KDCDEF generates the ROOT table module as a C/C++ source, which you then compile 
using the C/C++ compiler and link to your program units, the UTM system modules, and 
any other modules to form an executable program, see below. 

Link statically and dynamically

Compile

ROOT 

Program units/
user libraries/

runtime systems

UTM
application program

UTM system modules
 and UTM main routine

ROOT table source 
created with KDCDEF

tables



Creating the application program Linking a UTM process under Unix systems

Using openUTM under Unix Systems and Windows Systems  31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

2.1 Linking a UTM process under Unix systems

For a UTM application, the UTM system libraries and UTM objects listed below must be 
linked in the specified order to form a work process, so that all external references can be 
resolved. The linked application program (work process) must be stored in the directory 
filebase under the name utmwork.

You can find the required UTM system libraries and system objects on your computer under 
utmpath/sys. On the AIX platform, the openUTM system libraries are provided as static 
libraries and on all other platforms as shared objects.

If you want to use the “program exchange” function, you have two options:

● If you want to exchange parts of the application program, you must store these parts in 
a shared object. 

● If only the complete work process is to be exchangeable, you need do nothing. 
Following the linking process, you must transfer utmwork to the filebase/PROG directory 
using the KDCPROG tool.

Details on compiling program units, generating shared objects and linking the application 
program can be found in the documentation for the compiler and/or runtime system you are 
using.

  Sample procedures for compiling and linking can be found in the supplied sample 
application. You can simplify this task by using the supplied sample application to 
create a makefile which you can use as a basis for your link procedure. See “Linking 
with a makefile” on page 36.

2.1.1 COBOL program units

You can create COBOL programs with the Micro Focus compilers or with the Fujitsu 
NetCOBOL compiler. 

Please note the COBOL-specific programming notes in the openUTM manual 
„Programming Applications with KDCS” (chapter "Additional Information for Cobol", section 
"Platform-specific features in Unix systems").

Environment variables for COBOL programs

If you use COBOL programs then you must set compiler-specific environment variables.

Micro Focus COBOL 

Perform the following steps if you use COBOL program units with Micro Focus COBOL: 

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X



Linking a UTM process under Unix systems Creating the application program

32   Using openUTM under Unix Systems and Windows Systems

Ê Call the script <coboldir>/bin/cobsetenv. 
This script sets the required environment variables for the compiler.

Ê Extend the COBCPY environment variable by adding $UTMPATH/copy-cobol85.

Ê If you create programs based on CPIC, TX or XATMI under openUTM, extend the 
COBCPY environment variable as follows: 
$UTMPATH/<interface>/copy-cobol85, where <interface> stands for cpic, tx or xatmi.

Ê If you create client programs based on UPIC-L, extend the COBCPY environment 
variable by adding $UTMPATH/upicl/copy-cobol85.

Ê Set the COBMODE environment variable:
– To generate 32-bit  objects, set it to 32. 
– To generate 64-bit  objects, set it to 64.

NetCOBOL

Perform the following steps if you use NetCOBOL program units: 

Ê Call the script <COBOLDIR>/config/cobol.sh. 
This script sets the required environment variables.

Ê Extend the COBCOPY environment variable by adding $UTMPATH/netcobol.

Ê Set the COB_LIBSUFFIX environment variable to None,CPY,cpy. 

Ê If you create programs based on CPIC, TX or XATMI under openUTM, extend the 
COBCOPY environment variable as follows: 
$UTMPATH/<interface>/netcobol, where <interface> stands for cpic, tx or xatmi.

Ê If you create client programs based on UPIC-L, extend the COBCOPY environment 
variable by adding $UTMPATH/upicl/netcobol.

Note

If you use COBOL program units, you should note the following:

– There are certain compiler-specific characteristics relating to the keywords. You will find 
details in openUTM manual ”Programming Applications with KDCS” (chapter 
"Additional Information for COBOL", references to "keywords").

– If you want to generate shared objects, please read section “Shared objects” on 
page 35.

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



Creating the application program Linking a UTM process under Unix systems

Using openUTM under Unix Systems and Windows Systems  33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

2.1.2 Required UTM system libraries and UTM objets 

The lilibraries and objects listed below can be specified when linking an application. The 
configuration of the respective UTM application determines which of these components are 
required for execution (i.e. must also be incorporated). 

● The main routine of openUTM

Here you must incorporate either the object mainutm.o, if only C and COBOL programs 
are used, or the object mainutmCC.o, if at least one C++ program is used. 

On most systems, the application must not contain C++ and COBOL programs at the 
same time. 

The objects mainutm.o and mainutmCC.o are contained in utmpath/sys. The object 
mainutmCC.o is created during the installation of openUTM if the C++ compiler is 
already installed. 

If the C++ compiler is not installed until after openUTM or if openUTM could not find the 
C++ compiler during installation for some other reason, you can create mainutmCC.o 
yourself using the UTM shell script CCmainutm. In this case, you must enter the following 
command:

UTMPATH=utmpath \
utmpath/shsc/CCmainutm

For more information on utmpath see page 284.

● The main routine KDCROOT (rootname.o)

This module is required in every application and is created from the ROOT source 
program. You generate the ROOT source program (filebase/rootname.c) in the 
KDCDEF run by specifying GEN=ROOTSRC or GEN=ALL in the OPTION statement. 
You define rootname in the ROOT statement and filebase in the MAX statement using the 
KDCFILE= parameter. 

You create KDCROOT as follows: 

– Compile the ROOT source program created with KDCDEF using the C compiler. 
You must specify the -I$UTMPATH/include option here for the openUTM system 
includes.

If you use COBOL program units, you must also specify the -I$COBDIR/include 
option. $COBDIR is the installation path of the COBOL compiler.

– Store the output in filebase/rootname.o.

You must specify the object module filebase/rootname.o before the application-specific 
modules when linking the application. 

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



Linking a UTM process under Unix systems Creating the application program

34   Using openUTM under Unix Systems and Windows Systems

● Your compiled program units 

Your compiled program units can be integrated either as individual objects or as parts 
of object libraries. These libraries may be static or dynamic (known as shared objects). 

● The UTM system libraries including administration program

The modules ibwork and libutmcrypt are needed in every application program. 

● OSI TP modules (optional)

If communication is to take place via OSI TP, the library libxaptp must be incorporated. 

In addition, the OSS libraries libossutm and liboss are required. Please note that 
libossutm must always be specified before liboss, as otherwise the following error will 
occur when the application starts:

P001 Error on OSS call (o_create() ·): - 1, 300, 199, 0
K060 Application run aborted; reason = XINI06.

● The runtime systems for C and possibly COBOL

The runtime system for the programming language C is always required. The COBOL 
runtime system is only needed if you have created a program unit in COBOL. 

● A user-specific message module (optional)

If you have created your own message module (see the openUTM manual “Messages, 
Debugging and Diagnostics in Unix Systems and Windows Systems”), you must also 
incorporate this object module. 

● The runtime system for database system (optional)

See section “Linking a UTM database application in Unix systems” on page 100f for a 
description of which libraries and modules you must incorporate for a UTM database 
link. 

● Additional libraries for XML (optional)

If you want to use XML functions in program units, you will need the appropriate XML 
library.

For more details, see the documentation on the XML interface.

● Additional libraries for X/Open (optional)

If you have created program units using the X/Open interfaces, you will require the UTM 
system library libxopen. 

In addition, the -lm option must be specified when linking.

● You must specify the -lcrypt option for Linux.

● You must always specify the -ldl option.

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



Creating the application program Linking a UTM process under Unix systems

Using openUTM under Unix Systems and Windows Systems  35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

● If your application is intended to run in a 64-bit environment, ensure that the compiler 
generates 64-bit objects when you compile your program units and the KDCROOT 
module. You do this by setting the appropriate switches on the compiler (see the 
documentation for the compiler concerned).

2.1.3 Shared objects

You must observe the following guidelines when linking utmwork to shared objects:

COBOL program units

If COBOL program units are dynamically loaded later as shared objects, then the COBOL 
run-time system must also be linked as a shared object in the program unit. Otherwise, the 
program unit will not be able to find the entries of the COBOL runtime system. 

Micro Focus COBOL

You generate shared objects with the following call.

cob -z -o shared-object Cobol-objects 

You must strictly observe the sequence of the options and specified objects. 

NetCOBOL

You generate shared objects with the following call.

cobol -shared -dy  -o shared-object Cobol-objects 

You must strictly observe the sequence of the options and specified objects. 

AIX platform

The use of shared objects by openUTM is not supported on the AIX platform.

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



Linking a UTM process under Unix systems Creating the application program

36   Using openUTM under Unix Systems and Windows Systems

2.1.4 Calling the linkage editor

Depending on the language used to create the program units, the following linkage editors 
must be used:

● the C linkage editor cc if only C programs are contained

● the COBOL linkage editor from Micro Focus or NetCOBOL if at least one COBOL 
program is contained. 

– The call of the Micro Focus linkage editor is then as follows: 

cob -o utmwork shared-object UTM-systemlibraries 

– Linking with NetCOBOL is performed using the cobol command. To do this, it is 
necessary to incorporate the following COBOL libraries:

– /opt/FJSVcbl64/lib/libFJBASE.so 
– /opt/FJSVcbl64/lib/libcobol.so 
– /opt/FJSVcbl64/lib/librcobflm64.so 

● if you use shared objects in your application, you must always link them dynamically.

● the C++ linkage editor CC if at least one C++ program is contained; in this case, no 
COBOL programs are allowed. 

● If you want to link an application for 64-bit operation, ensure that all the components 
that you specify during linking are available in 64-bit mode. It is not possible run a 
mixture of 32-bit mode and 64-bit mode objects.

2.1.5 Linking with a makefile 

For your application program, you can create a makefile by implementing application-
specific changes to the makefile of the sample application supplied with openUTM. 

The sample application can be found in the CPIO archive utm-directory/CPIO.utmsample 
following the installation. You can copy the sample program with the 
utm-directory/shsc/install.sample procedure to the user ID under which your UTM appli-
cation is also to run. Use the p/config procedure to create a configuration of the sample 
application that corresponds to your application. The makefile makefile of this sample 
application can then be modified and extended for your application; see the online 
documentation for the sample application.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



Creating the application program Linking a UTM process under Unix systems

Using openUTM under Unix Systems and Windows Systems  37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

If you want to link to a database, specify the database system used and the required config-
uration in the p/config run. The makefile created by p/config then generally contains all 
the necessary modules and libraries for the database link. The library lists are created 
under .liblists/ORACLE or .liblists/ORACLECOB. 
More details on linking a UTM database application can be found in chapter “UTM database 
application” on page 99.

X
X

X

X

X

X



Creating application programs under Windows systems Creating the application program

38   Using openUTM under Unix Systems and Windows Systems

2.2 Creating application programs under Windows systems

Application programs can be created in C, C++, or COBOL under Windows systems.

2.2.1 Application programs in C and C++

For application programs in C and C++, you must work with Microsoft Visual Studio. Carry 
out the following steps in this case:

1. Set the options in the Visual Studio

2. Create a project for the application 

3. Write the programs or modify existing programs

4. Compile and link the application

5. Install the application as a service, if so desired.
This has the advantage under some circumstances that the application can be started 
and terminated automatically with the system.
The service can also be started and terminated manually if required.

The section “Setting the options of the Visual Studio” on page 39 through section 
“Compiling and linking the application” on page 42 describe how to create a statically linked 
application program.

If you want to load application programs dynamically, you must create these programs as 
DLLs; see section “Creating application programs as DLLs” on page 47.

The section “COBOL application programs in Windows systems” on page 47 explains what 
to note for application programs in COBOL.

i   The following description applies to Microsoft Visual Studio Version 2010 (English).

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating the application program Creating application programs under Windows systems

Using openUTM under Unix Systems and Windows Systems  39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

2.2.1.1 Setting the options of the Visual Studio

Before you can start developing UTM applications, you must add the directories with the 
openUTM header files (utmpath\include), the openUTM library files (utmpath\sys) and, if 
necessary the database libraries, to the development environment. 

You set these via certain options of the Developer Studio. These settings are independent 
of the project and can therefore be used to create various UTM applications.

Proceed as follows:

1. Call the Microsoft Visual Studio, select Tools - Options and click Projects and Solutions.

2. Select VC++ Directories and set the option for the include files as follows: 

– In the General for box, select the value Include Directories and double-click on the 
empty data entry line.

– Click the New Line button and enter the directory containing the include files: 
utmpath\include, the default is C:\openUTM-Server\32\include). 

Alternatively, click the " ... " button and choose the directory from the intermediate 
dialog box that follows.

– Move the directory to the top location using the arrow button. 

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating application programs under Windows systems Creating the application program

40   Using openUTM under Unix Systems and Windows Systems

3. Set the options for the UTM libraries and the database libraries.

To do this, select the value Library Files in the Show Directories for box and proceed in 
the same manner as for the header files:

a) Specify the directory with the UTM library files. You must always set these options:
– double-click on the empty input line
– Enter the directory containing the UTM libraries (utmpath\sys, the default is 

C:\openUTM-Server\32\sys). Alternatively, click the " ... " button and choose 
the directory from the intermediate dialog box that follows.

– Use the arrow buttons to move the directory to the top,

b) Specify the directory with the database library files. This is only necessary when you 
want to connect a database (for example ORACLE):
– double-click on the empty input line
– Enter the directory containing the database library files directly or select it using 

the intermediate dialog box (by double-clicking " ... "). 

4. Now press OK in the Options window. 
This stores the options for the header files and library files. 

2.2.1.2 Creating projects

Proceed as follows:

1. Call the Visual Studio and select the File item in the menu bar, click on New and select 
the Projects tab. 

2. Highlight Win32 Console Application and enter the name of your project in the Project 
name field; the name is freely selectable and is referred to as utmproject below.

3. Enter the directory in which your project and all its files are to be stored in Location. If 
you enter a directory here that does not yet exist, then the directory is created. 

4. Click on OK. This creates the project. The project remains open. 

Opening a project later

If you want to open the project later, then you have two possibilities:

● Via the Visual Studio by clicking on File - Open - Project/Solution and by navigating in the 
application directory with the help of Search in, if necessary. Click on utmproject.sln 
(utmproject = name of your project) once there.

● Via the Explorer by double-clicking on the utmproject.sln file.

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating the application program Creating application programs under Windows systems

Using openUTM under Unix Systems and Windows Systems  41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

2.2.1.3 Writing source programs

If you want to create new source programs in C or C++, then it is best to use the syntax-
sensitive editor of the Visual Studio. You can, of course, create your programs with any 
common ASCII editor or modify existing programs with the same.

Proceed as follows to create your programs with Visual C++:

1. Open your project by double-clicking on the utmproject.sln file in the Explorer, for 
example. This starts the Visual Studio.

2. Select the Project item in the menu bar and click Add New Item.

3. In the Installed Templates group, select the item Code, in the central group, select the item 
C++ File (.cpp) and enter the name of your source program at the bottom of the screen 
under Name.

4. Click on Add. This saves the file automatically in the project. The editing window opens.

5. Create the source code in the edit window. 

6. Close the file with File - Close, thereby saving the changes. 

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating application programs under Windows systems Creating the application program

42   Using openUTM under Unix Systems and Windows Systems

2.2.1.4 Compiling and linking the application 

Requirements 

Before you can link the application, you must add all required source programs and object 
files to your project and set the linker options (see below). 

The files mainutm.c (to be used if no C++ programs are to be linked) and mainutm.cpp (if 
C++-programs are to be linked) are supplied with openUTM. These sources must be 
compiled and the resulting objects must be included in the application.

If the UTM utility program KDCMMOD has been used to generate a source for an appli-
cation-specific message module then this must also be compiled and the resulting object 
linked into the application.

The ROOT table source that you must always create before linking with KDCDEF also 
belongs to the required source programs. It is recommended to store all source programs, 
including the ROOT table source, in the project directory.

Adding source programs and object files to the project

1. Open your project.

2. Add the source programs as follows into your project:

a) Click in the menu bar on Project and highlight Add Existing Item... This opens the Add 
Existing Item window.

b) Select the Visual C++ Files (.c;.cpp;.cxx;.tli;.h;.tlh;.rc) item as the File Type. 

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating the application program Creating application programs under Windows systems

Using openUTM under Unix Systems and Windows Systems  43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

Navigate in the project directory if necessary. 

Highlight the following there:

– The ROOT table source created with KDCDEF, proot.c in the example.

– All source programs you have created that are to be linked in the project. 
Source programs that you have created in your project with the Visual Studio 
are automatically contained in the project and do not need to be highlighted.

c) Click on Add. You have now added the source programs to the project.

You can also compile individual source programs beforehand for large projects 
(Build - Compile) and then add the object files as described below instead.

3. Add the UTM object files to your project in a similar manner: 

a) Click in the menu bar on Project and highlight Add Existing Item... The Add Existing 
Item window is opened.

b) Add the UTM object files:
Select the All Files (*.*) item as the File Type. 
Navigate in the directory utmpath\sys and highlight the following files:

– Either mainutm.obj or the object based on mainutm.c if no C++ programs are 
contained,

– alternatively mainutmCC.obj or the object based on mainutm.cpp if C++ 
programs are contained. 

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating application programs under Windows systems Creating the application program

44   Using openUTM under Unix Systems and Windows Systems

mainutm.obj/mainutm.c or mainutmCC.obj/mainutm.cpp contain the main function 
of the application.

c) If it is present, add the application-specific message module - however, this does 
not necessarily have to be located in utmpath\sys.

d) Now click on Add. You have added the UTM object files. 

4. Adding additional object files:

If you have already compiled programs, then repeat steps a) through c) from 3. for the 
corresponding object files.

Displaying files

You can view all the files contained in your project at any time by clicking Solution Explorer 
in the navigation area. In the work window, you can, for instance, also open and then edit 
source programs by double-clicking them.

Setting linker options

You must set the linker options each time before you link an application.

1. Choose Project - Properties from the menu to open the utmwork Property Pages window 
of the project (utmproject).

2. Choose Configuration Properties - Linker in the navigation area.

3. Under Linker, click General and under Output File enter the name utmwork.exe. 
utmwork.exe is the name of the linked work process. This name cannot be freely 
selected.

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating the application program Creating application programs under Windows systems

Using openUTM under Unix Systems and Windows Systems  45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

4. Under Linker, click Input and under Additional Dependencies, enter the UTM library 
libwork.lib. This library must appear before all other libraries.

If you use the XATMI interface or databases, then you must also add the following 
libraries:

– The libcmt.lib library for XATMI.

– The database library(ies). The library(ies) to be specified can be found in the 
documentation for the corresponding database.

5. Now click on OK. The linker options you selected are now valid.

W
W

W

W

W

W

W

W



Creating application programs under Windows systems Creating the application program

46   Using openUTM under Unix Systems and Windows Systems

Linking the application program

Open your project, select the Build item in the menu bar and place the cursor on the 
Build utmwork item (see screen snapshot):

As soon as you click on the item, your programs are compiled and your application is linked.

Messages during linking

You receive the messages LNK4075 and LNK4056 when linking. You can ignore these 
messages; the LNK4056 messages arise because the application programs are source code 
compatible with Unix systems.

If you use the exit() function in a start exit, then you will also receive message LNK4006. 
This message is received because the exit() function is dealt with by UTM library 
libwork.lib and not by a Windows library as usually. This is the reason why libwork.lib 
must always be the first in the list (see above).

Result of the linker run

The application program utmwork.exe is stored in your project directory at the end of the 
linker run. As the openUTM main process always looks for the application program under 
this name, you may not rename utmwork.exe. 

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating the application program Creating application programs under Windows systems

Using openUTM under Unix Systems and Windows Systems  47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

2.2.2 Creating application programs as DLLs

If you want to create an application program as a DLL, the following differences apply 
compared to static linking:

1. Create the project as a Win32 Dynamic Link Library (see section “Creating projects” on 
page 40).

2. Add the statement void declspec( dllexport ) to all program units; see section 
“Compiling and linking the application” on page 42). This can look as follows, for 
example:

void declspec( dllexport ) func (struct kc_ca *kb, struct work *spab)

All other steps are the same as for static linking.

  In Unix systems, DLLs are treated in the same way as shared objects. For details 
on generating and using DLLs (otherwise referred to as shared objects, see section 
“Replacing shared objects” on page 220.

2.2.3 COBOL application programs in Windows systems

If you want to create application programs in COBOL, you can either use the compiler 
NetExpress or Visual Cobol from Microfocus ot the compiler NetCOBOL from Fujitsu. 
COBOL runtime licenses from MicroFocus are required for execution of programs that were 
compiled with a Micro Focus compiler.

  Please note the compiler-specific programming notes in the manual openUTM 
manual „Programming Applications with KDCS” (chapter "Additional Information for 
Cobol", section "Platform-specific features in Windows systems").

2.2.3.1 Compiling and linking programms using the Micro Focus compiler

Compiling application programs

Carry out the following steps to compile application programs:

1. Setting environment variables

Ê For the NetExpress compiler: Call the command script 
<netexpressdir>\base\bin\createnv.bat.

Ê For Visual Cobol: Call the command script 
<visualcoboldir>\base\bin\CreateEnv.bat.

W

W

W

W

W

W

W

W

W

WW

W

W

W

W

W

W

XW

W

W

W

W

W

W

W

W

W



Creating application programs under Windows systems Creating the application program

48   Using openUTM under Unix Systems and Windows Systems

Ê Extend the COBCPY environment variable by adding the directory 
%UTMPATH%\copy-cobol85.

Ê Extend the INCLUDE environment variable by adding <path>\include, 
where<path> is the installation directory of the COBOL compiler (required for the 
compilation of the root sources).

Ê If you create programs based on CPIC, TX or XATMI under openUTM, extend the 
COBCPY environment variable as follows: 
%UTMPATH%\<interface>\copy-cobol85, where <interface> stands for cpic, tx or 
xatmi. 

Ê If you create client programs based on UPIC-L, extend the COBCPY environment 
variable by adding %UTMPATH%\upicl\copy-cobol85.

2. Open a command prompt window by choosing Start - Programs - Command Prompt, for 
example, and enter the command cobol. You then specify the source files interactively. 

You should also compile %UTMPATH%\src\mfcobol\MAINUTMCOB.cbl and use the 
resulting object. 

If you have installed the Quick Start Kit, you can also adapt the workcob.mak makefile 
to suit your specific requirements. 

If you want to test the program with the NetExpress animator, the /ANIM switch must be 
specified.

Linking application programs

Application programs are linked in two steps:

1. Open a command prompt window and enter the command cblnames. In this case you 
specify all COBOL objects and other objects individually, e.g. 
%UTMPATH%\sys\MAINUTMCOB.OBJ and root.obj.

2. Link the utmwork.exe program using the Microsoft linkage program LINK. 

The following objects must be integrated:

– @cbllds.lnk (output of cblnames)
– other application program libraries (if any)
– %UTMPATH%\sys\libwork.lib (import library of UTM)
– cblrtss.lib (Cobol runtime system)
– C runtime system, e.g. msvcrt.lib kernel32.lib user32.lib gdi32.lib 

advapi32.lib

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating the application program Creating application programs under Windows systems

Using openUTM under Unix Systems and Windows Systems  49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

i   – It may be necessary to set the LIB environment variable to the directories 
with these libraries.

– If the program is to be animated, it is necessary to specify the /BD switch.

– To define the COBOL main entry, it is necessary to use the /mMainUtm 
switch.

The options for both steps can simply be taken from the QuickStart Kit. The makefile for 
nmake is stored in the filebase directory under the name workcob.mak.

2.2.3.2 Compiling and linking programms using the NetCOBOL compiler

Compiling application programs

The following steps are necessary in order to perform compilation:

1. Set the environment variables:

Ê COB_COBCOPY must contain the directory %UTMPATH%\netcobol in which the 
COBOL copies are stored.

Ê Set COB_LIBSUFFIX to None,CPY,cpy.

Ê Extend LIB by adding<NetCOBOLdir>.

Ê If necessary, extend the INCLUDE environment variable by adding 
<path>\include, where<path> is the installation directory of the COBOL compiler.

Ê If you create programs based on CPIC, TX or XATMI under openUTM, extend the 
COB_COBCOPY environment variable as follows: 

Ê %UTMPATH%\<interface>\netcobol, where <interface> stands for cpic, tx or xatmi. 

Ê If you create client programs based on UPIC-L, extend the COB_COBCOPY 
environment variable by adding $UTMPATH\upicl\netcobol.

2. Open the prompt window, e.g. by choosing Start - Programs - Command Prompt, and enter 
the command cobol32.

Linking application programs

You should observe the following notes:

Ê Back up the following files:

– %UTMPATH%\sys\libwork.lib 
– %UTMPATH%\ex\libwork.dll 
– %UTMPATH%\ex\libwork.pdb

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating application programs under Windows systems Creating the application program

50   Using openUTM under Unix Systems and Windows Systems

Ê Rename the NetCOBOL-specific files as indicated in the table below:

Ê Specify %UTMPATH%\sys\libwork.lib as import library.

2.2.4 Installing an application as a service

You can set up an existing UTM application as a Windows service so that the application is 
started automatically when the computer is booted and terminated automatically when the 
computer is shut down. You install and deinstall a service by calling the utmmains program. 
utmmains is a component of openUTM and is located in utmpath\ex. 

Installing a UTM service

To install a UTM application as a service you must sign on to Windows system under a user 
ID with administration rights and open a command prompt window with Start - Programs - 
Command Prompt. 

Call utmmains with the following parameters in this command prompt window:

utmmains [ -d]  install  servicename  filebase [ startparam-file [ user]]

The parameters must be separated by commas, and the parameters mean the following:

-d  Diagnostics information is also output to stdout; optional.

install  Specifies that utmmains installs a service.

servicename  
Variable name part of the service; required parameter. The complete name of the 
service is then openUTM servicename. It is recommended to use the application name 
from the KDCDEF statement MAX APPLINAME as the servicename.

filebase  
Fully qualified base name of the UTM application; required parameter. 
The base name is the name of the directory in which the application program and 
KDCFILE are located.

startparam-file  
Fully qualified name of the start parameter file.

Default: Startp.std

NetCOBOL-specific file New name

%UTMPATH%\sys\libwork4nc.lib %UTMPATH%\sys\libwork.lib

%UTMPATH%\ex\libwork4nc.dll %UTMPATH%\ex\libwork.dll

%UTMPATH%\ex\libwork4nc.pdb %UTMPATH%\ex\libwork.pdb

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

WW

WW

WW

W

W

W

WW

W

W

W

WW

W

W



Creating the application program Creating application programs under Windows systems

Using openUTM under Unix Systems and Windows Systems  51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

user  Account name for the application run. 
You can specify a local user or a domain user here. The name must have the 
following syntax:

For a local user account: .\LocalUser
For a domain user account: DomainName\DomainUser 

Default: system account

If you specify a user here, then you must enter the corresponding password when 
configuring the service (see below).

utmmains sets up the service immediately. You will need to configure the service after that. 

Configuring the UTM service

As an administrator you can specify the startup type and the properties of the login account. 
Proceed as follows to do this (the example applies to Windows 7, and equivalently for other 
Windows versions):

1. Open the Control Panel window by clicking on Start - Control Panel.

2. Click on Administrative Tools and than on Services. This opens a window with a list of all 
services available on the computer.

3. Highlight the desired service; UTM services always have the prefix openUTM. The Status 
column displays if the service has been started or not.

4. Click on the Startup Type button. This opens an additional window in which you can 
specify the following:

– The startup type (Manual/Automatic/Disabled)

– The account under which the service is signed on. 
If you already specified a user when installing the service (User parameter), then it 
is displayed here. In this case you must enter the corresponding password here, 
otherwise you will not be able to start the service.

i   If a utility program such as KDCKAA.exe cannot access the resources (e.g. 
shared memory) of the UTM application, it may be because different accounts 
are involved. If so, you should configure the service so that it signs on with the 
same account data as the user who starts the utility program.

5. Click on OK and exit the Control Panel. 

Deinstalling a UTM service

To deinstall a UTM service, sign on under a user ID with administration privileges, open a 
Command Prompt window and call utmmains with the following parameters:

WW
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Creating application programs under Windows systems Creating the application program

52   Using openUTM under Unix Systems and Windows Systems

utmmains [ -d]  remove servicename 

The parameters mean the following:

d  Diagnostics information is also output to stdout; optional.

remove  
Specifies that utmmains deinstalls a service.

servicename  
Variable name part of the service. 

Example

You want to set up the application SAMple01 as a service and sign on to the system account. 
The KDCFILE, start parameter file and application program can be found in the directory 
C:\utmserv. The start parameter file is named startparameter. 

● To install the service, call utmmains as follows:

utmmains install Sample C:\utmserv C:\utmserv\startparameter

If in Windows 7 (proceed in an equivalent way for other Windows versions) you now 
click on Start - Control Panel - Administrative Tools - Services and page down, then you will 
see a screen like the one in the following figure:

W

W

WW

W

W

WW

W

W

W

W

W

W

W

W

W

W



Creating the application program Creating application programs under Windows systems

Using openUTM under Unix Systems and Windows Systems  53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
2

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
2

● Click on General and configure the service in the following window:

For example, here you can switch to Automatic for the Startuptype mode.

Please note the following: If you select startup type Automatic then the UTM application 
is not permanently terminated until you terminate this service, see section “Terminating 
a service in Windows systems” on page 95.

● Click on Log On ... and configure the service in the following window: 

Here you can specify a different account for This Account in Log on as instead of the 
system account.

W

W

W

W

W

W

W

W



Creating application programs under Windows systems Creating the application program

54   Using openUTM under Unix Systems and Windows Systems

● To deinstall the service, call utmmains as follows:

utmmains remove Sample

W

W



Using openUTM under Unix Systems and Windows Systems  55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

3 Necessary files and global system resources

Before you start a UTM application, you must always ensure that the following files exist, 
as they are essential for the operation of the UTM application: 

– the KDCFILE 
– the system files stderr and stdout
– the system log file SYSLOG
– the user log file(s) USLOG (optional)
– the directory DUMP 
– all program and object module libraries from which the application is to dynamically load 

modules during the start phase and during operation.

In standalone applications, KDCFILE, USLOG, SYSLOG and the DUMP directory must be 
located in the filebase directory (= base directory of the UTM application). You must specify 
filebase in the start parameters. You specify the name filebase when you create the KDCFILE 
with the KDCDEF generation tool, see the openUTM manual “Generating Applications”, 
MAX...,KDCFILE=filebase control statement. 

  Information on what files are required for operating a UTM cluster application is 
contained in the chapter “UTM cluster application” on page 115.

3.1 System files stderr and stdout

openUTM logs messages to the system files stderr and/or stdout. 

You can switch these system files during live operation. After you have switched the files, 
the old stderr and stdout files can be evaluated and, if necessary, deleted in order to reduce 
the amount of disk space occupied. 

Switching system files

The system files can be switched over during live operation either by the administrator or 
at definable periodic intervals. The system files are always switched over together, but the 
precise time at which this is done for individual processes may be delayed when the system 
is under load.



System files stderr and stdout Necessary files and global system resources

56   Using openUTM under Unix Systems and Windows Systems

● To switch the files over as administrator
– use the command KDCAPPL SYSPROT=NEW
– use the sysprot_switch in the kc_diag_and_account_par_str data structure of the 

programming interface (see the openUTM manual “Administering Applications”)
– use WinAdmin/WebAdmin

The system files are switched over as soon as possible after the request has been 
made.

● To switch over the system files using a time interval, specify the start parameter 
SYSPROT when starting UTM application (see section “Start parameter file of the appli-
cation” on page 79). You can specify a time interval in days. The files are always 
switched over at midnight.

If an error occurs when switching the files over, an error message is issued and 
automatic switching is deactivated.

Names of the switched files

When the UTM application is started, the system files are set up using the names specified 
either by the system or the user. Files are generated using the following name formats as 
of the first time that the files are switched over manually or automatically:

stdout: prefix.out.YY-MM-DD.HHMMSS
stderr: prefix.err.YY-MM-DD.HHMMSS

prefix  The prefix you specified for the start parameter SYSPROT when starting the UTM 
application (see section “Start parameters for openUTM” on page 80). 

Default: utmp

YY-MM-DD.HHMMSS  
Date and time of the switchover

If you set the environment variable UTM_REDIRECT_FILES to YES (see page 292), the 
files are switched over immediately the UTM application is started and output is sent to the 
files with names corresponding to the formats shown above. Output is not written to the 
existing system files stdout/stderr or to their redirection destinations. 



Necessary files and global system resources System log file SYSLOG

Using openUTM under Unix Systems and Windows Systems  57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

3.2 System log file SYSLOG

openUTM logs all events from the application run in the system log file SYSLOG (SYSTEM 
LOGGING), i.e. openUTM writes all UTM messages with the UTM message destination 
SYSLOG to this file (see the openUTM manual “Messages, Debugging and Diagnostics in 
Unix Systems and Windows Systems” for information on message destinations). openUTM 
works with alternating buffers. This prevents wait situations and therefore improves perfor-
mance, especially in applications with a large number of SYSLOG messages.

The system log file SYSLOG can be used for actively monitoring the application run or for 
subsequent checking. SYSLOG provides important information, particularly for diagnostic 
purposes.

The SYSSLOG of the application is always contained in the filebase directory, where filebase 
is the directory under which the application is installed (base name of KDCFILE; defined in 
MAX KDCFILE). 

openUTM provides two options for maintaining a SYSLOG:

– as a simple file SYSLOG in the filebase base directory

– as a file generation group SYSLOG in the filebase base directory

A SYSLOG-FGG has the following advantages over a simple SYSLOG file:

● You can switch to the next file generation during live operation (switchable SYSLOG 
file). You can administer the SYSLOG with the KDCSLOG administration command, for 
example. See the openUTM manual “Administering Applications” for more information. 
openUTM closes the previously used file generation when a switch is made. 

● You can set automatic size monitoring for the SYSLOG. This means that you can 
generate or specify via the administration a threshold value for the size of the individual 
file generations of the SYSLOG-FGG. When this threshold is reached, openUTM 
automatically switches to the next file generation of the FGG. Size monitoring can be 
enabled and disabled while the application is running. 

Messages from openUTM

openUTM outputs the following messages regarding the SYSLOG: 

● Message K136 at the start of the application: 
K136 (First) SYSLOG file is &FNAM 

● Message K138 at the end of the application: 
K138 SYSLOG file &FNAM closed

● Message K137 after switching to another file generation:
K137 SYSLOG switched to file &FNAM



System log file SYSLOG Necessary files and global system resources

58   Using openUTM under Unix Systems and Windows Systems

3.2.1 SYSLOG as a simple file

You can create the SYSLOG file as a simple file before the start of the application in the 
filebase base directory. If neither a file nor a file generation directory with the name SYSLOG 
exists in filebase when the application starts, then openUTM creates a simple file called 
SYSLOG.

At the start of the application, openUTM opens the SYSLOG file. It remains open for the 
entire application run. openUTM writes all the events of an application run into this file. 

With each subsequent start of the application, the contents of the SYSLOG file are 
overwritten by openUTM. The log information from the previous application run is lost. After 
the end of an application run, you should therefore save the contents of the SYSLOG file, 
if necessary. 

v   CAUTION!
If you want to maintain the SYSLOG as a simple file, then you many not activate 
size monitoring for the SYSLOG. If you switch on size monitoring in the generation 
with MAX..,SYSLOG-SIZE=size (size > 0), then openUTM aborts the start of the 
application with the start error code 58.

3.2.2 SYSLOG as a file generation group 

openUTM only maintains the SYSLOG as a file generation group if a file generation group 
called SYSLOG exists in the filebase base directory at the start of the application. 
You must create this file generation group using the KDCSLOG tool (see also section “The 
KDCSLOG tool for creating the SYSLOG-FGG” on page 59). 

A File Generation Group (FGG) is a directory with files that are numbered consecutively 
using their file names (e.g. 0001, 0002,...). The files are called file generations of the FGG. 
The numbers are referred to as the file generation numbers. 

When the FGG is created with KDCSLOG, the INFO file is also created and written in the 
FGG. The first time the application starts, openUTM creates the first file generation 0001 in 
the FGG and opens it as the SYSLOG file. All processes of the application write the 
messages with the destination SYSLOG in this file generation first. 

When switching files, openUTM automatically creates the next generation.

If the file generation with the generation number n is the last file in which openUTM has 
written before the end of an application run, openUTM creates the file generation (n+1) with 
the next application start and opens this generation as the SYSLOG file. 

The FGG contains a maximum of m file generations. The number m is defined when 
creating the FGG with the KDCSLOG tool. As soon as openUTM creates the (m+1)-th file 
generation, the oldest file generation is deleted, i.e. the file generation with the lowest 
generation number.



Necessary files and global system resources System log file SYSLOG

Using openUTM under Unix Systems and Windows Systems  59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

3.2.3 The KDCSLOG tool for creating the SYSLOG-FGG

The SYSLOG-FGG is created using the KDCSLOG tool. You will find it in the ex subdi-
rectory of the openUTM installation directory. The program is started as follows:

In Unix systems from a shell with

utmpath/ex/kdcslog filebase number [K]

In Windows systems from a command prompt window with

utmpath\ex\kdcslog filebase number [K]

Meaning of parameters:

filebase  Name of the directory under which the application is installed or is to be 
installed (base name of the KDCFILE.

number  Maximum number of file generations in the FGG.
The FGG contains a maximum of number file generations. As soon as 
openUTM creates the (number+1)-th file generation, the oldest file gener-
ation (i.e. the file generation with the lowest generation number) is deleted.

Minimum value: 1 
Maximum value: 9999 

K  (keep)
If this parameter is specified, all files are retained even if number is 
exceeded.

First of all, KDCSLOG creates the filebase base directory if it does not yet exist. The FGG 
SYSLOG is then created in the filebase and an INFO file is created within the FGG. The 
INFO file is used to store all the current status information on the file generations of the 
group. 

v   CAUTION!
If a SYSLOG already exists in the filebase directory before KDCSLOG is called, this 
FGG is deleted and a new one created. 

KDCSLOG messages

The KDCSLOG tool outputs its messages to stdout and stderr. The  KDCSLOG messages 
are listed in the openUTM manual “Messages, Debugging and Diagnostics in Unix Systems 
and Windows Systems”. 

X

X

W

W



System log file SYSLOG Necessary files and global system resources

60   Using openUTM under Unix Systems and Windows Systems

Example

Creating the FGG SYSLOG under Unix systems

openUTM is installed in the /opt/lib directory; the base name of the application is 
/home/userutm/example. The file generation group for the SYSLOG is created as follows: 

utmpath/ex/kdcslog /home/userutm/example 10

KDCSLOG creates the FGG:

/home/userutm/example/SYSLOG

and the file:

/home/userutm/example/SYSLOG/INFO

Creating the FGG SYSLOG under Windows systems

openUTM is installed in the directory C:\openUTM-Server, the base name of the application 
is C:\utmsample. You set up the file generation directory for the SYSLOG as follows: 

utmpath\ex\kdcslog C:\utmsample 10

KDCSLOG creates the FGG:

C:\utmsample\SYSLOG

and the file:

C:\utmsample\SYSLOG\INFO

Comments on the examples 

The UTM application always writes to the file currently with the highest generation number. 
If the SYSLOG is switched to the next file generation, openUTM creates this file generation. 
The maximum possible number of numbered log files is specified in the number parameter, 
i.e. a maximum of 10 file generations. If this number is reached and if the file is switched, 
the file with the lowest number is deleted, i.e. if openUTM creates file generation 0011 when 
switching the file generation 0001, the file generation is deleted automatically, and so on.

v   CAUTION!
Please make sure that files which have not yet been evaluated are not overwritten 
or deleted. 

X

X

X

X

X

X

X

X

W

W

W

X

W

W

W

W



Necessary files and global system resources System log file SYSLOG

Using openUTM under Unix Systems and Windows Systems  61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

3.2.3.1 Automatic size monitoring

Automatic size monitoring can only be used for FGGs. If you create the SYSLOG file as a 
simple file and generate automatic size monitoring, then openUTM terminates the start of 
the application with start error code 58.

Automatic size monitoring can be set in two ways: 

● in the generation using the KDCDEF statement MAX ...,SYSLOG-SIZE=size

● while the application is running, using the administration command
KDCSLOG [SWITCH,]SIZE=size or on the administration program interface with the 
operation code KC_SYSLOG and subopcode KC_CHANGE_SIZE (see the openUTM 
manual “Administering Applications”)

In both cases, you must set a value > 0 for size. 

When size monitoring is switched on, openUTM does not write any UTM message to the 
SYSLOG file before checking whether writing this UTM message would exceed the agreed 
maximum size of the file generation (size ∗ size of a UTM page). If this is the case, an 
attempt is made to switch to the next file generation. If successful, openUTM outputs UTM 
message K137. The UTM message is written in the new file generation. 

If the attempt to switch generations results in an error, openUTM continues to work with the 
old file generation in which data was logged before the switching attempt was made. 
openUTM writes UTM message K139 to stdout and to the administrator console. In addition, 
UTM message K043 is output for all DMS errors. This contains a DMS error code indicating 
the reason for the switching error. 

To ensure that openUTM does not unsuccessfully attempt to switch to the next file gener-
ation for each subsequent UTM message with the destination SYSLOG, automatic size 
monitoring is deactivated after this type of switching error. 

After the administrator has found and eliminated the cause of the switching error, automatic 
size monitoring can be reactivated using the KDCSLOG SWITCH command, for example. 
When KDCSLOG SWITCH is issued, openUTM is forced to begin a new switching attempt. 
If this attempt runs without errors, the previously deactivated size monitoring function is 
automatically reactivated. 

After the generations have been switched successfully, no more UTM messages are written 
to the old file generation. When a file generation is closed, openUTM outputs UTM message 
K138. 



System log file SYSLOG Necessary files and global system resources

62   Using openUTM under Unix Systems and Windows Systems

3.2.4 Protection against oversized SYSLOG file

If you are maintaining the SYSLOG as an FGG, you can control the amount of storage 
space occupied by the SYSLOG by permitting a maximum of n file generations for the FGG 
(number parameter of the KDCSLOG tool) and by activating automatic size monitoring. See 
also section “Automatic size monitoring” on page 61.

The file generations of the SYSLOG are cyclically overwritten so that the FGG contains a 
maximum of n file generations. With size monitoring, each generation has a maximum of 
size UTM pages. 

The maximum space requirement of the SYSLOG-FGG is thus calculated by:

n ∗ size ∗ (size of a UTM page). 

3.2.5 Behavior in the event of write errors

If an error occurs in the attempt to write a UTM message in the SYSLOG, openUTM outputs 
UTM message K043, which contains a DMS error code. This error code indicates the 
reason for the error.

The subsequent behavior of openUTM depends on whether the SYSLOG is maintained as 
a simple file or as an FGG. 

● The SYSLOG is maintained as a simple file:

After UTM message K043 is output, the application is terminated with reason SLOG09.

● The SYSLOG is maintained as an FGG:

When an error occurs, openUTM attempts to switch to the next file generation. 
openUTM also switches generations if size monitoring is deactivated or not generated. 
openUTM does not switch generations if size monitoring is suspended as a result of a 
previous switching error.

If the switching attempt fails, the application is terminated with reason SLOG09.

If openUTM can successfully switch to the next file generation, openUTM makes 
another attempt to write the UTM message in the SYSLOG. If an error occurs in this 
attempt, the application is terminated with SLOG09. If no errors occur, the application 
continues running and openUTM logs the UTM messages in the new SYSLOG file 
generation.



Necessary files and global system resources User log file

Using openUTM under Unix Systems and Windows Systems  63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

3.3 User log file

The user log file contains the records created by the application program with LPUT calls. 
The user log files of an application are organized in a file generation group (FGG), i.e. a 
group of files numbered consecutively using their file names. The user log files are 
contained in the USLA directory in the filebase base directory. If user log files are required 
(LPUT calls), they must be created using the KDCUSLOG tool before the application starts. 

Calling KDCUSLOG 

Unix systems:

utmpath/ex/kdcuslog filebase number [ S | D ]

In Windows systems from a command prompt window with

utmpath\ex\kdcuslog filebase number [ S | D ]

Meaning of parameters:

filebase  Name of the directory under which the application is installed or is to be 
installed: Base of the KDCFILE. 

number  Number of files in each file generation group; maximum 9999. 

S  Single-file operation; default setting. 

D  Dual-file operation; the USLA directory is also created in the filebase base 
directory. 

KDCUSLOG first of all creates the filebase directory if it does not already exist. The USLA 
directory and, for dual-file operation, the USLB directory are then created in filebase. An 
INFO file which is used to store the current status information on files in the FGG is created 
in the USLA or USLB directory in which the current status information on files of the FGG 
are stored.

The USLA directory contains the following files:

/INFO  Administrative file

/0001  First file of the file generation (number 0001)

v   CAUTION!
If the file generation group already exists before the procedure is called, the old 
group is deleted and a new one created. 

X

X

W

W



User log file Necessary files and global system resources

64   Using openUTM under Unix Systems and Windows Systems

Example

Unix systems 

openUTM is installed in the /opt/lib directory; the base name of the application is 
/home/userutm/example. The user log file is to be operated in dual-file mode. 

The file generation group for the user log file is created as follows: 

utmpath/ex/kdcuslog /home/userutm/example 2 D 

KDCUSLOG then creates the files: 

/home/userutm/example/USLA/INFO
/home/userutm/example/USLA/0001

/home/userutm/example/USLB/INFO
/home/userutm/example/USLB/0001

Windows systems

openUTM is installed in the C:\openUTM-Server directory, the base name of the application 
is C:\utmsample. The user log file is to be operated in dual-file mode. 

The file generation group for the user log file is created as follows: 

utmpath\ex\kdcuslog C:\utmsample 2 D 

KDCUSLOG then creates the files: 

C:\utmsample\USLA\INFO
C:\utmsample\USLA\0001

C:\utmsample\USLB\INFO
C:\utmsample\USLB\0001

Comments on the example

The UTM application always writes to the file currently with the highest number. With each 
KDCLOG command issued by the administrator, openUTM switches to the next file gener-
ation. The maximum number of numbered user log files is specified in the number parameter 
(in Example 2) when KDCUSLOG is called. If this number is reached and if the generation 
is switched with KDCLOG, the file with the lowest number is deleted. 

Make sure that files which have not yet been evaluated are not overwritten. 

openUTM does not write the user log records directly into the log file, rather saves them first 
of all in the page pool of the KDCFILE. If the page pool contains the number of UTM pages 
generated in MAX...,LPUTBUF=number, openUTM copies the records to the user log file. 
The records are copied asynchronously to active transactions. If the application is termi-
nated normally, openUTM likewise copies the records to the user log file.

X

X

X

X

X

X

X
X

X
X

W

W

W

W

X

W

W
W

W
W



Necessary files and global system resources User log file

Using openUTM under Unix Systems and Windows Systems  65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

The number of UTM pages specified in LPUTBUF=number must be taken into account when 
generating the size of the page pool with MAX...,PGPOOL=number. 

The MAX...,LPUTLTH=length statement affects the block length of the user log file. It is 
calculated by openUTM and can be greater than the standard block of 2KB. 

openUTM can only copy LPUT records to the user log file if this file is created and can be 
accessed by openUTM. 

Note that the user log file is overwritten from the start following a KDCDEF or KDCUPD run; 
otherwise, data is added to the end of the file. For this reason, you should evaluate the log 
records before a KDCDEF or KDCUPD run. 

KDCUSLOG messages

KDCUSLOG outputs its messages to stdout and stderr. The KDCUSLOG messages are 
listed in the openUTM User Guide “Messages, Debugging and Diagnostics”. 

3.3.1 Response to write errors 

If a DMS (Data Management System) error occurs while writing LPUT records in the user 
log file, then openUTM outputs message K043, which contains a DMS error code. You can 
determine the reason for the error with this error code. 
At the same time, every additional LPUT call in the program unit is rejected with the KDCS 
return code 40Z (internal return code K903). 

The administrator of the application can then correct, restore or recreate the user log file or 
its generations. 

The administrator must issue the KDCLOG administration command or a KDCADMI call 
with opcode KC_USLOG so that openUTM can write LPUT records to the user log file 
again. (see the openUTM manual “Administering Applications”). 

The LPUT records saved in the page pool of the KDCFILE are now written in the log file(s) 
and the generation number is incremented. 
The lock for LPUT calls in the program unit is released.



DUMP directory Necessary files and global system resources

66   Using openUTM under Unix Systems and Windows Systems

3.4 DUMP directory

The following files are stored in the DUMP directory:

● dump files that were possibly created during the application run

● temporary files needed to create the dump

● if necessary, core files for diagnostics (Unix systems) or mini dumps (Windows 
systems)

This directory should therefore always be set up before startup, so that these files can be 
created. The DUMP directory must be created in the filebase base directory.

3.5 Global system resources of an application 

The global system resources that a openUTM production application requires are listed in 
this section. You will learn how to change the size of the shared memory area for inter-
process communication (IPC) to improve the performance of your application when 
communicating with network partners.

3.5.1 System resources required by a UTM application 

An openUTM production application requires the following global system resources. 

Shared memory area

A UTM application requires three shared memory areas for the configuration data and 
global application administrative data (KAA), the cache, and the internal UTM process 
communication (see also section “Improving performance: Changing the size of the data 
area in the IPC shared memory” on page 69). 

For communication via OSI TP, OSS and XAPTP shared memory are also required.

Semaphores 

A UTM application requires semaphores for implementing wait situations (message 
queues). Semaphores are variables for controlling and synchronizing work processes. 

In openUTM, the semaphores are organized into semaphore arrays where each 
semaphore array contains exactly 20 semaphore entries. A semaphore array contains one 
or more semaphores. A UTM application requires at least one semaphore array. The 
maximum number of semaphores in the system is limited.



Necessary files and global system resources Global system resources of an application

Using openUTM under Unix Systems and Windows Systems  67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

In the openUTM environment, the semaphore entries are allocated as follows: 

● eight entries for IPC shared memory

● one entry for KAA shared memory

● one entry for CACHE shared memory

● one entry for CACHE access lock

● one entry for PCMM access lock

● one entry for each work process as a task bourse 

● one entry for each attached external process (utmtimer, utmdtp, utmprint and local UTM 
client program) for communication between openUTM and the external process. 

● two entries for each connected network process of typeutmnet or utmnets, to permit 
communication between openUTM and the network processes.

The number of network processes started depends on the type of network connection 
of a UTM application:

Connection via PCMX

– The -application is connected in multi-threaded mode:
(MAX ...,NET-ACCESS=MULTI-THREADED) 

One process (utmnet) is started for each listener ID generated with KDCDEF 
(BCAMAPPL or ACCESS-POINT statement).

– The application is connected in single-threaded mode (Unix systems):
(MAX ...,NET-ACCESS=SINGLE-THREADED) 

i   The SINGLE-THREADED option is supported in this version for the last 
time.

There is one main network process (utmnetm) per UTM application. 
In addition, one process (utmnetc) is started for each CMX communication 
relationship.

Connection via the socket interface (native TCP/IP)

One process (utmnets) is started for each Socket listener ID generated with KDCDEF 
(BCAMAPPL statement with T-PROT=SOCKET).

This means:
16 entries are required for a minimum production application (single-process appli-
cation). When generating a key for the semaphore, at least one dialog terminal process 
(utmdtp) can thus be connected in parallel. 

X

X

XX

X

X

X

X



Global system resources of an application Necessary files and global system resources

68   Using openUTM under Unix Systems and Windows Systems

With MAX...,SEMARRAY= you can define a range of up to 1000 sequential keys. 
KDCDEF generation with MAX...,SEMKEY= allows you to define up to 10 separate 
keys for semaphores. 

Additional semaphores for communication via OSI TP

● An entry for the OSS lock mechanism

File descriptors 

A work process of a UTM application always allocates the following file descriptors for: 

– stdin 
– stdout
– stderr 
– the KDCFILE file
– the SYSLOG file
– the IPC shared memory 
– the KAA shared memory 
– the CACHE shared memory
– a named pipe to the main process (utmmain)
– a named pipe to the logging process (utmlog)

Additional file descriptors for communication via OSI TP for:

– the OSS shared memory
– the XAPTP shared memory

Further file descriptors are required if dual-file operation is implemented for the KDCFILE, 
if PAGEPOOL files are used (specification for MAX ...,PGPOOLFS=), or if the restart area 
is divided into a number of files (specification for MAX ...,RECBUFFS=). 

In UTM cluster applications, additional file descriptors are required for the files that are 
global to the cluster:

– Cluster configuration file
– Cluster user file
– Cluster page pool administration file
– Cluster page pool file(s)
– Cluster GSSB file
– Cluster ULS file
– Cluster administration Journal
– Cluster lock file
– Cluster start serialization file



Necessary files and global system resources Global system resources of an application

Using openUTM under Unix Systems and Windows Systems  69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

A work process of the application briefly allocates further file descriptors for: 

– the current user log file (USLOG)
– dump files in the event of errors 
– startup of a node application in a UTM cluster application

The applifile

This file is created in the installation directory when openUTM is installed and contains the 
names of all applications started in the system since then, along with their status infor-
mation and keys of the semaphore and shared memory segments used for communication 
between the external processes (dialog terminal, printer and timer process and local UPIC 
client programs) and the work processes. The keys must be assigned uniquely throughout 
the entire system. 

v   CAUTION!
The applifile is an internal UTM administration file. You may not open this file with 
an editor. You may destroy the applifile if you do. 

3.5.2 Improving performance: 
Changing the size of the data area in the IPC shared memory

The shared memory area for interprocess communication (IPC shared memory area) 
requires the UTM application for the exchange of messages between its processes. It is 
created by openUTM. If this area is too small, then performance bottlenecks can arise and 
connections may be cleared. 

Most of the IPC shared memory area is used to store the messages that are exchanged 
between the processes of an application. This area will be called the data area in the 
following discussion. The rest of the shared memory is used to administer the processes 
and their connections. 

The data area in IPC shared memory is organized in 4 KB blocks. 

The size of the IPC shared memory is set by openUTM for each application. The size is 
mainly determined by the number of communication partners generated and by the number 
of semaphores generated. See also “Semaphores” on page 66. 

openUTM creates a data area of approximately 10 ∗ 4 KB for each semaphore key 
generated. In addition, openUTM creates a a data area of approximately 4 KB for each 
communication partner generated. 

The data area created by openUTM may be too small if a lot of data is sent over the 
connection to the communication partners. This can lead to performance bottlenecks and 
therefore to the clearing of connection. To prevent this, you can change the size of the IPC 



Global system resources of an application Necessary files and global system resources

70   Using openUTM under Unix Systems and Windows Systems

shared memory. The environment variables UTM_IPC_LETTER and 
UTM_IPC_EXTP_LETTER are used to do this. You can change the absolute size of the IPC 
shared memory with UTM_IPC_LETTER, and with UTM_IPC_EXTP_LETTER you can 
change the maximum size of the data area in IPC shared memory that is available for a 
single connection. 

Changing the absolute size of the data area

The data area in IPC shared memory is distributed amongst the existing connections 
according to the “first come - first served” principle. If the entire data area is in use, then 
connections are cleared. 

openUTM then outputs the following message: 

U189 IPC bottleneck &IPCOBJ &IPCREAS 

with the inserts &IPCOBJ=LETT and &IPCREAS=IPC FULL, EXTP FULL or USED. 

You can increase the absolute size of the data area using the environment variable 
UTM_IPC_LETTER to prevent this. In UTM_IPC_LETTER you specify the number of 4KB 
blocks that are to comprise the IPC shared memory. The smallest value allowed is 5 (corre-
sponding to 20KB). 

A change to UTM_IPC_LETTER will only take effect after the next start of the UTM appli-
cation. UTM_IPC_LETTER is evaluated at the start of the application by the first work 
process. 

If you have very little data, then you can also decrease the size of the data area with 
UTM_IPC_LETTER. You can then reduce the amount of overhead required by the 
operating system to administer the IPC shared memory. 

Changing the maximum data area for the messages produced by a connection

All connections are basically handled in the same manner when allocating space in the data 
area in IPC shared memory. To prevent the data area from being used up from just one 
connection, there is a default maximum size of 64 KB (16 ∗ 4KB) that can be used by one 
connection at any one time. If all 64 KB are already in use by one connection, then the 
connection is cleared. 

openUTM then outputs the following message: 

U189 IPC bottleneck &IPCOBJ &IPCREAS 

with the inserts &&IPCOBJ=LETT and &IPCREAS=MAX ILETT or MAX OLETT. 

You can increase the maximum size of the data area available for a connection using the 
environment variable UTM_IPC_EXTP_LETTER to prevent this.



Necessary files and global system resources Global system resources of an application

Using openUTM under Unix Systems and Windows Systems  71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
3

With UTM_IPC_EXTP_LETTER you can specify the maximum size of the data area 
available for a connection in 4KB blocks. The default value is 16. The smallest value 
allowed is 1 (corresponding to 4KB). 

A change to UTM_IPC_EXTP_LETTER will only take effect after the next start of the UTM 
application. UTM_IPC_EXTP_LETTER is evaluated at the start of the application by the 
first work process. 



Global system resources of an application Necessary files and global system resources

72   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

4 Starting a UTM application

A UTM application is started by calling the utmmain program. This program is the main 
function of the application and runs as a background process. utmmain creates the work 
processes (utmwork), the timer process (utmtimer) and, if required, network processes 
(utmnet, utmnetm, utmnets) and printer processes (utmprint, Unix systems only). See also the 
openUTM manual “Concepts und Functions”. 

A UTM application can also be started with a debugger for diagnostic purposes (see 
openUTM manual “Messages, Debugging and Diagnostics in Unix Systems and Windows 
Systems”, section "Debugging UTM applications").

  For information on cluster-specific issues when starting a UTM cluster application, 
refer to the section “Starting a UTM cluster application” on page 133. 



Starting in Unix systems Starting a UTM application

74   Using openUTM under Unix Systems and Windows Systems

4.1 Starting a UTM application in Unix systems

You need to take the following steps to start an application with utmmain:

1. Set the UTMPATH environment variable to utmpath. It makes sense to add the following 
commands to the .profile or in the login-file of the login name under which the application 
will be run:

UTMPATH=utmpath 
export UTMPATH

For more information on utmpath see page 284.

2. Create the start parameter file as described on page 80.

3. Start utmmain as a background process:

utmpath/ex/utmmain filebase [ startparam-file] &

filebase   
is the fully qualified base name for the UTM application (the name of the 
directory of the application). 

startparam-file   
is the fully qualified name of the file in which the start parameters are defined. 
If this parameter is omitted, then the start parameters must be in the file 
filebase/startparameter. 

utmmain produces messages on stdout at the start of the application as well as during the 
application run; error messages occurring at the start are output to stderr (see also 
page 92). These messages can be redirected to a file or a filter program as in the following 
example. 

Example

The application and the start parameter file are located in the directory /home/utmbsp, the 
start parameter file has the default name startparameter.

If all output is to be redirected to a file, then call utmmain as follows:

utmpath/ex/utmmain /home/utmbsp 1>utmp.out  2>utmp.err &

If the output is to be handled further by a program or a shell script named filter instead, 
then call utmmain as follows, for example:

utmpath/ex/utmmain /home/utmbsp 2>&1 | filter

Using this method, you can react to messages from the network process, for example, 
which is not possible with an MSGTAC program.

X

X

X

X

X

X

X

X

X

X

XX

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



Starting a UTM application Starting in Unix systems

Using openUTM under Unix Systems and Windows Systems  75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

i   Redirection to the filter script is only possible if automatic switchover of the log 
files has not been activated (see SYSPROT in section “Start parameter file of the 
application” on page 79).

Network processes 

When utmmain is started, it generates the following network processes.

– With multi-threaded generation (MAX NET-ACCESS=MULTI-THREADED) one or more 
utmnet processes are generated. 

