
Edition January 2015

©
 S

ie
m

en
s

N
ix

d
or

f
In

fo
rm

a
tio

ns
sy

st
em

e
A

G
 1

9
95

P

fa
d:

 P
:\

F
T

S
-B

S
\o

pe
nS

E
A

S
\o

pe
nU

T
M

\o
pe

nU
T

M
V

6.
3\

_1
40

3
60

3_
G

en
\e

n\
ge

n
_e

.v
or

English

openUTM V6.3
Generating Applications

FUJITSU Software

User Guide

Comments… Suggestions… Corrections…
The User Documentation Department would like to know your
opinion on this manual. Your feedback helps us to optimize our
documentation to suit your individual needs.

Feel free to send us your comments by e-mail to:
manuals@ts.fujitsu.com

Certified documentation
according to DIN EN ISO 9001:2008
To ensure a consistently high quality standard and
user-friendliness, this documentation was created to
meet the regulations of a quality management system which
complies with the requirements of the standard
DIN EN ISO 9001:2008.

cognitas. Gesellschaft für Technik-Dokumentation mbH
www.cognitas.de

Copyright and Trademarks

This manual is printed
on paper treated with
chlorine-free bleach.

Copyright © 2015 Fujitsu Technology Solutions GmbH.

All rights reserved.
Delivery subject to availability; right of technical modifications reserved.

All hardware and software names used are trademarks of their respective manufacturers.

mailto:manuals@ts.fujitsu.com
http://www.cognitas.de

Generating Applications

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

r
20

1
5

 S
ta

nd
 1

7:
38

.2
7

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
iv

z

Contents

1 Preface . 11

1.1 Summary of contents and target group . 13

1.2 Summary of contents of the openUTM documentation 14
1.2.1 openUTM documentation . 14
1.2.2 Documentation for the openSEAS product environment 19
1.2.3 Readme files . 20

1.3 Innovations in openUTM V6.3 . 21
1.3.1 New server functions . 21
1.3.2 Load simulation with "Workload Capture & Replay" 24
1.3.3 New client function . 25
1.3.4 New and modified functions for openUTM WinAdmin 25
1.3.5 New functions for openUTM WebAdmin . 25

1.4 Notational conventions . 27

2 Introduction to the generation procedure . 29

2.1 Configuring the UTM application . 31

2.2 Generating application components - result of the KDCDEF run 32

2.3 The KDCFILE . 43
2.3.1 Administrative data . 47
2.3.2 Page pool . 47
2.3.3 Restart area . 50
2.3.4 Creating a new KDCFILE during operation . 53

2.4 Performance aspects - tuning . 55
2.4.1 Splitting the KDCFILE . 55
2.4.2 KDCFILE on raw-device (Unix systems) . 57
2.4.3 KDCFILE on a stripe set in (Windows systems) . 60

Contents

 Generating Applications

3 Notes on generating a UTM cluster application 61

3.1 Generating a UTM cluster application . 62
3.1.1 UTM cluster files . 62
3.1.2 KDCDEF statements . 67
3.1.3 Initial KDCFILE . 69

3.2 Generating a reserve node application . 69

3.3 Using global memory areas . 70

3.4 Using users with RESTART=YES . 70

3.5 Special issues in BS2000 systems . 72

3.6 Special issues on Unix systems and Windows systems 72

3.7 Special issues with LU6.1 connections . 72

4 Generating applications for distributed processing 73

4.1 Distributed processing via the LU6.1 protocol 74
4.1.1 Transport connections and SNA sessions . 74
4.1.2 Generation notes . 76
4.1.3 Procedure when generating LU6.1 connections . 79
4.1.4 LU6.1-LPAP bundles . 86
4.1.5 LU6.1-LPAP bundles of a standalone application with a UTM cluster application . . . 88

4.2 Distributed processing via the OSI TP protocol 92
4.2.1 OSI terms . 92
4.2.2 Generation procedure for distributed processing based on OSI TP 98
4.2.3 OSI-LPAP bundles . 104

4.3 Coordinating the UTM and BCAM generations (BS2000 systems) 108

4.4 Providing address information for the CMX transport system (Unix systems and
Windows systems) . 109

4.4.1 Providing address information with KDCDEF . 110
4.4.2 Converting address information from TNS entries to KDCDEF 113

4.5 Providing address information for the SOCKET transport system (Unix systems and
Windows systems) . 117

4.6 Single- and multi-threaded network access (Unix systems and Windows systems)
. 119

4.7 Using mapped host names (Unix systems and Window systems) 121
4.7.1 Conversion file for mapped host names . 122

Contents

Generating Applications

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.iv

z

4.7.2 UTM_NET_HOSTNAME environment variable . 124

5 Generating selected objects and functions of the application 125

5.1 Connecting clients to the application . 126
5.1.1 Connecting clients via LTERM partners . 127
5.1.2 LTERM pools . 131
5.1.3 LTERM bundle . 135
5.1.4 LTERM groups . 138
5.1.5 Connecting OpenCPIC clients . 141
5.1.6 Defining the client sign-on services . 142
5.1.6.1 Establishing an automatic connection . 143
5.1.6.2 Automatic sign-on under a specific user ID . 143
5.1.6.3 Generating sign-on services for clients . 143
5.1.6.4 Multiple sign-ons . 144
5.1.7 Specifying maximum waiting times for dialog prompting 145
5.1.8 Generating security functions . 146
5.1.8.1 Defining system access control . 146
5.1.8.2 Assigning administration authorizations . 147
5.1.9 Generating a restart . 148
5.1.10 USP headers for output messages to socket connections 149
5.1.11 Code conversion . 150
5.1.12 Providing address information . 151
5.1.12.1 Providing the address information for clients of type SOCKET 151
5.1.12.2 Providing address information for clients of type UPIC and APPLI in BS2000

