
Edition January 2015

©
 S

ie
m

e
ns

 N
ix

do
rf

 In
fo

rm
at

io
n

ss
ys

te
m

e
 A

G
 1

99
5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6.

3\
_

14
0

36
09

_
U

p
ic

\e
n

\u
pi

c_
e

.v
or

English

openUTM-Client V6.3 for the UPIC Carrier System
Client-Server Communication with openUTM

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

openUTM-Client for the UPIC Carrier System

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

 2
0

15
 S

ta
nd

 0
8:

26
.0

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

iv
z

Contents

1 Preface . 9

1.1 Brief description of the openUTM-Client product 11

1.2 Summary of contents and target group . 12

1.3 Summary of contents of the openUTM documentation 13
1.3.1 openUTM documentation . 13
1.3.2 Documentation for the openSEAS product environment 18
1.3.3 Readme files . 19

1.4 Changes since the last version of this manual 20

1.5 Notational conventions . 21

2 Application area . 25

2.1 The concept of openUTM-Client . 26

2.2 Client/server communication with openUTM . 28

2.3 UPIC local, UPIC remote and multithreading . 29

2.4 Support for UTM cluster applications . 32

3 C++ class CUpic . 33

3.1 Introduction . 33
3.1.1 Configuration using Helper classes CUpicLocAddr and CUpicRemAddr 33
3.1.2 Configuration using a side information file (upicfile) 34
3.1.3 The CUpic class on thread-capable systems . 34

3.2 Helper classes . 35
3.2.1 CUpicLocAddr . 35
3.2.1.1 Constructors . 35
3.2.1.2 Member functions . 36

Contents

 openUTM-Client for the UPIC Carrier System

3.2.2 CUpicRemAddr . 37
3.2.2.1 Constructors . 37
3.2.2.2 Member functions . 38
3.2.3 CUpic security . 39

3.3 ClassCUpic . 40
3.3.1 Constructors . 40
3.3.2 Property handlers . 40
3.3.3 Function calls . 42
3.3.4 Public diagnostic function . 46

3.4 Example . 47

4 CPI-C interface . 49

4.1 CPI-C terms . 50

4.2 General structure of a CPI-C application . 55

4.3 Exchange of messages with a UTM service . 56
4.3.1 Sending a message and starting a UTM service . 57
4.3.2 Receiving a message, blocking and non-blocking receive 59
4.3.3 Sending and receiving formats . 62
4.3.4 UTM function keys . 66
4.3.5 Cursor position . 68
4.3.6 Code conversion . 68
4.3.7 User-defined code conversion for Windows systems 70

4.4 Communicating with the UTM server . 72
4.4.1 Communicating in a single-step UTM service . 73
4.4.2 Communicating in a multi-step UTM service . 75
4.4.3 Communicating in a multi-step UTM service with distributed transaction processing . 76
4.4.4 Querying the transaction state . 77

4.5 User concept, security and restart . 78
4.5.1 User concept . 78
4.5.2 Security functions . 79
4.5.3 Restart . 82

4.6 Encryption . 85

4.7 Multiple conversations . 90

4.8 Default server and DEFAULT name of a client . 95
4.8.1 Multiple sign-on to the same UTM application with the same name 96

Contents

openUTM-Client for the UPIC Carrier System

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.iv
z

4.9 CPI-C calls in UPIC . 97
Overview . 97
Allocate - Establishing a conversation . 101
Convert_Incoming - Converting data from code of sender to local code 104
Convert_Outgoing - Converting data from local code to code of receiver 105
Deallocate - Terminating a conversation . 106
Deferred_Deallocate - Terminating a conversation after termination of a transaction . 108
Disable_UTM_UPIC - Signing off from the UPIC carrier system 110
Enable_UTM_UPIC - Signing on to the UPIC carrier system 112
Extract_Client_Context - Querying the client context 116
Extract_Conversation_Encryption_Level - Querying encryption level 119
Extract_Conversation_State - Querying state of conversation 122
Extract_Convertion - Querying the value of the CHARACTER_CONVERTION

conversation characteristic . 124
Extract_Cursor_Offset - Querying cursor position offset 126
Extract_Partner_LU_Name - Querying partner_LU_Name 128
Extract_Secondary_Information - Querying secondary information 130
Extract_Secondary_Return_Code - Querying secondary return codes 133
Extract_Shutdown_State - Querying the shutdown state of the server 138
Extract_Shutdown_Time - Query the shutdown time of the server 140
Extract_Transaction_State - Querying service and transaction state of the server . . 143
Initialize_Conversation - Initializing the conversation characteristics 146
Prepare_To_Receive - Changing state from “Send” to “Receive” 150
Receive - Receiving data from a UTM service . 153
Receive_Mapped_Data - Receiving data and format identifier from a UTM service . . 164
Send_Data - Sending data to a UTM service . 175
Send_Mapped_Data - Sending data and format identifier 178
Set_Allocate_Timer - Setting timer for the allocate call 181
Set_Client_Context - Setting the client context . 183
Set_Conversation_Encryption_Level - Setting the encryption level 186
Set_Conversation_Security_New_Password - Setting new password 190
Set_Conversation_Security_Password - Setting the password 193
Set_Conversation_Security_Type - Setting the security type 196
Set_Conversation_Security_User_ID - Setting the UTM user ID 198
Set_Convertion - Setting the CHARACTER_CONVERTION conversation

characteristic . 200
Set_Deallocate_Type - Setting deallocate_type . 202
Set_Function_Key - Setting a UTM function key . 204
Set_Partner_Host_Name - Setting the partner host name 207
Set_Partner_IP_Address - Setting the IP address of the partner application 209
Set_Partner_LU_Name - Setting the conversation characteristics partner_LU_name . 212
Set_Partner_Port - Setting the TCP/IP port for the partner application 215
Set_Partner_Tsel - Setting the T-SEL of the partner application 217
Set_Partner_Tsel_Format - Setting the T-SEL format of the partner application 219

Contents

 openUTM-Client for the UPIC Carrier System

Set_Receive_Timer - Setting the timer for a blocking receive 221
Set_Receive_Type - Setting the receive type . 224
Set_Sync_Level - Setting a synchronization level 227
Set_TP_Name - Setting TP-name . 229
Specify_Local_Port - Setting the TCP/IP port of the local application 231
Specify_Local_Tsel - Setting the T-SEL of the local application 233
Specify_Local_Tsel_Format - Setting the TSEL format of the local application 235
Specify_Secondary_Return_Code - Setting the properties of the secondary

return code . 237

4.10 COBOL interface . 239

5 XATMI interface . 241

5.1 Linking client/server applications . 242
5.1.1 Default server . 243
5.1.2 Restart . 243

5.2 Communication paradigms . 244

5.3 Typed buffers . 247

5.4 Program interface . 250
5.4.1 XATMI functions for clients . 250
5.4.2 Calls for connecting to the carrier system . 251

tpinit - Initializing the client . 252
tpterm - Signing the client off . 254

5.4.3 Transaction control . 255
5.4.4 Mixed operation . 255
5.4.5 Administration interface . 255
5.4.6 Header files and COPY elements . 256
5.4.7 Events and error handling . 257
5.4.8 Creating typed buffers . 258
5.4.9 Characteristics of XATMI in UPIC . 260

5.5 Configuring . 261
5.5.1 Creating the local configuration file . 261
5.5.2 The xatmigen tool . 266
5.5.3 Configuring the carrier system and UTM partners 269
5.5.3.1 Configuring UPIC . 269
5.5.3.2 Initialization parameters and UTM generation 270

5.6 Running XATMI applications . 273
5.6.1 Linking and starting an XATMI program . 273
5.6.1.1 Linking an XATMI program on Windows systems 273

Contents

openUTM-Client for the UPIC Carrier System

©
 S

ie
m

en
s

N
ix

do
rf

 In
fo

rm
at

io
ns

sy
st

e
m

e
A

G
 1

99
5

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.iv
z

5.6.1.2 Linking an XATMI program under Unix systems 273
5.6.1.3 Linking an XATMI program under BS2000 systems 274
5.6.1.4 Starting the program . 274
5.6.2 Setting Environment variables on Windows and Unix systems 274
5.6.3 Setting job variables under BS2000 systems . 276
5.6.4 Trace . 277

5.7 xatmigen messages . 278

6 Configuration . 281

6.1 Configuration without upicfile . 282
6.1.1 UPIC-R configuration . 284
6.1.2 UPIC-L configuration . 286
6.1.3 Configuration with TNS entries . 286
6.1.4 Configuration using BCMAP entries . 286

6.2 The side information file (upicfile) . 288
6.2.1 Side information for standalone UTM applications 289
6.2.2 Side information for UTM cluster applications . 296
6.2.3 Side information for the local application . 303

6.3 Coordination with the partner configuration . 306

7 Implementing CPI-C applications . 309

7.1 Runtime environment, linking, starting . 309
7.1.1 Implementing in Windows systems . 311
7.1.1.1 Compilation, linking, starting . 311
7.1.1.2 Runtime environment, environment variables 313
7.1.1.3 Special features of implementing UPIC local on Windows systems 314
7.1.2 Implementation in Unix systems . 317
7.1.2.1 Compilation, linking, starting . 317
7.1.2.2 Runtime environment, environment variables 318
7.1.2.3 Special features of implementing UPIC local on Unix systems 319
7.1.3 Deployment in BS2000 systems . 320

7.2 Handling of CPI-C partners by openUTM . 322

7.3 Behavior in the event of errors . 323

7.4 Diagnostics . 327
7.4.1 UPIC log file . 327
7.4.2 UPIC trace . 328

Contents

 openUTM-Client for the UPIC Carrier System

7.4.3 PCMX diagnostics (Windows systems) . 334

8 Examples . 335

8.1 Sample programs for Windows systems . 335
8.1.1 uptac . 336
8.1.2 utp32 . 336
8.1.3 tpcall . 337
8.1.4 upic-cob . 337
8.1.5 UpicSimple . 337

8.2 UpicAnalyzer and UpicReplay on 64-bit Linux systems 338
8.2.1 UpicAnalyzer . 338
8.2.2 UpicReplay . 339

8.3 Generation UPIC on Windows systems <-> openUTM on BS2000 systems . . . 340
8.3.1 Generation on the Windows system . 340
8.3.2 Generation on the BS2000 host . 341

8.4 Generation UPIC on Windows systems <-> openUTM on Unix systems 342
8.4.1 Generation on the Windows system . 342
8.4.2 Generation on the Unix system . 343

9 Appendix . 345

9.1 Differences vis à vis the X/Open CPI-C interface 345

9.2 Character sets . 348

9.3 State table . 350

Glossary . 357

Abbreviations . 393

Related publications . 399

Index . 409

openUTM-Client for the UPIC Carrier System 9

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

1

1 Preface

Modern enterprise-wide IT environments are subjected to many challenges of rapidly
increasing importance. This is the result of:

● heterogeneous system landscapes

● different hardware platforms

● different networks and different types of network access (TCP/IP, SNA, ...)

● the applications used by companies

Consequently, problems arise – whether as a result of mergers, joint ventures or labor-
saving measures. Companies are demanding flexible, scalable applications, as well as
transaction processing capability for processes and data, while business processes are
becoming more and more complex. The growth of globalization means, of course, that
applications are expected to run 24 hours a day, seven days a week, and must offer high
availability in order to enable Internet access to existing applications across time zones.

openUTM is a high-end platform for transaction processing that offers a runtime
environment that meets all these requirements of modern, business-critical applications,
because openUTM combines all the standards and advantages of transaction monitor
middleware platforms and message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

An UTM application can be run as a standalone UTM application or sumultanously on
several different computers as a UTM cluster application.

Preface

10 openUTM-Client for the UPIC Carrier System

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the
Oracle Fusion middleware, openSEAS delivers all the functions required for application
innovation and modern application development. Innovative products use the sophisticated
technology of openUTM in the context of the openSEAS product offering:

● BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA)
and supports standardized connection of UTM applications to Java EE application
servers. This makes it possible to integrate tried-and-tested legacy applications in new
business processes.

● The WebTransactions member of the openSEAS family is a product that allows tried-
and-tested host applications to be used flexibly in new business processes and modern
application scenarios. Existing UTM applications can be migrated to the Web without
modification.

Preface Brief description of the openUTM-Client product

openUTM-Client for the UPIC Carrier System 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

1

1.1 Brief description of the openUTM-Client product

The product openUTM-Client offers client/server communication with openUTM server
applications which run on Windows systems, Unix systems and BS2000 systems.
openUTM-Client is available with the carrier systems UPIC and OpenCPIC. It is the job of
the carrier system to establish the connection to other necessary system components (e.g.
the transport system) and to control the client/server communication.

For calling the services of an UTM server application, openUTM-Client provides the
standardized X/Open interfaces CPI-C and XATMI. CPI-C and XATMI are supported by
both the UPIC and the OpenCPIC carrier systems.

● CPI-C stands for Common Programming Interface for Communication.
CPI-C implements a subset of the functions of the CPI-C interface defined in X/Open.
CPI-C enables client/server communication between a CPI-C client application and
services of a UTM application which use either the CPI-C or the KDCS interface.

● XATMI is an X/Open interface for a communication resource manager, with which
client/server communication can be implemented with remote UTM server applications.
XATMI enables communication with the services of a UTM application which use the
XATMI server interface.
XATMI is the interface defined in the X/Open Preliminary Specification.

openUTM-Client for different platforms

openUTM-Client is available for the following platforms:
– Windows systems
– Unix systems
– BS2000 systems (UPIC carrier system only)

Because the CPI-C and XATMI interfaces are standardized, i.e. are identical on all
platforms, client applications created and tested on one platform can be ported to any of the
other platforms.

Summary of contents and target group Preface

12 openUTM-Client for the UPIC Carrier System

1.2 Summary of contents and target group

This manual is intended for organization planners, application planners, programmers and
administrators who wish to create and run client applications based on UPIC for communi-
cation with UTM server applications. It therefore describes openUTM-Client only for the
UPIC carrier system. Information on the OpenCPIC carrier system can be found in a
separate manual “openUTM-Client for the OpenCPIC Carrier System”.

The description given in this manual applies to the Windows platforms, Unix platforms,
Linux platforms and BS2000 systems.
Special information which relates to a specific platform only is indicated by corresponding
headings.

i Wherever the term Unix system or Unix platform is used in the following, then this
should be understood to mean both a Unix-based operating system such as Solaris
or HP-UX and a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is used below, this should
be understood to mean all the variants of Windows under which openUTM runs.

Preface Summary of contents of the openUTM documentation

openUTM-Client for the UPIC Carrier System 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

1

1.3 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various
related products.

1.3.1 openUTM documentation

The openUTM documentation consists of manuals, the online help systems for the
graphical administration workstation openUTM WinAdmin and the graphical administration
tool WebAdmin, and a release note for each platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000 systems,
Unix systems or Windows systems.

All the manuals are available as PDF files on the internet at

http://manuals.ts.fujitsu.com

On this site, enter the search term “openUTM V6.3“ in the Search by product field to
display all openUTM manuals of version 6.3.

The manuals are included on the Enterprise DVD with open platforms and are available on
the WinAdmin DVD for BS2000 systems.

The following sections provide a task-oriented overview of the openUTM V6.3 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related
publications at the back of the manual on page 399.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential
functions, features and areas of application of openUTM. It contains all the information
required to plan a UTM operation and to design an UTM application. The manual explains
what openUTM is, how it is used, and how it is integrated in the BS2000, Unix based and
Windows based platforms.

http://manuals.ts.fujitsu.com

Summary of contents of the openUTM documentation Preface

14 openUTM-Client for the UPIC Carrier System

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++
manual to create server applications via the KDCS interface. This manual describes the
KDCS interface as used for COBOL, C and C++. This interface provides the basic
functions of the universal transaction monitor, as well as the calls for distributed
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want
to use the X/Open interface. This manual contains descriptions of the UTM-specific
extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as notes on
configuring and operating UTM applications which use X/Open interfaces. In addition,
you will require the X/Open-CAE specification for the corresponding X/Open interface.

● If you want to interchange data on the basis of XML, you will need the document entitled
openUTM XML for openUTM. This describes the C and COBOL calls required to work
with XML documents.

● For BS2000 systems there is supplementary documentation on the programming
languages Assembler, Fortran, Pascal-XT and PL/1.

Configuration

The Generating Applications manual is available to you for defining configurations. This
describes for both standalone UTM applications and UTM cluster applications how to use
the UTM tool KDCDEF to

● define the configuration

● generate the KDCFILE

● and generate the UTM cluster files for UTM cluster applications

In addition, it also shows you how to transfer important administration and user data to a
new KDCFILE using the KDCUPD tool. You do this, for example, when moving to a new
openUTM version or after changes have been made to the configuration. In the case of
UTM cluster applications, it also indicates how you you can use the KDCUPD tool to
transfer this data to the new UTM cluster files.

Preface Summary of contents of the openUTM documentation

openUTM-Client for the UPIC Carrier System 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

1

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using openUTM Applica-
tions manual for the relevant operating system (BS2000 or Unix systems/Windows
systems). This describes how to link and start a UTM application program, how to sign on
and off to and from a UTM application and how to replace application programs dynamically
and in a structured manner. It also contains the UTM commands that are available to the
terminal user. Additionally, those issues are described in detail that need to be considered
when operating UTM cluster applications.

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for admin-
istration and the UTM administration commands. It provides information on how to
create your own administration programs for operating a standalone UTM application
or a UTM cluster application and on the facilities for administering several different
applications centrally. It also describes how to administer message queues and printers
using the KDCS calls DADM and PADM.

● If you are using the graphical administration workstation openUTM WinAdmin or the
Web application openUTM WebAdmin, which provides comparable functionality, then
the following documentation is available to you:

– A description of WinAdmin and description of WebAdmin, which provide a
comprehensive overview of the functional scope and handling of
WinAdmin/WebAdmin. These documents are shipped with the associated software
and are also available online as a PDF file.

– The respective online help systems, which provide context-sensitive help infor-
mation on all dialog boxes and associated parameters offered by the graphical user
interface. In addition, it also tells you how to configure WinAdmin or WebAdmin in
order to administer standalone UTM applications and UTM cluster applications.

i For detailed information on the integration of openUTM WebAdmin in SE Server's
SE Manager, see the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are
separate manuals for Unix systems / Windows systems and for BS2000 systems) to carry
out the tasks mentioned above. These manuals describe how to debug a UTM application,
the contents and evaluation of a UTM dump, the behavior in the event of an error, and the
openUTM message system, and also lists all messages and return codes output by
openUTM.

Summary of contents of the openUTM documentation Preface

16 openUTM-Client for the UPIC Carrier System

Creating openUTM clients

The following manuals are available to you if you want to create client applications for
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and
operation of client applications based on UPIC. In addition to the description of the
CPI-C and XATMI interfaces, you will find information on how you can use the C++
classes to create programs quickly and easily.

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to
install and configure OpenCPIC and configure an OpenCPIC application. It describes
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates
what needs to be taken into account when programming a CPI-C application and what
restrictions apply compared with the X/Open CPI-C interface.

● The documentation for the JUpic-Java classes shipped with BeanConnect is supplied
with the software. This documentation consists of Word and PDF files that describe its
introduction and installation and of Java documentation with a description of the Java
classes.

● The BizXML2Cobol manual describes how you can extend existing COBOL programs
of a UTM application in such a way that they can be used as an XML-based standard
Web service. How to work with the graphical user interface is described in the online
help system.

● If you want to provide UTM services on the Web quickly and easily then you need the
manual WebServices for openUTM. The manual describes how to use the software
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. The use of the graphical user interface is described in
the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the
manual Distributed Transaction Processing between openUTM and CICS, IMS and
LU6.2 Applications. This describes the CICS commands, IMS macros and UTM calls that
are required to link UTM applications to CICS and IMS applications. The link capabilities
are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and
administration.

Preface Summary of contents of the openUTM documentation

openUTM-Client for the UPIC Carrier System 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

1

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix and Windows
systems. The functions of PCMX are described in the following documents:

● CMX manual “Betrieb und Administration“ (Unix-Systeme) (only available in German)

● PCMX online help system for Windows systems

Summary of contents of the openUTM documentation Preface

18 openUTM-Client for the UPIC Carrier System

1.3.2 Documentation for the openSEAS product environment

The Concepts and Functions manual briefly describes how openUTM is connected to the
openSEAS product environment. The following sections indicate which openSEAS
documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect
adapter implements the connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications
in Java applications.

● The manual BeanConnect describes the product BeanConnect, that provides a JCA
1.5- and JCA 1.6-compliant adapter which connects UTM applications with applications
based on Java EE, e.g. the Oracle application server.
The manuals for the Oracle application server can be obtained from Oracle.

Connecting to the web and application integration

You require the WebTransactions manuals to connect new and existing UTM applications
to the Web using the product WebTransactions.

The manuals will also be supplemented by JavaDocs.

Preface Summary of contents of the openUTM documentation

openUTM-Client for the UPIC Carrier System 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

1

1.3.3 Readme files

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. For the BS2000 platform, you will also find
the Readme files on the Softbook DVD.

Information under BS2000 systems

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

Readme files under Unix systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under /docs/language.

Readme files under Windows systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under \Docs\language.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Changes since the last version of this manual Preface

20 openUTM-Client for the UPIC Carrier System

1.4 Changes since the last version of this manual

The manual openUTM-Client V6.3 for the UPIC Carrier System covers the following no
functional changes since the manual openUTM-Client V6.2 for the UPIC Carrier System:

Load simulation with Workload Capture & Replay

openUTM Client V6.3 for UPIC Carrier System supports the Workload Capture & Replay by
means of the components UPIC Analyzer and UPIC Replay:

● UPIC Analyzer: Used to analyze the recorded communication.

● UPIC Replay: Used to replay the recorded UPIC session with different load parameters
(speed, number of clients).

UPIC Analyzer and UPIC Replay are only available on 64-bit Linux systems and are supplied
with openUTM Client (UPIC).

For details on the concept of Worklaod Capture & Replay, please refer to the openUTM
manual “Using openUTM Applications under BS2000 Systems” and the openUTM manual
“Using openUTM Applications under Unix Systems and Windows Systems”.

Other changes

● On Windows systems, openUTM Client is supplied for both 32-bit and 64-bit environ-
ments. The root directory for a 32-bit environment is upicw32, whereas for a 64-bit
environment it is upicw64. The names of the underlying subdirectories are identical for
all the environments. In addition, the file names for the examples uptac and
tpcall(XATMI) have been modified in such a way that they are identical for both
environments.

● The C++ interface is supported in this version for the last time.

Preface Notational conventions

openUTM-Client for the UPIC Carrier System 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

1

1.5 Notational conventions

upic-dir
The directory under which UPIC Client for UPIC Carrier System is installed.

Symbols

Parts of the description which only apply to specific UPIC platforms are indicated by a
symbol in the left margin as follows:

Indicates parts of the description that are only significant for UPIC under
BS2000 systems.

Indicates parts of the description that are only significant for UPIC under Unix systems.

Indicates parts of the description that are only significant for UPIC under Windows systems.

Indicates parts of the description that are only significant for UPIC under BS2000 systems
and Unix systems.

Indicates parts of the description that are only significant for UPIC under BS2000 systems
and Windows systems.

Indicates parts of the description that are only significant for UPIC under Unix systems and
Windows systems.

Other symbols

 Indicates references to comprehensive, detailed information on the relevant topic.

i Indicates notes that are of particular importance.

v Indicates warnings.

B

B

X

W

B/X

B/X

B/W

B/W

X/W

X/W

Notational conventions Preface

22 openUTM-Client for the UPIC Carrier System

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this
manual:

Representation Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote constants
(names of calls, statements, field
names, commands and operands
etc.) that are to be entered in this
format.

LOAD-MODE=STARTUP

lowercase letters In syntax diagrams and operand
descriptions, lowercase letters are
used to denote place-holders for the
operand values.

KDCFILE=filebase

lowercase letters in italics In running text, variables, the names
of data structures and fields, and
keywords (e.g. C commands, Unix
file names and Windows file names
etc.) are indicated by lowercase
letters in italics.

COBOL data structures are defined
in the COPY member KCINIC;
C/C++ data structures are defined in
the header file kcini.h.

{ } and | Curly brackets contain alternative
entries, of which you must choose
one. The individual alternatives are
separated within the curly brackets
by pipe characters.

STATUS={ ON | OFF }

[] Square brackets contain optional
entries that can also be omiited.

KDCFILE=(filebase
[, { SINGLE| DOUBLE}])

() Where a list of parameters can be
specified for an operand, the
individual parameters are to be
listed in parentheses and separated
by commas. If only one parameter is
actually specified, you can omit the
parentheses.

KEYS=(key1,key2,...keyn)

Underscoring Underscoring denotes the default
value.

CONNECT= { A/YES | NO }

abbreviated form The standard abbreviated form of
statements, operands and operand
values is emphasized in boldface
type. The abbreviated form can be
entered in place of the full desig-
nation.

TRANSPORT-SELECTOR=c‘C‘

Preface Notational conventions

openUTM-Client for the UPIC Carrier System 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

1

. . . An ellipsis indicates that a syntac-
tical unit can be repeated.
It can also be used to indicate
sections of a program or syntax
description etc.

Start KDCDEF
:
:

OPTION DATA=statement_file
:

END

Representation Meaning Example

Notational conventions Preface

24 openUTM-Client for the UPIC Carrier System

openUTM-Client for the UPIC Carrier System 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

2

2 Application area

Since the screen layout is not actually a function of the transaction monitor, it is delegated
to clients by the UTM application. The UTM application is thus the server. openUTM-Client
with the interfaces CPI-C and XATMI allows you to create client programs that work with
the UTM application as the server.

However, you can also use client programs for load simulations of UTM applications.

The client/server concept

The aim of the client/server concept is to provide the individual users in a network with
services (such as data, programs, devices) and to ensure that optimum use is made of the
strong points of the individual systems.

The client/server concept is always implemented where many clients require the same
service. An analogy to the client/server concept is as follows: the procedure or subroutine
call sets up a client/server relationship between the main program and the subroutine. The
only difference is that the called procedure now runs remotely from the “client”.

Clients (users of services) can request services and information from all servers in the
network.

Servers (providers of services) provide services whereby shared information sources, such
as files and databases, can be distributed randomly within a network configuration.

The concept of openUTM-Client Application area

26 openUTM-Client for the UPIC Carrier System

2.1 The concept of openUTM-Client

To call services, openUTM-Client offers standardized X/Open interfaces on various
platforms and carrier systems.

Figure 1: Standardized X/Open interfaces

Interfaces

openUTM-Client can be programmed with the X/Open interfaces CPI-C and XATMI.

Concealed CPI-C interface for Windows and Unix systems with UPIC carrier system:

For Unix systems and Windows systems, openUTM-Client (UPIC carrier system) provides
a concealed version of the CPI-C interface: the CUpic wrapper class.

A worker thread is created for each CUpic object. In this way, several UPIC conversations
can be active in parallel in an application. The threads are created and controlled transpar-
ently by the CUpic class.

For more information on the CUpic class, see chapter “C++ class CUpic” on page 33.

Interfaces

Carrier system

Operating system

CPI-C

Unix system

openUTM-Client

XATMI

OpenCPIC

Windows system BS2000 system1

UPIC

1 BS2000 systems only with UPIC carrier system

or

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Application area The concept of openUTM-Client

openUTM-Client for the UPIC Carrier System 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

2

Carrier systems

The CPI-C and XATMI interfaces are provided by both the UPIC carrier system and the
OpenCPIC carrier system. The task of the carrier system is to establish the connection to
the other necessary components, such as the transport access system (TCP/IP in Windows
systems, Unix systems or BS2000systems, PCMX-32 or PCMX-64 in Windows systems,
PCMX in Unix systems or BCAM in BS2000 systems).

The UPIC carrier system offers the following advantages over OpenCPIC:

● The client program can simulate the activation of function keys.

● Format IDs can also be exchanged between client and server as structure information
together with the data.

● The client program can assign a new password.

Operating system platforms

A carrier system can reside on the following different kinds of different platform:

● Windows systems

● Unix systems

● BS2000 systems (UPIC carrier system only)

Because the CPI-C and XATMI interfaces are standardized, i.e. identical on all platforms,
the client applications created and tested on one platform can be ported to any of the other
platforms.

Definition of terms

A program containing CPI-C calls is referred to below as a CPI-C program and a program
containing XATMI calls is referred to as an XATMI program. The underlying carrier system
is only mentioned if it influences the functionality or is visible on the interface.

A CPI-C application or an XATMI application is the totality of the CPI-C or XATMI
programs plus all configuration files required for the respective carrier system.

W

X

B

Client/server communication with openUTM Application area

28 openUTM-Client for the UPIC Carrier System

2.2 Client/server communication with openUTM

The diagram below indicates the interfaces via which openUTM clients can communicate
with a UTM server.

Figure 2: Interfaces between openUTM server and openUTM Clients

A client with a CPI-C program can communicate both with a KDCS program unit and with
a CPI-C program unit; a client with an XATMI program can only ever use an XATMI program
unit as a service. A KDCS program unit is a program unit of a UTM server which contains
KDCS calls.

On all platforms, the client and server can reside on the same system.

A UTM server application is always referred to below as a UTM application, or simply as
UTM.

KDCS

program unit

CPI-C

program unit

XATMI

program unit

CPI-C

program

XATMI

program

UTM server application

openUTM clients

Application area UPIC local, UPIC remote and multithreading

openUTM-Client for the UPIC Carrier System 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

2

2.3 UPIC local, UPIC remote and multithreading

With UPIC as the carrier system, you have two main options for linking client programs:
UPIC local (Unix systems/ Windows systems) and UPIC remote (all platforms)

Unless otherwise specified, the information in this manual applies to both variants.

UPIC remote

With UPIC remote (UPIC-R) you can link a client program with UTM applications running
on any system in the network. This option is available for all server platforms (Windows
systems, Unix systems and BS2000 systems). You need the product openUTM-Client for
this. openUTM-Client contains two different versions of UPIC remote. In one variant,
TCP/IP is used via the socket interface. No additional communications components are
necessary for this. In the classic variant, access to the network is controlled via the platform-
specific communication components PCMX (see figure 3).

UPIC local, UPIC remote and multithreading Application area

30 openUTM-Client for the UPIC Carrier System

Figure 3: Remote connection to UTM applications

With a remote connection too, it is possible that the client program and the UTM application
reside on the same system. Even in this case, however, communication between the client
program and openUTM is handled by the communication components TCP/IP or PCMX.

UPIC local (Unix systems/ Windows systems)

With UPIC local (UPIC-L), you can link a client program locally with a UTM application on
the same Unix system or Windows system. The UPIC-local carrier system is available for
Unix systems and Windows systems. It is integrated into the openUTM server software. For
connection via UPIC local you therefore require neither the product openUTM-Client nor the
communication component PCMX.

This option is only available on a Unix system or a Windows system.

openUTM
application

openUTM
application

openUTM
application

N E T W O R K

openUTM

PCMX

PCMX
CMX

BCAM PCMX

TCP/IP

Server Side

Client Side

openUTM openUTM openUTM
Client Client Client

PCMXTCP/IP

BS2000 System Unix System Windows System

BS2000 Systtem Unix System Windows System

Client
openUTM

Client
openUTM

Client

TCP/IP

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Application area UPIC local, UPIC remote and multithreading

openUTM-Client for the UPIC Carrier System 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
1

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

2

Figure 4: Local connection to a UTM application

The interface functions provide a user-friendly interface. The client program communicates
with the UTM application using CPI-C calls or XATMI calls, whereby only net data is trans-
mitted.

Multithreading

The UPIC carrier system is basically multithreading-capable. Two components determine
whether you can use this capability in your application:

● The operating system must support multithreading

● The communication system used must support multithreading

The situation with UPIC on the specific plattforms is as follows:

● UPIC-L is not multithreading-capable

● UPIC-R on Windows systems is multithreading-capable without restrictions

● UPIC-R on Unix systems is multithreading-capable

● UPIC-R on BS2000 systems is not multithreading-capable

See the corresponding release notice for the precise details.

X/W

Unix system or Windows system

UPIC program

Interface functions

CPI-C / XATMI calls

UTM
application

X/W

X/W

X/W

X/W

X/W

W

X

B

Support for UTM cluster applications Application area

32 openUTM-Client for the UPIC Carrier System

2.4 Support for UTM cluster applications

An openUTM client with UPIC as the carrier system can communicate with a UTM cluster
application in the same way as with a standalone UTM application.

A cluster is a number of computers (nodes) connected over a fast network. openUTM runs
on a cluster in the form of a UTM cluster application. From a physical perspective, a UTM
cluster application is made up of several identically generated UTM applications (the node
applications) that run on the individual nodes.

The client requires a list of the associated node applications. An arbitrary node application
is then selected from this list to be used for the next communication operation.

If communication is not possible with the selected node application, the system automati-
cally attempts to establish a connection to the next node application in the list. This process
is repeated until communication can be successfully established to a running node appli-
cation or until the system detects that none of the node applications in the list can be
accessed.

Figure 5: Communication with a UTM cluster application

The list of node applications for each UTM cluster application is passed in the side
information file (upicfile). For details, see the section “Side information for UTM cluster
applications” on page 296.

openUTM
client

A2

A1

UTM cluster application

Node
application 1

Node
application 3

Node
application 2

A2

A1

A3

A1
A2
A3

openUTM-Client for the UPIC Carrier System 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

3

3 C++ class CUpic

This chapter contains information about:

– Helper classes

– CUpic class

However, an introduction to configuring UPIC is presented first.

i The C++ interface is supported in this version for the last time.

3.1 Introduction

The CUpic class is a wrapper class for the openUTM-Client interface. UPIC must be
configured correctly before this class can be used.

There are two configuration options:

– Configuration using helper classes CUpicLocAddr and CUpicRemAddr

– External configuration using a side information file (upicfile)

3.1.1 Configuration using Helper classes CUpicLocAddr and
CUpicRemAddr

The simplest case involves using the constructors, e.g.

CUpicLocAddr("upicw")

and

CUpicRemAddr(" ", "sample", "local", 30000)

Introduction C++ class CUpic

34 openUTM-Client for the UPIC Carrier System

3.1.2 Configuration using a side information file (upicfile)

A upicfile must be available for external configuration. This file must at least contain the
default entries for a local name and for the Symbolic_Destination_Name, e.g.:

LN.DEFAULT upicw;

SD.DEFAULT sample.local hello PORT=30000;

For a description of configuring the upicfile, see section “The side information file
(upicfile)” on page 288.

3.1.3 The CUpic class on thread-capable systems

A worker thread is created for each CUpic object on thread-capable systems (see page 31).
In this way, several UPIC conversations can be active in parallel in an application. The
threads are created and controlled transparently by the CUpic class.

C++ class CUpic Helper classes

openUTM-Client for the UPIC Carrier System 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

3

3.2 Helper classes

Helper classes define address and security objects. The address objects can be passed to
the CUpic objects as arguments of the constructors. Security objects can only be set using
the property handler function

SetSecurity()

3.2.1 CUpicLocAddr

CUpicLocAddr defines a local UPIC address.

3.2.1.1 Constructors

CUpicLocAddr()

The DEFAULT name if the local name in the side information is used.

CUpicLocAddr(const char * local_name)

local_name is passed to the Enable_UTM_UPIC call as an argument.

CUpicLocAddr(const char * local_name
, const char * tsel_name)
, CM_INT32 port)

The local RFC1006 address is defined explicitly.

local_name is passed to the Enable_UTM_UPIC call as an argument. The value
ZERO means that an empty local_name is used.

tsel_name is used directly as a local name and passed to the
Specify_Local_Tsel() call.
If tsel_name only contains uppercase letters and digits, then the
TRANSDATA Tsel_Format is used, otherwise EBCDIC.

port is passed to the Enable_UTM_UPIC call as an argument.

Helper classes C++ class CUpic

36 openUTM-Client for the UPIC Carrier System

3.2.1.2 Member functions

void SetTselName (const char * name)

tsel_name is used directly as a local name and passed to the
Specify_Local_Tsel() call.
If tsel_name only contains uppercase letters and digits, then the
TRANSDATA Tsel_Format is used, otherwise EBCDIC.

void SetPort (CM_INT32 port)

port is used as the local port number and passed to the
Specify_Local_Port() call.

int SetTselFormat (const unsigned char format)

The Tsel_Format can be set with this function:
– ’A’ for ASCII
– ’E’ for EBCDIC
– ’T’ for TRANSDATA

C++ class CUpic Helper classes

openUTM-Client for the UPIC Carrier System 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

3

3.2.2 CUpicRemAddr

CUpicRemAddr defines a remote UPIC address.

3.2.2.1 Constructors

CUpicRemAddr ()

The DEFAULT name for the remote address is used.

CUpicRemAddr (const char * sym_dest_name)

sym_dest_name is passed to the Initialize_Conversation call.

CUpicRemAddr(const char * sym_dest_name
 , const char * tsel_name
 , const char * host_name
 , CM_INT32 port
)

The remote RFC1006 address is defined explicitly.

sym_dest_name is passed to the Initialize_Conversation call.

tsel_name is used directly as a remote name and passed to the
Set_Partner_Tsel() call.
If tsel_name only contains uppercase letters and digits, then the
TRANSDATA Tsel_Format is used, otherwise EBCDIC.

host_name is used directly as a remote host address. Depending on the string
format used, it is passed to the Set_Partner_Host_Name() or
Set_Partner_IP_Address() call.

port is used as a remote port number and passed to the
Set_Partner_Port() call.

Helper classes C++ class CUpic

38 openUTM-Client for the UPIC Carrier System

3.2.2.2 Member functions

void SetTselName (const char * tsel_name)

tsel_name is used directly as a remote name and passed to the
Set_Partner_Tsel() call.
If tsel_name only contains uppercase letters and digits, then the
TRANSDATA Tsel_Format is used, otherwise EBCDIC.

void SetHost (const char * host)

host is used directly as a remote host address. Depending on the string
format used, it is passed to the Set_Partner_Host_Name() or
Set_Partner_IP_Address() call.

void SetPort (CM_INT32 port)

port is used as a remote port number and passed to the
Set_Partner_Port() call.

int SetTselFormat (const unsigned char format)

The Tsel_Format can be set with this function:
– ’A’ for ASCII
– ’E’ for EBCDIC
– ’T’ for TRANSDATA

C++ class CUpic Helper classes

openUTM-Client for the UPIC Carrier System 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

3

3.2.3 CUpic security

CUpic Security defines the security attributes for UPIC.

CUpic Security ()

No security is used.

CUpic Security (char * uid)

uid is passed to the Set_Conversation_Security_User_ID() call.

CUpic Security (char * uid, char * pwd)

uid is passed to the Set_Conversation_Security_User_ID() call.

pwd is passed to the Set_Conversation_Password() call.

ClassCUpic C++ class CUpic

40 openUTM-Client for the UPIC Carrier System

3.3 ClassCUpic

A CUpic object represents a conversation with an openUTM service.

3.3.1 Constructors

CUpic()

The DEFAULT name of the local and remote address is used.

CUpic (CUpicLocAddr 1)

The specified local address and the DEFAULT name of the remote address are used.

CUpic (CUpicRemAddr 2)

The specified remote address and the DEFAULT name of the local address are used.

CUpic (CUpicLocAddr 1, CUpicRemAddr 2)

The specified local and remote addresses are used.

3.3.2 Property handlers

void SetLocal(CUpicLocAddr l)

Defines a new local address.

void SetRemote(CUpicRemAddr r)

Defines a new remote address.

void SetSecurity(CUpicSecurity s)

Defines new security attributes.

void SetEncryption(BOOL)

Activates encryption.

C++ class CUpic ClassCUpic

openUTM-Client for the UPIC Carrier System 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

3

void SetFunctionKey(CM_FUNCTION_KEY)

Activates the function key on the next send.

void SetTPName(const char * name)

Sets the transaction code (TAC) for a new conversation.

The function expects a string with the length strlen(name).

void SetMapName(const char * name)

Sets the map name for subsequent send calls.

The function expects a string with the length strlen(name).

void GetTPName(char * name)

Reads the currently valid transaction code (TAC).

The function copies a string with a following ’\0’ to the specified address. The target string
must at least be declared as char name [9].

void GetMapName(char * name)

Reads out the last map name received.

The function copies a string with a following ’\0’ to the specified address. The target string
must at least be declared as char name [9].

ClassCUpic C++ class CUpic

42 openUTM-Client for the UPIC Carrier System

3.3.3 Function calls

int Snd (
 const void * snd_buffer
, CM_INT32 send_len
)

Sends the specified data. If no conversation is active, then all calls required to do so are
implemented implicitly.

Result:

CUPIC_OK The call was successful.

CUPIC_ERROR An error has occurred. The GetLastError() call can be used for
obtaining more information.

int SndLast (
 const void * snd_buffer
, CM_INT32 send_len
)

Sends the specified data and returns the send authorization. If no conversation is active,
then all calls required to activate a conversation are made implicitly.

Result:

CUPIC_OK The call was successful.

CUPIC_ERROR An error has occurred. The GetLastError() call can be used for
obtaining more information.

int Rcv (
 void * rcv_buffer
, CM_INT32 buflen
, CM_INT32 * rcv_len
)

Receives a response.

Result:

CUPIC_OK The call was successful and the conversation is closed.

CUPIC_MORE_DATA The call was successful, but only part of the message was received.
The value of rcv_buffer was too small for the complete message.
Rcv () must be called again in order to obtain the remaining data.

C++ class CUpic ClassCUpic

openUTM-Client for the UPIC Carrier System 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

3

CUPIC_MORE_MSGS The call was successful and the message was read in completely.
Further messages can be received. Rcv () must be called again to
receive the next message.

CUPIC_CONV_IS_OPEN The call was successful, the last complete message was read in
and the conversation is still open. Snd (), SndLast (), SndRcv () or
Call () must be called in order to send the next data.

CUPIC_ERROR An error has occurred. The GetLastError() call can be used for
obtaining more information.

int RcvMulti (
 void * rcv_buffer
, CM_INT32 buflen
, CM_INT32 * rcv_len
)

This function makes it possible to receive several CPI-C messages. Several CPI-C
messages with the same map name are grouped into a single message. This is particularly
useful whenever several linemode messages are to be received as a single message.

Result:

CUPIC_OK The call was successful and the conversation is closed.

CUPIC_MORE_DATA The call was successful, but only part of the message was received.
The value of rcv_buffer was too small for the complete message.
Rcv () must be called again in order to obtain the remaining data.

CUPIC_MORE_MSGS The call was successful and a message with a map name was read
in completely. Further messages can be received. Rcv () must be
called again to receive the next message.

CUPIC_CONV_IS_OPEN The call was successful, the last complete message was read in
and the conversation is still open. Snd (), SndLast (), SndRcv ()
or Call () must be called in order to send the next data.

CUPIC_ERROR An error has occurred. The GetLastError() call can be used for
obtaining more information.

ClassCUpic C++ class CUpic

44 openUTM-Client for the UPIC Carrier System

int SndRcv (
 const void * send_buffer
, CM_INT32 send_len
, void * rcv_buffer
, CM_INT32 rcvbuf_len
, CM_INT32 * rcv_len
)

Sends the specified data and receives at least one response. If no conversation is active,
then all calls required to activate a conversation are made implicitly. This call is a combi-
nation of Snd () and Rcv ().

Result:

CUPIC_OK The call was successful and the conversation is closed.

CUPIC_MORE_DATA The call was successful, but only part of the message was received.
The value of rcv_buffer was too small for the complete message.
Rcv () must be called again in order to obtain the remaining data.

CUPIC_MORE_MSGS The call was successful and the message was read in completely.
Further messages can be received. Rcv () must be called again to
receive the next message.

CUPIC_CONV_IS_OPEN The call was successful, the last complete message was read in
and the conversation is still open. Snd (), SndLast (), SndRcv () or
Call () must be called in order to send the next data.

CUPIC_ERROR An error has occurred. The GetLastError() call can be used for
obtaining more information.

int Call (
 const void * send_buffer
, CM_INT32 send_len
, void * rcv_buffer
, CM_INT32 rcvbuf_len
, CM_INT32 * rcv_len
)

Sends the specified data and receives at least one response. If no conversation is active,
then all calls required to activate a conversation are made implicitly. This call is a combi-
nation of Snd () and RcvMulti ().

C++ class CUpic ClassCUpic

openUTM-Client for the UPIC Carrier System 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

3

Result:

CUPIC_OK The call was successful and the conversation is closed.

CUPIC_MORE_DATA The call was successful, but only part of the message was received.
The value of rcv_buffer was too small for the complete message.
Rcv () must be called again in order to obtain the remaining data.

CUPIC_MORE_MSGS The call was successful and a message with a map name was read
in completely. Further messages can be received. Rcv () must be
called again to receive the next message.

CUPIC_CONV_IS_OPEN The call was successful, the last complete message was read in
and the conversation is still open. Snd (), SndLast (), SndRcv () or
Call () must be called in order to send the next data.

CUPIC_ERROR An error has occurred. The GetLastError() call can be used for
obtaining more information.

int Restart (
void * rcv_buffer
, CM_INT32 rcvbuf_len
, CM_INT32 * rcv_len
)

Activates the restart of a previous conversation and receives the data with the call
RcvMulti ().

Result:

CUPIC_OK The call was successful and the conversation is closed.

CUPIC_MORE_DATA The call was successful, but only part of the message was received.
The value of rcv_buffer was too small for the complete message.
Rcv () must be called again in order to obtain the remaining data.

CUPIC_MORE_MSGS The call was successful and a message with a map name was read
in completely. Further messages can be received. Rcv () must be
called again to receive the next message.

CUPIC_CONV_IS_OPEN The call was successful, the last complete message was read in
and the conversation is still open. Snd (), SndLast (), SndRcv () or
Call () must be called in order to send the next data.

CUPIC_ERROR An error has occurred. The GetLastError() call can be used for
obtaining more information.

void Reset()

Closes the active conversation and shuts down the transport connection.

ClassCUpic C++ class CUpic

46 openUTM-Client for the UPIC Carrier System

BOOL Peek()

Tests whether data is ready to be received.

3.3.4 Public diagnostic function

char * GetLastError ()

Returns a text string which explains the error in more detail. Reset () has already been
called if CUPIC_ERROR is returned for the function.

void GetLastError (
 const char ** error_text
, CM_CALL_ID * c
, CM_RETCODE * rc
)

Returns a text string which explains the error in more detail. The last call (defined as
CM_CALL_ID in upic.h) and the last UPIC return code are returned.

char * GetDiagContext ()

The CUpic class writes all its actions into a diagnostic context in printable format. This
method supplies this information by returning a pointer to the corresponding area.

void ResetDiagContext ()

The CUpic class writes all its actions into a diagnostic context in printable format. This
method resets the content of the diagnostic context.

C++ class CUpic Example

openUTM-Client for the UPIC Carrier System 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

3

3.4 Example

#include "CUpic.h"
void main (int argc, char * argv[])
{
 char sbuf[1000];
 char rbuf[100000];
 CM_INT32 rcv_len;
 int rc;

 CUpic u;
// Make a simple call based on configuration defaults memset (sbuf, ’\0’,
sizeof(sbuf));
 rc = u.Call (sbuf, strlen(sbuf), rbuf, sizeof(rbuf), &rcv_len);

 if (rc == CUPIC_OK)
 {
 print ("%.*s", rcv_len, rbuf);
 }
 else
 {
 print ("%s", u. GetLastError());
 }
 // Make a simple admin call overwriting configuration defaults
 CUpicLocAddr 1 = CUpicLocAddr("its-me!", 4711);
 CUpicRemAddr r = CUpicRemAddr("sample", "127.0.0.1", 30000);
 CUpicSecurity s = CUpicSecurity("admin");

 u. SetLocal (1);
 u. SetRemote (r);
 u. Set Security (s);
 u. SetTPName ("KDCINF");

 strcpy (sbuf, "STAT");

 rc = u. Call (sbuf, strlen(sbuf), rbuf, sizeof(rbuf), &rcv_len);

 if (rc == CUPIC_OK)
 {
 printf ("%.*s", rcv_len, rbuf);
 }
 else
 {
 printf ("%s", u. GetLastError);
 }
}

Example C++ class CUpic

48 openUTM-Client for the UPIC Carrier System

openUTM-Client for the UPIC Carrier System 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4 CPI-C interface

With UPIC as the carrier system you can link CPI-C applications which run on your local
system with UTM applications which run on Windows systems, Unix systems or BS2000
systems. The UTM service requested by the client can use either the CPI-C or the KDCS
interface of openUTM.

This chapter describes:

– the general structure of CPI-C client programs

– the exchange of messages between client and server

– conversion of the exchanged data in heterogeneous links

– programming notes for communication with UTM single-step and multi-step services

– the encryption procedures

– programming client programs that are linked to several services in parallel (multiple
conversations). Multiple conversations are only possible if the client is running on a
system that supports multithreading.

– the security functions of openUTM, which can be used when UPIC client programs are
connected.

– the CPI-C functions supported by the UPIC carrier system. The individual CPI-C
function calls are described in full (the CPI-C Specification of X/Open is therefore not
necessary).

First, however, we will explain some CPI-C terms which are used in the following chapters.

CPI-C terms CPI-C interface

50 openUTM-Client for the UPIC Carrier System

4.1 CPI-C terms

The terms ‘conversation’, ‘conversation characteristics’, and ‘side information’ exist in
CPI-C.

● A conversation is a communication relationship processed by a CPI-C program in a
UTM service.

● Conversation characteristics describe the current parameters and features of a
conversation, see page 51.

● In connection with the UPIC carrier system, side information basically describes the
addressing information required for a conversation. The addressing information
necessary for a conversation is contained in the side information file (upicfile).

Conversation state

The state of a conversation reflects the last action of this conversation or defines the next
actions that are permitted.

When you write a program that uses CPI-C calls, you must ensure that the appropriate calls
are always used in the CPI-C program and in the UTM program unit. In particular, only the
partner with send authorization is permitted to send data.

With the UPIC carrier system, a conversation can have one of the following states:

At the beginning, a conversation is in the “Reset” state and then enters various follow-up
states, depending on the actual calls issued and the information received from the partner
program.

State Description

Start The program is not signed on to the UPIC carrier system.
(before the Enable_UTM_UPIC call or after the Disable_UTM_UPIC call).

Reset No conversation is assigned to the conversation_ID.

Initialize The Initialize_Conversation call was terminated successfully and a
conversation_ID was assigned to the conversation.

Send The program is authorized to send data in the conversation.

Receive The program can receive information via the conversation.

Table 1: Conversation states

CPI-C interface CPI-C terms

openUTM-Client for the UPIC Carrier System 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

The “Send” and “Receive” states have a special role to play. This role is described in section
“Exchange of messages with a UTM service” on page 56. A table of states can be found in
the appendix on page 350. Here you will find the state changes of a CPI-C conversation,
depending on the CPI-C calls and their results.

UPIC monitors the current state of a conversation. If the synchronization of the two sides is
violated by an illegal call, this error is displayed with the value
CM_PROGRAM_STATE_CHECK as the result of the call.

The X/Open CPI-C Specification defines further states, but these do not apply to the UPIC
carrier system.

Conversation characteristics

The conversation characteristics are managed in a control block together with the side
information of a conversation. This section describes the characteristics relevant to CPI-C
with the UPIC carrier system, as well as the values assigned to these characteristics in the
Initialize_Conversation call. The X/OPEN interface CPI-C contains additional characteristics
which are not listed here.

There are three types of conversation characteristics:

– those that are preset
– those that can be modified using CPI-C calls
– those that are UPIC specific

The following conversation characteristics are preset:

Conversation characteristics Initialization value for Initialize_Conversation

conversation_type CM_MAPPED_CONVERSATION

return_control CM_WHEN_SESSION_ALLOCATED

send_type CM_BUFFER_DATA

sync_level CM_NONE

Table 2: Preset conversation characteristics

CPI-C terms CPI-C interface

52 openUTM-Client for the UPIC Carrier System

The following conversation characteristics can be modified using CPI-C calls:

Conversation characteristics Initialization value for Initialize_Conversation

deallocate_type CM_DEALLOCATE_SYNC_LEVEL

partner_LU_name Value from side information,
dependent on the symbolic destination name

partner_LU_name_length Length of partner_LU_name

receive_type CM_RECEIVE_AND_WAIT

security_new_password Empty

security_new_password_length 0

security_password Blank

security_password_length 0

security_type CM_SECURITY_NONE

security_user_ID Blank

security_user_ID_length 0

TP_name Value from side information,
dependent on the symbolic destination name

TP_name_length Length of TP_name

Table 3: Conversation characteristics which can be modified

CPI-C interface CPI-C terms

openUTM-Client for the UPIC Carrier System 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

The following conversation characteristics are UPIC specific and can be modified. The
distinction is made between characteristics for a partner application and values for a local
application:

The characteristics and local values are not explained in greater detail. This list is merely
given to enable the conversation characteristics in the CPI-C interface provided by UPIC to
be compared with those in the X/Open CPI-C interface. A detailed explanation can be found
in the X/Open specification “CPI-C Specification Version 2”.

Conversation characteristics Initialization value for Initialize_Conversation

CHARACTER_CONVERTION CM_NO_CHARACTER_CONVERTION

CliEnt_CONTEXT empty

ENCRYPTION-LEVEL 0

PORT 102

T-SEL Value derived from partner_LU_name

T-SEL-FORMAT Value derived from partner_LU_name

HOSTNAME Value derived from partner_LU_name

IP-ADDRESS Not initialized

RSA-KEY Allocated by the UTM application

SECONDARY_RETURN_CODE CM_RETURN_TYPE_SECONDARY

TRANSACTION_STATE empty

Table 4: UPIC specific conversation characteristics for remote applications

Values for local applications Initialization value for Enable_UTM_UPIC

PORT 102

T-SEL Value derived from local application name

T-SEL-FORMAT Value derived from local application name

Table 5: UPIC specific values for local applications

CPI-C terms CPI-C interface

54 openUTM-Client for the UPIC Carrier System

Side information

Because the addressing information is dependent on the respective configuration, CPI-C
applications use the following symbolic names for addressing.

● Symbolic Destination Name
The Symbolic Destination Name addresses the communication partner. The Symbolic
Destination Name comprises two components:

– partner_LU_name
addresses the partner UTM application and can be overwritten in the program by
Set_Partner_LU-name.

– TP_name
addresses the UTM service within the UTM partner application. TP_name is a trans-
action code and can be overwritten by the program with Set_TP_Name, e.g.
TP_name=KDCDISP for the restart.

The UTM service addressed by this transaction code is started as soon as the
program has issued the first Receive call or a Prepare_To_Receive call.

– Keywords
further UPIC-specific conversation characteristics can be set with various
keywords. A program can overwrite these characteristics with the corresponding
CPI-C calls (for example, Set_Encryption_Level).

The Symbolic Destination Name is linked with the “real” addressing (partner_LU_Name,
TP_Name) using the upicfile. partner_LU_name, TP_Name and the keywords are just
some of the conversation characteristics described below.

● local_name
The local_name assigns the local application name for the local application. A symbolic
name can be assigned for the local_name in the upicfile. UPIC-local values can be
set using keywords. This means that the name assigned by the program is independent
of the name used in the TNS or UTM generation. A program can overwrite these
characteristics with the corresponding CPI-C calls (for example, Specify_Local_Tsel).

A description of how the upicfile is created and how the entries are linked with the TNS
and UTM generation can be found in section “Coordination with the partner configuration”
on page 306.
When a upicfile is used, this offers the advantage that TNS and UTM generation can be
modified (e.g. by moving the UTM server application to another system) without the client
programs having to be modified.

CPI-C interface Program structure

openUTM-Client for the UPIC Carrier System 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.2 General structure of a CPI-C application

A CPI-C application is a main program which generally includes the following:

– operation of an interface to a presentation system
– internal processing routines (operation of other interfaces if necessary)
– operation of the CPI-C interface (to a UTM application)
– overview of special CPI-C and UTM functions which the clients can use via UPIC

Sequence of calls in a CPI-C application

The following rules apply to the interface calls described in section “CPI-C calls in UPIC” on
page 97:

1. The first CPI-C function call in your program must be Enable_UTM_UPIC and the last
call must be Disable_UTM_UPIC. Between these two calls, you can repeat the other
CPI-C calls as often as desired in accordance with the rules described below.
Enable_UTM_UPIC provides the runtime environment for the client.

2. After calling Enable_UTM_UPIC, you can use the Specif_... calls to modify the UPIC-
specific values of the local application.

3. You must initialize the conversation characteristics with Initialize_Conversation. The
characteristics are described on page 51.

4. After initialization you can set or modify various conversation characteristics using the
Set_... calls (see the modifiable characteristics on page 52).

5. You must establish the conversation with the Allocate call.

6. Following an Allocate call you can perform processing with the calls Send_Data,
Send_Mapped_Data as well as Prepare_To_Receive, Receive and Receive_Mapped_Data.
After the Allocate call, however, a Send_Data or Send_Mapped_Data call has to be made
first before the program can receive data from the UTM server with Receive or
Receive_Mapped_Data. For more information on the Send and Receive calls, see section
“Exchange of messages with a UTM service” on page 56.

If a CPI-C program is to hold several conversations consecutively, for performance reasons
it is advisable to issue only one Enable_UTM_UPIC and one Disable_UTM_UPIC call in a
CPI-C application, i.e. you should not issue an Enable call before each
Initialize_Conversation and a Disable call each time the conversation is terminated.

If a CPI-C program is to hold several conversations simultaneously, and Enable_UTM_UPIC
call must be made for each of these conversations before the Initialize_Conversation. All
CPI-C calls belonging to a conversation must occur in the same thread. See section
“Multiple conversations” on page 90.

Exchange of messages CPI-C interface

56 openUTM-Client for the UPIC Carrier System

4.3 Exchange of messages with a UTM service

Once a conversation has been established between a client and a UTM service, the client
must pass messages to the UTM service to control it. The service sends the client the
processing result in the form of a message. Note, however, that only one side (client or
service) at a time may send data in a conversation. We say that this side of the conversation
has “permission to send”. Permission to send must be explicitly transferred to the other side
of the conversation so that the partner can send data.

This section describes

– how the exchange of messages works,
– what you have to consider when programming a client application and
– which functions are available for the exchange of messages.

In section “Communicating with the UTM server” on page 72 you will find detailed examples
of communication between client and UTM server application, contrasting the program
sequence on the client side and the server side (KDCS interface).

CPI-C interface Exchange of messages

openUTM-Client for the UPIC Carrier System 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.3.1 Sending a message and starting a UTM service

The following diagram illustrates the sequence in the client program via which the client
starts the service in the UTM server application and transfers a message to the service.

Figure 6: Client starts service in a UTM partner application

Explanation of the diagram

1. Following the Allocate call, the conversation is “established” and a connection to the
UTM server has been set up. The UTM service, however, is not yet started. UPIC now
manages an internal buffer to which the data from the conversation is written.

2. Following the Allocate call, the client is in the “Send” state; it has permission to send data
to the conversation and must now transfer a message for the addressed service
(TP_Name) to UPIC. The message must contain the input data to be processed by the
service. The following Send calls are available to the client for this:

Send_Data
Send_Mapped_Data

Enable_UTM_UPIC

 Initialize_Conversation

 possibly Set_...Calls
Allocate 1.

Send_Data (message) 2.

 Receive
or
Prepare_To_Receive 3.

 ...

CPI-C client application

UTM server

UTM server starts service and
transfers received data.

TAC of service
possibly ID + password

Message

Permission to send

Local UPIC buffer

Send buffer transferred

Connection established.

Data is not yet transferred.

Exchange of messages CPI-C interface

58 openUTM-Client for the UPIC Carrier System

After the Allocate call you may still modify the conversation characteristic receive_type
and the values for the receive timer and the function key using Set_... calls.

Send_Mapped_Data differs from the Send_Data call in that, as well as the message,
format names are also sent to the server. In the same way, the client can receive data
together with the format names from the service with Receive_Mapped_Data. See section
“Sending and receiving formats” on page 62.

The Send call writes the data from UPIC into a local send buffer which is uniquely
assigned to the UTM service on the local system.
The client can issue several Send calls for transferring the message.

If the UTM service does not need any data for processing the request, the client must
send an empty message to the server.

3. Once the client has transferred the message completely to UPIC, it must pass on send
authorization to the server by changing to the “Receive” state. The following CPI-C calls
are available for this:

Receive
Receive_Mapped_Data
Prepare_To_Receive

Only now does UPIC transfer the last section of the send buffer to the UTM service
together with permission to send. The corresponding program unit of the UTM server
application is started.

If you use a Receive call to transfer permission to send to the UTM application, the client
transfers permission to send and then waits in the Receive for the response from the
service (blocking receive; see section “Receiving a message, blocking and non-
blocking receive” on page 59).

The Prepare_To_Receive call causes the local UPIC send buffer to be transferred
immediately to the server together with permission to send. The client switches to the
“Receive” state but does not receive any data yet. When the response is received from
the UTM service, the client must call Receive or Receive_Mapped_Data. Before this
Receive call, however, the client cannot execute further (local) processing steps which
do not use the CPI-C interface. Because the conversation is in the “Receive” state, only
the CPI-C calls Set_Receive_Type, Set_Receive_Timer and Set_Function_Key are allowed
between Prepare_To_Receive and the Receive or Receive_Mapped_Data call.
Prepare_To_Receive is useful if you are starting a “long-running” service which will not
necessarily produce a reply, e.g. services with several database accesses or with
distributed transaction processing between the UTM partner application and other
server applications. The client program and the process are then not blocked for the
entire processing time.

CPI-C interface Exchange of messages

openUTM-Client for the UPIC Carrier System 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.3.2 Receiving a message, blocking and non-blocking receive

The UTM service transfers its results in the form of a message or several message
segments to the client. This can also be an empty message. Moreover, the UTM server
either transfers permission to send to the client or terminates the conversation. The
message from the UTM service is received by UPIC and stored locally in a receive buffer.
The client can pick up the message from the receive buffer as required using one of the
following Receive calls:

Receive
Receive_Mapped_Data

Every message segment from the UTM service (every MPUT NT/NE) must be received with
its own Receive call. If the status_received field is set to CM_SEND_RECEIVED for the Receive
call, the client receives permission to send.

When the UTM service terminates (PEND FI), the conversation is terminated by the server.
In the Receive, the return code CM_DEALLOCATE_NORMAL is returned to the client and
the conversation switches to the “Reset” state.

i A CPI-C program must always issue at least one Receive call, i.e.Send calls without
a following Receive call are not permitted.

Exchange of messages CPI-C interface

60 openUTM-Client for the UPIC Carrier System

The following diagram shows how messages are received in the client program.

Figure 7: Client receives a message from server, conversation is shut down

Explanation of the diagram

1. With the Set_Receive_Type call you can specify whether the data is to be received with
or without blocking.
Whether a Receive call is processed with blocking or without depends on the value of
the conversation characteristic receive_type. After initialization of the conversation
characteristics with the Initialize_Conversation call, a blocking Receive is set for the
conversation. You can change this default setting using the Set_Receive_Type call.

With a blocking Receive call (receive_type=CM_RECEIVE_AND_WAIT) the client
program waits in the Receive or Receive_Mapped_Data until data from the server arrives
for the conversation or the call is interrupted by a timer. Only then is control returned to
the client program and the program run can be resumed.

If you are working with the blocking receive, you should make sure that the program
does not wait “for ever” by setting appropriate timers in the UTM server application (see
the openUTM manual “Administering Applications” and the openUTM manual “Gener-
ating Applications”). On the client side, a timeout timer can be set for the blocking
Receive with Set_Receive_Timer.

CPI-C client application Local UPIC buffer

UTM server

UPIC transfers the
data to the client

UTM program unit terminates
processing and transfers a
message for the client to
openUTM.
The program run is terminated.

openUTM sends the
message to the client.