– With single-threaded generation (MAX NET-ACCESS=SINGLE-THREADED) a 
utmnetm process is generated. 

– One or more utmnets socket network processes are also started for TCP/IP communi-
cation, see also section “Using different socket network processes” on page 285.

X
X

X

X

X

X

X

X

X

X

X



Starting in Windows systems Starting a UTM application

76   Using openUTM under Unix Systems and Windows Systems

4.2 Starting a UTM application in Windows systems

You can start a UTM application with the utmmain program or as a service under Windows 
systems.

4.2.1 Starting with utmmain

You need to take the following steps to start an application with utmmain:

1. Add the utmpath\ex directory to the PATH variable for the user ID under which the UTM 
application is to be run. 

2. Create the start parameter file as described on page 80.

3. Open a command prompt window with Start - Programs - Command Prompt and enter the 
following at the prompt:

utmmain  filebase [ startparam-file] 

filebase   
is the fully qualified base name for the UTM application (the name of the 
directory of the application).You can also enter filebase as a relative path name, 
e.g. as "." (dot) if you call utmmain from the filebase directory.

startparam-file   
is the fully qualified name of the file in which the start parameters are defined. 
If this parameter is omitted, then the start parameters must be in the file 
filebase/startparameter. 

You can also create a shortcut for the utmmain call so that you can start the UTM appli-
cation with the mouse or with a hot key. See the following example for more details. 

utmmain produces messages on stdout at the start of the application as well as during the 
application run; error messages occurring at the start are output to stderr (see also 
page 92). These messages can be redirected to a file as shown in the following example. 

Example

The application is located in the directory C:\utmtest\example and you have added the 
directory utmpath\ex to the PATH variable of your user ID. The start parameter file has the 
default name startparameter and is also located in the directory of the application. 

If you want to redirect all messages to a file, then open a command prompt window now 
and start the UTM application as follows:

cd C:\utmtest\example
utmmain . 1>utmp.out  2>utmp.err

W

W

W

W

W

W

W

W

W

WW

W

W

W

WW

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W
W



Starting a UTM application Starting in Windows systems

Using openUTM under Unix Systems and Windows Systems  77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

If the output is to be handled further by a program or a command file named filter instead, 
then call utmmain as follows:

utmmain . 2>&1 | filter

Using this method, you can react to messages from the network process, for example, 
which is not possible with an MSGTAC program.

i   Redirection to the filter script is only possible if automatic switchover of the log 
files has not been activated (see SYSPROT in section “Start parameter file of the 
application” on page 79).

Starting the UTM application using a shortcut

You can create a shortcut for this purpose so that you can start the application with the 
mouse or using a certain keyboard command.

On Windows systems proceed as follows:

1. Click on an empty part of the screen background with the right mouse key, select New 
and click on Shortcut. The Create Shortcut window opens:

– Enter the following in the Location of the item field:

cmd.exe /c utmmain . ./startp.std >utmp.out 2>utmp.err <nul 

A command prompt window is opened by CMD and the command is then executed 
there. 
/C means that the window is to be closed after utmmain terminates.

– Under Windows 7 (proceed in an equivalent way for other Windows versions) click 
Next and specify an appropriate name in the Create Link  window, e.g. start-utm.

– Click on Finish. The window closes and an icon with the name start-utm appears 
on the screen.

2. Click on the icon with the right mouse button and select Properties. Click on the Shortcut 
tab and execute the following steps there:

– Enter the directory C:\utmtest\example (= application directory) in the Start in field. 
This makes utmmain look for the parameters in this directory, and it also stores the 
files in this directory.

– Place the cursor in Shortcut Key field and press CTRL, ALT and F3 at the same time. 
You can also assign a different icon to the shortcut in this window via the Change 
Icon... button.

– Press OK. The shortcut is now done, and the application can be started by double-
clicking on the icon or by pressing CTRL+ALT+F3.

W
W

W

W

W

X

X

X

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Starting in Windows systems Starting a UTM application

78   Using openUTM under Unix Systems and Windows Systems

4.2.2 Starting as a service 

A UTM application must be installed and configured as a service as described in section 
“Installing an application as a service” on page 50. You can set the startup type to Automatic 
when you are doing this so that the service is started every time the computer is booted. If 
the startup type is set to Manual, then the service must always be started manually.

Under Windows 7, for instance, you start a service as follows (the procedure is analogous 
for other Windows variants):

1. Sign on under a Windows system user ID that has administration privileges.

2. Call up the control panel with Start - Control Panel. 

3. Click on System and Security  -  Administrative Tools and then on Services and highlight the 
desired UTM service using the right mouse button; the service is always named 
openUTM servicename. The servicename is assigned when the service is installed.

4. Select the Start command in the context menu. The service is started.

An application started as a service produces the same messages when started and during 
operation as an application started via utmmain. Default, these messages are written to the 
following files:

– messages to stdout in the file filebase\utmp.out

– messages to stderr in the file filebase\utmp.err (see also page 92).

The file name depends on the start parameter specified for SYSPROT and whether or not 
automatic switchover has been specified for the system files (see section “Start parameter 
file of the application” on page 79).

i   If the application is started as a service and the system account is used (default 
setting), a number of diagnostic files may be saved in the system directory (e.g. in 
C:\Win\system32).

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Starting a UTM application Start parameters

Using openUTM under Unix Systems and Windows Systems  79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

4.3 Start parameter file of the application

The start parameter file is created by the administrator of the application using any editor.

The start parameters define the current runtime parameters of the application. This includes 
the number of work processes with which the application is to work or possibly parameters 
for a Resource Manager, for example. 

The start parameters can be entered in one or more lines. A prefix determines who the start 
parameters are for:

● Start parameters with the prefix “.UTM” or without a prefix are interpreted by openUTM 
itself. 

● Start parameters with the prefix “.RMXA” are forwarded by openUTM to the connected 
Resource Manager (database system) for evaluation (see page 101). 

The sequence of start parameters for openUTM and the database system is arbitrary, 
although the input of all start parameters must be concluded by the END command. 

Comments

All lines with an asterisk (*) or hash character (#) in column 1 are interpreted as comments. 
Comments can be placed anywhere in the start parameter file. You can then activate or 
deactivate individual start parameters, for example, depending on the application run.



Start parameters Starting a UTM application

80   Using openUTM under Unix Systems and Windows Systems

4.3.1 Start parameters for openUTM 

The syntax of the UTM start parameters is illustrated below: 

[.UTM] START   

               [ ,ADMI-TRACE=  ON | OFF ]
               [ ,ASYNTASKS=number ]

               [ ,BTRACE=  ]

               [, CPIC-TRACE = { TRACE | BUFFER | DUMP | ALL | OFF }
               [ ,DB-CONNECT-TIME=sec ]
               [ ,DUMP-CONTENT={ STANDARD | EXTENDED } ]
               [ ,DUMP-MESSAGE=(event-typ,event) ]

[ ,NODE-TO-RECOVER=node-name ]
               [ ,OTRACE={ ON | (SPI, INT, OSS, SERV, PROT) | OFF } ]

[ ,RESET-PTC ={ YES | NO } ]
               [ ,STXIT={ ON | OFF } ]
               [ ,SYSPROT=(interval,filename-prefix) ]
               [ ,TASKS=number ]
               [ ,TASKS-IN-PGWT=number ]
               [ ,TESTMODE={ ON | OFF | FILE } ]
               [, TX-TRACE = { ERROR | INTERFACE | FULL | DEBUG | OFF }
               [, XATMI-TRACE = { ERROR | INTERFACE | FULL | DEBUG | OFF }
         
[.UTM] END

In the syntax above the parameters are specified in a line without a carriage return and 
are separated by commas.

The UTM start parameters in the START command can be specified over several lines. In 
this case, the START command must appear in each line before the operands. 

Syntax check at the start of the application

– If openUTM detects a syntax error in the start parameters, it outputs message K038, 
sets the corresponding value of the start parameter to its default value (if any) and starts 
the application. 

– The application cannot be started when there is a syntax error in the FILEBASE or the 
CLUSTER-FILEBASE parameter because there is no default value for this parameter.

FILEBASE=filebase
CLUSTER-

 ON | OFF 
 ( ON | OFF, length )



Starting a UTM application Start parameters

Using openUTM under Unix Systems and Windows Systems  81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

Meaning of the commands 

START  This command is used to specify the UTM start parameters required for a 
UTM application run. The application is started as soon as all start param-
eters have been entered. 

END  This command concludes the input of start parameters. 

Meaning of the operands 

FILEBASE=filebase  
The base name for the KDCFILE and the user log file in standalone appli-
cations. Here you must specify the name under which the KDCFILE is 
stored at startup time. If an invalid name is specified, the application start is 
canceled.

If you specify the start parameter FILEBASE, you must not specify the start 
parameter CLUSTER-FILEBASE.

In the case of UTM cluster applications, use the start parameter CLUSTER-
FILEBASE instead of FILEBASE. The base name of an individual node 
application is defined in the CLUSTER-NODE statement during generation.

CLUSTER-FILEBASE=cluster_filebase   
If you want to start a UTM application as a node application of a UTM cluster 
application, you use this start parameter to specify the basename for the 
cluster files. Here you must specify the name under which the files that are 
global to the cluster are stored at the startup time.

CLUSTER_FILEBASE applies locally to the node.

If you specify an invalid name here, the application start is canceled. For 
information on what names are valid, refer to the openUTM manual “Gener-
ating Applications”. 

If you specify the start parameter CLUSTER-FILEBASE, you must not 
specify the start parameter FILEBASE. 

ADMI-TRACE=  
Enables/disables the ADMI trace function (= trace function for the 
KDCADMI administration program interface), see also openUTM manual 
“Messages, Debugging and Diagnostics in Unix Systems and Windows 
Systems”.

In UTM cluster applications, ADMI-TRACE applies locally to the node.

For information on the names of the trace files, see “Trace files” on page 91.

ON  The ADMI trace function is enabled at the start of the application.



Start parameters Starting a UTM application

82   Using openUTM under Unix Systems and Windows Systems

OFF  The ADMI trace function remains disabled at the start of the application.

Default: OFF

ASYNTASKS=number  
Maximum number of work processes that are to work for asynchronous 
services. 

In UTM cluster applications, ASYNTASKS applies locally to the node.

Default: the number specified in MAX...,ASYNTASKS=number. 
Minimum value: 0 
Maximum value: the number specified in MAX...,ASYNTASKS=number. 

BTRACE=  Enable/disable the BCAM trace function.

In UTM cluster applications, BTRACE applies globally to the cluster.

ON  The BCAM trace function is enabled at the start of the application.
All events relating to the connection are recorded in the BCAM trace file. 
The description of the BCAM trace file and its analysis using the utility 
program KDCBTRC can be found in openUTM manual “Messages, 
Debugging and Diagnostics in Unix Systems and Windows Systems”.

OFF  The BCAM trace function remains disabled at the start of the application.

Default: OFF

length   Specifies the maximum length of data recorded when the BCAM trace 
function is activated. If the data to be recorded is longer, the first length/2 
characters and the last length/2 characters of the data are recorded. This 
length can only be specified in the start parameters.

Default: 256
Minimum value: 32 
Maximum value: 32680 

If you use the BCAM trace for the UPIC Capture function (see also section 
“Recording the UPIC conversation (UPIC Capture)” on page 274) then it is 
advisable to use the maximum value.

CPIC-TRACE=  
Enables/disables the CPI-C trace function (= trace function for the X/Open 
interface CPI-C), see also openUTM manual  “Creating Applications with 
X/Open Interfaces”.

In UTM cluster applications, CPIC-TRACE applies locally to the node.

For information on the names of the trace files, see “Trace files” on page 91.



Starting a UTM application Start parameters

Using openUTM under Unix Systems and Windows Systems  83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

TRACE  The CPI-C trace function is enabled with the level TRACE at the start of the 
application. The content of the input and output parameters is output for 
each CPI-C function call. Only the first 16 bytes are output from the data 
buffers. The return codes of the KDCS calls to which the CPI-C calls are 
mapped are output.

BUFFER  The CPI-C trace function is enabled with the level BUFFER at the start of 
the application. This trace level includes the TRACE level. However, the 
data buffers are logged in their full length.

DUMP  The CPI-C trace function is enabled with the level DUMP at the start of the 
application. This trace level includes the TRACE level and also writes 
diagnostic information to the trace file. 

ALL  The CPI-C trace function is enabled with the level ALL at the start of the 
application. This trace level includes the levels BUFFER, DUMP and 
TRACE.

OFF  The CPI-C trace function remains disabled at the start of the application.

Default: OFF

DB-CONNECT-TIME=sec  
Maximum time in seconds the system waits to establish a connection to the 
database. If no connection is established to the database during this wait 
time, message K078 Is issued and the utmwork process is terminated.

In UTM cluster applications, DB-CONNECT-TIME applies locally to the 
node.

Default: 0 (no timeout)
Minimum value: 60
Maximum value: 3600

DUMP-CONTENT=  
Specifies whether openUTM dumps the global process storage areas in all 
dumps of a dump file generation, i.e. for all processes, or only in the dump 
of the process that caused the application crash. 

In UTM cluster applications, DUMP-CONTENT applies locally to the node.

STANDARD  
If openUTM creates a dump file generation, global process storage areas 
are only contained in the dump of the first process (initiator). This is normally 
sufficient for diagnostic purposes.

Default value: STANDARD



Start parameters Starting a UTM application

84   Using openUTM under Unix Systems and Windows Systems

EXTENDED  
The global process storage areas are contained in all dumps of a DUMP file 
generation.

i   This value should only be set if explicitly requested by the Service 
personnel.

DUMP-MESSAGE= event-type, event  
Event where UTM generates a UTM dump with identifier MSGDMP when 
test mode is enabled. A dump is only created by the task in which the event 
occurred; the application is not terminated in the process.

In UTM cluster applications, DUMP-MESSAGE applies globally to the 
cluster.

The dump code depends on the event: 

The following can be specified for event-type, event:

– event-type=MSG,event=Knnn (K message)

The UTM dump is created when message Knnn is output. 
In the case of message numbers K023, K043, K061, K062, a dump is 
only created once, after which event-code is reset automatically.
With all other messages, a dump is created each time the message 
number occurs until the value is reset by administration.

The value of DUMP-MESSAGE can be reset by the administrator, e.g. 
using WinAdmin/WebAdmin or by issuing the command 
KDCDIAG DUMP-MESSAGE=*NONE.

– event-type=RCCC,event=rccc (compatible KDCS return code)

Specify a KDCS return code (KCRCCC, e.g. 40Z) for rccc. When this 
return code is returned for a KDCS call, the process in which the return 
code occurred generates a UTM dump. The message dump for this 
event is then automatically deactivated.

Event Prefix Example

K or P message ME 
followed by the message number

MEP012

Primary KDCS return 
code

CC- 
followed by the return code

CC-71Z

Secondary KDCS return 
code

DC 
followed by the return code

DCK303

SIGN status SG-
followed by the status

SG-U01



Starting a UTM application Start parameters

Using openUTM under Unix Systems and Windows Systems  85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

– event-type=RCDC,event=rcdc (internal KDCS return code)

Specify a KDCS return code (KCRCDC, e.g. KD10) for rcdc. If this 
return code occurs with a KDCS call, the UTM dump with the code CC-
40Z is created by the task that delivered the return code. The message 
dump for this event is then automatically deactivated.

– event-type=SIGN,event=sign (SIGN status code)

Specify a SIGNON status code (KCRSIGN1/2, e.g. U05) for sign, where 
KCRSIGN1 must have the value U, I, A or R. If this code is issued when 
a user signs on, the process in which the SIGNON status occurred 
generates a UTM dump with the code SG-U05. This happens 
irrespective of whether a signon service has been generated in the 
application or not. The message dump for this event is then automati-
cally deactivated.

Notes:
In the case of all KDCS return codes ≥70Z and the associated incompatible 
KDCS return codes for which no PENDER dump is written (e.g. 70Z/K316), 
no DUMP is created either.

Up to three different events can be specified in the administration command 
KDCDIAG using the parameters DUMP-MESSAGE1, DUMP-MESSAGE2 
and DUMP-MESSAGE3. In contrast, only one event can be specified using 
the start parameter DUMP-MESSAGE. In addition, no message inserts can 
be specified for event-type=MSG in the start parameter. By contrast, up to 
three inserts can be specified as additional conditions in the KDCDIAG 
command.

NODE-TO-RECOVER=node-name  
This parameter is only relevant for UTM cluster applications. 

node-name is the name of the node application for which a node recovery is 
to be performed. 
The name results from the UTM generation, see openUTM manual “Gener-
ating Applications”, CLUSTER-NODE statement, NODE-NAME operand. 
Whenever a node application starts, terminates or fails, the K169 message 
outputs node-name together with the host name. WinAdmin/WebAdmin also 
display the node-name in the list of cluster nodes. 

Node recovery should only be performed for an abnormally terminated node 
application if a normal node warm start is either not possible or cannot be 
performed quickly because the node computer has failed and no virtual host 
has been defined. As a result, a node recovery for a node application is only 
possible on a node computer on which the abnormally terminated node 
application has not run.



Start parameters Starting a UTM application

86   Using openUTM under Unix Systems and Windows Systems

For information on the conditions that must be fulfilled in order to perform 
node recovery for UTM cluster applications as well as on the purpose and 
function of node recovery, see section “Node recovery” on page 140.

If a database system does not support node recovery then node recovery 
always terminates abnormally. 

Default: Blanks, i.e. normal application start. 

OTRACE=  Switches on/off the OSS trace function on the start of the application.
The OSS trace is required for diagnostic purposes if problems arise with 
OSI TP connections of the application. See also the openUTM manual 
“Messages, Debugging and Diagnostics in Unix Systems and Windows 
Systems” and the OSS manual.

In UTM cluster applications, OTRACE applies globally to the cluster.

ON  Switches on the OSS trace function.
Trace records of types SPI, INT, OSS, SERV and PROT are logged. When 
the OSS trace function is switched on, each process of the application 
creates its own trace file.

(SPI, INT, OSS, SERV, PROT)  
Switches on the OSS trace function on the start of the application. Trace 
records of the specified type are logged. The trace records are specified in 
an arbitrary sequence. 

SPI  The XAP-TP system programming interface is logged.

INT  The internal processes in the XAP-TP module are logged.

OSS  The OSS calls are logged.

SERV  The internal OSS trace records of type O_TR_SERV are logged.

PROT  The internal OSS trace records of type O_TR_PROT are logged.

OFF  The OSS trace function remains deactivated on the start of the application.



Starting a UTM application Start parameters

Using openUTM under Unix Systems and Windows Systems  87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

RESET-PTC =   

This parameter is only relevant for UTM cluster applications if a value other 
than blanks has been set for NODE-TO-RECOVER. 

RESET-PTC specifies whether transactions with the state PTC ("prepare to 
commit") are reset during node recovery.

A transaction with the PTC state may contain locks on global UTM storage 
areas that apply globally throughout the cluster and may possibly impair the 
current UTM cluster application. 

Transactions with the PTC state cannot be committed on a node recovery 
because no connections are established to partner applications. If transac-
tions remain in the PTC state then the node recovery terminates abnor-
mally, i.e. no online import or KDCUPD with the KDCFILE of the failed node 
application is permitted and any locks on UTM storage areas that are 
effective throughout the cluster are retained.

If you are able to tolerate possible data inconsistencies, repeat the node 
recovery with RESET-PTC=YES in the case of existing transactions in the 
PTC state.

YES  Transactions in PTC state are reset on node recovery. 

NO  Transactions in PTC state are retained on node recovery. 

Default: NO

STXIT=  Activates signal handling in openUTM.

In UTM cluster applications, STXIT applies locally to the node.

ON  Signal handling is activated in openUTM.

Default value: ON 

OFF  Default error handling for signals remains deactivated.

i   STXIT=OFF in Unix systems results in additional diagnostic memory dumps 
(gcore dumps) in the base directory of the application each time a work 
process is terminated. The gcore dumps are only written if the gcore 
program exists in the /bin directory. 

You are notified about the gcore dumps in UTM message K078: 

K078 STXIT OFF in utmwork: termination of utmwork process creates 
gcore-dump



Start parameters Starting a UTM application

88   Using openUTM under Unix Systems and Windows Systems

SYSPROT=  Switch over the system files stderr and stdout.

interval  Switchover interval in days.

In UTM cluster applications, interval applies globally to the cluster.

Default: 0 (no interval, files are switched over using administration facilities)
Maximum value: 364

filename-prefix  
Prefix for the new file name of the system files that have been switched 
over. The prefix can be a fully-qualified or partially-qualified part of the file 
name.

In UTM cluster applications, filename-prefix applies locally to the node.

Default: utmp

Maximum length: 31 characters

You will find a comprehensive description of switching over the system log 
files in the section “System files stderr and stdout” on page 55.

TASKS=number  
Number of work processes that are to work for this application. 

In UTM cluster applications, TASKS-IN-PGWT applies locally to the node.

Default value: Number defined in MAX...,TASKS=number 
Minimum value: 1 *) 
Maximum value: Number defined in MAX...,TASKS=number 

*) If the application is generated with Program Wait (i.e. if either a TAC class 
or a TAC is generated with PGWT=YES), or if the application is generated 
as a UTM cluster application then a value of at least 2 must be specified for 
the TASKS start parameter.

i   In addition to the number of work processes defined in TASKS, UTM 
starts further work processes for an application. These are known 
as UTM system processes. The UTM system processes are 
intended to ensure that applications continue to be responsive even 
when running under load. The UTM system processes only process 
selected jobs which are characterized first and foremost by short 
runtimes. When an application is started, UTMstarts up to three 
additional UTM system processes for the application depending on 
the number of started tasks (TASKS= number).

TASKS-IN-PGWT=number  
Maximum number of processes that can simultaneously execute program 
units with blocking calls (e.g. the KDCS call PGWT) are permitted (PGWT= 
operand in the TAC and TACCLASS KDCDEF statements).



Starting a UTM application Start parameters

Using openUTM under Unix Systems and Windows Systems  89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

In UTM-Cluster-Anwendungen wirkt TASKS-IN-PGWT Knoten-lokal.

Default value: Number defined in MAX ...,TASKS-IN-PGWT=number
Minimum value: 1 if MAX...,TASKS-IN-PGWT > 0; otherwise 0.
Maximum value: Number defined in MAX ...,TASKS-IN-PGWT=number

TESTMODE=  Activate test mode.
See also the openUTM manual “Messages, Debugging and Diagnostics in 
Unix Systems and Windows Systems”, chapter “Debugging and error 
diagnosis”.

In UTM cluster applications, TESTMODE applies globally to the cluster.

ON  Test mode is to be switched on when the application starts. In test mode, 
additional internal UTM plausibility checks are carried out for internal 
procedure calls, and internal trace information is logged both in the KTA and 
in the XAP-TP module for OSI TP applications. Test mode should only be 
switched on to diagnose UTM errors on the recommendation of the systems 
analyst.

i   With MAX...,IPCTRACE= (see openUTM manual “Generating Applica-
tions”, MAX statement), the number of trace information entries written with 
TESTMODE=ON can be specified in the KDCDEF generation. IPCTRACE 
should only be defined for diagnosing serious UTM errors on the recom-
mendation of the systems analyst. 

OFF  Test mode is to remain deactivated when the application starts.

Default value: OFF 

FILE  Test mode is activated when the application starts. In addition, the 
diagnostic data is written to a file each time the KTA trace area overflows so 
as to avoid any loss of diagnostic data. 
The file name is made up of the base name filebase and the PID of the 
respective work process, i.e. the following file is created for each work 
process for a UTM production application:

filebase.KTATRC.pid (pid max. 4-position)

TX-TRACE=  Enables/disables the TX trace function (= trace function for the X/Open 
interface TX), see also openUTM manual  “Creating Applications with 
X/Open Interfaces”.

In UTM cluster applications, TX-TRACE applies locally to the node.

For information on the names of the trace files, see “Trace files” on page 91.

ERROR  The TX trace function is enabled with the level ERROR at the start of the 
application. Only errors are logged.



Start parameters Starting a UTM application

90   Using openUTM under Unix Systems and Windows Systems

INTERFACE  
The TX trace function is enabled with the level INTERFACE at the start of 
the application. The level INTERFACE includes the level ERROR, and all 
TX calls are also logged.

FULL  The TX trace function is enabled with the level FULL at the start of the appli-
cation. The FULL level includes the INTERFACE level. All KDCS calls to 
which the TX calls are mapped are also logged.

DEBUG  The TX trace function is enabled with the level DEBUG at the start of the 
application. The level DEBUG includes the level FULL, and diagnostic infor-
mation is also logged.

OFF  The XATMI interface trace function remains disabled at the start of the appli-
cation.

Default: OFF

XATMI-TRACE=  
Enables/disables the XATMI trace function (= trace function for the X/Open 
interface XATMI), see also openUTM manual  “Creating Applications with 
X/Open Interfaces”.

In UTM cluster applications, XATMI-TRACE applies locally to the node.

For information on the names of the trace files, see “Trace files” on page 91.

ERROR  The XATMI trace function is enabled with the level ERROR at the start of 
the application. Only errors are logged.

INTERFACE  
The XATMI trace function is enabled with the level INTERFACE at the start 
of the application. The level INTERFACE includes the level ERROR, and all 
XATMI calls are also logged.

FULL  The XATMI trace function is enabled with the level FULL at the start of the 
application. The FULL level includes the INTERFACE level. All KDCS calls 
to which the XATMI calls are mapped are also logged.

DEBUG  The XATMI trace function is enabled with the level DEBUG at the start of 
the application. The level DEBUG includes the level FULL, and diagnostic 
information is also logged.

OFF  The XATMI interface trace function remains disabled at the start of the appli-
cation.

Default: OFF



Starting a UTM application Start parameters

Using openUTM under Unix Systems and Windows Systems  91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
4

Trace files

By default, the trace records of the ADMI, CPI-C, TX, and XATMI trace function are written 
to the file KDC.TRC.trace-type.appliname.hostname.pid in the directory filebase.

trace-type  
Identifies the trace type:

ADMI  ADMI trace 

CPIC  CPI-C trace 

TX  TX trace 

XATMI  XATMI trace 

appliname  
Name of the application

hostname  
Name of the computer on which the application is running, maximum 8 characters

pid  PID of the process

Sample contents of a start parameter file

.UTM START FILEBASE=/home/utmbsp

.UTM START FILEBASE=C:\utmtest\beispiel

.UTM START TASKS=2

.UTM START TASKS-IN-PGWT=1

.UTM START ASYNTASKS=1

.UTM START TESTMODE=OFF

.UTM START BTRACE=OFF

.UTM START ADMI-TRACE=ON

.UTM START OTRACE=OFF

.UTM START STXIT=ON

.UTM END

X
W



Cold start / warm start / Error messages Starting a UTM application

92   Using openUTM under Unix Systems and Windows Systems

4.4 Cold start and warm start 

These terms are explained below for openUTM: 

● Cold start: Start following a normal termination of the UTM application or following a 
regeneration. 

● Warm start: Start following an abnormal termination of the UTM application.

Cold start with openUTM

Before an application starts for the first time, you create the KDCFILE using the generation 
tool KDCDEF.  Following a regeneration of the KDCFILE or if a UTM application has been 
normally terminated first, openUTM performs a cold start the next time the application is 
started. Once it has started successfully, openUTM issues the following message: 

K051 Successful cold start for application appliname under UTM V06.3A00

Warm start with openUTM

If a UTM application has been abnormally terminated, openUTM performs a warm start the 
next time this application is started. During a warm start, openUTM brings the KDCFILE into 
a consistent state. Once it has started successfully, openUTM issues the following 
message: 

K050 Successful warm start for application appliname under UTM V06.3A00

You should note that UTM-S and UTM-F differ in the scope of their restart functions. See 
also the openUTM manual “Concepts und Functions”.

If a UTM database application terminated abnormally (Unix system crash or UTM appli-
cation crash), the administrator of the database system must bring the database to a correct 
state before the warm start. When a warm start is carried out for a UTM database appli-
cation, openUTM implements a common recovery phase. 

4.5 Error messages at the application start

If the start of a UTM application or of a process is terminated  due to an error, openUTM 
generally outputs message K049 and/or K078. Message K078 can occur in several 
variants. A detailed description of these messages and their return codes can be found in 
the openUTM manual “Messages, Debugging and Diagnostics in Unix Systems and 
Windows Systems”.

Start errors can occur at the start of every work process.



Using openUTM under Unix Systems and Windows Systems  93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
5

5 Terminating a UTM application

A UTM application can terminated as follows:

– normally using administration commands or the KDCSHUT tool or
– abnormally as a result of errors or via the administration.

After an application terminates, you may still have to release global system resources 
before the application can be restarted. See also section “The KDCREM tool” on page 98. 

A number of special issues need to be taken into account when terminating a UTM cluster 
application. For information see the section “Shutting down a UTM cluster application” on 
page 147.

5.1 Terminating a UTM application normally

The UTM administrator terminates a UTM application normally by entering the following 
UTM administration command at an administration terminal, for example:

KDCSHUT GRACE, TIME=time

or

KDCSHUT WARN,TIME=time 

or

KDCSHUT NORMAL

Applications that use distributed transaction processing should always be terminated with 
KDCSHUT GRACE or WARN because this allows the open distributed transactions to end 
properly.

When the application if terminated, openUTM performs the following actions: 

– All jobs still in the UTM queue are processed.
– The connections to terminals are shut down.
– The KDCFILE, system log file, and user log file are brought to a consistent state and 

closed properly.
– All processes of the application are terminated. 



Normal termination Terminating a UTM application

94   Using openUTM under Unix Systems and Windows Systems

You can use an appropriate WinAdmin/WebAdmin function or administration program 
interface function instead of the KDCSHUT command to terminate a UTM application 
normally.

5.2 The KDCSHUT tool – terminating a UTM application normally 
at shell level

The KDCSHUT tool is a simple method of terminating the application without having to sign 
on to the application as the administrator. The KDCSHUT tool has the same effect as the 
administration command KDCSHUT N or KDCSUT G, TIME= or the command KDCSHUT 
W, TIME=. 

The KDCSHUT tool is activated as follows:

Unix systems: utmpath/ex/kdcshutËfilebaseË[timeË[G]] 

Windows systems: utmpath\ex\kdcshutËfilebaseË[timeË[G]] 

filebase
  is the base name of the application; 

time   
is the wait time in minutes until the application terminates.
Maximum wait time: 60 minutes

G   terminates the application with a graceful shutdown (see the openUTM manual 
“Administering Applications”).

X

W



Terminating a UTM application Terminating as a service

Using openUTM under Unix Systems and Windows Systems  95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
5

5.3 Terminating a service in Windows systems

If a UTM application has been started as a service, then it can either be terminated as 
though it were not started as a service (i.e. for example with the KDCSHUT tool) or can be 
terminated as a service. You do this in a manner similar to that of the start procedure (the 
description applies to Windows 7, proceed in an equivalent way for other Windows 
versions):

1. Sign on using a Windows user ID that has administration privileges.

2. Call the control panel with Start - Control Panel.

3. Click on Administrative Tools and then on Services and highlight the desired UTM service; 
this service is always named openUTMservicename.

4. Press the Stop button; the service and therefore the application are terminated normally. 

If the Windows computer is shut down, then the service and therefore the application are 
also terminated normally.

W

W

W

W

W

W

W

W

W

W

W

W



Abnormal termination Terminating a UTM application

96   Using openUTM under Unix Systems and Windows Systems

5.4 Terminating a UTM application abnormally

A UTM application is terminated abnormally by any of the following events:

– internal UTM error
– error in the system environment and shutdown of the Unix system
– UTM administration command KDCSHUT KILL (or by the corresponding 

WinAdmin/WebAdmin or KDCADMI function)
– user error

The following actions are performed when a UTM application is terminated abnormally:

● All transactions currently being processed by the individual work processes are aborted 
immediately.

● The connections to all communication partners of the application are shut down.

● A UTM-specific dump is created for each work process of the application. See also the 
openUTM manual “Messages, Debugging and Diagnostics in Unix Systems and 
Windows Systems”.

● All processes of the application are terminated and all files are closed. No attempt is 
made to bring the KDCFILE to a consistent state. This does not occur until the appli-
cation is restarted.

Following an abnormal termination of the application, you must first determine the cause of 
the crash. To find the cause, look for message K060 in the log of the work process on stdout. 
This message contains the dump error code as an insert. This error code gives precise 
information regarding the cause of the abnormal termination. You can also find the cause 
for the dump as part of the name of the UTM dump file. The meanings of the dump error 
codes are described in the openUTM manual “Messages, Debugging and Diagnostics in 
Unix Systems and Windows Systems”. There are three possibilities: 

● The dump error code indicates that a KDCDEF operand must be modified.
In this case, the KDCFILE must be regenerated. If you want to retain the application 
data in the page pool, proceed as follows:

– warm start with ASYNTASKS=0, TASKS=1
– terminate the application normally with KDCSHUT NORMAL
– save the old KDCFILE 
– new KDCDEF generation with the modified operand
– transfer the application data from the old to the new KDCFILE using KDCUPD
– start the application with the new, updated KDCFILE

X



Terminating a UTM application Abnormal termination

Using openUTM under Unix Systems and Windows Systems  97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
5

● The dump error code cites the cause as: 

– a memory bottleneck
– database is currently unavailable

When the error has been rectified, you can restart the application, and openUTM 
executes a warm start automatically.

● A system error has occurred. In this case, produce diagnostic documentation and write 
a problem report to the system support personnel. To do this, you must edit the UTM 
dumps of all work processes of the application using the KDCDUMP tool. Further 
documentation includes the stdout and stderr system files, the gcores (for Unix systems), 
the utmwork program, the KDCDEF control statements, and an evaluation of the system 
log file. 

A warm start with the same KDCFILE is not always successful in this case. If a warm 
start cannot be performed, you must regenerate the KDCFILE using KDCDEF. 

If the application terminates abnormally, the KDCREM tool must be called before restarting 
the application (see following section). 



KDCREM Terminating a UTM application

98   Using openUTM under Unix Systems and Windows Systems

5.5 The KDCREM tool

The KDCREM tool is used to delete or reset any remaining semaphores and shared 
memories, as well as the status information relating to the application contained in the 
applifile file in the utmpath after the application ends. For more information, see section 
“Global system resources of an application” on page 66. 

v  CAUTION!

● Following an abnormal termination of the main process of a UTM application 
(e.g. by a operating system error, system shutdown, or the SIGKILL signal), 
KDCREM must be called before the application is restarted.

● The KDCREM tool abnormally terminates a running UTM application without 
any warning!

KDCREM call 

Unix systems: utmpath/ex/kdcremËfilebase 

Windows systems: utmpath\ex\kdcremËfilebase 

filebase is the base name of the application whose semaphores, shared memories and 
status information in the applifile file in utmpath are to be deleted.

X

W



Using openUTM under Unix Systems and Windows Systems  99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
6

6 UTM database application

This chapter provides a comprehensive overview of how to implement databases 
(= resource managers) under openUTM. The XA interface standardized by X/Open is used 
by openUTM for linking.

openUTM on Unix systems supports coordination with the following database systems:

– Oracle
– INFORMIX

openUTM on Windows systems supports coordination with the following database systems:

– Oracle

  More details on the concept of coordinated interoperation can be found in the 
openUTM manual “Concepts und Functions”.

6.1 Generating a UTM database connection

You must generate the UTM database connection in the KDCDEF statement RMXA. Here 
you specify:

– the name of the xa_switch_t structure as preset by the database used

– for Windows systems: whether the xa_switch_t structure is addressed with dllimport; 
when linking with Oracle, dllimport must always be used for addressing

● Database access data (user name, password). 

These specifications are optional. If you want to store the access data in the generation 
then you must use placeholders in the open string for the user name and the password.

As a rule, there is a static and dynamic XA switch. A database can provide one or both 
variants. If the database provides a dynamic XA switch, you should use this, as this 
minimizes resource occupancy in the database system. 

Under Windows systems, only the static XA switch is supported.

For further details on the RMXA statement, refer to the openUTM manual “Generating 
Applications” and the description of the RMXA statement. 

X

X

X

W

W

W

W

W



Linking a UTM database application UTM database application

100   Using openUTM under Unix Systems and Windows Systems

6.2 Linking a UTM database application in Unix systems

For the UTM database link, you must incorporate additional modules into the UTM work 
process. These modules are listed below for the individual database systems. Please check 
the user guide for the respective database system to ensure the accuracy of the names of 
modules which make up this database system. 

i   You can simplify matters by using the sample application supplied with openUTM; 
see also page 310. This sample application provides a simple means of creating a 
UTM database application that contains all the necessary database libraries. This 
database application can be used as a template for your own application; for 
example, you can adapt the generated makefile, see section “Linking with a 
makefile” on page 36. 

Connection to Oracle

A number of Oracle modules must additionally be linked in to set up a connection with 
Oracle. The sample programs and procedures supplied with Oracle indicate what modules 
are involved. The Oracle client library is named $ORACLE_HOME/lib/libclntsh.so. The list of 
system libraries is located in $ORACLE_HOME/lib/sysliblists.

The preprocessor flag release_cursor=yes must be set in all cases. For information, see 
the Oracle User Guide. 

6.3 Linking a UTM database application in Windows systems

In Windows systems, a UTM database application is created in the same way as a UTM 
application; see page 38f. Only the following additional options need be set:

● For the Visual Studio options, you must specify the directory containing the database 
libraries, see page 38.

● For the linker options, you must specify the name of the necessary database libraries, 
see page 46.

This ensures that the correct database libraries will be linked when the linker is called; see 
page 46.

i   You can use the Quick Start Kit to create a UTM database application, see 
page 310. The Quick Start Kit is supplied with openUTM.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

W

W

W

W

W

W

W

W

W

W



UTM database application Starting and stopping a UTM database application

Using openUTM under Unix Systems and Windows Systems  101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
6

6.4 Starting and stopping a UTM database application

A UTM database application can be started and stopped in the same way as a UTM appli-
cation, i.e. by starting and stopping the UTM application program.

6.4.1 Start parameters for a UTM database application

To start a UTM-DB application, you must specify the database start parameters in addition 
to the openUTM start parameters. The following schema applies here:

.UTM  ...
Start parameters for openUTM, see the section “Start parameter file of the appli-
cation” on page 79.

.RMXA  ...
Start parameters for the database system. These are described in the manual 
for the DB system. You can find examples in the Unix systems sample appli-
cation and for Windows systems in the Quick Start Kit.

END 

Start parameters for the database system have the prefix ".RMXA". openUTM then forwards 
these start parameters to the Resource Manager when the application starts. The Resource 
Manager is opened by openUTM during the start phase of the UTM work process.

i   Specification of the user ID and the password in the start parameters for the 
database system is supported for the last time in the current version. For security 
reasons, it is now advisable to use the KDCDEF statement RMXA to enter the user 
ID and password in the UTM generation. An example can be found in the 
section“Using the Oracle user name and Oracle password from the UTM 
generation” on page 104.

6.4.1.1 Openstring and Closestring

In the start parameter file, you define the database (instance of the Resource Manager) 
using an open string and, if required by the Resource Manager, you specify a close string. 
The database systems Oracle and INFORMIX do not require a close string. 

The specifications for the open string and close string must be supplied by the respective 
Resource Manager. The syntax of these specifications therefore also depends on the 
particular Resource Manager and can be found in the manual for the Resource Manager 
used. openUTM transfers the strings from the start parameter file to the Resource Manager 
without checking them. Each string must be enclosed in double quotes and can be up to 
255 characters long. 



Starting and stopping a UTM database application UTM database application

102   Using openUTM under Unix Systems and Windows Systems

The open string and close string are specified in one line in the start parameter file, 
separated by a blank (a close string is only specified if required by the Resource Manager): 

.RMXA RM="name", OS="openstring" [CS="closestring"] 

The line can contain a maximum of 560 characters in total. 

6.4.1.2 Several instances

The UTM application can operate several entities (databases) of the Resource Manager, 
provided the Resource Manager supports multi-instance mode. In this case, you must 
specify a separate open string for each instance. Each open string must be entered in a 
separate line in the start parameter file. The name of the Resource Manager name must 
match the individual start parameter statements. For the open strings (databases), you 
must specify various names (entered in the DB= parameter within the strings, e.g. 
+DB=DBNAME1 and +DB=DBNAME2). 

.RMXA RM="name", OS="openstring1"

.RMXA RM="name", OS="openstring2"

If the Resource Manager requires a close string, a close string must also be specified for 
each instance. 

v   CAUTION!
In conjunction with a linked database connection, there must be no unlinked 
database connection. 

Below are examples of start statements to the individual database systems with which 
openUTM can be linked. 

6.4.1.3 Example of Oracle start parameters

Oracle only requires an open string, no close string. 

Multi-instance mode is possible, i.e. several open strings can be specified for the Resource 
Manager in the start parameter file of a UTM application. 

The following start parameters, for example, can be specified in the start parameter file for 
an Oracle database: 

.RMXA Oracle_XA OS="Oracle_XA+Acc=P//+SesTm=60" 

This statement must be written in one line without a line feed. 

If you also specify .RMXA DEBUG=YES in the start parameter file, DEBUG information 
relating to the connection to the database will be output to stdout and stderr.



UTM database application Starting and stopping a UTM database application

Using openUTM under Unix Systems and Windows Systems  103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
6

Only the mandatory parameters are listed in the open string. In addition, you can specify 
other optional parameters. These are listed further below.
The parameters in the open string are separated by the “+” character. 

Meaning of the mandatory parameters: 

Oracle_XA  Name of the Resource Manager prescribed by Oracle, as contained in the 
xa_switch structure. 

Acc=P//  Information for data access control to the database (user access infor-
mation). If Acc=P// is specified as in the example, neither a user ID nor a 
password are transferred for data access control.
An Oracle database can also request database-specific information (user 
and pwd) which must be transferred with Acc=P/user/pwd. For further infor-
mation, see the Oracle manual. 

SesTm=  Maximum time in seconds available for a transaction (60 s in the example). 
Possible specifications for SesTm can be found in the Oracle manual. 

i   Specifying SesTM=0 means that there is no restriction on the duration of the 
transaction. It is therefore recommended to specify a value > 0 for SesTm. 

The parameters listed below are optional. Please refer to the Oracle manual for an expla-
nation and description of possible definitions. 

DB=  Name of the Oracle database.

You must specify this parameter if the UTM application is to be linked with 
more than one Oracle database (multi-instance mode).

GPwd=P/  Group password; specified in the form GPwd=P/password. 

LogDir=  Path name of the logging directory. 

MaxCur=  Maximum number of open cursors. 

SqlNet=  Network connection string. 

i   No action is required if the application is terminated abnormally, because openUTM 
automatically carries out a common recovery phase before the UTM application is 
restarted. 

Please note that the RMXA statement needs the DLLIMPORT=YES operand when 
generating with KDCDEF. 

Information on the objects/libraries to be linked and on the start parameters (open 
string) can be found in the Oracle documentation.

W

W



Starting and stopping a UTM database application UTM database application

104   Using openUTM under Unix Systems and Windows Systems

Using the Oracle user name and Oracle password from the UTM generation 

The access authorization for an Oracle database can be defined via KDCDEF generation. 
If you want to make use of this capability, please note the following: 

● The Oracle user name for the connection to Oracle and the associated Oracle 
password must be generated in KDCDEF (KDCDEF statement RMXA, USERID and 
PASSWORD operands). 

The Oracle password is stored as a hashcode in the UTM system tables (masked) and 
is therefore not present in clear text in the UTM dump. 

● In the open string for the start parameter, specify the placeholder *UTMUSER in place 
of the Oracle user name and the placeholder *UTMPASS instead of the Oracle 
password. These placeholders are replaced in accordance with the following rules: 

– If the open string contains at least one of the placeholders *UTMUSER or 
*UTMPASS, then UTM replaces the placeholders with the values generated for the 
specific database system on an xa_open() call. I.e. in the open string, *UTMUSER 
is replaced by the generated Oracle user name and *UTMPASS by the generated 
Oracle password. 

For security reasons, the Oracle password is converted into clear text only immedi-
ately prior to use on an xa_open() call and is then deleted in the process memory 
immediately after the xa_open() call. 

– It is also permissible to specify only the password via generation and pass the 
Oracle user name in the start parameter in the open string. 

– If the open string of the start parameter does not contain either *UTMUSER or 
*UTMPASS then it is passed unchanged to the xa_open() call. 

Please note that processing is case-sensitive!

Examples 

1. You only want to use the Oracle password from the generation: 

OS="Oracle_XA+SqlNet=O11+ACC=P/scott/*UTMPASS+DbgFl=15" 

2. You want to use the Oracle user name and the Oracle password from the generation: 

OS="Oracle_XA+SqlNet=O11+ACC=P/*UTMUSER/*UTMPASS+DbgFl=15" 



UTM database application Starting and stopping a UTM database application

Using openUTM under Unix Systems and Windows Systems  105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
6

Behavior if the Oracle access data is not generated

● If the USERID and PASSWORD operands were not specified during generation then 
you can specify the Oracle user name and the Oracle password directly in the start 
parameter as in the past. 

● If you specify *UTMUSER or *UTMPASS in the start parameter even though the 
USERID and PASSWORD operands were not specified during generation then UTM 
uses an empty Oracle user name or empty Oracle password. As a result, the attempt 
to establish a connection to the database will generally be unsuccessful. 

6.4.1.4 Example of INFORMIX start parameters in Unix systems

INFORMIX only requires an open string, no close string. Multi-instance mode is not 
possible; in other words, only an open string (i.e. a start parameter statement) can be 
specified for the Resource Manager in the start parameter file of a UTM application. 

The following start parameters, for example, can be specified in the start parameter file for 
an INFORMIX database: 

.RMXA RM="INFORMIX-ONLINE", OS="dbname"

If you also specify .RMXA DEBUG=YES in the start parameter file, DEBUG information for the 
connection to the database will be output to stdout and stderr.

Meaning of the open string parameters: 

INFORMIX-ONLINE  
Resource Manager name prescribed by INFORMIX, as contained in the 
xa_switch structure. 

dbname  Name of the database with which the application is to be linked. 

Mandatory parameter.

See also the documentation on INFORMIX.

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X



Starting and stopping a UTM database application UTM database application

106   Using openUTM under Unix Systems and Windows Systems

6.4.2 Start parameters for failover with Oracle® Real Application Clusters 

A UTM application communicates with Oracle Real Application Clusters over the XA 
interface. In the event of a failover, the XA switch in Oracle acknowledges further XA calls 
with "XAER_RMFAIL". In normal circumstances, i.e. when failover support is not activated, 
openUTM takes this message to mean that it is no longer possible to work with this 
database and aborts execution of the application.

In order to prevent execution from being aborted in these circumstances, you should also 
specify the value RAC=Y under the .RMXA parameters and control behavior in the event of 
a failover with the optional parameters RAC_retry and RAC_recover_down:

.RMXA RM="Oracle_XA",OS="openstring" ,RAC=Y[,RAC_retry=nnn]  
                                        [,RAC_recover_down={Y|N}] 

RAC=Y  Enables failover support when connecting the UTM application to Oracle® 
Real Application Clusters. RAC=N disables failover support.

Default value for .RMXA: N

RAC_retry=nnn  
nnn specifies the number of times that openUTM attempts to reconnect to 
the database and execute a recovery job.

If the Commit job could not be executed for a transaction which has the 
state "Prepare-to-Commit" as a result of a failover, openUTM reconnects to 
the database and executes a recovery job. If the current XID is contained in 
the list of supplied XIDs, openUTM executes a Commit job for that XID, i.e. 
for the current transaction. If the XID is not contained in the list, openUTM 
performs an xa_close. Then openUTM again tries to connect to the database 
and execute a recovery job. 

Default: RAC_retry=1

RAC_recover_down=  
Specifies the behavior of openUTM if the transaction could not be finally 
completed after the number of attempts specified by RAC_retry=, i.e. if the 
status of the transaction could not be set to "Commit".

N  openUTM assumes that the transaction is no longer known to Oracle Real 
Application Clusters. The transaction is assumed to have the status 
"Commit" and openUTM continues execution of the application.

Default: N

Y  openUTM terminates execution of the application and thus forces a warm 
start in order to ensure that the data is consistent.



UTM database application Starting and stopping a UTM database application

Using openUTM under Unix Systems and Windows Systems  107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
6

Behavior of openUTM in the event of failover 

If you have enabled failover support, openUTM and the database system behave as 
follows:

● The application is not aborted if failover to a node of the Oracle® Real Application 
Cluster is possible.

● If the connection is lost between "Prepare" and "Commit" at the end of a transaction, a 
"Reconnect" with recovery is performed and if this is successful, the "Commit" operation 
is repeated over this new connection.

● If transactions are still open when the failover occurs, this can still lead to problems and 
corresponding error messages even if failover support is enabled (e.g. return code 
ORA-25402 - transaction must roll back). The reason for this is that Oracle® Real Appli-
cation Clusters is unable to migrate any open transactions in the event of a failover. 
These transactions must be rolled back by the UTM application program, see also 
“Interrupted transactions” on page 108.

Any open multi-step transactions (i.e. following PEND KP) are reset by the database 
system in the event of a failover. openUTM has no influence over this.

The database system is automatically reconnected after the rollback. It is then possible 
to start new transactions.

● If the failover occurs during a warm start of the application or while the UTM process is 
being terminated, error processing is carried out as usual and no attempt is made to 
reconnect.

● The "prepared statements" database function can lead to errors in the event of a 
failover.

● Messages allow the progress of the reconnection to the database system to be 
monitored. 

– xa_close in the event of reconnection: 

In &RMSTAT insert in message K202, the string "RAC closed" is output for the 
Oracle® Real Application Clusters instance in place of "closed".

– xa_open in the event of reconnection: 

In the &XACALL insert of message K224, the string "RAC: xa_open" is output.

Debug messages

The debug messages contain an indication whether the message refers to an instance 
of Oracle® Real Application Clusters. 
The XA-DEBUG messages are activated by the start parameter ".RMXA 
DEBUG=ALL".



Starting and stopping a UTM database application UTM database application

108   Using openUTM under Unix Systems and Windows Systems

Interrupted transactions 

Interrupted transactions can only be continued by the node that started the transaction. For 
this reason, all UTM processes must always be connected to the same node of the Oracle® 
Real Application Cluster. It is therefore simplest to proceed as follows:

● terminate the UTM application after failover of the Oracle® Real Application Cluster and 
before the failed node is restarted,

● restart the UTM application after the failed node has been restarted. 

This ensures that all UTM processes are connected to the same node of the Oracle® Real 
Application Cluster and that all transactions of the application are processed by the 
restarted node of the Oracle® Real Application Cluster. 

If it is not possible to terminate and restart the UTM application, i.e. if the nodes of the 
Oracle® Real Application Cluster are switched over while the openUTM application is 
running, this can result in the following situation in which not all UTM processes are 
connected to the same node:

● One transaction is interrupted by the failover; at this time, the UTM process is still 
connected to the old node.

● After the process is restarted or after a PEND ER in the UTM application program, the 
interrupted transaction is continued by a different UTM process. This process is now 
connected to the new node. 

● The database instance rejects the request to resume the interrupted transaction (xa-
start with RESUME) and reports that the transaction is unknown. 

● openUTM reconnects to the database instance. openUTM attempts to resume the 
transaction over the new connection (i.e. with the new node).

● The database system again rejects this request, since the database transaction was 
started on the old node of the Oracle® Real Application Cluster and cannot be 
continued on the new node. 

● openUTM rolls back the global transaction and issues a K160 message; "NOTA" is 
output in the insert of the internal return code KCRCDC. 

A situation such as this can be handled as described below using a MSGTAC program.

Control using a MSGTAC program

The MSGTAC event service is defined as the message destination for the K160 message. 
In this case, MSGTAC must have been generated with administrator authorization. 
MSGTAC reacts to the message insert and initiates a restart over the administration 
programming interface (KC_CHANGE_APPLICATION). This replaces all processes, 
restarts them and then connects them to the new node. 



UTM database application Starting and stopping a UTM database application

Using openUTM under Unix Systems and Windows Systems  109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
6

This method minimizes the period of time for which the UTM processes are connected to 
different nodes. The number of transactions that are reset is limited to those that were 
started on the old node and could not be continued on the new node. The transactions that 
were started on the new node before the restart can be continued.

6.4.2.1 Special issues when connecting to Oracle® 

Connection to an Oracle® database is established using a "service". You can also set up 
"DTP services" in an Oracle® Real Application Clusters environment. 

This offers the following options for live operation: 

● automatic error detection 

● automatic failover.
If an instance fails, a new transaction is redirected to another instance of the service. 
No administrator intervention is required.

● Load distribution as soon as the connection is established 

Creating a DTP service (Oracle®) 

1. Use the command "srvctl add service" to add a new service for the database and assign 
it to an instance of the database. 

Example: 

Two "DTP services" are to be created with the following options for the RAC database 
dbracutm with the instances racutm1 and racutm2: 

"srvctl add service -d dbracutm -s racutmS12 -r racutm1 
 -a racutm2 

-P BASIC" 

and 

"srvctl add service -d dbracutm -s racutmS21 -r racutm2 
-a racutm1 
-P BASIC" 

-d Name of the database

-s Name of the (DTP) service

-r Name of the first instance

-a Name of the second instance

-P Failover method



Starting and stopping a UTM database application UTM database application

110   Using openUTM under Unix Systems and Windows Systems

The service racutmS12 connects to the instance racutm1 and to the instance racutm2 
in the event of a failover. In the same way, the service racutmS21 connects to the 
instance racutm2 and to the instance racutm1 in the event of a failover. 

2. Convert the services to "DTP services“ using SQLPLUS: 

SQL> connect .... 
SQL> execute dbms_service.modify_service 

( service_name => 'racutmS12', dtp => true ); 
SQL> execute dbms_service.modify_service 

( service_name => 'racutmS21', dtp => true ); 
SQL> exit 

You can start, stop and administer the (DTP) services with "srvctl commands". See also 
the Oracle® "Administration and Deployment Guide". 

  The DTP service must be started on the node on which the instance of the RAC 
DB system that is primarily assigned to it is running, i.e. the DTP service 
racutmS21, which is primarily assigned to the instance racutm2, must be 
started on the node on which this instance is running.

3. Enter the service in the file tnsnames.ora with a net_service_name:

Example

RACUTMS1 = 
(DESCRIPTION = 

(ADDRESS_LIST = 
(ADDRESS = (PROTOCOL = TCP) (HOST=server1) (PORT=1521)) 
(ADDRESS = (PROTOCOL = TCP) (HOST=server2) (PORT=1521)) 

) 
(CONNECT_DATA = 

(SERVICE_NAME = racutmS12.domain_name ) 
) 
(FAIL_OVER = ON) 

) 

4. In the Open string in the start parameters, assign this net_service_name (in this case 
RACUTMS1) to the operand "SqlNet".

i



UTM database application Starting and stopping a UTM database application

Using openUTM under Unix Systems and Windows Systems  111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
6

6.4.3 Debug parameters

You have the option of logging the XA interface in openUTM for test purposes. The RMXA 
start parameter DEBUG= is available for this purpose. 

The DEBUG= parameter has the following format:

.RMXA DEBUG={ YES | ALL },OUTPUT={ SYSOUT | FILE }

Explanation

DEBUG=  Activates the debug function.

YES  Logs the individual XA calls and, for each call,
– the service number
– the transaction counter
– the return value

ALL  In addition to the values logged with DEBUG=YES, the status values and 
the XID are also logged.

OUTPUT=  Specifies the output destination.

SYSOUT  Output is sent to stderr.

FILE  Output is sent to a file. 
The file has the format KDC.TRC.XA.appliname.hostname.pid. 

appliname  
Name of the application

hostname  
Name of the computer on which the application is running

pid  PID of the process.

You can enable or disable logging of the XA interface during execution of the application 
using the administration functions. To do so, use the programming interface, the adminis-
tration tools WinAdmin/WebAdmin or the administration command KDCDIAG 
XA-DEBUG=. For details, refer to the openUTM manual “Administering Applications”.



Starting and stopping a UTM database application UTM database application

112   Using openUTM under Unix Systems and Windows Systems

6.4.4 Normal termination of a UTM database application

A UTM database application is terminated using UTM administration functions, see the 
section “Terminating a UTM application normally” on page 93. openUTM closes the 
Resource Manager while the UTM work process of the application is terminating.

If an application has been started as a service under Windows systems, it can be stopped 
as a service (see the section “Terminating a service in Windows systems” on page 95) or 
using the KDCSHUT utility (see section “The KDCSHUT tool – terminating a UTM appli-
cation normally at shell level” on page 94).

6.4.5 Abnormal termination of a UTM database application

A UTM database application can be terminated abnormally as a result of errors or by the 
administrator; see the section “Terminating a UTM application abnormally” on page 96. 
Following an abnormal application termination, the database or KDCFILE may be in an 
inconsistent state.

In this case, the data consistency is checked and, if necessary, restored by the subsequent 
warm start of the UTM database application. In this case, openUTM completes a shared 
recovery phase with the affected database systems.

W

W

W

W



UTM database application Operating a UTM database application

Using openUTM under Unix Systems and Windows Systems  113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
6

6.5 Operating a UTM database application

The operation of a UTM database application is based on the same principles as the 
operation of a UTM application. The special points to observe are described in the following 
sections.

6.5.1 User sign-on and sign-off

A user who wants to work with a UTM database application signs on using the client-
specific sign-on process for openUTM. The same applies to sign-off.

When signing on, users can avail themselves of all the sign-on options offered by UTM. In 
particular, the user can use the SIGNON services of UTM. The following must be noted 
here:

● If the user signs on as a terminal, database calls are not permitted in the first part of the 
SIGNON service for security reasons, unless this is explicitly permitted at generation 
with the KDCDEF statement SIGNON, ...RESTRICTED=NO.

● In the second part of the SIGNON service, the authorization profile for the user is read 
from the database. This means that a universal DB/DC authorization concept can be 
implemented.

  More details on sign-on and sign-off can be found in the chapter “Working with a 
UTM application” on page 165. 



Operating a UTM database application UTM database application

114   Using openUTM under Unix Systems and Windows Systems

6.5.2 Diagnostics

To diagnose errors in a UTM database application, UTM offers the same information 
sources as for a pure UTM application, i.e. UTM messages, error codes, and dumps. Some 
of these sources also contain database-specific data, which should be examined first if an 
error could relate to a fault in the database connection. The following UTM diagnostic infor-
mation is supplied:

● the database-specific UTM messages K068 and K071 

● the start error codes of message K049

● Messages from the XA database connection K201 through K233

● the incompatible return code KCRCDC

● the DB-DIAGAREA of the UTM dump, if a UTM dump was created

  More details can be found in the openUTM manual “Messages, Debugging and 
Diagnostics in Unix Systems and Windows Systems”.



Using openUTM under Unix Systems and Windows Systems  115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7 UTM cluster application

A cluster is a number of computers (nodes) connected over a fast network and which share 
common peripherals.

A UTM application can run as a UTM cluster application on a cluster. To a large extent, a 
UTM cluster application can be operated as a single UTM application (standalone appli-
cation). A UTM cluster application is made up of several identically generated UTM appli-
cations (the node applications) that run on the individual nodes.

On Unix systems and Windows systems, a UTM cluster application can run on up to 
32 nodes).

7.1 Properties of a UTM cluster application

A UTM cluster application is intended to run on more than one computer. It has the following 
characteristics:

● The UTM cluster application has to run under the same user ID on all computers to 
ensure that the same access permissions apply to the files used. 

● The configuration of the UTM cluster application, including the KDCFILE for all nodes, 
is created in a single generation run and is therefore the same for all nodes. This also 
applies in particular to the application name of the UTM cluster application. 

● The computers that belong to a cluster must be compatible in terms of hardware status 
and software configuration. Discrepancies involving compatible correction statuses, 
operating system versions and updates are possible. For details, see the Release Note.