systems . 153
5.1.12.3 Providing address information for clients of type UPIC and APPLI in Unix systems

and Windows systems . 154
5.1.12.4 Additional information for LTERM pools in Unix systems and Windows systems . 157
5.1.12.5 Providing address information for OpenCPIC clients in BS2000 systems 158
5.1.12.6 Providing address information for OpenCPIC clients in Unix systems and Windows

systems . 159
5.1.13 Examples of the generation of a client/server cluster 161

5.2 Generating printers (on BS2000 systems and Unix systems) 166
5.2.1 Generating RSO printers (BS2000 systems) . 170
5.2.1.1 Entries for the KDCDEF generation . 170
5.2.1.2 Entries for RSO and SPOOL . 171
5.2.1.3 Activating printers for openUTM . 174
5.2.1.4 Querying printer information . 175
5.2.1.5 Releasing printers in the event of an error . 175
5.2.2 Generating printer pools . 176
5.2.3 Bypass mode (BS2000 systems) . 176

Contents

 Generating Applications

5.2.4 Generating printer control LTERMs . 177

5.3 Generating service-controlled queues . 179
5.3.1 USER queues . 179
5.3.2 TAC queues . 180
5.3.3 Temporary queues . 182
5.3.4 Specifying the maximum waiting time for reading from

service-controlled queues . 183
5.3.5 Limiting the maximum number of redeliveries to service-controlled queues 183

5.4 UTM messages . 184
5.4.1 Messages in openUTM under BS2000 systems 184
5.4.2 Messages in openUTM under Unix systems and Windows systems 187
5.4.3 User-specific message destinations . 189

5.5 Message distribution and multiplexing with OMNIS (BS2000 systems) 190
5.5.1 Multiplex connections . 191
5.5.1.1 Defining multiplex connections . 192
5.5.1.2 Confirming the connection shutdown by the partner 194
5.5.2 Statistics on multiplex connections . 194
5.5.3 Combination of multiplex connections and direct connections 195

5.6 Generating load modules, common memory pools and shared code (BS2000
systems) . 197

5.6.1 Generating load modules . 197
5.6.2 Generating shared code and common memory pools 202
5.6.2.1 Shared code in system memory . 202
5.6.2.2 Shared code in common memory pools . 203

5.7 Job control - priorities and process limitations 206
5.7.1 Job processing via priority control . 209
5.7.2 Job processing via process limitation for TAC classes control 212
5.7.3 Comparison of some of the properties of the two methods 213
5.7.4 Process priorities in BS2000 systems . 216

5.8 Data access control . 217
5.8.1 Lock/key code concept . 217
5.8.2 Access list concept . 220
5.8.3 Data access control with distributed processing 224

5.9 Message encryption on connections to clients 226
5.9.1 Requirements . 226
5.9.2 Encryption methods . 227
5.9.3 Encrypting passwords and user data . 228
5.9.3.1 System access control . 229
5.9.3.2 Data access control . 230
5.9.4 Creating the RSA key pair and reading the public key 231

Contents

Generating Applications

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.iv

z

5.10 Defining database linking . 232
5.10.1 Linking databases under BS2000 systems . 232
5.10.2 Linking to a Resource Manager under Unix systems and Windows systems 233

5.11 Internationalizing the application – XHCS support (BS2000 systems) 235
5.11.1 Definitions of XHCS terms . 236
5.11.2 Defining the language environment – setting the locale 238
5.11.3 Character set names for edit profiles and formats 241
5.11.4 Querying the language environment in a UTM program unit 241
5.11.5 Character sets for editing messages . 242

5.12 Generating system access control using Kerberos (BS2000 systems) 245

6 The KDCDEF generation tool . 247

6.1 Creating the ROOT table source and KDCFILE 247
6.1.1 Statements for controlling the KDCDEF run . 248
6.1.2 Statements for creating the ROOT table source . 248
6.1.3 Basic statements for creating a KDCFILE . 249
6.1.3.1 Creating the KDCFILE - additional statements for distributed processing via

LU6.1 . 251
6.1.3.2 Creating the KDCFILE - additional statements for distributed processing via

OSI TP . 251
6.1.3.3 Generating KDCFILE and UTM cluster files - additional statements for UTM cluster

applications . 252
6.1.4 Effects of the KDCDEF statements on the generation objects 253

6.2 Calling KDCDEF and entering the control statements 256
6.2.1 Starting KDCDEF and executing a KDCDEF run 256
6.2.1.1 BS2000 systems . 256
6.2.1.2 Unix systems . 258
6.2.1.3 Windows systems . 259
6.2.2 Order of the control statements . 260
6.2.3 Format of the control statements . 261
6.2.4 Continuation lines in control statements . 261
6.2.5 Syntax and plausibility checks . 262
6.2.6 KDCDEF logging . 262
6.2.7 Format and uniqueness of object names . 263
6.2.7.1 Reserved names . 263
6.2.7.2 Format of names . 263
6.2.7.3 Number of names . 265
6.2.7.4 Uniqueness of names and addresses . 268
6.2.8 Result of the KDCDEF run . 270

