
U20069-J-Z145-3-7600 1

1 Preface
DRIVE/WINDOWS provides you with access to the database system SESAM/SQL-Server
V2 by means of SQL statements. This manual contains a brief description of the exact
syntax of the DRIVE SQL statements for SESAM/SQL V2 in DRIVE/WINDOWS Version 2.1
for BS2000, MS-Windows and SINIX.

You will find a detailed description of the SQL statements for SESAM/SQL V2 in the
“SESAM/SQL-Server (BS2000/OSD), SQL Language Reference Manual, Part 1: SQL
Statements” [18],

1.1 Summary of contents

Chapter 3, “DRIVE SQL statements”, contains an alphabetical reference section containing
all the SQL statements.

Complex statement elements that are used in both DRIVE and SQL statements are
described separately in the chapter on “Metavariables” in the “Directory of DRIVE State-
ments” [3]. DRIVE SQL metavariables that are different from this description are described
in this statement directory in a separate chapter entitled “DRIVE SQL metavariables”. Some
of the examples of the metavariables describe only the metavariable and not the entire
syntactical context that makes it possible to output a record.

Access to the database system SESAM/SQL V2 is supported by all three platforms
(BS2000, SINIX, MS-Windows) on which DRIVE/WINDOWS executes. Please note that
there is no interactive mode or operating mode with the TP monitor (in BS2000 UTM mode)
on the MS-Windows platform. Furthermore, this platform does not support the DISPLAY or
DISPATCH statement. Corresponding information relates to DRIVE applications that
execute under SINIX and BS2000.

Grouping SQL errors in DRIVE error classes (system variable &DML_STATE) is performed
using the SQLCODE (system variable &SQL_CODE) that is compatible with SESAM/SQL
V1. An SQL error with SQLSTATE XXXXX, SQLCODE -xxx or -1xxx or -2xxx and the
message text “SEWXXXX < message_text>” are no longer output as an error message with
the format DRI9xxx but as the error message DRI0536 with the format DRI “DRI0536
XXXXX xxxx < message_text>“. DRIVE/WINDOWS supports the SQLSTATE of SESAM/
SQL V2 by means of the new system variable &SQL_STATE (see chapter 3, “Using
variables and constants”, in the “DRIVE Programming Language” manual [2]). You will find

2 U20069-J-Z145-3-7600

Structure of DRIVE SQL statements Preface

the SQLSTATEs including a comparison of all the SQLCODEs in the SESAM “Messages”
manual [24]. A brief overview is included in the present manual in section “Mapping the
SESAM SQLCODEs to &DML_STATE” on page 253.

In chapter “Syntax overview” you will find an alphabetical reference section containing all
the statements and metavariables used in the manual.

The statements are arranged in alphabetical order. There is an entry for each statement:
this contains the name of the statement as the heading followed by a brief description.

Statement name - Brief description

A brief description of the function of the statement follows the heading.

This section also describes the prerequisites for successfully executing the statement. In
particular, the required access permissions are mentioned.

STATEMENT NAME CLAUSE parameter ...

CLAUSE
Explanation of the clause.

parameter
Explanation of the parameter.

The clauses and parameters are described in the order in which they appear in the syntax
diagram.

1.2 Structure of DRIVE SQL statements

DRIVE SQL statements consist of the following elements:

– keywords
– names
– literals
– metavariables
– delimiters
– comments

U20069-J-Z145-3-7600 3

Preface Structure of DRIVE SQL statements

Example

CYCLE cursor_name INTO & variable_name.*;' /*read cursor_name row by row */
 /* after variable_name */

CYCLE WHILE &SQL_CLASS <> 02 AND variable <= 1000;
 /* Loop until there are no */
 /* more rows, but not more */
 /* than 1000 times */

Keywords: CYCLE, INTO, WHILE, AND, SQL_CLASS (name of a DRIVE
system variable)

Names: cursor_name, variable_name

 Literals: '02', 1000

Meta variables: variable, .*

Delimiters: Blanks, comparison operators <>, <=, semicolon

Comments: /* read cursor_name row by row */
/* after variable_name */

Keywords

Keywords are words that must be specified as shown in the manual. You will find a list of
all DRIVE keywords in the appendix of the “Directory of DRIVE Statements” [3].

Naming conventions

Names identify variable values that the user must replace with current values when entering
a statement.

Names can include letters, digits and special characters if no further restrictions are
described.

Names that include letters, digits and the underscore character (_) can be entered normally.
Names that use other special characters, must be enclosed in double quotes (“).

In SESAM V2, a catalog name cannot be longer than 18 characters, and an (unqualified)
schema name cannot be longer than 31 characters. The name of an authorization key (SQL
user name) cannot be longer than 18 characters. The other SESAM rules for catalog names
and authorization identifiers must be observed.

If a name is not enclosed in double quotes (regular name), it must start with a letter followed
by other letters, digits or underscore characters. It cannot be a DRIVE keyword.

4 U20069-J-Z145-3-7600

Structure of DRIVE SQL statements Preface

If a name is enclosed in double quotes (special name), it cannot begin with an underscore
character and can include any printable character. The special character “ must be entered
twice. The first “ character is not included in the length of the name, and the second counts
as one character.

When qualifying special schema, table or column names, it is recommended that you place
the qualifying dot (the special character .) outside of the special character “, i.e. restrict
specialization to unqualified names. DRIVE/WINDOWS treats special names like unqual-
ified names.

There are DRIVE keywords that are not SESAM keywords (e.g. KEY). If you want
to use such a keyword as the name of an SQL object (e.g. column) in an SQL
statement, you must specify it as a special name (unlike SESAM).

Literals

Literals are constants that are passed to the language processor in the form specified.

Numeric literals can be entered directly and hexadecimal literals (only in DRIVE state-
ments) in the form X'literal'.
Alphanumeric literals must be enclosed in single quotes.
In the case of date/time literals,you must specify whether the literal contains a date, time or
a time stamp. For interval literals (only in DRIVE statements) you must specify a unit for the
interval.

A literal that contains single quotes (') must be enclosed in single quotes.

Example

The literal “That's it“ must be written as follows:

'That''s it:'

Metavariables

Metavariables are complex statement elements that have been omitted from a statement
to facilitate comprehension. They are described in a separate chapter.

i

U20069-J-Z145-3-7600 5

Preface Notational conventions

Delimiters

Delimiters must be specified between keywords, names, literals and metavariables in order
to uniquely identify them. The following can be used as delimiters:
– a semicolon (statement delimter)
– a blank
– a tabulator character
– a comma (,)
– the concatenation operator ||
– all comparison operators = < > <= >= <>
– all arithmetic operators + – * / % **

A comment or end of line that is not part of a character string that is enclosed in single
quotes (') or double quotes (") has the same effect as a delimiter.

Comments

A DRIVE comment starts with the character string /* and ends with the character string */.
Any text may be written between these characters, even if it extends over more than one
line.

The character strings /* and */ do not indicate comments if they are enclosed in single
quotes (') or double quotes (").

SQL comments (see the SESAM manual [18], section 3.2.5) are not permitted in DRIVE/
WINDOWS.

1.3 Notational conventions

The following notational conventions are used in this manual:

Syntax definitions

UPPERCASE SQL keywords

bold Used for emphasis in running text

italics Freely selectable names and metavariables in syntax definitions
and in running text

Fixed-width
font

Predefined names (e.g. commands at operating system level,
file names) and error messages in running text,
program text in examples and the names of the tables in the
examples when used in running text

6 U20069-J-Z145-3-7600

Notational conventions Preface

::= Definition character
The specification to the right of ::= defines the syntax of the
element on the left.

[] Optional specification
The brackets are metacharacters and must not be entered in an
SQL statement.

{ | } Alternative specifications in syntax definitions. One of the alter-
natives enclosed in the braces must be specified.
The braces are metacharacters and must not be entered in an
SQL statement.

{ } ... Encloses clauses in syntax definitions that can be repeated.
The braces are metacharacters and must not be entered in an
SQL statement.

... In syntax definitions, an ellipsis means that you can repeat the
preceding specification any number of times. In examples, the
ellipsis means that the rest of the statement is of no significance
to the example.
The ellipsis is a metacharacter and must not be entered in an
SQL statement.

This symbol calls your attention to very important information.i

U20069-J-Z145-3-7600 7

2 Working with SESAM/SQL V2
This chapter describes:

– the organization of a SESAM V2 database and the migration of a SESAM V1 database
using an example (page 10)

– rules and recommendations for accessing SESAM V2 SQL objects using DRIVE
programs (page 12)

– how to define the database environment (current SQL user, default catalog and default
schema) (page 25)

– the syntax and sematic rules for the DRIVE statements PARAMETER DYNAMIC and
OPTION used to define the database environment, as well as alternatives to the
SHOW statement, which is not currently supported for SESAM V2 access. This
statement is used to output information on the metadata of permanent SQL objects and
temporary dialog objects (from page 36)

– examples and the sample database (page 42)

2.1 Organization of a SESAM V2 database using an example

This section uses an example to introduce you to the most important objects in a SESAM
V2 database, as well as the resources used to create, manage and process these objects.
In this example, a table is created by migrating a SESAM V1 database. You will find a
complete description of the example and of migration starting on page 42.

2.1.1 Terminology for logical organization

In terms of logic, a SESAM V2 database comprises the following SQL objects:

– catalog

The catalog is a BS2000 file containing the system tables for managing the database.
It is generated by the universal user, who is the highest-ranking database administrator,
using the CREATE CATALOG ... utility statement. A catalog can comprise several

8 U20069-J-Z145-3-7600

Database organization Working with SESAM/SQL V2

schemas containing a number of base tables. In the example, the catalog
”PERSONALVERWALTUNG“ consists of the two schemas “STAMMDATEN“ and
”PROJEKTDATEN“.

An application can only access catalogs by means of a DBH (database handler) (see
the “DRIVE Programming Language” manual [2], section 9.2, “Special features of
SESAM V2“). In the configuration file of the DBH, the logical and physical names of the
catalogs that are to be managed by this DBH are declared with ADD-SQL-DATABASE-
CATALOG-LIST. All the databases must be located on the computer on which the DBH
is running. This means that the physical catalog names can be prefixed with a BS2000
ID. The logical catalog names are unqualified (max. 18 characters) and must be unique.

– schema

A schema is the term used to refer to a set of tables that are logically related. Each
schema is assigned to exactly one SQL user, who is the owner of the schema and is
thus responsible for the tables. In the example, the schema “STAMMDATEN” consists
of the tables “MITARBEITER” and “ABTEILUNG”, and the schema “PROJEKTDATEN”
consists of the table “PROJEKT”.

The schema name must be unique within a catalog.

– tables and columns

A table can be considered a set of columns that represent the user data. A table can be
accessed by its owner and any SQL users who the owner has authorized to do so (see
the GRANT statement).

The table name must be unique within the schema. The fully qualified name of a table
consists of: catalog_name.schema_name.table_name. Outside of the DRIVE appli-
cation, a name can be qualified in DRIVE/WINDOWS by means of
– compiler options for static programs (see section “OPTION CATALOG/SCHEMA/

AUTHORIZATION” on page 28
– dynamic SET statements for dynamic statements used to set the default values for

the runtime system (see section “SET CATALOG/SCHEMA/SESSION AUTHORI-
ZATION” on page 26).

– constraint

A constraint (integrity constraint) consists of 1-n columns of one or more tables, which
all satisfy a condition. A constraint can be defined by the owner of a table or any SQL
user with the appropriate privilege. The following constraints exist:

U20069-J-Z145-3-7600 9

Working with SESAM/SQL V2 Database organization

– UNIQUE (in the example, “ABTEILUNG_NR“, “COMP_PERS_NR“ and
“PROJEKT_NR“)

– PRIMARY KEY (see UNIQUE)

– CHECK checks whether the column value lies within a certain range of values or is
the NULL value.

– FOREIGN KEY ensures the referential integrity between the source table and the
reference table (in the example, “ABT_MIT_NR“, “PROJ_MIT“, “ABT_LEITER“). A
UNIQUE or PRIMARY KEY constraint must be valid for the source table. When the
reference table is loaded (via DDL or the Utility Monitor), a check is performed to
make sure that the 1-n columns of the FOREIGN KEY contain values that are
already in the source table. In order to do this, the SQL user loading the source table
must have permission to read the referenced schema (GRANT ... REFERENCES).

The constraint name must be unique within the schema. The fully qualified constraint
name consists of: catalog_name.schema_name.constraint_name.

– index

In order to improve performance, 1-n columns in a table can be indexed. For SESAM
V2, DRIVE/WINDOWS syntax does not currently support indexes. However, base table
indexes that were specified in the Utility Monitor, for example, can be used in DRIVE/
WINDOWS.

The CREATE INDEX ... statement assumes that the schema has been defined and that
table fields exist. The fully qualified index name consists of:
catalog_name.schema_name.index_name.

2.1.2 Terminology for physical organization

A database is described physically by a storage group and spaces and is managed using
SSL (Storage Structure Language) language elements. A space is a BS2000 file in which
the records and indexes are stored in the form of tables. A storage group groups together
a number of spaces as a logical unit.

Each SQL user has a default space D0user (11 characters) that is qualified by the catalog
name. In addition, each SQL user can set up other spaces that he or she manages as their
owner (catalog_name.space_name).

10 U20069-J-Z145-3-7600

Structure and migration Working with SESAM/SQL V2

Example

A privileged user (e.g. universal user) must first grant an SQL user the right to create a
storage group with the GRANT statement. After issuing the CREATE STOGROUP
statement, this SQL user can grant other SQL users permission to use this storage group
(GRANT USAGE ON STOGROUP). The following table indicates a possible series of trans-
actions in the Utility Monitor for creating the physical database organization:

SSL language elements are not supported by DRIVE/WINDOWS.

2.2 Database structure and migration of SESAM V1 tables

In this section, the SESAM V1 tables “MITARBEITER”, “ABTEILUNG” and “PROJEKT”
(see section “Examples and sample database” on page 42) are used to illustrate how to
create a SESAM V2 database with the Utility Monitor and migrate SESAM V1 tables. It also
shows you how to create new SESAM V2 tables with DRIVE programs and grant permis-
sions.

Each access (read, write) performed on an SQL object requires an authorization identifier.
This identifier corresponds to the SQL user name. Each SQL user can only access certain
SQL objects. Initially, these are all the objects that the SQL user owns. It also includes any
objects whose owner has granted read or write permission to the SQL user.

Creating a V2 database and migrating V1 databases (Utility Monitor)

In order to create a database, the universal user (“SYSTEMVERWALTER“ in the example),
who has all privileges, must perform the following steps in the Utility Monitor (see the
SESAM “Utility Monitor” manual [21], chapter 5).

1. Select the function CONFIURATION (CNF) from the start menu and specify the SQL
environment as follows:

SEE-AUTHID : SYSTEMVERWALTER

SEE-CATALOG : PERSONALVERWALTUNG

SEE-SCHEMA : STAMMDATEN

Transaction SQL statement

TA1 GRANT CREATE STOGROUP ON CATALOG catalog TO user1

TA2: User user1 CREATE STOGROUP stogroup ...

TA3 GRANT USAGE ON STOGROUP stogroup TO USER user2

TA4: User user2 CREATE SPACE ... USING STOGROUP stogroup

U20069-J-Z145-3-7600 11

Working with SESAM/SQL V2 Structure and migration

2. Select the function “Instruction File” (IFP) from the start menu and specify the following
instruction files (see page 47) in order to create the catalog, the system entries, the
schemas, and in order to define the SQL user:

UTI.PERSONALVERWALTUNG.CATALOG

UTI.PERSONALVERWALTUNG.USER

UTI.PERSONALVERWALTUNG.SYSTEMUSER

UTI.PERSONALVERWALTUNG.SCHEMA

3. Select the function MIGRATE (MIG) from the start menu and specify the following in
order to migrate the SESAM V1 database to a SESAM V2 table:

MIGRATE DATABASE : $Kennung.MITARBEITER.DB-SIB.0006

WITH INDEX (y/n) : Y

TO TABLE : MITARBEITER

The data saved (DB-SIB) in the SESAM V1 database is stored as a SESAM V2 table
in the schema “STAMMDATEN“.

In order to migrate the data saved in MITARBEITER.DB-SIB.0006, you must specify the
SQL user, the catalog and the schema using the Utility Monitor (see step 1).

The SQL user “SYSTEMVERWALTER“, who has migrate permission, migrates
“MITARBEITER“ to the schema PERSONALVERWALTUNG.STAMMDATEN.

Create the SQL table “ABTEILUNG“ (DRIVE program)

The DRIVE program “DRI.TABLE.ABTEILUNG” creates the SQL table “ABTEILUNG” with
the primary key KEY_ABT_NR in the schema “STAMMDATEN”, whose owner is
“PERSONALLEITER“ (see page 50).

Granting access permissions and defining foreign keys (DRIVE program)

As the owner, the SQL user “PERSONALLEITER“ can grant privileges to other SQL users
(GRANT statement) so that they can access the data. In the example, the SQL user
“PERSONALLEITER” must grant the SQL user “PROJEKTLEITER” access permission for
the data in the schema “STAMMDATEN” with the tables “MITARBEITER” and
“ABTEILUNG”. The SQL user “PROJEKTLEITER” grants access permission for the table
“PROJEKT“ in the schema “PROJEKTDATEN“, which he or she owns. In particular, this
grants “PERSONALLEITER“ reference permission for “PROJEKT“ (REFERENCES
privilege). “PERSONALLEITER“ defines a foreign key reference from “MITARBEITER“ to
the primary key of “PROJEKT“ and from “MITARBEITER“ to the primary key of
“ABTEILUNG“ (see page 52).

12 U20069-J-Z145-3-7600

DRIVE program access Working with SESAM/SQL V2

2.2.1 DRIVE requirements for SESAM migration

The following rules must be observed if you want existing DRIVE new-style programs and
DRIVE old-style procedures that access SESAM databases of SQL V1 or V14 to execute,
without modification if possible, after migration of the database to SESAM V2:

– All database backups (DB SIBs) that are accessed by the DRIVE application are
migrated to the same schema.

– Databases that are processed by DRIVE new-style programs using SQL DML state-
ments are migrated as SQL tables. Databases that are processed by DRIVE proce-
dures in old-style or mixed operation using CALL DML statements are migrated as
CALL DML tables. If a database has a password catalog (PK-SIB) and is to be migrated
to a CALL DML table, the password catalog must be included in migration.

– System entries are created for the DRIVE application (e.g. UTM conversation or TIAM
mode).

– If a DRIVE SQL user is not the owner of the schema, this user must be granted all the
necessary privileges with the GRANT statement.

– The catalog or CALL DML tables are entered in the configuration file of the SESAM
DBH (DBH start instructions ADD-SQL-DATABASE-CATALOG-LIST and ADD-OLD-
TABLE-CATALOG-LIST).

If you observe the above mentioned rules for migration, there is no need to modify existing
new-style, old-style or mixed-mode DRIVE programs. The SQL tables are made known with
the PARAMETER DYNAMIC CATALOG/SCHEMA/AUTHORIZATION statement. In the
case of old-style programs or mixed mode with access to CALL DML tables, no settings
need be defined for the database environment with the PARAMETER DYNAMIC statement.
You can use the PERMIT statement to pass any necessary passwords from new-style to
old-style or mixed mode.

2.3 DRIVE program access to SESAM

DRIVE/WINDOWS supports the SQL standard (ISO/IEC 9075:1992). It provides full
support for the , a high level of support for the intermediate level, and supports the most
important parts of the full level (see the “Database Language SQL” manual [47]). The level
of support is determined for the most part by the functional scope of SESAM/SQL Version
2.x.

U20069-J-Z145-3-7600 13

Working with SESAM/SQL V2 DRIVE program access

SESAM databases can be accessed by

● old-style procedures

whose SQL language elements are identical with those of DRIVE Version 5.1 (see the
“DRIVE V5.1, Part 2: System Directory“ [15]). They access the CALL DML tables via
the CALL DML interface (see MIGRATE and CREATE TABLE statements).

● new-style programs

whose set of SQL language elements is more extensive, i.e.

– almost all the standard statements of SESAM V2 are included (see next section)

– already includes the most important SESAM V2 extensions to the SQL standard
(see next section)

– includes convenient DRIVE-specific extensions to the SQL standard (see the
“DRIVE Programming Language” manual [2], chapter 9, “Database support”).

– provides a transparent means of formulating dynamic SQL statements with the
EXECUTE statement.

You access CALL DML and SQL tables via the static SQL interface (ICSQLE) or the
dynamic SQL interface (ESQL/COBOL).

The DRIVE/WINDOWS operating mode determines whether this program style can be
used:

– in old-style operation, only old-style procedures can be executed (with the DO
statement)

– in new-style operation, only new-style programs can be executed (with the DO, CALL
and ENTER statements)

– in mixed operation, both old-style procedures and new-style programs can be
executed. A new-style program can call an old-style procedure with DO or CALL (see
the “DRIVE Programming Language” manual [2], chapter 15, “Integration of old-style
procedures“)

An SQL statement in a new-style program is referred to as being

– static if it is explicitly coded in the source program and can thus be compiled

– dynamic if it is generated, compiled and executed during execution of an EXECUTE
statement (see the “DRIVE Programming Language” manual [2], chapter 4,
“Programming logic“, and the description of the EXECUTE statement in the “Directory
of DRIVE Statements” [3]).

14 U20069-J-Z145-3-7600

DRIVE program access Working with SESAM/SQL V2

The declarative DRIVE statement DECLARE VARIABLE ... LIKE TABLE/CURSOR ... is
also considered a static SQL statement. Cursor statements that reference variable cursors
are considered dynamic. The executable DRIVE statement CYCLE cursor INTO... is
considered a static SQL statement if cursor is static, and as a dynamic SQL statement if
cursor is variable.

A new-style program is referred to as being

– static if it includes at least one executable static SQL statement other than COMMIT
WORK and ROLLBACK WORK and no dynamic SQL statements.

– dynamic if it does not include any executable static SQL statement other than COMMIT
WORK and ROLLBACK WORK.

– All other new-style programs are referred to as being general .

The following provides you with a description of the rules and recommendations for static
and dynamic SQL statements and programs.

SQL statements entered in interactive mode are processed by DRIVE/WINDOWS
like dynamic program statements, i.e. in such a way that they observe the appro-
priate rules and recommendations as far as possible.

If SESAM V1 is being accessed, DRIVE/WINDOWS uses the same interface to access
SESAM for both static and dynamic SQL statements. If SESAM V2 is being accessed,
DRIVE/WINDOWS uses two different interfaces for performance reasons (see above).

2.3.1 SQL language resources in new style

DRIVE/WINDOWS supports the following interfaces for the DB server SESAM/SQL V2 in
new-style operation(see the SESAM manuals [18] and [20] for the classification used):

– Utility statements (e.g. CREATE CATALOG and MIGRATE) via the SESAM Utility
Monitor (see the SESAM manuals [19] and [21])

– UDL (User Definition Language) for managing user entries (e.g. CREATE USER and
CREATE SYSTEM_USER) also via the Utility Monitor

– DDL (Data Definition Language) for defining and managing schemas (e.g. CREATE
SCHEMA and CREATE TABLE). All DDL statements are already included in the DRIVE
language resources with only minor restrictions to the functional scope (e.g. no CALL
DML tables and no cascading deletion yet)

– SSL (Storage Structure Language) for managing the storage structure (e.g. CREATE
INDEX) via the Utility Monitor

– all statements for transaction management

– all statements for session control

i

U20069-J-Z145-3-7600 15

Working with SESAM/SQL V2 DRIVE program access

– DML (Data Manipulation Language) for querying and updating data (in particular
INSERT, UPDATE, DELETE and DECLARE CURSOR). All DML statements are
already included in the DRIVE language resources with no restrictions regarding the
functional scope of SESAM/SQL V2.0 and with only minor restrictions regarding the
new functions of SESAM/SQL V2.1 (e.g. for SQL expressions and table specifications)

– CALL DML for CALL DML tables via mixed operation (see the DRIVE V5.1 manuals [14]
and [15]).

A new-style transaction must either include only DML statements or no DML statements.
SESAM only executes an SQL statement if the SQL environment of its transaction permits
this. This SQL environment comprises an SQL user whose name is referred to as an autho-
rization identifier, an associated default catalog and an associated default schema. The
SQL user is authorized to access the data and metadata of the transaction if this user is the
owner or has been granted permission by the owner (see the GRANT statement).

A new-style program can initiate an old-style transaction by calling an old-style procedure
(with DO or CALL). This is only permitted outside of new-style transactions. The old-style
transaction does not need a (new-style) SQL environment in order to execute its CALL DML
statements. Instead it only needs a password, if one is required, which must be entered in
new-style operation with the PERMIT statement. DRIVE/WINDOWS then passes this
password to the old-style transaction.

2.3.2 Static programs

The SQL statements in a static (new-style) program correspond to the precompiled state-
ments with regard to SESAM terminology. Each DRIVE compilation of a static program is
performed as a SESAM precompilation with database contact. This means that SESAM
must be available for compilation, i.e. the DBH assigned to DRIVE/WINDOWS must
already have been started. In addtion, specifications must already have been made for the
following:
– AUTHORIZATION (authorization identifier),
– CATALOG (default catalog) and
– SCHEMA (default schema).

These specifications can be made using the following:
– DRIVE compilation options (OPTION statement in the program or OPTION clause of

the COMPILE statement). The latter takes precedence over the former.
– DRIVE parameter settings (PARAMETER DYNAMIC statement, see section “Defining

the database environment” on page 25).

This results in the following attributes for the transaction profile (abbreviated in the following
to TA profile) of a static program without CALL statements:

16 U20069-J-Z145-3-7600

DRIVE program access Working with SESAM/SQL V2

– If it contains n COMMIT statements, it executes up to n transactions at the time it is
executed; if n = 0, it can only participate in one transaction of the calling program (see
section “Program communication” on page 17)

– All these transactions are assigned to exactly one SQL users, i.e. the one specified via
OPTION AUTHORIZATION or the one preset at compilation time with PARAMETER
DYNAMIC.

– Access to all data fields and metadata that are not fully qualified (e.g. integrity
constraints) is performed using the program qualification, i.e. the default values for the
schema and catalog names specified with SCHEMA and CATALOG, respectively.

You can obtain information on the valid values for AUTHORIZATION, CATALOG and
SCHEMA from the compiler listing of the program.

2.3.3 Dynamic programs

The SQL statements of a dynamic (new-style) program correspond to prepared statements
with regard to SESAM terminology. Preparation is performed at execution time. Therefore,
there is no SESAM contact at compilation time. The current SQL environment, i.e. the
current authorization key, default catalog name and default schema name are set dynami-
cally during execution by means of SET SESSION AUTHORIZATION/CATALOG/SCHEMA
statements. If the program does not include any SET statements, the DRIVE default setting
defined by the last corresponding PARAMETER DYNAMIC statement is valid (see
section “Defining the database environment” on page 25).

SET SESSION AUTHORIZATION and PARAMETER DYNAMIC AUTHORIZATION are
only permitted outside of transactions. It is always possible to change the default catalog or
default schema. Therefore, the SQL user can be changed within a transaction; the default
catalog and the default schema can even be changed from statement to statement. This
means that each transaction has “its own” SQL user and can access the catalogs and SQL
objects that “its own” SQL user can access.

This establishes the following attributes for the TA profile of a dynamic program without
CALL statements:

– If it contains n COMMIT statements, it executes up to n transactions when it is
executed; if n = 0, it can only participate in one transaction of the calling program (see
section “Program communication” on page 17)

– Each transaction is assigned to exactly one SQL user, i.e. the one last specified with
SET SESSION AUTHORIZATION or the last one preset (at compilation time) with
PARAMETER DYNAMIC; this authorization identifier can be inherited from the calling
program or from interactive mode.

U20069-J-Z145-3-7600 17

Working with SESAM/SQL V2 DRIVE program access

– Access to all data fields and metadata that are not fully qualified is performed using the
currently valid default values for SCHEMA and CATALOG, i.e. according to the last SET
or PARAMETER DYNAMIC statement. Each default value can be inherited from the
calling program or from interactive mode.

The currently valid values for AUTHORIZATION, CATALOG and SCHEMA can be
controlled at development time in debugging mode using a trace and can be logged in the
debugging listing by means of debugging actions (start program with trace and specify the
debugging actions TRACE and DISPLAY LIST in each appropriate SET and PARAMETER
DYNAMIC statement and in each transaction statement) (see the “Directory of DRIVE
Statements” [3], DEBUG, AT and TRACE statements).

2.3.4 Program communication

DRIVE programs communicate with one another via the CALL statement. A distinction must
be made between the following cases:

1. static (new-style) program calls static program

2. dynamic (new-style) program calls dynamic program

3. static program calls dynamic program

4. dynamic program calls static program

5. general (new-style) program calls general program

6. new-style program calls old-style procedure

These cases are explained below using examples.

These distinctions between different cases apply to all platforms (BS2000, SINIX,
MS-Windows). On the SINIX platform, the programs that can be executed in
BS2000 are referred to as DRIVE alpha programs.These also communicate with
each other by means of the CALL statement only. DRIVE windows programs, i.e.
programs with a graphical user interface, on the other hand, can also communicate
with each other via ADD/NEXT/NEW WINDOW statements and events. In the case
of a CALL statement, the body of a DRIVE windows program is executed. In the
case of ADD/NEW/NEXT WINDOW, the initialization block is executed and, in the
case of an event, the event block of the associated script (see the ON statement in
the “Directory of DRIVE Statements” [3]).

There are only DRIVE windows programs on the MS-Windows platform. With
regard to the TA profile, however, DRIVE windows programs behave just like
DRIVE alpha programs. In the following examples, each CALL statement could also
be an ADD/NEW/NEXT WINDOW statement or an ON statement, and each section
could be an initialization block or event block rather than just an execution section
(body).

i

18 U20069-J-Z145-3-7600

DRIVE program access Working with SESAM/SQL V2

A (new-style) transaction is implemented by the three DRIVE programs P1, P2 and P3,
where P2 is called by P1 and P3 by P2 using CALL. P2 and P3 must not include any trans-
action statements. After P2 is called, P1 contains a COMMIT WORK statement. This CALL
chain results in the following five program sections, each of which contains SQL state-
ments:

PROC P1;

...

Section 1 (does not contain a TA statement)

...

CALL P2;

 PROC P2;

 ...

 Section 2 (does not contain a TA statement)

 ...

 CALL P3;

 PROC P3;

 ...

 Section 3 (does not contain a TA statement)

 ...

 END PROC;

 ...

 Section 4 (does not contain a TA statement)

 ...

 END PROC;

...

Section 5 (contains a COMMIT WORK statement)

...

END PROC;

U20069-J-Z145-3-7600 19

Working with SESAM/SQL V2 DRIVE program access

Case 1 (static calls static)

P1, P2 and P3 are static programs.

CALL P2 and CALL P3 are only executed if P2 and P3 already exist as intermediate code
or object code. If P1 itself is part of a CALL chain (i.e. not called with DO or ENTER), this
also applies to P1 if a transaction is open when CALL P1 is executed.

The rules mentioned in section 2.3.2, “Static programs”, are valid for the programs P1, P2
and P3. In particular, each program has “its own” SQL user, “its own” default catalog and
“its own” standard schema in accordance with the compiler listing.

1. If P1 is not called with CALL, the following applies to the execution of P1: P1 starts a
new transaction in section 1 and terminates it in section 5 with “its own” SQL
environment. P2 resumes this transaction in sections 2 and 4 with “its own” SQL
environment. P3 resumes this transaction in section 3 with “its own” SQL environment.
The same applies if P1 is called with CALL but no transaction is open when CALL P1
is executed.

2. If, however, P1 is called with CALL and a transaction is open at this time, P1 resumes
this transaction with “its own” SQL environment, i.e. P1 assumes the roll of P2 but with
the additional attribute that P1 terminates the inherited transaction.

This results in the following attributes for the TA profile when P1 is executed:

– If P1 is not called with CALL, but with DO or ENTER instead, a transaction with up to
three SQL users and up to three default catalogs and up to three default schemas
exists.

– If P1 itself is part of a CALL chain, the TA profile depends on whether a transaction is
open when P1 is called.

If no transaction is open, the aforementioned applies to DO P1. If, on the other hand, a
transaction is open, P1 resumes this “foreign” transaction in section 1 and terminates it
in section 5 using “its own” SQL environment; this resumed transaction can have more
than three SQL environments.

– If P1 returns to its caller (not for successor DO and ENTER), it does not take its SQL
environment with it. The SQL environment that was valid before P1 was called resumes
to be valid for the caller of P1.

20 U20069-J-Z145-3-7600

DRIVE program access Working with SESAM/SQL V2

Case 2 (dynamic calls dynamic)

P1, P2 and P3 are dynamic programs.

P1, P2 and P3 do not need to exist as intermediate code or object code. Because dynamic
statements cannot be generated or compiled until execution time, the existence of interme-
diate code or object code has no influence on the performance of the SQL statements
(exception: variable cursors).

The rules specified in the section “Dynamic programs” apply to the programs P1, P2 and
P3. In particular, it is not possible to change the SQL user within a transaction. It is,
however, possible to change the default catalog and default schema from statement to
statement (inasmuch as this is useful).

1. If P1 is not called with CALL, the following applies to the execution of P1:

P1 starts a new transaction in section 1with an SQL user that it set itself with SET
SESSION AUTHORIZATION or which has been set according to the current default
value specified for PARAMETER DYNAMIC AUTHORIZATION. P1 terminates this
transaction in section 5 with the same SQL user. P2 and P3 resume this transaction in
sections 2 and 4 and section 3, respectively, each with the same SQL user. The same
applies if P1 is called with CALL but no transaction is open when CALL P1 is executed
(see case 3).

2. If, on the other hand, P1 is called with CALL and a transaction is open at this time, P1
resumes this transaction with the current authorization identifier, i.e. P1 assumes the
role of P2 but with the additional attribute that P1 terminates the inherited transaction.

This results in the following attributes for the TA profile when P1 is executed:

– If P1 is not called with CALL, a transaction with one SQL user and “many” default
catalogs and schemas exists.

– If P1 is part of a dynamic CALL chain, the TA profile depends on whether a transaction
is open when P1 is called.

If no transaction is open, P1 initiates “its own” transaction in section 1 and terminates it
in section 5 using “its own” SQL user.

If a transaction is open, P1 resumes this “foreign” transaction in section 5 using “its own”
SQL user. The initiated and resumed transactions can each only have one SQL user.

– If P1 was called with CALL, it takes its current SQL environment with it when it returns
to its caller. This means that a different current SQL user is valid for the P1 caller if no
transaction was open for CALL P1, and P1 issued a new SET SESSION
AUTHORIZATION statement.

A different standard catalog or schema is valid for the P1 caller if P1 or P2 or P3 issued
a new SET CATALOG or SET SCHEMA statement.

U20069-J-Z145-3-7600 21

Working with SESAM/SQL V2 DRIVE program access

– If P1 was called with DO, DRIVE/WINDOWS reestablishes the SQL environment
according to the last PARAMETER DYNAMIC AUTHORIZATION/CATALOG/SCHEMA
statement when the interactive mode is resumed.

Case 3 (static calls dynamic)

P1 and P3 are static, and P2 is dynamic.

1. If P1 is not called with CALL, the following applies to the execution of P1:

P1 starts a new transaction in section 1 and terminates it in section 5 with “its own” SQL
environment.

P2 resumes this transaction in sections 2 and 4 with the SQL user of the last SET
SESSION AUTHORIZATION or PARAMETER DYNAMIC AUTHORIZATION statement
(before P1 was called).

P3 resumes this transaction in section 3 with “its own” SQL environment.

The same applies if P1 is called with CALL but no transaction is open for CALL P1.

2. If, on the other hand, P1 is called with CALL and a transaction is open at this time, P1
resumes this transaction with “its own” SQL environment. The SQL user valid in P2 was
set outside of this inherited transaction.

This results in the following attributes for the TA profile when P1 is executed:

– If P1 is not called with CALL and no transaction is open for CALL P1, a transaction with
up to three SQL users and “many” default catalogs and schemas exists.

– If a transaction is open for CALL P1, P1 resumes this transaction in section 1 and termi-
nates it in section 5 with “its” SQL user. This transaction can have more than three SQL
users and “many” default catalogs and schemas.

22 U20069-J-Z145-3-7600

DRIVE program access Working with SESAM/SQL V2

Case 4 (dynamic calls static)

P1 and P3 are dynamic, and P2 is static.

1. If P1 is not called with CALL, the following applies to the execution of P1:

P1 starts a new transaction in section 1 with an SQL user that it set itself with SET
SESSION AUTHORIZATION or which has been set according to the current default
specified for PARAMETER DYNAMIC AUTHORIZATION. P1 terminates this trans-
action in section 5 with the same SQL user.

P2 resumes this transaction in sections 2 and 4 with “its” SQL user, and P3 resumes it
in section 3 with the SQL user of P1. The same applies if P1 is called with CALL but no
transaction is open for CALL P1.

2. If, on the other hand, P1 is called with CALL and a transaction is open, P1 resumes this
transaction with the current authorization identifier and terminates the inherited trans-
action with this SQL user.

This results in the following attributes for the TA profile when P1 is executed:

– If P1 is not called with CALL or no transaction is open for CALL P1, a transaction with
up to two SQL users and “many” default catalogs and schemas exists.

– If a transaction is open for CALL P1, P1 resumes this transaction in section 1 and termi-
nates it in section 5 with the current authorization identifier. This transaction can have
more than two SQL users and “many” default catalogs and schemas.

Fall 5 (general calls general)

P1, P2 and P3 are general programs.

In the cases 1 to 4, each program is assigned exactly one SQL user; in this case, each
program can have one “static” and one general “dynamic” SQL user. The TA profile is thus
more general and unclear.

Case 6 (new-style calls old-style)

If a new-style program P4 calls and old-style procedure P5 with DO or CALL, no new-style
transaction can be open. Furthermore, no old-style transaction can be open when the
program returns to new-style operation (calling program or interactive mode) from old-style.

U20069-J-Z145-3-7600 23

Working with SESAM/SQL V2 DRIVE program access

New-style transactions ignore old-style passwords and old-style transactions ignore new-
style SQL users. The TA profiles of P4 and P5 are therefore disjunctive.

– You can obtain the TA profile for P4 by replacing the CALL statement in P4 with a
COMMIT WORK statement. In this case, the information supplied in cases 1 through 5
applies to P4.

– An old-style procedure can only work with one password. The TA profile of an old-style
procedure therefore corresponds to the TA profile of a static new-style program.

2.3.5 Programming recommendations

The following recommendations increase the readability of the DRIVE programs and makes
the SQL environment in which they execute easier to understand:

– Try to use only one SQL user per DRIVE session (TIAM session or UTM conversation)
and define this user as the default value using PARAMETER DYNAMIC
AUTHORIZATION (single-SQL-user session. DRIVE/WINDOWS can be configured
accordingly (see the “DRIVE Programming System” manual [1], chapter 11, “Data
security”).

– Develop as many static and dynamic programs as possible and use as few general
programs as possible.

– Develop dynamic programs without PARAMETER DYNAMIC AUTHORIZATION/
CATALOG/SCHEMA statements, and conversely develop programs containing
PARAMETER DYNAMIC statements without SQL statements.

– Design dynamic programs as single-SQL-user programs, i.e. no SET SESSION
AUTHORIZATION statement (the SQL user is passed on by the caller) or only one such
statement and place it before the SQL statement that is considered the first statement
with regard to program logic.

– Define the TA profile of general programs by means of an OPTION AUTHORIZATION
statement and dynamic SET SESSION AUTHORIZATION statements (multi-SQL-user
programs)

24 U20069-J-Z145-3-7600

DRIVE program access Working with SESAM/SQL V2

2.3.6 Incompatibilities

If you are working with the database system SESAM/SQL V1.1, access to the database
system is the same for all DRIVE/WINDOWS versions. If you are accessing the database
system SESAM/SQL V2, you will find there are the following three differences between
DRIVE/WINDOWS V2.x and earlier DRIVE versions (DRIVE/WINDOWS V1.x or DRIVE
V6.x):

● Static SQL objects cannot be referenced in dynamic SQL statements:

– If a static cursor is declared but is referenced dynamically, e.g.

DECLARE C1 CURSOR FOR SELECT SCHLUESSEL FROM FIRMA;
EXEC ’OPEN C1’;

DRIVE/WINDOWS V2.x issues the following message upon execution:

DRI0033 DYNAMIC STATEMENT NOT PERMITTED.

The system variable &ERROR contains 'SYNTAX ERROR'.

– If a static temporary view is declared but is referenced dynamically, e.g.

CREATE TEMPORARY VIEW V1 AS SELECT SCHLUESSEL FROM FIRMA;
EXEC ’INSERT INTO V1 VALUES (’’HUGO01’’)’;

DRIVE/WINDOWS V2.x also issues message DRI0033 upon execution and
supplies &ERROR with the value 'SYNTAX ERROR'.

● Dynamic temporary views defined in programs should be deleted explicitly before the
program in which they were defined is exited with DROP TEMPORARY VIEW..., or at
the end of the DRIVE application with DROP TEMPORARY VIEWS. Otherwise, the
following occurs:

– At the end of the application, i.e. when you switch to interactive mode or to the SPU,
the following message is output:

DRI0488 EXISTING DYNAMIC TEMPORARY VIEWS RELEASED

– If a successor program is called with DO at the end of the program, the program is
aborted with message DRI0488, i.e. the successor program is not executed.

The owner of a dynamic temporary view is the SQL user current at the time that the
dynamic CREATE TEMPORARY VIEW statement is executed (last SET SESSION
AUTHORIZATION or PARAMETER DYNAMIC statement). If there is a different
current SQL user when the DROP TEMPORARY VIEW(S) statement is executed,
the dynamic temporary view cannot be deleted since only the owner can delete a
temporary view.

i

U20069-J-Z145-3-7600 25

Working with SESAM/SQL V2 Defining the database environment

● If a program that includes static SQL statements other than COMMIT WORK and
ROLLBACK WORK is called with CALL in an open transaction, it must already exist as
intermediate code or object code. Otherwise DRIVE/WINDOWS issues the following
message and aborts execution:

DRI0490 SESAMSQL COMPILATION NOT POSSIBLE WITH TRANSACTION OPEN

2.4 Defining the database environment

The database environment for SESAM/SQL V2 consists of all the SQL2 databases that can
be referenced with a SESAM/SQL2-Server (SESAM DBH). This is defined in the server
configuration file with ADD-SQL-DATABASE-CATALOG-LIST.

If you want to work with SESAM/SQL V2, you must specify the following information:
– default catalog name (see section “Changing the database and schema” on page 28)
– default schema name (see page 28)
– current authorization identifier (SQL user name).

These three names are used to define the current SQL environment for the DRIVE session
(TIAM session or UTM conversation).

When a DRIVE program accesses the data, the SESAM/SQL V2 server checks the
following with regard to the SQL user:

– whether the SQL user has been entered (see the CREATE USER statement)

– whether a system entry exists for the SQL user (see the CREATE SYSTEM_USER
statement in the SESAM manual [18])

– whether the SQL user has access permission for the data (see the GRANT statement)

For compilation and for programs containing static SQL statements, these parameters are
supplied with a value with OPTION CATALOG/SCHEMA/AUTHORIZATION (page 28). In
the case of dynamic SQL statements, these parameters are supplied with values with
PARAMETER DYNAMIC or SET CATALOG /SCHEMA/ AUTHORIZATION (see page 36,
page 136, page 138, page 140). SET values are only valid for the current DRIVE program,
PARAMETER values are considered the last values set and are valid beyond the end of the
DRIVE program in interactive mode and are used as the default values in the parameter
mask.

If during compilation OPTION statements or clauses are missing, the parameter settings
are used. If these do not exist, DRIVE/WINDOWS aborts in the event of AUTHORIZATION
with error message DRI0525 and uses as the default value a blank for CATALOG and
SCHEMA.

26 U20069-J-Z145-3-7600

Defining the database environment Working with SESAM/SQL V2

This section describes the interaction between the DRIVE and SQL statements that you
use to define the database environment: PARAMETER, OPTION and SET with the
operands CATALOG/SCHEMA/AUTHORIZATION.

2.4.1 SET CATALOG/SCHEMA/SESSION AUTHORIZATION

You use the SET statement to define the SQL environment in which you want to work. The
SET statement does not take effect until it is executed. For DRIVE/WINDOWS (as for
SESAM), SET SCHEMA and SET CATALOG only affect dynamic statements. In DRIVE/
WINDOWS, SET SESSION AUTHORIZATION only affects dynamic statements (unlike
SESAM).

The following is valid:

– A SET CATALOG statement defines the default catalog name for dynamic SQL state-
ments. In program mode, it is permitted in static and dynamic statements. It is not
permitted in interactive mode.

– A SET SCHEMA statement defines the default schema name for dynamic SQL state-
ments. In program mode, it is permitted in static and dynamic statements. It is not
permitted in interactive mode.

– A SET SESSION AUTHORIZATION statement defines the current authorization
identifier (SQL user name) for subsequent SQL statements. In program mode, it can
only be used dynamically and thus only affects dynamic SQL statements. In an open
transaction, SESAM rejects this statement with SQLSTATE 25SA4. It is not permitted
in interactive mode.

2.4.2 PARAMETER DYNAMIC CATALOG/SCHEMA/AUTHORIZATION

You use the PARAMETER DYNAMIC CATALOG/SCHEMA/AUTHORIZATION statement to
define the SQL environment for the DRIVE session. The values you specify are managed
by DRIVE/WINDOWS and are passed to the database system SESAM V2. This means that
DRIVE/WINDOWS ensures that the DRIVE and SQL environments remain consistent. You
can set the parameters CATALOG/SCHEMA/AUTHORIZATION
– in interactive mode (as a single statement or with the help of screen masks in BS2000

and SINIX, or by means of menus in the SPU)
– in program mode
– as startup parameters when you start UTM
– in the UTM leader program via user labels

These default settings are committed in the event of an explicit COMMIT WORK statement
and in the following situations:

U20069-J-Z145-3-7600 27

Working with SESAM/SQL V2 Defining the database environment

– when the program is terminated normally or with errors (END PROC at the highest level
or BREAK)

– before successor DO statements
– after ROLLBACK WORK in interactive mode
– after termination of the first transaction in program mode by means of ROLLBACK

WORK
– at the start of a UTM conversion if startup parameters exist for the UTM application or

user labels with the corresponding PARAMETER DYNAMIC statements.

The effect of PARAMETER DYNAMIC CATALOG/SCHEMA/AUTHORIZATION is different
for static and dynamic statements.

When programs are compiled, the priority of the values specified for CATALOG/SCHEMA/
AUTHORIZATION is as follows:

– if values for CATALOG/SCHEMA/AUTHORIZATION are specified in the program with
the OPTION statement, these values are valid if no corresponding OPTION values
were specified for COMPILE,

– otherwise the compiler options are valid (OPTION clause of the COMPILE statement).

– If these also do not exist, the values specified as the default parameters are valid.

– If these also do not exist, a blank is the default value for CATALOG and SCHEMA. In
the case of AUTHORIZATION, the program is aborted and error message DRI0525 is
issued.

The three valid values are written in the compiler listing and are committed in the stored
intermediate code (by SESAM) so that they are valid for all static statements when the
program is executed regardless of the current values of the runtime system.

The following applies to dynamic statements:

– If values are specified for CATALOG/SCHEMA/AUTHORIZATION in the program with
SET statements, these are valid regardless of any other settings.

A COMMIT WORK statement in the program commits the values set for CATALOG/
SCHEMA/AUTHORIZATION with SET statements. These values are valid until the end
of the program if no further SET statements follow and the parameter defaults are not
modified.

A ROLLBACK WORK statement in the program resets the values set for CATALOG/
SCHEMA/AUTHORIZATION by means of SET statements if they have not already
been committed with COMMIT WORK. This means that the values specified as the
parameter defaults or the values from the last committed SET statement are then valid.