 :
:
:

possibly
Set_Receive_Type 1.

:
Receive 2.

depends on result:

further Receive calls
further Send and Receive

...
Disable_UTM_UPIC 3.

CPI-C interface Exchange of messages

openUTM-Client for the UPIC Carrier System 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

In the case of a non-blocking Receive call (receive_type=CM_RECEIVE_IMMEDIATE),
control is returned to the program immediately. If data from the service is present at the
time of the call, it is transferred to the program. If there is no data present at the time of
the call, the call returns the return code CM_UNSUCCESSFUL.

The receive_type characteristic can be changed as often as you like within the conver-
sation. For each Receive, the setting defined by the last Set_Receive_Type call before the
Receive applies.

Upic local:
Local connection via UPIC local does not support the non-blocking Receive or the
Set_Receive_Type call.

2. With the Receive or Receive_Mapped_Data call, the client reads the data from the receive
buffer. If data is present, the Receive call passes the data directly to the client program.
The remaining course of the client program depends on the result of the Receive call
(fields data_received, status_received, return_code). The following results can occur:

– Once the program has fully read the message with the Receive call
(data_received=CM_COMPLETE_DATA_RECEIVED) and the UTM service has
terminated the conversation (PEND FI called), the program switches to the “Reset”
state. It can now establish a new conversation or sign off from UPIC with
Disable_UTM_UPIC.

– The program has not yet read all message segments that were received from the
service. It must continue to issue Receive calls until data_received assumes the value
CM_COMPLETE_DATA_RECEIVED. One Receive call must be issued for each
message segment the service sends (MPUT NT).

– The program has read the full message from the service and the service transfers
permission to send to the client (status_received=CM_SEND_RECEIVED). The next
thing the client must do is issue at least one Send call and then issue Receive calls
again. In this case the UTM service is a multi-step service (the program unit has
terminated with PEND KP).

3. Once the last conversation has terminated, the client program calls Disable_UTM_UPIC
in order to sign off from UPIC.

Exchange of messages CPI-C interface

62 openUTM-Client for the UPIC Carrier System

4.3.3 Sending and receiving formats

A CPI-C client using the UPIC carrier system can together with a user message, send
format names to a UTM service and receive format names from a UTM service.

The format names transferred with the user message can be used to describe the data
format of the user data. The user data and format names that are exchanged between client
and server are transferred transparently, i.e. they can contain any bit combinations, which
must be interpreted by the recipient of the message. The user message is not processed
by a form generating system by means of the format name.

The format names exchanged between UPIC and UTM can generally be freely selected, as
can the structure. The structure information is important if programs written for terminals are
to be used to communicate with UPIC clients. In this event, the format ID plays a role. The
format ID is made up of a prefix (-, +, # or *) and the actual format name.

UPIC clients and UTM programs use the format names which are defined in the UTM appli-
cation in order to specify the structuring characteristics of a message. For each format ID
that the UTM application recognizes there is a data structure (addressing aid) in the UTM
application. A UPIC client can also use this function to call UTM applications which commu-
nicate with terminals using formats. To do this the client program must transfer the format
ID that the UTM program expects. The user message is then made up according to the
format IDs.

In the same way, when sending format data the UTM server application passes on to the
client program the format identifier which describes the structure of the message area.

CPI-C interface Exchange of messages

openUTM-Client for the UPIC Carrier System 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CPI-C calls for exchanging format data

Because the CPI-C interface does not have its own concept for transferring format names
to the interface, UPIC uses the functions

Send_Mapped_Data and
Receive_Mapped_Data

to send and receive messages together with format names.

To send format data to the UTM server application, call Send_Mapped_Data. In the map_name
field of the call, the client transfers the format ID as structure information for the message
which is to be sent to the UTM server application.
The message must be structured according to the format defined in the server application.
Send_Mapped_Data is described on section “Send_Mapped_Data - Sending data and format
identifier” on page 178.

If the UTM service returns a format, the client program must call Receive_Mapped_Data in
order to receive the message from the UTM service together with the format ID. In the
map_name field, UPIC transfers the format ID used by the server to structure the message.
In the client program the message must be interpreted according to the structuring used by
the UTM service. Receive_Mapped_Data is described on section “Receive_Mapped_Data -
Receiving data and format identifier from a UTM service” on page 164.

If several partial formats are to be sent to a UTM service, the client program must issue a
separate Send_Mapped_Data call for each one. The UTM service reads each partial format
with a separate MGET NT call.

By the same token, if a message from the UTM service consists of several partial formats,
the client program must issue a Receive_Mapped_Data call for each partial format.

Exchange of messages CPI-C interface

64 openUTM-Client for the UPIC Carrier System

Figure 8: Exchange of formats

Detailed information on working with formats in a UTM server application can be found in
the openUTM manual „Programming Applications with KDCS”.

 ...

Send_Mapped_Data (partial format1)
 Send_Mapped_Data (partial format2)
 Send_Mapped_Data (partial format3)

Receive_Mapped_Data()

Partial format1 received. Format identifier for

partial format1 is shown in map_name field.

Receive_Mapped_Data()

Partial format2 is received. Format identifier for

partial format1 is shown in map_name field.

return_code=CM_DEALLOCATE_NORMAL

Disable_UTM_UPIC

INIT

Init returns the format identifier
received with partial format1
(kcrfn/KCRMF).

MGET (data from partial format1)

The call returns the format identifier
received with partial format2.

MGET (data from partial format2)

The call returns the format identifier
received with partial format3.

MGET (data from partial format3)
...

MPUT NT(partial format1)
MPUT NE(partial format2)

PEND FI

Partial format

Teminate

CPI-C application UTM application

conversation

Partial format

1/2/3

 1/2

CPI-C interface Exchange of messages

openUTM-Client for the UPIC Carrier System 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

openUTM format identifiers and -format types

The format names exchanged between a UPIC client program and a UTM program unit can
consist of up to 8 characters of your choice. The important thing to remember is that both
the communication partners must agree on the structure and meaning of the user data
transferred using the format name.

If a client program calls a UTM program unit that also communicates with terminals using
format IDs, the format ID must correspond with the rules for form generating systems
supported by openUTM. These format IDs consist of:

– a one-byte prefix specifying the type of the format (possible values are “∗”, “+”, “#” and
with openUTM on BS2000 systems also “-”)

– a format name up to 7 characters long.

The format types can be classified as follows:

*formats:
The display attributes of the format fields cannot be modified by a UTM program unit. Only
the contents of the data fields are transferred.

+formats and #formats:
A UTM program unit can modify the display attributes of the data fields or global attributes.
The data fields are therefore assigned attribute fields or blocks. If a +format or a #format is
exchanged, the client program must take these attribute fields into account.

-formats
These are only possible in openUTM applicationson BS2000 systems . They are formats
which are created with the FORMAT event exit.

For more about format IDs and types, see the openUTM manual „Programming Applica-
tions with KDCS”.

i The rules for format IDs do not need to be observed if a UTM program unit only
communicates with UPIC-Client program units. Format generation systems do not
play any part in this form of communication.

Exchange of messages CPI-C interface

66 openUTM-Client for the UPIC Carrier System

4.3.4 UTM function keys

In a UTM server application, function keys can be generated (F1, F2, ...F24 and in BS2000
systems also K1 through K14). Each function key can be assigned via UTM generation a
particular function, which openUTM executes when the function key is pressed.

A CPI-C client program can activate function keys in a UTM server application.

For “pressing a UTM function key”, the function call Set_Function_Key is provided.
Set_Function_Key is a UPIC-specific function which is not part of the functional scope of the
X/Open-CPI-C interface.

With Set_Function_Key the client program specifies the function key which is to be activated
in the UTM server application.

The return code assigned to this function key is transferred to the UTM service by openUTM
at the first MGET call (KCRCCC field). The program-unit run of the UTM service can be
controlled via the return code (e.g. a particular follow-up TAC can be started). To read the
message from the client which sent it with Send_Mapped_Data, a second MGET call must be
made.

Calling Set_Function_Key is only permitted in the “Send” and “Receive” states. The function
key is transferred to the service together with the data of the following Send call.

CPI-C interface Exchange of messages

openUTM-Client for the UPIC Carrier System 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Figure 9: Pressing a function key in a UTM server application

Enable_UTM_UPIC

 Initialize_Conversation

 possibly
 Set_TP_Name
 Set_...

 Allocate

Set_Function_Key()

 Send_Mapped_Data (message)

possibly
Prepare_To_Receive
Receive

...

Disable_UTM_UPIC

CPI-C application

INIT
MGET

The call returns in KCRCCC the return
code generated in SFUNC.

 MGET (message)

 ...

 MPUT (response)

 PEND FI

TAC name

Response

Terminate

Function key
+ message

 conversation

UTM application

Exchange of messages CPI-C interface

68 openUTM-Client for the UPIC Carrier System

4.3.5 Cursor position

If, in a dialog step in a UTM program unit, a format output is intended and the cursor is to
set to a field using the KDCSUR call, then this information will be transferred to UPIC. UTM
uses the differences between the address of the specified field and the start address of the
format to create an offset. This offset is transferred to the UPIC client and can be interro-
gated using the Extract_Cursor_Offset call.

The Extract_Cursor_Offset call delivers a return value. If this value is 0, KDCSCUR in the
UTM program unit was not called, unless the cursor is to be set at the beginning of the
format and the call really does result in the offset 0. If KDCSCUR is called in the UTM
program unit, Extract_Cursor_Offset delivers the cursor address in the format, as a integer
in a format relative to the start of the message area.

4.3.6 Code conversion

With a heterogeneous link to a UTM server application, it may be the case that different
codes (ASCII, EBCDIC) are used in the client and the server systems, for example

– a client application running on a Unix system or a Windows system communicates with
a UTM server application on a BS2000 system.

– a client application running on a BS2000 system communicates with a UTM server
application on a Unix system or Windows system.

Unix systems and Windows systems use ASCII code, while BS2000 systems use EBCDIC
code. If an ASCII system is linked to an EBCDIC system, messages which contain printable
characters (7 bit ASCII character set) can be converted, say for output. Pure binary data
must not be converted. The conversion can take place either on the client side or on the
server side. You must make sure that it only occurs once.

i Code conversion for UPIC-Clients cannot be generated in openUTM (the MAP
parameter for PTERM and TPOOL can only have the value USER for UPIC clients).
Server-side conversion must therefore be carried out by the user in the program
unit.

If the conversion is to take place in the client, two options are available with the UPIC carrier
system:

● The CPI-C calls Convert_Incoming and Convert_Outgoing
In this case, the data is converted by the program. With Convert_Incoming you can
convert a received message into the code used locally (see section “Convert_Incoming
- Converting data from code of sender to local code” on page 104). With
Convert_Outgoing you can convert the data to be sent (before it is sent) from the local
code into the code of the recipient (see section “Convert_Outgoing - Converting data
from local code to code of receiver” on page 105).

X/W

X/W

B

B

CPI-C interface Exchange of messages

openUTM-Client for the UPIC Carrier System 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

● Automatic code conversion of the UPIC carrier system
You activate automatic code conversion for the connection to a specific server using the
CHARACTER_CONVERTION conversation characteristic. You can activate
CHARACTER_CONVERTION as follows:

– by entering a corresponding ID in the side information entry or the upicfile for this
server (see section “Side information for standalone UTM applications” on
page 289).

– or by means of the Set_Convertion call.

When code conversion is activated, UPIC converts all data which arrives from this
server into the locally used code before it is transferred to the client program, and all
data sent from the client program to the server into the code of the server before it is
sent. The client program no longer needs to deal with the conversion; Convert_Incoming
and Convert_Outgoing must no longer be executed.

The automatic code conversion makes it possible with a single CPI-C program to
communicate both with a UTM application on Unix systems or on Windows systems
based on the ASCII code and with a UTM application on a BS2000 system based on
the EBCDIC code (if the user data does not contain any binary information that was
falsified during the code conversion).

v CAUTION!

You must remember that with a heterogeneous link the messages are converted
only once. Only messages containing printable characters may be converted. No
conversion at all is allowed with a homogeneous link and with the link Windows
system <-> Unix system.

The Euro symbol has the value 0x80 in the Windows character set, 0xa4 in the ASCII
character set and 0x9f in EBCDIC (general currency symbol). In the strictest sense these
are not printable characters (8 bit ASCII character set).

In UPIC on Unix systems and UPIC on BS2000 systems you can also modify the supplied
conversion tables to suit your requirements, compile them and replace them in the UPIC
library using the usual operation system methods.

B/X

B/X

B/X

Exchange of messages CPI-C interface

70 openUTM-Client for the UPIC Carrier System

4.3.7 User-defined code conversion for Windows systems

The conversion tables are located in a separate dynamic library. This means you can adapt
the conversion tables to your own requirements. The files necessary to do this are installed
in the upic-dir\utmcnv directory.

Some of these files are installed as a 32-bit or 64-bit variant depending on the platform and
possess a corresponding suffix. In the following, this suffix (32 or 64) is indicated simply as
nn and is printed in italic.

These are:

– kcsaeea.c, C-source with the conversion tables of the previous UPIC versions. For
reasons of compatibility, this file is contained in the utmcnvnn.dll which is supplied with
the product.

– kcxaent.c, C-source with complete conversion tables between the Windows
character set and EBCDIC.

– utmcnvnn.def, Def file with EXPORT statements.

– utmcnvnn.rc, resource.h, Resource files with version information.

i The version information is not absolutely essential in order to create the library.

Procedure with a Microsoft Visual C++ Developer Studio:

Ê Create a new project called utmcnv32 (32 bit) or utmcnv64 (64 bit) in the upic-dir\utmcnv
directory. The type of the project must be Dynamic Link Library.

Ê Add the files kcsaeea.c or kcxaent.c, utmcnvnn.def and, if appropriate,
utmcnvnn.rc to the project.

Ê Create utmcnvnn.dll with this project.

Ê Once the utmcnvnn.dll library has been created successfully, you still have to copy it
into the upic-dir\sys directory containing the UPIC library upicwnn.dll or
upicwsnn.dll which is loaded by your application.

Ê Make certain that the original library utmcnvnn.dll is either overwritten by copying or
is deleted, otherwise it may be loaded inadvertently by the system instead of the new
library.

The conversion tables are structured in the form of two character arrays with the size 256:

– unsigned char kcsaebc[256] for converting from ASCII characters to EBCDIC

– unsigned char kcseasc[256] for converting from EBCDIC characters to ASCII

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

CPI-C interface Exchange of messages

openUTM-Client for the UPIC Carrier System 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

The EBCDIC code of the ASCII character n is the value of the nth element of the character
array kcsaebc, i.e. of kcsaebc[n].

Examples:

1. “M” has the ASCII code 4D hex or 77 dec. kcsaebc[77] is set to the value D4 hex,
which is the EBCDIC code of “M”.

2. The Umlaut “Ä” (code C4 hex in ISO 8859-1, code 63 hex in EBCDIC.DF.04-1) is not
included in the original conversion tables. If you want to integrate it into your own
conversion tables, you must change the value of kcsaebc[196] from 0xff to 0xc4
(ASCII to EBCDIC conversion) and change the value of kcseasc[99] from 0x1a to
0xc4 (EBCDIC to ASCII conversion).

W
W

W

W

W

W

W

W

W

W

Communicating with the UTM server CPI-C interface

72 openUTM-Client for the UPIC Carrier System

4.4 Communicating with the UTM server

In this section, examples are used to show how a CPI-C program can communicate with a
UTM application in single-step and multi-step services. In a multi-step service, more than
one transaction may be executed in the UTM application. This can also include distributed
transaction processing (see diagram on page 76).

The calls used in the following examples are explained below:

– sign on to the UPIC carrier system (Enable_UTM_UPIC)

– initialize the conversation characteristics (Initialize_Conversation)

– establish the conversation (Allocate)

– send data (Send_Data; you can also use Send_Mapped_Data)

– receive the response (Receive; you can also use Receive_Mapped_Data)

– sign off from the UPIC carrier system (Disable_UTM_UPIC)

To simplify the diagrams in this section, the buffering of the data in the local UPIC memory
during sending and receiving is not shown.

CPI-C interface Communicating with the UTM server

openUTM-Client for the UPIC Carrier System 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.4.1 Communicating in a single-step UTM service

The two diagrams below show the possible forms of cooperation between a CPI-C appli-
cation and a UTM application in a single-step service.

One Send and one Receive call

Figure 10: Single-step service with a Send/Receive call

With a Receive call, the program waits until the response arrives from openUTM.
CM_COMPLETE_DATA_RECEIVED indicates that the response has been received in full.
The fact that it was the last and only message is clear from CM_DEALLOCATE_NORMAL.
Instead of Send_Data and Receive, you can also use Send_Mapped_Data and
Receive_Mapped_Data.

 Enable_UTM_UPIC

 Initialize_Conversation

 possibly
 Set_TP_Name
 Set_Conversation_Security_Type
 Set_Conversation_Security_User_ID
 Set_Conversation_Security_Password

 Allocate

 Send_Data (message)
possibly
Prepare_To_Receive
Set_Receive_Type

 Receive

 ...

Receive results:
 - CM_COMPLETE_DATA_RECEIVED
 - CM_DEALLOCATED_NORMAL
 - response in receive buffer

 Disable_UTM_UPIC

TAC + message

possibly ID + password

CPI-C application

INIT

 MGET (message)

 ...

 MPUT (response)

 PEND FI

Establish conversation

Response

Terminate conversation

UTM application

Communicating with the UTM server CPI-C interface

74 openUTM-Client for the UPIC Carrier System

If larger volumes of data are to be transferred, several Send and Receive calls can be used
when communicating in a single-step service; see the following diagram.

Multiple Send and Receive calls

Figure 11: Single-step service with several Send/Receive calls

A separate Receive call is issued for each MPUT call.

After the first Receive call, CM_NO_STATUS_RECEIVED together with CM_OK indicates
that further messages are pending. A second Receive call is thus required, which fetches the
second and last message. The fact that it was the last message is clear from
CM_DEALLOCATED_NORMAL.

TAC + data1

possibly ID + password

Response 1 / 2

Terminate conversation

CPI-C application UTM application

 ...

 Send_Data (data1)
 Send_Data (data2)
 Send_Data (data3)

poosibly
Prepare_To_Receive
...

Receive

Receive results:
 - CM_COMPLETE_DATA_RECEIVED
 - CM_OK
 - CM_NO_STATUS_RECEIVED
 - response1 in receive buffer

Receive

Receive results:
 - CM_COMPLETE_DATA_RECEIVED
 - CM_DEALLOCATED_NORMAL
 - response2 in receive buffer

Disable_UTM_UPIC

INIT

 MGET (data1)
 MGET (data2)
 MGET (data3)
...

 MPUT NT(reponse1)
 MPUT NE(response2)

 PEND FI

CPI-C interface Communicating with the UTM server

openUTM-Client for the UPIC Carrier System 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.4.2 Communicating in a multi-step UTM service

The diagram below illustrates one possible form of cooperation between a CPI-C appli-
cation and a UTM application in a multi-step service. Data is sent and received several
times in this example.

Figure 12: Multi-step service

Communication in a multi-step service is required if the first response must be processed
in the CPI-C application before the second message is sent to UTM.

Message2

Answer2

Terminate conversation

Answer2

Terminate conversation

 Enable_UTM_UPIC

 Initialize_Conversation

 possibly
 Set_TP_Name or
 Set_Conversation_Security_Type
 Set_Conversation_Security_User_ID
 Set_Conversation_Security-Password

 Allocate

 Send_Data (message1)
 Receive
 ...

 Receive results:
 - CM_COMPLETE_DATA_RECEIVED
 - CM_SEND_RECEIVED
 - CM_OK
 - response1 in receive buffer

 Processing of response1

Send_Data (message2)
 Receive
 ...

 Receive results:
 - CM_COMPLETE_DATA_RECEIVED
 - CM_DEALLOCATED_NORMAL
 - response2 in receive buffer

 Disable_UTM_UPIC

INIT
 MGET (message1)
 MPUT (response1)
 PEND KP/RE

INIT
 MGET (message2)
 MPUT (answer2)
 PEND FI

Establish conversation

TAC + message1

possibly ID + password

Response 1

CPI-C application UTM application

Message 2

Response 2

Terminate conversation

Communicating with the UTM server CPI-C interface

76 openUTM-Client for the UPIC Carrier System

4.4.3 Communicating in a multi-step UTM service with distributed
transaction processing

The diagram below illustrates one possible form of cooperation between a CPI-C appli-
cation and a UTM application in a multi-step service. In this example, distributed transaction
processing (DTP) is initiated on the UTM side between two UTM applications.

Figure 13: Multi-step service with DTP

 Enable_UTM_UPIC

 Initialize_Conversation

 possibly
 Set_TP_Name or
 Set_Conversation_xxx...

 Allocate

 Send_Data (message)
 Receive

 ...

Receive results:

 - CM_COMPLETE_DATA_RECEIVED
 - CM_DEALLOCATED_NORMAL
 - response in
 receive buffer

 Disable_UTM_UPIC

CPI C application UTM application

 INIT
 MGET

 MPUT

 PEND FI

UTM application

Establish

conversation

TAC+message

possibly ID

Response

Terminate
conversation

TAC +
message

Result

 INIT
 MGET
 APRO DM
 MPUT VGID
 PEND KP

 INIT
 MGET VGID
 MPUT
 PEND FI

CPI-C interface Communicating with the UTM server

openUTM-Client for the UPIC Carrier System 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.4.4 Querying the transaction state

The openUTM application sends information on the transaction and service state to the
client with each user message. The CPI-C application can read this information using the
Extract_Transaction_State call.

The state information is sent in a 4-byte field. The first two bytes indicate the state of the
service and transaction, the second two bytes supply diagnostics information, see section
“Extract_Transaction_State - Querying service and transaction state of the server” on
page 143. The program can therefore detect, for example,

– whether the processing step was completed with or without transaction termination,

– whether the service was also terminated, or

– whether the transaction was rolled back.

The CPI-C program can respond appropriately and, for example, provide detailed infor-
mation on whether input was accepted successfully or whether input must be re-sent to the
server because the transaction was rolled back.

User concept, security and restart CPI-C interface

78 openUTM-Client for the UPIC Carrier System

4.5 User concept, security and restart

With the UPIC carrier system, the UTM user concept can be used on the CPI-C and XATMI
interface. In this case, important openUTM security functions and restart functions relevant
for data security are available with client/server communication.

4.5.1 User concept

In a UTM application, it is possible to generate UTM user IDs and protect them by
passwords of a particular complexity level. These user IDs and passwords with their
complexity levels must be generated in the UTM application with USER statements. Each
user ID generated for a UTM application can be used both by a client program and by a
terminal user.

The user concept implemented on the CPI-C and XATMI interface is valid for the duration
of a conversation, i.e. each time a conversation is established the program must transfer
the authorization data (user ID and possibly password) to openUTM. In openUTM, a client
program can also sign on using a sign on service (SIGNON service; see the openUTM
manual „Programming Applications with KDCS”).

Multiple sign-ons under one UTM user ID

If a UTM user ID is generated with service restart (USER ...,RESTART=YES), openUTM
links the UTM user ID with a restartable service context which is implicitly assigned using
the user ID.

Only one client program or one terminal user can work with the UTM application at any one
time under this type of UTM user ID.

If, in an application which allows multiple sign-ons under a user ID
(SIGNON ..., MULTI-SIGNON=YES), a UTM user ID is generated without restart
(USER ...,RESTART=NO), then multiple sign-ons are possible under this user ID. The
restartable service context is not required in this case.

CPI-C interface User concept, security and restart

openUTM-Client for the UPIC Carrier System 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.5.2 Security functions

The following security functions are implemented in UTM:

● System access control functions

These functions are implemented in openUTM by UTM user IDs and passwords of a
particular complexity level. The functions are used as follows in CPI-C and XATMI:

– The following calls are available in CPI-C:

Set_Conversation_Security_Type: define type of system access control
Set_Conversation_Security_User_ID: specify UTM user ID
Set_Conversation_Security_Password: specify associated password

– In addition with UPIC

Set_Conversation_Security_New_Password: assign a new password

You must issue these calls before the conversation is established.

If sign-on was unsuccessful, the following call is also available after a Receive or
Receive_Mapped_Data call:

Extract_Secondary_Return_Code: query the secondary return code

– On the XATMI interface, the tpinit() call has corresponding parameters with which
these system access control functions are activated (see page 250).

As soon as the CPI-C or XATMI program uses these calls, the system access control
functions and data security functions outlined below become effective implicitly.

● Data access control functions

In order to make certain services of the UTM server application accessible to a select
group of users only, you can use the key code/lock code concept or the access list
concept of openUTM (see the openUTM manual “Concepts und Functions”).

– In the lock/key code concept lock codes can be assigned to the transaction codes
(services) and the LTERM partners of the UTM server application. These objects
can only be accessed by users or clients whose user IDs are assigned the corre-
sponding key codes. At generation time, a key set with one or more key codes is
assigned to the user ID (USER ...,KSET=key-set-name). The key set defines which
services of the UTM application can be accessed by the client.

– In the access list concept roles are defined as key codes. The transaction codes are
protected using access lists. One or more roles are assigned to each user ID
(generation statement USER ...,KSET=). A client may not access a service using a
specific user ID unless at least one of the roles of the user ID is included in the
access list. Roles can also be assigned to LTERM partners; the same then applies
for access using an LTERM partner.

User concept, security and restart CPI-C interface

80 openUTM-Client for the UPIC Carrier System

● Data security through user-specific long-term storage area (ULS)

A user-specific long-term storage area can be assigned to each UTM user ID at gener-
ation. This storage area can only be accessed by program units of the user/client as
well as programs started by the administrator, whereby conflicting accesses are
prevented by openUTM. The information in the ULS is retained even after the conver-
sation is terminated. It is not deleted, but can only be overwritten by blank messages.
The ULS is used to transfer data between conversations and the user’s programs.

A user-specific long-term storage area is assigned to each user ID of the UTM appli-
cation with the KDCDEF control statement ULS.

Security functions in the client/server environment are implemented as follows within
openUTM:

1. Before a UTM service is started, the authorization data coming from the client is
validated and the corresponding UTM user ID is assigned, together with the associated
key set. This corresponds roughly to a KDCSIGN of a terminal user immediately before
the service starts.

Sign-on is still possible if the validity period of the user password has expired but the
UTM application is generated with Grace Sign-On, see page 81.

2. If the lock/key code or access list concept is used, openUTM checks whether the
service may be started under this user ID and using this LTERM partner. If so, in the
UTM service, the UTM user ID transferred from the client appears in the header of the
communication area (KB header). The authorizations (key sets) linked with this UTM
user ID apply.

3. The ULS block assigned to the UTM user ID transferred from the client can be used. If
several clients sign on under one user ID, they share usage of the same ULS block, as
there is only ever one ULS block for each user ID.

4. At the end of the service, the assignment (points 1 through 3) is canceled again.

CPI-C interface User concept, security and restart

openUTM-Client for the UPIC Carrier System 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Sign-on after expiry of the password validity period (Grace Sign-On)

If the UTM application is generated with Grace Sign-On, a client may still sign on to the
application after expiry of the password validity period. If no sign-on service is generated
for the UPIC client, the program is supplied with the return code
CM_SECURITY_NOT_VALID after a Receive or Receive_Mapped_Data call. Additional infor-
mation is supplied in the form of a secondary return code. If the password has expired, this
code contains one of the following values:

– CM_SECURITY_PWD_EXPIRED_RETRY if the application is generated with Grace
Sign-On. In this case the program can set a new password using
Set_Conversation_Security_New_Password at the next sign-on. The new password must
differ from the old password but must satisfy the same requirements (length, complexity,
use of special characters).

– CM_SECURITY_PWD_EXPIRED_NO_RETRY if the application is not generated with
Grace Sign-On. In this case the client user can no longer sign on using this UTM user
ID. He or she must request the administrator of the UTM application to issue a new
password.

The secondary return code of a Receive or Receive_Mapped_Data call can also be queried
using a subsequent CPI-C Extract_Secondary_Returncode call. Extract_Secondary_Returncode
supplies the secondary return code of the last Receive or Receive_Mapped_Data call.

User concept, security and restart CPI-C interface

82 openUTM-Client for the UPIC Carrier System

4.5.3 Restart

A true restart is only possible with the CPI-C interface from UPIC, because only this
interface can communicate in multi-step UTM services. However, the last output message
can also be read with the XATMI interface; see section “Restart” on page 243. The following
description therefore only refers to CPI-C client programs.

A service context is linked with the UTM user ID. Amongst other things, the service context
contains the last output message and service data such as KB and LSSBs, etc. The client
can also send a client context to the UTM application, see section “Restart with client
context” on page 84.

Restart capability depends on how a UTM user ID is generated:

– If a UTM user ID is generated with USER ...,RESTART=YES (default value), openUTM
performs a service restart after system failure or after loss of the connection to the
client. In other words, openUTM reactivates the service context and, where appropriate,
the client context for the user ID.

– If a UTM user ID is generated with RESTART=NO, openUTM does not implement any
service restarts, even if the LTERM partner used by the client is generated with
LTERM ...,RESTART=YES.

A service restart means that after the client signs on again, processing continues at the last
synchronization point of a service which is still open. openUTM retransmits the last
message of the open service and, where appropriate, the client context to the client. The
client can then continue the service.

If an open service exists for the client under the user ID, this service must be continued
immediately after the next sign-on, as otherwise openUTM terminates the open service
abnormally.

The client program must initiate the restart by first of all establishing a new conversation
and transferring the KDCDISP transaction code in the Set_TP_Name call. The example
below illustrates this type of “restart program” for CPI-C.

CPI-C interface User concept, security and restart

openUTM-Client for the UPIC Carrier System 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Example

Initialize_Conversation (...)
Set_Conversation_Security_Type (...,CM_SECURITY_PROGRAM,..) 1.
Set_Conversation_Security_User_ID (...,"UTMUSER1",..) 1.
Set_Conversation_Security-Password (...,"SECRET",..) 1.
Set_TP_Name (...,"KDCDISP",...) 2.

Allocate (...)

Send_Data (...) 3.
 /* blank message */

Receive (...)

 return_code=CM_OK
 /* service open, send authorization transferred to client */
 /* continue communication in UTM service */
 status_received=CM_SEND_RECEIVED 4.

 or

 return_code=CM_DEALLOCATED_NORMAL 5.
 /* end of service, restart terminated */

 or

 return_code=CM_TP_NOT_AVAILABLE_NO_RETRY 6.
 /* restart not possible */

1. The program uses the system access control functions of openUTM and explicitly
sets the UTM user ID and password.

2. The program must set the TP_name to KDCDISP for the restart.

3. No data can be sent with Send_Data, i.e. send_length must be set to 0 (“blank
message”).

4. Processing and communication with the UTM service can be continued.

5. The program has already received the last output message; there are no more open
services on the UTM side.

6. A restart is not possible, due to UTM regeneration.

The client always receives the last output message of openUTM with Receive as the result
of this type of restart program.

User concept, security and restart CPI-C interface

84 openUTM-Client for the UPIC Carrier System

A user can sign on to a UTM server under a particular user ID in one of several ways:

– from a terminal
– via a transport system client
– via a client program with various carrier systems

A restart by a client program is only possible if the user ID was also last used by a client
program with the same carrier system. If this is not the case, openUTM rejects the client
programs’ attempt to sign on (CM_SECURITY_NOT_VALID) because the open service
must first be terminated by the partner that started it.

If no open service exists when the conversation is established with KDCDISP, openUTM
terminates the conversation after sending the last output message of the previous service.
If the last service was started by a different partner, openUTM does not transfer any
messages (return code CM_TP_NOT_AVAILABLE_NO_RETRY).

i To avoid these problems, a UTM user ID generated with RESTART=YES should be
used either only by client programs with the same carrier system, or only by terminal
users.

If no application context exists following a regeneration of the UTM application, the program
receives the return code CM_TP_NOT_AVAILABLE_NO_RETRY. openUTM terminates
the conversation.

Open services of a client with restart capability are transferred by the UTM utility KDCUPD
as of UTM version 5.1.

Restart with client context

With each user message the client can send what is known as a client context to the UTM
application. A client context consists of a string up to 8 bytes long. The string may contain,
for example, the time or a message ID.

If the user ID is generated with RESTART=YES, the client context is buffered by openUTM
until the end of the conversation unless it is overwritten with a new context.

If the client requests a restart, openUTM transfers the client context to the client together
with the last dialog message. By referring to the client context the program is able to
uniquely identify at which point in the dialog a restart must be made and how the program
must respond; for example, by outputting a specific form. The following UPIC calls are
available to set and read the client context:

Set_Client_Context: set client context

Extract_Client_Context: output the last client context sent by openUTM

CPI-C interface Encryption

openUTM-Client for the UPIC Carrier System 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.6 Encryption

Clients often access UTM services via open networks. There is, therefore, the possibility
that unauthorized persons on the line can monitor and, for example, discover passwords
for UTM user IDs or sensitive user data. In order to avoid this, openUTM supports the
encryption of passwords and user data for client connections.

Encryption in openUTM can be used to control access from clients and also access to
certain services. openUTM uses a combination of a symmetric AES or DES key and an
asymmetric RSA key.

Encryption methods

Passwords and user data on a connection are encrypted with a symmetric key. This is either
an AES or a DES key. Client and UTM application use the same symmetric key to encrypt
and decrypt messages. This key is generated by the client and is transferred to the UTM
application when a connection is established. The key is used for this connection only.

To increase the level of security, the AES or DES key itself is transferred in encrypted form.
For this purpose, one or more RAS key pairs are created for the UTM application at gener-
ation. An RSA key pair consists of a public and a private key. The public key is transferred
to the client as soon as the connection is set up by the UTM application. The client uses it
to encrypt the AES or DES key. To decrypt this key, the UTM application uses the private
key which is known only to the UTM application.

In openUTM up to four different RSA key pairs are created, depending on generation: RSA
keys of modulo length 200, 512, 1024 and 2048

With the help of these keys different encryption levels can be defined in UTM generation
(ENCRYPTION-LEVEL operand), see table.

Generated
encryption level

Modulo length of the RSA key Symmetric key

TRUSTED No key No key

NONE Depending on situation Depending on situation

1 200 DES

2 512 AES

3 1024 AES

4 2048 AES

Table 6: Generated encryption levels and associated keys

Encryption CPI-C interface

86 openUTM-Client for the UPIC Carrier System

In openUTM each RSA key pair can be modified and activated using administration facil-
ities. Only activated RSA keys are used. The UPIC client can also store the public key
locally in advance. When a connection is set up, the public key received is checked against
the stored public key.

The active RSA key can be read out and can be deleted byusing calls of the UTM admin-
istration interface or by using the openUTM WinAdmin administration tool.

Requirements

A requirement for encryption between openUTM and UPIC clients is that an encryption
license is available at both sides. For legal reasons the encryption functions of openUTM
are shipped as a separate product (openUTM-Crypt) that must be installed separately.

If an encryption level of 1 to 4 is generated for the partner in openUTM but the encryption
requirements have not been satisfied, no connection is set up. This may be for one of the
following reasons.

● The client does not support encryption because the encryption functionality is not
installed or because the UPIC version is an export version.

● openUTM itself cannot perform encryption because it does not have a suitable
encryption library (export version).

Procedure

When the client attempts to connect to the UTM application, it informs openUTM whether it
supports encryption.

Once the connection between the client and the server has been established and if
encryption is supported by both partners, the client sends information to the server
indicating the level up to which it supports encryption. The server compares this with the
generation information for the partner.

Depending on the encryption level the client generates in the UTM apllication, various situa-
tions can occur.

ENCRYPTION-LEVEL=TRUSTED
The client is generated as trusted. In this case openUTM does not request
encryption. Neither can the client force encryption.

CPI-C interface Encryption

openUTM-Client for the UPIC Carrier System 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

ENCRYPTION-LEVEL=NONE
In this case the UTM application sends the RSA key with maximum modulo length
to the client. The RSA key determines the encryption level.

Depending on the length of the RSA key received the client generates an AES key
(if the RSA key length Ï 512) or a DES key (if the RSA key length = 200). The client
encrypts the AES or DES key with the RSA key and returns it to the server.
openUTM stores the key for later use on this connection.

By default only passwords are encrypted.

However, the client can force encryption of user data by using the
ENCRYPTION_LEVEL keyword in the upicfile or by means of the
Set_Conversation_Encryption_Level call.

Notes

If encryption functionality is not installed, passwords and user data are exchanged
without encryption.

ENCRYPTION-LEVEL=1
The public RSA key of modulo length 200 is sent to the client. The client generates
a DES key, encrypts it with the RSA key and sends it back. openUTM stores the
DES key for later use.

Passwords and user data are encrypted.

The Set_Conversation_Encryption_Level call or an ENCRYPTION_LEVEL entry in the
upicfile has no effect.

Encryption CPI-C interface

88 openUTM-Client for the UPIC Carrier System

ENCRYPTION-LEVEL=2, 3 or 4
The UTM server sends the public RSA key associated with the appropriate
encryption level. The length of this key is 512, 1024 or 2048, see table 6 on
page 85.

The client generates an AES key, encrypts it with the RSA key and sends it back to
the server. openUTM stores the AES key for later use on this connection.

Passwords and user data are encrypted.

The Set_Conversation_Encryption_Level call or an ENCRYPTION_LEVEL entry in the
upicfile has no effect.

The client-level encryption level of the conversation can be read out using the
Extract_Conversation_Encryption_Level call, preferrably after the Allocate call.

Encryption with protected TAC

A service of a UTM application can be protected by assigning an encryption level to the
associated TAC in the ENCRYPTION-LEVEL=tac-level operand at generation. This
ensures that a client cannot call the protected service unless data is transferred with the
specified encryption. The following situations can occur depending on the generation of the
client and on the encryption level of the TAC.

TRUSTED is generated for the client
openUTM does not request encryption and the client can also start protected
services. The client cannot force encryption because no keys were exchanged.

NONE is generated for the client
openUTM does not request encryption.

If a client-level encryption level > 0 was established at connection setup and if a
conversation whose TAC requires level 1 or level 2 encryption is initialized, there
are the following possibilities.

– client-level Ï tac-level
The client for this conversation has activated encryption.

The service can be started. The client sends user data in an encrypted form
right from the beginning.

– client-level Ï tac-level
The client for this conversation has not activated encryption and has not yet
sent any user data.

The service can be started. The UTM application transmits all output on the
client-level encryption level to the client in an encrypted form. The client also
encrypts all subsequent messages to openUTM on the client-level encryption
level.

CPI-C interface Encryption

openUTM-Client for the UPIC Carrier System 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

– client-level < tac-level
The UPIC client has already sent user data that was either not encrypted or was
encrypted with a lower encryption level.

openUTM ends the conversation.

1, 2, 3 or 4 is generated for the client
If a conversation whose TAC requires level 1 or level 2 encryption (tac-level) is
initialized, there are the following possibilities.

– client-level Ï tac-level
The service can be started.

– client-level < tac-level
The service cannot be started and openUTM ends the conversation.

i Note that for the connection between client and server (and therefore for all subse-
quent conversations on this connection) more encryption levels can be specified
than for the TAC.

Multiple conversations CPI-C interface

90 openUTM-Client for the UPIC Carrier System

4.7 Multiple conversations

The multiple conversations functionality enables a CPI-C client to hold several conversa-
tions at once within a program run. The conversations can be established with different
UTM server applications or the same UTM server application.

The UPIC carrier system supports multiple conversations only on systems which support
multithreading (e.g. Windows and Unix systems). For more information, see page 31.

i “Multiple conversations” is dependent on operation and the system. See the
readme file for more information.

Multithreading means that several threads can be started within the process in which a
program is running. Threads are program segments running in parallel within a process, in
which processing steps are processed independently of each other. Threads are therefore
often called concurrent processes. The use of threads is equivalent to a type of multipro-
cessing that is administered by the program itself and is executed in the same process as
the program itself.

CPI-C clients which run on systems with multithreading and are implemented accordingly
can therefore be connected to several UTM services at the same time.

CPI-C clients which run on systems that do not support multithreading can only hold one
conversation at a time. Only when this conversation is shut down can a new one be estab-
lished.

If a client application wants to process several conversations at once, each one of these
conversations must be processed in a separate thread independently of the others. Here
you must note the following:

– The first thread of the process in which the other threads are started is the main thread.
A conversation can also be established in the main thread, as in any other process.

– For each additional conversation that the program is to establish and process in
parallel, a thread must be started explicitly. System calls are provided for starting the
threads. These system calls are dependent on the operating system and on the
compiler used (see example on page 93).

– In each of the started threads, the runtime environment for the CPI-C client must be
started. For this purpose, an Enable_UTM_UPIC call must be issued in every thread.
The CPI-C program can sign on in all threads with the same or with different names.

– In each individual thread the conversation characteristics must be set with an
Initialize_Conversation call. The conversation is assigned a separate conversation ID by
UPIC.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

CPI-C interface Multiple conversations

openUTM-Client for the UPIC Carrier System 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

– Each conversation ID can only be used within the thread in which the associated
conversation was initialized and established. If the conversation ID is specified in
another thread in a CPI-C call, UPIC brings back the return code
CM_PROGRAM_PARAMETER_CHECK.

– In each thread the program must sign off from UPIC with Disable_UTM_UPIC before the
thread is terminated.

– The main thread must not terminate until all other threads have signed off and termi-
nated.

The sequences within the client program are shown in the following diagram.

i Upic local:
Upic-L does not support the “Multiple conversations” function.

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Multiple conversations CPI-C interface

92 openUTM-Client for the UPIC Carrier System

Figure 14: Starting several threads within a process
(the gray-hatched area corresponds to the process in which the client program is running)

X/W

Starting of process and of main
thread:

main()
...
Starting of two further threads in
the process:

CreateThread()
CreateThread()

The 3 threads run parallel to and
independently of each other.

Sign-on of main thread:

Enable_UTM_UPIC()
...
Initialize a conversation in main
thread:

Initialize_Conversation()

Conversation ID CID0 is brought
back; it is only to be used in main
thread.
...

Set_...(CID0,....)
Allocate (CID0,...)
Send_Data(CID0,...)
...
possibly:

Prepare_To_Receive(CID0..)
...

Receive(CID0,...)
...
Sign-off of main thread:

Disable_UTM_UPIC()

Wait for other treads to terminate:
WaitForMultiple_Objects()

Terminate main thread and
process:

ExitProcess(0)

Main thread

Thread1 Thread2
Sign-on of thread1:

Enable_UTM_UPIC()
...
Initialize a conversation in
thread1:

Initialize_Conversation()

Conversation ID CID0 is brought
back; it is only to be used in
thread1.
...

Set_...(CID1,....)
Allocate (CID1,...)
Send_Data(CID1,...)
...
possibly:

Prepare_To_Receive(CID1..)
...

Receive(CID1,...)
...
Sign-off of thread1:

Disable_UTM_UPIC()

Terminate thread1:

ExitThread(0)

Sign-on of thread2:

Enable_UTM_UPIC()
...
Initialize a conversation in
thread2:

Initialize_Conversation()

Conversation ID CID0 is brought
back; it is only to be used in
thread2.
...

Set_...(CID2,....)
Allocate (CID2,...)
Send_Data(CID2,...)
...
possibly:

Prepare_To_Receive(CID2..)
...

Receive(CID2,...)
...
Sign-off of thread2 :

Disable_UTM_UPIC()

Terminate thread2:

ExitThread(0)

X/W
X/W

CPI-C interface Multiple conversations

openUTM-Client for the UPIC Carrier System 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Example of multiple conversations (in Visual C++ for Windows systems)

The schema belonging to the client program is structured as follows:

void main () 1.
{

...

thrd[0] = CreateThread(...,UpicThread,...); 2.
thrd[1] = CreateThread(...,UpicThread,...);

...

Enable_UTM_UPIC (...); 3.
...

/* Calls for establishing and processing a conversation */
/* in the main thread: */

Initialize_Conversation (...)
...
Allocate (...)
....
Send_Data (...)
...
Receive (...)
...

Disable_UTM_UPIC (...);

...

WaitforMultipleObjects(2,&thrd[0],...); 4.
ExitProcess (0); 5.

}

DWORD WINAPI UpicThread(LPVOID arg) 6.
{

...
Enable_UTM_UPIC (...);
...
/* Calls for establishing and processing conversation in thread */
/* as in main thread under 3. */
...
Disable_UTM_UPIC (...);
...
ExitThread(0); 7.

}

W

W

W
W
W

W
W

W

W
W

W
W

W
W
W
W
W
W
W
W

W

W

W
W
W

W
W
W
W
W
W
W
W
W
W
W
W

Multiple conversations CPI-C interface

94 openUTM-Client for the UPIC Carrier System

1. Process and main thread are started.

2. Two further threads are started via the corresponding system call. The system call
depends on the system and compiler used.
Each thread is started with the UpicThread() function. In UpicThread() a conversation is
established and processed (see point 6 below). UpicThread is a freely selectable name.

3. Each thread must explicitly execute an Enable_UTM_UPIC call and a
Disable_UTM_UPIC call. At this point the main thread signs on to UPIC. After the
Enable_UTM_UPIC call the CPI-C calls can then be issued for establishing a conver-
sation in the main thread and processing this conversation. Several conversations can
be processed consecutively in the main thread. Once the conversation in the main
thread has terminated, this thread must sign off with Disable_UTM_UPIC.

4. The main thread waits until both the threads it has started have terminated.

5. End of the process and the main thread.

6. UpicThread() is the function that is called when a new thread is started. In this function,
the relevant thread signs on to UPIC with Enable_UTM_UPIC and processes “its conver-
sation” (with Initialize_Conversation, Set_..., Send_Data, Receive ...). Here too, several
conversations can be processed consecutively. When the last conversation has termi-
nated, the thread signs off with Disable_UTM_UPIC.

UpicThread() must be programmed such that the threads running concurrently do not
interfere with each other. The code must therefore be structured so that it can be
executed by several threads at the same time, i.e. the functions used must not mutually
destroy the context.

7. Termination of the thread.

openUTM-Client comes with the source code for a sample program on multiple conversa-
tions (see section “Sample programs for Windows systems” on page 335).

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

CPI-C interface Default server and DEFAULT name of a client

openUTM-Client for the UPIC Carrier System 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.8 Default server and DEFAULT name of a client

In practice it is often the case that a client communicates mainly with one particular UTM
server. To simplify the configuration of UPIC clients and the programming of CPI-C client
programs in such cases, you can define a DEFAULT server for your client application in the
upicfile (see page 295). In order to be connected to the DEFAULT server, the client
program can omit specification of a symbolic destination name when initializing the conver-
sation with Initialize_Conversation. It transfers an empty name to UPIC and is then automat-
ically connected to the DEFAULT server.

You can also define a service on the DEFAULT server as the DEFAULT service. To do this,
you specify the transaction code of this service in the DEFAULT server entry in the
upicfile. If the CPI-C program then does not specify a transaction code when initializing
a conversation for the DEFAULT server (it does not call Set_TP_Name), the conversation is
automatically established with the DEFAULT service. If another service is to be started on
the DEFAULT server, the client program must transfer the transaction code of this service
to UPIC with Set_TP_Name (e.g. TP_name=KDCDISP must be selected at service restart).

In the same way, you can define a DEFAULT name for the local CPI-C client application in
the upicfile. If the client program specifies an empty local application name when the
application signs on to UPIC (with Enable_UTM_UPIC), the client is signed onto UPIC with
the DEFAULT name and UPIC uses the address information assigned to the DEFAULT
name to establish the conversation.

If a DEFAULT name is used for the CPI-C application, it may occur that several program
runs of a UPIC client want to sign on to a UTM application with the same name at the same
time. This is the case if the client program is started several times in parallel or if a program
wants to establish several conversations with a UTM application in parallel (multiple conver-
sations). To enable the server application to accept these sign-ons, the conditions
described in the following section must be met.

Multiple sign-on to UTM CPI-C interface

96 openUTM-Client for the UPIC Carrier System

4.8.1 Multiple sign-on to the same UTM application with the same name

Multiple simultaneous sign-on by a client application to a UTM application using the same
name in each case is possible.

To enable a client to sign on more than once with the same name, an LTERM pool which
supports multiple sign-on under the same name must have been generated in the UTM
server application for the system on which the client is running. Such an LTERM pool is
generated in openUTM as follows:

TPOOL ...,CONNECT-MODE=MULTI

For the name the client uses to sign on to the UTM application (PTERM name), a PTERM
statement must not be generated in the UTM application (see openUTM manual “Gener-
ating Applications”), otherwise multiple sign-on via the LTERM pool is not possible.

The CPI-C program can sign on to the UTM application via the LTERM pool as many times
as there are LTERM partners available in the LTERM pool (the number is set by UTM
administration). It can use the same name or different names to sign on.

CPI-C interface CPI-C calls in UPIC

openUTM-Client for the UPIC Carrier System 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.9 CPI-C calls in UPIC

Input and output parameters and possible return codes are described below for each
function.

In general, all parameters are passed at the interface by means of addresses. The symbols
→ and ← designate input and output parameters respectively.

The symbolic destination name and the conversation_ID are always exactly eight characters
long.

The return codes supplied at the interface are independent of the transport system used.
A distinction between local and remote connections is made only in the explanation of
certain return codes and in notes on error messages.

Overview

The interface functions can be used on all platforms in the programming languages C, C++
and COBOL, and are provided in libraries.

The following description of the CPI-C calls has therefore been kept as language-
independent as possible, even though it uses the notation of the C interface. In section
“COBOL interface” on page 239 you will find a description of the special features of the
COBOL interface which you must take into account when creating CPI-C programs in
COBOL.

The precise function declaration is given separately for each call.

Program calls

A client communicates with a UTM server application by calling functions. These calls are
used to establish the conversation characteristics and to exchange data and control infor-
mation. The CPI-C calls supported by UPIC can be categorized into two groups:

● Starter-set calls
Starter-set calls enable simple communication with a UTM server. They are used for
simple data exchange processes, e.g. for accepting the initialized values of conver-
sation characteristics.

● Advanced-function calls
Advanced-function calls allow more specialized functions to be executed. For example,
the conversation characteristics can be modified using Set calls.

CPI-C calls in UPIC CPI-C interface

98 openUTM-Client for the UPIC Carrier System

Starter-set functions

It is assumed that the CPI-C program (client) is always the active part. For this reason the
CPI-C function Accept_Conversation is not supported.

On systems which support multithreading (e.g. Windows, Solaris 5.7), several conversa-
tions with different UTM servers can be active at the same time in a CPI-C program. Each
conversation, including the associated Enable_UTM_UPIC and Disable_UTM_UPIC calls,
must be executed in a separate thread.

On all other systems, only one conversation at a time can be active in a CPI-C program.

Function Description

Initialize_Conversation Initializes conversation characteristic

Allocate Starts a conversation

Deallocate Ends a conversation abnormally

Send_Data Sends data

Receive Receives data

Table 7: Starter-set functions

CPI-C interface CPI-C calls in UPIC

openUTM-Client for the UPIC Carrier System 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Advanced-function calls

Function Description

Convert_Incoming Converts received data to the local code

Convert_Outgoing Converts the data to be sent from the local code to the
code of the communication partner

Deferred_Deallocate Terminates the conversation as soon as the current
transaction has been terminated successfully

Extract_Conversation_State Inquires about the conversation state

Extract_Secondary_Information Inquires about further information

Extract_Partner_LU_Name Inquires about the value of the conversation
characteristics partner_LU_name

Prepare_To_Receive Sends the data buffered in the send buffer to the
communication partner immediately and switches to the
“Receive” state

Receive_Mapped_Data 1

1 Not a component of X/Open CPI-C version 2

Receives the data together with the structure
information (format identifier)

Send_Mapped_Data 1 Sends the data together with the structure information
(format identifier)

Set_Conversation_Security_Password Sets the password for a UTM user ID

Set_Conversation_Security_Type Activates or deactivates the security function

Set_Conversation_Security_User_ID Sets the UTM user ID

Set_Partner_LU_name Sets the value for the conversation characteristics
partner_LU_name

Set_Deallocate_Type Sets values for the conversation characteristic
deallocate_type

Set_Receive_Type Sets values for the conversation characteristic
receive_type

Set_Sync_Level Sets values for the conversation characteristic sync_level

Set_TP_Name Sets the name for a partner program
(transaction code)

Table 8: Advanced Functions

CPI-C calls in UPIC CPI-C interface

100 openUTM-Client for the UPIC Carrier System

Additional UPIC functions

Function Description

Enable_UTM_UPIC Signs on to the UPIC carrier system

Extract_Client_Context Outputs the client context

Extract_Conversation_Encryption_Level Inquires about encryption level

Extract_Convertion Queries the ASCII-EBCDIC conversion

Extract_Cursor_Offset Inquires about cursor position offset

Extract_Secondary_Return_Code Queries secondary return codes

Extract_Shutdown_State Queries the shutdown state of the server

Extract_Shutdown_Time Queries the shutdown time of the server

Extract_Transaction_State Queries the service and transaction state of the server

Disable_UTM_UPIC Signs off from the UPIC carrier system

Set_Allocate_Timer Setting timer for the Allocate call

Set_Client_Context Sets the client context

Set_Convertion Sets the ASCII-EBCDIC conversion

Set_Conversation_Encryption_Level Sets encryption level

Set_Conversation_Security_New_
Password

Sets a new password for a UTM user ID

Set_Function_Key Sets the value of the function key to be transferred

Set_Receive_Timer Sets the timeout timer for the blocking receive of data

Set_Partner_Host_Name Sets the host name of the partner application

Set_Partner_IP_Address Sets the IP address of the partner application

Set_Partner_Port Sets the TCP/IP port of the partner application

Set_Partner_Tsel Sets the TSEL of the partner application

Set_Partner_Tsel_Format Sets the TSEL format of the partner application

Specify_Local_Tsel Sets the TSEL of the local application

Specify_Local_Tsel_Format Sets the TSEL format of the local application

Specify_Local_Port Sets the TCP/IP port of the local application

Specify_Secondary_Return_Code Sets the properties of the secondary return code

Table 9: Additional UPIC Functions

CPI-C calls in UPIC Allocate

openUTM-Client for the UPIC Carrier System 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Allocate - Establishing a conversation

A program uses the Allocate (CMALLC) call to establish a conversation with a UTM appli-
cation. The name of the CPI-C program is specified in the preceding Enable_UTM_UPIC
call.

Syntax

CMALLC (conversation_ID, return_code)

Parameters

→ conversation_ID Identifier of the initialized conversation (supplied by the Initialize
call).

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_ALLOCATE_FAILURE_RETRY

UPIC-L The conversation cannot be established due to a temporary resource
bottleneck. Check the error message for the local UTM application as
well.

CM_ALLOCATE_FAILURE_NO_RETRY
Possible causes:
– The conversation cannot be established due to an error, e.g. the transport

connection to the UTM application could not be set up.
– The transport connection was rejected at the UTM end because in the UTM

application a TPOOL or PTERM connecting point is defined with
ENCRYPTION_LEVEL=1 (or 2, 3, 4), but the add-on product openUTM-
CRYPT is not installed.

– The transport connection was rejected at the UTM end because in the UTM
application a TPOOL or PTERM connecting point is defined with
ENCRYPTION_LEVEL=NONE and the called TAC with
ENCRYPTION_LEVEL=1 (or 2), but the add-on product openUTM-CRYPT is
not installed.

CM_OPERATION_INCOMPLETE
The call was interrupted by the expiry of the timer set using Set_Allocate_Timer.

Allocate CPI-C calls in UPIC

102 openUTM-Client for the UPIC Carrier System

CM_PARAMETER_ERROR
A TAC was not specified in the upicfile or in a Set_TP_Name call, or the
conversation_security_type is CM_SECURITY_PROGRAM and the security_user_ID
characteristic is not set.

CM_PROGRAM_STATE_CHECK
The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK
The value for conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
– There is a protocol error.
– During operation without TNS the host name (as specified using

Set_Partner_Host_Name or in the upicfile) is not defined in the hosts file.
– For this conversation, there is an RSA key stored in the upicfile; this key

differs in either content or length from the received RSA key.

CM_SECURITY_NOT_SUPPORTED
– The partner application does not support the desired security_type.
– A new password has been set, but the partner application with which a conver-

sation has been established does not support password changes for the UPIC-
Client.

State change

– If the return code is CM_OK, the conversation is established and the program enters
the “Send” state.

– If the return code is CM_ALLOCATE_FAILURE_RETRY/NO_RETRY or
CM_SECURITY_NOT_SUPPORTED, the program enters the “Reset” state.

– In all other error situations, the program does not change its state.

Notes

● If the UTM application rejects initiation of the service, e.g. due to an invalid transaction
code, this is not reported until the next Receive call is issued.

● If the specified user ID was not generated in the UTM application, or if an incorrect
password or no password was sent for a generated user ID, this is not reported until the
next Receive call is issued.

CPI-C calls in UPIC Allocate

openUTM-Client for the UPIC Carrier System 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_ALLOCATE_FAILURE_RETRY
Temporary resource bottleneck has occurred during the conversation.
Initialize_Conversation, followed by the Allocate call.

CM_ALLOCATE_FAILURE_NO_RETRY
Reboot the UTM application or generate the PTERM specified in
Enable_UTM_UPIC for openUTM. You may need to install the encryption module as
well or change the encryption level.

CM_PARAMETER_ERROR
Add a TAC to the entry for the current sym_dest_name or specify a TAC with the
Set_TP_Name call.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
– Store either a valid RSA key or no key at all.
– Notify the service department and produce diagnostic report

Function declaration: Allocate

CM_ENTRY Allocate (unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code)

Convert_Incoming CPI-C calls in UPIC

104 openUTM-Client for the UPIC Carrier System

Convert_Incoming - Converting data from code of sender to local code

With the UPIC carrier system on Unix systems and Windows systems, the Convert_Incoming
(CMCNVI) call converts EBCDIC data to the code used locally on the machine.

With the UPIC carrier system under BS2000 systems, Convert_Incoming converts the data
from ASCII to the code used locally on the BS2000 computer.

Syntax

CMCNVI (data, length, return_code)

Parameters

↔ data Address of the data to be converted. The data is then overwritten by
the converted data.

→ length Length of the data to be converted.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

State change

This call does not change the program state.

Notes

● The data must be in printable form.

● The relevant conversion table is stored on

– on Unix systems and Windows systems in the file kcsaeea.c under upic-dir/utmcnv
or upic-dir\utmcnv.

– on BS2000 systems in the library $userid.SYSLIB.UTM-CLIENT.063

Function declaration: Convert_Incoming

CM_ENTRY Convert_Incoming (unsigned char CM_PTR string,
CM_INT32 CM_PTR string_length,

CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

B

B

X/W

X/W

B

CPI-C calls in UPIC Convert_Outgoing

openUTM-Client for the UPIC Carrier System 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Convert_Outgoing - Converting data from local code to code of
receiver

With the UPIC carrier system on Unix systems and Windows systems, the Convert_Outgoing
(CMCNVO) call converts data from the code used locally on the machine to EBCDIC.

With the UPIC carrier system under BS2000, Convert_Outgoing always converts the data
from the code used locally to ASCII.

Syntax

CMCNVO (data, length, return_code)

Parameters

↔ data Address of the data to be converted. The data is then overwritten by
the converted data.

→ length Length of the data which are converted.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

State change

This call does not change the program state.

Notes

● The data must be in printable form.

● The relevant conversion table is stored on

– Unix systems and Windows systems in the file kcsaeea.c under upic-dir/utmcnv or
upic-dir\utmcnv.

– on BS2000 systems in the library $userid.SYSLIB.UTM-CLIENT.063

Function declaration: Convert_Outgoing

CM_ENTRY Convert_Outgoing (unsigned char CM_PTR string,
CM_INT32 CM_PTR string_length,

CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

B

B

X/W

X/W

B

Deallocate CPI-C calls in UPIC

106 openUTM-Client for the UPIC Carrier System

Deallocate - Terminating a conversation

A CPI-C program uses the Deallocate (CMDEAL) call to end a conversation abnormally.
After the call has been executed successfully, the conversation_ID is no longer assigned to
a conversation. Normally, a conversation is always ended together with the UTM process.
Termination of a conversation by the CPI-C program is always regarded as abnormal. The
value of deallocate_type must therefore be set to CM_DEALLOCATE_ABEND by the
Set_Deallocate_Type (CMSDT) call before a Deallocate call is issued.

Syntax

CMDEAL (conversation_ID, return_code)

Parameters

→ conversation_ID Identifier of the conversation to be ended.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
The value of deallocate_type has not been set to CM_DEALLOCATE_ABEND by a
preceding Set_Deallocate_Type call.

State change

If the return code is CM_OK, the program enters the “Reset” state. In all other error situa-
tions, the program does not change its state.

CPI-C calls in UPIC Deallocate

openUTM-Client for the UPIC Carrier System 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
Modify the program and incorporate the Set_Deallocate_Type call.

Function declaration: Deallocate

CM_ENTRY Deallocate (unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code)

Deferred_Deallocate CPI-C calls in UPIC

108 openUTM-Client for the UPIC Carrier System

Deferred_Deallocate - Terminating a conversation after termination of
a transaction

A CPI-C program uses the Deferred_Deallocate (CMDFDE) call to terminate the conver-
sation as soon as the current transaction is successfully terminated. The call can be used
at any time within a transaction. Deferred_Deallocate serves only to make CPI-C programs
more portable. It does not change the state of the program.

Syntax

CMDFDE (conversation_ID, return_code)

Parameters

→ conversation_ID Identifier of the conversation to be terminated.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid.

CM_PROGRAM_STATE_CHECK
The program is in “Start” state.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

This call does not change the program state.

CPI-C calls in UPIC Deferred_Deallocate

openUTM-Client for the UPIC Carrier System 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide enough memory for the internal buffers.
Check whether the memory requirement of your program is too high and if
necessary reboot your system.

CM_PROGRAM_STATE_CHECK
Modify program

Function declaration: Deferred_Deallocate

CM_ENTRY Deferred_Deallocate (unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code)

Disable_UTM_UPIC CPI-C calls in UPIC

110 openUTM-Client for the UPIC Carrier System

Disable_UTM_UPIC - Signing off from the UPIC carrier system

A program uses the Disable_UTM_UPIC (CMDISA) call to sign off from the UPIC carrier
system. After the call has been successfully executed, no further CPI-C calls are permitted.
If another connection exists for the program, it is cleared down. In addition, the program
signs off from the transport system.

This call must be the last call of a CPI-C program. It is not needed if you continue with a
further Initialize call after ending the conversation.

This function is not included in the CPI-C interface, but is one of the additional UPIC
functions.

Syntax

CMDISA (local_name, local_name_length, return_code)

Parameters

→ local_name Name of the program, i.e. the name specified in the preceding
Enable_UTM_UPIC call.

→ local_name_length Length of local_name.

Minimum: 0, maximum: 8

local_name_length=0 means that an “empty local application name”
is transferred (see section “Enable_UTM_UPIC - Signing on to the
UPIC carrier system” on page 112)

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK
The program is not signed on to UPIC with local_name, or the value of
local_name_length is < 1 or > 8.

CM_PRODUCT_SPECIFIC_ERROR
An error occurred when signing off from UPIC or when clearing down the
connection.

CPI-C calls in UPIC Disable_UTM_UPIC

openUTM-Client for the UPIC Carrier System 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

State change

If the return code is CM_OK, the program is signed off and enters the “Start” state. In all
other error conditions, the program does not change its state.

Note

You must use this call if you wish to terminate the process with exit() in the event of an error
condition in the application program.
For performance reasons, this function should only be called immediately before the
process is terminated, provided no error has occurred.