Contents

 Generating Applications

6.3 Inverse KDCDEF . 271
6.3.1 Starting inverse KDCDEF . 273
6.3.2 Result of inverse KDCDEF . 274
6.3.3 Creating KDCDEF control statements in upgrades 276

6.4 Recommendations when regenerating an application 277

6.5 KDCDEF control statements . 279
ABSTRACT-SYNTAX - define the abstract syntax 279
ACCESS-POINT - create an OSI TP access point 281
ACCOUNT - define the accounting functions . 287
APPLICATION-CONTEXT - define the application context 289
AREA - define additional data areas . 292
BCAMAPPL - define additional application names 295
CLUSTER – Define global properties of a UTM cluster application 303
CLUSTER-NODE – Define a node application of a UTM cluster application 315
CON - define a connection for distributed processing based on LU6.1 318
CREATE-CONTROL-STATEMENTS -

Create KDCDEF control statements . 323
DATABASE - define the database system (BS2000 systems) 328
DEFAULT - define default values (BS2000 systems) 331
EDIT - define edit options (BS2000 systems) . 335
EJECT - initiate a page feed in the log . 339
END - terminate KDCDEF input . 340
EXIT - define event exits . 341
FORMSYS - define the format handling system 343
KSET - define a key set . 344
LOAD-MODULE - define a load module (BLS, BS2000 systems) 346
LPAP - define an LPAP partner for distributed processing based on LU6.1 351
LSES - define a session name for distributed processing based on LU6.1 354
LTAC - define a transaction code for the partner application 356
LTERM - define an LTERM partner for a client or printer 363
MASTER-LU61-LPAP – Define the master LPAP of an LU6.1-LPAP bundle 374
MASTER-OSI-LPAP - Defining the master LPAP of an OSI-LPAP bundle 375
MAX - define UTM application parameters . 376
MESSAGE - define a UTM message module . 417
MPOOL - define a common memory pool (BS2000 systems) 421
MSG-DEST - define user-specific messages destinations 423
MUX - define a multiplex connection (BS2000 systems) 425
OPTION - manage the KDCDEF run . 427
OSI-CON - define a logical connection to an OSI TP partner 432
OSI-LPAP - define an OSI-LPAP partner for distributed processing based on OSI TP 439
PROGRAM - define a program unit . 447
PTERM - define the properties of a client/printer and assign an LTERM partner . . . 450
QUEUE - reserve table entries for temporary messages queues 470

Contents

Generating Applications

©
 S

ie
m

e
ns

 N
ix

d
or

f I
nf

or
m

at
io

n
ss

ys
te

m
e

 A
G

 1
99

5

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.iv

z

REMARK - insert a comment line . 472
RESERVE - reserve table locations for UTM objects 473
RMXA - define a name for an XA (database) connection

(Unix systems, Windows systems) . 478
ROOT - define a name for the ROOT table source 480
SATSEL - define SAT logging (BS2000 systems) 481
SESCHA - define session characteristics for distributed processing based on LU6.1 . 483
SFUNC - define function keys . 486
SHARED-OBJECT - define shared objects/DLLs (Unix systems, Windows systems) . 489
SIGNON - control the sign-on procedure . 491
TAC - define the properties of transaction codes and TAC queues 496
TACCLASS - define the number of processes for a TAC class 513
TAC-PRIORITIES - specify priorities of the TAC classes 518
TCBENTRY - define a group of TCB entries (BS2000 systems) 522
TLS - define a name for a TLS block . 523
TPOOL - define an LTERM pool . 524
TRANSFER-SYNTAX - define the transfer syntax 541
ULS - define a name for a ULS block . 542
USER - define a user ID . 543
UTMD - application parameters for distributed processing 557

6.6 Dialog control - effects of generation parameters 562

6.7 Example generation: ComfoTRAVEL . 564
6.7.1 KDCDEF input file DYNAMIC.RMS for UTM-D application RMS 565
6.7.2 KDCDEF statements for UTM-D application RMS 568
6.7.3 KDCDEF input file DynamicTravel for UTM application TRAVEL 574
6.7.4 KDCDEF statements for UTM application TRAVEL 576

6.8 KDCDEF messages . 581

7 Changing the configuration of an application dynamically 583

7.1 Reserving locations in the KDCFILE object tables 585

7.2 Prerequisites for entering objects dynamically 587

8 The tool KDCUPD – updating the KDCFILE . 591

8.1 Overview . 592
8.1.1 Supported upgrades . 592
8.1.2 Prerequisite for using KDCUPD . 593
8.1.3 Backing up data . 593

Contents

 Generating Applications

8.1.4 What data does KDCUPD transfer? . 594
8.1.4.1 Changing generation parameters . 596
8.1.4.2 Transfer of user data . 597