● The node applications of a UTM cluster application must all run under the same 
operating system (e.g. Solaris) with the same bit mode (32-bit or 64-bit on all nodes). 
Mixed configurations, such as Unix and BS2000 computers or even Solaris and Linux 
computers in combination are not possible.

● A number of files that can be accessed jointly by all nodes are required in order to run 
a UTM cluster application. These are the UTM cluster files. For detailed information on 
the UTM cluster files, refer to the section “Runtime environment” on page 124.



Properties of a UTM cluster application UTM cluster application

116   Using openUTM under Unix Systems and Windows Systems

● There are also files which are local to each node. A node application’s KDCFILE must 
be accessible from all node applications. You have to create these files with a node-
specific filename prefix. For detailed information on the files local to the nodes, refer to 
the section “Runtime environment” on page 124.

Special properties of a cluster on Unix systems

● To run a cluster application, the user IDs used must not only have the same names on 
all the computers, but must also be managed internally by the operating system using 
the same user number assigned when the user ID was set up. 

● In order to run scripts across different computers, the nodes must mutually permit ssh 
access for the execution IDs. 

● On Unix systems, the Network File System/Service (NFS) is used to access the 
common files. You can, for instance, use NetApp FAS as the NFS server system. 

Special properties of a cluster on Windows systems

● The Windows computers must all be members of a common Windows domain. 

● An identical Windows domain login must be used as the execution ID on all nodes.

● Under Windows, Windows shares are used with the CIFS protocol common in 
Windows.

X

X

X

X

X

X

X

X

W

W

W

W

W



UTM cluster application Installation and preparation for use

Using openUTM under Unix Systems and Windows Systems  117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.2 Installing and preparing a UTM cluster application for use 

7.2.1 Installation

Before you can create and operate a UTM cluster application, you must install the product 
openUTM on all computers to be used for the cluster. The procedure used to install 
openUTM does not depend on whether you subsequently wish to operate standalone or 
UTM cluster applications. See also the sections “Installing openUTM in Unix systems” on 
page 283 and “Installing openUTM in Windows systems” on page 286.

You will find information on the software requirements for UTM cluster applications in the 
Release Note.

The runtime environment of openUTM (e.g. the system time) must be the same on all 
nodes. See section “Properties of a UTM cluster application” on page 115.

A number of files that can be accessed jointly by all node applications are required in order 
to run a UTM cluster application. See section “Runtime environment” on page 124. 

openUTM revision levels can be deployed during live operation of a UTM cluster appli-
cation. For details, refer to the section “Use of openUTM revision levels in the UTM cluster 
application” on page 156. 

If the applications are to run as services, you must install and configure the respective 
service on all nodes. 

7.2.1.1 Installing the UTM runtime components for Unix systems

Since the applications are identified via their application names in the applifile, each 
node must use its own installation files, i.e. openUTM must be installed at every node.

Ê The UTM installation procedure proposes the installation directory
/opt/lib/<utmversion>, e.g. /opt/lib/utm63a00.

Ê If installation under /opt/lib/<utmversion> is not possible then we urgently recommend 
that you choose a directory with the same name on all the nodes when performing 
openUTM installation and that each of these directories is located on a hard disk that is 
exclusively assigned to the respective node.

Ê If this type of uniform installation is also not possible then please note the following 
points:

1. When linking the application using the binder ld:

Ê Specify the directories containing the shared objects by means of the flag -L, 
e.g. -L/opt/lib/utm62a00/64/sys.

W

W

X

X

X

X

X

X

X

X

X

X

X

X

X



Installation and preparation for use UTM cluster application

118   Using openUTM under Unix Systems and Windows Systems

Ê Specify the names of the shared objects using the flag -l without the prefix lib 
and without a suffix, e.g. -lwork in order to link libwork.so.

Ê Respect the sequence of these flags: Specify the flag -L before the flag -l.
Rule: "Capital L before small L" due to the risk of confusion with "i" when using 
uppercase.

2. At the start of the application set the environment variable $LD_LIBRARY_PATH 
and, if necessary, $LD_LIBRARY_PATH64 to indicate the directories containing the 
employed shared objects.

7.2.1.2 Installing further runtime components for Unix systems

Ê Install any other runtime components that are used by the UTM application (e.g. Cobol 
runtime system or database software) as uniformly as possible on all the nodes, i.e. in 
the same directories.

This ensures that access to these runtime components is possible consistently and via 
the same paths (e.g. including during node recovery) from each node.

Ê If this type of uniform installation is not possible then respect the notes on linking and 
starting presented in the description in section “Installing the UTM runtime components 
for Unix systems” on page 117.

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



UTM cluster application Installation and preparation for use

Using openUTM under Unix Systems and Windows Systems  119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.2.2 Generation

Configuration of the UTM cluster application including the initial KDCFILE is created in a 
common generation run.

You create the initial KDCFILE for a UTM cluster application in the basic generation run. It 
is stored under the base name that you specify in the KDCFILE operand of the MAX 
statement.

7.2.2.1 Special generation statements for UTM cluster applications

Special generation statements are required for generating a UTM cluster application: 

● The CLUSTER statement defines the common properties of the UTM cluster appli-
cation.

● The CLUSTER-NODE statements define the computers on which the node applications 
will run and specify the node-specific properties for each node application. You must 
issue a separate CLUSTER-NODE statement for each node application.

i   The number of CLUSTER-NODE statements specifies the number of node 
applications for the cluster. You cannot subsequently add further node applica-
tions to the cluster in live operation. You can, however, create "reserve" nodes 
during generation and subsequently modify these using the administration facil-
ities, populating them with actual values for additional nodes. See below.

  openUTM manual “Generating Applications”

CLUSTER statement
The CLUSTER-FILEBASE operand specifies the name prefix that is global to the 
cluster for the files of the UTM cluster application that are global to the cluster.

CLUSTER-NODE statement 
The FILEBASE operand specifies the base name for the node application that is 
local to the node.



Installation and preparation for use UTM cluster application

120   Using openUTM under Unix Systems and Windows Systems

7.2.2.2 Generating reserve nodes

During generation with KDCDEF, you have the option of creating reserve nodes with provi-
sional values. You can subsequently use the administration facilities to change the host 
name and the base name of the KDCFILE of these node applications. The node application 
must not be active when this is done.

This option is particularly useful in the following situations:

● You generate more nodes than you initially wish to operate as a reserve, for instance 
because insufficient computers are yet available. 

At a subsequent time, you wish to add a node to an existing cluster because the number 
of nodes that were available to date is no longer sufficient. Now that you know the data 
of the new node, you can use the administration facilities to modify the configuration of 
a reserve node.

● The hardware on which a node application is running is faulty or is to be replaced by 
more powerful hardware. To do this, proceed as follows:

– Terminate the node application.
– Transfer the UTM application data to the new computer.
– Use the administration facilities in a running node application to change the 

computer name of the terminated node, i.e. enter the new name of the node instead 
of the old computer name here.

After you have made the change, you can start the node application on the new 
computer.

  You will find detailed information on generating reserve nodes and on modifying the 
provisional properties using the administration facilities in the 
openUTM manual “Generating Applications” and the openUTM manual “Adminis-
tering Applications”.



UTM cluster application Installation and preparation for use

Using openUTM under Unix Systems and Windows Systems  121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.2.3 Using global memory areas

In UTM cluster applications, the UTM storage areas GSSB and ULS are supported at the 
global cluster level. The associated user data is stored in the cluster page pool.

  openUTM manual “Generating Applications”, CLUSTER statement
You use the operands PGPOOL and PGPOOLFS to define the properties of the 
cluster page pool (size, warning level and number of files). You use the 
DEADLOCK-PREVENTION operand to control how the system behaves in the 
case of locked, global storage areas (additional check or control via timeout).

TACs for accessing GSSB and ULS

In UTM cluster applications, you should assign TAC classes to programs that access GSSB 
or ULS storage areas. By restricting the tasks working for these TAC classes, you can 
prevent all the tasks in a node application from simultaneously accessing the GSSB or ULS 
storage areas. UTM rejects attempts to access storage areas if this would mean that all the 
tasks in a node application would have to wait for a lock held by another node.

If it is possible, it is advisable to place the TACs that access GSSB or ULS in the same TAC 
class. Any TACs that use PGWT should be gathered together in the same TAC class since 
it is also necessary to take account of the PGWT wait situations.

When you have assigned the TACs to TAC classes, you can restrict the number of tasks by 
means of either the TACCLASS or TAC-PRIORITIES statement:

● TACCLASS statement:
The number of tasks that are started must be at least one greater than the maximum 
number of tasks that are allowed to run for the TAC classes containing the TACs
which access GSSB or ULS.

● TAC-PRIORITIES statement:
The number of tasks that are started must be at least one greater than the total of 
FREE-DIAL-TASKS and MAX ASYNTASKS.

Examples

In the example below, TASKS=10 and ASYNTASKS=2 are generated in the MAX 
statement. The TACs with GSSB/ULS access are to run in TAC class 2 (TAC.... 
TACCLASS=2). This means:

– If the task limitation is controlled via the TACCLASS statement and TAC class 2 is able 
to use a maximum of 5 tasks then the TACCLASS statement is as follows:

TACCLASS 2,TASKS=5,PGWT=YES

At least 6 tasks musts be started.



Installation and preparation for use UTM cluster application

122   Using openUTM under Unix Systems and Windows Systems

– If the task limitation is controlled via the TAC-PRIORITIES statement and at least one 
task is to be kept free for jobs whose TACs do not belong to any dialog TAC class then 
the TAC-PRIORITIES statement is as follows:

TAC-PRIORITIES FREE-DIAL-TASKS=1

At least 4 tasks must be started (because MAX ... ASYNTASKS=2).

7.2.4 Service restart

In UTM cluster applications, service restarts are supported globally throughout the cluster 
for all genuine user IDs generated with RESTART=YES. This means that after signing off 
at the node application, a user is able to continue an open dialog service at another node 
application provided that the service is not a node-bound service. 

Node-bound services

The following services are node-bound:

– Services that have started communication with a job receiver via LU6.1 or OSI TP and 
the job receiver service has not yet been terminated

– Inserted services in a service stack

In addition, a service associated with a user is node-bound as long as the user is signed-
on at a node application. Hence, following abnormal termination, an open service is bound 
to a node application if the user was signed on at the node application at the time the appli-
cation was terminated.

Node-bound services can only be continued at the node to which they are bound.

If a user who has a node-bound service wants to sign on at another node application then 
the sign-on attempt is rejected if

– the node application to which the service is bound is running, or
– the bound service has a transaction in the state PTC, or
– the UTM cluster application has been generated with ABORT-BOUND-SERVICE = NO.

If an attempt by a user with a node-bound service to sign on at another node application is 
accepted, then the open service is not continued but is instead terminated abnormally the 
next time the node application to which it is bound is started.

i   – A connection user ID is bound to the connection. A connection user ID 
generated with RESTART=YES can have an open service in every node appli-
cation.

– In applications without USER, an LTERM generated with RESTART=YES can 
have an open service in every node application.



UTM cluster application Installation and preparation for use

Using openUTM under Unix Systems and Windows Systems  123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

Service restarts in UTM-F applications

Although service restarts are also supported in UTM-F applications, the service data is not 
saved until the user signs off.

As a result, following an abnormal termination of a node application, no further service 
restart is possible if the user

● was signed on at the node application at the time it was terminated abnormally or

● has a service bound to the node application that has terminated abnormally.



Installation and preparation for use UTM cluster application

124   Using openUTM under Unix Systems and Windows Systems

7.2.5 Runtime environment

7.2.5.1 Files

Both files that are global to the cluster and files that are local to the node belong to the 
runtime environment of the UTM cluster application. 

You specify in the storage location of the files during generation using the following 
KDCDEF statements:

● CLUSTER CLUSTER-FILEBASE = cluster_filebase 
cluster_filebase identifies the storage location of the UTM cluster files.

● CLUSTER-NODE FILEBASE = node_filebase
node_filebase identifies the storage location of the files local to the node.

You must specify cluster_filebase for the application run when the node applications are 
started using the start parameter CLUSTER-FILEBASE = cluster_filebase. The same value 
must be specified for this start parameter for all node applications. 

i   The value that you specified for cluster_filebase during generation does not have to 
match the value that you specify for cluster_filebase using the start parameter.

It is crucial that the UTM cluster files, such as the cluster configuration file, are 
available under the base name specified in the start parameters at the time at which 
the first node application is started.

UTM cluster files

A number of files that can be accessed jointly by all node applications are required in order 
to run a UTM cluster application. These UTM cluster files are created in a base directory 
specific to the UTM cluster application (cluster_filebase). 

The following list indicates all the UTM cluster files. In this list, the file names are specified 
without base directory. The complete name in each case is as follows:

cluster_filebase/UTM-C.xxxx on Unix systems

cluster_filebase\UTM-C.xxxx on Windows systems

xxxx=CFG, USER, ..., LOCK

UTM-C.CFG *) Cluster configuration file
Contains the configuration of the cluster, the current status of all the 
nodes of the cluster, additional information on all the node applica-
tions of the UTM cluster application and specifications on data that is 
global to the cluster. 

X

W



UTM cluster application Installation and preparation for use

Using openUTM under Unix Systems and Windows Systems  125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

The UTM cluster files indicated by *) are created by KDCDEF at generation time (see 
section “Generation” on page 119). 

The journal files (.JRN1, .JRN2, .JKAA) and the lock files are set up by openUTM the first 
time the first node application is started. 

v   CAUTION!
You must not rename any of these files or copy them to a different location. This 
applies during operation of the UTM cluster application and after the UTM cluster 
application has been terminated. 

UTM-C.USER *) Cluster user file
Contains user-specific information for managing users in a UTM 
cluster application.

i   In a UTM cluster application without explicitly generated user 
IDs, the cluster user file is not needed and is therefore not 
generated.

UTM-C.CPnn *)
(nn = 01, ..., 10)

Cluster page pool files, the number of which is defined during gener-
ation
Contain user data that is managed globally throughout the cluster in 
UTM cluster applications (GSSB, ULS and the service data of users).

UTM-C.CPMD *) Control file for the cluster page pool

UTM-C.GSSB *) Cluster GSSB file
Used for GSSB management in a UTM cluster application

UTM-C.ULS *) Cluster ULS file
Used for ULS management in a UTM cluster application.

UTM-C.JRN1
UTM-C.JRN2

Administration journal which logs global administration actions 
("memory" for the administration functions, see section “Adminis-
tration journal” on page 145). openUTM uses these files to ensure 
that global administrative changes apply globally and consistently 
across the entire cluster. 

UTM-C.JKAA Journal file containing a copy of the KDCS Application Area (KAA). 
Administrative changes which are no longer contained in the admin-
istration journal (see section “Administration journal” on page 145) 
are taken from this file.

UTM-C.LOCK Cluster lock file
Used for the management of queues in a UTM cluster application.

UTM-C.SLCK Lock file for serialization of the start phase of the node applications.



Installation and preparation for use UTM cluster application

126   Using openUTM under Unix Systems and Windows Systems

Files local to the node

Both files that are global to the cluster and files that are local to the node belong to the 
runtime environment of the UTM cluster application. A filename prefix that is unique within 
the cluster (node_filebase) is assigned to each node in the case of files that are local to the 
node. There are the following files local to the node for each node application:

● the KDCFILE files (including the pagepool and restart areas) in the form of copies of the 
initial KDCFILE files:

node_filebase/KDCA
node_filebase\KDCA

node_filebase/PxxA 
node_filebase\PxxA 
if required by the generation

node_filebase/RxxA 
node_filebase\RxxA 
if required by the generation

The initial KDCFILE files are created using KDCDEF (see section “Generation” on 
page 119). You must copy these files for each node application.

You must organize the KDCFILEs of the node applications in such a way that all 
KDCFILEs of the node applications can be accessed by all other node applications.

● System log file (SYSLOG file)

node_filebase/SYSLOG
node_filebase\SYSLOG

The system log file SYSLOG can be a single file or a file generation group (FGG).

● User log file

node_filebase/USLA
node_filebase\USLA

The user log file USLOG must be a file generation group (FGG).

● Execution logs 

● Diagnostics files 

● Other application-specific files

You must set up the SYSLOG file and the user log file and other application-specific files 
for each node application.

X

W

X

W

X

W

X

W

X

W



UTM cluster application Installation and preparation for use

Using openUTM under Unix Systems and Windows Systems  127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

i  You can maintain different versions of the application program on Unix systems 
and Windows systems. The same version of the application program must, 
however, be loaded on all running node applications with a KDCFILE from the same 
generation run. 

7.2.5.2 Location of the files

On Unix systems

● The cluster filebase must be located on a file system that can be accessed from all 
nodes. This means that it will typically be located on a storage subsystem that can be 
accessed with NFS. 

● For reasons of consistency, directories with the same names must be used as NFS 
mount points on all nodes. 

● It is recommended that a common mount point is used for the cluster filebase and all 
filebase directories. 

On Windows systems

● The cluster filebase must be on a network share that can be accessed from all nodes.

● On Windows systems, network shares are used that are accessed using the CIFS 
protocol. 

Windows network shares can be addressed using the following two formats: 

– Using drive letters, e.g. X:\ 

– Using the UNC name, i.e. in the format \\ServerName\ShareName\ 

These drives must be accessed from all nodes using the same format. You must specify 
this name accordingly during generation. 

7.2.6 Preparation for use

Distributing the KDCFILE

In order to be able to run, every node application requires a copy of the initial KDCFILE from 
the common generation run with a base name assigned exclusively to this node application. 
To achieve this, you must copy the initial KDCFILE (including the pagepool, restart areas 
are maintained) into the associated node-specific filebase for each node application after 
the generation run.

X

X

X

X

X

X

X

X

W

W

W

W

W

W

W

W

W



Installation and preparation for use UTM cluster application

128   Using openUTM under Unix Systems and Windows Systems

Creating the start parameter file

When you start a node application, you must specify the start parameter 
CLUSTER-FILEBASE in place of FILEBASE. See also the section “Start parameters for 
openUTM” on page 80. The files that are global to the cluster must be present under the 
base name specified in CLUSTER-FILEBASE. 

i  If you wish to specify a different name for cluster_filebase in the start parameter file 
than you set in the KDCDEF statements, you must rename the UTM cluster files 
generated by KDCDEF before the first node application is started.



UTM cluster application Installation and preparation for use

Using openUTM under Unix Systems and Windows Systems  129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.2.7 Example for Unix systems

A common mount point is used for the cluster filebase and the filebase directories of all 
node applications in this example:

The volume /vol/vol1 of an NFS system (e.g. NetApp Filer) that can be addressed in the 
network under the name MyFiler is mounted in the local directory /myVol1 on all nodes. 

This requires the following actions to be performed on all nodes:

login root 
mkdir /myVol1 (only required before the first mount command) 
mount -t nfs4 MyFiler:/vol/vol1 /myVol1 (for Linux)
mount MyFiler:/vol/vol1 /myVol1 (for Solaris)

i  Note that the mount command must be repeated every time the computer is 
rebooted. It is recommended that you ask the system administrator to automate the 
mounting operation.

Directories

In this example 

● two nodes are generated: UTMHOST1, UTMHOST2

● two node applications of the UTM cluster application use the common mount 
point/myVol1

● the directory /myVol1/UTMCAPPL Is used as the cluster filebase

● the directories for the node applications (node filebase) are located below the cluster 
filebase and are designated according to the relevant host name. This directory 
structure improves clarity and is largely self-explanatory.

Both node applications must have access permissions on the cluster filebase and on the 
node-specific directories.

KDCDEF statements

The following generation statements are required to generate the UTM cluster application 
in this example: 

OPTION GEN=(KDCFILE,ROOTSRC,CLUSTER)

/myVol1/
/myVol1/UTMCAPPL/
/myVol1/UTMCAPPL/UTMHOST1/
/myVol1/UTMCAPPL/UTMHOST2/

Mount point
Cluster filebase 
Filebase for UTMHOST1
Filebase for UTMHOST2

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X
X
X

X

X

X

X

X

X



Installation and preparation for use UTM cluster application

130   Using openUTM under Unix Systems and Windows Systems

CLUSTER CLUSTER-FILEBASE=/myVol1/UTMCAPPL,
LISTENER-PORT=1234,BCAMAPPL=NAMECLT,
CHECK-ALIVE-TIMER-SEC=60,USER-FILEBASE=/myVol1/UTMCAPPL

CLUSTER-NODE FILEBASE=/myVol1/UTMCAPPL/UTMHOST1,HOSTNAME=UTMHOST1
CLUSTER-NODE FILEBASE=/myVol1/UTMCAPPL/UTMHOST2,HOSTNAME=UTMHOST2
...

Storing the files

● Files that are global to the cluster

During the generation run, the cluster configuration file (with file name 
UTM-C.CFG) and a number of central cluster files are created in the directory 
/myVol1/UTMCAPPL. The rest of the central cluster files are created when the first node 
application is started.

● Initial KDCFILE:
You must copy the initial KDCFILE created during this generation run into all filebase 
directories of the node applications.

● Files in the filebase directory on the node UTMHOST1

/myVol1/
/myVol1/UTMCAPPL/
/myVol1/UTMCAPPL/UTM-C.CFG
/myVol1/UTMCAPPL/UTM-C.USER
/myVol1/UTMCAPPL/UTM-C.CPMD
/myVol1/UTMCAPPL/UTM-C.CP01
/myVol1/UTMCAPPL/UTM-C.GSSB
/myVol1/UTMCAPPL/UTM-C.ULS

NFS mount point
Cluster filebase 
Cluster configuration file
Cluster user file
Cluster page pool control file
Cluster page pool file
Cluster GSSB file
Cluster ULS file

These files are created by KDCDEF during gener-
ation.

/myVol1/UTMCAPPL/UTM-C.JRN1
/myVol1/UTMCAPPL/UTM-C.JRN2
/myVol1/UTMCAPPL/UTM-C.JKAA

Administration journal
created the first time a node application is started.

/myVol1/UTMCAPPL/UTM-C.LOCK
/myVol1/UTMCAPPL/UTM-C.SLCK

Cluster lock file
File for serializing the start up of individual node 
applications

These files  are created when a node application is 
started for the first time.

/myVol1/UTMCAPPL/UTMHOST1/KDCA KDCFILE for UTMHOST1
Must be copied before the node is started for the 
first time.

X
X
X
X
X
X

X

X

X

X

X

X

X
X
X
X

X
X
X
X
X
X
X
X

X
X

X
X

XX
X
X
X
X
X

X

X

X

X

X
X
X



UTM cluster application Installation and preparation for use

Using openUTM under Unix Systems and Windows Systems  131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

● Files in the filebase directory on the node UTMHOST2

Start parameter files

The cluster filebase must be specified in both start parameter files for the node applications:

...

.UTM START CLUSTER-FILEBASE=/myVol1/UTMCAPPL

...

i  Note that the statement necessary for standalone applications
.UTM START FILEBASE=<filebase> 
must not be contained in a start parameter file for a UTM cluster application. See 
also the section “Start parameters for openUTM” on page 80.

/myVol1/UTMCAPPL/UTMHOST1/utmwork Program for the utmwork process of UTMHOST1. 
You must make this available before the first time 
the node is started.

... Other files in the filebase directory on UTMHOST1

/myVol1/UTMCAPPL/UTMHOST2/KDCA KDCFILE for UTMHOST2
Must be copied before the node is started for the 
first time.

/myVol1/UTMCAPPL/UTMHOST2/utmwork Program for the utmwork process of UTMHOST2. 
You must make this available before the first time 
the node is started.

... Other files in the filebase directory on UTMHOST2

X
X
X

XX

X

X
X
X

X
X
X

X

X

X

X
X
X

X

X

X

X



Configuration with a database UTM cluster application

132   Using openUTM under Unix Systems and Windows Systems

7.3 Configuration of a UTM cluster application with a database

Because all node applications have an identical configuration, all node applications work 
with the same database system.

Using Oracle® Real Application Clusters (Oracle® RAC)

The following configuration is recommended if you are using Oracle® RAC: 
One primary RAC node is assigned to each node application. In addition, each node appli-
cation uses the other RAC nodes as fallback levels for failover purposes. 

Figure 2: Configuration with two node applications and two Oracle® RAC nodes

Load balancer

Node Node

RAC node 1 RAC node 2

application 2application 1



UTM cluster application Startup

Using openUTM under Unix Systems and Windows Systems  133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.4 Starting a UTM cluster application

i   On Unix systems: 
Before starting the application, set the environment variable LD_LIBRARY_PATH 
and, if necessary, LD_LIBRARY_PATH64 to indicate the directories containing the 
employed shared objects if you have not been able to use uniform installation paths 
(see also page 117).

You start a UTM cluster application by starting one or more node applications. You start 
each node application separately in the same way as a standalone application (see the 
section “Starting a UTM application in Unix systems” on page 74 and the section “Starting 
a UTM application in Windows systems” on page 76). 

Start parameter file

In contrast to a standalone UTM application, the start parameter file must contain the 
statement START CLUSTER-FILEBASE=cluster_filebase in place of the statements START 
FILEBASE=filebase.

The following start parameters apply globally to the cluster: 

– TESTMODE 
– BTRACE 
– OTRACE 
– DUMP-MESSAGE
– interval value for SYSPROT 

Start parameters which apply globally to all nodes are distributed from the first node appli-
cation started to nodes which start subsequently via the administration journal. They remain 
valid – even during or after an update generation – until the UTM cluster application is termi-
nated or until the value is changed using the administration functions.

If the node applications do not require any special start parameters, the start parameter file 
can be the same for all node applications. The UTM cluster files generated by KDCDEF 
must be present under the base name which you specified for CLUSTER-FILEBASE. 
These files must come from the same generation run (see the section “Creating the start 
parameter file” on page 128). The files of the KDCFILE must not be older than the UTM 
cluster files.

When a node application is started, the following cluster-specific start actions are 
performed: 

● A check is performed whether the KDCFILE of the node application is compatible with 
the cluster configuration file. 

X

X

X

X

X



Startup UTM cluster application

134   Using openUTM under Unix Systems and Windows Systems

● The first time the first node application is started, the administration journal files are 
initialized and the cluster lock file and the serialization file (UTM-C.SLCK) are set up.

● Cluster monitoring in which the node applications monitor each other is started when a 
second node application is started. 

● Cluster monitoring is automatically extended when a further node application is started.

● The monitoring relationships are determined dynamically (see the section “Application 
monitoring of the node applications” on page 135).

SYSLOG file and user log file

You must set up the system log file SYSLOG and the user log file for each node application 
(see the sections “System log file SYSLOG” on page 57 and “User log file” on page 63).

The system log file SYSLOG must either be set up as a single file on all nodes or must be 
set up as a File Generation Group (FGG) on all nodes (see “System log file SYSLOG” on 
page 57). 

All running node applications with a KDCFILE from the same generation run must have the 
same SYSLOG configuration, otherwise startup of a subsequent node is aborted.

Encryption capability

You must ensure either that openUTM with encryption functions is running on all nodes or 
that openUTM is installed without encryption functions. 



UTM cluster application Monitoring and failure detection

Using openUTM under Unix Systems and Windows Systems  135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.5 Monitoring of node applications and failure detection

Monitoring of node applications comprises 

● an application monitoring 

● and measures to be taken if a failure is detected, for instance starting a failure script.

7.5.1 Application monitoring of the node applications

If more than one node application has been started for a UTM cluster application, each 
node application is monitored by a different node application. 

The following are dynamically defined when a node application is started: 

● what other node application is to be monitored by this node application, 

● and what other node application is to monitor this node application.

These monitoring relationships are entered in the cluster configuration file. When the node 
application is terminated, the relationships are canceled.

Monitoring process

The availability of a node application is monitored. Heartbeat monitoring is performed using 
messages which are exchanged over a special connection. If errors occur during commu-
nication, the system checks whether the KDCFILE of the monitored node is still open. 

Only when the result of all these checks indicates failure is it assumed that the monitored 
node has failed.

You can specify the following individual aspects of monitoring (in the generation):

● the interval between the monitoring messages,

● the time that the application waits for a response to the message,

● the retry factor, the number of retries before level 2 of monitoring takes effect if no 
response is received to a message.

  openUTM manual “Generating Applications”, CLUSTER statement
You configure mutual monitoring between the node applications using the 
following operands: 
CHECK-ALIVE-TIMER-SEC=
COMMUNICATION-REPLY-TIMER-SEC=
COMMUNICATION-RETRY-NUMBER=



Monitoring and failure detection UTM cluster application

136   Using openUTM under Unix Systems and Windows Systems

7.5.2 Actions performed by the node applications if a failure is detected 

It is assumed that a node application has failed if the monitored application does not 
respond to the messages within the configured reply time and taking account of the number 
of retries configured and if, on the basis of the UTM-specific job variable or the KDCFILE of 
the monitored application, it is then detected that this application is no longer running but 
was also not terminated normally.

If failure or abnormal termination of the monitored node application is detected, openUTM 
proceeds as follows:

● The node application is flagged as failed in the cluster configuration file and removed 
from the monitoring relationships. 

● If you have specified a so-called failure script during generation, the monitoring node 
application starts this script on the computer of the monitoring node application. The 
following data of the failed application is passed to the failure script:
– the application name
– the base name of the node application
– the host name
– the virtual host name or blanks
– the reference name of the node application
– the error code of the UTM dump (Term Application Reason)

  openUTM manual “Generating Applications”, CLUSTER statement
To configure the failure script, specify the operand FAILURE-CMD. This 
operand passes a command string containing a command to be executed and 
any arguments. 

● The monitoring node application starts a restart monitoring timer if you have configured 
this:

  openUTM manual “Generating Applications”, CLUSTER statement
To configure the restart monitoring timer, specify the operand RESTART-
TIMER-SEC. This specifies the maximum time in seconds that a node appli-
cation requires for a warm start after a failure.

● If you have specified an emergency script during generation, the monitoring node appli-
cation starts this script if the failed node application does not become available again 
after the restart monitoring timer has expired. The following data of the failed application 
is passed to the emergency script:
– the application name
– the base name of the node application
– the host name
– the virtual host name or blanks
– the reference name of the node application
– the error code of the UTM dump (Term Application Reason)



UTM cluster application Monitoring and failure detection

Using openUTM under Unix Systems and Windows Systems  137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

  openUTM manual “Generating Applications”, CLUSTER statement
To configure the emergency script, specify the operand EMERGENCY-CMD. 
This operand passes a command string containing a command to be executed 
and any arguments.

Sample script on detection of a failure 

Sample failure and emergency scripts are supplied with openUTM. These examples output 
the parameters passed when they are called. If you wish to use the samples in a live 
environment, you must adapt them to suit the requirements of the relevant cluster. 

Unix systems

The following sample scripts are supplied in the library utmpfad/shsc: 

● utm-c.emergency 

● utm-c.failure 

Windows systems

The following sample scripts are supplied in the directory utmpfad\shsc: 

● utm-c.emergency.cmd 

● utm-c.failure.cmd 

X

X

X

X

W

W

W

W



Monitoring and failure detection UTM cluster application

138   Using openUTM under Unix Systems and Windows Systems

7.5.3 Application data after abnormal termination of a node application

UTM cluster applications involve application data that is valid globally throughout the cluster 
as well as application data that is specific to the node:

● Application data that is valid globally throughout the cluster includes GSSB, ULS and 
the service data of non-node-bound services. This data is present in the UTM cluster 
files.

● Data that is applicable locally at node level such as, for example, TLS and the service 
data of node-bound services (see page 122) is saved in the KDCFILE of the relevant 
node application.

The abnormal termination of a node application has the following consequences for the 
application data:

– Any locks that were set for the cluster's global ULS and GSSB storage areas at the time 
the node application terminated are retained.

– Any users who were signed on exclusively at the node application at that time continue 
to be signed on. 

– It is not possible to access the service data of users who were signed on at the node 
application at the time of the failure until such a warm start is performed.

– The pages in the cluster page pool that were reserved by the abnormally terminated 
node application continue to be occupied.

– No node updates, cluster updates or online imports are possible.

Therefore, a warm start should rapidly be performed for abnormally terminated node appli-
cations. 



UTM cluster application Monitoring and failure detection

Using openUTM under Unix Systems and Windows Systems  139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.5.4 Measures taken when a node application has been terminated 
abnormally

This section describes what users should do following the abnormal termination of a node 
application and what measures the administrator of the UTM cluster application can 
perform in such cases. 

7.5.4.1 Measures taken for users

Users who were signed on at the node application at the time it terminated abnormally or 
who possess an open service bound to this node application can sign on at another node 
application. In this case, any open service for such a user is lost. An open service can only 
be continued when the user sign-on is performed after a warm start of the abnormally termi-
nated node application.

However, such users cannot sign on at another node application until the abnormal termi-
nation of the node application has been detected:

● The abnormal termination of the node application has already been detected:

Users with RESTART=NO can sign on at another running node application. 
Users with RESTART=YES can sign on at another running node application if the appli-
cation has been generated with CLUSTER ABORT-BOUND-SERVICES=YES and the 
user does not have a node-bound service with a transaction in the state PTC. 

● The abnormal termination of the node application has not yet been detected:

The attempt to sign on is rejected until the monitoring node has detected the failure. As 
soon as the failure has been detected, processing continues as in the first case above.

7.5.4.2 Measures to be taken by the administrator

Depending on whether the node application can be restarted on the same node or not, the 
following measures may be necessary to prevent data loss: 

● If the node application can be restarted on the same node after the failure, it is possible 
to continue working with the previous data without any problems. A failure script can, 
for instance, initiate an automatic restart of the node application.

● The following alternatives are available if it is not possible to restart the application on 
the same node, for instance if the computer has failed:

a) Move the node application to a spare computer with the same host name / IP 
address. It is then possible to restart the node application on this new computer 
without the need to take any further measures.



Monitoring and failure detection UTM cluster application

140   Using openUTM under Unix Systems and Windows Systems

b) Move the node application to a spare computer with an identical virtual host name/
IP address. Before the node application can be started on this new computer, the 
administration functions must be used to change the host name of the failed node 
in the cluster configuration file to the host name of the spare computer. After this 
has been done, it is possible to restart the node application on this new computer.

c) Perform a node recovery, see section “Node recovery”.

7.5.4.3 Node recovery

If it is not possible to perform a warm start for an abnormally terminated node application at 
the node's own node computer in reasonable time and also no virtual host has been defined 
then a node recovery can be performed for this node on another node in the UTM cluster 
in order to avoid impairing the performance of the running UTM cluster application.

Prerequisites for the use of node recovery

Node recovery requires the presence of SYSLOG files with node-specific names that can 
be accessed throughout the cluster.

You can dynamically generate the start parameter file with the required node name for the 
NODE-TO-RECOVER start parameter. 

Alternatively, you can provide, for each node in the cluster, a previously set up start 
parameter file for node recovery that can be accessed throughout the cluster.

If you have departed from the recommendations and installed UTM or other runtime compo-
nents under different paths on the individual cluster nodes and if this code is loaded from 
shared objects, then you should note the following:

1. For it to be possible to call node recovery, the application must have been appropriately 
linked for this type of use.

2. In addition, you must set the environment variables $LD_LIBRARY_PATH and, if 
necessary, $LD_LIBRARY_PATH64 to the locally accessible paths, i.e. as they are at 
the start of the local node application.

For more detailed information, see the sections “Installing the UTM runtime components for 
Unix systems” on page 117 and “Installing further runtime components for Unix systems” on 
page 118.

Starting node recovery

Node recovery is controlled via the start parameters listed below. 



UTM cluster application Monitoring and failure detection

Using openUTM under Unix Systems and Windows Systems  141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

NODE-TO-RECOVER   
selects a node in the UTM cluster application for which node recovery is to be 
performed.

RESET-PTC   
specifies whether or not transactions in the PTC state are to be reset on node 
recovery.

For a more detailed description of these start parameters, see section “Start parameters for 
openUTM” on page 80.

Calling utmmain for node recovery

Ê Start the program utmmain as a background process (see page 74 for Unix systems 
page 76 for Windows systems) in order to start node recovery.

When doing this, specify the filebase name of the node application for which node 
recovery is to be performed as the first argument and start node recovery in this filebase 
directory.

v   CAUTION!
The start procedure for starting the node application that is to perform node 
recovery must not contain any commands that have an effect on node applica-
tions running in parallel on this node computer. This includes, for example, a call 
of the utility program kdcrem prior to the start of utmmain. 

Messages

When node recovery is started, the message K192 is sent to stdout and stderr. This 
message logs the values of the start parameters NODE-TO-RECOVER and RESET-PTC 
together with the current computer name.

A K193 message is output for every detected transaction with the PTC state, irrespective 
of the value of the RESET-PTC parameter.

A K160 message is output for every transaction that is reset.

At the end of node recovery, a K194 message is output which indicates the number of 
GSSB and ULS areas still locked by this node.



Online import of application data UTM cluster application

142   Using openUTM under Unix Systems and Windows Systems

7.6 Online import of application data

After a node application has been terminated normally, messages to (OSI-)LPAPs, 
LTERMs, asynchronous TACs or TAC queues and open asynchronous services can be 
imported from the terminated node application into a different, running node application. For 
this to be done, their KDCFILE must originate from the same generation run. Data that is 
imported is deleted from the terminated node application.

Online import is only possible in UTM-S applications (UTM Secure) and must be initiated 
using the administration functions, e.g. via WinAdmin or WebAdmin.

Imported messages are treated in the same way as newly generated messages, i.e. they 
are appended to the end of the queue rather than being inserted in an existing message 
queue on the basis of their generation times.

The following data is not imported:

– Asynchronous messages to a TAC whose queue level (QLEV) has been reached. This 
also applies if the TAC is generated with QMODE = WRAP-AROUND. This ensures that 
the import operation does not delete any asynchronous messages in the importing 
application.



UTM cluster application Administration 

Using openUTM under Unix Systems and Windows Systems  143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.7 Administering a UTM cluster application

You can administer the node applications of the UTM cluster application together:

● WinAdmin/WebAdmin

WinAdmin and WebAdmin provide administration functions that you can apply 
globally to all node applications in the UTM cluster application. In addition, for example, 
WinAdmin/WebAdmin also provide summary statistics covering all running node appli-
cations. WinAdmin/WebAdmin also permit you to administer individual node applica-
tions separately.

For these reasons, it is recommended that you use WinAdmin or WebAdmin to admin-
ister UTM cluster applications.

  For detailed information on administering UTM cluster applications using 
WinAdmin or WebAdmin, refer to the respective online Help system in 
WinAdmin/WebAdmin and the “WinAdmin Description” or “WebAdmin 
Description” document.

● Using your own administration programs or administration commands

In addition to WinAdmin/WebAdmin, there is also the possibility of administering a UTM 
cluster application using a programmed administration facility or using administration 
commands. Depending on the type of change involved, the administration job applies 
either globally to all node applications of the UTM cluster application or only to an 
individual node application.

  For detailed information on the programming interface and the administration 
commands, refer to the openUTM manual “Administering Applications”.

Modifying the cluster configuration

You can use the administration facilities to modify both the global settings for the UTM 
cluster application and the configuration of individual node applications:

● The data structure kc_cluster_par_str is defined for the parameter type 
KC_CLUSTER_PAR. openUTM returns the current settings for the global properties of 
a UTM cluster application and current data in kc_cluster_par_str. 

● The data structure kc_cluster_node_str is defined for the parameter type 
KC_CLUSTER_NODE. openUTM returns the properties of the individual node applica-
tions of a UTM cluster application in kc_cluster_node_str. 



Administration UTM cluster application

144   Using openUTM under Unix Systems and Windows Systems

Note the following when administering UTM cluster applications:

● Objects that can be created dynamically must always be deleted using the adminis-
tration facilities. These objects cannot be deleted by a new generation alone.

● Objects that can be created dynamically cannot be deleted immediately in a UTM 
cluster application. Deletion can only be delayed. 

● You must generate a new KDCFILE in order to release the storage space occupied by 
objects for which deletion was delayed in the KDCFILE.

● You can define reserve nodes with provisional properties in a UTM cluster application. 
You can then modify these simply, for instance using WinAdmin or WebAdmin, to 
produce "real" nodes. 

● You can display distributed transactions that have the PTC state and then roll back the 
local element of this type of transaction. This action also resets the transaction in any 
locally connected database.

7.7.1 Actions global to the cluster and actions local to a node

You must distinguish between actions which apply globally and actions which apply locally 
when administering a UTM cluster application.

Actions that are global to the cluster

Actions that are global to the cluster apply to every node application. This is irrespective of 
whether the node application is currently active or not. All node applications subsequently 
perform these changes on the basis of the administration journal (see the section “Admin-
istration journal” on page 145). 

Global administrative changes can be, for example:

● changing the password for a user ID

● replacing the application program or parts of the application program during live 
operation

● generating objects using KC_CREATE_OBJECT

● deleting objects from the configuration using KC_DELETE_OBJECT



UTM cluster application Administration 

Using openUTM under Unix Systems and Windows Systems  145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

Actions local to the node

Actions local to the node only applied to the node application in which these actions are 
performed. 

Administrative changes local to the node can be, for example:

● terminating an individual node application

● establishment of a connection using the administration facilities 

  You will find information on which actions apply globally to the cluster or locally to 
the node in the description of the operation codes or the data structures in the 
openUTM manual “Administering Applications”.

7.7.2 Administration journal

The administration journal contains a log of past global administration actions, i.e. the 
history of the administration actions. openUTM sets up the administration journal under the 
filebase name of the associated UTM cluster application the first time the first node appli-
cation is started (see also the section “UTM cluster files” on page 124). 

Like all files that are global to the cluster, the administration journal is located on a storage 
medium which can be accessed by all node applications (see the section “Runtime 
environment” on page 124). The UTM system code handles concurrent accesses via NFS 
locks.

All node applications reconstruct the administrative changes that have global application on 
the basis of the administration journal.

● Running applications apply these actions with minimal delay. They do this at the latest 
before they initiate global administration actions themselves. Depending on the load on 
a node, this will generally be done within a few seconds. 
They are notified of the need to do so by the node application that was administered 
directly.

A network problem can occasionally cause this notification to be lost. For this reason, 
and depending on the 
CHECK-ALIVE-TIMER-SEC operand of the CLUSTER statement, the administration 
journal is checked at regular intervals by the running node applications.

● Node applications that are subsequently started apply the changes during the startup 
phase.



Administration UTM cluster application

146   Using openUTM under Unix Systems and Windows Systems

7.7.3 Reducing the number of nodes

You can reduce the number of nodes in the cluster without having to modify the generation 
of the UTM cluster application.

To do this, proceed as follows

1. Shut down the node applications of the nodes that you want to remove from the cluster 
for an extended period.

2. At a node application that is still running, perform an online import for the terminated 
node applications, see also section “Online import of application data” on page 142.



UTM cluster application Shutdown

Using openUTM under Unix Systems and Windows Systems  147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.8 Shutting down a UTM cluster application

You have a number of different options for terminating the UTM cluster application: 

● Shut down one node application, for instance using the command KDCSHUT GRACE. 

● Shut down all running node applications of the UTM cluster application, for instance 
using KDCSHUT GRACE, SCOPE=GLOBAL.

  openUTM manual “Administering Applications”, 
Administration command KDCSHUT

● Using WinAdmin/WebAdmin: 
Terminate an individual node application or terminate a UTM cluster application with all 
running applications.

  „WinAdmin Online-Hilfe“ or WebAdmin Online Help, 
Terminating an application

● Using an administration program you have created yourself:
Terminate an individual node application or terminate a UTM cluster application with all 
running applications.

If only one node application is running, shutting down this last node application has the 
same effect as shutting down the complete UTM cluster application. 



Update generation in a cluster UTM cluster application

148   Using openUTM under Unix Systems and Windows Systems

7.9 Update generation in a cluster

When operating UTM cluster applications, it may be necessary to make changes to the 
configuration that cannot be done using administration jobs and which therefore require an 
update generation. A distinction must be made between the following circumstances:

● online update of the UTM cluster application that can be performed while the UTM 
cluster application is running, see “section “Online import of application data” on 
page 142”

● Offline update of the UTM cluster application during which the UTM cluster application 
must be shut down, see section “Adaptations to the generation that require an offline 
update” below.

Adaptations to the generation that require an offline update

In order to perform an offline update, it is necessary to shut down all the node applications 
and therefore also the UTM cluster application for at least a short period. For most changes, 
it is sufficient simply to recreate the KDCFILE (OPTION GEN=KDCFILE). However, in the 
case of certain adaptations it is also necessary to regenerate the UTM cluster files. 
(OPTION GEN=(CLUSTER, KDCFILE)).

The table below indicates what you have to specify in the OPTION statement for the 
individual changes. 

Type of change KDCDEF control state-
ments

OPTION GEN=

Switching between operation with and without users USER (CLUSTER,
KDCFILE)

Switching between operation with and without multiple 
sign-on being permitted

SIGNON 
MULTI-SIGNON

KDCFILE

Switching between applications with and without a 
formatting system

FORMSYS (CLUSTER,
KDCFILE)

Changing the password history SIGNON 
PW-HISTORY

KDCFILE

Changing the database systems DATABASE, RMXA (CLUSTER,
KDCFILE)

Changing the number of LSSBs, GSSBs or ULSs MAX LSSB, 
MAX GSSB, ULS

(CLUSTER,
KDCFILE)

Reduction in the maximum number of services that the 
user is permitted to stack

MAX NRCONV KDCFILE

Reduction in the maximum number of asynchronous 
services that can be opened simultaneously

MAX ASYNTASKS,
second parameter

KDCFILE



UTM cluster application Update generation in a cluster

Using openUTM under Unix Systems and Windows Systems  149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

Reduction in the size of the node page pool MAX PGPOOL,
first parameter value

KDCFILE

Reduction in the size of the process-specific buffer for 
caching restart data

MAX RECBUF,
second parameter value

KDCFILE

Changing the length of the communication area MAX KB (CLUSTER,
KDCFILE)

Reduction in the size of the standard primary working 
area

MAX SPAB KDCFILE

Changing the size of the message area MAX NB (CLUSTER,
KDCFILE)

Changing the maximum length of physical output 
messages

MAX TRMSGLTH (CLUSTER,
KDCFILE)

Reduction of the maximum length of the user data in 
LPUT records

MAX LPUTLTH KDCFILE

Switching between UTM-S and UTM-F MAX APPLIMODE (CLUSTER,
KDCFILE)

Increasing the number of the generated node applica-
tions

CLUSTER-NODE (CLUSTER,
KDCFILE)

Changing the names of the ULSs ULS (CLUSTER,
KDCFILE)

Reducing the size of the cluster pagepool CLUSTER PGPOOL,
first parameter value

(CLUSTER,
KDCFILE)

Changing the number of the cluster pagepool files CLUSTER 
PGPOOLFS

(CLUSTER,
KDCFILE)

All other changes in the CLUSTER statement except for 
the PGPOOL parameter

CLUSTER (CLUSTER,
KDCFILE)

Type of change KDCDEF control state-
ments

OPTION GEN=



Update generation in a cluster UTM cluster application

150   Using openUTM under Unix Systems and Windows Systems

7.9.1 Online update of the UTM cluster application

You can make the following changes without terminating the UTM cluster application:

● Update generation of the KDCFILE for which it is not necessary to completely terminate 
the UTM cluster application, see below. This is the case for all changes that are not 
listed in the table on page 148.

● Increase in the size of the cluster page pool, see page 152

● Change to the application program, see page 153

7.9.1.1 Update generation of the KDCFILE without terminating the UTM cluster application

An update generation of the KDCFILE for UTM cluster application will be necessary, for 
instance, if spare capacity for dynamic objects has been exhausted or if changes must be 
made to the configuration that are not possible using the dynamic administration facilities. 
Examples include entering additional transport system end points or partner applications for 
distributed processing or increasing the size of the cache, pagepool or cluster pagepool. 
Increasing the size of the cluster page pool is a special case and is described separately 
on page 152.

v   CAUTION!
If you only modify the KDCFILE without terminating the UTM cluster application 
then you must not change the order of the TAC statements. Otherwise services may 
be terminated abnormally on service restarts. As a result, you must append new 
TAC statements at the end and must not delete any TAC statements.
You should also not modify the RESTART parameter in the USER statements.

Proceed as follows to perform an update generation of the KDCFILE: 

1. Use the administration facilities to delete all objects that can be dynamically adminis-
tered and that are no longer to be included in the new configuration.

2. Create the generation statements for a new KDCDEF run as follows: 
First create the statements for new objects that have been newly introduced into the 
application dynamically. To do this, call the online inverse KDCDEF in an active node 
application. 
Note that you must not create, delete or modify any more objects after you have 
performed an online inverse KDCDEF, otherwise the update generation will not be 
correct.

3. Create generation statements for new objects manually or modify existing generation 
statements to suit your requirements.

4. Generate a new initial KDCFILE using the modified KDCDEF statements. 
To do this specify OPTION GEN=KDCFILE. You must not specify GEN=CLUSTER!. 



UTM cluster application Update generation in a cluster

Using openUTM under Unix Systems and Windows Systems  151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

Specify the filebase name of the current cluster user file under CLUSTER 
USERFILEBASE= when generating this new KDCFILE.

The cluster user file can already be open for a running UTM cluster application during 
the KDCDEF run. 

  openUTM manual “Generating Applications”, CLUSTER statement
The USER-FILEBASE= operand specifies the base name of the cluster user 
file.

5. Terminate one of the node applications normally (e.g. using KDCSHUT GRACE or 
WinAdmin/WebAdmin). 

6. Rename the KDCFILE of the terminated node application (in preparation for the 
KDCUPD run).

7. Copy the new initial KDCFILE (see step 4) into the node-specific filebase for the node 
application that is to be restarted.

8. Perform a KDCUPD run for this node application using the KDCFILE of this node as the 
new KDCFILE (node update). During this run, transfer all the user data from the last 
application run of this node application into the new KDCFILE of this node application. 
This allows, for instance, asynchronous messages of this node application to be trans-
ferred from the old KDCFILE to the new KDCFILE.

  openUTM manual “Generating Applications”, KDCUPD
Keyword: “node update”

9. Restart this node application using the new KDCFILE that has been prepared as 
described. 

When you restart the node application, the values of the start parameters that apply 
globally in the cluster are taken over from the running UTM cluster application. The 
sources for these are as follows: 

– the administration journal in which recent global administration actions are logged, 

– the file containing the online copy of the management data of the UTM cluster appli-
cation from which older changes are taken over. 

10. Carry out steps 5 through 9 for all other node applications without delay in order to 
update all node applications to the same generation status. 

i  ● Note that global administration of all applications of a cluster and an online 
inverse KDCDEF run are not possible until all active node applications have 
been updated to the same generation status. Local administration of individual 
node applications, however, can be carried out at any time.



Update generation in a cluster UTM cluster application

152   Using openUTM under Unix Systems and Windows Systems

● Only perform an offline inverse KDCDEF run in UTM cluster applications after 
all node applications have been terminated. This contrasts with an online 
inverse KDCDEF run. In addition, an offline inverse KDCDEF run must be 
performed using the KDCFILE of the node application that was terminated last. 

v  CAUTION!
After a node application has been restarted on the basis of a newly generated 
KDCFILE, it is not possible to start other node applications using a KDCFILE from 
an older generation run. 

7.9.1.2 Increasing the size of the cluster page pool

You can increase the size of the cluster page pool and/or modify the warning level for the 
cluster page pool while the UTM cluster application is running. To do this, you, in principle, 
perform an update generation of the KDCFILE as described on page 150. However, you 
should note the following:

● Enter the new values for the size and/or warning level in the PGPOOL operand of the 
CLUSTER statement. You may only increase the size of the cluster page pool. It is not 
possible to reduce the size online! 

● Perform the KDCDEF run. When you do this, enter OPTION GEN=KDCFILE. You must 
not specify GEN=CLUSTER!

● Make sure that sufficient disk storage space is available for the enlarged cluster page 
pool files since this is not checked at generation time.

The remaining steps are similar, i.e. you update all the active node applications to the 
current generation state one after the other (steps 5 to 9 on page 151). 

The change to the warning level or the increase in the size of the cluster page pool takes 
effect as soon as all the running node applications have been shut down and restarted with 
the new generation.

The size of the cluster page pool files is increased by the running UTM cluster application 
and the additional pages are taken into account when new pages are reserved for the 
relevant nodes.



UTM cluster application Update generation in a cluster

Using openUTM under Unix Systems and Windows Systems  153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.9.1.3 Change to the application program

You can add new program units to the UTM cluster application or modify existing program 
units without the need to terminate the entire UTM cluster application. In order to do this, 
you should always generate the application in such a way that the ROOT table module is 
dynamically loaded when the application is started. You should avoid statically linking 
program units.

1. To add new program units that are not yet assigned to any shared object, create a new 
ROOT table module in a KDCDEF run. 
This can be done while the application is running.

2. Then compile the ROOT table module and link the application program again as 
necessary. 
This can be done irrespective of whether node applications of the UTM cluster appli-
cation are active or not. 

3. Then close all the node applications in sequence and replace the application program.

4. Restart the node applications with the new application program. 

Please note:
If you also define a new shared object, you must also generate a new initial KDCFILE, copy 
this to the node applications and perform a KDCUPD run, see section “Update generation 
of the KDCFILE without terminating the UTM cluster application” on page 150

Until this action has been completed for all node applications, the node applications of the 
cluster use different versions of the application program. This may affect the behavior of the 
application. It is for instance possible that a particular program unit is called in one node 
application but not in another node application. 

i   If the modified application program uses new programs and/or new transaction 
codes, then you can add these using the dynamic administration capabilities, e.g. 
directly before or after the replacement of the application program.



Update generation in a cluster UTM cluster application

154   Using openUTM under Unix Systems and Windows Systems

7.9.2 Update generation of the KDCFILE with termination of the UTM cluster 
application

If you make any changes that are listed in the table on page 148 and which have the entry 
KDCFILE in the column OPTION GEN= then you must shut down the UTM cluster appli-
cation. To do this, you perform an update generation of the KDCFILE as described on 
page 150. However, you should note the following differences:

● Instead of step 5, shut down all the node applications, not just one of them.

● Perform steps 8 to 8 (page 151) for all the node applications but without starting them.

● Now start all the node applications in succession.

7.9.3 Update generation of the UTM cluster application

If you convert the UTM cluster application from V6.1 or V6.2 to V6.3 or make any changes 
that are listed in the table on page 148 and have the entry CLUSTER in the column 
OPTION GEN= then you must shut down the UTM cluster application. In this case, you 
must recreate the KDCFILE together with the cluster files using OPTION 
GEN=(CLUSTER,KDCFILE).

i   – In general, the following applies: When a node application is started, the 
KDCFILE must not be older than the UTM cluster files.

– If you perform a conversion from V6.1 or V6.2 to V6.3 then you must install 
openUTM V6.3 on all the nodes before calling KDCDEF.

Proceed as follows:

1. Use the administration facilities to delete all objects that can be dynamically adminis-
tered and that are no longer to be included in the new configuration.

2. Create the generation statements for a new KDCDEF run as follows: 
First create the statements for new objects that have been newly introduced into the 
application dynamically. To do this, call the online inverse KDCDEF in an active node 
application.
Note that you must not create, delete or modify any more objects after you have 
performed the online inverse KDCDEF, otherwise the update generation is not correct.

3. Terminate the UTM cluster application.

4. Create generation statements for new objects manually or modify existing generation 
statements to suit your requirements.

5. Generate a new initial KDCFILE and new cluster files using the modified KDCDEF 
statements. When you do this, specify GEN=(CLUSTER, KDCFILE) in the KDCDEF 
statement OPTION.



UTM cluster application Update generation in a cluster

Using openUTM under Unix Systems and Windows Systems  155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

This recreates all the UTM cluster files generated by KDCDEF .

  openUTM manual “Generating Applications”, CLUSTER statement

6. Make the old and new UTM cluster files as well as an old KDCFILE and the new initial 
KDCFILE available. You may need to rename the files first.

Use KDCUPD to perform a cluster update. This transfers user data from the UTM 
cluster application run to the new UTM cluster files. This data includes, for example, 
GSSB, ULS, the service data of users with RESTART=YES as well as the passwords 
of users.

  openUTM manual “Generating Applications”, section "Update generation 
for a UTM cluster application", Cluster update

7. Copy the new initial KDCFILE (see step 5) into the node-specific filebase for the node 
application that is to be restarted.

8. Perform a KDCUPD run for this node application (node update) using the KDCFILE of 
this node as the new KDCFILE (node update). During this run, transfer all the user data 
from the last application run of this node application into the new KDCFILE of this node 
application. This allows, for instance, asynchronous messages of this node application 
to be transferred from the old KDCFILE to the new KDCFILE.

  openUTM manual “Generating Applications”, section „Update generation of 
a UTM cluster application“, node update

9. Restart this node application using the new KDCFILE that has been prepared 
described.

10. Carry out steps 5 through 9 for all other node applications without delay in order to 
update all node applications to the same generation status.

Update generation in UTM-F cluster applications

In UTM cluster applications, the global UTM storage areas GSSB and ULS are also trans-
action-oriented in the case of UTM-F. The service data belonging to a user is saved when 
the user signs off.

This means that in the case of an update generation with a cluster update, it is possible to 
transfer the same data as in the case of a UTM-S cluster application.

i   In contrast, when a node update is performed, not all the data is transferred but 
instead only the program versions of the load modules.



Use of openUTM revision levels UTM cluster application

156   Using openUTM under Unix Systems and Windows Systems

7.10 Use of openUTM revision levels in the UTM cluster 
application

You can always deploy openUTM revision levels during live operation without the need to 
terminate the UTM cluster application. Some of the node applications can continue to run 
while the revision level is being installed for the remaining node applications. 

To do this, the node applications must be terminated one after another and then restarted 
using the new revision level. 

Procedure on Unix systems 

On Unix systems, UTM revision levels are always installed in a directory specific to the 
given revision level, i.e. the files belonging to two different revision levels are stored 
separately and are therefore unable to overwrite each other. 

For this reason you must always adjust the values of the $UTMPATH environment variables 
before you start an application with a new revision level. This also applies to other 
environment variables that are dependent on $UTMPATH, such as $PATH or 
$LD_LIBRARY_PATH.

Proceed as follows: 

1. Install the new revision level. 

2. Terminate the node application. 

3. Adjust the $UTMPATH environment variable to point to the new installation, i.e. adapt 
the start script as necessary. 

4. Create the utmwork application program again if this is necessary for using the revision 
level. 

5. Restart the node application. 

6. Repeat steps 1 through 5 for all other node applications of the UTM cluster application. 

7. Uninstall the old revision level if it is no longer required. 

Procedure on Windows systems 

On Windows systems, you can install a revision level under the same path as a previous 
revision level. In this event, the files of the existing version are overwritten. If this is done, 
installation is only possible if the UTM application has been terminated, because some of 
the files will otherwise be locked by the system and can therefore not be overwritten. 

i   Note also that this old installation cannot additionally continue to be used by other 
UTM applications, e.g. by additional test applications. 

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

W

W

W

W

W

W

W



UTM cluster application Use of openUTM revision levels

Using openUTM under Unix Systems and Windows Systems  157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

If you install UTM revision levels in a directory specific to the given revision level, the files 
belonging to two different revision levels are stored separately and are therefore unable to 
overwrite each other. 

In this event you must adjust the values of the %UTMPATH% environment variables before 
you start an application with a new revision level. This also applies to other environment 
variables that are dependent on %UTMPATH%, such as %PATH%.

Proceed as follows: 

1. Terminate the node application running the old revision level. 

2. Install the new revision level. 

3. Reboot the computer if necessary.
This step is only necessary if the installation path has been changed, because the 
installation routine adjusts the %UTMPATH% environment variable in the system 
environment. 