Behavior in the event of errors

CM_PRODUCT_SPECIFIC_ERROR
Notify the service department and produce diagnostic report.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

Function declaration: Disable_UTM_UPIC

CM_ENTRY Disable_UTM_UPIC (unsigned char CM_PTR local_name,
CM_INT32 CM_PTR local_name_length,

CM_RETURN_CODE CM_PTR return_code)

Enable_UTM_UPIC CPI-C calls in UPIC

112 openUTM-Client for the UPIC Carrier System

Enable_UTM_UPIC - Signing on to the UPIC carrier system

This call must be issued before other CPI-C calls are used. The Enable_UTM_UPIC
(CMENAB) call enables a program to sign on to the UPIC carrier system using its own
name. The name serves to establish the connection between the UTM service and the
CPI-C program (see also section “Initialize_Conversation - Initializing the conversation
characteristics” on page 146).

In the upicfile, you can define a default name for the CPI-C application (LN.DEFAULT
entry; see page 305). If the CPI-C program is to sign on to the UPIC carrier system with this
default name, it can transfer an “empty local application name” in the local_name field. UPIC
then searches in the upicfile for the LN.DEFAULT entry and uses the corresponding
application name to establish the connection to the UTM service. Several CPI-C program
runs can sign on with the default name simultaneously and also establish conversations to
the same UTM service.

After the Enable_UTM_UPIC call has been executed successfully, the program is provided
with an intact runtime environment. After this call is issued, changes in the upicfile do
not come into effect for the program until the next Enable_UTM_UPIC call.

This function is not included in the CPI-C interface, but is one of the additional UPIC
functions.

Syntax

CMENAB (local_name, local_name_length, return_code)

Parameters

→ local_name Name of the program.
The following specifications are possible (see also section “Side
information for the local application” on page 303):

with UPIC remote:
– Local application name defined in the upicfile.
– Name under which the program is entered in the TNS directory

or is known in CMX.
– Any name, the TNS properties of which can still be modified

using the following Specify calls.
– Empty local application name.

The program then signs on to UPIC under the DEFAULT name
of the CPI-C application, provided that an LN.DEFAULT entry
exists in the upicfile at the time of the call.

CPI-C calls in UPIC Enable_UTM_UPIC

openUTM-Client for the UPIC Carrier System 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

with UPIC local:
– PTERM name by which the client is known in the configuration

of the UTM application.
– Local application name defined in the upicfile.
– If an LTERM pool for the partner type UPIC-L (TPOOL with

PTYPE=UPIC-L) exists in the UTM partner application, you can
specify any name of up to 8 characters for local_name.

– Empty local application name.
The prerequisite is that an LN.DEFAULT entry exists in the
upicfile at the time of the call.

You can transfer an empty local application name by:
– transferring 8 blanks in local_name and setting

local_name_length=8
– setting local_name_length=0.

If you transfer an empty application local name, UPIC takes the
application name of the LN.DEFAULT entry to establish the
connection to the UTM partner application.

→ local_name_length Length of local_name
Minimum: 0, maximum: 8

If a local application name from the upicfile is entered in
local_name, then local_name_length=8 must be specified.

If you specify local_name_length=0, the contents of the local_name
field will be ignored, i.e. local_name will be treated as an “empty local
application name”. An LN.DEFAULT entry must exist in the
upicfile.

← return_code Result of the function call

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Enable_UTM_UPIC CPI-C calls in UPIC

114 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The program is already signed on to UPIC.

CM_PROGRAM_PARAMETER_CHECK
Possible causes:
– the value of local_name_length is less than 1 or greater than 8
– there is not enough internal memory available, or
– an attempt to access the upicfile has failed

CM_PRODUCT_SPECIFIC_ERROR
Possible causes:
– The UPIC instance could not be found
– With UPIC local Unix systems and Windows systems only: the environment

variable UTMPATH is not set

State change

If the return code is CM_OK, the program enters the “Reset” state. In all other cases, the
program does not change its state.

Notes

● Several CPI-C program runs with the same name can sign on to the UPIC carrier
system simultaneously.

● A CPI-C program which has been started more than once can also sign on to the same
UTM application more than once with the same name (e.g. the application name
assigned to the DEFAULT name). For this purpose, the UTM application must be
configured as follows:

– There must be no LTERM partner explicitly generated for this openUTM-Client, i.e.
no PTERM with its name and PTYPE=UPIC-R must exist for this system in the
configuration of the UTM application.

– An LTERM pool (TPOOL) with CONNECT-MODE=MULTI is generated for the
system on which the client is running. The CPI-C program can then sign on to the
UTM application under the same name as often as there are LTERM partners
available in the LTERM pool (the number is set by UTM administration).

X/W

X/W

CPI-C calls in UPIC Enable_UTM_UPIC

openUTM-Client for the UPIC Carrier System 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

● with UPIC local:
To enable the CPI-C program to sign on to the local UTM application, the environment
variable UTMPATH must be set.
In rare cases it can occur with local communication that the function terminates with
CM_PROGRAM_STATE_CHECK, even though shortly beforehand
Disable_UTM_UPIC was called and CM_OK returned. The cause is an incomplete
connection shutdown within UTM.

Behavior in the event of errors

CM_PRODUCT_SPECIFIC_ERROR
– The operating system cannot provide sufficient memory for internal buffers.

Check whether the memory requirement of your program is too high; if
necessary, reboot your system.

– With UPIC local:
Set the UTMPATH environment variable and restart the program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
– Modify program.
– Increase the virtual memory if necessary.

Function declaration: Enable_UTM_UPIC

CM_ENTRY Enable_UTM_UPIC (unsigned char CM_PTR local_name,
CM_INT32 CM_PTR local_name_length,

CM_RETURN_CODE CM_PTR return_code)

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Extract_Client_Context CPI-C calls in UPIC

116 openUTM-Client for the UPIC Carrier System

Extract_Client_Context - Querying the client context

The Extract_Client_Context call provides the program with the client-specific context last
sent by openUTM.

The context is buffered by openUTM until the end of the conversation unless it is overwritten
with a new context. If the client requests a restart, the context last saved is transferred back
to the client together with the last dialog message.

The client context is not saved by openUTM unless the client is signed on with a UTM user
ID with restart functionality. This is a requirement for service restart.

The Extract_Client_Context call is permitted in the "Send" and "Receive" state and in the
"Reset" state directly after a Receive/Receive_Mapped_Data call.

Extract_Client_Context is not part of the CPI-C specification but is an additional function of
the UPIC carrier system.

Syntax

CMECC (conversation_ID, buffer, requested_length, data_received, received_length,
return_code)

Parameters

→ conversation_ID Identifier of the conversation already initialized (is supplied by the
Initialize call).

← buffer Buffer in which the data is received.
If the value of received_length = 0, the content of buffer is undefined.

→ requested_length Maximum length of the data that can be received.

← data_received Specifies whether the program has received the client context in full.

If the result (return_code) is not CM_OK, the value of data_received is
undefined.

data_received can accept the following values.

CM_COMPLETE_DATA_RECEIVED
The client context was received in full.

CM_INCOMPLETE_DATA_RECEIVED
The client context was not received in full by the program.

CPI-C calls in UPIC Extract_Client_Context

openUTM-Client for the UPIC Carrier System 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

← received_length Length of the received data. If the value of received_length = 0, no
client context has been received. The value of received_length is
undefined if the result (return_code) is not CM_OK.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code occurs if no client context can be
used because the UTM partner application with Version < 5.0 does not support
client context.

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid or the value for requested_length is more than
32767 or less than 1.

The value in conversation_ID is invalid because the function was called more than
once after the end of the conversation or because no conversation existed (the
Enable_UTM_UPIC call has not yet been followed by an Initialize_Conversation call).

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK
The conversation is not in the "Reset", "Send" or "Receive" state.

Notes

● If a message segment was received with one or more Receive/Receive_Mapped_Data
calls (data_received has the value CM_COMPLETE_DATA_RECEIVED), the
client_context and client_context_length parameters are reset in a subsequent
Receive/Receive_Mapped_Data call.

● The value in conversation_ID remains valid for this function call after the end of a
conversation until an Initialize_Conversation or an Extract_Client_Context call has been
made.

● The internal buffer size is currently limited to 8 bytes.

● openUTM currently always returns a client context with a length of 8 bytes. Conse-
quently, if a valid client context has been received from UPIC, the received_length is 8.
If a client context with a length of less than 8 bytes was sent to openUTM, the client
context of openUTM is padded with binary zeros to a length of 8 bytes.

Extract_Client_Context CPI-C calls in UPIC

118 openUTM-Client for the UPIC Carrier System

● If the value for requested_length is less than the length of the internally buffered
client_context, the buffer made available by the application program is completely filled
and data_received is set to CM_INCOMPLETE_DATA_RECEIVED. If another CMECC
call is then immediately made with a sufficiently large value for requested_length
(i.e. ≥ 8), the buffer is read in full by such a call.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
Is not necessarily a program error. If a UPIC-R application communicates with
various UTM partner applications, this return code simply means that it is commu-
nicating with a UTM application that cannot send a client context. The program can
take note of this return code and dispense with further calls relating to client context.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

Function declaration: Extract_Client_Context

CM_ENTRY Extract_Client_Context (
unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR buffer,
CM_INT32 CM_PTR requested_length,
CM_DATA_RECEIVED_TYPE CM_PTR data_received,
CM_INT32 CM_PTR received_length,
CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Extract_Conversation_Encryption_Level

openUTM-Client for the UPIC Carrier System 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Extract_Conversation_Encryption_Level - Querying encryption level

A program uses the Extract_Conversation_Encryption_Level (CMECEL) call to extract the
encryption levels which have been set up. The Extract_Conversation_Encryption_Level call is
permitted in the following states: “Initialize”, “Send” and “Receive”.

UPIC local: The data transfer is protected by the type of transfer being used. The call
Extract_Conversation_Encryption_Level is not supported.

This function belongs to the additional UPIC carrier system functions; it is not a component
of the CPI-C interface.

Syntax

CMECEL (conversation_ID, encryption_level, return_code)

Parameters

→ conversation_ID Conversation identifier

← encryption_level The following values can be rerturned:

CM_ENC_LEVEL_NONE
The user data of the conversation is transferred in unencrypted
form.

CM_ENC_LEVEL_1
The user data is encrypted before transfer using the DES algorithm.
An RSA key with a key length of 200 bits is used for exchange of the
DES key.

CM_ENC_LEVEL_2
The user data is encrypted before transfer using the AES algorithm.
An RSA key with a key length of 512 bits is used for exchange of the
AES key.

CM_ENC_LEVEL_3
The user data is encrypted before transfer using the AES algorithm.
An RSA key with a key length of 1024 bits is used for exchange of
the AES key.

CM_ENC_LEVEL_4
The user data is encrypted before transfer using the AES algorithm.
An RSA key with a key length of 2048 bits is used for exchange of
the AES key.

← return_code Result of the function call.

X/W

X/W

Extract_Conversation_Encryption_Level CPI-C calls in UPIC

120 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code only occurs for UPIC-L. This
indicates to the program that encryption is not necessary.

CM_PROGRAM_STATE_CHECK
The conversation is in either the “Start” or the “Reset” state.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_ENCRYPTION_NOT_SUPPORTED
Encryption is not available for this conversation for one of the following reasons:
– the add-on product openUTM-Crypt is not installed.
– the UTM partner application does not want encryption because the UPIC client

is trusted.
– the UPIC client cannot implement encryption because the product openUTM-

Client has been installed without the encryption license.

State change

The call does not alter the state of the conversation.

Notes

● CMECEL can only ever supply the current value of the encryption level. The encryption
level can always be modified using a subsequent CPI-C call.

● If several conversations are established with the same partner application (or in other
words, the communication connection is not set up and cleared down every time), the
result of CMECEL will be CMINIT CM_OK after the first call, but after all subsequent
CMINIT calls it will be CM_ENCRYPTION_NOT_SUPPORTED. The UPIC library only
establishes the connection to the partner application after the first CMALLOC call and
thus specifies the encryption option.

X/W

X/W

X/W

CPI-C calls in UPIC Extract_Conversation_Encryption_Level

openUTM-Client for the UPIC Carrier System 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in event of errors

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: If the application is intended for both UPIC-L and
UPIC-R this return code just means that the application is linked to a UPIC-L library.
If this is the case, encryption is not necessary. The program can take note of this
return code and avoid making further calls requesting encryption.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirement of your program is too high and if
necessary reboot your system.

CM_ENCRYPTION_NOT_SUPPORTED
This is not necessarily an error: If a UPIC-R application is communicating with
several UTM partners some of which implement data encryption and some of which
do not, then this return code just means that the UTM application the current appli-
cation is communicating with either cannot or does not wish to implement
encryption. In this case, encryption is not possible. The program can take note of
this return code and avoid making further calls requesting encryption.

Function declaration: Extract_Conversation_Encryption_Level

Extract_Conversation_Encryption_Level (unsigned char CM_PTR conversation_ID,
CM_ENCRYPTION_LEVEL CM_PTR encryption_level,

CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

X/W

X/W

Extract_Conversation_State CPI-C calls in UPIC

122 openUTM-Client for the UPIC Carrier System

Extract_Conversation_State - Querying state of conversation

The Extract_Conversation_State call (CMECS) is used to provide the program with the current
state of the conversation.

Syntax

CMECS (conversation_ID, conversation_state, return_code)

Parameters

→ conversation_ID Conversation identifier

← conversation_state The value contains the state of the conversation. Values which are
valid for UPIC are:
– CM_INITIALIZE_STATE
– CM_SEND_STATE
– CM_RECEIVE_STATE

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Notes

● If the return code is not CM_OK, the value for conversation_state has no significance.

● For the states “Start” and “Reset”, there is never a valid conversation_ID.

CPI-C calls in UPIC Extract_Conversation_State

openUTM-Client for the UPIC Carrier System 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

Function declaration: Extract_Conversation_State

CM_ENTRY Extract_Conversation_State (unsigned char CM_PTR conversation_ID,
CM_CONVERSATION_STATE CM_PTR conversation_state,

CM_RETURN_CODE CM_PTR return_code)

Extract_Convertion CPI-C calls in UPIC

124 openUTM-Client for the UPIC Carrier System

Extract_Convertion - Querying the value of the
CHARACTER_CONVERTION conversation characteristic

The Extract_Convertion (CMECNV) call provides the program with the current value of the
CHARACTER_CONVERTION conversation characteristic.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

The Extract_Convertion call is permitted only in the “Init” state.

Syntax

CMECNV (conversation_ID, character_convertion, return_code)

Parameters

→ conversation_ID Conversation identifier

← character_convertion
The value specifies whether code conversion is carried out or not for
the user ID.

The following values can be returned for character_convertion.

CM_NO_CHARACTER_CONVERTION
There is no automatic code conversion when data is sent or
received.

CM_IMPLICIT_CHARACTER_CONVERTION
Data is automatically converted when sent or received (see also
section “Code conversion” on page 68).

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Initialize” state.

CPI-C calls in UPIC Extract_Convertion

openUTM-Client for the UPIC Carrier System 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

State change

The call does not change the state of the conversation.

Note

If the return code is not CM_OK, the CHARACTER_CONVERTION characteristic remains
unchanged.

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK
Modify program

CM_PROGRAM_PARAMETER_CHECK
Modify program

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

Function declaration: Extract_Convertion

CM_ENTRY Extract_Convertion(
unsigned char CM_PTR conversation_ID,
CM_CHARACTER_CONVERTION_TYPE CM_PTR convertion_type,
CM_RETURN_CODE CM_PTR return_code)

Extract_Cursor_Offset CPI-C calls in UPIC

126 openUTM-Client for the UPIC Carrier System

Extract_Cursor_Offset - Querying cursor position offset

The Extract_Cursor_Offset (CMECO) call provides the program with the last value for the
cursor position, as sent by openUTM to the client, as long as the cursor is set in the UTM
program unit using KDCSCUR.

The Extract_Cursor_Offset call is only allowed in the states “Send” and “Receive” and in the
“Reset” state after a Receive-/Receive_Mapped_Data call.

This function is not a component of the CPI-C specification, it is an additional function of the
UPIC carrier system.

Syntax

CMECO(conversation_ID, cursor_offset, return_code)

Parameters

→ conversation_ID Conversation identifier

← cursor_offset Offset of the cursor position.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call was OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code occurs if cursor_offset cannot be
extracted because a version of the UTM partner application that is no longer
supported is being used.

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid. The value of conversation_ID is invalid
because the function was called more than once after terminating the conversation
or because no conversation yet exists (after the Enable_UTM_UPIC call no
Initialize_Conversation has been issued).

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK
The conversation is not in one of the following states: “Reset”, “Receive” or “Send”.

CPI-C calls in UPIC Extract_Cursor_Offset

openUTM-Client for the UPIC Carrier System 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

State change

The call does not change the state of the conversation.

Notes

● If the return code is not CM_OK, the value of cursor_offset has no significance.

● The value for conversation_ID remains valid for this function call, even after terminating
a conversation and continues to be valid until Initialize_Conversation or
Extract_Cursor_Offset are called.

● A KDCSCUR call overwrites a previous KDCSCUR call in the UTM program unit.

● If an invalid address is entered in KDCSCUR in the UTM program unit
Extract_Cursor_Offset returns the value 0.

● For a +format the address of the attribute field is given as the cursor position.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
Is not necessarily an error: If a UPIC-R application is communicating with several
UTM partners, this just means that it is communicating with a UTM application
which cannot send a cursor offset. The program can take note of this return code
and avoid making further calls regarding the cursor offset.

CM_PROGRAM_STATE_CHECK
Modify program

CM_PROGRAM_PARAMETER_CHECK
Modify program

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirement of your program is too high and if
necessary reboot your system.

Function declaration: Extract_Cursor_Offset

CM_ENTRY Extrac_Cursor_Offset (unsigned char CM_PTR conversation_ID,
CM_INT32 CM_PTR cursor_offset,

CM_RETURN_CODE CM_PTR return_code)

Extract_Partner_LU_Name CPI-C calls in UPIC

128 openUTM-Client for the UPIC Carrier System

Extract_Partner_LU_Name - Querying partner_LU_Name

The Extract_Partner_LU_Name call (CMEPLN) provides the program with the current
partner_LU_name of the conversation.

This call belongs to the advanced functions.

Syntax

CMEPLN(conversation_ID, partner_LU_name, partner_LU_name_length, return_code)

Parameters

→ conversation_ID Conversation identifier

← partner_LU_name Returns the partner_LU_name. The length of the parameter must be
at least 32 bytes.

← partner_LU_name_length
Specifies the length of the value returned in partner_LU_name.
Minimum: 1, maximum: 32.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Initialize” state.

State change

The call does not change the state of the conversation.

Note

If the return code is not CM_OK, the value of partner_LU_name has no significance.

CPI-C calls in UPIC Extract_Partner_LU_Name

openUTM-Client for the UPIC Carrier System 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirement of your program is too high and if
necessary reboot your system.

CM_PROGRAM_STATE_CHECK
Modify program

Function declaration: Extract_Partner_LU_Name

CM_ENTRY Extract_Partner_LU_Name (unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR partner_LU_name,
CM_INT32 CM_PTR partner_LU_name_length,
CM_RETURN_CODE CM_PTR return_code)

Extract_Secondary_Information CPI-C calls in UPIC

130 openUTM-Client for the UPIC Carrier System

Extract_Secondary_Information - Querying secondary information

The Extract_Secondary_Information (CMESI) call provides the program with expanded infor-
mation (secondary information) relating to the return code of the most recent CPI-C call.

Syntax

CMESI (conversation_ID, call_ID, buffer, requested_length, data_received,
 received_length, return_code)

Parameters

→ conversation_ID Identifier for the started conversation (supplied by the Initialize call).

→ call_ID Specifies the function on which secondary information is required.

← buffer Buffer which receives the data. If the return code of data_received is
CM_NO_DATA_RECEIVED, the contents of buffer are undefined.

→ requested_length Maximum length of data that can be received.

← data_received Specifies whether the program has completely received the
secondary information. If the result (return_code) is not CM_OK, the
value of data_received is undefined.

data_received can have one of the following values:
– CM_COMPLETE_DATA_RECEIVED

The secondary information was received completely.

– CM_INCOMPLETE_DATA_RECEIVED
The secondary information was incompletely received by the
program.

← received_length Length of received data. The value of received_length is undefined as
long as the result (return_code) does not have the value CM_OK.

← return_code Result of the function call.

CPI-C calls in UPIC Extract_Secondary_Information

openUTM-Client for the UPIC Carrier System 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Result (return_code)

CM_OK
The call is OK

CM_NO_SECONDARY_INFORMATION
There is no secondary information available for the call of the specified conver-
sation.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid, the call_ID specifies CMESI or an invalid
value, or the value of requested_length is greater than 32767 or less than 1.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

Notes

● The program should make this call immediately after receiving a return_code. Subse-
quent CPI-C calls can overwrite the secondary information. If there is no conversation,
for example, if the library is in the “Reset” state, then conversation_ID is ignored.

● When the Extract_Secondary_Information call is successfully terminated, the returned
secondary information does not remain saved. The same information will no longer be
available in a subsequent Extract_Secondary_Information call.

● The program cannot use the call to extract secondary information from a previous
Extract_Secondary_Information call.

● The full complexity of this function is not implemented as laid down in the CPI-C speci-
fication. The simplifications in comparison with CPI-C are as follows:

– The internal buffer is limited to a size of 1024 bytes.

– If the value of requested_length is less than the length of the secondary information
saved internally, the buffer made available by the application program is filled
completely and data_received is set to CM_INCOMPLETE_DATA_RECEIVED. It is
not possible to obtain the remaining data using further CMESI calls.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirement of your program is too high and if
necessary reboot your system.

Extract_Secondary_Information CPI-C calls in UPIC

132 openUTM-Client for the UPIC Carrier System

Function declaration: Extract_Secondary_Information

CM_ENTRY Extract_Secondary_Information (
unsigned char CM_PTR conversation_ID,

CM_INT32 CM_PTR call_ID,
unsigned char CM_PTR buffer,

CM_INT32 CM_PTR requested_length,
CM_DATA_RECEIVED_TYPE CM_PTR data_received,

CM_INT32 CM_PTR received_length,
CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Extract_Secondary_Return_Code

openUTM-Client for the UPIC Carrier System 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Extract_Secondary_Return_Code - Querying secondary return codes

The Extract_Secondary_Return_Code (CMESRC) call provides the program with secondary
return codes that relate to the primary return code of the last CPI-C call.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

Syntax

CMESRC (conversation_ID, call_ID, secondary_return_code, return_code)

Parameters

→ conversation_ID Identifier of the conversation already initialized (is supplied by the
Initialize call).

→ call_ID Specifies the function whose secondary return code is to be output.

← secondary_return_code
Supplies the secondary return code of the last CPI-C call. If the
result is not CM_OK, the value of secondary_return_code is
undefined.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK

CM_NO_SECONDARY_RETURN_CODE
There is no secondary return code for the call of the specified conversation.

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid, the call_ID specifies CMESRC or an invalid
value.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

Extract_Secondary_Return_Code CPI-C calls in UPIC

134 openUTM-Client for the UPIC Carrier System

Secondary return code (secondary_return_code)

CM_SECURITY_USER_UNKNOWN
The specified user ID is not generated.

CM_SECURITY_STA_OFF
The specified user ID is locked by generation or administration.

The administrator of the UTM application can remove the lock.

CM_SECURITY_USER_IS_WORKING
Somebody has already signed on to this UTM application with this user ID.

CM_SECURITY_OLD_PSWORD_WRONG
The old password entered is incorrect.

CM_SECURITY_NEW_PSWORD_WRONG
The new password information cannot be used. Possible cause: minimum period of
validity not yet expired.

Use the old password until its validity expires.

CM_SECURITY_NO_CARD_READER
The user is generated with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG
The user is generated with a chipcard and cannot sign on via UPIC.

CM_SECURITY_NO_RESOURCES
Sign-on is not possible at the moment. Possible cause:
– a resource bottleneck, or
– the maximum number of simultaneous users signed on has been reached

(see KDCDEF statement MAX CONN-USERS=), or
– an inverse KDCDEF is running

Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT
The user is generated with a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING
The current LTERM is not authorized to resume the service.

CM_SECURITY_PWD_EXPIRED_NO_RETRY
The validity period of the user password has expired, the UTM application is
generated with SIGNON GRACE=NO.

The client user can no longer sign on. He or she must request the administrator of
the UTM application to issue a new password.

CPI-C calls in UPIC Extract_Secondary_Return_Code

openUTM-Client for the UPIC Carrier System 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_SECURITY_COMPLEXITY_ERROR
The new password is not sufficiently complex. See KDCDEF control statement
USER PROTECT-PW= .

CM_SECURITY_PASSWORD_TOO_SHORT
The new password is too short.
See KDCDEF control statement USER PROTECT-PW=.

CM_SECURITY_UPD_PSWORD_WRONG
The password transferred by KDCUPD does not satisfy the complexity or minimum
length requirement defined in application generation.
See KDCDEF control statement USER PROTECT-PW= .

The password must be changed by administration before the user can sign on
again.

CM_SECURITY_TA_RECOVERY
A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED
The user has an open service that cannot be resumed from a UPIC client.

CM_SECURITY_SHUT_WARN
The application run is terminated, only users with administration authorization may
still sign on.

Sign on is not possible until the UTM application has been restarted.

CM_SECURITY_ENC_LEVEL_TOO_HIGH
The encryption mechanism required to resume the open service is not available on
the connection.

CM_SECURITY_PWD_EXPIRED_RETRY
The validity period of the user password has expired, the UTM application is
generated with SIGNON GRACE=YES.

The client can nevertheless sign on by entering a suitable new password in addition
to the old password.

If the new password is the same as the old password, openUTM rejects sign-on.
When working with openUTM > 5.1A30, the secondary return code set by UPIC in
this case is CM_SECURITY_NEW_PSWORD_WRONG .

Extract_Secondary_Return_Code CPI-C calls in UPIC

136 openUTM-Client for the UPIC Carrier System

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN
The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE
A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR
A temporary error occurred during signon. The cluster user file could not be
accessed in the time configured in the node application.

Try signing on again later.

Notes

● The program should issue this call immediately after receipt of a return code. Subse-
quent CPI-C calls may overwrite the secondary return code. The conversation_ID is
ignored if no conversation exists, i.e. the library is in the "Reset" state.

● If the Extract_Secondary_Return_Code call terminates successfully, the secondary return
code supplied is no longer saved. The same return code is then no longer available in
the next Extract_Secondary_Return_Code call.

● The program cannot use the call to obtain a secondary return code from a preceding
Extract_Secondary_Return_Code call.

● The secondary return code and associated description can be found in the individual
UPIC calls.

State change

No state change.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

CPI-C calls in UPIC Extract_Secondary_Return_Code

openUTM-Client for the UPIC Carrier System 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Function declaration: Extract_Secondary_Return_Code

CM_ENTRY Extract_Secondary_Return_Code (
 unsigned char CM_PTR conversation_ID,
 CM_INT32 CM_PTR call_ID,
 CM_RETURN_CODE CM_PTR secondary_return_code,
 CM_RETURN_CODE CM_PTR return_code)

Extract_Shutdown_State CPI-C calls in UPIC

138 openUTM-Client for the UPIC Carrier System

Extract_Shutdown_State - Querying the shutdown state of the server

By issuing the Extract_Shutdown_State (CMESHS) call, a program can obtain the current
shutdown state of the UTM partner application.

The Extract_Shutdown_State call is permitted in the "Send" and "Receive" states as well as
in the "Reset" state immediately after a Receive-/Receive_Mapped_Data call.

This function is not part of the CPI-C specification but an additional function of the UPIC
carrier system.

Syntax

CMESHS (conversation_ID, shutdown_state, return_code)

Parameters

→ conversation_ID Identification of the conversation

← shutdown_state The value contains the shutdown state of the UTM partner appli-
cation. Permitted values:
– CM_SHUTDOWN_NONE:

The application has not initiated a shutdown.
– CM_SHUTDOWN_WARN:

The application has initiated SHUTDOWN WARN.
– CM_SHUTDOWN_GRACE:

The application has initiated SHUTDOWN GRACE.

← return_code Result of the function call

Result (return_code)

CM_OK
Call OK

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code occurs if it is not possible to obtain
a shutdown code because UTM partner applications with version < V6.1 do not
support this.

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid.
The value of conversation_ID is invalid because the function was called more than
once after the end of the conversation or because no conversation existed at the
time (there was no Initialize_Conversation call after the Enable_UTM_UPIC call).

CPI-C calls in UPIC Extract_Shutdown_State

openUTM-Client for the UPIC Carrier System 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Note

● If the return code is different from CM_OK then the value of shutdown_state is of no
significance.

● After the end of the conversation, the value of conversation_ID remains valid for this
function call until Initialize_Conversation or Extract_Shutdown_State is called.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
Is not necessarily a program error. If an UPIC-R application communicates with
various UTM partners then this return code simply means that the application is
communicating with a UTM partner application that cannot send a shutdown state
(openUTM < V6.1). The program can remember this return code and not issue any
further Extract_Shutdown_State calls.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

Function declaration: Extract_Shutdown_State

CM_ENTRY Extract_Shutdown_State(
unsigned char CM_PTR conversation_ID,
CM_SHUTDOWN_STATE CM_PTR shutdown_state,
CM_RETURN_CODE CM_PTR return_code)

Extract_Shutdown_Time CPI-C calls in UPIC

140 openUTM-Client for the UPIC Carrier System

Extract_Shutdown_Time - Query the shutdown time of the server

By issuing the Extract_Shutdown_Time (CMESHT) call, a program can obtain the current
shutdown time of the UTM partner application.

The shutdown time is returned in printable format of length received_length and has the
Universal Time Coordinated (UTC) time format. It still has to be converted to the time in the
local time zone.

The Extract_Shutdown_Time call is permitted in the "Send" and "Receive" states as well as
in the "Reset" state immediately after a Receive-/Receive_Mapped_Data call or after an
Extract_Shutdown_State call .

This function is not part of the CPI-C specification but an additional function of the UPIC
carrier system.

Syntax

CMESHT (conversation_ID, buffer, requested_length, data_received, received_length,
 return_code)

Parameters

→ conversation_ID Identification of the conversation

← buffer Buffer in which the data is received. If the return value of
data_received is CM_NO_DATA_RECEIVED the content of buffer is
undefined.

buffer returns the time at which the application is shut down. The
individual bytes have the following meanings:

→ requested_length Maximum length of the data that can be received.

Bytes 1 - 8: Date in the format yyyymmdd:

yyyy Year, four-digit

mm Month

dd Day

Bytes 9 - 11

ddd Day in year

Bytes 12 - 17: Time in the format hhmmss (UTC format):

hh Hour

mm Minute

ss Second

CPI-C calls in UPIC Extract_Shutdown_Time

openUTM-Client for the UPIC Carrier System 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

← data_received Specifies whether the program has received all the data.

If the result (return_code) does not have one of the values CM_OK
or CM_DEALLOCATED_NORMAL then the value of data_received is
undefined.

data_received can have the following values:

CM_COMPLETE_DATA_RECEIVED
The data was received in full.

CM_INCOMPLETE_DATA_RECEIVED
The data was not received in full.

CM_NO_DATA_RECEIVED
No data was received.

← received_length Length of the received data. The value of received_length is
undefined if the result (return_code) is not equal to CM_OK.

← return_code Result of the function call

Result (return_code)

CM_OK
Call OK

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code occurs if it is not possible to obtain
a shutdown time because UTM partner applications with
Version < 6.1 do not support this.

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid.
The value of conversation_ID is invalid because the function was called more than
once after the end of the conversation or because no conversation existed at the
time (there was no Initialize_Conversation call after the Enable_UTM_UPIC call).
Alternatively, the value for requested_length is greater than 32767 or smaller than 1.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

Extract_Shutdown_Time CPI-C calls in UPIC

142 openUTM-Client for the UPIC Carrier System

Note

● This function has not been implemented at its full level of complexity in accordance with
the CPI-C specification. The simplifications compared to CPI-C are as follows:

– The internal buffer possesses a restricted size of 1024 bytes.

– If the value of requested_length is smaller than the length of the internally stored
extended information then the buffer made available by the application program is
completely filled and data_received is set to CM_INCOMPLETE_DATA_RECEIVED.
It is not possible to obtain the remaining data using further CMESHT calls.

● After the end of the conversation, the value of conversation_ID remains valid for this
function call until Initialize_Conversation or Extract_Shutdown_Time is called.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
Is not necessarily a program error. If an UPIC-R application communicates with
various UTM partners then this return code simply means that the application is
communicating with a UTM partner application that cannot send a shutdown time
(openUTM < V6.1). The program can remember this return code and not issue any
further Extract_Shutdown_Time calls.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

Function declaration: Extract_Shutdown_Time

CM_ENTRY Extract_Shutdown_Time(
unsigned char CM_PTR conversation_ID,

 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR requested_length,

 CM_DATA_RECEIVED_TYPE CM_PTR data_received,
 CM_INT32 CM_PTR received_length,

 CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Extract_Transaction_State

openUTM-Client for the UPIC Carrier System 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Extract_Transaction_State - Querying service and transaction state of
the server

The Extract_Transaction_State call provides the program with the service and transaction
state sent to the client by openUTM.

The Extract_Transaction_State call is permitted only in the "Send" and "Receive" state and in
the "Reset" state directly after a Receive/Receive_Mapped_Data call.

This function is not a component of the CPI-C specification but is an additional function of
the UPIC carrier system.

Syntax

CMETS (conversation_ID, transaction_state, requested_length, transaction_state_length,
return_code)

Parameters

→ conversation_ID Conversation identifier

← transaction_state Transaction and service state

→ requested_length Maximum length of the data that can be received

← transaction_state_length
Length of the message received

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code occurs if no transaction_state can be
received.

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid.
The value in conversation_ID is invalid because the function was called more than
once after the end of the conversation or because no conversation existed (the
Enable_UTM_UPIC call has not yet been followed by an Initialize_Conversation call).

Extract_Transaction_State CPI-C calls in UPIC

144 openUTM-Client for the UPIC Carrier System

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK
The conversation is not in the "Reset", "Send" or "Receive" state.

State change

The call does not change the state of the conversation.

Notes

● If the return code is not CM_OK, the value of transaction_state has no significance.

● The value of conversation_ID remains valid for this function call after the end of a
conversation until an Initialize_Conversation or an Extract_Transaction_State call has been
made.

● If the value of transaction_state_length is 0, no new transaction_state was received.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
Is not necessarily a program error. If a UPIC-R application communicates with
various UTM partners, this return code simply means that it is communicating with
a UTM partner application that cannot send the transaction and service state. The
program can take note of this return code and dispense with further
Extract_Transaction_State calls.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

CPI-C calls in UPIC Extract_Transaction_State

openUTM-Client for the UPIC Carrier System 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Description of transaction_state

The first two bytes of transaction_state contain the information on the service and transaction
state of the server and can be evaluated accordingly. The remaining bytes (dd dd) contain
internal diagnostics information.

For further information on PEND and PGWT calls refer to the openUTM manual
„Programming Applications with KDCS”.

Function declaration: Extract_Transaction_State

CM_ENTRY Extract_Transaction_State(
unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR transaction_state,
CM_INT32 CM_PTR requested_length,
CM_INT32 CM_PTR transaction_state_length,
CM_RETURN_CODE CM_PTR return_code)

transaction_state
(hexadecimal)

Meaning

17 08 dd dd
18 08 dd dd

End of the processing step; the transaction is not completed, the service is
still open (PEND/PGWT KP).

15 06 dd dd
16 06 dd dd

End of the processing step; the transaction is completed, the service is still
open (PEND RE/PGWT CM).

1A 04 dd dd End of a service and end of the transaction (PEND FI).

30 04 dd dd End of a service with memory dump (PEND ER).

31 04 dd dd End of a service (system PEND ER, i.e. PEND ER by openUTM).

32 04 dd dd End of a service due to abnormal task termination
(only openUTM on BS2000 systems).

20 04 dd dd
21 04 dd dd

Roll back of the first transaction of a service and end of the service
(PEND RS).

20 06 dd dd
21 06 dd dd

Roll back of a follow-up transaction to the last synchronization point; the
service is still open (PEND RS).

Initialize_Conversation CPI-C calls in UPIC

146 openUTM-Client for the UPIC Carrier System

Initialize_Conversation - Initializing the conversation characteristics

The Initialize_Conversation (CMINIT) call reads the entry specified by the symbolic desti-
nation name in the upicfile and initializes the conversation characteristics. The charac-
teristics partner_LU_name, partner_LU_name_lth, TP_name, and TP_name_length are
assigned corresponding values from the upicfile. All other conversation characteristics
are initialized with default values.

In addition to initializing the conversation characteristics, this call also specifies whether the
user data will be converted automatically from ASCII to EBCDIC (or vice versa) during the
next Send or Receive calls. Conversion takes place:

– in Unix systems and Windows systems, if the identifier HD is placed before the symbolic
destination name

– in BS2000 systems, if the identifier SD is placed before the symbolic destination name.

For details see also page 289.

The call returns an eight-character conversation_ID. This uniquely identifies the conver-
sation and must be used in all subsequent CPI-C calls to address the conversation.

It is possible to change the initial values of the conversation characteristics TP_name,
TP_name_length, receive_type and deallocate_type at a later stage. The Set_TP_Name,
Set_Receive_Type and Set_Deallocate_Type calls are provided for this purpose. A value
changed with a Set call is applicable until the end of the conversation or until a new Set call
is issued.

The Set calls are not part of the CPI-C starter set, but are advanced-function calls.

Syntax

CMINIT (conversation_ID, sym_dest_name, return_code)

X/W

X/W

B

CPI-C calls in UPIC Initialize_Conversation

openUTM-Client for the UPIC Carrier System 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Parameters

← conversation_ID Identifier assigned to the conversation and returned to the program
as a result parameter.

→ sym_dest_name If you use no upicfile, you must specify 8 blanks for
sym_dest_name (“empty sym_dest_name”).
If you work with the upicfile, enter the reference to the side infor-
mation (8-character name). For sym_dest_name you can also specify
8 blanks (“empty sym_dest_name”).
In this case the symbolic destination name .DEFAULT is sought in
the side information (see page 295) and the corresponding values
are set for partner_LU_name, partner_LU_name_lth, TP_name and
TP_name_length. If you are working with the upicfile, you can
specify 8 blanks for sym_dest_name (“empty sym_dest_name”).

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_PARAMETER_CHECK
– The value of sym_dest_name or local_name (with Enable_UTM_UPIC) is invalid or

the specified entry in the upicfile could not be read or is syntactically invalid.
– An attempt (if any) to sign on to or sign off from the transport interface was

unsuccessful.
– In sym_dest_name or in local_name (with Enable_UTM_UPIC) an empty name was

specified but there is no corresponding default entry in the upicfile or the
default entry is invalid.

– Error in the upicfile:
The CD entries for the specified sym_dest_name are not consecutive or the CD
entries for the specified sym_dest_name contain different TACs.

CM_PRODUCT_SPECIFIC_ERROR
– A conversation is already active for this program, or no Enable_UTM_UPIC call

has been issued yet.
– The transport interface did not respond as expected.

State change

If the return code is CM_OK, the program enters the “Initialize” state and the conversation
characteristics are initialized. Further details can be found in “Conversation characteristics”
on page 51. In all other error conditions, the program does not change its state.

Initialize_Conversation CPI-C calls in UPIC

148 openUTM-Client for the UPIC Carrier System

Notes

● The Initialize_Conversation call must be executed by the program before another call is
issued for this conversation.

● If the Initialize_Conversation call or the subsequent Set calls of the program supply
invalid information for establishing the conversation, errors of a syntactical kind are
detected immediately but semantic errors are not detected until the Allocate (CMALLC)
call is executed.

● Several programs can sign on under the same name if CONNECT-MODE=MULTI is
defined for the corresponding TPOOL statement.

● With a remote connection:

– The function may sign the program on to the transport system (e.g.TCP/IP, PCMX,
BCAM) using the name of the preceding Enable_UTM_UPIC call. No signing on
takes place if the program is already signed on with the same name.

– Any remaining connection to a partner (except for the partner in the upicfile) is
shut down.

● With a local connection (UPIC on Unix systems and Windows systems):

– The function performs the sign-on to the UTM-internal process communication (with
the UTM application name from the upicfile) if the program is not yet signed on
with the same name. If the program is still signed on with a different name, it is first
signed off from the UTM-internal process communication. An existing conversation
with this UTM application is hereby implicitly shut down. Only then is the program
signed on with the new name.

– At sign-on to the UTM application, the applifile of the UTM application is read. For
this purpose the shell variable UTMPATH, which points to the corresponding UTM
directory utmpath, is interpreted. This variable must have been set.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

CPI-C calls in UPIC Initialize_Conversation

openUTM-Client for the UPIC Carrier System 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
– Create the upicfile or set the environment variable or job variable UPICPATH

to the correct values. Check the TNS entry or the BCMAP entry in BS2000
systems.

– Enter the current sym_dest_name in the upicfile or check the entry for
sym_dest_name for correct syntax.

– With a local connection: set the environment variable UTMPATH to the correct
values. It is also possible that there is no longer a semaphore available.

– Modify the upicfile: Check and adjust the CD entries.

CM_PRODUCT_SPECIFIC_ERROR
Modify the program or inform the service department and produce diagnostic report.

Function declaration: Initialize_Conversation

CM_ENTRY Initialize_Conversation (unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR sym_dest_name,
CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

Prepare_To_Receive CPI-C calls in UPIC

150 openUTM-Client for the UPIC Carrier System

Prepare_To_Receive - Changing state from “Send” to “Receive”

The Prepare_To_Receive (CMPTR) call has the following effect:

– All data which is still stored in the local send buffer at the time of the call is transferred
to the UTM service together with permission to send.

– Once the data has been transferred from the send buffer to the UTM service, the
conversation switches from the “Send” state to the “Receive” state.

Prepare_To_Receive can only be called when the conversation is in the “Send” state, but not
directly after the Allocate call or after receipt of permission to send from the partner. In these
two exceptional cases, a Send_Data or Send_Mapped_Data call must be issued before the
Prepare_To_Receive call.

After the Prepare_To_Receive call, a Receive or Receive_Mapped_Data call must be issued.
Before the Receive or Receive_Mapped_Data call, however, Set_Receive_Timer or
Set_Receive_Type may be called.

Syntax

CMPTR (conversation_ID, return_code)

Parameters

→ conversation_ID Identifier of the conversation

← return_code Result of the function call

CPI-C calls in UPIC Prepare_To_Receive

openUTM-Client for the UPIC Carrier System 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Result (return_code)

CM_OK
The call is OK. The conversation has switched from the “Send” state to the
“Receive” state.

CM_DEALLOCATED_ABEND
Possible causes:
– abnormal termination of the UTM service
– termination of the UTM application
– connection shutdown by UTM administration
– connection shutdown by the transport system
– Connection shutdown by openUTM because the maximum permitted number

of users (MAX statement, CONN-USERS=) has been exceeded. This may also
occur if an administrator user was transferred in the
Set_Conversation_Security_User_ID call. This is the case if a user ID that has no
administration authorization is assigned to the LTERM partner of the CPI-C
program in the UTM application (via LTERM ...USER=).

The program enters the “Reset” state.

CM_PRODUCT_SPECIFIC_ERROR
Possible causes:
– The UPIC instance could not be found.
– The Prepare_To_Receive call was issued immediately after an Allocate call

instead of a Send_Data or Send_Mapped_Data call.

CM_PROGRAM_STATE_CHECK
The call is not permitted in the current state of the conversation.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid.

CM_RESOURCE_FAILURE_NO_RETRY
An error has occurred which led to a premature termination of the conversation (e.g.
a protocol error or a premature loss of the network connection). The program enters
the “Reset” state.

State change

– If the result of the call is CM_OK, the state of the conversation changes from “Send” to
“Receive”.

– With the following results, the program enters the “Reset” state:
CM_DEALLOCATED_ABEND
CM_RESOURCE_FAILURE_NO_RETRY

– In all other error conditions, the program does not change its state.

Prepare_To_Receive CPI-C calls in UPIC

152 openUTM-Client for the UPIC Carrier System

Behavior in the event of errors

CM_PRODUCT_SPECIFIC_ERROR
– Modify program.
– The operating system cannot provide sufficient memory for the internal buffers.

Check whether the memory requirement of your program is too high and if
necessary reboot your system.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_RESOURCE_FAILURE_NO_RETRY
Inform the service department and produce a diagnostic report. A fault in the
transport system could also be the reason for this error code.

Function declaration: Prepare_To_Receive

CM_ENTRY Prepare_To_Receive (unsigned char CM_PTR conversation_ID,
CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Receive

openUTM-Client for the UPIC Carrier System 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Receive - Receiving data from a UTM service

A program uses the Receive (CMRCV) call to receive information from a UTM service.

The call can be executed with or without blocking.

– The Receive call is “blocking” when the receive_type characteristic has the value
CM_RECEIVE_AND_WAIT.
If no information (data or permission to send) is present at the time of the Receive call,
the program run waits in the Receive until information is available for this conversation.
Only then does the program run return from the Receive call and bring back the infor-
mation. If there is information available at the time of the call, the program receives it
without waiting.

To limit the wait time for a blocking Receive call, appropriate timers should be set in the
UTM partner application.

– The Receive call is “non-blocking” when the receive_type characteristic has the value
CM_RECEIVE_IMMEDIATE.
If no information is present at the time of the Receive call, the program run does not wait
until information for this conversation arrives. The program run returns from the Receive
call immediately. If there is already information available, it is transferred to the
program.

UPIC local:
Local connection via UPIC local does not support the non-blocking Receive call.

You can set the receive_type characteristic with the Set_Receive_Type call before the Receive
call. After a conversation has been initialized, the blocking receive is set by default.

Syntax

CMRCV (conversation_ID, buffer, requested_length, data_received, received_length,
status_received, control_information_received, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

← buffer Buffer in which the data is received. If the return value of
data_received is CM_NO_DATA_RECEIVED, the contents of buffer
are undefined.

→ requested_length Maximum length of data that can be received.

X/W

X/W

Receive CPI-C calls in UPIC

154 openUTM-Client for the UPIC Carrier System

← data_received Specifies whether the program has received data.

If the result (return_code) is neither CM_OK nor
CM_DEALLOCATED_NORMAL, the value of data_received is
undefined.

data_received can have one of the following values:

CM_NO_DATA_RECEIVED

No data was available for the program. Permission to send may
have been received.

CM_COMPLETE_DATA_RECEIVED

A complete message available for the program was received.

CM_INCOMPLETE_DATA_RECEIVED

A message was not transferred in full to the program. If data_received
has this value, the program must issue repeated Receive calls until
the message is received in its entirety, i.e. until data_received has the
value CM_COMPLETE_DATA_RECEIVED.

← received_length Length of the data received. If the program has not received data
(data_received=CM_NO_DATA_RECEIVED) or if the result is not
CM_OK or CM_DEALLOCATE_NORMAL, the value of
received_length is undefined.

← status_received Specifies whether the program received permission to send.

status_received can have one of the following values:

CM_NO_STATUS_RECEIVED
Permission to send was not received.

CM_SEND_RECEIVED
The UTM service has passed permission to send to the program.
The program must then issue a Send_Data call.

Unless the return code is CM_OK, the value of status_received is
undefined.

← control_information_received
This is only supported syntactically and always has the value
CM_REQ_TO_SEND_NOT_RECEIVED.

If the return code is not CM_OK or CM_DEALLOCATE_NORMAL,
the value of control_information_received is undefined.

← return_code Result of the function call.

CPI-C calls in UPIC Receive

openUTM-Client for the UPIC Carrier System 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Result (return_code)

CM_OK
If the return code is CM_OK, the program has one of the following states after
function call:
“Receive”, if the value of status_received is CM_NO_STATUS_RECEIVED.
“Send”, if the value of status_received is CM_SEND_RECEIVED.

CM_SECURITY_NOT_VALID
Possible causes:
– an invalid UTM user ID in the Set_Conversation_Security_User_ID call
– an invalid password in the Set_Conversation_Security_Password call
– the UTM application was generated without USER
– the user cannot sign on to the UTM application due to a resource bottleneck

If the UPIC application communicates with an openUTM application that returns a
detailed result of the authorization check, the UPIC library supplies a secondary
return code that describes the cause in detail. The results received by the program
are listed under secondary_return_code, see page 157.

The secondary return codes can also be queried using the
Extract_Secondary_Return_Code call, see page 133.

CM_TPN_NOT_RECOGNIZED
Possible causes:
– invalid transaction code (TAC) in the upicfile or in the Set_TP_Name call, e.g.:

– the TAC is not generated
– you are not authorized to call this TAC
– the TAC is permitted only as a follow-up TAC
– the TAC is not a dialog TAC
– TAC is generated with encryption, but user data is sent without imple-

menting encryption, or encryption is not supported for the connection, or the
encrypted data does not have the required encryption level.

– a service restart with KDCDISP was rejected as no UTM user ID generated with
RESTART=YES was specified

CM_TP_NOT_AVAILABLE_NO_RETRY
A service restart with KDCDISP is not possible as the UTM application has been
regenerated.

CM_TP_NOT_AVAILABLE_RETRY
A service restart was rejected as the UTM application has been terminated.

Receive CPI-C calls in UPIC

156 openUTM-Client for the UPIC Carrier System

CM_DEALLOCATED_ABEND
Possible causes:
– abnormal termination of the UTM service
– termination of the UTM application
– connection shutdown by UTM administration
– connection shutdown by the transport system
– connection shutdown by UTM because the maximum permitted number of

users (MAX statement, CONN-USERS=) has been exceeded. This may also
occur if an administrator user was transferred in the
Set_Conversation_Security_User_ID call but the user ID implicitly assigned to the
connection by UTM generation or the (connection) user ID explicitly assigned
using the statement LTERM..., USER= is not an administrator user (CONN-
USERS applies only for users without administration authorization).

The program enters the “Reset” state.

CM_DEALLOCATED_NORMAL
A PEND-FI call was executed in the UTM service. The program enters the state
“Reset”.

CM_RESOURCE_FAILURE_RETRY
A temporary resource bottleneck led to termination of the conversation. It may not
be possible to buffer any further data in the UTM page pool. If the error recurs, the
page pool of the UTM application should be enlarged (MAX statement, PGPOOL=).

CM_RESOURCE_FAILURE_NO_RETRY
An error occurred which led to premature termination of the conversation (e.g.
protocol error or premature loss of network connection).

CM_PROGRAM_STATE_CHECK
The call is not permitted in the current state. The contents of all other variables are
undefined.

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID is invalid or the value in requested_length is greater than 32767
or less than 0. The contents of all other variables are undefined.

CM_PRODUCT_SPECIFIC_ERROR
A Receive call was issued instead of a Send_Data call (only directly after an Allocate
call).

CM_OPERATION_INCOMPLETE
The Receive call was interrupted by the expiry of the timer that was set with
Set_Receive_Timer. No data was received.

CM_UNSUCCESSFUL
receive_type has the value CM_RECEIVE_IMMEDIATE and there is currently no
data available for the conversation.

CPI-C calls in UPIC Receive

openUTM-Client for the UPIC Carrier System 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Secondary return code (secondary_return_code)

CM_SECURITY_USER_UNKNOWN
The specified user ID is not generated.

CM_SECURITY_STA_OFF
The specified user ID is locked.

CM_SECURITY_USER_IS_WORKING
Another user is already signed on with this user ID.

CM_SECURITY_OLD_PSWORD_WRONG
The old password entered is incorrect.

CM_SECURITY_NEW_PSWORD_WRONG
The new password information cannot be used. Possible cause: minimum period of
validity not yet expired.

CM_SECURITY_NO_CARD_READER
The user is generated with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG
The user is generated with a chipcard and cannot sign on via UPIC.

CM_SECURITY_NO_RESOURCES
Sign-on is not possible at the moment. Possible cause:
– a resource bottleneck, or
– the maximum number of simultaneous users signed on has been reached

(see KDCDEF statement MAX CONN-USERS=), or
– an inverse KDCDEF is running

Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT
The user is generated with a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING
The current LTERM is not authorized to resume the service.

CM_SECURITY_PWD_EXPIRED_NO_RETRY
The validity period of the user password has expired.

CM_SECURITY_COMPLEXITY_ERROR
The new password is not sufficiently complex.

CM_SECURITY_PASSWORD_TOO_SHORT
The new password is too short.

Receive CPI-C calls in UPIC

158 openUTM-Client for the UPIC Carrier System

CM_SECURITY_UPD_PSWORD_WRONG
The password transfered by KDCUPD does not satisfy the complexity or minimum
length requirement defined in application generation.

CM_SECURITY_TA_RECOVERY
A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED
The open sevice cannot be resumed from this LTERM partner.

CM_SECURITY_SHUT_WARN
The administrator has issued a SHUT WARN. Normal users may no longer sign on
to the UTM application, only the administrator may still sign on.

CM_SECURITY_ENC_LEVEL_TOO_HIGH
The encryption mechanism required to resume the open service is not available on
the connection.

CM_SECURITY_PWD_EXPIRED_RETRY
The validity period of the user password has expired.

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN
The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE
A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR
A temporary error occurred during signon. The cluster user file could not be
accessed in the time configured in the node application.

Try signing on again later.

CPI-C calls in UPIC Receive

openUTM-Client for the UPIC Carrier System 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

State change

– If the return code is CM_OK, the program has one of the following states after function
call:
“Receive” if the value of status_received is CM_NO_STATUS_RECEIVED.
“Send” if the value of status_received is CM_SEND_RECEIVED.

– With the following return codes, the program enters the “Reset” state:

CM_DEALLOCATED_ABEND
CM_DEALLOCATED_NORMAL
CM_SECURITY_NOT_VALID
CM_TPN_NOT_RECOGNIZED
CM_TPN_NOT_AVAILABLE_RETRY/NO_RETRY
CM_RESOURCE_FAILURE_RETRY/NO_RETRY
CM_SECURITY_USER_UNKNOWN
CM_SECURITY_STA_OFF
CM_SECURITY_USER_IS_WORKING
CM_SECURITY_OLD_PSWORD_WRONG
CM_SECURITY_NEW_PSWORD_WRONG
CM_SECURITY_NO_CARD_READER
CM_SECURITY_CARD_INFO_WRONG
CM_SECURITY_NO_RESOURCES
CM_SECURITY_NO_KERBEROS_SUPPORT
CM_SECURITY_TAC_KEY_MISSING
CM_SECURITY_PWD_EXPIRED_NO_RETRY
CM_SECURITY_COMPLEXITY_ERROR
CM_SECURITY_PASSWORD_TOO_SHORT
CM_SECURITY_UPD_PSWORD_WRONG
CM_SECURITY_TA_RECOVERY
CM_SECURITY_PROTOCOL_CHANGED
CM_SECURITY_SHUT_WARN
CM_SECURITY_ENC_LEVEL_TOO_HIGH
CM_SECURITY_PWD_EXPIRED_RETRY
CM_SECURITY_PWD_EXPIRED_RETRY
CM_SECURITY_USER_GLOBALLY_UNKNOWN
CM_SECURITY_USER_SIGNED_ON_OTHER_NODE
CM_SECURITY_TRANSIENT_ERROR

– In all other error conditions, the program does not change its state.

Receive CPI-C calls in UPIC

160 openUTM-Client for the UPIC Carrier System

Notes

● If a maximum wait time was set with the Set_Receive_Timer call before a blocking Receive
call, the program run returns from the Receive call at the latest once the wait time has
expired, and the Receive call then returns the result (return_code)
CM_OPERATION_INCOMPLETE.

● With a Receive call, a program can only receive the amount of data specified in the
requested_length parameter. It is therefore possible that a message is only partially
received with the Receive call. The data_received parameter indicates as shown below
whether a complete message available for the program was received:

– If the program has already received the complete message, the data_received
parameter has the value CM_COMPLETE_DATA_RECEIVED.

– If the program has not yet received all data of the message, the data_received
parameter has the value CM_INCOMPLETE_DATA_RECEIVED. The program
must then continue to call Receive until data_received has the value
CM_COMPLETE_DATA_RECEIVED.

● A program can use a single call to receive both data and permission to send. The
return_code, data_received, and status_received parameters supply details on the kind of
information received by a program.

● If the program issues the Receive call in the “Send” state, permission to send is passed
to the UTM service. The send direction of the conversation is thus changed.

● A Receive call with requested_length = 0 has no special meaning.
If data is available, it is received in the length 0 and
data_received = CM_INCOMPLETE_DATA_RECEIVED.
If no data is available, permission to send can be received. This means that either data
or permission to send can be received, but not both.

● If the UTM partner application transfers a format identifier (structure information
concerning the transferred file), this will be received by UPIC (no error occurs in the
UTM service), but it cannot be passed on to the program. Data together with format IDs
can only be read with Receive_Mapped_Data.

CPI-C calls in UPIC Receive

openUTM-Client for the UPIC Carrier System 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_RESOURCE_FAILURE_RETRY
Re-establish conversation.

CM_RESOURCE_FAILURE_NO_RETRY
Notify the service department and produce diagnostic report.
A fault in the transport system can also cause this return code.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
Modify program.

CM_SECURITY_USER_UNKNOWN
The UTM user ID is not generated. Use a user ID that is generated or generate or
dynamically configure the user ID you want.

CM_SECURITY_STA_OFF
Generate the user ID with STATUS=ON or unlock it using administration facilities.

CM_SECURITY_USER_IS_WORKING
Use another UTM user ID or terminate the service of the user already signed on.

CM_SECURITY_OLD_PSWORD_WRONG
Enter the password correctly.

CM_SECURITY_NEW_PSWORD_WRONG
Use the old password until its validity expires.

CM_SECURITY_NO_CARD_READER
The user is generated with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG
The user is generated with a chipcard.

CM_SECURITY_NO_RESOURCES
Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT
The user is generated with a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING
Generation or modify program.

Receive CPI-C calls in UPIC

162 openUTM-Client for the UPIC Carrier System

CM_SECURITY_PWD_EXPIRED_NO_RETRY
The validity period of the password has expired. The password must be changed
using administration facilities before the user can sign on again.

CM_SECURITY_COMPLEXITY_ERROR
Select a new password that satisfies the requirements of the generated complexity
level, see KDCDEF statement USER PROTECT-PW=.

CM_SECURITY_PASSWORD_TOO_SHORT
Select a longer password or change generation, see KDCDEF statement USER
PROTECT-PW= length, ... (value for the minimum length).

CM_SECURITY_UPD_PSWORD_WRONG
The password is not sufficiently complex or is too short, see KDCDEF statement
USER PROTECT-PW=. The password must be changed using administration
facilities before the user can sign on again.

CM_SECURITY_TA_RECOVERY
A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED
The user has an open service that cannot be resumed from a UPIC client.

CM_SECURITY_SHUT_WARN
The UTM application is terminated; only users with administration authorization
may sign on. Wait until the application has been restarted.

CM_SECURITY_ENC_LEVEL_TOO_HIGH
The encryption mechanism required to resume the open service is not available on
the connection.

CM_SECURITY_PWD_EXPIRED_RETRY
Repeat initiation of the conversation specifying the old password and the new
password.

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN
The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE
A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR
A temporary error occurred during signon. The cluster user file could not be
accessed in the time configured in the node application.

Try signing on again later.

CPI-C calls in UPIC Receive

openUTM-Client for the UPIC Carrier System 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Function declaration: Receive

CM_ENTRY Receive (unsigned char CM_PTR conversation_ID,/
unsigned char CM_PTR buffer,

CM_INT32 CM_PTR requested_length,
CM_DATA_RECEIVED_TYPE CM_PTR data_received,

CM_INT32 CM_PTR received_length,
CM_STATUS_RECEIVED CM_PTR status_received,

CM_CONTROL_INFORMATION_RECEIVED CM_PTR control_information_received,
CM_RETURN_CODE CM_PTR return_code)

Receive_Mapped_Data CPI-C calls in UPIC

164 openUTM-Client for the UPIC Carrier System

Receive_Mapped_Data - Receiving data and format identifier from a
UTM service

A program uses the Receive_Mapped_Data (CMRCVM) call to receive information from a
UTM service. The information received can be either data, a format identifier and/or
permission to send.

The call can be executed with or without blocking.

– The Receive_Mapped_Data call is “blocking” when the receive_type characteristic has the
value CM_RECEIVE_AND_WAIT.
If no information (data or permission to send) is present at the time of the
Receive_Mapped_Data call, the program run waits in Receive_Mapped_Data until infor-
mation is available for this conversation. Only then does the program run return from
the Receive_Mapped_Data call and bring back the information. If there is information
available at the time of the call, the program receives it without waiting.

To limit the wait time for a blocking Receive_Mapped_Data call, appropriate timers should
be set in the UTM partner application.

– The Receive_Mapped_Data call is “non-blocking” when the receive_type characteristic has
the value CM_RECEIVE_IMMEDIATE.
If no information is present at the time of the Receive_Mapped_Data call, the program run
does not wait until information for this conversation arrives. The program run returns
from the Receive_Mapped_Data call immediately. If there is already information available,
it is transferred to the program.

You can set the receive_type characteristic with the Set_Receive_Type call before the
Receive_Mapped_Data call.

Syntax

CMRCVM (conversation_ID, map_name, map_name_length, buffer, requested_length,
data_received, received_length, status_received,
control_information_received, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

← map_name Format identifier sent to the CPI-C program by the UTM partner
application together with the data. The format identifier specifies the
structure information for the received data.

← map_name_length Length of the format identifier in map_name.

CPI-C calls in UPIC Receive_Mapped_Data

openUTM-Client for the UPIC Carrier System 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

← buffer Buffer in which the data is received. If the return value of
data_received is CM_NO_DATA_RECEIVED, the contents of buffer
are undefined.

→ requested_length Maximum length of data that can be received.

← data_received Specifies whether data was received in the conversation.

data_received can have one of the following values:

CM_NO_DATA_RECEIVED
No data was available for the program. Permission to send may
have been received.

CM_COMPLETE_DATA_RECEIVED
A complete message available for the program was received.

CM_INCOMPLETE_DATA_RECEIVED
A message was not transferred in full to the program. If data_received
has this value, the program must issue repeated Receive or
Receive_Mapped_Data calls until the message is received in its
entirety, i.e. until data_received has the value
CM_COMPLETE_DATA_RECEIVED.
The value of data_received is undefined if the result of the call is not
CM_OK or CM_DEALLOCATED_NORMAL.

← received_length Length of the data received. If the program has not received data
(data_received=CM_NO_DATA_RECEIVED) or if the result is not
CM_OK or CM_DEALLOCATE_NORMAL, the value of
received_length is undefined.

← status_received Specifies whether the program received permission to send.

status_received can have one of the following values:

CM_NO_STATUS_RECEIVED
Permission to send was not received.

CM_SEND_RECEIVED
The UTM service has passed permission to send to the program.
The program must then issue a Send_Data call.

Unless the return code is CM_OK, the value of status_received is
undefined.

Receive_Mapped_Data CPI-C calls in UPIC

166 openUTM-Client for the UPIC Carrier System

← control_information_received
This is only supported syntactically and always has the value
CM_REQ_TO_SEND_NOT_RECEIVED.

If the return code is not CM_OK or CM_DEALLOCATE_NORMAL,
the value of control_information_received is undefined.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK. The program has one of the following states after function call:

“Receive”, if the value of status_received is CM_NO_STATUS_RECEIVED.
“Send”, if the value of status_received is CM_SEND_RECEIVED.

CM_SECURITY_NOT_VALID
Possible causes:
– an invalid UTM user ID in the Set_Conversation_Security_User_ID call
– an invalid password in the Set_Conversation_Security_Password call
– the UTM application was generated without user IDs (USER statements).
– the user cannot sign on to the UTM application due to a resource bottleneck.

If the UPIC application communicates with an openUTM application that returns a
detailed result of the authorization check, the UPIC library supplies a secondary
return code that describes the cause in detail. The results received by the program
are listed under secondary_return_code, see page 168.