8.2 Updating the KDCFILE for standalone UTM applications 599

8.3 Update generation with transfer from 32-bit to 64-bit architecture 603

8.4 Updating the KDCFILE and UTM cluster files for UTM cluster applications . . . 604
8.4.1 Online update of a UTM cluster application . 605
8.4.2 Update generation for a UTM cluster application 607
8.4.3 Converting a UTM cluster application . 609
8.4.3.1 Conversion from a standalone UTM application to a UTM cluster application . . 609
8.4.3.2 Converting a UTM cluster application from V6.0 to V6.3 611
8.4.3.3 Converting a UTM cluster application to a standalone UTM application 612

8.5 Control statements for KDCUPD . 614
CATID - define Catid of the old and the new KDCFILE 615
CHECK - check the consistency of the KDCFILE 616
CLUSTER-FILEBASE - Specify the base names of the old and new UTM cluster files 616
END - terminate input and start processing . 617
KDCFILE - specify the base name of the old and new KDCFILE 618
LIST - control the runtime log . 619
TRANSFER - control the data transfer of the user data 621

8.6 KDCUPD runtime log and messages . 625

Glossary . 627

Abbreviations . 663

Related publications . 669

Index . 679

Generating Applications 11

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

1 Preface

Modern enterprise-wide IT environments are subjected to many challenges of rapidly
increasing importance. This is the result of:

● heterogeneous system landscapes

● different hardware platforms

● different networks and different types of network access (TCP/IP, SNA, ...)

● the applications used by companies

Consequently, problems arise – whether as a result of mergers, joint ventures or labor-
saving measures. Companies are demanding flexible, scalable applications, as well as
transaction processing capability for processes and data, while business processes are
becoming more and more complex. The growth of globalization means, of course, that
applications are expected to run 24 hours a day, seven days a week, and must offer high
availability in order to enable Internet access to existing applications across time zones.

openUTM is a high-end platform for transaction processing that offers a runtime
environment that meets all these requirements of modern, business-critical applications,
because openUTM combines all the standards and advantages of transaction monitor
middleware platforms and message queuing systems:

● consistency of data and processing

● high availability of the applications (not just the hardware)

● high throughput even when there are large numbers of users (i.e. highly scalable)

● flexibility as regards changes to and adaptation of the IT system

An UTM application can be run as a standalone UTM application or sumultanously on
several different computers as a UTM cluster application.

Preface

12 Generating Applications

openUTM forms part of the comprehensive openSEAS offering. In conjunction with the
Oracle Fusion middleware, openSEAS delivers all the functions required for application
innovation and modern application development. Innovative products use the sophisticated
technology of openUTM in the context of the openSEAS product offering:

● BeanConnect is an adapter that conforms to the Java EE Connector Architecture (JCA)
and supports standardized connection of UTM applications to Java EE application
servers. This makes it possible to integrate tried-and-tested legacy applications in new
business processes.

● The WebTransactions member of the openSEAS family is a product that allows tried-
and-tested host applications to be used flexibly in new business processes and modern
application scenarios. Existing UTM applications can be migrated to the Web without
modification.

Preface Summary of contents and target group

Generating Applications 13

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

1.1 Summary of contents and target group

The openUTM manual “Generating Applications” is designed for use by application
planners and developers as well as operators of UTM applications.

This manual describes how to define the configuration for a UTM application using the UTM
tool KDCDEF and how to create the KDCFILE. Chapter 5 also goes into more detail about
the generation of selected objects and functions of the application.

Additional topics include the dynamic configuration of an application and the updating of the
KDCFILE using the tool KDCUPD.

To understand this manual you will need to be familiar with the operating system.

i Wherever the term Unix system or Unix platform is used in the following, then this
should be understood to mean both a Unix-based operating system such as Solaris
or HP-UX and a Linux distribution such as SUSE or Red Hat.

Wherever the term Windows system or Windows platform is used below, this should
be understood to mean all the variants of Windows under which openUTM runs.

Summary of contents of the openUTM documentation Preface

14 Generating Applications

1.2 Summary of contents of the openUTM documentation

This section provides an overview of the manuals in the openUTM suite and of the various
related products.

1.2.1 openUTM documentation

The openUTM documentation consists of manuals, the online help systems for the
graphical administration workstation openUTM WinAdmin and the graphical administration
tool WebAdmin, and a release note for each platform on which openUTM is released.

Some manuals are valid for all platforms, and others apply specifically to BS2000 systems,
Unix systems or Windows systems.

All the manuals are available as PDF files on the internet at

http://manuals.ts.fujitsu.com

On this site, enter the search term “openUTM V6.3“ in the Search by product field to
display all openUTM manuals of version 6.3.

The manuals are included on the Enterprise DVD with open platforms and are available on
the WinAdmin DVD for BS2000 systems.

The following sections provide a task-oriented overview of the openUTM V6.3 documen-
tation. You will find a complete list of documentation for openUTM in the chapter on related
publications at the back of the manual on page 669.

Introduction and overview

The Concepts and Functions manual gives a coherent overview of the essential
functions, features and areas of application of openUTM. It contains all the information
required to plan a UTM operation and to design an UTM application. The manual explains
what openUTM is, how it is used, and how it is integrated in the BS2000, Unix based and
Windows based platforms.

http://manuals.ts.fujitsu.com

Preface Summary of contents of the openUTM documentation

Generating Applications 15

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

Programming

● You will require the Programming Applications with KDCS for COBOL, C and C++
manual to create server applications via the KDCS interface. This manual describes the
KDCS interface as used for COBOL, C and C++. This interface provides the basic
functions of the universal transaction monitor, as well as the calls for distributed
processing. The manual also describes interaction with databases.