4. Create the utmwork.exe application program again if this is necessary for using the 
revision level. 

5. Restart the node application.

6. Repeat steps 1 through 5 for all other node applications of the UTM cluster application. 

7. Uninstall the old revision level if it is no longer required. 

Notes on running the application as a service: 

Proceed as follows if you have changed the installation path:

1. Uninstall the old version of the service before starting the system. 

2. Reboot the system.

3. Install the new version of the service in the system. 

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W



Conversion of a UTM cluster application UTM cluster application

158   Using openUTM under Unix Systems and Windows Systems

7.11 Conversion of a UTM cluster application

This section describes the following conversions of a UTM cluster application:

● Conversion from a standalone application V6.3 to a UTM cluster application V6.3

● Conversion of a UTM cluster application from V6.0 to V6.3, see page 161

● Conversion from a UTM cluster application V6.3 to a standalone UTM application V6.3, 
see page 162

i   The main steps involved in converting a UTM cluster application from V6.1 or V6.2 
to V6.3 are described in section “Update generation of the UTM cluster application” 
on page 154.

7.11.1 Conversion from a standalone UTM application to a UTM cluster 
application

Standalone UTM applications can only be converted directly to UTM cluster applications in 
the case of UTM applications of V6.3.

If you want to convert a standalone UTM application V5.3 , V6.0, V6.1 or V6.2 into a UTM 
cluster application then you must first convert it into a standalone application with version 
6.3.

A standalone UTM application is running on one node. It is to be converted to a UTM cluster 
application that is to run on several different nodes:

Proceed as follows:

1. First install openUTM V6.3 on all the nodes.

2. Extend the generation statements for a new KDCDEF run as follows:

Ê Define the cluster-specific name prefix as the storage location for the files that are 
global to the cluster (CLUSTER statement, CLUSTER-FILEBASE operand).

Ê Configure each node with one CLUSTER-NODE statement per node.

3. Run the KDCDEF utility with OPTION GEN=(CLUSTER,KDCFILE):

The new initial KDCFILE is generated and the UTM cluster files of the UTM cluster 
application are created.

4. Terminate the standalone UTM application on the computer.

5. Back up the KDCFILE of the standalone application for the subsequent KDCUPD run.



UTM cluster application Conversion from standalone to cluster

Using openUTM under Unix Systems and Windows Systems  159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

6. Make the new cluster files generated by KDCDEF, the new initial KDCFILE and the old 
KDCFILE available under the base names which you specify in CLUSTER-FILEBASE 
NEW=, KDCFILE OLD= and KDCFILE NEW= in the cluster update.

Use KDCUPD to perform a cluster update. When you do this, the data that applies 
globally at cluster level is transferred from the old KDCFILE of the standalone appli-
cation to the UTM cluster files.

  openUTM manual “Generating Applications”, section "Converting a stand-
alone application to a UTM cluster application, cluster update

7. Copy the initial KDCFILE for each node application into the corresponding node-
specific filebase.

8. Perform a KDCUPD run for the KDCFILE of a node application. To do this, make the 
node KDCFILE and the old KDCFILE available under the base names that you specify 
under KDCFILE OLD= and KDCFILE NEW= during the node update. When you do this, 
the data that applies locally at node level is transferred from the old KDCFILE of the 
standalone application to the node application’s new KDCFILE.

v  CAUTION!
You can only perform a KDCUPD run for one node application!!

  openUTM manual “Generating Applications”, KDCUPD, section 
"Converting a standalone application to a UTM cluster application, cluster 
update"

9. Make the UTM cluster files available at the storage location that you have specified in 
the start parameter CLUSTER-FILEBASE. Make the node KDCFILEs available at the 
storage location that you have specified in the KDCDEF statement CLUSTER-NODE. 
These storage locations must be present on a medium that can be accessed by all the 
nodes.

10. In all node applications, replace the start parameters 
.UTM START FILEBASE=<filebase> 
required for standalone applications by the statement 
.UTM START CLUSTER-FILEBASE=<cluster-filebase>. See also the section “Start 
parameters for openUTM” on page 80.

11. Start the first node application.

12. Start the other node applications. 



Conversion from standalone to cluster UTM cluster application

160   Using openUTM under Unix Systems and Windows Systems

Adapting the application code

It is not necessary to adapt the code of the application unless

● the global memory areas AREA and shared memories are used, because these lose 
their global nature in the UTM cluster application. 

● other application-specific resources are used whose functionality must be available 
across the entire cluster when migrating to a UTM cluster application.

Adapting UPIC clients

● You only need to adapt the UPICFILE for UPIC clients whose paths to the UTM appli-
cations have been configured statically in the UPICFILE.

● You must adapt the UPICFILE and the client program for UPIC clients that dynamically 
configure their paths to the UTM applications using SET calls.

  For detailed information on adapting UPIC clients, refer to the manual „openUTM-
Client for the UPIC Carrier System”. 

Adapting other UTM applications that communicate with the UTM cluster application 
using OSI TP or LU6.1

If UTM application 1 communicates with UTM application 2 via OSI TP or LU6.1, and you 
wish to convert UTM application 2 to a UTM cluster application, you should generate LPAP 
bundles in UTM application 1.

The master LPAP is addressed by application 1. The master LPAP sends messages to the 
slave LPAPs of the connected nodes on which application 2 is running in sequence. In this 
event, the LPAP bundle acts as a static load distributor.

LPAP 1
UTM application 2

LPAP 2
UTM application 2

Master LPAP

UTM application 1

Node 1 Node 2

Slave LPAP1 Slave LPAP2



UTM cluster application Converting a cluster application to V6.3

Using openUTM under Unix Systems and Windows Systems  161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

  For detailed information on generating LPAP bundles, refer to the openUTM manual 
“Generating Applications”. 

7.11.2 Converting a UTM cluster application from V6.0 to V6.3

When converting a UTM cluster application from V6.0 to V6.3, the only global cluster-level 
data that you can transfer are the passwords. GSSB, ULS and service data is not trans-
ferred even if the old UTM cluster application was generated with GLOBAL-UTM-
DATA=YES and/or USER-RESTART=YES.

Proceed as follows:

1. Install UTM V6.3 on the node computers.

2. Use KDCDEF to generate the initial KDCFILE for the V6.3 UTM cluster application, 
including the UTM cluster files. To do this, specify OPTION ... GEN=CLUSTER.

3. Terminate all node applications except for one. 

4. If you want passwords to be transferred, you must ensure that the KDCFILE of the last 
node application that is still running contains the current values for passwords. To do 
this, display the current information on all the user entries, for example using WinAdmin 
or WebAdmin.

5. Now terminate this node application as well.

6. Use the KDCFILE of this node application to perform a cluster update in order to 
transfer the passwords  to the UTM cluster files.

  openUTM manual “Generating Applications”, KDCUPD, section 
"Converting a UTM cluster application from V6.0 to V6.3", Cluster update

7. Copy the initial KDCFILE to all the node computers.

8. Use the KDCFILE of each individual node application to perform a node update in order 
to transfer the local, node-level data of the old KDCFILE to the node application’s new 
KDCFILE.

  openUTM manual “Generating Applications”, KDCUPD, section 
"Converting a UTM cluster application from V6.0 to V6.3", Node update

9. Start the node applications in succession.



Converting  from cluster to a standalone UTM cluster application

162   Using openUTM under Unix Systems and Windows Systems

7.11.3 Converting a UTM cluster application to a standalone UTM application

If you want to convert a UTM cluster application of V6.3 into a standalone V6.3 application 
then you can perform either a cluster update or a node update, but not both. This is due to 
the fact that KDCUPD is only able to transfer data to a newly generated KDCFILE.

1. Use KDCDEF to generate the KDCFILE for the standalone application. To do this, 
specify OPTION ... GEN=KDCFILE. You must not specify GEN=CLUSTER.

2. Perform either a cluster update or a node update:

Cluster update

a) Terminate the UTM cluster application.

b) Perform a cluster update. When you do this, KDCUPD transfers the global, cluster-
level data such as passwords, GSSB, ULS and service-specific data from the UTM 
cluster files to the KDCFILE of the new standalone application.

  openUTM manual “Generating Applications”, KDCUPD, section 
"Converting a UTM cluster application to a standalone application", Cluster 
update

Node update

a) Terminate all node applications except for one.

b) At the node application that is still running, perform an online import for the other 
node applications in order to transfer as much of the node-specific data as possible. 

c) Terminate this node application.

d) Perform a node update using the KDCFILE of this node application. When you do 
this, KDCUPD transfers the data from the KDCFILE of the node application to the 
KDCFILE of the standalone application.

  openUTM manual “Generating Applications”, KDCUPD, section 
"Converting a UTM cluster application to a standalone application", Node 
update

3. Start the standalone application with the new KDCFILE.



UTM cluster application Diagnostics

Using openUTM under Unix Systems and Windows Systems  163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
7

7.12 Debugging a UTM cluster application

Every node application writes a separate set of log files and diagnostic files. At least the log 
files of the node application in which a concrete error has occurred are therefore always 
required for debugging. 

Node monitoring messages

The monitoring node application issues message K169 when monitoring starts. 

  For detailed information on the messages, refer to the openUTM manual 
“Messages, Debugging and Diagnostics in Unix Systems and Windows Systems”.

Diagnostics documents

The following files are required for debugging cluster problems in addition to the usual 
documents:

● all UTM cluster files

● in the case of problems relating to the administration of the administration journal at 
global cluster level

● in the case of problems caused by the interaction between node applications, the log 
files of all node applications

● the start procedure and the procedures specified as EMERGENCY-CMD and 
FAILURE-CMD on generation 

● in the case of problems with users (e.g. problems during sign-on), the cluster user file



Diagnostics UTM cluster application

164   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

8 Working with a UTM application

This chapter describes the various dialog types with which a terminal user can sign on to 
and sign off from a UTM application. Communication always following the same principle 
for all clients:

1. Sign on to the UTM application
A user can only sign on via clients for which LTERM partners, LTERM pools, or 
OSI-LPAP partners have been generated in the UTM application; see the openUTM 
manual “Generating Applications”. It is not possible to sign on using remote login 
mechanisms, for example.

2. Call services of the UTM application:
openUTM offers a separate authorization concept for data access control, see 
page 192.

3. Enter UTM user commands if necessary.

4. Sign off from the UTM application.

The details of these steps vary depending on the type of client. The following sections 
describe the options available for the various clients.

UTM user IDs are used for access, provided the application is generated with user IDs. For 
information on signing on to a UTM application without user IDs, see page 187.



Standard sign-on process for terminals Working with a UTM application

166   Using openUTM under Unix Systems and Windows Systems

8.1 Sign-on process with user IDs

If an application is generated with user IDs, openUTM runs through a standard sign-on 
process for the user in accordance with the type of client. It is also possible to use your own 
sign-on process instead of the standard one, see section “Sign-on process with sign-on 
services” on page 182.

A user can sign-on using the following client access points:

– terminals (see below)

– UPIC clients and TS applications (page 176)

– OSI TP partner (page 178) 

– via the web using WebServices (WS4UTM) (page 179)

– via the web using WebTransactions (page 180)

In principle, it is also possible for several users to sign on under the same user ID, see 
section “Multiple sign-ons under one user ID” on page 181. 

8.1.1 Standard sign-on process for terminals

The user must carry out the following steps in order to work with a UTM application via a 
terminal:

1. Sign on to operation system

2. Start the dialog terminal processes (see section “Starting the dialog terminal processes 
by the user” on page 167). 

The user also signs on to the UTM application at the same time.

Only then can the user start services and carry out interactive processing, see section 
“Calling UTM services” on page 188. 

You can use the environment variable LANG to affect the behavior of the application:

LANG is used to specify the language in which the UTM messages are output. By default, 
the settings LANG=De... for the German UTM messages and LANG=En... for the English 
UTM messages are supported. The messages are structured from NLS message catalogs. 



Working with a UTM application Standard sign-on process for terminals

Using openUTM under Unix Systems and Windows Systems  167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

8.1.1.1 Starting the dialog terminal processes by the user

The user must start the dialog terminal process after he or she has signed on to the 
operating system. 

● The user enters the following command in Unix systems to start the process:

utmpath/ex/utmdtp [-S[username]] [-Aapplicationname] [-Pptermname] [-D]

It is also possible to have the dialog terminal process started by Unix systems (see 
page 169).

● Under Windows systems the user at the console must

– open a prompt window (Windows 7: Programs - Search programs and files" and enter 
cmd in the edit box. Proceed in an equivalent way for other Windows versions.)

– and enter the following command:

utmpath\ex\utmdtp [-S[username]] [-Aapplicationname] [-Pptermname]

The command prompt may only be closed after the user has signed off from the appli-
cation.

Legend

The specifications in square brackets represent switches that can be specified but do not 
have to be specified. The switches are explained below: 

-S[username]

Using this switch, you interactively control the sign-on check (system access control) 
carried out by openUTM after a connection has been successfully established to the 
UTM application. 

Dialog terminal process with -S switch:
If you start the dialog terminal process with the -S switch, you must transfer a UTM login 
username to openUTM for the sign-on check. With -Susername, you can specify the UTM 
login directly at the start of the dialog terminal process. If -S is specified without 
username, then openUTM interactively requests the UTM login after the connection has 
been established.

If you specify a UTM login for which a password is generated, openUTM queries the 
corresponding data interactively; see the description starting on page 170. 

Dialog terminal process without -S switch:
If you start the dialog terminal process without the -S switch, then the dialog terminal 
process passes the system login for the authorization check. The password is not trans-
ferred to openUTM. A password can be assigned to the login in the UTM application; 
the user is then requested to enter this password, as when the login is specified 
explicitly. 

X

X

X

X

W

W

W

W

W

W

W



Standard sign-on process for terminals Working with a UTM application

168   Using openUTM under Unix Systems and Windows Systems

If the check on the system login is negative, then an explicit authorization dialog is run 
as when the -S switch is used. 

A description of the authorization dialog can be found in section “Standard sign-on 
dialog” on page 170. 

i   The -S switch and username form a string and must not be separated by any 
character.

-Aapplicationname

You use this switch to specify the application with which you want to be connected. 
applicationname is the name of the application. If -Aapplicationname is not specified at 
the start of the dialog terminal process, the user is asked to enter the application name 
in line mode. 

i   The -A switch and applicationname form a string and must not be separated by any 
character.

-Pptermname 

ptermname is the name of the terminal through which the user establishes the 
connection to openUTM. This name must be generated in a PTERM statement or an 
LTERM pool must be defined for local terminals (TPOOL PTYPE=TTY,
LTERM=ltermprefix,NUMBER=number). If such an LTERM pool is generated, the -P 
switch can always be omitted. Otherwise the following is true:

● If there is no such LTERM pool generated in Unix systems, the -P switch can be 
omitted, except for in the case described below, because under Unix systems 
openUTM uses the last part of the output of the tty command as the ptermname. This 
refers to the term after the last slash, and corresponds to the output of basename 
`tty`. 

The -P switch is only necessary when the default ptermname assignment by 
openUTM is not unique, e.g. when there are several pseudo-terminals where the 
last term of the tty command (after the last slash) are the same.

Example 
The ttys /dev/pts/12 and /dev/inet/12 both exist at the same time. These ttys are 
generated with PTERM pts/12 and PTERM inet/12. In this case the user must start 
the dialog terminal process with the -P switch as follows, for example:
utmpath/ex/utmdtp ... -Ppts/12.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



Working with a UTM application Standard sign-on process for terminals

Using openUTM under Unix Systems and Windows Systems  169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

● If there was no LTERM pool generated in Windows systems, then the user must 
always specify -Pptermname because openUTM uses the value ttynnnnn, where 
nnnnn=PID, by default under Windows systems for the ptermname.

Example
If the local terminal is generated with PTERM console,PTYPE=TTY,... , the user 
must start the dialog terminal process with utmpath\ex\utmdtp ... -Pconsole.

i   The -P switch and ptermname form a string and must not be separated by a 
character of any kind.

-D 

With this switch, the user determines the response of the dialog terminal process to the 
[DEL] key in Unix systems.

If the -D switch is specified: The [DEL] key is ignored by the dialog terminal process.

If the -D switch is not specified: Pressing the [DEL] key disconnects the user from the 
application and results in the termination of the dialog terminal process. 

Example 
The user wants to sign on to the sample application under the UTM login user1; the 
[DEL] key is to be ignored. The user must therefore enter the following command: 

utmpath/ex/utmdtp -Suser1 -Asample -D 

8.1.1.2 Starting the dialog terminal process through Unix system

A Unix system can also start the dialog terminal process after the user has successfully 
signed on to Unix system. To this end, the command for starting the dialog terminal process 
can be entered as follows, for example, in the user’s .profile:

● .../utmdtp switch means that the shell remains active after utmdtp has terminated.

● exec .../utmdtp switch means that the shell is also terminated when utmdtp is termi-
nated.

A second option is for the system administrator to enter the dialog terminal process as a 
program name in the /etc/passwd file for the user, or (if switches are used) start a shell 
procedure containing the call of the dialog terminal process.

It only makes sense to start the dialog terminal process after the work process has reported 
the successful cold start or warm start of the application. Otherwise, the dialog terminal 
process terminates again with the UTM message: 

U111 UTM application applicationname not started. 

W
W

W

W

W

W

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X



Standard sign-on process for terminals Working with a UTM application

170   Using openUTM under Unix Systems and Windows Systems

If an error occurs while the dialog terminal process is executing, the process terminates with 
the following UTM message. The error numbers nnnn are explained in the openUTM 
manual “Messages, Debugging and Diagnostics in Unix Systems and Windows Systems”: 

U120 utmdtp process terminated with error number nnnn. 

8.1.1.3 Standard sign-on dialog 

The standard sign-on dialog is always performed when the following two conditions are 
met:

1. Automatic KDCSIGN (= automatic sign-on check) is not generated for the terminal (see 
page 175).

2. No sign-on service is generated for the application name under which the user signed 
on (see page 182). 

In the standard sign-on dialog, openUTM carries out a sign-on check (system access 
control). The sign-on dialog cannot be modified. 

Different levels of freedom can be defined for the sign-on check. An overview of all options 
can be found in the diagram in the section “Scenarios for the UTM sign-on check” on 
page 172. 

openUTM conducts the sign-on check interactively with the user if the -S switch was 
specified at the start of the corresponding dialog terminal process. In this case, openUTM 
requests the login and, if generated, requires that you specify a password.

If the -S switch is not specified, openUTM performs the sign-on check with the system login 
under which the user signed on to Unix systems. In this case, a password may also be 
generated for the login in the UTM application, and the user will be asked to enter this 
password during the sign-on check. 

i   Please note, however, that a user cannot work simultaneously with several dialog 
terminal processes under one login. 

The user ID is requested in line mode. Refer to the section below on entering a password.

X
X

X

X



Working with a UTM application Standard sign-on process for terminals

Using openUTM under Unix Systems and Windows Systems  171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

Entering the password

If a password is generated for the user id (KDCDEF statement 
USER...,PASS=password[, DARK]), the password is always entered in a field without 
blanking.

With every sign-on to the UTM application, the user has the option of entering a new 
password to replace the previous one, provided the minimum validity period allows the 
password to be changed at this time. The new password must then be entered once in a 
field without blanking. openUTM checks the old password entered and, if necessary, the 
new password. If the old password is incorrect or if the new password was not entered 
identically both times, a UTM message is output to inform the user and request that the data 
be reentered.

Validity period of the password 

When generating the user ID, you can define a maximum and minimum validity period for 
the password:

USER ...,PROTECT-PW=(...,maxtime,mintime). 

The minimum validity period means that the user cannot change his or her password until 
this period has expired. The maximum validity period means that the user must change the 
password within the specified period. 

If the password will become invalid within the 14 days following the sign-on procedure, 
openUTM warns the user in a K-message as long as a change is allowed at this time 
according to the minimum validity period for the password. A password can be changed as 
described under “Entering the password”.
To prevent users that have not worked with the application for a long time from forgetting to 
change their password and then consulting the system administrator, the UTM application 
can be configured such that these users may sign on one more time after their password 
has expired, see section “Grace sign-on” below.

When the password is changed, openUTM checks the following: 

● when a maximum validity period is specified, whether the new password differs from the 
old one.
If a password history is generated (SIGNON ...,PW-HISTORY=n), the new password is 
also checked against the last n passwords.

● whether the new password corresponds to the level of complexity generated for the 
user ID (USER ...,PROTECT-PW=).

● whether the length of the password is greater than or equal to the generated minimum 
length (USER ...,PROTECT-PW=).

X

X

X



Standard sign-on process for terminals Working with a UTM application

172   Using openUTM under Unix Systems and Windows Systems

If the password fulfils all of these conditions, openUTM changes the password. The validity 
period of the new password again corresponds to the generated value.
If the new password does not satisfy one of these conditions, the following UTM message 
is output to ask the user to reenter the KDCSIGN information using the old password:

K097 Input for new password cannot be used - please sign on

If the validity period of the password has already expired when the sign-on attempt is made 
and if no grace sign-on is generated, the sign-on attempt is rejected with the following UTM 
message:

K120 Password expired

It is then not possible to sign on again to the UTM application under this user ID until the 
UTM administrator has assigned a new password to the user ID. 

Grace sign-on

If the validity of the password has already expired when the user attempts to sign on and if 
the application is generated with grace sign-on (SIGNON ...,GRACE=YES), a K message 
informs the user that his or her password is no longer valid. The user is also asked to enter 
the old password and a new password.

Scenarios for the UTM sign-on check

The following diagram shows the possible variants of the UTM-sign-on check, depending 
on the KDCDEF generation. If incorrect data is entered, openUTM outputs a specific UTM 
message and asks the user to reenter the information. If several unsuccessful sign-on 
attempts are made in succession from a particular terminal or under a particular user ID, 
openUTM outputs UTM message K094 with the standard destination SYSLOG (system log 
file). The maximum permitted number of unsuccessful sign-on attempts before UTM 
message K094 is initiated can be defined in the generation with the KDCDEF statement 
SIGNON ... SILENT-ALARM=. An MSGTAC program unit can respond to this UTM 
message. 



Working with a UTM application Standard sign-on process for terminals

Using openUTM under Unix Systems and Windows Systems  173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

Figure 3: Sign-on check scenarios for applications with logins (part1)

Connection setup

K002 Connected to application
..... - please sign on

Enter user ID

User ID

1)

Without automatic KDCSIGN With automatic KDCSIGN

Establishing a connection



Standard sign-on process for terminals Working with a UTM application

174   Using openUTM under Unix Systems and Windows Systems

continued:

Figure 3: Sign-on check scenarios for applications with logins (part 2)

K092 Please enter password and optional

or

K121 Your password is valid for 
more day(s) only. ...

Enter old an new password,
if necessary

open service

Does not existExists

Screen from last synchronization 
point

new password...

nnn

 no password

or 2)

K155 The password is expired-
Please enter password and new password ...

2)
 If the password has expired and a change is allowed (only with grace sign-on).

1)
 If openUTM does not accept the entry, then the user is requested to re-enter authorization data

or 3)

K028 Please enter password 

3)
 If the password is not allowed to be changed.

1)

 with password

K008 Sign-on accepted - input please 

Start format

or 
K122 Your password is valid on nnn more day(s) only 

or 

4)
 For users with password, if the password is valid for less than 14 days and a change is allowed,
and if no start format is generated for the user

4)



Working with a UTM application Standard sign-on process for terminals

Using openUTM under Unix Systems and Windows Systems  175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

8.1.1.4 Automatic KDCSIGN

If the KDCDEF statement LTERM...,USER=username was specified for a terminal, after the 
connection setup openUTM behaves as though the user had already verified his or her 
authorization. If a password must be entered for this user ID, openUTM requests this input 
from the user.

After KDCOFF BUT has been entered, it is also possible to work at this terminal under a 
different ID (see section “Signing off from a UTM application” on page 194).



Sign-on process for UPIC clients / TS applications Working with a UTM application

176   Using openUTM under Unix Systems and Windows Systems

8.1.2 Sign-on process for UPIC clients and TS applications

UPIC clients and TS applications are clients that were generated with PTYPE=UPIC-L, 
UPIC-R, APPLI or SOCKET.

The connection is set up by the client in the case of UPIC clients, and by the client or UTM 
in the case of TS applications; connection setup by UTM is only possible if the TS appli-
cation is generated explicitly with a PTERM statement. 

If the client sets up the connection, the client must know the name of the UTM application 
as well as the host name and/or host address. This data is configured on the UPIC client. 

When the connection is set up successfully, a UPIC client or TS application signs on in two 
stages:

1. Implicit sign-on using a connection user ID

A connection user ID is strictly assigned to an LTERM partner of a TS application or a 
UPIC client and is created explicitly or implicitly at generation:

– Explicit creation by USER= specification in the LTERM statement.
Additional characteristics can be defined with the KDCDEF statement USER for 
connection user IDs defined in this way.

– Implicit creation by openUTM if no USER was specified in the LTERM statement or 
if an LTERM pool is used (TPOOL statement). The LTERM name is then used as 
the connection user ID; in the case of an LTERM pool, the LTERM name is made 
up of the generated prefix and a serial number, e.g. UPIC0025. For LTERM pools, 
special key codes can be assigned to the connection user ID with TPOOL ...USER-
KSET=. The access options of the connection user ID can thus be restricted.

If no sign-on attempt is made under a real user ID, the preliminary sign-on of the 
connection user ID becomes permanent. This is recorded with a message. In the case 
of UPIC clients, this message is also output if the client subsequently signs on under a 
real user ID.



Working with a UTM application Sign-on process for UPIC clients / TS applications

Using openUTM under Unix Systems and Windows Systems  177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

2. Explicit sign-on using a real user ID (optional)

UPIC clients and TS applications behave differently in this case:

– In the case of UPIC clients, the user ID and sign-on data must be set in the 
respective UPIC interface calls. UPIC then transfers these values to openUTM, 
which then performs the sign-on for the transferred user ID. This replaces the 
connection user ID for the duration of the conversation. At the end of the conver-
sation, the user is signed off again.

If the UPIC client does not transfer any sign-on data in the UPIC interface calls, 
signing on using a real user ID is only possible with a corresponding sign-on 
service; see page 182.

– A user can only sign-on under a real user ID via a transport system connection if an 
appropriate sign-on service is generated for the application; see page 182. It is not 
possible to sign on with a real user ID using the standard sign-on dialog.

If a TS application signed on using a real user ID, this user ID replaces the 
connection user ID for the full duration of the connection.

In the case of both UPIC clients and TS applications, the connection user ID remains 
signed on for at least as long as the real user ID. If the connection is lost, a renewed 
connection setup attempt may be rejected if a program is still running under the real 
user ID and the connection user ID is thus also considered to be signed on. In this case, 
the user must wait until the program terminates before signing on again.



Sign-on process for OSI TP partners Working with a UTM application

178   Using openUTM under Unix Systems and Windows Systems

8.1.3 Sign-on process for OSI TP partners

In order for an OSI TP partner to sign on to the UTM application, the partner must know the 
the address of the OSI TP access point of the UTM application. This data is configured in 
the OSI TP partner.

In the case of OSI TP partner, the connection setup initiative can come from either the 
partner or openUTM. This means that several parallel connections, known as associations, 
can be established via one logical connection. An association name is assigned to each 
association.

Following a successful connection setup, the client first signs on under its association 
name. This name is made up of the name specified in OSI-LPAP ...,ASSOCIATION-
NAMES= and a serial number, e.g. ASSOC03. 

Once the appropriate APPLICATION-CONTEXT for OSI TP communication between the 
two partners has been generated (in the OSI-LPAP statement in openUTM), the client can 
pass a genuine user ID and authorization data in the relevant log fields. openUTM then 
signs on with the user ID that has been passed. This sign-on then applies for the duration 
of the OSI TP dialog. The user is then signed off again at the end of the OSI TP dialog.

If no genuine user ID is passed, the client remains signed on under its association name.



Working with a UTM application Sign-on process via WS4UTM

Using openUTM under Unix Systems and Windows Systems  179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

8.1.4 Sign-on process in the World Wide Web via WebServices (WS4UTM)

A service of the UTM application can be called from WebService clients using WS4UTM. 
This allows the user to access certain services of a UTM application over the Web. 

The WebService client can be used to structure the sign-on process via WS4UTM:

1. The user specifies a WebService name and a method in his/her WebService client. The 
WebService is permanently linked to a UTM application by the configuration. A 
connection to the UTM application is established over UPIC. 
The WebService client may possibly execute an intermediate dialog, for instance to 
obtain proof of authorization.

2. As when using a terminal, the user may have to specify their UTM user ID and 
password. Whether or not the user has to go through an authorization dialog of this type 
and the appearance of any such dialog will depend on the way in which the WebService 
client is structured. It is, for instance possible to "hide" the UTM user ID/password in the 
WebService client or to specify it within the configuration of the WebService, with the 
result that the authorization dialog is handled internally. 

3. The job data (TAC and user data) is sent together with the authorization data to a 
WebService server via http/Soap and then to the UTM application over the UPIC 
connection. The UPIC connection is cleared again after the response has been 
returned to the WebService client. 

The Apache Axis server is used as the WebService server.

Communication takes place over Apache Tomcat and Axis using Soap messages and the 
http protocol. WS4UTM uses the UPIC interface in openUTM in order to connect to the UTM 
application.

  For further information, refer to the manual "Web-Services for openUTM".



Sign-on process via WebTransactions Working with a UTM application

180   Using openUTM under Unix Systems and Windows Systems

8.1.5 Sign-on process in the World Wide Web via WebTransactions

A UTM application can be connected to the World Wide Web via WebTransactions. This 
means that a user can access the services of a UTM application using a browser.

Signing on via WebTransactions can be configured using the WebTransactions application: 

1. The user enters the URL of the WebTransactions application in the browser.
The connection is then established to the UTM application. The WebTransactions appli-
cation might output an intermediate dialog box, e.g. to verify authorization for accessing 
the WebTransactions application. 

2. The user may have to specify the UTM user ID and password (if necessary), as with a 
terminal. However, the actual configuration of the WebTransactions application deter-
mines the format of the sign-on dialog and whether or not the user must complete such 
a dialog. For example, it is possible to “hide” the UTM user ID/password in the 
WebTransactions application so that the sign-on dialog runs internally and the user is 
signed on immediately the URL is entered.

The user can then call the services of the application, see page 188f. 

To connect to the UTM application, WebTransactions uses the UPIC interface of UTM. 
More details can be found in the WebTransactions manual “Web Access to openUTM Appli-
cations via UPIC”.



Working with a UTM application Multiple sign-ons

Using openUTM under Unix Systems and Windows Systems  181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

8.1.6 Multiple sign-ons under one user ID

If the user ID was generated at KDCDEF generation with RESTART=NO and the UTM 
application with the default value MULTI-SIGNON=YES, a user can be signed on to 
openUTM via different connections – though only once via a connection to the terminal. 
Multiple sign-ons are only possible for real user IDs, not for connection user IDs. More 
details on connection user IDs can be found on page 176.

In this case, the current service utilizes the resources of the connection user ID 
(UPIC, TS application) or of the association (OSI TP partner).

If a user signs on under a user ID generated with RESTART=YES via an OSI TP partner 
with the functional unit “commit” selected for its conversation, a further sign-on is possible 
under this user ID because openUTM does not restart the service in this case and the user 
ID thus behaves as though no restart was generated.
The same applies if the user signs on via an OSI TP partner and executes an asynchronous 
request.

Otherwise, a user can only be signed on once at any one time under a user ID generated 
with RESTART=YES, because the resources needed to restart the service are assigned to 
the user ID.

Preventing multiple sign-ons for user IDs with RESTART=NO

The MULTI-SIGNON parameter of the SIGNON statement can be used at generation to 
define that a user can only be signed on to openUTM once at any one time regardless of 
the restart attribute.
However, this definition does not apply to sign-ons via an OSI TP partner for the execution 
of asynchronous requests.



Sign-on services Working with a UTM application

182   Using openUTM under Unix Systems and Windows Systems

8.1.7 Sign-on process with sign-on services

Sign-on services, also known as SIGNON event services, are user-programmed services 
that can be used to define your own sign-on processes. Sign-on services can be used by 
terminals, UPIC clients, and TS applications, i.e. by clients generated with the PTERM or 
TPOOL statement.

Calling sign-on services

A sign-on service is linked to the application name. If a client signs on under a particular 
application name, the sign-on service associated with this application name is started and 
replaces the standard sign-on process described in the preceding sections. If several appli-
cation names are generated with BCAMAPPL statements, several different sign-on 
services can exist in an application. This means that client-specific sign-on services can be 
created, e.g. one for terminals, one for UPIC clients, and one for TS applications. More 
details can be found in section “Sign-on service for terminals” on page 183 through section 
“Sign-on service for UPIC clients” on page 184.

If no sign-on service is generated for an application name, the client runs through the 
standard sign-on process.

Generating sign-on services

Sign-on services are generated as follows; see also the openUTM manual “Generating 
Applications”:

– TAC KDCSGNTC is used to generate the sign-on service for the standard application 
name (defined in MAX APPLINAME). 

– BCAMAPPL appliname2...,SIGNON=signon-tac is used to generate the sign-on service 
for the application name appliname2. signon-tac must be defined in a TAC statement.

– If you also want UPIC clients to be able to use sign-on services, SIGNON ...,UPIC=YES 
must be generated as well.

A PROGRAM statement is also needed for each of these TACs. The name of the first 
program unit run through in the sign-on service is specified here.

Programming sign-on services

The special KDCS calls SIGN ST, SIGN ON and PEND PS are used for programming a 
sign-on service. A detailed description of how to program a sign-on service and what rules 
to observe in the process can be found in the corresponding section of the openUTM 
manual „Programming Applications with KDCS”.



Working with a UTM application Sign-on services

Using openUTM under Unix Systems and Windows Systems  183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

8.1.7.1 Sign-on service for terminals

A sign-on service for terminals is generally made up of two parts: 

openUTM may insert an intermediate dialog between the first and second parts of the sign-
on process if the period of validity of the password has already expired and the application 
has been generated with grace sign-on. A K message informs the user that the password 
is no longer valid. At the same time, the user is prompted to enter the previous password 
and a new password.

Special cases of the sign-on service for terminals

The sign-on service must be changed accordingly for the generation of LTERM partners 
with automatic KDCSIGN and for signing on via distributors.

LTERM partners with automatic KDCSIGN

The sign-on service receives the information that the user ID is already known to the system 
when calling SIGN ST. An intermediate dialog can now be run to change a password whose 
period of validity has expired.

8.1.7.2 Sign-on service for TS applications

When the sign-on service starts, the user is temporarily signed on under the connection 
user ID. 

The authorization data of a real user ID can be passed in the sign-on service via the 
SIGN ON call. If openUTM accepts the data, then the user is signed on under the specified 
user ID when the sign-on service ends properly. The sign-on attempt is rejected if the autho-
rization data of the TS application is incorrect or if there is an open service under the 
connection user ID.

If the sign-on is unsuccessful under a real user ID, a successful sign-on under a real user 
ID must follow within the same sign-on service, as otherwise the connection is cleared 
down when the sign-on service is terminated. This means that the connection user ID is not 
a fallback step for a failed sign-on attempt.

Sign-on service

Part 1 Part 2

The service asks the user for identification, reads 
the authorization data with MGET, and transfers 
this data to openUTM for checking. The service 
is not yet assigned to any user ID.

openUTM has accepted the authorization data 
and has assigned the sign-on service to the 
established user ID.



Sign-on services Working with a UTM application

184   Using openUTM under Unix Systems and Windows Systems

If there is no user ID passed in the sign-on service, then the user is signed on permanently 
under the connection user ID when the sign-on service terminates properly.

8.1.7.3 Sign-on service for UPIC clients

A distinction is drawn between two possible scenarios when signing on using a sign-on 
service:

– The UPIC client transfers authorization data to openUTM in the UPIC protocol. If 
openUTM accepts the data, the sign-on service is started under the transferred real 
user ID and the client is signed on under this user ID, provided the sign-on service is 
completed successfully.

– If the UPIC client does not transfer any authorization data in the UPIC protocol, the sign-
on service is started under the connection user ID. The authorization data of a real user 
ID can be passed in the sign-on service. If openUTM accepts the data, then the user is 
signed on under the specified user ID when the sign-on service ends properly. If no 
authorization data is passed, then the conversation runs under the connection user ID.

If the sign-on fails under a real user ID, a successful sign-on must follow under a real user 
ID, as otherwise the conversation is terminated when the sign-on service is terminated. This 
means that the connection user ID is not a fallback step for a failed sign-on attempt.

To ensure that client programs can be implemented regardless of whether or not the UTM 
application uses a sign-on service, messages from the client that are unread when a 
program unit of the sign-on service terminates, can be read in the subsequent program unit 
with PEND PA, PEND PR, PEND PS or PEND FC without preceding MPUT.

8.1.7.4 Possible applications for the sign-on service 

The sign-on service offers the user a range of practical options, which are outlined below:

● TS applications can sign on to a UTM application using a sign-on service with a real 
user ID. They are thus integrated in the system access and data access concept of 
openUTM.

● The name entered by the user can be converted into a user ID which is defined in the 
generation (USER username). 

● In the case of a global DB/DC authorization concept, a database call can be used in the 
second part of the sign-on service to retrieve the current authorization profile for this 
USER from the database and possibly store it in a user-specific long-term storage area 
(ULS). 

● In the second part, the sign-on service can ask the user to change his or her password, 
for example because the system is monitoring the time span in which the user can use 
the same password. 



Working with a UTM application Sign-on services

Using openUTM under Unix Systems and Windows Systems  185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

● Statistics can be produced on all attempted and successful sign-ons. 

● The sign-on service can also provide the user with useful information in the case of a 
subsequent service restart. Such information includes bulletins, maps of keyboard 
layout, or a display of the service restart. Of course, this requires an additional dialog 
step. 

● If openUTM starts the sign-on service following a SIGN OB call (= KDCOFF BUT by 
program), it may be advisable to read the last input from the terminal with MGET if new 
authorization data was already entered there. 

8.1.7.5 Properties of sign-on services

Outputting the last dialog message by the sign-on service

If there is not a service restart pending and the sign-on service is terminated with MPUT PM 
and PEND FI, the last dialog message is output. The user can then continue working with 
the same screen that was being used when the last session was terminated, regardless of 
whether this occurred inside or outside of a service.

Messages

If a UTM application uses a sign-on service, then the following messages are not produced 
(and therefore not output to the SYSLOG and MSGTAC):

K001, K002, K004 through K008.

Message K033 (Successful sign-on) is also output when a sign-on service is used.

Unsuccessful attempts in the sign-on service

In the sign-on service, unsuccessful attempts of the user to sign on can be intercepted: if 
openUTM does not accept the authorization data entered by the user, the sign-on service 
can ask the user to repeat the input. The maximum number of input attempts can be 
programmed. If this number is exceeded, the sign-on service should terminate. UTM shuts 
down the connection in the case of TS applications and terminals, whereas only the conver-
sation is ended in the case of UPIC.

In addition, openUTM counts all of the unsuccessful attempts of a client or unsuccessful 
attempts from a user ID made in uninterrupted succession, also over a series of sign-on 
services. The maximum permitted number of failed sign-on attempts must be defined in the 
generation. After this number of failed sign-on attempts has been made (see openUTM 
manual “Generating Applications”, KDCDEF statement SIGNON, operand SILENT-
ALARM), openUTM reports this event to SYSLOG (silent alarm, UTM message K094). 
Sign-on attempts by unauthorized persons can be uncovered and averted with an MSGTAC 
routine. 



Locked clients/LTERM partners Working with a UTM application

186   Using openUTM under Unix Systems and Windows Systems

Abnormalities in the sign-on service 

openUTM checks whether the rules for the sign-on service are observed. This also provides 
protection against any manipulation of the program units of the sign-on service. If such 
errors occur, openUTM terminates the sign-on service with PEND ER and shuts down the 
connection to the terminal. The connection is then shut down in the case of TS applications 
and terminals, whereas only the conversation is ended in the case of UPIC.

8.1.8 Behavior in the event of locked clients/LTERM partners

Behavior for locked clients

Clients can be locked by generation (PTERM...,STATUS=OFF) or administration 
command. Locking a client has the following effects: 

● Any connection setup request will be rejected. 

● Any existing connection will be retained; the lock only comes into effect if a new 
connection setup request is received from this client. 

Behavior for locked LTERM partners

LTERM partners can be locked by generation (LTERM...,STATUS=OFF) or administration 
command. 

In the case of UPIC clients and TS applications, locking the LTERM partner has the same 
effect as locking the client.

In the case of terminals, locking an LTERM partner has the following effects: 

● Any connection setup request will be carried out, but the following UTM message will 
be output after the connection has been established: 

K027 Terminal &LTERM is locked - contact administrator
or sign off.

● Any existing connection will be retained; the next input from the terminal will be 
acknowledged with UTM message K027. 



Working with a UTM application Sign-on process without user IDs

Using openUTM under Unix Systems and Windows Systems  187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

8.2 Sign-on process without user IDs

openUTM does not perform a sign-on check for UTM applications for which no user IDs are 
generated. The clients are signed on under their LTERM names or association names. 
UPIC clients and OpenCPIC clients are not permitted to transfer real user IDs in this case.

If the UTM application uses sign-on services (page 182f), an application-specific sign-on 
check can then be performed, e.g. using a database with authorization data.

If sign-on services are not used, the user can work with this application as soon as a 
connection has been successfully established to the UTM application. In the case of 
terminals and TS applications, the user receives a message from openUTM depending on 
whether an open service is still known for this LTERM partner.

● If no open service is known for the LTERM partner in the application, openUTM outputs 
the UTM message

K001 Connected to application example - input please

In the case of terminals, the start format for this LTERM partner is output, if generated. 
The user can then start services and enter UTM user commands.

● If an open service is known for this LTERM partner in the application, the output from 
the last synchronization point of the interrupted service is displayed on the screen and 
the user can continue the service. See also “Service restart” and “Screen restart” in the 
openUTM manual „Programming Applications with KDCS”. One of the prerequisites 
here is that RESTART=YES was generated for this LTERM partner. However, this also 
means that the user may also be able to continue the service of another user. 

Note that openUTM links a service to the LTERM partner in an application without user IDs. 
An interrupted service can therefore only be continued from the same client, unless the 
assignment of LTERM partner and physical client (defined in the PTERM statement) is 
changed accordingly with the administration command KDCSWTCH. 

If clients are locked, the behavior is the same as for user IDs; see page 186.

v   CAUTION!
In a UTM application without user IDs, all users have administration authorization.



Calling UTM services Working with a UTM application

188   Using openUTM under Unix Systems and Windows Systems

8.3 Calling UTM services

If the UTM sign-on check runs successfully, the user is authorized to work with the UTM 
application, i.e. he or she can start new services (see below) or continue open services.

Sections section “Starting services from the terminal” on page 188 and section “Starting 
services from TS applications” on page 190 illustrate how new services are started for the 
individual client types. For a description of what happens when an open service is still 
known for this user ID in the application, see section “Service restarts” on page 191.

8.3.1 Starting services from the terminal

Following a successful sign-on, the user can start a service by entering a transaction code 
(TAC) or pressing an appropriately generated function key.

Starting a service by entering a transaction code

If no sign-on service is performed, openUTM outputs the following message in line mode:

K008 Sign-on accepted - input please

The user can start a service by entering a TAC and possibly a message. The first eight 
characters input are interpreted by openUTM as the TAC. If the TAC is shorter than 8 
characters, it must be separated from the message by a blank.

If a sign-on service is performed, the sign-on service determines the next step. The user 
then receives output, or a service is started immediately.



Working with a UTM application Calling UTM services

Using openUTM under Unix Systems and Windows Systems  189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

Key assignment on terminals on Unix systems

The following key assignment applies:

Key assignment in Windows systems

The following key assignment applies when working with the application in Windows 
systems at the console using the command prompt:

Entering invalid transaction codes

If the user enters an incorrect TAC, the following message is output:

K009  Transaction code <tac> is invalid - input please

If a BADTACS dialog service is generated in the application, then the BADTACS service is 
started instead. After the BADTACS dialog service has ended, the user remains signed on 
and can start a service as described above.

Key Effect

Correction As in the shell

return The data is sent to the application.

END
DEL

The dialog is terminated and the user is signed off from the application. 
The DEL key does not work if the user signed on with the -D switch. 

other system keys Must never be used as both the escape sequences of the key and the data 
are sent to the application.

Key Effect

Correction As in the command prompt.

return The data is sent to the application.

END, CTRL+C The dialog is terminated and the user is signed off from the application.

DEL The key is ignored.

Cursor keys As in the command prompt, i.e. history of the last entries.

other system keys Must never be used as both the escape sequences of the key and the data 
are sent to the application.

X

X

XX

XX

XX

X
X
X
X

XX
X

W

W

W

WW

WW

WW

WW

WW

WW

WX
X



Calling UTM services Working with a UTM application

190   Using openUTM under Unix Systems and Windows Systems

8.3.2 Starting services from the UPIC client and OSI TP partner

After the connection has been set up, the OSI TP partner or UPIC clients can start conver-
sations. To this end, the TAC is set by the client, e.g. using the Set_TP_Name function on the 
CPI-C interface or a corresponding entry in the side information file. This TAC is transferred 
to openUTM, possibly in conjunction with authorization data. When the sign-on check has 
been performed successfully, the following apply:

● In the case of OSI TP partner and UPIC clients with no sign-on service, the service 
associated with the TAC is started immediately.

● In the case of UPIC clients with a sign-on service, the service associated with the TAC 
is not started until the sign-on service has been concluded.

The user is signed off again at the end of the conversation if he or she signed on for this 
conversation under a real user ID.

8.3.3 Starting services from TS applications

TS applications behave similarly to terminals:

● If there is no sign-on service, the TS application receives message K001 if the message 
destination PARTNER was assigned to this message; see the description of the 
KDCMMOD tool in the openUTM manual “Messages, Debugging and Diagnostics in 
Unix Systems and Windows Systems”. 

The TS applications can then start a service by transferring a TAC, and possibly a 
message, to the UTM application. In this case, the first 8 characters of the message are 
interpreted as the TAC. If the TAC is shorter than 8 characters, it must be separated 
from the message by blanks.

● If a sign-on service is performed, this service determines the next step. The sign-on 
service can either start a service directly to send a message to the TS application. In 
the latter case, the next message must contain a TAC in the first 8 characters, i.e. the 
same applies as when no sign-on service is used (see above).

Once the service has terminated, the next service can be started.



Working with a UTM application Calling UTM services

Using openUTM under Unix Systems and Windows Systems  191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

8.3.4 Service restarts

If a client signs on under a user ID that was generated with RESTART=YES, and if an open 
service is still known for this user ID in the application, a service restart is generally 
performed. If a message was sent to the client at the last synchronization point then 
openUTM sends this message to the client again and the user can then continue the 
service. Otherwise the open service is continued immediately.

Depending on the type of client and on the sign-on process involved, the following apply to 
the service restart:

● Standard sign-on process for terminals and TS applications:
openUTM performs the service restart automatically.

● Standard sign-on process for UPIC clients and OSI TP partner:
The client must start a specific conversation, which requests the restart using the UTM 
user command KDCDISP (see the manual „openUTM-Client for the UPIC Carrier 
System”, for example). The service cannot be restarted from OSI TP partner if the 
“commit” functional unit was selected.

● Signing on using a sign-on service:
The sign-on service must initiate the restart or terminate the open service abnormally.

i   In an application with user IDs, a service is linked to the user ID. This means that 
the user can continue an interrupted service even on a different client, provided the 
LTERM partner of the client has the correct authorization and the client type 
remains the same.



Sign-on concept of openUTM Working with a UTM application

192   Using openUTM under Unix Systems and Windows Systems

8.4 Sign-on concept of openUTM

In addition to system access control based on user IDs, openUTM offers a sophisticated 
system access and data access concept. This makes it possible to control which users can 
access which services of the UTM application via which LTERM partners.

The user-oriented variant (lock/key code concept) and role-oriented variant (access list 
concept) are available. These variants are generated using lock codes, access lists, 
keysets, and key codes:

● A service is protected either with lock codes (lock/key code concept) or with an access 
list (access list concept) (TAC statement LOCK= or ACCESS-LIST=).

● A user ID receives a keyset with one or more key codes (USER statement KSET=). The 
key codes define the authorizations.

● An LTERM partner receives a keyset with one or more key codes, as well as lock codes 
if the lock/key code concept is used (LTERM or TPOOL statement, KSET= and LOCK= 
operands).

● Keysets are defined separately in KSET statements.

The preconditions under which users can sign on and when they can start or continue a 
service (following a service restart) are outlined in the following table for both concept 
variants.

Action Preconditions

Lock/key code concept Access list concept

Sign on via specific 
LTERM partner

A key code of the user ID matches 
the lockcode of the LTERM partner.

Sign-on is always possible.

Start a service The user ID and LTERM partner 
have a key code that matches the 
lockcode of the TAC.

The user ID and LTERM partner 
each have a key code which is 
contained in the access list of the 
TAC. The key codes of the user ID 
and LTERM need not be identical.

Continue service
(following service 
restart)

A key code of the LTERM partner 
via which the user continues the 
service must match the lockcode of 
the follow-up TAC.

A key code of the LTERM partner 
via which the user continues the 
service must be contained in the 
access list of the follow-up TAC.



Working with a UTM application Sign-on concept of openUTM

Using openUTM under Unix Systems and Windows Systems  193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

Messages in the event of incorrect authorization

If authorization is invalid, the following messages may be output to the terminal user (a 
corresponding return code is supplied with the sign-on service):

K005 User identification user is locked - please sign on

If the key code of the user does not match the key code of the LTERM partner (sign-on 
service: return code U02).

K009 Transaction code <tac> is invalid - input please

If the user or LTERM is not authorized to start the service. If a BADTAC service is 
generated, the BADTAC service is started instead.

K123 LTERM does not have the rights to continue the service - please sign on 

If the LTERM partner via which the user signed on at the service restart is not authorized to 
start the follow-up TAC (sign-on service: return code U16). This message may be output in 
particular if a user continues the service from a different terminal and hence a different 
LTERM.

  More information can be found in the openUTM manual “Concepts und Functions” 
and the openUTM manual “Generating Applications”. 



Signing off from a UTM application Working with a UTM application

194   Using openUTM under Unix Systems and Windows Systems

8.5 Signing off from a UTM application

The following sections describe the various ways in which a client can sign off from the UTM 
application or is signed off by UTM. In this case, terminals differ from all other clients 
because users can only sign off from the application explicitly from terminals.

Signing off in the event of a timeout

Maximum wait times can be defined at generation using:

– the TERMWAIT= (PEND KP timer) and PGWTTIME= (PGWT timer) operands in the 
KDCDEF control statement MAX 

– the IDLETIME= (transaction end timer) operand of the PTERM statement or OSI-LPAP 
statement (for OSI TP partner)

If a wait time set with these timers expires, the following message is output to terminals: 

K021 No input within the specified period

openUTM then signs off the user ID and shuts down the connection to the client. The client 
can subsequently sign on to the application again and continue the service, see section 
“Service restarts” on page 191.

Signing off with the KDCOFF command

The terminal user can sign off from the UTM application by entering the UTM command 
KDCOFF or KDCOFF BUT. See also the UTM user command KDCOFF on page 199. 

KDCOFF from a program 

openUTM offers the function calls SIGN OF and SIGN OB, which can be used to trigger the 
effect of the KDCOFF or KDCOFF BUT user command in a dialog program unit. SIGN 
OF/OB is possible for terminals, UPIC clients, and TS applications. These calls are not 
permitted in program units running for an OSI TP partner.

SIGN OF and SIGN OB work as follows: 

SIGN call Command Effect

SIGN OF  KDCOFF openUTM shuts down the connection to the client

SIGN OB  KDCOFF BUT The connection remains open for terminals; the user is signed 
off.
In the case of UPIC clients and TS applications, the 
connection is shut down (as with SIGN OF).



Working with a UTM application Signing off from a UTM application

Using openUTM under Unix Systems and Windows Systems  195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

The call has different effects for terminals and UPIC clients/ TS applications:

● In the case of terminals, openUTM first outputs the MPUT message and message K095 
to the terminals. Only with the next (arbitrary) input from the terminal is the user signed 
off and the connection shut down (with SIGN OF).

● In the case of UPIC clients and TS applications, the MPUT message is sent and the 
connection shutdown is then initiated immediately.

Some of the possible applications of the SIGN OF/OB function call are outlined below:

● Applications with particular security requirements. After signing off, a user can only 
process a single service. 

● The control part of the screen also offers “Sign Off” or “Sign On” as possible follow-up 
actions. Depending on the input, the follow-up program unit then creates a SIGN OF or 
SIGN OB call. Following the dialog output of this program unit and the subsequent 
input, either the connection to the terminal is shut down or the sign-on service is started. 



UTM user commands for terminals Working with a UTM application

196   Using openUTM under Unix Systems and Windows Systems

8.6 UTM user commands for terminals

This section describes all of the UTM user commands available to the terminal user:

● KDCOUT, for requesting asynchronous messages

● KDCDISP, for requesting the last dialog message again

● KDCLAST, for repeating the last output

● KDCOFF, for signing off



Working with a UTM application UTM user commands for terminals

Using openUTM under Unix Systems and Windows Systems  197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

KDCOUT - output asynchronous messages

With the KDCOUT command, the user can request the output of asynchronous messages. 

openUTM announces asynchronous messages with the following message: 

K012 nnn asynchronous message(s) present

The UTM message appears in the system line together with the next dialog output at this 
terminal. The number of asynchronous messages is specified with nnn. The user can 
retrieve these messages using the KDCOUT command. If, on the other hand, there are no 
messages for the terminal, openUTM outputs the UTM message: 

K020 No message(s) present

When an asynchronous message is retrieved with KDCOUT, it is deleted by the next input, 
except when KDCLAST is entered (see page 198). 

The result of the KDCDEF statement LTERM ..., RESTART= NO is that any pending 
asynchronous messages are deleted when the connection is set up or shut down to this 
LTERM partner. 

The function variants of openUTM have the following effects on the handling of 
asynchronous messages: 

● With UTM-S applications, asynchronous messages are logged even if the application 
run is interrupted and are retained until retrieved with KDCOUT. 

● With UTM-F applications, asynchronous messages are only stored during the appli-
cation run. They are lost when the application run terminates. 



UTM user commands for terminals Working with a UTM application

198   Using openUTM under Unix Systems and Windows Systems

KDCDISP - output the last dialog message

While a UTM application is running, the user can output the last dialog message once again 
with the KDCDISP command. 

When the application has been terminated and restarted in UTM-S, the KDCDISP 
command can be issued by the user after signing on to redisplay the dialog output message 
from the last synchronization point. 

If the user enters the KDCDISP command after the sign-on service has concluded or after 
returning from an inserted service, openUTM redisplays the last screen of the last session 
or the last screen of the interrupted service. 

The KDCDISP command is useful in the following situations: 

● As a result of operating errors at the terminal, the screen content after a dialog output 
is partially or fully destroyed. 

● The user has received asynchronous messages on the screen while processing a 
service (either requested with KDCOUT or sent automatically by openUTM) and then 
wants to continue the open service. In this case, the KDCDISP command is issued to 
redisplay the last dialog output. 

● When the UTM application has been terminated and restarted, the user can (for orien-
tation purposes) issue the KDCDISP command to repeat the last dialog output of the 
service concluded before the application terminated. However, this only applies with a 
UTM-S application and if the service restart facility was not explicitly deactivated by the 
KDCDEF statement USER ...,RESTART=NO (or LTERM ...,RESTART=NO, if the appli-
cation was generated without user IDs). 

KDCLAST - repeat the last output

The KDCLAST command enables you to repeat the last output message at the terminal, 
regardless of whether this was a dialog message or an asynchronous message.

If the last message output was an asynchronous message, this output is repeated with 
KDCLAST. However, the asynchronous message is thereby not yet released. 

If the KDCLAST command is entered after the sign-on service has concluded, openUTM 
redisplays the last screen of the sign-on service. If the command is entered after returning 
from an inserted service, the last screen of the inserted service is redisplayed. 



Working with a UTM application UTM user commands for terminals

Using openUTM under Unix Systems and Windows Systems  199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
8

KDCOFF - sign off from a UTM application

You can enter the UTM command KDCOFF to sign off from the UTM application. This shuts 
down the connection between the dialog terminal process and the UTM application and 
terminates the dialog terminal process.
If the dialog terminal process was started automatically by the Unix system following a 
successful sign-on (see page 169), the dialog with the Unix system is also terminated.

If you sign off at the end of a transaction while a service is being processed, the processing 
is interrupted. It can be continued when you later sign on to the UTM application again. 

KDCOFF BUT

By entering KDCOFF BUT, you can sign off in such a way that the connection between the 
dialog terminal process and the UTM application is retained. It is needed for a subsequent 
sign-on, or the sign-on service is started.

Messages

If KDCOFF [BUT] is entered, openUTM responds by outputting one of the following UTM 
messages: 

K019 Sign-off for application example accepted 

The user entered KDCOFF or, in an application without user IDs, entered KDCOFF 
BUT. The terminal is no longer connected to the UTM application. 

K018 Sign-off for application example accepted - please sign on

The user entered KDCOFF BUT in an application with user IDs and without a sign-on 
service. openUTM asks the user to sign on again with a user id. This also applies if the 
user signed on without the -S switch.

K003 Command KDCOFF is not permitted at this time.

The command is entered after a PEND KP call or blocking call (e.g. PGWT) of the 
program unit.

X

X



UTM user commands for terminals Working with a UTM application

200   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

9 Replacing programs during operation

openUTM offers two different methods for replacing programs during operation.

● Replacing the entire application program using the KDCPROG tool and the adminis-
tration command KDCAPPL or an administration program that KDCADMI calls with the 
KC_CHANGE_APPLICATION operation code. 

● Replacing shared objects, i.e. parts of the application program, using the administration 
command KDCPROG or an administration program that KDCADMI calls with the 
KC_MODIFY_OBJECT operation code and KC_LOAD_MODULE object type.

The two procedures can be mixed, i.e. an application containing shared objects can also be 
replaced as a whole. Both methods are described below.

9.1 Replacing an application

openUTM offers you the option of replacing the application program while the application is 
running. This means that you can modify program units of your application program, create 
a new version of the application program, and start up this version of the application 
program without having to terminate the application run, for example. 

The applications to be exchanged can consist as well as only of program units that are stati-
cally, as of program units that are linked as shared objects. 

Please note the following when changing the application program: 

● In applications without shared objects the changes may not have any effect on the 
KDCDEF generation or the KDCFILE. This means that you cannot use the “exchange 
applications” function if you want to add new program units to the application program. 
If new program units are added, then they are not contained in the tables of the 
KDCFILE. 

● In applications with shared objects you can add new program units to the application 
program. These program units must be linked in shared objects, however, that are 
contained in the configuration of the application. The program units and the associated 
transaction codes must be entered in the tables of the KDCFILE via the administration.



Replacing an application Replacing programs during operation

202   Using openUTM under Unix Systems and Windows Systems

If there are some program units missing after the exchange that were in the previous appli-
cation program, then jobs can be submitted to the application for TACs for which there is no 
program unit any more. These jobs are terminated by openUTM with PEND ER. The trans-
action codes can be deleted by the UTM administrator from the configuration. 

The different versions of your application program and the replacement process are 
managed by the KDCPROG tool (see section “The KDCPROG tool” on page 208). 
KDCPROG manages the versions of the application program in a file generation group 
(FGG=File Generation Group). 

If you replace a program unit which exists as a shared object, the old file is first replaced by 
a new one. As a result, the references from the static part of the application program to the 
shared object are then unresolved. 
Only when the UTM administrator initiates the program replacement for the application 
program using the administration command KDCAPPL PROG=NEW | OLD, are all 
unresolved references to the shared object resolved and the new shared object brought into 
effect in the application program. 