– If the program does not contain any SET statements for setting the values for
CATALOG/SCHEMA/AUTHORIZATION, the current parameter default values of the
runtime system are valid.

28 U20069-J-Z145-3-7600

Defining the database environment Working with SESAM/SQL V2

2.4.3 OPTION CATALOG/SCHEMA/AUTHORIZATION

You can also use the OPTION statement to control the compilation of a DRIVE program that
accesses a SESAM database. This statement is valid for compilation. In addition, the
values are committed in the stored intermediate code so that they are valid for all static SQL
statements when the program is executed, regardless of the values currently valid for the
runtime system.

When a program is compiled, option values are only taken over for static statements. If no
options are set, DRIVE/WINDOWS checks whether parameter values have been set. If this
is not the case, the program is aborted and error message DRI0525 is issued in the case
of AUTHORIZATION. In the case of CATALOG or SCHEMA, DRIVE/WINDOWS uses a
blank as the default value.

Because DRIVE/WINDOWS always compiles with database contact , SESAM opens a
database transaction (“SESAM precompilation”) at the beginning of DRIVE compilation.
SESAM does not roll back this transaction until the end of DRIVE compilation. This means
in particular that only one authorization identifier can be used per compilation. The use of
several authorization identifiers would only be appropriate for SESAM precompilation
without database contact. This is not permitted for DRIVE/WINDOWS.

Compilation can only be started if no transaction is open since the first (declarative or
executable) static SQL statement opens a transaction in SESAM.

2.4.4 Changing the database and schema

The SCHEMA operand of PARAMETER DYNAMIC and OPTION, and the SET SCHEMA
statement allow you to define a default schema name. Any subsequently specified unqual-
ified table names (base table or permanent view) or integrity constraint names refer to this
schema.

The CATALOG operand of PARAMETER DYNAMIC and OPTION, and the SET CATALOG
statement allow you to define a default database name (SESAM catalog). Any subse-
quently specified unqualified schema, table or integrity constraint names refer to this
database.

You can reference a different schema than the default schema by qualifying the name of
table or integrity constraint with a schema name. Likewise, you can reference a different
database than the default database by qualifying the name of a schema, table or integrity
constraint with a catalog name. This access can, for example, be used if you want to
reference two databases in a single transaction. In this case, however, it must be possible
to access both databases with the same SQL user since the SQL user can only be changed
outside of a transaction. The various transaction profiles of static and dynamic (new-style)
programs are described in section “DRIVE program access to SESAM” on page 12.

U20069-J-Z145-3-7600 29

Working with SESAM/SQL V2 Defining the database environment

2.4.5 Current authorization identifier for compilation and execution

The current authorization identifier is determined as follows:

– If OPTION AUTHORIZATION is specified, the authorization identifier specified is valid
for the entire compilation process and for the execution of every compiled static SQL
statement.

– If OPTION AUTHORIZATION is omitted, the current authorization identifier from the
parameter settings for DRIVE/WINDOWS at compilation time are valid for compilation
and for the execution of every compiled static SQL statement.

The current authorization identifier cannot be changed by means of SET SESSION
AUTHORIZATION or PARAMETER DYNAMIC AUTHORIZATION statements.

The current authorization identifier is reset by an implicit ROLLBACK WORK issued by
SESAM once compilation has been completed if it was specified in the program by means
of OPTION. In this case, the current parameter default is again valid.

At execution time, all SET SESSION and PARAMETER DYNAMIC AUTHORIZATION
statements are executed, and consequently the current authorization identifiers are
updated. These updates of the current SQL user only affect dynamic statements.The
authorization identifier valid for static statements is the authorization identifier specified for
compilation as described above.

30 U20069-J-Z145-3-7600

Examples of database environments Working with SESAM/SQL V2

2.4.6 Examples of database environments

2.4.6.1 SESAM database and DRIVE programs

The SQL user FLE has access to the catalog TLDBSQL2 and owns the schema FLE. The
schema FLE comprises the table FIRMA with the column SCHLUESSEL of the type
CHAR(6).

The SQL user HUGO does not have any access to the catalog TLDBSQL2, i.e. either the
user does not exist, or the user does not have a system entry for the BS2000 user ID under
which DRIVE/WINDOWS is running or for DRIVE/WINDOWS as an UTM application.

The SQL user DOM has access to the catalog TLDBSQL2, but no access to the table
FIRMA, i.e. the owner FLE has not executed an appropriate GRANT statement for DOM.

The DRIVE library “$YDRI6FLE.FLE.LIB“ (link name USEROML) contains the following
DRIVE programs:

/* DRIVE program ENVIRONMENT */
PROC ENVIRONMENT;
PAR DYN AUTHORIZATION=FLE;
PAR DYN CATALOG=TLDBSQL2;
PAR DYN SCHEMA=FLE;
END PROC;

/* DRIVE program BEISPIEL */
PROC BEISPIEL;
DCL VAR &FIRMA LIKE TABLE FIRMA;
EXEC 'SET SESSION AUTHORIZATION ''HUGO''';
INSERT INTO FIRMA (SCHLUESSEL) VALUES ('HUGO00');
EXEC 'INSERT INTO FIRMA (SCHLUESSEL) VALUES (''HUGO01'')';
ROLLBACK WORK;
END PROC;

U20069-J-Z145-3-7600 31

Working with SESAM/SQL V2 Examples of database environments

2.4.6.2 TIAM operation

The following examples illustrate the interaction of the statements PARAMETER, OPTION
and SET used to define the SQL environment for TIAM operation.

do environment

compile beispiel option listing=lib authorization=hugo

 PROGRAMM : BEISPIEL
 BIBLIOTHEK : FLE.LIB

ZEILE QUELLE NEST BEISPIEL SEITE : 1

1 1 0 PROC BEISPIEL;
2 2 0 DCL VAR &FIRMA LIKE TABLE FIRMA;
*** *
*** % DRI0536 42SQG -550 SYSTEMZUGANG FUER DEN
 BERECHTIGUNGSSCHLUESSEL HUGO IM CATALOG TLDBSQL2 NICHT
ZUGREIFBAR
3 3 0 EXEC 'SET SESSION AUTHORIZATION ''HUGO''';
4 4 0 INSERT INTO FIRMA (SCHLUESSEL) VALUES ('HUGO00');
*** *
*** % DRI0536 42SQG -550 SYSTEMZUGANG FUER DEN
 BERECHTIGUNGSSCHLUESSEL HUGO IM CATALOG TLDBSQL2 NICHT
ZUGREIFBAR
5 5 0 EXEC 'INSERT INTO FIRMA (SCHLUESSEL) VALUES (''HUGO01'')';
6 6 0 ROLLBACK WORK;
7 7 0 END PROC;

UEBERSETZUNGSOPTIONEN BEISPIEL SEITE : 2

OPTION DBSYSTEM = SESAMSQL DURCH VOREINSTELLUNG
OPTION LISTING = LIBRARY DURCH KOMMANDO
OPTION CODE = OFF DURCH VOREINSTELLUNG
OPTION SCHEMA = FLE DURCH VOREINSTELLUNG
OPTION CATALOG = TLDBSQL2 DURCH VOREINSTELLUNG
OPTION AUTHORIZATION = HUGO DURCH KOMMANDO

ANZAHL FEHLER : 2

32 U20069-J-Z145-3-7600

Examples of database environments Working with SESAM/SQL V2

compile beispiel option listing=lib authorization=dom

 PROGRAMM : BEISPIEL
 BIBLIOTHEK : FLE.LIB

ZEILE QUELLE NEST BEISPIEL SEITE : 1

1 1 0 PROC BEISPIEL;
2 2 0 DCL VAR &FIRMA LIKE TABLE FIRMA;
*** *
*** % DRI0536 42SQK -127 TABELLE TLDBSQL2.FLE.FIRMA FUER
BENUTZER DOM NICHT ZUGREIFBAR
3 3 0 EXEC 'SET SESSION AUTHORIZATION ''HUGO''';
4 4 0 INSERT INTO FIRMA (SCHLUESSEL) VALUES ('HUGO00');
*** *
*** % DRI0536 42SQK -127 TABELLE TLDBSQL2.FLE.FIRMA FUER
BENUTZER
 DOM NICHT ZUGREIFBAR
5 5 0 EXEC 'INSERT INTO FIRMA (SCHLUESSEL) VALUES (''HUGO01'')';
6 6 0 ROLLBACK WORK;
7 7 0 END PROC;

UEBERSETZUNGSOPTIONEN BEISPIEL SEITE : 2

OPTION DBSYSTEM = SESAMSQL DURCH VOREINSTELLUNG
OPTION LISTING = LIBRARY DURCH KOMMANDO
OPTION CODE = OFF DURCH VOREINSTELLUNG
OPTION SCHEMA = FLE DURCH VOREINSTELLUNG
OPTION CATALOG = TLDBSQL2 DURCH VOREINSTELLUNG
OPTION AUTHORIZATION = DOM DURCH KOMMANDO

ANZAHL FEHLER : 2

U20069-J-Z145-3-7600 33

Working with SESAM/SQL V2 Examples of database environments

compile beispiel option listing=lib code=on

 PROGRAMM : BEISPIEL
 BIBLIOTHEK : FLE.LIB

ZEILE QUELLE NEST BEISPIEL SEITE : 1

1 1 0 PROC BEISPIEL;
2 2 0 DCL VAR &FIRMA LIKE TABLE FIRMA;
3 3 0 EXEC 'SET SESSION AUTHORIZATION ''HUGO''';
4 4 0 INSERT INTO FIRMA (SCHLUESSEL) VALUES ('HUGO00');
5 5 0 EXEC 'INSERT INTO FIRMA (SCHLUESSEL) VALUES (''HUGO01'')';
6 6 0 ROLLBACK WORK;
7 7 0 END PROC;

UEBERSETZUNGSOPTIONEN BEISPIEL SEITE : 2

OPTION DBSYSTEM = SESAMSQL DURCH VOREINSTELLUNG
OPTION LISTING = LIBRARY DURCH KOMMANDO
OPTION CODE = ON DURCH KOMMANDO
OPTION SCHEMA = FLE DURCH VOREINSTELLUNG
OPTION CATALOG = TLDBSQL2 DURCH VOREINSTELLUNG
OPTION AUTHORIZATION = FLE DURCH VOREINSTELLUNG

ANZAHL FEHLER : 0

debug beispiel

********* BIBLIOTHEK : FLE.LIB
 ZEILE PROGRAMM : BEISPIEL
 1 PROC BEISPIEL;
% DRI0593 ABLAUFVERFOLGUNG BEENDET: ZEILE 1 IN PROZEDUR
'FLE.LIB(BEISPIEL)
’
% DRI0576 ANFANGS-HALTEPUNKT ERREICHT
*t all
********* BIBLIOTHEK : FLE.LIB
 ZEILE PROGRAMM : BEISPIEL
 3 EXEC 'SET SESSION AUTHORIZATION ''HUGO''';
 4 INSERT INTO FIRMA (SCHLUESSEL) VALUES ('HUGO00');
 5 EXEC 'INSERT INTO FIRMA (SCHLUESSEL) VALUES (''HUGO01'')';
% DRI0536 42SQG -550 SYSTEMZUGANG FUER DEN BERECHTIGUNGSSCHLUESSEL HUGO
IM CA
TALOG TLDBSQL2 NICHT ZUGREIFBAR
% DRI0579 FEHLER BEI AUSFUEHRUNG DER ANWEISUNG 'EXEC'
% DRI0578 AKTUELLER HALTEPUNKT: ZEILE 5 IN PROZEDUR 'FLE.LIB(BEISPIEL)'
*break debug

34 U20069-J-Z145-3-7600

Examples of database environments Working with SESAM/SQL V2

2.4.6.3 UTM operation

The examples for TIAM operation behave exactly the same during UTM operation. Only the
definition of system entries for SQL users is different (see the CREATE SYSTEM_USER
statement in the SESAM manual [18]).

The SQL environment can also be defined by means of parameters in the UTM start
procedure and by means of user labels with pointers to UTM leader procedures.

The example below illustrates how you can define the SQL environment with PARAMETER
statements in UTM operation.

The UTM start procedure contains the following DRIVE startup parameters:

.DRIVE PAR DYN LIB="$YDRI6FLE.FLE.LIB";

.DRIVE PAR DYN CATALOG=WRZLPRMPFT;

.DRIVE PAR DYN SCHEMA=HOKUS;

.DRIVE PAR DYN AUTHORIZATION=POKUS;

The DRIVE library “$YDRI6FLE.FLE.LIB“ (link name USEROML) contains an S-type
member with the name “DRISQL@@FELIX@@@“ or “DRISQL@@@@@@@@@@“
and, as the contents, the single line

"$YDRI6FLE.FLE.LIB"(ENVIRONMENT)

(user label with a pointer to a leader procedure).

The UTM leader procedure ENVIRONMENT was described earlier.

The following steps are carried out when DRIVE is started in UTM mode:

1. When UTM is started, the parameter values WRZLPRMPFT, HOKUS and POKUS are
retained without sending them so SESAM.

2. Once the UTM user FELIX has signed on with KDCSIGN and the first transaction code
DRISQL has been entered, the SET CATALOG 'WRZLPRMPFT', SET SCHEMA
'HOKUS' and SET SESSION AUTHORIZATION 'POKUS' are sent to SESAM.

3. The user label DRISQL@@FELIX@@@ is subsequently found and the header
procedure ENVIRONMENT executed.

In the interest of simplicity and clarity, it is recommended that you program UTM header
procedures without SQL statements and place desired SQL access in a successor DO or
CALL program that is called immediately before END PROC.

The current parameter defaults are committed when END PROC is executed. The UTM
user FELIX will then find himself/herself in DRIVE interactive mode, and the SQL user FLE
is the default value.

U20069-J-Z145-3-7600 35

Working with SESAM/SQL V2 Examples of database environments

In case the leader procedure includes a successor DO statement as the last statement
before END PROC, the parameter defaults are also committed before the new interactive
program is started. If the last statement before END PROC is, however, a CALL statement,
they are not committed before the new program is started but when the next COMMIT
WORK statement is executed.

36 U20069-J-Z145-3-7600

DRIVE statements for SESAM Working with SESAM/SQL V2

2.5 DRIVE statements for SESAM V2

You can use the DRIVE statements PARAMETER DYNAMIC and OPTION for SESAM to
define the SQL environment.

Examples under SHOW illustrate how you can obtain information on permanent database
objects with SELECT queries on SESAM system view.

2.5.1 PARAMETER DYNAMIC - Define dynamic parameters

You use the PARAMETER DYNAMIC statement to define the SQL environment for the
DRIVE session (TIAM session or UTM conversation). This statement can be used in both
program and interactive modes.

You will find a complete description of the operands of the PARAMETER DYNAMIC
statement in the “Directory of DRIVE Statements” [3].

The following applies to static programs:
If no values are set for the operands AUTHORIZATION, CATALOG and SCHEMA in either
an OPTION statement in the program or the OPTION clause of the COMPILE statement,
the values set or predefined with the PARAMETER DYNAMIC statement are used. If the
values for CATALOG and SCHEMA have been omitted, a blank is used as the value. If
AUTHORIZATION has not been specified, compilation is aborted with the DRIVE error
message DRI0525.

The following applies to dynamic programs:
If CATALOG, SCHEMA and AUTHORIZATION are not defined with SET statements, the
values from the parameter settings are used.

The PARAMETER DYNAMIC statement does not open a transaction.

PARAMETER DYNAMIC [AUTHORIZATION=authorization_id |
 CATALOG=sesdb_name |
 SCHEMA=schema_name]

AUTHORIZATION

This operand can only be specified in a transactionless state, otherwise DRIVE/
WINDOWS issues error message DRI0084.

Specifies the current authorization identifier authorization_id (max. 18 characters) for
new-style access to SESAM databases.

U20069-J-Z145-3-7600 37

Working with SESAM/SQL V2 DRIVE statements for SESAM

Under MS-Windows and SINIX, you must also specify the dynamic parameter
DBSYSTEM=SESAMSQL. In BS2000, the default value is automatically the loaded
database version.

This operand is also evaluated during compilation if OPTION AUTHORIZATION is
omitted.

Default value: blank in DRIVE/WINDOWS, D0USER in SESAM

CATALOG

Specifies a SESAM database.

Under MS-Windows and SINIX, you must also specify the dynamic parameter
DBSYSTEM=SESAMSQL. In BS2000, the default value is automatically the loaded
database version.

CATALOG=sesdb_name is valid for SQL statements that are entered in interactive mode.
In programs, this operand is only valid for dynamic SQL statements.

This operand is also evaluated during compilation if no OPTION CATALOG is specified.

Default value: empty string in DRIVE/WINDOWS, blank in SESAM.

SCHEMA

Name of an SQL schema that is accessed if no name was specified in the SQL state-
ments.

SCHEMA=schema_name is valid for SQL statements that are entered in interactive
mode. In programs, this operand is only valid for dynamic SQL statements. This
operand is also evaluated during compilation if OPTION SCHEMA is omitted.

Default value: empty string in DRIVE/WINDOWS, blank in SESAM.

38 U20069-J-Z145-3-7600

DRIVE statements for SESAM Working with SESAM/SQL V2

2.5.2 OPTION - Control program compilation

OPTION controls the compilation run of a DRIVE program. Compiler options are specified
for compiling DRIVE programs into intermediate or object code. You will find a complete
description of the operands for the OPTION statement in the “Directory of DRIVE State-
ments” [3].

In BS2000 and SINIX, OPTION can be specified in the source program (before the
PROCEDURE and DECLARE TYPE statements) or as an operand of the COMPILE
statement. In MS-Windows, OPTION must be specified in the source program before the
PROCEDURE and DECLARE TYPE statements.

Default parameter settings are overwritten in the source program by OPTION specifica-
tions. OPTION specifications in the source program are overwritten by OPTION specifica-
tions made in COMPILE or compilation options that you enter using menus.

The OPTION values valid for compilation are stored in the intermediate code so that they
are also valid for execution. The operands AUTHORIZATION, CATALOG and SCHEMA are
mandatory for compilation. If no values are specified, DRIVE/WINDOWS uses the SQL
environment values set with the PARAMETER DYNAMIC statement.

OPTION { AUTHORIZATION=authorization_id |
 CATALOG=sesdb_name |
 SCHEMA=schema_name }

AUTHORIZATION

Specifies the authorization identifier authorization_id for a SESAM database. The autho-
rization identifier specified here cannot be modified with a SET SESSION
AUTHORIZATION statement.

This means that if the program is compiled with this operand, any modification of the
current authorization key with SET or PARAMETER only affects dynamic SQL state-
ments upon execution.

Default value: The current setting from PARAMETER DYNAMIC AUTHORIZATION. If
this does not exist, i.e. is an empty string because no PARAMETER DYNAMIC AUTHO-
RIZATION has yet been issued during the DRIVE session, DRIVE/WINDOWS aborts
compilation with error message DRI0525.

CATALOG

 Specifies the default value for a SESAM database.

U20069-J-Z145-3-7600 39

Working with SESAM/SQL V2 DRIVE statements for SESAM

If this operand is omitted, the catalog name last specified for the parameter settings is
used. If this does not exist, compilation is aborted.

Default value: The current setting specified for PARAMETER DYNAMIC CATALOG or,
if this does not exist, a blank. If CATALOG is preset to a blank, the names of schemas,
tables and integrity constraints in static SQL statements must be qualified with a catalog
name.

SCHEMA

If, in a program, the schema name is not specified in SQL statements, the schema_name
specified here is used at execution time. If this operand is omitted, the schema name
last specified for the parameter settings is used. If this does not exist, compilation is
aborted.

Default value: The current setting specified for PARAMETER DYNAMIC SCHEMA or,
if this does not exist, a blank. If SCHEMA is preset to a blank, the names of tables and
integrity constraints in static SQL statements must be qualified with a schema name.

2.5.3 SESAM V2 settings in foreign environments

The table below illustrates the effect of the parameter and option settings in the SESAM V1,
UDS and INFORMIX environments:

PAR DYN
CATALOG

PAR DYN SCHEMA PAR DYN
AUTHORI
ZATION

OPTION
CATALOG

OPTION SCHEMA OPTION
AUTHORI
ZATION

SESAM V1 rejected
with
DRI0229

only permitted in
interactive mode;
schema_name must
be the name of a
base relation; in
interactive mode,
only this base
relation can be refer-
enced without
schema_name

rejected
with
DRI0229

ignored schema_name must
be the name of a
base relation; in the
program with
OPTION SCHEMA
only this base
relation can be refer-
enced without
schema_name

ignored

UDS rejected
with
DRI0229

only permitted in
interactive mode

rejected
withDRI022
9

ignored schema_name must
be the name of a
relational view of a
CODASYL
subschema

ignored

INFORMIX rejected
with
DRI0229

rejected with
DRI0229

rejected
with
DRI0229

ignored ignored ignored

40 U20069-J-Z145-3-7600

DRIVE statements for SESAM Working with SESAM/SQL V2

2.5.4 SHOW - Output information about metadata

This statement is not supported for SESAM/SQL V2. You can obtain information via the
SESAM Utility Monitor or by means of SELECT queries on the SESAM system view (see
the “SESAM/SQL-Server, SQL Reference Manual: Part 1” [18]). You can store these
SELECT queries as, for example, a DRIVE COPY member for outputting metadata on
permanent database objects. You cannot output information on temporary objects, i.e.
cursors and temporary views.

Example 1

You must perform the following steps if you want to query schema information:
– set the database with OPTION
– declare a cursor on the attributes of the system view that you want to query
– read in the cursor into an auxiliary variable with a loop
– and output this with DISPLAY.

OPTION CATALOG=TLDBSQL2 SCHEMA=TLDB AUTHORIZATION=TLAB;

PROC "schema_query";

DCL SCHEMATA_C FOR S CATALOG_NAME, SCHEMA_NAME, SCHEMA_OWNER
 FROM INFORMATION_SCHEMA.SCHEMATA
 WHERE SCHEMA_NAME LIKE ’TL%’;

DCL VAR &SCHEMATA_VAR LIKE CURSOR SCHEMATA_C;

CYCLE SCHEMATA_C INTO &SCHEMATA_VAR.*;

 DISPLAY FORM LINE NAMES VALUES &SCHEMATA_VAR;

END CYCLE;

COMMIT WORK;

END PROC;

Example 2

Declare the following cursor in order to query the structure of a base table:

OPTION CATALOG=TLDBSQL2 SCHEMA=TLDB AUTHORIZATION=TLAB;

PROC "table_query";

DCL TAB_COL_C FOR S TABLE_NAME, COLUMN_NAME, COLUMN_DEFAULT, DATA_TYPE,
CHARACTER_MAXIMUM_LENGTH, NUMERIC_PRECISION, NUMERIC_SCALE,
 DATETIME_PRECISION
 FROM INFORMATION_SCHEMA.BASE_TABLE_COLUMNS
 WHERE TABLE_NAME LIKE ’TLDB%’;

U20069-J-Z145-3-7600 41

Working with SESAM/SQL V2 DRIVE statements for SESAM

Example 3

Declare the following cursor in order to query permanent views of a base table:

OPTION CATALOG=TLDBSQL2 SCHEMA=TLDB AUTHORIZATION=TLAB;

PROC "view_query";

DCL VIEWS_C CURSOR FOR S * FROM INFORMATION_SCHEMA."TABLES"
 WHERE TABLE_TYPE = ’VIEW’ AND TABLE_NAME LIKE ’TLDB%’;

42 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

2.6 Examples and sample database

This section contains the SESAM V1 databases from the program language for DRIVE/
WINDOWS V1.1 and DRIVE V6 before and after migration to a SESAM V2 database, as
well as the DRIVE programs that access them.

2.6.1 Sample tables before and after migration

This section describes the structure and the content of the sample data. This data exists as
SESAM/SQL V1 databases (see the manual “DRIVE Programming Language V1.1”). The
database backup (DB-SIB) MITARBEITER was migrated to SESAM V2 in
section “Database structure and migration of SESAM V1 tables” on page 10.

Three base tables are used for the sample data. These base tables contain the employees,
the departments and the projects within a company.

This section includes a list of the data in each base table.

Structure of the base tables

The following three base tables are used in the examples:

– “ABTEILUNG”

– “MITARBEITER”

– “PROJEKT”

ABTEILUNG

The base table “ABTEILUNG“ contains information on the departments within the company.
It is generated and loaded with a DRIVE program (see page 50).
Description of the individual columns in the base table “ABTEILUNG”:

Column Data type Description

ABTEILUNG_NR CHARACTER (4) Primary key with the name KEY_ABT_NR

BEZEICHNUNG CHARACTER (10) Name of the department

STANDORT CHARACTER (20) Location of the department

LEITER CHARACTER (8) Personnel number of the department manager

U20069-J-Z145-3-7600 43

Working with SESAM/SQL V2 Examples

MITARBEITER

The base table “MITARBEITER“ contains information on the employees of the company.
They are migrated with the Utility Monitor (see section “Database structure and migration
of SESAM V1 tables” on page 10).
Description of the individual rows in the base table “MITARBEITER“:

Column Data type Description

SESAM V1:

COMP_PERS_NR CHARACTER (8)

SESAM V1:

Personnel number of the employee,
compound key consisting of ABT_MIT_NR
and LFD_NR, an automatic count field

SESAM V2:

This compound key with a count field cannot
be transferred directly to a SESAM V2
database, it is defined there as a primary key
constraint involving two columns instead

ABT_MIT_NR CHARACTER (4) Department number of the employee

LFD_NR INTEGER SESAM V1:
Sequence number of the employee
(automatic count field)
SESAM V2:
CONSTRAINT of the type PRIMARY KEY

NACHNAME CHARACTER (20) Last name of the employee

VORNAME CHARACTER (20) First name of the employee

LAND CHARACTER (3) Country

STRASSE CHARACTER (26) Street

PLZ CHARACTER (10) Zip code

ORT CHARACTER (20) City

GEHALT NUMERIC (7,2) Salary of the employee

SPRACHEN

SESAM V2:
SPRACHEN (4)

CHARACTER (3) Languages spoken by the employee (multiple
field with 4 occurrences)

ABT_LEITER CHARACTER (8) Personnel number of the department
manager

PROJ_MIT CHARACTER (6) Contains the primary key of the project on
which the employee is working

44 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

PROJEKT

The base table “PROJEKT“ contains information on the current projects within the
company, including the personnel number of the project manager and the available budget.
Description of the individual columns in the base table “PROJEKT“:

Column Data type Description

PROJEKT_NR CHARACTER (6) Primary key with the name
 KEY_PROJEKT_NR

BEZEICHNUNG CHARACTER (10) Name of the project

BUDGET NUMERIC (12,2) Available budget

PROJ_LEITER CHARACTER (8) Personnel number of the project manager

U20069-J-Z145-3-7600 45

Working with SESAM/SQL V2 Examples

Relationships between the base tables

Overview of the SESAM V2 sample database

Catalog
Personalverwaltung
Systemverwalter

Schema
Stammdaten
Personalleiter

Schema
Projektdaten
Projektleiter

Schema n
SQL user n

Table
Mitarbeiter
(migrated)

Table
Abteilung
(DRIVE DDL)

Table
Projekt

FOREIGN KEY
ABT constraint

FOREIGN KEY
PRJ constraint

46 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

Data in the base tables

ABTEILUNG

MITARBEITER

ABTEILUNG_NR BEZEICHNUNG STANDORT LEITER

0106 Zentrale Muenchen 01060002

0107 Marketing Kiel 01070004

0108 Transport Hamburg 01080008

0109 Technik Hannover 01090004

0110 Personal Muenchen 01100002

0111 Ausland Muenchen 01110004

0112 Forschung Muenchen 01120003

ABT_MIT_NR LFD_NR
NACH-
NAME

VORNAME LAND STRASSE PLZ ORT GEHALT SPRACHEN ABT_LEITER PROJ_MIT

0106 1 Sennert Gustl FRG Petuelring 26 8000 Muenchen 0580000 ENG 01060002 000106
0106 2 Bergmann Susanne FRGAlter Platz 3 8000 Muenchen 0690000 ENG 01060002
0106 3 Berghoff Ruth FRGIsartor 7 8000 Muenchen 0300000 01060002
0106 4 Bergner Erich FRG Sonnemannstr. 512A 8000 Muenchen 0450000 01060002 000106
0107 1 Olsen Mattes FRG Kiekendamm 13b 2300 Kiel 0400000 ENG 01070004 000108
0107 2 Mattsen Gunter FRG Spoekemannswatt 2300 Kiel 0480000 ENG 01070004 000108
0107 3 Nonnen Paul FRG Jollischweg 2b 2300 Kiel 0450000 01070004
0107 4 Dormagen Siegfried FRG Gundelstr.91 2322 Hemlstorf 0550000 FRASPA 01070004 000108
0108 1 Winterberg Hannelore FRG Mitterstr. 8 2000 Hamburg 0350000 ENG 01080008
0108 2 Mitscherlich Hermann FRG Hansestadtallee 88 2000 Hamburg 0270000 ENG 01080008
0108 3 Grenzer Wilhelm FRG Am Kiefernpfad 4 2081 Heist 0230000 FRA 01080008
0108 4 Paarungen Morten FRG Ollenwatt 6 2050 Hamburg 80 0320000 ENG 01080008
0108 5 Andermatt Sylvia FRG Hohe Strasse 5 2000 Hamburg 0510000 01080008 000107
0108 6 Schmidt Bettina FRG Hansaring 388 2000 Hamburg 0620000 ENG 01080008 000107
0108 7 Pollinger Nora FRG Goethestr.32 2050 Hamburg 80 0400000 ENG 01080008
0108 8 Mauer Rita FRG Wiesenstr. 381 2000 Hamburg 0650000 ENG 01080008
0109 1 Mitscher Fred FRG Wiesenstr. 96 3000 Hannover 0490000 FRA 01090004 000109
0109 2 Jansen Jutta FRGGiesestr. 17 3510 Hannover-Muenden 0470000 01090004
0109 3 Zimmermann Peter Johannes FRG Berger Markt 119c 3000 Hannover 0580000 ENGSPAFRA 01090004
0109 4 Sennelaub Andrea FRG Simonenpfad 57 3000 Hannover 0650000 01090004 000109
0109 5 Maier Bernd FRG Kreuzgasse 8 3000 Hannover 0350000 ENG 01090004
0109 6 Maler Guenther FRG Rohrdamm 2 3000 Hannover 0290000 ENGFRA 01090004
0110 1 Lorenz Erna FRG Kiesgraben 61 8000 Muenchen 0330000 ENG 01100002 000111
0110 2 Ammerl Sepp FRG Luxemburger Str. 427 8000 Muenchen 0570000 SPA 01100002 000111
0110 3 Dollinger Johanna FRGPferdesaalstr. 54 8000 Muenchen 0280000 FRA 01100002 000111
0111 1 Manson Dr. Jack FRG Marienburg 1 8000 Muenchen 1200000 GER 01110004 000110
0111 2 van Claeren Sandra CHBerner Weg 59 CH-3000 Bern 33 0590000 ENG 01110004
0111 3 Miller James USA 5009 Beach Boulevard CA 93440 Los Alamos 0960000 FRA 01110004 000110
0111 4 von Haalen Walter USA 30 Third Avenue NY 11217 New York 1000000 GERSPAFRA 01110004 000110
0112 1 Plenzer Wolfgang FRGSesemieweg 104 8000 Muenchen 0360000 ENG 01120003
0112 2 Heimlott Hansi FRG Kanonenstr. 15 8000 Muenchen 0350000 01120003
0112 3 Sindlinger Max FRGHollermesse 35 8000 Muenchen 0690000 ENGSPA 01120003

U20069-J-Z145-3-7600 47

Working with SESAM/SQL V2 Examples

PROJEKT

2.6.2 Command file for migration

1. Create catalog

You create a catalog with the utility statement CREATE CATALOG (“PERSONALVER-
WALTUNG“ in the example).

The result is a BS2000 file PERSONALVERWALTUNG.CATALOG under the SESAM
ID. The universal user ”SYSTEMVERWALTER“ is the owner of the new SQL2
database.

Example

Command file “UTI.PERSONALVERWALTUN.CATALOG“ , which creates the
catalog ”PERSONALVERWALTUNG“ (see page 10):
*
SQL CREATE CATALOG "PERSONALVERWALTUNG" -
 CODE_TABLE '"EBCDIC_DF_03"' -
 CATALOG_SPACE -
 PRIMARY 200 -
 SECONDARY 36 -
 PCTFREE 40 -
 SHARE -
 NO DESTROY -
 NO LOG -
 USER "SYSTEMVERWALTER"
*
SQL COMMIT WORK
END

PROJEKT_NR BEZEICHNUNG BUDGET PROJ_LEITER

000106 Zeus 000035000000 01060001

000107 Hera 000015000000 01080006

000108 Poseidon 000061000000 01070004

000109 Athene 000050000000 01090004

000110 Aphrodite 000008000000 01110004

000111 Prometheus 000002000000 01100002

48 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

2. Define SQL users

You define privileged SQL users with the CREATE USER ... statement (“PERSONAL-
LEITER“ and “PROJEKTLEITER“ in the example) since only one SQL user can access
a database.

Example

Command file ”UTI.PERSONALVERWALTUNG.USER“, which defines the SQL
users (see page 10):
*
SQL SET CATALOG ’"PERSONALVERWALTUNG’"
SQL SET SESSION AUTHORIZATION ’"SYSTEMVERWALTER’"
*
SQL CREATE USER "PERSONALLEITER" AT CATALOG "PERSONALVERWALTUNG"
SQL CREATE USER "PROJEKTLEITER" AT CATALOG "PERSONALVERWALTUNG"
SQL CREATE USER "OLDSTYLE-ADMIN" AT CATALOG "PERSONALVERWALTUNG"
SQL COMMIT WORK
END

3. Generate system entry for the SQL user

An SQL user communicates with SESAM V2 via the SYSTEM_USER. In order to do
this, the DRIVE application must be loaded under the same ID under which the system
entries were generated (TIAM in the example).

Example

Command file “UTI.PERSONALVERWALTUNG.SYSTEMUSER“, which defines
the system entries (see page 10):
*
SQL SET CATALOG '"PERSONALVERWALTUNG"'
SQL SET SESSION AUTHORIZATION '"SYSTEMVERWALTER"'
*
SQL CREATE SYSTEM_USER (*,,'STMQM235') -
 FOR "SYSTEMVERWALTER" -
 AT CATALOG "PERSONALVERWALTUNG"
*
SQL CREATE SYSTEM_USER (*,,'STMQM235') -
 FOR "PERSONALLEITER" -
 AT CATALOG "PERSONALVERWALTUNG"
*
SQL CREATE SYSTEM_USER (*,,'STMQM235') -
 FOR "PROJEKTLEITER" -
 AT CATALOG "PERSONALVERWALTUNG"

U20069-J-Z145-3-7600 49

Working with SESAM/SQL V2 Examples

*
SQL CREATE SYSTEM_USER (*,,'STMQM235') -
 FOR "OLDSTYLE-ADMIN" -
 AT CATALOG "PERSONALVERWALTUNG"
*
SQL COMMIT WORK
END

4. Create schemas

You use the CREATE SCHEMA statement to create schemas (“STAMMDATEN“ and
“PROJEKTDATEN“ in the example), which are assigned to the SQL users (“PERSON-
ALLEITER“ and “PROJEKTLEITER“) as their owners (CREATE SCHEMA ...
AUTHORIZATION ...); these owners manage the schemas.

Example

Command file “UTI.PERSONALVERWALTUNG.SCHEMA“, which creates the
schemas (see page 10):

*
SQL SET CATALOG '"PERSONALVERWALTUNG"'
SQL SET SESSION AUTHORIZATION '"SYSTEMVERWALTER"'
*
SQL CREATE SCHEMA "STAMMDATEN" -
 AUTHORIZATION "PERSONALLEITER"
*
SQL CREATE SCHEMA "PROJEKTDATEN" -
 AUTHORIZATION "PROJEKTLEITER"
*
SQL CREATE SCHEMA "OLDSTYLE-DATEN" -
 AUTHORIZATION "OLDSTYLE-ADMIN"
*
SQL COMMIT WORK
END

50 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

2.6.3 DRIVE DDL programs for the table ABTEILUNG

The following DRIVE program “DRI.TABLE.ABTEILUNG“ creates the base table
”ABTEILUNG“ as a SESAM V2 table in the schema “STAMMDATEN“ (catalog
”PERSONALVERWALTUNG“ (see page 11).

OPTION AUTHORIZATION="PERSONALLEITER"
 CATALOG ="PERSONALVERWALTUNG"
 SCHEMA ="STAMMDATEN";
/* */
 PROC "DRI.TABLE.ABTEILUNG";
/* */
/* ----------- table, column, unique (of the type primary key) -----------*/
/* */
 CREATE TABLE "ABTEILUNG"
 (
 "ABTEILUNG_NR" CHAR(4) ,
 "BEZEICHNUNG" CHAR(10),
 "STANDORT" CHAR(20),
 "LEITER" CHAR(8) ,
 CONSTRAINT "KEY_ABT_NR" PRIMARY KEY
 ("ABTEILUNG_NR")
) ;
COMMIT WORK ;
END PROC;

The following DRIVE program loads the table “ABTEILUNG“ with records:

OPTION AUTHORIZATION="PERSONALLEITER" CATALOG="PERSONALVERWALTUNG"
 SCHEMA="STAMMDATEN" ;
/* */
PROC "DRI.LOAD.ABTEILUNG";
DCL VAR &V1 LIKE TABLE ABTEILUNG;
/* */
SET &V1 = <
 '0106' ,
 'ZENTRALE ' ,
 'MUENCHEN ' ,
 '01060002'
 > ;
/* */
INSERT INTO ABTEILUNG VALUES (&V1.*) ;
DISPLAY FORM LINE RETURN &V1 ;
/*--*/

U20069-J-Z145-3-7600 51

Working with SESAM/SQL V2 Examples

SET &V1 = <
 '0107' ,
 'MARKETING ' ,
 'KIEL ' ,
 '01070004'
 > ;
/* */
INSERT INTO ABTEILUNG VALUES (&V1.*) ;
DISPLAY FORM LINE RETURN &V1 ;
/*--*/
SET &V1 = <
 '0108' ,
 'TRANSPORT ' ,
 'HAMBURG ' ,
 '01080008'
 > ;
/* */
INSERT INTO ABTEILUNG VALUES (&V1.*) ;
DISPLAY FORM LINE RETURN &V1 ;
/*--*/
SET &V1 = <
 '0109' ,
 'TECHNIK ' ,
 'HANNOVER ' ,
 '01090004'
 > ;
/* */
INSERT INTO ABTEILUNG VALUES (&V1.*) ;
DISPLAY FORM LINE RETURN &V1 ;
/*--*/
SET &V1 = <
 '0110' ,
 'PERSONAL ' ,
 'MUENCHEN ' ,
 '01100002'
 > ;
/* */
INSERT INTO ABTEILUNG VALUES (&V1.*) ;
DISPLAY FORM LINE RETURN &V1 ;
/*--*/
SET &V1 = <
 '0111' ,
 'AUSLAND ' ,
 'MUENCHEN ' ,
 '01110004'
 > ;
/* */

52 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

INSERT INTO ABTEILUNG VALUES (&V1.*) ;
DISPLAY FORM LINE RETURN &V1 ;
/*--*/
SET &V1 = <
 '0112' ,
 'FORSCHUNG ' ,
 'MUENCHEN ' ,
 '01120003'
 > ;
/* */
INSERT INTO ABTEILUNG VALUES (&V1.*) ;
DISPLAY FORM LINE RETURN &V1 ;
/*--*/
COMMIT WORK ;
END PROC;

2.6.4 DRIVE DDL program for access permissions and foreign keys

The following DRIVE program “LOAD_FOREIGNKEY“ grants all necessary privileges and
generates foreign keys (see page 11).

PROC "LOAD_FOREIGNKEY" ;
/* */
/* GRANTING OF THE PRIVILEGES SELECT, DELETE, INSERT, UPDATE and */
/* REFERENCES TO ALL SQL USERS OF THE DATABASE */
/* */
EXEC 'SET SESSION AUTHORIZATION ''PERSONALLEITER''';
EXEC 'SET CATALOG ''PERSONALVERWALTUNG''';
EXEC 'SET SCHEMA ''STAMMDATEN''';
/* */
EXEC 'GRANT ALL PRIVILEGES ON TABLE MITARBEITER TO PUBLIC ' ;
EXEC 'GRANT ALL PRIVILEGES ON TABLE ABTEILUNG TO PUBLIC ' ;
EXEC 'COMMIT WORK' ;
/* */
EXEC 'SET SESSION AUTHORIZATION ''PROJEKTLEITER''';
EXEC 'SET CATALOG ''PERSONALVERWALTUNG''';
EXEC 'SET SCHEMA ''PROJEKTDATEN''';
/* */
EXEC 'GRANT ALL PRIVILEGES ON TABLE PROJEKT TO PUBLIC ' ;
EXEC 'COMMIT WORK' ;
/* */
EXEC 'COMMIT WORK' ;
/* */
END PROC;

U20069-J-Z145-3-7600 53

Working with SESAM/SQL V2 Examples

/* DEFINE FOREIGN KEY FOR KEY PROJEKT.PROJEKT_NR AND FOR */
/* KEY ABTEILUNG.ABTEILUNG_NR */
/* */
EXEC 'SET SESSION AUTHORIZATION ''PERSONALLEITER''';
EXEC 'SET CATALOG ''PERSONALVERWALTUNG''';
EXEC 'SET SCHEMA ''STAMMDATEN''';
/* */
EXEC 'ALTER TABLE MITARBEITER ADD CONSTRAINT "PRJ_CONSTRAINT" '||'
 FOREIGN KEY ("PROJ_MIT") '||'
 REFERENCES "PROJEKTDATEN"."PROJEKT" ("PROJEKT_NR")' ;
/* */
EXEC 'ALTER TABLE MITARBEITER ADD CONSTRAINT "ABT_CONSTRAINT" '||'
 FOREIGN KEY ("ABT_MIT_NR") '||'
 REFERENCES "STAMMDATEN"."ABTEILUNG" ("ABTEILUNG_NR")' ;
/* */
EXEC 'COMMIT WORK' ;
END PROC;

2.6.5 Sample programs

The DRIVE V1.1 programs (see the manual “DRIVE Programming Language V1.1”) also
execute under version 2.1 if you define the SQL environment with the following statements:

PARAMETER DYNAMIC AUTHORIZATION=PERSONALLEITER;

PARAMETER DYNAMIC CATALOG=PERSONALVERWALTUNG;

PARAMETER DYNAMIC SCHEMA=STAMMDATEN;

These PARAMETER statements are valid for static and dynamic statements if no OPTION
statement with these operations has been included in the programs. Otherwise, the
OPTION statement must be specified for the static statements and SET statements for the
dynamic statements in order to set AUTHORIZATION, CATALOG and SCHEMA.