The secondary return codes can also be queried using the
Extract_Secondary_Return_Code call, see page 133.

CM_TPN_NOT_RECOGNIZED
Possible causes:
– a service restart with KDCDISP was rejected as no UTM user ID generated with

RESTART=YES was specified.
– an invalid transaction code (TAC) in the upicfile or in the Set_TP_Name call,

e.g.:
– the TAC is not generated
– you are not authorized to call this TAC
– the TAC is permitted only as a follow-up TAC
– the TAC is not a dialog TAC
– The TAC is generated with encryption but user data was sent without

encryption, or encryption is not supported for the connection, or the
encrypted data does not have the required encryption level.

– Service restart using KDCDISP was rejected because no UTM user ID
generated with RESTART=YES was specified.

CPI-C calls in UPIC Receive_Mapped_Data

openUTM-Client for the UPIC Carrier System 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_TP_NOT_AVAILABLE_NO_RETRY
A service restart with KDCDISP is not possible as the UTM application has been
regenerated.

CM_TP_NOT_AVAILABLE_RETRY
A service restart was rejected as the UTM application has been terminated.

CM_DEALLOCATED_ABEND
Possible causes:
– abnormal termination of the UTM service
– termination of the UTM application
– connection shutdown by UTM administration
– connection shutdown by the transport system
– connection shutdown by UTM because the maximum permitted number of

users (MAX statement, CONN-USERS=) has been exceeded. This may also
occur if an administrator user was transferred in the
Set_Conversation_Security_User_ID call but the user ID implicitly assigned to the
connection by UTM generation or the (connection) user ID explicitly assigned
using the statement LTERM..., USER= is not an administrator user (CONN-
USERS applies only for users without administration authorization).

The program enters the “Reset” state.

CM_DEALLOCATED_NORMAL
A PEND-FI call was executed in the UTM service. The program enters the “Reset”
state.

CM_OPERATION_INCOMPLETE
The Receive_Mapped_Data call was interrupted by the expiry of the timer that was set
with Set_Receive_Timer. No data was received.

CM_UNSUCCESSFUL
The receive_type characteristic has the value CM_RECEIVE_IMMEDIATE and there
is currently no data available for the conversation.

CM_RESOURCE_FAILURE_RETRY
A temporary resource bottleneck led to termination of the conversation. It may not
be possible to buffer any further data in the UTM page pool.

Remedy: enlarge the UTM page pool (MAX statement, PGPOOL=).

CM_RESOURCE_FAILURE_NO_RETRY
An error occurred which led to premature termination of the conversation (e.g.
protocol error or premature loss of network connection).

CM_PROGRAM_STATE_CHECK
The call is not permitted in the current state. The contents of all other variables are
undefined.

Receive_Mapped_Data CPI-C calls in UPIC

168 openUTM-Client for the UPIC Carrier System

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID is invalid or the value in requested_length is greater than 32767
or less than 0. The contents of all other variables are undefined.

CM_PRODUCT_SPECIFIC_ERROR
A Receive call was issued instead of a Send_Data call (only directly after an Allocate
call).

CM_MAP_ROUTINE_ERROR
In the UTM partner application no format identifiers are supported in the UPIC
protocol.

Secondary return code (secondary_return_code)

CM_SECURITY_USER_UNKNOWN
The specified user ID is not generated.

CM_SECURITY_STA_OFF
The specified user ID is locked.

CM_SECURITY_USER_IS_WORKING
Another user is already signed on with this user ID.

CM_SECURITY_OLD_PSWORD_WRONG
The old password entered is incorrect.

CM_SECURITY_NEW_PSWORD_WRONG
The new password information cannot be used. Possible cause: minimum period of
validity not yet expired.

CM_SECURITY_NO_CARD_READER
The user is generated with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG
The user is generated with a chipcard and cannot sign on via UPIC.

CM_SECURITY_NO_RESOURCES
Sign-on is not possible at the moment. Possible cause:
– a resource bottleneck, or
– the maximum number of simultaneous users signed on has been reached

(see KDCDEF statement MAX CONN-USERS=), or
– an inverse KDCDEF is running.

Try again later.

CM_SECURITY_NO_KERBEROS_SUPPORT
The user is generated with a Kerberos principal and cannot sign on via UPIC.

CPI-C calls in UPIC Receive_Mapped_Data

openUTM-Client for the UPIC Carrier System 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_SECURITY_TAC_KEY_MISSING
The current LTERM is not authorized to resume the service.

CM_SECURITY_PWD_EXPIRED_NO_RETRY
The validity period of the user password has expired.

CM_SECURITY_COMPLEXITY_ERROR
The new password is not sufficiently complex.

CM_SECURITY_PASSWORD_TOO_SHORT
The new password is too short.

CM_SECURITY_UPD_PSWORD_WRONG
The password transferred by KDCUPD does not satisfy the complexity or minimum
length requirement defined in application generation.

CM_SECURITY_TA_RECOVERY
A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED
The open service cannot be resumed from this LTERM partner.

CM_SECURITY_SHUT_WARN
The administrator has issued a SHUT WARN. Normal users may no longer sign on
to the UTM application, only the administrator may still sign on.

CM_SECURITY_ENC_LEVEL_TOO_HIGH
The encryption mechanism required to resume the open service is not available on
the connection.

CM_SECURITY_PWD_EXPIRED_RETRY
The validity period of the user password has expired.

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN
The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE
A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR
A temporary error occurred during signon. The cluster user file could not be
accessed in the time configured in the node application.

Try signing on again later.

Receive_Mapped_Data CPI-C calls in UPIC

170 openUTM-Client for the UPIC Carrier System

State change

– If the return code is CM_OK, the program has one of the following states after function
call:

“Receive” if the value of status_received is CM_NO_STATUS_RECEIVED.
“Send” if the value of status_received is CM_SEND_RECEIVED.

– With the following return codes, the program enters the “Reset” state:
CM_DEALLOCATED_ABEND
CM_DEALLOCATED_NORMAL
CM_SECURITY_NOT_VALID
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_RETRY/NO_RETRY
CM_RESOURCE_FAILURE_RETRY/NO_RETRY
CM_SECURITY_USER_UNKNOWN
CM_SECURITY_STA_OFF
CM_SECURITY_USER_IS_WORKING
CM_SECURITY_OLD_PSWORD_WRONG
CM_SECURITY_NEW_PSWORD_WRONG
CM_SECURITY_NO_CARD_READER
CM_SECURITY_CARD_INFO_WRONG
CM_SECURITY_NO_RESOURCES
CM_SECURITY_NO_KERBEROS_SUPPORT
CM_SECURITY_TAC_KEY_MISSING
CM_SECURITY_PWD_EXPIRED_NO_RETRY
CM_SECURITY_COMPLEXITY_ERROR
CM_SECURITY_PASSWORD_TOO_SHORT
CM_SECURITY_UPD_PSWORD_WRONG
CM_SECURITY_TA_RECOVERY
CM_SECURITY_PROTOCOL_CHANGED
CM_SECURITY_SHUT_WARN
CM_SECURITY_ENC_LEVEL_TOO_HIGH
CM_SECURITY_PWD_EXPIRED_RETRY
CM_SECURITY_USER_GLOBALLY_UNKNOWN
CM_SECURITY_USER_SIGNED_ON_OTHER_NODE
CM_SECURITY_TRANSIENT_ERROR

– In all other error conditions, the program does not change its state.

CPI-C calls in UPIC Receive_Mapped_Data

openUTM-Client for the UPIC Carrier System 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Notes

● With a Receive_Mapped_Data call, a program can only receive the amount of data
specified in the requested_length parameter. It is therefore possible that the program has
not read the complete message sent by the partner. The data_received parameter
indicates as shown below whether there is still more message data to be read.

– If the program has already received the complete message, the data_received
parameter has the value CM_COMPLETE_DATA_RECEIVED.

– If the program has not yet received all data of the message, the data_received
parameter has the value CM_INCOMPLETE_DATA_RECEIVED. The program
must then continue to call Receive_Mapped_Data or Receive until data_received has
the value CM_COMPLETE_DATA_RECEIVED

● If a maximum wait time was set with the Set_Receive_Timer call before a blocking
Receive_Mapped_Data call, the program run returns from the Receive_Mapped_Data call
at the latest once the wait time has expired, and the Receive_Mapped_Data call then
returns the result (return_code) CM_OPERATION_INCOMPLETE.

● A program can use a single call to receive both data and permission to send. The
return_code, data_received, and status_received parameters supply details on the kind of
information received by a program.

● If the program issues the Receive_Mapped_Data call in the “Send” state, permission to
send is passed to the UTM service. The send direction of the conversation is thus
changed.

● A Receive call with requested_length = 0 has no special meaning.
If data is available, it is received in the length 0 with data_received =
CM_INCOMPLETE_DATA_RECEIVED.
If no data is available, permission to send can be received. This means that either data
or permission to send can be received, but not both.

● If a message segment is received with Receive_Mapped_Data calls (data_received has the
value CM_INCOMPLETE_DATA_RECEIVED except in the last Receive_Mapped_Data
call), the map_name and map_name_length parameters are only supplied with values the
first time Receive_Mapped_Data is called. However, they are not overwritten in the subse-
quent Receive_Mapped_Data calls.

● If the UTM partner application transfers an empty format identifier (i.e. 8 blanks),
map_name is set to 8 blanks and map_name_length to -1.

Receive_Mapped_Data CPI-C calls in UPIC

172 openUTM-Client for the UPIC Carrier System

Behavior in the event of errors

CM_RESOURCE_FAILURE_RETRY
Re-establish conversation. If the error recurs, the page pool of the UTM application
may be too small and should be enlarged (MAX statement, PGPOOL=).

CM_RESOURCE_FAILURE_NO_RETRY
Notify the service department and produce a diagnostic report.
A fault in the transport system can also cause this return code.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
Modify program.

CM_MAP_ROUTINE_ERROR
Modify program.

CM_OPERATION_INCOMPLETE
The conversation and the communication connection must be explicitly shut down
with the Disable_UTM_UPIC call.
Any other call can lead to unpredictable results.

CM_SECURITY_USER_UNKNOWN
The UTM user ID is not generated. Use a user ID that is generated or generate or
dynamically configure the user ID you want.

CM_SECURITY_STA_OFF
Generate the user ID with STATUS=ON or unlock it using administration facilities.

CM_SECURITY_USER_IS_WORKING
Use another UTM user ID or terminate the service of the user already signed on.

CM_SECURITY_OLD_PSWORD_WRONG
Enter the password correctly.

CM_SECURITY_NEW_PSWORD_WRONG
Use the old password until its validity expires.

CM_SECURITY_NO_CARD_READER
The user is generated with a magnetic stripe card and cannot sign on via UPIC.

CM_SECURITY_CARD_INFO_WRONG
The user is generated with a chipcard.

CM_SECURITY_NO_RESOURCES
Try again later.

CPI-C calls in UPIC Receive_Mapped_Data

openUTM-Client for the UPIC Carrier System 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_SECURITY_NO_KERBEROS_SUPPORT
The user is generated with a Kerberos principal and cannot sign on via UPIC.

CM_SECURITY_TAC_KEY_MISSING
Generation or modify program.

CM_SECURITY_PWD_EXPIRED_NO_RETRY
The validity period of the password has expired. The password must be changed
using administration facilities before the user can sign on again.

CM_SECURITY_COMPLEXITY_ERROR
Select a new password that satisfies the requirements of the generated complexity
level, see KDCDEF statement USER PROTECT-PW=.

CM_SECURITY_PASSWORD_TOO_SHORT
Select a longer password or change generation, see KDCDEF statement USER
PROTECT-PW= length, ... (value for the minimum length).

CM_SECURITY_UPD_PSWORD_WRONG
The password is not sufficiently complex or is too short, see KDCDEF statement
USER PROTECT-PW=. The password must be changed using administration facil-
ities before the user can sign on again.

CM_SECURITY_TA_RECOVERY
A transaction restart is required for the specified user ID.

CM_SECURITY_PROTOCOL_CHANGED
The user has an open service that cannot be resumed from a UPIC client.

CM_SECURITY_SHUT_WARN
The UTM application is terminated; only users with administration authorization
may sign on. Wait until the application has been restarted.

CM_SECURITY_ENC_LEVEL_TOO_HIGH
The encryption mechanism required to resume the open service is not available on
the connection.

CM_SECURITY_PWD_EXPIRED_RETRY
Repeat establishment of the conversation using the old password and a new
password.

Receive_Mapped_Data CPI-C calls in UPIC

174 openUTM-Client for the UPIC Carrier System

The following secondary return codes only occur in the context of UTM cluster applications:

CM_SECURITY_USER_GLOBALLY_UNKNOWN
The specified user ID is not recognized in the cluster user file.

CM_SECURITY_USER_SIGNED_ON_OTHER_NODE
A user has already signed on to another node application with this user ID.

CM_SECURITY_TRANSIENT_ERROR
A temporary error occurred during signon. The cluster user file could not be
accessed in the time configured in the node application.

Try signing on again later.

Function declaration: Receive_Mapped_Data

CM_ENTRY Receive_Mapped_Data (unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR map_name,

CM_INT32 CM_PTR map_name_length,
unsigned char CM_PTR buffer,

CM_INT32 CM_PTR requested_length,
CM_DATA_RECEIVED_TYPE CM_PTR data_received,

CM_INT32 CM_PTR received_length,
CM_STATUS_RECEIVED CM_PTR status_received,

CM_CONTROL_INFORMATION_RECEIVED CM_PTR request_to_send_received,
CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Send_Data

openUTM-Client for the UPIC Carrier System 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Send_Data - Sending data to a UTM service

A program uses the Send_Data (CMSEND) call to send data to a UTM service. A program
must issue a Send_Data or Send_Mapped_Data call each time it receives permission to send.
This is the case:

– immediately after a successful Allocate call or
– when status_received has the value CM_SEND_RECEIVED after the Receive or

Receive_Mapped_Data call (i.e. when the program has received permission to send).

Syntax

CMSEND (conversation_ID, buffer, send_length, control_information_received,
return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ buffer Buffer with the data to be sent. The length of the data is specified in
the send_length parameter.

→ send_length Length in bytes of data to be sent.

Minimum: 0, maximum: 32767

A Send_Data call with length 0 means that a message with length 0
is sent.

← control_information_received
This is only supported syntactically and always has the value
CM_REQ_TO_SEND_NOT_RECEIVED.

If the return code is not CM_OK, the value of
control_information_received is undefined.

← return_code Result of the function call.

Send_Data CPI-C calls in UPIC

176 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_TPN_NOT_RECOGNIZED
This return code can only occur with the first Send_Data call after an Allocate call.
After the conversation was established, an error occurred which led to termination
of the conversation.

CM_DEALLOCATED_ABEND
Possible causes:
– termination of UTM application
– connection shutdown by UTM administration
– connection shutdown by the transport system

CM_RESOURCE_FAILURE_RETRY
A temporary resource bottleneck led to termination of the conversation. It may not
be possible to buffer any further data in the UTM page pool.
Action: Increase the size of the UTM page pool (MAX statement PGPOOL=).

CM_PROGRAM_STATE_CHECK
The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID is invalid or the value of send_length is greater than 32767 or
less than 0.

State change

If the return code is CM_OK, the program remains in the “Send” state.

If the return code is CM_TPN_NOT_RECOGNIZED, CM_DEALLOCATED_ABEND, or
CM_RESOURCE_FAILURE_RETRY/NO_RETRY, the program enters the “Reset” state.

In all other error conditions, the program does not change its state.

Note

UPIC buffers the data to be sent, and does not send it to the UTM server until a later point
in time. Consequently, termination of the UTM application may not be returned immediately,
and may not be reported until the next call has been issued.

CPI-C calls in UPIC Send_Data

openUTM-Client for the UPIC Carrier System 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_RESOURCE_FAILURE_RETRY
Re-establish conversation.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

Function declaration: Send_Data

 CM_ENTRY Send_Data (unsigned char CM_PTR conversation_ID,
 unsigned char CM_PTR buffer,
 CM_INT32 CM_PTR send_length,
 CM_CONTROLINFORMATION_RECEIVED CM_PTR control_information_received,
 CM_RETURN_CODE CM_PTR return_code)

Send_Mapped_Data CPI-C calls in UPIC

178 openUTM-Client for the UPIC Carrier System

Send_Mapped_Data - Sending data and format identifier

A program uses the Send_Mapped_Data (CMSNDM) call to send data and a format identifier
to a UTM service. A program must issue a Send_Data or Send_Mapped_Data call each time
it receives permission to send. This is the case

– immediately after a successful Allocate call or
– when status_received has the value CM_SEND_RECEIVED after the Receive or

Receive_Mapped_Data call (i.e. when the program has received permission to send).

Syntax

CMSNDM (conversation_ID, map_name, map_name_length, buffer, send_length,
control_information_received, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ map_name Format identifier sent to the UTM application. The format identifier
specifies the structure information for the recipient of the data.

→ map_name_length Length of the format identifier in bytes.

→ buffer Address of the buffer with the data to be sent. The length of the data
is specified in the send_length parameter.

→ send_length Length in bytes of data to be sent.

Minimum: 0, maximum: 32767

A Send_Mapped_Data call with length 0 means that a message with
length 0 is sent.

← control_information_received
This is only supported syntactically and always has the value
CM_REQ_TO_SEND_NOT_RECEIVED.

If the return code is not CM_OK, the value of
control_information_received is undefined.

← return_code Result of the function call.

CPI-C calls in UPIC Send_Mapped_Data

openUTM-Client for the UPIC Carrier System 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Result (return_code)

CM_OK
The call is OK.

CM_TPN_NOT_RECOGNIZED
This return code can only occur with the first Send_Mapped_Data call after an Allocate
call. After the conversation was established, an error occurred which led to termi-
nation of the conversation.

CM_DEALLOCATED_ABEND
Possible causes:
– termination of UTM application
– connection shutdown by UTM administration
– connection shutdown by the transport system

CM_RESOURCE_FAILURE_RETRY
A temporary resource bottleneck led to termination of the conversation. It may not
be possible to buffer any further data in the UTM page pool.

CM_PROGRAM_STATE_CHECK
The call is not permitted in the current state.

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID is invalid or the value of send_length is greater than 32767 or
less than 0.

CM_MAP_ROUTINE_ERROR
Possible causes:
– In the UTM partner application, format identifiers are not supported in the UPIC

protocol.
– The length of the format identifier is less than 0 or greater than 8.

State change

– If the return code is CM_OK, the program remains in the “Send” state.

– If the return code is one of the following the program enters the “Reset” state:
CM_TPN_NOT_RECOGNIZED
CM_DEALLOCATED_ABEND
CM_RESOURCE_FAILURE_RETRY/NO_RETRY

– In all other error conditions, the program does not change its state.

Send_Mapped_Data CPI-C calls in UPIC

180 openUTM-Client for the UPIC Carrier System

Notes

● The data is always transferred transparently. The data sent is shown to the partner UTM
service in the MGET call.
The format identifier in map_name is transferred to the UTM service in the KCMF/kcfn
field during the MGET call.

● For performance reasons, UPIC buffers the data to be sent, and does not send it to the
UTM server until later (with a follow-up call). Consequently, termination of the UTM
application may not be returned immediately, and may not be reported until the next call
has been issued.

● map_name is reset as soon as the value of map_name is sent to UTM.

Behavior in the event of errors

CM_RESOURCE_FAILURE_RETRY
Re-establish conversation. If the error recurs, the page pool of the UTM application
may be too small and should be enlarged (MAX statement, PGPOOL=).

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

Function declaration: Send_Mapped_Data

CM_ENTRY Send_Mapped_Data(unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR map_name,

CM_INT32 CM_PTR map_name_length,
unsigned_char CM_PTR buffer,

CM_INT32 CM_PTR send_length,
CM_CONTROL_INFORMATION_RECEIVED CM_PTR control_information_received,

CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Set_Allocate_Timer

openUTM-Client for the UPIC Carrier System 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Allocate_Timer - Setting timer for the allocate call

The Set_Allocate_Timer call (CMSAT) sets the timeout for an Allocate call.

When this timer is set, the Allocate call is broken off after the time defined in the
allocate_timer array.

The Set_Allocate_Timer call is only permitted in the “Init” state.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C specification.

UPIC-Local: Connection via UPIC-Local does not support the Set_Allocate_Timer call.

Syntax

CMSAT (conversation_ID, allocate_timer, return_code)

Parameters

→ conversation_ID Conversation identifier

→ allocate_timer Time in milliseconds after which an Allocate call is broken off. The
Allocate timer is reset if you set allocate_timer to 0. The waiting time
of the Allocate call is then no longer monitored.

Th value specified for allocate_timer is rounded up to the next whole
second.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code only occurs for UPIC-L.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Init” state.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid, or a value < 0 was specified in allocate_timer.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC intance could not be found.

X/W

X/W

X/W

Set_Allocate_Timer CPI-C calls in UPIC

182 openUTM-Client for the UPIC Carrier System

State change

If there are no errors the function returns CM_OK. The call does not change the state of the
conversation.

Note

The Set_Allocate_Timer only makes sense in conjunction with the Allocate call.
Set_Allocate_Timer can be called as often as desired between an Initialize_Conversation call
and an Allocate call. The value which applies is always the one to have been set when
Set_Allocate_Timer was last called prior to an allocate call.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: If the application is intended for both UPIC-L and
UPIC-R this return code just means that the application is linked to a UPIC-L library.
If this is the case, timer functions are not possible. The program can take note of
this return code and avoid making further calls relating to the timer.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

Function declaration: Set_Allocate_Timer

CM_ENTRY Set_Allocate_Timer (unsigned char CM_PTR conversation_ID,
CM_TIMEOUT CM_PTR allocate_timer,

CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

X/W

CPI-C calls in UPIC Set_Client_Context

openUTM-Client for the UPIC Carrier System 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Client_Context - Setting the client context

The Set_Client_Context (CMSCC) call sets the value for the client context. To simplify restart
at the client side, the client can specify and store what is known as a client context
openUTM. Whenever the client sends user data to the UTM partner application, the last
client context set using the Set_Client_Context function is also sent to the UTM application.
The context is buffered by openUTM until the end of the conversation unless it is overwritten
with a new context.

If the client requests a restart, the last context saved is transferred back to the client
together with the last dialog message.

The client context is not saved by openUTM unless the client is signed on using a UTM user
ID with restart functionality. This is a requirement for service restart. The context is ignored
in all other cases.

The Set_Client_Context call is permitted only in the "Send" state.

This function is not a component of the CPI-C specification but is an additional function of
the UPIC carrier system.

Syntax

CMSCC (conversation_ID, client_context, client_context_length, return_code)

Parameters

→ conversation_ID Conversation identifier

→ client_context Specifies the context the client wants to send to openUTM

→ client_context_length
Length of the context
Minimum 0, maximum: 8

← return_code Result of the function call

Set_Client_Context CPI-C calls in UPIC

184 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code occurs if no client context can be
used.

CM_PROGRAM_STATE_CHECK
The conversation is not in the "Send" state.

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID is invalid or the value of client_context_length is less
than 0 or more than 8.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

If there are no errors, the function returns CM_OK. The call does not change the state of
the conversation.

Notes

● If the return code is not CM_OK, client_context remains unchanged.

● The internal buffer size for the client context is currently limited to 8 bytes.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
Is not necessarily an error. If a UPIC-R application communicates with various UTM
partners, this return code simply means that the application is communicating with
a UTM application that cannot receive a client context. The program can take note
of this return code and dispense with further calls relating to client context.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CPI-C calls in UPIC Set_Client_Context

openUTM-Client for the UPIC Carrier System 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

Function declaration: Set_Client_Context

CM_ENTRY Set_Client_Context (
unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR client_context,
CM_INT32 CM_PTR client_context_length,
CM_RETURN_CODE CM_PTR return_code)

Set_Conversation_Encryption_Level CPI-C calls in UPIC

186 openUTM-Client for the UPIC Carrier System

Set_Conversation_Encryption_Level - Setting the encryption level

The Set_Conversation_Encryption_Level (CMSCEL) call influences the value of the
ENCRYPTION-LEVEL conversation characteristic. The encryption level is used to specify
whether during a conversation user data is to be transferred in an encrypted form or not.
The call overwrites the value of encryption_level, which was assigned in the
Initialize_Conversation call.

The Set_Conversation_Encryption_Level call is only permitted in the “Initialize” state.

UPIC local: The data transfer is protected by the type of transfer being used. The
Set_Conversation_Encryption_Level call is not supported.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

Syntax

CMSCEL (conversation_ID, encryption_level, return_code)

Parameters

→ conversation_ID Conversation identifier

→ encryption_level Specifies whether the conversation user data is to be transferred in
an encrypted or unencrypted form. The following values can be
used:

CM_ENC_LEVEL_NONE
The conversation user data is to be transferred in an unencrypted
form.

CM_ENC_LEVEL_1
The user data is to be transferred in an encrypted form using the
DES algorithm. An RSA key with a key length of 200 bits is used for
exchange of the DES key.

CM_ENC_LEVEL_2
The user data is to be transferred in an encrypted form using the
AES algorithm. An RSA key with a key length of 512 bits is used for
exchange of the AES key.

CM_ENC_LEVEL_3
The user data is to be transferred in an encrypted form using the
AES algorithm. An RSA key with a key length of 1024 bits is used
for exchange of the AES key.

CPI-C calls in UPIC Set_Conversation_Encryption_Level

openUTM-Client for the UPIC Carrier System 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_ENC_LEVEL_4
The user data is to be transferred in an encrypted form using the
AES algorithm. An RSA key with a key length of 2048 bits is used
for exchange of the AES key.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code only occurs for UPIC-L. It indicates
to the program that encryption is not necessary.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Init” state.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid, or the value of encryption_level is undefined.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_ENCRYPTION_NOT_SUPPORTED
Encryption is not available for this conversation for one of the following reasons:
– the add-on product openUTM-Crypt is not installed.
– the UTM partner application does not want to implement encryption because

the UPIC-L client is trusted.
– the UPIC client cannot implement encryption because the product openUTM-

Client was installed without the encryption license.

CM_ENCRYPTION_LEVEL_NOT_SUPPORTED
Encryption with the specified encryption level (encryption_level) is not supported by
UPIC.

State change

If there are no errors the function returns CM_OK. The call does not change the state of the
conversation.

X/W

X/W

X/W

X/W

X/W

Set_Conversation_Encryption_Level CPI-C calls in UPIC

188 openUTM-Client for the UPIC Carrier System

Notes

● If the return code is not CM_OK, the ENCRYPTION_LEVEL characteristic remains
unchanged.

● If the encryption level requested by the UTM application is higher than the one on the
UPIC client side, the higher encryption level is implemented. Or in other words, if the
UTM application requests a certain level of encryption, the UPIC client encrypts the data
on this level regardless of the level of encryption set by the UPIC application.

● If there is no communication connection set up to the UTM partner application at the
time when the call is made, the function terminates with the CM_OK return code The
system decides when the subsequent Allocate call is made whether the requested
encryption level is to be implemented.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
Is not necessarily an error: If an application is intended for both UPIC-L and for
UPIC-R, this return code just means that the application is linked to a UPIC-L library.
In this case encryption is not necessary. The program can take note of this return
code and avoid making further calls requesting encryption.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_ENCRYPTION_NOT_SUPPORTED
Is not necessarily an error: If a UPIC-R application is communicating with several
UTM partners some of which implement encryption and some of which do not, then
this return code just means that it is communicating with an application which either
cannot or doesn’t want to implement encryption. In this case encryption is not
possible. The program can take note of this return code and avoid making further
calls requesting encryption.

CM_ENCRYPTION_LEVEL_NOT_SUPPORTED
The UPIC library has possibly loaded an old encryption library. Make sure that the
encryption library of the latest openUTM client version is installed and is also
loaded. Note the search sequence for libraries in the different operating systems.

X/W

X/W

X/W

X/W

X/W

CPI-C calls in UPIC Set_Conversation_Encryption_Level

openUTM-Client for the UPIC Carrier System 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Function declaration: Set_Conversation_Encryption_Level

CM_ENTRY Set_Conversation_Encryption_Level
unsigned char CM_PTR conversation_ID,

CM_ENCRYPTION_LEVEL CM_PTR encryption_level,
CM_RETURN_CODE CM_PTR return_code)

Set_Conversation_Security_New_Password CPI-C calls in UPIC

190 openUTM-Client for the UPIC Carrier System

Set_Conversation_Security_New_Password - Setting new password

The Set_Conversation_Security_New_Password (CMSCSN) call sets the value for the conver-
sation characteristics security_new_password and security_new_password_length. The
security_new_password is understood as the new password of a UTM user ID.

A program can only specify a new password if the security_type characteristic is set to
CM_SECURITY_PROGRAM.

The call cannot be issued after an Allocate call.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

Syntax

CMSCSN (conversation_ID, security_new_password, security_new_password_length,
return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ security_new_password
Password which is to replace the old password. The UTM partner
application uses this new password to replace the old password
following a valid access authorization with the old password.

→ security_new_password_length
Length in bytes of the password specified in security_new_password.
Minimum: 0, maximum: 8

If you specify 0 here, security_new_password is filled with 8 blanks,
i.e. UTM does not alter the existing password.

← return_code Result of the function call.

CPI-C calls in UPIC Set_Conversation_Security_New_Password

openUTM-Client for the UPIC Carrier System 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Initialize” state or security_type is not set to
CM_SECURITY_PROGRAM.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid, the value in security_new_password_length is
less than 0 or greater than 8, or the new password only comprises blanks.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

If the return code is not CM_OK, the security_new_password and
security_new_password_length characteristics remain unchanged.

State change

The call does not change the state of the conversation.

Notes

● If a program calls Set_Conversation_Security_New_Password, a user ID must also be
specified. The user ID is set in the program using the Set_Conversation_Security_User_ID
call.

● An invalid password is not detected with this call. The partner application checks the
password for validity after the conversation is established. If the password is invalid, the
partner application issues an error message which is stored in the UPIC log file.

● The program is notified of the incorrect password by means of the return code
CM_SECURITY_NOT_VALID. This is returned following a CPI-C call issued after the
Allocate call.

Set_Conversation_Security_New_Password CPI-C calls in UPIC

192 openUTM-Client for the UPIC Carrier System

● If several conversations are established with the same partner application (or in other
words, the communication connection is not set up and cleared down every time), the
result of CMSCSN will be CMINIT CM_OK after the first call, but after all subsequent
CMINIT calls it will be CM_CALL_NOT_SUPPORTED. The UPIC library only estab-
lishes a connection to the partner application after the first CMALLC call and thus can
only then determine whether the version of the partner application supports password
changes.
Following the first CMSCSN call with the result CM_OK, the program only detects that
there is no support for password changes by means of the return code
CM_SECURITY_NOT_SUPPORTED.
This is returned following an Allocate call.

● If only blanks were specified for the new password, this means the UTM application
should reset the password, i.e. the user no longer requires a password. However, this
is not permitted from the client, so consequently the error
CM_PROGRAM_PARAMETER_CHECK is returned.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

Function declaration: Set_Conversation_Security_New_Password

CM_ENTRY Set_Conversation_Security_New_Password (
unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR security_new_password,

CM_INT32 CM_PTR security_new_password_length,
CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Set_Conversation_Security_Password

openUTM-Client for the UPIC Carrier System 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Conversation_Security_Password - Setting the password

The Set_Conversation_Security_Password (CMSCSP) call sets the values for the conversation
characteristics security_password and security_password_length. The security_password is
understood as the password of a UTM user ID.

A program can only specify a password if the security_type characteristic is set to
CM_SECURITY_PROGRAM.

The call cannot be issued after an Allocate call.

This function is one of the advanced functions.

Syntax

CMSCSP (conversation_ID, security_password, security_password_length, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ security_password
Password used to establish the conversation. The UTM partner
application uses this password together with the user ID in order to
check access authorization.

The password is specified in the local code used on the machine
and converted into EBCDIC if necessary (see section “Code
conversion” on page 68).

→ security_password_length
Length in bytes of the password specified in security_password.

Minimum: 0, maximum: 8

If you specify 0 here, security_password is filled with 8 blanks, i.e. no
password is transferred to openUTM for checking access authori-
zation.

← return_code Result of the function call.

Set_Conversation_Security_Password CPI-C calls in UPIC

194 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Initialize” state or security_type is not set to
CM_SECURITY_PROGRAM.

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID is invalid or the value in security_password_length is less than 0
or greater than 8.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

If the return code is not CM_OK, the security_password and security_password_length charac-
teristics remain unchanged.

State change

None.

Notes

● If a program calls Set_Conversation_Security_Password, a user ID must also be specified.
The user ID is set in the program using the Set_Conversation_Security_User_ID call.

● An invalid password is not detected with this call. The partner application checks the
password for validity after the conversation is established. If the password is invalid, the
partner application issues an error message which is stored in the UPIC log file (see
section “UPIC log file” on page 327).

● The program is notified of the incorrect password by means of the return code
CM_SECURITY_NOT_VALID. This is returned following a CPI-C call issued after the
Allocate call.

CPI-C calls in UPIC Set_Conversation_Security_Password

openUTM-Client for the UPIC Carrier System 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

Function declaration: Set_Conversation_Security_Password

CM_ENTRY Set_Conversation_Security_Password (
unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR security_password,

CM_INT32 CM_PTR security_password_length,
CM_RETURN_CODE CM_PTR return_code)

Set_Conversation_Security_Type CPI-C calls in UPIC

196 openUTM-Client for the UPIC Carrier System

Set_Conversation_Security_Type - Setting the security type

The Set_Conversation_Security_Type (CMSCST) call sets the value for the conversation
characteristic security_type.

The call overwrites the value assigned in the Initialize_Conversation call, and must not be
executed after the Allocate call.

This function is one of the advanced functions.

Syntax

CMSCST (conversation_ID, security_type, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ security_type Specifies the type of access information sent when establishing the
conversation with the partner application. This information is used
by the partner application to check access authorization.

The following values can be set for security_type:

CM_SECURITY_NONE
No access information is transferred to the partner application.

CM_SECURITY_PROGRAM
The values of the security_user_ID and security_password character-
istics are used as access information. This means that the access
information consists of:

– either a UTM user ID
– or a UTM user ID and a password.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Initialize” state.

CPI-C calls in UPIC Set_Conversation_Security_Type

openUTM-Client for the UPIC Carrier System 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID is invalid or the value in security_type is undefined.

CM_PARM_VALUE_NOT_SUPPORTED
A value not supported by CPI-C has been entered in security_type.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

If the return code is not CM_OK, the security_type characteristic remains unchanged.

State change

None.

Notes

● If the value CM_SECURITY_PROGRAM is entered in security_type, the user ID and
possibly the password must be set using the following calls:
Set_Conversation_Security_User_ID and Set_Conversation_Security_Password.

● If only the user ID is required for the access check, the
Set_Conversation_Security_Password call is not necessary.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PARM_VALUE_NOT_SUPPORTED
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high, and if
necessary reboot your system.

Function declaration: Set_Conversation_Security_Type

CM_ENTRY Set_Conversation_Security_Type (
unsigned char CM_PTR conversation_ID,

CM_CONVERSATION_SECURITY_TYPE CM_PTR conversation_security_type,
CM_RETURN_CODE CM_PTR return_code)

Set_Conversation_Security_User_ID CPI-C calls in UPIC

198 openUTM-Client for the UPIC Carrier System

Set_Conversation_Security_User_ID - Setting the UTM user ID

The Set_Conversation_Security_User_ID (CMSCSU) call sets the values for the conversation
characteristics security_user_ID and security_user_ID_length.
The security_user_ID is understood as a user ID of a UTM application.

A program can only specify a user ID if the security_type characteristic is set to
CM_SECURITY_PROGRAM.

The call must not be executed after the Allocate call.

This function is one of the advanced functions.

Syntax

CMSCSU (conversation_ID, security_user_ID, security_user_ID_length, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ security_user_ID User ID used to establish the conversation. The UTM partner appli-
cation uses the user ID and possibly the password to check access
authorization.

The partner application may also use the user ID for logging or
accounting purposes.

→ security_user_ID_length
Length in bytes of the user ID specified in security_user_ID.

Minimum: 0, maximum: 8

If 0 is specified here, despite the fact that security_type is set to
CM_SECURITY_PROGRAM in the Set_Conversation_Security_Type
call, a connection is not set up to UTM (error in the Allocate call).

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Initialize” state or security_type is not set to
CM_SECURITY_PROGRAM.

CPI-C calls in UPIC Set_Conversation_Security_User_ID

openUTM-Client for the UPIC Carrier System 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID is invalid or the value in security_user_ID_length is less than 0
or greater than 8.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

If the return code is not CM_OK, the security_user_ID and security_user_ID_length character-
istics remain unchanged.

State change

None.

Notes

● The call does not check the user ID for validity. This is carried out by the partner appli-
cation after the conversation is established. If the user ID is invalid, the UTM server
rejects the conversation

● The program is notified of an invalid user ID or an incorrect password by means of the
return code CM_SECURITY_NOT_VALID. This is returned following a Receive call
issued after the Allocate call.

● If the security_type parameter is set to CM_SECURITY_NONE in the
Set_Conversation_Security_Type call, the Set_Conversation_Security_User_ID call is not
permitted.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

Function declaration: Set_ Conversation_Security_User_ID

CM_ENTRY Set_Conversation_Security_User_ID (
unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR security_user_ID,

CM_INT32 CM_PTR security_user_ID_length,
CM_RETURN_CODE CM_PTR return_code)

Set_Convertion CPI-C calls in UPIC

200 openUTM-Client for the UPIC Carrier System

Set_Convertion - Setting the CHARACTER_CONVERTION
conversation characteristic

The Set_Convertion (CMSCNV) call sets the CHARACTER_CONVERTION conversation
characteristic.

Set_Convertion changes the values that were taken from the side information during the
Initialize_Conversation call. The changed values apply only for the duration of a conver-
sation. The values in the side information are not changed.

The Set_Convertion call can no longer be issued after the Allocate call.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

Syntax

CMSCNV (conversation_ID, character_convertion, return_code)

Parameters

→ conversation_ID Conversation identifier

→ character_convertion
Specifies whether code conversion for the user data is to be
performed or not.

The following values can be set for character_convertion:

CM_NO_CHARACTER_CONVERTION
There is no automatic code conversion when data is sent or
received.

CM_IMPLICIT_CHARACTER_CONVERTION
Data is automatically converted when sent or received (see also
section “Code conversion” on page 68).

← return_code Result of the function call

CPI-C calls in UPIC Set_Convertion

openUTM-Client for the UPIC Carrier System 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Result (return_code)

CM_OK
The call is OK

CM_PROGRAM_PARAMETER_CHECK
The value in conversation_ID or the value for CHARACTER_CONVERTION is invalid.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Initialize” state.

State change

The call does not change the state of the conversation.

Note

If the return code is not CM_OK, the characteristic remains unchanged.

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

Function declaration: Set_Convertion

CM_ENTRY Set_Convertion(
unsigned char CM_PTR conversation_ID,
CM_CHARACTER_CONVERTION_TYPE CM_PTR convertion_type,
CM_RETURN_CODE CM_PTR return_code)

Set_Deallocate_Type CPI-C calls in UPIC

202 openUTM-Client for the UPIC Carrier System

Set_Deallocate_Type - Setting deallocate_type

A program uses the Set_Deallocate_Type (CMSDT) call to set the value of the conversation
characteristic deallocate_type.

This call is one of the advanced functions.

Syntax

CMSDT (conversation_ID, deallocate_type, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ deallocate_type Specifies the type of deallocation for a conversation.

deallocate_type must have the value CM_DEALLOCATE_ABEND.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID is invalid or the value of deallocate_type is out of range. The
value of deallocate_type remains unchanged.

CM_PRODUCT_SPECIFIC_ERROR
The value of deallocate_type is not CM_DEALLOCATE_ABEND.
The value of deallocate_type remains unchanged.

State change

None.

Note

The deallocate_type CM_DEALLOCATE_ABEND is used by a program to terminate a
conversation unconditionally (regardless of the current state). This type of deallocation
should be carried out by the program only in exceptional circumstances.

CPI-C calls in UPIC Set_Deallocate_Type

openUTM-Client for the UPIC Carrier System 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_PROGRAM_SPECIFIC_ERROR
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

Function declaration: Set_Deallocate_Type

CM_ENTRY Set_Deallocate_Type (unsigned char CM_PTR conversation_ID
CM_DEALLOCATE_TYPE CM_PTR deallocate_type,

CM_RETURN_CODE CM_PTR return_code)

Set_Function_Key CPI-C calls in UPIC

204 openUTM-Client for the UPIC Carrier System

Set_Function_Key - Setting a UTM function key

The Set_Function_Key (CMSFK) call sets the value for the function_key characteristic.
function_key specifies a function key of the UTM partner application.

The value of function_key is transferred to the UTM application together with the data of the
next Send_Data or Send_Mapped_Data call, and the function assigned to this function key in
the UTM application is executed. The CPI-C program has in effect “pressed the function
key”.

The Set_Function_Key call is only permitted in the “Send” or “Receive” states.

Set_Function_Key is not part of the CPI-C Specification, but is an additional function of the
UPIC carrier system.

Syntax

CMSFK (conversation_ID, function_key, return_code)

Parameters

→ conversation_ID Identifier of the conversation

→ function_key “Function key” that the local CPI-C program wants to “press” in the
remote UTM application.

The function keys must be specified in the format CM_FKEY_fkey,
where fkey is the number of the K or F key to be “pressed”.
Example: if function key F10 of the UTM partner application is to be
“pressed”, you must specify for function_key the value
CM_FKEY_F10.

openUTM on Unix systems and Windows systems supports the
function keys F1 through F20. openUTM on BS2000 systems
supports the function keys K1 through K14 and F1 through F24.

The value CM_UNMARKED means that no function key is set.

← return_code Result of the function call.

CPI-C calls in UPIC Set_Function_Key

openUTM-Client for the UPIC Carrier System 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Send” or “Receive” state.

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID or function_key is invalid.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_MAP_ROUTINE_ERROR
In the UTM partner application, function keys are not supported in the UPIC
protocol.

State change

If there are no errors, this function returns the result CM_OK. This call does not change the
state of the program.

Notes

● With openUTM on Unix systems and Windows systems, function keys are only effective
in format mode, i.e. when the Send_Mapped_Data and Receive_Mapped_Data calls are
used to exchange data.

● The function key specified in Set_Function_Key is only transferred to the UTM partner
application together with the data of the subsequent Send_Data or Send_Mapped_Data
call.
As soon as the value of function_key is sent to UTM, function_key is reset to
CM_UNMARKED (no function key) in the local CPI-C program.

● If the UTM partner application receives a function key from a UPIC client, only the RET
parameter of the SFUNC control statement which describes the function key is inter-
preted. RET contains the return code which appears in the KCRCCC field of the
communication area after the MGET call of the UTM service. If the RET parameter is
not generated for the function key, UTM always supplies the return code 19Z with the
MGET call (function key not generated or special function invalid).

Set_Function_Key CPI-C calls in UPIC

206 openUTM-Client for the UPIC Carrier System

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

Function declaration: Set_Function_Key

CM_ENTRY Set_Function_Key (unsigned char CM_PTR conversation_ID,
CM_INT32 CM_PTR function_key,

CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Set_Partner_Host_Name

openUTM-Client for the UPIC Carrier System 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Partner_Host_Name - Setting the partner host name

The Set_Partner_Host_Name (CMSPHN) call sets the value for the HOSTNAME characteristic
of the partner application of the conversation. The call overwrites the value which was
assigned using the Initialize_Conversation call. After an Allocate call it may no longer be
issued.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

UPIC-Local:

The Set_Partner_Host_Name call is not supported for connection over UPIC-L.

UPIC-R using openUTM clusters:

The Set_Partner_Host_Name call is not supported if an openUTM cluster is configured.

Syntax

CMSPHN (conversation_ID, host_name, host_name_length, return_code)

Parameters

→ conversation_ID Conversation identifier

→ host_name Specifies which host name is to be used.

→ host_name_length Specifies the length of host_name in bytes.
Minimum:1, maximum:32

← return_code Result of the function call

Result (return_code)

CM_OK
The call is OK

CM_CALL_NOT_SUPPORTED
This return code always occurs in UPIC-L. It indicates to the program that a
host_name cannot be used because UPIC-L does not need this information as a
result of the underlying communication system.

The return code only occurs with UPIC-R if an openUTM cluster has been
configured. It indicates to the program that the host_name cannot be modified.

X/W

X/W

X/W

X/W

X/W

X/W

Set_Partner_Host_Name CPI-C calls in UPIC

208 openUTM-Client for the UPIC Carrier System

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID or host_name_length is invalid.

CM_PROGRAM_STATE_CHECK
The conversation is in the “Init” state.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Note

The value of host_name is ignored if there is also a value set for ip_address, either in the
upicfile or using a Set_Partner_IP_Address call in the UPIC program.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirements of your program are too high and if necessary
reboot your system.

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: The program can take note of this return code and
avoid making further calls to set address information.

Function declaration: Set_Partner_Host_Name

CM_ENTRY Set_Partner_Host_Name(unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR host_name,

CM_INT32 CM_PTR host_name_lth,
CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

CPI-C calls in UPIC Set_Partner_IP_Address

openUTM-Client for the UPIC Carrier System 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Partner_IP_Address - Setting the IP address of the partner
application

The Set_Partner_IP_Address (CMSPIA) call sets the value for the IP-ADDRESS characteristic
of the conversation. The call overwrites the value assigned using Initialize_Conversation call.
After the Allocate call, this call can no longer be issued.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

UPIC-Local:

The Set_Partner_IP_Address call is not supported for connection over UPIC-L.

UPIC-R using openUTM clusters:

The Set_Partner_IP_Address call is not supported if an openUTM cluster is configured.

Syntax

CMSPIA (conversation_ID, ip_address, ip_address_length, return_code)

Parameters

→ conversation_ID Conversation identifier

→ ip_address Specifies that an IP address is to be used instead of a hostname
characteristic.

→ ip_address_length Specifies the length of ip_address in bytes.
Minimum:0, maximum:64.

← return_code Result of the function call.

X/W

X/W

Set_Partner_IP_Address CPI-C calls in UPIC

210 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported.

This code is always returned with UPIC-L. It indicates to the program that an
ip_address cannot be used because UPIC-L does not need this information as a
result of the underlying communication systems.

The return code only occurs with UPIC-R if an openUTM cluster has been
configured. It indicates to the program that the ip_address cannot be modified.

The code is returned with UPIC-R for BS2000 systems in the event that the UPIC
library on BS2000 is used together with CMX. The CMX communication system
used by UPIC-R does not provide any option on BS2000 systems for passing IP
addresses for addressing the partner application at the interface.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID or ip_address_length is invalid.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Init” state.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Notes

● For IPv4, ip_address is specified using the usual dot notation:

xxx.xxx.xxx.xxx

The individual octets xxx are restricted to 3 digits. The contents of the octet are always
interpreted as a decimal number. In particular, this means that octets which are padded
with leading zeros not interpreted as octal numbers.

X/W

X/W

X/W

B

B

B

B

CPI-C calls in UPIC Set_Partner_IP_Address

openUTM-Client for the UPIC Carrier System 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

● ip_address is specified for IPv6 using normal colon notation:

x:x:x:x:x:x:x:x

x is a hexadecimal number between 0 and FFFF. The alternative methods of writing
IPv6 addresses are permitted (see RFC2373).

If an embedded IPv4 address in dot notation is specified in the IPv6 address, the above
also supplies to the octet for the IPv4 address. The octets are always interpreted as
octal numbers.

● If both ip_address and HOST_NAME are set, the value of HOST_NAME is ignored.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: The program can take note of this return code and
avoid making further calls to set address information.

On BS2000 systems, this return code means that the application is connected to
UPIC-R and CMX. The program can remember this return code and then no longer
requires the Set_Partner_IP_Address and Set_Partner_Port calls.

Function declaration: Set_Partner_IP_Address

CM_Entry Set_Partner_IP_Address (unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR ip_address,

CM_INT32 CM_PTR ip_address_length,
CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

B

B

B

Set_Partner_LU_Name CPI-C calls in UPIC

212 openUTM-Client for the UPIC Carrier System

Set_Partner_LU_Name - Setting the conversation characteristics
partner_LU_name

The Set_Partner_LU_Name call (CMSPLN) sets the conversation characteristics
partner_LU_name and partner_LU_name_length.

Set_Partner_LU_Name changes the values taken from the side information in the
Initialize_Conversation call. The changed values only apply for the duration of a
conversation; the values in the side information itself are not changed.

The Set_Partner_LU_Name call cannot be executed after the Allocate call.

This call is one of the advanced functions.

UPIC-R using openUTM clusters:

The Set_Partner_LU_Name call is not supported if an openUTM cluster is configured.

Syntax

CMSPLN (conversation_ID, partner_LU_name, partner_LU_name_length, return_code)

Parameters

→ conversation_ID Conversation identifier

→ partner_LU_name Defines which partner_LU_name should be used.

→ partner_LU_name_length
Specifies the length of partner_LU_name.
Minimum: 1, maximum: 32.
UPIC-L:
Minimum: 1, maximum: 8.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID is invalid or partner_LU_name is invalid or the value in
partner_LU_name_length is less than 1 or greater than 32.

CM_PROGRAM_STATE_CHECK
The conversation is not in "Initialize" state.

CPI-C calls in UPIC Set_Partner_LU_Name

openUTM-Client for the UPIC Carrier System 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_CALL_NOT_SUPPORTED
This function is not supported.

The return code occurs with UPIC-R if an openUTM cluster has been configured. It
indicates to the program that the partner_LU_name cannot be modified.

State change

The call does not change the state of the conversation.

Notes

● If the return code is not CM_OK, the partner_LU_name characteristic remains
unchanged.

● This call only sets the partner_LU_name characteristic. An invalid partner_LU_name is not
detected with this call. Only the Allocate call detects an invalid partner_LU_name, if it is
unable to establish a transport connection to the UTM application. In this case, it returns
the CM_ALLOCATE_FAILURE_NO_RETRY return code.

● The Set_Partner_LU_Name call returns CM_OK if an application is linked with UPIC-L
and passes a partner_LU_name with a length > 8. However, the partner_LU_name is cut
off after 8 bytes without notification in the following Allocate call.

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
Is not necessarily an error: The program can remember this return code and no
longer issue any calls for setting address information.

Set_Partner_LU_Name CPI-C calls in UPIC

214 openUTM-Client for the UPIC Carrier System

Function declaration: Set_Partner_LU_Name

CM_ENTRY Set_Partner_LU_Name (unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR partner_LU_name,

CM_INT32 CM_PTR partne_LU_name_length,
CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Set_Partner_Port

openUTM-Client for the UPIC Carrier System 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Partner_Port - Setting the TCP/IP port for the partner application

The Set_Partner_Port (CMSPP) call sets the port number for TCP/IP for the partner appli-
cation and in doing so also sets the PORT conversation characteristic. The call overwrites
the value assigned using the Initialize_Conversation call. It may no longer be issued after an
Allocate call.

The function is one of the additional functions of the UPIC carrier systems; it is not a
component of the CPI-C interface.

UPIC-Local:

Connection via UPIC local does not support the Set_Partner_Port call.

Syntax

CMSPP (conversation_ID, listener_port, return_code)

Parameters

→ conversation_ID Conversation identifier

→ port_number Specifies which port number is searched for in the communication
system by the partner application.
Minimum: 0; maximum: 32767

← return_code Result of the function call

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code occurs for UPIC-L and for UPIC-R
on BS2000 systems.

This code is always returned with UPIC-L. It indicates to the program that a port
number cannot be assigned because UPIC-L does not require this information as a
result of the underlying communication system.

The code is only returned with UPIC-R (BS2000) in the event that the UPIC library
on BS2000 is used together with CMX. The CMX communication system used by
UPIC-R does not provide any option on BS2000 systems for passing IP addresses
for addressing the partner application at the interface. If the UPIC library uses the
Socket interface as its communication system, the code is never returned.

X/W

X/W

X/W

B

B

B

B

B

Set_Partner_Port CPI-C calls in UPIC

216 openUTM-Client for the UPIC Carrier System

CM_PROGRAM_PARAMETER_CHECK
The value of conversation_ID or port_number is invalid.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Init” state.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: If the application is intended for both UPIC-L and
UPIC-R on Unix systems and Windows systems this return code just means that
the application is linked to a UPIC-L library. The program can take note of this return
code and avoid making further calls to set address information.

On BS2000 systems, this return code means that the application is connected to
UPIC-R and CMX. The program can remember this return code and then no longer
requires the Set_Partner_IP_Address and Set_Partner_Port calls.

Function declaration: Set_Partner_Port

CM_ENTRY Set_Partner_Port (unsigned char CM_PTR conversation_ID,
CM_INT32 CM_PTR port_number,

CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

B

B

B

CPI-C calls in UPIC Set_Partner_Tsel

openUTM-Client for the UPIC Carrier System 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Partner_Tsel - Setting the T-SEL of the partner application

The Set_Partner_Tsel (CMSPT) call sets the value for the T-SEL characteristic of the partner
application of the conversation. The call overwrites the value assigned using the
Initialize_Conversation call. After the Allocate call, this call may no longer be issued.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

UPIC-Local:

Connection via UPIC local does not support the Set_Partner_Tsel call.

Syntax

CMSPT (conversation_ID, transport_selector, transport_selector_length, return_code)

Parameters

→ conversation_ID Conversation identifier

→ transport_selector Transport selector of the partner application which is transferred to
the communication system.

→ transport_selector_length
Length of the transport selector in bytes.
Minimum: 0, maximum: 8

If the length of the transport selector is entered as 0, the first name
part of the partner_LU_name is used as the transport selector.

← return_code Result of the function call.

X/W

X/W

Set_Partner_Tsel CPI-C calls in UPIC

218 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code only occurs for UPIC-L. It indicates
to the program that a TSEL cannot be allocated because UPIC-L does not need this
information as a result of the underlying communication system.

CM_PROGRAM_PARAMETER_CHECK
The value of either conversation_ID or transport_selector_length is invalid.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Init” state.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: If the application is intended for both UPIC-L and
UPIC-R this return code just means that the application is linked to a UPIC-L library.
The program can take note of this return code and avoid making further calls to set
address information.

Function declaration: Set_Partner_Tsel

CM_ENTRY Set_Partner_TSEL (unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR transport_selector,

CM_INT32 CM_PTR transport_selector_length,
CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

CPI-C calls in UPIC Set_Partner_Tsel_Format

openUTM-Client for the UPIC Carrier System 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Partner_Tsel_Format - Setting the T-SEL format of the partner
application

The Set_Partner_Tsel_Format (CMSPTF) call sets the value for the T-SEL-FORMAT charac-
teristic of the partner application of the conversation. The call overwrites the value assigned
using the Initialize_Conversation call. After the Allocate call, this call can no longer be issued.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

UPIC-Local:

Connection via UPIC local does not support the Set_Partner_Tsel_Format call.

Syntax

CMSPTF (conversation_ID, tsel_format, return_code)

Parameters

→ conversation_ID Conversation identifier

→ tsel_format Specifies which character set is to be used for the transport selector
(TSEL). The following values can be entered:

– CM_TRANSDATA _FORMAT
The transport selector is transferred to the communication
system using TRANSDATA format.

– CM_EBCDIC_FORMAT
The transport selector is transferred to the communication
system using EBCDIC format.

– CM_ASCII_FORMAT
The transport selector is transferred to the communication
system using ASCII format.

← return_code Result of the function call.

X/W

X/W

Set_Partner_Tsel_Format CPI-C calls in UPIC

220 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code only occurs in UPIC-L. It indicates
to the program that a TSEL format cannot be assigned because UPIC-L does not
require this information as a result of the underlying communication system.

CM_PROGRAM_PARAMETER_CHECK
The value of either conversation_ID or tsel_format is invalid.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Init” state.

 CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: If the application is intended for both UPIC-L and
UPIC-R this return code just means that the application is linked to a UPIC-L library.
The program can take note of this return code and avoid making further calls to set
address information.

Function declaration: Set_Partner_TSEL_Format

CM_ENTRY Set_Partner_TSEL_Format (unsigned char CM_PTR conversation_ID,
CM_TSEL_Format CM_PTR tsel_format,
CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

CPI-C calls in UPIC Set_Receive_Timer

openUTM-Client for the UPIC Carrier System 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Receive_Timer - Setting the timer for a blocking receive

The Set_Receive_Timer (CMSRCT) call sets the timeout timer for a blocking Receive or
Receive_Mapped_Data call.

When this timer is set and receive_type=CM_RECEIVE_AND_WAIT is set for receiving data,
the Receive and Receive_Mapped_Data calls are aborted after the period of time defined in
the receive_timer field.

Set_Receive_Timer can be called after the Allocate call at any time and as often as you like
within a conversation. The timer setting of the last Set_Receive_Timer call applies in each
case.

This function is not part of the CPI-C Specification, but is an additional function of the UPIC
carrier system.

UPIC local:
Connection via UPIC local does not support the Set_Receive_Timer call.

Syntax

CMSRCT (conversation_ID, receive_timer, return_code)

Parameters

→ conversation_ID Identifier of the conversation

→ receive_timer Time in milliseconds after which a blocking Receive or
Receive_Mapped_Data call is interrupted. The Receive and
Receive_Mapped_Data calls have a blocking effect when the
receive_type characteristic has the value
CM_RECEIVE_AND_WAIT.
The receive timer is reset when you set receive_timer to 0. The wait
time of the Receive or Receive_Mapped_Data call is then no longer
monitored.

The value specified for receive_timer is rounded up to the next full
second.

← return_code Result of the function call.

X/W

X/W

Set_Receive_Timer CPI-C calls in UPIC

222 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Send” or “Receive” state.

CM_PROGRAM_PARAMETER_CHECK
conversation_ID is invalid or a value < 0 was specified in receive_timer.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_CALL_NOT_SUPPORTED
The function is not supported.

State change

If there are no errors, this function returns the result CM_OK. This call does not change the
state of the conversation.

Notes

● The Set_Receive_Timer is only useful in connection with the Receive and
Receive_Mapped_Data calls.

● Set_Receive_Timer can be called an unlimited number of times within a conversation.
The valid value is always the one which was set in the last call of Set_Receive_Timer
before a Receive or Receive_Mapped_Data call. The value set remains valid until the next
Set_Receive_Timer call or until the end of the conversation.

CPI-C calls in UPIC Set_Receive_Timer

openUTM-Client for the UPIC Carrier System 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: If the application is intended for both UPIC-L and
UPIC-R this return code just means that the application is linked to a UPIC-L library.
The program can take note of this return code and avoid making further
Set_Receive_Timer calls.

Function declaration: Set_Receive_Timer

CM_ENTRY Set_Receive_Timer (unsigned char CM_PTR conversation_ID,
CM_TIMEOUT CM_PTR timeout_time,

CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

X/W

Set_Receive_Type CPI-C calls in UPIC

224 openUTM-Client for the UPIC Carrier System

Set_Receive_Type - Setting the receive type

The Set_Receive_Type (CMSRT) call sets the value for the conversation characteristic
receive_type. In receive_type you define whether the Receive and Receive_Mapped_Data calls
are to be executed with blocking or without. The call overwrites the value of receive_type
which was assigned during the Initialize_Conversation call.

The Set_Receive_Type call is only permitted in one of the following states: “Initialize”, “Send”
or “Receive”.

This function is one of the advanced functions.

UPIC local:
Local connection via UPIC local does not support the Set_Receive_Type call.

Syntax

CMSRT (conversation_ID, receive_type, return_code)

Parameters

→ conversation_ID Identifier of the conversation

→ receive_type Defines whether the following Receive / Receive_Mapped_Data calls
are to be executed with blocking or without. You can specify the
following values:

– CM_RECEIVE_AND_WAIT
The Receive and Receive_Mapped_Data calls have a blocking
effect, i.e. if no information is available at the time of the call, the
program run waits until information arrives for this conversation.
Only then does the program run return from the Receive or
Receive_Mapped_Data call and transfer the data to the program.
If there is information available at the time of the call, the
program receives it without waiting.
If a maximum wait time (timeout timer) was set with
Set_Receive_Timer before the Receive or Receive_Mapped_Data
call, the program run returns from the Receive or
Receive_Mapped_Data call on expiry of this wait time, even if
there is still no information available.

X/W

X/W

CPI-C calls in UPIC Set_Receive_Type

openUTM-Client for the UPIC Carrier System 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

– CM_RECEIVE_IMMEDIATE
The Receive and Receive_Mapped_Data calls have a non-blocking
effect, i.e. if there is information present at the time of the call,
the program receives it without waiting.
If there is no information at the time of the call, the program does
not wait. The program run returns from the Receive or
Receive_Mapped_Data call immediately.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_PARAMETER_CHECK
conversation_ID is invalid or the value of receive_type is undefined.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_CALL_NOT_SUPPORTED
The function is not supported.

State change

If there are no errors, this function returns the result CM_OK. This call does not change the
state of the conversation.

Notes

● If the return code is not CM_OK, the receive_type characteristic remains unchanged.

● If Set_Receive_Type is called in the “Start” or “Reset” state, the value transferred in
conversation_ID is always invalid. The return code
CM_PROGRAM_PARAMETER_CHECK is then always returned as the result of the
call.

Set_Receive_Type CPI-C calls in UPIC

226 openUTM-Client for the UPIC Carrier System

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: If the application is intended for both UPIC-L and
UPIC-R this return code just means that the application is linked to a UPIC-L library.
The program can take note of this return code and avoid making further
Set_Receive_Tyte calls.

Function declaration: Set_Receive_Type

CM_ENTRY Set_Receive_Type (unsigned char CM_PTR conversation_ID,
CM_RECEIVE_TYPE CM_PTR receive_type,
CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

X/W

CPI-C calls in UPIC Set_Sync_Level

openUTM-Client for the UPIC Carrier System 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_Sync_Level - Setting a synchronization level

The Set_Sync_Level (CMSSL) call sets the value for the sync_level conversation character-
istic. The call overwrites the value that was assigned at the Initialize_Conversation call.

The Set_Sync_Level call cannot be executed after an Allocate call.

This function is one of the advanced functions.

Syntax

CMSSL (conversation_ID, sync_level, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ sync_level Defines the level of synchronization that the local CPI-C program
and the remote UTM application can use during this conversation.

sync_level must have the value CM_NONE.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Initialize” state.

CM_PROGRAM_PARAMETER_CHECK
conversation_ID is invalid or the value in sync_level is undefined.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

State change

If there are no errors, this function returns the result CM_OK. This call does not change the
state of the conversation.

Set_Sync_Level CPI-C calls in UPIC

228 openUTM-Client for the UPIC Carrier System

Note

The call serves only to improve the portability of CPI-C programs. Even if it returns CM_OK,
sync_level is not changed. UPIC internally always uses "sync_level=CM_NONE".

Behavior in the event of errors

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

Function declaration: Set_Sync_Level

CM_ENTRY Set_Sync_ Level (unsigned char CM_PTR conversation_ID,
CM_SYNC_LEVEL CM_PTR sync_level,
CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Set_TP_Name

openUTM-Client for the UPIC Carrier System 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Set_TP_Name - Setting TP-name

A program uses the Set_TP_Name (CMSTPN) call to set the values of the conversation
characteristics TP_name and TP_name_length. The TP_name is the transaction code of a
UTM program unit.

Set_TP_Name modifies the values taken from the side information with the
Initialize_Conversation call. The modified values apply only for the duration of a conver-
sation; the values in the side information itself remain unchanged.

The Set_TP_Name call cannot be executed after the Allocate call.

This call is one of the advanced functions.

Syntax

CMSTPN (conversation_ID, TP_name, TP_name_length, return_code)

Parameters

→ conversation_ID Identifier of the conversation.

→ TP_name UTM transaction code.

→ TP_name_length Length of TP_name.