9.1.1 Requirements for replacing an application 

The following steps must be carried out in order to replace an application: 

1. Create the file generation group filebase/PROG

In order to replace a UTM application program during operation, you must administer 
the different versions of the application program (including the one currently loaded) 
using the KDCPROG tool. You must use KDCPROG to create the file generation 
directory PROG in the base directory filebase of the application (KDCPROG CREATE 
function). If you have not created a file generation directory, then KDCAPPL PROG= (or 
the corresponding call on the administration program interface) reloads the application 
program utmwork from the base directory. 

KDCPROG manages the different versions of your application program in the File 
Generation Group (called the FGG in the following). See also section “File generation 
group PROG” on page 204. Each utmwork program must thus be stored together with 
the associated symbol table nmutmwork as a generation in the FGG. 

The FGG need only be created once. It remains in existence. In it you can manage 
several versions of your application program with the aid of KDCPROG. 



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

You can create the FGG before or after you have created the first version of the appli-
cation program. The application program, i.e. utmwork and the associated symbol table 
nmutmwork, are created as described in chapter “Creating the application program” on 
page 29. 

v   CAUTION!
Only one FGG can exist for each application for replacing the application. Any 
existing FGG and the versions of the application program it contains are deleted if 
a new FGG is created with KDCPROG CREATE. 

2. Transferring the application program to the FGG 

You use KDCPROG TRANSFER to transfer your application program to the FGG 
PROG (see section “TRANSFER - transfer utmwork to the FGG” on page 210). In this 
case you must assign the version - i.e. the absolute generation number - 0001 to the 
application program. 

You must also use KDCPROG SWITCH to switch the FGG base to generation number 
0001.

You can then start the application, as described in chapter “Starting a UTM application” 
on page 73. openUTM loads utmwork from the FGG. 

3. Creating more versions of the application program and transferring them to the 
FGG 

Regardless of whether or not your application is started, you can create further versions 
of your application program. utmwork and the associated symbol table nmutmwork are 
transferred to the FGG using KDCPROG TRANSFER. A generation number must be 
assigned to each version of the application program. The generation numbers in the 
FGG must be assigned in ascending order. 

v   CAUTION!
If a generation of the application program already exists in the FGG with the gener-
ation number you specify when transferring a new generation, this old generation is 
overwritten without warning. 

If these conditions are fulfilled, you can initiate an application replacement at any time and 
as often as you like. You have the following possibilities to do so:

  The administration command KDCAPPL PROG=... and the KDCADMI operation 
code KC_CHANGE_APPLICATION on the administration program interface.
Both possibilities are described in the openUTM manual “Administering Applica-
tions”.

If references are made in the following to actions that can be carried out with 
KDCAPPL PROG= , then the same is also true for administration programs that 
issue KDCADMI calls with the operation code KC_CHANGE_APPLICATION. 



Replacing an application Replacing programs during operation

204   Using openUTM under Unix Systems and Windows Systems

At the start, openUTM loads the version of the application program whose generation 
number is the base number of the FGG. See also section “File generation group PROG” on 
page 204. If a program is replaced while the application is running, openUTM sets the base 
to the version currently loaded. This ensures that the next start is implemented with the 
version of the application program last loaded. 

Notes on replacing programs a UTM cluster application

In a UTM cluster application, each node application has its own file generation directory 
PROG that you must set up in step 1.

To avoid you having to perform steps 2 and 3 explicitly for each node application, it is 
recommended that you set up the PROG directories in such a way that they are linked (e.g. 
using ln -s <filebase1>/PROG <filebase2>/PROG). This ensures that all node applications 
always access the same versions of the application program.

9.1.2 File generation group PROG 

openUTM manages the different versions of your application, which you use for the 
replacement, in the file generation group (FGG) PROG. The FGG is created as follows (see 
also section “The KDCPROG tool” on page 208): 

Under Unix systems with the command:

utmpath/ex/kdcprog CREATE operand 

Under Windows systems in the DOS command prompt with the command:

utmpath\ex\kdcprog CREATE operand 

X

X

W

W



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

In the following table, the central FGG terms are compared with the UTM-specific definitions 
relating to version management and application program replacement.

FGG terms Version management for application replacement by openUTM

Generation of the 
FGG

A version of your application program comprises the utmwork program and 
the associated symbol table nmutmwork. Each utmwork, nmutmwork pair 
forms a generation of the FGG. 

Absolute 
generation number

Name of the gener-
ation

Ascending
generation number

When transferring a generation (i.e. a new version of the application 
program) to the FGG, you assign a serial number to the generation, the 
absolute generation number of the generation. UTM addresses the 
individual generations by means of their generation numbers. 

The name of a generation is
– in Unix systems: PROG/absolute_generation_number 
– in Windows systems: PROG\absolute_generation_number 

where 0001 ≤ absolute_generation_number ≤ 9999. 
The absolute generation number 0001 must be assigned to the first appli-
cation program you transfer to the FGG. The name of the generation is thus 
PROG/0001 or PROG\0001.

The generation numbers of the subsequent generations must be assigned 
in ascending order (e.g. 0002, 0003, 0004, etc.). 

Base of the FGG

Base number

One generation of the FGG is the base of the FGG. When the application 
starts, UTM always loads the base. 

The absolute generation number of the base is the base number of the FGG. 
After the FGG is created, 0001 is the base number and the first generation 
transferred to the FGG is the base of the FGG. 

While the application is running, UTM always switches the base to the 
generation currently loaded, i.e. when a program is replaced UTM switches 
the base to the generation loaded during replacement. 

Relative 
generation number

Relative FGG name

Relative to the base, each generation of an FGG is assigned a relative 
generation number and a relative FGG name. 

The relative FGG name of a generation is PROG(relative_generation_no.)
where: relative_generation_no. = absolute_generation_no. - base_number.
The relative generation number is always specified with a sign (+ / -). 



Replacing an application Replacing programs during operation

206   Using openUTM under Unix Systems and Windows Systems

Examples

1. When the application starts, the generation with the absolute generation number 0001 
is the base of the FGG. While the application is running, the application program is 
replaced with KDCAPPL PROG=NEW and generation with generation number 0002 is 
loaded. This generation is then automatically the base of the FGG. The next time the 
application starts, openUTM loads this generation (0002). Between two application 
runs, you can switch the base using the SWITCH function of the KDCPROG tool:

– The base has the relative generation number +0000. 

– The generation switched to when the application is replaced with KDCAPPL 
PROG=NEW,  has the relative generation number +0001. 

– The generation switched to with KDCAPPL PROG=OLD has the relative generation 
number -0001. 

2. The base number of the FGG is 6. The generation with the absolute generation number 
0001 then has the relative FGG name PROG(-5) and the generation with the absolute 
generation number 0008has the relative FGG name PROG(+2). 

3. The maximum number of generations in the FGG is 3. The FGG contains the genera-
tions 0001, 0002, 0003 in the PROG directory:

– 0001 is thus the first and 0003 the last generation.

– When the generation 0004 is transferred to the FGG, openUTM deletes the first 
generation 0001. The FGG then contains the three generations 0002, 0003, 0004. 

– The first generation is now the generation with the absolute generation number 
0002. This is deleted by openUTM if an additional generation is transferred to the 
FGG. 

Maximum number of 
generations

First generation

Last generation

When creating the FGG, you define the maximum number of generations 
that can exist simultaneously in the FGG.

When the maximum number of generations is reached, UTM executes the 
next transfer as follows:
– openUTM creates a new generation with a new generation number 
– openUTM deletes the generation of the FGG with the lowest generation 

number, i.e. the first generation.

The generation of the FGG with the highest generation number is the last 
generation of the FGG. 

FGG terms Version management for application replacement by openUTM



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

9.1.3 Process of replacing an application

The administrator of the UTM application initiates the replacement of the application 
program with the command KDCAPPL PROG=..., for example. The program replacement 
then runs separately. 

If you specify KDCAPPL PROG=NEW, the application program of the generation 
PROG(+1) is loaded; specifying KDCAPPL PROG=OLD loads the application program of 
the generation PROG(-1). 

For this reason, it is advisable to define the last generation of the FGG as the base. This 
generation is then loaded when the application starts. A new generation of the application 
program is transferred to the FGG with the relative generation number PROG(+1) (default 
setting for KDCPROG TRANSFER). When a program is replaced with KDCAPPL 
PROG=NEW, the new generation of the application program is loaded. openUTM automat-
ically switches the base to the generation currently loaded, i.e. the last generation. If you 
then want to switch back to the application program previously loaded, specify KDCAPPL 
PROG=OLD. 

The replacement is implemented for each work process of the application. For each 
individual work process, the active application program is terminated and the new appli-
cation program loaded after the current job has been executed. The replacement is not 
implemented for the next work process until the replacement for this work process has 
concluded. This means that the application run is not significantly interrupted by the appli-
cation replacement. In this way, the user is unaware of the application replacement and can 
continue to work unhindered. 

While the application is being replaced, the process described may result in the situation 
that jobs are simultaneously processed by individual work processes with the old appli-
cation program and by other work processes with the new application program. You can 
prevent this if you issue the administration command KDCAPPL TASKS=1 to reduce the 
maximum permitted number of work processes to 1 before the replacement takes place 
(e.g. with the administration command KDCAPPL TASKS=1). 

After the application replacement has concluded, a UTM message is output to inform the 
UTM administrator as to whether the replacement was successful or was aborted with 
errors. The administrator cannot start the next application replacement until this 
replacement is concluded for all work processes. 



Replacing an application Replacing programs during operation

208   Using openUTM under Unix Systems and Windows Systems

9.1.4 The KDCPROG tool

The KDCPROG tool is called as follows: 

Under Unix systems you call KDCPROG from a shell with the command: 
utmpath/ex/kdcprog function operands 

Under Windows systems you start a command prompt window and enter the following 
command: 
utmpath\ex\kdcprog function operands 

KDCPROG offers the following functions: 

The operands are described below.

CREATE - create a file generation group (FGG)

KDCPROG CREATE creates an FGG for the application replacement. A directory called 
PROG is created in the filebase directory of the application. An existing PROG directory is 
fully deleted beforehand by KDCPROG. 

KDCPROGËCREATEËfilebaseËnumber_entries

filebase  Name of the directory defined in MAX...,KDCFILE=filebase in the KDCDEF 
generation. 

number_entries  
Maximum number of generations that can exist simultaneously in the FGG 
PROG. As soon as number_entries exist in the FGG, the first generation of 
the FGG is deleted when a new generation is transferred to the FGG. 

Minimum value: 2 
Maximum value: 9999 

Function Meaning

CREATE Create the file generation directory PROG for the application replacement.

INFO Output information on the current state of the FGG.

TRANSFER Transfer a new version of the application program to a generation of the FGG.

SWITCH Switch the base number of the FGG.

X

X

W

W

W



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

INFO - query the current state of the (FGG)

KDCPROG INFO displays the current state of the FGG. The following data is output: 

– current number of entries 

– base number of the FGG 

– file generation with the lowest generation number (first generation) 

– file generation with the highest generation number (last generation) 

– list of the file generations contained in the FGG, with absolute and relative names 

– list of the existing generations in the PROG directory. The output in Unix systems corre-
sponds to the output of the ls -l command for the PROG directory. 
A general note regarding the dir command is output under Windows systems.

Examples of the output from KDCPROG INFO can be found in section “Example of 
replacing an application” on page 213. 

KDCPROGËINFOËfilebase

filebase  Name of the directory defined in MAX...,KDCFILE=filebase in the KDCDEF 
generation. 



Replacing an application Replacing programs during operation

210   Using openUTM under Unix Systems and Windows Systems

TRANSFER - transfer utmwork to the FGG

KDCPROG TRANSFER transfers utmwork and the associated nmutmwork file from the 
filebase in the FGG.

KDCPROGËTRANSFERËfilebaseËgenerationnumber

filebase  Name of the directory defined in n MAX...,KDCFILE=filebase in the 
KDCDEF generation. 

generationnumber  
Number of the generation to which utmwork and nmutmwork are to be trans-
ferred. 

Specification of the generationnumber is mandatory when transferring the 
first version of the application program. For generationnumber you must 
specify 0001 (absolute) or +0 (relative). Specification is optional with subse-
quent transfers. If you do not specify generationnumber, then openUTM 
assumes the value +1. 

If you specify a generation for generationnumber which already exists in the 
FGG, this generation is overwritten. 

The generationnumber can be specified in two ways: 

1. Specification of an absolute generation number. 

The maximum and minimum value of generationnumber depend on the 
number of FGG entries. 

The first generation you transfer to the FGG must always have the 
absolute generation number 0001. New generation numbers you assign 
subsequently must be in ascending order (0002, 0003...). You can also 
specify generation numbers of generations which already exist in the 
FGG. These generations are then overwritten. 

KDCPROG presets the following limits: 

Minimum value: 1
Maximum value: 9999 

Note 
The specification (current base number - 1) for generationnumber 
specifies the file generation switched to when the application is 
replaced with KDCAPPL PROG=OLD.
The specification (current base number + 1) for generationnumber 
specifies the file generation switched to when the application is 
replaced with KDCAPPL PROG=NEW. 



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

2. Specification of a relative generation number with sign (+ or -).
The maximum and minimum value of generationnumber depend on the 
current base value and the number of FGG entries. For example, if the 
last generation (highest absolute generation number) is the base, you 
must not specify any relative generation numbers greater than +1. 

KDCPROG presets the following limits: 

Minimum value: - 99 
Maximum value: + 99 

Note
The specification -1 for generationnumber specifies the file generation 
switched to when the application is replaced with KDCAPPL 
PROG=OLD.
The specification +1 for generationnumber specifies the file generation 
switched to when the application is replaced with KDCAPPL 
PROG=NEW. 

Default value: +1 (relative generation number) 

If the default value is specified, the new version of the application 
program is transferred to the FGG entry switched to with KDCAPPL 
PROG=NEW. 



Replacing an application Replacing programs during operation

212   Using openUTM under Unix Systems and Windows Systems

SWITCH - switch the base of the file FGG

With KDCPROG SWITCH, you can switch the base of the FGG when the application is not 
running. The next time the application starts, the new base of the FGG is then loaded. With 
KDCPROG SWITCH, therefore, you can execute the functions KDCAPPL PROG=NEW or 
PROG=OLD between two application runs. 

If KDCPROG SWITCH is called while the application is running, the call will be rejected. 

KDCPROGËSWITCHËfilebaseËbasenumber

filebase  Name of the directory defined n MAX...,KDCFILE=filebase in the KDCDEF 
generation. 

basenumber  Specification of the new base generation. For basenumber, you can only 
specify a generation number for which a generation already exists in the 
FGG. 

There are two specification options: 

1. Specification of an absolute generation number.

basenumber identifies the new base generation directly. 

Minimum value: 0
Maximum value: 9999 

2. Specification of a relative generation number with a negative sign.
The base generation is specified relative to the last generation (= gener-
ation with the highest generation number). In this case, the value of 
basenumber must always be specified with a leading minus sign (-). 

Generation number of base = number of last generation - basenumber 

Minimum value: -99 
Maximum value: -1

Example 

The generation with generation number 0010 is the last generation in 
the FGG.
If KDCPROG SWITCH filebase -1 is specified, then the file generation with 
generation number 0009 is the new base of the FGG.
If KDCPROG SWITCH filebase 0 is specified, the last generation (0010) is the 
new base of the FGG. 



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

9.1.5 Example of replacing an application

The sections below present an example application replacement - using the KDCPROG 
tool.

Step 1

An FGG for application replacement is created that can contain a maximum of three gener-
ations of the application program. The first generation of the application program is then 
transferred to the FGG. This generation is thus the base of the FGG. The current directory 
(“.”) is specified for filebase.   

In Unix systems: 

Input: utmpath/ex/kdcprog CREATE . 3 

Output: U181 Program kdcprog V06.3A00 is started
U376 kdcprog: FGG files for ./PROG created.

Input: utmpath/ex/kdcprog TRANSFER . +1
utmpath/ex/kdcprog SWITCH . 1 

Output: U181 Program kdcprog V06.3A00 is started
U383 kdcprog: TRANSFER : /bin/cp ./utmwork ./PROG/0001
U389 kdcprog: TRANSFER successful
U388 kdcprog: new base for program FGG ./PROG is 1

In Windows systems: 

Input: utmpath\ex\kdcprog CREATE . 3 

Output: U181 Program kdcprog V06.3A00 is started
U376 kdcprog: FGG files for ./PROG created (pid: 348,...) 

Input: utmpath\ex\kdcprog TRANSFER . 

Output: U181 Program kdcprog V06.3A00 is started (pid: 420,...)
U391 kdcprog: TRANSFER for KDCAPPL PROG=NEW initiated
U383 kdcprog: TRANSFER : UTMCMD COPY ./utmwork.exe ./PROG/0001
 1 file(s) copied.
U389 kdcprog: TRANSFER successful

Input: utmpath\ex\kdcprog SWITCH . 1

Output: U181 Program kdcprog V06.3A00 is started (pid: 192,...)
U388 kdcprog: new base for program FGG ./PROG is 1

X

XX

XX
X

XX
X

XX
X
X
X

W

XW

XW
W

XW

X
W
W
W
W

XW

X
W



Replacing an application Replacing programs during operation

214   Using openUTM under Unix Systems and Windows Systems

Step 2

A new version of the application program is  created during the application run. This version 
is to be transferred  to the FGG as the next generation 0002. The relative generation 
number of this generation is then (+1). This is the default setting for TRANSFER.  

The transferred generation is used if KDCAPPL PROG=NEW is specified.

Step 3

Information on the FGG is requested.  

In Unix systems: 

Input: utmpath/ex/kdcprog TRANSFER . 

Output: U181 Program kdcprog V06.3A00 is started
U383 kdcprog: TRANSFER : /bin/cp ./utmwork ./PROG/0002
U389 kdcprog: TRANSFER successful

In Windows systems: 

Input: utmpath\ex\kdcprog TRANSFER . 

Output: U181 Program kdcprog V06.3A00 is started (pid: 234,...)
U391 kdcprog: TRANSFER for KDCAPPL PROG=NEW initiated
U383 kdcprog: TRANSFER : UTMCMD COPY ./utmwork.exe ./PROG/0002
 1 file(s) copied.
U389 kdcprog: TRANSFER successful

In Unix systems: 

Input: utmpath/ex/kdcprog INFO . 

Output: U181 Program kdcprog V06.3A00 is started
U378    INFO for FGG ./PROG
         FGG maximum number of versions           3
         FGG base                   0001
         FGG first generation       0001
         FGG last generation        0002
File PROG/0001 is PROG(+0000) <=
File PROG/0002 is PROG(+0001)
The following program files are available:
-rwx------ 1 example  other    2845876 Apr 22 15:35 ./PROG/0001
-rwx------ 1 example  other    2845876 Apr 22 15:37 ./PROG/0002

X

XX

XX
X
X

W

W

W
W
W
W
W

X

XX

XX
X
X
X
X
X
X
X
X
X
X



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

In the output, note that PROG/000x specifies the name of the respective generation. 
PROG(+000x) is the relative FGG name. The arrow “<=” points to the base of the FGG; this 
is the application program generation currently loaded. 

Step 4

The UTM administrator replaces an application. Generation 0002 (alias PROG(+1)) is to be 
loaded. The administrator thus signs on to the UTM application and enters: 

KDCAPPL PROG=NEW 

After the replacement, information is again requested on the FGG. 

In Windows systems: 

Input: utmpath\ex\kdcprog INFO . 

Output: U181 Program kdcprog V06.3A00 is started (pid 480 ...)
U378    INFO for FGG ./PROG
         FGG maximum number of versions           3
         FGG base                   0001
         FGG first generation       0001
         FGG last generation        0002
File PROG/0001 is PROG(+0000) <=
File PROG/0002 is PROG(+0001)
The following program files are available:
kdcprog: type "DIR .\PROG\*.EXE" to get full information

In Unix systems: 

Input: utmpath/ex/kdcprog INFO . 

Output: U181 Program kdcprog V06.3A00 is started
U378    INFO for FGG ./PROG
         FGG maximum number of versions           3
         FGG base                   0002
         FGG first generation       0001
         FGG last generation        0002
File PROG/0001 is PROG(-0001)
File PROG/0002 is PROG(+0000) <=
The following program files are available:
-rwx------   1 example  other    2845876 Apr 22 15:35 ./PROG/0001
-rwx------   1 example  other    2845876 Apr 22 15:37 ./PROG/0002

W

WW

X
W
W
W
W
W
W
W
W
W

X

XX

XX
X
X
X
X
X
X
X
X
X
X



Replacing an application Replacing programs during operation

216   Using openUTM under Unix Systems and Windows Systems

The output indicates that openUTM has changed the base. The base is now the generation 
with generation number 0002, which was loaded when the application was replaced. 
Generation 0001 is used if KDCAPPL PROG=OLD is entered. No program is available for 
KDCAPPL PROG=NEW. 

Step 5

Another version of the application program is transferred to the FGG. This means that a new 
version of the application program is available for another application replacement with 
KDCAPPL PROG=NEW.

In Windows systems: 

Input: utmpath\ex\kdcprog INFO . 

Output: U181 Program kdcprog V06.3A00 is started
U378    INFO for FGG ./PROG
         FGG maximum number of versions           3
         FGG base                   0002
         FGG first generation       0001
         FGG last generation        0002
File PROG/0001 is PROG(-0001)
File PROG/0002 is PROG(+0000) <=
The following program files are available:
kdcprog: type "DIR .\PROG\*.EXE" to get full information

W

WW

WW
W
W
W
W
W
W
W
W
W



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

Information on the FGG is again requested after the transfer. 

In Unix systems: 

Input: utmpath/ex/kdcprog TRANSFER . 

Output: U181 Program kdcprog V06.3A00 is started
U383 kdcprog: TRANSFER : /bin/cp ./utmwork ./PROG/0003
U389 kdcprog: TRANSFER successful

Input utmpath/ex/kdcprog INFO . 

Output U181 Program kdcprog V06.3A00 is started
U378    INFO for FGG ./PROG
         FGG maximum number of versions           3
         FGG base                   0002
         FGG first generation       0001
         FGG last generation        0003
File PROG/0001 is PROG(-0001)
File PROG/0002 is PROG(+0000) <=
File PROG/0003 is PROG(+0001)
The following program files are available:
-rwx------   1 example other    2845876 Apr 22 15:35 ./PROG/0001
-rwx------   1 example other    2845876 Apr 22 15:37 ./PROG/0002
-rwx------   1 example other    2845876 Apr 22 15:43 ./PROG/0003

In Windows systems:

Input: utmpath\ex\kdcprog TRANSFER . 

Output: U181 Program kdcprog V06.3A00 is started (pid: 261,...)
U391 kdcprog: TRANSFER for KDCAPPL PROG=NEW initiated
U383 kdcprog: TRANSFER : UTMCMD COPY ./utmwork.exe ./PROG/0003
 1 file(s) copied.
U389 kdcprog: TRANSFER successful

Input utmpath\ex\kdcprog INFO . 

Output U181 Program kdcprog V06.3A00 is started
U378    INFO for FGG ./PROG
         FGG maximum number of versions           3
         FGG base                   0002
         FGG first generation       0001
         FGG last generation        0003
File PROG/0001 is PROG(-0001)
File PROG/0002 is PROG(+0000) <=
File PROG/0003 is PROG(+0001)
The following program files are available:
kdcprog: type "DIR .\PROG\*.EXE" to get full information

X

XX

XX
X
X

XX

XX
X
X
X
X
X
X
X
X
X
X
X
X

W

WW

W
W
W
W
W

WW

WW
W
W
W
W
W
W
W
W
W
W



Replacing an application Replacing programs during operation

218   Using openUTM under Unix Systems and Windows Systems

Now, a program is available for replacing an application with KDCAPPL PROG=OLD and 
a program is available for replacing an application with KDCAPPL PROG=NEW. 

Step 6

Another version of the application program is transferred to the FGG and KDCPROG INFO 
is called.  

In Unix systems: 

Input: utmpath/ex/kdcprog TRANSFER . 

Output: U181 Program kdcprog V06.3A00 is started
U383 kdcprog: TRANSFER : /bin/cp ./utmwork ./PROG/0004
U389 kdcprog: TRANSFER successful

Input utmpath/ex/kdcprog INFO . 

Output U181 Program kdcprog V06.3A00 is started
U378    INFO for FGG ./PROG
         FGG maximum number of versions           3
         FGG base                   0002
         FGG first generation       0002
         FGG last generation        0004
File PROG/0002 is PROG(+0000) <=
File PROG/0003 is PROG(+0001)
File PROG/0004 is PROG(+0002)
The following program files are available:
-rwx------   1 example   other    2845876 Apr 22 15:37 ./PROG/0002
-rwx------   1 example   other    2845876 Apr 22 15:43 ./PROG/0003
-rwx------   1 example   other    2845876 Apr 22 15:59 ./PROG/0004

X

XX

XX
X
X

XX

XX
X
X
X
X
X
X
X
X
X
X
X
X



Replacing programs during operation Replacing an application

Using openUTM under Unix Systems and Windows Systems  219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

The generation 0001 has been deleted because a maximum of three generations can be 
contained in the FGG. 

In Windows systems:

Input: utmpath\ex\kdcprog TRANSFER . 

Output: U181 Program kdcprog V06.3A00 is started (pid: 261,...)
U391 kdcprog: TRANSFER for KDCAPPL PROG=NEW initiated
U383 kdcprog: TRANSFER : UTMCMD COPY ./utmwork.exe ./PROG/0004
 1 file(s) copied.
U389 kdcprog: TRANSFER successful

Input utmpath\ex\kdcprog INFO . 

Output U181 Program kdcprog V06.3A00 is started
U378    INFO for FGG ./PROG
         FGG maximum number of versions           3
         FGG base                   0002
         FGG first generation        0002
         FGG last generation       0004
File PROG/0002 is PROG(+0000) <=
File PROG/0003 is PROG(+0001)
File PROG/0004 is PROG(+0002)
The following program files are available:
kdcprog: type "DIR .\PROG\*.EXE" to get full information

W

WW

W
W
W
W
W

WW

WW
W
W
W
W
W
W
W
W
W
W



Replacing shared objects Replacing programs during operation

220   Using openUTM under Unix Systems and Windows Systems

9.2 Replacing shared objects

With the “replace shared objects” function you can replace individual parts of the application 
program during operation. These application parts must be created as shared objects and 
linked dynamically to the application. In this case, you must carry out certain steps when 
compiling, linking and generating.

Shared objects are implemented using DLLs in Windows systems. More details can be 
found in the section “Creating application programs as DLLs” on page 47.

  You can replace shared objects with the administration command KDCPROG or 
with a separate administration program that calls KDCADMI with the operation code 
KC_MODIFY_OBJECT and object type KC_LOAD_MODULE. Both possibilities 
are described in the openUTM manual “Administering Applications”. 

If a reference is made in the following to an actions that can be carried out with the 
KDCPROG command, then this is also true for administration programs that issue 
KDCADMI calls with the operation code KC_MODIFY_OBJECT and object type 
KC_LOAD_MODULE. 

An application with shared objects can also be replaced as a whole.

9.2.1 Providing and generating shared objects

A shared object in C must always be compiled in Unix systems such that the respective 
runtime system is also linked. 

More details on compiling applications in Windows systems can be found on page 42.

Version concept of shared objects 

Shared objects can be created with or without versions.

● Without versions
If you want to provide a shared object without a version, you must supply precisely one 
file with the shared object. When replacing using the administration command 
KDCPROG, it is sufficient to specify the name of the file. Shared objects without 
versions can only be loaded dynamically at the start of the application.

W

W

X

X

W



Replacing programs during operation Replacing shared objects

Using openUTM under Unix Systems and Windows Systems  221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

● With versions
If a shared object is to be available in several versions, you must first create a directory 
and then copy the individual versions of the shared object into this directory. You can 
add as may versions as you wish. When replacing, specify both the directory name of 
the shared object and the version name.

In Windows systems, shared objects should always be created with versions.

Generating shared objects

Each shared object must be generated with the KDCDEF statement SHARED OBJECT 
(see openUTM manual “Generating Applications”). Specify the following:

● The name of the shared object. If the shared object has no versions, specify the name 
of the file under which it is stored. If the shared object has versions, specify the name 
of the directory containing the versions.

In Windows systems, the name of the shared object must have the extension .dll. 

Only one version can be generated for each shared object. The version can be changed 
using UTM administration functions.

● The file name of the respective version, if the shared object has a version (VERSION 
operand).

In Windows systems, it is necessary to specify the version.

● The path name under which the shared object can be found (DIRECTORY operand).

In Windows systems, you should always specify the complete path because the PATH 
and LD_LIBRARY_PATH environment variables are not evaluated for shared objects.

● Whether the shared object is to be loaded at the start of the application (LOAD-
MODE=STARTUP) or with the first call (LOAD-MODE=ONCALL).

The name of the shared object must be specified in the PROGRAM statement belonging to 
the program unit (SHARED-OBJECT operand, see also the examples on page 224).

W

W

W

W

W



Replacing shared objects Replacing programs during operation

222   Using openUTM under Unix Systems and Windows Systems

9.2.2 Start of the application

When the application starts, openUTM loads all the shared objects generated with 
LOAD=STARTUP in the sequence in which the SHARED-OBJECT statements were 
specified. Shared objects with LOAD-MODE=ONCALL are not loaded until the first call is 
issued.

If a shared object cannot be loaded, the startup is continued anyway. If this shared object 
is called at a later stage, the result is a BADTACS or a PEND ER.

If the event exits START, SHUT or INPUT, or the event services MSGTAC or SIGNON, or 
the administration program unit KDCADM cannot be loaded, then the startup is terminated 
with an error message.

9.2.3 The replacement process

The openUTM administrator must initiate the replacement of a shared object with the 
administration command KDCPROG, for example. In this case, the event exits START and 
SHUT are not executed unless the application program is terminated and loaded dynami-
cally by the replacement.

If you replace a shared object that was generated with versions, you must specify the 
directory name and the version name. In the case of shared objects without versions, 
specify the name of the shared object itself; a version specification will be ignored.

The replacement process runs differently depending on the time (STARTUP or ONCALL) 
at which the shared object was loaded.

9.2.3.1 Replacing shared objects with LOAD-MODE=STARTUP

When replacing application parts generated with LOAD-MODE=STARTUP, the work 
process continues running. The shared object is unloaded and the specified version is 
loaded dynamically.

This program replacement can be executed simultaneously by several work processes of 
an application. During the program replacement, different states of the application program 
are loaded in the work processes of the UTM application. Each work process of the appli-
cation implements the requested program replacement when it has finished processing the 
current job. A UTM message is output to indicate that the program replacement process is 
complete.

No further program can be replaced until this program replacement is concluded. Another 
KDCPROG call will be rejected by openUTM.



Replacing programs during operation Replacing shared objects

Using openUTM under Unix Systems and Windows Systems  223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

9.2.3.2 Replacing shared objects with LOAD-MODE=ONCALL

Shared objects generated with LOAD-MODE=ONCALL can only be replaced if they were 
generated with versions. 

If you replace this type of shared object, only the version identifier to be loaded dynamically 
for the respective shared object is entered in the openUTM tables when the KDCPROG 
administration command is processed. 

The new version is not loaded by each work process of the application until the next time 
this work process calls a program unit contained in this shared object. The program 
replacement can be implemented simultaneously by several work processes of an appli-
cation. Until the requested program replacement has been implemented by all work 
processes of the openUTM application, different states of the application program are 
loaded in the individual work processes. However, it is ensured that each work process 
implements the requested replacement before  another program unit is activated which is 
contained in the shared object to be replaced. 

The replacement of a shared object generated with ONCALL does not have a blocking 
effect on subsequent commands for program replacement. Immediately after processing 
the KDCPROG command, the administrator can therefore initiate another program 
replacement with another KDCPROG command. 

If the version identifiers of the new and old shared object are the same, no program 
replacement is implemented. 



Replacing shared objects Replacing programs during operation

224   Using openUTM under Unix Systems and Windows Systems

9.2.4 Examples of replacing shared objects

Example 1

On a Unix system, an individual module called INCTAX is to be replaced dynamically on a 
particular date. In this case, you must carry out the following steps:

1. Create and compile the module using the options required for shared objects.

2. Compile the module with the switches required for shared objects. Transfer the module 
as a shared object without version under the name INCTAX to the directory containing 
the user-specific programs. In the example the placeholder so-lib is specified for the 
directory. This directory could be /usr/proglib (in Unix systems) or C:\proglib (in 
Windows systems), for example.

3. Generate the module as a shared object with the following KDCDEF statements:

SHARED-OBJECT INCTAX,DIRECTORY=so-lib,LOAD-MODE=STARTUP
PROGRAM .... ,SHARED-OBJECT=INCTAX

The shared object is thus loaded when the application starts (mandatory for shared 
objects without version).

4. Link the work process, whereby you must specify the dynamic library with the shared 
object INCTAX.

5. Start the application as usual.

6. Modify the module and save it before the effective date in the file:

so-lib/INCTAX

7. Enter the following administration command:

KDCPROG SHARED-OBJECT=INCTAX

The shared object will be replaced in the individual work processes as soon as these 
processes have processed the current job.



Replacing programs during operation Replacing shared objects

Using openUTM under Unix Systems and Windows Systems  225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
3

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k0
9

Example 2

On a Unix or Windows system, a shared object called MNTHBALANCE is to be available 
in 12 versions (BIL01,... BIL12) and is to be replaced at the end of each month. In each 
case, it should not be loaded until it is called  for the first time. Carry out the following steps:

1. Create and compile the module using the options required for shared objects (for 
Windows systems see page 47).

2. Compile the module with the switches required for shared objects. In the directory with 
the user-specific programs (so-lib in the example), create the directory MNTHBALANCE 
and into this directory copy at least the version required for the first application run. 

3. Generate each version of the shared object with the following KDCDEF statement:

SHARED-OBJECT MNTHBALANCE
              ,DIRECTORY=so-lib
              ,VERSION=BILxx       (xx=01,... ,12)
              ,LOAD-MODE=ONCALL

The shared object is not loaded until the program unit is called.

Enter the following PROGRAM statement for the shared object:

PROGRAM .... ,SHARED-OBJECT=MNTHBALANCE

4. In Unix systems you link the work process with the dynamic library by specifying the 
dynamic library with the shared objects.
There are no special cases in Windows systems in this case.

5. Start the application as usual.

6. On July 1, for example, enter the following administration command:

KDCPROG SHARED-OBJECT=MNTHBALANCE,VERSION=BIL07

Please make sure that this version exists in the directory at the specified time.

The shared object is not replaced in the individual work processes until the corre-
sponding program unit is called for the first time.



Replacing shared objects Replacing programs during operation

226   Using openUTM under Unix Systems and Windows Systems

9.2.5 Replacing an application with shared objects

The entire application can be replaced with the administration command KDCAPPL 
PROG=NEW. The replacement can be done via the PROG file generation directory that you 
must prepare with the KDCPROG tool (see section “Requirements for replacing an appli-
cation” on page 202) or UTM loads the application program utmwork directly from the base 
directory.

In both cases, each work process of the application is unloaded in succession and then 
loaded dynamically when the entire application is being replaced. In the dynamic loading 
process, the new versions of the shared objects are loaded. To minimize the interruption to 
the operation of the application, the replacement is only performed by one application work 
process at a time.

9.2.6 Adding programs dynamically

Amongst other things, dynamic administration allows programs to be generated while the 
application is running. For more details on dynamic administration, see the openUTM 
manual “Administering Applications”. 

These programs must be loaded before they can be called. To this end, the program must 
be linked with the assigned shared object and must be made available with a new version 
in the directory specified in the SHARED-OBJECT statement when generating. 

The administrator must then replace this shared object using the KDCPROG command or 
by calling the program. 

The UTM administrator must enter the new program units and the corresponding trans-
action codes dynamically into the KDCFILE tables.



Using openUTM under Unix Systems and Windows Systems  227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
0

10 Fault tolerance of openUTM

Fault tolerance in this context means that a UTM application can still remain operational 
when errors occur in individual program units that force openUTM to abort a transaction. 
openUTM then ensures that the application program is terminated and reloaded so that the 
error does not spread any further and have a negative effect on other users of the appli-
cation and their data. 

With regard to the error behavior of openUTM, a distinction is made between: 

● Internal UTM errors and errors in the system environment 

These errors result in an abnormal termination of the application, just like the adminis-
tration command KDCSHUT KILL or when issuing a KDCADMI call with operation code 
KC_SHUTDOWN and subcode KC_KILL. 
openUTM creates a UTM dump for each process of the application. The UTM dump is 
edited using the UTM tool KDCDUMP. A description of this procedure can be found in 
the openUTM manual “Messages, Debugging and Diagnostics in Unix Systems and 
Windows Systems”.

– In the event of serious errors in the dialog terminal process, the dialog terminal 
process terminates and writes a core dump under the current directory. During this 
sign-on run, it is not possible to sign on again from the assigned terminal. With 
minor errors, the dialog terminal process signs off properly from the application. 

– A printer process behaves similarly to a dialog terminal process when errors occur. 
The printer process can, if necessary, be restarted using an administration 
command. 

– If errors occur in the timer process, the application is terminated abnormally as soon 
as a job is sent to the timer process from the work processes. 

● Errors in the application program

These are errors in program units. They can be divided into two groups:

– errors that lead to the reloading of the application 

– errors that may permit the program to continue. 



Errors detected by openUTM Fault tolerance of openUTM

228   Using openUTM under Unix Systems and Windows Systems

10.1 Errors detected by openUTM 

A program unit is terminated abnormally by openUTM in the following situations: 

● A PEND ER or FR was programmed. 

● A UTM call supplied a KDCS return code ≥70Z. In this case, openUTM internally sets 
PEND ER. 

In both situations, openUTM aborts the service. If a PEND FR was programmed, then 
openUTM does not take any other action.

If the service was terminated by a PEND ER (in a program or internally), then openUTM 
creates a UTM dump with REASON=PENDER that only conveys the data of the 
KDCROOT. The affected work process is then terminated. The main process subsequently 
starts a new work process, which dynamically loads the application program. This brings 
the static data areas to a new state and avoids follow-up errors due to the overwriting of 
data. 

10.2 Reaction of openUTM to signals

When a signal occurs, the following reactions are possible: 

● The signal is ignored (see table). 

● If the signal occurs while program components created by the user are running:
A PEND ER with KCRCC=70Z and KCRCDC=XTxx is called
(xx is the signal number). The affected service or work process is terminated. 

● If the signal occurs while the UTM system components are running:
The application is terminated abnormally with REASON=SIGxxx 
(xxx is the signal number). 

The table below shows the reaction of a work process to the individual signals. Detailed 
information on signals can be found in the C header file for signals (signal.h). 

Signal received Reaction

SIGHUP ignored

SIGINT ignored

SIGQUIT ignored

SIGILL PEND ER/TRMA1

SIGTRAP ignored

SIGABRT ignored



Fault tolerance of openUTM Reaction of openUTM to signals

Using openUTM under Unix Systems and Windows Systems  229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
0

If the termination handling caused by the signal is interrupted by the arrival of another 
signal, this signal is not intercepted by openUTM. In this case, the operating system takes 
over the handling of the signal interrupt. 

SIGEMT ignored

SIGFPE PEND ER/TRMA1

SIGBUS PEND ER/TRMA1

SIGSEGV PEND ER/TRMA1

SIGSYS PEND ER/TRMA1

SIGPIPE ignored

SIGALRM ignored

SIGTERM ignored

SIGUSR1 ignored

SIGUSR2 ignored

SIGCHLD ignored

SIGPWR PEND ER/TRMA1

SIGWINCH ignored

SIGURG ignored

SIGIO ignored

SIGTSTP ignored

SIGCONT ignored

SIGTTIN ignored

SIGTTOU ignored

SIGVTALRM ignored

SIGPROF ignored

SIGXCPU PEND ER/TRMA1

SIGXFSZ PEND ER/TRMA1

1 TRMA stands for Term Application (= terminate application)

Signal received Reaction



Termination of application by system crash / shutdown Fault tolerance of openUTM

230   Using openUTM under Unix Systems and Windows Systems

10.3 Termination of application by system crash / shutdown

A system crash or a shutdown results in an abnormal termination of the application, 
whereby no UTM dump is created. All processes of the application are terminated by the 
operating system. Before the application is restarted in such situations, the UTM tool 
KDCREM must be called. See also section “The KDCREM tool” on page 98.



Using openUTM under Unix Systems and Windows Systems  231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

ua
ry

 2
0

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_U
W

\e
n

\b
et

rX
N

_e
.k

11

11 Accounting

openUTM provides accounting functions that enable the user of a UTM application to 
calculate the resources utilized by the users of a UTM application.

The accounting functions that the corresponding operating system provides can only record 
the resource utilization and performance of a UTM application as a whole. However, if you 
want to be able to assign the computer resources used to individual users and charge the 
individuals accordingly, then the following must be taken into account for UTM accounting: 

● The users of a UTM application are represented by the user IDs defined in the UTM 
generation and not by the user IDs of the operating system. You must therefore be able 
to assign the resources used by a user to individual UTM user IDs. 

● A group of homogenous processes is active in a UTM application. Every process 
handles a series of jobs in succession for various users. The resources used within a 
process must therefore be determined for each service called (i.e. for individual 
program unit runs). 

● The time conditions of OLTP operation require that the services be recorded in such a 
way that the performance of the application is not impeded. 

UTM accounting therefore records the utilization of resources by the individual program 
units. This means that the resource utilization can be assigned to the transaction code 
(TAC) of the respective program unit and therefore to the UTM user who started the corre-
sponding service. 

In addition to the utilization of resources determined by UTM accounting, there is also a 
basic resource requirement that arises when a UTM application is running but which cannot 
be assigned directly to a user. These are:

● Disk space assignment for KDCFILE, SYSLOG, and USLOG files

● CPU utilization for 
– starting and terminating UTM processes
– handling connections for terminals
– LPUT handling (transfer to USLOG file)
– processing printer output 

If the usage of these resources is to be taken into account, then you must charge these 
services at a flat rate to the users. 

X



Definition of terms Accounting

232   Using openUTM under Unix Systems and Windows Systems

11.1 Definition of terms

This section provides a more detailed explanation of some of the terms that are relevant to 
UTM accounting.

Users in the sense of UTM accounting

The user of a UTM application for whom an account is to be created, is represented by the 
UTM user ID. 

openUTM assigns the utilized resources to the LTERM partners as an alternative in UTM 
applications without real user IDs. The LTERM name of the connection user ID (TS appli-
cations and UPIC clients), the LU6 session name (LU6 partners) or the OSI association 
name (OSI TP partner) is used for applications or clients that have not explicitly signed on 
with a user ID.

In UTM applications without user IDs, openUTM assigns the resources used by terminals, 
UPIC clients or TS applications to the LTERM partners instead.

Accounting file

All information that the UTM accounting collects for the user-specific accounting of 
resources used is written by openUTM in the accounting file.

The accounting file is maintained according to the application, and administered by the 
administrator of the UTM application; for more details see section “Evaluation” on 
page 240. 

Resources

This includes the following services: 

– technical DP services, particularly CPU utilization 
– calling a particular program (program charge)

Calculation phase

The calculation phase is used as a starting point for the utilization of the accounting 
procedure.

In the calculation phase, openUTM determines the utilization of each resource for each 
program unit called and writes the values in the BS2000 accounting file as a calculation 
record. See section “Calculation phase” on page 235 for more detailed information. 



Accounting Definition of terms

Using openUTM under Unix Systems and Windows Systems  233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

ua
ry

 2
0

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_U
W

\e
n

\b
et

rX
N

_e
.k

11

Calculation record

A calculation record is a record which openUTM writes in the BS2000 accounting file for 
each program unit run in the calculation phase. The accounting record type is UTMK. The 
data fields of the calculation record UTMK are described in the Appendix on page 304.

Weight

A weight (factor) can be defined for each resource. This weight specifies how the resource 
is to be evaluated compared with other resources. The utilization of a resource is then intro-
duced into the accounting procedure as the product “weight ∗ resource utilization“. The 
weights for the individual resources are entered in the KDCDEF generation in ACCOUNT, 
see section “Determining the variant of the accounting procedure” on page 236.

Accounting phase

openUTM determines the resource utilization for each program unit. When the program unit 
terminates, openUTM calculates the sum of utilization values based on the weights and the 
generated fixed prices.

The following resources are taken into account: 

– CPU utilization
– generated output jobs for printers
– fixed price for calling a program unit 

The result is a number of derived accounting units that are added to the user-specific 
accounting unit counter. 

openUTM only then writes a record with the contents of this counter in the accounting file 
– when the user signs off and is not signed on again to the UTM application via any other 

connection, 
– when the application is terminated normally,
– or when a particular (generatable) maximum value is exceeded. You specify this 

maximum value in the KDCDEF generation with ACCOUNT ...,MAXUNIT= .

You must incorporate the weights in the generation of the application before the start of the 
accounting phase. You can choose between the following: 
– fixed-price accounting 
– utilization-oriented accounting 
– combination of both variants 

You will find a detailed description of the accounting phase in section “Accounting phase” 
on page 238.

The accounting phase of UTM accounting can be enabled and disabled while the UTM 
application is running. 

X



Definition of terms Accounting

234   Using openUTM under Unix Systems and Windows Systems

Accounting record

An accounting record is a record which openUTM writes to the accounting file in the 
accounting phase. The accounting record type is UTMA. 
The data fields of the accounting record UTMA are described in the Appendix on page 303. 

Accounting units

Accounting units are the product of the utilization and weight of the respective resource. 
Only accounting units are counted in the UTM accounting facility. 

Accounting unit counter

In a UTM application, openUTM keeps an accounting unit counter for each user and 
thereby accumulates the utilization of accounting units per user. 

Fixed-price accounting

With this variant of the accounting function, a constant number of accounting units is calcu-
lated for a program unit run. This number is assigned to the transaction code when the 
application is generated. The weights of other resources are zero. In this manner you can 
also offer free services, e.g. informational functions. 

Utilization-oriented accounting 

With this variant of the accounting function, the current utilization of resources is calculated 
for a program unit run. The utilization values for the resource are weighted according to the 
generated weights. No fixed price is charged for calling program units. 



Accounting Accounting phases

Using openUTM under Unix Systems and Windows Systems  235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

ua
ry

 2
0

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_U
W

\e
n

\b
et

rX
N

_e
.k

11

11.2 Accounting phases 

The following steps are required to execute accounting in UTM applications: 

– calculation phase
– determination of the accounting procedure
– accounting phase
– evaluation

11.2.1 Calculation phase 

The calculation phase provides approximate values that you can use to determine the 
weights and fixed prices for the utilization of a service. openUTM determines the resource 
utilization for each program unit run, creates a calculation record of type UTMK at the end 
of the program run and writes this record in the accounting file.

The calculation phase can also be enabled or disabled at any time via the UTM adminis-
tration during live operation to check the generated weights and possibly to update them 
when regenerating, for example.

You should note, however, that openUTM writes a record in the accounting file after every 
program unit run when the calculation phase is activated. This has a negative impact on the 
performance of the application. 

Activating the calculation phase

The calculation phase can be activated during KDCDEF generation or by administration, 
see openUTM manual “Generating Applications” and openUTM manual “Administering 
Applications”:

● KDCDEF statement ACCOUNT ACC=CALC

● or via UTM administration:

– using the KDCAPPL CALC=ON command
– or using WinAdmin/WebAdmin
– or using the KDCADMI program call KC_MODIFY_OBJECT with 

obj_type=KC_DIAG_AND_ACCOUNT_PAR



Accounting phases Accounting

236   Using openUTM under Unix Systems and Windows Systems

Deactivating the calculation phase

The calculation phase can only be deactivated by UTM administration:

– using the KDCAPPL CALC=OFF command
– or using WinAdmin/WebAdmin
– or using the KDCADMI program call KC_MODIFY_OBJECT with 

obj_type=KC_DIAG_AND_ACCOUNT_PAR

Data of a calculation record

A calculation record contains the following data: 

– name of the UTM application
– transaction code (TAC) of the program unit
– CPU utilization in the UTM task (msec) 
– length of the input message in bytes 
– length of the output message in bytes 
– number of output jobs to printers 
– accounting units for LTAC calls 
– UTM users that have called the service 
– name of the LTERM partner through which the user is signed on 
– real time of the program unit run (msec) 

Output messages that are intended for a follow-up program unit (e.g. after PEND ER) are 
also counted. 

11.2.2 Determining the variant of the accounting procedure 

You must first determine if you want to use fixed prices, the utilization or a combination of 
these two variants for accounting purposes. Your decision depends on if you want to offer 
certain services of the application at fixed prices or if you want to charge for the actual 
resource utilization.

Fixed-price accounting

In fixed-price accounting, a program unit run costs a constant number of accounting units. 
These values are based on the values determined in the calculation phase. This makes 
fixed-price accounting the simplest solution. 

You specify the number of accounting units in the KDCDEF generation in the TAC 
statement in the TACUNIT operand, see the openUTM manual “Generating Applications”.

TAC tacname,PROGRAM=progname,TACUNIT=number_of_accounting_units

X



Accounting Accounting phases

Using openUTM under Unix Systems and Windows Systems  237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

ua
ry

 2
0

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_U
W

\e
n

\b
et

rX
N

_e
.k

11

The value specified in TACUNIT is added to the user-specific accounting unit counter for 
every transaction code called by the user. 

You can also provide some services (e.g. informational functions) free of charge when using 
fixed-price accounting. You must generate the corresponding transaction codes as follows 
to do this:

TAC ... TACUNIT=0

With distributed processing, the same applies to the LTAC statement and the LTACUNIT 
operand, see section “Accounting with distributed processing” on page 241.

You must set the weights for the resources to 0 (default value) in the KDCDEF statement 
ACCOUNT when using fixed-price accounting. 

Utilization-based accounting

In this variant the user is charged for the utilization of resources that are determined in the 
current accounting phase. You must specify weights for the individual resources. A weight 
is a factor that is multiplied with the number of units used. You can use the utilization data 
that you received in the calculation phase to help you choose the weights. 

The weights are defined for each application in the KDCDEF statement ACCOUNT, i.e. they 
are valid for all program unit runs. 

The determination of the weights is inevitably subjective and depends on the installation 
environment. You can assign weights to the following resources: 

– CPU utilization (ACCOUNT operand CPUUNIT)
– I/O to background memory (ACCOUNT operand IOUNIT)
– printer output (ACCOUNT operand OUTUNIT)

  More details can be found in the openUTM manual “Generating Applications”.

Example for the generation of this variant

ACCOUNT ACC=ON,CPUUNIT=15,IOUNIT=5,OUTUNIT=20
TAC tacname,PROGRAM=progname,TACUNIT=0
TAC ....

The following sum is then added to the accounting unit counter of the user for each trans-
action code call: 

15 ∗ CPU utilization + 5 ∗ I/O utilization + 20 ∗ printer output utilization

X



Accounting phases Accounting

238   Using openUTM under Unix Systems and Windows Systems

Combination of fixed-price and utilization-based accounting

You can also combine the two variants above for your accounting purposes by specifying a 
certain fixed price for calling a transaction code and then also charging for the utilization of 
resources (e.g. the CPU utilization). 

The following sum is created and added to the accounting unit counter of the user in the 
accounting phase when a transaction code is called:

TACUNIT (fixed price for calling a program unit) 
+ CPUUNIT ∗ CPU utilization + IOUNIT∗ I/O utilization
+ OUTUNIT ∗ printer output utilization

Example for the generation of this variant

ACCOUNT ACC=ON,CPUUNIT=15
TAC tacnam1,PROGRAM=progname1,TACUNIT=1
TAC tacnam2,PROGRAM=progname2,TACUNIT=2
:
:

11.2.3 Accounting phase 

In the accounting phase, openUTM determines the resources utilized per program unit run, 
calculates a weighted total from this figure and from the generated weights and fixed prices. 
openUTM then adds this result to the accounting unit counter of the UTM user. The value 
of this counter is contained in the accounting record which openUTM writes in the 
accounting file. 

openUTM always writes an accounting record when a certain number of accounting units 
have been accumulated for the user, or when the user signs off and is not signed on to the 
UTM application via any other connection. The number of accounting units for which 
openUTM writes an accounting record is specified in the KDCDEF generation in ACCOUNT 
MAXUNIT=. You must note the following:

– You should not select a value for MAXUNIT that is too small because writing accounting 
records too often could affect the performance of the application negatively. 

– You should not select a value for MAXUNIT that is too large because the accounting 
units that have not yet been written to the accounting file could be lost when the appli-
cation crashes (accounting is not subject to transaction management). 

After the accounting record has been written to the accounting file, the accounting unit 
counter and the counter for the number of TACs called are reset to zero. 



Accounting Accounting phases

Using openUTM under Unix Systems and Windows Systems  239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

ua
ry

 2
0

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_U
W

\e
n

\b
et

rX
N

_e
.k

11

Activating the accounting phase

With the KDCDEF control statement ACCOUNT ACC=ON, accounting is also activated for 
the UTM application in the generation.

The accounting phase can also be activated and deactivated during live operation by the 
UTM administration.

– using the KDCAPPL ACCOUNT=ON command
– or using WinAdmin/WebAdmin
– or using the KDCADMI program call KC_MODIFY_OBJECT with 

obj_type=KC_DIAG_AND_ACCOUNT_PAR

Deactivating the accounting phase

The accounting phase can only be deactivated by administration:

– using the KDCAPPL ACCOUNT=OFF command
– or using WinAdmin/WebAdmin
– or using the KDCADMI program call KC_MODIFY_OBJECT with 

obj_type=KC_DIAG_AND_ACCOUNT_PAR

Data of the accounting record

The accounting record is of record type UTMA. The accounting record contains the 
following data: 
– name of the UTM application
– UTM user ID
– time the user signs on via the current connection
– value of the accounting unit counter
– number of TACs called with TACUNIT > 0 since the sign-on or since the last record was 

written 

You can also collect calculation data while the accounting phase is running. This allows you 
to check the weights at any time. 



Accounting phases Accounting

240   Using openUTM under Unix Systems and Windows Systems

11.2.4 Evaluation

The results of the accounting phase are the accounting records in the accounting file. 
openUTM creates the accounting file in the subdirectory ACCNT of the base directory 
filebase of the UTM application. The accounting file is named 0001.pid where pid is the 
process ID of the logging process of the UTM application in which the utmlog program is 
running. 

openUTM writes the accounting records as well as the calculation records in the file 
0001.pid.

After deactivating and then reactivating the accounting phase, openUTM continues to write 
the records to the same file. The calculation and accounting records collected before 
deactivating are not overwritten. 

You can evaluate the file yourself.

The structure of the accounting records is described in the Appendix on page 303. 

11.2.5 Error situations 

If accounting cannot write an accounting record due to an error, e.g. because there is not 
enough space on the disk, openUTM generates message K079 and terminates the calcu-
lation and/or accounting phase. An insert of message K079 contains the cause of the error. 
The application continues execution.

After the error has been corrected, the calculation and/or accounting phase can be reacti-
vated again by the UTM administration (e.g. using the administration command KDCAPPL). 



Accounting Accounting with distributed processing

Using openUTM under Unix Systems and Windows Systems  241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

ua
ry

 2
0

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_U
W

\e
n

\b
et

rX
N

_e
.k

11

11.3 Accounting with distributed processing 

During distributed processing, every participating application can, in principle, start services 
in other applications. Accounting in distributed processing is primarily of use when the roles 
are unevenly distributed, i.e. one application acts entirely as the job submitter and other 
applications assume the job receiver roles. Consequently, in this section, the applications 
are referred to as job-submitting applications and job-receiving applications. 

The job-submitter application (job submitter) uses services provided by program units in 
remote partner applications (job receivers). In this case, the job-submitting application can 
be charged with the incurred resource utilization as a fixed price. Accounting units are 
assigned as a fixed price to the LTACs in the job-submitting application to do this. LTACs 
are the transaction codes that are defined in the job-submitting application for a service in 
a job-receiving application.

More details can be found in the openUTM manual “Generating Applications”, LTAC 
statement, LTACUNIT operand.

Calculation phase (determining the fixed price)

The average resource utilization of the program units that provided services for the job-
submitting application is determined in the calculation phase in the job-receiving appli-
cation. You can specify fixed prices based on the utilization values determined that will be 
charged to the users of LTACs in the job-submitting application. 

openUTM counts the accounting units used in the LTAC calls in a field of the calculation 
record in the job-submitting application. 

Accounting phase

In the job-receiving application, all utilization values that are incurred while processing 
jobs for a job-submitting application are assigned as follows:

– With LU6.1, to the sessions (LSES) to the job submitter

– With OSI TP, to the associations (OSI-LPAP ... ,ASSOCIATION-NAME=), if the OSI TP-
job submitter did not sign on under a real user ID

The total for the services provided is therefore charged to the job-submitting application. 
The resources used by the individual users of the job-submitting application cannot be 
determined. 

In the job-submitting application, openUTM adds the number of accounting units 
specified in the LTAC statement in the KDCDEF generation when an LTAC is called to the 
accounting unit counter of the user of the local application.



Restrictions Accounting

242   Using openUTM under Unix Systems and Windows Systems

11.4 Restrictions 

Please note the following when using UTM accounting: 

● Transaction logging is not implemented when writing accounting information; this 
means that accounting units may be lost if an application crashes. The maximum value 
per user can be limited in the generation. 

● For applications with distributed processing, each LTAC call is counted in the calcu-
lation phase. No account is taken of whether or not a session could be opened following 
PEND processing. 

● The recording of resource utilization begins before a program unit starts and ends with 
the processing of the PEND call. The remaining processing power (basic utilization) of 
the UTM tasks is not charged to the users. 

● Resetting a transaction has the following effects: All values except for CPU are reset. 
Since openUTM accumulates the utilization values in the PEND processing, a reset 
action can only reset utilization values if they originate in the current program unit run. 

● If only asynchronous jobs have been processed for the user since the last application 
start, the sign-on time to the application is shown as zero in the accounting record. 

● For the event exit VORGANG, the resource utilization is only recorded at the start of the 
service. 

● For the event service BADTACS, the program unit weight cannot be taken into account 
in the accounting phase. 



Using openUTM under Unix Systems and Windows Systems  243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

12 Checking performance with openSM2 and 
KDCMON 

The performance of a UTM application is influenced by various factors. The determining 
factors lie on the one hand in the system environment of a UTM application (configuration 
of the working memory, performance capabilities of peripherals) and on the other hand in 
the UTM application itself (configuration of the application and structure of the program 
units). Performance checks should be carried out at regular intervals while an application 
is running, in order to detect performance bottlenecks at an early stage. The following tools 
are available for checking the performance of UTM applications: 

● Software Monitor openSM2

● UTM event monitor KDCMON with the evaluation tool KDCEVAL

● information services of UTM administration 

openSM2 software monitor

You can monitor the performance of the UTM application using the openSM2 software 
monitor. For details, refer to section “Monitoring with openSM2” on page 245. 

UTM event monitor KDCMON 

The UTM event monitor KDCMON is provided for UTM users. KDCMON is a function 
integrated in openUTM and records information on the runtime characteristics of UTM 
applications and user program units. If performance bottlenecks are detected, then you can 
collect data using KDCMON. You evaluate the data collected with the KDCEVAL tool. You 
can then carry out a detailed analysis based on this evaluation. See page 252.

KDCMON is therefore an important tool for assessing the performance of a UTM appli-
cation. KDCMON can be used to produce detailed performance evaluations when 
measurements using the UTM administration point to a performance bottleneck.



Checking performance

244   Using openUTM under Unix Systems and Windows Systems

Information services in the UTM administration

Some information on diagnosing performance bottlenecks can also be queried using the 
UTM administration information services, e.g. via the KDCINF administration command 
or via the graphical administration tools WinAdmin/WebAdmin. The KDCINF STATISTICS 
command provides data on the utilization of individual selected components of your UTM 
application (e.g. clients). The KDCSINF STATISTICS command also allows you to obtain 
general statistical information on the utilization of the entire application and obtain statistics 
for performance control as well as for assessing the performance of your UTM application 
during operation, for example application load, page pool utilization, number of users 
currently signed on, number of dialog or asynchronous transactions performed per second, 
open dialog and asynchronous services etc. For more information, see the openUTM 
manual “Administering Applications”.
If you administer the UTM application with the WinAdmin or WebAdmin graphical adminis-
tration workstation, then you can also display the statistical data graphically.