For remote access, you must also set the database system, e.g. with the statement:

OPTION DBSYSTEM=SESAMSQL

54 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

Program name: MITARBEITER.HAUPT

PROCEDURE MITARBEITER;
COPY MITVAR;
DECLARE VARIABLE &ENDE2 CHAR(1);
DCL SCREEN FHSBILD;
DECLARE FORM NEUBILD
 TTITLE NL 1,
 TAB 30,'M I T A R B E I T E R',NL 2,
 ' NEUAUFNAHME',
 TAB 60,'FORMULAR 02',NL 1,
 ' BEENDEN (E) : ',RETURN &ENDE2,NL 1,
 ' ','-'(70),NL 3,
 ' ABT_MIT_NR : ',RETURN &AABT_MIT_NR,NL 1,
 ' NACHNAME : ',RETURN &ENACHNAME,NL 1,
 ' VORNAME : ',RETURN &EVORNAME,NL 1,
 ' LAND : ',RETURN &ELAND,NL 1,
 ' STRASSE : ',RETURN &ESTRASSE,NL 1,
 ' PLZ : ',RETURN &EPLZ,NL 1,
 ' ORT : ',RETURN &EORT,NL 1,
 ' GEHALT : ',RETURN &EGEHALT,NL 1,
 ' SPRACHEN : ',RETURN &ESPRACHEN(1),',',
 RETURN &ESPRACHEN(2),',',
 RETURN &ESPRACHEN(3),',',
 RETURN &ESPRACHEN(4),',',NL 1,
 ' ABT_LEITER : ',RETURN &EABT_LEITER,NL 1,
 ' PROJ_MIT : ',RETURN &EPROJ_MIT,NL 1
 BTITLE ' ','-'(70),NL 1;
SUBPROCEDURE MITARBEITERAUFNAHME;
 SET &ENDE2 = ' ';
 CYCLE;
 DISPLAY NEUBILD;
 IF &ENDE2 = 'E'
 THEN BREAK SUBPROCEDURE;
 END IF;
 INSERT INTO MITARBEITER VALUES (&AABT_MIT_NR,*,&AUFNAHMESATZ.*);
 IF &DML_STATE = 'SQL ERROR' THEN
 DISPLAY FORM &DML_STATE,
 ': DER DATENSATZ WURDE NICHT AUFGENOMMEN (',
 &SQL_STATE, ') - DUE-TASTE';
 ELSE IF &DML_STATE <> 'OK' THEN
 SEND MESSAGE 'FEHLER ',&SQL_STATE,
 ' BEI DATENSATZAUFNAHME - DUE-TASTE';
 ELSE COMMIT WORK;
 SEND MESSAGE
 'DER DATENSATZ WURDE AUFGENOMMEN - DUE-TASTE';
 END IF;
 END IF;

U20069-J-Z145-3-7600 55

Working with SESAM/SQL V2 Examples

 END CYCLE;
END SUBPROCEDURE;
WHENEVER &DML_STATE CONTINUE;
CYCLE;
 DISPLAY FHSBILD;
 IF &WAHL = '0' THEN BREAK CYCLE;
 END IF;
 IF &WAHL = '1' THEN CALL MITARBEITERAUFNAHME; SET &WAHL = ' ';
 END IF;
 IF &WAHL = '2' THEN CALL MITKORR; SET &WAHL = ' ';
 END IF;
 IF &WAHL = '3' THEN CALL MITLOES; SET &WAHL = ' ';
 END IF;
 IF &WAHL = '4' THEN CALL MITANZ; SET &WAHL = ' ';
 END IF;
 IF &WAHL = '5' THEN CALL MITDRUCK; SET &WAHL = ' ';
 END IF;
END CYCLE;
ROLLBACK WORK;
END PROCEDURE;

Name of the COPY member: MITVAR

DECLARE VARIABLE &FRAGE PERMANENT CHAR(1) INIT 'N';
DECLARE MITARBEITER CURSOR FOR S ALL * FROM MITARBEITER;
DECLARE DRUCKCURSOR CURSOR FOR S ABT_MIT_NR,LFD_NR,NACHNAME,VORNAME,
 GEHALT,ABT_LEITER,PROJ_MIT FROM MITARBEITER;
DECLARE VARIABLE &MITARBEITERSATZ LIKE CURSOR MITARBEITER,
 &INDEX INT INIT 1,
 &NUMMER INT,
 &VGL CHAR(4),
 &DATUM DATE
 MASK 'Q(10)'',DER ''ZD''.''R(10)''.''YYYY',
 &ZEIT TIME
 MASK 'ZH'' UHR ''ZI',
 1 &SAETZE,
 2 AABT_MIT_NR CHAR(4) INIT '0000',
 2 AUFNAHMESATZ,
 3 ENACHNAME CHAR(20),
 3 EVORNAME CHAR(20) ,
 3 ELAND CHAR(3),
 3 ESTRASSE CHAR(26),
 3 EPLZ CHAR(10),
 3 EORT CHAR(20),
 3 EGEHALT NUM(7,2) CHECK &EGEHALT < 20000 MESSAGE
 ' DAS GEHALT IST ZU HOCH ! ',
 3 ESPRACHEN(4) CHAR(3) INIT '---'

56 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

 CHECK &ESPRACHEN <> ' ' MESSAGE
 ' GEBEN SIE ''---'' ALS LEERSTELLE EIN',
 3 EABT_LEITER CHAR(8),
 3 EPROJ_MIT CHAR(6) INIT '------'
 CHECK &EPROJ_MIT <> ' ' MESSAGE
 ' GEBEN SIE ''------'' ALS LEERSTELLE EIN',
 2 DRUCKSATZ,
 3 ABT_MIT_NR_ CHAR(4) REDEFINES &AABT_MIT_NR,
 3 LFD_NR_ INT,
 3 NACHNAME_ CHAR(20) ,
 3 VORNAME_ CHAR(20) ,
 3 GEHALT_ NUM(7,2) MASK 'ZZZZ9P99'' DM ''',
 3 ABT_LEITER_ CHAR(8) ,
 3 PROJ_MIT_ CHAR(6) ,
 &ABFRAGEBEFEHL CHAR(15) INIT 'DISPLAY FORM ',
 &ABFRAGETEXT1 CHAR(74) INIT
'NL 14,TAB 5,''GEBEN SIE DIE ABT_MIT_NR EIN : '',RETURN &VGL,',
 &ABFRAGETEXT2 CHAR(74) INIT
'NL 2,TAB 5,''GEBEN SIE DIE LAUFENDE NUMMER EIN : '',RETURN &NUMMER;',
 &FEHLERMELDUNG CHAR(74) INIT
'SEND MESSAGE '' DER DATENSATZ IST NICHT VORHANDEN. DUE-TASTE'';',
 &DRUCKTEXT CHAR(74) INIT
'NL 15,TAB 15,''SOLL JETZT GEDRUCKT WERDEN ? (J/N) : '',RETURN &FRAGE';

U20069-J-Z145-3-7600 57

Working with SESAM/SQL V2 Examples

Name of the external subprogram: MITKORR

PROCEDURE MITARBEITERKORREKTUR;
COPY MITVAR;
DECLARE FORM KORRBILD
 TTITLE NL 1,
 TAB 30,'M I T A R B E I T E R',NL 2,
 ' KORREKTUR VON MITARBEITERDATEN',TAB 60,'FORMULAR 03',NL 2,
 ' ','-'(70),NL 1,
 ' ABT_MIT_NR : ',&ABT_MIT_NR,NL 1,
 ' LFD_NR : ',&LFD_NR,NL 1,
 ' NACHNAME : ',RETURN &NACHNAME,NL 1,
 ' VORNAME : ',RETURN &VORNAME,NL 1,
 ' LAND : ',RETURN &LAND,NL 1,
 ' STRASSE : ',RETURN &STRASSE,NL 1,
 ' PLZ : ',RETURN &PLZ,NL 1,
 ' ORT : ',RETURN &ORT,NL 1,
 ' GEHALT : ',RETURN &GEHALT,NL 1,
 ' SPRACHEN : ',RETURN &SPRACHEN(1),',',
 RETURN &SPRACHEN(2),',',
 RETURN &SPRACHEN(3),',',
 RETURN &SPRACHEN(4),',',NL 1,
 ' ABT_LEITER : ',RETURN &ABT_LEITER,NL 1,
 ' PROJ_MIT : ',RETURN &PROJ_MIT,NL 1
 BTITLE ' ','-'(70),NL 1;
WHENEVER &DML_STATE CONTINUE;
EXEC CONCAT(&ABFRAGEBEFEHL,CONCAT(&ABFRAGETEXT1,&ABFRAGETEXT2));
SELECT ALL * INTO &MITARBEITERSATZ.* FROM MITARBEITER
 WHERE (ABT_MIT_NR = &VGL) AND (LFD_NR = &NUMMER);
IF &DML_STATE <> 'OK' THEN
 SEND MESSAGE 'FEHLER ',&SQL_STATE;
 EXEC &FEHLERMELDUNG;
 SET &VGL = ' ';
 BREAK PROCEDURE;
END IF;
CYCLE WHILE &INDEX < 5;
 IF &SPRACHEN(&INDEX) IS NULL THEN
 SET &SPRACHEN(&INDEX) = '---';
 END IF;
 SET &INDEX = &INDEX + 1;
END CYCLE;
SET &INDEX = 1;
IF &PROJ_MIT IS NULL THEN
 SET &PROJ_MIT = '------';
END IF;

58 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

DISPLAY KORRBILD;
UPDATE MITARBEITER
 SET NACHNAME = &NACHNAME,
 VORNAME = &VORNAME,
 LAND = &LAND,
 STRASSE = &STRASSE,
 PLZ = &PLZ,
 ORT = &ORT,
 GEHALT = &GEHALT,
 SPRACHEN(1)= &SPRACHEN(1),
 SPRACHEN(2)= &SPRACHEN(2),
 SPRACHEN(3)= &SPRACHEN(3),
 SPRACHEN(4)= &SPRACHEN(4),
 ABT_LEITER = &ABT_LEITER,
 PROJ_MIT = &PROJ_MIT
 WHERE (ABT_MIT_NR = &VGL) AND (LFD_NR = &NUMMER);
IF &DML_STATE <> 'OK' THEN
 ROLLBACK WORK;
 SEND MESSAGE 'FEHLER ',&SQL_STATE;
ELSE COMMIT WORK;
END IF;
END PROCEDURE;

Name of the external subprogram: MITLOES

PROCEDURE MITARBEITERLOESCHEN ;
COPY MITVAR;
DECLARE FORM DELBILD
 TTITLE NL 1,
 TAB 30,'M I T A R B E I T E R',NL 2,
 ' FOLGENDER MITARBEITERSATZ',TAB 60,'FORMULAR 04',NL 1,
 ' SOLL GELOESCHT WERDEN : ',NL 2,
 ' ABT_MIT_NR : ',&ABT_MIT_NR,NL 1,
 ' LFD_NR : ',&LFD_NR,NL 1,
 ' NACHNAME : ',&NACHNAME,NL 1,
 ' VORNAME : ',&VORNAME,NL 1,
 ' LAND : ',&LAND,NL 1,
 ' STRASSE : ',&STRASSE,NL 1,
 ' PLZ : ',&PLZ,NL 1,
 ' ORT : ',&ORT,NL 1,
 ' GEHALT : ',&GEHALT,NL 1,
 ' SPRACHEN : ',&SPRACHEN(1),',',
 &SPRACHEN(2),',',
 &SPRACHEN(3),',',
 &SPRACHEN(4),',',NL 1,
 ' ABT_LEITER : ',&ABT_LEITER,NL 1,
 ' PROJ_MIT : ',&PROJ_MIT,NL 1

U20069-J-Z145-3-7600 59

Working with SESAM/SQL V2 Examples

 BTITLE ' ','-'(70),NL 1,
 TAB 50,'LOESCHEN (J/N) : ',RETURN &FRAGE;
WHENEVER &DML_STATE CONTINUE;
EXEC CONCAT(&ABFRAGEBEFEHL,CONCAT(&ABFRAGETEXT1,&ABFRAGETEXT2));
SELECT ALL * INTO &MITARBEITERSATZ.* FROM MITARBEITER
 WHERE (ABT_MIT_NR = &VGL) AND (LFD_NR = &NUMMER);
ROLLBACK WORK;
IF &DML_STATE <> 'OK' THEN
 SEND MESSAGE 'FEHLER ',&SQL_STATE;
 EXEC &FEHLERMELDUNG;
 BREAK PROCEDURE;
END IF;
DISPLAY DELBILD;
IF &FRAGE = 'J' THEN
 DELETE FROM MITARBEITER WHERE (ABT_MIT_NR = &VGL)
 AND (LFD_NR = &NUMMER);
 IF &DML_STATE <> 'OK' THEN
 ROLLBACK WORK;
 SEND MESSAGE 'FEHLER ',&SQL_STATE;
 ELSE COMMIT WORK;
 END IF;
END IF;
SET &FRAGE = 'N';
END PROCEDURE;

Name of the external subprogram: MITANZ

PROCEDURE MITARBEITERANZEIGEN;
DECLARE VARIABLE &L(4) CHAR(1),
 &G(4) CHAR(1),
 &H1(4) CHAR(3),
 &G_UNTER NUM(7,2) ,
 &G_OBER NUM(7,2) ,
 &INDEX NUM(1) INIT 1,
 &HLAND CHAR(3),
 &SUCHE1 CHAR(60),
 &SUCHE2 CHAR(60),
 &SUCHE CHAR (120),
 &CURSORDEC1 CHAR(70) INIT
 'DECLARE ANZ CURSOR FOR S LAND,NACHNAME,VORNAME,GEHALT ',
 &CURSORDEC2 CHAR(40) INIT
 'FROM MITARBEITER WHERE ',
 &CURSORDEC CHAR(110),
 1 &ANZEIGESATZ,
 2 LAND CHAR(3),
 2 VORNAME CHAR(20),
 2 NACHNAME CHAR(20),

60 U20069-J-Z145-3-7600

Examples Working with SESAM/SQL V2

 2 GEHALT NUM(7,2);
DECLARE ANZ CURSOR;
DECLARE FORM MITARBEITERABFRAGE
 TTITLE NL 1,
 TAB 30,'M I T A R B E I T E R',NL 4,
 TAB 10,'KREUZEN SIE ZUTREFFENDES AN :',NL 3,
 TAB 10,'DEUTSCHLAND ',RETURN &L(1),
 TAB 35,'GEHALT ZWISCHEN 2000 UND 4000 ',RETURN &G(1),NL 2,
 TAB 10,'USA ',RETURN &L(2),
 TAB 35,'GEHALT ZWISCHEN 4000 UND 6000 ',RETURN &G(2),NL 2,
 TAB 10,'SCHWEIZ ',RETURN &L(3),
 TAB 35,'GEHALT ZWISCHEN 6000 UND 8000 ',RETURN &G(3),NL 2,
 TAB 10 ,'ENGLAND ',RETURN &L(4),
 TAB 35,'GEHALT UEBER 8000 ',RETURN &G(4)
 BTITLE ' ','-'(70),NL 1;
DECLARE FORM MITARBEITERAUSGABE
 TTITLE NL 1,
 ' '(30),'MITARBEITERANZEIGE',NL 1,
 ' '(29),'-'(20)
 BTITLE '='(80);
DISPLAY MITARBEITERABFRAGE;
SET &H1(1) = 'FRG';
SET &H1(2) = 'USA';
SET &H1(3) = 'CH';
SET &H1(4) = 'ENG';
CYCLE WHILE &INDEX < 5;
 IF &L(&INDEX) <> ' ' THEN
 SET &HLAND = &H1(&INDEX);
 END IF;
 IF &G(&INDEX) <> ' ' THEN
 SET &G_UNTER = &INDEX * 2000;
 SET &G_OBER = &G_UNTER +2000;
 END IF;
 SET &INDEX = &INDEX + 1;
END CYCLE;
IF &G_OBER = 10000 THEN
 SET &G_OBER =20000;
END IF;
SET &SUCHE1 =' (LAND = &HLAND)';
SET &SUCHE2 =' (GEHALT >= &G_UNTER) AND (GEHALT <= &G_OBER)';
IF (&HLAND = ' ') AND (&G_UNTER <> 0) THEN
 SET &SUCHE = &SUCHE2;
END IF;
IF (&HLAND <> ' ') AND (&G_UNTER = 0) THEN
 SET &SUCHE = &SUCHE1;
END IF;

U20069-J-Z145-3-7600 61

Working with SESAM/SQL V2 Examples

IF (&HLAND <> ' ') AND (&G_UNTER <> 0) THEN
 SET &SUCHE = CONCAT(&SUCHE1,CONCAT(' AND ',&SUCHE2));
END IF;
IF (&HLAND = ' ') AND (&G_UNTER = 0) THEN
 SET &SUCHE = ' (GEHALT > 1) ';
END IF;
SET &CURSORDEC = CONCAT(&CURSORDEC1,&CURSORDEC2);
EXEC CONCAT (&CURSORDEC,CONCAT(&SUCHE,';'));
CYCLE ANZ INTO &ANZEIGESATZ.*;
 IF &DML_STATE <> 'OK' THEN
 ROLLBACK WORK;
 SEND MESSAGE 'FEHLER ',&SQL_STATE;
 BREAK PROCEDURE;
 END IF;
 FILL MITARBEITERAUSGABE TABLE VALUES &ANZEIGESATZ;
END CYCLE;
DROP CURSOR ANZ;
COMMIT WORK;
DISPLAY MITARBEITERAUSGABE;
END PROCEDURE;

Name of the external subprogram: MITDRUCK

PROCEDURE MITARBEITERDRUCK;
COPY MITVAR;
DECLARE LIST MITARBEITERAUSGABE
 TTITLE &DATUM,TAB 37,&ZEIT,TAB 110,'SEITE:',&PAGES,NL 3,
 TAB 60,'MITARBEITERLISTE',NL 1,
 TAB 59,'-'(18),NL 2
 BTITLE NL 2,'='(123);
FILL MITARBEITERAUSGABE TABLE NAMES &DRUCKSATZ;
CYCLE DRUCKCURSOR INTO &DRUCKSATZ.*;
 FILL MITARBEITERAUSGABE TABLE VALUES &DRUCKSATZ;
END CYCLE;
COMMIT WORK;
DISPLAY MITARBEITERAUSGABE;
EXEC CONCAT(&ABFRAGEBEFEHL,&DRUCKTEXT);
IF &FRAGE = 'J' THEN
 SYSTEM 'PRINT *SYSLST';
 SEND MESSAGE 'DIE MITARBEITERLISTE WIRD AUSGEDRUCKT. DUE-TASTE';
 SET &FRAGE = 'N';
ELSE
 SEND MESSAGE
 'DIE MITARBEITERLISTE WIRD AM ENDE DER BS2000-SITZUNG GEDRUCKT.';
END IF;
END PROCEDURE;

62 U20069-J-Z145-3-7600

Pragmas Working with SESAM/SQL V2

2.7 Pragmas

This section describes

– how pragmas can be used

– the difference between their use in DRIVE/WINDOWS, and in ESQL/COBOL programs
and in the Utility Monitor

– the syntax used to specify pragmas in DRIVE/WINDOWS

– how DRIVE/WINDOWS handles errors in the context of pragmas

2.7.1 Application possibilities and advantages

The SESAM V2 user can use pragmas to

– activate block mode, i.e. specify the maximum number of rows in a (static, dynamic or
variable) cursor table that can be read “in advance” by a FETCH statement in order to
accelerate execution of subsequent FETCH statements considerably.

This functionality is only available if you are using SESAM/SQL V2.1 (or
higher). SESAM/SQL V2.0 does not support block mode, which means that
use of the block mode pragma clause PREFETCH in DRIVE/WINDOWS
will result in an error (see section “Error handling” on page 66).

– output a readable representation of the internal access plan of the SQL optimizer to a
file for new-style DML statements (SELECT or cursor processing, INSERT, UPDATE,
DELETE)

– influence the execution rule (SQL access plan) for processing a new-style DML
statement.

– specify the isolation level for database accesses by a new-style DML statement
independent of the isolation level of the transaction in which the statement is executed.

– insert new oldest-style columns into an oldest-style table (CALL DML table) (see the
utility statement MIGRATE and the DDL statement ALTER TABLE).

However, because DRIVE/WINDOWS does not currently support DDL
statements for CALL DML tables, it cannot currently support this function-
ality.

– process base tables in the state “check pending“ (see the SESAM V2 manual “SQL
Language Reference Manual, Part 2: Utilities“ [19]).

i

i

U20069-J-Z145-3-7600 63

Working with SESAM/SQL V2 Pragmas

However, because DRIVE/WINDOWS does not currently support utility
statements, it is not possible for a DRIVE user to fulfill the requirement for
this processing (i.e. establish the state “check pending” in the current SQL
session), which means that DRIVE/WINDOWS cannot currently support
this functionality.

2.7.2 Differences in syntax compared with ESQL/COBOL and the Utility
Monitor

While in ESQL/COBOL and in the Utility Monitor, pragmas are entered as special SQL
comments together with the SQL statement that they are to influence, in DRIVE/WINDOWS
they are declared using a separate DRIVE SQL statement, the PRAGMA statement. A
PRAGMA statement is a program statement that is interpreted at compilation time. In the
case of a static PRAGMA statement, this is when explicit source compilation (COMPILE
statement) or implicit source compilation (DO or CALL statement: preliminary stage of
procedure execution) is performed. In the case of a dynamic PRAGMA statement, this is
when implicit statement compilation (EXECUTE statement: generation and compilation as
a preliminary stage of statement execution) is performed. Refer to the description of the
PRAGMA statement on page 119 for a complete description of how pragmas function.

2.7.3 Static and dynamic pragmas

Static PRAGMA statement only affect static SQL statements, while dynamic PRAGMA
statements only affect dynamic SQL statements.

2.7.4 Pragma clauses

Because pragmas can only be declared via the PRAGMA statement

PRAGMA ' { pragma-clause }, ... '

in DRIVE/WINDOWS, the following is a description of pragma clauses rather than pragmas,
unlike in the SESAM V2 manuals.

i

64 U20069-J-Z145-3-7600

Pragmas Working with SESAM/SQL V2

PREFETCH pragma clause

The PREFETCH pragma clause has the syntax:

PREFETCH n

You can use this clause to activate block mode by assigning the clause to a (static or
dynamic) DECLARE CURSOR statement. When the first FETCH statement after OPEN is
executed for this cursor, SESAM tries to read up to n rows in the cursor table “in advance”
in order to accelerate subsequent FETCH statements. This functionality is identical with
that of the PREFETCH clause within the DECLARE CURSOR statement (see description
on page 88).

Block mode functionality is only effective if you are working with a SESAM V2.1 or higher.
If you are working with SESAM/SQL V2.0, the PREFETCH clause within a DECLARE
CURSOR statement and the PREFETCH pragma clause result in DRIVE errors: the
clauses are permitted by DRIVE/WINDOWS (no DRIVE compilation error), but result in
SESAM warnings and thus in DRIVE errors

– during SESAM precompilation at compilation time (static cursors and pragmas) and

– during SESAM preparation at compilation time (dynamic cursors and pragmas and
variable cursors).

EXPLAIN pragma clause

SESAM V2 creates an internal evaluation rule, the SQL access plan, for most new-style
SQL statements. The SQL optimizer ensures that an especially efficient access plan, in
which as few system resources are used as possible, is created for DML statements
(SELECT or cursor processing, INSERT, UPDATE, DELETE).

You can use the Explain components of the optimizer to determine the individual steps in
which a DML statement is processed. If you declare an EXPLAIN pragma clause before the
statement, you are provided with a readable representation of the internal access plan in a
file. The EXPLAIN pragma clause has the following syntax:

EXPLAIN INTO filename

The output of the Explain components and the information contained in the output is
described in chapter 7 in the SESAM V2 “Performance” manual [45].

U20069-J-Z145-3-7600 65

Working with SESAM/SQL V2 Pragmas

Pragma clauses for influencing the access plan

You can influence the execution plan (SQL access plan) for processing a new-style DML
statement (SELECT or cursor processing, INSERT, UPDATE, DELETE) with the following
clauses:

– Pragma clause IGNORE INDEX

OPTIMIZATION LEVEL n

– Pragma clause OPTIMIZATION LEVEL

IGNORE INDEX index_name

– Pragma clause SIMPLIFICATION

SIMPLIFICATION { ON | OFF }

(see the SESAM V2 “Performance“ manual [45]).

Pragma clause ISOLATION LEVEL

The pragma clause ISOLATION LEVEL has the following syntax:

ISOLATION LEVEL { READ UNCOMMITTED |

 READ COMMITTED |

 REPEATABLE READ |

 SERIALIZABLE }

You can use this clause to specify the isolation level for database accesses of a new-style
DML statement independent of the isolation level of the transaction in which the statement
is executed.

Pragma clause DATA TYPE

The pragma clause DATA TYPE has the following syntax:

DATA TYPE OLDEST

You can use this clause to insert columns of the type “oldest-style” into CALL DML tables.
Use of this clause, however, leads to an error with &DML_STATE = 'SQL ERROR' in
DRIVE/WINDOWS.

66 U20069-J-Z145-3-7600

Pragmas Working with SESAM/SQL V2

CHECK pragma clause

The CHECK pragma clause has the following syntax:

CHECK { ON | OFF }

The default value is ON. Under certain conditions, you can use the clause 'CHECK OFF' to
access base tables that are in the state “check pending” with DML statements (see SESAM
V2 “SQL Language Reference Manual, Part 2: Utilities“ [19]). Use of this clause, however,
leads to an error with &DML_STATE = 'SQL ERROR' in DRIVE/WINDOWS.

2.7.5 Error handling

When using pragmas, the following errors may occur:

– The syntax of PRAGMA statement is incorrect.

In this case, DRIVE/WINDOWS reports a syntax error during compilation of the
PRAGMA statement. In the case of a dynamic PRAGMA statement, &ERROR is then
assigned the value 'SYNTAX ERROR'.

Otherwise, the PRAGMA statement takes effect (so-called DRIVE effect) when the next
SQL statement is executed and the contents of the specified literal are passed to SESAM
as an SQL comment with the prefix %PRAGMA (see the description on page 119 for a
detailed explanation of how the PRAGMA statement functions). Errors may occur that
SESAM detects and which mean that the statement has no affect in SESAM:

– The syntax of the contents of the literal in the PRAGMA statement is incorrect.

In this case, SESAM reports an SQLSTATE of the class 01 (warning) to DRIVE/
WINDOWS and precompiles (static pragma) or prepares (dynamic pragma) the SQL
statement without the pragma. If a SESAM error occurs while this is being done, the
warning and thus the pragma error are lost.

– The syntax of the contents of the literal in the PRAGMA statement is correct, but the
pragma clause is assigned to an SQL statement that it cannot influence (see description
of the individual clauses).

This is the case, for example, if the PREFETCH pragma clause is used with SESAM/
SQL V2.0.

SESAM reports an SQLSTATE of the class 01 (warning) to DRIVE/WINDOWS and
precompiles (static pragma) or prepares (dynamic pragma) the SQL statement without
the pragma.

– The syntax of the contents of the literal in the PRAGMA statement is correct and the
pragma clause is assigned to an SQL statement that it can influence in SESAM, but this
influence is hindered for some other reason (see description of the individual clauses).

U20069-J-Z145-3-7600 67

Working with SESAM/SQL V2 Pragmas

This is the case, for example, if a BS2000 file that cannot be shared or which has not
been cataloged as SHAREABLE is specified in the EXPLAIN pragma clause.

In this case, SESAM also reports an SQLSTATE of the class 01 (warning) to DRIVE/
WINDOWS and precompiles or prepares the SQL statement without the pragma.

DRIVE/WINDOWS now converts all the warnings issued by SESAM (SQLSTATE class 01)
into DRIVE SQL errors with &DML_STATE = 'SQL ERROR' and &ERROR = 'OK'.

At compilation time (static pragmas), this means that the compilation of the SQL statement
involved is considered errored and the warning reported by SESAM is included in the
compiler listing as a DRIVE SQL error (message number DRI0536). The SQL statement
that was precompiled by SESAM without the pragma is therefore not taken over by DRIVE/
WINDOWS.

At execution time (dynamic pragmas), this means that all SESAM warnings can be handled
by WHENEVER in program (or debugging) mode. This means, in particular, that all pragma
errors can also be handled by WHENEVER (see the “DRIVE Programming Language”
manual [2], chapter 4, “Programming logic”). The following must, however, be observed:

– If no WHENEVER action is defined for the error event &DML_STATE = 'SQL ERROR'
or the action BREAK is defined, DRIVE/WINDOWS aborts the program (or branches to
the end breakpoint).

If a transaction is open at this time, it is rolled back by DRIVE/WINDOWS. This means,
in particular, that the SQL statement involved is rolled back if it has been executed by
SESAM without the pragma.

– If the WHENEVER action CONTINUE is defined for &DML_STATE = 'SQL ERROR',
DRIVE/WINDOWS continues the program with the SQL or DRIVE statement that
follows the SQL statement involved.

If a COMMIT WORK statement is subsequently executed, execution of the SQL
statement involved by SESAM without PRAGMA is committed.

– If calling an internal subprogram is defined as the WHENEVER action for
&DML_STATE = 'SQL ERROR', how the SESAM warning issued because of a pragma
error is handled depends on the logic of the subprogram:

– If (after various DRIVE statements for error handling, if neccessary) the transaction
is rolled back (ROLLBACK WORK), execution of the SQL statement involved by
SESAM without PRAGMA is also rolled back.

– If the transaction is committed (COMMIT WORK), execution of the SQL statement
involved by SESAM with PRAGMA is committed.

– If the internal subprogram is terminated or aborted without ROLLBACK WORD or
COMMIT WORK, the aforementioned applies to the WHENEVER action
CONTINUE.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U20069-J-Z145-3-7600 69

3 DRIVE SQL statements
This chapter provides you with a description of two classes of SQL statements:

– All SQL statements from SESAM/SQL V2 that DRIVE/WINDOWS supports, with
mention of any restrictions or extensions.

– SQL statements from SESAM/SQL V1 that DRIVE/WINDOWS continues to support for
reasons of compatibility or performance (DROP statements in particular).

In ESQL/COBOL programs and in the Utility Monitor, SQL statements do not end with a
semicolon. In DRIVE/WINDOWS, this is only possible in interactive mode and for dynamic
program statements. In DRIVE programs, static SQL statements must always end with a
semicolon.

In ESQL/COBOL, SQL statements are enclosed by the keywords “EXEC SQL” and “END-
EXEC”. In command files for the Utility Monitor, SQL statements start with the keyword
SQL; continuation lines must be linked with the “-” character (this character must be
doubled if used within SQL expressions). This is not necessary in DRIVE/WINDOWS: the
SQL database language is completely integrated in the DRIVE language, a fourth gener-
ation programming language.

In ESQL/COBOL programs and Utility Monitor command files, comment lines start with the
“*” character. Comments can start with the string “--” within and before SQL statements. The
end of a comment is the end of the line. In DRIVE/WINDOWS, comments start with “/* and
must end with “*/”.

Normally, DRIVE/WINDOWS can determine whether SQL statements violate any syntax
rules, and these violations are treated like analysis errors in DRIVE statements (see the
“DRIVE Programming Language” manual [2], chapter 4, “Programming logic”). This means,
in this case, that the violation involves a DRIVE rule, i.e. a violation of statement syntax (use
of keywords and the way in which they are written, the order of clauses, etc.), which is
indicated by an appropriate DRIVE error message. In some SQL statements, syntax viola-
tions can be reported by SESAM with an appropriate SQLSTATE (SQLSTATE classes 42
and 01, in particular). In this case, a violation of a SESAM rule has occurred (semantic
dependencies, context violations, invalid SQL metadata, missing access permissions,
invalid or incorrectly used pragma clauses).

70 U20069-J-Z145-3-7600

ALTER TABLE DRIVE SQL statements

ALTER TABLE - Alter base table

You use ALTER TABLE to modify an existing base table. You can add or update columns,
or you can add or delete integrity constraints.

If you are using a CALL DML table, you can only update columns. The restrictions that apply
to CALL DML tables are described below.

The BASE_TABLES view in the INFORMATION_SCHEMA provides you with information
on which base tables have been defined (see chapter 8, “Information schemas”, in the
“SESAM/SQL-Server, SQL Reference Manual, Part 1”).

The current authorization identifier must own the schema to which the base table belongs.

This statement can destroy declaration statements in a DRIVE program. A static
cursor must be created in the declaration section of the DRIVE program. If an
ALTER TABLE statement in the body of the DRIVE program updates the table for
which the cursor was declared, the cursor can no longer be accessed.

DRIVE/WINDOWS provides limited support for the ALTER TABLE statement of
SESAM/SQL:

– no columns can be added to CALL DML tables

– only one column can be added or updated

The corresponding possibilities for SESAM/SQL represent an extension of the
SQL2 standard [47].

ALTER TABLE table

 { ADD [COLUMN] column_definition |

 ALTER [COLUMN] column
 { DROP DEFAULT |
 SET basic_data_type |
 SET default } |

 ADD [CONSTRAINT integrity_constraint_name] table_constraint |

 DROP CONSTRAINT integrity_constraint_name RESTRICT }

i

U20069-J-Z145-3-7600 71

DRIVE SQL statements ALTER TABLE

 default::= DEFAULT { literal |
 CURRENT DATE |
 CURRENT TIME |
 CURRENT TIMESTAMP |
 [CURRENT] USER | SYSTEM USER |
 NULL }

table
Name of a base table (see metavariable table_specification, especially for full and partial
qualification).

ADD [COLUMN] column_definition
Adds new columns to the base table. The new columns are added to the end of the
base table. column_definition defines the columns.

column_definition can only include a DEFAULT clause if the table is empty. You cannot
define a primary key constraint in column_definition.

If the table already contains rows, the NULL value is entered in the new column. Any
defined integrity constraints are checked when this is done.

ALTER [COLUMN] column
Name of the column to be modified.

The column cannot occur in views, indexes or integrity constraints. All the temporary
views based on the table are deleted.

DROP DEFAULT
Deletes the default value for the column.

SET basic_data_type
New data type of the column.

The dimension of a multiple column cannot be modified.

basic_data_type can only be CHARACTER, VARCHAR or NUMERIC. For
CHARACTER and VARCHAR, the new (maximum) length cannot be less than the
old length. For NUMERIC the new number of digits cannot be smaller than the old
number of digits, and the number of decimal places must stay the same.

column cannot be referenced in a view definition, in an integrity constraint, or in an
index definition.

72 U20069-J-Z145-3-7600

ALTER TABLE DRIVE SQL statements

SET default
Defines a new SQL default value for the column.

– column cannot be a multiple column.

– column cannot be a CALL DML column.

– default must conform to the assignment rules for default values see section
4.4.2, “Default values for table columns”, in the “SESAM/SQL-Server, SQL
Reference Manual, Part 1”).

The default is evaluated when a row is inserted or updated, and the default value is
used for column.

ADD CONSTRAINT clause
Adds an integrity constraint to the base table.

CONSTRAINT integrity_constraint_name
Assigns a name to the integrity constraint. The unqualified name of the integrity
constraint must be unique within the schema. You can qualify the name of the
integrity constraint with a database and schema name. The database and schema
name must be the same as the database and schema name of the base table to
which the integrity constraint is being added.

CONSTRAINT integrity_constraint_name omitted:
The integrity constraint is assigned a name according to the following pattern:

{ UN | FK | CH } integrity_constraint_name

where UN stands for UNIQUE, FK for FOREIGN KEY and CH for CHECK.
integrity_constraint_name is a 16-digit integer (time stamp).

table_constraint
Specifies an integrity constraint for the table (see metavariable table-constraint).
table-constraint cannot define a primary key constraint.

DROP CONSTRAINT integrity_constraint_name RESTRICT
Deletes the integrity constraint integrity_constraint_name.

You cannot delete the primary key constraint on a table or the uniqueness constraint on
a column if a referential constraint on another table references this column.

U20069-J-Z145-3-7600 73

DRIVE SQL statements ALTER TABLE

Special considerations for CALL DML tables

The ALTER TABLE statement for CALL DML tables must take the following restrictions into
account:

– Only the specification ALTER [COLUMN] column SET basic_data_type is permitted.
column cannot be a multiple column.

– Only the data types CHARACTER and NUMERIC are permitted for basic_data_type.

Example

The example below deletes the NOT NULL integrity constraint on the column company of
the customers table. The name of the integrity constraint is in the
CHECK_CONSTRAINTS view of the INFORMATION-SCHEMA.

ALTER TABLE customer

DROP CONSTRAINT customer.company_notnull RESTRICT;

The following DRIVE-DDL program inserts one column and updates two columns.

OPTION AUTHORIZATION = x;

OPTION CATALOG = y;

/* Load column in SQL table */

ALTER TABLE A.T1
 ADD COLUMN C1 CHAR (20) NOT NULL;

/* Update default value in SQL table */

/* Before: Default: 'OLD' */

ALTER TABLE A.T2
 ALTER COLUMN C2 SET DEFAULT 'NEW';

/* Update column in CALL DML table */

/* Before: CHAR (24) */

ALTER TABLE A.T3
 ALTER COLUMN C3 SET CHAR (30);

74 U20069-J-Z145-3-7600

CLOSE DRIVE SQL statements

CLOSE - Close cursor

You use CLOSE to close a cursor you declared with the DECLARE statement and opened
with OPEN or RESTORE.

The cursor description (see the DECLARE statement) is retained. You can save the current
cursor position with STORE before the cursor is closed.

You may close and open any number of times. An open cursor is also closed at the end of
a transaction.

A CLOSE statement followed by an OPEN for the same cursor is, for example, useful if you
used variables in the cursor_description when you declared the cursor.
cursor_description is updated with the variable values valid at the time that the OPEN
statement is issued, and the cursor table is filled with the current data from the database.

In program mode, cursors can only be referenced in the source file in which they were
declared with a DECLARE statement.

CLOSE cursor

cursor
Name of the cursor to be closed.

U20069-J-Z145-3-7600 75

DRIVE SQL statements COMMIT WORK

COMMIT WORK - Terminate transaction

You use COMMIT WORK to terminate a transaction and commit the updates performed on
the database during the transaction. The updated data is then available to all other trans-
actions.

COMMIT WORK also commits all values set since the end of the last transaction with the
SET and PARAMETER DYNAMIC statements and their operands CATALOG/SCHEMA/
AUTHORIZATION. This commits the SQL environment in dynamic programs for subse-
quent transactions.

A new transaction is started by the first SQL statement after COMMIT WORK that initiates
a transaction (see below).

COMMIT WORK closes all cursors opened during the transaction. A cursor defined with
TEMPORARY is deleted at a higher program level when the next COMMIT WORK
statement is issued. You can save the cursor positions of non-PREFETCH cursors with the
STORE statement.

For information on the rules that apply to distributed applications, refer to the “DRIVE
Programming Language” manual [2], chapters 12, “Distributed applications”, and 13,
“Distributed transaction processing”.

COMMIT [WORK] [WITH { display | send message | stop }]

WITH
WITH allows you to specify a statement that is executed after the end of the transaction.

If you do not specify WITH in an interactive program in the operating mode with the TP
monitor (UTM operation), the transaction is terminated and the program run is
continued in the subsequent subprogram without output to the screen.

WITH may only be specified in program mode.

display
Display a form. The following statement may be used:

– DISPLAY screen_form (see the “Directory of DRIVE Statements” [3], DISPLAY
screen_form statement).

– DISPLAY form_name (see the “Directory of DRIVE Statements” [3], DISPLAY
form_name).

– DISPLAY FORM (see the “Directory of DRIVE Statements” [3], DISPLAY FORM
statement).

76 U20069-J-Z145-3-7600

COMMIT WORK DRIVE SQL statements

send message
Send messages (see the “Directory of DRIVE Statements” [3], SEND MESSAGE
statement).

stop
Terminate the DRIVE session (see the “Directory of DRIVE Statements” [3], STOP
statement).

Transaction

You start a transaction with any SQL statement that initiates a transaction. All subsequent
SQL statements up to the next COMMIT WORK or ROLLBACK WORK statement belong
to one transaction. COMMIT WORK or ROLLBACK WORK terminates the transaction.

Initiating a transaction

The following DRIVE-SQL statements do not initiate a transaction:

– static CREATE TEMPORARY VIEW (not executable)
– static DECLARE (not executable)
– PERMIT
– PRAGMA (not executable)
– SET CATALOG
– SET SCHEMA
– SET SESSION AUTHORIZATION
– SET TRANSACTION
– WHENEVER (not executable)

The EXECUTE statement only initiate a transaction if the dynamic statement to be
executed initiates a transaction.

All other SQL statements initiate a transaction if no transaction is open when they are
executed.

Statements within a transaction

The following statements cannot be executed within a transaction:
– PERMIT
– SET SESSION AUTHORIZATION
– SET TRANSACTION

You cannot execute or prepare an SQL statement that manipulates data (query, update) in
a transaction in which an SQL statement for defining or managing schemas is executed.
This means that you cannot mix DDL and DML statements in a transaction.

U20069-J-Z145-3-7600 77

DRIVE SQL statements COMMIT WORK

Effects of COMMIT WORK

COMMIT WORK affects the subsequent transactions, as well as the open cursors and the
defaults in the transaction.

Effect on subsequent transactions

COMMIT WORK work sets the isolation or consistency level and the transaction mode,
which were set for the transaction with the SET TRANSACTION statement, back to their
default values. Any subsequent transaction therefore works the default isolation or consis-
tency level and transaction mode if they are not changed again with SET TRANSACTION.

Effect on cursors

COMMIT WORK closes all the cursors opened in the transaction. If you want to save the
cursor position beyond the end of the transaction, you can save the position with the
STORE statement and restore it later with RESTORE, provided that the cursor is not a
PREFETCH cursor.

Cursors defined within the current transaction (see the DECLARE statement) are
committed provided that their definitions are not canceled (see the DROP CURSOR
statement). Deletions of cursor definitions are committed.

Effect on temporary views

Temporary view defined within the current transaction (see the CREATE TEMPORARY
VIEW statement) are committed provided that their definitions are not deleted (see the
DROP TEMPORARY VIEW statement). Deletions of view definitions are committed.

Effect on defaults

Default values defined for dynamic programs with SET CATALOG, SET SCHEMA and
SESSION AUTHORIZATION are committed after COMMIT WORK.

Behavior of SESAM/SQL in the event of an error

If a transaction cannot be terminated normally because of an error, SESAM/SQL rolls back
the complete transaction. Refer to ROLLBACK WORK for information on which database
objects are affected.

78 U20069-J-Z145-3-7600

COMMIT WORK DRIVE SQL statements

Example

The example below shows you how to process a cursor row by row using a loop subject to
transaction management. Cursor processing within a loop with COMMIT WORK is only
permitted if you saved the cursor with STORE and restored it with RESTORE.

DECLARE c1 ...;

...

CYCLE c1 INTO &var.*;

 ...

 STORE c1;

 COMMIT WORK;

 RESTORE c1;

 ...

END CYCLE;

U20069-J-Z145-3-7600 79

DRIVE SQL statements CREATE SCHEMA

CREATE SCHEMA - Create schema

You use CREATE SCHEMA to create a schema. At the same time you can define tables,
views and privileges. You can also modify the schema later with the appropriate CREATE,
ALTER, GRANT, DROP and REVOKE statements.

The current authorization identifier must have the special privilege CREATE SCHEMA.

DRIVE/WINDOWS provides limited support for the CREATE SCHEMA statement
of SESAM: No create_index_definition can be used because DRIVE/WINDOWS
does not support the SSL statement CREATE INDEX.

CREATE SCHEMA

 { [catalog .] schema [AUTHORIZATION authorization_id] |
 AUTHORIZATION authorization_id }

 [{ create_table_definition |
 create_view_definition |
 grant_definition } ...]

schema
Name of the schema. The unqualified schema name must be unique within the
database. You can qualify the schema name with a database name.

schema omitted:
The name of the authorization identifier in the AUTHORIZATION clause is used as the
schema name.

AUTHORIZATION authorization_id
The authorization identifier owns the schema.

This authorization identifier is also used as the name of the schema if you do not specify
a schema name. The authorization identifier can up to 18 characters long.

AUTHORIZATION authorization_identifier omitted:
In the case of a static CREATE SCHEMA statement, the authorization identifier
specified via OPTION AUTHORIZATION owns the schema. For a dynamic CREATE
SCHEMA statement, the authorization identifier specified in the last SET SESSION
AUTHORIZATION statement owns the schema (see also PARAMETER DYNAMIC
AUTHORIZATION for information on setting default values).

i

80 U20069-J-Z145-3-7600

CREATE SCHEMA DRIVE SQL statements

create/grant_definitions
If you use unqualified table and index names in the CREATE and GRANT statements,
the names are automatically qualified with the database and schema name of the
schema.

create_table_definition
CREATE TABLE statement, without a concluding semicolon, that creates a base table
for the schema. The table name must be unqualified or can only be qualified with the
database and schema names from the CREATE SCHEMA statement.

create_view_definition
CREATE VIEW statement, without a concluding semicolon, that creates a view for the
schema. The view name must be unqualified or can only be qualified with the database
and schema names from the CREATE SCHEMA statement.

grant_definition
GRANT statement that grants privileges for a base table or a view of the schema (DML
rights and referential rights). You cannot use the GRANT statement to grant special
privileges.

create/grant_definitions omitted:
An empty schema is created.

How CREATE SCHEMA functions

CREATE TABLE, CREATE VIEW and GRANT definitions that are specified in the CREATE
SCHEMA statement are executed in the order in which they are specified. You must
therefore place definitions that reference existing tables or views after the definition that
creates these tables or views.

Example

The example below creates the schema andromeda, defines a table and grants privileges
for the schema.

CREATE SCHEMA andromeda

CREATE TABLE telphone_list

(name CHARACTER (25),
telephone CHARACTER (15),
fax CHARACTER (15))

GRANT ALL PRIVILEGES ON telphone_list TO hugh;

U20069-J-Z145-3-7600 81

DRIVE SQL statements CREATE TABLE

CREATE TABLE - Create base table

You use CREATE TABLE to create a base table in which the data is permanently stored.
SQL tables can only be processed with SQL, not with CALL DML.

The current authorization identifier must own the schema to which the table belongs. If you
specify the space for the base table, the current authorization identifier must own the space.

DRIVE/WINDOWS provides limited support for the CREATE TABLE statement of
SESAM/SQL: no CALL DML tables can be created.

CREATE TABLE table

({ column_definition |
 [CONSTRAINT integrity_constraint_name] table_constraint },...)

[USING SPACE space]

table
Name of the new base table. The unqualified table name must be different from all the
other base table names and view names in the schema and must be different from the
unqualified name of any temporary views. You can qualify the table name with a
database and schema name (see also metavariable table_specification).

column_definition
Defines columns for the base table (see also metavariable column_definition).

You must define at least one column. A base table can have up to 26,134 columns of
any type except VARCHAR and up to 1000 columns of the type VARCHAR.

The current authorization identifier is granted all table privileges for the defined
columns.

CONSTRAINT integrity_constraint_name
Assigns an integrity constraint name to the table constraint. The unqualified name of
the integrity constraint must be unique within the schema. You can qualify the name of
the integrity constraint with a database and schema name. The database and schema
name must be the same as the database and schema name of the base table for which
the integrity condition is defined.

i

82 U20069-J-Z145-3-7600

CREATE TABLE DRIVE SQL statements

CONSTRAINT integrity_constraint_name omitted:
The integrity constraint is assigned a name according to the following pattern:

{ UN | FK | CH } integrity_constraint_name

where UN stands for UNIQUE, FK for FOREIGN KEY and CH for CHECK.
integrity_constraint_name is a 16-digit integer (time stamp).

table_constraint
Defines an integrity constraint for the table (see metavariable table_constraint).

USING SPACE space
Name of the space in which that table is to be stored. The space must already be
defined for the database to which the table belongs. space can be up to 18 characters
long. You can qualify the space name with the database name. This database name
must be the same as the database name of the base table.

USING SPACE space omitted:
The table is stored in the default space of the current authorization identifier on the
storage group D0STOGROUP.
The default space is D0authorization_identifier with the first 10 characters of the autho-
rization identifier. If this space does not yet exist, it is created if the current authorization
identifier has been granted the special privilege USAGE for the storage group
D0STOGROUP (see the “SESAM/SQL-Server SQL Reference Manual, Part 1” [18]
and Part 2 [19]).

Example

The example below shows the CREATE TABLE statement for the orders table in the
demonstration database.

CREATE TABLE orders

(order_num INTEGER CONSTRAINT order_num_primary PRIMARY KEY,
cust_num INTEGER CONSTRAINT o_cust_num_notnull NOT NULL,
contact_num INTEGER,
order_date DATE DEFAULT CURRENT_DATE,
order_text CHARACTER (30),
actual DATE,
target DATE,
order_stat INTEGER DEFAULT 1 CONSTRAINT order_stat_notnull NOT NULL,
CONSTRAINT o_cust_num_ref_customers FOREIGN KEY (cust_num)
 REFERENCES customers,
CONSTRAINT contact_num_ref_contacts FOREIGN KEY (contact_num)
 REFERENCES contacts,
CONSTRAINT order_stat_ref_ordstat FOREIGN KEY (order_stat)
 REFERENCES ordstat(order_stat_num)
);

U20069-J-Z145-3-7600 83

DRIVE SQL statements CREATE TEMPORARY VIEW

CREATE TEMPORARY VIEW - Declare temporary view

You use CREATE TEMPORARY VIEW to declare a temporary view that can be used within
the source file in which it was declared or in interactive mode. A temporary view is a named
database query that is stored for the duration of the DRIVE session or until an appropriate
DROP TEMPORARY VIEW statement is issued. See the “DRIVE Programming Language”
manual [2], chapter 10, “Transaction concept”, for information on the scope of validity and
life of temporary views.

The statement declaring a static temporary view is only permitted at the beginning of a
program, i.e. before the processing statements. You can define dynamic temporary views
at execution time with EXECUTE.

The current authorization identifier at the time at which the source program is compiled is
the owner of the static temporary view (see OPTION AUTHORIZATION). In particular, all
the static temporary views in a compilation unit have the same owner. The owner of a
dynamic temporary view is the current authorization identifier at the time at which the
dynamic CREATE TEMPORARY VIEW statement is executed.

A temporary view is assigned to the default catalog that has been set by CREATE
TEMPORARY VIEW and which is valid at compilation time (static view) or at execution time
(dynamic view) (see OPTION CATALOG, SET CATALOG and PARAMETER DYNAMIC
CATALOG) or to the catalog referenced in query_expression by means of direct qualification.
The latter takes precedence over the former.

In a DRIVE session (TIAM session or UTM conversation), only dynamic temporary
views can be declared for an SQL user per SESAM database. If, after a successful
dynamic CREATE TEMPORARY VIEW statement, the SQL user is changed (this
requires that the transaction be terminated beforehand), the new SQL user can only
declare dynamic temporary views in a different catalog. Otherwise, DRIVE/
WINDOWS issues the following error message:

DRI0536 42SQ6 -127 SCHEMA catalog.MODULES FOR USER authorization
CANNOT BE ACCESSED.

catalog is the name of the SESAM database for which dynamic temporary views
declared by a different SQL user in the same DRIVE session already exist.
MODULE is the reserved name of the schema to which all the dynamic temporary
views in catalog are assigned. authorization is the name of the new SQL user who is
not able to declare any dynamic temporary views in catalog as long as the schema
MODULE is not empty (see the DROP TEMPORARY VIEW statement).

When the statement that references the temporary view is executed, the current
authorization identifier must have the SELECT privilege for the tables used in
query_expression if these tables belong to a different schema owner.

i

84 U20069-J-Z145-3-7600

CREATE TEMPORARY VIEW DRIVE SQL statements

A temporary view ceases to be valid

– when the program is terminated (the life of a temporary view ends when the application
is terminated)

– if the program is aborted

– when DRIVE is terminated (STOP)

– if DROP TEMPORARY VIEW view or DROP TEMPORARY VIEWS (only in interactive
mode or within the EXECUTE statement if the view was also declared using
EXECUTE).

CREATE TEMPORARY VIEW temp_view_name [({ column },...)]
 AS query_expression

temp_view_name
Name of the new temporary view. The name of a static temporary view cannot be longer
than 24 characters. The name of a dynamic temporary program view or a temporary
dialog view cannot be longer than 31 characters.

The name of a temporary view must be unique within the current compilation unit.

temp_view_name cannot be “PLAM_DIRECTORY“.

(column,...)
Name of the column in the view. You only need to specify the view columns if the
columns of the underlying table are ambiguous or if there are derived columns that do
not have names.

(column,...) omitted:
The column names returned by the query expression are used.