● You will require the Creating Applications with X/Open Interfaces manual if you want
to use the X/Open interface. This manual contains descriptions of the UTM-specific
extensions to the X/Open program interfaces TX, CPI-C and XATMI as well as notes on
configuring and operating UTM applications which use X/Open interfaces. In addition,
you will require the X/Open-CAE specification for the corresponding X/Open interface.

● If you want to interchange data on the basis of XML, you will need the document entitled
openUTM XML for openUTM. This describes the C and COBOL calls required to work
with XML documents.

● For BS2000 systems there is supplementary documentation on the programming
languages Assembler, Fortran, Pascal-XT and PL/1.

Configuration

The Generating Applications manual is available to you for defining configurations. This
describes for both standalone UTM applications and UTM cluster applications how to use
the UTM tool KDCDEF to

● define the configuration

● generate the KDCFILE

● and generate the UTM cluster files for UTM cluster applications

In addition, it also shows you how to transfer important administration and user data to a
new KDCFILE using the KDCUPD tool. You do this, for example, when moving to a new
openUTM version or after changes have been made to the configuration. In the case of
UTM cluster applications, it also indicates how you you can use the KDCUPD tool to
transfer this data to the new UTM cluster files.

Summary of contents of the openUTM documentation Preface

16 Generating Applications

Linking, starting and using UTM applications

In order to be able to use UTM applications, you will need the Using openUTM Applica-
tions manual for the relevant operating system (BS2000 or Unix systems/Windows
systems). This describes how to link and start a UTM application program, how to sign on
and off to and from a UTM application and how to replace application programs dynamically
and in a structured manner. It also contains the UTM commands that are available to the
terminal user. Additionally, those issues are described in detail that need to be considered
when operating UTM cluster applications.

Administering applications and changing configurations dynamically

● The Administering Applications manual describes the program interface for admin-
istration and the UTM administration commands. It provides information on how to
create your own administration programs for operating a standalone UTM application
or a UTM cluster application and on the facilities for administering several different
applications centrally. It also describes how to administer message queues and printers
using the KDCS calls DADM and PADM.

● If you are using the graphical administration workstation openUTM WinAdmin or the
Web application openUTM WebAdmin, which provides comparable functionality, then
the following documentation is available to you:

– A description of WinAdmin and description of WebAdmin, which provide a
comprehensive overview of the functional scope and handling of
WinAdmin/WebAdmin. These documents are shipped with the associated software
and are also available online as a PDF file.

– The respective online help systems, which provide context-sensitive help infor-
mation on all dialog boxes and associated parameters offered by the graphical user
interface. In addition, it also tells you how to configure WinAdmin or WebAdmin in
order to administer standalone UTM applications and UTM cluster applications.

i For detailed information on the integration of openUTM WebAdmin in SE Server's
SE Manager, see the SE Server manual Operation and Administration.

Testing and diagnosing errors

You will also require the Messages, Debugging and Diagnostics manuals (there are
separate manuals for Unix systems / Windows systems and for BS2000 systems) to carry
out the tasks mentioned above. These manuals describe how to debug a UTM application,
the contents and evaluation of a UTM dump, the behavior in the event of an error, and the
openUTM message system, and also lists all messages and return codes output by
openUTM.

Preface Summary of contents of the openUTM documentation

Generating Applications 17

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

Creating openUTM clients

The following manuals are available to you if you want to create client applications for
communication with UTM applications:

● The openUTM-Client for the UPIC Carrier System describes the creation and
operation of client applications based on UPIC. In addition to the description of the
CPI-C and XATMI interfaces, you will find information on how you can use the C++
classes to create programs quickly and easily.

● The openUTM-Client for the OpenCPIC Carrier System manual describes how to
install and configure OpenCPIC and configure an OpenCPIC application. It describes
how to install OpenCPIC and how to configure an OpenCPIC application. It indicates
what needs to be taken into account when programming a CPI-C application and what
restrictions apply compared with the X/Open CPI-C interface.

● The documentation for the JUpic-Java classes shipped with BeanConnect is supplied
with the software. This documentation consists of Word and PDF files that describe its
introduction and installation and of Java documentation with a description of the Java
classes.

● The BizXML2Cobol manual describes how you can extend existing COBOL programs
of a UTM application in such a way that they can be used as an XML-based standard
Web service. How to work with the graphical user interface is described in the online
help system.

● If you want to provide UTM services on the Web quickly and easily then you need the
manual WebServices for openUTM. The manual describes how to use the software
product WS4UTM (WebServices for openUTM) to make the services of UTM applica-
tions available as Web services. The use of the graphical user interface is described in
the corresponding online help system.

Communicating with the IBM world

If you want to communicate with IBM transaction systems, then you will also require the
manual Distributed Transaction Processing between openUTM and CICS, IMS and
LU6.2 Applications. This describes the CICS commands, IMS macros and UTM calls that
are required to link UTM applications to CICS and IMS applications. The link capabilities
are described using detailed configuration and generation examples. The manual also
describes communication via openUTM-LU62 as well as its installation, generation and
administration.