Checking performance openSM2

Using openUTM under Unix Systems and Windows Systems  245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

12.1 Monitoring with openSM2 

The openSM2 software monitor provides comprehensive monitoring data for monitoring the 
performance of server systems and storage systems. As of openSM2 V9.0, support is also 
provided for acquiring data specific to UTM applications.

You should make use of the functionality offered by openSM2 to monitor the total system 
load and the behavior of a UTM application in particular and to uncover performance bottle-
necks.

The openSM2 monitoring data does not, however, permit any conclusions to be drawn 
about individual objects of the UTM application, such as program units. Rather, they show 
the behavior of the entire application, for instance average values for the transaction rate, 
the throughput and the processing time.

The conditions listed below must be met to allow openUTM to deliver data to openSM2 and 
openSM2 to acquire, store and prepare UTM data.

Generation of openUTM

The supply of data from openUTM to SM2 must be generated in the UTM application. The 
SM2 operand in the MAX statement is provided for this purpose. One of the values ON or 
OFF must be specified in this operand:

● If MAX...,SM2=ON, delivery of data to openSM2 is activated when the application is 
started. This can then be deactivated and activated again as necessary during live 
operation using the UTM administration facilities.

● If MAX...,SM2=OFF is specified, the delivery of data to openSM2 is permitted for this 
application. It must, however, be explicitly activated during live operation using the UTM 
administration facilities.

If MAX ...,SM2=NO is generated, openUTM cannot deliver any data to openSM2 for this 
application. It is also not possible to activate the delivery of data using the UTM adminis-
tration facilities.

Activating the delivery of data to openSM2 using the UTM administration facilities

The UTM administrator can activate the delivery of data to openSM2 using the command 
KDCAPPL SM2=ON if provision was made for this in the generation (MAX SM2=ON/OFF). 
KDCAPPL SM2=OFF deactivates the delivery of data.

The UTM administrator can use the KDCINF SYSPARM command to determine whether 
the application is able to deliver data to openSM2 and whether it is currently delivering data. 

It is also possible to activate and deactivate delivery of data to openSM2 using the admin-
istration program interface KDCADMI or WinAdmin/WebAdmin.



openSM2 Checking performance

246   Using openUTM under Unix Systems and Windows Systems

Requirements in openSM2

Acquisition of the monitoring data is implemented using the INSPECTOR component of 
openSM2. In order to do this, the UTM applications must be entered in the configuration file 
of the agent. For information on the precise format of the configuration lines, refer to the 
online Help system in the INSPECTOR Manager ("The configuration file" section of the 
relevant agent).

  You will find a description of how the monitoring data is output and evaluated in the 
openSM2 documentation.



Checking performance KDCMON

Using openUTM under Unix Systems and Windows Systems  247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

12.2 UTM event monitor KDCMON

KDCMON only records UTM events. It is possible to use openSM2 and KDCMON together. 

KDCMON can be activated during live operation and then deactivated after the required 
monitoring period. The data is buffered and written to a file.

The tool KDCEVAL is available for evaluating the data acquired by KDCMON.

12.2.1 Starting and stopping data entry 

Data entry can be activated and deactivated using the administration command: 

KDCDIAG KDCMON={ ON | OFF }

This administration function is also available on the KDCADMI program interface and in 
WinAdmin/WebAdmin. 

The UTM administrator can use the following command:

KDCINF SYSPARM 

at any time to determine whether or not data is being recorded. 

If openUTM detects that the KDCMON function is not available when it attempts to activate 
it, then the following message is output to the default destination SYSLOG:

K080 KDCMON is not active

Possible cause: Communication with the log process has been interrupted (Unix systems 
only).

If openUTM detects that the KDCMON function is not available any more while it is 
acquiring data, then openUTM deactivates the collection of data and informs the user of this 
fact with message K080.

X

X



Evaluating data with KDCEVAL Checking performance

248   Using openUTM under Unix Systems and Windows Systems

The following files are generated during collection.

Unix systems  

for each measurement interval openUTM creates a file with the following name:

filebase/KDCMON/nnnn.pid 

where nnnn is the sequential number of the measurement interval, starting with 
0001 after the application has been started, and where pid is the process ID of 
the utmlog process belonging to the current application run.

Windows systems  

openUTM generates a file with the fixed name filebase\KDCMON\0001.

This file remains open from the first KDCDIAG KDCMON=ON command until 
the end of the application run. You can copy this file after you have entered the 
KDCDIAG KDCMON=OFF command. 

Note that the file is empty again after the next KDCDIAG KDCMON=ON 
command or after the next application start.

12.2.2 Evaluating data with KDCEVAL

The data recorded with KDCMON is evaluated with the KDCEVAL tool. Only the data from 
one application can be evaluated in an evaluation run. KDCEVAL requires several param-
eters to control the evaluation run. You must enter these parameters after KDCEVAL has 
been started.

Starting KDCEVAL

You must copy the file that you want to evaluate (nnnn.pid in the KDCMON directory, see 
above) and save it in a file named evalin before you start KDCEVAL. 

You then call KDCEVAL as follows:

utmpath/ex/kdceval (Unix systems) or 

utmpath\ex\kdceval (Windows systems)

After the evaluation program has been started interactively, KDCEVAL outputs the following 
message to request the input of control parameters: 

PLEASE ENTER COMMANDS OR 'HELP' OR 'END' 

X

X

X

X

X

X

W

W

W

W

W

W

W

X

W



Checking performance Evaluating data with KDCEVAL

Using openUTM under Unix Systems and Windows Systems  249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

KDCEVAL control parameters

The program reads the SYSDTA parameters from stdin. The individual commands you can 
use to control the evaluation have the following format: 

APPLINAME applicationname  
Name of the application for which the evaluation is to be carried out.

TIME FROM={ t1 | START }, TO={ t2 | STOP }  
Time specification for defining the evaluation time limits. 

FROM=t1  Start time of the evaluation in seconds.
The time is specified is relative to the time that the data collection was 
activated (e.g. with the KDCDIAG command).

FROM=START  
The evaluation starts at the beginning of the file. 

TO=t2  End time of the evaluation.
The time is specified is relative to the time that the data collection was 
activated (e.g. with the KDCDIAG command).

TO=STOP  The evaluation continues until the end of the file. 

The following apply for t1 and t2:
Minimum value: 0
Maximum value: 99999999 

LIST { (list1, list2,...,listn [ ,TABLE ] )  | ( STD [ ,TABLE ] ) | ( ALL [ ,TABLE ] ) }    
list1, list2,...,listn  

Names of the individual lists to be evaluated. The names that you can 
specify here are indicated on page 253. The TRACE and TRACE2 lists 
must not be specified at the same time.

STD  This evaluation covers the lists TASKS, SUMM, TIMES and TCLASS.

ALL  The evaluation covers all lists apart from TRACE and TRACE2. 

If ALL or STD is specified without TABLE, the round brackets can be 
omitted.

TABLE  If TABLE is specified in addition, the lists are created in a table format that 
can be processed on PC with Excel or another spreadsheet program, see 
page 251. TABLE only works on the segregated lists TASKS, TIMES, 
TCLASS, TACCL, TACPT and TACLIST.

OPTION DECIMAL-SEPARATOR={ COMMA | POINT }  
Defines the decimal separator.

DECIMAL-SEPARATOR=COMMA  
The comma is used as the decimal separator.



Evaluating data with KDCEVAL Checking performance

250   Using openUTM under Unix Systems and Windows Systems

DECIMAL-SEPARATOR=POINT  
The period is used as the decimal separator; this is the default value.

END  This command terminates parameter input. 

The HELP command can also be entered with interactive evaluations. The syntax of the 
commands and the possible list names are output in this case. 

Errors and messages

● If one of the commands APPLINAME, TIME or LIST is missing, the evaluation is 
aborted with the following error message: 

MANDATORY COMMAND MISSING 

● In the case of a syntax error, the following message and the incorrect command are 
displayed:

ERROR IN COMMAND 

● If the time specifications t1 and t2 are inconsistent, the following message is output:

KDCEVAL: WRONG TIME INPUT

● If no records are found in the file for the application or if no data exists within the evalu-
ation time limits, one of the following messages is output:

NO EVALUATION : NO RECORD WITH APPLINAME FOUND 

or

NO EVALUATION : NO RECORD IN TIME_INTERVAL 

● If a DMS error occurs, the following messages are output: 

– If KDCEVAL cannot find the evalin file:

KDCEVAL: NO KDCMON FILE
KDCEVAL: NO EVALUATION

– If the evalin file could not be created by KDCMON:

NO EVALUATION: NO VALID KDCMON FILE



Checking performance Processing evaluation data on the PC

Using openUTM under Unix Systems and Windows Systems  251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

● Version check:

It is only possible to evaluate KDCMON data using KDCEVAL if KDCEVAL has the 
same UTM version as the UTM system code. KDCEVAL checks the version of the 
KDCMON data. If KDCEVAL identifies an illegal version, KDCEVAL aborts the evalu-
ation with the following message: 

NO EVALUATION: INPUT FILE FROM INVALID UTM VERSION 

Result of the KDCEVAL evaluation 

KDCEVAL writes the evaluation to the file 

kdcmon.appliname 

This file is stored in the current directory.

12.2.3 Processing evaluation data on the PC 

If you specify the TABLE operand in addition to the list name in the LIST control parameter 
for KDCEVAL, the lists are created in table form. This type of processing is only possible for 
TASKS, TIMES, TCLASS, TACCL, TACPT, and TACLIST lists.

The lists generated in this way can be processed and formatted graphically on the PC using 
a spreadsheet program such as Excel. The kdceval.xls macro is supplied for Excel for this 
purpose.

Carry out the following steps:

1. Transfer the list file created by KDCEVAL and the kdceval.xls macro to a PC.

The macro requires that the file to be evaluated has the suffix .txt!

2. Call the kdceval.xls macro and read the list file into Excel. Excel then creates a 
separate spreadsheet for each list, as well as an additional sheet with summary infor-
mation.

3. Process the individual lists as desired, e.g. by sorting a list and then converting it into a 
curve chart or bar chart.



Evaluation lists Checking performance

252   Using openUTM under Unix Systems and Windows Systems

12.2.4 Evaluation lists 

Each evaluation list includes the following: 

– a title containing the name of the evaluation list 
– a header, which is identical for all lists 
– the specific evaluation list

The list header is structured as follows:

NAME OF APPLICATION : appliname      DATE           : Wed Nov  5 2014 09:32:39
COMMENCEMENT TIME   :      0  SEC.   KDCEVAL VERSION: V06.3A00
END TIME            :    396  SEC.   openUTM VERSION: V06.3A

The fields are explained below: 

NAME OF APPLICATION  
Name of the application.

DATE  Date of data entry with KDCMON.

COMMENCEMENT TIME  
Start time of the selected evaluation period 
(relative to the start time of the data acquisition) 

END TIME  End time of the selected evaluation period 
(relative to the start time of the data acquisition). 

SYSTEM INFORMATION  
Name and operating system version of the computer and also the execute 
mode (bit mode 32 bit or 64 bit)

In the case of the TRACE and TRACE2 lists, END TIME contains the value 999999 if the 
entire file is evaluated (parameter TIME FROM=START,TO=STOP). 

The processing times are always the ELAPSED TIME (real time). 



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

The following individual evaluations and combinations of evaluations are possible:

TASKS  UTILIZATION OF THE UTM TASKS

SUMM  TRANSACTION EVALUATION

TIMES  DISTRIBUTION OF PROCESSING TIMES

KCOP  KDCS CALLS STATISTIC

WAIT  WAITING TIMES

TCLASS  EVALUATION OF THE TAC CLASSES

TACCL  TAC SPECIFIC TAC CLASS EVALUATION

TACPT  TAC SPECIFIC DISTRIBUTION OF PROCESSING TIMES

TACLIST  TAC SPECIFIC STATISTICS

TRACE  TASK SPECIFIC TRACES

TRACE2  TASK PERFORMANCE TRACES

The individual evaluation lists are described below. 



Evaluation lists Checking performance

254   Using openUTM under Unix Systems and Windows Systems

TASKS: UTILIZATION OF THE UTM TASKS 

This list provides an overview of the utilization levels of the processes of the application. 
Furthermore, the CPU utilization and the number of input and output operations (I/O’s)  are 
indicated for each individual UTM process and the sum is displayed for all tasks of the 
application. 

                          1 = Program      
                           2 = System code                 
                           4 = Bourse Wait                   
|------------------------|                                                                                                              
| PID  | START TIME      | TASK UTILIZATION    , Number Used Tasks:   4 , Number System Tasks:   0      
| 9253 | 09:33:05.542    | <1><---2--><------------------------------------4------------------------------------>
| 9250 | 09:32:41.114    | 1><-----2-----><----------------------------------4---------------------------------->
| 9217 | 09:32:41.114    | <-1-><------2------><--------------------------------4------------------------------->
| 9144 | 09:32:39.010    | <1><----2---><-----------------------------------4----------------------------------->
|------|-----------------| 

                         

PID      CPU-time  Number I/O     Program      System  Bourse Wait  System Task 
9253        19655       16677       13322       32766       323895            N 
9250        16683       14145       11206       54501       328704            N 
9217        33065       27990       22564       60260       311587            N 
9144        19863       16575       13607       41018       341891            N 
Summ        89266       75387 

Explanation of the terms in the list: 

PID  Process ID of the UTM process.

START TIME  Time of the first record of this process (absolute). 

Program  Proportion of processing time of the application program in the UTM 
process. 

System code  of processing time of the UTM system code. 

Bourse Wait  Proportion of time awaited by the process for new jobs to enter the job 
queue.

System Task  Specifies whether this process is a UTM system process.

The times output in the columns Program, System, Database and Bourse Wait are real 
times. The unit used is milliseconds (in the same way as for the CPU time).

A reduction in the number of tasks during the evaluation time limits must be avoided for the 
TASKS evaluation as this would lead to distorted results. In this case you should use other 
evaluation time limits. 



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

SUMM: TRANSACTION EVALUATION 

This list provides an overview of the services and transactions for the evaluation period. 
The list only includes transactions that lie completely within the evaluation period. The 
evaluation tool KDCEVAL also indicates the CPU utilization of all program unit runs that 
were terminated within the evaluation time limits:

 COUNT OF TRANSACTIONS                            :      19126 1)         
                                                                          
 COUNT OF SERVICES                                :       3059 2)         
                                                                          
 COUNT OF DIALOG STEPS                            :      19126            
                                                                          
 NUMBER OF DIALOG STEPS PER SECOND                :      59,91            
                                                                          
 TOTAL CPU-TIME USED IN MSEC                      :      89094 3)          

1)  The KDCDIAG transaction for activating and deactivating the event monitor is not 
counted.

2)  This line indicates the total CPU utilization of the individual program unit runs. This also 
includes the utilization in the UTM and operating system code, insofar as this occurs 
within the program unit runs, as well as the start and end processing of program unit 
runs in openUTM. Other actions of the UTM tasks that do not belong directly to program 
units are not included.



Evaluation lists Checking performance

256   Using openUTM under Unix Systems and Windows Systems

TIMES: DISTRIBUTION OF PROCESSING TIMES 

In tabular form, this list indicates a distribution of processing times for the program units. 
These times do not include the wait time before processing by openUTM. 

The list has the following format:

|-----------------------------------------|  
| PROCESSING TIMES |   NUMBER   | PERCENT |  
| (MSEC)           |            |         |  
|-----------------------------------------|  
|     0 -      100 |      21721 |   99,62 |  
|   101 -      200 |          2 |    0,00 |  
|   201 -      500 |          0 |    0,00 |  
|   501 -     1000 |          0 |    0,00 |  
|  1001 -     2000 |         80 |    0,36 |  
|  2001 -     5000 |          0 |    0,00 |  
|  5001 -    10000 |          0 |    0,00 |  
| 10001 -    20000 |          0 |    0,00 |  
| 20001 -    50000 |          0 |    0,00 |  
| 50001 -   100000 |          0 |    0,00 |  
|       >   100000 |          0 |    0,00 |  
|-----------------------------------------|  

This list indicates the number of complete program unit runs and the percentage for the 
respective time class. 



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

KCOP: UTM CALLS STATISTIC 

This table specifies how often the UTM calls occurred in the evaluation period.

Calls that are not included in the list of calls known to KDCEVAL appear under others. 

This list contains calls that are issued by openUTM for internal processing and are not 
available to the user: 

CONT  Call following formatting or internal database communication.

ADMI  UTM administration action

WAIT  End of processing of a program run. 

NOOP  The buffer area of MESSAREA must be flushed.

The KCOP list has the following format

|-----------------------------|    |-----------------------------| 
| OP  | OM  |        NUMBER   |    | OP  | OM  |        NUMBER   | 
|-----------------------------|    |-----------------------------| 
| ADMI                    7   |    | MPUT  HM                0   | 
| APRO  AM                0   |    | MPUT  ID                0   | 
| APRO  DM                0   |    | MPUT  NE                6   | 
| APRO  IN                0   |    | MPUT  NT            24378   | 
| CONT                19019   |    | MPUT  PM                0   | 
| CTRL  AB                0   |    | MPUT  RM                0   | 
| CTRL  EC                0   |    | NOOP                    0   | 
| CTRL  PE                0   |    | PADM  AC                0   | 
| CTRL  PR                0   |    | PADM  AI                0   | 
| CTRL  SC                0   |    | PADM  AT                0   | 
| DADM  CS                0   |    | PADM  CA                0   | 
| DADM  DA                0   |    | PADM  CS                0   | 
| DADM  DL                0   |    | PADM  OK                0   | 
| DADM  MA                0   |    | PADM  PI                0   | 
| DADM  MV                0   |    | PADM  PR                0   | 
| DADM  RQ                0   |    | PEND  ER                0   | 
| DADM  UI                0   |    | PEND  FC                0   | 
| DGET  BF                0   |    | PEND  FI             3060   | 
| DGET  BN                0   |    | PEND  FR                0   | 
| DGET  FT                0   |    | PEND  KP                0   | 
| DGET  NT                0   |    | PEND  PA             2677   | 
| DGET  PF                0   |    | PEND  PR                0   | 
| DGET  PN                0   |    | PEND  PS                0   | 
| DPUT  NE                0   |    | PEND  RE            16067   | 
| DPUT  NI                0   |    | PEND  RS                0   | 
| DPUT  NT                0   |    | PEND  SP                0   | 
| DPUT  RP                0   |    | PGWT  CM                0   | 
| DPUT  QE                0   |    | PGWT  KP                0   | 



Evaluation lists Checking performance

258   Using openUTM under Unix Systems and Windows Systems

| DPUT  QI                0   |    | PGWT  PR                0   | 
| DPUT  QT                0   |    | PGWT  RB                0   | 
| DPUT  +I                0   |    | PGWT  RT                0   | 
| DPUT  -I                0   |    | PGWT  ST                0   | 
| DPUT  +T                0   |    | PTDA                  144   | 
| DPUT  -T                0   |    | QCRE  NN                0   | 
| FGET                  145   |    | QCRE  WN                0   | 
| FPUT  NE              225   |    | QREL  RL                0   | 
| FPUT  NT                2   |    | RSET                    4   | 
| FPUT  RP                0   |    | SGET  GB             2678   | 
| FPUT  UF                0   |    | SGET  KP                0   | 
| GTDA                    1   |    | SGET  RL                0   | 
| INFO  CD                0   |    | SGET  US                0   | 
| INFO  CK                0   |    | SIGN  CK                0   | 
| INFO  DT                0   |    | SIGN  CL                0   | 
| INFO  FH                0   |    | SIGN  CP                0   | 
| INFO  GN                0   |    | SIGN  OB                0   | 
| INFO  LO                0   |    | SIGN  OF                0   | 
| INFO  PC                0   |    | SIGN  ON                0   | 
| INFO  SI                0   |    | SIGN  ST                0   | 
| INIT                21804   |    | SMSG                    0   | 
| INIT  PU                0   |    | SPUT  DL                0   | 
| INIT  MD                0   |    | SPUT  ES                0   | 
| LPUT                    0   |    | SPUT  GB             2677   | 
| MCOM  BC                0   |    | SPUT  MS                0   | 
| MCOM  EC                0   |    | SPUT  US                0   | 
| MGET                18981   |    | SREL  GB                0   | 
| MGET  NT                0   |    | SREL  LB                0   | 
| MPUT  CM                0   |    | UNLK  DA                0   | 
| MPUT  EM                0   |    | UNLK  GB                0   | 
| MPUT  ES                0   |    | UNLK  US                0   | 
| MPUT  GC                0   |    | WAIT                19153   | 
| OTHERS                  0   |    |                             | 
|-----------------------------|    |-----------------------------| 



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

WAIT: WAITING TIMES 

To establish bottleneck situations, openUTM inserts measuring jobs into the job queue at 
regular intervals if KDCMON is activated. The wait time of the jobs in the UTM queue can 
be determined on the basis of the time at which the job was introduced (absolute time 
stamp) and the time of processing. The time difference between the individual pseudo jobs 
is approximately 10 seconds. 

The following information is logged in the WAIT list: 

● The WAITING TIME column indicates the established wait time for each pseudo job in 
seconds. 

● For these wait times, the evaluation tool KDCEVAL also calculates the maximum, 
minimum, and mean value in seconds and outputs these values under UTM WAITING 
TIMES.

● The NUMBER OF TASKS column indicates the number of processes available in the 
application at this time. The UTM system processes are not included in this number.

If the wait time is too long, the number of UTM tasks should be increased. 

The WAIT list has the following format:

+---------------------------------------------------+  
|  TIME STAMP      | WAITING TIME | NUMBER OF TASKS |  
+---------------------------------------------------+  
|  09:32:41.114    |        0,000 |               4 |  
+---------------------------------------------------+  
|  09:32:51.114    |        0,000 |               4 |  
+---------------------------------------------------+  
|  09:33:01.114    |        0,018 |               4 |  
+---------------------------------------------------+  
|  09:33:11.534    |        0,000 |               4 |  
+---------------------------------------------------+  
|  09:33:21.534    |        0,008 |               4 |  
+---------------------------------------------------+  
|  09:33:31.534    |        0,000 |               4 |  
+---------------------------------------------------+  
|  09:33:41.534    |        0,000 |               4 |  
+---------------------------------------------------+  
                   UTM WAITING TIMES:                  
TIME STAMP :  09:33:01.114    WAITING TIME MAXIMUM :        0,018
TIME STAMP :  09:33:41.534    WAITING TIME MINIMUM :        0,000           
NUMBER OF ENTRIES:       7    WAITING TIME AVERAGE :        0,004           



Evaluation lists Checking performance

260   Using openUTM under Unix Systems and Windows Systems

TCLASS: EVALUATION OF THE TAC CLASSES 

The TCLASS list contains an overview of job processing of TACs in the individual TAC 
classes (1 through 6) in tabular form. In the evaluation, all dialog TACs to which no TAC 
class was assigned during generation with KDCDEF are combined into TAC class 0.

In the UTM generation, the user can define the maximum number of tasks that can operate 
for a TAC class at any one time. When this number is reached, subsequent jobs are placed 
in a TAC class-specific queue. 

|------------------------------------------------------------------------------|    
| TAC-  | NUMBER  |  DISTRIBUTION IN PERCENT  | AVERAGE  | MAXIMUM  | MINIMUM  |    
| CLASS | CALLS   |---------------------------|WAIT TIME |WAIT TIME |WAIT TIME |    
|       |         | NUMBER  | WAIT-  | WAIT-  |          |          |          |    
|       |         | CALLS   | TIME=0 | TIME>0 |(IN MSEC) |(IN MSEC) |(IN MSEC) |    
|------------------------------------------------------------------------------|    
|     0 |      10 |   0,04  |        |        |          |          |          |    
|------------------------------------------------------------------------------|    
|     1 |   21646 |  99,27  |  97,90 |   2,10 |       184|      1010|         1|    
|     2 |       0 |   0,00  |        |        |         0|         0|         0|    
|     3 |       3 |   0,01  |  66,66 |  33,34 |       296|       296|       296|    
|     4 |       0 |   0,00  |        |        |         0|         0|         0|    
|     5 |       0 |   0,00  |        |        |         0|         0|         0|    
|     6 |       0 |   0,00  |        |        |         0|         0|         0|    
|     7 |       0 |   0,00  |        |        |         0|         0|         0|    
|     8 |       0 |   0,00  |        |        |         0|         0|         0|    
|------------------------------------------------------------------------------|    
|     9 |     145 |   0,66  |   2,75 |  97,25 |         1|         2|         1|    
|    10 |       0 |   0,00  |        |        |         0|         0|         0|    
|    11 |       0 |   0,00  |        |        |         0|         0|         0|    
|    12 |       0 |   0,00  |        |        |         0|         0|         0|    
|    13 |       0 |   0,00  |        |        |         0|         0|         0|    
|    14 |       0 |   0,00  |        |        |         0|         0|         0|    
|    15 |       0 |   0,00  |        |        |         0|         0|         0|    
|    16 |       0 |   0,00  |        |        |         0|         0|         0|    
|------------------------------------------------------------------------------|    
|                           |  97,26 |   2,74 |       141|                     |    
|------------------------------------------------------------------------------|    
   21659 DIALOG TACS WERE CALLED                                                    

     145 ASYNCHRONOUS TACS WERE CALLED                                              

The TCLASS list contains the following information:

● The  NUMBER CALLS column indicates the number of TAC calls in the evaluation 
period for a TAC class. 

● The DISTRIBUTION IN PERCENT column contains percentage values. 



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

The subcolumn NUMBER CALLS specifies the percentage of calls of a TAC class 
within the number of all TAC calls. The next two columns contain a percentage 
breakdown of the calls of this TAC class into the following categories:

– calls that were processed immediately (WAITTIME=0), and 
– calls that had to be placed in a TAC class-specific queue (WAITTIME>0). 

● The values in the columns AVERAGE / MINIMUM / MAXIMUM WAIT TIME refer to the 
jobs which openUTM temporarily placed in a TAC class-specific queue. The average 
minimum or maximum wait time of a job per TAC class is displayed. 

i   The average wait time of jobs per TAC class can also be queried with the adminis-
tration command KDCINF TACCLASS or with the corresponding function in 
WinAdmin/WebAdmin or KDCADMI while an application is running.

Wait time for dialog jobs

In the case of dialog jobs, the wait time is the period between the acceptance of the job by 
the application (job retrieved from the queue of the application) and the start of the program 
unit. Displacement can also occur between individual program units.

Wait times for asynchronous jobs

openUTM also records the wait time of asynchronous jobs. The wait time is defined as 
follows:

If the asynchronous job was not created in the current application run, the asynchronous 
wait time is always taken to be the time difference between the start of the application and 
the start of the asynchronous job.

Asynchronous job Definition of “wait time”

Input asynchronous TAC Period between the acceptance of the job by openUTM and the 
start of the asynchronous service.

FPUT call in the program unit Period between the end of the transaction in which the FPUT job 
was executed, and the start of the asynchronous service.

DPUT job in the program unit Period between the conversion of the DPUT into FPUT and the 
start of the asynchronous service.



Evaluation lists Checking performance

262   Using openUTM under Unix Systems and Windows Systems

TACCL: TAC SPECIFIC TAC CLASS EVALUATION 

The TACCL list contains the same information as the TCLASS list, except that it is broken 
down according to the individual transaction codes. It lists all TACs that were called in the 
evaluation period. The TACs are listed in the sequence they first occurred. For an expla-
nation of the individual columns, see the description of the TCLASS list format.

------------------------------------------------------------------ 
|   TAC   |TAC-   |NUMBER  |  DISTRIBUTION IN PERCENT| AVERAGE   |  
|         |CLASS  |CALLS   |-------------------------| WAIT TIME |  
|         |       |        | NUMBER  | WAIT- | WAIT- | (MSEC)    |  
|         |       |        | CALLS   | TIME=0| TIME>0|           |  
------------------------------------------------------------------  
| CVARL   |    1  |   2678 |  12,28  |  98,91|   1,09|       356 |  
------------------------------------------------------------------  
| CVARL1  |    1  |  16066 |  73,68  |  98,91|   1,09|       355 |  
------------------------------------------------------------------  
| CVAR1   |    1  |   2677 |  12,27  |  99,02|   0,98|       358 |  
------------------------------------------------------------------  
| KDCINF  |    3  |      2 |   0,00  | 100,00|   0,00|         0 |  
------------------------------------------------------------------  
| UPDEMP  |    0  |      3 |   0,01  |       |       |           |  
------------------------------------------------------------------  
| PTDA    |    1  |    144 |   0,66  |   0,69|  99,31|        11 |  
------------------------------------------------------------------  
| PTDAA   |    9  |    144 |   0,66  |   2,77|  97,23|         1 |  
------------------------------------------------------------------  
| ...     |    .  |      . |      .  |      .|      .|         . |  
------------------------------------------------------------------  
| ...     |    .  |      . |      .  |      .|      .|         . |  
------------------------------------------------------------------ 

No WAIT TIME specifications are entered for TACs of TAC class 0. 



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

TACPT: TAC SPECIFIC DISTRIBUTION OF PROCESSING TIMES 

This table lists the minimum (MIN), maximum (MAX), and mean (MEAN) processing time 
for all TACs processed within the evaluation period. It only includes the TACs whose start 
and end time lie within the evaluation period. The list has the following format:

------------------------------------------------------------------ 
|   TAC   |TAC-   |NUMBER  |  DISTRIBUTION IN PERCENT| AVERAGE   |  
|         |CLASS  |CALLS   |-------------------------| WAIT TIME |  
|         |       |        | NUMBER  | WAIT- | WAIT- | (MSEC)    |  
|         |       |        | CALLS   | TIME=0| TIME>0|           |  
------------------------------------------------------------------  
| CVARL   |    1  |   2678 |  12,28  |  98,91|   1,09|       356 |  
------------------------------------------------------------------  
| CVARL1  |    1  |  16066 |  73,68  |  98,91|   1,09|       355 |  
------------------------------------------------------------------  
| CVAR1   |    1  |   2677 |  12,27  |  99,02|   0,98|       358 |  
------------------------------------------------------------------  
| KDCINF  |    3  |      2 |   0,00  | 100,00|   0,00|         0 |  
------------------------------------------------------------------  
| UPDEMP  |    0  |      3 |   0,01  |       |       |           |  
------------------------------------------------------------------  
| PTDA    |    1  |    144 |   0,66  |   0,69|  99,31|        11 |  
------------------------------------------------------------------  
| PTDAA   |    9  |    144 |   0,66  |   2,77|  97,23|         1 |  
------------------------------------------------------------------  
| ...     |    .  |      . |      .  |      .|      .|         . |  
------------------------------------------------------------------  
| ...     |    .  |      . |      .  |      .|      .|         . |  
------------------------------------------------------------------ 

The table is sorted in descending order according to the mean processing times. Only 
TACS with a mean processing time > 0 are displayed.



Evaluation lists Checking performance

264   Using openUTM under Unix Systems and Windows Systems

TACLIST: TAC SPECIFIC STATISTICS 

This list contains the following TAC-specific information: 

● The average size of the communication area (column AVERAGE SIZE OF KB) 

● The breakdown of processing time into:

1: program
2: system code

The list has the following format:

------------------------------------------------                                                   
|   TAC    | NUMBER CALLS | AVERAGE SIZE OF KB |                                                   
------------------------------------------------                                                   
| CVARL    |        2678  |               956  | <---------1---------><-------------2------------->
------------------------------------------------                                                   
| CVARL1   |       16066  |               956  | <---------1---------><-------------2------------->
------------------------------------------------                                                   
| CVAR1    |        2677  |               956  | <---1---><-------------------2------------------->
------------------------------------------------                                                   
| KDCINF   |           2  |                 0  | <--------1--------><--------------2-------------->
------------------------------------------------                                                   
| UPDEMP   |           3  |                 0  | <--------------------1-------------------><---2-->
------------------------------------------------                                                   
| PTDA     |         144  |                 1  | <-------1-------><---------------2--------------->
------------------------------------------------                                                   
| PTDAA    |         144  |                 1  | <-----------1----------><------------2----------->
------------------------------------------------                                                   
| ...      |           .  |                 .  |                                                
------------------------------------------------
| ...      |           .  |                 .  |                                                  
------------------------------------------------                                                   

The list is not sorted; the TACs appear in the sequence in which they first occur in the file. 

The list only includes TACs whose start and end times lie within the analysis period. 



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

TRACE: TASK SPECIFIC TRACES 

TRACE lists can be created for a more precise analysis of the execution of a UTM appli-
cation. This list contains all UTM calls for the individual UTM processes in chronological 
order. 

The TRACE list only ever contains the data for the first 6 processes. If data from more than 
6 processes exists for the evaluation period, the TRACE2 table should be used for evalu-
ation.

The list is sorted in chronological order.

The TIME STAMP column contains the time stamp of the corresponding call that was 
logged (to the nearest millisecond).

The TRACE list records the following events and data: 

● The transaction code called (TAC). 

● The transaction ID. In openUTM, a unique transaction ID is assigned to each trans-
action. This identifier is also transferred to the attached databases on the UTM-DB 
interface. In this way, it is possible to link database traces with these UTM traces and 
establish relationships between UTM and DB processes. The transaction ID is made up 
of four parts:

These four parts are logged after the KDCS call INIT.
The VC and TC specifications are of interest to the user. 

SC Session counter: This numbers the application runs. The number is 1 after a 
regeneration, and is incremented by 1 each time the application starts.

VC Service counter: This numbers the services within the application run and runs 
up to 16 777 216 (224).

TC Transaction counter: This numbers the transactions within a service and runs 
up to 32 768 (215).

VN Conversation number: This is the number of an internal UTM table for service 
administration. 



Evaluation lists Checking performance

266   Using openUTM under Unix Systems and Windows Systems

● All UTM calls with operation modifications. Internal UTM calls (WAIT, CONT, ...) are also 
listed. See the KCOP list.

The following are also logged: 

– KCMF for KCMF-relevant calls

– KCRN for KCRN-relevant calls

– KCLT for PADM/DADM calls

– In the event of an abort with PEND ER/ FR as diagnostic information:
– the TAC of the program unit that caused the abort
– the return codes KCRCDC and KCRRCC
– VC and TC for the assignment to the aborted service

– With a PEND RS as diagnostic information: 
– the TAC of the current program unit
– VC and TC for the assignment to the aborted service

As long as no process switch takes place, all calls for processing a dialog step are listed in 
succession in the same PID column. Following a PEND PA/PR/SP, a process switch can 
only occur with a change of TAC class. The interruption of a process by the operating 
system can be seen by the fact that the calls are continued in another process column 
midway through the processing of a dialog step.

Example

      TIME STAMP|  PID :9144        |  PID :9217        |  PID :9250        |  PID :9253        |  PID :      ...
    09:39:11.454+-                 -+-                 -+-                 -|          CVARL1   +-            ...
    09:39:11.454|                   |                   |                   |  INIT             |             ...
    09:39:11.454|                   |                   |                   |   SC :          1 |             ...
    09:39:11.454|                   |                   |                   |   VC :      97829 |             ...
    09:39:11.454|                   |                   |                   |   TC :          3 |             ...
    09:39:11.454+-                 -+-                 -+-                 -|   VN :       1052 +-            ...
    09:39:11.454|                   |                   |                   |  MGET @@          |             ...
    09:39:11.454|  CONT             |                   |                   |                   |             ...
    09:39:11.454|                   |                   |                   |  MPUT NT          |             ...
    09:39:11.457+-                 -+-                 -+-                 -|  PEND RE CVARL1   +-            ...
    09:39:11.462|                   |                   |                   |  WAIT             |             ...
    09:39:11.463|          GTDA     |                   |                   |                   |             ...
    09:39:11.463|  INIT             |                   |                   |                   |             ...
    09:39:11.463|   SC :          1 +-                 -+-                 -+-                 -+-            ...
    09:39:11.463|   VC :      97925 |                   |                   |                   |             ...
    09:39:11.463|   TC :          1 |                   |                   |                   |             ...
    09:39:11.463|   VN :        149 |                   |                   |                   |             ...
    09:39:11.463|                   |                   |  CONT             |                   |             ...
    09:39:11.463|  MGET @@          +-                 -+-                 -+-                 -+-            ...
    09:39:11.463|  FPUT NE GTDAA    |                   |                   |                   |             ...
    09:39:11.463|  MPUT NT          |                   |                   |                   |             ...
    09:39:11.465|  PEND FI          |                   |                   |                   |             ...
    09:39:12.471|  WAIT             +-                 -+-                 -+-                 -+-            ...
    09:39:12.472|                   |                   |          CVARL1   |                   |             ...
    09:39:12.472|                   |                   |  INIT             |                   |             ...
    09:39:12.472|                   |                   |   SC :          1 |                   |             ...
    09:39:12.472+-                 -+-                 -|   VC :      97829 +-                 -+-            ...
    09:39:12.472|                   |                   |   TC :          4 |                   |             ...



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

    09:39:12.472|                   |                   |   VN :       1052 |                   |             ...
    09:39:12.472|                   |                   |  MGET @@          |                   |             ...
    09:39:12.472|  CONT             |                   |                   |                   |             ...
    09:39:12.472+-                 -+-                 -|  MPUT NT          +-                 -+-            ...
    09:39:12.474|                   |                   |  PEND RE CVARL1   |                   |             ...
    09:39:12.479|                   |                   |  WAIT             |                   |             ...
    09:39:12.480|          GTDA     +-                 -+-                 -+-                 -+-            ...
    09:39:12.480|  INIT             |                   |                   |                   |             ...
    09:39:12.480|   SC :          1 |                   |                   |                   |             ...
    09:39:12.480|   VC :      97957 |                   |                   |                   |             ...
    09:39:12.480|   TC :          1 |                   |                   |                   |             ...
    09:39:12.480|   VN :        149 +-                 -+-                 -+-                 -+-            ...
    09:39:12.480|                   |                   |                   |  CONT             |             ...
    09:39:12.480|  MGET @@          |                   |                   |                   |             ...
    09:39:12.480|  FPUT NE GTDAA    |                   |                   |                   |             ...
    09:39:12.480|  MPUT NT          |                   |                   |                   |             ...
    09:39:12.480|                   |                   |                   |                   |             ...
    09:39:12.482|  PEND FI          +-                 -+-                 -+-                 -+-            ...
    09:39:13.488|  WAIT             |                   |                   |                   |             ...



Evaluation lists Checking performance

268   Using openUTM under Unix Systems and Windows Systems

TRACE2: TASK PERFORMANCE TRACE

The most important events in the program units of the applications are contained in the 
TRACE2 evaluation list in sequence. Since the evaluation is not broken down into columns 
for the UTM tasks as in the TRACE list, the TRACE2 list can show any number of tasks. In 
addition to the entries of the TRACE evaluation, TRACE2 also contains important data for 
performance analysis. 

The entries in the evaluation are sorted in chronological order. The TIME STAMP column 
contains the time stamp of the event (accuracy: milliseconds).

The TRACE2 evaluation list records the following events and data:

● Start of a program unit as an entry strt >>> tac with

– Transaction code of the program unit 
– TAC class
– Current I/O and CPU stamp
– Wait time of job in the TAC class

● All UTM function calls with operation code and modification, plus the  information:

– KCMF for KCMF-relevant calls
– KCRN for KCRN-relevant calls
– KCLT for PADM and DADM calls
– For PEND calls with KCOM = ER/FR/RS, the transaction ID (SC,VC,TC, and VN) 

for the assignment to the aborted service.
– If KCRCCC ≠ 0, the return codes KCRCDC and KCRRCC and the transaction ID 

(SC,VC,TC and VN).

● End of the program unit as an entry WAIT end<<<< with

– CPU utilization in the program unit in microseconds in the “CPU” column
– I/O utilization in the program unit in column “I/0”

The structure elements <<<<<< in the list make it easier to read the entries.

Example

TIME STAMP    | TRACE                |    PID |   SC       VC     TC     VN|KCRN    CPU  |KCMF    I/O  |TACCLASS Q.TIME   |          
  09:39:11.454| INIT    -------------|   9253 |    1    97829      3   1052|             |             |                  |          
  09:39:11.454| MGET    -------------|    "   |                            |             |             |                  |          
  09:39:11.454| CONT    -------------|   9144 |    1    97861      1      0|             |             |                  |          
  09:39:11.454+ MPUT NT -------------+   9253 +    1    97829      3   1052+-------------+-------------+------------------+----------
  09:39:11.454|                      |    "   |                            |             |             |                  |          
  09:39:11.455| WAIT    end<<<<<     |   9144 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|        +792 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:11.457| PEND RE -------------|   9253 |    1    97829      3   1052| CVARL1      |             |                  |          
  09:39:11.462+ WAIT    -------------+    "   +----------------------------+-------------+-------------+------------------+----------
  09:39:11.462| WAIT    end<<<<<     |    "   |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|       +4248 |          +3 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:11.462| WAIT    end<<<<<     |   9250 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|         +49 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:11.462| strt >>>GTDA         |   9144 |    1    97925      1    149|       27709 |       28097 | 1   *          7 |         0
  09:39:11.462+                      +    "   +----------------------------+-------------+-------------+------------------+----------
  09:39:11.463| INIT    -------------|    "   |                            |             |             |                  |          
  09:39:11.463| CONT    -------------|   9250 |    1    97829      2      0|             |             |                  |          
  09:39:11.463| MGET    -------------|   9144 |    1    97925      1    149|             |             |                  |          



Checking performance Evaluation lists

Using openUTM under Unix Systems and Windows Systems  269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
2

  09:39:11.463+ FPUT NE -------------+    "   +----------------------------+ GTDAA       +-------------+------------------+----------
  09:39:11.463| WAIT    end<<<<<     |   9250 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|        +585 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:11.463| MPUT NT -------------|   9144 |    1    97925      1    149|             |             |                  |          
  09:39:11.463|                      |    "   |                            |             |             |                  |          
  09:39:11.465+ PEND FI -------------+    "   +----------------------------+-------------+-------------+------------------+----------
  09:39:11.470| WAIT    end<<<<<     |   9250 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|        +116 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:11.470| WAIT    end<<<<<     |   9253 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|        +115 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:11.470| WAIT    end<<<<<     |   9250 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|         +45 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:12.471+ WAIT    -------------+   9144 +    1    97925      1    149+-------------+-------------+------------------+----------
  09:39:12.471| WAIT    end<<<<<     |    "   |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|       +4751 |          +4 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:12.471| WAIT    end<<<<<     |   9253 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|         +65 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:12.471| strt >>>CVARL1       |   9250 |    1    97829      4   1052|       17617 |       14160 | 1   *       1008 |         0
  09:39:12.471+                      +    "   +----------------------------+-------------+-------------+------------------+----------
  09:39:12.472| INIT    -------------|    "   |                            |             |             |                  |          
  09:39:12.472| MGET    -------------|    "   |                            |             |             |                  |          
  09:39:12.472| CONT    -------------|   9144 |    1    97925      1      0|             |             |                  |          
  09:39:12.472+   CC DC 01Z 0000     +   9250 +    1    97829      4   1052+-------------+-------------+------------------+----------
  09:39:12.472| MPUT NT -------------|    "   |                            |             |             |                  |          
  09:39:12.472|                      |    "   |                            |             |             |                  |          
  09:39:12.472| WAIT    end<<<<<     |   9144 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|        +773 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:12.474+ PEND RE -------------+   9250 +    1    97829      4   1052+ CVARL1      +-------------+------------------+----------
  09:39:12.479| WAIT    -------------|    "   |                            |             |             |                  |          
  09:39:12.479| WAIT    end<<<<<     |    "   |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|       +4108 |          +3 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:12.479| WAIT    end<<<<<     |   9253 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|         +48 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:12.479+ strt >>>GTDA         +   9144 +    1    97957      1    149+       27715 +       28101 + 1   *          6 +         0
  09:39:12.479|                      |    "   |                            |             |             |                  |          
  09:39:12.480| INIT    -------------|    "   |                            |             |             |                  |          
  09:39:12.480| CONT    -------------|   9253 |    1    97829      3      0|             |             |                  |          
  09:39:12.480+ MGET    -------------+   9144 +    1    97957      1    149+-------------+-------------+------------------+----------
  09:39:12.480| FPUT NE -------------|    "   |                            | GTDAA       |             |                  |          
  09:39:12.480| WAIT    end<<<<<     |   9253 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|        +596 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:12.480| MPUT NT -------------|   9144 |    1    97957      1    149|             |             |                  |          
  09:39:12.480+                      +    "   +----------------------------+-------------+-------------+------------------+----------
  09:39:12.482| PEND FI -------------|    "   |                            |             |             |                  |          
  09:39:12.488| WAIT    end<<<<<     |   9253 |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|         +48 |          +0 |<<<<<<<<<<<<<<<   |<<<<<<<<<<
  09:39:13.488| WAIT    -------------|   9144 |    1    97957      1    149|             |             |                  |          
  09:39:13.488+ WAIT    end<<<<<     +    "   |<<<<<<<<<<<<<<<<<<<<<<<<<<<<|       +5181 |          +4 |<<<<<<<<<<<<<<<   |<<<<<<<<<<



Evaluation lists Checking performance

270   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
3

13 Load simulation with Workload Capture and 
Replay

Thanks to the Workload Capture & Replay function, it is possible to record UTM application 
communications with UPIC clients and then replay these in combination with adjustable 
load profiles. In this way, it is possible to test the behavior of the UTM application at high 
loads under real-life conditions. 

Workload Capture & Replay consists of the following components: 

● UPIC Capture: Records communication with the UPIC client. 

The trace function BTRACE (BCAM trace), which is present on all the server platforms, 
is used to record UPIC sessions. 

It may then also be necessary to merge the traces.

● UPIC Analyzer: Used to analyze the recorded communication. 

Analysis is performed using the program UPICAnalyzer which is supplied with UPIC on 
64-bit Linux systems.

● UPIC Replay: Used to replay the recorded UPIC session with different load parameters 
(speed, number of clients).

This is done using the program UPICReplay which is supplied with UPIC on 64-bit Linux 
systems.

In addition, the utility program kdcsort is supplied on Unix and Windows systems in order to 
sort the recordings of communications performed in multiprocess operation.

You perform the following steps to run the Workload Capture & Replay function:

1. Enable the BCAM trace and start UPIC communication, see section “Recording the 
UPIC conversation (UPIC Capture)” on page 274.

2. Stop the BCAM trace and merge the BCAM trace entries in a trace file (if necessary), 
see section “Merging trace entries” on page 275.



Workload Capture and Replay

272   Using openUTM under Unix Systems and Windows Systems

These two steps are illustrated in the figure below.

3. Perform a binary transfer of the trace file to the UPIC client on a 64-bit Linux system. 
The UPIC client must be of version 6.3 or higher.

4. Create a UPIC ReplayFile on the 64-bit Linux system on which the UPIC client is 
installed. To do this, call the program UpicAnalyzer with the trace file as input file, see 
the figure. For details, see section “Preparing data using the program UpicAnalyzer” on 
page 276. 



Workload Capture and Replay

Using openUTM under Unix Systems and Windows Systems  273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
3

5. Start the program UpicReplay with the UPIC ReplayFile as the input file, see the figure. 
For details, see section “Replaying the UPIC session using the program UpicReplay” 
on page 277.



UPIC Capture Workload Capture and Replay

274   Using openUTM under Unix Systems and Windows Systems

13.1 Recording the UPIC conversation (UPIC Capture)

For this step, the UTM application can be running on any UTM platform. (BS2000, Unix or 
Windows system). 

The UPIC clients can run on any UPIC platform. Even UPIC clients based on JUpic Java 
classes are fully supported.

During this phase, the communication between the UTM application and the UPIC clients 
must be recorded in full and the trace length must be greater than the maximum message 
length. This is achieved using the UTM function BCAM trace. 

Please note that it must also be possible to repeat the required UTM services as often as 
necessary. 

To do this, proceed as follows:

1. Start the BCAM trace by setting the start parameter BTRACE=ON,length, see page 80. 
You are recommended to specify the maximum value for length to prevent messages 
from being truncated. You can also enable the BCAM trace by means of the adminis-
tration functions (KDCDIAG command or via WinAdmin/WebAdmin). In this case, 
however, the default value (256 bytes) is assumed for length.

2. Perform the UPIC conversations between the UPIC client and the UTM application that 
are required for the load simulation. This also includes all aspects of establishing the 
connection to the UPIC clients. The associated UTM services must be fully completed 
at least once. 

3. End the BCAM trace by means of the KDCDIAG command or via 
WinAdmin/WebAdmin.

This step results in binary TRACE files for all UTM processes. For details on the BTRACE 
files, see openUTM manual ”Messages, Debugging and Diagnostics”.



Workload Capture and Replay Merging trace entries

Using openUTM under Unix Systems and Windows Systems  275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
3

13.2 Merging trace entries

This step is necessary if the UTM application was running with more than one process 
during recording, a scenario that generally applies in the case of UTM applications running 
at medium or high load.

In this step, the binary BTRACE files of all UTM processes are sorted and entered in a 
common BTRACE file on the basis of their timestamps. This process step must always run 
on the same platform as step 1 (UPIC Capture). 

On Unix and Windows systems, you must use the UTM utility program kdcsort to perform 
this step, see below. 

This step results in a sorted binary BTRACE file that contains all the trace entries in the 
correct temporal sequence.

Utility program kdcsort

The utility program kdcsort reads the trace entries from multiple BTRACE files and writes 
the trace records in the correct temporal sequence to an output file. It is started as follows:

In Unix systems, from the shell with

utmpath/ex/kdcsort btrace_out btrace-1 btrace-2 ...  btrace-n 

In Windows systems, from a command prompt window with

utmpath/ex/kdcsort btrace_out btrace-1 btrace-2 ...  btrace-n

Meaning of the parameters

btrace_out Name of the output file to which the sorted trace records are to be written.

btrace-1 btrace-2 ... btrace-n
Names of the recorded BTRACE files. At least two files must be specified. 

The file names must be specified separated by spaces.

The output file from kdcsort can then either be prepared as a common list for all UTM work 
processes using the UTM utility program kdcbtrc or be further processed using the program 
UpicAnalyzer. 

X

X

W

W



UpicAnalyzer Workload Capture and Replay

276   Using openUTM under Unix Systems and Windows Systems

13.3 Preparing data using the program UpicAnalyzer 

The program UpicAnalyzer is supplied with UPIC 6.3 on Linux (64-bit). UpicAnalyzer reads 
the trace records from a BTRACE trace, filters out the UPIC trace records, prepares these 
and writes them to a file in a specific format (UPIC ReplayFile Layout). This file can then be 
used as the input file for the program UpicReplay.

UpicAnalyzer is called as follows from the Linux shell:

UpicAnalyzer inputfile outputfile

Meaning of the parameters

inputfile  Name of the BTRACE file that you have transferred to the Linux system.

outputfile  Name of the output file (UPIC ReplayFile). You can use this file to play back 
the UPIC session with UpicReplay.

The program UpicAnalyzer recognizes the type of platform on which the trace file was 
created and processes the contents in the light of the platform's specific characteristics.

Example

The transferred trace file has the name btrc.sorted. It has to be prepared and the output 
written to the file Replayfile. The call is as follows:

UpicAnalyzer btrc.sorted Replayfile

Output:

Program "UpicAnalyzer" started on operating system Linux Intel   , 64 Bit , Little-Endian
with inputfile "btrc.sorted"
and outputfile "Replayfile"

109 UTM BCAM trace records with 17218 bytes read.
25 UPIC replay records with 2046 bytes written.
Program "UpicAnalyzer" finished.



Workload Capture and Replay UpicReplay

Using openUTM under Unix Systems and Windows Systems  277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
3

13.4 Replaying the UPIC session using the program UpicReplay 

The program UpicReplay is a UPIC client program that is supplied with UPIC as of V6.3 on 
Linux (64-bit). Before replaying the session, you may need to adapt the UPIC configuration 
and/or the generation of the UTM application. 

To replay the session, you should use the same UTM platform as for recording. Exceptions 
are possible, see “Different platforms for Capture and Replay” on page 278.

13.4.1 Adapting the UPIC configuration and UTM generation

To perform the operation on a Linux system, you need the side information file upicfile 
containing at least one entry with the name UPREPLAY. The entry must have the prefix SD. 
For exceptions, see “Different platforms for Capture and Replay” on page 278. 

This entry must be a valid entry with the TAC of a service of the UTM application. (e.g. 
"DEMO"). The program UpicReplayuses this entry to address the UTM application. The 
program UpicReplay may set the TAC appropriately using data from the replay file.

Example of a upicfile entry

Replay with the TAC DEMO. The UTM application UTMTEST1 runs on the computer 
HOST5678. 

SDUPREPLAY UTMTEST1.HOST5678 DEMO LISTENER-PORT=11111 T-TSEL-Format=T

UTMTEST1 must have been generated either in MAX APPLINAME or in a BCAMAPPL 
statement.

Notes on UTM generation

During the UPIC Replay step, and in particular in the case of high load, the UTM application 
may need to permit more UPIC connections from the program UpicReplay than were origi-
nally present during recording. Consequently, it is advisable to use an adequately dimen-
sioned UPIC terminal pool with multiconnect functionality for UPIC access, e.g.:

TPOOL LTERM=REPL,PTYPE=UPIC-R,CONNECT=MULTI,NUMBER=1000

In this case, up to 1000 UPIC clients can sign on simultaneously via the terminal pool. 

If the UPIC Replay step runs at high load then it may be necessary to increase load-
dependent generation parameters. In particular, you must pay attention to the following:

● The UTM cache must be sufficiently large (MAX CACHESIZE)

● The page pool must be sufficiently large (MAX PGPOOL)

● The number of UTM tasks must be sufficient (MAX TASKS)



UpicReplay Workload Capture and Replay

278   Using openUTM under Unix Systems and Windows Systems

● The number of permitted concurrent users must be sufficiently large (MAX CONN-
USERS)

Different platforms for Capture and Replay

During replay, the data is transferred 1:1 to the UTM application. If the data includes, for 
example, hardware-dependent binary data, then this leads to errors if there is a change of 
platform. Consequently, the following applies:

● It is not possible to record a UTM application session on BS2000 and then replay this 
with a UTM application on a Unix, Linux or Windows system. Reason: The data in the 
trace file is present in EBCDIC format and conversion to ASCII is not supported in 
UPIC.

● It is not possible to switch between 32-bit and 64-bit platforms even within one and the 
same family of platforms.

● It is possible to record a UTM application session on a Unix, Linux or Windows system 
and then subsequently play this back using a UTM application on a BS2000 system. 
One prerequisite is that only pure ASCII text data is transferred during the session.

In this case, you must enter HD as the prefix in the upicfile in order to ensure that the 
data is converted correctly between ASCII and EBCDIC.

13.4.2 Calling UpicReplay

UpicReplay plays the recorded UPIC conversations back again, see “Functioning of 
UpicReplay” on page 279. During this step, log messages and warnings are output to stdout 
and debugging or error messages are output to stderr.

UpicReplay is called as follows from a Linux shell:

UpicReplay InputFileName [-c<numberOfClients>]
                   [-s<speedPercentage>] [-d[d]]

Meaning of the parameters

InputFileName   
Name of the UPIC ReplayFile that you have created with UpicAnalyzer.

Mandatory parameter.

-c<numberOfClients>   
numberOfClients specifies the number of UPIC clients for which the recorded 
conversations are to be replayed.

Default: 1, (corresponds to -c1) i.e. only one client is simulated.
The actual limit depends on the relevant system limit



Workload Capture and Replay UpicReplay

Using openUTM under Unix Systems and Windows Systems  279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
3

-s<speedPercentage>   
speedPercentage specifies the replay speed as a percentage of the original 
speed. This makes it possible to simulate long and short thinking times.

Default: 100 (corresponds to -s100) d.h. original speed

-s200 means 200%, i.e. twice the speed, achieved by halving the thinking 
time.

-d  Enable debug output to stderr, i.e. debug messages are output on thread 
generation and there are fewer messages on send and receive calls.

-dd  Enables extended debug output to stderr, i.e. detailed debug messages are 
output. This option is only intended for internal UpicReplay diagnoses.

-dd is only of value when simulating a small number of clients.

Standard: no debug output.

Example

The UPIC conversations recorded in the file Replay.1239 are to be replayed at normal speed 
for 100 clients. The call is as follows: 

UpicReplay Replay.1239 -c100

13.4.3 Functioning of UpicReplay

Whenever possible, UpicReplay replays the communication exactly as it was during 
recording:

● A UPIC thread that replays the relevant UPIC conversation of the UPIC client is 
generated for each UPIC PTERM/LTERM for which a trace record is found in the UPIC 
ReplayFile.

● This UPIC thread runs in a loop that sends all the input messages to the UTM service 
in the same way as during recording, i.e. with the same data content and control flow. 
The procedure is similar for the retrieval of output messages from the UTM application. 
In this case, the content of the output messages is not checked.



UpicReplay Workload Capture and Replay

280   Using openUTM under Unix Systems and Windows Systems

Problems on replay

In the following cases, discrepancies occur between the recording and its reproduction on 
replay:

● Incomplete recording

A UPIC conversation (i.e. a UTM service) was started before recording via BCAM trace 
was activated. 

A corresponding message is output and all input messages from this started conver-
sation for this client are discarded. 

The UPIC client then searches the recording for the start of a new conversation for this 
UPIC client:

– If a new conversation is found in the records recorded for this PTERM/LTERM then 
this client first waits in accordance with the recorded timestamps and then starts the 
load simulation from this point.

– If no new conversation is found then this UPIC replay thread is terminated without 
communication with the UTM application.

● Truncated service

During replay, a UTM service is terminated (normally or abnormally) after fewer commu-
nication steps than in the recording of the UTM application. This can occur:

– if the application program is not able to process the recorded input data correctly 
because, for example, the input message contains time specifications which are 
rejected by the program as "late". The UTM service is therefore terminated prema-
turely.

– if an impermissible UTM transfer admission is used during replay, e.g. missing UTM 
administration authorization.

In this case, a corresponding message is output and the UPIC Replay thread rejects 
further messages until it finds a new start of conversation for this client in the recording. 
The UPIC thread then continues at this start of conversation following a corresponding 
pause time or it terminates if no further conversation is found for this UPIC client.

● Conversation too long

On replay, a UTM service has more communication steps than during recording.

The UPIC thread terminates this service abnormally by disconnecting the connection 
due to unrecorded input data. It also generates a specific warning.

The start of the next conversation for this client is then searched for in the recording. 
The UPIC thread then continues at this start of conversation following a corresponding 
pause time or it terminates if no further conversation is found for this UPIC client.



Workload Capture and Replay UpicReplay

Using openUTM under Unix Systems and Windows Systems  281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. 
Ja

nu
ar

y 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

k1
3

● Incomplete input message 

An input message could not be fully recorded due to the trace record length restriction, 
despite an effort to compress it during recording.

The record is rejected with a warning and the start of the next conversation for this client 
is searched for in the recording.

The UPIC thread then continues at this start of conversation following a corresponding 
pause time or it terminates if no further conversation is found for this UPIC client.

● Other errors

Another, unexpected return code, not covered by the cases listed above, is reported at 
the UPIC program interface.

This situation can occur, for example, if the UTM application is either inaccessible or 
rejects the establishment of a connection.

In such cases, the UPIC thread outputs an error message.

The relevant UPIC thread is terminated without searching for new conversations for this 
client in the recording. All other UPIC conversations that are not directly affected by this 
problem continue to run unchanged.



UpicReplay Workload Capture and Replay

282   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14 Appendix 

14.1 Installing openUTM in Unix systems

Before you can create UTM applications on your system and run UTM applications, 
openUTM itself must be installed in the system. 