AS query_expression
Query expression that selects the columns and rows from the base table to create the
new view. The columns of the views have the same data type as the underlying columns
in the query expression. query_expression cannot reference a temporary or permanent
view.

You cannot include variable in the query expression. If the columns in the view are
named, the number of columns in the derived table of the query expression must be the
same as the number of named columns.

U20069-J-Z145-3-7600 85

DRIVE SQL statements CREATE TEMPORARY VIEW

Updatable temporary view

A temporary view is updatable (with INSERT, UPDATE or DELETE) if the underlying query
expression is updatable (see metavariable query_expression).

Privileges for the temporary view

The current authorization identifier is granted the SELECT privilege for the temporary view.
If the view is updatable, the current authorization identifier is granted the privileges INSERT,
UPDATE and DELETE if it has been granted these privileges for the underlying base table.

All accesses to temporary views that reference tables in one database must be performed
using the same current authorization identifier.

Restrictions for temporary views

New SQL applications should use views rather than temporary views since temporary
views have the following disadvantages:

– Temporary views can only reference base tables not views.

– Temporary views are only valid within a single compilation unit.

– Temporary views can only be used with the current authorization identifier (no GRANT
statement for temporary views).

– In programs with multiple SQL users, the use of dynamic temporary views is restricted
to a great extent (see above).

– The INFORMATION_SCHEMA does not include a description of the temporary views.

Example

The example below defines a temporary view that contains the completed orders from the
base table orders.

CREATE TEMPORARY VIEW complete

AS SELECT * FROM orders

WHERE actual IS NOT NULL;

86 U20069-J-Z145-3-7600

CREATE VIEW DRIVE SQL statements

CREATE VIEW - Create view

You use CREATE VIEW to create a (permanent) view. A view is a table defined by a query
expression that is not evaluated until the view is used. Permanent views are stored in the
database and are part of the metadata of the database. CREATE VIEW is an executable
statement that must be located in the body of DRIVE programs.

The current authorization identifier must own the schema for which the view is created and
must have the SELECT privilege for the tables used if it does not own the tables.

CREATE VIEW table [(column,...)]

AS query_expression

[WITH CHECK OPTION]

table
Name of the new (permanent) view. The unqualified view name must be different from
all the other names of base tables and views of the schema. You can qualify the view
name with a database and schema name (see metavariable table_specification).

(column,...)
Name of the column in the view. You only need to name the view columns if the columns
of the underlying table are ambiguous or if there are derived columns without a name.

(column,...) omitted:
The column names returned by the query expression are used.

AS query_expression
Query expression that selects the columns and rows for the new view from existing
base tables and permanent views (see metavariables query_expression and
sql_expression). The columns in the view have the same data type as the underlying
columns in the query expression.

The tables named in the query expression must belong to the same database as the
view. You cannot include variable in the query expression. If the columns in the view are
named, the number of columns in the derived table of the query expression must be the
same as the number of named columns.

U20069-J-Z145-3-7600 87

DRIVE SQL statements CREATE VIEW

WITH CHECK OPTION
Rows that you insert or update via the view are checked to see if they satisfy the
constraint defined in the query expression. Rows that do not satisfy the condition are
rejected. The view must be updatable.

The query expression can only include multiple columns in the SELECT clause, not in
the WHERE clause.

WITH CHECK OPTION omitted:
If the view is updatable, you can insert or update rows in the view that do not satisfy the
condition in the query expression. These rows cannot subsequently be accessed via
the view.

Updatable view

A view is updatable (with INSERT, UPDATE or DELETE) if the underlying query expression
is updatable (see metavariable query_expression).

Privileges for the view

The current authorization identifier is granted the SELECT privilege for the view. It is only
extended GRANT authorization, which allows it to grant this privilege to other users, if it has
GRANT authorization for the SELECT privilege for all the tables used.

 If the view is updatable, the current authorization identifier is granted the privileges
INSERT, UPDATE and DELETE if it has been granted these privileges for the underlying
base table. It is only extended GRANT authorization, which allows it to grant these privi-
leges to other users, if it has GRANT authorization for the appropriate privilege of the under-
lying base table.

Example

The example below defines a view containing the completed orders in the base table
orders.

CREATE VIEW complete

AS SELECT * FROM orders

WHERE actual IS NOT NULL;

88 U20069-J-Z145-3-7600

DECLARE DRIVE SQL statements

DECLARE - Declare cursor

You use DECLARE to define a cursor. You can use the cursor to access the individual rows
in a derived table. The current row on which the cursor is positioned can be read. If the
cursor is updatable, you can also update and delete rows.

A static cursor declaration must physically precede any statement that uses the cursor in
the program text. All the statements that use this cursor must be located in the same compi-
lation unit.

The DECLARE statement for a static cursor is not an executable statement. This means
that the statement declaring a static cursor is only permitted at the beginning of the
program, i.e. before the processing statements.

You must specify cursor_description if you are declaring a dynamic cursor (see the
EXECUTE statement in the “Directory of DRIVE Statements” [3]).

In DRIVE/WINDOWS, up to 20 dynamic and variable cursors are permitted. The DRIVE
program is aborted if more cursors are declared. You can prevent the program from being
aborted with WHENEVER &DML_STATE IN ('TOO MANY CURSORS') (see WHENEVER
and the “DRIVE Programming Language” manual [2], chapter 3.1.2, “System variables”).

Scope of validity of a cursor:

A cursor ceases to be valid
– when the program is terminated (the life of a cursor ends when the application or trans-

action is terminated)
– if the program is aborted
– when DRIVE is terminated (STOP)
– if DROP CURSOR cursor (DRIVE statement, only in interactive mode, dynamically or

for variable cursors).
– DROP CURSORS (DRIVE statement, only in interactive mode or dynamically)

When you switch from DRIVE interactive mode to program mode, the cursor definition
remains valid, but the cursor position is lost because no transaction can be open when this
switch takes place. You can, however, save the cursor position with STORE, provided that
the cursor involved is not a PREFETCH cursor.

In DRIVE program mode, a cursor defined with PERMANENT remains valid beyond the
end of a program invoked with CALL, and its position is retained.
A cursor defined with TEMPORARY is closed when the program is terminated and deleted
if a COMMIT WORK statement is issued on a higher program level.

A cursor always ceases to be valid in program mode when you switch to interactive mode,
if the program is aborted, and when DRIVE is terminated (STOP or COMMIT WORK WITH
STOP).

U20069-J-Z145-3-7600 89

DRIVE SQL statements DECLARE

DECLARE cursor [{ PERMANENT | TEMPORARY }]
 [SCROLL] [PREFETCH n] CURSOR [FOR cursor_description]

cursor_description::=

query_expression

[ORDER BY { { column | column(pos_no) | column_number }
[{ ASCENDING | DESCENDING }] },...]

[FOR UPDATE [OF { column },...]]

n::= unsigned_integer

pos_no::= unsigned_integer

column_no::= unsigned_integer

cursor
Name of the cursor. The name of a static cursor cannot be longer than 11 characters.
The name of a dynamic or variable program cursor or a dialog cursor cannot be longer
than 18 characters. You cannot define more than one cursor with the same name within
a compilation unit. You cannot define two cursors with the same name on a single
program level or in interactive mode. The scope of validity of the cursor is limited to the
compilation unit in which the cursor is defined.

PERMANENT
PERMANENT can only be specified within programs called using CALL.
The position of the cursor is retained after a program invoked with CALL is terminated,
provided that no COMMIT WORK statement was executed in the called program or in
the calling program between the CALLs.
When the program is invoked with CALL runs for the first time, the cursor must be
opened with the OPEN statement. Whenever it executes subsequently, no OPEN
statement may be issued for that cursor.
The calling program must not contain a COMMIT WORK statement.

TEMPORARY
TEMPORARY is the default value.
TEMPORARY can only be specified in programs called using CALL.
The cursor is closed at the end of the CALLed program and its position is lost (end of
the scope of validity of the cursor). The cursor is deleted (end of the life of the cursor)
when the next COMMIT WORK statement is issued at a higher program level.

90 U20069-J-Z145-3-7600

DECLARE DRIVE SQL statements

SCROLL
You can position the cursor on any row in the derived table and in any order with FETCH
NEXT/PRIOR/FIRST/LAST/RELATIVE/ABSOLUTE.

You can only specify SCROLL if no FOR UPDATE clause was defined in the cursor
description of cursor.

SCROLL omitted:
You can only position the cursor on the next row. Only the position specification NEXT
is permitted for FETCH.

PREFETCH
The PREFETCH clause increases performance by activating block mode.

Instead of the PREFETCH clause, you can also use a PRAGMA statement with the
pragma clause PREFETCH to activate block mode (see section “Pragmas” on
page 62). Both ways of activating block mode are functionally equivalent to each other.
A prerequisite for its use is that you are working with a SESAM/SQL Version 2.1 or
higher.

If you are working with SESAM/SQL V2.0, use of the PREFETCH clause or
PREFETCH pragma will result in SESAM errors (SQLSTATE class 01).

A cursor for which block mode is activated using one of the above-mentioned methods
is referred to as a PREFETCH cursor .

The following statements are not permitted for a PREFETCH cursor:
FETCH PRIOR, FIRST, LAST, RELATIVE, ABSOLUTE (only positioning with FETCH
NEXT is permitted)
STORE and RESTORE
DELETE... WHERE CURRENT OF...
UPDATE... WHERE CURRENT OF...

n
Block factor n-1 indicates the number of records that SESAM is to read into a buffer
when the first FETCH statement after OPEN is executed (block). A subsequent FETCH
statement does not have to access the database. n is an integer of the type SMALLINT.
n must be greater than or equal to 2 and less than or equal to 32000. If l is the sum of
the lengths of all the selected row elements, then n * l should be less than or equal to
30000. If you are outputting to the screen, the number of rows that can be displayed on
a screen can be used as a guideline. Depending on I, less than n-1 rows may be read
into the block buffer.

i

U20069-J-Z145-3-7600 91

DRIVE SQL statements DECLARE

FOR clause
The FOR clause can only omitted in program mode in a static cursor declaration. If it is
omitted, a variable cursor is declared. This type of cursor is not made known to the
database system until a subsequent dynamic declaration with a FOR clause is
executed. In the case of a dynamic declaration with EXECUTE, you must specify a FOR
clause. Except for the FOR clause, the static and dynamic declarations for a cursor
must be the same. The block factor n within a PREFETCH clause can, however, vary.
You can specify any of the other cursor statements (OPEN, FETCH, CLOSE, DROP
CURSOR, STORE, RESTORE, UPDATE, DELETE, CYCLE) statically for the variable
cursor. This leads to an improvement in performance (see the “DRIVE Programming
Language” manual [2], chapter 4.6.1, “Dynamic SQL statements”).

cursor_description
Declares a static or dynamic cursor.

cursor_description defines the derived table and the attributes of the cursor. The earliest
point at which a row in the derived table can be selected is when you open the cursor
with OPEN. The latest point at which a row can be selected is when you execute a
FETCH statement.

query_expression
Query expression for selecting rows and columns from base tables or views.

The values of the variables in query_expression are not determined until the cursor is
opened. The literals CURRENT_USER and SYSTEM_USER and time functions that
are used in query_expression are not evaluated until the cursor is opened.

ORDER BY clause
The ORDER BY clause indicates the columns according to which the derived table is
to be sorted. First of all, the rows are sorted according to the values in the column
specified. If two or more rows have the same values in that column according to the
comparison rules (see metavariable predicate), these rows are sorted according to the
values in the second sort column and so on. In SESAM/SQL, NULL values are
considered smaller than all non-NULL values for sorting purposes.

The order of rows with the same value in all the sort columns is undefined.

ORDER BY omitted:
The order of the rows in the cursor table is undefined.

column
Name of the column according to which the table is to be sorted. The column must be
part of the derived table created by query_expression.

You can specify an atomic column for column. The column name cannot be qualified
with a table specification and cannot include a range.

92 U20069-J-Z145-3-7600

DECLARE DRIVE SQL statements

column(pos_no)
Element of a multiple column that is to be taken as the basis for the sorting operation.
The column element must be part of the derived table created by query_expression.

pos_no is an unsigned integer indicating the position number of the column element in
the multiple column.

column_number
Number of the column to be used as the basis for sorting.

column_number is an unsigned integer where

1 ≤ column_number ≤ number of derived columns.

By specifying a column number, you can also use columns that do not have a name, or
which do not have a unique name, as the basis for sorting.

column_number can be an atomic column or a multiple column with the dimension 1.

ASCENDING
ASCENDING is the default value.
The values in the column involved are sorted in ascending order.

DESCENDING
The values in the column involved are sorted in descending order.

FOR UPDATE
For static or dynamic cursors.

You can only use the FOR UPDATE clause for an updatable cursor (see below). In
particular, the FOR UPDATE and ORDER BY clauses are mutually exclusive. You use
a FOR UPDATE clause to specify which columns in the underlying table can be updated
via the cursor with UPDATE...WHERE CURRENT OF.

You can only specify FOR UPDATE if you have not included a SCROLL clause in the
cursor description of cursor.

FOR UPDATE is not permitted for PREFETCH cursors.

FOR UPDATE omitted:
If the cursor is updatable, you can update all the columns of the underlying table with
UPDATE...WHERE CURRENT.

U20069-J-Z145-3-7600 93

DRIVE SQL statements DECLARE

OF {column},...
Only the specified columns can be updated with UPDATE...WHERE CURRENT OF.
For column, specify the name of a column in the table that the updatable cursor refer-
ences. column is the unqualified name of the column in the underlying table, regardless
of whether a new column name was defined in the query expression of the cursor
description.

OF column,... omitted:
Each column in the underlying table can be updated with UPDATE...WHERE CURRENT
OF.

Updatable cursor

Only updatable cursors can be used with the UPDATE... WHERE CURRENT OF... or
DELETE... WHERE CURRENT OF statements to perform updates or deletions. A cursor is
updatable if its cursor description is updatable, i.e. the underlying query expression is
updatable, and no ORDER BY clause is specified (see metavariable query_expression). No
SCROLL clause can be specified in the cursor declaration. If you specify the PREFETCH
clause, an updatable cursor cannot be used for updating or deleting.

Example

This example is a cursor declaration with a variable cursor description. A static cursor is
specified with a DECLARE ... CURSOR statement without a FOR clause.

DECLARE cur_displ SCROLL CURSOR;

An EXECUTE statement is used to declare the cursor description dynamically at execution
time. (The expression in quotes can be up to 256 characters long, otherwise you will have
to use CONCAT. DRIVE/WINDOWS includes the blanks for indenting the code in the
count.)

EXECUTE 'DECLARE cur_disp SCROLL CURSOR FOR '||
 'SELECT country, last_name, first_name, salary '||
 'FROM db_employee '||
 'WHERE (country = &hcountry) ' ||
 ' AND (salry >= &s_lower) AND (salary <= &s_upper);';

94 U20069-J-Z145-3-7600

DECLARE DRIVE SQL statements

All statements that reference the cursor can be specified statically in the program.

CYCLE cur_disp INTO &disp_row.*;
DISPLAY FORM LINE &disp_row;
END CYCLE;
DROP CURSOR cur_disp;
...

COMMIT WORK;

EXECUTE 'DECLARE cur_update CURSOR FOR ' ||
 'SELECT country, last_name, first_name, salary ' ||

 'FROM db_employee ' ||
 'WHERE (country = &hcountry) AND
 (salary = &highest);';

A COMMIT WORK should be included between the DROP statement and an EXECUTE
'DECLARE ...' statement on the same cursor name (in accordance with static cursor decla-
ration without a FOR clause).

Example

An updatable cursor cur is declared. The underlying table is tab. Only column col in table
tab can be updated via cursor cur. To do this, a FOR UPDATE clause with the column
name col is specified in the cursor description.

DECLARE cur CURSOR FOR

 SELECT corr.col AS column FROM tab AS corr

 FOR UPDATE OF col;

The unqualified, original column name col is used in the FOR UPDATE clause although
the column is renamed in the SELECT list, and the table is renamed in the FROM clause.

Example

A static cursor is declared with an input variable.

DECLARE cur_order CURSOR FOR
 SELECT order_num, order_date, order_text, order_stat
 FROM orders
 WHERE cust_num >= &CUST_NUM;

The cursor description with the current value of &CUST_NUM is evaluated for OPEN
cur_order. When RESTORE cur_order is executed, the cursor description of the last OPEN
cur_order statement remains valid.

U20069-J-Z145-3-7600 95

DRIVE SQL statements DELETE

DELETE - Delete rows

You use DELETE to delete rows from a table.

If you want to delete a row from the specified table, you must own the table or have the
DELETE privilege for this table. In addition, the transaction mode of the current transaction
must be READ WRITE.

If integrity constraints have been defined for the table or columns involved, these are
checked after the delete operation has been performed. If the integrity constraint has been
violated, the deletion is canceled and an appropriate SQLSTATE set.

DELETE FROM table [WHERE { condition | CURRENT OF cursor }]

table
Name of the table from which rows are to be deleted. The table can be a base table, an
updatable view or an updatable temporary view (see metavariable table_specification).
Static temporary views cannot be specified for dynamic cursors.

WHERE clause
Indicates which rows are to be deleted.

WHERE condition deletes a set of rows (multiple DELETE statement), WHERE
CURRENT OF cursor deletes a single row.

WHERE omitted:
All the rows in the table are deleted.

condition
Condition that the rows to be deleted must satisfy. A row is only deleted if it satisfies the
specified condition.

Column specifications in condition that are outside of subqueries can only reference the
specified table.

Subqueries in condition cannot reference the base table from which the rows are to be
deleted either directly or indirectly.

CURRENT OF cursor
Name of the cursor used to select the rows to be deleted. The cursor must be updatable
(see the DECLARE statement), and table must be the underlying table.

The cursor must be defined in the same compilation unit and must be opened with
OPEN or RESTORE and positioned on a row in the derived table with FETCH before
the DELETE statement is executed.

96 U20069-J-Z145-3-7600

DELETE DRIVE SQL statements

DELETE deletes the row at the current cursor position from table.

After DELETE, the cursor is positioned before the next row in the derived table or after
the last row if the end of the table has been reached. If you want to execute another
DELETE...WHERE CURRENT OF statement, you must first position the cursor on a
row in the derived table with FETCH.

DELETE is not permitted if cursor is a PREFETCH cursor.

DELETE and transaction management

SQL only allows you to delete rows within transactions. You can control the effect of the
deletion operation on a transaction by defining an isolation level with SET TRANSACTION
for concurrent transactions. If an error occurs during the execution of the DELETE
statement, any deletions already performed are canceled.

Examples

1. All customers situated in Hanover are to be deleted from the customers table.

DELETE FROM customers WHERE city = 'Hanover'

2. In the example below, a cursor is used to delete customers situated in Hanover from
the customers table.

DECLARE cur_customers CURSOR FOR
 SELECT cust_num, company, city FROM customers
 WHERE city = 'Hanover'
 FOR UPDATE;

OPEN cur_customers;

All the rows found can be deleted with a series of FETCH and DELETE statements.

FETCH cur_customers INTO &Cust_num, &Company, &City;

DELETE FROM customers WHERE CURRENT OF cur_customers;

U20069-J-Z145-3-7600 97

DRIVE SQL statements DROP CURSOR

DROP CURSOR - Release cursor description

You use DROP CURSOR or DROP CURSORS in DRIVE interactive mode or within
EXECUTE (only if the cursor was also declared within EXECUTE) to release a cursor. You
can also use the DROP CURSOR statement in program mode for variable cursors (see
DECLARE statement).

DROP CURSOR(S) is subject to transaction management, i.e. if you specify ROLLBACK
WORK, the cursors specified in DROP CURSOR(S) are not released.

You can use DECLARE... CURSOR several times within a transaction for the same cursor
if you execute a DROP CURSOR statement between DECLARE... CURSOR statements.
If DROP CURSOR and DECLARE ... CURSOR statements for the same cursor occur in a
transaction, the first of these statements cannot be DROP CURSOR.

You can only delete a variable cursor explicitly (static or dynamic) with DROP CURSOR
cursor. If you execute DROP for a variable cursor, the variable cursor description (FOR
clause) is deleted. This means that you can declare the cursor description of the cursor
again dynamically after a DROP statement. A COMMIT WORK statement should be
included between DROP and dynamic declarations.

DROP { CURSOR cursor | CURSORS }

cursor
The specified cursor is released. If the cursor is open, an implicit CLOSE is executed.

CURSORS
All the cursors defined in interactive mode or all non-variable cursors defined with
EXECUTE at the same program level are released.

The DROP CURSORS statement is equivalent to a sequence of DROP CURSOR
statements in which all the cursor names are specified explicitly.

Example

DECLARE c1 CURSOR;
EXECUTE 'DECLARE c1 CURSOR FOR '|| &SEARCH1;
...
DROP CURSOR c1;
COMMIT WORK;
EXECUTE 'DECLARE c1 CURSOR FOR ' || &SEARCH2;

98 U20069-J-Z145-3-7600

DROP SCHEMA DRIVE SQL statements

DROP SCHEMA - Delete schema

You use DROP SCHEMA to delete an empty database schema. You must delete all the
base tables, integrity constraints and views of the schema beforehand.

The SCHEMAATA view of the INFORMATION_SCHEMA provides you with information on
which schemas have been defined (see chapter 8, “Information schemas”, in the “SESAM/
SQL-Server SQL Reference Manual, Part 1” [18]).

The current authorization identifier must own the schema.

DROP SCHEMA [catalog .] schema RESTRICT

schema
Name of the schema. The schema must be empty.

You can qualify the name of the schema with a database name.

U20069-J-Z145-3-7600 99

DRIVE SQL statements DROP TABLE

DROP TABLE - Delete base table

You use DROP TABLE to delete a base table and the associated indexes, provided that
there are no rows in the table. You cannot delete a base table if it is used in a view or in an
integrity constraint. All the temporary views defined for the base table are deleted.

The BASE_TABLES view of the INFORMATION_SCHEMA provides you with information
on which base tables have been defined (see chapter 8, “Information schemas”, in the
“SESAM/SQL-Server SQL Reference Manual, Part 1” [18]).

The current authorization identifier must own the schema to which the table belongs.

This statement can destroy declaration statements in a
DRIVE program.

DROP TABLE table RESTRICT

table
Name of the base table to be deleted. The table must be empty. You can qualify the
name of the table to be deleted with a database and schema name.

i

100 U20069-J-Z145-3-7600

DROP TEMPORARY VIEW DRIVE SQL statements

DROP TEMPORARY VIEW - Delete temporary view

You use DROP TEMPORARY VIEW to delete the definition of a temporary view. All the
dynamic cursors that reference this view are deleted implicitly along with the view.

This statement is only permitted as a static statement in interactive mode. As a dynamic
statement in program mode, it must refer to a dynamically defined view (with EXECUTE) of
the appropriate DRIVE program.

The current authorization identifier must own the temporary view.

DROP TEMPORARY { VIEW table | VIEWS }

table
Name of the temporary view to be deleted.

VIEWS
All the views defined in interactive mode or all the view defined at the same program
level with EXECUTE are released together with the cursors associated with them.

The DROP TEMPORARY VIEWS statement is equivalent to a sequence of DROP
TEMPORARY VIEW statements in which all the view names are specified explicitly.
DROP TEMPORARY VIEWS is therefore only executed if the current authorization
identifier owns all the views.

U20069-J-Z145-3-7600 101

DRIVE SQL statements DROP VIEW

DROP VIEW - Delete view

You use DROP VIEW to delete the definition of a (permanent) view. You cannot delete a
view if it is used in another view definition.

The VIEWS view of the INFORMATION_SCHEMA provides you with information on which
views have been defined. Information on the tables a view uses is provided in the
VIEW_TABLE_USAGE view of the INFORMATION_SCHEMA (see chapter 8, “Information
schemas”, in the “SESAM/SQL-Server SQL Reference Manual, Part 1” [18]).

The current authorization identifier must own the schema to which the view belongs.

DROP VIEW table RESTRICT

table
Name of the view to be deleted.

102 U20069-J-Z145-3-7600

FETCH DRIVE SQL statements

FETCH - Position cursor and read row

You use FETCH to position a cursor. The new cursor position is either on a row, before the
first row or after the last row of the cursor table. If the new cursor position is on a row in the
cursor table, this row is the current row and the column values of this row are read.

In program mode, the column values in the current row are passed to the variable(s)
specified (see INTO clause). In interactive mode, they are displayed on the screen (see
chapter 6, “Interactive data access”, in the “DRIVE Programming System” manual [1]).

If no row is read for FETCH because the specified position does not exist, an appropriate
SQLSTATE is set, which can be handled with WHENEVER &DML_STATE IN ('TABLE
END').

If you declare a cursor with SCROLL, the cursor can be positioned with FETCH on any row
in the cursor table and in any order. If you do not specify SCROLL, the declared cursor can
only be positioned on the next row (FETCH NEXT...).

The cursor declaration with DECLARE must be located in the same compilation unit.

The cursor must already have been opened or restored (see the OPEN and RESTORE
statements).

There must be no backup status of the cursor created with a STORE statement when the
FETCH statement is executed.

If block mode has been declared for the cursor (see DECLARE ... CURSOR FOR ... and
PRAGMA), you can only position the cursor with FETCH NEXT. If a (static) FETCH [NEXT]
statement has already been executed for a static PREFETCH cursor, only this exact
FETCH statement is subsequently permitted until the next CLOSE or COMMIT WORK, i.e.
the same statement in a loop (see the CYCLE statement in the “Directory of DRIVE State-
ments” [3]) or in an internal subprogram (see the SUBPROCEDURE statement in the
“Directory of DRIVE Statements” [3]).

FETCH [{ NEXT | PRIOR | FIRST | LAST | RELATIVE n | ABSOLUTE n }]
 [FROM] cursor

[INTO { variable },...]

n::= { [{ + | - }] unsigned_integer | variable }

U20069-J-Z145-3-7600 103

DRIVE SQL statements FETCH

NEXT
NEXT is the default value.
Positions the cursor on the next row in the cursor table. If you declared the cursor
without SCROLL or PREFETCH, you can only use the NEXT clause.

If the cursor is located on the last row in the cursor table, it is positioned after the last
row. If it is already positioned after the last row, its position remains unchanged.

PRIOR
Positions the cursor on the preceding row of the cursor table.

If the cursor is positioned on the first row of the cursor table, it is positioned before the
first row. If it is already positioned in front of the first row, its position remains
unchanged.

You can only specify PRIOR if you declared the cursor with SCROLL.

FIRST
Positions the cursor on the first row of the cursor table or before the first row if the cursor
table is empty.

You can only specify FIRST if you declared the cursor with SCROLL.

LAST
Positions the cursor on the last row of the cursor table or after the last row if the cursor
table is empty.

You can only specify LAST if you declared the cursor with SCROLL.

ABSOLUTE n
Specify the position of the cursor. You can only specify ABSOLUTE if you declared the
cursor with SCROLL.

For n you can specify an integer or a variable of the DRIVE data type INTEGER or
SMALLINT. The cursor position is determined by the value of n as follows:

>0 The cursor is positioned on the nth row of the cursor table or after the last row
if n > number of rows in the cursor table.

0 The cursor is positioned before the first row of the cursor table.

<0 The cursor is positioned on the (N+1-|n|)th row of the cursor table, where N is
the number of rows in the cursor table. If |n| > N, the cursor is positioned before
the first row.

Example:

FETCH ABSOLUTE -1 and FETCH LAST are equivalent.

104 U20069-J-Z145-3-7600

FETCH DRIVE SQL statements

RELATIVE n
Position of the cursor relative to its current position. You can only specify RELATIVE if
you declared the cursor with SCROLL.

For n you can specify an integer literal or a variable of the type INT or SMALLINT. The
cursor position is determined by the value of n as follows:

>0 The cursor is positioned on the row that is n rows after its current position. If the
new position is greater than the number of rows in the cursor table, the cursor
is positioned after the last row.

0 The cursor position remains unchanged.

<0 The cursor is positioned on the row that is n rows in front of its actual position.
If the new position is ≤ 1, the cursor is positioned before the first row.

[FROM] cursor
Name of the cursor.

INTO clause
Indicates where the values read are to be stored. You must specify the clause in
program mode. This clause is not permitted in interactive mode.

variable
Name of a variable to be assigned a column value from the derived row.

The data type of a variable must be compatible with the data type of the corre-
sponding output value. If an output value is an aggregate with several elements, the
corresponding variable must be a vector with the same number of elements.

The number of specified variables must match the number of columns in the
SELECT list of the cursor description. If this is not the case, DRIVE/WINDOWS
issues error message DRI0504. The value of the nth column in the SELECT list,
which may be the NULL value, is assigned to the nth variable in the INTO clause.

Behavior of SESAM/SQL in the event of an error

If an error occurs when a value is read (e.g. numeric value is too big for the target data type),
the cursor is moved to its new position but the assigned values are undefined.

In the event of other errors (e.g. incompatible data types), the position of the cursor remains
unchanged and no values are read.

U20069-J-Z145-3-7600 105

DRIVE SQL statements FETCH

Examples

Example of FETCH NEXT in program mode:

FETCH cur_order
 INTO &ORDER_NUM,
 &ORDER_DATE,
 &ORDER_TEXT,
 &ORDER_STAT;

Example of FETCH with a static PREFETCH cursor:

DCL cur_order CURSOR PREFETCH...
 FOR SELECT order_num, order_date, order_text, order_stat
 FROM order
 WHERE cust_num >= &CUST_NUM;

...

CYCLE cur_order INTO &ORDER_NUM,
 &ORDER_DATE,
 &ORDER_TEXT,
 &ORDER_STAT;

...

END CYCLE;

106 U20069-J-Z145-3-7600

GRANT DRIVE SQL statements

GRANT - Grant privileges

You use GRANT to grant table and column privileges for base tables and views (DML rights
and referential rights), and special privileges for databases. If the GRANT statement is
included in a CREATE SCHEMA statement, you cannot grant special privileges with
GRANT. The privileges can be granted to SQL users specified by means of authorization
identifier or to all users.

The current authorization identifier must be authorized to grant the specified privileges:

– It is the authorization identifier of the universal user, i.e. the owner of the database.

– It is the owner of the schema to which the table belongs.

– It has GRANT authorization for granting the privileges to other users.

Information on which authorization identifiers are schema owners is stored in the
SCHEMATA view. The TABLE_PRIVILEGES, COLUMN_PRIVILEGES and
CATALOG_PRIVILEGES provide you with information on whether the authorization
identifier has GRANT authorization for a certain privilege (see chapter 8, “Information
schemas”, in the “SESAM/SQL-Server SQL Reference Manual, Part 1” [18])

Only the authorization identifier that granted a privilege can revoke that privilege.

DRIVE/WINDOWS provides limited support for the GRANT statement of SESAM/
SQL:

– all table and column privileges, as a whole or individually

– all special privileges for databases as a whole

– the special privilege CREATE SCHEMA

The GRANT statement has two formats: one for granting table and column privileges and
one for granting special privileges.

i

U20069-J-Z145-3-7600 107

DRIVE SQL statements GRANT

GRANT format for table and column privileges:

GRANT { ALL PRIVILEGES | { table_and_column_privilege },... }

ON [TABLE] table

TO { PUBLIC | { authorization_id },... }

[WITH GRANT OPTION]
table_and_column_privilege::= { SELECT | DELETE | INSERT |
 UPDATE [({ column },...)] |
 REFERENCES [({ column },...)]

ALL PRIVILEGES
All the table and column privileges that the current authorization identifier can grant are
granted. ALL PRIVILEGES comprises the privileges SELECT, DELETE, INSERT,
UPDATE and REFERENCES.

table_and_column_privilege
The table and column privileges are granted individually. You can specify more than one
privilege.

SELECT
Privilege that allows rows in the table to be read.

DELETE
Privilege that allows rows to be deleted from the table.

INSERT
Privilege that allows rows to be inserted into the table.

UPDATE [(column,...)]
Privilege that allows rows in the table to be updated.

The update operation can be limited to the specified columns. column must be the
unqualified name of a column in the specified table. You can specify more than one
column.

(column,...) omitted:
All the columns in the table can be updated including columns inserted later.

108 U20069-J-Z145-3-7600

GRANT DRIVE SQL statements

REFERENCES [(column,...)]
Privilege that allows the definition of referential constraints that reference the table
(see CREATE TABLE and ALTER TABLE statements).
The reference can be limited to the specified columns. column must be the unqual-
ified name of a column in the specified table. You can specify more than one
column.

(column,...) omitted:
All the columns in the table can be referenced including columns inserted later.

ON [TABLE] table
Name of the table for which you want to grant privileges.

If you use the GRANT statement in a CREATE SCHEMA statement, you can only
qualify the table name with the database and schema name from the CREATE
SCHEMA statement.

The table can be a base table or a view. You can only grant the SELECT privilege for a
view that cannot be updated.

TO PUBLIC
The privileges are extended to all authorization identifiers. Each authorization identifier
is granted the privileges extended to PUBLIC in addition to its own privileges. These
privileges are also extended to any authorization identifiers added later.

TO {authorization_id},...
The privileges are granted to authorization_id. You may specify more than one authori-
zation identifier. The authorization identifier can be up to 18 characters long.

WITH GRANT OPTION
The specified authorization identifier(s) is granted not only the specified privileges but
also GRANT authorization. This means that the authorization identifier(s) is authorized
to grant the privileges it has been extended to other authorization identifiers. Once
these privileges have been granted, they cannot be revoked. You cannot specify the
WITH GRANT OPTION clause together with PUBLIC.

WITH GRANT OPTION omitted:
The specified authorization identifier(s) cannot grant the privileges it has been extended
to other authorization identifiers.

U20069-J-Z145-3-7600 109

DRIVE SQL statements GRANT

GRANT format for special privileges:

GRANT { ALL SPECIAL PRIVILEGES | CREATE SCHEMA }

ON CATALOG catalog

TO { PUBLIC | { authorization_id },... }

[WITH GRANT OPTION]

ALL SPECIAL PRIVILEGES
All the special privileges that the current authorization identifier can grant for the
database specified in the ON clause are granted. ALL SPECIAL PRIVILEGES
comprises the special privileges CREATE SCHEMA (see below), CREATE USER,
CREATE STOGROUP and UTILITY (see chapter 8, “Information schemas”, in the
“SESAM/SQL-Server SQL Reference Manual, Part 1” [18]).

CREATE SCHEMA
Special privilege that permits definition of database schemas.

 ON CATALOG catalog
Name of the database for which you are granting special privileges.

TO PUBLIC
The privileges are extended to all authorization identifiers. Each authorization identifier
is granted the privileges extended to PUBLIC in addition to its own privileges. These
privileges are also extended to any authorization identifiers added later.

TO {authorization_id},...
The privileges are granted to authorization_id. You may specify more than one authori-
zation identifier. The authorization identifier can be up to 18 characters long.

WITH GRANT OPTION
The specified authorization identifier(s) is granted not only the specified privileges but
also GRANT authorization. This means that the authorization identifier(s) is authorized
to grant the privileges it has been extended to other authorization identifiers. Once
these special privileges have been granted, they cannot be revoked. You cannot specify
the WITH GRANT OPTION clause together with PUBLIC.

WITH GRANT OPTION omitted:
The specified authorization identifier(s) cannot grant the privileges it has been extended
to other authorization identifiers.

110 U20069-J-Z145-3-7600

GRANT DRIVE SQL statements

Example

The first GRANT statement grants several table privileges, the second grants the special
privilege CREATE SCHEMA to an existing authorization identifier.

GRANT SELECT,INSERT,UPDATE ON TABLE telephone_list TO bertha;

GRANT CREATE SCHEMA ON CATALOG my_db TO hugh;

U20069-J-Z145-3-7600 111

DRIVE SQL statements INSERT

INSERT - Insert rows in table

You use INSERT to insert one or more rows in an existing table.

If you want to insert a row in the specified table, you must either own the table or have the
INSERT privilege for the table. In addition, the transaction mode of the current transaction
must be READ WRITE.

The literals CURRENT USER or USER, and SYSTEM USER and the time functions
CURRENT DATE, CURRENT TIME and CURRENT TIMESTAMP in the INSERT statement
(and in the defaults) are evaluated once, and the calculated values are valid for all inser-
tions.

If integrity constraints have been defined for the table or the columns involved, these are
checked after the row(s) has been inserted. If an integrity constraint has been violated, the
insertion is canceled and an appropriate SQLSTATE set.

INSERT INTO table

 { [({ column | column(pos_no) | column(min-max) },...)]

 { VALUES ({ sql_expression | DEFAULT | NULL | * },...) |
 VALUES { sql_expression | DEFAULT | NULL | * } |
 query_expression } |

 DEFAULT VALUES }

[RETURN INTO variable]

table
Name of the table into which the rows are to be inserted. The table can be a base table,
an updatable view, or an updatable temporary view (see metavariable
table_specification).

column
Atomic column into which a value is to be inserted.

column is a column in the specified table. You cannot qualify the column name with the
name of a table. The order in which you specify the columns does not have to be the
same as the order of the columns in the table.
You can only specify an atomic column once in the column list.

112 U20069-J-Z145-3-7600

INSERT DRIVE SQL statements

column(pos_no)
Element of a multiple column that is to receive the value.

The multiple column must be part of the table. If other elements of a multiple column
are specified, each column element with a smaller position number must also be
specified. Each element can only be specified once.
pos_no is an unsigned integer ≥ 1.

column(min..max)
Range of column elements in a multiple column that are to be assigned values. The
multiple column must be part of the table. The range specified must be selected in such
a way that each column element with a position number between 1 and the largest
position number specified only occurs once.

min and max are unsigned integers ≥ 1; max must be ≥ min.

No column specification:
The following specifications supply values for all the columns in the table. The order of
columns specified for CREATE TABLE, ALTER TABLE or CREATE VIEW or CREATE
TEMPORARY VIEW is valid.

VALUES clause
Indicates the individual values for the previously specified column or for all columns. If
only one value is to be entered, you can omit the parentheses.

You can use this form of the INSERT statements to insert a single row into table.

If a list of columns has been specified, the VALUES clause must include an appropriate
value for each column in the list. Columns not specified are set to the default value if
one has been defined or, if this is not the case, to the NULL value.

If there is no list of columns, you must specify an appropriate value for each column in
the table.

The assignment rules described in the “SESAM/SQL-Server SQL Reference Manual,
Part 1” [18], section 4.4.1, “Entering values in table columns”, apply to the assignment
of values.

The nth value in the VALUES list is assigned to the nth column in the column list, if a
column list was specified. Otherwise it is assigned to the nth column of the table.

U20069-J-Z145-3-7600 113

DRIVE SQL statements INSERT

sql_expression
Expression whose value is assigned to a column. The value of the expression must be
compatible with the data type of the column.

If sql_expression is a variable, you can also specify a vector. In this case, the column
must be a multiple column and the number of elements in the vector must be the same
as the number of column elements.

Subqueries in sql_expression cannot refer directly or indirectly to the base table into
which the rows are inserted.

If sql_expression is an aggregate (see metavariable value) that is to be assigned to a
multiple column, the number of values must be the same as the number of column
elements, and the data type of each component of the aggregate must be compatible
with the data type of the target column.

DEFAULT
Only for an atomic column.

The corresponding column is assigned the default value. The default was specified
when the column was defined. If no default has been defined, the column is assigned
the NULL value.

NULL
Only for an atomic column.

The corresponding column is assigned the NULL value.

*
Only for an atomic column.

Value specification for a column for which SESAM/SQL determines the value (count
column).

The column must have an integer or fixed-point data type (SMALLINT, INT, DECIMAL,
NUMERIC) and must be part of a primary key. The column cannot be used in a refer-
ential constraint or in a check constraint on table. SESAM/SQL assigns a value to the
column that ensures that the primary key within the table remains unique.

* can only be specified once in the VALUES clause.

114 U20069-J-Z145-3-7600

INSERT DRIVE SQL statements

query_expression
The values to be inserted are specified via a query expression.

You can use this form of the INSERT statement to insert several rows into table (multiple
INSERT statement).

query expression is a query expression whose derived table contains the rows to be
inserted. If query expression returns an empty table, no rows are inserted and an appro-
priate SQLSTATE is set, which can be handled with WHENEVER &DML_STATE IN
('TABLE END').

If a list of columns has been specified, the number of columns in the derived table must
be the same as the number of columns in the list. Columns not specified are set to the
default value if one has been defined or, if this is not the case, to the NULL value.

If no list of columns is specified, an appropriate column must exist in the derived table
for each column in the table.

The value in the nth derived column is assigned to the nth column in the column list, if
a column list was specified. Otherwise it is assigned to the nth column of the table.

Each value must be compatible with the data type of the corresponding column.

You cannot specify a table that references the base table into which you are inserting
rows in the FROM clauses or subqueries of the query expression. In particular, you
cannot specify table.

DEFAULT VALUES
Insert a row into table that consists only of the column-specific default values (see
metavariable column-definition).

The column for which a default value has been defined are assigned the default value.
Columns for which there is no default are assigned the NULL value.

RETURN INTO
The value of the column assigned a value by SESAM/SQL because * was specified in
the VALUES clause is stored in a variable.

You can only use the RETURN INTO clause, if the VALUES clause contains an asterisk
(*).

variable
Name of the variable into which the value of the count column is entered. variable
must have an integer or floating-point data type (SMALLINT, INT, DECIMAL,
NUMERIC).

U20069-J-Z145-3-7600 115

DRIVE SQL statements INSERT

Inserting values for multiple columns

In the case of a multiple column, you can insert values for individual column elements or for
ranges of elements.

An element of a multiple column is identified by its position number in the multiple column.

A range of elements in a multiple column is identified by the position numbers of the first
and last element in the range.

The position of an element in a multiple column can change (see the UPDATE
statement).

INSERT and integrity constraints

By specifying integrity constraints when you define the base table, you can restrict the
range of values for the corresponding column. The values specified in the INSERT
statement must satisfy the defined integrity constraint.

INSERT and transaction management

INSERT initiates a transaction if no transaction is open. If you define an isolation level for
concurrent transactions, you can control how the INSERT statement affects these transac-
tions.
If an error occurs during insertion, any rows that have already been inserted are removed.

Example

You want to insert a new row in the orders table.

INSERT INTO orders (order_num, cust_num, contact_num, order_text)
 VALUES (500, 105, 35, 'Consultancy');

i

116 U20069-J-Z145-3-7600

OPEN DRIVE SQL statements

OPEN - Open cursor

You use OPEN to open a cursor declared with DECLARE.

– The variables in the cursor description are evaluated.

– The literals CURRENT USER or USER and SYSTEM USER, as well as the time
functions CURRENT DATE, CURRENT TIME and CURRENT TIMESTAMP in the
cursor description are evaluated.

All the values returned contain the same date and/or time. These values are valid for
the cursor table as long as the cursor is open, and if the cursor is reopened with
RESTORE.

After the OPEN statement, the cursor is positioned before the first row in the derived table,
even if the previous cursor position was saved with STORE. A previously saved cursor
position cannot be restored with RESTORE after an OPEN statement.

A cursor can only be referenced in the compilation unit in which it was declared with
DECLARE. A static cursor declaration with DECLARE must physically precede the OPEN
statement in the program text.

In the case of a dynamic cursor, the cursor description must be declared before the OPEN
statement is executed.

The cursor must be closed.

You can close an open cursor with one of the following statements:
– CLOSE
– COMMIT WORK
– DROP CURSOR
– DROP TEMPORARY VIEW, if the cursor references the temporary view involved

OPEN cursor

cursor
Name of the cursor to be opened.

Example

You want to read all orders completed before 1.1.1994.

DECLARE cur_complete CURSOR FOR
 SELECT cust_num,order_text FROM orders WHERE actual < '1994-01-01';

OPEN cur_complete;

U20069-J-Z145-3-7600 117

DRIVE SQL statements PERMIT

PERMIT - Specify user identification for old style

In order to allow programs created with SESAM/SQL V1.x to run without you having to
modify them, the PERMIT statement is still allowed. Execution of a PERMIT statement in
new-style operation does not, however, have any effect. A SESAM/SQL V1.x new-style
program can only be executed successfully under the current version of SESAM/SQL if the
current authorization identifier is set with a valid system entry (see OPTION AUTHORI-
ZATION, SET AUTHORIZATION and PARAMETER DYNAMIC AUTHORIZATION) for
which the appropriate privileges for the referenced SQL and CALL DML/SQL tables have
been defined with GRANT.

Old-style procedures still need a password for accessing password-protected CALL DML
tables (see the section dealing with SESAM password protection in the “SESAM/SQL V1,
Creation and Maintenance” manual [46]). This user identification can be made available in
DRIVE/WINDOWS V1.1 with the PERMIT statement for old-style or mixed operation. The
first DO or CALL on a SESAM old-style procedure during the DRIVE session (TIAM session
or UTM conversation) causes the last PERMIT password entered to be passed to the old-
style runtime system. This password is then valid for all old-style accesses during the
DRIVE session. This means, in particular, that in mixed mode various password-protected
CALL DML tables can only be accessed with one password, valid for the entire session.

You must recompile a SESAM/SQL V1.x program before you run it under the current
version of SESAM/SQL (see also the manuals “SESAM/SQL-Server, Migrating SESAM
Databases and Applications to SESAM/SQL-Server” [22] and “DRIVE Programming
System” [13]).

The PERMIT statement does not initiate a transaction.

PERMIT SCHEMA = { table | variable } [PASSWORD = value]

table
Unqualified name of a CALL DML table (see metavariable table_specification).

The names of the CALL DML tables that can be accessed can be deter-
mined from the DBH start statement ADD-OLD-TABLE-CATALOG-LIST.

variable
See metavariable variable. Contains the unqualified name of a CALL DML table.

i

118 U20069-J-Z145-3-7600

PERMIT DRIVE SQL statements

PASSWORD = variable

Value assignment for a password (see metavariable value). value must be an alphanumeric
variable or a literal that contains the password. The password can be up to three characters
long and must observe SESAM conventions. In program mode, value must be specified as
a variable.

PASSWORD omitted:

The default declaration: PASSWORD = ' ' is valid.

Example

PERMIT SCHEMA = "GEN-CALLRBT-2"
 PASSWORD = 'XX3';

U20069-J-Z145-3-7600 119

DRIVE SQL statements PRAGMA

PRAGMA - Declare pragma clauses

You use PRAGMA to declare pragma clauses. DRIVE/WINDOWS converts the declared
clauses into pragmas for SESAM/SQL, i.e. special SQL comments that can be used to
influence or monitor the execution of SQL statements. You will find a brief description of the
application possibilities and advantages of pragmas in section “Pragmas” on page 62.
Refer to the SESAM/SQL-Server manuals [18] and [45] for more detailed information.

The PRAGMA statement is not executable and therefore does not initiate a transaction.

The PRAGMA statement is only permitted in program mode. A static PRAGMA statement
can be included anywhere between PROCEDURE and END PROCEDURE. A dynamic
PRAGMA statement can be included wherever EXECUTE is permitted. A static PRAGMA
is evaluated at compilation time (i.e. is not executable) and in DRIVE/WINDOWS influences
the next static SQL statement in the program text and only this statement. In DRIVE, this
causes the SQL statement is prefixed with the special comment

"--%PRAGMA { pragma_clause },..."

The effect of the PRAGMA statement in DRIVE therefore corresponds to a conversion of
the pragma clauses into SESAM-compliant usage as in ESQL/COBOL programs and in the
Utility Monitor.

Whether the effect in DRIVE leads to an effect in SESAM depends on whether all the
pragma clauses influence the SQL statement (see below). A dynamic PRAGMA statement
is evaluated at execution time and in DRIVE/WINDOWS influences the next chronological
SQL statement and only this statement. At the user interface, the effect in DRIVE corre-
sponds to that of static PRAGMA statements. Static PRAGMA statements therefore only
influence static SQL statements, and dynamic PRAGMA statements only influence
dynamic SQL statements.