Summary of contents of the openUTM documentation Preface

18 Generating Applications

PCMX documentation

The communications program PCMX is supplied with openUTM on Unix and Windows
systems. The functions of PCMX are described in the following documents:

● CMX manual “Betrieb und Administration“ (Unix-Systeme) (only available in German)

● PCMX online help system for Windows systems

Preface Summary of contents of the openUTM documentation

Generating Applications 19

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

1.2.2 Documentation for the openSEAS product environment

The Concepts and Functions manual briefly describes how openUTM is connected to the
openSEAS product environment. The following sections indicate which openSEAS
documentation is relevant to openUTM.

Integrating Java EE application servers and UTM applications

The BeanConnect adapter forms part of the openSEAS product suite. The BeanConnect
adapter implements the connection between conventional transaction monitors and
Java EE application servers and thus permits the efficient integration of legacy applications
in Java applications.

● The manual BeanConnect describes the product BeanConnect, that provides a JCA
1.5- and JCA 1.6-compliant adapter which connects UTM applications with applications
based on Java EE, e.g. the Oracle application server.
The manuals for the Oracle application server can be obtained from Oracle.

Connecting to the web and application integration

You require the WebTransactions manuals to connect new and existing UTM applications
to the Web using the product WebTransactions.

The manuals will also be supplemented by JavaDocs.

Summary of contents of the openUTM documentation Preface

20 Generating Applications

1.2.3 Readme files

Information on any functional changes and additions to the current product version
described in this manual can be found in the product-specific Readme files.

Readme files are available to you online in addition to the product manuals under the
various products at http://manuals.ts.fujitsu.com. For the BS2000 platform, you will also find
the Readme files on the Softbook DVD.

Information under BS2000 systems

When a Readme file exists for a product version, you will find the following file on the
BS2000 system:

SYSRME.<product>.<version>.<lang>

This file contains brief information on the Readme file in English or German (<lang>=E/D).
You can view this information on screen using the /SHOW-FILE command or an editor.
The /SHOW-INSTALLATION-PATH INSTALLATION-UNIT=<product> command shows the
user ID under which the product’s files are stored.

Additional product information

Current information, version and hardware dependencies, and instructions for installing and
using a product version are contained in the associated Release Notice. These Release
Notices are available online at http://manuals.ts.fujitsu.com.

Readme files under Unix systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under /docs/language.

Readme files under Windows systems

The Readme file and any other files, such as a manual supplement file, can be found in the
utmpath under \Docs\language.

http://manuals.ts.fujitsu.com
http://manuals.ts.fujitsu.com

Preface Innovations in openUTM V6.3

Generating Applications 21

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

1.3 Innovations in openUTM V6.3

The following sections provide more detail on the innovations in the individual areas.

1.3.1 New server functions

Additional UTM system processes for internal tasks

In addition to the processes specified by means of the start parameters, UTM starts up to
three additional processes that are reserved for internal openUTM tasks or privileged jobs
issued by the administrator.

To permit this, both generation and administration interfaces have been extended:

● Generation, KDCDEF statement MAX

– New operand PRIVILEGED-LTERM, used to identify a specific LTERM as privi-
leged. When a user signs on with administration authorizations, all the user's jobs
are considered to be privileged jobs.

– TASKS operand: The maximum value has been reduced to 240 due to the
additional system processes.

● KDCADMI administration interface

– Data structure kc_max_par_str: New field privileged_lterm for the generated privi-
leged LTERM.

– Data structure kc_tasks_par_str: New fields gen_system_tasks and curr_system_tasks
for the system processes.

– Data structure kc_curr_par_str: New field curr_system_tasks for the system
processes.

Higher resolution for output of used CPU time

The used CPU time is now output in microseconds for TACs and in milliseconds for USERs.
The following interfaces have been changed to support this:

● KDCADMI

– Data structure kc_tac_str: New field taccpu_micro_sec for the average used CPU time
in microseconds.

– Data structures kc_user_str and kc_user_dyn1_str: New field cputime_msec for the
used CPU time in milliseconds.

Innovations in openUTM V6.3 Preface

22 Generating Applications

● KDCADM command interface

– KDCINF type=TAC: TACCPU outputs the average used CPU time in microseconds.

– KDCINF type=USER: CPUTIME outputs the used CPU time in milliseconds.

● KDCEVAL lists

– Some times are now output in microseconds in the KDCEVAL lists.

New trace functions

Additional traces can be enabled and disabled during live operation.

– ADMI trace, i.e. trace of the administration program interface (KDCADMI)
– X/Open traces (CPI-C, TX, XATMI)

The following interfaces have been extended to support this:

● Start parameters:

New start parameters ADMI-TRACE, CPIC-TRACE, TX-TRACE and XATMI-TRACE
for enabling traces.

● KDCADMI

Data structure kc_diag_and_account_par_str: New fields admi_trace, cpic_trace, tx_trace
and xatmi_trace for enabling and disabling traces.

KDCDEF input/output via LMS library elements

In BS2000 systems, it is possible to read KDCDEF statements from LMS library elements
and, in the case of inverse KDCDEF, output them to LMS library elements. The following
interfaces have been extended to support this:

● Generation

– KDCDEF statement OPTION: New operand value LIBRARY-ELEMENT(...) in the
DATA operand.