Minimum: 1, maximum: 8

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK.

CM_PROGRAM_STATE_CHECK
The call is not permitted in this state.

CM_PROGRAM_PARAMETER_CHECK
The conversation_ID or TP_name is invalid or the value in TP_name_length is less than
1 or greater than 8.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

If the return code is not CM_OK, TP_name and TP_name_length remain unchanged.

Set_TP_Name CPI-C calls in UPIC

230 openUTM-Client for the UPIC Carrier System

State change

None

Behavior in the event of errors:

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

Function declaration: Set_TP_Name

CM_ENTRY Set_TP_name (unsigned char CM_PTR conversation_ID,
unsigned char CM_PTR TP_name,

CM_INT32 CM_PTR TP_name_length,
CM_RETURN_CODE CM_PTR return_code)

CPI-C calls in UPIC Specify_Local_Port

openUTM-Client for the UPIC Carrier System 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Specify_Local_Port - Setting the TCP/IP port of the local application

The Specify_Local_Port (CMSLP) call sets the port number of the local application. The call
overwrites the value assigned using the Enable_UTM_UPIC call. After the
Initialize_Conversation call, this call may no longer be issued.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

UPIC-Local:

Connection via UPIC local does not support the Specify_Local_Port call.

Syntax

CMSLP (port_number, return_code)

Parameters

→ port_number Specifies which port number the local application uses when signing
on to the communication system.
Minimum: 0, maximum: 32767

← return_code Result of the function call

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code occurs in UPIC-L and in
UPIC-R on BS2000 systems.

This code is always returned with UPIC-L. It indicates to the program that a port
number cannot be assigned because UPIC-L does not require this information as a
result of the underlying communication system.

The code is only returned with UPIC-R (BS2000) in the event that the UPIC library
on BS2000 is used together with CMX. The CMX communication system used by
UPIC-R does not provide any option on BS2000 systems for passing IP addresses
for addressing the partner application at the interface. If the UPIC library uses the
Socket interface as its communication system, the code is never returned.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Reset” state.

X/W

X/W

X/W

X/W

X/W

B

B

B

B

B

Specify_Local_Port CPI-C calls in UPIC

232 openUTM-Client for the UPIC Carrier System

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_PARAMETER_CHECK
The value of port_number is invalid.

State change

The call does not change the state of the conversation.

Note

The local port number is a purely formal value which has no effect whatsoever. Specification
of this value is only supported for reasons of compatibility. It should be omitted.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
This is not necessarily an error: If the application is intended for both UPIC-L and
UPIC-R on Unix systems and Windows systems this return code just means that
the application is linked to a UPIC-L library.The program can take note of this return
code and avoid making further calls to set address information.

On BS2000 systems, this return code means that the application is connected to
UPIC-R and CMX. The program can remember this return code and then no longer
requires the Specify_Local_Port call.

Function declaration: Specify_Local_Port

CM_ENTRY Specify_Local_Port (CM_INT32 CM_PTR port_number,
CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

B

B

B

CPI-C calls in UPIC Specify_Local_Tsel

openUTM-Client for the UPIC Carrier System 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Specify_Local_Tsel - Setting the T-SEL of the local application

The Specify_Local_Tsel (CMSLT) call sets the value of the T-SEL characteristic of the local
application. The call overwrites the value assigned using the Enable_UTM_UPIC call. After
the Initialize_Conversation call, this call may no longer be issued.

This function is one of the additional functions of the UPIC carrier system; it a not a
component of the CPI-C interface.

UPIC-Local:

Connection via UPIC local does not support the Specify_Local_Tsel call.

Syntax

CMSLT (transport_selector, transport_selector_length, return_code)

Parameters

→ transport_selector Transport selector of the local application which is transferred to the
communication system

→ transport_selector_length
Length of the transport selector in bytes.
Minimum: 0, maximum: 8

If the length of the transport selector is entered as 0, the name of
the local application itself is used as the transport selector.

← return_code Result of the function call.

X/W

X/W

Specify_Local_Tsel CPI-C calls in UPIC

234 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code only occurs in UPIC-L. It indicates
to the program that a T-SEL cannot be assigned because UPIC-L does not require
this information because of the underlying communication system.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Reset” state.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_PARAMETER_CHECK
The value of transport_selector_length is invalid.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_CALL_NOT_SUPPORTED
Is not necessarily an error: If an application is intended for both UPIC-L and
UPIC-R, this return code just means that the application is linked to a UPIC-L library.
The program can take note of this return code and avoid sending further calls to set
address information.

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffers.
Check whether the memory requirements of your program are too high and if
necessary reboot your system.

Function declaration: Specify_Local_Tsel

CM_ENTRY Specify_Local_Tsel (unsigned char CM_PTR transport_selector,
CM_INT32 CM_PTR transport_selector_length,

CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

CPI-C calls in UPIC Specify_Local_Tsel_Format

openUTM-Client for the UPIC Carrier System 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Specify_Local_Tsel_Format - Setting the TSEL format of the local
application

The Specify_Local_Tsel_Format (CMSLTF) call sets the value of the T-SEL-FORMAT charac-
teristic of the local application. The call overwrites the value assigned by the
Enable_UTM_UPIC call. After the Initialize_Conversation call, this call may no longer be
issued.

This function is one of the additional functions of the UPIC carrier system; it is not a
component of the CPI-C interface.

UPIC-Local:

Connection via UPIC local does not support the Specify_Local_Tsel_Format call.

Syntax

CMSLTF (tsel_format, return_code)

Parameters

→ tsel_format Specifies which character set is to be used for the transport selector
(TSEL). The following values can be entered:

– CM_TRANSDATA _FORMAT
The transport selector is transferred to the communication
system using TRANSDATA format.

– CM_EBCDIC_FORMAT
The transport selector is transferred to the communication
system using EBCDIC format.

– CM_ASCII_FORMAT
The transport selector is transferred to the communication
system using ASCII format.

← return_code Result of the function call.

X/W

X/W

Specify_Local_Tsel_Format CPI-C calls in UPIC

236 openUTM-Client for the UPIC Carrier System

Result (return_code)

CM_OK
The call is OK.

CM_CALL_NOT_SUPPORTED
The function is not supported. This return code only occurs in UPIC-L. It indicates
to the program that a format cannot be assigned for the transport selector because
UPIC-L does not require this information as a result of the underlying communi-
cation system.

CM_PROGRAM_STATE_CHECK
The conversation is not in the “Reset” state.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

CM_PROGRAM_PARAMETER_CHECK
The value of tsel_format is invalid.

State change

The call does not change the state of the conversation.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for the internal buffer.
Check whether the memory requirements of your program is too high and if
necessary reboot your system.

CM_CALL_NOT_SUPPORTED
Is not necessarily an error: If an application is intended for both UPIC-L and
UPIC-R, this return code just means that the application is linked to a UPIC-L library.
The program can take note of this return code and avoid sending further calls to set
address information.

Function declaration: Specify_Local_Tsel_Format

CM_ENTRY Specify_Local_Tsel_Format (CM_TSEL_FORMAT CM_PTR tsel_format,
CM_RETURN_CODE CM_PTR return_code)

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

CPI-C calls in UPIC Specify_Secondary_Return_Code

openUTM-Client for the UPIC Carrier System 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

Specify_Secondary_Return_Code - Setting the properties of the
secondary return code

The Specify_Secondary_Return_Code (CMSSRC) call causes the program to set the
secondary return code property of the CPI-C calls.

This function belongs to the additional UPIC carrier system functions; it is not a component
of the CPI-C interface.

Syntax

CMSSRC (return_type, return_code)

Parameters

→ return_type Specifies the secondary return code property of the CPI-C calls. The
following values can be specified:

CM_RETURN_TYPE_PRIMARY:
The corresponding UPIC calls return the secondary return code.

CM_RETURN_TYPE_SECONDARY:
The secondary return code can be read out only by means of the
CMESRC call. The corresponding UPIC calls do not return a
secondary return code.

← return_code Result of the function call.

Result (return_code)

CM_OK
The call is OK

CM_NO_SECONDARY_RETURN_CODE
The secondary return code property is not available.

CM_PROGRAM_PARAMETER_CHECK
The value of return_type is invalid.

CM_PROGRAM_STATE_CHECK
The program is in the “Start” state.

CM_PRODUCT_SPECIFIC_ERROR
The UPIC instance could not be found.

Specify_Secondary_Return_Code CPI-C calls in UPIC

238 openUTM-Client for the UPIC Carrier System

Note

The function can be called directly after an Enable_UTM_UPIC call. It has no effect on the
Enable_UTM_UPIC call.

State change

No state change.

Behavior in the event of errors

CM_PROGRAM_PARAMETER_CHECK
Modify program.

CM_PROGRAM_STATE_CHECK
Modify program.

CM_PRODUCT_SPECIFIC_ERROR
The operating system cannot provide sufficient memory for internal buffers. Check
whether the memory requirement of your program is too high and if necessary
reboot your system.

CM_NO_SECONDARY_RETURN_CODE
Is not necessarily an error. If a UPIC-R application communicates with various UTM
partners, some of which can support secondary return codes and some of which
cannot, this return code means simply that the application wishes to communicate
with a UTM application that does not support secondary return codes. The program
can take note of this return code and dispense with further
Extract_Secondary_Return_Code calls.

Function declaration: Specify_Secondary_Return_Code

CM_ENTRY Specify_Secondary_Return_Code (
 CM_INT32 CM_PTR return_type,
 CM_RETURN_CODE CM_PTR return_code)

CPI-C interface COBOL interface

openUTM-Client for the UPIC Carrier System 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
2

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

4

4.10 COBOL interface

The CPI-C-COBOL program interface largely corresponds to the C interface described in
section “CPI-C calls in UPIC” on page 97ff. You can therefore consult this description when
creating CPI-C programs in COBOL. This section groups together the special features of
the COBOL interface which apply for the data structures and CPI-C calls.

COPY element CMCOBOL

The COPY element CMCOBOL, which contains the condition variables and names, is
supplied for CPI-C applications in COBOL. After installation of the UPIC carrier system, you
will find CMCOBOL

● on Window systems in the file upic-dir\copy-cobol directory

● on Unix systems in the directory upic-dir/copy-cobol85 or upic-dir/copy-netcobol

● on BS2000 systems in the library SYSLIB.UTM-CLIENT.063.

CMCOBOL must be copied into the WORKING-STORAGE-SECTION using the COPY
statement. The names of constants are distinguished from the C names only through the
use of hyphens instead of underscores, e.g. “CM-SEND-RECEIVED” instead of
“CM_SEND_RECEIVED”.

The name TIME-OUT or TIMEOUT is used in CMCOBOL for the CPI-C interface as a result
of the CPI-C specification. These words are reserved by Micro Focus, so this name must
be modified in the source, for example using the following statement:

COPY CMCOBOL REPLACING TIME-OUT BY CPIC-TIMEOUT

CPI-C calls in COBOL

The function names are identical in C and COBOL. The following applies for the parameters
of the CPI-C calls:

● As is normal in COBOL, the parameters must be transferred by reference.

● Each variable in the parameter list must begin with the level number 01.

● Numerical data must be in the COMP format that produces the same binary format as
with C on the respective machine.

● When using COBOL under Windows systems you must bear in mind the necessary call
conventions for the dynamic library (DLL).

W

X

B

W

W

COBOL interface CPI-C interface

240 openUTM-Client for the UPIC Carrier System

Example

Extract from a program with the “Initialize” call:

...
 WORKING-STORAGE-SECTION.

 COPY CMCOBOL.

...

 PROCEDURE DIVISION.

...
 CALL "CMINIT" USING CONVERSATION-ID,SYM-DEST-NAME,CM-RETCODE.

openUTM-Client for the UPIC Carrier System 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

5 XATMI interface

XATMI has been standardized by X/Open and is a program interface for a communication
resource manager which enables transaction-logged client/server communication.

The XATMI program interface is based on the X/Open CAE Specification “Distributed
Transaction Processing: The XATMI Specification” of November 1995. Knowledge of this
specification is essential for understanding this chapter. This chapter describes the XATMI
interface for openUTM clients using UPIC.
For information on OpenCPIC, please refer to the manual “openUTM-Client for the
OpenCPIC Carrier System”.

With a few exceptions, the description of the XATMI interface is platform-independent. The
exceptions are indicated in the text.

Terms

The following terms are used in this description:

Service A service function that is programmed in C or COBOL in accordance with
the XATMI specification. XATMI distinguishes between two different types
of services: end services and intermediate services.
– An “end” service is linked only to its client and does not call any other

services.
– An “intermediate” service calls one or more other services.

Client An application that calls service functions.

Server A UTM application containing the service functions in C and/or COBOL. The
service functions can comprise a number of program units.

Request A request is a service call. This call can be initiated by a client or by an inter-
mediate service.

Requester The XATMI specification uses the term “requester” to refer to the application
that calls a service. A requester can be either a client or a server.

Typed buffers Buffers for exchanging type-encoded and structured data between commu-
nication partners. With these typed buffers, the structure of the exchanged
data is implicitly known to the carrier system and the application, and is also
adapted automatically (encoded, decoded) in heterogeneous connections.

Linking client/server applications XATMI interface

242 openUTM-Client for the UPIC Carrier System

5.1 Linking client/server applications

The diagram below shows the connection of client/server applications, linking the client,
server and requester. They exchange their type-encoded data structures (typed buffers)
in accordance with the protocol of the “XATMI U-ASE Definition”.

Figure 15: Client/server applications

With any heterogeneous application link, a local configuration must be provided both for the
servers and the clients. This configuration is defined in the local configuration file (LCF).
The local configuration describes the respective services and their associated data struc-
tures, namely:

– in the case of a server, all available services
– in the case of a client, the services of all servers to which the client is connected
– in the case of a requester, all services available as well as all services used

The local configurations of all applications involved must be coordinated with each other.

A number of communication paradigms are available for processing the client/server
connections Con11, Con13,... (see section “Communication paradigms” on page 244).

Client 1 Client 2

Requester 1

Server 1 Server 2

Client
applications

UTM requester
application

UTM server
applications

XATMI U-ASE

XATMI U-ASE

Con11

Con13

Con22

Con21

Conyz: Connection yz

MS-Windows systems Unix systems/Linux systems

LC
file
1

LC
file
1,2

LC

file
3

LC

file
2

LC

file
1,3

XATMI interface Linking client/server applications

openUTM-Client for the UPIC Carrier System 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

5.1.1 Default server

To simplify the client/server configuration openUTM client allows you to declare a default
server using the statement DEST=.DEFAULT in the SVCU statement of the local configu-
ration file (see page 261).

If the call tpcall, tpacall or tpconnect use a service svcname2 to which there is no
SVCU entry in the local configuration file, the following entry is used automatically:

SVCU svcname2, RSN=svcname2, TAC=scvname2, DEST=.DEFAULT, MODE=RR

In this case UPIC expects a suitable default server entry in the upicfile, i.e.

LN.DEFAULT localname
SD.DEFAULT servername

Furthermore you are allowed to call a service svcname2@BRANCH9 using DEST=BRANCH9
without entering a declaration in the local configuration file. In such a case the following
entry is assumed:

SVCU svcname2, RSN=svcname2, TAC=scvname2, DEST=BRANCH9, MODE=RR

The partner, in this case BRANCH9, must be known to the carrier system. However, if the
local configuration file contains an entry svcname2@BRANCH9, this entry takes precedence
over the default server assumption.

5.1.2 Restart

Although there is no service restart for XATMI (as XATMI does not support complex
services), you have the option of defining a recovery service, which resends the last output
message from openUTM to the client.

This recovery service is defined with the transaction code KDCRECVR.

Communication paradigms XATMI interface

244 openUTM-Client for the UPIC Carrier System

5.2 Communication paradigms

The programmer can choose from three communication paradigms for client/server
communication:

– synchronous request response paradigm: single-step dialog.
The client is blocked after sending the service request until it receives a response.

– asynchronous request response paradigm: single-step dialog.
The client is not blocked after sending the service request.

– conversational paradigm: multi-step dialog.
Client and server can exchange data in any way required.

The XATMI functions required for these communication paradigms are described only
briefly below; C notation is used here. An exact description of the XATMI functions can be
found in the X/Open Specification “Distributed Transaction Processing: The XATMI Speci-
fication”.

Synchronous request-response paradigm

The client only needs one single tpcall() call for the communication.

The tpcall() call addresses the service, sends precisely one message to this service, and
waits until it receives a response, i.e. tpcall() has a blocking effect.

Figure 16: Synchronous request response paradigm

In this diagram, svc is the internally used service name, svcinfo is the service info structure
with the service name, and tpservice is the program name of the service routine. The service
info structure is part of the XATMI interface.

With this paradigm, a dialog TAC for the requested service has to be generated on the UTM
server side.

Client Server

tpcall (svc, ...) tpservice (svcinfo, ..)

....

tpreturn (...)

(next statement)

....

XATMI interface Communication paradigms

openUTM-Client for the UPIC Carrier System 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

Asynchronous request-response paradigm

With this paradigm, communication is handled in two steps. In the first step, a tpacall() call
is used to address the service and send the message. In the second step the response is
fetched with tpgetrply() at a later stage, see diagram below.

Figure 17: Asynchronous request response paradigm

In this diagram, svc refers to the internally used service name, cd is the communication
descriptor in the specific process, svcinfo is the service info structure with the service name,
and tpservice is the program name of the service routine.

tpacall is non-blocking, i.e. the client can carry out other local processing tasks in the
meantime. However, the client cannot call another service, as only one job is permitted at
any one time with the UPIC carrier system.
If the client is to engage several services in parallel, you must use the OpenCPIC carrier
system.

In contrast, tpgetrply is blocking, which means that the client waits until the response is
received.

With this paradigm, a dialog TAC must be generated for the service on the UTM server side
(as with synchronous request-response).

Client Server

...
cd=tpacall (svc,.)

...

...

tpgetrply (cd,..)

...

...

tpservice (svcinfo,)

...

tpreturn (..)

Communication paradigms XATMI interface

246 openUTM-Client for the UPIC Carrier System

Conversational paradigm

XATMI offers the conversational paradigm for connection-oriented tasks (“conversations”).

This paradigm can be used, for example, to transfer large volumes of data in several
substeps. This avoids problems which can occur in the synchronous request response
paradigm (call tpcall()) due to the limited size of the local data buffers.

In the conversational paradigm, the conversation is explicitly established to a service with
the tpconnect call. As long as the conversation exists, the client and server can exchange
data with tpsend and tprecv. However, this “dialog” is not a dialog in the sense of OSI TP, and
only one transaction can be processed.
The conversation is terminated when the server signals the end with tpreturn; the client then
receives a corresponding code with tprecv in the tperrno variable. The client program must
therefore contain at least one tprecv call.

Figure 18: Conversational paradigm

In this diagram, svc refers to the local name of the service, cd is the communication
descriptor in the specific process, tpservice is the program name of the service routine, and
svcinfo is the service info structure with the service name and the communication descriptor.

With this paradigm, a dialog TAC must be generated for the service on the UTM server side.

In the event of errors, the client can force a conversation abort with the tpdiscon call.

Client Server

...
cd=tpconnect (svc,..)

...

tpsend (cd,..)

loop {

 tprecv (cd,...)

...

} until tperrno==TPEEVENT

...

tpservice (svcinfo->svc,...)

...

tprecv (svcinfo->cd,...)

loop {

 tpsend (svcinfo->cd,...)

} until ready

...

tpreturn (...)

XATMI interface Typed buffers

openUTM-Client for the UPIC Carrier System 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

5.3 Typed buffers

XATMI applications exchange messages using “typed data buffers”. This ensures that the
data sent over the network is transferred correctly to the application, i.e. in accordance with
the data structure - and associated data types - which is identified by the buffer name.

The advantage of this is that the application need not take account of any machine depen-
dencies, such as Big Endian/Little Endian representation, ASCII/EBCDIC conversion, or
alignment with word limits. This means that data types such as int, long, float, etc. can be
transferred as such. There is no need for any encoding/decoding by the application
because this is carried out by XATMI (in accordance with the rules of the XATMI U-ASE
definition).

A data buffer object comprises four components:

– type: defines the class of buffer; there are three types
– subtype: defines the object of the type, i.e. the actual data structure
– length specification
– data contents

This type of data buffer is created at runtime and can then be addressed by its variable
name (= subtype name). The subtype defines the structure, while the type defines the set
of values of the permitted elementary data types. In C programs, these buffers are created
dynamically with tpallcoc and are then called “typed buffers”; in COBOL programs, these
buffers are defined statically and are then called “typed records”.

Types

The data buffer type defines which elementary data types of the employed programming
language are permitted. This enables a shared data understanding in a heterogeneous
client/server network.

Three types are defined in XATMI:

X_OCTET Non-typed data stream of bytes (“user buffer”). This type has no
subtypes. No conversion takes place.

X_COMMON All data types that can be used in common by C and COBOL.
Conversion is carried out by XATMI.

X_C_TYPE All elementary C data types, with the exception of pointers.
Conversion is carried out by XATMI.

Typed buffers XATMI interface

248 openUTM-Client for the UPIC Carrier System

Subtypes

A subtype has a name of up to 16 characters, with which it is addressed in the application
program. Each subtype is assigned a data structure (C structure or COBOL record) which
determines the syntax of the subtype, see page 258.
The data types must not be nested.

The structure of a subtype is represented by a syntax string in the local configuration. In this
string each elementary data type (basic type) is identified by a code which, if necessary,
may also contain the field length specification (<m> and <n>).
The table below provides an overview of the elementary data types (basic types), their
codes, and the character set of the string types:

Code1 Meaning ASN.1 type X_C_TYPE X_COMMON

s short integer INTEGER short S9(4) COMP-5

S<n> short integer array SEQUENCE OF INTEGER short[n] S9(4) COMP-5 ...

i integer INTEGER integer --2

I<n> integer array SEQUENCE OF INTEGER integer[n] --

l long integer INTEGER long S9(9) COMP-5

L<n> long integer array SEQUENCE OF INTEGER long[n] S9(9) COMP-5 ...

f float REAL float --

F<n> float array SEQUENCE OF REAL float[n] --

d double REAL double --

D<n> double array SEQUENCE OF REAL double[n] --

c character OCTET STRING char PIC X

t character T.61-String char PIC X

C<n> character array:
All values from 0 thru
255 (decimal)

OCTET STRING char[n] PIC X(n)

C!<n> character array, termi-
nated by null ('\0')

OCTET STRING char[n] --

C<m>:<n> character matrix3 SEQUENCE OF OCTET
STRING

char [m][n] --

C!<m>:<n> character matrix, termi-
nated by null ('\0')

SEQUENCE OF OCTET
STRING

char [m][n] --

T<n> The printable characters
A-Z, a-z, and 0-9 plus4 a
range of special
characters and control
characters, see
page 348.

T.61 string char[n] PIC X(n)

XATMI interface Typed buffers

openUTM-Client for the UPIC Carrier System 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

The assignment between data structures, subtypes, and desired services is defined in the
local configuration, see page 261.

Character set conversion with X_C_TYPE and X_COMMON

The data buffers are transmitted over the network encoded in the ASCII character set.

However, a partner can use a different character set encoding instead of ASCII, for example
a BS2000 application which uses EBCDIC. In this case, the XATMI library converts the
ASN.1-type T.61 string for all incoming and outgoing data (with the exception that OCTET
strings are not converted).

Therefore no automatic conversion may be generated. For the UPIC carrier system this
means the respective identifier must be generated in the upicfile:

– This is SD for Unix systems and Windows systems (stand-alone application).

– This is HD for BS2000 systems (stand-alone application).

– This is CD for the node applications of a UTM cluster application.

T!<n> character array, termi-
nated by null ('\0')

T.61-String t61str[n] --

T<m>:<n> character matrix SEQUENCE OF
T.61-String

t61str[m][n] --

T!<m>:<n> character matrix, termi-
nated by null ('\0')

SEQUENCE OF
T.61-String

t61str[m][n] --

1 used in the local configuration to describe the data structures
2 -- : not available in X_COMMON
3 character matrix: two-dimensional character array
4 in accordance with CCITT Recommendation T.61 or ISO 6937

Code1 Meaning ASN.1 type X_C_TYPE X_COMMON

X/W

B

Program interface XATMI interface

250 openUTM-Client for the UPIC Carrier System

5.4 Program interface

The following sections provide an overview of the XATMI client program interface. A
detailed description of the program interface as well as the error and return codes can be
found in the X/Open Specification “Distributed Transaction Processing: The XATMI Speci-
fication”. Knowledge of this specification is essential for creating XATMI programs.

The program interface is available for both C and COBOL.

5.4.1 XATMI functions for clients

The tables below list all XATMI client calls and indicate the communication paradigm with
which they can be used and if the function may also be called by a server.

In addition there are the UTM-Client calls tpinit and tpterm. These two functions are not
included in the XATMI standard and are used to connect XATMI to the carrier system. They
are described in section “Calls for connecting to the carrier system” on page 251.

Calls of the request/response paradigm

C call COBOL call Call in
Client/
Server

Description

tpcall TPCALL C Service request in synchronous request/response
paradigm

tpacall TPACALL C Service request in asynchronous request/response
paradigm or
single request paradigm (flag TPNOREPLY set)

tpgetrply TPGETRPLY C Response request in synchronous
request/response paradigm

tpcancel TPCANCEL C Deletes an asynchronous service request before
the requested response is received

Table 10: Calls of the request/response paradigm

XATMI interface Program interface

openUTM-Client for the UPIC Carrier System 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

Calls for the conversational paradigm

Calls for typed buffers

5.4.2 Calls for connecting to the carrier system

The openUTM client may use UPIC or OpenCPIC as the carrier system. An XATMI appli-
cation program must therefore explicitly sign on to the carrier system using tpinit and sign
off using tpterm, i.e. the program has the following structure:

1. tpinit()

2. XATMI calls, e.g. tpalloc(), tpcall(), tpconnect(), ...tpdiscon()

3. tpterm()

The two calls tpinit and tpterm are described below.

For a general description of the UTM user concept, see section “User concept, security and
restart” on page 78.

C call COBOL call Call in
Client/
Server

Description

tpconnect TPCONNECT C establishes a connection for message exchange

tpsend TPSEND C, S sends a message

tprecv TPRECV C, S receives a message

tpdiscon TPDISCON C closes down a connection for message exchange

Table 11: Calls for the conversational paradigm

C call COBOL call Call in
Client/
Server

Description

tpalloc -- C, S reserves memory area for a typed buffer

tprealloc -- C, S modifies the size of a typed buffer

tpfree -- C, S releases a typed buffer

tptypes -- C, S ascertains the type of a typed buffer

Table 12: Calls for typed buffers

Program interface XATMI interface

252 openUTM-Client for the UPIC Carrier System

tpinit - Initializing the client

Format

C: #include <xatmi.h>

 int tpinit (TPCLTINFO *tpinfo) (in)

COBOL: 01 TPCLTDEF-REC.
 COPY TPCLTDEF.

 CALL "TPINIT" USING TPCLTDEF-REC.

Description

The tpinit function initializes a client and identifies the client to the carrier system. It must
be the first XATMI function called in a client program. In C, you must pass a pointer to the
predefined structure TPCLTINFO as a parameter; in COBOL, the COBOL record
TPCLTDEF must be supplied.

C structure TPCLTINFO:

#define MAXTIDENT 9

typedef struct {
long flags; /* for future use */

 char usrname[MAXTIDENT];
char cltname[MAXTIDENT];
char passwd [MAXTIDENT];

} TPCLTINFO;

COBOL record TPCLTDEF:

05 FLAG PIC S(9) COMP-5.
05 USRNAME PIC X(9).
05 CLTNAME PIC X(9).
05 PASSWD PIC X(9).

A user ID is entered in usrname and a password in passwd. Both parameters are used to
establish a conversation, and serve as proof of access authorization on the UTM side.
cltname (= local client name) identifies the client to the carrier system.

cltname is
– With UPIC-L it is the PTERM name or the local application name from the upicfile.
– With UPIC-R it is the the upicfile entry or TNS entry (Unix system or Windows system,

see section “UPIC-L configuration” on page 286) or the BCMAP entry (BS2000
systems, see section “Configuration using BCMAP entries” on page 286).

X/W

XATMI interface Program interface

openUTM-Client for the UPIC Carrier System 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

If usrname and passwd are initialized with the null string (COBOL: spaces), the security
functions are not activated, i.e. there is no access control in openUTM. If at least one of
these two parameters contains a valid value, this is checked by UTM.
If cltname is initialized with the null string or with spaces, the local client name is preset to
8 spaces.

In C, if tpinit is called with a null pointer, then no access control is activated and the local
client name is preset to 8 blanks. In COBOL, the structure must be filled with spaces for this
purpose.

The entries in usrname, passwd, and cltname (if any) must comply with the UTM name
conventions, i.e. they can be up to eight characters in length and, in C, must be terminated
with the end-of-string character (“\0”).

Return codes

In the event of an error, tpinit returns the value -1 and sets the tperrno error variable to one
of the following values:

TPEINVAL
One or more parameters were assigned invalid values.

TPENOENT
Initialization could not be performed, e.g. there may not be sufficient memory for internal
buffers.

TPEPROTO
tpinit was called at an inappropriate time, e.g. the client is already initialized.

TPESYSTEM
An internal error has occurred.

Program interface XATMI interface

254 openUTM-Client for the UPIC Carrier System

tpterm - Signing the client off

Format

C: int tpterm ()

COBOL: CALL "TPTERM".

Description

The tpterm function is used to sign a client off from the carrier system. The client is the one
in which this function is called and must have been initialized previously with tpinit.
Following a tpterm call, no further XATMI calls (apart from tpinit) are permitted.

Return codes

In the event of an error, tpterm returns the value -1 and sets the tperrno error variable to one
of the following values:

TPENOENT
The client could not sign off in the normal way. There may be problems in the carrier
system.

TPEPROTO
tpterm was called at an inappropriate time, i.e. the client is not yet initialized.

TPESYSTEM
An internal error has occurred.

XATMI interface Program interface

openUTM-Client for the UPIC Carrier System 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

5.4.3 Transaction control

When an XATMI service is called, the client uses the call parameter flag (in C) or the
TPTRAN-FLAG (in COBOL) to control whether or not a called UTM service is included in
the global transaction.
The XATMI-C interface includes the service in the global transaction by default. In order to
exclude the service from the global transaction, you must set the TPNOTRAN flag explicitly.
No default value exists for the XATMI-COBOL interface, you must set either TPTRAN or
TPNOTRAN.

If the service is started with the TPTRAN flag, then it is included in the global transaction.

When using the tpreturn() call, the parameter rval returns the values TPSUCCESS or
TPFAIL. This determines whether the transaction is terminated successfully or reset.

i When using the XATMI interface with the UPIC carrier system the TPTRAN flag is
ignored and the TPNOTRAN flag set internally. This behaviour improves the porta-
bility of XATMI programs.

5.4.4 Mixed operation

Mixed operation refers to communication between an XATMI program and a CPI-C
program.

For interaction with a CPI-C program the XATMI program must contain the corresponding
CPI-C calls, although the connection is established by the XATMI partner. For communi-
cation with a partner, the same interface must be used on both sides, i.e. the
Deallocate() call is forbidden in XATMI programs.

5.4.5 Administration interface

In XATMI programs, only the KDCS call KDCADMI() can be used; other KDCS calls are not
permitted.

On the UTM side, the corresponding TAC and possibly USER must be generated with
administration authorization during KDCDEF generation.

Program interface XATMI interface

256 openUTM-Client for the UPIC Carrier System

5.4.6 Header files and COPY elements

For the creation of openUTM-Client programs which use the XATMI interface, header files
for C and COPY elements for COBOL are supplied.

When linking the client programs, the UTM client library must be incorporated.

C modules with XATMI calls require the following files:

1. The header file xatmi.h.

2. The file(s) with the data structures for all typed buffers used in the module, see also
page 247.

COBOL modules with XATMI calls require the following COPY elements and files:

1. The COPY elements TPSTATUS, TPTYPE, TPSVCDEF and TPCLTDEF.

2. The file(s) with the data structures for all “typed records” used in the module.

i In Windows systems the XATMI interface is not supported in COBOL.

Windows systems

Under Windows systems you will find the header files in the directory

upic-dir\xatmi\include

No COPY elements are supplied for COBOL.

Unix systems

Under Unix systems you will find the header files in the directory

upic-dir/xatmi/include

and the COPY elements in the directory

upic-dir/xatmi/copy-cobol85 or upic-dir/xatmi/netcobol

The openUTM client library is called libxtclt and is located in the directory
upic-dir/xatmi/sys.

BS2000 systems

Under BS2000 systems the include files and the COPY members are S type members of
the library

$userid.SYSLIB.UTM-CLIENT.063

where $userid stands for the ID under which the openUTM client was installed.

W

W

W

W

W

X

X

X

X

X

X

X

B

B

B

B

B

XATMI interface Program interface

openUTM-Client for the UPIC Carrier System 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

5.4.7 Events and error handling

When an event or an error occurs, XATMI functions return the return code -1. The program
must evaluate the tperrno variable to determine the event or error more precisely.

With the conversational function tprecv, tperrno=TPEEVENT indicates that an event has
occurred. This event can be determined by evaluating the tprevc parameter revent. For
example, the successful termination of a conversational service is indicated as follows:

Return code of tprecv =-1
tperrno=TPEEVENT
revent=TPEV_SVCSUCC

The revent parameter is of no significance with the tpsend function.

Furthermore, at the end of the service function the service program can return a freely
defined error code with tpreturn in the rcode parameter; this error code can be evaluated on
the client side using the external variable tpurcode, see the X/Open Specification
“Distributed Transaction Processing: The XATMI Specification”.

Program interface XATMI interface

258 openUTM-Client for the UPIC Carrier System

5.4.8 Creating typed buffers

Typed buffers are defined by data structures in header files (in C) or COPY elements (in
COBOL), which must be used in the participating programs.

Data is exchanged between the programs on the basis of these data structures, which must
therefore be known to both the client and the server. All data types described in the table
on page 248 are permitted.

The header files or COBOL COPY files in which the typed buffers are described serve as
input for the generation program xatmigen, see section “The xatmigen tool” on page 266.
The following rules apply to these files:

– C and COBOL data structures must be contained in separate files. A file that contains
both C includes and COBOL COPY elements is not permitted as input.

– The files can only comprise definitions of data structures, blank lines, and comment
statements. Macro statements, i.e. statements beginning with ‘#’, are permitted in C.

– The data structure definitions must be specified in full. In particular, COBOL data
records must begin with the level number “01”.

– The data structures must not be nested.

– Only absolute values are permitted as field lengths, macro constants are not accepted.

– Only the data types listed in the table on page 248 are permitted. In particular, no
pointer types are permitted in C.

The user may have to use the generation tool xatmigen to map the character arrays to
ASN.1 string types because neither C nor COBOL recognizes these data types; see section
“The xatmigen tool” on page 266.

XATMI calls for memory allocation are available for C (tpalloc ...).

Two simple examples are provided below for C and COBOL respectively.

XATMI interface Program interface

openUTM-Client for the UPIC Carrier System 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

Example

1. C include for typed buffer

typedef struct {
char name[20]; /* person’s name */
int age; /* age */

 char sex;
 long shoesize;
} t_person;

struct t_city {
char name[32]; /* name of city */
char country;
long inhabitants;

 short churches[20];
 long founded;
}

2. COBOL COPY for typed record

***** Personal record
 01 PERSON-REC.
 05 NAME PIC X(20).
 05 AGE PICTURE S9(9) COMP-5.
 05 SEX PIC X.

 05 SHOESIZE PIC S9(9) COMP-5.

***** City record
01 CITY-REC.
 05 NAME PIC X(32).
05 COUNTRY PIC X.
05 INHABITANTS PIC S9(9) COMP-5.
05 CHURCHES PIC S9(4) COMP-5 OCCURS 20 TIMES.
05 FOUNDED PIC S9(9) COMP-5.

Further examples can be found in the X/Open Specification on XATMI.

Program interface XATMI interface

260 openUTM-Client for the UPIC Carrier System

5.4.9 Characteristics of XATMI in UPIC

This section describes the distinctive features that arise when implementing the XATMI
interface in openUTM.

● All XATMI calls relevant for clients are supported. Additionally the two calls tpinit and
tpterm are provided.

● Only one conversation per service is allowed.

● A maximum of 100 buffer entities can be used simultaneously within a client application.
For example, with an application in C this is a maximum of 100 tpalloc calls without a
tpfree call.

● The maximum message length is 32000 bytes.

The maximum size of a typed buffer is always less than the maximum possible
message length because the messages contain an “overhead” in addition to the net
data. The more complex the buffer, the bigger the overhead.

The following applies as a rule of thumb: max. buffer size = 2/3 of max. message length

With larger data volumes, the conversational paradigm (tpsend/tprecv) should thus
always be used.

● The following limits apply to name lengths:

service name 16 bytes
buffer name 16 bytes

In accordance with the standard, service names can be 32 bytes long; however, only
the first 16 bytes are relevant (XATMI_SERVICE_NAME_LENGTH constant). It is
therefore advisable to use no more than 16 bytes for service names.

XATMI interface Configuring

openUTM-Client for the UPIC Carrier System 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

5.5 Configuring

The user must create a local configuration for each XATMI application. This describes the
services provided and used, together with their target addresses, and also describes the
typed buffers used with their syntax. The information is stored in a file, known as the local
configuration file (LCF), which is read once by the application at startup. An LCF is required
both for the client and the service side.

5.5.1 Creating the local configuration file

As users, you must create an input file known as the local configuration definition file. This
input file must be made up of individual lines that comply with the following syntax:

– A line begins with an SVCU or BUFFER statement and specifies precisely one service
or one subtype (=typed buffer).

– Two operands are separated by a comma.

– A statement is concluded by a semicolon (‘;’).

– If the statement occupies more than one line, the continuation character ‘\’ (backslash)
must appear at the end of each line.

– A comment line begins with the ‘#’ character.

– Blank lines can be inserted, e.g. to improve legibility.

Using the xatmigen tool, you create the actual local configuration file (page 267) from the
file which contains the local configuration definition.

The SVCU and BUFFER statements are described below.

Configuring XATMI interface

262 openUTM-Client for the UPIC Carrier System

SVCU statement: Define available service

In an SVCU statement, the characteristics required to call a service in the partner appli-
cation are described for the client.

The SVCU statement can be omitted, if a default server is declared in the side information
file of UPIC (upicfile) with transaction-code = remote-service-name = internal-service-name.

Default-Server:

To simplify the client/server configuration openUTM client allows you to declare a default
server using the statement DEST=.DEFAULT in the SVCU statement of the local configu-
ration file (see page 261).

If the calls tpcall, tpacall or tpconnect use a service svcname2 to which there is no
SVCU entry in the local configuration file, the following entry is used automatically:

SVCU svcname2, RSN=svcname2, TAC=SCVname2, DEST=.DEFAULT, MODE=RR

In this case UPIC expects a suitable default server entry in the upicfile, i.e.

LN.DEFAULT localname
SD.DEFAULT servername

Furthermore you are allowed to call a service svcname2@BRANCH9 using DEST=BRANCH9
without entering a declaration in the local configuration file. In such a case the following
entry is assumed:

SVCU svcname2, RSN=svcname2, TAC=SCVname2, DEST=BRANCH9, MODE=RR

XATMI interface Configuring

openUTM-Client for the UPIC Carrier System 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

The partner, in this case BRANCH9, must be known to UPIC.
However, if the local configuration file contains an entry svcname2@BRANCH9, this entry will
be used.

internal-service-name
A name of up to 16 bytes under which a (remote) service can be addressed in the
program. This name must be unique within the application, i.e. it can only appear
once in the LCF.

Mandatory operand!

RSN=remote-service-name
A name of up to 16 bytes of a service in the remote application. This name is passed
to the remote application (TPSVCINFO structure); it can appear repeatedly in the
LCF.

If this operand is omitted, xatmigen sets RSN=internal-service-name.

TAC=transaction-code
A transaction code of up to 8 bytes with which the service must be generated in the
remote application.

If this operand is omitted, xatmigen sets TAC=internal-service-name and, if
necessary, truncates this to the first 8 bytes.

The transaction code KDCRECVR can be used to define a recovery service that
sends the last output message of UTM to the client.

DEST=Mandatory operand!

destination-name
A partner application identification of up to 8 bytes. This name must be specified in
the upicfile as the symbolic destination name (see page 269).

.DEFAULT
A default server is used.

Mandatory operand!

Operator Operand Explanation

SVCU internal-service-name maximum 16 bytes

[,RSN=remote-service-name] default: internal-service-name

[,TAC=transaction-code] default: internal-service-name

,DEST={ destination-name | .DEFAULT } partner application

[,MODE=RR / CV] RR=request/response, default
CV=conversation

[,BUFFERS=(subtype-1,...,subtype-n)] default: no subtype

Configuring XATMI interface

264 openUTM-Client for the UPIC Carrier System

MODE=RR / CV
Determines which communication paradigm is used for the service:

RR request-response paradigm, default value
CV conversational paradigm

BUFFERS=(subtype-1,...,subtype-n)
List of subtype names that can be sent to the service (type X_OCTET is allowed
always). Each name can be up to 16 bytes long.

A separate BUFFER statement, which defines the characteristics of the particular
subtype, must be specified for each of the subtypes listed here (see below).The
BUFFERS= operand is sensitive to position and must (if specified) be the last
operand of the statement.
If BUFFERS= is omitted, only a buffer of type X_OCTET should be sent to the
service (no type check is performed).

XATMI interface Configuring

openUTM-Client for the UPIC Carrier System 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

BUFFER statement

A BUFFER statement defines a typed buffer. Buffers of the same name must be defined in
the same way on both the client side and the server side.
Multiple definitions are not checked. The first buffer entry is valid, while all others are
ignored.

Buffers of type “X_OCTET” have no special features and therefore do not require definition.
Typed buffers are defined with the following parameters:

subtype-name
A buffer name of up to 16 bytes; must also be specified in the BUFFERS= operand
in the SVCU statement. The name must be unique in the application.

REC=referenced-record-name
Name of the data structure for the buffer, e.g. with C structures this is the name of
“typedef” or the “struct name”.

If the operand is omitted, xatmigen sets REC=subtype-name.

TYPE=
Type of buffer; for further details on types see page 247.

If the operand is omitted, xatmigen sets the type to X_C_TYPE or X_COMMON,
depending on which elementary data types were used.

In the generation run, xatmigen also creates two additional operands with the following
meaning:

LEN=length length of the data buffer

SYNTAX=code syntax description of the data structure in code representation, as
specified in the table on page 248.

Operator Operand Explanation

BUFFER subtype-name maximum 16 bytes

[,REC=referenced-record-name] default: subtype-name

[,TYPE=X_COMMON / X_C_TYPE] default: xatmigen sets TYPE
automatically

Configuring XATMI interface

266 openUTM-Client for the UPIC Carrier System

5.5.2 The xatmigen tool

The xatmigen tool creates a local configuration file (LCF) from a file containing the local
configuration definition (LC definition file) and one or more files containing C or COBOL
data structures (LC description files), see diagram below:

Figure 19: Working with xatmigen

The local configuration file is structured in the same way as the LC definition file, and differs
from this only in the description of the buffer type, buffer length, and buffer syntax string. In
other words, the operands LEN=, SYNTAX=, and possibly TYPE= are added to the
BUFFER statements compared to the definition file.

If the buffer type is not specified in the LC definition file, xatmigen generates the “smallest”
value range for the buffer type, i.e. first the type X_COMMON.

All file names must be specified explicitly. If desired, a file can be created which contains
the generation statements for UPIC.

Under Windows systems, success and error messages are written to the program window.

Success and error messages are written to stdout and stderr under Unix systems.

Under BS2000 systems, success messages and error messages are written to SYSOUT and
SYSLST.

Although in principle it is possible to edit the LCF, you are strongly advised not to do this.

xatmigen/xtgen 32

Local configuration file
(LCF)

data structures
LC

(optional)

definition file
Files containing

Generation statements
for UPIC

W

X

B

B

XATMI interface Configuring

openUTM-Client for the UPIC Carrier System 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

Calling xatmigen

● In Windows systems xatmigen is called with

xatmigen 32 [.exe] parameter

xatmigen 32.exe is located in the upic-dir\xatimi\ex directory.

● Under Unix systems, xatmigen is called with

xatmigen parameter

xatmigen can be found in the upicpath/xatmi/ex directory.

● Under BS2000 systems, you start xatmigen with the following command:

/START-PROGRAM $userid.SYSPRG.UTM-CLIENT.063.XATMIGEN
Enter options:
* parameter

$userid is the ID under which the openUTM client is installed.

When entering the command, you can, of course, use lowercase letters in place of
uppercase letters.

You can specify the following parameters; the switches (-d, -l, -i, -c) must be written in
lowercase.
The switch -d and, if specified, the switches -l and -c must each be followed by the
associated parameter. Specification of a switch without a parameter is not permitted.

[upic]
Ë-dËlcdf-name
[Ë-lËlcf-name]
[Ë-i]
[Ë-cËstringcode]
[Ëdescript-file-1]... [Ëdescript-file-n]

upic If specified, a file xtupic.def containing entries for the generation of the
upicfile is created. The file is written to the current directory.

If specified, upic must be the first parameter in xatmigen. If the parameter is
omitted, no generation statements are created.

-dËlcdf-name
Name of the LC definition file; mandatory specification.

W

W

W

X

X

X

B

B
B
B

B

B

B

Configuring XATMI interface

268 openUTM-Client for the UPIC Carrier System

-lËlcf-name
Name of the local configuration file to be created. The name must comply with the
conventions of the respective operating system. It is advisable to choose a name
with a maximum of 8 characters and add the extension “.lcf”.

i Any existing LCF of the same name is automatically overwritten.

If the switch is omitted, xatmigen creates the file “xatmilcf” in the current directory.

-i Interactive mode, i.e. the string code is queried for each typed buffer containing a
character array. The possible specifications for the string code are described under
the “-c” switch.

The -i switch takes priority over the -c switch, if this is specified. If xatmigen is
running in the background or in batch mode, the -i switch must not be specified.

-cËstringcode
The specified string type applies for the entire xatmigen run, i.e. for all character
arrays. In interactive mode (“-i”), the “-c” switch is ignored.

The following can be specified for stringcode (see table on page 248):

C octet string
C! octet string, terminated by '\0'
T T.61 string
T! T.61 string, terminated by '\0'

If no specification is made, T! is used.

Individual characters are also interpreted as T.61 strings (stringcode= T!).
Lowercase letters c and t are also valid.

descript-file-1...Ëdescript-file-n
List of files containing the include or COPY elements with the data structures of the
typed buffers.
If the list is omitted, only the type X_OCTET is allowed.

XATMI interface Configuring

openUTM-Client for the UPIC Carrier System 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

5.5.3 Configuring the carrier system and UTM partners

For an XATMI application to be functional, you must carry out the following steps:

– with the UPIC carrier system, align the UPIC configuration (upicfile) with the local
configuration and the partner generation

– align the initialization parameters specified in tpinit with the UTM application generation

5.5.3.1 Configuring UPIC

A side information file (upicfile) must be created for the carrier system UPIC. See
figure 20 below to see which entries you must make in the upicfile, and how these corre-
spond to the local configuration file and KDCFILE of the UTM partner. Operation without
TNS is assumed. For more information, please refer to section “Side information for stand-
alone UTM applications” on page 289 .

Figure 20: Conformance considerations when configuring server and client (operation without TNS)

An entry must start with SD (Unix and Windows systems) if the server is a stand-alone appli-
cation on a Unix or Windows system. If the server is a UTM cluster application then the
entries for the node applications must start with CD, see section “Side information for UTM
cluster applications” on page 296.

utmappl is the name of the UTM application, as generated in the KDCDEF statements MAX
APPLINAME or BCAMAPPL=. Address information, such as IP address and port number,
must be specified in the upicfile.

The transaction code tac in the SVCU statement must be defined with a TAC statement in
the UTM generation.

SD destination-name utmappl ...

SVCU DEST=destination-name ... TAC=tac

Line in upicfile

Entry in LCF

UTM partner
(or BCAMAPPL=utmappl)
MAX APPLINAME=utmappl TAC tac

X/W

X/W

X/W

X/W

Configuring XATMI interface

270 openUTM-Client for the UPIC Carrier System

If you specify the “upic” parameter for xatmigen, a upicfile is created in which the
individual lines need only be extended to include the partner parameter (using an editor). If
you do not specify the “upic” parameter, you must create the entire upicfile yourself.

5.5.3.2 Initialization parameters and UTM generation

An XATMI client is initialized using the tpinit function. Parameters for the user ID, password,
and local application name are passed in the TPCLTINIT structure. These parameters must
be aligned with the UTM generation as described below.

User ID and password

This security function can only be used with the UPIC carrier system.

Figure 21: Aligning the generation parameters

If access control is active under openUTM with the UPIC carrier system, user and if
necessary password must be specified both in the tpinit call and in a USER statement of the
UTM generation.

usrname=user passwd=password cltname=... TPCLTINIT

U T MUSER user, PASS=password

XATMI interface Configuring

openUTM-Client for the UPIC Carrier System 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

Local name

The diagram below shows the initialization procedure in a case where a local application
name is defined in the upicfile (operation without TNS using RFC1006).

Figure 22: Initialization of a local application (operation without TNS)

If a local application name is generated in the upicfile, this name can be specified for
tpinit (client in this example).
The associated application name must then be the same as the name specified in the
PTERM statement or in OSI-CON TSEL=.

If no local application name is generated in the upicfile, the name defined on the UTM
side in the PTERM statement or in OSI-CON TSEL= must be specified (upicclt in this
example).

usrname=... passwd=... cltname=client TPCLTINIT

U T M

LNclient upicclt upicfile

*) with UPIC-R always via TNS

*** UPIC-PARTNER
PTERM upicclt
 ,PTYPE=UPIC-R
*** OPENCPIC-PARTNER
OSI-CON...,TSEL=upicclt

Configuring XATMI interface

272 openUTM-Client for the UPIC Carrier System

Example

The sample extract below covers all the relevant steps in local configuration, UPIC config-
uration, initialization, and KDCDEF generation.

1. Client

Local configuration:

SVCU ...
 ,RSN=SERVICE1
 ,TAC=TAC1
 ,DEST=SATURNUS

 ...

upicfile:

SDSATURNUS utmserv1

Initialization

TPCLTINIT tpinfo;

strcpy (tpinfo.cltname, "CLIENT1");
strcpy (tpinfo.usrname, "UPICUSER");
strcpy (tpinfo.passwd, "SECRET");

tpinit (tpinfo);

2. Server

Local configuration

SVCP SERVICE1 ... (REQP also possible)
 ,TAC=TAC1

KDCDEF statements

MAX APPLINAME=UTMSERV1

or

BCAMAPPL UTMSERV1 (in BS2000, also with parameter TPROT=ISO)

LTERM UPICTERM

PTERM TNSCLIENT, PTYPE=UPIC-R, PRONAM=DxxxSyyy (with UPIC remote conn.)
PTERM CLIENT1, PTYPE=UPIC-L (with UPIC local conn.)

TAC TAC1, PROGRAM=..., API=(XOPEN,XATMI)

USER UPICUSER,PASS=SECRET

XATMI interface Running XATMI applications

openUTM-Client for the UPIC Carrier System 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

5.6 Running XATMI applications

5.6.1 Linking and starting an XATMI program

5.6.1.1 Linking an XATMI program on Windows systems

You are advised to compile the XATMI program using the option __STDC__ (ANSI). When
you link an XATMI client application, the following libraries must be included:

1. All client modules with the main program

2. The XATMI client library xtclt32.dll or xtclt64.dll under upic-dir\xatmi\sys

The UPIC DLLs and the PCMX DLL must be available.

3. If you wish to run XATMI with UPIC-L under Windows, you must link the library
libxtclt.lib into your application program.

5.6.1.2 Linking an XATMI program under Unix systems

When linking an XATMI client application, the following libraries must be included.

1. All client modules with the main program

2. XATMI client library and UPIC library (see below)

3. -lm (abbreviation for the “mathlib” on Unix systems)

Depending on whether UPIC-L or UPIC-R is used, the following XATMI and carrier-system
libraries must be linked:

– UPIC local carrier system:

a) libxtclt in the directory utmpath/upicl/xatmi/sys

b) libupicipc in the directory utmpath/upicl/sys

utmpath is the path name under which openUTM was installed.

– UPIC remote carrier system:

a) libxtclt in the directory upic-dir/xatmi/sys

b) CMX: libxtclt in the directory upic-dir/xatmi/sys
Socket: libupicsoc in the directory upic-dir/sys/

c) CMX library

W

W

W

W

W

W

W

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Running XATMI applications XATMI interface

274 openUTM-Client for the UPIC Carrier System

5.6.1.3 Linking an XATMI program under BS2000 systems

The following libraries must be linked in when you link an XATMI client application:

1. All client modules with a main program

2. The XATMI client and UPIC library $userid.SYSLIB.UTM-CLIENT.063

$userid is the ID under which UPIC-R is installed.

The library $userid.SYSLIB.UTM-CLIENT.063 contains the example
BIND-TPCALL for linking an XATMI program.

i The link operation can be omitted if the link name BLSLIBxy is assigned to the
required libraries in the correct order on program start.

5.6.1.4 Starting the program

An XATMI client program is started as an executable program.

5.6.2 Setting Environment variables on Windows and Unix systems

For XATMI applications, openUTM-Client interprets a number of environment variables.
The environment must be set before the application is started.

For diagnostics while an application is running, traces can be activated.

Environment variables

The following environment variables are interpreted for an XATMI application:

XTPATH Path name for trace files.

If this variable is not set, the trace files are written to the current directory
(= directory from which the XATMI application was started).

XTLCF Name of the local configuration file (LCF)
The file name of the local configuration file must comply with the operating
system conventions.

If this variable is not set, a search is made under the name xatmilcf in the
current directory.

XTPALCF Defines the search path for additional descriptions of typed buffers.
The buffer descriptions are read from local configuration files with the name
xatmilcf or from the name specified in XTLCF.

A search for all important XATMI generations (e.g. SVCU ...) is performed
in the local configuration file specified using XTLCF.

B

B

B

B

B

B

BB

B

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

XATMI interface Running XATMI applications

openUTM-Client for the UPIC Carrier System 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

A search for local configuration files is performed in all the directories
specified in XTPALCF and the typed buffer descriptions are gathered inter-
nally (If multiple buffers have the same name only the first buffer description
is used).

The search path structure is exactly the same as in the default
Unix/Windows system variable PATH: (directory1:directory2: ...
or directory1;directory2; ...).

If the specified search path has more than 1024 characters the path is cut!

You can make up to 128 LCF entries.

XTSVRTR Trace mode for the XATMI application. Possible specifications:

E (error): activates the error trace

I (interface): activates the interface trace for XATMI calls

F (full): activates the full XATMI trace as well as the trace for sub-layers.

Setting environment variables on Windows systems

Under Windows systems, you can set environment variables using the
Start/Settings/Control Panel. You can then create or expand the environment variables
here. Under Windows systems, these settings remain valid until you change them again.

Setting environment variables on Unix systems

Under Unix systems, environment variables are set using the following command:

SET variablename = value

The environment variables are valid for one shell only; other values may apply for applica-
tions in another shell.

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/WX/W

W

W

W

W

X

X

X

X

X

Running XATMI applications XATMI interface

276 openUTM-Client for the UPIC Carrier System

5.6.3 Setting job variables under BS2000 systems

Job variables can be set for an XATMI application. They are linked to the application using
the following link names:

If the software product JV is loaded as a subsystem, the job variables can be set as follows
under BS2000 systems, for instance:

1. Create job variable:

CREATE-JV JV-NAME=FULLTR

2. Pass value to job variable:

XTPATH Link to job variable containing the prefix for the names of the trace files.
If this link name is not assigned to any job variable, the names of the trace
files will be constructed without any prefix.

XTLCF Link to job variable containing the file name of the Local Configuration File
(LCF).
The name of the Local Configuration File must comply with the operating
system conventions. The system searches for the file under the current user
ID.
If XTLCF is not assigned to any job variable, the system searches under the
name XATMILCF under the current user ID.

XTPALCF Link to job variable containing the search path for additional descriptions of
typecast buffers.
The buffer descriptions are read from Local Configuration Files with the
names XATMILCF or the name specified with XTLCF.

The system continues to search for all the important XATMI generations (e.g.
SVCU ...) in the Local Configuration File specified by XTLCF.

The system searches for Local Configuration Files under all the IDs specified
in the search path and the descriptions of the typecast buffers are collected
internally from these files (in the event of two identical names, only the first
buffer description takes effect).

The search path is specified in the form userid1:userid2:....

XTSVRTR Link to job variable containing the trace mode for the XATMI server appli-
cation. Possible specifications:

E (Error): Activates the error trace

I (Interface): Activates the interface trace for the XATMI calls

F (Full): Activates the full XATMI trace and that UPIC trace

Table 13: Job variables under BS2000 systems

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

XATMI interface Running XATMI applications

openUTM-Client for the UPIC Carrier System 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

MODIFY-JV JV[-CONTENTS]=FULLTR, SET-VALUE=‘F‘

3. Set task-specific job variable link:

SET-JV-LINK LINK-NAME=XTSVRTR, JV-NAME=FULLTR

4. Show task-specific job variable link:

SHOW-JV-LINK JV[-NAME]=FULLTR

5. Delete task-specific job variable link:

REMOVE-JV-LINK LINK-NAME=XTSVRTR

The job variables are task-specific under BS2000 systems. Different job variables can be
assigned to a second application running under the same ID.

5.6.4 Trace

Each client process writes the trace to a separate file, which can exist in two generations
(old and new).

The maximum size of a trace file is 128 Kbytes. As soon as this size is reached, a second
file is activated. If this has also reached the limit, the first file is written again. For a client, a
trace file has the following name:

● Unix systems and Windows systems

XTCpid.n ()

XTC identifies an XATMI client trace

pid process ID of the client process, 4 or 5-positions

n number of the generation: 1 or 2
the more recent trace can be identified by the time stamp

● BS2000 systems:

[prefix.]XTCtsn.n

prefix The part of the name specified in the job variable referred to by the link
name XTPATH (without terminating period).

XTC identifies an XATMI client trace

tsn ID of the client task, 4-digit

n number of the generation: 1 or 2
the more recent trace can be identified by the time stamp

Example: XTC00341.1: client trace file number 1
XTC00341.2: client trace file number 2

B

B

B

B

B

B

B

B

B

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

B

B

BB

B

BB

BB

BB

B

xatmigen messages XATMI interface

278 openUTM-Client for the UPIC Carrier System

5.7 xatmigen messages

xatmigen messages have the form XGnn messagetext... and are output to stderr under
Unix systems or to the program window under Windows systems and to SYSLST under
BS2000 systems.

Under Unix systems and Windows systems, use the LANG environment variable to control
whether you want German or English messages.

Under BS2000 systems, you can assign the language code 'D' or 'E' to a task-specific job
variable with the link name LANG in order to control whether messages are issued in
English or German.

XG01 Generation of the local configuration files: &LCF / &DEF / &CODE

Meaning
Start message of Tool.
&LCF name of local configuration file created
&DEF name of generation fragment created
&CODE string code for character array

XG02 Generation terminated successfully

Meaning
The LCF was created; generation was terminated successfully.

XG03 Generation terminated successfully with warnings

Meaning
The LCF was created. Nevertheless, a warning is output because unnecessary files were
specified, for example. However, this warning has no effect on the generation.

XG04 Generation terminated by error
No file created.

Meaning
The LCF was not created; the generation could not be performed. The cause can be deter-
mined from previous messages

XG05 &FTYPE file'&FNAME'

Meaning
This message specifies the file currently being edited, in the following form:
&FTYPE: “description” file contains data structures

“definition” file contains the LCF input
“LC” file contains the local configuration

&FNAME: File name

X/W

X/W

B

B

B

XATMI interface xatmigen messages

openUTM-Client for the UPIC Carrier System 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

5

XG10 Call: &PARAM

Meaning
Syntax error when calling XATMIGEN:
PARAM: possible call parameters and switches

XG11 [Error] Cannot create &FTYPE file 'FNAME
&REASON

Meaning
The &FNAME file of type &FTYPE cannot be created
&REASON contains a more precise explanation.
&FTYPE: GEN = generation fragment file (=generation statements)

LC = local configuration file

XG12 [Warning] File not found.

Meaning
The definition file or a description file was not found; perhaps the file does not exist.

XG13 [Warning] Too many &OBJECTS, Maximum: &MAXNUM

Meaning
Message indicating that too many objects were found.
&OBJECTS: subtypes
&MAXNUM: maximum number

XG14 [Error] Line &LINE: Syntaxerror, &helptext

Meaning
Syntax error in line &LINE of the LC definition file
&HELPTEXT: help text

XG15 [Error] Line &LINE: No record definition found for buffer &BUFF

Meaning
No associated record definition could be found for the buffer &BUFF in line &LINE.

XG16 [Error] Line &LINE: Basictype error in buffer &BUFF

Meaning
The syntax description of the buffer &BUFF in line &LINE of the LCF contains an incorrect
basic type (int, short, etc.).

XG17 [Error] Cannot open &FTYPE file '&FNAME’.
&REASON

Meaning
The &FNAME file of type &FTYPE cannot be opened.
&REASON contains a more detailed explanation.
&FTYPE: DEF (= LC definition file)

xatmigen messages XATMI interface

280 openUTM-Client for the UPIC Carrier System

XG18 [Error] &REASON

Meaning
General error.
&REASON contains a detailed reason for the error.

XG19 [Message] Created new buffer: '&BUFF'

Meaning
&BUFF: created buffer

XG20 [Message] Service name '&SVC' truncated to 16 characters!

Meaning
&SVC : service name.

XG21 [Message] Line &LINE: unknown statement line '&HELPTEXT'

Meaning
Message for the line &LINE in the LC definition file
&HELPTEXT: help text (part of LC-line)

XG22 [Message] Line &LINE: Default set MODE='&TEXT'

Meaning
Message for the line &LINE in the LC definition file
&TEXT: set default mode

openUTM-Client for the UPIC Carrier System 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

6 Configuration

A client with the UPIC carrier system always uses UTM applications as servers in Windows
systems, Unix systems or BS2000 systems. The configuration of the UPIC carrier system
must therefore be coordinated with the generation of the UTM partner application(s).

Figure 23: Configuration with and without side information file

Side

information

Side information

UPIC carrier system

file
(upicfile)

CPI-C interface

UPIC-L UPIC-R

(Alternative options)IPC CMX Socket

UPIC and CPIC
calls for

configuration

Configuration without upicfile Configuration

282 openUTM-Client for the UPIC Carrier System

6.1 Configuration without upicfile

For communication between UPIC and UTM, it is necessary for both the UPIC client and
the UTM server to sign on to the local communication system with a name. UPIC signs itself
on to the communication system with the local_name, UTM with the BCAMAPPL
(application name). A communication relationship between the client and server is defined
by UPIC addressing the UTM application under its BCAMAPPL. UTM receives the local
name of the client in order to be able to authenticate the client (PTERM statement).

The client must use the name of the remote system for addressing if the communication
system permits global communication. In this case, the complete address of the UTM
partner consists of BCAMAPPL and the system name.

UPIC addresses the UTM application using the partner_LU_name. A partner_LU_name is
designated as single-part if it only contains the address information about the local name of
the UTM partner application. The two-part partner_LU_name is identified by the fact that it
contains a dot (“.”). The part to the left of the dot is the application name, the part to the right
of the dot is the system name. The dot itself does not form part of the address.

The values for TSEL and HOSTNAME are derived from the partner_LU_name. The left part,
up to the period (".") i.e. the application name, is assigned to TSEL. The part to the right of
the period, i.e. the host name, is assigned to HOSTNAME.