120 U20069-J-Z145-3-7600

PRAGMA DRIVE SQL statements

PRAGMA literal

literal::= '{ pragma_clause },...'

pragma_clause::= { PREFETCH n |
 EXPLAIN INTO file |
 IGNORE INDEX index_name |
 OPTIMIZATION LEVEL n |
 SIMPLIFICATION { ON | OFF } |
 ISOLATION LEVEL
 { READ UNCOMMITTED |
 READ COMMITTED |
 REPEATABLE READ |
 SERIALIZABLE } |
 DATA TYPE OLDEST |
 CHECK { ON | OFF } }

literal
An alphanumeric literal containing a list of pragma clauses. DRIVE/WINDOWS does
not check the contents of the literal.

pragma_clause
Syntactically valid pragma clause for SESAM/SQL.

PREFETCH only has an effect in SESAM for DECLARE statements and indirectly for
the corresponding FETCH statements. EXPLAIN INTO, IGNORE INDEX,
OPTIMIZATION LEVEL, SIMPLIFICATION and ISOLATION LEVEL only influence the
statements DECLARE, SELECT, INSERT, UPDATE and DELETE in SESAM.

DATA TYPE and CHECK do not have any effect on SESAM in DRIVE/WINDOWS.

If a literal in a pragma clause does not have any effect in SESAM, an error
with &DML_STATE = 'SQL ERROR' and &SQL_CLASS = '01' occurs in
DRIVE/WINDOWS when the corresponding SQL statement is compiled
(static PRAGMA) or executed (dynamic PRAGMA).

i

U20069-J-Z145-3-7600 121

DRIVE SQL statements PRAGMA

PREFETCH pragma clause

PREFETCH controls the block mode of the SQL statement FETCH (position cursor). Block
mode accelerates execution of the FETCH statement. It is only effective if FETCH is used
to position the cursor on the next row in the cursor table (FETCH NEXT).

You can use the PREFETCH pragma to activate block mode and specify a blocking factor
(n). When the first FETCH NEXT... statement is executed, the column values of the current
row are read and the next n-1 rows of the associated cursor table are stored in a buffer.
When the next n-1 FETCH NEXT... statements that relate to the same cursor are executed,
the next row can be accessed directly, without DBH contact.

If the cursor description of a DECLARE statement for static or dynamic cursors includes a
FOR UPDATE clause, the PREFETCH pragma is ignored (i.e. it does not have any effect
in SESAM), and block mode is not activated.

PREFETCH n

n
Blocking factor. You must specify the blocking factor as an unsigned integer (of the type
SMALLINT).

If the blocking factor (n) has a value > 0, up to n-1 rows in the specified cursor table are
stored in a buffer. If the blocking factor is the value 0, the PREFETCH pragma has no
effect. This means that you can activate the effect of the pragma and thus block mode
by specifying a value > 0 for n and deactivate it by specifying the value 0.

The following restrictions apply if block mode has been activated:

Only the FETCH NEXT statement is permitted for the PREFETCH cursor in the same
compilation unit. The following SQL statements are no longer executable:
– UPDATE ... WHERE CURRENT OF cursor
– DELETE ... WHERE CURRENT OF cursor
– STORE cursor
– FETCH cursor with a cursor position that is different to NEXT
– FETCH cursor with an INTO clause that is different to the first FETCH NEXT statement

if cursor is static.

122 U20069-J-Z145-3-7600

PRAGMA DRIVE SQL statements

EXPLAIN pragma clause

EXPLAIN is used to output the access plan selected by the optimizer. You can only use this
pragma if the current authorization identifier has the special privilege UTILITY (see the
“SESAM/SQL-Server Language Reference Manual, Part 1” [18]).

This pragma is only effective in the following SQL statements in SESAM:
– DECLARE
– DELETE
– INSERT
– SELECT
– UPDATE

This pragma is only effective in a static statement if you precompile the program while the
database is online. This is always the case in DRIVE/WINDOWS.

EXPLAIN INTO file

file
Name of the SAM file into which the explanation is to be output. If the file already exists,
the explanation is appended to the file.

If file includes a BS2000 user ID, this user ID is used. If not, the ID of the Database
Handler for the database referenced in the SQL statement is used. In both cases the
DBH must have write permission for the file.

You specify an alphanumeric literal for file.

In the case of dynamic statements, the explanation is output when the EXECUTE statement
is executed. For static statements, the explanation is output during precompilation.

The explanation comprises the SQL statement and an edited representation of the access
plan. The representation of access plans is described in the “SESAM/SQL-Server Perfor-
mance” manual [45].

You can display the contents of the file with SHOW-FILE. If you want to read the file with
EDT, you must enter the following command:

SET-FILE-LINK LINK-NAME=EDTSAM,FILE-NAME=file,...,BUFFER-LENGTH=(STD,2),...

As of EDT Version 16.5A, you can also enter:

@OPEN F=file,TYPE=CATALOG or @OP F=file,T=C

U20069-J-Z145-3-7600 123

DRIVE SQL statements PRAGMA

Example

SET &explainfile = '$YDRI20.EXPLAINFILE';

/* The file $YDRI20.EXPLAINFILE must be cataloged with */
/* USER-ACC = ALL-USERS */

EXECUTE 'SET SESSION AUTHORIZATION ''"DRI-USER1" ''';

/* The authorization identifier DRI-USER1 must have the special */
/* privilege UTILITY for the default database */

EXECUTE 'PRAGMA ''EXPLAIN INTO ''|| &explainfile || '''';

DISPLAY FORM 'Output of the SQL access plan in file ' || &explainfile;

EXECUTE 'DECLARE C1 CURSOR FOR cursor_description';

124 U20069-J-Z145-3-7600

PRAGMA DRIVE SQL statements

ISOLATION LEVEL pragma clause

ISOLATION LEVEL determines the isolation level for database accesses performed by an
SQL statement.

This pragma is only effective in the following SQL statements in SESAM:
– DECLARE
– DELETE
– INSERT
– SELECT
– UPDATE

ISOLATION LEVEL
 { READ UNCOMMITTED |
 READ COMMITTED |
 REPEATABLE READ |
 SERIALIZABLE }

The isolation levels are described under the SET TRANSACTION statement.

If you have specified the ISOLATION LEVEL pragma, any database access performed in
connection with this statement takes place under this isolation level.

If you specify a lower isolation level than specified for the transaction, the isolation
level defined for the transaction is no longer guaranteed.

IGNORE INDEX pragma clause

The specified index is ignored when the join order and join algorithm are specified and when
the optimum access path (to base relations) is selected.

IGNORE INDEX index

i

U20069-J-Z145-3-7600 125

DRIVE SQL statements PRAGMA

OPTIMIZATION LEVEL pragma clause

The option n controls the number of plan alternatives that can be generated and evaluated
during access path selection.

OPTIMIZATION LEVEL n

Firstly, all plan variants are examined, and only the most favorable variants that in general
promise an improvement of the evaluation costs are selected by means of heuristic
techniques. The number of plan variants that are followed up on depends on the value of
n. The value of n can be between 1 and 10; the default value is 9. If a value n ≤ 5 is specified,
only one plan variant is examined in each optimization step.

A distinction is made between the following levels:

– n ≤ 9

Various join orders are considered.

– n ≤ 8

In the case of a nested loop join, this statement checks whether switching the two join
partners would be advantageous.

– n ≤ 7

Execution of sort minimization.

– n ≤ 6

In the case of join optimization, not only the sort merge but also the nested loop join is
considered.

When selecting the access path, all the possibilities for achieving the required sort are
considered (physical sorting in the DBH kernel, sorting via index scan).

– n ≤ 5

Execution of subquery optimization and storage of intermediate result relations that are
needed more than once.

– n ≤ 4

Execution of the range construction, i.e. several atomic predicates on the same column
are grouped together as one index access.

126 U20069-J-Z145-3-7600

PRAGMA DRIVE SQL statements

SIMPLIFICATION pragma clause

All the optimization techniques for simplification (part of the algebraic optimization) are
activated or deactivated, i.e. the optimization steps outlined in these techniques are either
executed in their entirety (ON), or none of them are executed (OFF).

SIMPLIFICATION { ON | OFF }

DATA TYPE pragma clause

The DATA TYPE pragma indicates that a column can only be created in the attribute format
for CALL DML tables.

This clause only has an effect in SESAM if it is specified in the ALTER TABLE ... ADD
COLUMN statement and the table is a CALL DML table.

DATA TYPE OLDEST

Because the ADD COLUMN clause is not allowed for ALTER TABLE involving
CALL DML tables in DRIVE/WINDOWS, this clause has no SESAM effect in
DRIVE/WINDOWS.

CHECK pragma clause

The pragma clause CHECK has no SESAM effect in DRIVE/WINDOWS.

i

U20069-J-Z145-3-7600 127

DRIVE SQL statements RESTORE

RESTORE - Restore cursor

You use RESTORE to open a cursor saved with STORE.

The cursor is opened with the same cursor description as for the last OPEN. If variables
have been updated in the meantime, this does not have any effect on the resulting derived
table.

If the literals CURRENT USER or USER and SYSTEM USER or the time functions
CURRENT DATE, CURRENT TIME and/or CURRENT TIMESTAMP are included in the
cursor description, they are not reevaluated.

A cursor position saved with STORE can be lost if, in the same or a different transaction,
rows starting at the stored position have been deleted in the meantime, or the row on which
the cursor was positioned has been updated in such a way that it no longer belongs to the
cursor table.

If no cursor position has been saved for the cursor, the cursor is not opened and an appro-
priate SQLSTATE is set.

Otherwise, the cursor is opened and the cursor position restored. If you want to delete
(DELETE ... WHERE CURRENT OF) or update (UPDATE ... WHERE CURRENT OF) a
row, the cursor must be positioned on the row with FETCH.

After the RESTORE statement has been executed, all the information on this cursor that
has been saved with STORE is deleted. You must save the cursor position again with
STORE before a new RESTORE statement can be executed.

The cursor to be restored must be saved with STORE during the same DRIVE session
(dialog cursor) or in the same program run (program cursor) and must be closed when
RESTORE is executed. The transactions containing the STORE and RESTORE state-
ments must have the same isolation or consistency levels (see SET TRANSACTION
statement).

If a dynamic cursor is no longer declared for SESAM when the RESTORE statement is
executed, it is declared dynamically by DRIVE/WINDOWS. However, because the cursor
is not open, SESAM sets an appropriate SQLSTATE when the RESTORE statement is
executed.

RESTORE cursor

cursor
Name of the cursor to be restored.

128 U20069-J-Z145-3-7600

RESTORE DRIVE SQL statements

Processing the cursor after RESTORE

After a RESTORE statement, you must position the cursor on a row with FETCH.

Example

FETCH NEXT positions to the next row in the cursor table.

Only then can the cursor be accessed with an UPDATE or DELETE statement.

U20069-J-Z145-3-7600 129

DRIVE SQL statements REVOKE

REVOKE - Revoke privileges

You use REVOKE to revoke table and column privileges or special privileges from one or
more, or from all, authorization identifiers. Temporary views belonging to the authorization
identifiers that are based on the table are deleted.

Only the authorization identifier that granted a privilege can revoke that privilege from an
authorization identifier (see the GRANT statement). If the privileges have been granted to
other users, they cannot be revoked. A privilege used as the basis for defining a view or for
a referential constraint cannot be revoked.

The TABLE_PRIVILEGES, COLUMN_PRIVILEGES and CATALOG_PRIVILEGES views
of the INFORMATION_SCHEMA provide you with information on the privileges assigned to
the authorization identifiers (see chapter 8, “Information schemas”, in the “SESAM/SQL-
Server SQL Reference Manual, Part 1” [18]).

The REVOKE statement has two formats: one format for table and column privileges and
another for special privileges.

REVOKE format for table and column privileges:

REVOKE { ALL PRIVILEGES | { table_and_column_privilege },... }

ON [TABLE] table

FROM { PUBLIC | { authorization_id },... } RESTRICT

table_and_column_privilege::= { SELECT |
 DELETE |
 INSERT |
 UPDATE [({ column },...)] |
 REFERENCES [({ column },...)] }

ALL PRIVILEGES
All the table privileges that the current authorization identifier can revoke are revoked.
ALL PRIVILEGES comprises the privileges SELECT, DELETE, INSERT, UPDATE and
REFERENCES.

table_and_column_privilege
The table and column privileges are revoked individually. You can specify more than
one privilege.

SELECT
Privilege that allows rows in the table to be read.

130 U20069-J-Z145-3-7600

REVOKE DRIVE SQL statements

DELETE
Privilege that allows rows to be deleted from the table.

INSERT
Privilege that allows rows to be inserted into the table.

UPDATE [(column,...)]
Privilege that allows rows in the table to be updated.

The revoke operation can be limited to the specified columns. column must be the
unqualified name of a column in the specified table. You can specify more than one
column.

(column,...) omitted:
The privilege for updating all the columns in the table is revoked.

REFERENCES [(column,...)]
Privilege that allows definition of referential constraints that reference the table.

The revoke operation can be limited to the specified columns. column must be the
unqualified name of a column in the specified table. You can specify more than one
column.

(column,...) omitted:
The privilege for referencing all the columns in the table is revoked.

ON [TABLE] table
Name of the table for which you want to revoke privileges.

The table can be a base table or a view. In the case of a view that cannot be updated,
you can only revoke the SELECT privilege.

FROM PUBLIC
The privileges are revoked from all authorization identifiers. The individual privileges of
the individual authorization identifiers are not affected.

FROM authorization_id
The privileges are revoked from the user with the authorization identifier
authorization_id. You may specify more than one authorization identifier.

U20069-J-Z145-3-7600 131

DRIVE SQL statements REVOKE

REVOKE format for special privileges:

REVOKE { ALL SPECIAL PRIVILEGES | CREATE SCHEMA }

ON CATALOG catalog

FROM { PUBLIC | { authorization_id },... } RESTRICT

ALL SPECIAL PRIVILEGES
All the special privileges that the current authorization identifier can revoke are revoked
(see the GRANT statement).

CREATE SCHEMA
Revokes the special privilege that allows you to define database schemas.

FROM PUBLIC
The special privileges are revoked from all authorization identifiers. The individual privi-
leges of the individual authorization identifiers are not affected.

FROM {authorization_id},...
The special privileges are revoked from the user with the authorization identifier
authorization_id. You may specify more than one authorization identifier.

ON CATALOG catalog
Name of the database for which special privileges are to be revoked.

Example

The following REVOKE statement revokes the UPDATE privilege for all the columns in the
table telephone_list.

REVOKE UPDATE ON TABLE telephone_list FROM bertha RESTRICT;

132 U20069-J-Z145-3-7600

ROLLBACK WORK DRIVE SQL statements

ROLLBACK WORK - Roll back transaction

You use ROLLBACK WORK to terminate a transaction and undo all the updates performed
since the end of the last SQL transaction.

ROLLBACK WORK undoes the following updates:
– all cursors opened in the transaction are closed
– updated data in SQL schemas
– dynamic statements and cursor descriptions
– cursor positions saved with STORE
– SET statements of a (dynamic) program (AUTHORIZATION, CATALOG, SCHEMA) not

committed with COMMIT WORK
– the user specification specified with PERMIT for old-style procedures

In interactive mode, ROLLBACK WORK does not roll back the parameter values for
SESAM or for DRIVE/WINDOWS (see PARAMETER DYNAMIC statement).

The SET TRANSACTION cannot be rolled back.

Refer to the “DRIVE Programming Language” manual, chapters 12, “Distributed applica-
tions”, and 13, “Distributed transaction processing”, for the rules governing distributed appli-
cations.

The first error-free SQL statement that initiates a transaction executed after ROLLBACK
WORK starts a new transaction.

ROLLBACK [WORK] [WITH RESET]

WITH RESET WITH RESET is only permitted in program mode and refers only to
DRIVE control.
The program is rolled back to the status of the last COMMIT WORK
and continues with the statement that follows this COMMIT WORK
(same behavior as for an internal ROLLBACK WORK). The
contents of the DRIVE variables is reset to the values valid at the
time of the COMMIT WORK. In addition, in SINIX and MS-Windows,
all windows open on the graphical user interface are closed after
this COMMIT WORK (see the “DRIVE Programming Language”
manual [2], chapter 10, “Transaction concept”). If no COMMIT
WORK has been executed since the program was started, the
program is aborted and an error message issued.
As far as the database is concerned, the statements ROLLBACK
WORK and ROLLBACK WORK WITH RESET are identical.

U20069-J-Z145-3-7600 133

DRIVE SQL statements ROLLBACK WORK

If the ROLLBACK WORK WITH RESET statement is specified without a condition,
there is a danger of an endless loop since the DRIVE program is continued with the
statement that follows the last COMMIT WORK statement.

Implicit execution of ROLLBACK WORK

SESAM/SQL rolls back a transaction by implicitly executing a ROLLBACK WORK
statement if one of the following situations occur:

– An unrecoverable error occurs in the current transaction.

– The specified isolation level cannot be ensured for two or more transactions that access
certain SQL data concurrently (see also the SESAM/SQL-Server “Core Manual” [20]).

– A transaction is interrupted for a long time and is using resources required by other
transactions (see also the SESAM/SQL-Server “Core Manual” [20]).

The effect is the same as if ROLLBACK WORK WITH RESET were called explicitly.

i

134 U20069-J-Z145-3-7600

SELECT DRIVE SQL statements

SELECT - Read individual rows

You use SELECT to read exactly one row in a table. The column values read are stored in
variables.

If a derived table would contain more than one row, the SELECT statement does not read
a row and an appropriate SQLSTATE is set. If you want to read derived tables with more
than one row, you must use a cursor.

In order to execute a SELECT statement, you must own the table in which you are querying
values, or you must have the SELECT privilege for the referenced table.

In program mode, SELECT transfers the column values to the variables specified with
INTO.
In interactive mode, SELECT displays the column values on the screen appropriately
according to their type (see the “DRIVE Programming Language” manual [2], chapter 3,
“Using variables and constants”). For information on NULL value representation on the
screen see the “DRIVE Programming Language” manual [2], chapter 8, “Processing
databases”).

You can use the FROM clause and, if appropriate, the WHERE clause to create a join, i.e.
link two or more tables with each other and construct the Cartesian product of all the tables
involved (see also join_expression).

SELECT [{ ALL | DISTINCT }] select_list

[INTO { variable },...]

FROM table_specification,...

[WHERE condition]

[GROUP BY column,...]

[HAVING condition]

With the exception of the INTO clause, the clauses of the SELECT statement are defined
exactly as they are for the SELECT expression (see metavariable select_expression).

INTO
In a SELECT statement in program mode, you must specify the variables that are to be
assigned the column values of the derived row in the INTO clause.

U20069-J-Z145-3-7600 135

DRIVE SQL statements SELECT

variable
Name of a variable that is assigned a column value from the derived row or speci-
fication of a component or list of components of a structured variable (see metavar-
iable variable).

The data type of a variable must be compatible with the data type of the corre-
sponding derived column. If a derived column is an aggregate with several
elements, the corresponding variable must be a vector with the same number of
elements.

The number of specified variables must be the same as the number of columns in
the select_list of the SELECT statement. The value of the nth column in the select_list
is assigned to the nth variable in the INTO clause. If the value to be assigned is the
NULL value, the variable is set to NULL.

If there is no derived row or more than one derived row, none of the variables are
set.

If there is no derived row, an SQLSTATE is set which can be handled with
WHENEVER &DML_STATE IN ('TABLE END'). If there is more than one derived
row, an SQLSTATE is set which can be handled with WHENEVER &DML_STATE
IN ('SQL ERROR').

Example

You want to read the name and address of the company with the customer number 100 and
store the information in the variables company, zip, city and street.

Because the customer number is unique in the customers table, you can be sure that the
query will return only one row.

SELECT company, zip, city, street
INTO &Company,&Zip,&City,&Street
FROM customers
WHERE cust_num=100;

136 U20069-J-Z145-3-7600

SET CATALOG DRIVE SQL statements

SET CATALOG - Set default database name

You use SET CATALOG to define the default database name for unqualified schema names
that occur in subsequent EXECUTE statements. The default database name set with
OPTION CATALOG continues to be used to qualify unqualified schema names for all static
SQL statements. Until the time that the first SET CATALOG (or SET SCHEMA) statement
is executed, the database name specified with PARAMETER DYNAMIC CATALOG is used
as the default database name for all dynamic statements.

The default database name you set with SET CATALOG is valid until a new database name
is set with SET CATALOG or SET SCHEMA or until the end of the application. In interactive
mode, the DRIVE default set with PARAMETER DYNAMIC CATALOG is always valid.
Refer to chapter “Working with SESAM/SQL V2” on page 25 for information on the inter-
action between the SET CATALOG statement and the statements OPTION CATALOG and
PARAMETER DYNAMIC CATALOG.

The SET CATALOG statement is only permitted in program mode and does not initiate a
transaction. It is also permitted within transactions and, in order to illustrate its exclusive
effect on dynamic SQL statements, should only be used as a dynamic statement

SET CATALOG default_catalog

default_catalog::= { alphanumeric_literal | variable }

default_catalog
Name of the database to act as the default for the current program run (up to 18
characters long).

alphanumeric_literal
The database name is specified as an alphanumeric literal.

variable
The database name is specified as an alphanumeric variable of the type CHARACTER
or VARCHAR. The variable cannot be a vector and cannot be assigned the NULL value.

The SET CATALOG statement is used in dynamic programs. You can use it to
change the database name specific to the DRIVE session. All subsequent SQL
statements in the dynamic program can only refer to this database name.

Scope of validity of the default database name:

Up to the end of the application at the latest (transition to interactive mode) or until
the next SET CATALOG statement in the same program or in another program,
which can also be executed within the transaction.

i

U20069-J-Z145-3-7600 137

DRIVE SQL statements SET CATALOG

The statement is only permitted in program mode.

This statement should be specified in dynamic form (EXECUTE) since it only affects
dynamic statements. Static statements use the database name specified as the
default in the compiler options.

Example

EXECUTE 'SET CATALOG ''my_db''';

Subsequent dynamic SQL statements use the database name 'my_db' to qualify unqual-
ified schema names.

138 U20069-J-Z145-3-7600

SET SCHEMA DRIVE SQL statements

SET SCHEMA - Set default schema name

You use SET SCHEMA to define the default schema name for the unqualified names of
integrity constraints, indexes and tables that occur in subsequent EXECUTE statements.
The default schema name set with OPTION SCHEMA continues to be used to qualify the
names of integrity constraints, indexes and tables for all static SQL statements. Until the
time that the first SET SCHEMA statement is executed, the schema name set with
PARAMETER DYNAMIC SCHEMA is used as the default schema name for all dynamic
statements.

The default schema name defined with SET SCHEMA is valid until a new schema name is
set with SET SCHEMA or until the end of the application. In interactive mode, the DRIVE
default set with PARAMETER DYNAMIC SCHEMA is always valid. Refer to
chapter “Working with SESAM/SQL V2” on page 25 for information on the interaction
between the SET SCHEMA statement and the statements OPTION SCHEMA and
PARAMETER DYNAMIC SCHEMA.

If an unqualified schema name is qualified with a database name in the SET SCHEMA
statement, the default database name set with PARAMETER DYNAMIC CATALOG is also
changed for all subsequent dynamic SQL statements.

The SET SCHEMA statement is only permitted in program mode and does not initiate a
transaction. It is also permitted within transactions and, in order to illustrate its exclusive
effect on dynamic SQL statements, should only be used as a dynamic statement

SET SCHEMA default_schema

default_schema::= { alphanumeric_literal | variable }

default_schema
Name of the default schema for the current DRIVE session (up to 31 characters long).
You can qualify the unqualified schema name with a database name.
If you qualify the schema name with a database name, this database name is used as
the default database name as if it had been set with SET CATALOG.

alphanumeric_literal
The schema name is specified as an alphanumeric literal.

variable
The schema name is specified as an alphanumeric variable of the type CHARACTER
or VARCHAR. The variable cannot be a vector and cannot be assigned the NULL value.

U20069-J-Z145-3-7600 139

DRIVE SQL statements SET SCHEMA

The SET SCHEMA statement is used in dynamic programs. You can use it to
change the schema name specific to the DRIVE session. All subsequent SQL state-
ments in the dynamic program can only refer to this schema name.

Scope of validity of the default schema name:

Up to the end of the application at the latest (transition to interactive mode) or until
the next SET SCHEMA statement in the same program or in another program,
which can also be executed within the transaction.

The statement is only permitted in program mode.

This statement should be specified in dynamic form (EXECUTE) since it only affects
dynamic statements. Static statements use the schema name set with the compiler
option as the default.

Example

EXECUTE 'SET SCHEMA ''my_db.andromeda''';

Subsequent dynamic SQL statements use the schema name ‘my_andromeda‘ and the
database name ‘my_db‘ for qualifying the names of SQL objects.

i

140 U20069-J-Z145-3-7600

SET SESSION AUTHORIZATION DRIVE SQL statements

SET SESSION AUTHORIZATION - Define authorization
identifier

You use SET SESSION AUTHORIZATION to define the current authorization identifier for
the dynamic SQL statement in a DRIVE application:

A SET SESSION statement overwrites the following values:
– the default value for SESAM (D0USER)
– the default set with PARAMETER DYNAMIC SESSION AUTHORIZATION, but only

until the end of the application (transition to interactive mode)
– the value set with the last SET SESSION AUTHORIZATION statement

You define the current authorization identifier for the dynamic SQL statements of a DRIVE
application with either the PARAMETER DYNAMIC AUTHORIZATION or SET SESSION
AUTHORIZATION statement. If no authorization identifier is defined in either of these state-
ments, the default authorization identifier set by SESAM, D0USER, is used as the current
authorization identifier for the DRIVE application.

The SET SESSION AUTHORIZATION is only permitted in program mode and only within
an EXECUTE statement. It does not initiate a transaction and can therefore only be used
outside of an SQL transaction.

SET SESSION statements cannot change the authorization identifiers specified
with OPTION AUTHORIZATION, i.e. they have no effect on static SQL statements.

SET SESSION AUTHORIZATION new_authorization_id

new_authorization_id::= { alphanumeric_literal | variable }

new_authorization_id
Name of the authorization identifier that is to be valid for the current program run. The
new authorization identifier is valid until the next SET SESSION AUTHORIZATION
statement or until the end of the application (transition to interactive mode). The autho-
rization identifier can be up to 18 characters long.

literal
The new authorization identifier is specified as an alphanumeric literal.

variable
The new authorization identifier is specified as an alphanumeric variable. The variable
cannot be a vector and cannot be assigned the NULL value.

i

U20069-J-Z145-3-7600 141

DRIVE SQL statements SET SESSION AUTHORIZATION

The SET SESSION AUTHORIZATION statement is used in dynamic programs. You
can use it to change the authorization identifier specific to the DRIVE session. All
subsequent SQL statements in the dynamic program are only executed for this
authorization identifier.

Scope of validity of the current authorization identifier:

Up to the end of the application at the latest (transition to interactive mode) or until
the next SET SESSION AUTHORIZATION statement in the same program or in
another program, which can only be executed outside of a transaction.

This statement is only permitted in program mode and only within an EXECUTE
statement, i.e. it can not be included in the program as a static statement. It must
be specified in dynamic form (EXECUTE) since it only affects dynamic statements
in DRIVE/WINDOWS. Static statements use the authorization identifier defined in
the compiler options as the current authorization identifier.

Example

You want to define a new authorization identifier for dynamic SQL statements for the DRIVE
application. The current UTM or BS2000 user must have a system entry with this authori-
zation identifier.

EXECUTE 'SET SESSION AUTHORIZATION ''bertha''';

All subsequent dynamic SQL statements are executed with the authorization identifier
'bertha'.

i

142 U20069-J-Z145-3-7600

SET TRANSACTION DRIVE SQL statements

SET TRANSACTION - Define transaction attributes

You can use SET TRANSACTION to set the isolation or consistency level and transaction
mode for the subsequent SQL transaction.

The isolation or consistency level of a transaction specifies to what degree read operations
on rows in the transaction are affected by write accesses in a concurrent transaction.

The transaction mode allows you to specify whether table rows can only be read or can also
be updated in the subsequent transaction.

If you define an isolation or consistency level, you also influence the degree of
concurrency and thus performance: the fewer phenomena you permit, the lesser
the degree of concurrency.

The settings effected by SET TRANSACTION are only valid for the transaction that immedi-
ately follows this statement. After the transaction has ended, the default values are again
valid.

The SET TRANSACTION statement does not initiate a transaction and can only be used
outside an SQL transaction.

SET TRANSACTION { level [[,] transaction_mode] |
 transaction_mode [[,] level] }

level::= { ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED |
 REPEATABLE READ | SERIALIZABLE } |
 CONSISTENCY LEVEL consistency_level }

transaction_mode::= { READ ONLY | READ WRITE }

As in earlier SESAM/SQL versions, you can omit the comma between the two specifica-
tions. If, however, you want your application to be portable, you must include the comma.

i

U20069-J-Z145-3-7600 143

DRIVE SQL statements SET TRANSACTION

ISOLATION LEVEL
Sets the isolation level.

If several transactions work with the same tables simultaneously, the following
phenomena can occur in which the read accesses in one transaction are affected by
the simultaneous write access of another transaction. By specifying an isolation level,
you determine which of these phenomena you want to permit in the subsequent SQL
transaction.

The following phenomena are of importance:

– dirty read:
A transaction updates a row or inserts a new row. A second transaction reads this
row before the first transaction has committed the update. If the first transaction is
rolled back, the second transaction has read a row that was never committed.

– non-repeatable read:
A transaction reads a row. Before this transaction is terminated, a second transac-
tion updates or deletes this row and commits the update. If the first transaction then
tries to read this row again, either different values will be returned, or an error occurs
because the row has been deleted in the meantime. In other words, the result of the
second read operation is different to the result of the first.

– phantom:
A transaction reads rows that satisfy a certain search condition. A second transac-
tion subsequently inserts rows that also satisfy this search condition. If the first
transaction repeats the query, the derived table includes the new rows.

READ UNCOMMITTED
Isolation level that offers the least protection against concurrent transactions. All the
above-mentioned phenomena are possible. In the subsequent SQL transaction,
rows can be read that have not yet been committed and these rows can be updated
after they have been read.

You cannot specify READ UNCOMMITTED if, at the same time, you specify the
transaction mode READ WRITE.

READ COMMITTED
The phenomena “non-repeatable read” and “phantom” can occur. In the subse-
quent SQL transaction, rows that have been read can be updated by other trans-
action after they have been read. No rows are read that have not yet been
committed

REPEATABLE READ
The phenomenon “phantom” can occur. The phenomena “non-repeatable read”
and “dirty read” are not possible.

144 U20069-J-Z145-3-7600

SET TRANSACTION DRIVE SQL statements

SERIALIZABLE
Complete protection against concurrent transactions is ensured. The phenomena
“dirty read”, “non-repeatable read” and “phantom” cannot occur. The subsequent
transaction is unaware of the existence of concurrent transactions.

CONSISTENCY LEVEL
For reasons of upward compatibility with earlier versions, SESAM/SQL provides the
parameter CONSISTENCY LEVEL as an alternative to isolation level. This means that
you define a consistency level which, like the isolation level, determines whether the
phenomena “dirty read”, “non-repeatable read” and “phantom” can occur.

consistency_level
Unsigned integer, where 0 ≤ consistency_level ≤ 4.

Level Locks set Rows read

0 Rows read are not locked against
updating by other transactions

All rows including those locked
against updating by other transac-
tions

1 Rows read are locked against
updating by other transactions
(until the end of the transaction)
unless they are already locked

like 0

2 like 0 Only the rows that other trans-
action have not locked against
updating

3 Rows read are locked against
updating by other transactions
(until the end of the transaction)

like 2

4 Rows read are locked just as for
level 3. The lock against updating
by other transactions for non-
existent rows ensures that rows
cannot be inserted by other trans-
actions.

like 2

U20069-J-Z145-3-7600 145

DRIVE SQL statements SET TRANSACTION

The following table indicates the correlation between isolation and consistency level
and which phenomena can occur at the different consistency and isolation levels.

To 1)
The phenomenon “non-repeatable read” can only occur for rows previously read
with a dirty read.

READ ONLY
Sets the transaction mode READ ONLY.

Only read database accesses are permitted within the transaction. READ ONLY is the
default value for the isolation level READ UNCOMMITTED and the consistency levels
0 and 1.

READ WRITE
Sets the transaction mode READ WRITE.

Only read and write database accesses are possible in the transaction. READ WRITE
is the default value for the isolation levels READ COMMITTED, REPEATABLE READ
and SERIALIZABLE and for the consistency levels 2, 3 and 4.

You cannot specify READ WRITE if you specify the isolation level READ
UNCOMMITTED.

Default values

If an isolation or consistency level entry exists in a user-specific configuration file (see the
SESAM/SQL-Server “Core Manual” [20]), this value is used as the default. If this is not the
case, the isolation level SERIALIZABLE, the consistency level 4, and the transaction mode
READ WRITE are the default values.

Isolation level Consistency
 level

Dirty read Non-
repeatable
read

Phantom

READ UNCOMMITTED 0 x x x

 - 1 x x 1) x

READ COMMITTED 2 - x x

REPEATABLE READ 3 - - x

SERIALIZABLE 4 - - -

146 U20069-J-Z145-3-7600

STORE DRIVE SQL statements

STORE - Save cursor position

You use STORE to save the current cursor position.

At the end of a transaction, all open cursors are closed. If you want to be able to access the
contents of the derived table in the subsequent transaction, you must save the current
cursor position with STORE before the end of the transaction. A cursor saved with STORE
can be restored with the RESTORE statement.

FETCH cannot be used after STORE.

A cursor position saved with STORE is canceled by the RESTORE and OPEN statements.

The cursor must be open and positioned on a row. STORE does not close the cursor. The
saved cursor position is saved until the end of the DRIVE session at the latest (dialog
cursor) or until the end of the program run (program cursor).

STORE is not permitted for a PREFETCH cursor.

STORE cursor

cursor
Name of the cursor whose position is to be stored.

The call overwrites any cursor position for the same cursor previously saved with
STORE.

U20069-J-Z145-3-7600 147

DRIVE SQL statements UPDATE

UPDATE - Update column values

You use UPDATE to update the column values of rows in a table.

The literals CURRENT USER or USER and SYSTEM USER, as well as the time functions
CURRENT DATE, CURRENT TIME and CURRENT TIMESTAMP in the UPDATE
statement (and in default values) are evaluated once, and the values calculated are valid
for all updates.

If you want to update a row in the specified table, you must own the table or have the
UPDATE privilege for each of the columns to be updated. Furthermore, the transaction
mode of the current transaction must be READ WRITE.

If integrity constraints have been defined for the table or the columns involved, these are
checked after the update operation. If an integrity constraint has been violated, the updates
are canceled and an appropriate SQLSTATE set.

UPDATE table SET {
 { column | column(pos_no) | column(min-max) }
 = { sql_expression | DEFAULT | NULL }
 },...

[WHERE { condition | CURRENT OF cursor }]

table
Name of the table containing the rows you want to update. The table can be a base
table, an updatable view or an updatable temporary view (see metavariable
table_specification). Static temporary views cannot be specified for dynamic cursors.

column
Name of an atomic column whose contents you want to update. The column must be
part of the table. You cannot qualify the name of the column with a table specification.
You can only specify a column once in an UPDATE statement.

column(pos_no)
Element of a multiple column containing the value you want to update.

The multiple column must be part of the table. If you specify several elements in a
multiple column, the range of elements specified must be contiguous. Each element
can only be specified once.

pos_no is an unsigned integer ≥ 1.

148 U20069-J-Z145-3-7600

UPDATE DRIVE SQL statements

column(min..max)
Range of column elements in a multiple column that are to be assigned values. The
multiple column must be part of the table. If you specify several elements in a multiple
column, the range of elements specified must be contiguous. Each element can only be
specified once.

min and max are unsigned integers ≥ 1; max must be ≥ min.

sql_expression
Expression whose value is to be assigned to the preceding column. The value of the
expression must be compatible with the data type of the column.

If sql_expression is a variable, you can also specify a vector. If you do so, the column
must be a multiple column and the number of elements in the vector must be the same
as the number of column elements.

If sql_expression is an aggregate (see metavariable value) that is to be assigned to a
multiple column, the number of values must be the same as the number of column
elements, and the data type of each component of the aggregate must be compatible
with the data type of the target column.

The following restrictions apply to sql_expression:

– Neither the underlying base table for table nor a view of this base table can be
included in the FROM clause of a subquery in sql_expression.

– Set functions (AVG, MAX, MIN, SUM, COUNT) are not permitted.

DEFAULT
Only for atomic columns.

The associated column is supplied with the default value if a default value has been
defined for the column (see metavariable column_definition), otherwise it is assigned the
NULL value.

NULL
The preceding column is assigned the NULL value.

WHERE clause
The WHERE clause indicates the rows to be updated.

WHERE condition updates a number of rows (multiple UPDATE statement), WHERE
CURRENT OF cursor updates a single row.

WHERE not specified:
All the rows in the table are updated.

U20069-J-Z145-3-7600 149

DRIVE SQL statements UPDATE

condition
Condition that the rows to be updated must satisfy. A row is only updated if it satisfies
the specified condition.

The following restrictions apply to condition:

– Column specifications in condition outside of subqueries can only reference the
specified table.

– Neither the underlying base table for table nor a view of this base table can be
included in the FROM clause of a subquery included in condition.

If no row satisfies condition, no row is updated and an SQLSTATE is set which can
be handled with WHENEVER &DML_STATE IN ('TABLE END').

CURRENT OF cursor
Name of the cursor used to determine the row to be updated. table must be the table
specified in the first FROM clause of the cursor description.

The cursor must satisfy the following conditions:

– The cursor must reference table.

– The cursor must be updatable.

– The cursor must be declared in the same compilation unit, it must be open and
positioned on a row in the table with FETCH when the UPDATE statement is
executed.

UPDATE updates the row indicated by cursor.

UPDATE is not permitted if cursor is a PREFETCH cursor.

If cursor was declared with the FOR UPDATE clause and column specifications, only
the columns specified in that clause can be updated.

The UPDATE statement does not influence the position of the cursor. If you want to
update the next row in the derived table, you must position the cursor on this row with
FETCH.

150 U20069-J-Z145-3-7600

UPDATE DRIVE SQL statements

Updating the values in a multiple column

In the case of a multiple column, you can update values for individual column elements or
for ranges of elements.

An element of a multiple column is identified by its position number in the multiple column.

A range of elements in a multiple column is identified by the position numbers of the first
and last element in the range.

The position of an element in a multiple column can change. If an element with a
low position number is set to the NULL value, all subsequent elements are shifted
to the left and the NULL value added to the end. In this respect, there may be a
difference between updating a multiple column with a single UPDATE statement
and a list of SET clauses or with a series of UPDATE statements each with a single
SET clause.

UPDATE and integrity constraints

By specifying integrity constraints when you define the base table, you can restrict the
possible contents of table. After the UPDATE statement has been executed, the contents of
table must satisfy the defined integrity constraints.

UPDATE and updatable permanent views

If CHECK OPTION is specified in the definition of an updatable view, only rows that satisfy
the query expression in the view definition can be inserted in the view.

INSERT and transaction management

UPDATE initiates a transaction if no transaction is open. If you define an isolation level for
concurrent transactions, you can control how the UPDATE statement affects these trans-
actions (see the SET TRANSACTION statement).
If an error occurs during an update operation, any updates that have already been
performed are canceled.

i

U20069-J-Z145-3-7600 151

DRIVE SQL statements UPDATE

Examples

1. You want to increase the minimum stock level of all items to 20.

UPDATE items SET min_stock = 20
 WHERE min_stock < 20;

2. You want to update the minimum stock level using a cursor:

DECLARE cur_items CURSOR FOR
 SELECT min_stock FROM items
 WHERE min_stock < 20
 FOR UPDATE;
OPEN cur_items;

You can update the rows involved with a series of FETCH and UPDATE statements:

FETCH cur_items INTO &Min_stock;
UPDATE items SET min_stock = 20
 WHERE CURRENT OF cur_items;

3. You want to update the intensity of the individual color components for the color orange
in the table color_tab. The column rgb for the color intensity is a multiple column:

UPDATE color_tab SET rgb(1-3) = <0.8, 0.4, 0>
 WHERE color_name = 'orange';

152 U20069-J-Z145-3-7600

WHENEVER DRIVE SQL statements

WHENEVER - Define error handling

You use WHENEVER, which is only permitted in program mode and is not executable, to
query the entries of the DRIVE system variable
&DML_STATE (= &ERROR_STATE.DML_STATE) and define error exits (see also the
“Directory of DRIVE Statements” [3], WHENEVER statement, and the “DRIVE
Programming Language” manual [2], sections 3.1.2, “System variables”, and 4.2, “Error
recovery, end criteria”). After execution of a (static or dynamic) SQL statement and after
execution of a CYCLE cursor INTO ... statement and the associated END CYCLE
statement, &DML_STATE either contains the entry 'OK' or a specific error status (see
below).

In the database system SESAM/SQL V2, WHENEVER defines the reaction to execution of
these statements if they are terminated with an SQLSTATE <> '00000' (SQL statement
executed successfully), <> '01SA1' (row locked by foreign transaction that is still open) or
'02000' (no row read or updated). SQLSTATE 00000 is not and error and cannot be
redefined as an error. The other two SQLSTATEs are predefined as not being errors, but
can be redefined as errors (see below).

You can specify the WHENEVER statement more than once in a DRIVE program. It must
be defined in the declaration section of the program after the definitions of internal subpro-
grams (see the “Directory of DRIVE Statements” [3], SUBPROCEDURE statement). You
use WHENEVER to specify which error exits (exception handling) are to be executed in
which (or all) error situations (exception conditions). If several WHENEVER statements
have been specified for an error situation, i.e. &DML_STATE was assigned a certain value
<> 'OK', the last statement entered is used.

WHENEVER &DML_STATE [IN (status,...]

 { CONTINUE | CALL subprog_name | BREAK }

 &DML_STATE
DRIVE system variable of the type CHAR(16) that is assigned a value by DRIVE/
WINDOWS each time an SQL statement is executed.

U20069-J-Z145-3-7600 153

DRIVE SQL statements WHENEVER

IN clause
Specification of an exception condition or a list of exception conditions. The exception
condition &DML_STATE IN (status) is satisfied if &DML_STATE is assigned the value
status. A list of exception conditions is satisfied if &DML_STATE is assigned one of the
values specified in the list.

status::= {'TABLE END' | 'DIRTY READ' | 'SQL ERROR' |
 'CURSOR SQL ERROR' | 'TOO MANY CURSORS' |
 'TEMP SYS ERROR' | 'ACC SYS ERROR' |
 'ADMIN SYS ERROR' | 'LIMIT REACHED' }

If the IN clause is omitted, this is the same as specifying all possible exception condi-
tions.

{ CONTINUE | CALL subprog_name | BREAK }
Definition of an error exit (exception handling) for the specified exception condition(s).

 CONTINUE
If (one of) the specified exception condition(s) occurs, the program is continued.

 CALL subprog_name
If (one of) the specified exception condition(s) occurs, the subprogram subprog_name is
called. If, while subprog_name is being processed, another error occurs for which an
error exit has been defined with WHENEVER, the program is aborted (no error propa-
gation).

 BREAK
If (one of) the specified exception condition(s) occurs, the program is aborted.

The error exit CONTINUED is the default for the exception conditions
&DML_STATE IN ('TABLE END') and &DML_STATE IN ('DIRTY READ'). The error
exit BREAK is the default error exit for all other exception conditions.

Mapping SQLCODEs to &DML_STATE entries

SQLCODEs are mapped to &DML_STATEs in a way that is compatible with SESAM/SQL
V1 and DRIVE/WINDOWS V1.1 (see chapter 6, “Error messages”, in the present manual,
and section 3.1.2, “System variables”, in the “DRIVE Programming Language” manual [2]).

i

154 U20069-J-Z145-3-7600

WHENEVER DRIVE SQL statements

Mapping SQLSTATEs to &DML_STATE entries

The SQLSTATE 00000 is mapped to &DML_STATE = 'OK'.

The SQLSTATE 02000 is mapped to &DML_STATE = 'TABLE END'.

The SQLSTATE 01SA1 is mapped to &DML_STATE = 'DIRTY READ'.

The SQLSTATE 24SA5 is mapped to &DML_STATE = 'CURSOR SQL ERROR'.

The SQLSTATEs 25SA3 and 25SA5 are mapped to &DML_STATE = 'SQL ERROR'.

The SQLSTATEs 91SA3 and 91SA5 are mapped to &DML_STATE = 'LIMIT REACHED'.

All other SQLSTATEs are mapped to &DML_STATE = 'SQL ERROR', provided that
&DML_STATE is not assigned a different value due to an SQLCODE reported at the same
time and its mapping (see above).

The SQLSTATE of SESAM/SQL V2 is stored in the DRIVE system variable
&SQL_STATE (= &ERROR_STATE.SQL_STATE). &SQL_STATE is a structured
variable that divides the SQLSTATE into the error class
&SQL_CLASS (= &SQL_STATE.SQL_CLASS) and the subclass &SUB_CLASS (=
&SQL_STATE.SUB_CLASS), both of which can be referenced individually.

Therefore, each SQLSTATE can be subject to specific error handling in a
WHENEVER subprogram subprog_name for the exception condition &DML_STATE
IN ('SQL ERROR'). In particular, the current SQL transaction can be rolled back
(ROLLBACK), the DRIVE transaction rolled back (ROLLBACK WITH RESET), the
program aborted (BREAK) or continued (END SUBPROC) for certain SQLSTATEs.

Meaning of the individual &DML_STATE entries

'OK'
 SQL statement executed successfully.

The condition &DML_STATE IN ('OK') or = 'OK' is not an exception condition.
However, if necessary, it can be used in IF or CASE statements after SQL state-
ments or in CYCLE statements. For productive use, however, it is recommended
that you use WHENEVER statements and subprograms for error handling.

i

i

U20069-J-Z145-3-7600 155

DRIVE SQL statements WHENEVER

 'TABLE END'
No row read or modified.

Meaning
No row was read by a FETCH or SELECT statement,
no row was deleted by a DELETE statement,
no row was updated by an UPDATE statement,
no row was inserted by an INSERT statement.

Response
The DRIVE program must be modified if necessary.

If an error exit <> CONTINUE was specified for 'TABLE END' in a WHENEVER
statement, this is not executed if the error situtation 'TABLE END' occurs in a
CYCLE cursor INTO ... statement.

'DIRTY READ'
 Row locked by a foreign transaction that is still open.

Meaning
The row that has been output contains data that may have been updated by a foreign trans-
action that is still open. A “dirty read” phenomenon may have occurred (see the “DRIVE
Programming Language” manual [2], chapter 10, “Transaction concept”). This situation is
only possible for consistency level 0 or 1, i.e. isolation level READ UNCOMMITTED.

Response
The SQL statement must be repeated if necessary and/or a different consistency level
defined, if appropriate (see SET TRANSACTION statement or ISOLATION LEVEL pragma
clause).

 'SQL ERROR'
 SQL not execute successfully or executed without pragma influence.

Meaning
The exact meaning is the same as that recommended by SESAM for the corresponding
SQLSTATE xxSxx (enter the SYSTEM 'HELP SEWxxxx' statement).

Response
The recommended response is the same as that recommended by SESAM for the corre-
sponding SQLSTATE xxSxx (enter the SYSTEM 'HELP SEWxxxx' statement).

 'CURSOR SQL ERROR'
 Cursor is not saved.

Meaning
The cursor was not saved with a STORE statement or has been canceled in the mean time
because the transaction has been rolled back.

Response
Modify DRIVE program.

i

156 U20069-J-Z145-3-7600

WHENEVER DRIVE SQL statements

 'TOO MANY CURSORS'
 Permitted DRIVE system limit for the number of dynamic cursor declarations has been
exceeded.