– KDCDEF statement CREATE-CONTROL-STATEMENTS: New operand value
LIBRARY-ELEMENT(...) in the TO-FILE operand.

● KDCADMI

Data structure kc_create_statements_str: New fields lib_name, elem_name, vers, type,
stmt_type and file_error_code.

Preface Innovations in openUTM V6.3

Generating Applications 23

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

● Messages

New messages K234, K519 and K520 when reading KDCDEF statements from LMS
library elements and outputting KDCDEF statements to LMS library elements.

Performance enhancements

● UTM cache

The UTM cache has been optimized in order to improve performance during intensive
use of the UTM cache (e.g. in the case of extremely extensive service data).

● UTM lock algorithm

The Compare&Swap functionality offered by the operating system is used throughout
on open platforms for concurrent access to internal UTM administration data.

● UTM network access

The network access on open platforms has been improved so that delays no longer
occur when sending data to UTM partner applications, in particular in low-load situa-
tions.

Other changes

● Messages

– The message area for system messages has been increased and now comprises
the range from K001 to K399 (previously up to K249). As a result, the following
message areas have been moved:

– The message numbers for messages exclusively output by KDCUPD now
occupy the range K800 to K899 instead of K250 to K322.

Messages output by KDCUPD and by online import are considered to be
system messages and remain unchanged.

– The message numbers for KDCCSYSL and KDCPSYSL messages now
occupy the range K600 to K649 instead of K550 to K599.

– New message K235 if name resolution for a computer takes too long.

– The default message destinations for messages K162 and K163 have been
changed.

Innovations in openUTM V6.3 Preface

24 Generating Applications

● KDCADMI

– The fields auto_connect in kc_lpap_str and auto_connect_number in kc_osi_lpap_str
have the property GPD instead of PD, changes to these fields always have a global
effect throughout the application. Any administrative change to the properties
"automatic establishment of connection" in the case of LPAP and "number of
connections" for OSI-LPAP remains effective beyond the end of the application.

– New field max_btrace_lth in kc_diag_and_account_par_str for the maximum length of
the recorded data when the BCAM trace function is activated.

● In the case of platforms on which UTM can run in 64-bit mode, KDCUPD makes it
possible to migrate from a 32-bit application environment to a 64-bit application
environment. At present, UTM only supports 64-bit mode on Unix platforms.

● The Oracle User ID can also be entered in lowercase in the KDCDEF statements
DATABASE and RMXA.

● The InstallAware installation procedure is used on Windows systems. As a result,
openUTM is supplied in the form of MSI files for Windows systems.

● New sample program ADJTCLT (ADJust Tac-CLass Table)

Using the C program unit ADJTCLT, users can control how the processes are
distributed to the TAC classes in the light of the current total number of processes and
the current number of asynchronous processes. To do this, the user creates a table
containing the desired settings. The settings must be chosen in such a way that there
is always at least one process free to perform other tasks, such as end-of-transaction
processing for distributed transactions for example.

1.3.2 Load simulation with "Workload Capture & Replay"

Thanks to the new Workload Capture & Replay function, it is possible to record UTM appli-
cation communications with UPIC clients and then replay these in combination with
adjustable load profiles. In this way, it is possible to test the behavior of the UTM application
at high loads under real-life conditions.

Workload Capture & Replay consists of the following components:

● UPIC Capture: Records communication with the UPIC client.

The trace function BTRACE (BCAM trace), which is present on all the server platforms,
is used to record a UPIC session.

● UPIC Analyzer: Used to analyze the recorded communication.

● UPIC Replay: Used to replay the recorded UPIC session with different load parameters
(speed, number of clients).

Preface Innovations in openUTM V6.3

Generating Applications 25

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

UPIC Analyzer and UPIC Replay are only available on 64-bit Linux systems and are supplied
with openUTM Client (UPIC).

openUTM for Unix and Windows systems also comes with the utility program kdcsort. You
can use kdcsort to sort the communication recorded by BTRACE over time if the UTM appli-
cation ran with more than one process during the recording period and multiple process-
specific files have therefore been generated.

1.3.3 New client function

On Windows systems, UPIC Client is available in both a 32-bit and a 64-bit variant.

1.3.4 New and modified functions for openUTM WinAdmin

● WinAdmin supports all the new features of UTM V6.3 relating to the administration
program interface. These include, for example, the new trace functions, the writing of
KDCDEF statements to library elements on Inverse KDCDEF runs in BS2000 or the
display of a user's used CPU time in milliseconds.

● Introduction of a lifetime for statistical values in order to limit the number of statistical
values stored in the configuration database.

1.3.5 New functions for openUTM WebAdmin

Additional functions

WebAdmin now provides additional functions that go beyond the functionality available in
the KDCADMI administration interface and which were previously available only in
WinAdmin:

● Display of message queues (DADM functionality)

● Administration of statistics collectors and tabular display of the associated values
(including the new "Lifetime for statistical values" function).

● Depiction of statistics in graphical form (graphs)

● Execution of threshold actions for statistics collectors

Innovations in openUTM V6.3 Preface

26 Generating Applications

Support for new features in openUTM V6.3

WebAdmin supports all the new features of UTM V6.3 relating to the administration
program interface. These include, for example, the new trace functions, the writing of
KDCDEF statements to library elements on Inverse KDCDEF runs in BS2000 or the display
of a user's used CPU time in milliseconds.