“openUTM” is understood to be the UTM system functions (system code), C includes, and 
COBOL COPYs for creating the UTM main routine, programs for the dialog terminal 
processes, the print processes, the timer process (timeout), the network processes and the 
tools for creating, operating and modifying UTM applications. 

i   If you are using a number of hard disks on your processor, the UTM application and 
the database system should be contained on different disks for performance 
reasons. 

The C++ connection module is also compiled at installation.



Installing openUTM in Unix systems Appendix

284   Using openUTM under Unix Systems and Windows Systems

14.1.1 Installing UTM system functions in Unix systems

The operating system determines how you must install openUTM in your system. See the 
Release Notice and delivery information for further information on the installation. The 
Release Notice also lists the version dependencies on products that work with openUTM. 
The installation commands are listed in the delivery information.

utmpath

In this manual the directory containing the files needed to run openUTM is referred to as 
the utmpath. 

The following applies for the path name of utmpath.

● If openUTM is shipped on a platform in 32-bit mode, the following directory is created 
at installation.

utm-installationdirectory/utm63a00/32 for 32-bit mode

● If openUTM is shipped on a platform in 64-bit mode, the following directory is created 
at installation.

utm-installationdirectory/utm63a00/64 for 64-bit mode

● If openUTM is shipped on a platform in 32-bit and 64-bit mode, both directory trees are 
created at installation.

utm-installationdirectory is the directory specified at installation. utm63a00 is the current 
version. This may change if correction versions are shipped. Refer to the Release Notice.

To ensure correct execution of openUTM, you must set the UTMPATH environment variable 
to utmpath, see also section “Starting a UTM application in Unix systems” on page 74.

Example

openUTM is installed under /opt/lib

– You wish openUTM to run in 32-bit mode:
Set UTMPATH to the value /opt/lib/utm63a00/32

– You wish openUTM to run in 64-bit mode:
Set UTMPATH to the value /opt/lib/utm63a00/64



Appendix Installing openUTM in Unix systems

Using openUTM under Unix Systems and Windows Systems  285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.1.2 Using different socket network processes

When openUTM is installed, several socket network processes are provided in 
utmpath/ex. They differ mainly in the number of socket connections that may be active in 
parallel. The maximum number is indicated in the file name, e.g. utmnets1024 is the socket 
network process for up to 1024 socket connections. 

After installation, the process for up to 1024 parallel connections is used by default. The 
name of the currently active socket network process is always utmnets. 

If you want to use a different socket network process, e.g. utmnets2000 for up to 2000 socket 
connections, proceed as follows. 

1. Terminate the UTM application

2. Copy utmpath/ex/utmnets2000 to utmpath/ex/utmnets 
To do this, you need the root authorization.

3. Restart the UTM application 

14.1.3 Installing an openSM2 connection

When openUTM is installed, the connection to openSM2 is also installed automatically. 
When this is done the following actions are performed:

● The script utmsm2 is created under the directory utmpfad/shsc. openSM2 uses this script 
to access the monitoring data of UTM applications.

● In Solaris and Linux systems, the script utmsm2 is then copied to /opt/bin.

● In addition, the two UTM paths resulting from this installation are entered in the file 
/opt/bin/utmsm2.dat, i.e. utm-installation-directory/utm63a00/32 and utm-installation-
directory/utm63a00/64. If the file /opt/bin/utmsm2.dat does not already exist, it is first 
created.

If openUTM is uninstalled, these two paths are removed from the file /opt/bin/utmsm2.dat 
again. If they contain no further entries, the files /opt/bin/utmsm2 and 
/opt/bin/utmsm2.dat are deleted.



Installing openUTM in Windows systems Appendix

286   Using openUTM under Unix Systems and Windows Systems

14.2 Installing openUTM in Windows systems

Before you can create and run UTM applications on your system, you must install openUTM 
itself in your system. 

“openUTM” is understood to be the UTM system functions (system code), C header files to 
create the connection program, programs for dialog terminal processes, the timer process 
(time control), the network processes and the tools used to create, operate and modify UTM 
applications. 

Hardware and software requirements are listed in the Release Notice.

14.2.1 Installation of openUTM-Server

The installation of the UTM system functions can only be done under a logon name with 
administrator privileges. You will need to carry out the following steps:

1. Start the program utm.msi on the openUTM installation DVD.

– by double-clicking in Windows Explorer 

– or in the Windows command prompt by entering the command
msiexec /i utm.msi 

2. Select the products you want to install and install PCMX-32, if this has not yet been 
installed.

PCMX-32 is also used by other products, and a different correction version of 
PCMX-32 may therefore already be installed on your computer with predefined config-
urations for certain network connections. However, it is recommended to use the latest 
version of PCMX-32.

3. Follow the further instructions of the installation program and select the appropriate 
options during the installation.

openUTM checks to make sure that the system requirements are fulfilled and there is 
enough disk storage capacity available. If the check fails, the installation is rejected.

If the the destination directory on the Windows computer already contains a version of 
openUTM then the installation procedure asks you whether the existing installation 
should be uninstalled or overwritten. You are recommended to uninstall the earlier 
version.

4. Remove the CD from the CD-ROM drive after the installation and reboot the system.

If you also want to compile UTM program units or link the UTM application on your Windows 
computer, ensure that Mirosoft Visual Studio is intalled.



Appendix Installing openUTM in Windows systems

Using openUTM under Unix Systems and Windows Systems  287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

utmpath

The directory containing the files required in order to run openUTM is referred to as 
utmpath in this manual. 

During installation, utm-installation-directory is set up as the utmpath directory.

utm-installation-directory is the directory specified at installation. 

14.2.2 User environment

Administrator privileges are not required to develop applications. 

Some tools (e.g. KDCDEF) must be called from a command prompt window. To start these 
tools using the mouse in spite of this fact, shortcuts can be set up. You will find an example 
of starting a UTM application via a shortcut on page 77; additional examples of shortcuts 
can be found in the Quick Start Kit. You will also find more information on shortcuts in the 
Windows documentation.



Structure of the openUTM installation directory Appendix

288   Using openUTM under Unix Systems and Windows Systems

14.3 Structure of the openUTM installation directory

openUTM created the following files in the utmpath during the installation: 

openUTM created the following directories in the utmpath during the installation: 

File Description

AddFirewallEntries.cmd Command file for entering the utmnet/utmnets processes in the 
system's firewall. It is called when UTM is installed.

applifile General control file for all UTM applications

applifile.bak Copy of the APPLIFILE (only with Windows systems)

CPIO.utmsample (only with Unix systems)

msgdescription Message definition file

mtxtin Input file for the KDCMTXT program

RemoveFirewallEntries.cmd Command file for removing the utmnet/utmnets processes from the 
system's firewall. It is called when UTM is uninstalled.

Uninstall.cmd Uninstall file on Windows systems

utm.log Log file of the installation under Unix systems

utmhostname mapped host name file

Directory Description

copy-cobol85 Copy elements for COBOL (Micro Focus compiler)

netcobol Copy elements for COBOL (NetCOBOL compiler)

cpic CPI-C interface

diaglst Data structures for diagnostics

docs Documentation

ex Tools and programs

excel Excel macros

include Header files 

log Log files (only with Windows systems) 

nls National Language Support, message catalogs

oss OSS product (only with Unix systems)

sample openUTM sample files

shsc Directory with UTM shell scripts and procedures (only with Unix systems)

src Source code for modifications and debugging

sys Object libraries and object modules 



Appendix Structure of the openUTM installation directory

Using openUTM under Unix Systems and Windows Systems  289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

tx TX interface

upicl Local UPIC-L directory

xatmi XATMI for UPIC-L clients

Directory Description



Environment variables of a UTM application Appendix

290   Using openUTM under Unix Systems and Windows Systems

14.4 Environment variables of a UTM application

All environment variables that can be used to control openUTM are listed in this section. 
They are divided into the following groups: 

● General environment variables that are evaluated by UTM tools (e.g. KDCDEF, 
KDCUPD) and at the start of the UTM processes.

● Environment variables that are evaluated within the work process while the application 
is running 

● Environment variables that are evaluated by the network processes of a UTM appli-
cation

● Environment variables for the KDCDUMP tool

● Environment variables for the KDCUPD tool

● Environment variables for the X/Open interface XATMI

● Additional environment variables for openUTM on Windows systems

The meaning, range of values, default setting and process that evaluates the environment 
variable are specified for each environment variable. 

All environment variables must be set before the start of the UTM application. 

i   After deinstallation of openUTM on Windows systems you must check the 
UTMPATH and PATH environment variables and clean these up if necessary.



Appendix Environment variables of a UTM application

Using openUTM under Unix Systems and Windows Systems  291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.4.1 General environment variables for openUTM 

UTMPATH 
Meaning 

Directory in which all components of openUTM and the applifile file are located. This 
environment variable must be specified in order to be able to run openUTM.

Range of values 

Directory in which the files needed to run openUTM are located (utmpath, see 
page 284).

Default value 
Unix systems: no default value. UTMPATH must always be set. 
Windows systems: UTMPATH is set at installation; otherwise the default value is 
C:\openUTM-Server

Process 
Evaluated by every UTM process and when a UTM tool is started.

LANG 
Meaning 
Language in which the UTM messages are output.

Range of values 
Language code, e.g. De_DE.646. An NLS catalog must be available for the language. 

Default value 
If LANG is not set or is set incorrectly (e.g. no NLS catalog was found for the language 
code specified), then the messages are output in English. 

Process 
Evaluates in every process that outputs UTM messages when the process is started. 

UTM_IPC_LETTER
Meaning 
Specifies the size of the data area in IPC shared memory. The data area is used to store 
messages that are exchanged between the processes of an application. In 
UTM_IPC_LETTER you specify the number of 4KB blocks that are to comprise the data 
area. 

Range of values 
Minimum: 5 (i.e. 20KB)

Default value 
Depends on the number of semaphores generated. 

Process 
Evaluated in the first work process at the start of a UTM application. 



Environment variables of a UTM application Appendix

292   Using openUTM under Unix Systems and Windows Systems

UTM_IPC_EXTP_LETTER 
Meaning 
Specifies the maximum size of the data area in IPC shared memory that is available for 
each connection. The value specified in UTM_IPC_EXTP_LETTER is interpreted as a 
number of 4KB blocks (see also page 69). 

Range of values 
Minimum: 1 (i.e. 4KB)

Default value 
16 (i.e. 64KB). 

Process 
Evaluated in the first work process at the start of a UTM application. 

UTM_REDIRECT_FILES
Meaning 
Specifies whether output should be written to the existing system files stderr and stdout 
or their redirection destinations or not after the UTM application has been started. If 
UTM_REDIRECT_FILES is set to "YES", output is not written to stdout and stderr. The 
files are automatically switched over and output is written to the files prefix.out.YY-MM-
DD.HHMMSS and prefix.err.YY-MM-DD.HHMMSS (see section “System files stderr 
and stdout” on page 55). 

Value range 
The following values are possible:
– Not set
– "YES"

Default 
Not set. This behavior is compatible with previous versions of openUTM. 

Process 
This is evaluated by the utmmain process when a UTM application is started. 

UTM_NET_HOSTNAME
Meaning 
Specifies the conversion file for mapped host names assigned to the UTM application. 
The conversion file contains the rules according to which mapped host names are 
converted to real host names and vice versa.

Value range 
The following values are possible:
– Not set
– Set without a file name being specified
– Set with a file name being specified

The file name contains the complete path specification for the conversion file.
Maximum length of the file name: 300



Appendix Environment variables of a UTM application

Using openUTM under Unix Systems and Windows Systems  293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

Default 
– Variable not set: 

The behavior is compatible with previous versions of openUTM.
– Variable set: 

The value utmhostname is used as the file name. The system searches for the file 
utmhostname in the local directory (directory in which the utmmain process was 
started).

Process 
The environment variable is evaluated in the first utmwork process when the UTM appli-
cation is started.

UTM_MAIN_KILL_TIME 
Meaning 
Contains the maximum time in seconds that will be waited for the normal termination of 
the timer process and network process(es) or for the start of a work process. 

Range of values 
1 through 99(sec) 

Default value 
10 sec (Windows systems)
1 sec (Unix systems)
You can decrease the time it takes to terminate the UTM application or to subsequently 
start processes by setting UTM_MAIN_KILL_TIME to a smaller value. 

Process 
UTM_MAIN_KILL_TIME is evaluated when the UTM application is started in the 
process utmmain . 

UTM_CORE_DUMP 
Meaning 
Prevents core dumps from being created in Unix systems if
– a UTM dump is created in the work process, or if
– external UTM processes are terminated abnormally.

Range of values 
If UTM_CORE_DUMP is set to "NO", no core dump is created.

Default value 
None. If not set at all or not set to "NO", a core dump is created in the situations 
described above.

Process 
Evaluated in each process of a UTM application when a core dump is requested.



Environment variables of a UTM application Appendix

294   Using openUTM under Unix Systems and Windows Systems

UTM_MSG_DATE 
Meaning 
Prevents the date and time from being prefixed to the outputs with destinations 
STDOUT and STDERR. 

Range of values 
If the environment variable is set and contains the value "NO", neither the date nor time 
is prefixed to messages output to STDOUT and STDERR.

Default value 
None. If the environment variable is not set or does not contain the value "NO", the date 
and time are prefixed to all UTM messages in order to aid diagnostics. Messages from 
UTM tools are exceptions; in this case, the date and time are never prefixed.

Process
UTM_MSG_DATE is evaluated in each process when the process is started.

UTM_MSG_PID 
Meaning 
Prevents the PID from being prefixed to the outputs with destinations STDOUT and 
STDERR. 

Range of values 
If the environment variable is set and contains the value "NO", the PID is not prefixed 
to messages output to STDOUT and STDERR.

Default value 
None. If the environment variable is not set or does not contain the value "NO", the PID 
is prefixed to all UTM messages in order to aid diagnostics (as of openUTM V5.3).

Process
Evaluated once in the utmmain process when the UTM application is started.

UTMTRAC
Meaning 
Optional switch to activate the dynamic trace.

Range of values 
Selection of the UTM programs to be traced and the trace units. See the openUTM 
manual “Messages, Debugging and Diagnostics in Unix Systems and Windows 
Systems” for the syntax. 

Default value 
None. If it is not set, then no dynamic trace will be created.

Process 
Evaluated by every process when the process is started. 



Appendix Environment variables of a UTM application

Using openUTM under Unix Systems and Windows Systems  295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.4.2 Environment variables for work processes

KDCS_C_DEBUG
Meaning 
If KDCS_C_DEBUG is set, then every call of a C/C++ or COBOL program unit and 
every KDCS call in a C/C++ program unit is logged to stdout.

Range of values 
If set, then logging is activated. 

Default value 
No logging. 

Process 
Evaluated in every work process of a UTM application the first time a C/C++ or COBOL 
program unit is called. 

UTM_ABORT_WITH_EXCEPTION 
Meaning 
Specifies whether or not a core is created in Unix systems or the debugger is activated 
in Windows systems when an application crashes. UTM_ABORT_WITH_EXCEPTION 
is only to be used in conjunction with the start parameter STXIT=OFF. 

Range of values 
If set, then a core is created or the debugger is activated when an application crashes. 

Default value 
No core is created or the debugger is not activated when an application crashes. 

Process 
Evaluated in every work process when an application crashes. 

PATH 
Meaning 
Specifies the path under which the shell scripts admlp and utmlp are searched for. The 
admlp script is to be used when printing EAM files. The utmlp script is used when printing 
in the utmprint printer process. 

Range of values 
Number of directories (in the form directory1:directory2:...)

Default value 
If the admlp or utmlp script cannot be found in the directories specified in PATH, then the 
admlp or utmlp script under $UTMPATH/shsc is used. 

Process 
Evaluated in every work process when printing EAM files and in every print process 
when starting the process. 



Environment variables of a UTM application Appendix

296   Using openUTM under Unix Systems and Windows Systems

14.4.3 Environment variables for the KDCDUMP tool

EDITOR 
Meaning 
Contains the editor that is called by the KDCDUMP tool in the EDT command (see the 
openUTM manual “Messages, Debugging and Diagnostics in Unix Systems and 
Windows Systems”). 

Range of values 
Editor program; e.g. vi, Pfe, notepad

Default value 
Unix systems: vi  
Windows systems: wordpad

Process 
EDITOR is evaluated by KDCDUMP when the EDT command is called.

14.4.4 Environment variable for the KDCUPD tool 

UTM_UPD_CHECK_SHM 
Meaning 
In the case of the KKCUPD CHECK functionality, specifies the Shared Memory Key 
required for internal communication between the KDCUPD processes. It is only 
necessary to set the environment variable if the KDCFILE for which a CHECK is to be 
performed belongs to an openUTM version lower than V6.2. By default, you specify the 
value that you defined in the MAX IPCSHMKEY statement during generation. 

Range of values 
See openUTM manual “Generating Applications”, MAX IPCSHMKEY statement.

Default value 
No default value. 

Process 
This environment variable is only evaluated by KDCUPD for CHECK and only in the 
case of KDCFILE versions < V6.2.



Appendix Environment variables of a UTM application

Using openUTM under Unix Systems and Windows Systems  297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.4.5 Environment variables for the X/Open interface XATMI

The environment variables with which you can use to control XATMI applications are listed 
in the following. You will find detailed descriptions of these environment variables in the 
openUTM manual  “Creating Applications with X/Open Interfaces”.

i   The environment variables for controlling traces for the X/Open interfaces 
(enable/disable, set trace path names) are no longer required as of V6.3 since the 
traces can be enabled via the start parameters, see section “Start parameter file of 
the application”. 

XTLCF 
Meaning 
Contains the name of the local configuration file (LCF) used

Range of values 
File name or path name that corresponds to the conventions of the operating system. 
If XTPALCF is used, then XTLCF may only contain a file name.

Default value 
xatmilcf in the directory in which the application was started.

Process 
XTLCF is evaluated in every work process at the start of the process. 

XTPALCF 
Meaning 
Specifies the directory under which openUTM searches for additional descriptions of 
typed buffers (see also the openUTM manual  “Creating Applications with X/Open Inter-
faces”). 

Range of values 
Directories specified in the following form:
Unix systems:  directory1:directory2:...(separated by colons)
Windows systems:  directory1;directory2;...(separated by semi-colons)

Default value 
Only search in the LCF in XTLCF (or in the file xatmilcf, if XTLCF is not set).

Process 
XTPALCF is evaluated in every work process at the start of the process. 



Environment variables of a UTM application Appendix

298   Using openUTM under Unix Systems and Windows Systems

14.4.6 Additional environment variables for openUTM under Unix systems

UTM_NO_GCORE_DUMP 
Meaning 
The UTM_NO_GCORE_DUMP environment variable controls the creation of a gcore 
in the utmgcore script.

Range of values 
You can specify the following values:
– not set
– "YES"

Default value
Not set, i.e. the utmgcore script requests a gcore.

Process 
The UTM_NO_GCORE_DUMP environment variable is only evaluated in the utmgcore 
script by the utmwork process.



Appendix Environment variables of a UTM application

Using openUTM under Unix Systems and Windows Systems  299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.4.7 Additional environment variables for openUTM under Windows 
systems

USERNAME 
Meaning 
Contains the UTM user ID for the dialog terminal process utmdtp.

Range of values 
UTM user ID 

Default value 
Windows logon name under which utmdtp is started.

Process 
USERNAME is evaluated in every utmdtp process at the start. 

UTM_NET_COMMON_WAIT
Meaning 
The throughput of network connections can be increased using 
UTM_NET_COMMON_WAIT. 
This optimization can only be used when only TCP/IP networks are used. 

Range of values 
The environment variable can be set or not set. 

Default value 
Optimization activated (the environment variable is set during installation).

Process 
UTM_NET_COMMON_WAIT is evaluated in every network process at the start of the 
process. 

UTM_NET_SELECT_TIME 
Meaning 
Specifies the maximum wait time in milliseconds in the PCMX call select(). This can 
be used to increase the speed of network accesses. 

Range of values 
Valid values are 1 - 999(msec). 

Default value 
100 (msec). 

Process 
UTM_NET_SELECT_TIME is evaluated in every network process at the start of the 
process. 



Environment variables of a UTM application Appendix

300   Using openUTM under Unix Systems and Windows Systems

UTM_PIPE_TIME 
Meaning 
Contains the wait time in seconds for the named pipe handling in Windows systems.

Range of values 
1 - 99 (sec). 

Default value 
3 (sec). 

Process 
UTM_PIPE_TIME is evaluated in every UTM process that uses named pipes at the start 
of the process. 

UTM_NO_MINIDUMP 
Meaning 
Defines whether or not a mini dump is output when errors occur.

Range of values 
If the environment variable is set and contains the value "YES", no mini dump is output 
when an error occurs.

Default value 
None. If the environment variable is not set or does not contain the value "YES", the 
mini dump is output when errors occur.

Process
UTM_NO_MINIDUMP is evaluated before each writing the mini dump.



Appendix Environment variables of a UTM application

Using openUTM under Unix Systems and Windows Systems  301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

UTM_BREAK_BEFORE_DUMP 
Meaning 
Defines whether or not a breakpoint is requested before each UTM dump.

Range of values 
The environment variable is either defined or not defined; no value is necessary.
If the environment variable is defined, a breakpoint is requested before each UTM 
dump. In this case, the application run can be continued under the control of the 
Microsoft Visual C++ debugger in order to analyze the error. The UTM dump is created 
in the process (as without breakpoint).

Default value 
Environment variable not defined, i.e. no breakpoint.

Process 
The environment variable is evaluated before each UTM dump.

UTM_BREAK_BEFORE_KCSTRMA 

Meaning 
Defines whether or not a breakpoint is requested before each application termination.

Range of values 
The environment variable is either defined or not defined; no value is necessary.
If the environment variable is defined, a breakpoint is requested before each application 
termination. In this case, the application run can be continued under the control of the 
Microsoft Visual C++ debugger in order to analyze the error. A UTM dump is created in 
the process (as without breakpoint).

Default value 
Environment variable not defined, i.e. no breakpoint.

Process 
The environment variable is evaluated before each application termination.



Structure of the accounting records of openUTM Appendix

302   Using openUTM under Unix Systems and Windows Systems

14.5 Structure of the accounting records of openUTM 

The openUTM accounting records are written in the accounting files in the ACCNT 
directory. 

The following two record types exist: 

● Accounting records (UTMA record type)

● Calculation records (UTMK record type)

The data fields of the records that contain UTM-specific information are described in this 
section. 

These records are described in chapter “Accounting” on page 231. 



Appendix Accounting record

Using openUTM under Unix Systems and Windows Systems  303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.5.1 Structure of an accounting record 

Comments: 

1)  Name of the user. In a UTM application without generated users, openUTM enters the 
name of the LTERM partner. 

2)  Sign-on time for this user (USER) to this LTERM in the form:
FRI SEPT 15  00:00:00 2000
If only asynchronous TACs were called for this USER in the current run of the UTM 
application, this field contains ´------´. 

3)  Format: yyyymmddhhmmss (year/month/day/hour/minute/second) 

4)  Sum of the accounting units for this user since the last accounting record was written 
or since the sign-on time. 

5)  The fields are separated by “ | ”.

+00' 

+06 

+16

+26

+54

+70

+83

 

C´UTMA´

Name of the UTM application 

Name of the UTM user

Sign-on time 

Date and time of record creation

Accounting unit counter

Number of TACs called with TACUNIT>0

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

1)

2)

3)

4)

Distance of the field in numbers of bytes (in decimal)

5)



Calculation record Appendix

304   Using openUTM under Unix Systems and Windows Systems

14.5.2 Structure of a calculation record 

Comments: 

1 )   0 is always entered here.

2)  See the KDCDEF statement LTAC...,LTACUNIT= 

3)  The fields are separated by “ | “.

C´UTMK´

Application name of the UTM application

Transaction code of the program unit (TAC)

CPU time in openUTM (msec)

- Reserved - 

Length of the input message

Length of the output message

Number of asynchronous outputs

Accounting units for LTACs

Name of the UTM user

Real time of the program unit run (in msec)

Name of the LTERM partner

+00

+06

+16

+26

+36

+46

+53

+60

+70

+80

+88

+96

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

C´ | ´

Distance of the field in numbers of bytes (in decimal)

1)

2)

3)



Appendix Calculation record

Using openUTM under Unix Systems and Windows Systems  305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

Example: Accounting phase with distributed processing via LU6.1 with LTACs

The application VTV10S on the BRANCH computer communicates with application 
VTV10S on the CENTRAL computer by sending LTAC calls to the application VTV10S on 
CENTRAL. 

BRANCH computer

UTMK |VTV10S   |CVARL1   |       0 |         |   24 |   73 |       0 |       0 |apu      |BRCV0004 |      50 |
UTMK |VTV10S   |CVARL1   |       0 |         |   51 |   73 |       0 |       0 |apu      |BRCV0004 |      50 |
UTMK |VTV10S   |CVARL1   |       0 |         |    6 |  722 |       0 |       0 |apu      |BRCV0004 |      10 |
UTMK |VTV10S   |CVAR1    |      10 |         |  722 | 2205 |       0 |      50 |apu      |BRCV0004 |     100 |
UTMK |VTV10S   |CVAR2    |      20 |         | 2209 |   89 |       0 |       0 |apu      |BRCV0004 |      40 |
UTMA |VTV10S   |apu      |Fri Sep 15 11:34:50 2000  | 20000915113453 |       1133 |    5 |
UTMK |VTV10S   |KDCBADTC |      20 |         |    0 |  240 |       0 |       0 |apu      |BRCV0004 |      80 |
UTMA |VTV10S   |apu      |Fri Sep 15 11:34:50 2000  | 20000915113453 |        655 |    0 |

CENTRAL computer

This application receives the LTACs sent by the application VTV10S on the BRANCH 
computer. The USER and LTERM names entered here correspond to the session and 
LPAP names.

UTMK |VTV10S   |PERE     |      40 |         |   10 |   80 |       0 |       0 |VTV11S   |LPAP1    |     490 |
UTMK |VTV10S   |RT1      |      30 |         |   10 |   12 |       0 |       0 |VTV12S   |LPAP1    |     200 |
UTMK |VTV10S   |MPF      |      20 |         |   10 |   80 |       0 |       0 |VTV12S   |LPAP1    |     240 |
UTMK |VTV10S   |MPF      |      40 |         |   10 |   80 |       0 |       0 |VTV12S   |LPAP1    |     250 |
UTMK |VTV10S   |RT1      |      30 |         | 2205 | 2209 |       0 |       0 |VTV12S   |LPAP1    |     300 |
UTMK |VTV10S   |RT1      |      50 |         | 4400 | 4404 |       0 |       0 |VTV12S   |LPAP1    |     320 |
UTMK |VTV10S   |RT1      |      30 |         |   10 |   14 |       0 |       0 |VTV12S   |LPAP1    |     220 |
UTMK |VTV10S   |ATAC     |       0 |         |    5 |    0 |       0 |       0 |VTV12S   |LPAP1    |     170 |
...
...
UTMK |VTV10S   |VPASS    |    7940 |         |    8 |    4 |       0 |       0 |ap       |LTP00001 |   84460 |



Print output without printer control Appendix

306   Using openUTM under Unix Systems and Windows Systems

14.6 Processing print output without printer control (Unix 
systems)

The print output for an UTM application on Unix systems is controlled in automatic mode by 
the printer shell script utmlp. If a printer is connected to an application, a separate printer 
process exists for this printer. If a printer and hence a printer process receives a print job, 
the printer process starts the printer shell script utmlp. The data is transferred in a pipe. 

You can create utmlp yourself if required. The printer process evaluates the shell variable 
PATH and searches for utmlp. If the printer process does not find utmlp, it starts the printer 
script utmpath/shsc/utmlp, which is supplied with openUTM. You can change this shell script 
for specific applications. 

For further information on the utmlp script, refer to openUTM manual “Generating Applica-
tions”.

If an error occurs while the data is being processed in utmlp, the printer script terminates 
with an exit code not equal to zero. The printer process generates a negative print acknowl-
edgment. openUTM then shuts down the connection to this printer process and generates 
UTM message K046. The printer process terminates. 

All output jobs for a printer are buffered by openUTM in the message queue of the 
associated LTERM partner. The messages to be printed are not lost in the event of a 
negative print acknowledgment. They are sent to this printer the next time a connection is 
established. 



Appendix Sample programs and sample applications

Using openUTM under Unix Systems and Windows Systems  307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.7 Sample programs and sample applications

openUTM is shipped as standard with sample programs, sample procedures, and 
executable sample applications. These examples can be used as templates for your own 
application development and adapted as appropriate. You can find the description of the 
sample programs for administration in openUTM manual “Administering Applications”.

14.7.1 Sample programs for a publish / subscribe server 

These sample programs are intended to illustrate how to implement a simple publish and 
subscribe service in a UTM application.

Function

A user can subscribe to a service. That user then receives or messages published as of 
that time in their USER queue.
The possible commands for this service are:
– help: Get help text
– subscribe: Subscribe to messages 
– unsubscribe: Cancel subscription to messages 
– who: Output the names of the subscribers 
– publish <message>: Publish a message

The service is provided by an asynchronous service with the TAC PUBSUBA which 
constantly listens for jobs at the TAC queue PUBSUBMQ. Users communicate with the 
service over the dialog service PUPSUBD. Job confirmations are sent to the USER queue 
of the user and can, for instance, be read using the dialog program UPDGET (see sample 
programs for asynchronous processing for a UPIC client). In addition, PU can be queried 
in the INIT of each program unit to establish whether messages are waiting in the user's 
queue.

The service need only be started once by calling the TAC PUBSUBA. The open 
asynchronous service is then retained throughout the entire duration of the application. It is 
transferred to the new application by KDCUPD when a new generation is performed.

If the asynchronous service terminates abnormally as the result of an error, the most 
recently processed job is placed in the dead letter queue.

Delivery

The programs are part of the sample application and supplied as pubsubd.c and pubsuba.c.



Sample programs and sample applications Appendix

308   Using openUTM under Unix Systems and Windows Systems

Generation

The statements for the program units in the KDCDEF run are specified as comments in the 
individual source files. This also applies to the statement for the TAC queue "PUBSUBMQ".

At least one GSSB must be generated (MAX GSSBS), as the service uses the GSSB 
"PUBSUBGB" to manage the subscribers.

If the most recently processed job is to be placed in the dead letter queue after the service 
is cancelled, MAX REDELIVERY = (...,0) must be generated. Is this is not done, the job 
remains in the job queue PUBSUBMQ.

14.7.2 Sample program for moving messages from the dead letter queue 
selectively

Function

The dialog program moves all messages from the dead letter queue using a specified 
original destination and a specified new destination. This means that two TACs are 
expected as input - a total of 16 characters. The program confirms the number of messages 
moved.

Delivery

The C program is part of the sample application and is supplied as dadmmvsc.c.

Generation

The statements for the program units in the KDCDEF run are specified as comments in the 
individual source files.



Appendix Sample programs and sample applications

Using openUTM under Unix Systems and Windows Systems  309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.7.3 CPI-C sample programs

You will find the CPI-C sample programs in Unix systems in utmpath/cpic/sample.
 

These programs are contained in the Quick Start Kit under Windows systems, see 
page 311.

14.7.4 Sample procedures in Unix systems

The procedures listed below are supplied as components of the product openUTM on Unix 
systems, and you require them when installing or creating the application, for example. You 
can modify and extend the procedures in accordance with your requirements. The proce-
dures contain comments in English.

The following sample procedures are supplied in the utmpath/shsc directory: 

Name Meaning

../src/kcpsam1.c C source → Asynchronous part

../src/kcpsam2.c C source → Synchronous part

../sys/libcpsam.a Library with objects from → Asynchronous part
→ Synchronous part

Procedure Function

admlp Prints the administration command output with the lp command

CCmainutm Creates an object for the C++ connection

dumpstart Used for evaluating the symbols of a UTM dump

stat2dyn Creates a shared object library from a static library

utmlp For processing print output



Sample programs and sample applications Appendix

310   Using openUTM under Unix Systems and Windows Systems

14.7.5 Sample procedures in Windows systems

In Windows systems, the procedures listed below are openUTM product components and 
are required for the operation of UTM cluster applications. You can modify and extend the 
procedures to meet your own requirements. The procedures contain comments in English.

The following sample procedures are supplied in the directory utmpfad\shsc:

14.7.6 openUTM sample application in Unix systems

openUTM is supplied with a sample application called utmsample. The file CPIO.utmsample 
of the sample application are installed in together with openUTM and are is located in the 
utmpath. 

You install the sample application (including the description) under your user ID by calling 
the procedure utmpath/shsc/install.sample. From the files of the sample application, you 
can immediately create a simple UTM application by calling a shell procedure. 

The sample procedure makes it easier to generate and start up your UTM application. From 
the sample application, you create an application that uses the components and interfaces 
(database connection e.g. Oracle, distributed processing via OSI TP or LU6.1 etc.) that 
your require for your application. The input file for the KDCDEF generation tool and the 
makefile of this application can then be used as templates for your application. 

The source codes are supplied for all programs of the sample application to make it easier 
for you to program your own UTM programs. 

Procedure Function

utm-c.emergency Emergency script for UTM cluster applications

utm-c.failure Failure script for UTM cluster applications



Appendix Sample programs and sample applications

Using openUTM under Unix Systems and Windows Systems  311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

us
 fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s 
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n 

19
x2

4 
V

er
si

o
n 

7.
4u

s 
fü

r 
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

4
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_E
in

sa
tz

_
U

W
\e

n\
b

et
rX

N
_e

.a
n

h

14.7.7 openUTM Quick Start Kit in Windows systems

The UTM sample application inclusive the procedures are supplied in the form of a Quick 
Start Kit with openUTM for Windows. The Quick Start Kit requires an installed openUTM. 

The Quick Start Kit contains executable sample programs, from a CPI-C client up to a UTM 
database application. Icons are set up for this program during the installation so that you 
can start the programs by clicking on the icons with the mouse. This will help you to easily 
learn about the openUTM functionality.

The Quick Start Kit also contains the corresponding program sources, command files and 
configuration files. These source files should help you when programming your own appli-
cations and can be used as templates for your own applications, for example. 

The Quick Start Kit also contains documentation. The documentation contains short 
descriptions of the function of the programs and source files supplied. 



Sample programs and sample applications Appendix

312   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

abnormal termination of a UTM application
Termination of a UTM application, where the KDCFILE is not updated. Abnormal 
termination is caused by a serious error, such as a crashed computer or an error 
in the system software. If you then restart the application, openUTM carries out 
a warm start.

abstract syntax (OSI)
Abstract syntax is defined as the set of formally described data types which can 
be exchanged between applications via OSI TP. Abstract syntax is independent 
of the hardware and programming language used.

acceptor (CPI-C) 
The communication partners in a conversation are referred to as the initiator and 
the acceptor. The acceptor accepts the conversation initiated by the initiator 
with Accept_Conversation.

access list
An access list defines the authorization for access to a particular service, TAC 
queue or USER queue. An access list is defined as a key set and contains one or 
more key codes, each of which represent a role in the application. Users or 
LTERMs or (OSI) LPAPs can only access the service or TAC queue/USER queue 
when the corresponding roles have been assigned to them (i.e. when their key 
set and the access list contain at least one common key code). 

access point (OSI)
See service access point.

ACID properties
Acronym for the fundamental properties of transactions: atomicity, consistency, 
isolation and durability.

administration
Administration and control of a UTM application by an administrator or an 
administration program. 



Glossary

314   Using openUTM under Unix Systems and Windows Systems

administration command
Commands used by the administrator of a UTM application to carry out adminis-
tration functions for this application. The administration commands are 
implemented in the form of transaction codes.

administration journal
See cluster administration journal.

administration program
Program unit containing calls to the program interface for administration. This can 
be either the standard administration program KDCADM that is supplied with 
openUTM or a program written by the user.

administrator
User who possesses administration authorization. 

AES
AES (Advanced Encryption Standard) is the current symmetric encryption 
standard defined by the National Institute of Standards and Technology (NIST) 
and based on the Rijndael algorithm developed at the University of Leuven 
(Belgium). If the AES method is used, the UPIC client generates an AES key for 
each session.

Apache Axis
Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the 
design of Web services and client applications. There are implementations in 
C++ and Java.

Apache Tomcat
Apache Tomcat provides an environment for the execution of Java code on Web 
servers. It was developed as part of the Apache Software Foundation's Jakarta 
project. It consists of a servlet container written in Java which can use the JSP 
Jasper compiler to convert JavaServer pages into servlets and run them. It also 
provides a fully featured HTTP server.

application cold start
See cold start.

application context (OSI)
The application context is the set of rules designed to govern communication 
between two applications. This includes, for instance, abstract syntaxes and 
any assigned transfer syntaxes.



Glossary

Using openUTM under Unix Systems and Windows Systems  315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

application entity (OSI)
An application entity (AE) represents all the aspects of a real application which 
are relevant to communications. An application entity is identified by a globally 
unique name (“globally” is used here in its literal sense, i.e. worldwide), the 
application entity title (AET). Every application entity represents precisely one 
application process. One application process can encompass several application 
entities. 

application entity qualifier (OSI)
Component of the application entity title. The application entity qualifier identifies 
a service access point within an application. The structure of an application entity 
qualifier can vary. openUTM supports the type “number”.

application entity title (OSI)
An application entity title is a globally unique name for an application entity 
(“globally” is used here in its literal sense, i.e. worldwide). It is made up of the 
application process title of the relevant application process and the application entity 
qualifier. 

application information
This is the entire set of data used by the UTM application. The information 
comprises memory areas and messages of the UTM application including the 
data currently shown on the screen. If operation of the UTM application is 
coordinated with a database system, the data stored in the database also forms 
part of the application information.

application process (OSI)
The application process represents an application in the OSI reference model. It 
is uniquely identified globally by the application process title.

application process title (OSI)
According to the OSI standard, the application process title (APT) is used for 
the unique identification of applications on a global (i.e. worldwide) basis. The 
structure of an application process title can vary. openUTM supports the type 
Object Identifier.

application program
An application program is the core component of a UTM application. It 
comprises the main routine KDCROOT and any program units and processes all 
jobs sent to a UTM application.

application restart
see warm start



Glossary

316   Using openUTM under Unix Systems and Windows Systems

application service element (OSI)
An application service element (ASE) represents a functional group of the 
application layer (layer 7) of the OSI reference model. 

application warm start
see warm start.

association (OSI)
An association is a communication relationship between two application 
entities. The term “association” corresponds to the term session in LU6.1.

asynchronous conversation 
CPI-C conversation where only the initiator is permitted to send. An 
asynchronous transaction code for the acceptor must have been generated in 
the UTM application.

asynchronous job
Job carried out by the job submitter at a later time. openUTM includes message 
queuing functions for processing asynchronous jobs (see UTM-controlled queue 
and service-controlled queue). An asynchronous job is described by the 
asynchronous message, the recipient and, where applicable, the required 
execution time. 
If the recipient is a terminal, a printer or a transport system application, the 
asynchronous job is a queued output job. If the recipient is an asynchronous service 
of the same application or a remote application, the job is a background job.
Asynchronous jobs can be time-driven jobs or can be integrated in a job complex. 

asynchronous message
Asynchronous messages are messages directed to a message queue. They are 
stored temporarily by the local UTM application and then further processed 
regardless of the job submitter. Distinctions are drawn between the following 
types of asynchronous messages, depending on the recipient:
– In the case of asynchronous messages to a UTM-controlled queue, all further 

processing is controlled by openUTM. This type includes messages that 
start a local or remote asynchronous service (see also background job) and 
messages sent for output on a terminal, a printer or a transport system 
application (see also queued output job). 

– In the case of asynchronous messages to a service-controlled queue, further 
processing is controlled by a service of the application. This type includes 
messages to a TAC queue, messages to a USER queue and messages to a 
temporary queue. The USER queue and the temporary queue must belong 
to the local application, whereas the TAC queue can be in both the local 
application and the remote application.



Glossary

Using openUTM under Unix Systems and Windows Systems  317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

asynchronous program
Program unit started by a background job. 

asynchronous service (KDCS)
Service which processes a background job. Processing is carried out indepen-
dently of the job submitter. An asynchronous service can comprise one or more 
program units/transactions. It is started via an asynchronous transaction code.

audit (BS2000 systems)
During execution of a UTM application, UTM events which are of relevance in 
terms of security can be logged by SAT for auditing purposes.

authentication
See system access control.

authorization
See data access control. 

Axis
See Apache Axis.

background job
Background jobs are asynchronous jobs destined for an asynchronous service of 
the current application or of a remote application. Background jobs are particu-
larly suitable for time-intensive processing or processing which is not time-
critical and where the results do not directly influence the current dialog. 

basic format
Format in which terminal users can make all entries required to start a service.

basic job
Asynchronous job in a job complex. 

browsing asynchronous messages
A service sequentially reads the asynchronous messages in a service-controlled 
queue. The messages are not locked while they are being read and they remain 
in the queue after they have been read. This means that they can be read simul-
taneously by different services.

bypass mode (BS2000 systems)
Operating mode of a printer connected locally to a terminal. In bypass mode, 
any asynchronous message sent to the printer is sent to the terminal and then 
redirected to the printer by the terminal without being displayed on screen.



Glossary

318   Using openUTM under Unix Systems and Windows Systems

cache
Used for buffering application data for all the processes of a UTM application. 
The cache is used to optimize access to the page pool and, in the case of UTM 
cluster applications, the cluster page pool. 

CCS name (BS2000 systems)
See coded character set name.

client
Clients of a UTM application can be:
– terminals
– UPIC client programs
– transport system applications (e.g. DCAM, PDN, CMX, socket applications 

or UTM applications which have been generated as transport system applica-
tions).

Clients are connected to the UTM application via LTERM partners.
openUTM clients which use the OpenCPIC carrier system are treated just like 
OSI TP partners.

client side of a conversation
This term has been superseded by initiator.

cluster
A number of computers connected over a fast network and which in many cases 
can be seen as a single computer externally. The objective of clustering is 
generally to increase the computing capacity or availability in comparison with 
a single computer.

cluster administration journal
The cluster administration journal consists of:
– two log files with the extensions JRN1 and JRN2 for global administration 

actions,
– the JKAA file which contains a copy of the KDCS Application Area (KAA). 

Administrative changes that are no longer present in the two log files are 
taken over from this copy. 

The administration journal files serve to pass on to the other node applications 
those administrative actions that are to apply throughout the cluster to all node 
applications in a UTM cluster application.

cluster configuration file
File containing the central configuration data of a UTM cluster application. The 
cluster configuration file is created using the UTM generation tool KDCDEF.



Glossary

Using openUTM under Unix Systems and Windows Systems  319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

cluster filebase
Filename prefix or directory name for the UTM cluster files.

cluster GSSB file
File used to administer GSSBs in a UTM cluster application. The cluster GSSB 
file is created using the UTM generation tool KDCDEF.

cluster lock file
File in a UTM cluster application used to manage cross-node locks of user data 
areas.

cluster page pool
The cluster page pool consists of an administration file and up to 10 files 
containing a UTM cluster application’s user data that is available globally in the 
cluster (service data including LSSB, GSSB and ULS). The cluster page pool is 
created using the UTM generation tool KDCDEF.

cluster start serialization file
Lock file used to serialize the start-up of individual node applications (only in 
Unix systems and Windows systems).

cluster ULS file
File used to administer the ULS areas of a UTM cluster application. The cluster 
ULS file is created using the UTM generation tool KDCDEF.

cluster user file
File containing the user management data of a UTM cluster application. The 
cluster user file is created using the UTM generation tool KDCDEF.

coded character set name (BS2000 systems)
If the product XHCS (eXtended Host Code Support) is used, each character set 
used is uniquely identified by a coded character set name (abbreviation: “CCS 
name” or “CCSN”). 

cold start
Start of a UTM application after the application terminates normally (normal 
termination) or after a new generation (see also warm start). 

communication area (KDCS)
KDCS primary storage area, secured by transaction logging and which contains 
service-specific data. The communication area comprises 3 parts: 
– the KB header with general service data
– the KB return area for returning values to KDCS calls



Glossary

320   Using openUTM under Unix Systems and Windows Systems

– the KB program area for exchanging data between UTM program units 
within a single service. 

communication resource manager 
In distributed systems, communication resource managers (CRMs) control 
communication between the application programs. openUTM provides CRMs 
for the international OSI TP standard, for the LU6.1 industry standard and for 
the proprietary openUTM protocol UPIC.

configuration
Sum of all the properties of a UTM application. The configuration describes:
– application parameters and operating parameters
– the objects of an application and the properties of these objects. Objects 

can be program units and transaction codes, communication partners, 
printers, user IDs, etc.

– defined measures for controlling data and system access.
The configuration of a UTM application is defined at generation time (static 
configuration) and can be changed dynamically by the administrator (while the 
application is running, dynamic configuration). The configuration is stored in the 
KDCFILE.

confirmation job
Component of a job complex where the confirmation job is assigned to the basic 
job. There are positive and negative confirmation jobs. If the basic job returns a 
positive result, the positive confirmation job is activated, otherwise, the negative 
confirmation job is activated. 

connection bundle
see LTERM bundle.

connection user ID
User ID under which a TS application or a UPIC client is signed on at the UTM 
application directly after the connection has been established. The following 
applies, depending on the client (= LTERM partner) generation:
– The connection user ID is the same as the USER in the LTERM statement 

(explicit connection user ID). An explicit connection user ID must be 
generated with a USER statement and cannot be used as a “genuine” user 
ID.



Glossary

Using openUTM under Unix Systems and Windows Systems  321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

– The connection user ID is the same as the LTERM partner (implicit 
connection user ID) if no USER was specified in the LTERM statement or if 
an LTERM pool has been generated.

In a UTM cluster application, the service belonging to a connection user ID 
(RESTART=YES in LTERM or USER) is bound to the connection and is 
therefore local to the node.
A connection user ID generated with RESTART=YES can have a separate 
service in each node application. 

contention loser
Every connection between two partners is managed by one of the partners. The 
partner that manages the connection is known as the contention winner. The 
other partner is the contention loser.

contention winner
A connection's contention winner is responsible for managing the connection. 
Jobs can be started by the contention winner or by the 
contention loser. If a conflict occurs, i.e. if both partners in the communication 
want to start a job at the same time, then the job stemming from the contention 
winner uses the connection.

conversation
In CPI-C, communication between two CPI-C application programs is referred 
to as a conversation. The communication partners in a conversation are 
referred to as the initiator and the acceptor. 

conversation ID
CPI-C assigns a local conversation ID to each conversation, i.e. the initiator and 
acceptor each have their own conversation ID. The conversation ID uniquely 
assigns each CPI-C call in a program to a conversation. 

CPI-C 
CPI-C (Common Programming Interface for Communication) is a program 
interface for program-to-program communication in open networks 
standardized by X/Open and CIW (CPI-C Implementor's Workshop). 
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE 
Specification. The interface is available in COBOL and C. In openUTM, CPI-C 
can communicate via the OSI TP, LU6.1 and UPIC protocols and with 
openUTM-LU62.

Cross Coupled System / XCS
Cluster of BS2000 computers with the Highly Integrated System Complex Multiple 
System Control Facility (HIPLEX® MSCF).



Glossary

322   Using openUTM under Unix Systems and Windows Systems

data access control
In data access control openUTM checks whether the communication partner is 
authorized to access a particular object belonging to the application. The 
access rights are defined as part of the configuration.

dead letter queue
The dead letter queue is a TAC queue which has the fixed name 
KDCDLETQ. It is always available to save queued messages sent to 
transaction codes or TAC queues but which could not be processed. The saving 
of queued messages in the dead letter queue can be activated or deactivated 
for each message destination individually using the TAC statement's 
DEAD-LETTER-Q parameter.

DES
DES (Data Encryption Standard) is an international standard for encrypting 
data. One key is used in this method for encoding and decoding. If the DES 
method is used, the UPIC client generates a DES key for each session.

dialog conversation
CPI-C conversation in which both the initiator and the acceptor are permitted to 
send. A dialog transaction code for the acceptor must have been generated in 
the UTM application.

dialog job, interactive job
Job which starts a dialog service. The job can be issued by a client or, when two 
servers communicate with each other (server-server communication), by a 
different application. 

dialog message
A message which requires a response or which is itself a response to a request. 
The request and the response both take place within a single service. The 
request and reply together form a dialog step. 

dialog program
Program unit which partially or completely processes a dialog step. 

dialog service
Service which processes a job interactively (synchronously) in conjunction with 
the job submitter (client or another server application) . A dialog service 
processes dialog messages received from the job submitter and generates dialog 
messages to be sent to the job submitter. A dialog service comprises at least 
one transaction. In general, a dialog service encompasses at least one dialog 
step. Exception: in the event of service chaining, it is possible for more than one 
service to comprise a dialog step. 



Glossary

Using openUTM under Unix Systems and Windows Systems  323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

dialog step
A dialog step starts when a dialog message is received by the UTM application. It 
ends when the UTM application responds. 

dialog terminal process (Unix systems/Windows systems)
A dialog terminal process connects a terminal of a Unix system or a Windows 
system with the work processes of the UTM application. Dialog terminal 
processes are started either when the user enters utmdtp or via the LOGIN 
shell. A separate dialog terminal process is required for each terminal to be 
connected to a UTM application.

Distributed Lock Manager / DLM (BS2000 systems)
Concurrent, cross-computer file accesses can be synchronized using the 
Distributed Lock Manager.
DLM is a basic function of HIPLEX® MSCF.

distributed processing
Processing of dialog jobs by several different applications or the transfer of 
background jobs to another application. The higher-level protocols LU6.1 and 
OSI  TP are used for distributed processing. openUTM-LU62 also permits 
distributed processing with LU6.2 partners. A distinction is made between 
distributed processing with distributed transactions (transaction logging across 
different applications) and distributed processing without distributed transac-
tions (local transaction logging only). Distributed processing is also known as 
server-server communication. 

distributed transaction
Transaction which encompasses more than one application and is executed in 
several different (sub)-transactions in distributed systems. 

distributed transaction processing
Distributed processing with distributed transactions.

dynamic configuration
Changes to the configuration made by the administrator. UTM objects such as 
program units, transaction codes, clients, LU6.1 connections, printers or user IDs can 
be added, modified or in some cases deleted from the configuration while the 
application is running. To do this, it is necessary to create separate adminis-
tration programs which use the functions of the program interface for adminis-
tration. The WinAdmin administration program or the WebAdmin administration 
program can be used to do this, or separate administration programs must be 
created that utilize the functions of the administration program interface.



Glossary

324   Using openUTM under Unix Systems and Windows Systems

encryption level
The encryption level specifies if and to what extent a client message and 
password are to be encrypted. 

event-driven service
This term has been superseded by event service.

event exit
Routine in an application program which is started automatically whenever 
certain events occur (e.g. when a process is started, when a service is termi-
nated). Unlike event services, an event exit must not contain any KDCS, CPI-C 
or XATMI calls.

event function
Collective term for event exits and event services.

event service
Service started when certain events occur, e.g. when certain UTM messages are 
issued. The program units for event-driven services must contain KDCS calls. 

filebase
UTM application filebase 
In BS2000 systems, filebase is the prefix for the KDCFILE, the user log file 
USLOG and the  system log file SYSLOG.
In Unix and Windows systems, filebase is the name of the directory under which 
the KDCFILE, the user log file USLOG, the system log file SYSLOG and other 
files relating to to the UTM application are stored.

generation
Static configuration of a UTM application using the UTM tool KDCDEF and 
creation of an application program.

global secondary storage area
See secondary storage area.

hardcopy mode
Operating mode of a printer connected locally to a terminal. Any message which 
is displayed on screen will also be sent to the printer. 

heterogeneous link
In the case of server-server communication: a link between a UTM application and 
a non-UTM application, e.g. a CICS or TUXEDO application. 



Glossary

Using openUTM under Unix Systems and Windows Systems  325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

Highly Integrated System Complex / HIPLEX® 
Product family for implementing an operating, load sharing and availability 
cluster made up of a number of BS2000 servers. 

HIPLEX® MSCF
(MSCF = Multiple System Control Facility) 
Provides the infrastructure and basic functions for distributed applications with 
HIPLEX®.

homogeneous link
In the case of server-server communication: a link between two UTM applications. 
It is of no significance whether the applications are running on the same 
operating system platforms or on different platforms.

inbound conversation (CPI-C)
See incoming conversation.

incoming conversation (CPI-C)
A conversation in which the local CPI-C program is the acceptor is referred to as 
an incoming conversation. In the X/Open specification, the term “inbound 
conversation” is used synonymously with “incoming conversation”. 

initial KDCFILE
In a UTM cluster application, this is the KDCFILE generated by KDCDEF and 
which must be copied for each node application before the node applications 
are started.

initiator (CPI-C)
The communication partners in a conversation are referred to as the initiator and 
the acceptor. The initiator sets up the conversation with the CPI-C calls 
Initialize_Conversation and Allocate.

insert
Field in a message text in which openUTM enters current values. 

inverse KDCDEF
A function which uses the dynamically adapted configuration data in the 
KDCFILE to generate control statements for a KDCDEF run. An inverse 
KDCDEF can be started “offline” under KDCDEF or “online” via the program 
interface for administration. 



Glossary

326   Using openUTM under Unix Systems and Windows Systems

JDK
Java Development Kit
Standard development environment from Sun Microsystems for the 
development of Java applications.

job
Request for a service provided by a UTM application. The request is issued by 
specifying a transaction code. See also: queued output job, dialog job, background 
job, job complex. 

job complex
Job complexes are used to assign confirmation jobs to asynchronous jobs. An 
asynchronous job within a job complex is referred to as a basic job. 

job-receiving service (KDCS)
A job-receiving service is a service started by a job-submitting service of another 
server application.

job-submitting service (KDCS)
A job-submitting service is a service which requests another service from a 
different server application (job-receiving service) in order to process a job. 

KDCADM
Standard administration program supplied with openUTM. KDCADM provides 
administration functions which are called with transaction codes (administration 
commands). 

KDCDEF
UTM tool for the generation of UTM applications. KDCDEF uses the configuration 
information in the KDCDEF control statements to create the UTM objects 
KDCFILE and the ROOT table sources for the main routine KDCROOT.
In UTM cluster applications, KDCDEF also creates the cluster configuration file, 
the cluster user file, the cluster page pool, the cluster GSSB file and the cluster ULS 
file.

KDCFILE
One or more files containing data required for a UTM application to run. The 
KDCFILE is created with the UTM generation tool KDCDEF. Among other 
things, it contains the configuration of the application. 

KDCROOT 
Main routine of an application program which forms the link between the program 
units and the UTM system code. KDCROOT is linked with the program units to 
form the application program. 



Glossary

Using openUTM under Unix Systems and Windows Systems  327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

KDCS message area
For KDCS calls: buffer area in which messages or data for openUTM or for the 
program unit are made available. 

KDCS parameter area
See parameter area.

KDCS program interface
Universal UTM program interface compliant with the national DIN 66 265 
standard and which includes some extensions. KDCS (compatible data 
communications interface) allows dialog services to be created, for instance, 
and permits the use of message queuing functions. In addition, KDCS provides 
calls for distributed processing.

Kerberos
Kerberos is a standardized network authentication protocol (RFC1510) based 
on encryption procedures in which no passwords are sent to the network in 
clear text.

Kerberos principal
Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two 
locations, namely with the key owner (principal) and the KDC (Key Distribution 
Center).

key code
Code that represents specific access authorization or a specific role. Several 
key codes are grouped into a key set.

key set
Group of one or more key codes under a particular a name. A key set defines 
authorization within the framework of the authorization concept used (lock/key 
code concept or access list concept). A key set can be assigned to a user ID, an 
LTERM partner an (OSI) LPAP partner, a service or a TAC queue.

linkage program
See KDCROOT.

local secondary storage area
See secondary storage area.



Glossary

328   Using openUTM under Unix Systems and Windows Systems

Log4j
Log4j is part of the Apache Jakarta project. Log4j provides information for 
logging information (runtime information, trace records, etc.) and configuring 
the log output. WS4UTM uses the software product Log4j for trace and logging 
functionality. 

lock code
Code protecting an LTERM partner or transaction code against unauthorized 
access. Access is only possible if the key set of the accesser contains the 
appropriate key code (lock/key code concept). 

logging process
Process in Unix and Windows systems that controls the logging of account 
records or monitoring data.

LPAP bundle
LPAP bundles allow messages to be distributed to LPAP partners across 
several partner applications. If a UTM application has to exchange a very large 
number of messages with a partner application then load distribution may be 
improved by starting multiple instances of the partner application and distrib-
uting the messages across the individual instances. In an LPAP bundle, 
openUTM is responsible for distributing the messages to the partner application 
instances. An LPAP bundle consists of a master LPAP and multiple slave 
LPAPs. The slave LPAPs are assigned to the master LPAP on generation. 
LPAP bundles exist for both the OSI TP protocol and the LU6.1 protocol.

LPAP partner
In the case of distributed processing via the LU6.1 protocol, an LPAP partner for 
each partner application must be configured in the local application. The LPAP 
partner represents the partner application in the local application. During 
communication, the partner application is addressed by the name of the 
assigned LPAP partner and not by the application name or address.

LTERM bundle
An LTERM bundle (connection bundle) consists of a master LTERM and 
multiple slave LTERMs. An LTERM bundle (connection bundle) allows you to 
distribute queued messages to a logical partner application evenly across 
multiple parallel connections. 

LTERM group
An LTERM group consists of one or more alias LTERMs, the group LTERMs 
and a primary LTERM. In an LTERM group, you assign multiple LTERMs to a 
connection.



Glossary

Using openUTM under Unix Systems and Windows Systems  329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

LTERM partner
LTERM partners must be configured in the application if you want to connect 
clients or printers to a UTM application. A client or printer can only be connected 
if an LTERM partner with the appropriate properties is assigned to it. This 
assignment is generally made in the configuration, but can also be made 
dynamically using terminal pools.

LTERM pool
The TPOOL statement allows you to define a pool of LTERM partners instead 
of issuing one LTERM and one PTERM statement for each client. If a client 
establishes a connection via an LTERM pool, an LTERM partner is assigned to 
it dynamically from the pool.

LU6.1
Device-independent data exchange protocol (industrial standard) for 
transaction-oriented server-server communication.

LU6.1-LPAP bundle
LPAP bundle for LU6.1 partner applications.

LU6.1 partner
Partner of the UTM application that communicates with the UTM application via 
the LU6.1 protocol. 
Examples of this type of partner are:
– a UTM application that communicates via LU6.1
– an application in the IBM environment (e.g. CICS, IMS or TXSeries) that 

communicates via LU6.1

main process (Unix systems / Windows systems)
Process which starts the UTM application. It starts the work processes, the UTM 
system processes, printer processes, network processes, logging process and the timer 
process and monitors the UTM application. 

main routine KDCROOT
See KDCROOT.

management unit
SE Servers component; in combination with the SE Manager, permits centralized, 
web-based management of all the units of an SE server.

mapped host name
Mapping of the partner application's UTM host name to a real host name or vice 
versa.



Glossary

330   Using openUTM under Unix Systems and Windows Systems

message definition file
The message definition file is supplied with openUTM and, by default, contains 
the UTM message texts in German and English together with the definitions of 
the message properties. Users can take this file as a basis for their own 
message modules.

message destination
Output medium for a message. Possible message destinations for a message 
from the openUTM transaction monitor include, for instance, terminals, TS appli-
cations, the event service MSGTAC, the system log file SYSLOG or TAC queues, 
asynchronous TACs, USER queues, SYSOUT/SYSLST or stderr/stdout. 
The message destinations for the messages of the UTM tools are SYSOUT/
SYSLST and stderr/stdout.

message queue
Queue in which specific messages are kept with transaction management until 
further processed. A distinction is drawn between service-controlled queues and 
UTM-controlled queues, depending on who monitors further processing.

message queuing
Message queuing (MQ) is a form of communication in which the messages are 
exchanged via intermediate queues rather than directly. The sender and 
recipient can be separated in space or time. The transfer of the message is 
independent of whether a network connection is available at the time or not. In 
openUTM there are UTM-controlled queues and service-controlled queues.

message router (BS2000 systems)
Device in a central host or a communication computer which distributes queued 
input messages to different UTM applications which can be located on different 
computers. The message router also allows you to work with multiplex connec-
tions.