Meaning
20 dynamic or variable program cursors or dialog cursors have already been declared.

Response
Delete several cursors (see DROP statement) or abort DRIVE program (see BREAK
statement).

 'TEMP SYS ERROR'
 Temporary obstacle for SESAM-RTS or SESAM-DBH

Meaning
see 'SQL ERROR'

Response
see 'SQL ERROR'

 'ACC SYS ERROR'
 Incompatibilities within an SQL schema.

Meaning
see 'SQL ERROR'

Response
see 'SQL ERROR'

 'ADMIN SYS ERROR'
 SESAM administrator intervention required.

Meaning
see 'SQL ERROR'

Response
see 'SQL ERROR'

 'LIMIT REACHED'
 SESAM system limit reached.

Meaning
see 'SQL ERROR'

Response
see 'SQL ERROR'

 In the event of the error situation 'LIMIT REACHED', an SQLSTATE does not neces-
sarily exist.i

U20069-J-Z145-3-7600 157

4 DRIVE SQL metavariables
SQL is fully integrated in the DRIVE language. This means that a number of DRIVE
metavariables can be used in SQL statements (e.g. conditions and variables, see condition
and variable). The SQL dialect supported by the database system involved always includes
restrictions and extensions with regard to the SQL standard, which can result in differences
compared to the DRIVE metavariables. Only if you want to reference SQL objects (e.g.
tables and columns, see table_specification and sql_expression) will you need metavariables
that can only be used in SQL statements but not in DRIVE statements. This chapter
provides you with a description of SQL metavariables and DRIVE SQL metavariables. The
description of DRIVE SQL metavariables includes the section from the complete
description in the “Directory of DRIVE Statements” [3] that is relevant to the support of
SESAM/SQL V2.

The following metavariables can only be used in SQL statements (SQL metavariables):
– table
– column_definition
– basic_data_type (also in DRIVE statements)
– default
– column_constraint
– table_constraint
– query_expression

– table_specification
– SELECT expressions (see select_expression)

– projections (see select_list)
– FROM clause
– WHERE clause
– GROUP BY clause
– HAVING clause

– join expressions (see join_expression)
– unions
– subqueries (see subquery).

158 U20069-J-Z145-3-7600

WHENEVER Metavariables

The following metavariables can be used in SQL statements and, if necessary, in DRIVE
statements (DRIVE SQL metavariables):
– sql_expression

– values (see value)
– literals (see literal)

– alphanumeric literals
– numeric literals
– time literals

– variables (see variable)
– simple variables
– structured variables
– indexed variables

– aggregates
– three time functions (see time_function)
– column references “[table.] column [({pos_no | min-max})]“
– six set functions (see set_function)
– subqueries (see subquery)
– two user functions (SQL user and system entry)
– operators (unary +, -, binary +, -, *, /, ||)

– condition
– seven groups of predicates (see predicate)
– conjunctions, disjunctions, negations

These metavariables represent a consistent extension of the DRIVE metavariables
expression and condition in accordance with the “Directory of DRIVE Statements” [3]. Only if
column references, set functions, subqueries or user functions occur in sql_expression and
condition are you dealing with a DRIVE SQL metavariable that is not a DRIVE metavariable,
and which therefore can only be used in SQL statements.

In the case of query_expression and sql_expression, DRIVE/WINDOWS V2.1 supports the full
functionality of SESAM/SQL V2.0 but not the extensions provided in Version 2.1.

U20069-J-Z145-3-7600 159

Metavariables query_expression

query_expression

In SESAM/SQL, query expressions are the most important means of querying data.

You use query expressions to select rows and columns from base tables, views and
temporary views. The rows found constitute the derived table.

A query expression is part of an SQL statement. A query expression can occur in
subqueries or in any of the following SQL statements:

If you want to use a query expression in an SQL statement, you must own the table refer-
enced with the query expression or have SELECT privilege for the table involved.

query_expression::= { select_expression | expression | (query_expression) }
 [UNION [ALL] query_expression]

select_expression
SELECT expression, see metavariable select_expression.

join_expression
Join expression, see metavariable join_expression.

(query_expression)
subquery, see metavariable subquery.

UNION
The UNION clause combines two query expressions. The derived table contains all the
rows that occur in the first or second derived table. You can combine more than two
derived tables if you use the UNION clause several times.

If you want to combine query expressions using UNION, the following conditions must
be satisfied:

– The derived tables of both UNION operands must have the same number of
columns and the data types of the corresponding columns must be compatible. The
data types of the derived columns are determined according to the rules explained
further below.

CREATE TEMPORARY VIEW Define a temporary view

CREATE VIEW Define a view

DECLARE Declare a cursor

INSERT Insert rows in a table

160 U20069-J-Z145-3-7600

query_expression Metavariables

If the corresponding columns in both source tables have the same names, the
derived column is given this name. Otherwise, the name of the derived column is
undefined.

– Only atomic columns may be selected.

Query expressions combined with the UNION clause cannot be updated.

ALL
Duplicate rows in the derived table are retained.

ALL omitted:
Duplicate rows are removed (duplicate elimination).

Updatability of a query expression

A query expression is updatable if the following conditions are fulfilled:

– The query expression does not contain a join expression.

– The query expression does not contain a UNION clause.

– Only column names can be specified in select_list. Other elements of sql_expression, e.g.
subqueries, set functions, time functions or literals, are not permitted. Atomic columns
cannot be specified more than once. Subranges of multiple columns cannot overlap.

– Only a table or updatable subquery can be specified in the FROM clause. If a table is
specified, it must be a base table or an updatable view.

– No subquery can occur in the WHERE clause.

– The keyword DISTINCT cannot be specified.

– The SELECT expression cannot include a GROUP BY or HAVING clause.

Data type of the derived column for UNION

If two query expressions are combined with UNION, the data type of the derived column is
determined by applying the following rules:

– Both source columns are of the type CHAR:
The derived column is of the type CHAR with the longer of the two lengths.

– One source column is of the type VARCHAR and the other source column is of the type
CHAR or VARCHAR:
The derived column is of the type VARCHAR with the greater length or greater
maximum length.

U20069-J-Z145-3-7600 161

Metavariables query_expression

– Both source columns are an integer or fixed-point type (INT, SMALLINT, NUM, DEC):
The data type is an integer or fixed-point type.

– The number of digits to the right of the decimal point is the greater of the two values
of the source columns.

– The total number of significant digits is the greater of the two values plus the greater
of the two values for the number of digits after the decimal point of the source
column. The maximum number of digits is, however, 31.

– One source column is of a floating-point type (REAL, DOUBLE, FLOAT), the other is of
any numeric data type:
The derived column is of the type DOUBLE PRECISION.

– Both source columns have a date and time data type:
Both column must have the same date and time data type and the derived column also
has this data type.

162 U20069-J-Z145-3-7600

condition Metavariables

condition

Conditions are used to restrict the number of rows affected by a table operation. Only the
rows that satisfy the specified condition are taken into account. You may specify condition
for DELETE, UPDATE and SELECT and when joining tables (join expression). You can
specify condition in table and column constraints in order to formulate CHECK clauses as
integrity constraints (see metavariables column_constraint and table_constraint).

You define a condition in a WHERE, HAVING, ON or CHECK clause, which may be used in
the following statements or query expressions:

● WHERE clause

– DELETE statement
– SELECT statement
– SELECT expression for CREATE VIEW, CREATE TEMPORARY VIEW,

DECLARE, INSERT
– UPDATE statement

● HAVING clause

– SELECT statement
– SELECT expression for CREATE VIEW, CREATE TEMPORARY VIEW,

DECLARE, INSERT

● ON clause in join expression

● CHECK clause in the CREATE TABLE or ALTER TABLE statement

condition consists of predicates and can include logical operators. The predicates are the
operands of the logical operators.

condition is evaluated by applying the operators to the results of the operands. The result is
one of the truth values true , false or unknown .

condition::= { [condition AND] { [NOT] { predicate | (condition) } } |

 condition OR { [NOT] { { predicate | (condition) } } }

predicate
Specification of a predicate (see page 185).

U20069-J-Z145-3-7600 163

Metavariables condition

(condition)

Nested condition for creating a condition with more than one logical operator or
predicate with precedence specifications.

AND
Logical AND (conjunction).

Result

OR
Logical OR (disjunction).

Result

NOT
Logical negation.

Result

Op1 AND Op2 Op2

true false unknown

true true false unknown

Op2 false false false false

unknown unknown false unknown

Table 1: Logical operator AND

Op1 OR Op2 Op1

true false unknown

true true true true

Op2 false true false unknown

unknown true unknown unknown

Table 2: Logical operator OR

NOT Op

true false

Op false true

unknown unknown

Table 3: Logical operator NOT

164 U20069-J-Z145-3-7600

condition Metavariables

Precedence

– Expressions enclosed in parentheses have highest precedence.

– NOT takes precedence over AND and OR.

– AND takes precedence over OR.

– Operators with the same precedence level are applied from left to right.

If condition assumes the truth value unknown or false in an IF statement (see the
“Directory of DRIVE Statements” [3]), you branch to the ELSE path.

If condition assumes the truth value unknown or false in a CYCLE statement,
execution of the statement is terminated.

i

U20069-J-Z145-3-7600 165

Metavariables join_expression

join_expression

A join links the data from several tables. A table can also be joined to itself.

A join is created by linking two or more tables with each other. There are two ways of
creating a join:

– with a join expression (especially as part of a FROM clause) which is used to

1. create the Cartesian product of all the tables involved

2. select rows from the Cartesian product of the joined tables by specifying join condi-
tions.

All the rows in the Cartesian product that satisfy the join conditions are included in
the derived table.

– without a join expression: in a select_expression or in a SELECT statement using the
FROM clause (contains the tables involved) and, if necessary, the WHERE clause
(contains join conditions).

Because of the evaluation rules for select_expression (see page 202), the result of this
possibility is the same as using a join expression.

 A join expression consists of the tables to be joined, the desired join operation and a join
condition.

A join expression can be specified

– as a query expression in an SQL statement

– In the FROM clause of a select_expression or SELECT statement

– in a subquery in select_list and HAVING clause

The derived table of a join expression cannot be updated.

The result of a join expression consists of one, two or three partial results.

First of all, all the rows that do not satisfy the join condition in the ON clause are removed
from the Cartesian product of both tables.

In the case of an INNER join, the remaining rows constitute the result. For other join types,
they constitute the first partial result.

In the case of a LEFT OUTER join, all the rows in the first table specification for which there
is no matching row in the second table specification are multiplied with a non-existent NULL
row from the second table, i.e. a NULL value is added to the first table for each row for which
there is no match. The first, i.e. left, table is referred to as the dominant table.

166 U20069-J-Z145-3-7600

join_expression Metavariables

In the case of a RIGHT OUTER join, the same procedure is followed but the roles of the
first and second tables are switched. The second, i.e. right, table is the dominant table.
Rows determined in this way constitute the second partial result.

In the case of a FULL OUTER join, both procedures are performed and return the second
and third partial results.

All the partial results are then combined to create the result of the outer join.

join_expression::=

{ table_specification [{ INNER | { LEFT | RIGHT | FULL } [OUTER] }]
 JOIN table_specification ON condition |
 (join_expression) }

table_specification
Specification of a table from which data is to be read.

INNER
INNER is the default value.

INNER operator for creating an inner join. In an inner join, the derived table only
contains the rows of the Cartesian product that satisfy the join condition (see above).

{ LEFT | RIGHT | FULL | [OUTER] }
Operators for creating an outer join. A table that is part of an outer join cannot include
multiple columns.

In an outer join, the type of outer join defines the dominant table(s) (see above).

If a row in the dominant table does not satisfy the join condition, the row is nevertheless
included in the derived table. The derived column that references the other table is set
to NULL values.

 LEFT
The table to the left of the LEFT operator is the dominant table.

 RIGHT
 The table to the right of the RIGHT operator is the dominant table.

 FULL
The table to the left and the right of the FULL operator are both dominant tables.
FULL joins the tables created with LEFT and RIGHT.

U20069-J-Z145-3-7600 167

Metavariables join_expression

condition
Condition to be used as the join condition for joining the specified tables (see metavar-
iable condition).

The following applies to any column specified in condition:

The column must either be part of one of the tables to be joined or, in the case of
subqueries, part of one of the tables from a higher-level select_expression.

If a set function occurs in condition, one of the following conditions must be satisfied:

– The set function is part of a subquery.

– The join expression is in a select_list or HAVING clause, and the column specified
in the argument of the set function is an external reference (see metavariable
set_function).

(join_expression)
Nested join expression for creating a join from more than two tables with precedence
specification.

168 U20069-J-Z145-3-7600

literal Metavariables

literal

With the exception of the NULL value, literals exist for each group of values. The following
diagram provides you with an overview:

literal::=

 { char_literal | num_literal | date_time_literal }

It is not possible to specify a hexadecimal literal (X'string'[(n)]) in SESAM V2 as it is
in SESAM V1. Instead, you must assign the desired hexadecimal value to an appro-
priate DRIVE variable and then use this variable instead of the literal.

i

U20069-J-Z145-3-7600 169

Metavariables literal

char_literal - Alphanumeric literal

The syntax for an alphanumeric literal is defined as follows:

char_literal::= 'string'

string::= [character] ...

string
Any string. string must be enclosed in single quotes ('). If a single quote is used in string,
it must be specified twice. The pair of single quote characters is considered a single
character. string can be empty or can contain up to 256 characters. Strings with the
length 0 are permitted as literals although it is not possible to define a data type
CHARACTER(0).

character
Any character (EBCDI code in BS2000, ASCII code in SINIX and in
MS-Windows).

The specification of a repetition factor permitted in DRIVE statements is not
possible in SQL statements.i

170 U20069-J-Z145-3-7600

literal Metavariables

num_literal - Numeric literals

The syntax for numeric literals is defined as follows:

num_literal::= { integer | fixed_point_number | floating_point_number | $PI }

integer::= [{ + | - }] unsigned_integer

fixed_point_number::= [{ + | - }] unsigned_integer [.unsigned_integer]

floating_point_number::= fixed_point_number E [{ + | - }] unsigned_integer

unsigned_integer::= digit...

Integers and fixed-point literals can have up to 31 digits.

The data type of the literal is integer, fixed-point number or floating-point number with the
specified number of digits to the right and left of the decimal point.

$PI
Abbreviation of the number 3,141592653 ... (circumference of a circle divided by its
diameter).

digit
Decimal digit 0 to 9.

Specification of a dot after unsigned_integer is not permitted in DRIVE/WINDOWS
for integer.

For fixed_point_number, specification of a dot in DRIVE/WINDOWS is only permitted
if unsigned_integer is specified twice. You cannot include any blanks in
floating_point_number.

i

U20069-J-Z145-3-7600 171

Metavariables literal

date_time_literal - Time literals

The syntax for time literals is defined as follows:

date_time_literal::=

 { DATE (year-month-day) |
 TIME (hour:minute:second [.fraction_of_second]) |
 TIMESTAMP (year-month-day hour:minute:second [.fraction_of_second]) }

DATE
Date. The data type is DATE.

TIME
Time. The data type is TIME or TIME(3). The data type TIME, i.e. leaving out the
fractions of a second, is not permitted in SQL statements.

TIMESTAMP
Time stamp. The data type is TIMESTAMP(3).

year
Four-digit unsigned integer between 0001 and 9999 indicating the year.

month
Two-digit unsigned integer between 01 and 12 indicating the month.

day
Two-digit unsigned integer between 01 and 31 (corresponding to the month and year)
indicating the day.

hour
Two-digit unsigned integer between 00 and 23 indicating the hour.

minute
Two-digit unsigned integer between 00 and 59 indicating the minute.

second
Unsigned fixed-point number between 00 and 59 that indicates the seconds. The speci-
fication of up to two leap seconds (values 60 and 61) is not permitted in DRIVE/
WINDOWS.

fraction_of_second
Three-digit unsigned integer between 000 and 999 that indicates the fractions of a
second.

The specification of dates “B.C.” is therefore not possible.

172 U20069-J-Z145-3-7600

literal Metavariables

A date specification must observe the rules of the Gregorian calendar even if the date
involved is before introduction of the Gregorian calendar. In particular, the days between
DATE(1582-10-05) and DATE(1582-10-14) do not therefore exist.

The separators between the component values must be specified exactly as stated
below:

hyphen "-" between year, month and day
blank " " between day and hour
colon ":" between hour, minutes and seconds
period "." between seconds and fractions of a second.

i

U20069-J-Z145-3-7600 173

Metavariables set_function

set_function

Set functions return the average, count, maximum value, minimum value or sum of a set of
values or the number of rows in a derived table.

Set functions are only permitted in SQL statements.

set_function::= { { AVG | COUNT | MAX | MIN | SUM }
 ([{ ALL | DISTINCT }] sql_expression) |

 COUNT(*) }

ALL
ALL is the default value.
All values are taken into account, including duplicate values

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

For the functions MAX() and MIN(), DISTINCT has no effect on the result.

sql_expression
Expression determining the values in the set (see metavariable sql_expression).

The sql_expression for each set function except for COUNT(*) can have a certain data
type. The permitted data type(s) for each function is specified in the function
description.

The following restrictions apply to sql_expression:

● sql_expression cannot include any multiple columns.

● sql_expression cannot include any set functions.

● sql_expression cannot include any subqueries.

● If a column name in sql_expression specifies a column of a higher-level query
expression (external reference), sql_expression may only include this column
name.

In this case, the set function must satisfy one of the following conditions:

– The set function is included in a select_list.

– The set function is included in a subquery of a HAVING clause. The column
name must indicate a column of the select_expression that contains a HAVING
clause.

174 U20069-J-Z145-3-7600

set_function Metavariables

AVG() - Calculate arithmetic average

AVG() calculates the average of a set of numeric values. NULL values are ignored.

AVG([{ ALL | DISTINCT }] sql_expression)

ALL
ALL is the default value.
All values are taken into account, including duplicate values.

DISTINCT
Only unique values are included in the calculation. Duplicate values are ignored.

sql_expression
Numeric expression.

Result

Without GROUP BY clause:
Returns the arithmetic average of all the values in the specified sql_expression.

With GROUP BY clause:
Returns the arithmetic average per group of all the values for this group.

If the set of values returned by sql_expression is empty, the result or the result for this group
is the NULL value.

Data type : like sql_expression with the following number of digits:

– Integer or fixed-point number:

The total number of significant digits is 31, the number of digits to the right of the
decimal point is 31-t+r.
t and r are the total number of significant digits and the number of digits after the
decimal point, respectively, in sql_expression.

– Floating-point number:

The total number of significant digits is 21 binary digits for REAL numbers and 53 binary
digits for DOUBLE PRECISION.

U20069-J-Z145-3-7600 175

Metavariables set_function

Examples

1. SELECT without GROUP BY:
Calculate the average price of the services in the table service:

SELECT AVG(service_price) FROM service;

If you enter a row in the table that contains the NULL value in the column
service_price, the result does not change.

2. SELECT with GROUP BY:
The average price is calculated for each order number:

DECLARE ... CURSOR FOR SELECT order_num, AVG(service_price)
FROM service
GROUP BY order_num;

783.33

order_num
200 1026
211 662.5
250 662.5

176 U20069-J-Z145-3-7600

set_function Metavariables

COUNT(*) - Count table rows

COUNT(*) counts the rows in a table. Rows containing NULL values are included in the
count. COUNT(*) is only permitted in the select_list of a select_expression (see metavariable
select_expression).

COUNT(*)

Result

Without GROUP BY clause:
Returns the number of rows in the derived table of the corresponding select_expression
(or corresponding SELECT statement). Duplicate rows and rows containing only NULL
values are included.

With GROUP BY clause:
Returns the number of rows per group for each group in the derived table.

Data type : numeric (integer) with 31 digits.

Examples

1. SELECT without GROUP BY:
Query the number of customers living in Munich in the table customers:

SELECT COUNT(*) FROM customers WHERE city='Munich';

2. SELECT with GROUP BY:
Count the customers for each city:

DECLARE ... CURSOR FOR SELECT city, COUNT(*)
FROM customers
GROUP BY city;

3

city
Berlin 1
Berne 33 1
Hanover 1
Moenchengladbach 1
Munich 3
New York, NY 1

U20069-J-Z145-3-7600 177

Metavariables set_function

COUNT() - Count elements

COUNT() counts the elements in a set of values. NULL values are not included in the count.

COUNT([{ ALL | DISTINCT }] sql_expression)

ALL
ALL is the default value.
All values are taken into account, including duplicate values.

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

sql_expression
Numeric expression, alphanumeric expression or time value expression.

Result

Without GROUP BY clause:
Number of values in the set returned by sql_expression.

With GROUP BY clause:
Returns the number of values in each group.

Data type : numeric (integer) with 31 digits.

Examples

1. SELECT without GROUP BY:
Determine the number of different service descriptions in the table service:

SELECT COUNT(DISTINCT service_text) FROM service;

7

178 U20069-J-Z145-3-7600

set_function Metavariables

2. SELECT with GROUP BY:
Count the number of different services for each order number:

DECLARE ... CURSOR FOR SELECT order_num, COUNT(DISTINCT service_text)
FROM service
GROUP BY order_num;

order_num
200 2
211 4
260 2

U20069-J-Z145-3-7600 179

Metavariables set_function

MAX() - Determine largest value

MAX() determines the largest value in a set of values. NULL values are ignored.

The comparison of values (with comparable data types) is described under the metavar-
iable condition.

MAX([{ ALL | DISTINCT }] sql_expression)

ALL is the default value.

DISTINCT
DISTINCT can be specified but has no effect on the result.

sql_expression
Numeric expression, alphanumeric expression or time value expression.

Result

Without GROUP BY clause:
Determines the largest value in the set of values returned by sql_expression.

With GROUP BY clause:
Returns the largest value of each group.

If the set of values returned by sql_expression is empty, the result or the result for this group
is the NULL value.

Data type : like sql_expression

Examples

1. SELECT without GROUP BY:
Query the highest service price for order 211 in the table service:

SELECT MAX(service_price) FROM service WHERE order_num=211

1200

180 U20069-J-Z145-3-7600

set_function Metavariables

2. DECLARE ... CURSOR FOR SELECT with GROUP BY:
Determine the highest service price for each order number:

DECLARE... CURSOR FOR SELECT order_num, MAX(service_price)
FROM service
GROUP BY order_num;

order_num
200 1600
211 1200
250 1200

U20069-J-Z145-3-7600 181

Metavariables set_function

MIN() - Determine lowest value

MIN() determines the smallest element in a set of values. NULL values are ignored.

The comparison of values (with comparable data types) is described under the metavar-
iable condition.

MIN([{ ALL | DISTINCT }] sql_expression)

ALL is the default value.

DISTINCT
DISTINCT can be specified but has no effect on the result.

sql_expression
Numeric expression, alphanumeric expression or time value expression.

Result

Without GROUP BY clause:
Determines the lowest value in the set of values returned by sql_expression.

With GROUP BY clause:
Returns the lowest value of each group.

If the set of values returned by sql_expression is empty, the result or result for this group is
the NULL value.

Data type : like sql_expression.

Examples

1. SELECT without GROUP BY:
Query the lowest service price for order 211 in the table service:

SELECT MIN(service_price) FROM service WHERE order_num=211; Š

50

182 U20069-J-Z145-3-7600

set_function Metavariables

2. SELECT with GROUP BY:
Determine the lowest service price for each order number:

DECLARE ... CURSOR FOR SELECT order_num, MIN(service_price)
FROM service
GROUP BY order_num;

order_num
200 75
211 50
250 125

U20069-J-Z145-3-7600 183

Metavariables set_function

SUM() - Calculate sum

SUM() calculates the sum of all the values in a set. NULL values are ignored.

SUM([{ ALL | DISTINCT }] sql_expression)

ALL
ALL is the default value.
All values are taken into account, including duplicate values.

DISTINCT
Only unique values are taken into account. Duplicate values are ignored.

sql_expression
Numeric expression.

Result

Without GROUP BY clause:
Calculates the sum of the values returned by sql_expression.

With GROUP BY clause:
Returns the sum of the values in the derived column of each group.

If the set of values returned by sql_expression is empty, the result or the result for this group
is the NULL value.

Data type : like sql_expression with the following number of digits:

– Integer or fixed-point number:
The total number of significant digits is 31, the number of digits to the right of the
decimal point remains the same.

– Floating-point number:
The total number of significant digits corresponds to 21 binary digits for REAL numbers
and 53 for DOUBLE PRECISION.

If the sum of the values is too large for this data type, a SESAM error message is issued.

184 U20069-J-Z145-3-7600

set_function Metavariables

Example

Calculate the sum of the parts for each item number in the table purpose:

DECLARE ... CURSOR FOR SELECT item_num, SUM(number)
FROM purpose
GROUP BY item_num;

item_num
 1 4
120 27
200 20

U20069-J-Z145-3-7600 185

Metavariables predicate

predicate - Specify predicate

predicate consists of operands and operators. predicate can be grouped together as follows
according to the operator involved:

– comparison of two values

– comparison with a derived column (only possible in SQL statements)

– range query

– element query

– pattern comparison (only possible in SQL statements)

– NULL value comparison

– existence query (only possible in SQL statements)

predicate returns the truth value true , false or unknown . The value of predicate is calculated
by calculating the values of the operands and applying the appropriate operators to the
calculated values.

The diagram below describes the syntax of all the groups of predicate.

predicate::=

{ sql_expression { = | < | > | <= | >= | <> } sql_expression |

 sql_expression { = | < | > | <= | >= | <> } { ANY | SOME | ALL }
 subquery |

 sql_expression [NOT] BETWEEN sql_expression AND sql_expression |

 sql_expression [NOT] IN { subquery | (sql_expression,sql_expression,...) } |

 [table .] { column | column(pos_no) | column(min-max) } [NOT] LIKE
 patter [ESCAPE character] |

 [table .] { column | column(pos_no) | column(min-max) }
 IS [NOT] NULL |

 EXISTS subquery }

186 U20069-J-Z145-3-7600

predicate Metavariables

The predicates are described in the order in which they are listed in the overview:

– comparison of two values

– comparison with a derived column

– range query

– element query

– pattern comparison

– NULL value comparison

– existence query

U20069-J-Z145-3-7600 187

Metavariables predicate

Comparing two values

Two operands with comparable data types are compared as indicated by the specified
comparison operator.

sql_expression { = | < | > | <= | >= | <> } sql_expression2

sql_expression1, sql_expression2
Operands for comparison.

The value for sql_expression1 and sql_expression2 must either be an atomic value or the
name of a multiple column. If the operand is a multiple column, the column specification
cannot be an external reference (see metavariable set_function).

If sql_expression1 is an atomic value, sql_expression1 and sql_expression2 must be of the
same basic_data_type.

If sql_expression1 is structured, only the comparison operators equal to (=) and not equal
to (<>) are valid. Exception: multiple columns.

Comparison operator

Result

operand1 is an atomic value:
Unknown if at least one operand is the NULL value.

True if both operands are non-NULL values and the comparison holds true.

False in all other cases.

operand1 is a multiple column:
Each occurrence of sql_expression1 is compared with sql_expression2. The comparison
results are ORed.

= Compare whether two values are the same

< Compare whether one value is smaller than the other

> Compare whether one value is greater than the other

<= Compare whether one value is smaller than or equal to the other

>= Compare whether one value is greater than or equal to the other

<> Compare whether two values are not equal

188 U20069-J-Z145-3-7600

predicate Metavariables

Example

If X is a multiple column with 3 elements, the comparison

X(1-3) >= 13

is equivalent to the following comparisons:

X(1) >= 13 OR
X(2) >= 13 OR
X(3) >= 13

Comparison rules

The way in which a comparison operation is performed depends on the data type of the
operands. The following is an overview of the rules governing comparison.

NULL values

If an operand is the NULL value, all comparisons return the truth value unknown .

Alphanumeric values

Two alphanumeric values are compared from left to right character by character. If the two
values have different lengths, the shorter string is padded on the right with blanks so that
both values have the same length.

Two strings are identical if each has the same character at the same position.

If two strings are not identical, the EBCDIC code of the first two differing characters deter-
mines which string is greater or smaller. This is valid without restriction in BS2000. On the
MS-Windows and SINIX platforms, this holds true within SQL statements because the
comparison in BS2000 is made by SESAM. Within DRIVE statements, on the other hand,
the comparison is performed by DRIVE/WINDOWS on the client platform, meaning that the
ASCII code determines the comparison results.

Numeric values

Two numeric values are the same if they are both 0, or if they have the same sign and the
same value.

U20069-J-Z145-3-7600 189

Metavariables predicate

Time values

Dates, times and time stamps can be compared. The data type of both operands must be
the same.

– One date is greater than another if it is a later date.

– One time is greater than another if it is a later point in time.

– One time stamp is greater than another if either the date is later or, if the date is the
same, the time is later.

Examples

1. Comparing alphanumeric values:
Select the customers from the table customers that come from Munich, and
include the customer information:

DECLARE ... CURSOR FOR SELECT company, cust_info, city
 FROM customers
 WHERE city = 'Munich';
...

2. Comparison with subquery that returns an atomic value:
Select the items that need the greatest number of part 501 from the table purpose:

SELECT item_num
 FROM purpose
 WHERE part = 501
 AND
 number = (SELECT MAX(number)
 FROM purpose
 WHERE part = 501);

Because the maximum is always a unique value, the subquery returns an atomic
value and can be specified in the comparison as an operand.

company cust_info city

Siemens AG Electrical Munich
Login GmbH PC networks Munich
Plenzer Trading Fruit market Munich

item_num
 200

190 U20069-J-Z145-3-7600

predicate Metavariables

Comparison with derived column

sql_expression is compared with the values of a derived column that is the result of a
subquery.

This predicate is only possible within SQL statements.

sql_expression { = | < | > | <= | >= | <> } { ANY | SOME | ALL } subquery

sql_expression
Operand for the comparison.

The value of sql_expression must be an atomic value.

Comparison operator

subquery
Subquery that returns a single-column table.

sql_expression and the values returned by the subquery must have compatible data types.

Result

ANY
SOME

True if the comparison with at least one value in the derived column is true .

False if the derived column is empty, or if the comparison with all the values in the
derived column is false .

Unknown in all other cases.

= Compare whether two values are the same

< Compare whether one value is smaller than the other

> Compare whether one value is greater than the other

<= Compare whether one value is smaller than or equal to the other

>= Compare whether one value is greater than or equal to the other

<> Compare whether two values are not equal

U20069-J-Z145-3-7600 191

Metavariables predicate

ALL
True if the derived column is empty, or if the comparison with all the values in the
derived column is true .

False if the comparison with at least one value in the derived column is false .

Unknown in all other cases.

Example

From the table purpose, select the items that have a part whose total number is greater
than the total number of all the parts of the item with the item number 1.

DECLARE ... CURSOR FOR SELECT item_num
 FROM purpose
 WHERE number
 > ALL (SELECT number
 FROM purpose
 WHERE item_num = 1);

item_num
 120
 200

192 U20069-J-Z145-3-7600

predicate Metavariables

Range queries

In a range query, the value of the first sql_expression is checked to see if it lies in the range
of values specified by the second and third sql_expression.

��

sql_expression1 [NOT] BETWEEN sql_expression2 AND sql_expression3

sql_expression1, sql_expression2, sql_expression3
Operands for the comparison.

The value of the first sql_expression must be an atomic value or the name of a multiple
column. If sql_expression is a multiple column, the column specification cannot be an
external reference (see metavariable set_function).

The values of the second and third sql_expression must be atomic values.

The operands must have compatible data types.

Result

sql_expression1 is an atomic value:

Without NOT:
identical to:
(sql_expression1 >= sql_expression2) AND (sql_expression1 <= sql_expression3)

With NOT:
identical to:
NOT (sql_expression1 BETWEEN sql_expression2 AND sql_expression3)

sql_expression1 is a multiple column:

– The range query is performed for each occurrence of sql_expression1.

– The individual results are ORed.

Example

If X is a multiple column with 3 elements, the range query

X(1-3) BETWEEN 13 AND 20

is equivalent to the following range queries:

X(1) BETWEEN 13 AND 20 OR
X(2) BETWEEN 13 AND 20 OR
X(3) BETWEEN 13 AND 20

U20069-J-Z145-3-7600 193

Metavariables predicate

Examples

1. Numeric range:
Select all the items from the table items whose price is between 50 and 100
dollars. Include the item name in the output:

SELECT item_num, item_name, price
 FROM items
 WHERE price BETWEEN 50.00 AND 100.00;

2. Range of dates:
Select all the orders placed in December 1990 from the orders table. Include the
order number, customer number, order date and order text in the output:

DECLARE ... CURSOR FOR SELECT order_num, cust_num, order_text,
order_date
 FROM orders
 WHERE order_date
 BETWEEN DATE(1990-12-01) AND DATE(1990-12-31);
...

item_num item_name price
 200 handlebars 60.00

order_ cust_ order_text order_date
num num
210 106 Customer administration 1990-12-13
211 106 Database CUSTOMERS 1990-12-29

194 U20069-J-Z145-3-7600

predicate Metavariables

Element queries

An element query checks whether a value is one of the elements in a set.

sql_expression1 [NOT] IN { subquery | (sql_expression2,sql_expression3,...) }

sql_expression1
Expression for the comparison.

sql_expression1 must be either an atomic value or the name of a multiple column. If the
sql_expression1 is a multiple column, the column specification cannot be an external
reference (see metavariable set_function), and you cannot specify a subquery as the
second operand.

subquery
Subquery that returns a single-column table.

sql_expression1 and the subsequent expressions sql_expression2, sql_expression3,... or the
values resulting from the subquery must have compatible data types.

(sql_expression2, sql_expression3,....) cannot include any multiple expressions.

Result

sql_expression1 is an atomic value:

Without NOT:
True if the comparison with at least one expression or value from the subquery is
true .

False if the comparison with all the expressions or all the values from the subquery
are false , or if the derived column of the subquery is empty.

Unknown in all other cases.

With NOT:
identical to:

NOT (sql_expression IN subquery) or NOT (sql_expression1 IN (sql_expression2,...))

sql_expression1 is a multiple column:

– The element query is performed for each occurrence of sql_expression1.

– The individual results are ORed.

U20069-J-Z145-3-7600 195

Metavariables predicate

Example

If X is a multiple column with 3 elements, the element query

X(1-3) IN (13, 20, 30)

is equivalent to the following element queries:

X(1) IN (13, 20, 30) OR
X(2) IN (13, 20, 30) OR
X(3) IN (13, 20, 30)

Examples

1. Element query with alphanumeric values:
Select the customers from Munich or Berlin from the customers table. Include the
customer information in the output:

DECLARE ... CURSOR FOR SELECT company, cust_info, city
 FROM customer
 WHERE city IN ('Munich','Berlin');
...

2. Element query with derived column.
Select the orders for which no training was performed from the orders and
service tables:

SELECT cust_num
 FROM orders
 WHERE order_num
 NOT IN (SELECT order_num
 FROM service
 WHERE service_text = 'Training');

company cust_info city
Siemens AG Electrical Munich
Login GmbH PC networks Munich
Plenzer Trading Fruit market Munich
Freddys Fishery Unit retail Berlin

cust_num
106

196 U20069-J-Z145-3-7600

predicate Metavariables

Pattern comparison

In a pattern comparison, an alphanumeric value is checked to see if it matches a specified
pattern. A pattern is a string that, in addition to normal characters, can also include place-
holders and escape characters.

A placeholder represents one or more characters. A placeholder can also occur in a pattern
as a normal character if its special meaning is canceled with the escape character. You can
define the escape character with the ESCAPE clause.

This predicate is only permitted within SQL statements.

[table .] { column | column(pos_no) | column(min-max) }
 [NOT] LIKE pattern [ESCAPE character]

 pattern::= value

 character::= value

table
Name of the table that contains column. If a correlation name is defined for the table, you
specify the correlation name instead of the table name.

column
Name of a column from which the values are taken. The data type of the column must
be alphanumeric.

pos_no
Unsigned integer.

column is a multiple column. column cannot be a column from a higher-level query
expression.

The value is the value of the (pos_no-colmin+1)th element of column.

If column is not a multiple column, pos_no is smaller than colmin or pos_no is greater
than colmax, a SESAM error message is issued.

colmin and colmin are the smallest and largest position numbers of the multiple
column.

U20069-J-Z145-3-7600 197

Metavariables predicate

min-max
Unsigned integers.

column is a multiple column. column cannot be a column from a higher-level query
expression.

The value is the aggregate of the column elements (min-colmin+1) to
(max-colmin+1).

If column is not a multiple column, min is not smaller than max, min is smaller than
colmin or max is greater than colmax, a SESAM error message is issued.

colmin and colmin are the smallest and largest position numbers of the multiple
column.

pos_no or min-max omitted:
column cannot be a multiple column.

pattern
Alphanumeric value to which the value from column is to be matched. pattern can include
the following:

– normal characters (i.e. without placeholders and escape characters)

– placeholders

– escape characters (followed by placeholders or escape characters)

Blanks in pattern, even at the beginning or end, are part of the pattern.

ESCAPE clause
You use the ESCAPE clause to define an escape character. If you place an escape
character in front of a placeholder, the placeholder loses its function as a placeholder
and is interpreted instead as a normal character. You can also use the escape character
to cancel the special meaning of the escape character and use it as a normal character.

character
Alphanumeric character with a length 1.
In this comparison, character acts as an escape character.

ESCAPE omitted:
No escape character is defined.

Placeholder Meaning

_ (underscore) any character

% any (including empty) sequence of characters

Table 4: Placeholders in a pattern comparison

198 U20069-J-Z145-3-7600

predicate Metavariables

Result

column is an atomic column:

Unknown if the value of column, pattern or character is the NULL value, otherwise:

Without NOT:
True if the placeholders in pattern produce a value that is the same as the value from
column and has the same length.

False in all other cases

With NOT:
True if the placeholders in pattern do not result in a value that matches the value
from column and has the same length.

False in all other cases.

column is a multiple column:

– The pattern comparison is performed for every occurrence in column.

– The individual results are ORed.

Examples

1. Select all the contact people from the contacts table whose first name starts with
Ro:

DECLARE ... CURSOR FOR SELECT fname, lname
 FROM contacts
 WHERE fname LIKE 'Ro%';
...

2. The following statement selects all strings that start with the underscore character
and end with at least one blank from an alphanumeric column col from a table tab:

SELECT * FROM tab
 WHERE col LIKE ‘@_% ‘ ESCAPE ‘@’

fname lname
Roland Loetzerich
Robert Heinlein

U20069-J-Z145-3-7600 199

Metavariables predicate

Comparison with the NULL value

A comparison is performed to check whether a column contains the NULL value.

[table .] { column | column(pos_no) | column(min-max) }
 IS [NOT] NULL

table
Name of the table that contains column. If a correlation name is defined for the table, you
specify the correlation name instead of the table name.

column
Name of a column from which the values are to be taken.

pos_no
Unsigned integer.

column is a multiple column. column cannot be a column from a higher-level query
expression.

The value is the value of the (pos_no-colmin+1)th element of column.

If column is not a multiple column, pos_no is smaller than colmin or pos_no is greater
than colmax, a SESAM error message is issued.

colmin and colmin are the smallest and largest position numbers of the multiple
column.

min-max
Unsigned integers.

column is a multiple column. column cannot be a column from a higher-level query
expression.

The value is the aggregate of the column elements (min-colmin+1) to
(max-colmin+1).

If column is not a multiple column, min is not smaller than max, min is smaller than
colmin, or max is greater than colmax, a SESAM error message is issued.

colmin and colmin are the smallest and largest position numbers of the multiple
column.

pos_no or min-max omitted:
column cannot be a multiple column.

200 U20069-J-Z145-3-7600

predicate Metavariables

Result

column is an atomic column:

Without NOT:
True if the value of column is the NULL value.

False in all other cases.

With NOT:
True if the value in column is not the NULL value.

False in all other cases.

column is a multiple column:

Without NOT:
True if at least one occurrence of column is the NULL value.

False in all other cases.

With NOT:
True if at least one occurrence column is not the NULL value.

False in all other cases.

Example

Select the orders from the orders table that have not yet been dealt with completely,
i.e. for which the actual date is the NULL value. The order text and the target date
should also be output.

DECLARE ... CURSOR FOR SELECT order_num, order_text, target
 FROM orders
 WHERE actual IS NULL;

The specified form of the predicate is only permitted in SQL statements. In DRIVE
statements, a value can be specified instead of a column reference (see the
“Directory of DRIVE Statements” [3], metavariable expression).

order_num order_text target
250 Mail merge intro 1991-03-01
251 Customer administration 1991-05-01
300 Network test/comparison
305 Staff training 1991-02-27

i

U20069-J-Z145-3-7600 201

Metavariables predicate

Existence queries

An existence query checks whether a derived table is empty.

This predicate is only permitted within SQL statements.

EXISTS subquery

subquery
Subquery that returns a derived table.

Result

True if the derived table is not empty.

False if the derived table is empty.

Example

Select the customers that have not placed an order from the customers table:

DECLARE ... CURSOR FOR SELECT company

FROM customer
WHERE NOT EXISTS
(SELECT order_num

FROM order
WHERE order.cust_num = customer.cust_num);
...

company
Siemens AG
Plenzer Trading
Freddys Fishery
Externa & Co Kg

202 U20069-J-Z145-3-7600

select_expression Metavariables

select_expression

select_expression::=

 SELECT [{ ALL | DISTINCT }] select_list

 FROM table_specification,...

 [WHERE condition]

 [GROUP BY column,...]

 [HAVING condition]

 select_list ::= { * | { table.* | sql_expression [[AS] column] },... }

ALL
ALL is the default value.

Duplicate records are retained in the derived table.

DISTINCT
Duplicate rows are removed (duplicate elimination).

DISTINCT can only be used once on any level of a SELECT query. You cannot specify
the following, for example:

You can create a join using the FROM clause and, if appropriate, the WHERE clause. This
means that you can join two or more tables and create the Cartesian product of all the
tables involved (see also metavariable join_expression).

The following applies to all clauses:

– The clauses must be specified in the given order.

– Column names must be unique. If a column name occurs in several tables, you must
qualify the column name with the table name. If you rename a table using a correlation
name for the duration of the SELECT statement (see metavariable table_specification),
you must use only the correlation name.

SELECT DISTINCT COUNT(DISTINCT ...) ...

U20069-J-Z145-3-7600 203

Metavariables select_expression

Example

SELECT o.cust_num, s.service_price
FROM orders o, service s
WHERE o.order_num=s.order_num;

Evaluation of SELECT expressions

SELECT expressions are evaluated in the following order:

1. The Cartesian product from all the table specifications in the FROM clause is created
(see metavariable table_specification: there are base tables, view tables, temporary view
tables, derived tables and join tables).

2. If a WHERE clause is specified, the WHERE condition is applied to all the rows of the
Cartesian product. The rows for which the condition returns the value true are selected.

3. If a GROUP BY clause is specified, the rows determined in point 2 or point 1 (if no
WHERE clauses is specified) are combined into groups. All the rows comprising a
group have the same value in the column specified in the GROUP BY clause.

4. If a HAVING clause is specified, the HAVING condition is applied to all the groups. The
groups that satisfy the condition are selected. If no GROUP BY clause is specified, all
the previously selected rows are considered a group.

5. If select_list includes a set function and the derived table has not yet been divided into
groups, all the rows in the derived table are combined to form a group.

6. If the derived table has been divided into (one or more) groups, select_list is evaluated
for each group.

If the derived table has not been divided into groups, select_list is evaluated for each
derived row.

7. If DISTINCT is specified, duplicate rows are removed.

The resulting rows then form the derived table of the select_expression.

204 U20069-J-Z145-3-7600

select_expression Metavariables

select_list - Select derived columns

You determine the columns in the derived table with the select_list.

select_list ::= { * | { table.* | sql_expression [[AS] column] },... }

*
Select all columns. The order and the names of the columns in the table specified in the
FROM clause are used. If several tables are involved, the order of the tables in the
FROM clause is used.

table.*
All the columns in table are selected. table must be included in the FROM clause. The
order and the names of the columns in table are used.

sql_expression
Expression denoting a derived column. If sql_expression contains a column specification,
the table to which the column belongs must be included in the FROM clause of this or
a higher level select_expression.

The names of the columns in select_list must be unique. If you join tables
and these base tables have columns with identical names, you must qualify
the names using the table or correlation name so that they can be uniquely
identified.

If a set function (AVG, COUNT, MAX, MIN, SUM) occurs in a column
selection, the following restriction applies:

Only column names that are specified in the GROUP BY clause or which
are arguments in the set function can be included in select_list.

[AS] column
Name of the derived column specified with sql_expression.

Example

SELECT order_num AS order_no, COUNT(*) AS total FROM orders
 GROUP BY order_num

column omitted:
If sql_expression is a column name, the derived column is assigned this name.
Otherwise, the column name is not defined.

i

order_no total
... ...

U20069-J-Z145-3-7600 205

Metavariables select_expression

Example

SELECT order_num, COUNT(*) FROM orders GROUP BY order_num

Columns in the derived table

The order of the columns in the derived table corresponds to the order of the columns in
select_list.

The attributes of a derived column (data type, length, precision, digits to the right of the
decimal point) are either taken from the underlying column or result from the specified
expression.

The NULL value is permitted for a derived column if one of the following conditions is
satisfied:

– The NULL value is permitted for the source column.

– sql_expression contains an indicator variable, a subquery, SYSTEM USER or one of the
set functions AVG, MAX, MIN or SUM.

order_num
... ...

206 U20069-J-Z145-3-7600

select_expression Metavariables

FROM clause - Specify tables

You use the FROM clause to specify the tables from which data is to be selected.

In order to read the specified tables, you must either own these tables or have SELECT
permission.

FROM table_specification,...

table_specification
Specification of a table from which data is to be read. You can only specify tables
located in the same database. You can therefore qualify all the table names in the
FROM clause with, at the most, one database name that is the same for all the tables.
If you do not qualify all the table names with such a mutual database name, you can
only use the default database name to qualify the table names (see OPTION CATALOG
for static SQL statements and SET CATALOG and SET SCHEMA for dynamic SQL
statements).

A table name table in a table_specification is referred to as being “synonym-free” if no
correlation_name for table is specified in the table_specification. All correlation names and all
synonym-free table names in the FROM clause must be different.

U20069-J-Z145-3-7600 207

Metavariables select_expression

WHERE clause - Select derived rows

You use the WHERE clause to specify a condition for selecting the rows for the derived
table. The derived table contains only the rows that satisfy the condition (i.e. the condition
is true). Rows for which the condition returns the value false or unknown are not included
in the derived table.

WHERE condition

condition
Condition that the selected rows must satisfy (see metavariable condition).

208 U20069-J-Z145-3-7600

select_expression Metavariables

GROUP BY clause - Group derived rows

You use the GROUP BY clause to combine table rows into groups. Two rows belong to the
same group if, for each grouping column, the values in both rows are the same with regard
to the comparison rules (see metavariable predicate), or both values are the NULL value.

The derived table contains a row for each group.

GROUP BY column,...

column
Grouping column. column must be part of a table that was specified in the FROM clause.
Ambiguous column names must be qualified with the table name. If you declared a
correlation name for the table involved in the FROM clause, you must use this name to
qualify the column names.

Multiple columns cannot be used as the grouping column.

Effect of the GROUP BY clause

If you specify the GROUP BY clause, only columns listed in GROUP BY or which are
arguments in a set function can be included in select_list.

Set functions for columns of a grouped table are evaluated for each group.

How are groups created?

– A group is a set of rows that all have the same values in each specified grouping column
according to the comparison rules (see above).

– Rows that have the NULL value in the same column and the same values in the other
columns also constitute a group.