Address components

● local_name

The local_name is set with the Enable_UTM_UPIC call. A preset local_name is used if an
empty local_name (8 blanks and/or length = 0) is passed with this call. The local_name
is assigned the following default value:

– UPICL with UPIC-L
– UPICR with UPIC-R

It is overwritten with the call Specify_Local_Tsel.

upicfile comparison

The value of local_name can be overwritten using a upicfile. The upicfile is
described in section “The side information file (upicfile)” on page 288.

X/W

Configuration Configuration without upicfile

openUTM-Client for the UPIC Carrier System 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

● partner_LU_name

Following the Initialize_Conversation call, the partner_LU_name is assigned the following
default value:

– UTM with UPIC-L
– UTM.local with UPIC-R

It is overwritten with the Set_Partner_LU_Name call.

upicfile comparison

The value of partner_LU_name can also be overwritten using a upicfile. The
partner_LU_name in turn is addressed using the Symbolic Destination Name in the
upicfile.
The upicfile is described in section “The side information file (upicfile)” on page 288.

● Symbolic Destination Name

The Symbolic Destination Name is precisely 8 characters in length and is passed in the
Initialize_Conversation call. An empty Symbolic Destination Name consists of precisely
8 blanks.
An empty Symbolic Destination Name must be passed as the Symbolic Destination Name
in the Initialize_Conversation call.

upicfile comparison

When a upicfile is being used, an empty Symbolic Destination Name can be passed in
the Initialize_Conversation call.
The upicfile is described in section “The side information file (upicfile)” on page 288.

X/W

Configuration without upicfile Configuration

284 openUTM-Client for the UPIC Carrier System

6.1.1 UPIC-R configuration

UPIC-R uses transport systems for communication. In almost all practical situations, this
involves TCP/IP with the protocol referred to as RFC1006. Transport systems have their
own address regulations. The RFC1006 protocol is characterized by the fact that each
transport system application signs itself on to the transport system with a name, referred to
as the transport selector (T-SEL). The partners address one another using these names.
RFC1006 is based on TCP/IP, so TCP/IP also requires the following addressing infor-
mation:

– System name
– Port number

i For BS2000, it has been agreed to use port number 102 wherever possible.

There is no general recommendation with respect to the port number under Unix
systems and Windows systems. Port number 102 should, however, be used with
care.

UPIC-R is configured using local_name and partner_LU_name, with the local_name being
mapped on the local T-SEL. The application name from the two-part partner_LU_name is
mapped on the remote T-SEL, the system name from the two-part partner_LU_name is the
name of the system in the network. The partner_LU_name must be two-part, otherwise the
described procedure does not work.

When mapping the local_name and the application name to the T-SEL, bear in mind that the
character code of the T-SEL is not defined a priori. The two systems on which the server
and client are running can use different character codes for representing the T-SEL (e.g.
Windows systems uses an extended ASCII character code, BS2000 systems the EBCDIC
character code). Consequently, the format of the names must be defined. Three character
formats are possible between UPIC and UTM: ASCII, EBCDIC and TRANSDATA. The
TRANSDATA character set is a restricted subset of the EBCDIC character set. UPIC-R
checks whether the character set used by local_name and/or the character set used by the
application name can be converted into the TRANSDATA character set. The TRANSDATA
character format is used if this is the case, otherwise the EBCDIC character format is used.

One port number each is assigned to both the local_name and the partner_LU_name. The
two port numbers are not derived from the name, they are always set to the value 102 by
default.

The local port number is assigned to the local_name. The default value can be overwritten.
The local port number is a purely formal value which does not have any effect, and is only
entered on grounds of compatibility. It should be disregarded in the configuration of UPIC-R.

Configuration Configuration without upicfile

openUTM-Client for the UPIC Carrier System 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

The remote port number is assigned to partner_LU_name. In contrast to the local port
number, there is a significant importance attached to the remote port number. This is
because the UTM partner application is addressed using the remote port number. In the
vast majority of practical cases, it is sufficient to use the default value 102. BCAM and CMX
always support port 102 as the central access port for RFC1006. Although it is possible to
select another port, this requires a significant amount of configuration work on the server
side, for example BCMAP entries have to be created for the BS2000 system. Such
configurations require a certain level of experience and are not described here. As a rule,
port 102 cannot be used if the UTM partner application is running on a system which uses
PCMX to access the transport system. In this case, the value of the remote port number
must be overwritten with the value which is used by the UTM application.

The values T-SEL, T-SEL format and local port number of the local_name can be overwritten
with the following calls:

Specify_Local_Tsel
Specify_Local_Tsel_Format and
Specify_Local_Port

The values can also be overwritten by entries in the upicfile. In this case, the corre-
sponding values are defined using keywords. The upicfile is described in section “The
side information file (upicfile)” on page 288.

The addressing information for the network can be formed by specifying the local_name and
using the internal rules of UPIC to have the network address created. It is also permitted
and a function has been provided to overwrite one or more of the values derived from the
local_name using the specified calls. It is permitted for any mixture of derived, default and
explicitly set values to be used in this case. Equally, it is permitted for all of the values
derived from the local_name to be overwritten. The local_name is meaningless if you select
this type of configuration. You can then specify any local_name whatsoever, only providing
it is compliant with the formal criteria of the Enable_UTM_UPIC call.

The values system name (or the Internet address derived from it), T-SEL, T-SEL format and
remote port number can be overwritten with the following calls:

Set_Partner_Host_Name
Set_Partner_IP_Address
Set_Partner_Tsel
Set_Partner_Tsel_Format
Set_Partner_Port

The Set_Partner_Host_Name call is ignored if the Set_Partner_Host_Name and
Set_Partner_IP_Address calls are both called. The values can also be overwritten by entries
in the upicfile. In this case, the corresponding values are defined using keywords. The
upicfile is described in section “The side information file (upicfile)” on page 288.

Configuration without upicfile Configuration

286 openUTM-Client for the UPIC Carrier System

In many cases, the addressing information for the network can be formed by specifying the
partner_LU_name and using the internal rules of UPIC to have the network address created.
It is also permitted and a function has been provided to overwrite one or more of the values
derived from the partner_LU_name using the specified calls. It is permitted for any mixture
of derived, default and explicitly set values to be used in this case. Equally, it is permitted
for all of the values derived from the partner_LU_name to be overwritten. The
partner_LU_name is meaningless if you select this type of configuration. You can then
specify any partner_LU_name whatsoever, only providing it is compliant with the formal
criteria which are required of it (among other aspects, it must be two-part).

6.1.2 UPIC-L configuration

UPIC-L uses the mechanisms of interprocess communication on Windows and Unix
systems. In these communication systems, the local_name and the partner_LU_name can be
directly mapped to the addressing formats of the communication system. You must bear in
mind that the partner_LU_name is only ever allowed to be specified as single-part, because
the UPIC-L client and the UTM partner application always run on the same system as a
result of the communication system used. The specification of a two-part partner_LU_name
would also contain a system address. A two-part partner_LU_name is treated as an error
because it can never be used.

6.1.3 Configuration with TNS entries

UPIC-R can also be configured using TNS entries if UPIC-R is using the transport system
component PCMX for communication. UPIC-R with PCMX always first tries to find a global
name in the TNS directory for the local_name and the partner_LU_name. If a global name is
found for the local_name and/or the partner_LU_name is found, then it is used. All other
configuration settings are ignored. However, the configuration takes place as described
above if no TNS entry is found for the local_name and/or the partner_LU_name.

6.1.4 Configuration using BCMAP entries

If UPIC uses the transport system component CMX(BS2000) for communication on
BS2000 systems, the configuration is influenced by BCMAP entries.

BCMAP entries for the client application and for the UTM partner application are only
necessary in a few exceptional cases where communication takes place with a UTM appli-
cation on Windows systems.

The UPIC client cannot influence the effect of BCMAP entries.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

B

B

B

B

Configuration Configuration without upicfile

openUTM-Client for the UPIC Carrier System 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

BCMAP entries can be created both for the local_name and for the partner_LU_name.
BCMAP entries for the local_name are not recommended.

BCMAP entries for the partner_LU_name are generally required if a UPIC client on BS2000
systems is to communicate with a UTM application on Windows systems.

B
B

B

B

The side information file (upicfile) Configuration

288 openUTM-Client for the UPIC Carrier System

6.2 The side information file (upicfile)

You must create the upicfile yourself. This file has the following format:

– In Windows and Unix systems the file must contain only text and must be called upicfile.
If you choose a different name, you must also set the UPICFILE environment variable
accordingly.

– You must create a SAM file with the name upicfile in BS2000. If you choose a
different file name, you must set the job variable UPICFILE accordingly.

This file is used by all client programs, e.g. in the Initialize_Conversation or
Enable_UTM_UPIC calls.

The side information file is accessed with the environment variable or job variables
UPICPATH. This allows you to specify the directory in which the file is located. If the variable
is not set, the system looks for the file in the current directory.

The upicfile recognizes the following types of entries:

– communication partner entries which are addressed in the client program using the
symbolic destination name.

– Side information entries for those communication partners in an openUTM-Cluster that
are addressed using the symbolic destination name in the client program.

– Side information entries for the local application which are addressed in the client
program using the local application name. These entries are optional.

To make the layout of the upicfile legible, the file may also contain blank lines and/or
comment lines. Comment lines are identified by an asterisk („∗“) in column 1. Note that a
semicolon is always interpreted as an end-of-line character, even within a comment line.

X/W

X/W

X/W

B

B

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

6.2.1 Side information for standalone UTM applications

Each communication partner is addressed in the client program by its symbolic destination
name. This name is specified when a conversation is initialized (in the
Initialize_Conversation call).

An entry must be created in the upicfile for every Symbolic Destination Name which is used
in the program. Each entry takes up one line in the upicfile.

The entry takes the following form for standalone UTM applications:

Description of the entry:

● The names specified in the entry must be separated by blanks.
Exception:
There must be no blank between the identifiers SD/HD and the symbolic destination
name.

● Identifiers SD/HD:
The line begins with the identifier SD or HD. This specifies whether or not UPIC is to
perform automatic code conversion during sending and receiving of data.
For more information on code conversion, see also section “Code conversion” on
page 68.

Windows and Unix systems:

If HD is specified, automatic code conversion of the user data takes place during
sending and receiving.
Data which is sent to the UTM partner application is converted from the locally used
code to EBCDIC.
Data arriving from the partner application is converted from EBCDIC into the local code.

If you specify SD, no automatic code conversion takes place.

symbolic partner
 destination blank _LU_ blank

transaction

name

SD
or

HD

optional

1-32 bytes12 bytes 8 bytes 1 byte 1-8 bytes

1 With local connection via UPIC local, “partner_LU_name” can only be up to 8 bytes long.

blankcode

1 byte1 byte

optional

end-of-
line

character

keywords

name

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

The side information file (upicfile) Configuration

290 openUTM-Client for the UPIC Carrier System

BS2000 systems:

The codes have the opposite meanings in BS2000 systems.

In UPIC on BS2000 systems, HD means that no automatic code conversion is carried
out when sending and receiving data in the local system. HD should always be specified
if the client communicates with the UTM application on BS2000 systems (BS2000 -
BS2000 link).

SD means that an EBCDIC->ASCII conversion will be carried out before sending data
and an ASCII->EBCDIC conversion will be carried out on receiving data.
SD should only be used for connections to UTM applications on Unix systems or
Windows systems.

The SD/HD identifier in the upicfile can be overwritten with the Set_Convertion call.

● symbolic destination name
The symbolic destination name must be precisely eight characters long.

● partner_LU_name
With connections via UPIC remote, the partner_LU_name can be between 1 and 32
characters long. For partner_LU_name you must specify the symbolic name under which
the UTM partner application is known to the communication system.
With connections via UPIC remote you should always specify the partner_LU_name in
two levels (separated by a period) in the format applicationname.processorname. The
values for TSEL (=applicationname) and HOSTNAME (=processorname) are derived from
the two-part partner_LU_name.

You have to specify the partner_LU_name in two parts in BS2000. processorname must
then match the name of the remote computer in BCAM-RDF.

Example:

Specification in the upicfile: SDsymbdest UTMAPPL1.D123ZE45

An entry in the upicfile can be overwritten with the Set_Partner_LU_Name call.

The individual values of a two-level partner_LU_name can be overwritten by entries in
the side information file (HOSTNAME=, TSEL=) or by using the calls
Set_Partner_Hostname and Set_Partner_Tsel.

UPIC-L:
With local connection to a UTM application via UPIC-L, the partner name must not
exceed 8 characters and must be specified in one level.

B

B

B

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

● transaction code (optional):
You can specify the transaction code of a UTM service. The transaction code is
between 1 and 8 characters long. The transaction code you specify must have been
generated in the UTM partner application (TAC statement) or dynamically configured.
Specification of a transaction code in an entry is optional. If it is not specified, the trans-
action code (name of the service) in the program must be given in the Set_TP_Name call.

An entry in the upicfile can be overwritten with the Set_TP_Name call.

● keywords (all entries are optional)
The following keywords can be used to influence the UPIC-specific conversation
characteristics (see also section “CPI-C terms” on page 51) in the upicfile. The
keywords are used to enter addressing information and to specify whether encryption
is to be implemented.

You can enter keywords either after the partner name or after the transaction code.
Keywords must be separated from the partner name or transaction code by a space.
You can enter as many keywords as you like in any order. When entering more than
one keyword, you must use a space to separate them.

ENCRYPTION-LEVEL={NONE | 0 | 1 | 2 | 3 | 4}
ENCRYPTION-LEVEL is used to specify whether or not the data for the conver-
sation is to be encrypted and which encryption level is to be used.

If you enter ENCRYPTION-LEVEL=NONE or ENCRYPTION-LEVEL=0 (both have
the same effect), the user data is not encrypted. If the UTM application establishes
a connection which demands encryption of data then the encryption level is
automatically adjusted accordingly. The same happens if UPIC on a connection
with ENCRYPTION-LEVEL=NONE calls a TAC which is generated using
encryption and UPIC does not send user data when calling the TAC. When UPIC
receives encrypted data, the value of the encryption level is automatically increased
accordingly.

If you specify ENCRYPTION-LEVEL=1, 2, 3 or 4 and openUTM can implement this
encryption on the connection, all user data of the subsequent conversation is
encrypted with the same level before transfer.

Values 1 to 4 mean:

1 The user data is encrypted using the DES algorithm. An RSA key with a key
length of 200 bits is used for exchange of the DES key.

2 The user data is encrypted using the AES algorithm. An RSA key with a key
length of 512 bits is used for exchange of the AES key.

3 The user data is encrypted using the AES algorithm. An RSA key with a key
length of 1024 bits is used for exchange of the AES key.

The side information file (upicfile) Configuration

292 openUTM-Client for the UPIC Carrier System

4 The user data is encrypted using the AES algorithm. An RSA key with a key
length of 2048 bits is used for exchange of the AES key.

The conversation is ended if openUTM does not support the specified encryption
level.

The value is ignored if the UTM application cannot implement encryption for one of
the following reasons:
– you have not installed openUTM-Crypt
– it does not want to implement encryption because the client partner was

generated as ’trusted’.

UPIC-L The value of ENCRYPTION-LEVEL is ignored.

The entry in the upicfile can be overwritten using the
Set_Conversation_Encryption_Level call.

HOSTNAME=hostname
The host name is the processor name and can be up to 32 characters in length. The
host name overwrites the value assigned using Initialize_Conversation.

An entry in the upicfile can be overwritten using the Set_Partner_Host_Name call.

UPIC-L The value of HOSTNAME is ignored.

IP-ADDRESS=nnn.nnn.nnn.nnn or = x: x: x: x: x: x: x: x (IPv6)
You can enter an Internet address in IPv4 or IPv6 format.

– If the Internet address is specified using traditional dot notation, it is interpreted
as anIPv4 address.

– If the Internet address is specified in the form x: x: x: x: x: x: x: x, it is interpreted
as an IPv6 address. x represents a hexadecimal number between 0 and FFFF.
The alternative methods of writing IPv6 addresses (e.g. the omission of zeros
using :: or IPv6 mapped format) are permitted.

If an Internet address is entered, the value of HOSTNAME is ignored.

An entry in the upicfile can be overwritten using the Set_Partner_IP_Address call.

UPIC-L The value for IP-ADDRESS is ignored.

UPIC on BS2000 systems using CMX as its communication system
The value for IP-ADDRESS is ignored.

PORT=listener-port
The port number is only entered for the address format RFC1006. The port number
can be a value between 0 and 32767. The port number overwrites the port-number
value assigned using Initialize_Conversation. Entering PORT is optional. If operation
without TNS is specified for this communication partner, the value of PORT is used
as the port number and not 102.

X/W

X/WX/W

X/WX/W

BB

B

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

An entry in the upicfile can be overwritten using the Set_Partner_Port call.

UPIC-L The value of PORT is ignored.

UPIC on BS2000 systems using CMX as its communication system
The value for PORT is ignored.

RSA-KEY=rsa-key
The public part of the RSA key of the partner application can be entered. If the
public key is entered, the UPIC library compares the entered key with the one it
received from the UTM partner application on connection setup. If there is a
difference between keys, whether it be a change of at least one byte or just a
change in length, the connection to is cleared down immediately by the UPIC
library. This procedure is used to check whether the key is genuine.

UPIC-L The value of RSA-KEY is ignored.

T-SEL=transport-selector
The transport selector (T-SEL) of the transport address addresses the partner appli-
cation within the remote system. It must be the same as the entry in the remote
system. The transport selector is a name and can be up to 8 characters long. The
specified T-SEL overwrites the value assigned using Initialize_Conversation. The
use of T-SEL is optional.

The entry in the upicfile can be overwritten using the Set_Partner_Tsel call.

UPIC-L The value of T-SEL is ignored.

T-SEL-FORMAT={T | E | A }
TSEL-FORMAT is the format indicator of the transport selector. The valid formats
are:

T for TRANSDATA

E for EBCDIC

A for ASCII

TSEL-FORMAT overwrites the value assigned using Initialize_Conversation. The
use of T-SEL-FORMAT is optional.

If operation without TNS is specified for a communication partner, the value of
TSEL-FORMAT is used. The entry in the upicfile can be overwritten using the
Set_Partner_Tsel_Format call.

UPIC-L The value of T-SEL-FORMAT is ignored.

X/WX/W

BB

B

X/WX/W

X/WX/W

X/WX/W

The side information file (upicfile) Configuration

294 openUTM-Client for the UPIC Carrier System

● End-of-line character:
The character that concludes the entry varies depending on the platform for which the
upicfile is created:

– Windows systems:
Each line is concluded with a carriage return and line feed (the return key). A
semicolon before the carriage return is optional.

– Unix systems:
The line is concluded with a <newline> character (line feed). A semicolon before the
<newline> character is optional.

– BS2000 systems:
The end of line is represented by a semicolon (;). No spaces are permitted after this.

If there is a semicolon in a line (contents of the side information entry), UPIC treats this
as the end of the line and interprets the rest of the line as a new line (until the next end-
of-line character).

i Note that in BS2000 systems, the next end of line character is also a semicolon.
BS2000 editors such as EDT have a different view of lines from UPIC. If a
further blank follows the semicolon of line n in the editor and line n+1 starts with
SD and ends with a semicolon, UPIC sees a line which starts with " SD" and not
with "SD".
The "Symbolic Destination Name" in this line is not found.

W

W

W

X

X

X

B

B

B

B

B

B

B

B

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

Defining a DEFAULT server

For your client application you can define a DEFAULT server or a DEFAULT service (see
also section “Default server and DEFAULT name of a client” on page 95). A client program
is connected to the DEFAULT server/service if in the program an empty name is passed as
a symbolic destination name. In the DEFAULT entry you enter the value.DEFAULT instead
of the symbolic destination name. The DEFAULT server entry must therefore have the
following format:

With such an entry you define the UTM partner application partner_LU_name as the
DEFAULT server. If you specify a transaction code, you also define the associated service
as the DEFAULT service. You can call a different service on the DEFAULT server by setting
a different transaction code in the program with the Set_TP_Name call (e.g. KDCDISP for the
service restart). The specification in Set_TP_Name overwrites the value of transactioncode in
the side information entry.

partner
 .DEFAULT blank blank

transaction
SD
or

HD

optional

1-32 bytes12 bytes 1 byte 1-8 bytes

1 With a local connection via UPIC local, “partner_LU_name” can only be up to 8 bytes long.

blankcode

1 byte1 byte

optional

end-of-
line

character
keywords

name
 LU

X/W

The side information file (upicfile) Configuration

296 openUTM-Client for the UPIC Carrier System

6.2.2 Side information for UTM cluster applications

Every communication partner, including UTM cluster applications is addressed by its
symbolic destination name in the client program. This name is specified when a
conversation is initialized (Initialize_Conversation call). You must make entries in the
upicfile for each symbolic destination name used in the program.

A UTM cluster application is made up of several identical node applications running on the
individual nodes of the cluster. To allow a UPIC client to easily access all the node applica-
tions of a UTM cluster application, you must configure an openUTM cluster in the
upicfile. In doing this, you must observe the following rules.

Rules for configuring an openUTM cluster application

● For each symbolic destination name, you must create a separate entry for each node
application in the upicfile with the code CD. If, for instance, the UTM cluster appli-
cation is made up of three node applications, you must create three entries using the
same symbolic destination name.

● All entries for a given symbolic destination name must follow each other consecutively.
See the example on page page 301.

● The entries for a given symbolic destination name differ only in terms of the address speci-
fications for the node (partner_LU_name or, if used, the keywords HOSTNAME and IP-
ADDRESS). The specifications for transaction-code and the other keywords must match.

Format of an entry

Each entry occupies one line in the upicfile. An entry takes the following form:

symbolic partner
 destination blank _LU_ blank

transaction-

name
CD

optional

1-32 bytes2 bytes 8 bytes 1 byte 1-8 bytes

blankcode

1 byte1 byte

optional

end of
line

character

keywords

name

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

Description of the entry

● The names specified in the entry must be separated by blanks.
Exception:
No blank is permitted between the CD code and the symbolic destination name.

● CD code:
The line starts with the code CD. This code has no effect on automatic code conversion
(see also “CONVERTION={IMPLICIT | NO}” on page 300).

● symbolic destination name
The symbolic destination name must be exactly 8 characters long.

The combination CDsymbolic_destination_name can occur any number of times in the
upicfile.

● partner_LU_name
The partner_LU_name can be between 1 and 32 characters in length.
The symbolic name under which the UTM partner application is known to the system
must be specified for partner_LU_name.

You should always specify partner_LU_name on two levels in the form
applicationname.processorname (separated by a dot). The values for TSEL (=applica-
tionname) and HOSTNAME (=processorname) are derived from the two-level
partner_LU_name.

In BS2000, you must specify the partner_LU_name on two levels. processorname must
then match the name of the remote host in BCAM-RDF.

Example
Specification in the upicfile: CDsymbdest UTMAPPL1.D123ZE45

An entry in the upicfile cannot be overwritten by a Set_Partner_LU_Name call. The
individual values of a two-level partner_LU_name must not be overwritten in the
program. Any such call will be rejected.

● transaction-code (optional specification):
The transaction code of a UTM service can be specified. The transaction code is a
name of up to 8 characters in length. The specified transaction code must have been
generated in the UTM partner application (TAC statement) or must have been
configured dynamically.
Specification of a transaction code in an entry is optional. If this specification is omitted,
the transaction code (name of the service) must be specified in the program with the
Set_TP_Name call.

An entry in the upicfile can be overwritten by a Set_TP_Name call.

B

B

The side information file (upicfile) Configuration

298 openUTM-Client for the UPIC Carrier System

● Keywords (all specifications optional)
You can influence the UPIC-specific conversation characteristics (see also “Conver-
sation characteristics” on page 51) in the upicfile with the following keywords. You
use the keywords to specify the addressing information and specify whether encryption
is to be used.
You can specify the keywords after the partner name or after the transaction code,
separated by blanks in each case. The sequence and number of keywords is arbitrary.
Multiple keywords are separated by blanks.

ENCRYPTION-LEVEL={NONE | 0 | 1 | 2 | 3 | 4}
ENCRYPTION-LEVEL specifies whether the data for the conversation is to be
encrypted or not and what encryption level is to be used.

If you specify ENCRYPTION-LEVEL=NONE or ENCRYPTION-LEVEL=0 (both
have the same effect), the user data is not encrypted. If, however, the UTM appli-
cation requires the data to be encrypted over a given connection, the encryption
level is automatically increased. The same thing happens if UPIC calls a TAC
generated with encryption over a connection with ENCRYPTION-LEVEL=NONE
and UPIC does not send any user data when calling the TAC. If encrypted data is
received, UPIC automatically increases the value for the encryption level.

If you specify ENCRYPTION-LEVEL=1, 2, 3 or 4, and openUTM is able to encrypt
the data accordingly over the connection, all the user data of the following conver-
sation is transmitted in encrypted form using the same level.

The values 1 through 4 have the following meanings:

1 Encryption of the user data using the DES algorithm. An RSA key with a key
length of 200 bits is used to exchange the DES key.

2 Encryption of the user data using the AES algorithm. An RSA key with a key
length of 512 bits is used to exchange the AES key.

3 Encryption of the user data using the AES algorithm. An RSA key with a key
length of 1024 bits is used to exchange the AES key.

4 Encryption of the user data using the AES algorithm. An RSA key with a key
length of 2048 bits is used to exchange the AES key.

If openUTM does not support the specified encryption level,the conversation is
terminated.

The value is ignored if a UTM application cannot perform encryption because
– openUTM-Crypt is not installed
– it does not wish to perform encryption because the client partner has been

generated as trusted

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

HOSTNAME=hostname
The hostname is the processor name and can be up to 32 characters in length. The
hostname overwrites the value assigned with Initialize_Conversation.

An entry in the upicfile cannot be overwritten by a Set_Partner_Host_Name call.

IP-ADDRESS=nnn.nnn.nnn.nnn (IPv4) or = x: x: x: x: x: x: x: x (IPv6).
An Internet address can be specified in IPv4 and IPv6 format.

– If the Internet address is specified using the traditional dot notation, it is inter-
preted as an IPv4 address.

– If the Internet address is specified in the form x: x: x: x: x: x: x: x, it is interpreted
as an IPv6 address. In this notation, x is a hexadecimal number between 0 and
FFFF. The alternative notations for IPv6 addresses (e.g. the omission of zeros
using :: or IPv6 mapped format) are permitted.

If an Internet address is specified, the value of HOSTNAME is ignored. An entry in
the upicfile cannot be overwritten by a Set_Partner_IP_Address call.

UPIC on BS2000 systems with CMX as the communication system
The value for IP-ADDRESS is ignored.

PORT=listener-port
The port number is only specified for the address format RFC1006. The port
number can assume a value of 0 through 32767. This port number overwrites the
value for the port number assigned with Initialize_Conversation. The PORT specifi-
cation is optional.

If operation without TNS is specified for this communication partner, the value of
PORT is used as the port number instead of 102.

An entry in the upicfile can be overwritten by a Set_Partner_Port call.

UPIC on BS2000 systems with CMX as the communication system
The value of PORT is ignored.

B

B

B

B

The side information file (upicfile) Configuration

300 openUTM-Client for the UPIC Carrier System

● RSA-KEY=rsa-key
The public part of the RSA key of the partner application can be specified. If the
public key is specified, the UPIC the library compares the specified key with the key
it receives from the UTM partner application when the connection is established. If
the two keys differ in at least one byte or even just in length, the connection is
immediately cleared again by the UPIC library. This procedure allows the
genuineness of the key to be checked.

T-SEL=transport-selector
The transport selector (T-SEL) of the transport address addresses the partner
application within the remote system. It must match the specifications in the remote
system. The transaction selector is a name of up to 8 characters in length. The T-
SEL specified overwrites the value assigned with Initialize_Conversation. The T-SEL
specification is optional.

The entry in the upicfile can be overwritten by a Set_Partner_Tsel call.

T-SEL-FORMAT={T | E | A }
T-SEL-FORMAT is the format indicator of the transport selector. The valid formats
are as follows:

T for TRANSDATA
E for EBCDIC
A for ASCII

T-SEL-FORMAT overwrites the value assigned with Initialize_Conversation. The T-
SEL-FORMAT specification is optional.

If operation without TNS is specified for a communication partner, the value of
TSEL-FORMAT is used. The entry in the upicfile can be overwritten by a
Set_Partner_Tsel_Format call.

● CONVERTION={IMPLICIT | NO}
CONVERTION=IMPLICIT specifies that automatic code conversion is performed
on the user data on sending and receiving. For information on code conversion, see
also the section “Code conversion” on page 68.

If you do not specify CONVERTION= or if you specify CONVERTION=NO, no
automatic conversion is performed.

● End of line character:
The character used to terminate the entry differs for the various platforms for which the
upicfile is created:

– Windows systems:
Lines are terminated by a carriage return and line feed (Return key). A semicolon
can be optionally inserted in front of the carriage return character.

W

W

W

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

– Unix systems:
Lines are terminated with a <newline> character (linefeed). A semicolon can be
optionally inserted in front of the <newline> character.

– BS2000 systems:
The end of the line is represented by a semicolon (;). No spaces are permitted after
this.

If there is a semicolon in a line (contents of the side information entry), UPIC treats this
as the end of the line and interprets the rest of the line as a new line (until the next end
of line character).

i Note that in BS2000 systems, the next end of line character is also a semicolon.
BS2000 editors such as EDT regard lines differently from UPIC.
If the semicolon in line n in the editor
– is followed by another blank and
– line n+1 starts with CD and ends with a semicolon,
UPIC sees a line beginning with " CD" and not with "CD".
The "symbolic destination name" in this line is not found.

Example

Two symbolic destination names (service1 and service2) are to be configured for one UTM
cluster application. The UTM cluster application is made up of three node applications
on the hosts CLNODE01, CLNODE02 and CLNODE03. In addition, the upicfile
contains a further entry for a standalone UTM application UTMAPPL2.

The entries could, for instance, be as follows:

* entries for UTM cluster application UTMAPPL1
CDservice1 UTMAPPL1.CLNODE01 TAC1
CDservice1 UTMAPPL1.CLNODE02 TAC1
CDservice1 UTMAPPL1.CLNODE03 TAC1
* entry for stand-alone application UTMAPPL2
SDservice2 UTMAPPL2.D123S234 TAC4

The transaction code TAC1 can be overwritten in the program using Set_TP_Name, thus
allowing other TACs to be addressed. In addition, it is possible to configure further
standalone UTM applications (with the prefix SD or HD). These entries must, however,
precede or follow the entries for the UTM cluster application described above.

X
X

X

B

B

B

B

B

B

B

B

B

B

The side information file (upicfile) Configuration

302 openUTM-Client for the UPIC Carrier System

Defining the DEFAULT server

You can define a DEFAULT server or a DEFAULT service for your client application (see
also the section “Default server and DEFAULT name of a client” on page 95). A client
program is connected to the DEFAULT server/service if an empty name is passed as the
symbolic destination name in the program. In the DEFAULT entry, you specify the value
.DEFAULT in place of the symbolic destination name. The DEFAULT server entry must
therefore have the following format:

An entry such as this defines the UTM partner application partner_LU_name as the
DEFAULT server. If you enter a transaction code, you also define the associated service as
the DEFAULT service. You can call a different service on the DEFAULT server if you use
the Set_TP_Name call in the program to set a different transaction code (e.g. KDCDISP for
a service restart). The specification in Set_TP_Name overwrites the value of transaction-code
in the side information entry.

partner
 .DEFAULT blank blank

transaction-CD

optional

1-32 bytes2 byte 1 byte 1-8 bytes

blankcode

1 byte1 byte

optional

end of
line

character

keywords

name
 LU

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

6.2.3 Side information for the local application

For each client application several entries can be created in the upicfile. Each entry
defines a local application name with which the client program can sign on to UPIC.

A side information entry for the local client application occupies one line and must have the
following format:

Description of the entry

● The line begins with the identifier LN. LN indicates that this is a side information entry
for the local client application.

● local application name
Here you specify the local application name with which a client program signs on to
UPIC. There must be no blank between the identifier LN and the local application name,
but the local application name and the application name which follows it must be
separated by a blank.

● application name
The application name can be up to 32 characters long. The client application signs on
to the transport access system using the application name.

UPIC local:
The application name can be up to 8 characters long.

● keywords (optional)
The following keywords allow you to influence the UPIC-specific values for the local
application (see also section “CPI-C terms” on page 51) in the upicfile. These
keywords allow you to enter addressing information.
Keywords can be entered after either the application name. You must separate the
keyword by a space. You can enter as many keywords as you like and in any order.
When entering more than one keyword, you must separate them with a space.

local
application name

end-of-line
LN

1-32 bytes12 bytes 8 bytes 1 byte

1 With local connection via UPIC local, “application name” can only be up to 8 bytes long.

blank characterblank keywords

optional

application
name

X/W

X/W

X/W

The side information file (upicfile) Configuration

304 openUTM-Client for the UPIC Carrier System

PORT=listener-port
The port number is only entered for the address format RFC1006. The port number
can be a value between 0 and 32767.

If operation without TNS is specified for this communication partner, the value of
PORT is used as port number instead of 102.

An entry in the upicfile can be overwritten using the Set_Local_Port call.

UPIC-L The value of PORT is ignored.

T-SEL=transport-selector
Is the transport selector (T-SEL) of the transport address. It must be the same as
the entry in the remote system. The transport selector is a name which is up to 8
characters long. The use of T-SEL is optional.

If operation without TNS is specified for a communication partner, the value of
T-SEL is used. The entry in the upicfile can be overwritten using the
Set_Local_Tsel call.

UPIC-L The value of T-SEL is ignored.

T-SEL-FORMAT={T | E | A }
TSEL-FORMAT is the format indicator of the transport selector. The valid formats
are:

T for TRANSDATA

E for EBCDIC

A for ASCII

The use of T-SEL-FORMAT is optional.

If operation without TNS is specified for a communication partner, the value of
TSEL-FORMAT is used. The entry in the upicfile can be overwritten using the
Specify_Local_Tsel_Format call.

UPIC-L The value of T-SEL-FORMAT is ignored.

● End-of-line character
The end-of-line character depends on the platform:

– Windows systems:
Lines are terminated by a carriage return and line feed (Return key). A semicolon
can be optionally used before the carriage return character.

– Unix systems:
The lines are terminated with the <newline> character (linefeed). A semicolon can
be optionally used before the <newline> character.

X/WX/W

X/WX/W

X/WX/W

W

W

W

X

X

X

Configuration The side information file (upicfile)

openUTM-Client for the UPIC Carrier System 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

– BS2000 systems:
The end of line is represented by a semicolon (;). No spaces are permitted after this.

If there is a semicolon in a line (contents of the side information entry), UPIC treats this
as the end of the line and interprets the rest of the line as a new line (until the next end-
of-line character).

A local application name must always be specified for the local application in the
Enable_UTM_UPIC call. If there is no entry in the upicfile for this local name or if the entry
is invalid, the local name specified with Enable_UTM_UPIC is taken as the application name.

Defining a default name

In the upicfile you can define a DEFAULT name for your client application (see also
section “Default server and DEFAULT name of a client” on page 95). The DEFAULT name
is used whenever a client program passes an empty local application name at sign-on
(Enable_UTM_UPIC). In the side information entry of the DEFAULT name you enter the
value .DEFAULT instead of the local application name. The DEFAULT name entry must
therefore have the following format:

Whenever a client program passes an empty local application name at sign-on, UPIC uses
this entry and signs the CPI-C program on to the transport access system with the appli-
cation name specified in application name.

It is possible for several CPI-C programs to sign on to UPIC at the same time with the
default name. These programs can even communicate with the same UTM application. But
this is only possible if an LTERM pool with CONNECT-MODE=MULTI exists in the UTM
application for connection of the client application (see also section “Multiple sign-on to the
same UTM application with the same name” on page 96).

B
B

.DEFAULT application name
end-of-line

LN

1-32 bytes12 bytes 1 byte

1 With local connection via UPIC local, “application name” can only be up to 8 bytes long.

blank characterblank keywords

optional

X/W

Coordination with the partner configuration Configuration

306 openUTM-Client for the UPIC Carrier System

6.3 Coordination with the partner configuration

In Windows systems and Unix systems, the entries in the client program and the side infor-
mation no longer necessarily have to be coordinated with the TNS entries in the TNS of the
local system. If you are using UPIC-R without CMX (only with the Socket communication
system), there is no need to use TNS entries and, indeed, it is not possible to do so. If you
are using UPIC-R with CMX, you can create suitable TNS entires; if there are already
suitable TNS entries for the local_name and/or for the partner_LU_name in the database, then
these TNS entries are used first of all. This means the Specify_Local_Xxx() or
Set_Parter_Xxx() calls and the keywords of the side information HOSTNAME, IP-ADDRESS,
PORT, TSEL and TSEL-FORMAT have no effect.

If the client program is running under a BS2000 system, BCMAP entries may be required,
see also page 286.

There are dependencies between the entries in the client program, in the upicfile and
the UTM generation. The following sections describe which parameters you must
coordinate for partner configuration.

You can specifiy the information necessary for the transport system either using keywords
directly in the upicfile or using function calls in the client program. If you do not use either
of these options, the preset values will be used. The table below gives an overview of the
preset values which can be modified in the side information file or in the program:

The following relationships exist between the entries in the client program or in the
upicfile and the generation of the UTM application.

Property Function Keyword Default value

local application name

T-SEL Specify_Local_Tsel T-SEL= local application name

T-TSEL format Specify_Local_Tsel_Form
at

T-SEL-FORMAT= T

Port number Specify_Local_Port PORT= 102

transport address

T-SEL Set_Partner_Tsel T-SEL= partner name

T-TSEL format Set_Partner_Tsel_Format T-SEL-FORMAT= T

Port number Set_Partner_Port PORT= 102

Internet address1

1 The Internet address takes priority over the host name.

Set_Partner_IP_Address IP-ADDRESS= Information from host

Host name Set_Partner_Host_Name HOSTNAME= Processor name

Table 14: Properties of the address information

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

Configuration Coordination with the partner configuration

openUTM-Client for the UPIC Carrier System 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
3

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

6

Local application name

The local application name is specified in the calls Enable_UTM_UPIC and
Disable_UTM_UPIC. A distinction is made between the following cases:

– The local application name is entered in the upicfile (identifier LN). The application
name in this entry is transferred directly to the transport system.

– If the local application name is not entered in the upicfile, it is transferred as the
application name directly by UPIC to the transport system.

Partners on Unix systems or Windows systems or on BS2000 systems without a BCMAP entry

If the partner is a UTM application on a Unix system or Windows system or a UTM appli-
cation on a BS2000 system for which no BCMAP entries have been generated, the gener-
ations must be coordinated as follows:

Both PTERM names must match. If there is no PTERM name generated for the client, there
must be an LTERM pool via which the client can sign on.

Partners on BS2000 systems with a BCMAP entry

If the partner is a UTM application on BS2000 systems that uses BCMAP entries, the
generations must be harmonized as follows.

The T-selector of the local application must match the T-selector which is assigned to the
client application in the server system.

PTERM ptermname

UPIC openUTM

local-name ptermname;

tselname ptermname

PTERM ptermname

UPIC openUTM

local-name tselname;

(T-selector) (Client name)
BCMAP

Coordination with the partner configuration Configuration

308 openUTM-Client for the UPIC Carrier System

Partner name

If the partner_LU_name (page 290) is specified in two parts (tselname.processorname),
UPIC transfers this name directly to the transport system.

Partners on Unix systems or Windows systems or on BS2000 systems without a BCMAP entry

If the partner is a UTM application on a Unix system or a Windows system or a UTM appli-
cation on a BS2000 system for which no BCMAP entries have been generated, the genera-
tions must be harmonized as follows:

The applicationname which UPIC transfers to the transport system must match the
BCAMAPPL name of the UTM application via which the connection to the client is made (in
the diagram this is utmsampl). processorname must be entered in the TCP/IP name service
as the name of the remote system.

Partners on BS2000 systems with a BCMAP entry

If the partner is a UTM application on a BS2000 system that uses BCMAP entries, the
generations must be harmonized as follows.

tselname must match the T-selector of the BCMAP entry for the UTM application on the
remote processor.

BCAMAPPL utmsampl

UPIC openUTM

partner_LU_name utmsampl.processorname;

tselname utmsampl

BCAMAPPL utmsampl

UPIC openUTM

partner_LU_name tselname.processorname;

(T-selector) (Client name)
BCMAP

openUTM-Client for the UPIC Carrier System 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

7 Implementing CPI-C applications

This chapter tells you what you need to know before and during implementation of CPI-C
applications and what to do in the event of an error.

7.1 Runtime environment, linking, starting

Execution of CPI-C programs is controlled by environment variables or, in BS2000 systems,
by the link name of the job variables in BS2000 systems. The following tables list the
variables necessary for this:

Environment
variable

Description

UPICPATH Specifies the directory in which the side information file (upicfile) is stored. If
the variable is not set, the file is sought in the current directory.

UPICFILE Specifies the name of the side information file. If the variable is not set, the
file name upicfile is set.

UPICLOG Specifies the directory in which the log file is stored. The value that is
assumed if the variable is not set depends on the platform used (see section
“UPIC log file” on page 327).

UPICTRACE Controls the creation of a trace, see page 328.

X/W
X/W
X/W

X/W
X/W

X/W
X/W

X/W
X/W
X/W

X/W

Runtime environment, linking, starting Implementing CPI-C applications

310 openUTM-Client for the UPIC Carrier System

The following pages describe what you have to take into account when creating and imple-
menting a CPI-C application on your system, depending on the platform used.

Link name of the
job variable

Description

UPICPAT Specifies the partially qualified file name [:catid:$userid.<partial-name>] under
which the side information file (upicfile) is stored. If the variable is not set, the
system searches for the file under $userid.

UPICFIL Specifies the right-hand part of the name of the side information file. If this
variable is not set, the file name is set to upicfile.
The complete file name is composed of UPICPAT.UPICFIL.
If neither UPICPAT nor UPICFIL is set, the file name is "$userid.UPICFILE".

UPICLOG Specifies the partially qualified file name under which the logging file is to be
stored. The value which is assumed if the variable is not set depends on the
platform used (see the section "UPIC logging file").

UPICTRA Controls generation of a trace, see section “UPIC trace” on page 328.

B
B

B
B
B

B
B
B
B

B
B
B

B

Implementing CPI-C applications Implementing in Windows systems

openUTM-Client for the UPIC Carrier System 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

7.1.1 Implementing in Windows systems

When creating and implementing CPI-C applications, you must take into account the
special features described in section “Implementing in Windows systems” below and in
section “Runtime environment, environment variables” on page 313.
When creating and implementing UPIC-local applications on Windows systems, you must
also take into account the specifications described in section “Special features of imple-
menting UPIC local on Windows systems” on page 314.

i The setup for the UPIC client on Windows systems contains both the 32-bit and 64-
bit variant. During the installation operation, the appropriate variant is installed
depending on the system architecture or the selection..

In the case of PCMX (Windows), there is a separate package for 32-bit and 64-bit
environments. I.e, it is necessary to install the required PCMX packages depending
on the UPIC bit mode.

7.1.1.1 Compilation, linking, starting

When compiling and linking CPI-C applications on Windows systems, you must observe the
following:

● Every CPI-C program requires the following header files for compilation:

#include <WINDOWS.H>
#include <upic.h>

The header file upic.h is located in the directory upic-dir\include.

This order of includes shown above is mandatory. It is advisable to compile the program
using the option __STDC__ (ANSI).

● When compiling CPI-C programs (UPIC remote only) you must set the following
compiler options: UTM_ON_WIN32
– UTM_ON_WIN32 on 32-bit platforms
– UTM_ON_WIN32 and UTM_ON_WIN64 on 64-bit platforms

You can see the effect of these options in the header file upic.h. It is located in the
directory upic-dir\include.

● A CPI-C program consists of a series of modules which have to be linked to form a
program. The following object modules are required for linking:

– main program of the user
– user modules
– For programs which want to use PCMX:

the library upicw32.lib (32-bit) or upicw64.lib (64-bit), located in the upic-
dir\sys directory.

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Implementing in Windows systems Implementing CPI-C applications

312 openUTM-Client for the UPIC Carrier System

– For programs which want to use Socket interface:
the library upicws32.lib (32-bit) or upicws64.lib (64-bit), located in the upic-
dir\SYS directory.

● Once the runtime environment has been made available (see below), you can start a
CPI-C program just like any other program in Windows systems.

W
W

W

W

W

Implementing CPI-C applications Implementing in Windows systems

openUTM-Client for the UPIC Carrier System 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

7.1.1.2 Runtime environment, environment variables

The environment variables listed in the table on page 309 are used for controlling CPI-C
applications.

The path name can be given with blanks in the UPICTRACE variable. If blanks are used,
then the path name must be enclosed in double quotes. Double quotes can also be used if
there are no blanks in the path name.

There are user variables that apply only for the current user ID, and there are system
variables that apply for all users. You must set system variables if you want to run a UPIC
application as a service (a service runs without a user environment).

UPIC.INI (32-bit platforms)

The environment variables for controlling a CPI-C application can be set with the help of the
UPIC.INI file on 32-bit platforms. Controlling UPIC via the UPIC.INI file has the advantage
that environment variables can be set without Windows having to be closed down. If the
UPIC.INI is used, it must be in the Windows directory and have the following structure:

[UPICW32DLL]
UPICPATH=directory
UPICTRACE=option
UPICLOG=directory
UPICFILE=name-side-information-file

Example:

[UPICW32DLL]
UPICPATH=C:\UPIC
UPICTRACE=-SX -dC:
UPICLOG=C:\UPIC\TMP
UPICFILE=upicfile

The entries in UPIC.INI are only read if the relevant environment variable has not been set.

It is no longer recommended that the file UPIC.INI is used. Since this file must be located
in the Windows directory, not all users have unrestricted access to it. For instance, users
who belong to the group User do not have write access to the file.

Entries in the Registry

The UPIC library supports the "IniFileMapping" mechanism in 32-bit environments. You can
find further information on this in the "MSDN Library Visual Studio - Platform SDK -
Windows Base Services" under "WritePriviteProfileString()", for instance. The relevant key
is

HKCU\Software\FSC\UPIC\UPICW32DLL.

W

W

W

W

W

W

W

W

W

W

W

W

W

W
W
W
W
W

W

W
W
W
W
W

W

W

W

W

W

W

W

W

W

W

Implementing in Windows systems Implementing CPI-C applications

314 openUTM-Client for the UPIC Carrier System

You can set up the values UPICPATH, UPICTRACE, UPICLOG and UPICFILE under the
subkey UPICW32DLL (which corresponds to the "Section" entry in UPIC.INI) and enter the
values described above in the data field.

That Registry values are only evaluated if the corresponding environment variable has not
been set. They are, however, evaluated before the entries in UPIC.INI.

CPI-C program resources

– One file descriptor is reserved permanently for the trace file.

– If information is written to the log file, a file descriptor is used only during the write
operation.

– Reading from the upicfile only requires a file descriptor during the
Enable_UTM_UPIC call.

– Other resources are also used by the transport system.

7.1.1.3 Special features of implementing UPIC local on Windows systems

When implementing UPIC-local applications on Windows, you must bear in mind the
special features described below.

Linking UPIC-local applications

When linking UPIC-local applications on Windows systems the following libraries are
supplied:

– utmpath\upicl\sys\libupicl.lib, which must be linked to every client program
and, if necessary,

– utmpath\xatmi\sys\libxtclt.lib, which must also be linked to XATMI programs.

For further information on utmpath, refer to openUTM manual “Using openUTM Applica-
tions under Unix Systems and Windows Systems”.

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Implementing CPI-C applications Implementing in Windows systems

openUTM-Client for the UPIC Carrier System 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

Runtime environment

Executing the UPIC-local clients requires the dynamic libraries utmpath\ex\libupicl.dll
and utmpath\ex\libxtclt.dll.

These DLLs can be found via the environment variable PATH. PATH is extended accord-
ingly when openUTM is installed. The PATH environment variable must be manually
extended as required following the installation openUTM.

Configuring a UPIC-local client with Visual C++

The following briefly describes how you can configure a UPIC-local client project using the
Visual Studio. UPIC local is a component of openUTM for Windows systems and requires
at least version 2005 of the Visual Studio. In the case of other Developer Studio versions,
you should proceed in the same way. However, the menu commands and names may differ
slightly.

i Client projects supplied with the openUTM Quickstart Kit are configured as
described here.

To configure the project, select the Settings... command from the Project menu of the Visual
Studio. The Project Settings dialog box is displayed on the screen. Now proceed as follows:

1. Link in the UPIC-local libraries libupicl.lib and libxtclt.lib:

Select the Link tab sheet and make sure that in the Settings For list box the item All
Configurations are marked.

In the Category list box set the category to General, enter the name you want for the
output file (upicl.exe here) and add the following libraries in the Object/Library Modules
input field:

– libupicl.lib for configuring CPI-C clients

– libxtclt.lib and libupicl.lib for configuring XATMI clients (paying attention to
the order: libxtclt.lib must come before libupicl.lib). A space must always
be entered as the delimiter.

These libraries must be entered in front of all existing *.lib files. utm-dir stands for the
installation directory of openUTM. If you enter search paths in Extras/Options in
Developer Studio, you need not type in the full pathname here.

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Implementing in Windows systems Implementing CPI-C applications

316 openUTM-Client for the UPIC Carrier System

2. Configure debugger information:

Select the Link tab sheet and in the Settings For list box mark Win32Debug in the Settings
For list.

In the Category list box, set the category to Debug and in Debug Info and select the
Debug Info and Both Formats options in Debug Info.

3. Confirm your settings in Project Settings by clicking on OK.

W

W

W

W

W

W

W

W

Implementing CPI-C applications Implementing in Unix systems

openUTM-Client for the UPIC Carrier System 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

7.1.2 Implementation in Unix systems

When creating and implementing CPI-C applications, you must take into account the
special features described in section “Compilation, linking, starting” on page 317 and
section “Runtime environment, environment variables” on page 318.
When creating and implementing UPIC-local applications in Unix systems, you must also
take into account the specifications described in section “Special features of implementing
UPIC local on Unix systems” on page 319.

7.1.2.1 Compilation, linking, starting

When compiling and linking CPI-C applications on Unix systems, you must observe the
following:

● Every CPI-C program requires the following header file for compilation:

#include <UPIC.H>

The header file is located in the include subdirectory of the UPIC installation directory.

● A CPI-C program consists of a set of modules which must be linked as a program using
the C compiler of your system. The following object modules are essential for linking:
– main program of the user
– user modules

For programs which use PCMX:
– the system libraries nsl.so, dl.so, socket.so (not on every system) and cmx.so

The library cmx.so must be linked in before the library nls.so.
– the library libupiccmx which can be found in the upic-dir/sys/ directory.

For programs which do not use PCMX:
– the system libraries nsl.so and dl.so. On a few systems socket.so also
– the library libupicsoc which can be found in the upic-dir/sys/ directory.

For programs which do not use PCMX and use multi-threading:
– the system libraries nsl.so, dl.so and socket.so
– the library libupicsocmt which can be found in the upic-dir/sys/ directory.

An example showing all necessary library and link options can be found in the makefile
for the sample program uptac.c in the upic-dir/sample directory.

i In HP-UX Risc systems, the libraries have the extension .sl instead of .so.

● A CPI-C program is started just like any other program in Unix systems by entering the
program name (note that the UTM application must be started beforehand).

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Implementing in Unix systems Implementing CPI-C applications

318 openUTM-Client for the UPIC Carrier System

7.1.2.2 Runtime environment, environment variables

The environment variables listed in the table on page 309 must be set in order to operate
CPI-C applications:

You can set the environment variables as follows:

UPICPATH=directory
UPICTRACE=option
UPICLOG=directory
UPICFILE=name-side-information-file
export UPICPATH UPICTRACE UPICLOG UPICFILE

Resources of a CPI-C program

– A file descriptor is always required for the trace file.

– If data is written to the log file, a file descriptor is only required while the data is being
written.

– To read from the upicfile, a file descriptor is only required during the
Enable_UTM_UPIC call.

– Transport system resources are also required.

Signals

Signal handling routines can only be written in a CPI-C program for the signals SIGHUP,
SIGINT and SIGQUIT. The CPI-C library functions are not interrupted by these three
signals. This signal handling does not become effective until the current CPI-C function has
terminated.

All other signals are prohibited!

X

X

X

X
X
X
X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

Implementing CPI-C applications Implementing in Unix systems

openUTM-Client for the UPIC Carrier System 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

7.1.2.3 Special features of implementing UPIC local on Unix systems

When implementing UPIC-local applications on Unix systems, you must also bear in mind
the special features described below.

Linking UPIC local applications in Unix systems

When a CPI-C client application is connected locally to a UTM application on a Unix system,
you must link in the library libupicipc in the directory utm-dir/upicl/sys instead of
libupiccmx.

For XATMI client programs based on UPIC-L, the library libxtclt from the directory
utmpath/upicl/xatmi/sys is also required.

On Linux systems, the –lcrypt option must also be specified.

Environment variables

For controlling a UPIC-local application, the environment variable UTMPATH is also inter-
preted. UTMPATH must contain the name of the directory in which openUTM is installed.

Resources

With local connection, “shared memory” is used for communication with the UTM appli-
cation. Access is via “shared memory keys” and is serialized with the aid of a semaphore.
An additional file descriptor is reserved for shared memory.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Deployment under BS2000 systems Implementing CPI-C applications

320 openUTM-Client for the UPIC Carrier System

7.1.3 Deployment in BS2000 systems

You should take note of the special considerations listed below when deploying CPI-C
applications in BS2000 systems.

Compilation, linking, starting

The following applies when compiling and linking CPI-C applications on BS2000 systems:

● Every CPI-C program requires the following include file in order to allow compilation:

#include <UPIC.H>

The include file is located in the library $userid.SYSLIB.UTM-CLIENT.063.

userid is the ID under which the openUTM client is installed.

● A CPI-C program comprises a set of modules which must be linked to form a single
program. The following objects are required for linking:

– main program of the user

– User modules

– For programs that wish to use CMX:
– The system libraries $sysid.SYSLNK.CRTE and $sysid.SYSLIB.CMX.014
– The libraries $userid.SYSLIB.UTM-CLIENT.063.WCMX and

$userid.SYSLIB.UTM-CLIENT.063

– For programs that wish to use Sockets:
– The system library $sysid.SYSLNK.CRTE
– The library $userid.SYSLIB.UTM-CLIENT.063

● You start a CPI-C in BS2000 systems in the same way as any other program using the
command START-EXECUTABLE-PROGRAM.
In doing so you have to specify SHARE-SCOPE=SYSTEM-MEMORY (default at start
time of the task), *NONE must not be specified!

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Implementing CPI-C applications Deployment under BS2000 systems

openUTM-Client for the UPIC Carrier System 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

Runtime environment

Execution of CPI-C applications under BS2000 is controlled by the job variables. The link
names of the job variables are listed in the table on page 310. You can set these as follows,
for example:

/SET-JV-LINK LINK-NAME=*UPICPAT,JV-NAME=UPICPATH
/MODIFY-JV JV[-CONTENTS]=UPICPATH,SET-VALUE='prefix'
/SET-JV-LINK LINK-NAME=*UPICFIL,JV-NAME=UPICFILE
/MODIFY-JV JV[-CONTENTS]=UPICFILE,SET-VALUE='filename'
/SET-JV-LINK LINK-NAME=*UPICLOG,JV-NAME=UPICLOG
/MODIFY-JV JV[-CONTENTS]=UPICLOG,SET-VALUE='prefix'
/SET-JV-LINK LINK-NAME=*UPICTRA,JV-NAME=UPICTRACE
/MODIFY-JV JV[-CONTENTS]=UPICTRACE,SET-VALUE='switch'

Example:

/SET-JV-LINK LINK-NAME=*UPICTRA,JV-NAME=UPICTRACE
/MODIFY-JV JV[-CONTENTS]=UPICTRACE,SET-VALUE='-r 128'

Note that the link name assignment established with SET-JV-LINK is lost after LOGOFF.
SET-VALUE='-r 128' controls the trace (see section “UPIC trace” on page 328).

B

B

B

B

B
B
B
B
B
B
B
B

B

B
B

B

B

CPI-C partners and UTM Implementing CPI-C applications

322 openUTM-Client for the UPIC Carrier System

7.2 Handling of CPI-C partners by openUTM

With a connection to a UTM application via CPI-C, some UTM functions cannot be used
and some are used differently.

This relates to the following functions:

– INPUT exit and event service BADTAC

With input from the CPI-C client, openUTM does not call the input exit or BADTAC.

– FPUT

It is not possible to send an asynchronous message to a CPI-C client using FPUT. The
KDCS call supplies the return code 44Z.

– PEND RS

Under certain circumstances, PEND RS is handled like PEND FR for a CPI-C client; for
further details, see the openUTM manual „Programming Applications with KDCS”.

Implementing CPI-C applications Behavior in the event of errors

openUTM-Client for the UPIC Carrier System 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

7.3 Behavior in the event of errors

This section describes the effects on a communication partner when a UTM server appli-
cation or a CPI-C client application terminates. It also explains how to re-establish a basic
state for successful program-to-program communication in the event of an error.

Termination of a UTM application

If the UTM application terminates, this is detected by the CPI-C program with the next call
at the communication interface. The following two cases can be distinguished:
– a connection shutdown may be detected with a Receive call or
– the termination of the application may be detected with a call at the communication

interface, which also caused the conversation to terminate automatically.

In both cases, CM_DEALLOCATED_ABEND is returned as the result.

Abnormal termination of a CPI-C program

The UTM application is generally informed of the program termination by means of a
connection shutdown. In this case, no further actions are required.

If the UTM application does not detect a connection shutdown, the connection still exists as
far as openUTM is concerned. Two cases can be distinguished:

– On the UTM side a PTERM or an LTERM pool with TPOOL ...,CONNECT-
MODE=SINGLE is generated for the client application. In this case, openUTM can
distinguish between the connected clients. As soon as a client attempts (after a loss of
connection) to open another connection under the same name, openUTM shuts down
the old connection and rejects the connection setup request. Any subsequent
connection setup request from the client is then accepted.

– On the UTM side an LTERM pool with TPOOL ..., CONNECT-MODE=MULTI is
generated for the client application. In this case, several clients can sign on to the UTM
application from the same system and with the same name. The UTM application can
then no longer recognize whether a client is signing on from scratch or after loss of a
connection. A lost connection for which the UTM application was not shown a
connection shutdown must in this case be shut down explicitly by the administration, i.e.
openUTM does not shut down the “lost” connection itself the next time the client
attempts to set up a connection.

Behavior in the event of errors Implementing CPI-C applications

324 openUTM-Client for the UPIC Carrier System

Upic local:

The following can occur:

The UTM application has not recognized the termination of the CPI-C process. As soon as
the CPI-C program signs on to openUTM again with the same program name, openUTM
shuts down the old connection and accepts the new one.

Serious error in the CPI-C program

If a serious error occurs while the UPIC program is running, and this error effectively
prevents the program from continuing, the process is abnormally terminated (with
FatalAppExit in WIndows systems; with abort in Unix systems). The following error
message is also written to the UPIC log file:

UPIC: internal error <reason>

The error messages that may occur on the CPI-C side are described in the table below.

For error diagnosis see also section “Diagnostics” on page 327.

UPIC local:

With local communication via UPIC local, moreover, error messages beginning with the
letters “IPC” can occur. These come from openUTM and are described in the openUTM
manual “Messages, Debugging and Diagnostics in Unix Systems and Windows Systems”
under the dump error codes.

For error diagnosis you require the dump (e.g. core dump in Unix systems) together with
the linked program as well as the contents of the UPIC trace file and the UPIC log file.

<reason> Meaning

1 When sending the rest of the data, the value of data length is negative

9 The SIGTRAP signal has occurred

10 Error when establishing the connection

11 Error when receiving confirmation for connection setup

12 Message other than connection setup received

13 Error when sending data

14 Error when receiving data

15 Invalid message received

16 Error when shutting down connection

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Implementing CPI-C applications Behavior in the event of errors

openUTM-Client for the UPIC Carrier System 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

Message exchange with a programmed PEND ER/FR

If a programmed PEND ER/FR was carried out while a UTM program unit was running, the
message segments sent with MPUT prior to the PEND ER/FR can be received. The Receive
or Receive_Mapped_Data call is used for this purpose (until the return code is
CM_DEALLOCATED_ABEND).

Message exchange with SYSTEM PEND ER

If, in the event of an error, the UTM service ends with PEND ER, the result
CM_DEALLOCATED_ABEND is returned when Receive or Receive_Mapped_Data is called.
In addition, an error message is written to the log file (see also section “UPIC log file” on
page 327).

A separate error message for a UPIC-Client can be generated in a dialog program unit
using the MPUT ES (error system) call (see also openUTM manual „Programming Applica-
tions with KDCS”, MPUT ES call), which the UPIC client can read with he call Receive or
Receive_Mapped_Data. In this case, no error message is written to the log file.

Problems with connection setup

Problems in setting up a connection to the UTM application can be detected by the fact that
the Allocate call does not terminate with the result CM_OK. In this case you should check
the following:

● Use a ping command to check whether it is possible at all to establish a network
connection between the client and server.

Call the ping command using:

ping <internetaddress> or ping <hostname>

ping must be in your path, i.e. the PATH variable must be suitably set.

Under BS2000, call ping as follows:

/START-EXECUTABLE-PROGRAM -
FROM-FILE=*LIBRARY-ELEMENT -
(LIBRARY=$.SYSPRG.BCAM.XXX,ELEMENT-OR-SYMBOL=PING)

● Check the TCP/IP protocol using one of the standard applications telnet or ftp.

Call these commands as follows:

telnet internetaddress or telnet hostname
ftp internetaddress or ftp hostname

The applications must be in your path, i.e. the PATH variable must be suitably set.

X/W

X/W

X/W

B

B
B
B

X/W

X/W

X/W

X/W

X/W

Behavior in the event of errors Implementing CPI-C applications

326 openUTM-Client for the UPIC Carrier System

Under BS2000, the applications are called with:

START-TELNET
START-FTP

● Check whether the necessary resources are available in the UTM partner application.
For example, the LTERM pool or the LTERM partner via which the client wants to sign
on must not be locked. See also the openUTM manual “Generating Applications”.

● Check whether all the necessary resources are available on the local system. You
should always check the local generation (side information and TNS if necessary) and
the partner generation (openUTM and TNS if necessary).

In a configuration which requires BCMAP entries in BS2000, you must make sure that the
BCMAP command does not perform any update function, i.e. that BCMAP entries must first
be deleted and then entered again. For more information on the BCMAP command, refer
to the BCAM manuals.

B

B

B

B

B

B

B

B

B

B

B

B

B

Implementing CPI-C applications Diagnostics

openUTM-Client for the UPIC Carrier System 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

7.4 Diagnostics

The following documents are required for diagnostic purposes:

– an exact description of the error situation
– a specification of which software was implemented with which versions
– exact specification of the system type
– the CPI-C program as the source
– the side information file (upicfile)
– the UPIC log file and the UPIC trace files; see following sections
– the PCMX trace files
– with Unix systems the core files with accompanying phases

Additional UTM documents are required for errors relating to the UTM partner application:

– KDCDEF generation and UTM diagnostics dump of the UTM partner application

– any output logs are sent to the standard output or standard error output

– Windows and Unix systems: stderr, stdout

– BS2000 systems: SYSLST, SYSLOG, SYSOUT.

7.4.1 UPIC log file

To simplify diagnosis, the UPIC carrier system keeps a log file. A UTM error message is
written to this file if the UTM application terminates a conversation abnormally. The log file
is opened only for writing the error message (append mode) and is then closed again.

The file can be read using any editor.