MSGTAC
Special event service that processes messages with the message destination 
MSGTAC by means of a program. MSGTAC is an asynchronous service and is 
created by the operator of the application.

multiplex connection (BS2000 systems)
Special method of connecting terminals to a UTM application. A multiplex 
connection enables several terminals to share a single transport connection.

multi-step service (KDCS)
Service carried out in a number of dialog steps. 



Glossary

Using openUTM under Unix Systems and Windows Systems  331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

multi-step transaction
Transaction which comprises more than one processing step. 

Network File System/Service / NFS 
Allows Unix systems to access file systems across the network.

network process (Unix systems / Windows systems)
A process in a UTM application for connection to the network. 

network selector
The network selector identifies a service access point to the network layer of the 
OSI reference model in the local system. 

node
Individual computer of a cluster.

node application
UTM application that is executed on an individual node as part of a UTM cluster 
application.

node bound service
A node bound service belonging to a user can only be continued at the node 
application at which the user was last signed on. The following services are 
always node bound:
– Services that have started communications with a job receiver via LU6.1 or 

OSI TP and for which the job-receiving service has not yet been terminated
– Inserted services in a service stack
– Services that have completed a SESAM transaction
In addition, a user’s service is node bound as long as the user is signed-on at 
a node application.

node filebase
Filename prefix or directory name for the node application's KDCFILE, user log 
file and system log file.

node recovery
If a node application terminates abnormally and no rapid warm start of the 
application is possible on its associated node computer then it is possible to 
perform a node recovery for this node on another node in the UTM cluster. In 
this way, it is possible to release locks resulting from the failed node application 
in order to prevent unnecessary impairments to the running UTM cluster appli-
cation. 



Glossary

332   Using openUTM under Unix Systems and Windows Systems

normal termination of a UTM application
Controlled termination of a UTM application. Among other things, this means 
that the administration data in the KDCFILE are updated. The administrator 
initiates normal termination (e.g. with KDCSHUT N). After a normal termination, 
openUTM carries out any subsequent start as a cold start. 

object identifier
An object identifier is an identifier for objects in an OSI environment which is 
unique throughout the world. An object identifier comprises a sequence of 
integers which represent a path in a tree structure. 

open terminal pool
Terminal pool which is not restricted to clients of a single computer or particular 
type. Any client for which no computer- or type-specific terminal pool has been 
generated can connect to this terminal pool. 

online import
In a UTM cluster application, online import refers to the import of application data 
from a normally terminated node application into a running node application.

online update
In a UTM cluster application, online update refers to a change to the application 
configuration or the application program or the use of a new UTM revision level 
while a UTM cluster application is running.

OpenCPIC
Carrier system for UTM clients that use the OSI TP protocol.

OpenCPIC client
OSI TP partner application with the OpenCPIC carrier system.

openSM2
The openSM2 product line offers a consistent solution for the enterprise-wide 
performance management of server and storage systems. openSM2 offers the 
acquisition of monitoring data, online monitoring and offline evaluation. 

openUTM application
See UTM application.

openUTM cluster
From the perspective of UPIC clients, not from the perspective of the server:
Combination of several node applications of a UTM cluster application to form 
one logical application that is addressed via a common symbolic destination 
name.



Glossary

Using openUTM under Unix Systems and Windows Systems  333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

openUTM-D
openUTM-D (openUTM distributed) is a component of openUTM which allows 
distributed processing. openUTM-D is an integral component of openUTM.

OSI-LPAP bundle
LPAP bundle for OSI TP partner applications.

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI TP partners generated in 
openUTM. In the case of distributed processing via the OSI TP protocol, an OSI-
LPAP partner for each partner application must be configured in the local appli-
cation. The OSI-LPAP partner represents the partner application in the local 
application. During communication, the partner application is addressed by the 
name of the assigned OSI-LPAP partner and not by the application name or 
address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization, 
described this model in the ISO IS7498 standard. The OSI reference model 
divides the necessary functions for system communication into seven logical 
layers. These layers have clearly defined interfaces to the neighboring layers. 

OSI TP
Communication protocol for distributed transaction processing defined by ISO. 
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner
Partner of the UTM application that communicates with the UTM application via 
the OSI TP protocol. 
Examples of such partners are:
– a UTM application that communicates via OSI TP
– an application in the IBM environment (e.g. CICS) that is connected via 

openUTM-LU62
– an application of the OpenCPIC carrier system of the openUTM client
– applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)
See outgoing conversation.

outgoing conversation (CPI-C)
A conversation in which the local CPI-C program is the initiator is referred to as 
an outgoing conversation. In the X/Open specification, the term “outbound 
conversation” is used synonymously with “outgoing conversation”. 



Glossary

334   Using openUTM under Unix Systems and Windows Systems

page pool
Part of the KDCFILE in which user data is stored.
In a standalone application this data consists, for example, of dialog messages, 
messages sent to message queues, secondary memory areas. 
In a UTM cluster application, it consists, for example, of messages to message 
queues, TLS.

parameter area
Data structure in which a program unit passes the operands required for a UTM 
call to openUTM.

partner application
Partner of a UTM application during distributed processing. Higher communi-
cation protocols are used for distributed processing (LU6.1, OSI TP or LU6.2 via 
the openUTM-LU62 gateway). 

postselection (BS2000 systems)
Selection of logged UTM events from the SAT logging file which are to be 
evaluated. Selection is carried out using the SATUT tool. 

prepare to commit (PTC)
Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system 
waits for the partner to confirm the end of the transaction.

preselection (BS2000 systems)
Definition of the UTM events which are to be logged for the SAT audit. Prese-
lection is carried out with the UTM-SAT administration functions. A distinction is 
made between event-specific, user-specific and job-specific (TAC-specific) 
preselection. 

presentation selector
The presentation selector identifies a service access point to the presentation 
layer of the OSI reference model in the local system.

primary storage area
Area in main memory to which the KDCS program unit has direct access, e.g. 
standard primary working area, communication area. 

print administration
Functions for print control and the administration of queued output jobs, sent to a 
printer.



Glossary

Using openUTM under Unix Systems and Windows Systems  335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

print control
openUTM functions for controlling print output. 

printer control LTERM
A printer control LTERM allows a client or terminal user to connect to a UTM 
application. The printers assigned to the printer control LTERM can then be 
administered from the client program or the terminal. No administration rights 
are required for these functions.

printer control terminal
This term has been superseded by printer control LTERM.

printer group (Unix systems)
For each printer, a Unix system sets up one printer group by default that 
contains this one printer only. It is also possible to assign several printers to one 
printer group or to assign one printer to several different printer groups. 

printer pool
Several printers assigned to the same LTERM partner. 

printer process (Unix systems)
Process set up by the main process for outputting asynchronous messages to a 
printer group. The process exists as long as the printer group is connected to the 
UTM application. One printer process exists for each connected printer group.

process
The openUTM manuals use the term “process” as a collective term for 
processes (Unix systems / Windows systems) and tasks (BS2000 systems).

processing step
A processing step starts with the receipt of a dialog message sent to the UTM 
application by a client or another server application. The processing step ends 
either when a response is sent, thus also terminating the dialog step, or when a 
dialog message is sent to a third party.

program interface for administration
UTM program interface which helps users to create their own administration 
programs. Among other things, the program interface for administration provides 
functions for dynamic configuration, for modifying properties and application 
parameters and for querying information on the configuration and the current 
workload of the application. 



Glossary

336   Using openUTM under Unix Systems and Windows Systems

program unit
UTM services are implemented in the form of one or more program units. The 
program units are components of the application program. Depending on the 
employed API, they may have to contain KDCS, XATMI or CPIC calls. They can 
be addressed using transaction codes. Several different transaction codes can 
be assigned to a single program unit.

queue
See message queue.

queued output job
Queued output jobs are asynchronous jobs which output a message, such as a 
document, to a printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it 
is not necessary to create program units to process them. 

Quick Start Kit
A sample application supplied with openUTM (Windows systems).

redelivery
Repeated delivery of an asynchronous message that could not be processed 
correctly because, for example, the transaction was rolled back or the 
asynchronous service was terminated abnormally. The message is returned to the 
message queue and can then be read and/or processed again.

reentrant program
Program whose code is not altered when it runs. In BS2000 systems this 
constitutes a prerequisite for using shared code. 

request
Request from a client or another server for a service function.

requestor
In XATMI, the term requestor refers to an application which calls a service.

resource manager 
Resource managers (RMs) manage data resources. Database systems are 
examples of resource managers. openUTM, however, also provides its own 
resource managers for accessing message queues, local memory areas and 
logging files, for instance. Applications access RMs via special resource 
manager interfaces. In the case of database systems, this will generally be SQL 
and in the case of openUTM RMs, it is the KDCS interface.



Glossary

Using openUTM under Unix Systems and Windows Systems  337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

restart
See screen restart,
see service restart.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to 
the TCP/IP family that implements the ISO transport services (transport 
class 0) based on TCP/IP.

RSA
Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir 
and Adleman). This method uses a pair of keys that consists of a public key and 
a private key. A message is encrypted using the public key, and this message 
can only be decrypted using the private key. The pair of RSA keys is created by 
the UTM application.

SAT audit (BS2000 systems)
Audit carried out by the SAT (Security Audit Trail) component of the BS2000 
software product SECOS. 

screen restart
If a dialog service is interrupted, openUTM again displays the dialog message of 
the last completed transaction on screen when the service restarts provided that 
the last transaction output a message on the screen.

SE manager
Web-based graphical user interface (GUI) for the SE series of Business 
Servers. SE Manager runs on the management unit and permits the central 
operation and administration of server units (with /390 architecture and/or x86 
architecture), application units (x86 architecture), net unit and peripherals.

SE server
A Business Server from Fujitsu's SE series.

secondary storage area
Memory area secured by transaction logging and which can be accessed by the 
KDCS program unit with special calls. Local secondary storage areas (LSSBs) 
are assigned to one service. Global secondary storage areas (GSSBs) can be 
accessed by all services in a UTM application. Other secondary storage areas 
include the terminal-specific long-term storage (TLS) and the user-specific long-term 
storage (ULS). 



Glossary

338   Using openUTM under Unix Systems and Windows Systems

selector
A selector identifies a service access point to services of one of the layers of the 
OSI reference model in the local system. Each selector is part of the address of 
the access point.

semaphore (Unix systems / Windows systems)
Unix systems and Windows systems resource used to control and synchronize 
processes. 

server
A server is an application which provides services. The computer on which the 
applications are running is often also referred to as the server.

server-server communication 
See distributed processing. 

server side of a conversation (CPI-C)
This term has been superseded by acceptor.

service
Services process the jobs that are sent to a server application. A service of a 
UTM application comprises one or more transactions. The service is called with 
the service TAC. Services can be requested by clients or by other servers.

service access point
In the OSI reference model, a layer has access to the services of the layer 
below at the service access point. In the local system, the service access point 
is identified by a selector. During communication, the UTM application links up to 
a service access point. A connection is established between two service access 
points. 

service chaining (KDCS)
When service chaining is used, a follow-on service is started without a dialog 
message specification after a dialog service has completed .

service-controlled queue
Message queue in which the calling and further processing of messages is 
controlled by services. A service must explicitly issue a KDCS call (DGET) to 
read the message. There are service-controlled queues in openUTM in the 
variants USER queue, TAC queue and temporary queue.



Glossary

Using openUTM under Unix Systems and Windows Systems  339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

service restart (KDCS)
If a service is interrupted, e.g. as a result of a terminal user signing off or a UTM 
application being terminated, openUTM carries out a service restart. An 
asynchronous service is restarted or execution is continued at the most recent 
synchronization point, and a dialog service continues execution at the most recent 
synchronization point. As far as the terminal user is concerned, the service restart 
for a dialog service appears as a screen restart provided that a dialog message 
was sent to the terminal user at the last synchronization point.

service routine
See program unit.

service stacking (KDCS)
A terminal user can interrupt a running dialog service and insert a new dialog 
service. When the inserted service has completed, the interrupted service 
continues.

service TAC (KDCS)
Transaction code used to start a service.

session
Communication relationship between two addressable units in the network via 
the SNA protocol LU6.1.

session selector
The session selector identifies an access point in the local system to the services 
of the session layer of the OSI reference model.

shared code (BS2000 systems)
Code which can be shared by several different processes. 

shared memory
Virtual memory area which can be accessed by several different processes 
simultaneously. 

shared objects (Unix systems / Windows systems)
Parts of the application program can be created as shared objects. These objects 
are linked to the application dynamically and can be replaced during live 
operation. Shared objects are defined with the KDCDEF statement SHARED-
OBJECT.

sign-on check
See system access control.



Glossary

340   Using openUTM under Unix Systems and Windows Systems

sign-on service (KDCS)
Special dialog service for a user in which program units control how a user signs 
on to a UTM application.

single-step service
Dialog service which encompasses precisely one dialog step.

single-step transaction
Transaction which encompasses precisely one dialog step. 

SOA 
(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the 
form of re-usable, technically independent, loosely coupled services. Services 
can be called independently of the underlying implementations via interfaces 
which may possess public and, consequently, trusted specifications. Service 
interaction is performed via a communication infrastructure made available for 
this purpose.

SOAP
SOAP (Simple Object Access Protocol) is a protocol used to exchange data 
between systems and run remote procedure calls. SOAP also makes use of the 
services provided by other standards, XML for the representation of the data 
and Internet transport and application layer protocols for message transfer.

socket connection
Transport system connection that uses the socket interface. The socket 
interface is a standard program interface for communication via TCP/IP.

standalone application
See standalone UTM application.

standalone UTM application
Traditional UTM application that is not part of a UTM cluster application.

standard primary working area (KDCS)
Area in main memory available to all KDCS program units. The contents of the 
area are either undefined or occupied with a fill character when the program unit 
starts execution. 

start format
Format output to a terminal by openUTM when a user has successfully signed 
on to a UTM application (except after a service restart and during sign-on via the 
sign-on service). 



Glossary

Using openUTM under Unix Systems and Windows Systems  341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

static configuration
Definition of the configuration during generation using the UTM tool KDCDEF.

SYSLOG file
See system log file.

synchronization point, consistency point
The end of a transaction. At this time, all the changes made to the application 
information during the transaction are saved to prevent loss in the event of a 
crash and are made visible to others. Any locks set during the transaction are 
released.

system access control
A check carried out by openUTM to determine whether a certain user ID is 
authorized to work with the UTM application. The authorization check is not 
carried out if the UTM application was generated without user IDs. 

system log file
File or file generation to which openUTM logs all UTM messages for which 
SYSLOG has been defined as the message destination during execution of a UTM 
application.

TAC
See transaction code.

TAC queue
Message queue generated explicitly by means of a KDCDEF statement. A TAC 
queue is a service-controlled queue that can be addressed from any service using 
the generated name. 

temporary queue
Message queue created dynamically by means of a program that can be deleted 
again by means of a program (see service-controlled queue).

terminal-specific long-term storage (KDCS)
Secondary storage area assigned to an LTERM, LPAP or OSI-PAP partner and 
which is retained after the application has terminated. 

time-driven job
Job which is buffered by openUTM in a message queue up to a specific time until 
it is sent to the recipient. The recipient can be an asynchronous service of the 
same application, a TAC queue, a partner application, a terminal or a printer. 
Time-driven jobs can only be issued by KDCS program units. 



Glossary

342   Using openUTM under Unix Systems and Windows Systems

timer process (Unix systems / Windows systems)
Process which accepts jobs for controlling the time at which work processes are 
executed. It does this by entering them in a job list and releasing them for 
processing after a time period defined in the job list has elapsed.

TNS (Unix systems / Windows systems)
Abbreviation for the Transport Name Service. TNS assigns a transport selector 
and a transport system to an application name. The application can be reached 
through the transport system.

Tomcat
see Apache Tomcat

transaction
Processing section within a service for which adherence to the ACID properties 
is guaranteed. If, during the course of a transaction, changes are made to the 
application information, they are either made consistently and in their entirety or 
not at all (all-or-nothing rule). The end of the transaction forms a synchronization 
point.

transaction code/TAC
Name which can be used to identify a program unit. The transaction code is 
assigned to the program unit during static or dynamic configuration. It is also 
possible to assign more than one transaction code to a program unit.

transaction rate
Number of transactions successfully executed per unit of time. 

transfer syntax
With OSI TP, the data to be transferred between two computer systems is 
converted from the local format into transfer syntax. Transfer syntax describes 
the data in a neutral format which can be interpreted by all the partners involved. 
An Object Identifier must be assigned to each transfer syntax. 

transport selector
The transport selector identifies a service access point to the transport layer of 
the OSI reference model in the local system.

transport system application
Application which is based directly on a transport system interface (e.g. CMX, 
DCAM or socket). When transport system applications are connected, the 
partner type APPLI or SOCKET must be specified during configuration. A 
transport system application cannot be integrated in a distributed transaction.



Glossary

Using openUTM under Unix Systems and Windows Systems  343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

TS application
See transport system application.

typed buffer (XATMI)
Buffer for exchanging typed and structured data between communication 
partners. Typed buffers ensure that the structure of the exchanged data is 
known to both partners implicitly.

UPIC
Carrier system for openUTM clients. UPIC stands for Universal Programming 
Interface for Communication.

UPIC Analyzer
Component used to analyze the UPIC communication recorded with UPIC 
Capture. This step is used to prepare the recording for playback using UPIC 
Replay.

UPIC Capture
Used to record communication between UPIC clients and UTM applications so 
that this can be replayed subsequently (UPIC Replay).

UPIC client
The designation for openUTM clients with the UPIC carrier system.

UPIC Replay
Component used to replay the UPIC communication recorded with UPIC 
Capture and prepared with UPIC Analyzer.

user exit
This term has been superseded by event exit.

user ID
Identifier for a user defined in the configuration for the UTM application (with an 
optional password for system access control) and to whom special data access 
rights (system access control) have been assigned. A terminal user must specify 
this ID (and any password which has been assigned) when signing on to the 
UTM application. In BS2000 systems, system access control is also possible 
via Kerberos. 
For other clients, the specification of a user ID is optional, see also connection 
user ID. 
UTM applications can also be generated without user IDs.



Glossary

344   Using openUTM under Unix Systems and Windows Systems

user log file
File or file generation to which users write variable-length records with the 
KDCS LPUT call. The data from the KB header of the KDCS communication area 
is prefixed to every record. The user log file is subject to transaction 
management by openUTM.

USER queue
Message queue made available to every user ID by openUTM. A USER queue is 
a service-controlled queue and is always assigned to the relevant user ID. You 
can restrict the access of other UTM users to your own USER queue.

user-specific long-term storage
Secondary storage area assigned to a user ID, a session or an association and which 
is retained after the application has terminated. 

USLOG file
See user log file.

UTM application
A UTM application provides services which process jobs from clients or other 
applications. openUTM is responsible for transaction logging and for managing 
the communication and system resources. From a technical point of view, a 
UTM application is a process group which forms a logical server unit at runtime.

UTM cluster application
UTM application that has been generated for use on a cluster and that can be 
viewed logically as a single application. 
In physical terms, a UTM cluster application is made up of several identically 
generated UTM applications running on the individual cluster nodes.

UTM cluster files
Blanket term for all the files that are required for the execution of a UTM cluster 
application. This includes the following files:
– Cluster configuration file
– Cluster user file
– Files belonging to the cluster page pool
– Cluster GSSB file
– Cluster ULS file
– Files belonging to the cluster administration journal*
– Cluster lock file*
– Lock file for start serialization* (only in Unix systems and Windows systems)
The files indicated by * are created when the first node application is started. All 
the other files are created on generation using KDCDEF.



Glossary

Using openUTM under Unix Systems and Windows Systems  345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

UTM-controlled queue
Message queues in which the calling and further processing of messages is 
entirely under the control of openUTM. See also asynchronous job, background job 
and asynchronous message.

UTM-D
See openUTM-D.

UTM-F
UTM applications can be generated as UTM-F applications (UTM fast). In the 
case of UTM-F applications, input from and output to hard disk is avoided in 
order to increase performance. This affects input and output which UTM-S uses 
to save user data and transaction data. Only changes to the administration data 
are saved.
In UTM cluster applications that are generated as UTM-F applications 
(APPLIMODE=FAST), application data that is valid throughout the cluster is 
also saved. In this case, GSSB and ULS data is treated in exactly the same way 
as in UTM cluster applications generated with UTM-S. However, service data 
relating to users with RESTART=YES is written only when the relevant user 
signs off and not at the end of each transaction. 

UTM message
Messages are issued to UTM message destinations by the openUTM transaction 
monitor or by UTM tools (such as KDCDEF). A message comprises a message 
number and a message text, which can contain inserts with current values. 
Depending on the message destination, either the entire message is output or 
only certain parts of the message, such as the inserts). 

UTM page
A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone 
UTM applications, the size of a UTM page on generation of the UTM application 
can be set to 2K, 4K or 8 K. The size of a UTM page in a UTM cluster application 
is always 4K or 8 K. The page pool and the restart area for the KDCFILE and 
UTM cluster files are divided into units of the size of a UTM page.

utmpath (Unix systems / Windows systems)
The directory under which the openUTM components are installed is referred to 
as utmpath in this manual. 
To ensure that openUTM runs correctly, the environment variable UTMPATH 
must be set to the value of utmpath. On Unix systems, you must set UTMPATH 
before a UTM application is started. On Windows systems, UTMPATH is set on 
installation.



Glossary

346   Using openUTM under Unix Systems and Windows Systems

UTM-S
In the case of UTM-S applications, openUTM saves all user data as well as the 
administration data beyond the end of an application and any system crash 
which may occur. In addition, UTM-S guarantees the security and consistency 
of the application data in the event of any malfunction. UTM applications are 
usually generated as UTM-S applications (UTM secure). 

UTM SAT administration (BS2000 systems)
UTM-SAT administration functions control which UTM events relevant to 
security which occur during operation of a UTM application are to be logged by 
SAT. Special authorization is required for UTM-SAT administration. 

UTM system process
UTM process that is started in addition to the processes specified via the start 
parameters and which only handles selected jobs. UTM system processes 
ensure that UTM applications continue to be reactive even under very high 
loads. 

UTM terminal
This term has been superseded by LTERM partner.

virtual connection
Assignment of two communication partners.

warm start
Start of a UTM-S application after it has terminated abnormally. The application 
information is reset to the most recent consistent state. Interrupted dialog 
services are rolled back to the most recent synchronization point, allowing 
processing to be resumed in a consistent state from this point (service restart). 
Interrupted asynchronous services are rolled back and restarted or restarted at the 
most recent synchronization point.
For UTM-F applications, only configuration data which has been dynamically 
changed is rolled back to the most recent consistent state after a restart due to 
a preceding abnormal termination.
In UTM cluster applications, the global locks applied to GSSB and ULS on 
abnormal termination of this node application are released. In addition, users 
who were signed on at this node application when the abnormal termination 
occurred are signed off.

WebAdmin
Web-based tool for the administration of openUTM applications via a Web 
browser. WebAdmin includes not only the full function scope of the adminis-
tration program interface but also additional functions.



Glossary

Using openUTM under Unix Systems and Windows Systems  347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

3
60

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.m
ix

Web service
Application which runs on a Web server and is (publicly) available via a 
standardized, programmable interface. Web services technology makes it 
possible to make UTM program units available for modern Web client applica-
tions independently of the programming language in which they were 
developed.

WinAdmin
Java-based tool for the administration of openUTM applications via a graphical 
user interface. WinAdmin includes not only the full function scope of the admin-
istration program interface but also additional functions.

work process (Unix systems / Windows systems)
A process within which the services of a UTM application run.

workload capture & replay
Family of programs used to simulate load situations; consisting of the main 
components UPIC Capture, UPIC Analyzer and Upic Replay (on Unix and 
Windows systems) the utility program kdcsort. Workload Capture & Replay can 
be used to record UPIC sessions with UTM applications, analyze these and 
then play them back with modified load parameters. 

WS4UTM
WS4UTM (WebServices for openUTM) provides you with a convenient way of 
making a service of a UTM application available as a Web service.

XATMI 
XATMI (X/Open Application Transaction Manager Interface) is a program 
interface standardized by X/Open for program-program communication in open 
networks. 
The XATMI interface implemented in openUTM complies with X/Open’s XATMI 
CAE Specification. The interface is available in COBOL and C. In openUTM, 
XATMI can communicate via the OSI TP, LU6.1 and UPIC protocols. 

XHCS (BS2000 systems)
XHCS (Extended Host Code Support) is a BS2000 software product providing 
support for international character sets.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by the 
W3C (WWW Consortium) in which the interchange formats for data and the 
associated information can be defined.



Glossary

348   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

an
ua

r 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

ab
k

Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used 
in the original German product(s). 

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000)

CCP Communication Control Program 

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification 

CMX Communication Manager in Unix Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000)

DB Database 

DC Data Communication 

DCAM Data Communication Access Method 



Abbreviations

350   Using openUTM under Unix Systems and Windows Systems

DES Data Encryption Standard

DLM Distributed Lock Manager (BS2000)

DMS Data Management System 

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing 

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group 

FHS Format Handling System 

FT File Transfer 

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000)

IMS Information Management System (IBM)

IPC Inter-Process Communication 

IRV International Reference Version

ISO International Organization for Standardization 

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture 

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface



Abbreviations

Using openUTM under Unix Systems and Windows Systems  351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

an
ua

r 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

ab
k

KTA KDCS Task Area 

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library 

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit 

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000)

RTS Runtime System

SAT Security Audit Trail (BS2000)

SECOS Security Control System 

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit 



Abbreviations

352   Using openUTM under Unix Systems and Windows Systems

SM2 Software Monitor 2

SNA Systems Network Architecture 

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSO Single Sign-On

TAC Transaction Code 

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method 

TLS Terminal-Specific Long-Term Storage

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode) 

TPR Privileged Function State in BS2000 (Task Privileged) 

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number 

TU Non-Privileged Function State in BS2000 (Task User) 

TX Transaction Demarcation (X/Open)

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication 

USP UTM Socket Protocol

UTM Universal Transaction Monitor 

UTM-D UTM Variant for Distributed Processing in BS2000 

UTM-F UTM Fast Variant 

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface



Abbreviations

Using openUTM under Unix Systems and Windows Systems  353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

an
ua

r 
20

15
  

S
ta

nd
 0

9:
23

.2
4

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
n

U
T

M
\o

pe
n

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_

U
W

\e
n\

be
tr

X
N

_
e.

ab
k

VGID Service ID

VTSU Virtual Terminal Support 

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language 

XA X/Open Access Interface 
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface 

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Process-
ing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language



Abbreviations

354   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed 
copies of those manuals which are displayed with an order number.

i   PDF files of all openUTM manuals are included on the openUTM Enterprise DVD 
with open platforms and on the openUTM WinAdmin DVD (for BS2000 systems). 

openUTM documentation

openUTM
Concepts and Functions
User Guide 

openUTM 
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM 
Generating Applications 
User Guide

openUTM
Using openUTM Applications under BS2000 Systems
User Guide

openUTM 
Using openUTM Applications under Unix Systems and Windows Systems
User Guide

openUTM 
Administering Applications
User Guide

openUTM 
Messages, Debugging and Diagnostics in BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com


Related publications

356   Using openUTM under Unix Systems and Windows Systems

openUTM 
Messages, Debugging and Diagnostics in Unix Systems and Windows Systems
User Guide

openUTM 
Creating Applications with X/Open Interfaces
User Guide

openUTM 
XML for openUTM

openUTM Client (Unix systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide 

openUTM Client 
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide 

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62 
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual



Related publications

Using openUTM under Unix Systems and Windows Systems  357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.li
t

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

openUTM
Master Index



Related publications

358   Using openUTM under Unix Systems and Windows Systems

Documentation for the openSEAS product environment

BeanConnect
User Guide

JConnect
Connecting Java Clients to openUTM 
User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications



Related publications

Using openUTM under Unix Systems and Windows Systems  359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.li
t

Documentation for the BS2000 environment

AID 
Advanced Interactive Debugger
Core Manual
User Guide

BCAM 
BCAM Volume 1/2
User Guide 

BINDER
User Guide 

BS2000 OSD/BC
Executive Macros
User Guide 

BS2000 
BLSSERV
Dynamic Binder Loader / Starter
User Guide 

DCAM 
COBOL Calls
User Guide 

DCAM 
Macros
User Guide 

DCAM 
Program Interfaces
Description

FHS 
Format Handling System for openUTM, TIAM, DCAM
User Guide 

IFG for FHS
User Guide 



Related publications

360   Using openUTM under Unix Systems and Windows Systems

HIPLEX AF
High-Availability of Applications in BS2000/OSD
Product Manual

HIPLEX MSCF 
BS2000 Processor Networks
User Guide

IMON 
Installation Monitor 
User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU (BS2000)
Functions and Commands
User Guide 

OMNIS/OMNIS-MENU (BS2000)
Administration and Programming
User Guide 

OSS (BS2000)
OSI Session Service
User Guide

RSO 
Remote SPOOL Output
User Guide

SECOS
Security Control System
User Guide 

SECOS 
Security Control System
Ready Reference 

SESAM/SQL
Database Operation
User Guide



Related publications

Using openUTM under Unix Systems and Windows Systems  361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.li
t

openSM2 
Software Monitor
Volume 1: Administration and Operation

TIAM 
User Guide 

UDS/SQL 
Database Operation
User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support
User Guide 

XHCS 
8-Bit Code and Unicode Support in BS2000/OSD
User Guide 



Related publications

362   Using openUTM under Unix Systems and Windows Systems

Documentation for the Unix system environment

CMX V6.0 (Unix systems)
Betrieb und Administration (only available in German)
User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2
The documentation of openSM2 is provided in the form of detailed online help systems, 
which are delivered with the product.



Related publications

Using openUTM under Unix Systems and Windows Systems  363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
1

4.
 J

a
nu

a
ry

 2
01

5 
 S

ta
nd

 0
9

:2
3.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

\1
40

36
0

6_
E

in
sa

tz
_U

W
\e

n\
be

tr
X

N
_e

.li
t

Other publications

XCPI-C (X/Open)
Distributed Transaction Processing
X/Open CAE Specification, Version 2
ISBN 1 85912 135 7

Reference Model Version 2 (X/Open)
Distributed Transaction Processing
X/Open Guide
ISBN 1 85912 019 9

TX (Transaction Demarcation) (X/Open)
Distributed Transaction Processing
X/Open CAE Specification  
ISBN 1 85912 094 6

XTAMI (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 130 6

XML 
W3C specification (www consortium)
Web page: http://www.w3.org/XML

http://www.w3.org/XML


Related publications

364   Using openUTM under Unix Systems and Windows Systems



Using openUTM under Unix Systems and Windows Systems  365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_
E

in
sa

tz
_

U
W

\e
n\

b
et

rX
N

_
e.

si
x

Index

32-bit mode 284
64-bit mode 284

A
abnormal termination

application 96
of node application 138
program unit 228
UTM database application 112

abnormalities
sign-on service 186

absolute generation number 205
access list concept 192
accounting 231

fixed-price 234
resource utilization 231
utilization-oriented 234
UTM service 51
with distributed processing 241

accounting phase 233, 235, 239
accounting record 234

structure 302
accounting unit counter 234
accounting units 234
activate

signal handling 87
standard error handling for signals 87
test mode 89

adding programs 226
ADMI trace 81
ADMI-TRACE 81
administration authorization 187
administration journal 125, 145, 318
admlp 309

analyze performance bottlenecks 244
application

abnormal termination 96
as a service 50
normal termination 94
replace 201
replace with shared objects 226
sample application (Unix systems) 310
sample application (Windows systems) 311
start 73
start with shared objects 222
terminate 93
with user IDs 191

application data 138
after failure of a node 138

application logic 29
application name

during sign-on 168
application operation

preparation 55
application program

generate 29
link 29
link (Windows systems) 42, 46

application termination
shutdown 230
system crash 230

applifile 69
ascending generation number 205
asynchronous message

output 197
ASYNTASKS 82
automatic KDCSIGN 175
automatic size monitoring

SYSLOG 61



Index

366   Using openUTM under Unix Systems and Windows Systems

automatic start
UTM application 51

B
BADTACS 222
base

file generation group 205
base name 55, 81
base number

file generation group 205
BCAM trace

for Capture & Replay 271
BTRACE 82

C
C 38
C runtime system 29
C++ 38
calculation phase 232, 235
calculation record 233

structure 302
call

linkage editor 35
linker (Windows systems) 46

CC- 84
CCmainutm 309
change

account 51
change warning level

cluster page pool 152
changing the warning level 152
Closestring 101
cluster 115

failure detection 136
update generation 148
update generation of the KDCFILE 150

cluster administration journal 318
cluster configuration file 124
cluster GSSB file 125
cluster lock file 125
cluster page pool 152

increasing 152
cluster page pool files 125
cluster ULS file 125

cluster user file 125
cluster_filebase 124
CLUSTER-FILEBASE 81
COB_COBCOPY

Windows systems 49
COB_LIBSUFFIX 49

Unix systems 32
COBCOPY

Unix systems 32
COBCPY

Unix systems 32
Windows systems 48

COBMODE
Unix systems 32

COBOL application programs 47
cobrtcb2 309, 310
cold start 92
comments

start parameter file 79
compile

COBOL programs 47, 49
ROOT table source 29

configuration
UTM service 51

configure
UTM cluster application 132

connection user ID 176
console (Windows systems) 167
CPI-C

trace function 82
CPI-C sample programs 309
CPI-C trace function 82
CPIC-TRACE 82
create

FGG 208
sample UTM application 310

create shortcut
for starting 77

D
data entry

start (KDCMON) 247
data structure

kc_cluster_node_str 143



Index

Using openUTM under Unix Systems and Windows Systems  367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_
E

in
sa

tz
_

U
W

\e
n\

b
et

rX
N

_
e.

si
x

kc_cluster_par_str 143
database

start parameters 101
database application

link 100
link (Windows systems) 45
linking in Windows systems 100

database libraries
Unix systems 100
Windows systems 45

database system
start parameters 79

databases 99
DB-CONNECT-TIME 83
DB-DIAGAREA 114
DC 84
DEBUG

start parameter 111
default error handling, signals 87
deinstall UTM service 51
DEL key

ignoring in Unix systems 169
delete

shared memory 98
Developer Studio

create project 40
options 39

diagnostic documentation
abnormal termination 97

diagnostics
UTM cluster application 163
UTM database application 114
UTM errors 89
with SYSLOG 57
write diagnostic data to file 89

dialog message
output last 198

dialog terminal process
start by Unix systems 169
start by user 167

directory DUMP 55
display files in a project 44
distributed processing

accounting 241

dllimport 99
documentation

summary 13
domain user account 51
DUMP 66
DUMP-CONTENT 83
DUMP-MESSAGE 84

reset value 84
dumpstart 309
dynamic addition

shared objects 226

E
EDITOR 296
enable/disable BCAM trace function 82
END 81
environment variable

COB_COBCOPY (Windows systems) 49
COB_LIBSUFFIX (Unix systems) 32
COB_LIBSUFFIX (Windows systems) 49
COBCOPY (Unix systems) 32
COBCPY (Unix systems) 32
COBCPY (Windows systems) 48

environment variables 290
CPIC 297
kdcdump utility 296
kdcupd utility program 296
openUTM 291
Unix systems for COBOL 31
utmwork process 295
Windows systems 298, 299

error message at application start 92
errors

system environment 227
evaluation lists

KDCMON 253
example

application replacement 213
contents of start parameter file 91
filebase/PROG directory 206
INFORMIX start parameters 105
ORACLE start parameters 102
shared objects, replace 224
SYSLOG-FGG 60



Index

368   Using openUTM under Unix Systems and Windows Systems

user log file 64
UTM cluster application 129
UTM cluster application (for Unix 

systems) 129
execution, coordinate 30
external references 202

F
failover 106
failure detection

actions 136
sample procedures (cluster) 137

failure of a node
application data 138

failure script
restart after node failure 139

FGG 58
base 205
create 208
filebase/PROG 204
information on 209
relative name 205
switch base 203, 212
transfer generation 210
user log file 63

file descriptors 68
file generation group

for SYSLOG 58
file generation group, see FGG
file generation, see FGG
file name prefix 124
FILEBASE 81
filebase/DUMP 66
filebase/PROG

create as FGG 202
filebase/USLA 63
files

required for application operation 55
files local to the nodes 126
first generation 206
fixed-price accounting 234
function variants of UTM 197
functions

KDCPROG 208

G
gcore dump 87
generate

application program 29
shared objects 220

generation 205
generation number

absolute 205
ascending 205
relative 205

generations
maximum number 206

global system resources 66
grace sign-on 172

H
HP-UX 12

I
INCLUDE

Windows systems 49
increase

cluster page pool 152
INFO

SYSLOG-FGG 59
INFORMIX 99

start parameters 105
initial KDCFILE 127
install

UTM cluster application 117
installation

openUTM 283
openUTM (Unix systems) 284
openUTM (Windows systems) 286
runtime components (Unix systems) 118
UTM runtime components (Unix 

systems) 117
UTM service 50

INT 86
internal OSS trace records 86
interrupted service 187

J
job variable



Index

Using openUTM under Unix Systems and Windows Systems  369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_
E

in
sa

tz
_

U
W

\e
n\

b
et

rX
N

_
e.

si
x

node failure 139

K
K000 84
K001 187
K003 199
K005 193
K008 188
K009 193
K018 199
K019 199
K021 194
K027 186
K028 174
K049 114
K050 92
K051 92
K068 114
K071 114
K078 87
K079 240
K080 247
K092 174
K094 172
K097 172
K120 172
K121 174
K123 193
K136 57
K138 57
K155 174
kc_cluster_node_str 143
kc_cluster_par_str 143
KDCADMI

trace 81
KDCADMI trace function 81
KDCAPPL 201
KDCDISP 198
KDCEVAL messages 250
KDCFILE 55

base name 81
node application 126
update generation (cluster) 150
UTM cluster application 127, 150

KDCLAST 198
KDCMON 243

evaluation list 252
starting data acquisition 247

KDCOFF 199
from program 194

KDCOFF BUT 199
KDCOUT 197
KDCPROG 201, 208

CREATE 208
examples 213
functions 208
INFO 209
SWITCH 212
TRANSFER 210

KDCREM 98
KDCROOT 30, 33
KDCS return code 228
KDCS_C_DEBUG 295
KDCSHUT 93
KDCSIGN

automatic 175
kdcslog 59
kdcsort 275
KDCSWTCH 187
KDCUSLOG

start 63
keyboard commands

starting application with (Windows 
systems) 77

KF58 58
KTA trace area 89

L
LANG 166, 291
last dialog message

output 198
last generation 206
last output

repeat 198
link

application program 29
application program (Windows systems) 46
COBOL programs 48, 49



Index

370   Using openUTM under Unix Systems and Windows Systems

database application in Windows 
systems 100

makefile 36
production application 31
UTM database application 100
UTM database application (Windows 

systems) 45
utmwork 31

linkage editor
call 35

linker options (Windows systems) 44
linker, calling (Windows systems) 46
Linux distribution 12
LNK4006 46
LNK4056 46
LNK4075 46
lock file 125
lock/keycode concept 192
log files 63
loss of connection to the client

measures in the cluster 139

M
main process

start 73
main program 30
main routine KDCROOT 30, 33
mainutm.o 33
mainutmCC.o 33
mapped host names 292
ME 84
measures

after failure of a node 139
after loss of connection to the client 139

message
output asynchronous 197

messages
incorrect authorization 193
KDCEVAL 250

metasyntax 26
Micro Focus COBOL

Unix systems 36
Microsoft Visual Studio 38
monitor performance 243

monitoring
node application 135
UTM cluster application 135
with openSM2 245

MSCF 321
MSGDMP 84
MSGTAC 172

N
name

file generation 205
UTM service 50, 52

negative print acknowledgment 306
NetCOBOL

Unix systems 31, 32
Windows systems 49

NetExpress 31
network processes

for socket connections 285
nmutmwork 202
node 115
node application 115

abnormal termination 138
failure detection 136
KDCFILE 126
monitoring 135
online import of application data 142
sample procedures for failure detection 137
terminating 147

node failure 138
node failure in the cluster

measures 139
node recovery 140

configuring 140
messages 141
name of the node application 85
prerequisites 140
resetting PTCs 87
start parameters 140
starting 141

node_filebase 126
NODE-TO-RECOVER 85
normal termination

application 93



Index

Using openUTM under Unix Systems and Windows Systems  371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_
E

in
sa

tz
_

U
W

\e
n\

b
et

rX
N

_
e.

si
x

number
asynchronous services 82
generations 206
processes at application start 88

number of socket connections
change 285

O
object files

adding to project 42
online import

application data (cluster) 142
open

project 40
openSM2 245

activating the delivery of data 245
Openstring 101
openUTM

behavior in the event of a failover 107
installation 283
installation (Unix systems) 284
installation (Windows systems) 286
XA-DEBUG messages 107
XA-DEBUG parameters 111

openUTM revision levels
UTM cluster application 156

operating sequence
application replacement 213

options
Developer Studio 39

ORACLE 99
start parameters 102

Oracle 100
Oracle password 104
Oracle Real Application Clusters

failover 106
Oracle user name 104
Oracle® 10g 109
Oracle® Real Application Clusters

UTM cluster application 132
OSI TP clients

sign on 178
OSI TP modules

link 34

OSS calls 86
OSS trace function

switch on/off 86
OTRACE 86
output

asynchronous message 197
last dialog message 198
redirection at start (Unix systems) 74
redirection at start (Windows systems) 76
repeat 198
start format 187

P
p/config 36
parameters

KDCPROG 206
password

at sign-on 171
monitor time span 184

PATH 76, 295, 306
PCMX 17
PEND ER 228
performance analysis

KDCMON 243
TRACE2 268

performance check 243
plausibility check 89
prefix

start parameters 79
print output

without print control 306
printer process 306
printer script 306

utmlp 306
process

program replacement 207
program replacement (shared objects) 222

production application
link 31

program
add dynamically 226

program exchange 31
program replacement

examples 213



Index

372   Using openUTM under Unix Systems and Windows Systems

process 207
shared objects 222

program unit 29
abnormal termination 228
adding to project (Windows systems) 42
link 34

program unit end
record 268

program unit start
record 268

project
adding source program 42
create with Developer Studio 40
open 40

proof of authorization
automatic 175

PROT 86
PTC

reset (node recovery) 87
ptermname

utmdtp 168

Q
Quick Start Kit 311

R
Readme files 19
REASON 228
recovery phase 92, 112
Red Hat 12
relative FGG name 205
relative generation number 205
remove UTM service 51
repeat output 198
replace

application 201
shared objects 201, 220

replacing programs
UTM cluster application 204

reset
DUMP-MESSAGE value 84

RESET-PTC 87
resource 232
Resource Manager 99

resources 237
global system 66

restart 92, 187
RESTART=YES

UTM cluster application 122
RMXA 99
ROOT

UTM cluster application 153
rootname 33, 43
runtime characteristics, recording for UTM 

users 243
runtime components

installing (Unix systems) 118

S
sample

emergency script 310
failure script 310

sample application 310
makefile 36

scenarios
UTM sign-on check 172

semaphores 66
reset 98

SERV 86
service

install 50
name 50, 52
start 78
terminate 95
user ID 191

service restart 191
UTM cluster application 122
UTM-F (cluster) 123

servicename 50
SG- 84
shared memory 66

delete 98
shared objects

generate 220
replace 201, 220, 222
start application 222
unresolved externs 202

shell environment 74



Index

Using openUTM under Unix Systems and Windows Systems  373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_
E

in
sa

tz
_

U
W

\e
n\

b
et

rX
N

_
e.

si
x

shortcut 287
start UTM application with 77

sign off
from UTM application 194, 199
with KDCOFF command 194
with timeout 194

sign on
incorrect input 172
to UTM application 167
via OSI TP clients 178
via TS applications 176
via UPIC clients 176
via Web 180
without user ID 187

sign-off 113
sign-on 113
sign-on attempts

maximum number 172
statistics 185

sign-on check 170, 188
variants 172

sign-on concept
messages 193

sign-on process
with SIGNON services 182

sign-on service
abnormalities 186
errors 185
possible applications 184
unsuccessful attempts 185

signal handling
disable default error handling 87

signal processing 228
SIGNON service

for UTM database application 113
SIGNON services 182
size

page pool (log files) 65
size monitoring

automatic 61
suspended 61

SM2
MAX statement 245

socket network process 285

exchange 285
Solaris 12
space requirement

SYSLOG-FGG 62
SPI 86
standalone UTM application 11
START 81
start

application 73
application with shared objects 222
KDCUSLOG 63
UTM application as service 78
UTM application in Unix systems 74
UTM application in Windows systems 76
UTM application via a shortcut 77

START command 81
start commands 81
start format, output 187
start parameter

failover 106
RMXA DEBUG= 111

start parameter file
UTM application 79
UTM cluster application 128

start parameters
INFORMIX 105
ORACLE 102
prefix 79
syntax 80
UTM database application 101

start services
from OSI TP client 190
from TS applications 190
from UPIC 190

Starting 74
Startparameter

UTM 80
startup type

UTM service 51
stat2dyn 309
statistics

sign-on attempts 185
utilization 244

status information, applifile 69



Index

374   Using openUTM under Unix Systems and Windows Systems

stderr
Unix systems 74, 76

stdout
Unix systems 74, 76

structure of accounting records 303
SUSE 12
switch

stderr/stdout 55
SYSLOG file 57, 61

switchable system log file (SYSLOG) 57
symbol table 202
SYSLOG

as a simple file 58
as FGG 58
behavior with write errors 62
size monitoring 62
switch 61, 62
UTM cluster application 134
write error 62

SYSLOG file 57
SYSLOG-FGG

automatic size monitoring 61
create 59
example 60
space requirement 62
suspended size monitoring 61

SYSPROT 88
system access control 170
system account 51
system error 97
system files

switching 55
system log file 55

SYSLOG 57

T
task

start 88
TASKS-IN-PGWT 88
terminals

sign on to openUTM 166
terminate

application started as a service 95
node application 147

service 95
UTM application 93
UTM cluster application 147

test mode 89
activate 89
write diagnostic data to file 89

TESTMODE 89
timeout 194
tool

KDCPROG 208
KDCREM 98
KDCSHUT 93

trace files 91
trace function, OSS

switch on/off 86
trace information

write 89
trace records 86
TRACE2 268
TS applications

sign on 176
TX

trace function 89
TX-TRACE 89

U
U02 193
U16 193
Unix platform 12
unsuccessful attempts

in sign-on service 185
update generation

UTM-F cluster application 155
UPIC clients

sign on 176
UpicAnalyzer 276

program 276
UpicReplay

program 277
user 232
user account

local 51
user commands 196
user ID



Index

Using openUTM under Unix Systems and Windows Systems  375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_
E

in
sa

tz
_

U
W

\e
n\

b
et

rX
N

_
e.

si
x

during sign-on 167
user log

page pool size 65
user log file 55, 63

example 60, 64
USERNAME 299
utilization

statistics 244
utilization-oriented accounting 234
UTM

system functions 30
UTM application

abnormal termination 96
sign off 194
start 73
terminate 93

UTM cluster application 11, 115
administering 143
administration actions global to the 

cluster 144
administration actions local to the node 145
administration journal 145
cluster administration journal 318
configuring a database 132
diagnostics 163
encryption capability 134
example 129
example (Unix systems) 129
files 124
files local to the nodes 126
generating 119
generating reserve nodes 120
global memory areas 121
installing 117
journal files 125
KDCDEF statements 119
KDCFILE 127
monitoring 135
new ROOT table module 153
online import of application data 142
openUTM revision levels 156
Oracle® Real Application Clusters 132
properties 115
properties (Unix systems) 116

properties (Windows systems) 116
service restart 122
start parameters 128
starting 133
storage location of files 124
storing the files (Unix systems) 127
storing the files (Windows) 127
SYSLOG 134
terminating 147
UTM cluster files 124

UTM cluster files 124
UTM database application 99

abnormal termination 112
diagnostics 114

UTM database application linking
Windows systems 100

utm directory
Unix systems 284

UTM dump 96, 227
with K message 84

UTM event monitor 243
UTM function calls

record 268
UTM installation directory

Unix systems 284
Windows systems 287

UTM message destination
SYSLOG 57

UTM message module 29
UTM object files in Windows systems 43
UTM runtime components

installing (Unix systems) 117
UTM sample application 310

Windows systems 311
UTM service 50

configure 51
deinstall 51
install 50
start 78
terminate 95

UTM sign-on check 188
UTM system modules

link 34
UTM system process 88



Index

376   Using openUTM under Unix Systems and Windows Systems

UTM user commands 196
UTM_ABORT_WITH_EXCEPTION 295
UTM_BREAK_BEFORE_DUMP 301
UTM_BREAK_BEFORE_KCSTRMA 301
UTM_CORE_DUMP 293
UTM_IPC_EXTP_LETTER 292
UTM_IPC_LETTER 291
UTM_MAIN_KILL_TIME 293
UTM_MSG_DATE 294
UTM_MSG_PID 294
UTM_NET_COMMON_WAIT 299
UTM_NET_HOSTNAME 292
UTM_NET_SELECT_TIME 299
UTM_NO_GCORE_DUMP 298
UTM_NO_MINIDUMP 300
UTM_PIPE_TIME 300
UTM_REDIRECT_FILES 56, 292
UTM_UPD_CHECK_SHM 296
UTM-C.CFG 124
UTM-C.CPMD 125
UTM-C.CPnn 125
utm-c.emergency 310
utm-c.failure 310
UTM-C.GSSB 125
UTM-C.JKAA 125
UTM-C.JRN2 125
UTM-C.LOCK 125
UTM-C.SLCK 125
UTM-C.ULS 125
UTM-C.USER 125
utm-directory/sample 310
utm-directory/shsc 309
UTM-F 197
UTM-F cluster application

update generation 155
UTM-S 197
UTM-S application

warm start 92
utmdtp 167, 169
utmlp 306, 309

printer shell script 306
utmmain 73

output filter (Unix systems) 74, 77
starting in Unix systems 74

starting in Windows systems 76
utmmains 50
UTMPATH 74, 284, 291
utmpath

Windows systems 287
utmsample 310
UTMTRAC 294
utmwork

link 31
transfer to FGG 210

V
variants

sign-on check 172
version concept

shared objects 220
violation of access rights

messages 193

W
warm start 92, 97

UTM database application 112
Web

sign on 180
WebTransactions 180
weight 233

determining 237
Windows system 12
Windows systems 49
work processes

number 88
terminating without signal handling 87

write error
SYSLOG 62

X
XA support with failover 106
xa_switch_t structure 99
XAP-TP module 86, 89
XAP-TP system programming interface 86
XATMI library 45
XATMI trace function 90
XATMI-TRACE 90
XTLCF 297



Index

Using openUTM under Unix Systems and Windows Systems  377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n 

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s 
G

m
b

H
 2

0
01

-2
0

10
14

. J
an

u
ar

y 
20

15
  S

ta
nd

 0
9:

23
.2

5
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

14
03

6
06

_
E

in
sa

tz
_

U
W

\e
n\

b
et

rX
N

_
e.

si
x

XTPALCF 297



Index

378   Using openUTM under Unix Systems and Windows Systems


	Contents
	Preface
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Innovations in openUTM V6.3
	New server functions
	Load simulation with "Workload Capture & Replay"
	New client function
	New and modified functions for openUTM WinAdmin
	New functions for openUTM WebAdmin

	Notational conventions

	Creating the application program
	Linking a UTM process under Unix systems
	COBOL program units
	Required UTM system libraries and UTM objets
	Shared objects
	Calling the linkage editor
	Linking with a makefile

	Creating application programs under Windows systems
	Application programs in C and C++
	Setting the options of the Visual Studio
	Creating projects
	Writing source programs
	Compiling and linking the application

	Creating application programs as DLLs
	COBOL application programs in Windows systems
	Compiling and linking programms using the Micro Focus compiler
	Compiling and linking programms using the NetCOBOL compiler

	Installing an application as a service


	Necessary files and global system resources
	System files stderr and stdout
	System log file SYSLOG
	SYSLOG as a simple file
	SYSLOG as a file generation group
	The KDCSLOG tool for creating the SYSLOG-FGG
	Automatic size monitoring

	Protection against oversized SYSLOG file
	Behavior in the event of write errors

	User log file
	Response to write errors

	DUMP directory
	Global system resources of an application
	System resources required by a UTM application
	Improving performance: Changing the size of the data area in the IPC shared memory


	Starting a UTM application
	Starting a UTM application in Unix systems
	Starting a UTM application in Windows systems
	Starting with utmmain
	Starting as a service

	Start parameter file of the application
	Start parameters for openUTM

	Cold start and warm start
	Error messages at the application start

	Terminating a UTM application
	Terminating a UTM application normally
	The KDCSHUT tool – terminating a UTM application normally at shell level
	Terminating a service in Windows systems
	Terminating a UTM application abnormally
	The KDCREM tool

	UTM database application
	Generating a UTM database connection
	Linking a UTM database application in Unix systems
	Linking a UTM database application in Windows systems
	Starting and stopping a UTM database application
	Start parameters for a UTM database application
	Openstring and Closestring
	Several instances
	Example of Oracle start parameters
	Example of INFORMIX start parameters in Unix systems

	Start parameters for failover with Oracle® Real Application Clusters
	Special issues when connecting to Oracle®

	Debug parameters
	Normal termination of a UTM database application
	Abnormal termination of a UTM database application

	Operating a UTM database application
	User sign-on and sign-off
	Diagnostics


	UTM cluster application
	Properties of a UTM cluster application
	Installing and preparing a UTM cluster application for use
	Installation
	Installing the UTM runtime components for Unix systems
	Installing further runtime components for Unix systems

	Generation
	Special generation statements for UTM cluster applications
	Generating reserve nodes

	Using global memory areas
	Service restart
	Runtime environment
	Files
	Location of the files

	Preparation for use
	Example for Unix systems

	Configuration of a UTM cluster application with a database
	Starting a UTM cluster application
	Monitoring of node applications and failure detection
	Application monitoring of the node applications
	Actions performed by the node applications if a failure is detected
	Application data after abnormal termination of a node application
	Measures taken when a node application has been terminated abnormally
	Measures taken for users
	Measures to be taken by the administrator
	Node recovery


	Online import of application data
	Administering a UTM cluster application
	Actions global to the cluster and actions local to a node
	Administration journal
	Reducing the number of nodes

	Shutting down a UTM cluster application
	Update generation in a cluster
	Online update of the UTM cluster application
	Update generation of the KDCFILE without terminating the UTM cluster application
	Increasing the size of the cluster page pool
	Change to the application program

	Update generation of the KDCFILE with termination of the UTM cluster application
	Update generation of the UTM cluster application

	Use of openUTM revision levels in the UTM cluster application
	Conversion of a UTM cluster application
	Conversion from a standalone UTM application to a UTM cluster application
	Converting a UTM cluster application from V6.0 to V6.3
	Converting a UTM cluster application to a standalone UTM application

	Debugging a UTM cluster application

	Working with a UTM application
	Sign-on process with user IDs
	Standard sign-on process for terminals
	Starting the dialog terminal processes by the user
	Starting the dialog terminal process through Unix system
	Standard sign-on dialog
	Automatic KDCSIGN

	Sign-on process for UPIC clients and TS applications
	Sign-on process for OSI TP partners
	Sign-on process in the World Wide Web via WebServices (WS4UTM)
	Sign-on process in the World Wide Web via WebTransactions
	Multiple sign-ons under one user ID
	Sign-on process with sign-on services
	Sign-on service for terminals
	Sign-on service for TS applications
	Sign-on service for UPIC clients
	Possible applications for the sign-on service
	Properties of sign-on services

	Behavior in the event of locked clients/LTERM partners

	Sign-on process without user IDs
	Calling UTM services
	Starting services from the terminal
	Starting services from the UPIC client and OSI TP partner
	Starting services from TS applications
	Service restarts

	Sign-on concept of openUTM
	Signing off from a UTM application
	UTM user commands for terminals
	KDCOUT - output asynchronous messages
	KDCDISP - output the last dialog message
	KDCLAST - repeat the last output
	KDCOFF - sign off from a UTM application


	Replacing programs during operation
	Replacing an application
	Requirements for replacing an application
	File generation group PROG
	Process of replacing an application
	The KDCPROG tool
	CREATE - create a file generation group (FGG)
	INFO - query the current state of the (FGG)
	TRANSFER - transfer utmwork to the FGG
	SWITCH - switch the base of the file FGG

	Example of replacing an application

	Replacing shared objects
	Providing and generating shared objects
	Start of the application
	The replacement process
	Replacing shared objects with LOAD-MODE=STARTUP
	Replacing shared objects with LOAD-MODE=ONCALL

	Examples of replacing shared objects
	Replacing an application with shared objects
	Adding programs dynamically


	Fault tolerance of openUTM
	Errors detected by openUTM
	Reaction of openUTM to signals
	Termination of application by system crash / shutdown

	Accounting
	Definition of terms
	Accounting phases
	Calculation phase
	Determining the variant of the accounting procedure
	Accounting phase
	Evaluation
	Error situations

	Accounting with distributed processing
	Restrictions

	Checking performance with openSM2 and KDCMON
	Monitoring with openSM2
	UTM event monitor KDCMON
	Starting and stopping data entry
	Evaluating data with KDCEVAL
	Processing evaluation data on the PC
	Evaluation lists
	TASKS: UTILIZATION OF THE UTM TASKS
	SUMM: TRANSACTION EVALUATION
	TIMES: DISTRIBUTION OF PROCESSING TIMES
	KCOP: UTM CALLS STATISTIC
	WAIT: WAITING TIMES
	TCLASS: EVALUATION OF THE TAC CLASSES
	TACCL: TAC SPECIFIC TAC CLASS EVALUATION
	TACPT: TAC SPECIFIC DISTRIBUTION OF PROCESSING TIMES
	TACLIST: TAC SPECIFIC STATISTICS
	TRACE: TASK SPECIFIC TRACES
	TRACE2: TASK PERFORMANCE TRACE



	Load simulation with Workload Capture and Replay
	Recording the UPIC conversation (UPIC Capture)
	Merging trace entries
	Preparing data using the program UpicAnalyzer
	Replaying the UPIC session using the program UpicReplay
	Adapting the UPIC configuration and UTM generation
	Calling UpicReplay
	Functioning of UpicReplay


	Appendix
	Installing openUTM in Unix systems
	Installing UTM system functions in Unix systems
	Using different socket network processes
	Installing an openSM2 connection

	Installing openUTM in Windows systems
	Installation of openUTM-Server
	User environment

	Structure of the openUTM installation directory
	Environment variables of a UTM application
	General environment variables for openUTM
	Environment variables for work processes
	Environment variables for the KDCDUMP tool
	Environment variable for the KDCUPD tool
	Environment variables for the X/Open interface XATMI
	Additional environment variables for openUTM under Unix systems
	Additional environment variables for openUTM under Windows systems

	Structure of the accounting records of openUTM
	Structure of an accounting record
	Structure of a calculation record

	Processing print output without printer control (Unix systems)
	Sample programs and sample applications
	Sample programs for a publish / subscribe server
	Sample program for moving messages from the dead letter queue selectively
	CPI-C sample programs
	Sample procedures in Unix systems
	Sample procedures in Windows systems
	openUTM sample application in Unix systems
	openUTM Quick Start Kit in Windows systems


	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