U20069-J-Z145-3-7600 209

Metavariables select_expression

Example

You want to list the average amount of vat for each order number:

DECLARE ... CURSOR FOR SELECT order_num, AVG(vat_rate) AS vat
FROM service
GROUP BY order_num;

...

order_num
200 0.14
211 0.06
250 0.07

210 U20069-J-Z145-3-7600

select_expression Metavariables

HAVING clause - Select groups

You use the HAVING clause to specify conditions for selecting groups. If a group satisfies
the specified condition, the row for that group is included in the derived table. If no GROUP
BY clause is specified, all the rows are considered one group.

HAVING condition

condition
Condition to be satisfied by a group (see metavariable condition).

Unlike a WHERE search condition, which is evaluated for each row in a table, the
HAVING search condition is evaluated once for each group.

A column name in condition must satisfy one of the following conditions:

– The column is included in the GROUP BY clause.

– The column name is an argument in a set function (AVG(), SUM(), ...). If the column
name is also included in select_list, it can only occur there as an argument of a set
function.

– The column name occurs in a subquery. If the column name references the table in
the FROM clause, it must be included in the GROUP BY clause or be the argument
in a set function.

– The column name is part of a table from a higher-level select_expression.

Example

You want to display the latest service provided for each order, but only if it was provided
after 1.1.1991:

SELECT order_num, MAX(service_date)
 FROM service
 GROUP BY order_num
 HAVING MAX(service_date) > DATE'1991-01-01';

U20069-J-Z145-3-7600 211

Metavariables column_constraint

column_constraint

When a base table is created or updated (CREATE TABLE, ALTER TABLE), column
constraints can be specified in the column definitions for the individual columns. The
column cannot be a multiple column.

A column constraint is an integrity constraint on a single column. All the values in the
column must satisfy the integrity constraint.

column_constraint::=

 { NOT NULL |
 UNIQUE |
 PRIMARY KEY |
 CHECK (condition) |
 REFERENCES table [(column)]

NOT NULL
Non-NULL constraint.
The column cannot contain any NULL values.

The NOT NULL constraint is stored as a check constraint (column IS NOT NULL).

UNIQUE
Uniqueness constraint.
Non-NULL column values must be unique.

The column must not be longer than 256 characters.

PRIMARY KEY
Primary key constraint.
The column is the primary key of the table. The values in the column must be unique.
Only one primary key can be defined for each table.

The column cannot have the data type VARCHAR. The length of the column must be
between 4 and 256 characters.

The NOT NULL constraint applies implicitly to a primary key column.

212 U20069-J-Z145-3-7600

column_constraint Metavariables

CHECK (condition)
Check constraint.
Each value in the column must satisfy the condition. The following restrictions apply to
condition:

– condition cannot contain any variables

– condition cannot contain any set functions

– condition cannot contain any subqueries, i.e. condition can only reference the
column of the table to which the column constraint belongs

– condition cannot contain a time function

– condition cannot contain USER, CURRENT USER or SYSTEM USER.

REFERENCES
Referential constraint.
The column of the referencing table can only contain a non-NULL value if the same
value is included in the referenced column of the referenced table:

The current authorization identifier must have the REFERENCES privilege for the refer-
enced columns.

table
Name of the referenced base table.
The referenced base table must be an SQL table. The name of the referenced base
table can be qualified by a database or schema name. The database name must
be the same as the database name of the referencing table.

(column)
Name of the referenced column.
The referenced column must be defined with UNIQUE or PRIMARY KEY. The ref-
erenced column cannot be a multiple column. Referencing column and referenced
column must have exactly the same data type.

(column) omitted:
The primary key of the referenced column is used as the referenced column. Refer-
encing column and referenced column must have exactly the same data type.

U20069-J-Z145-3-7600 213

Metavariables column_definition

column_definition

When a base table is created or updated (CREATE TABLE, ALTER TABLE), the column
definition defines the name and the attributes of a column.

SESAM/SQL distinguishes between atomic and multiple columns. In an atomic column,
exactly one value can be stored in each row. In a multiple column, several values of the
same type can be stored in each row.

A base table can contain a maximum of 26,134 columns of any data type except
VARCHAR. It can contain up to 1000 VARCHAR columns.

column_definition::=

 column [(dimension)] { basic_data_type | FLOAT (precision) }
 [default]

 [[CONSTRAINT integrity_constraint_name] column_constraint ...]

 dimension::= unsigned_integer

 default::= DEFAULT { literal |
 CURRENT DATE |
 CURRENT TIME |
 CURRENT TIMESTAMP |
 [CURRENT] USER |
 SYSTEM USER |
 NULL }

column
Name of the column. The column name must be unique within the base table.

dimension
Unsigned integer between 1 and 255. dimension indicates the number of column
elements in a multiple column.
dimension omitted: The column is an atomic column.
dimension cannot be specified for VARCHAR (length) and CHAR VARYING (length).

214 U20069-J-Z145-3-7600

column_definition Metavariables

basic_data_type
Data type for the column (see the “Directory of DRIVE Statements” [3], metavariable
basic_data_type).
For CHAR, the length must be less than 257.
For the data types NUMERIC and DECIMAL, precision must not exceed 31.
The default value for precision is 1.
The abbreviation SMINT is not permitted or the data type SMALLINT.
The abbreviation NUM is not permitted for the data type NUMERIC.
The data type EXTENDED DECIMAL or XDEC is not permitted.
FLOAT indicates the data type FLOAT(1) (and not DOUBLE PRECISION).
The data type TIME is not permitted (only TIME(3)).
The data type INTERVAL is not permitted.
user_type is not permitted.

FLOAT (precision)
For the data type FLOAT, precision indicates the binary length of the mantissa. It must
be greater than 0 and smaller than 54. The range of values for FLOAT corresponds to
that for REAL if precision is less than or equal to 21. Otherwise, it corresponds to that of
DOUBLE PRECISION. The default value for precision is 1.

default
Defines an SQL default value that is entered in the column if a row is inserted or
updated and no value is specified for the column, not even the NULL value.

– column cannot be a multiple column.

– column cannot be a CALL DML column.

– default must observe the assignment rules for default values (see the “SESAM/
SQL-Server Language Reference manual, Part 1” [18], section 4.4.1, “Entering
values in table columns”).

– The default value must satisfy the column constraint.

The default setting is evaluated when a row is inserted or updated and the default value
is to be used for column.

default omitted:
There is no SQL default value.
The NULL value is entered in columns without a NOT NULL constraint.

For reasons of compatibility with the SQL standard, it is recommended that you specify
a length greater or equal to 128 for the data types CHAR(length) or VARCHAR(length)
for CURRENT USER or SYSTEM USER.

[CONSTRAINT integrity_constraint_name] column_constraint
Defines an integrity constraint for the column. Integrity constraints must not be specified
for multiple columns.

U20069-J-Z145-3-7600 215

Metavariables column_definition

[CONSTRAINT integrity_constraint_name] column_constraint omitted:
No column constraint defined.

CONSTRAINT integrity_constraint_name
Defines a name for the integrity constraint. The unqualified name of the integrity
constraint must be unique within the schema. The name of the integrity constraint
can be qualified with a database and schema name. This database and schema
name must be the same as the database and schema name of the base table for
which the integrity constraint is generated.

CONSTRAINT integrity_constraint_name omitted:
The integrity constraint is assigned a name according to the following pattern:

{ UN | PK | FK | CH } integrity_constraint_number

where UN stands for UNIQUE, PK for PRIMARY KEY, FK for FOREIGN KEY and
CH for CHECK. integrity_constraint_number is a 16-digit number (time stamp). The
NOT NULL constraint is stored as a check constraint.

column_constraint
Indicates an integrity constraint that the column must satisfy (see metavariable
column_constraint).

216 U20069-J-Z145-3-7600

sql_expression Metavariables

sql_expression

sql_expression returns a value. sql_expression can occur in:

– column selection (select_expression, SELECT statement)

– predicates in conditions (e.g. WHERE clause, HAVING clause)

– assignments (INSERT, UPDATE statement).

sql_expression consists of operands and can include operators. If an operand is the NULL
value, the total result is also the NULL value. Otherwise the operators are used on the
results of the operands. The result of the evaluation is an alphanumeric, numeric or a time
value.

The operands are not evaluated in a predefined order. In certain cases, a partial expression
is not calculated if it is not required for calculating the total result.

sql_expression::=
 { value |
 [table.] { column | column(pos_no) | column(min-max) } |
 { + | - } sql_expression |
 sql_expression { * | / | + | - | || } sql_expression |
 (sql_expression) |
 subquery |
 set_function |
 time_function |
 [CURRENT] USER | SYSTEM USER }

 pos_no::= unsigned_integer

 min::= unsigned_integer

 max::= unsigned_integer

value
Alphanumeric value, numeric value or time value (see metavariable value).

table
Name of the table containing column. If a correlation name has been defined for the
table, you must specify the correlation name instead of the table name (see metavar-
iable table_specification).

U20069-J-Z145-3-7600 217

Metavariables sql_expression

column
Name of the column from which the values are to be taken (column reference).

pos_no
Unsigned integer.

The value is taken from the (pos_no-colmin+1)th column element of the multiple
column column and can be used as an atomic value.

If column is not a multiple column, pos_no is smaller than colmin or pos_no is greater
than colmax, a SESAM error message is issued.

colmin and colmin are the smallest and largest position numbers of the multiple
column.

min-max
Unsigned integers.

The value is the aggregate from the column elements (min-colmin+1) to
(max-colmin+1) of the multiple column column.

If column is not a multiple column, min is not smaller than max, min is smaller than
colmin or max is greater than colmax, a SESAM error message is issued.

colmin and colmax are the smallest and largest position numbers of the multiple
column.

pos_no or min-max omitted:
column must not be a multiple column.

– sql_expression, +sql_expression
“–“ changes the sign, i.e. the value of sql_expression is negated. “+” does not change the
value of sql_expression. sql_expression must be numeric and cannot be a multiple value
with a dimension > 1. sql_expression cannot start with “+” or “-”.
The following variants for numeric values and expressions, in particular, are therefore
permitted:
{ + | - } { column | value | set_function | (sql_expression) }

sql_expression { + | - | * | / | || } sql_expression
Indicates the arithmetic operations addition, subtraction, mutiplication and division, as
well as concatenation. For the arithmetic operations +, -, * and /, both operands must
be numeric. For concatenation (II), both expressions must be alphanumeric. None of
the operands may be a structured variable or an aggregate with more than one
component.

If a and b are of the data type CHARACTER, the result has the data type CHARACTER
with the length la+lb. The maximum number of characters is, however, 256.

218 U20069-J-Z145-3-7600

sql_expression Metavariables

If a or b is of the type VARCHAR, the result has the data type VARCHAR with a length
of la+lb. The maximum number of characters is, however, 32000.
la and lb are the lengths of a and b.

If a result of the type CHARACTER is longer than 256 characters, a SESAM error
message is issued.

If a result of the type VARCHAR is longer than 32000 characters, the string is truncated
from the right to a length of 32000. If characters that are not blanks are removed, a
SESAM error message is issued.

a * b
Multiply a with b.

The expressions a and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with ta+tb significant digits. The maximum number of digits is, however, 31.
The number of digits to the right of the decimal point is ra+rb, with a maximum
number of 31 digits.
ta and tb are the total number of significant digits for a and b.
ra and rbare the number of digits to the right of the decimal point for a and b respec-
tively.

If a or b is a floating-point numbers, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, a SESAM error message is
issued. If the total number of significant digits is too big, the number is rounded.

a / b
Divide a by b.

The expressions a and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with 31 significant digits.The number of digits to the right of the decimal
point is 31-la-rb, at least however 0.
la is the number of digits to the left of the decimal point for a.
rb is the number of digits to the right of the decimal point for b.

If a or b is a floating-point number, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type or the value of b is 0, a SESAM
error message is issued. If the total number of significant digits is too big, the
number is rounded.

U20069-J-Z145-3-7600 219

Metavariables sql_expression

a + b
Add a and b.

The expressions a and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with lmax+rmax+1 significant digits. The maximum number of digits is,
however, 31. The number of digits to the right of the decimal point is rmax.
lmax is the larger of the two numbers of digits to the left of the decimal point for a
and b.
rmax is the larger of the two numbers of digits to the right of the decimal point for a
and b.

If a or b is a floating-point number, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, a SESAM error message is
issued. If the total number of significant digits is too big, the number is rounded.

a - b
Subtract b from a.

The expressions a and b must be numeric.

If a and b are integers or fixed-point numbers, the result is an integer or fixed-point
number with lmax+rmax+1 significant digits. The maximum number of digits is,
however, 31. The number of digits to the right of the decimal point is rmax.
lmax is the larger of the two numbers of digits to the left of the decimal point for a
and b.
rmax is the larger of the two numbers of digits to the right of the decimal point for a
and b.

If a or b is a floating-point number, the result is a floating-point number with a total
number of significant digits of 24 bits for REAL numbers and 56 bits for DOUBLE
PRECISION numbers.

If the result value is too big for the resulting data type, a SESAM error message is
issued. If the total number of significant digits is too big, the number is rounded.

a || b
Concatenate a and b.

The expressions a and b must be alphanumeric.

If a and b are of the type CHARACTER, the resulting data type is CHARACTER with
a length of la+lb. The maximum number of characters is, however, 256.

220 U20069-J-Z145-3-7600

sql_expression Metavariables

If a or b is of the type VARCHAR, the result has the data type VARCHAR with a
length of la+lb. The maximum number of characters is, however, 32000.
la and lb are the lengths of a and b.

If a result of the type CHARACTER is longer than 256 characters, a SESAM error
message is issued.

If a result of the type VARCHAR is longer than 32000 characters, the string is
truncated from the right to a length of 32000 characters. If characters are removed
that are not blanks, a SESAM error message is issued.

(sql_expression)
You can use parentheses to group parts of expression together to form a unit, thus
changing the order in which the arithmetic expressions are evaluated. Parentheses
must be set according to the rules for algebra.

subquery
Subquery (see metavariable subquery) that returns exactly one value.

set_function
Set function (see metavariable set_function). sql_expression indicates the value that this
function returns
set_function may only occur in the select_list a SELECT statement or a
select_expression.

time_function
Time function (see metavariable time_function).

[CURRENT] USER | SYSTEM USER
Specification of SESAM user functions. The result of [CURRENT] USER is the current
authorization identifier (see CREATE USER statement). It is an alphanumeric literal of
the type CHARACTER (18).
The result of SYSTEM USER is the name of the current system user. The name is
constructed from the host name, the UTM application name (or blanks) and the UTM or
BS2000 user ID (see CREATE SYSTEM_USER statement). It is an alphanumeric literal
of the type CHARACTER(24).

U20069-J-Z145-3-7600 221

Metavariables sql_expression

Example

CREATE TABLE current_users (counter INTEGER PRIMARY KEY,
 sqluser CHARACTER (18),
 systemuser CHARACTER (24),
 stamptime TIMESTAMP (3));

COMMIT WORK;

INSERT INTO current_users VALUES (*,
 CURRENT USER,
 CURRENT SYSTEM USER,
 CURRENT TIMESTAMP)
 RETURN INTO &counter;

Precedence

– Expressions enclosed in parentheses have highest precedence.

– Monadic operators take precedence over dyadic operators.

– The operators for multiplication (*) and division (/) take precedence over the operators
for addition (+) and subtraction (-).

– Operators for multiplication all have the same precedence level.

– Operators for addition all have the same precedence level.

– Operators with the same precedence level applied from left to right.

If sql_expression does not contain column references, set functions, subqueries or
functions, this metavariable is identical to the corresponding part of the DRIVE
metavariable expression (see the “Directory of DRIVE Statements” [3]). Never-
theless, sql_expression within an SQL statement is always calculated by SESAM.
DRIVE only calculates expression within DRIVE statements.

i

222 U20069-J-Z145-3-7600

table_specification Metavariables

table_specification

You use table_specification to specify a table.

table_specification::= { table [[AS] correlation_name [(column,...)]] |
 subquery [AS] correlation_name [(column,...)] |
 join_expression }

table::= { [[catalog.] unqual_schema_name.] unqual_base_table_name |
 [[catalog.] unqual_schema_name.] unqual_view_name |
 temp_view_name }

table
Name of a base table, view or temporary view.

catalog
Name of a database (catalog space catalog.CATALOG and user spaces
catalog.spacename). A database name can be up to 18 characters long (see the CREATE
CATALOG statement in the SESAM manual [19]).

unqual_schema_name
Name of a schema. The unqualified schema name must be unique within the database.
An unqualified schema name can be up to 31 characters long (see the CREATE
SCHEMA statement).

unqual_base_table_name
Name of a base table. The unqualified name of a base table must be unique within the
base table and (permanent) view names of your schema. An unqualified base table
name can be up to 31 characters long (see the CREATE TABLE statement).

unqual_view_name
Name of a permanent view. The unqualified name of a view must be unique within the
base table and view names of its schema. An unqualified view name can be up to 31
characters long (see the CREATE VIEW statement).

U20069-J-Z145-3-7600 223

Metavariables table_specification

temp_view_name
Name of a temporary view. The name of a temporary program view must be unique
within the compilation unit (DRIVE program). The name of a temporary dialog view must
be unique within the DRIVE session or UTM conversation. A temporary view name can
be up to 31 characters long; the name of a static temporary program view can be up to
24 characters long (see the CREATE TEMPORARY VIEW statement).

The same table can occur more than once in a table specification in query_expression.
The correlation names of tables must be used to make a distinction between the
different occurrences of the same table.

correlation_name
Table name used in query_expression as a new name for the table (correlation name or
synonym). A correlation name can be up to 18 characters long.
The correlation_name must be used to qualify the column name in every column speci-
fication that references this instance of the table.

The new name must be unique, i.e. correlation_name may only occur once in a table
specification of this query_expression.

You must give a table a new name if the columns in the table cannot otherwise be
identified uniquely in query_expression.

In addition, you may give a table a new name in order to formulate query_expression so
that it is more easily understood or as an abbreviation of long names.

Example

Joining a table with itself:

SELECT a.company, b.company /* Query customer who lives */
 FROM customers AS a, customers AS b
 WHERE a.city = b.city /* in the same city and */
 AND a.cust_num < b.cust_num /* avoid duplicates */

column,...
Column name that is used within query_expression as the new name for the column of
the corresponding table.

If you rename a column, you must assign all the columns in the table a new name.

column is the new name of the column and must be unique within the table specified by
correlation name. This column can only be referenced with the new name in this
query_expression.

The columns of a derived table must be renamed if the column names of the table upon
which it is based are not unique, or if the derived columns are to be referenced using
names that have been assigned internally.

224 U20069-J-Z145-3-7600

table_specification Metavariables

Example

You want to give the columns in the WAREHOUSE table new, more informative names:

SELECT * FROM warehouse w (item_number, current_stock, location)
 WHERE location = 'Parts warehouse (east)'

column,... omitted:
The column names of the associated table are valid. These could be names that are
assigned internally, which cannot be referenced in query_expression.

subquery
The table is the derived table that results from evaluating the subquery (see metavar-
iable subquery).

join_expression
Join expression that determines the tables from which the data is to be selected (see
metavariable join_expression).

Underlying tables

Depending on the specification made in the table specification, the underlying table is
defined as follows:

Specification in table
specification

Underlying table

Base table Base table

View or temporary view Base tables which the (temporary) view references directly or
indirectly

Subquery The table upon which the subquery is based (see metavari-
ables select_expression and query_expression)

Join expression The table upon which the table specification in the
join_expression is based

U20069-J-Z145-3-7600 225

Metavariables table_constraint

table_constraint

When a base table is created or updated (CREATE TABLE, ALTER TABLE), table
constraints can be specified. A table constraint is an integrity constraint on one or more
columns in the base table. None of the columns may be a multiple column.

table_constraint::=

 { UNIQUE ({ column,... }) |
 PRIMARY KEY ({ column,... }) |
 FOREIGN KEY ({ column,... }) REFERENCES table [({ column },...)] |
 CHECK (condition)

UNIQUE (column,...)
Uniqueness constraint.
The set of column values that are not equal to NULL must be unique.

The sum of the lengths of the columns plus the total number of columns cannot exceed
256.

PRIMARY KEY (column,...)
Primary key constraint.
The specified column constitutes the primary key of the table. The set of column values
must be unique. Only one primary key can be defined for each table.

None of the columns can be VARCHAR columns. The sum of the column lengths must
be between 4 and 256 characters.

The NOT NULL constraint applies implicitly to the primary key columns.

FOREIGN KEY ... REFERENCES
Referential constraint.
The referencing columns (FOREIGN KEY clause) can only contain a set of values that
does not include any NULL values if the set of values also occurs in the referenced
columns (REFERENCES clause).
You must specify the same number of columns in the referencing and referenced table.
The data types of the corresponding columns must be exactly the same.

The current authorization identifier must have the REFERENCES privilege for the refer-
enced column.

FOREIGN KEY (column,...)
Columns of the referencing table whose sets of values should be contained in the
referenced base table.

226 U20069-J-Z145-3-7600

table_constraint Metavariables

REFERENCES table
Name of the referenced base table.
The referenced base table must be an SQL table. The name of the referenced base
table can be qualified with a database or schema name. The database name must
be the same as the database name of the referencing table.

(column,...)
Names of the referenced columns.
A uniqueness or primary key constraint that uses the same columns and the
same order must be defined for these columns. None of the columns may be a
multiple column.

(column,...) omitted:
The primary key of the referenced table is used as the referenced column.

CHECK (condition)
Check constraint.
The condition condition must be satisfied for each row in the table. The following restric-
tions apply to condition.

– condition cannot include any variables.

– condition cannot include any set functions.

– condition cannot include any subqueries, i.e. condition can only reference columns
of the table to which the column constraint belongs.

– condition cannot include a time function.

– condition cannot include USER, CURRENT USER or SYSTEM USER.

U20069-J-Z145-3-7600 227

Metavariables subquery

subquery

A subquery is the specification of a table as the derived table of a query_expression that can
be used in

– expressions:
The subquery must return a single-column derived table with a maximum of one row.
The value of the subquery is then the value in the derived table or the NULL value if the
derived table is empty.

– predicates:
In the predicates ANY, SOME, ALL and IN, the subquery must return a single-column
derived table. In the predicate EXISTS, the subquery can return any derived table.

– the FROM clause in SELECT expressions:
The subquery returns a derived table.

– join expressions:
The subquery returns a derived table.

A subquery is always enclosed in parentheses.

subquery::= (query_expression)

query_expression
Query expression that returns the derived table.

In subqueries that are not specified in the predicate EXISTS or in a FROM clause or in
a join_expression, the derived table can only contain an atomic column or multiple
columns with the dimension 1.

228 U20069-J-Z145-3-7600

variable Metavariables

variable

variable specifies a simple variable or a component of a structured variable. The list of all
components that can be located on the next level can be specified with the partial qualifi-
cation “*”. In DRIVE/WINDOWS variable has the following syntax (see also the “Directory
of DRIVE Statements” [3]):

variable::= { &varname1 [suffix] |

 &varname2 { (index1, index2) |

 (index1, range2) |

 (range1, index2) }

suffix::= { group_component | index_component }

group_component::= . { * | component [suffix] }

index_component::= { ({ index | range }) }

index::= unsigned_integer

range::= index1 - index2

variable
Variables are used in an SQL statement to accept values from the database (output
variable) or to store values in the database. They are also used to supply values
required in calculations and conditions (input variables). The data types of columns and
the associated variables must always be compatible.

varnname1
Name of a simple variable or the first qualification of the components of a structured
variable. varname1 can be up to 31 characters long.
You will find a detailed explanation of the syntax under the metavariable variable in the
“Directory of DRIVE Statements” [3].

suffix
Further qualification of the components of a structured variable.

U20069-J-Z145-3-7600 229

Metavariables variable

.*
Abbreviated notation for the list of all variable components that are located as compo-
nents on the next lower level.

component
Name of a component, i.e. part of a structured variable or the unqualified name of a
table column (see the DECLARE VARIABLE... LIKE CURSOR/TABLE statement).
component can be up to 31 characters long.

varname2
Name of a matrix. varname2 can be up to 31 characters long.

DRIVE/WINDOWS allows you create variables whose structure and names corre-
spond to those of a table or cursor using the DECLARE VARIABLE ... LIKE
statement.

i

230 U20069-J-Z145-3-7600

value Metavariables

value

You can specify a value either as a literal or via a variable. value defines the data value for
a variable or a component of a variable. Each variable and each table column can be
assigned the NULL value if no NOT NULL constraint was declared in the definition
(DECLARE VARIABLE, CREATE/ALTER TABLE) (see the DRIVE statement SET and the
SQL statements INSERT and UPDATE).

value::= { literal | variable | aggregate }

aggregate::= < { value | NULL }, ... >

literal
Alphanumeric literal, numeric literal or time literal (see metavariable literal).

variable
Name of a variable that contains the value (see metavariable variable).

aggregate
Specifies an aggregate, i.e. a structured value whose components are defined by value
or NULL. aggregate cannot contain more than 255 components. An aggregate is also
called a multiple value because it specifies the values for multiple columns. The number
of components of an aggregate is also referred to accordingly as the dimension (see
also metavariable column_definition).

Example

CREATE TABLE demo (demo (5) INTEGER);

COMMIT WORK;

INSERT INTO demo (demo (2-4)) VALUES (<13,NULL,67>);

The multiple column demo subsequently contains the multiple value
<NULL,13,NULL,67,NULL>.

value
You may specify literals and variables for value, i.e. nested aggregates are not
permitted. In the case of structured variables, you can only reference the lowest
structure, but not the entire structure. In the case of vectors, only one component can
be referenced.

U20069-J-Z145-3-7600 231

Metavariables value

NULL
The appropriate component of aggregate is assigned the NULL value. The NULL value
can be assigned to any variable (SET statement) and any column in a table (INSERT
and UPDATE statements).

232 U20069-J-Z145-3-7600

time_function Metavariables

time_function

Time functions return the current date and/or time:

time_function::= { CURRENT DATE | CURRENT TIME | CURRENT TIMESTAMP }

CURRENT DATE
Returns the current date. Data type : DATE.

CURRENT TIME
Returns the current time. Data type : TIME(3).

CURRENT TIMESTAMP
Returns the current time stamp. Data type : TIMESTAMP(3).

If several time functions are included in an SQL statement, SESAM executes them all
simultaneously. This is also true of all time functions that are evaluated as the result of the
statement:

– time functions in the DEFAULT clause of the column definition if the default value is
used

– time functions that occur in the SELECT expression of a view or temporary view if the
view or temporary view is referenced

Time functions within DRIVE statements are executed by DRIVE/WINDOWS.

Time functions in dynamic statements and in cursor descriptions are evaluated when the
EXECUTE statement is performed.

All the values that are returned have the same data and/or time. Therefore, you cannot use
time functions to determine execution times within an SQL or DRIVE statement. You can,
however, use time functions to determine the approximate time that it will take for individual
statements or statement blocks to execute.

U20069-J-Z145-3-7600 233

Metavariables time_function

Examples

Example 1

DCL VAR &vorher TIMESTAMP(3),

 &nachher TIMESTAMP(3),

 &dauer INTERVAL FRACTIONS;

SET &vorher=CURRENT TIMESTAMP;

INSERT INTO demo VALUES (<1,2,3,4,5>);

SET &nachher=CURRENT TIMESTAMP;

SET &dauer=&nachher - &vorher;

DISPLAY FORM 'Duration of INSERT statement', NL 1,

 'in milliseconds:', &dauer;

Example 2

DCL VAR &vorher1 TIMESTAMP(3),

 &vorher2 TIMESTAMP(3),

 &nachher1 TIMESTAMP(3),

 &nachher2 TIMESTAMP(3),

 &dauer1 INTERVAL FRACTIONS,

 &dauer2 INTERVAL FRACTIONS,

 &lauf SMALLINT,

 &SCHLUESSEL CHAR(6),

 ARTNAM CHAR(10);

DCL C1 CURSOR FOR S SCHLUESSEL, ARTNAM FROM FIRMA;

DCL C2 CURSOR PREFETCH 200
 FOR S SCHLUESSEL, ARTNAM FROM FIRMA;

DCL VAR &V LIKE CURSOR C1;

CYCLE FOR &lauf = 1 TO 10;

 SET &vorher1 = CURRENT TIMESTAMP;

 CYCLE C1 INTO &V.*;

 END CYCLE;

 SET &nachher1 = CURRENT TIMESTAMP,

234 U20069-J-Z145-3-7600

time_function Metavariables

 SET &dauer1 = &dauer1 + (&nachher1 - vorher1);

 END CYCLE;

SET &dauer1 = &dauer1/10;

CYCLE FOR &lauf = 1 TO 10;

 SET &vorher2 = CURRENT TIMESTAMP;

 CYCLE C2 INTO &V.*;

 END CYCLE;

 SET &nachher2 = CURRENT TIMESTAMP,

 SET &dauer2 = &dauer2 + (&nachher2 - vorher2);

END CYCLE;

SET &dauer2 = &dauer2/10;

DISPLAY FORM 'average processing duration for cursor table', NL1,

 'with ', &anzahl, 'rows with the length 16', NL1,

' a) without PREFETCH: ', &dauer1, 'milliseconds', NL1,

' b) with PREFETCH 200: ', &dauer2, 'milliseconds';

U20069-J-Z145-3-7600 235

5 Syntax overview

5.1 Statements

ALTER TABLE - Alter base table

ALTER TABLE table

 { ADD [COLUMN] column_definition |

 ALTER [COLUMN] column
 { DROP DEFAULT |
 SET basic_data_type |
 SET default } |

 ADD [CONSTRAINT integrity_constraint_name] table_constraint |

 DROP CONSTRAINT integrity_constraint_name RESTRICT }

 default::= DEFAULT { literal |
 CURRENT DATE |
 CURRENT TIME |
 CURRENT TIMESTAMP |
 [CURRENT] USER | SYSTEM USER |
 NULL }

236 U20069-J-Z145-3-7600

time_function Metavariables

CLOSE - Close cursor

CLOSE cursor

COMMIT WORK - Terminate transaction

COMMIT [WORK] [WITH { display | send message | stop }]

CREATE SCHEMA - Create schema

CREATE SCHEMA

 { [catalog .] schema [AUTHORIZATION authorization_id] |
 AUTHORIZATION authorization_id }

 [{ create_table_definition |
 create_view_definition |
 grant_definition } ...]

CREATE TABLE - Create base table

CREATE TABLE table

({ column_definition |
 [CONSTRAINT integrity_constraint_name] table_constraint },...)

[USING SPACE space]

U20069-J-Z145-3-7600 237

Metavariables time_function

CREATE TEMPORARY VIEW - Declare temporary view

CREATE TEMPORARY VIEW temp_view_name [({ column },...)]
 AS query_expression

CREATE VIEW - Create view

CREATE VIEW table [(column,...)]

AS query_expression

[WITH CHECK OPTION]

DECLARE - Declare cursor

DECLARE cursor [{ PERMANENT | TEMPORARY }]
 [SCROLL] [PREFETCH n] CURSOR [FOR cursor_description]

cursor_description::=

query_expression

[ORDER BY { { column | column(pos_no) | column_number }
[{ ASCENDING | DESCENDING }] },...]

[FOR UPDATE [OF { column },...]]

n::= unsigned_integer

pos_no::= unsigned_integer

column_no::= unsigned_integer

238 U20069-J-Z145-3-7600

time_function Metavariables

DELETE - Delete rows

DELETE FROM table [WHERE { condition | CURRENT OF cursor }]

DROP CURSOR - Release cursor description

DROP { CURSOR cursor | CURSORS }

DROP SCHEMA - Delete schema

DROP SCHEMA [catalog .] schema RESTRICT

DROP TABLE - Delete base table

DROP TABLE table RESTRICT

DROP TEMPORARY VIEW - Delete temporary view

DROP TEMPORARY { VIEW table | VIEWS }

U20069-J-Z145-3-7600 239

Metavariables time_function

DROP VIEW - Delete view

DROP VIEW table RESTRICT

FETCH - Position cursor and read row

FETCH [{ NEXT | PRIOR | FIRST | LAST | RELATIVE n | ABSOLUTE n }]
 [FROM] cursor

[INTO { variable },...]

n::= { [{ + | - }] unsigned_integer | variable }

GRANT - Grant privileges

GRANT format for table and column privileges:

GRANT { ALL PRIVILEGES | { table_and_column_privilege },... }

ON [TABLE] table

TO { PUBLIC | { authorization_id },... }

[WITH GRANT OPTION]
table_and_column_privilege::= { SELECT | DELETE | INSERT |
 UPDATE [({ column },...)] |
 REFERENCES [({ column },...)]

240 U20069-J-Z145-3-7600

time_function Metavariables

GRANT format for special privileges:

GRANT { ALL SPECIAL PRIVILEGES | CREATE SCHEMA }

ON CATALOG catalog

TO { PUBLIC | { authorization_id },... }

[WITH GRANT OPTION]

INSERT - Insert rows in table

INSERT INTO table

 { [({ column | column(pos_no) | column(min-max) },...)]

 { VALUES ({ sql_expression | DEFAULT | NULL | * },...) |
 VALUES { sql_expression | DEFAULT | NULL | * } |
 query_expression } |

 DEFAULT VALUES }

[RETURN INTO variable]

OPEN - Open cursor

OPEN cursor

U20069-J-Z145-3-7600 241

Metavariables time_function

PERMIT - Specify user identification for old style

PERMIT SCHEMA = { table | variable } [PASSWORD = value]

PRAGMA - Declare pragma clauses

PRAGMA literal

literal::= '{ pragma_clause },...'

pragma_clause::= { PREFETCH n |
 EXPLAIN INTO file |
 IGNORE INDEX index_name |
 OPTIMIZATION LEVEL n |
 SIMPLIFICATION { ON | OFF } |
 ISOLATION LEVEL
 { READ UNCOMMITTED |
 READ COMMITTED |
 REPEATABLE READ |
 SERIALIZABLE } |
 DATA TYPE OLDEST |
 CHECK { ON | OFF } }

RESTORE - Restore cursor

RESTORE cursor

242 U20069-J-Z145-3-7600

time_function Metavariables

REVOKE - Revoke priv ileges

REVOKE format for table and column privileges:

REVOKE { ALL PRIVILEGES | { table_and_column_privilege },... }

ON [TABLE] table

FROM { PUBLIC | { authorization_id },... } RESTRICT

table_and_column_privilege::= { SELECT |
 DELETE |
 INSERT |
 UPDATE [({ column },...)] |
 REFERENCES [({ column },...)] }

REVOKE format for special privileges:

REVOKE { ALL SPECIAL PRIVILEGES | CREATE SCHEMA }

ON CATALOG catalog

FROM { PUBLIC | { authorization_id },... } RESTRICT

ROLLBACK WORK - Roll back transaction

ROLLBACK [WORK] [WITH RESET]

U20069-J-Z145-3-7600 243

Metavariables time_function

SELECT - Read individual rows

SELECT [{ ALL | DISTINCT }] select_list

[INTO { variable },...]

FROM table_specification,...

[WHERE condition]

[GROUP BY column,...]

[HAVING condition]

SET CATALOG - Set default database name

SET CATALOG default_catalog

default_catalog::= { alphanumeric_literal | variable }

SET SCHEMA - Set default schema name

SET SCHEMA default_schema

default_schema::= { alphanumeric_literal | variable }

244 U20069-J-Z145-3-7600

time_function Metavariables

SET SESSION AUTHORIZATION - Define authorization identifier

SET SESSION AUTHORIZATION new_authorization_id

new_authorization_id::= { alphanumeric_literal | variable }

SET TRANSACTION - Define transa ction attributes

SET TRANSACTION { level [[,] transaction_mode] |
 transaction_mode [[,] level] }

level::= { ISOLATION LEVEL { READ UNCOMMITTED | READ COMMITTED |
 REPEATABLE READ | SERIALIZABLE } |
 CONSISTENCY LEVEL consistency_level }

transaction_mode::= { READ ONLY | READ WRITE }

STORE - Save cursor position

STORE cursor

U20069-J-Z145-3-7600 245

Metavariables time_function

UPDATE - Update column values

UPDATE table SET {
 { column | column(pos_no) | column(min-max) }
 = { sql_expression | DEFAULT | NULL }
 },...

[WHERE { condition | CURRENT OF cursor }]

WHENEVER - Define error handling

WHENEVER &DML_STATE [IN (status,...]

 { CONTINUE | CALL subprog_name | BREAK }

246 U20069-J-Z145-3-7600

time_function Metavariables

5.2 Metavariables

query_expression

query_expression::= { select_expression | expression | (query_expression) }
 [UNION [ALL] query_expression]

condition

condition::= { [condition AND] { [NOT] { predicate | (condition) } } |

 condition OR { [NOT] { { predicate | (condition) } } }

join_expression

join_expression::=

{ table_specification [{ INNER | { LEFT | RIGHT | FULL } [OUTER] }]
 JOIN table_specification ON condition |
 (join_expression) }

U20069-J-Z145-3-7600 247

Metavariables time_function

literal

literal::=

 { char_literal | num_literal | date_time_literal }

char_literal::= 'string'

string::= [character] ...

num_literal::= { integer | fixed_point_number | floating_point_number | $PI }

integer::= [{ + | - }] unsigned_integer

fixed_point_number::= [{ + | - }] unsigned_integer [.unsigned_integer]

floating_point_number::= fixed_point_number E [{ + | - }] unsigned_integer

unsigned_integer::= digit...

date_time_literal::=

 { DATE (year-month-day) |
 TIME (hour:minute:second [.fraction_of_second]) |
 TIMESTAMP (year-month-day hour:minute:second [.fraction_of_second]) }

set_function

set_function::= { { AVG | COUNT | MAX | MIN | SUM }
 ([{ ALL | DISTINCT }] sql_expression) |

 COUNT(*) }

248 U20069-J-Z145-3-7600

time_function Metavariables

predicate

predicate::=

{ sql_expression { = | < | > | <= | >= | <> } sql_expression |

 sql_expression { = | < | > | <= | >= | <> } { ANY | SOME | ALL }
 subquery |

 sql_expression [NOT] BETWEEN sql_expression AND sql_expression |

 sql_expression [NOT] IN { subquery | (sql_expression,sql_expression,...) } |

 [table .] { column | column(pos_no) | column(min-max) } [NOT] LIKE
 patter [ESCAPE character] |

 [table .] { column | column(pos_no) | column(min-max) }
 IS [NOT] NULL |

 EXISTS subquery }

select_expression

select_expression::=

 SELECT [{ ALL | DISTINCT }] select_list

 FROM table_specification,...

 [WHERE condition]

 [GROUP BY column,...]

 [HAVING condition]

 select_list ::= { * | { table.* | sql_expression [[AS] column] },... }

U20069-J-Z145-3-7600 249

Metavariables time_function

column_constraint

column_constraint::=

 { NOT NULL |
 UNIQUE |
 PRIMARY KEY |
 CHECK (condition) |
 REFERENCES table [(column)]

column_definition

column_definition::=

 column [(dimension)] { basic_data_type | FLOAT (precision) }
 [default]

 [[CONSTRAINT integrity_constraint_name] column_constraint ...]

 dimension::= unsigned_integer

 default::= DEFAULT { literal |
 CURRENT DATE |
 CURRENT TIME |
 CURRENT TIMESTAMP |
 [CURRENT] USER |
 SYSTEM USER |
 NULL }

250 U20069-J-Z145-3-7600

time_function Metavariables

sql_expression

sql_expression::=
 { value |
 [table.] { column | column(pos_no) | column(min-max) } |
 { + | - } sql_expression |
 sql_expression { * | / | + | - | || } sql_expression |
 (sql_expression) |
 subquery |
 set_function |
 time_function |
 [CURRENT] USER | SYSTEM USER }

 pos_no::= unsigned_integer

 min::= unsigned_integer

 max::= unsigned_integer

table_specification

table_specification::= { table [[AS] correlation_name [(column,...)]] |
 subquery [AS] correlation_name [(column,...)] |
 join_expression }

table::= { [[catalog.] unqual_schema_name.] unqual_base_table_name |
 [[catalog.] unqual_schema_name.] unqual_view_name |
 temp_view_name }

U20069-J-Z145-3-7600 251

Metavariables time_function

table_constraint

table_constraint::=

 { UNIQUE ({ column,... }) |
 PRIMARY KEY ({ column,... }) |
 FOREIGN KEY ({ column,... }) REFERENCES table [({ column },...)] |
 CHECK (condition)

subquery

subquery::= (query_expression)

variable

variable::= { &varname1 [suffix] |

 &varname2 { (index1, index2) |

 (index1, range2) |

 (range1, index2) }

suffix::= { group_component | index_component }

group_component::= . { * | component [suffix] }

index_component::= { ({ index | range }) }

index::= unsigned_integer

range::= index1 - index2

252 U20069-J-Z145-3-7600

time_function Metavariables

value

value::= { literal | variable | aggregate }

aggregate::= < { value | NULL }, ... >

time_function

time_function::= { CURRENT DATE | CURRENT TIME | CURRENT TIMESTAMP}

U20069-J-Z145-3-7600 253

6 Error messages
This chapter provides you with a description of

– the mapping of the SQLCODEs from SESAM V2 to the &DML_STATE of DRIVE/
WINDOWS. This mapping is compatible with SESAM V1 or DRIVE/WINDOWS V1.1,
and DRIVE V6.x

– the SQLSTATE classes of SESAM V2 that are relevant to DRIVE/WINDOWS

Refer to the WHENEVER statement in section “Pragmas” on page 62 and the “DRIVE
Programming Language” manual [2], section 4.2, "Error recovery, end criteria" for more
detailed information on error handling.

6.1 Mapping the SESAM SQLCODEs to &DML_STATE

In this section the SQLCODES of SESAM V2 are mapped to the &DML_STATE of DRIVE/
WINDOWS (upward compatibility), and the associated SQLSTATES are listed.

SQLCODEs from the language definition

Meaning SQLCODE &DML_STATE SQLSTATEs

table-end-reached 100 TABLE END 02000

warning 50 OK 01xxx

dirty-read 10 DIRTY READ 01SA1

sql-ok 0 OK 00000

access-right-conflict -22 SQL ERROR 42SQC

syntax-errror -110 <drive sys error> 42xxx (36 possible
SQLSTATEs)

schema-name-ambiguous -118 SQL ERROR 42SND, 42SNN

table-not-primitive -121 SQL ERROR 42S01, 42SQJ

table-not-defined -127 SQL ERROR 42SH3, 42SNI, 42SQ6,
42SQK

254 U20069-J-Z145-3-7600

SQLCODE/DML_STATE Error messages

table-name-ambiguous -128 SQL ERROR 42SA2, 42SA4, 42SQI

col-or-comp-error -131 SQL ERROR 42SOG, 42SP3, 42SR6

col-or-comp-spec-error -135 SQL ERROR 42SAK, 42SAS, 42SO2,
42SQ2, 42SQ4, 42SQ5

col-or-comp-not-defined -137 SQL ERROR 42SNF, 42SNG,
42SNM, 42S00

col-or-comp-ambiguous -138 SQL ERROR 42SA1, 42SI8, 42SI9,
42SN5

cursor-already-closed -141 SQL ERROR 24SA2

cursor-already-open -142 SQL ERROR 24SA1, 24SA6

cursor-not-positioned -143 SQL ERROR 24SA3

cursor-position-error -144 CURSOR SQL
ERROR

24SA5

cursor-not-defined -147 SQL ERROR 34SA1, 42SF1

cursor-name-ambiguous -148 SQL ERROR 42SF0

null-error -210 SQL ERROR 23SA3, 23SA4

unique-error -220 SQL ERROR 23SA2, 23SA5

no-indicator-variable -310 SQL ERROR 22002

more-than-one-hit -320 SQL ERROR 21000

value-list-error -330 SQL ERROR 42SAT, 42SOC, 42SQH

value-error -335 SQL ERROR 22023, 22SA2, 42SC9

set-function-not-allowed -338 SQL ERROR 42SBR, 42SNH, 42SNO

value-overflow -340 SQL ERROR 22001, 22003, 22012

type-error -345 SQL ERROR 07SA6, 22019, 42SAX,
42SAY, 42SBO, 42SBX,
42SBY, 42SN2, 42S0Y

type-mismatch -350 SQL ERROR 22005, 42SAW, 42SBS,
42SQ7, 42SQ9, 42SR1

argument-error -365 SQL ERROR 42SAA

like-error -370 SQL ERROR 22025, 42SAL, 42SAM,
42SBP

default-value-not-allowed -372 SQL ERROR 22SA3

search-cond-error -380 SQL ERROR 42SBU

Meaning SQLCODE &DML_STATE SQLSTATEs

U20069-J-Z145-3-7600 255

Error messages SQLCODE/DML_STATE

view-column-list-missing -390 SQL ERROR 42SOF, 42SR3

group-restriction-error -420 SQL ERROR 42SNK

into-clause-error -440 SQL ERROR 42SCP, 42SQT

error-in-sql-stmt-processing -550 SQL ERROR 42xxx (well over 200
possible SQLSTATEs)

error-in-dml-stmt-processing -560 SQL ERROR 22018, 23SA0, 23SA1,
28000, 3D000, 3F000,
42SH4...42SH8,
42SNL, 44000

stmt-not-allowed -600 SQL ERROR 24SA4, 25SA2, 25SA4

fetch-orientation-error -630 SQL ERROR 42SF2

syntax-value-violated -650 SQL ERROR 22020, 22021, 42SA8,
42SAB, 42SAD, 42SAE,
42SAH, 42SBW, 42SF3,
42SF4, 42SL0...42SL6,
42SM1...42SM4,
42SN3, 42SOE, 42SOP,
42SR9

Meaning SQLCODE &DML_STATE SQLSTATEs

256 U20069-J-Z145-3-7600

SQLCODE/DML_STATE Error messages

System-specific SQLCODEs

<session cancelled> indicates the internal &DML_STATE entry 'SESSION CANCELLED'.

<db not available> indicates the internal &DML_STATE entry 'DB NOT AVAILABLE'.

<drive sys error> indicates a DRIVE/WINDOWS system error. In this case, DRIVE/
WINDOWS issues error message DRI0078 and generates diagnostic documentation.

Temporary obstacles

 Incompatibilities within the SQL schema

Meaning SQLCODE &DML_STATE SQLSTATEs

temp-access-restriction -700 TEMP SYS ERROR 81SC9

stmt-cancelled -701 TEMP SYS ERROR 81SA2, 81SD2

sort-option-restriction -702 TEMP SYS ERROR 81SA3, 81SS0...81SS5,
91SCF, 91SCG

temp-system-limit -710 TEMP SYS ERROR 81SC7, 91SA0, 91SA2,
91SA4, 91SA6, 91SA8,
91SA9, 91SAA, 91SAB,
91SAC, 91SAG, 91SAJ,
91SAL, 91SC5, 91SC6,
91SC7, 91SCB, 91SCC,
91SCD, 91SCE, 91SCH,
91SCJ, 91SCK,
91SS0...91SS7

Meaning SQLCODE &DML_STATE SQLSTATEs

db-open-error -775 ACC SYS ERROR 42SC7, 42SN7, 55SA1,
55SAA, 55SAE, 81SA4,
81SA5

U20069-J-Z145-3-7600 257

Error messages SQLCODE/DML_STATE

Administrator intervention requried

Programming errors in the DB system or at the DB interface

Meaning SQLCODE &DML_STATE SQLSTATEs

session-unknown -740 <session cancelled> 81SP2

access-restriction -800 ADMIN SYS ERROR 81SA6, 81SB2,
81SCA

update-restriction -810 ADMIN SYS ERROR 25SA1, 81SB0,
81SB1

system-abnormally-down -830 <db not available> 81SB5, 81SC3

component-not-available -840 ACC SYS ERROR 81SC6

transaction-start-not-allowed -850 ADMIN SYS ERROR 81SA1, 81SP3

configuration-file-error -860 ACC SYS ERROR 81SB4, 81SC0,
81SC1

Meaning SQLCODE &DML_STATE SQLSTATEs

ta-stmt-not-allowd -654 <drive sys error> 42SH2

program-error -900 <session cancelled> 42SC1, 55SA7, 81SC4,
81SC5

integrity-error -910 ACC SYS ERROR 81SA7, 81SA8, 81SA9,
91SAD

system-limit-exceeded -920 ACC SYS ERROR 91SA1, 91SA7, 91SAE,
91SAF, 91SAH, 91SAI,
91SAK, 91SB1...91SB4,
91SC0...91SC4,
91SC8, 91SC9, 91SCA,
91SCI, 91SR0, 91SR2,
91SR3, 91SU0...91SU4

not-implemented -940 SQL ERROR 42SS0

illegal-order-of-state-
ments

-990 SQL ERROR 25SA3, 25SA5

representation-error -990 <drive sys error> -

output-too-long -990 <drive sys error> -

258 U20069-J-Z145-3-7600

SQLCODE/DML_STATE Error messages

Internal rollback for the ("CANCEL WORK")

If the transaction is rolled back internally by the database system, an internal SQLCODE
between -1000 and -2000 is generated by adding -1000 to the actual SQLCODE. In this
case, DRIVE/WINDOWS generates the internal &DML_STATE entry 'TA CANCELLED' and
afterwards behaves as it does for an external ROLLBACK WORK WITH RESET. The
SQLCODE -1830 is an exception for which DRIVE/WINDOWS generates the internal
&DML_STATE entry 'DB NOT AVAILABLE'.