Windows systems

The log file has the name UPICLtid.UPL, where tid is the thread ID. You can define which
directory the log file will be stored in by means of the environment variable UPICLOG (see
section “Runtime environment, environment variables” on page 313f). In a 32-bit
environment, you can alternatively specify the directory via the registry key UPICW32DLL
or in the file UPIC.INI festlegen.

If the UPICLOG environment variable is not set, the following are interpreted in the order
shown:

– the registry key UPICW32DLL (only 32-bit environments)
– the UPIC.INI file (not for INI-File Mapping, only 32-bit environments))
– the TEMP variable
– the TMP variable

X

X/W

B

W

W

W

W

W

W

W

W

W

W

W

W

UPIC trace Implementing CPI-C applications

328 openUTM-Client for the UPIC Carrier System

If a corresponding entry is found, the directory specified there is taken. If nothing is found,
the file is stored in the \USR\TMP directory. This directory must exist and the CPI-C program
must have write permission for this directory because otherwise log files will be lost.

Unix systems

The name of the log file is UPICLpid, where pid is the process ID. You use the UPICLOG
shell variable to define the directory in which the log file is stored. If this shell variable is not
set, the file is stored in the /usr/tmp directory.

BS2000 systems

The name of the logging file is UPICLtsn, where tsn is the TSN of the BS2000 task.

You specify the prefix for the logging file using the job variable with the link name UPICLOG
(see section “Runtime environment, linking, starting” on page 309).
If UPICLOG is not set, the system writes to the following logging file:

##.usr.tmp.UPICLtsn

If a UPIC process is re started in BS2000 without performing a LOGOFF/LOGON, the TSN
tsn is retained. This means that the logging file is overwritten!

7.4.2 UPIC trace

With the UPIC carrier system it is possible to create trace information for all CPI-C interface
calls. This is controlled by setting the variable UPICTRACE.

The contents of the variable are evaluated when Enable_UTM_UPIC is called. If the variable
is set, the parameters and user data up to a length of 128 bytes are logged to a file for a
specific process each time a function is called.
Logging is deactivated with the Disable_UTM_UPIC call.

If a CPI-C call returns a code other than CM_OK or CM_DEALLOCATED_ABEND, the
cause of the error is also logged to the UPIC trace file. This provides detailed information
on a specific return code for troubleshooting.

W
W

W

X

X

X

X

B

B

B

B

B

B

B

B

Implementing CPI-C applications UPIC trace

openUTM-Client for the UPIC Carrier System 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

Activating the UPIC trace

You activate the UPIC trace by setting the UPICTRACE variable accordingly. The UPIC
trace is activated on the individual platforms as follows:

● Windows systems:

The UPIC trace can be activated by making the appropriate setting for the UPICTRACE
environment variable. If the environment variable UPICTRACE is set, the value of the
environment variable is used.

The following options are available for UPICTRACE:

UPICTRACE=-S[X] [-r wrap] [-dpathname]

Note for 32-bit environments

In a 32-bit environment, the UPIC trace can also be enabled as follows:
– By ensuring that the UPICTRACE value in the Registry key UPICW32DLL contains

the appropriate data.

– By making the appropriate entry in the UPIC.INI file (see page 313). The new value
takes effect immediately, i.e. logging begins the next time a CPI-C program is
started.

If the environment variable is not set, the system checks the Registry to see whether
the value UPICTRACE exists under the UPICW32DLL key and whether the corre-
sponding data field has been filled out.
If the environment variable is not set and the Registry entry UPICTRACE is not present,
the entry in UPIC.INI is evaluated if it is present.

● Unix systems:

The UPIC trace is activated when the UPICTRACE environment variable is set as
follows:

UPICTRACE=-S[X] [-r wrap] [-dpathname]
export UPICTRACE

● BS2000 systems:

The UPIC trace is activated as follows:

/SET-JV-LINK LINK-NAME=*UPICTRA,JV-NAME=UPICTRACE

/MODIFY-JV JV[-CONTENTS]=UPICTRACE,SET-VALUE='-S[X] [-r wrap]
[-Dpathname]'

The -D option must be entered as an uppercase letter.

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

X

X

X

X
X

B

B

B

B

B

B

UPIC trace Implementing CPI-C applications

330 openUTM-Client for the UPIC Carrier System

The options have the following meaning:

-S Full logging of the CPI-C calls, their arguments, and user data with a maximum
length of 128 bytes (mandatory specification).

-SX An additional trace of internal information at the interface to the transport system is
also provided (see also “Extended UPIC trace” on page 331). It is advisable always
to use this option since problems that arise are frequently related to the transport
interface.

The switch -SX in PCMX is an extension of the switch -S.
In the case of Socket communication, this switch does not provide any additional
effects compared to the switch -S.

-r wrap
The decimal number wrap specifies the maximum size of the temporary trace file.

Maximum value of wrap: 128
Default value of wrap: 128

-dpathname / -D
The path name can be specified with blanks. If blanks are used, then the path name
must be enclosed in double quotes. Double quotes can also be used if there are no
blanks in the path name.

Windows systems:
The trace files are set up in the directory specified with pathname.
If you do not specify -dpathname, the trace files are set up in the directory entered
in the TEMP variable. If no value has been set for TEMP, the system attempts to do
the same with TMP. If neither of the variables is set, the trace files will be stored in
the \USR\TMP directory. This directory must exist and the CPI-C program must have
write access to it, otherwise the trace files are lost.

Unix systems:
The trace files are set up in the directory specified with pathname.
If you do not specify -dpathname, the trace files are set up in the
/usr/tmp directory. The CPI-C program must have write access to this directory,
otherwise the trace date is lost.

BS2000 systems:

A file name prefix is specified for the trace files. This prefix should contain no
spaces.

 If you do not specify -D, the names of the trace files are prefixed with ##.usr.tmp..
The trace files are stored under the ID under which the program was started. The
CPI-C program must be able to open the file, otherwise the trace data will be lost.

Example
If -DTRC is specified, the trace file TRC.UPICTtsn will be written.

W

W

W

W

W

W

W

X

X

X

X

X

B

B

B

B

B

B

B

B

Implementing CPI-C applications UPIC trace

openUTM-Client for the UPIC Carrier System 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

Trace files

The trace information is stored in a temporary file. This file is set up when
Enable_UTM_UPIC is called, and remains open until Disable_UTM_UPIC is called. The
maximum size of this temporary file is defined by the decimal number wrap.

Data is logged in the file until the value (wrap * BUFSIZ) bytes (BUFSIZ as in stdio.h) is
exceeded. A second temporary file is then created and handled in the same way.

Each time the value (wrap * BUFSIZ) bytes is exceeded in the current file, the trace switches
to the other file. The old contents of this file are thus overwritten.

The file names of the trace files are platform-specific. The following file names have been
allocated:

Extended UPIC trace

In an extended UPIC trace, internal information is logged at the interface to the transport
system (UPIC <-> PCMX) in addition. As well as the UPIC calls, the associated CMX calls
are also logged. The extended trace is structured as follows:

After logging of a UPIC call, first of all a line containing the additional plain text is output.
This is followed by the logging in two lines of the last CMX functions to be called. The infor-
mation is separated by a comma or <newline>.

1st line:

The first line contains the following information:

● Name of the CMX function called.

● Return code of the CMX function t_error. The return code is a hexadecimal number. If
it is not zero, you can take the cause of any error which occurred from the return code.

The hexadecimal number can be decoded as follows:

– with the command cmxdec -d 0xhexadecimalnumber or
– using the Windows program Trace Control in the PCMX program window. Choose

the Error Decoding command from the Options menu.

Name of the Windows
systems

Unix systems Unix systems
if threads are used in
programs

BS2000 systems

1st file UPICTtid.upt1

1 tid = Thread ID

UPICTpid2

2 pid = Process ID

UPICTpid.tid UPICTtsn3

3 tsn = TSN Number

2nd file UPICUtid.upt UPICUpid UPIUTpid.tid UPICUtsn3

UPIC trace Implementing CPI-C applications

332 openUTM-Client for the UPIC Carrier System

● Return code of the CMX function as decimal number (if the CMX function returns an int
value).

An important exception is the CMX function t_event. Its return value (i.e. the event that
occurred) is always output in the first column of the second line.

2nd line:

The second line logs a CMX call which was issued because of an event (t_event) that
occurred in connection with the CMX function logged in the 1st line. The 2nd line contains
the following information in the order given:

– Name of the event returned by the t_event function.

– Name of the CMX function called.

– Return code of t_error if an error occurred during the second CMX function. If appli-
cable, it returns the reason for a connection shutdown. The number can be decoded
with cmxdec as described above. The value “-1” denotes that there is no reason for a
connection shutdown.

– The last comma in this line can be followed by a UPIC return code.

If no other CMX function was called in connection with the CMX function logged in the
1st line, only a blank and a zero are output in the 2nd line.

Implementing CPI-C applications UPIC trace

openUTM-Client for the UPIC Carrier System 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.4
4

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

7

Deactivating the UPIC trace

You can deactivate the UPIC trace by not setting a parameter for the UPICTRACE variable.

● Windows systems:

– by issuing the following SET command:

SET UPICTRACE=

Note for 32-bit environments

In a 32-bit environment, the UPIC trace can also be disabled as follows:

– by modifying the entry for UPICTRACE in the UPIC.INI file as follows:

UPICTRACE=

The trace is then deactivated as soon as the CPI-C program is terminated.

– by deleting the value UPICTRACE under the UPICW32DLL key or by simply
clearing the data field for the UPICTRACE value.

● Unix systems:

UPICTRACE=
export UPICTRACE

● BS2000 systems:

– with the command
/MODIFY-JV JV[-CONTENTS]=UPICTRACE,SET-VALUE=''
The JV contents are deleted.

– with the command /DELETE-JV
The complete JV is deleted.

The trace is disabled when a UPIC process is restarted.

Editing the UPIC trace

The trace information is already in printable form and does not need to be edited by a utility.

Each action is logged with a time stamp and the values transferred.

W

W

W

W

W

W

W

W

W

W

X

X
X

B

B

B

B

B

B

B

PCMX trace Implementing CPI-C applications

334 openUTM-Client for the UPIC Carrier System

7.4.3 PCMX diagnostics (Windows systems)

PCMX diagnostics are controlled by the program cmxtrace.exe (32-bit) or cmxtrc64.exe
(64-bit). You can call this program in the Windows program group PCMX-32 or PCMX-64
by double-clicking on the Trace Control symbol. This program enables you to:

– activate and deactivate PCMX traces

– view PCMX traces on screen or print them out

– decode PCMX error codes (“Error Decoding” option)

The online help for the PCMX program group provides a more detailed description of how
the program works.

W

W

W

W

W

W

W

W

openUTM-Client for the UPIC Carrier System 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

8

8 Examples

This chapter contains notes on the sample programs supplied, the description of the
programs UpicAnalyzer and UpicReplay, as well assome simple generation examples for
linking a CPI-C application on Windows systems with openUTM under BS2000 systems,
Unix systems and Windows systems.

8.1 Sample programs for Windows systems

The openUTM client for the UPIC carrier system is supplied with the following sample
programs:

uptac Complete CPI-C application program

utp32 Program for the interactive entry of individual CPI-C calls, 32-bit only.

tpcall Complete XATMI program

upic-cob A Cobol project

UpicSimple
Complete CPI-C program in C++.

In addition, the local definition file tpcall.ldf.smp is provided, from which the tool XATMIGEN
creates a local configuration file for the XATMI program tpcall.

uptac, utp32, tpcall are ready to run after a minimum of preparation. To call them, double-
click, for example, on the corresponding icons which appear in the Fujitsu Software
openUTM-Client <variant>program window after installation.

All sample client programs are designed to be able to communicate with the sample UTM
application on the server side. For more information, please refer to the README file for
the UTM sample application.

The following sections provide a brief introduction to these sample programs and describe
the preparations you must make to execute them.

W

W

WW

WW

WW

WW

WW

W

W

W

W

W

W

W

W

W

W

W

Sample programs (Windows) Examples

336 openUTM-Client for the UPIC Carrier System

8.1.1 uptac

uptac is a simple CPI-C application program. It consists of the files listed in the table below,
which are stored in the directory upic-dir\samples after installation:

You must configure UPIC to enable uptac to communicate with the UTM sample application,
e.g. the following entries can be made in the upicfile and likewise in the TNS database
(see the model entries in the upicfile under upoic-dir, which are also supplied):

Side information file:

LN.DEFAULT UPIC0000
SD.DEFAULT SMP30111.unixhost PORT=30111

TNS entry (can be created but is no longer needed):

UPIC0000\
TSEL RFC1006 T'UPIC0000' ; local name TNS

SMP30111.unixhost\
TA RFC1006 unixhost PORT 30111 T'SMP30111' ; partner_LU_name TNS

unixhost is the symbolic name of the host on which the UTM sample application is to run. If
you want UPTAC to communicate with another UTM application, (e.g. in BS2000), you must
adapt all the entries accordingly, with the exception of LN.DEFAULT.

In the transport address (TA...), you can also enter the Internet address of the Unix system
host in place of the symbolic name. If you do so, check to ensure that the port number 30111
and the T-selector SMP30111 are also entered on the server side.

8.1.2 utp32

utp32 is an example of a Visual Basic client application, which allows you to handle commu-
nication step by step via the CPI-C interface. To do this you enter individual CPI-C calls and
the associated parameters interactively in a dialog box. The corresponding code is returned
for each call.

utp32 is only available as a 32-bit variant.

File name Type of file

uptac.c C source code for the program; can be printed out

uptac.vcxproj
uptac.sln

Microsoft Visual C++ project file for creating an “.exe” file
(including Solution File)

uptac.exe Executable uptac program

uptac.bat Batch file for uptac32.exe

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

W
W

WW

W

W

W

W

W

W

W

W

W

W

W

W

Examples Sample programs (Windows)

openUTM-Client for the UPIC Carrier System 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

8

8.1.3 tpcall

tpcall is a simple XATMI application program which allows you to implement a synchronous
request/response with the sample UTM application. tpcall consists of the files listed in the
following table, which are stored in the subdirectory xatmi\samples after installation

Before using tpcall to communicate with the sample application, you must first:

– make entries in the upicfile and in the TNS, as with uptac (see section “uptac” on
page 336)

– create a local configuration file by clicking on the XATMIGEN symbol in the Fujitsu
Software openUTM-Client <variant> program window.

The supplied local definition file xatmi\samples\tpcall.ldf.smp is then used to
create the file xatmilcf (in the same directory).

If you want tpcall to be able to communicate with other applications, you may have to make
changes to the upicfile and, hence, to the local definition file tpcall.ldf.smp (SVCU
... DEST statement, see also section “Configuring UPIC” on page 269).

8.1.4 upic-cob

The directory contains a sample project to create a UPIC-Cobol application. The example
was developed using a MicroFocus Cobol compiler.

8.1.5 UpicSimple

The UpicSimple directory contains a C++ program. There you will find the executable file
UpicSimple.exe and all files needed so that you can create the UpicSimple.exe file yourself.

File name Type of file

tpcall.c C source code for the program; can be printed out

tpcall.vcxproj Microsoft Visual C++ project file for creating an “.exe” file

tpcall.exe Executable tpcall program

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Generation UPIC on Windows <-> openUTM on BS2000 Examples

338 openUTM-Client for the UPIC Carrier System

8.2 UpicAnalyzer and UpicReplay on 64-bit Linux systems

The programs UpicAnalyzer and UpicReplay are components of the Workload Capture &
Replay function. Workload Capture & Replay is a multi-component program package that
is used for UTM application load simulation.

These two programs, UpicAnalyzer and UpicReplay ,are briefly described below. The
concept underlying Workload Capture & Replay, as well as further details, can be found in
the platform-specific openUTM manual “Using openUTM Applications”.

8.2.1 UpicAnalyzer

UpicAnalyzer is called as follows from the Linux shell:

UpicAnalyzer inputfile outputfile

Meaning of the parameters

inputfile Name of the BTRACE file that you have transferred to the Linux system.

outputfile Name of the output file (UPIC ReplayFile). You can use this file to play back
the UPIC session with UpicReplay.

The program UpicAnalyzer recognizes the type of platform on which the trace file was
created and processes the contents in the light of the platform's specific characteristics.

Example

The transferred trace file has the name btrc.sorted. It has to be prepared and the output
written to the file Replayfile. The call is as follows:

UpicAnalyzer btrc.sorted Replayfile

Output:

Program "UpicAnalyzer" started on operating system Linux Intel , 64 Bit , Little-Endian
with inputfile "btrc.sorted"
and outputfile "Replayfile"

109 UTM BCAM trace records with 17218 bytes read.
25 UPIC replay records with 2046 bytes written.
Program "UpicAnalyzer" finished.

X

X

X

X

X

X

X

X

X

XX

XX

X

X

X

X

X

X

X

X

X
X
X
X
X
X
X

Examples Generation UPIC on Windows <-> openUTM on BS2000

openUTM-Client for the UPIC Carrier System 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

8

8.2.2 UpicReplay

UpicReplay is called as follows from a Linux shell:

UpicReplay InputFileName [-c<numberOfClients>]
 [-s<speedPercentage>] [-d[d]]

Meaning of the parameters

InputFileName
Name of the UPIC ReplayFile that you have created with UpicAnalyzer.

Mandatory parameter.

-c<numberOfClients>
numberOfClients specifies the number of UPIC clients for which the recorded
conversations are to be replayed.

Default: 1, (corresponds to -c1) i.e. only one client is simulated.
The actual limit depends on the relevant system limit

-s<speedPercentage>
speedPercentage specifies the replay speed as a percentage of the original
speed. This makes it possible to simulate long and short thinking times.

Default: 100 (corresponds to -s100) d.h. original speed

-s200 means 200%, i.e. twice the speed, achieved by halving the thinking
time.

-d Enable debug output to stderr, i.e. debug messages are output on thread
generation and there are fewer messages on send and receive calls.

-dd Enables extended debug output to stderr, i.e. detailed debug messages are
output. This option is only intended for internal UpicReplay diagnoses.

-dd is only of value when simulating a small number of clients.

Standard: no debug output.

Example

The UPIC conversations recorded in the file Replay.1239 are to be replayed at normal speed
for 100 clients. The call is as follows:

UpicReplay Replay.1239 -c100

X

X

X

X

XX

X

X

XX

X

X

X

X

XX

X

X

X

X

X

XX

X

XX

X

X

X

X

X

X

X

Generation UPIC on Windows <-> openUTM on BS2000 Examples

340 openUTM-Client for the UPIC Carrier System

8.3 Generation UPIC on Windows systems <-> openUTM on
BS2000 systems

The following generation example explains the principle of generating a link between a
CPI-C application in Windows systems and openUTM on BS2000 systems. Linking via
RFC1006 is shown here.

In the example, the Windows system has the symbolic host name HOST123; the BS2000
host has the name HOST456.

The TNS generation is only shown for comparison purposes, since it is no longer required.

8.3.1 Generation on the Windows system

UPIC parameters:

Enable_UTM_UPIC "UPICTTY"
Initialize_Conversation "sampladm"

Side information file C:\UPIC\UPICFILE:

* UTM(BS2000) application
SDsampladm UTMUPICR.HOST456 KDCHELP
* or, if automatic conversion of the user data
* is required
HDsampladm UTMUPICR.HOST456 KDCHELP

TNS entries in tnsxfrm format:

UPICTTY\
 TSEL RFC1006 T'UPICTTY' ; local name RFC1006
UTMUPICR.HOST456\
 TA RFC1006 HOST456 PORT 102 T'UTMUPICR' ; partner name RFC1006

W

W

W

W

W

W

W

W
W

W

W
W
W
W
W

W

W
W
W
W

Examples Generation UPIC on Windows <-> openUTM on BS2000

openUTM-Client for the UPIC Carrier System 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

8

8.3.2 Generation on the BS2000 host

In the example, HOST123 is the name of the PC as the remote system, which must be
entered statically in the BCAM-RDF (resource definition file) or dynamically via the BCIN.

KDCDEF generation for the UTM application on the BS2000 system

BCAMAPPL UTMUPICR, T-PROT=ISO

PTERM UPICTTY, PTYPE=UPIC-R, LTERM=UPIC,
 BCAMAPPL=UTMUPICR, PRONAM=HOST123

LTERM UPIC, USER=UPICUSER
USER UPICUSER, STATUS=ADMIN

W

W

W

W

W
W
W
W

Generation UPIC on Windows <-> openUTM on UNIX systems Examples

342 openUTM-Client for the UPIC Carrier System

8.4 Generation UPIC on Windows systems <-> openUTM on
Unix systems

The following generation example explains the principle of generating a link between a
CPI-C application in Windows systems and openUTM on Unix systems. Linking via
RFC1006 is shown here.

In the example, the Windows system has the symbolic host name HOST123; the Unix
system host has the name HOST789.

The TNS generation is only shown for comparative purposes, as it is no longer required.

8.4.1 Generation on the Windows system

UPIC parameters

Enable_UTM_UPIC "UPIC0000"
Initialize_Conversation "sampladm"

Side information file C:\UPIC\UPICFILE

* UPIC application on Windows system
LNUPIC0000 UPICTTY

* partner RFC1006
SDsampladm UTMUPICR.HOST789 KDCHELP PORT=1230

TNS entries in tnsxfrm format

RFC1006 address format:

UPICTTY\
 TSEL RFC1006 T'UPICTTY' ; local name RFC1006
 TSEL LANINET A'4711' ; local name
UTMUPICR.HOST789\
 TA RFC1006 HOST789 PORT 1230 T'UTMUPICR' ; partner RFC1006

HOSTS file

HOST789 is mapped to the Internet address in the file win-dir\HOSTS:

internetaddress HOST789

where win-dir stands for the Windows installation directory, e.g.
C:\windows\system32\drivers\etc.

W

W

W

W

W

W

W

W
W

W

W
W

W
W

W

W

W
W
W
W
W

W

W

W

W
W

Examples Generation UPIC on Windows <-> openUTM on UNIX systems

openUTM-Client for the UPIC Carrier System 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
22

.2
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
k0

8

8.4.2 Generation on the Unix system

KDCDEF generation for the UTM application on the Unix system

BCAMAPPL UTMUPICR

PTERM UPICTTY, PTYPE=UPIC-R, LTERM=UPIC,
BCAMAPPL=UTMUPICR, PRONAM=HOST123

LTERM UPIC, USER=UPICUSER
USER UPICUSER, STATUS=ADMIN

W

W

W
W
W
W

Generation UPIC on Windows <-> openUTM on UNIX systems Examples

344 openUTM-Client for the UPIC Carrier System

openUTM-Client for the UPIC Carrier System 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
nd

 0
8:

23
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

60
9_

U
pi

c\
en

\u
pi

c_
e.

an
h

9 Appendix

This chapter contains the following information:

– differences from the X/Open CPI-C interface
– character set tables
– state tables

9.1 Differences vis à vis the X/Open CPI-C interface

This section describes all the extensions and special features of CPI-C with the UPIC
carrier system compared to the X/Open CPI-C interface.

Extensions compared to CPI-C

● The following additional UPIC-specific functions are offered. These are:

Enable_UTM_UPIC
Extract_Client_Context
Extract_Conversation_Encryption_Level
Extract_Cursor_Offset
Extract_Convertion
Extract_Secondary_Return_Code
Extract_Shutdown_State
Extract_Shutdown_Time
Extract_Transaction_State
Disable_UTM_UPIC
Set_Allocate_Timer
Set_Client_Context
Set_Conversation_Encryption_Level
Set_Conversation_New_Password
Set_Convertion
Set_Function_Key
Set_Partner_Host_Name
Set_Partner_IP_Adress
Set_Partner_Port
Set_Partner_Tsel

Differences vis à vis the X/Open CPI-C interface Appendix

346 openUTM-Client for the UPIC Carrier System

Set_Partner_Tsel_Format
Set_Receive_Timer
Specify_Local_Port
Specify_Local_Tsel
Specify_Local_Tsel-Format
Specify_Secondary_Return_Code

The Enable_UTM_UPIC and Disable_UTM_UPIC functions regulate the signing on and
signing off of CPI-C programs with the UPIC carrier system. If these two calls are not
used, it is not possible to link to a UTM application. For further details, see section “CPI-
C calls in UPIC” on page 97 and chapter “Configuration” on page 281.

● With UPIC the Send_Mapped_Data and Receive_Mapped_Data calls are used to send and
receive format names.

● Automatic conversion of user data by configuration

This also allows for the possibility of automatic code conversion of user data between
ASCII and EBCDIC code; see also section “Code conversion” on page 68. On the one
hand, this reduces the effort involved in creating an application, while on the other hand
it enables a single CPI-C program to communicate both with a UTM application on a
Unix system based on ASCII code and with a UTM application on a BS2000 system
based on EBCDIC code (if the user data does not contain any binary information that
would be corrupted in the code conversion process).

Special features of CPI-C implementation

– The name for partner_LU_name can be up to 32 characters long; for a local connection
via UPIC local (Unix system, Windows system) it can only be up to 8 characters.

– The name for TP_name can be up to 8 characters long.

Migration from X/Open CPI-C Version 1 to X/Open CPI-C Version 2

X/Open CPI-C Specification Version 2 contains some changes compared to the previous
CPI-C version. These changes also affect CPI-C programs with the UPIC carrier system,
as they have been transferred.

The following changes relate to CPI-C applications in C:

– CPI-C Version 2 defines all functions of type void. Programs that query the return code
must query the parameter CM_RETURN_CODE.

– In X/Open CPI-C Version 2, some parameters have different types than they did before.
Some compilers could output warnings if existing CPI-C programs were compiled with
the new CPI-C Version 2 header file.

Appendix Differences vis à vis the X/Open CPI-C interface

openUTM-Client for the UPIC Carrier System 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
nd

 0
8:

23
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

60
9_

U
pi

c\
en

\u
pi

c_
e.

an
h

An overview is provided in the following table.

Implementation of existing CPI-C programs with openUTM-Client V6.2 is object-code-
compatible. To be able to use existing programs without source code modifications (deter-
mined by the migration from X/Open Version 1 to X/Open Version 2), the UPIC carrier
system offers the following functionality:

– The header file contains #defines that have been specifically tailored to the CPI-C
interface of UPIC.

– When compiling, you must set special compiler options (preprocessor symbols).

The compiler option UTM_UPIC_V11 deactivates the X/Open-compliant part of the
header file and activates the old definitions (i.e. without the security functions
Prepare_To_Receive, Set_Receive_Timer, Set_Function_Key, Send_Mapped_Data,
Receive_Mapped_Data and Set_Receive_Type). Without this compiler option, the opposite
applies.

Unix systems:
The compiler option UTM_UPIC_V11 must not be set in 64-bit systems.

Windows systems:
When compiling CPI-C programs on Windows systems you must set the compiler
option UTM_ON_WIN32 (32 bit) or UTM_ON_WIN32 and UTM_ON_WIN64 (64 bit) . The
header file UPIC.H shows the effect of this option. Sie befindet sich im Verzeichnis upic-
dir\include.

Note that compiler option UTM_UPIC_V11 must not be used together with the compiler
option UTM_ON_WIN32 and UTM_ON_WIN64. If these two compiler options are set
together, the program cannot be executed.

– The function prototypes are offered for ANSI compilers and K&R compilers. The usual
__STDC__ activates ANSI.

Existing CPI-C programs coded according to CPI-C Version 1 are object-code compatible
with openUTM-Client V6.2. The compatibility will not be guaranteed for future versions.

Parameter Original X/Open CPI-C X/Open CPI-C Version 2

Conversation ID parameter Conversation_ID (char [8]) unsigned char CM_PTR
(unsigned char *)

Character pointers char * unsigned char CM_PTR
(unsigned char *)

Length parameters int * CM_INT32 CM_PTR
(signed long int *)

Definition of return codes and
numeric parameters

typedef enum #define

Table 15: Modified parameters for X/Open version 2

X

X

W

W

W

W

W

W

W

W

Character sets Appendix

348 openUTM-Client for the UPIC Carrier System

9.2 Character sets

At the CPI-C interface, the contents of the variable sym_dest_name can only comprise
characters from a predefined character set.

The character sets and their assignment to the variables are described below.

Variable Character set

sym_dest_name Set 1

Character Character set

Set 1 Set 2

 .
<
(
+
&
*
)
;
-
/
,

%
-
>
?
:
'
=
"

a-z
A-Z
0-9

X
X
X

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Table 16: Character sets

Appendix Character sets

openUTM-Client for the UPIC Carrier System 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
nd

 0
8:

23
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

60
9_

U
pi

c\
en

\u
pi

c_
e.

an
h

T.61 character set

Meaning of abbreviations:

0 1 2 3 4 5 6 7 8 9 ... F

0 SP 0 @ P p

1 ! 1 A Q a q

2 " 2 B R b r

3 # 3 C S c s

4 ¤ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

7 ´ 7 G W g w

8 BS (8 H X h x

9 SS2) 9 I Y i y

A LF SUB * : J Z j z

B ESC + ; K [k PLD CSI

C FF , < L l | PLU

D CR SS3 - = M] m

E LS1 . > N n

F LS0 / ? O - o

Table 17: Code table T.61 in accordance with CCITT recommodation

BS= BACKSPACE SUB= SUBSTITUTE CHARACTER

LF= LINE FEED ESC= ESCAPE

FF= FORM FEED SS3= SINGLE-SHIFT THREE

CR= CARRIAGE RETURN SP= SPACE

LS1= LOCKING SHIFT ONE PLD= PARTIAL LINE DOWN

LS0= LOCKING SHIFT ZERO PLU= PARTIAL LINE UP

SS2= SINGLE-SHIFT TWO CSI= CONTROL SEQUENCE INTRODUCER

Table 18: Abbreviations of special characters

State table Appendix

350 openUTM-Client for the UPIC Carrier System

9.3 State table

In the following table, the follow-up state of a program that was previously in a particular
state is indicated for the individual calls (depending on their result). An explanation of the
abbreviations used in the table is then provided.

Call Result Follow-up state, if previously in state

Start Reset Init. Send Receive

Initialize_Conversation ok psc Init. psc psc psc

Initialize_Conversation pc psc - psc psc psc

Initialize_Conversation ps psc - psc psc psc

Allocate ok psc psc Send psc psc

Allocate ae psc psc Reset psc psc

Allocate pc psc psc - psc psc

Allocate pe psc psc - psc psc

Allocate ps psc psc - psc psc

Deallocate ok psc psc Reset Reset Reset

Deallocate pc psc psc - - -

Deallocate ps psc psc - - -

Deferred_Deallocate - - - - - -

Extract_Client_Context ok psc - - - -

Extract_Client_Context pc psc - - - -

Extract_Client_Context ps psc - - - -

Extract_Conversation_Encryption_Level ok psc psc - - -

Extract_Conversation_Encryption_Level pc psc psc - - -

Extract_Conversation_Encryption_Level ps psc psc - - -

Extract_Conversation_State ok psc psc - - -

Extract_Conversation_State pc psc psc - - -

Extract_Conversation_State ps psc psc - - -

Extract_Convertion ok psc psc - psc psc

Extract_Convertion pc psc psc - psc psc

Extract_Convertion ps psc psc - psc psc

Extract_Cursor_Offset ok psc -1 - - -

Extract_Cursor_Offset pc psc - - - -

Table 19: State table for CPI-C calls

Appendix State table

openUTM-Client for the UPIC Carrier System 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
nd

 0
8:

23
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

60
9_

U
pi

c\
en

\u
pi

c_
e.

an
h

Extract_Cursor_Offset ps psc - - - -

Extract_Partner_LU_Name ok - - - - -

Extract_Partner_LU_Name pc - - - - -

Extract_Partner_LU_Name ps - - - - -

Extract_Secondary_Information ok - - - - -

Extract_Secondary_Information pc - - - - -

Extract_Secondary_Information ps - - - - -

Extract_Secondary_Return_Code ok psc psc - - -

Extract_Secondary_Return_Code nr psc psc - - -

Extract_Secondary_Return_Code pc psc psc - - -

Extract_Secondary_Return_Code ps psc psc - - -

Extract_Shutdown_State ok psc -¹ psc - -

Extract_Shutdown_State pc psc -¹ psc - -

Extract_Shutdown_State ps psc -¹ psc - -

Extract_Shutdown_Time ok psc -¹ psc - -

Extract_Shutdown_Time pc psc -¹ psc - -

Extract_Shutdown_Time ps psc -¹ psc - -

Extract_Transaction_State ok psc -¹ psc - -

Extract_Transaction_State pc psc -¹ psc - -

Extract_Transaction_State ps psc -¹ psc - -

Prepare_To_Receive ok psc psc psc Recei
ve

-

Prepare_To_Receive da psc psc psc Reset psc

Prepare_To_Receive pc psc psc psc - psc

Prepare_To_Receive rf psc psc psc Reset psc

Receive / Receive_Mapped_Data ok{dr,no} psc psc psc Recei
ve

-

Receive / Receive_Mapped_Data ok{nd,se} psc psc psc - Send

Receive / Receive_Mapped_Data ok{dr,se} psc psc psc - Send

Receive / Receive_Mapped_Data ae psc psc psc Reset Reset

Receive / Receive_Mapped_Data da psc psc psc Reset Reset

Receive / Receive_Mapped_Data dn psc psc psc Reset Reset

Call Result Follow-up state, if previously in state

Start Reset Init. Send Receive

Table 19: State table for CPI-C calls

State table Appendix

352 openUTM-Client for the UPIC Carrier System

Receive / Receive_Mapped_Data rf psc psc psc Reset Reset

Receive / Receive_Mapped_Data oi,un psc psc psc Recei
ve

-

Receive / Receive_Mapped_Data pc psc psc psc - -

Receive / Receive_Mapped_Data ps psc psc psc - -

Send_Data / Send_Mapped_Data ok psc psc psc - psc

Send_Data / Send_Mapped_Data ae psc psc psc Reset psc

Send_Data / Send_Mapped_Data da psc psc psc Reset psc

Send_Data / Send_Mapped_Data pc psc psc psc - psc

Send_Data / Send_Mapped_Data rf psc psc psc Reset psc

Set_Allocate_Timer ok psc psc - psc psc

Set_Allocate_Timer pc psc psc - psc psc

Set_Allocate_Timer ps psc psc - psc psc

Set_Client_Context ok psc psc psc - psc

Set_Client_Context pc psc psc psc - psc

Set_Client_Context ps psc psc psc - psc

Set_Conversation_Encryption_Level ok psc psc - psc psc

Set_Conversation_Encryption_Level pc psc psc - psc psc

Set_Conversation_Encryption_Level ps psc psc - psc psc

Set_Convertion ok psc psc - psc psc

Set_Convertion pc psc psc - psc psc

Set_Convertion ps psc psc - psc psc

Set_Conversation_Security_Type ok psc psc - psc psc

Set_Conversation_Security_Type pc psc psc - psc psc

Set_Conversation_Security_Type pn psc psc - psc psc

Set_Conversation_Security_New_Pass
word

ok psc psc - psc psc

Set_Conversation_Security_New_Pass
word

pc psc psc - psc psc

Set_Conversation_Security_Password ok psc psc - psc psc

Set_Conversation_Security_Password pc psc psc - psc psc

Set_Conversation_Security_User_ID ok psc psc - psc psc

Call Result Follow-up state, if previously in state

Start Reset Init. Send Receive

Table 19: State table for CPI-C calls

Appendix State table

openUTM-Client for the UPIC Carrier System 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
nd

 0
8:

23
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

60
9_

U
pi

c\
en

\u
pi

c_
e.

an
h

Set_Conversation_Security_User_ID pc psc psc - psc psc

Set_Deallocate_Type ok psc psc - - -

Set_Deallocate_Type pc psc psc - - -

Set_Deallocate_Type ps psc psc - - -

Set_Function_Key ok psc psc psc - -

Set_Function_Key pc psc psc psc - -

Set_Function_Key ps psc psc psc - -

Set_Receive_Timer ok psc psc psc - -

Set_Receive_Timer pc psc psc psc - -

Set_Receive_Timer ps psc psc psc - -

Set_Receive_Type ok - - - - -

Set_Receive_Type pc - - - - -

Set_Partner_Host_Name ok psc psc - psc psc

Set_Partner_Host_Name pc psc psc - psc psc

Set_Partner_Host_Name ps psc psc - psc psc

Set_Partner_IP_Address ok psc psc - psc psc

Set_Partner_IP_Address pc psc psc - psc psc

Set_Partner_IP_Address ps psc psc - psc psc

Set_Partner_LU_Name ok psc psc - psc psc

Set_Partner_LU_Name pc psc psc - psc psc

Set_Partner_LU_Name ps psc psc - psc psc

Set_Partner_Port ok psc psc - psc psc

Set_Partner_Port pc psc psc - psc psc

Set_Partner_Port ps psc psc - psc psc

Set_Partner_Tsel ok psc psc - psc psc

Set_Partner_Tsel pc psc psc - psc psc

Set_Partner_Tsel ps psc psc - psc psc

Set_Partner_Tsel_Format ok psc psc - psc psc

Set_Partner_Tsel_Format pc psc psc - psc psc

Set_Partner_Tsel_Format ps psc psc - psc psc

Set_Sync_Level ok psc - psc psc psc

Call Result Follow-up state, if previously in state

Start Reset Init. Send Receive

Table 19: State table for CPI-C calls

State table Appendix

354 openUTM-Client for the UPIC Carrier System

Set_Sync_Level pc psc - psc psc psc

Set_Sync_Level ps psc - psc psc psc

Set_TP_Name ok psc psc - psc psc

Set_TP_Name pc psc psc - psc psc

Specify_Local_Port ok psc - psc psc psc

Specify_Local_Port pc psc - psc psc psc

Specify_Local_Port ps psc - psc psc psc

Specify_Local_Tsel ok psc - psc psc psc

Specify_Local_Tsel pc psc - psc psc psc

Specify_Local_Tsel ps psc - psc psc psc

Specify_Local_Tsel_Format ok psc - psc psc psc

Specify_Local_Tsel_Format pc psc - psc psc psc

Specify_Local_Tsel_Format ps psc - psc psc psc

Specify_Secondary_Return_Code ok psc - - - -

Specify_Secondary_Return_Code pc psc - - - -

Specify_Secondary_Return_Code ps psc - - - -

Enable_UTM_UPIC ok Reset psc psc psc psc

Enable_UTM_UPIC pc - psc psc psc psc

Enable_UTM_UPIC ps - psc psc psc psc

Disable_UTM_UPIC ok psc Start Start Start Start

Disable_UTM_UPIC pc psc - - - -

Disable_UTM_UPIC ps psc - - - -

1 Permitted only directly after a Receive/Receive_Mapped_Data call

Call Result Follow-up state, if previously in state

Start Reset Init. Send Receive

Table 19: State table for CPI-C calls

Appendix State table

openUTM-Client for the UPIC Carrier System 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
01

5
 S

ta
nd

 0
8:

23
.3

1
P

fa
d:

 P
:\

F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
3

60
9_

U
pi

c\
en

\u
pi

c_
e.

an
h

Abbreviations for the state table:

The return code CM_CALL_NOT_SUPPORTED is not included in the state table. It is
returned if the UPIC library includes the call but the function is not supported in the specific
situation. There is no change of state.

Result Return codes

ae CM_ALLOCATE_FAILURE_RETRY
CM_ALLOCATE_FAILURE_NO_RETRY
CM_SECURITY_NOT_VALID
CM_SECURITY_NOT_SUPPORTED
CM_TPN_NOT_RECOGNIZED
CM_TP_NOT_AVAILABLE_NO_RETRY
CM_TP_NOT_AVAILABLE_RETRY

da CM_DEALLOCATED_ABEND

dn CM_DEALLOCATED_NORMAL

oi CM_OPERATION_INCOMPLETE

ok CM_OK

pe CM_PARAMETER_ERROR

pc CM_PROGRAM_PARAMETER_CHECK

pn CM_PARAM_VALUE_NOT_SUPPORTED

ps CM_PRODUCT_SPECIFIC_ERROR

rf CM_RESOURCE_FAILURE_RETRY
CM_RESOURCE_FAILURE_NO_RETRY

nr CM_NO_SECONDARY_RETURN_CODE

un CM_OPERATION_UNSUCCESSFUL

Table 20: Abbreviations for the state table (1)

Result data_received and status_received:

dr CM_COMPLETE_DATA_RECEIVED
CM_INCOMPLETE_DATA_RECEIVED

nd CM_NO_DATA_RECEIVED

no CM_NO_STATUS_RECEIVED

se CM_SEND_RECEIVED

Table 21: Abbreviations for the state table (2)

Follow-up state Meaning

- No state change

psc Error CM_PROGRAM_STATE_CHECK

Table 22: Abbreviations for the state table (3)

State table Appendix

356 openUTM-Client for the UPIC Carrier System

openUTM-Client for the UPIC Carrier System 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

abnormal termination of a UTM application
Termination of a UTM application, where the KDCFILE is not updated. Abnormal
termination is caused by a serious error, such as a crashed computer or an error
in the system software. If you then restart the application, openUTM carries out
a warm start.

abstract syntax (OSI)
Abstract syntax is defined as the set of formally described data types which can
be exchanged between applications via OSI TP. Abstract syntax is independent
of the hardware and programming language used.

acceptor (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The acceptor accepts the conversation initiated by the initiator
with Accept_Conversation.

access list
An access list defines the authorization for access to a particular service, TAC
queue or USER queue. An access list is defined as a key set and contains one or
more key codes, each of which represent a role in the application. Users or
LTERMs or (OSI) LPAPs can only access the service or TAC queue/USER queue
when the corresponding roles have been assigned to them (i.e. when their key
set and the access list contain at least one common key code).

access point (OSI)
See service access point.

ACID properties
Acronym for the fundamental properties of transactions: atomicity, consistency,
isolation and durability.

administration
Administration and control of a UTM application by an administrator or an
administration program.

Glossary

358 openUTM-Client for the UPIC Carrier System

administration command
Commands used by the administrator of a UTM application to carry out adminis-
tration functions for this application. The administration commands are imple-
mented in the form of transaction codes.

administration journal
See cluster administration journal.

administration program
Program unit containing calls to the program interface for administration. This can
be either the standard administration program KDCADM that is supplied with
openUTM or a program written by the user.

administrator
User who possesses administration authorization.

AES
AES (Advanced Encryption Standard) is the current symmetric encryption stan-
dard defined by the National Institute of Standards and Technology (NIST) and
based on the Rijndael algorithm developed at the University of Leuven (Bel-
gium). If the AES method is used, the UPIC client generates an AES key for
each session.

Apache Axis
Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the
design of Web services and client applications. There are implementations in
C++ and Java.

Apache Tomcat
Apache Tomcat provides an environment for the execution of Java code on Web
servers. It was developed as part of the Apache Software Foundation's Jakarta
project. It consists of a servlet container written in Java which can use the JSP
Jasper compiler to convert JavaServer pages into servlets and run them. It also
provides a fully featured HTTP server.

application cold start
See cold start.

application context (OSI)
The application context is the set of rules designed to govern communication
between two applications. This includes, for instance, abstract syntaxes and
any assigned transfer syntaxes.

Glossary

openUTM-Client for the UPIC Carrier System 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

application entity (OSI)
An application entity (AE) represents all the aspects of a real application which
are relevant to communications. An application entity is identified by a globally
unique name (“globally” is used here in its literal sense, i.e. worldwide), the
application entity title (AET). Every application entity represents precisely one
application process. One application process can encompass several application
entities.

application entity qualifier (OSI)
Component of the application entity title. The application entity qualifier identifies
a service access point within an application. The structure of an application entity
qualifier can vary. openUTM supports the type “number”.

application entity title (OSI)
An application entity title is a globally unique name for an application entity
(“globally” is used here in its literal sense, i.e. worldwide). It is made up of the
application process title of the relevant application process and the application entity
qualifier.

application information
This is the entire set of data used by the UTM application. The information com-
prises memory areas and messages of the UTM application including the data
currently shown on the screen. If operation of the UTM application is coordi-
nated with a database system, the data stored in the database also forms part
of the application information.

application process (OSI)
The application process represents an application in the OSI reference model. It
is uniquely identified globally by the application process title.

application process title (OSI)
According to the OSI standard, the application process title (APT) is used for
the unique identification of applications on a global (i.e. worldwide) basis. The
structure of an application process title can vary. openUTM supports the type
Object Identifier.

application program
An application program is the core component of a UTM application. It com-
prises the main routine KDCROOT and any program units and processes all jobs
sent to a UTM application.

application restart
see warm start

Glossary

360 openUTM-Client for the UPIC Carrier System

application service element (OSI)
An application service element (ASE) represents a functional group of the appli-
cation layer (layer 7) of the OSI reference model.

application warm start
see warm start.

association (OSI)
An association is a communication relationship between two application enti-
ties. The term “association” corresponds to the term session in LU6.1.

asynchronous conversation
CPI-C conversation where only the initiator is permitted to send. An asynchro-
nous transaction code for the acceptor must have been generated in the UTM
application.

asynchronous job
Job carried out by the job submitter at a later time. openUTM includes message
queuing functions for processing asynchronous jobs (see UTM-controlled queue
and service-controlled queue). An asynchronous job is described by the asynchro-
nous message, the recipient and, where applicable, the required execution time.
If the recipient is a terminal, a printer or a transport system application, the asyn-
chronous job is a queued output job. If the recipient is an asynchronous service of
the same application or a remote application, the job is a background job.
Asynchronous jobs can be time-driven jobs or can be integrated in a job complex.

asynchronous message
Asynchronous messages are messages directed to a message queue. They are
stored temporarily by the local UTM application and then further processed
regardless of the job submitter. Distinctions are drawn between the following
types of asynchronous messages, depending on the recipient:
– In the case of asynchronous messages to a UTM-controlled queue, all further

processing is controlled by openUTM. This type includes messages that
start a local or remote asynchronous service (see also background job) and
messages sent for output on a terminal, a printer or a transport system
application (see also queued output job).

– In the case of asynchronous messages to a service-controlled queue, further
processing is controlled by a service of the application. This type includes
messages to a TAC queue, messages to a USER queue and messages to a
temporary queue. The USER queue and the temporary queue must belong
to the local application, whereas the TAC queue can be in both the local
application and the remote application.

Glossary

openUTM-Client for the UPIC Carrier System 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

asynchronous program
Program unit started by a background job.

asynchronous service (KDCS)
Service which processes a background job. Processing is carried out indepen-
dently of the job submitter. An asynchronous service can comprise one or more
program units/transactions. It is started via an asynchronous transaction code.

audit (BS2000 systems)
During execution of a UTM application, UTM events which are of relevance in
terms of security can be logged by SAT for auditing purposes.

authentication
See system access control.

authorization
See data access control.

Axis
See Apache Axis.

background job
Background jobs are asynchronous jobs destined for an asynchronous service of
the current application or of a remote application. Background jobs are particu-
larly suitable for time-intensive processing or processing which is not time-crit-
ical and where the results do not directly influence the current dialog.

basic format
Format in which terminal users can make all entries required to start a service.

basic job
Asynchronous job in a job complex.

browsing asynchronous messages
A service sequentially reads the asynchronous messages in a service-controlled
queue. The messages are not locked while they are being read and they remain
in the queue after they have been read. This means that they can be read simul-
taneously by different services.

bypass mode (BS2000 systems)
Operating mode of a printer connected locally to a terminal. In bypass mode,
any asynchronous message sent to the printer is sent to the terminal and then redi-
rected to the printer by the terminal without being displayed on screen.

Glossary

362 openUTM-Client for the UPIC Carrier System

cache
Used for buffering application data for all the processes of a UTM application.
The cache is used to optimize access to the page pool and, in the case of UTM
cluster applications, the cluster page pool.

CCS name (BS2000 systems)
See coded character set name.

client
Clients of a UTM application can be:
– terminals
– UPIC client programs
– transport system applications (e.g. DCAM, PDN, CMX, socket applications

or UTM applications which have been generated as transport system applica-
tions).

Clients are connected to the UTM application via LTERM partners.
openUTM clients which use the OpenCPIC carrier system are treated just like
OSI TP partners.

client side of a conversation
This term has been superseded by initiator.

cluster
A number of computers connected over a fast network and which in many cases
can be seen as a single computer externally. The objective of clustering is gen-
erally to increase the computing capacity or availability in comparison with a sin-
gle computer.

cluster administration journal
The cluster administration journal consists of:
– two log files with the extensions JRN1 and JRN2 for global administration

actions,
– the JKAA file which contains a copy of the KDCS Application Area (KAA).

Administrative changes that are no longer present in the two log files are
taken over from this copy.

The administration journal files serve to pass on to the other node applications
those administrative actions that are to apply throughout the cluster to all node
applications in a UTM cluster application.

cluster configuration file
File containing the central configuration data of a UTM cluster application. The
cluster configuration file is created using the UTM generation tool KDCDEF.

Glossary

openUTM-Client for the UPIC Carrier System 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

cluster filebase
Filename prefix or directory name for the UTM cluster files.

cluster GSSB file
File used to administer GSSBs in a UTM cluster application. The cluster GSSB
file is created using the UTM generation tool KDCDEF.

cluster lock file
File in a UTM cluster application used to manage cross-node locks of user data
areas.

cluster page pool
The cluster page pool consists of an administration file and up to 10 files con-
taining a UTM cluster application’s user data that is available globally in the clus-
ter (service data including LSSB, GSSB and ULS). The cluster page pool is cre-
ated using the UTM generation tool KDCDEF.

cluster start serialization file
Lock file used to serialize the start-up of individual node applications (only in
Unix systems and Windows systems).

cluster ULS file
File used to administer the ULS areas of a UTM cluster application. The cluster
ULS file is created using the UTM generation tool KDCDEF.

cluster user file
File containing the user management data of a UTM cluster application. The
cluster user file is created using the UTM generation tool KDCDEF.

coded character set name (BS2000 systems)
If the product XHCS (eXtended Host Code Support) is used, each character set
used is uniquely identified by a coded character set name (abbreviation: “CCS
name” or “CCSN”).

cold start
Start of a UTM application after the application terminates normally (normal ter-
mination) or after a new generation (see also warm start).

communication area (KDCS)
KDCS primary storage area, secured by transaction logging and which contains
service-specific data. The communication area comprises 3 parts:
– the KB header with general service data
– the KB return area for returning values to KDCS calls

Glossary

364 openUTM-Client for the UPIC Carrier System

– the KB program area for exchanging data between UTM program units
within a single service.

communication resource manager
In distributed systems, communication resource managers (CRMs) control
communication between the application programs. openUTM provides CRMs
for the international OSI TP standard, for the LU6.1 industry standard and for
the proprietary openUTM protocol UPIC.

configuration
Sum of all the properties of a UTM application. The configuration describes:
– application parameters and operating parameters
– the objects of an application and the properties of these objects. Objects

can be program units and transaction codes, communication partners,
printers, user IDs, etc.

– defined measures for controlling data and system access.
The configuration of a UTM application is defined at generation time (static con-
figuration) and can be changed dynamically by the administrator (while the
application is running, dynamic configuration). The configuration is stored in the
KDCFILE.

confirmation job
Component of a job complex where the confirmation job is assigned to the basic
job. There are positive and negative confirmation jobs. If the basic job returns a
positive result, the positive confirmation job is activated, otherwise, the negative
confirmation job is activated.

connection bundle
see LTERM bundle.

connection user ID
User ID under which a TS application or a UPIC client is signed on at the UTM
application directly after the connection has been established. The following
applies, depending on the client (= LTERM partner) generation:
– The connection user ID is the same as the USER in the LTERM statement

(explicit connection user ID). An explicit connection user ID must be
generated with a USER statement and cannot be used as a “genuine” user
ID.

Glossary

openUTM-Client for the UPIC Carrier System 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

– The connection user ID is the same as the LTERM partner (implicit
connection user ID) if no USER was specified in the LTERM statement or if
an LTERM pool has been generated.

In a UTM cluster application, the service belonging to a connection user ID
(RESTART=YES in LTERM or USER) is bound to the connection and is there-
fore local to the node.
A connection user ID generated with RESTART=YES can have a separate ser-
vice in each node application.

contention loser
Every connection between two partners is managed by one of the partners. The
partner that manages the connection is known as the contention winner. The
other partner is the contention loser.

contention winner
A connection's contention winner is responsible for managing the connection.
Jobs can be started by the contention winner or by the
contention loser. If a conflict occurs, i.e. if both partners in the communication
want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation
In CPI-C, communication between two CPI-C application programs is referred
to as a conversation. The communication partners in a conversation are
referred to as the initiator and the acceptor.

conversation ID
CPI-C assigns a local conversation ID to each conversation, i.e. the initiator and
acceptor each have their own conversation ID. The conversation ID uniquely
assigns each CPI-C call in a program to a conversation.

CPI-C
CPI-C (Common Programming Interface for Communication) is a program
interface for program-to-program communication in open networks standard-
ized by X/Open and CIW (CPI-C Implementor's Workshop).
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE
Specification. The interface is available in COBOL and C. In openUTM, CPI-C
can communicate via the OSI TP, LU6.1 and UPIC protocols and with
openUTM-LU62.

Cross Coupled System / XCS
Cluster of BS2000 computers with the Highly Integrated System Complex Multiple
System Control Facility (HIPLEX® MSCF).

Glossary

366 openUTM-Client for the UPIC Carrier System

data access control
In data access control openUTM checks whether the communication partner is
authorized to access a particular object belonging to the application. The
access rights are defined as part of the configuration.

dead letter queue
The dead letter queue is a TAC queue which has the fixed name
KDCDLETQ. It is always available to save queued messages sent to transac-
tion codes or TAC queues but which could not be processed. The saving of
queued messages in the dead letter queue can be activated or deactivated for
each message destination individually using the TAC statement's
DEAD-LETTER-Q parameter.

DES
DES (Data Encryption Standard) is an international standard for encrypting
data. One key is used in this method for encoding and decoding. If the DES
method is used, the UPIC client generates a DES key for each session.

dialog conversation
CPI-C conversation in which both the initiator and the acceptor are permitted to
send. A dialog transaction code for the acceptor must have been generated in
the UTM application.

dialog job, interactive job
Job which starts a dialog service. The job can be issued by a client or, when two
servers communicate with each other (server-server communication), by a differ-
ent application.

dialog message
A message which requires a response or which is itself a response to a request.
The request and the response both take place within a single service. The
request and reply together form a dialog step.

dialog program
Program unit which partially or completely processes a dialog step.

dialog service
Service which processes a job interactively (synchronously) in conjunction with
the job submitter (client or another server application) . A dialog service pro-
cesses dialog messages received from the job submitter and generates dialog
messages to be sent to the job submitter. A dialog service comprises at least
one transaction. In general, a dialog service encompasses at least one dialog
step. Exception: in the event of service chaining, it is possible for more than one
service to comprise a dialog step.

Glossary

openUTM-Client for the UPIC Carrier System 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

dialog step
A dialog step starts when a dialog message is received by the UTM application. It
ends when the UTM application responds.

dialog terminal process (Unix systems/Windows systems)
A dialog terminal process connects a terminal of a Unix system or a Windows
system with the work processes of the UTM application. Dialog terminal pro-
cesses are started either when the user enters utmdtp or via the LOGIN shell.
A separate dialog terminal process is required for each terminal to be con-
nected to a UTM application.

Distributed Lock Manager / DLM (BS2000 systems)
Concurrent, cross-computer file accesses can be synchronized using the
Distributed Lock Manager.
DLM is a basic function of HIPLEX® MSCF.

distributed processing
Processing of dialog jobs by several different applications or the transfer of back-
ground jobs to another application. The higher-level protocols LU6.1 and OSI TP
are used for distributed processing. openUTM-LU62 also permits distributed
processing with LU6.2 partners. A distinction is made between distributed pro-
cessing with distributed transactions (transaction logging across different applica-
tions) and distributed processing without distributed transactions (local transac-
tion logging only). Distributed processing is also known as server-server
communication.

distributed transaction
Transaction which encompasses more than one application and is executed in
several different (sub)-transactions in distributed systems.

distributed transaction processing
Distributed processing with distributed transactions.

dynamic configuration
Changes to the configuration made by the administrator. UTM objects such as
program units, transaction codes, clients, LU6.1 connections, printers or user IDs can
be added, modified or in some cases deleted from the configuration while the
application is running. To do this, it is necessary to create separate administra-
tion programs which use the functions of the program interface for administration.
The WinAdmin administration program or the WebAdmin administration pro-
gram can be used to do this, or separate administration programs must be cre-
ated that utilize the functions of the administration program interface.

Glossary

368 openUTM-Client for the UPIC Carrier System

encryption level
The encryption level specifies if and to what extent a client message and pass-
word are to be encrypted.

event-driven service
This term has been superseded by event service.

event exit
Routine in an application program which is started automatically whenever cer-
tain events occur (e.g. when a process is started, when a service is terminated).
Unlike event services, an event exit must not contain any KDCS, CPI-C or XATMI
calls.

event function
Collective term for event exits and event services.

event service
Service started when certain events occur, e.g. when certain UTM messages are
issued. The program units for event-driven services must contain KDCS calls.

filebase
UTM application filebase
In BS2000 systems, filebase is the prefix for the KDCFILE, the user log file
USLOG and the system log file SYSLOG.
In Unix and Windows systems, filebase is the name of the directory under which
the KDCFILE, the user log file USLOG, the system log file SYSLOG and other
files relating to to the UTM application are stored.

generation
Static configuration of a UTM application using the UTM tool KDCDEF and cre-
ation of an application program.

global secondary storage area
See secondary storage area.

hardcopy mode
Operating mode of a printer connected locally to a terminal. Any message which
is displayed on screen will also be sent to the printer.

heterogeneous link
In the case of server-server communication: a link between a UTM application and
a non-UTM application, e.g. a CICS or TUXEDO application.

Glossary

openUTM-Client for the UPIC Carrier System 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

Highly Integrated System Complex / HIPLEX®
Product family for implementing an operating, load sharing and availability clus-
ter made up of a number of BS2000 servers.

HIPLEX® MSCF
(MSCF = Multiple System Control Facility)
Provides the infrastructure and basic functions for distributed applications with
HIPLEX®.

homogeneous link
In the case of server-server communication: a link between two UTM applications.
It is of no significance whether the applications are running on the same oper-
ating system platforms or on different platforms.

inbound conversation (CPI-C)
See incoming conversation.

incoming conversation (CPI-C)
A conversation in which the local CPI-C program is the acceptor is referred to as
an incoming conversation. In the X/Open specification, the term “inbound con-
versation” is used synonymously with “incoming conversation”.

initial KDCFILE
In a UTM cluster application, this is the KDCFILE generated by KDCDEF and
which must be copied for each node application before the node applications
are started.

initiator (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The initiator sets up the conversation with the CPI-C calls
Initialize_Conversation and Allocate.

insert
Field in a message text in which openUTM enters current values.

inverse KDCDEF
A function which uses the dynamically adapted configuration data in the KDC-
FILE to generate control statements for a KDCDEF run. An inverse KDCDEF
can be started “offline” under KDCDEF or “online” via the program interface for
administration.

Glossary

370 openUTM-Client for the UPIC Carrier System

JDK
Java Development Kit
Standard development environment from Sun Microsystems for the develop-
ment of Java applications.

job
Request for a service provided by a UTM application. The request is issued by
specifying a transaction code. See also: queued output job, dialog job, background
job, job complex.

job complex
Job complexes are used to assign confirmation jobs to asynchronous jobs. An
asynchronous job within a job complex is referred to as a basic job.

job-receiving service (KDCS)
A job-receiving service is a service started by a job-submitting service of another
server application.

job-submitting service (KDCS)
A job-submitting service is a service which requests another service from a dif-
ferent server application (job-receiving service) in order to process a job.

KDCADM
Standard administration program supplied with openUTM. KDCADM provides
administration functions which are called with transaction codes (administration
commands).

KDCDEF
UTM tool for the generation of UTM applications. KDCDEF uses the configuration
information in the KDCDEF control statements to create the UTM objects KDC-
FILE and the ROOT table sources for the main routine KDCROOT.
In UTM cluster applications, KDCDEF also creates the cluster configuration file,
the cluster user file, the cluster page pool, the cluster GSSB file and the cluster ULS
file.

KDCFILE
One or more files containing data required for a UTM application to run. The
KDCFILE is created with the UTM generation tool KDCDEF. Among other
things, it contains the configuration of the application.

KDCROOT
Main routine of an application program which forms the link between the program
units and the UTM system code. KDCROOT is linked with the program units to
form the application program.

Glossary

openUTM-Client for the UPIC Carrier System 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

KDCS message area
For KDCS calls: buffer area in which messages or data for openUTM or for the
program unit are made available.

KDCS parameter area
See parameter area.

KDCS program interface
Universal UTM program interface compliant with the national DIN 66 265 stan-
dard and which includes some extensions. KDCS (compatible data communi-
cations interface) allows dialog services to be created, for instance, and permits
the use of message queuing functions. In addition, KDCS provides calls for distrib-
uted processing.

Kerberos
Kerberos is a standardized network authentication protocol (RFC1510) based
on encryption procedures in which no passwords are sent to the network in
clear text.

Kerberos principal
Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two loca-
tions, namely with the key owner (principal) and the KDC (Key Distribution Cen-
ter).

key code
Code that represents specific access authorization or a specific role. Several
key codes are grouped into a key set.

key set
Group of one or more key codes under a particular a name. A key set defines
authorization within the framework of the authorization concept used (lock/key
code concept or access list concept). A key set can be assigned to a user ID, an
LTERM partner an (OSI) LPAP partner, a service or a TAC queue.

linkage program
See KDCROOT.

local secondary storage area
See secondary storage area.

Glossary

372 openUTM-Client for the UPIC Carrier System

Log4j
Log4j is part of the Apache Jakarta project. Log4j provides information for log-
ging information (runtime information, trace records, etc.) and configuring the
log output. WS4UTM uses the software product Log4j for trace and logging func-
tionality.

lock code
Code protecting an LTERM partner or transaction code against unauthorized
access. Access is only possible if the key set of the accesser contains the appro-
priate key code (lock/key code concept).

logging process
Process in Unix and Windows systems that controls the logging of account
records or monitoring data.

LPAP bundle
LPAP bundles allow messages to be distributed to LPAP partners across sev-
eral partner applications. If a UTM application has to exchange a very large
number of messages with a partner application then load distribution may be
improved by starting multiple instances of the partner application and distribut-
ing the messages across the individual instances. In an LPAP bundle, openUTM
is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The
slave LPAPs are assigned to the master LPAP on generation. LPAP bundles
exist for both the OSI TP protocol and the LU6.1 protocol.

LPAP partner
In the case of distributed processing via the LU6.1 protocol, an LPAP partner for
each partner application must be configured in the local application. The LPAP
partner represents the partner application in the local application. During com-
munication, the partner application is addressed by the name of the assigned
LPAP partner and not by the application name or address.

LTERM bundle
An LTERM bundle (connection bundle) consists of a master LTERM and multi-
ple slave LTERMs. An LTERM bundle (connection bundle) allows you to distrib-
ute queued messages to a logical partner application evenly across multiple
parallel connections.

LTERM group
An LTERM group consists of one or more alias LTERMs, the group LTERMs
and a primary LTERM. In an LTERM group, you assign multiple LTERMs to a
connection.

Glossary

openUTM-Client for the UPIC Carrier System 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

LTERM partner
LTERM partners must be configured in the application if you want to connect cli-
ents or printers to a UTM application. A client or printer can only be connected if
an LTERM partner with the appropriate properties is assigned to it. This assign-
ment is generally made in the configuration, but can also be made dynamically
using terminal pools.

LTERM pool
The TPOOL statement allows you to define a pool of LTERM partners instead
of issuing one LTERM and one PTERM statement for each client. If a client
establishes a connection via an LTERM pool, an LTERM partner is assigned to
it dynamically from the pool.

LU6.1
Device-independent data exchange protocol (industrial standard) for transac-
tion-oriented server-server communication.