Error for dynamic SQL statements (EXECUTE)

Errors in dynamic SQL statements (SQLSTATE class 07) normally result in DRIVE system
errors because DRIVE/WINDOWS cannot offer these statements at the user interface, but
rather generates them internally within the framework of the DRIVE EXECUTE statement.

Meaning SQLCODE &DML_STATE SQLSTATEs

undefined-descriptor-area-item 100 <drive sys error> 02SA1

error-in-dynamic-stmt -650 <drive sys error> -

invalid-stmt-identifier -651 <drive sys error> -

exec-or-open-not-possible -652 <drive sys error> -

error-in-using-clause -653 <drive sys error> -

descriptor-area-name-invalid -661 <drive sys error> -

allocated-descriptor-area -662 <drive sys error> -

not-allocated-descriptor-area -663 <drive sys error> -

error-in-descriptor-area-item -664 <drive sys error> -

configuration-error -690 <drive sys error> -

session-limit-exceeded -950 <drive sys error> -

too-many-host-variables -960 <drive sys error> -

error-in-descriptor-area-size -965 LIMIT REACHED 91SA3, 91SA5

U20069-J-Z145-3-7600 259

Error messages SQLSTATEs

6.2 SQLSTATE classes

The mapping of SQLSTATEs to &DML_STATE entries is described under the WHENEVER
statement. The following SQLSTATE classes of SESAM/SQL V2 are relevant for DRIVE/
WINDOWS:

The SESAM/SQL-Server "Messages" manual [24] contains a list of all SQLSTATEs and the
associated SQLCODEs.

&SQL_STATE Meaning

00xxx execution successful

01xxx warning

02xxx no data

21xxx set limit violation

22xxx data error

23xxx integrity constraint violation

24xxx illegal cursor status or cursor operation

25xxx illegal transaction status

26xxx illegal or invalid SQL statement name

28xxx illegal authorization identifier

2Dxxx illegal means of terminating transaction

34xxx illegal or invalid cursor name

3Dxxx illegal catalog name

3Fxxx illegal schema name

40xxx transaction rolled back

42xxx syntax error or no access permission:
this class contains over 300 subclasses

44xxx "CHECK OPTION" violation

55xxx BS2000 error messages

56xxx BS2000 restrictions

81xxx environment error

91xxx insufficient resources

95xxx errored transaction status

260 U20069-J-Z145-3-7600

SQLSTATEs Error messages

U20069-J-Z145-3-7600 261

Related publications
[1] DRIVE/WINDOWS V1.1 (BS2000)

Programming System
User Guide

Target group
Application programmers
Contents
– Introduction to the programming system DRIVE/WINDOWS
– Explanation of the functions available in interactive mode
– Installation
– DRIVE/WINDOWS generation and administration

[2] DRIVE/WINDOWS (BS2000)
Programming Language
Reference Guide

Target group
Application programmers
Contents
Description of program creation including alpha screen forms, as well as the use fo DRIVE
list forms and the report generator.

[3] DRIVE/WINDOWS (BS2000)
System Directory of DRIVE Statements
Reference Manual

Target group
Applications programmers
Contents
Syntax and range of functions of all DRIVE statements. DRIVE messages and keywords.

262 U20069-J-Z145-3-7600

Related publications Error messages

[4] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for SESAM V1.x
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL statements
for SESAM V1.x.

[5] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for SESAM V2.x
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL statements
for SESAM V2.x.

[6] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for UDS
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL statements
for UDS.

[7] DRIVE/WINDOWS V2.0 (MS-Windows)
Software Production Environment (SPE)
User Guide

Target group
Application programmers.
Contents
The manual describes the functions of the software production environment (desktop), how
to prepare DRIVE/WINDOWS for use, remote access to BS2000 and SINIX databases and
client/server applications.

U20069-J-Z145-3-7600 263

Error messages Related publications

[8] DRIVE/WINDOWS V2.0 (MS-Windows)
Programming Language
Reference Manual

Target group
Application programmers.
Contents
The manual describes the creation of programs, including window and client/server appli-
cations.

[9] DRIVE/WINDOWS V2.0 (MS-Windows)
System Directory
Reference Manual

Target group
Application programmers.
Contents
The manual describes the syntax and functions of all statements, messages and keywords
of DRIVE/WINDOWS.

[10] DRIVE/WINDOWS (SINIX)
Software Production Environment (SPE)
User Guide

Target group
Application programmers
Contents
The functions available in the software production environment (desktop) and in expert
mode. Setting up DRIVE/WINDOWS, including remote access to BS2000 databases and
generating applications for BS2000.

[11] DRIVE/WINDOWS (SINIX)
Programming Language
Reference Manual

Target group
Application programmers
Contents
The creation of programs, including graphical and alpha screen forms, as well as list forms
using DRIVE and the report generator.

264 U20069-J-Z145-3-7600

Related publications Error messages

[12] DRIVE/WINDOWS (SINIX)
System Directory
Reference Manual

Target group
Application programmers
Contents
The syntax and scope of functions of all DRIVE statements, as well as all DRIVE messages
and keywords.

[13] DRIVE/WINDOWS (SINIX)
Directory of DRIVE SQL Statements for INFORMIX
Reference Manual

Target group
Application programmers
Contents
A concise description of the syntax and scope of functions of all the DRIVE SQL statements
for INFORMIX.

[14] DRIVE V5.1 (BS2000)
Part 1: User’s Guide

Target group
– Users in non-dp departments
– Applications programmers
Contents
– General overview of the DRIVE system in old style
– Description of the DRICE components
– Introduction to DRIVE application using worked examples
– DRIVE generation and administration in UTM operation

[15] DRIVE V5.1 (BS2000)
Part 2: System Directory

Target group
– Users in non-dp departments
– Applications programmers
Contents
– Syntax and scope of functions of all DRIVE statements in old style
– DRIVE messages and keywords

U20069-J-Z145-3-7600 265

Error messages Related publications

[16] DRIVE/WINDOWS-COMP (BS2000)
User Guide

Contents
The differences concerning the DRIVE V6.0 language, and the compilation process. Gener-
ating and starting TIAM and UTM applications with compiled DRIVE objects, with special
consideration of mixed version operation.

[17] SQL for SESAM/SQL
Language Reference Manual

Target group
Programmers who want to access SESAM databases using SQL statements.
Contents
SQL statements available for accessing SESAM databases.

[18] SESAM/SQL-Server (BS2000/OSD)
SQL Reference Manual Part 1: SQL Statements
User Guide

Target group
The manual is intended for all users who wish to process an SESAM/SQL database by
means of SESAM/SQL statements.
Contents
The manual describes how to embed SQL statements in COBOL, and the SQL language
constructs. The entire set of SQL statements is listed in an alphabetical directory.

[19] SESAM/SQL-Server (BS2000/OSD)
SQL Reference Manual Part 2: Utilities
User Guide

Target group
The manual is intended for all users responsible for SESAM/SQL database administration.
Contents
An alphabetical directory of all utility statements, i.e. statements in SQL syntax imple-
menting the SESAM/SQL utility functions.

[20] SESAM/SQL-Server (BS2000/OSD)
Core Manual
User Guide

Target group
The manual is intended for all users and to anyone seeking information on SESAM/SQL.
Contents
The manual gives an overview of the database system. It describes the basic concepts. It
is the foundation for understanding the other SESAM/SQL manuals.

266 U20069-J-Z145-3-7600

Related publications Error messages

[21] SESAM/SQL-Server (BS2000/OSD)
Utility Monitor
User Guide

Target group
The manual is intended for SESAM/SQL-Server database and system administrators.
Contents
The manual describes the utility monitor. The utility monitor can be used to administer the
database and the system. One aspect covered is its interactive menu interface.

[22] SESAM/SQL-Server (BS2000/OSD)
Migrating SESAM Databases and Applications to SESAM/SQL-Server
User Guide

Target group
Users of SESAM/SQL-Server.
Contents
This manual gives an overview of the new concepts and functions. Its primary subject is,
however, the difference between the previous and the new SESAM/SQL version(s). It
contains all the information a user may require to migrate to SESAM/SQL-Server V2.0.

[23] SESAM/SQL-Server (BS2000/OSD)
CALL DML Applications
User Guide

Target group
SESAM application programmers
Contents
– CALL DML statements for processing SESAM databases using application programs
– Transaction mode with UTM and DCAM
– Utility routines SEDI61 and SEDI63 for data retrieval and direct updating
– Notes on using both CALL DML and SQL modes

[24] SESAM/SQL-Server (BS2000/OSD)
Messages
User Guide

Target group
All users of SESAM/SQL.
Contents
All SESAM/SQL messages, sorted by message number.

U20069-J-Z145-3-7600 267

Error messages Related publications

[25] SQL for UDS/SQL
Language Reference Manual

Target group
Programmers who want to access UDS databases using SQL statements.
Contents
SQL statements available for accessing UDS databases.

[26] UDS/SQL (BS2000)
Administration and Operation
User Guide

Target group
Database administrators
Contents
All features comprising the management and operation of the database, such as database
saving, processing, restructuring, as well as outputting database information and checking
the consistency of the database.
Applications
Database operation by the database administrator

[27] UDS/SQL (BS2000)
Creation and Restructuring
User Guide

Target group
Database administrators
Contents
– Overview of the files required by UDS
– UDS utility routines required for database creation
– Utility routines required for restructuring
Applications
Database creation by the database administrator

[28] IFG for FHS (TRANSDATA)
User Guide

Target group
Terminal users, application engineers and programmers
Contents
The Interactive Format Generator (IFG) is a system that permits simple, user-friendly
generation and management of formats at a terminal. In conjunction with FHS, these
formats can be used on the host computer. This user guide describes how formats are
generated, modified and managed, plus also the new functions of IFG V8.1.

268 U20069-J-Z145-3-7600

Related publications Error messages

[29] FHS (TRANSDATA)
User Guide

Target group
Programmers
Contents
Program interfaces of FHS for TIAM, DCAM and UTM applications. Generation, application
and management of formats.

[30] UTM (TRANSDATA, BS2000)
Generating and Administering Applications
User Guide

Target group
– System administrators
– UTM administrators
Contents
– Creation, generation and operation of UTM applications
– Working with UTM messages and error codes
Applications
BS2000 transaction processing

[31] UTM (TRANSDATA)
Programming Applications
User’s Guide

Target group
Programmers of UTM applications
Contents
– Language-independent description of the KDCS program interface
– Structure of UTM programs
– KDCS calls
– Testing UTM applications
– All the information required by programmers of UTM applications
Applications
BS2000 transaction processing

[32] UTM(SINIX)
Formatting System

Target group
UTM(SINIX) users who wish to use formats, C programmers and COBOL programmers
Contents
How to use the FORMANT format handler in UTM(SINIX) program units, create formats,
convert formats from BS2000 to/from SINIX.

U20069-J-Z145-3-7600 269

Error messages Related publications

[33] EDT V16.5A (BS2000/OSD)
Statements
User Guide

Target group
EDT newcomers and EDT users
Contents
Processing of SAM and ISAM files and elements from program libraries and POSIX files.

[34] LMS (BS2000)
ISP Format
Reference Manual

Target group
BS2000 users
Contents
Description of the LMS statements in ISP format for creating and managing PLAM libraries
and the members these contain.
Frequent applications are illustrated by means of examples.

[35] BS2000/OSD-BC
Commands, Volume1 - 3

Target group
The manual addresses both nonprivileged BS2000/OSD users and system support.
Contents
This manual contains BS2000/OSD commands (basic configuration and selected products)
with the functionality for all privileges. The introduction provides information on command
input.

[36] BS2000/OSD-BC V2.0
System Installation
User Guide

Target group
BS2000/OSD system administration
Contents
This manual describes
– the generation of the hardware and software configuration with UGEN
– the following installation services:

– disk organization with MPVS
– program system SIR
– volume installation with SIR
– configuration update (CONFUPD)
– utility routine IOCFCOPY

270 U20069-J-Z145-3-7600

Related publications Error messages

[37] BS2000/OSD-BC V2.0A
DMS Introductory Guide
User Guide

Target group
The manual addresses both nonprivileged users and systems support.
Contents
The manual describes file processing in BS2000, focussing on:
– file and catalog management
– files and data media
– file and data protection
– OPEN, CLOSE and EOV processing
– DMS access methods (SAM, ISAM ...).

[38] BS2000
Introductory Guide for System Users
User’s Guide

Target group
BS2000 users
Contents
– Introduction to BS2000
– Description of the most frequent user commands
– Introduction to using the utility routines and software products EDT, SORT, ARCHIVE,

TSOSLNK, LMS and PERCON
– Notes for the programmer
Applications
BS2000 interactive mode and batch mode

[39] FORMANT (SINIX)
Reference Manual

Target group
– C programmers
– COBOL programmers
– Application designers
Contents
Formant is a mask control program for all SINIX systems. The manual contains:
– Introduction to FORMANT
– Description of FORMANTGEN
– Description of user interface
– Program interfaces in C and COBOL
– Programming examples

U20069-J-Z145-3-7600 271

Error messages Related publications

[40] OMNIS (TRANSDATA, BS2000)
Administration and Programming
User Guide

Target group
– OMNIS administrators
– Programmers
Contents
Introduction to OMNIS administration, the OMNIS utility routines and the application
interface for extending the OMNIS functionality
Applications
– Software development
– Application scheduling

[41] DRIVE/WINDOWS-COMP (SINIX)
Compiler
User Guide

Target group
Applications programmers and system administrators
Contents
Description of the compilation process using the DRIVE Compiler.

[42] INFORMIX-NET V4.0 (SINIX)
INFORMIX-STAR V4.0 (SINIX)
User Guide

Target group
– INFORMIX users
– System administrators
Contents
This manual describes how to use the INFORMIX-NET and INFORMIX-STAR products.
Using these products, INFORMIX applications can generate and process databases on
foreign computers from local computers.

[43] DRIVE/WINDOWS V1.1
(SINIX)
Supplement
User Guide

Target group
Application programmers
Contents
The manual contains the functional changes included in DRIVE/WINDOWS (SINIX) V1.1.
If this supplement is to be used, the manuals of version 1.0 are also required.

272 U20069-J-Z145-3-7600

Related publications Error messages

[44] SESAM/SQL-Server (BS2000/OSD)
Messages
User Guide

Target group
All users of SESAM/SQL.
Contents
All SESAM/SQL messages, sorted by message number.

[45] SESAM/SQL-Server (BS2000/OSD)
Performance
User Guide

Target group
Experienced users of SESAM/SQL.
Contents
The manual covers how to recognize bottlenecks in the behavior of SESAM/SQL and how
to remedy this behavior.

[46] SESAM/SQL (BS2000)
Creation and Maintenance
User’s Guide

Target group
Database administrators
Contents
– Creation and maintenance of SESAM databases using the database administration

monitor SESASB
– Shadow database operation

Other publications

[47] International Organization for Standardization (ISO):
Database Language SQL
ISO/IEC 9075:1992

U20069-J-Z145-3-7600 273

Error messages Related publications

Ordering manuals

The manuals listed above and the corresponding order numbers can be found in the
Siemens Nixdorf List of Publications. New publications are described in the Druck-
schriften-Neuerscheinungen (New Publications).

You can arrange to have both of these sent to you regularly by having your name placed on
the appropriate mailing list. Please apply to your local office, where you can also order the
manuals.

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U20069-J-Z145-3-7600 275

Index

&DML_STATE IN (status) 153
.* 228

A
ABSOLUTE (clause) 103
ACC SYS ERROR 153
access permission

granting 11
ADD COLUMN (clause) 71
ADD CONSTRAINT (clause) 72
addition 219
ADD-SQL-CATALOG-LIST 25
ADMIN SYS ERROR 153
aggregate 230
ALL (clause)

AVG() 174
COUNT() 177
MAX() 179
MIN() 181
set function 173
SUM() 183
UNION (clause) 160

ALL (predicate) 191
select_expression 202

ALL PRIVILEGES (clause) 107, 129
ALL SPECIAL PRIVILEGES (clause) 109, 131
alphanumeric literal 4, 169
alphanumeric values

comparison 188
ALTER COLUMN (clause) 71
ALTER TABLE 70
AND (operator) 163
ANY (predicate) 190
argument

function 173

276 U20069-J-Z145-3-7600

Index

arithmetic average
AVG() 174

arithmetic operators 5
AS (clause) 84, 86
AUTHORIZATION (clause) 79
AUTHORIZATION (parameterization) 36
authorization identifier 29

=SQL user 10, 11, 15
=SQL user name 29
for SESAM database 36, 38
ROLLBACK WORK 29

AVG() 174

B
base table

create 81
delete 99
modify 70

blank 5
block mode

PREFETCH (DECLARE statement) 90
PREFETCH (pragma clause) 62, 64, 121

C
calculate

predicate 185
calculate sum

SUM() 183
CALL DML 15

PERMIT 15
table 73

cancel
characters in literals 4

catalog 7
CATALOG (parameterization) 37
catalog setting

in foreign environment 39
character

comment 5
enclose in quotes 4

charliteral 169
CHECK (clause) 212, 226
CHECK (pragma clause) 126
CLOSE 74

U20069-J-Z145-3-7600 277

 Index

close
cursor 74

column 8
add 70
for CALL DML table 126
update 70
update contents (UPDATE) 147

column constraint 211
column definition 213
column number 92
column privilege 106
combine

query expressions 159
comma 5
comments 5
COMMIT WORK 75

SET (database environment) 27
compare

NULL value 188
compare two values

predicate 187
comparison

alphanumeric value 188
numeric value 188
operators 5
time value 189
with derived column 190
with NULL value 199

comparison operation 188
comparison operator 187
comparison rules 188
compilation

authorization identifier 29
controlling 38
database contact 28
transaction 28

compiler options 38
static programs 28

component 228
concatenation 219
concatenation operator 5
condition 162

CHECK (clause) 162
GROUP clause 210

278 U20069-J-Z145-3-7600

Index

HAVING (clause) 162
ON (clause) 162
operator 162
precedence 164
predicate 162
WHERE (clause) 162, 207

CONSISTENCY LEVEL (clause) 144
constants 4
constraint 8
CONSTRAINT (clause) 81, 214
CONTINUE (WHENEVER) 153
control

compilation run 38
correlation

name 223
table 202

count elements
COUNT() 177

count rows
COUNT(*) 176

count table rows
COUNT(*) 176

COUNT() 177
CREATE CATALOG 47
CREATE SCHEMA 49, 79
CREATE SCHEMA privilege 109
CREATE TABLE 81
CREATE TEMPORARY VIEW 83
CREATE USER 48
CREATE VIEW 86
CURRENT DATE 232
current date

CURRENT DATE 232
CURRENT OF (clause) 95, 149
current row (FETCH) 102
CURRENT TIME 232
current time

CURRENT TIME 232
current time stamp

CURRENT TIMESTAMP 232
CURRENT TIMESTAMP 232
cursor

close 74
declare 88

U20069-J-Z145-3-7600 279

 Index

FOR UPDATE (DECLARE) 92
open 116
ORDER BY 91
query expression 91
restore 127
SCROLL 90
updatable 93
variable 91

cursor description 91
cursor position 102

save (STORE) 146
CURSOR SQL ERROR 153
cursor statements for variable cursors 14

D
data type

modify 71
UNION (clause) 160

DATA TYPE (pragma clause) 126
database contact

compilation 28
database environment

parameter settings 26
PARAMETER statement 36
SET 26

DATE 171
date/time literal 4

date_time_literal 171
DDL statements 14
DECLARE 88
DECLARE CURSOR statement

PREFETCH clause 64
DECLARE VARIABLE ...LIKE 14
DEFAULT (clause) 113, 148, 214
default catalog

SQL environment 15
default schema

SQL environment 15
DEFAULT VALUES (clause) 114
define

default value 72
transaction mode (SET TRANSACTION) 142
variable 228

DELETE 95

280 U20069-J-Z145-3-7600

Index

delete
base table 99
row 95
schema 98
temporary view 100
view 101

DELETE (clause) 107
DELETE privilege 130
delimiters 5
derived column

data type for UNION 160
select 204

derived row
group 208
select 207

derived table 159
determine largest value

MAX() 179
determine lowest value

MIN() 181
differences SESAM V1/V2

for DRIVE access 24
DIRTY READ 153
DISTINCT clause

AVG() 174
COUNT() 177
MAX() 179
MIN() 181
select_expression 202
set function 173
SUM() 183

division 218
DML statements 15
dominant table 166
DRIVE compilation

static program 15
DRIVE extensions to SQL standard 13
DRIVE operating modes

SESAM access 13
DRIVE session/UTM conversation

SQL user 23
DROP CONSTRAINT (clause) 72
DROP DEFAULT (clause) 71
DROP SCHEMA 98

U20069-J-Z145-3-7600 281

 Index

DROP TABLE 99
DROP VIEW 101
duplicate

COUNT() 177
DYNAMIC 36
dynamic

new-style program 14
SQL statement 13

dynamic program
changing SQL user 16

E
elements

count 177
error handling

define (WHENEVER) 152
define actions 152
pragmas 66

ESCAPE (predicate) 197
escape character 196
evaluate

precedence 185
evaluation

select_expression 203
example

table Abteilung 42
table Mitarbeiter 43
table Projekt 44

exception conditions for error exit 153
execution

authorization identifier 29
existence query 201
EXISTS (predicate) 201
expression

priority 221
sql_expression 216

F
FIRST (clause) 103
FOR (clause) 91
FOR UPDATE

cursor (DECLARE) 92
FOREIGN KEY clause 225
FOREIGN KEY constraint 9

282 U20069-J-Z145-3-7600

Index

FROM (clause)
FETCH 104
SELECT 206

FROM (predicate)
select_expression 206

FROM PUBLIC (clause) 130
FULL OUTER (clause) 166
function

AVG() 174
COUNT() 177
CURRENT DATE 232
CURRENT TIME 232
CURRENT TIMESTAMP 232
MAX() 179
MIN() 181
set 173
SUM() 183
time 232

function argument 173

G
general

new-style program 14
GRANT 11, 15, 106
GRANT authorization 108, 109
group 208
GROUP BY (clause) 208
grouping

derived rows 208

H
hexadecimal literal 4

I
IGNORE INDEX (pragma clause) 124
IN (clause) (WHENEVER) 153
incompatibilities

DRIVE access to SESAM V1/V2 24
INNER (clause) 166
INSERT 111
insert

row 111
INSERT (clause) 107
INSERT privilege 130

U20069-J-Z145-3-7600 283

 Index

integrity constraint
add 70, 72
delete 70, 72

internal access plan
output 62

interpretation
PRAGMA statement 63

interval literal 4
INTO (clause) 104, 134
IS NULL (predicate) 199
ISOLATION LEVEL

SET TRANSACTION 143
isolation level

for statement (pragma clause) 62, 65
set (SET TRANSACTION) 142

ISOLATION LEVEL (pragma clause) 124

J
join_expression 165

K
keyword 3

L
LAST (clause) 103
LEFT OUTER (clause) 166
LIMIT REACHED 153
literal 168

alphanumeric 4, 169
date/time 4, 171
enclose characters in quotes 4
hexadecimal 4
interval 4
numeric 4, 170

literals 4
logical operator 162

AND 163
NOT 163
OR 163

M
MAX() 179
metadata

via SELECT on system table 40

284 U20069-J-Z145-3-7600

Index

via SHOW 40
via Utility Monitor 40

metavariables 1, 4
MIN() 181
mixed mode

SESAM access 13
modify

base table 70
data type 71

multiplication 218
multi-SQL-user program

TA profile for general programs 23

N
name 3

partially qualified (variable) 228
with special characters 3

name qualification
of tables and columns 8

naming conventions 3
new-style transaction

DML statements 15
NEXT (clause) 103
NOT (operator) 163
NOT NULL clause 211
notational conventions 5
NULL (INSERT) 113
NULL (UPDATE) 148
NULL value

compare 188
expression 216

numeric literal 4
numliteral 170

numeric values
comparison 188

numliteral
$PI specification 170

O
old- and new-style

SESAM access 13
transaction 15

oldest-style table
extending (pragma clause) 62, 65

U20069-J-Z145-3-7600 285

 Index

old-style
SESAM access 13

ON CATALOG (clause) 109, 131
ON TABLE (clause) 108, 130
OPEN 116
open

cursor 116
operand

expression 216
operator

AND 163
comparison 187
condition 162
expression 216
logical 162
NOT 163
OR 163
predicate 185

OPTIMIZATION LEVEL (pragma clause) 125
optimizer

output access plan (pragma clause) 62
optimizer access plan

influencing (pragma clause) 62
OPTION statement 28, 38
OR (operator) 163
ORDER BY (clause) 91
organization of a database

logical 7
OUTER (clause) 166

P
parameter settings

dynamic statements 27
programs 27

PARAMETER statement 26, 36
parameters

for dynamic programs 36
for static programs 36

partially qualified name (variable) 228
performance

improved 90, 91
PERMIT 117

CALL DML 15
physical organization

286 U20069-J-Z145-3-7600

Index

of a database 9
statements for 10

placeholder
pattern comparison 196

position
cursor 102
cursor (FETCH) 102

pragma clause
CHECK 66, 126
DATA TYPE 65, 126
EXPLAIN

read SQL access plan (pragma clause) 64
IGNORE INDEX 65, 124
ISOLATION LEVEL 65, 124
OPTIMIZATION LEVEL 65, 125
PREFETCH 66, 121
SIMPLIFICATION 65

PRAGMA statement 63, 119
interpreting 63
static/dynamic 63

pragmas
application possibilities 62
error handling 66

precedence
condition 164

precompiled statements (SESAM) 15
predicate 185

ALL 191
ANY 190
BETWEEN 192
calculate 185
compare two values 187
comparison with derived column 190
comparison with NULL value 199
condition 162
element query 194
evaluate 185
existence query 201
EXISTS 201
IN 194
IS NULL 199
LIKE 196
operator 185

U20069-J-Z145-3-7600 287

 Index

pattern comparison 196
range query 192
SOME 190

PREFETCH
DECLARE CURSOR statement 64, 90
pragma clause 64

PREFETCH (pragma clause) 121
PRIMARY KEY (clause) 211, 225
PRIMARY KEY constraint 9
PRIOR (clause) 103
priority

expression 221
privilege

grant 106
revoke 129

program communication
dynamic-dynamic 20
dynamic-static 22
general-general 22
new-/old-style 22
static-dynamic 21
static-static 19

program compilation
controlling 38

programming recommendations 23

Q
query expressions

combine 159
query_expression 159

updatable 160

R
read

row 102
READ COMMITTED (clause) 143
READ ONLY (clause) 145
READ UNCOMMITTED (clause) 143
READ WRITE (clause) 145
REFERENCES privilege 108, 130
RELATIVE (clause) 104
renaming

table 202
REPEATABLE READ (clause) 143

288 U20069-J-Z145-3-7600

Index

RESTORE 127
restore

cursor 127
RETURN INTO (clause) 114
REVOKE 129
RIGHT OUTER (clause) 166
roll back

transaction 132
ROLLBACK WORK 132

authorization identifier 29
SET (database environment) 27

row
count 176
current (FETCH) 102
delete (DELETE) 95
insert 111
insert (INSERT) 111
read 102

S
sample database

structure of 45
schema 8

create 79
delete 98

SCHEMA (compiler option) 39
SCHEMA (parameterization) 37
schema definition 39
schema setting

in foreign environment 39
scroll cursor 90
SELECT 134

INTO clause 134
read individual rows 134

SELECT (clause) 107
SELECT privilege 129
SELECT/FROM 206
select_expression

evaluation 203
select_list (SELECT list) 204

see select_expression and SELECT statement 157
SERIALIZABLE (clause) 144
SESAM access

DRIVE operating modes 13

U20069-J-Z145-3-7600 289

 Index

old- and new-style 13
SET

CATALOG/SCHEMA/AUTHORIZATION 26
set

isolation level 142
SET (database environment)

COMMIT WORK 27
ROLLBACK WORK 27

SET CATALOG 136
set function

AVG() 174
COUNT() 177
MAX() 179
MIN() 181
set_function 173
SUM() 183

SET SCHEMA 138
SET SESSION AUTHORIZATION 140
SET TRANSACTION 142
set_function (set function) 173
SHOW

output metadata 40
simple variable 228
single-SQL-user program 23
single-SQL-user session 23
SOME (predicate) 190
space 9
special characters

in names 3
special privilege 109

grant 106
revoke 131

specify
table 206

SQL environment 15
compiler listing 16
debugging mode 17
dynamic programs 16
static programs 15

SQL ERROR 153
SQL objects

access to 10
logical 7

SQL standard

290 U20069-J-Z145-3-7600

Index

DRIVE extensions 13
entry/intermediate/full level 12

SQL user 25
=authorization identifier 10, 11, 15
access permission 15
check during data access 25
DRIVE session/UTM conversation 23

SQL user name
=authorization identifier 29

sql_expression
addition 219
assignment 216
calculating 216
column 217
column selection 216
concatenation 219
division 218
expression 216
multiplication 218
NULL value 216
operand 216
operator 216
predicate 216
set function 220
subquery 220
subtraction 219
value 216

SQLERROR (WHENEVER) 152
SQLSTATE 1
SSL statements 9, 14
statements

for session control 14
for transaction management 14

static
new-style program 14, 15
SQL statement 13

storage group 9
STORE 146
store

cursor position 146
structure

of sample database 45
of statements 2

subquery 227

U20069-J-Z145-3-7600 291

 Index

expression 227
FROM (clause) 227
join expression 227
predicate 227

subtraction 219
SUM() 183
supported interfaces for SESAM 14

T
table 8

correlation name 202, 223
dominant 166
renaming 202
specify 206

TABLE (clause) 81
TABLE END 153
table privilege 106
table_constraint 225
table_specification 222
TEMP SYS ERROR 153
temporary view

declare 83
terminate

transaction 75
TIME 171
time function

CURRENT DATE 232
CURRENT TIME 232
CURRENT TIMESTAMP 232

time value
comparison 189
separators 172

time_function 232
TIMESTAMP 171
TO PUBLIC (clause) 108, 109
TOO MANY CURSORS 153
transaction

old- and new-style 15
roll back (ROLLBACK WORK) 132
terminate 75

transaction mode
specify (SET TRANSACTION) 142

transaction profile
static program 15, 16

292 U20069-J-Z145-3-7600

Index

truth value
condition 162
predicate 185

U
UDL statements 14
UNION (clause) 159
UNIQUE (clause) 211, 225
UNIQUE constraint 9
updatability

query_expression 160
updatable

cursor 93
view 87

UPDATE 147
update

column value 147
UPDATE privilege 107, 130
user setting

in foreign environment 39
USING SPACE (clause) 82
utility statements 14

V
value

specify 230
variable 3

VALUES (clause) 112
variable 228

cursor 91
defining 228
simple 228
value 3

view
create 86
declare 84
delete 101
temporary - delete 100
updatable 87

W
WHENEVER 152
WHERE (clause) 95, 148
WITH CHECK OPTION (clause) 87

U20069-J-Z145-3-7600 293

 Index

WITH GRANT OPTION (clause) 108, 109

Eine Dokuschablone von Frank Flachenecker
by f.f. 1992

U20069-J-Z145-3-7600 295

Contents
1 Preface . 1
1.1 Summary of contents . 1
1.2 Structure of DRIVE SQL statements . 2
1.3 Notational conventions . 5

2 Working with SESAM/SQL V2 . 7
2.1 Organization of a SESAM V2 database using an example . 7
2.1.1 Terminology for logical organization . 7
2.1.2 Terminology for physical organization . 9
2.2 Database structure and migration of SESAM V1 tables . 10
2.2.1 DRIVE requirements for SESAM migration . 12
2.3 DRIVE program access to SESAM . 12
2.3.1 SQL language resources in new style . 14
2.3.2 Static programs . 15
2.3.3 Dynamic programs . 16
2.3.4 Program communication . 17
2.3.5 Programming recommendations . 23
2.3.6 Incompatibilities . 24
2.4 Defining the database environment . 25
2.4.1 SET CATALOG/SCHEMA/SESSION AUTHORIZATION . 26
2.4.2 PARAMETER DYNAMIC CATALOG/SCHEMA/AUTHORIZATION 26
2.4.3 OPTION CATALOG/SCHEMA/AUTHORIZATION . 28
2.4.4 Changing the database and schema . 28
2.4.5 Current authorization identifier for compilation and execution . 29
2.4.6 Examples of database environments . 30
2.4.6.1 SESAM database and DRIVE programs . 30
2.4.6.2 TIAM operation . 31
2.4.6.3 UTM operation . 34
2.5 DRIVE statements for SESAM V2 . 36
2.5.1 PARAMETER DYNAMIC - Define dynamic parameters . 36
2.5.2 OPTION - Control program compilation . 38
2.5.3 SESAM V2 settings in foreign environments . 39
2.5.4 SHOW - Output information about metadata . 40
2.6 Examples and sample database . 42
2.6.1 Sample tables before and after migration . 42
2.6.2 Command file for migration . 47

296 U20069-J-Z145-3-7600

Contents

2.6.3 DRIVE DDL programs for the table ABTEILUNG . 50
2.6.4 DRIVE DDL program for access permissions and foreign keys 52
2.6.5 Sample programs . 53
2.7 Pragmas . 62
2.7.1 Application possibilities and advantages . 62
2.7.2 Differences in syntax compared with ESQL/COBOL and the Utility Monitor 63
2.7.3 Static and dynamic pragmas . 63
2.7.4 Pragma clauses . 63
2.7.5 Error handling . 66

3 DRIVE SQL statements . 69
ALTER TABLE - Alter base table . 70
CLOSE - Close cursor . 74
COMMIT WORK - Terminate transaction . 75
CREATE SCHEMA - Create schema . 79
CREATE TABLE - Create base table . 81
CREATE TEMPORARY VIEW - Declare temporary view . 83
CREATE VIEW - Create view . 86
DECLARE - Declare cursor . 88
DELETE - Delete rows . 95
DROP CURSOR - Release cursor description . 97
DROP SCHEMA - Delete schema . 98
DROP TABLE - Delete base table . 99
DROP TEMPORARY VIEW - Delete temporary view . 100
DROP VIEW - Delete view . 101
FETCH - Position cursor and read row . 102
GRANT - Grant privileges . 106
INSERT - Insert rows in table . 111
OPEN - Open cursor . 116
PERMIT - Specify user identification for old style . 117
PRAGMA - Declare pragma clauses . 119
PREFETCH pragma clause . 121
EXPLAIN pragma clause . 122
ISOLATION LEVEL pragma clause . 124
IGNORE INDEX pragma clause . 124
OPTIMIZATION LEVEL pragma clause . 125
SIMPLIFICATION pragma clause . 126
DATA TYPE pragma clause . 126
CHECK pragma clause . 126
RESTORE - Restore cursor . 127
REVOKE - Revoke privileges . 129
ROLLBACK WORK - Roll back transaction . 132
SELECT - Read individual rows . 134
SET CATALOG - Set default database name . 136

U20069-J-Z145-3-7600 297

 Contents

SET SCHEMA - Set default schema name . 138
SET SESSION AUTHORIZATION - Define authorization identifier 140
SET TRANSACTION - Define transaction attributes . 142
STORE - Save cursor position . 146
UPDATE - Update column values . 147
WHENEVER - Define error handling . 152

4 DRIVE SQL metavariables . 157
query_expression . 159
condition . 162
join_expression . 165
literal . 168
char_literal - Alphanumeric literal . 169
num_literal - Numeric literals . 170
date_time_literal - Time literals . 171
set_function . 173
AVG() - Calculate arithmetic average . 174
COUNT(*) - Count table rows . 176
COUNT() - Count elements . 177
MAX() - Determine largest value . 179
MIN() - Determine lowest value . 181
SUM() - Calculate sum . 183
predicate - Specify predicate . 185
Comparing two values . 187
Comparison with derived column . 190
Range queries . 192
Element queries . 194
Pattern comparison . 196
Comparison with the NULL value . 199
Existence queries . 201
select_expression . 202
select_list - Select derived columns . 204
FROM clause - Specify tables . 206
WHERE clause - Select derived rows . 207
GROUP BY clause - Group derived rows . 208
HAVING clause - Select groups . 210
column_constraint . 211
column_definition . 213
sql_expression . 216
table_specification . 222
table_constraint . 225
subquery . 227
variable . 228
value . 230

298 U20069-J-Z145-3-7600

Contents

time_function . 232

5 Syntax overview . 235
5.1 Statements . 235

ALTER TABLE - Alter base table . 235
CLOSE - Close cursor . 236
COMMIT WORK - Terminate transaction . 236
CREATE SCHEMA - Create schema . 236
CREATE TABLE - Create base table . 236
CREATE TEMPORARY VIEW - Declare temporary view . 237
CREATE VIEW - Create view . 237
DECLARE - Declare cursor . 237
DELETE - Delete rows . 238
DROP CURSOR - Release cursor description . 238
DROP SCHEMA - Delete schema . 238
DROP TABLE - Delete base table . 238
DROP TEMPORARY VIEW - Delete temporary view . 238
DROP VIEW - Delete view . 239
FETCH - Position cursor and read row . 239
GRANT - Grant privileges . 239
INSERT - Insert rows in table . 240
OPEN - Open cursor . 240
PERMIT - Specify user identification for old style . 241
PRAGMA - Declare pragma clauses . 241
RESTORE - Restore cursor . 241
REVOKE - Revoke privileges . 242
ROLLBACK WORK - Roll back transaction . 242
SELECT - Read individual rows . 243
SET CATALOG - Set default database name . 243
SET SCHEMA - Set default schema name . 243
SET SESSION AUTHORIZATION - Define authorization identifier 244
SET TRANSACTION - Define transaction attributes . 244
STORE - Save cursor position . 244
UPDATE - Update column values . 245
WHENEVER - Define error handling . 245

5.2 Metavariables . 246
query_expression . 246
condition . 246
join_expression . 246
literal . 247
set_function . 247
predicate . 248
select_expression . 248
column_constraint . 249

U20069-J-Z145-3-7600 299

 Contents

column_definition . 249
sql_expression . 250
table_specification . 250
table_constraint . 251
subquery . 251
variable . 251
value . 252
time_function . 252

6 Error messages . 253
6.1 Mapping the SESAM SQLCODEs to &DML_STATE . 253

SQLCODEs from the language definition . 253
System-specific SQLCODEs . 256

6.2 SQLSTATE classes . 259

Related publications . 261

Index . 275

300 U20069-J-Z145-3-7600

Contents

U20069-J-Z145-3-7600 301

DRIVE/WINDOWS V2.1
(BS2000/OSD)

Direc tory of DRIVE SQL Statements for SESAM/SQL 2

Reference Manual

Target Group

The manual is aimed at programmers who develop DRIVE applications or components of
client-server applications using DRIVE/WINDOWS on BS2000 computers and
SESAM/SQL Server V2 as a database.

Contents

The manual describes all DRIVE SQL statements for SESAM/SQL 2 in alphabetical order
together with their syntax and a description of their functional scope.

Edit ion: February 1996

File: DRV_SES2.PDF

BS2000 and DRIVE are registered trademarks of Siemens Nixdorf Informationssysteme
AG

Copyright © Siemens Nixdorf Informationssysteme AG, 1996.

All rights are reserverd
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufactures.

Information on this document
On April 1, 2009, Fujitsu became the sole owner of Fujitsu Siemens Compu-
ters. This new subsidiary of Fujitsu has been renamed Fujitsu Technology So-
lutions.

This document from the document archive refers to a product version which
was released a considerable time ago or which is no longer marketed.

Please note that all company references and copyrights in this document have
been legally transferred to Fujitsu Technology Solutions.

Contact and support addresses will now be offered by Fujitsu Technology So-
lutions and have the format …@ts.fujitsu.com.

The Internet pages of Fujitsu Technology Solutions are available at
http://ts.fujitsu.com/...
and the user documentation at http://manuals.ts.fujitsu.com.

Copyright Fujitsu Technology Solutions, 2009

Hinweise zum vorliegenden Dokument
Zum 1. April 2009 ist Fujitsu Siemens Computers in den alleinigen Besitz von
Fujitsu übergegangen. Diese neue Tochtergesellschaft von Fujitsu trägt seit-
dem den Namen Fujitsu Technology Solutions.

Das vorliegende Dokument aus dem Dokumentenarchiv bezieht sich auf eine
bereits vor längerer Zeit freigegebene oder nicht mehr im Vertrieb befindliche
Produktversion.

Bitte beachten Sie, dass alle Firmenbezüge und Copyrights im vorliegenden
Dokument rechtlich auf Fujitsu Technology Solutions übergegangen sind.

Kontakt- und Supportadressen werden nun von Fujitsu Technology Solutions
angeboten und haben die Form …@ts.fujitsu.com.

Die Internetseiten von Fujitsu Technology Solutions finden Sie unter
http://de.ts.fujitsu.com/..., und unter http://manuals.ts.fujitsu.com finden Sie die
Benutzerdokumentation.

Copyright Fujitsu Technology Solutions, 2009

	Title
	Contents
	Preface
	Summary of contents
	Structure of DRIVE SQL statements
	Notational conventions

	Working with SESAM/SQL V2
	Organization of a SESAM V2 database using an e...
	Terminology for logical organization
	Terminology for physical organization

	Database structure and migration of SESAM V1 t...
	DRIVE requirements for SESAM migration

	DRIVE program access to SESAM
	SQL language resources in new style
	Static programs
	Dynamic programs
	Program communication
	Programming recommendations
	Incompatibilities

	Defining the database environment
	SET CATALOG/SCHEMA/SESSION AUTHORIZATION
	PARAMETER DYNAMIC CATALOG/SCHEMA/AUTHORIZATI...
	OPTION CATALOG/SCHEMA/AUTHORIZATION
	Changing the database and schema
	Current authorization identifier for compila...
	Examples of database environments
	SESAM database and DRIVE programs
	TIAM operation
	UTM operation

	DRIVE statements for SESAM V2
	PARAMETER DYNAMIC - Define dynamic parameter...
	OPTION - Control program compilation
	SESAM V2 settings in foreign environments
	SHOW - Output information about metadata

	Examples and sample database
	Sample tables before and after migration
	Command file for migration
	DRIVE DDL programs for the table ABTEILUNG
	DRIVE DDL program for access permissions and...
	Sample programs

	Pragmas
	Application possibilities and advantages
	Differences in syntax compared with ESQL/COB...
	Static and dynamic pragmas
	Pragma clauses
	Error handling

	DRIVE SQL statements
	ALTER TABLE - Alter base table
	CLOSE - Close cursor
	COMMIT WORK - Terminate transaction
	CREATE SCHEMA - Create schema
	CREATE TABLE - Create base table
	CREATE TEMPORARY VIEW - Declare temporary view
	CREATE VIEW - Create view
	DECLARE - Declare cursor
	DELETE - Delete rows
	DROP CURSOR - Release cursor description
	DROP SCHEMA - Delete schema
	DROP TABLE - Delete base table
	DROP TEMPORARY VIEW - Delete temporary view
	DROP VIEW - Delete view
	FETCH - Position cursor and read row
	GRANT - Grant privileges
	INSERT - Insert rows in table
	OPEN - Open cursor
	PERMIT - Specify user identification for old style...
	PRAGMA - Declare pragma clauses
	PREFETCH pragma clause
	EXPLAIN pragma clause
	ISOLATION LEVEL pragma clause
	IGNORE INDEX pragma clause
	OPTIMIZATION LEVEL pragma clause
	SIMPLIFICATION pragma clause
	DATA TYPE pragma clause
	CHECK pragma clause

	RESTORE - Restore cursor
	REVOKE - Revoke privileges
	ROLLBACK WORK - Roll back transaction
	SELECT - Read individual rows
	SET CATALOG - Set default database name
	SET SCHEMA - Set default schema name
	SET SESSION AUTHORIZATION - Define authorization i...
	SET TRANSACTION - Define transaction attributes
	STORE - Save cursor position
	UPDATE - Update column values
	WHENEVER - Define error handling

	DRIVE SQL metavariables
	query_expression
	condition
	join_expression
	literal
	char_literal - Alphanumeric literal
	num_literal - Numeric literals
	date_time_literal - Time literals

	set_function
	AVG() - Calculate arithmetic average
	COUNT(*) - Count table rows
	COUNT() - Count elements
	MAX() - Determine largest value
	MIN() - Determine lowest value
	SUM() - Calculate sum

	predicate - Specify predicate
	Comparing two values
	Comparison with derived column
	Range queries
	Element queries
	Pattern comparison
	Comparison with the NULL value
	Existence queries

	select_expression
	select_list - Select derived columns
	FROM clause - Specify tables
	WHERE clause - Select derived rows
	GROUP BY clause - Group derived rows
	HAVING clause - Select groups

	column_constraint
	column_definition
	sql_expression
	table_specification
	table_constraint
	subquery
	variable
	value
	time_function

	Syntax overview
	Statements
	ALTER TABLE - Alter base table
	CLOSE - Close cursor
	COMMIT WORK - Terminate transaction
	CREATE SCHEMA - Create schema
	CREATE TABLE - Create base table
	CREATE TEMPORARY VIEW - Declare temporary view
	CREATE VIEW - Create view
	DECLARE - Declare cursor
	DELETE - Delete rows
	DROP CURSOR - Release cursor description
	DROP SCHEMA - Delete schema
	DROP TABLE - Delete base table
	DROP TEMPORARY VIEW - Delete temporary view
	DROP VIEW - Delete view
	FETCH - Position cursor and read row
	GRANT - Grant privileges
	INSERT - Insert rows in table
	OPEN - Open cursor
	PERMIT - Specify user identification for old style...
	PRAGMA - Declare pragma clauses
	RESTORE - Restore cursor
	REVOKE - Revoke privileges
	ROLLBACK WORK - Roll back transaction
	SELECT - Read individual rows
	SET CATALOG - Set default database name
	SET SCHEMA - Set default schema name
	SET SESSION AUTHORIZATION - Define authorization i...
	SET TRANSACTION - Define transaction attributes
	STORE - Save cursor position
	UPDATE - Update column values
	WHENEVER - Define error handling

	Metavariables
	query_expression
	condition
	join_expression
	literal
	set_function
	predicate
	select_expression
	column_constraint
	column_definition
	sql_expression
	table_specification
	table_constraint
	subquery
	variable
	value
	time_function

	Error messages
	Mapping the SESAM SQLCODEs to &DML_STATE
	SQLCODEs from the language definition
	System-specific SQLCODEs

	SQLSTATE classes

	Related publications
	Index
	A
	B-C
	D
	E-F
	G-I
	J-M
	N-O
	P
	Q-R
	S
	T
	U-W