LU6.1-LPAP bundle
LPAP bundle for LU6.1 partner applications.

LU6.1 partner
Partner of the UTM application that communicates with the UTM application via
the LU6.1 protocol.
Examples of this type of partner are:
– a UTM application that communicates via LU6.1
– an application in the IBM environment (e.g. CICS, IMS or TXSeries) that

communicates via LU6.1

main process (Unix systems / Windows systems)
Process which starts the UTM application. It starts the work processes, the UTM
system processes, printer processes, network processes, logging process and the timer
process and monitors the UTM application.

main routine KDCROOT
See KDCROOT.

management unit
SE Servers component; in combination with the SE Manager, permits centralized,
web-based management of all the units of an SE server.

mapped host name
Mapping of the partner application's UTM host name to a real host name or vice
versa.

Glossary

374 openUTM-Client for the UPIC Carrier System

message definition file
The message definition file is supplied with openUTM and, by default, contains
the UTM message texts in German and English together with the definitions of
the message properties. Users can take this file as a basis for their own mes-
sage modules.

message destination
Output medium for a message. Possible message destinations for a message
from the openUTM transaction monitor include, for instance, terminals, TS appli-
cations, the event service MSGTAC, the system log file SYSLOG or TAC queues,
asynchronous TACs, USER queues, SYSOUT/SYSLST or stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/
SYSLST and stderr/stdout.

message queue
Queue in which specific messages are kept with transaction management until
further processed. A distinction is drawn between service-controlled queues and
UTM-controlled queues, depending on who monitors further processing.

message queuing
Message queuing (MQ) is a form of communication in which the messages are
exchanged via intermediate queues rather than directly. The sender and recip-
ient can be separated in space or time. The transfer of the message is indepen-
dent of whether a network connection is available at the time or not. In
openUTM there are UTM-controlled queues and service-controlled queues.

message router (BS2000 systems)
Device in a central host or a communication computer which distributes queued
input messages to different UTM applications which can be located on different
computers. The message router also allows you to work with multiplex connec-
tions.

MSGTAC
Special event service that processes messages with the message destination
MSGTAC by means of a program. MSGTAC is an asynchronous service and is
created by the operator of the application.

multiplex connection (BS2000 systems)
Special method of connecting terminals to a UTM application. A multiplex con-
nection enables several terminals to share a single transport connection.

multi-step service (KDCS)
Service carried out in a number of dialog steps.

Glossary

openUTM-Client for the UPIC Carrier System 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

multi-step transaction
Transaction which comprises more than one processing step.

Network File System/Service / NFS
Allows Unix systems to access file systems across the network.

network process (Unix systems / Windows systems)
A process in a UTM application for connection to the network.

network selector
The network selector identifies a service access point to the network layer of the
OSI reference model in the local system.

node
Individual computer of a cluster.

node application
UTM application that is executed on an individual node as part of a UTM cluster
application.

node bound service
A node bound service belonging to a user can only be continued at the node
application at which the user was last signed on. The following services are
always node bound:
– Services that have started communications with a job receiver via LU6.1 or

OSI TP and for which the job-receiving service has not yet been terminated
– Inserted services in a service stack
– Services that have completed a SESAM transaction
In addition, a user’s service is node bound as long as the user is signed-on at
a node application.

node filebase
Filename prefix or directory name for the node application's KDCFILE, user log
file and system log file.

node recovery
If a node application terminates abnormally and no rapid warm start of the appli-
cation is possible on its associated node computer then it is possible to perform
a node recovery for this node on another node in the UTM cluster. In this way,
it is possible to release locks resulting from the failed node application in order
to prevent unnecessary impairments to the running UTM cluster application.

Glossary

376 openUTM-Client for the UPIC Carrier System

normal termination of a UTM application
Controlled termination of a UTM application. Among other things, this means
that the administration data in the KDCFILE are updated. The administrator ini-
tiates normal termination (e.g. with KDCSHUT N). After a normal termination,
openUTM carries out any subsequent start as a cold start.

object identifier
An object identifier is an identifier for objects in an OSI environment which is
unique throughout the world. An object identifier comprises a sequence of inte-
gers which represent a path in a tree structure.

open terminal pool
Terminal pool which is not restricted to clients of a single computer or particular
type. Any client for which no computer- or type-specific terminal pool has been
generated can connect to this terminal pool.

online import
In a UTM cluster application, online import refers to the import of application data
from a normally terminated node application into a running node application.

online update
In a UTM cluster application, online update refers to a change to the application
configuration or the application program or the use of a new UTM revision level
while a UTM cluster application is running.

OpenCPIC
Carrier system for UTM clients that use the OSI TP protocol.

OpenCPIC client
OSI TP partner application with the OpenCPIC carrier system.

openSM2
The openSM2 product line offers a consistent solution for the enterprise-wide
performance management of server and storage systems. openSM2 offers the
acquisition of monitoring data, online monitoring and offline evaluation.

openUTM application
See UTM application.

openUTM cluster
From the perspective of UPIC clients, not from the perspective of the server:
Combination of several node applications of a UTM cluster application to form
one logical application that is addressed via a common symbolic destination
name.

Glossary

openUTM-Client for the UPIC Carrier System 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

openUTM-D
openUTM-D (openUTM distributed) is a component of openUTM which allows
distributed processing. openUTM-D is an integral component of openUTM.

OSI-LPAP bundle
LPAP bundle for OSI TP partner applications.

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI TP partners generated in
openUTM. In the case of distributed processing via the OSI TP protocol, an OSI-
LPAP partner for each partner application must be configured in the local appli-
cation. The OSI-LPAP partner represents the partner application in the local
application. During communication, the partner application is addressed by the
name of the assigned OSI-LPAP partner and not by the application name or
address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization,
described this model in the ISO IS7498 standard. The OSI reference model
divides the necessary functions for system communication into seven logical
layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP
Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner
Partner of the UTM application that communicates with the UTM application via
the OSI TP protocol.
Examples of such partners are:
– a UTM application that communicates via OSI TP
– an application in the IBM environment (e.g. CICS) that is connected via

openUTM-LU62
– an application of the OpenCPIC carrier system of the openUTM client
– applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)
See outgoing conversation.

outgoing conversation (CPI-C)
A conversation in which the local CPI-C program is the initiator is referred to as
an outgoing conversation. In the X/Open specification, the term “outbound con-
versation” is used synonymously with “outgoing conversation”.

Glossary

378 openUTM-Client for the UPIC Carrier System

page pool
Part of the KDCFILE in which user data is stored.
In a standalone application this data consists, for example, of dialog messages,
messages sent to message queues, secondary memory areas.
In a UTM cluster application, it consists, for example, of messages to message
queues, TLS.

parameter area
Data structure in which a program unit passes the operands required for a UTM
call to openUTM.

partner application
Partner of a UTM application during distributed processing. Higher communica-
tion protocols are used for distributed processing (LU6.1, OSI TP or LU6.2 via
the openUTM-LU62 gateway).

postselection (BS2000 systems)
Selection of logged UTM events from the SAT logging file which are to be eval-
uated. Selection is carried out using the SATUT tool.

prepare to commit (PTC)
Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system
waits for the partner to confirm the end of the transaction.

preselection (BS2000 systems)
Definition of the UTM events which are to be logged for the SAT audit. Preselec-
tion is carried out with the UTM-SAT administration functions. A distinction is
made between event-specific, user-specific and job-specific (TAC-specific) pre-
selection.

presentation selector
The presentation selector identifies a service access point to the presentation
layer of the OSI reference model in the local system.

primary storage area
Area in main memory to which the KDCS program unit has direct access, e.g.
standard primary working area, communication area.

print administration
Functions for print control and the administration of queued output jobs, sent to a
printer.

Glossary

openUTM-Client for the UPIC Carrier System 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

print control
openUTM functions for controlling print output.

printer control LTERM
A printer control LTERM allows a client or terminal user to connect to a UTM
application. The printers assigned to the printer control LTERM can then be
administered from the client program or the terminal. No administration rights
are required for these functions.

printer control terminal
This term has been superseded by printer control LTERM.

printer group (Unix systems)
For each printer, a Unix system sets up one printer group by default that con-
tains this one printer only. It is also possible to assign several printers to one
printer group or to assign one printer to several different printer groups.

printer pool
Several printers assigned to the same LTERM partner.

printer process (Unix systems)
Process set up by the main process for outputting asynchronous messages to a
printer group. The process exists as long as the printer group is connected to the
UTM application. One printer process exists for each connected printer group.

process
The openUTM manuals use the term “process” as a collective term for pro-
cesses (Unix systems / Windows systems) and tasks (BS2000 systems).

processing step
A processing step starts with the receipt of a dialog message sent to the UTM
application by a client or another server application. The processing step ends
either when a response is sent, thus also terminating the dialog step, or when a
dialog message is sent to a third party.

program interface for administration
UTM program interface which helps users to create their own administration pro-
grams. Among other things, the program interface for administration provides
functions for dynamic configuration, for modifying properties and application
parameters and for querying information on the configuration and the current
workload of the application.

Glossary

380 openUTM-Client for the UPIC Carrier System

program unit
UTM services are implemented in the form of one or more program units. The
program units are components of the application program. Depending on the
employed API, they may have to contain KDCS, XATMI or CPIC calls. They can
be addressed using transaction codes. Several different transaction codes can
be assigned to a single program unit.

queue
See message queue.

queued output job
Queued output jobs are asynchronous jobs which output a message, such as a
document, to a printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it
is not necessary to create program units to process them.

Quick Start Kit
A sample application supplied with openUTM (Windows systems).

redelivery
Repeated delivery of an asynchronous message that could not be processed cor-
rectly because, for example, the transaction was rolled back or the asynchronous
service was terminated abnormally. The message is returned to the message
queue and can then be read and/or processed again.

reentrant program
Program whose code is not altered when it runs. In BS2000 systems this con-
stitutes a prerequisite for using shared code.

request
Request from a client or another server for a service function.

requestor
In XATMI, the term requestor refers to an application which calls a service.

resource manager
Resource managers (RMs) manage data resources. Database systems are
examples of resource managers. openUTM, however, also provides its own
resource managers for accessing message queues, local memory areas and
logging files, for instance. Applications access RMs via special resource man-
ager interfaces. In the case of database systems, this will generally be SQL and
in the case of openUTM RMs, it is the KDCS interface.

Glossary

openUTM-Client for the UPIC Carrier System 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

restart
See screen restart,
see service restart.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to
the TCP/IP family that implements the ISO transport services (transport
class 0) based on TCP/IP.

RSA
Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir
and Adleman). This method uses a pair of keys that consists of a public key and
a private key. A message is encrypted using the public key, and this message
can only be decrypted using the private key. The pair of RSA keys is created by
the UTM application.

SAT audit (BS2000 systems)
Audit carried out by the SAT (Security Audit Trail) component of the BS2000
software product SECOS.

screen restart
If a dialog service is interrupted, openUTM again displays the dialog message of
the last completed transaction on screen when the service restarts provided that
the last transaction output a message on the screen.

SE manager
Web-based graphical user interface (GUI) for the SE series of Business
Servers. SE Manager runs on the management unit and permits the central
operation and administration of server units (with /390 architecture and/or x86
architecture), application units (x86 architecture), net unit and peripherals.

SE server
A Business Server from Fujitsu's SE series.

secondary storage area
Memory area secured by transaction logging and which can be accessed by the
KDCS program unit with special calls. Local secondary storage areas (LSSBs)
are assigned to one service. Global secondary storage areas (GSSBs) can be
accessed by all services in a UTM application. Other secondary storage areas
include the terminal-specific long-term storage (TLS) and the user-specific long-term
storage (ULS).

Glossary

382 openUTM-Client for the UPIC Carrier System

selector
A selector identifies a service access point to services of one of the layers of the
OSI reference model in the local system. Each selector is part of the address of
the access point.

semaphore (Unix systems / Windows systems)
Unix systems and Windows systems resource used to control and synchronize
processes.

server
A server is an application which provides services. The computer on which the
applications are running is often also referred to as the server.

server-server communication
See distributed processing.

server side of a conversation (CPI-C)
This term has been superseded by acceptor.

service
Services process the jobs that are sent to a server application. A service of a
UTM application comprises one or more transactions. The service is called with
the service TAC. Services can be requested by clients or by other servers.

service access point
In the OSI reference model, a layer has access to the services of the layer
below at the service access point. In the local system, the service access point
is identified by a selector. During communication, the UTM application links up to
a service access point. A connection is established between two service access
points.

service chaining (KDCS)
When service chaining is used, a follow-on service is started without a dialog
message specification after a dialog service has completed .

service-controlled queue
Message queue in which the calling and further processing of messages is con-
trolled by services. A service must explicitly issue a KDCS call (DGET) to read
the message. There are service-controlled queues in openUTM in the variants
USER queue, TAC queue and temporary queue.

Glossary

openUTM-Client for the UPIC Carrier System 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

service restart (KDCS)
If a service is interrupted, e.g. as a result of a terminal user signing off or a UTM
application being terminated, openUTM carries out a service restart. An asynchro-
nous service is restarted or execution is continued at the most recent synchroni-
zation point, and a dialog service continues execution at the most recent synchro-
nization point. As far as the terminal user is concerned, the service restart for a
dialog service appears as a screen restart provided that a dialog message was
sent to the terminal user at the last synchronization point.

service routine
See program unit.

service stacking (KDCS)
A terminal user can interrupt a running dialog service and insert a new dialog ser-
vice. When the inserted service has completed, the interrupted service contin-
ues.

service TAC (KDCS)
Transaction code used to start a service.

session
Communication relationship between two addressable units in the network via
the SNA protocol LU6.1.

session selector
The session selector identifies an access point in the local system to the services
of the session layer of the OSI reference model.

shared code (BS2000 systems)
Code which can be shared by several different processes.

shared memory
Virtual memory area which can be accessed by several different processes
simultaneously.

shared objects (Unix systems / Windows systems)
Parts of the application program can be created as shared objects. These objects
are linked to the application dynamically and can be replaced during live oper-
ation. Shared objects are defined with the KDCDEF statement SHARED-
OBJECT.

sign-on check
See system access control.

Glossary

384 openUTM-Client for the UPIC Carrier System

sign-on service (KDCS)
Special dialog service for a user in which program units control how a user signs
on to a UTM application.

single-step service
Dialog service which encompasses precisely one dialog step.

single-step transaction
Transaction which encompasses precisely one dialog step.

SOA
(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the
form of re-usable, technically independent, loosely coupled services. Services
can be called independently of the underlying implementations via interfaces
which may possess public and, consequently, trusted specifications. Service
interaction is performed via a communication infrastructure made available for
this purpose.

SOAP
SOAP (Simple Object Access Protocol) is a protocol used to exchange data
between systems and run remote procedure calls. SOAP also makes use of the
services provided by other standards, XML for the representation of the data
and Internet transport and application layer protocols for message transfer.

socket connection
Transport system connection that uses the socket interface. The socket inter-
face is a standard program interface for communication via TCP/IP.

standalone application
See standalone UTM application.

standalone UTM application
Traditional UTM application that is not part of a UTM cluster application.

standard primary working area (KDCS)
Area in main memory available to all KDCS program units. The contents of the
area are either undefined or occupied with a fill character when the program unit
starts execution.

start format
Format output to a terminal by openUTM when a user has successfully signed
on to a UTM application (except after a service restart and during sign-on via the
sign-on service).

Glossary

openUTM-Client for the UPIC Carrier System 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

static configuration
Definition of the configuration during generation using the UTM tool KDCDEF.

SYSLOG file
See system log file.

synchronization point, consistency point
The end of a transaction. At this time, all the changes made to the application
information during the transaction are saved to prevent loss in the event of a
crash and are made visible to others. Any locks set during the transaction are
released.

system access control
A check carried out by openUTM to determine whether a certain user ID is
authorized to work with the UTM application. The authorization check is not car-
ried out if the UTM application was generated without user IDs.

system log file
File or file generation to which openUTM logs all UTM messages for which
SYSLOG has been defined as the message destination during execution of a UTM
application.

TAC
See transaction code.

TAC queue
Message queue generated explicitly by means of a KDCDEF statement. A TAC
queue is a service-controlled queue that can be addressed from any service using
the generated name.

temporary queue
Message queue created dynamically by means of a program that can be deleted
again by means of a program (see service-controlled queue).

terminal-specific long-term storage (KDCS)
Secondary storage area assigned to an LTERM, LPAP or OSI-PAP partner and
which is retained after the application has terminated.

time-driven job
Job which is buffered by openUTM in a message queue up to a specific time until
it is sent to the recipient. The recipient can be an asynchronous service of the
same application, a TAC queue, a partner application, a terminal or a printer.
Time-driven jobs can only be issued by KDCS program units.

Glossary

386 openUTM-Client for the UPIC Carrier System

timer process (Unix systems / Windows systems)
Process which accepts jobs for controlling the time at which work processes are
executed. It does this by entering them in a job list and releasing them for pro-
cessing after a time period defined in the job list has elapsed.

TNS (Unix systems / Windows systems)
Abbreviation for the Transport Name Service. TNS assigns a transport selector
and a transport system to an application name. The application can be reached
through the transport system.

Tomcat
see Apache Tomcat

transaction
Processing section within a service for which adherence to the ACID properties
is guaranteed. If, during the course of a transaction, changes are made to the
application information, they are either made consistently and in their entirety or
not at all (all-or-nothing rule). The end of the transaction forms a synchronization
point.

transaction code/TAC
Name which can be used to identify a program unit. The transaction code is
assigned to the program unit during static or dynamic configuration. It is also pos-
sible to assign more than one transaction code to a program unit.

transaction rate
Number of transactions successfully executed per unit of time.

transfer syntax
With OSI TP, the data to be transferred between two computer systems is con-
verted from the local format into transfer syntax. Transfer syntax describes the
data in a neutral format which can be interpreted by all the partners involved.
An Object Identifier must be assigned to each transfer syntax.

transport selector
The transport selector identifies a service access point to the transport layer of
the OSI reference model in the local system.

transport system application
Application which is based directly on a transport system interface (e.g. CMX,
DCAM or socket). When transport system applications are connected, the part-
ner type APPLI or SOCKET must be specified during configuration. A transport
system application cannot be integrated in a distributed transaction.

Glossary

openUTM-Client for the UPIC Carrier System 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

TS application
See transport system application.

typed buffer (XATMI)
Buffer for exchanging typed and structured data between communication part-
ners. Typed buffers ensure that the structure of the exchanged data is known to
both partners implicitly.

UPIC
Carrier system for openUTM clients. UPIC stands for Universal Programming
Interface for Communication.

UPIC Analyzer
Component used to analyze the UPIC communication recorded with UPIC
Capture. This step is used to prepare the recording for playback using UPIC
Replay.

UPIC Capture
Used to record communication between UPIC clients and UTM applications so
that this can be replayed subsequently (UPIC Replay).

UPIC client
The designation for openUTM clients with the UPIC carrier system.

UPIC Replay
Component used to replay the UPIC communication recorded with UPIC
Capture and prepared with UPIC Analyzer.

user exit
This term has been superseded by event exit.

user ID
Identifier for a user defined in the configuration for the UTM application (with an
optional password for system access control) and to whom special data access
rights (system access control) have been assigned. A terminal user must specify
this ID (and any password which has been assigned) when signing on to the
UTM application. In BS2000 systems, system access control is also possible
via Kerberos.
For other clients, the specification of a user ID is optional, see also connection
user ID.
UTM applications can also be generated without user IDs.

Glossary

388 openUTM-Client for the UPIC Carrier System

user log file
File or file generation to which users write variable-length records with the
KDCS LPUT call. The data from the KB header of the KDCS communication area
is prefixed to every record. The user log file is subject to transaction manage-
ment by openUTM.

USER queue
Message queue made available to every user ID by openUTM. A USER queue is
a service-controlled queue and is always assigned to the relevant user ID. You
can restrict the access of other UTM users to your own USER queue.

user-specific long-term storage
Secondary storage area assigned to a user ID, a session or an association and which
is retained after the application has terminated.

USLOG file
See user log file.

UTM application
A UTM application provides services which process jobs from clients or other
applications. openUTM is responsible for transaction logging and for managing
the communication and system resources. From a technical point of view, a
UTM application is a process group which forms a logical server unit at runtime.

UTM cluster application
UTM application that has been generated for use on a cluster and that can be
viewed logically as a single application.
In physical terms, a UTM cluster application is made up of several identically
generated UTM applications running on the individual cluster nodes.

UTM cluster files
Blanket term for all the files that are required for the execution of a UTM cluster
application. This includes the following files:
– Cluster configuration file
– Cluster user file
– Files belonging to the cluster page pool
– Cluster GSSB file
– Cluster ULS file
– Files belonging to the cluster administration journal*
– Cluster lock file*
– Lock file for start serialization* (only in Unix systems and Windows systems)
The files indicated by * are created when the first node application is started. All
the other files are created on generation using KDCDEF.

Glossary

openUTM-Client for the UPIC Carrier System 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

UTM-controlled queue
Message queues in which the calling and further processing of messages is
entirely under the control of openUTM. See also asynchronous job, background job
and asynchronous message.

UTM-D
See openUTM-D.

UTM-F
UTM applications can be generated as UTM-F applications (UTM fast). In the
case of UTM-F applications, input from and output to hard disk is avoided in
order to increase performance. This affects input and output which UTM-S uses
to save user data and transaction data. Only changes to the administration data
are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-
MODE=FAST), application data that is valid throughout the cluster is also
saved. In this case, GSSB and ULS data is treated in exactly the same way as
in UTM cluster applications generated with UTM-S. However, service data relat-
ing to users with RESTART=YES is written only when the relevant user signs
off and not at the end of each transaction.

UTM message
Messages are issued to UTM message destinations by the openUTM transaction
monitor or by UTM tools (such as KDCDEF). A message comprises a message
number and a message text, which can contain inserts with current values.
Depending on the message destination, either the entire message is output or
only certain parts of the message, such as the inserts).

UTM page
A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone
UTM applications, the size of a UTM page on generation of the UTM application
can be set to 2K, 4K or 8 K. The size of a UTM page in a UTM cluster application
is always 4K or 8 K. The page pool and the restart area for the KDCFILE and
UTM cluster files are divided into units of the size of a UTM page.

utmpath (Unix systems / Windows systems)
The directory under which the openUTM components are installed is referred to
as utmpath in this manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH
must be set to the value of utmpath. On Unix systems, you must set UTMPATH
before a UTM application is started. On Windows systems, UTMPATH is set on
installation.

Glossary

390 openUTM-Client for the UPIC Carrier System

UTM-S
In the case of UTM-S applications, openUTM saves all user data as well as the
administration data beyond the end of an application and any system crash
which may occur. In addition, UTM-S guarantees the security and consistency
of the application data in the event of any malfunction. UTM applications are
usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)
UTM-SAT administration functions control which UTM events relevant to secu-
rity which occur during operation of a UTM application are to be logged by SAT.
Special authorization is required for UTM-SAT administration.

UTM system process
UTM process that is started in addition to the processes specified via the start
parameters and which only handles selected jobs. UTM system processes
ensure that UTM applications continue to be reactive even under very high
loads.

UTM terminal
This term has been superseded by LTERM partner.

virtual connection
Assignment of two communication partners.

warm start
Start of a UTM-S application after it has terminated abnormally. The application
information is reset to the most recent consistent state. Interrupted dialog ser-
vices are rolled back to the most recent synchronization point, allowing processing
to be resumed in a consistent state from this point (service restart). Interrupted
asynchronous services are rolled back and restarted or restarted at the most
recent synchronization point.
For UTM-F applications, only configuration data which has been dynamically
changed is rolled back to the most recent consistent state after a restart due to
a preceding abnormal termination.
In UTM cluster applications, the global locks applied to GSSB and ULS on
abnormal termination of this node application are released. In addition, users
who were signed on at this node application when the abnormal termination
occurred are signed off.

WebAdmin
Web-based tool for the administration of openUTM applications via a Web
browser. WebAdmin includes not only the full function scope of the adminis-
tration program interface but also additional functions.

Glossary

openUTM-Client for the UPIC Carrier System 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 0

8:
23

.3
9

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
n

S
E

A
S

\o
p

en
U

T
M

\o
p

en
U

T
M

V
6

.3
_

14
03

6
09

_U
pi

c\
e

n\
up

ic
_e

.m
ix

Web service
Application which runs on a Web server and is (publicly) available via a stan-
dardized, programmable interface. Web services technology makes it possible
to make UTM program units available for modern Web client applications inde-
pendently of the programming language in which they were developed.

WinAdmin
Java-based tool for the administration of openUTM applications via a graphical
user interface. WinAdmin includes not only the full function scope of the admin-
istration program interface but also additional functions.

work process (Unix systems / Windows systems)
A process within which the services of a UTM application run.

workload capture & replay
Family of programs used to simulate load situations; consisting of the main
components UPIC Capture, UPIC Analyzer and Upic Replay (on Unix and
Windows systems) the utility program kdcsort. Workload Capture & Replay can
be used to record UPIC sessions with UTM applications, analyze these and
then play them back with modified load parameters.

WS4UTM
WS4UTM (WebServices for openUTM) provides you with a convenient way of
making a service of a UTM application available as a Web service.

XATMI
XATMI (X/Open Application Transaction Manager Interface) is a program inter-
face standardized by X/Open for program-program communication in open net-
works.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI
CAE Specification. The interface is available in COBOL and C. In openUTM,
XATMI can communicate via the OSI TP, LU6.1 and UPIC protocols.

XHCS (BS2000 systems)
XHCS (Extended Host Code Support) is a BS2000 software product providing
support for international character sets.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by the
W3C (WWW Consortium) in which the interchange formats for data and the
associated information can be defined.

Glossary

392 openUTM-Client for the UPIC Carrier System

openUTM-Client for the UPIC Carrier System 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.3
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
ab

k

Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used
in the original German product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000)

DB Database

DC Data Communication

DCAM Data Communication Access Method

Abbreviations

394 openUTM-Client for the UPIC Carrier System

DES Data Encryption Standard

DLM Distributed Lock Manager (BS2000)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

Abbreviations

openUTM-Client for the UPIC Carrier System 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.3
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
ab

k

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000)

RTS Runtime System

SAT Security Audit Trail (BS2000)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

Abbreviations

396 openUTM-Client for the UPIC Carrier System

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 (Task User)

TX Transaction Demarcation (X/Open)

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

Abbreviations

openUTM-Client for the UPIC Carrier System 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

u
ar

y
20

15

S
ta

nd
 0

8:
23

.3
9

P
fa

d:
 P

:\
F

T
S

-B
S

\o
pe

nS
E

A
S

\o
pe

n
U

T
M

\o
pe

n
U

T
M

V
6

.3
_

14
03

60
9

_U
pi

c\
e

n\
up

ic
_

e.
ab

k

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Process-
ing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

Abbreviations

398 openUTM-Client for the UPIC Carrier System

openUTM-Client for the UPIC Carrier System 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

09
_U

pi
c\

e
n\

up
ic

_e
.li

t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

i PDF files of all openUTM manuals are included on the openUTM Enterprise DVD
with open platforms and on the openUTM WinAdmin DVD (for BS2000 systems).

openUTM documentation

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Using openUTM Applications under BS2000 Systems
User Guide

openUTM
Using openUTM Applications under Unix Systems and Windows Systems
User Guide

openUTM
Administering Applications
User Guide

openUTM
Messages, Debugging and Diagnostics in BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com

Related publications

400 openUTM-Client for the UPIC Carrier System

openUTM
Messages, Debugging and Diagnostics in Unix Systems and Windows Systems
User Guide

openUTM
Creating Applications with X/Open Interfaces
User Guide

openUTM
XML for openUTM

openUTM Client (Unix systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

Related publications

openUTM-Client for the UPIC Carrier System 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

09
_U

pi
c\

e
n\

up
ic

_e
.li

t

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

openUTM
Master Index

Related publications

402 openUTM-Client for the UPIC Carrier System

Documentation for the openSEAS product environment

BeanConnect
User Guide

JConnect
Connecting Java Clients to openUTM
User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Related publications

openUTM-Client for the UPIC Carrier System 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

09
_U

pi
c\

e
n\

up
ic

_e
.li

t

Documentation for the BS2000 environment

AID
Advanced Interactive Debugger
Core Manual
User Guide

BCAM
BCAM Volume 1/2
User Guide

BINDER
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BS2000
BLSSERV
Dynamic Binder Loader / Starter
User Guide

DCAM
COBOL Calls
User Guide

DCAM
Macros
User Guide

DCAM
Program Interfaces
Description

FHS
Format Handling System for openUTM, TIAM, DCAM
User Guide

IFG for FHS
User Guide

Related publications

404 openUTM-Client for the UPIC Carrier System

HIPLEX AF
High-Availability of Applications in BS2000/OSD
Product Manual

HIPLEX MSCF
BS2000 Processor Networks
User Guide

IMON
Installation Monitor
User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU (BS2000)
Functions and Commands
User Guide

OMNIS/OMNIS-MENU (BS2000)
Administration and Programming
User Guide

OSS (BS2000)
OSI Session Service
User Guide

RSO
Remote SPOOL Output
User Guide

SECOS
Security Control System
User Guide

SECOS
Security Control System
Ready Reference

SESAM/SQL
Database Operation
User Guide

Related publications

openUTM-Client for the UPIC Carrier System 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

09
_U

pi
c\

e
n\

up
ic

_e
.li

t

openSM2
Software Monitor
Volume 1: Administration and Operation

TIAM
User Guide

UDS/SQL
Database Operation
User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support
User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD
User Guide

Related publications

406 openUTM-Client for the UPIC Carrier System

Documentation for the Unix system environment

CMX V6.0 (Unix systems)
Betrieb und Administration (only available in German)
User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2
The documentation of openSM2 is provided in the form of detailed online help systems,
which are delivered with the product.

Related publications

openUTM-Client for the UPIC Carrier System 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

.
Ja

nu
ar

y
20

15

S
ta

nd
 0

8:
23

.4
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

09
_U

pi
c\

e
n\

up
ic

_e
.li

t

Other publications

XCPI-C (X/Open)
Distributed Transaction Processing
X/Open CAE Specification, Version 2
ISBN 1 85912 135 7

Reference Model Version 2 (X/Open)
Distributed Transaction Processing
X/Open Guide
ISBN 1 85912 019 9

TX (Transaction Demarcation) (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 094 6

XTAMI (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)
Web page: http://www.w3.org/XML

http://www.w3.org/XML

Related publications

408 openUTM-Client for the UPIC Carrier System

openUTM-Client for the UPIC Carrier System 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
0

15
 S

ta
nd

 0
8:

23
.4

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

si
x

Index

-format 65
.DEFAULT 295, 302
*format 65
#format 65
+format 65

19Z, MGET 205

A
access authorization check

without password 193
access control

UTM 270
access list concept 79
activate

UPIC trace 329
active RSA key 86
additional function of the UPIC carrier

system 181
addressing formats 286
addressing information 284
addressing information for the network 285
administration journal 362
advanced functions 212
AES key 85
alignment 247
Allocate 101
ANSI 273, 311, 347
ANSI compiler 347
application

port for local application 231
applifile 148
ASCII 284

ASCII character 71
ASCII conversion 249
ASCII/EBCDIC conversion 68
ASN.1 type 248
asynchronous request/response paradigm 245
attribute fields

format 65
automatic conversion 69

B
BADTAC 322
BCMAP 286
big endian 247
blocking

Receive 153
Receive_Mapped_Data 164
Receive_Mapped_Data, timer 221
receive, overview 60
Receive, timer 221
set 224

BOOL Peek 46
BS2000

BCMAP 286
calling XATMI 267
code conversion using upicfile 290
compiling 320
ftp 326
incoming code conversion 104
job variable 310
linking 320
log file 328
outgoing code conversion 105
ping 325
runtime environment 321
telnet 326

Index

410 openUTM-Client for the UPIC Carrier System

UPIC trace 329
upicfile 288

buffer
define 265
Extract_Shutdown_Time 140
for data 57
maximum size 260
Receive 153
Receive_Mapped_Data 165
secondary information 130
send data 180
Send_Mapped_Data 178

BUFFER statement 265

C
C data types 247
C-source 70
C++ class CUpic 33
call

Enable_UTM_UPIC 112
Extract_Conversation_State 122
Extract_Cursor_Offset 126
Extract_Partner_LU_Name 128
Extract_Secondary_Information 130
Send_Mapped_Data 178
Set_Allocate_Timer 181
Set_Conversation_Encryption_Level 186
Set_Conversation_New_Password 190
Set_Conversation_Security_Password 193
Set_Partner_Host_Name 207
Set_Partner_IP_Address 209
Set_Partner_LU_Name 212
Set_Partner_Port 215
Set_Partner_Tsel 217
Set_Partner_Tsel_Format 219
Set_Receive_Timer 221
Specify_Local_Port 231
Specify_Local_Tsel 233
Specify_Local_Tsel_Format 235

calls
UPIC functions 100

carrier system
connect (XATMI) 251

carrier system OpenCPIC 27

carrier system UPIC 27
CCMSDT 202
CD 297
change

from Send to Receive state 150
send authorization 58

character set conversion 249
character set encoding 249
CHARACTER_CONVERTION 53, 69

set 200
characteristics (XATMI) 260
check TCP/IP connection 325
ClassCUpic 40
client 25

initialize 252
XATMI 241

client context 84
query 116

CLIENT_CONTEXT 53
client/server concept 25
cluster 32
cluster administration journal 362
cluster application 32
CM_DEALLOCATED_ABEND 323

PEND ER/FR 325
CM_RECEIVE_AND_WAIT 153, 224
CM_RECEIVE_IMMEDIATE 153, 225
CM_SECURITY_PWD_EXPIRED_RETRY 81
CMALLC 101
CMCNVI 104
CMCNVO 105
CMCOBOL 239
CMDEAL 106
CMDFDE 108
CMDISA 110
CMECEL 119
CMECO 126
CMECS 122
CMENAB 112
CMEPLN 128
CMESI 130
CMESRC 133
CMINIT 146
CMPTR 150

Index

openUTM-Client for the UPIC Carrier System 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
0

15
 S

ta
nd

 0
8:

23
.4

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

si
x

CMRCV 153
CMRCVM 164
CMSAT 181
CMSCC 183
CMSCEL 186
CMSCSN 190
CMSCSP 193
CMSCST 196
CMSCSU 198
CMSEND 175
CMSFK 204
CMSLP 231
CMSLT 233
CMSLTF 235
CMSNDM 178
CMSPHN 207
CMSPIA 209
CMSPLN 212
CMSPP 215
CMSPT 217
CMSPTF 219
CMSRCT 221
CMSRT 224
CMSSL 227
CMSSRC 237
CMSTPN 229
CMX 317
COBOL

CPI-C interface 239
code

data types 248, 265
node application 297

code conversion 68
code conversion for Windows 70
comment line

LCF 261
upicfile 288

common data types 247
communication

with a UTM server 72
communication paradigm 242

asynchronous 245
conversational 246
synchronous 244

Communication Resource Manager 241
communication system 31
COMP statement 239
compatible

CPI-C program 228, 347
compile

CPI-C program (Unix system) 317
CPI-C program (Windows system) 311
under BS2000 systems 320
XATMI program 273

compiler option 347
UTM_ON_WIN32 311, 347

complete message, receive 171
configuration of the UPIC carrier system 281
configuration with TNS entries 286
configuration without upicfile 282
configure

UPIC local with Visual C++ 315
XATMI 261

connect carrier system (XATMI) 251
CONNECT-MODE 305
connection setup

problems 325
with encryption 86

connection shutdown
during receive 167
during sending 179
when changing Receive state 151

connection via UPIC-Local 181
continuation character 261
conversation 246

CPI-C 50
establish 101
establish (default values) 146
parallel 90
query state of 122
terminate 106, 108

Conversation Characteristic 50
conversation_type 51
deallocate_type 52
ENCRYPTION-LEVEL 53
HOSTNAME 53
IP-ADDRESS 53
modifiable 52

Index

412 openUTM-Client for the UPIC Carrier System

partner_LU_name 52
partner_LU_name_length 52
PORT 53
receive_type 52, 153
receive_type (Receive_Mapped_Data) 164
receive_type (Receive) 153
receive_type (Set_Receive_Type) 224
return_control 51
RSA-KEY 53
security_new_password 52
security_new_password_length 52
security_password 52, 193
security_password_length 52, 193
security_type 52
security_user_ID 52, 196
security_user_ID_length 52
send_type 51
status_received (Send_Data) 175, 178
sync_level 51, 227
T-SEL 53
T-SEL-FORMAT 53
TP_name 52
TP_name_length 52
UPIC specific 53

conversation state 50
conversation_ID

determine 147
Initialize_Conversation 147
length 97

conversation_type 51
conversational paradigm 246

configure 264
conversion 68, 249

ASCII to EBCDIC 105
ASCII to EBCDIC (Windows) 70
automatic 289
EBCDIC to ASCII 104
EBCDIC to ASCII (Windows) 70
Euro symbol 69

conversion table 70
edit 69
Windows 104, 105

Convert_Incoming 104
overview 68

Convert_Outgoing 105
overview 68

COPY element
COBOL 239

copy-cobol85 239
core 324
CPI-C 11

concealment 26
version 2 346

CPI-C application 27
implementation 309
sequence of calls 55
structure 55

CPI-C calls 97
C 97
COBOL 239
sequence 55

CPI-C interface 97
CPI-C program 27

access to services 28
link (Unix system) 317
portability 228
sign off 110
sign on 112
start 312, 317

CPI-C terms, definition 50
create LCF 266
CUPIC class 26
CUPIC object 26
CUpic security 39
CUPIC wrapper class 26
CUpicLocAddr 33, 35
CUpicRemAddr 33, 37
cursor position 68

offset query 126

D
data

receive 153, 160, 171
receive in full 160
receive with format identifier 164
send 175
send with format identifier 178

data access control functions 79

Index

openUTM-Client for the UPIC Carrier System 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
0

15
 S

ta
nd

 0
8:

23
.4

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

si
x

data buffer, XATMI 247
data received

display(Receive_Mapped_Data) 165
data reception

shutdown time 141
data security 80
data structure

name 265
data types

XATMI 247
data volumes

large 74, 260
data_received

Receive_Mapped_Data 165
database accesses 58
deactivating

UPIC trace 333
Deallocate 106
deallocate_type 52

set 202
Def file with EXPORT statements 70
default entries 34
DEFAULT name 112

of a client 95
DEFAULT server 95

defining 302
DEFAULT service 95

defining 302
default service

define 295
default values

GLOBAL NAME 306
Deferred_Deallocate 108

call 108
DES key 85
destination-name 263
determine conversation ID 147
diagnostic documentation 327
diagnostics

PCMX 334
UPIC carrier system 327

directory
trace files 330

Disable_UTM_UPIC 110

Distributed Transaction Processing 58, 76
documentation

summary 13
dynamic library 70

E
EBCDIC 284
EBCDIC code 71
EBCDIC conversion

XATMI 249
EBCDIC to ASCII

conversion 68
edit conversion table 69
edit UPIC trace 333
empty format identifier 171
empty local name 305
empty Symbolic Destination Name 283
Enable_UTM_UPIC 112

local name 305
encryption 40, 85
encryption at TAC 88
encryption level 86

associated key pairs 85
modify 120
query 119
set 186

encryption methods 85
encryption_level

too high 187
ENCRYPTION-LEVEL 53
end of line character

upicfile 300
end service 241
end-of-line character, upicfile 294
endless loop 60
environment variable

CPI-C 309
set for CPI-C (Windows) 313
UPIC local (Unix system) 319

error condition in the CPI-C program 111
error diagnosis

CPI-C 324
XATMI 274

error handling

Index

414 openUTM-Client for the UPIC Carrier System

XATMI 257
error message (CPI-C) 324
error situation

CPI-C 323
establish

conversation 101
conversation (default values) 146

Euro symbol, conversion 69
event

XATMI 257
example

multiple conversations 93
side information entry 336
TNS entry 336
uptac (Windows) 336
utp (Windows) 336

examples for Windows 335
exchanging formats 62
exchanging messages 56

functions for 56
exit 111
expiry of timer

Receive 156
Extract_Client_Context 84, 116
Extract_Conversation_Encryption_Level call 119
Extract_Conversation_State call 122
Extract_Convertion call 124
Extract_Cursor_Offset call 126
Extract_Partner_LU_Name 128
Extract_Secondary_Information 130
Extract_Secondary_Information call 130
Extract_Secondary_Return_Code 79, 133
Extract_Shutdown_State 138
Extract_Shutdown_Time 140
Extract_Transaction_State 143

F
F keys

overview 66
set 204

file descriptor 314, 318
follow-up states of a conversation 50
format data

exchange 62

FORMAT event exit 65
format identifier

empty 171
receive 164
send 178

format name 62, 65
format of the names 284
format types 65
formats

receive 62
send 62

FPUT 322
ftp 325
function calls 42
function declaration

Extract_Partner_LU_Name 129
function keys 66

activate 66
function_key

Set_Function_Key 204
functions

message exchange 56

G
generation of the UTM partner application 281
global communication 282
Grace-Sign-On

password expired 81

H
HD 289
header file

CPI-C 311
CPI-C (Unix system) 317

helper classes 33, 35
host name

partner application 207
HOSTNAME 53
HP-UX 12

I
identifier

conversation 147
conversion 289

Index

openUTM-Client for the UPIC Carrier System 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
0

15
 S

ta
nd

 0
8:

23
.4

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

si
x

initialization parameters
XATMI 270

initialization value
conversation characteristics 52, 53

initialize
XATMI client 252

initialize state 50
Initialize_Conversation 146
INPUT exit 322
input parameters

CPI-C 97
int Call 44
int Rcv 42
int RcvMulti 43
int Restart 45
int SetTselFormat 36, 38
int Snd 42
int SndLast 42
int SndRcv 44
interfaces

overview 26
intermediate service 241
internal error 324
internal-service-name 263
interprocess communication 286
invalid 155

password 102, 155, 166, 194, 199
user ID 166
UTM user ID 155

IP address
partner application 209

IP-ADDRESS 53
IPv4 292, 299
IPv6 211, 292, 299

J
job variable 310

setting (example) 321
XATMI 274

K
K keys

overview 66
set 204

K&R compiler 347
KCMF 180
kcsaeea.c 70
kcxaent.c 70
KDCDISP 54, 82

error 167
KDCRECVR (XATMI) 243, 263
Kerberos

return code 134
return code (Receive_Mapped_Data) 168
return code (Receive) 157

key code 79
keywords 54

L
large data volumes 74, 260
last output message

CPI-C 83
XATMI 82, 243, 263

LC definition file 266
LC description files 266
LCF 242, 261, 266

create 266
length

data (Send_Mapped_Data) 178
format identifier 164
partner name in upicfile 290, 297
symbolic destination name 290, 297

link
CPI-C program 311
CPI-C program (Unix system) 317
UPIC local (Unix system) 319
UPIC local (Windows) 314
XATMI program 273

linking
BS2000 320

Linux distribution 12
little endian 247
LN 303
LN.DEFAULT entry 112
local application

set port 231
set transport selector 233
set transport selector format 235

Index

416 openUTM-Client for the UPIC Carrier System

local application name 54
local client name 252
local configuration

code for syntax 248
local configuration definition file 261
local configuration file 242, 266

create 266
define name 268

local connection 30
local definition file

for XATMI sample application 337
local name 34, 54, 288

empty 305
Enable_UTM_UPIC 112, 305
upicfile 271, 303

local port number 284
local send buffer 58
local_name 54

Enable_UTM_UPIC 112
lock code 79
log file

BS2000 328
UPIC 327

long-term storage area 80
LTERM pool

for multiple sign-on 96

M
machine dependencies 247
main thread 90
map_name

overview 63
Receive_Mapped_Data 164
Send_Mapped_Data 178

map_name_length
Receive_Mapped_Data 164
Send_Mapped_Data 178

mathematical library 273
mathlib 273
maximum lengths 260
maximum message length 260
message exchange 56
message length

maximum 260

message segment
receive 59

messages
receive 59
send 57
xatmigen 278

metasyntax 22
MGET 66, 180

19Z 205
MGET NT 63
Microsoft Visual C++ Developer Studio 70
migration

CPI-C version 2 346
MODE

service paradigm 264
MPUT 74
MPUT NT 59, 61
MSCF 365
multi-step service 61
multiple

clients 80
CPI-C program runs 114
send and receive 74

multiple conversations 90
example 93

multiple sign-on
LTERM pool for 96
to UTM 114
with same name 96, 305

multithreading 90
multithreading-capable 31

N
name

data structure 265
name of program

with Enable_UTM_UPIC 112
network address 286
new conversation 41
new local address 40
new remote address 40
node 32
node application 32
non-blocking

Index

openUTM-Client for the UPIC Carrier System 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
0

15
 S

ta
nd

 0
8:

23
.4

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

si
x

Receive 153
Receive_Mapped_Data 164
receive, overview 61
set 224

notational conventions 21

O
OCTET STRING 248
offset

cursor position 126
the cursor position in the format 68

OpenCPIC carrier system 27
openUTM

encryption of user data 85
format identifier 65
function keys 66
user concept 78

openUTM cluster
rules for upicfile 296
symbolic destination name 288, 296

openUTM-Client interface 33
operating system 31
operating system platforms 27
output parameters

CPI-C 97
overhead, buffer 260

P
parallel conversations 90
parameters

CPI-C calls in COBOL 239
partial format

send/receive 63
partner application

set host name 207
set IP address 209
set port 215
set transport selector 217
set transport selector format 219

partner configuration
coordination 306

partner name
in upicfile 290, 297

partner_LU_name 54, 128, 282

partner_LU_name_length 52, 128
pass on send authorization 58
password

incorrect 194
invalid 102, 155, 166, 194, 199
set 193

PATH 315
path name 330
PCMX 17, 29, 286, 317
PCMX diagnostics 334
PEND FI 59, 61
PEND KP 61
PEND RS 322
permission to send 56

receive 160, 171
PGPOOL 156, 172, 180
ping 325
PORT 53
port number 102 284
portability

CPI-C programs 228
Prepare_To_Receive 150

call 150
overview 58

program
sign off 110

program interface
CPI-C 97
XATMI 250

program name
specify 112

program unit
start 58

properties of secondary return code
set 237

property
GLOBAL NAME 306

property handlers 40
PTERM name with UPIC local 113
public diagnostic function 46

Q
query

CHARACTER_CONVERTION 124

Index

418 openUTM-Client for the UPIC Carrier System

client context 116
cursor position offset 126
encryption level 119
secondary information 130
state of conversation 122

Quickstart Kit 315

R
Readme files 19
receive 153

blocking 60
data 153
data and format identifier 164
formats 62
message 59
message segment 59
multiple 74
non-blocking 61
overview 58, 59
partial format 63

receive buffer 59
Receive state 50, 150
Receive timer 221
Receive type

set 224
Receive_Mapped_Data 164

call 164
overview 58, 59, 63

receive_timer 221
receive_type 52
received_length

Extract_Shutdown_Time 141
Receive 154
Receive_Mapped_Data 165

recovery service (XATMI) 243
Red Hat 12
remote connection 29
remote port number 285
remote-service-name 263
request 241
request-response

configure 264
requester 241
requirements for encryption 86

reset
Receive timer 221
with Receive 61

Reset state 50
resource bottleneck

error due to 101
resource files 70
resources 314

CPI-C program (Unix system) 318
local 326
partner 326
UPIC local (Unix system) 319

RESTART 78, 82
restart

client context 84
without 78
XATMI 243

restart program
for CPI-C 82

RET 205
return code

CPI-C 97
XATMI 257

return_code 128
return_control 51
revent 257
RSA key 85, 86
RSA-KEY 53

S
sample program

side information entry (Windows) 336
uptac (Windows) 336
utp (Windows) 336

SD 289
secondary information 130

query 130
secondary return code

query 133
set properties 237

security attributes 40
security functions 79
security_password 52, 193
security_password_length 52

Index

openUTM-Client for the UPIC Carrier System 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
0

15
 S

ta
nd

 0
8:

23
.4

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

si
x

Security_Type 196
security_type 52

error in UTM 102
security_user_ID 52
security_user_ID_length 52
send

data with format identifier 178
format identifier 178
formats 62
message 57
multiple 74
partial format 63
state 150

send authorization 50
pass on 58

send buffer
local 58
transfer to server 58

send direction 160, 171
Send state 50
Send_Data 175

overview 57
send_length

Send_Mapped_Data 178
Send_Mapped_Data 178

call 178
overview 57, 63

send_type 51
sequence of CPI-C calls 55
server 25
service

define 262
XATMI 241

service context 82
service restart 78, 82
service state

read 143
set

deallocate_type 202
encryption level 186
host name of the partner application 207
IP address of the partner application 209
partner_LU_name 212
password 193

port for partner application 215
Receive type 224
synchronization level 227
timeout timer 221
TP_name 229
TP_name_length 229
transport selector for local application 233
transport selector for partner application 217
transport selector format for partner

application 219
transport selector format of the local

application 235
UTM function key 204

Set calls 97
Set_Allocate_Timer 181
Set_Client_Context 84

call 183
Set_Conversation_Encryption_Level call 186
Set_Conversation_Security_Password 193

call 193
overview 79, 81

Set_Conversation_Security_Type 196
overview 79

Set_Conversation_Security_User_ID 198
overview 79

Set_Convertion 200
Set_Deallocate_Type 202
Set_Function_Key 204

call 204
overview 66

Set_Partner_Host_Name 285
Set_Partner_Host_Name call 207
Set_Partner_IP_Address 285
Set_Partner_IP_Address call 209
Set_Partner_LU-Name 212
Set_Partner_Port 285
Set_Partner_Port call 215
Set_Partner_Tsel 285
Set_Partner_Tsel call 217
Set_Partner_Tsel_Format 285
Set_Partner_Tsel_Format call 219
Set_Receive_Timer 221

call 221
Set_Receive_Type 224

Index

420 openUTM-Client for the UPIC Carrier System

call 224
overview 60

Set_Sync_Level 227
call 227

Set_TP_Name 229
SFUNC

RET 205
shared memory

UPIC local (Unix system) 319
shell variable

UPICLOG 328
UPICPATH 288

SHUTDOWN GRACE 138
shutdown state

querying 138
shutdown time

querying 140
SHUTDOWN WARN 138
side information 50
side information entry

for sample programs (Windows) 336
side information file 50, 288
SIGHUP 318
SIGINT 318
sign off

CPI-C program 110
XATMI 251
XATMI client 254

sign on
after password expiry 81
CPI-C program 112
multiple to UTM 114
XATMI 251

signals 318
SIGNON service 78
SIGQUIT 318
single-step service

communication with 73
size of UPIC trace file 330
socket interface 29
Solaris 12
Specify_Local_Port 285
Specify_Local_Port call 231
Specify_Local_Tsel 285

Specify_Local_Tsel call 233
Specify_Local_Tsel_Format 285
Specify_Local_Tsel_Format call 235
Specify_Secondary_Return_Code

set 237
standalone UTM application 9
start

CPI-C program 312, 317
CPI-C program under BS2000 320
program unit 58
thread 90
UTM service 57

Start state 50
starter-set calls 97
state

query conversation state 122
Receive, change to 150
Send 160
Send, change to Receive 150

state "Initialize" 50
state "Receive" 50
state "Reset" 50
state "Send" 50
state "Start" 50
state of a conversation 50
state table 350
status_received

Receive_Mapped_Data 165
structure

CPI-C application 55
subtypes 248
SUSE 12
SVCU 262
sym_dest_name

Initialize_Conversation 147
Symbolic Destination Name 283
symbolic destination name 54, 283, 288, 289

cluster 296
length 97, 290, 297
openUTM cluster 296

Symbolic_Destination_Name 34
synchronization level

set 227
synchronous request-response paradigm 244

Index

openUTM-Client for the UPIC Carrier System 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
0

15
 S

ta
nd

 0
8:

23
.4

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

si
x

syntax
LCF definition file 261

system access control functions 79

T
T-SEL 53
T-SEL-FORMAT 53
T.61 character set 349
T.61 string 248
TAC

encryption 88
TCP/IP 284

check connection 325
TCP/IP port

local application 231
partner application 215

telnet 325
TEMP 327, 330
terminate conversation 106

after transaction end 108
terminate thread 91
thread 90

start 90
terminate 91

thread-capable systems 34
threading 317
TIMEOUT 239
timeout 181

Receive 156
timeout timer

overview 60
set for blocking Receive 221

timer
UTM application 60

TMP 327, 330
TNS directory 286
TNS entry 286, 306

for sample programs (Windows) 336
Windows 336

TNS name 112
TP_name 52, 54

set 229
TP_name_length 52

set 229

tpacall 245
tpcall 244, 337
tpcall.ldf, local definition file 337
tpconnect 246
tpdiscon 246
TPEEVENT 257
tperrno 257
tpgetrply 245
tpinit 251, 252

local name 271
TPOOL 96
tprecv 246
tpsend 246
tpterm 251, 254
trace

UPIC 328
trace file

directory 330
name in XATMI 277
name with UPIC 331
size with UPIC 330
size with XATMI 277
UPIC 331
XATMI 277

transaction code 54
CUpic 41
in upicfile 291, 297
invalid 102, 155
XATMI 263

transaction state 77
read 143

TRANSDATA 284
transport connection

error in 101
transport selector 284

format for partner application 219
format for the local application 235
local application 233
partner application 217

transport systems 284
two 282
two-level partner name 290, 297
two-part partner_LU_name 282, 284
type

Index

422 openUTM-Client for the UPIC Carrier System

security 196
typed buffer 241, 247, 258

rules 258
types 247

typed record 247
types

XATMI 247

U
ULS 80
Unix platform 12
UPIC (Windows) sample programs 335
UPIC buffer 57
UPIC carrier system 27, 31
UPIC client 282
UPIC conversations 26, 34
UPIC generation 288

XATMI 269
UPIC installation directory 21
UPIC local 30, 113

Enable_UTM_UPIC 113
linking in XATMI 273
non-blocking Receive 61, 153
partner name 290
Set_Receive_Timer 221
Set_Receive_Type 224
Unix system 319
UTMPATH 114
Windows 314

UPIC log file 324, 327
UPIC remote 29

linking in XATMI 273
partner name 290

UPIC specific
conversation characteristics 53

UPIC trace 328
activate 329
BS2000 329
deactivate 333
edit 333

upic-cob 337
upic-dir 21
UPIC-L 31, 286
UPIC-L configuration 286

UPIC-R 284
UPIC-R (Windows) 31
UPIC-R configuration 284
UPIC-R with CMX 286
UPIC-specific functions 100
UPIC.H 311

BS2000 320
Unix system 317

UPIC.INI 313, 327
UpicAnalyzer 338
UPICFIL 288, 310
UPICFILE 309
upicfile 288

Enable_UTM_UPIC 112
local name 271
XATMI 269

upicfile entry
UTM cluster application 296

UPICL 282
UPICLOG 309, 310, 327, 328
UPICPATH 288, 309
UPICR 282
UpicReplay 339
UpicSimpleClient 337
UPICTRA 310
UPICTRACE 309, 328
upicw32.lib 311
upicw64.lib 311
upicws32.lib 312
upicws64.lib 312
uptac, sample program for Windows 336
usage of typed buffer 258
use of TNS entries 306
USER 270
user buffer 247
user concept of openUTM 78
user data

encrypt 85
user ID 155

invalid 155, 166
multiple sign-ons 80

UTM 283
UTM cluster application 9, 32

cluster administration journal 362

Index

openUTM-Client for the UPIC Carrier System 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
21

. J
an

ua
ry

 2
0

15
 S

ta
nd

 0
8:

23
.4

0
P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

9_
U

pi
c\

en
\u

p
ic

_
e.

si
x

UTM directory, UPIC local (Unix system) 319
UTM error message 327
UTM formats

receive 164
send 178

UTM function key 66
set 204

UTM server 282
communication with 72

UTM service
addressing 54

UTM service start 57
UTM user concept 78
UTM user ID

invalid 155, 166
not generated 102
set 198

UTM_ON_WIN64 311
UTM.local 283
utmcnv32.def 70
utmcnv32.rc, resource.h 70
UTMPATH 148

not set 114
utp32, Windows 32-bit sample program 336

V
Visual C++, configuring with 315
void GetMapName 41
void GetTPName 41
void Reset 45
void SetEncryption 40
void SetFunctionKey 41
void SetHost 38
void SetLocal 40
void SetMapName 41
void SetPort 36, 38
void SetRemote 40
void SetSecurity 40
void SetTPName 41
void SetTselName 36, 38

W
wait time

maximum 171

Windows system 12
Windows, UPIC local 314
WINDOWS.H 311
without restart 78
worker thread 34
wrapper class 33

X
X_C_TYPE 247, 248

conversion 249
X_COMMON 247, 248

conversion 249
X_OCTET 247

BUFFERS operand 264
X/Open

CPI-C interface 345
XATMI 241

last output message 82
program interface 250

XATMI application 27
XATMI client, sign off 254
XATMI program 27

access to services 28
XATMI U-ASE 242, 247
XATMIGEN 266
XTSVRTR 275

Index

424 openUTM-Client for the UPIC Carrier System

	Contents
	Preface
	Brief description of the openUTM-Client product
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Documentation for the openSEAS product environment
	Readme files

	Changes since the last version of this manual
	Notational conventions

	Application area
	The concept of openUTM-Client
	Client/server communication with openUTM
	UPIC local, UPIC remote and multithreading
	Support for UTM cluster applications

	C++ class CUpic
	Introduction
	Configuration using Helper classes CUpicLocAddr and CUpicRemAddr
	Configuration using a side information file (upicfile)
	The CUpic class on thread-capable systems

	Helper classes
	CUpicLocAddr
	Constructors
	Member functions

	CUpicRemAddr
	Constructors
	Member functions

	CUpic security

	ClassCUpic
	Constructors
	Property handlers
	Function calls
	Public diagnostic function

	Example

	CPI-C interface
	CPI-C terms
	General structure of a CPI-C application
	Exchange of messages with a UTM service
	Sending a message and starting a UTM service
	Receiving a message, blocking and non-blocking receive
	Sending and receiving formats
	UTM function keys
	Cursor position
	Code conversion
	User-defined code conversion for Windows systems

	Communicating with the UTM server
	Communicating in a single-step UTM service
	Communicating in a multi-step UTM service
	Communicating in a multi-step UTM service with distributed transaction processing
	Querying the transaction state

	User concept, security and restart
	User concept
	Security functions
	Restart

	Encryption
	Multiple conversations
	Default server and DEFAULT name of a client
	Multiple sign-on to the same UTM application with the same name

	CPI-C calls in UPIC
	Overview
	Allocate - Establishing a conversation
	Convert_Incoming - Converting data from code of sender to local code
	Convert_Outgoing - Converting data from local code to code of receiver
	Deallocate - Terminating a conversation
	Deferred_Deallocate - Terminating a conversation after termination of a transaction
	Disable_UTM_UPIC - Signing off from the UPIC carrier system
	Enable_UTM_UPIC - Signing on to the UPIC carrier system
	Extract_Client_Context - Querying the client context
	Extract_Conversation_Encryption_Level - Querying encryption level
	Extract_Conversation_State - Querying state of conversation
	Extract_Convertion - Querying the value of the CHARACTER_CONVERTION conversation characteristic
	Extract_Cursor_Offset - Querying cursor position offset
	Extract_Partner_LU_Name - Querying partner_LU_Name
	Extract_Secondary_Information - Querying secondary information
	Extract_Secondary_Return_Code - Querying secondary return codes
	Extract_Shutdown_State - Querying the shutdown state of the server
	Extract_Shutdown_Time - Query the shutdown time of the server
	Extract_Transaction_State - Querying service and transaction state of the server
	Initialize_Conversation - Initializing the conversation characteristics
	Prepare_To_Receive - Changing state from “Send” to “Receive”
	Receive - Receiving data from a UTM service
	Receive_Mapped_Data - Receiving data and format identifier from a UTM service
	Send_Data - Sending data to a UTM service
	Send_Mapped_Data - Sending data and format identifier
	Set_Allocate_Timer - Setting timer for the allocate call
	Set_Client_Context - Setting the client context
	Set_Conversation_Encryption_Level - Setting the encryption level
	Set_Conversation_Security_New_Password - Setting new password
	Set_Conversation_Security_Password - Setting the password
	Set_Conversation_Security_Type - Setting the security type
	Set_Conversation_Security_User_ID - Setting the UTM user ID
	Set_Convertion - Setting the CHARACTER_CONVERTION conversation characteristic
	Set_Deallocate_Type - Setting deallocate_type
	Set_Function_Key - Setting a UTM function key
	Set_Partner_Host_Name - Setting the partner host name
	Set_Partner_IP_Address - Setting the IP address of the partner application
	Set_Partner_LU_Name - Setting the conversation characteristics partner_LU_name
	Set_Partner_Port - Setting the TCP/IP port for the partner application
	Set_Partner_Tsel - Setting the T-SEL of the partner application
	Set_Partner_Tsel_Format - Setting the T-SEL format of the partner application
	Set_Receive_Timer - Setting the timer for a blocking receive
	Set_Receive_Type - Setting the receive type
	Set_Sync_Level - Setting a synchronization level
	Set_TP_Name - Setting TP-name
	Specify_Local_Port - Setting the TCP/IP port of the local application
	Specify_Local_Tsel - Setting the T-SEL of the local application
	Specify_Local_Tsel_Format - Setting the TSEL format of the local application
	Specify_Secondary_Return_Code - Setting the properties of the secondary return code

	COBOL interface

	XATMI interface
	Linking client/server applications
	Default server
	Restart

	Communication paradigms
	Typed buffers
	Program interface
	XATMI functions for clients
	Calls for connecting to the carrier system
	tpinit - Initializing the client
	tpterm - Signing the client off
	Transaction control
	Mixed operation
	Administration interface
	Header files and COPY elements
	Events and error handling
	Creating typed buffers
	Characteristics of XATMI in UPIC

	Configuring
	Creating the local configuration file
	The xatmigen tool
	Configuring the carrier system and UTM partners
	Configuring UPIC
	Initialization parameters and UTM generation

	Running XATMI applications
	Linking and starting an XATMI program
	Linking an XATMI program on Windows systems
	Linking an XATMI program under Unix systems
	Linking an XATMI program under BS2000 systems
	Starting the program

	Setting Environment variables on Windows and Unix systems
	Setting job variables under BS2000 systems
	Trace

	xatmigen messages

	Configuration
	Configuration without upicfile
	UPIC-R configuration
	UPIC-L configuration
	Configuration with TNS entries
	Configuration using BCMAP entries

	The side information file (upicfile)
	Side information for standalone UTM applications
	Side information for UTM cluster applications
	Side information for the local application

	Coordination with the partner configuration

	Implementing CPI-C applications
	Runtime environment, linking, starting
	Implementing in Windows systems
	Compilation, linking, starting
	Runtime environment, environment variables
	Special features of implementing UPIC local on Windows systems

	Implementation in Unix systems
	Compilation, linking, starting
	Runtime environment, environment variables
	Special features of implementing UPIC local on Unix systems

	Deployment in BS2000 systems

	Handling of CPI-C partners by openUTM
	Behavior in the event of errors
	Diagnostics
	UPIC log file
	UPIC trace
	PCMX diagnostics (Windows systems)

	Examples
	Sample programs for Windows systems
	uptac
	utp32
	tpcall
	upic-cob
	UpicSimple

	UpicAnalyzer and UpicReplay on 64-bit Linux systems
	UpicAnalyzer
	UpicReplay

	Generation UPIC on Windows systems <-> openUTM on BS2000 systems
	Generation on the Windows system
	Generation on the BS2000 host

	Generation UPIC on Windows systems <-> openUTM on Unix systems
	Generation on the Windows system
	Generation on the Unix system

	Appendix
	Differences vis à vis the X/Open CPI-C interface
	Character sets
	State table

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