Integration in SE Server

WebAdmin can be installed as an add-on in the management unit (SE Manager) of an SE
Server. It then provides much the same range of functions as when operated outside of the
SE Manager.

Preface Notational conventions

Generating Applications 27

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
5.

00
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
1

1.4 Notational conventions

Metasyntax

The table below lists the metasyntax and notational conventions used throughout this
manual:

Representation Meaning Example

UPPERCASE
LETTERS

Uppercase letters denote constants
(names of calls, statements, field names,
commands and operands etc.) that are to
be entered in this format.

LOAD-MODE=STARTUP

lowercase letters In syntax diagrams and operand descrip-
tions, lowercase letters are used to denote
place-holders for the operand values.

KDCFILE=filebase

lowercase letters in
italics

In running text, variables and the names of
data structures and fields are indicated by
lowercase letters in italics.

filebase is the basic name of
KDCFILE

Typewriter
font

Typewriter font (Courier) is used in running
text to identify commands, file names,
messages and examples that must be
entered in exactly this form or which
always have exactly this name or form.

The call tpcall

{ } and | Curly brackets contain alternative entries,
of which you must choose one. The
individual alternatives are separated
within the curly brackets by pipe
characters.

STATUS={ ON | OFF }

[] Square brackets contain optional entries
that can also be omitted.

KDCFILE=(filebase
[, { SINGLE| DOUBLE}])

() Where a list of parameters can be
specified for an operand, the individual
parameters are to be listed in parentheses
and separated by commas. If only one
parameter is actually specified, you can
omit the parentheses.

KEYS=(key1,key2,...keyn)

Underscoring Underscoring denotes the default value. CONNECT= { A/YES | NO }

abbreviated form The standard abbreviated form of state-
ments, operands and operand values is
emphasized in boldface type. The abbre-
viated form can be entered in place of the
full designation.

TRANSPORT-SELECTOR=c‘C‘

Notational conventions Preface

28 Generating Applications

Other symbols

This symbol is used in the left-hand margin to indicate BS2000-specific elements of a
description.

This symbol is used in the left-hand margin to indicate Unix system specific elements of a
description.

This symbol is used in the left-hand margin to indicate Windows specific elements of a
description.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM in BS2000 and Unix systems.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM in BS2000 and Windows systems.

This symbol is used in the left-hand margin to indicate parts of the description that are only
relevant for openUTM in Unix systems and Windows systems.

 Indicates references to comprehensive, detailed information on the relevant topic.

i Indicates notes that are of particular importance.

v Indicates warnings.

utmpath
On Unix and Windows systems, designates the directory under which openUTM
was installed.

$userid
On BS2000 systems, designates the user ID under which openUTM was installed.

. . . An ellipsis indicates that a syntactical unit
can be repeated.
It can also be used to indicate sections of
a program or syntax description etc.

Start KDCDEF
:
:
OPTION DATA=statement_file
:
END

Representation Meaning Example

B

B

X

X

W

W

B/X

B/X

B/W

B/W

X/W

X/W

X/W

X/W

X/W

BB

BB

Generating Applications 29

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

2 Introduction to the generation procedure

i It is necessary to take account of a number of special characteristics when gener-
ating UTM cluster applications. For further details, see chapter “Notes on gener-
ating a UTM cluster application” on page 61

Alongside the program units that provide the services and the formats (for formatted
operation in BS2000 systems) you must create the following application components for a
UTM application:

● KDCFILE configuration file
The KDCFILE contains the configuration of your application. openUTM stores all the
administrative data required to operate the application in the KDCFILE and reserves
areas for the user data and for transaction management. When operating the appli-
cation, all tasks and work processes of the application access the KDCFILE.
This manual describes how to create the KDCFILE.

● KDCROOT main routine
The program units you have created run under the control of KDCROOT. The ROOT
tables are used as the basis of the main routine KDCROOT.
The ROOT tables contain application-specific configuration data that is required by the
main routine KDCROOT. When operating an application, the main routine KDCROOT
establishes the connection from openUTM to the program units, the database and
under BS2000 systems to the formatting system.
This manual also describes how to create the sources for the ROOT tables.

Introduction to the generation procedure

30 Generating Applications

Figure 1: Structure of the UTM application program

In order to create the ROOT table source and the KDCFILE, you must first define the config-
uration of application. This entire procedure is known as “generation”. To allow you to
configure and generate the KDCFILE and the ROOT table sources, openUTM provides the
KDCDEF generation tool.

 The KDCDEF generation tool is described in detail in chapter “The KDCDEF gener-
ation tool” on page 247.

Information on the KDCFILE can be found on page 43.

The information on generation contained in this chapter “Introduction to the gener-
ation procedure” applies both to standalone UTM applications and to UTM cluster
applications. You will find additional information on generating UTM cluster applica-
tions in the chapter “Notes on generating a UTM cluster application” on page 61.

You must create the application program using KDCROOT, user program units, interfaces
and other application components like the UTM system modules, the runtime systems of
the programming languages, database connection modules etc.

 More information about creating application programs using ROOT tables and
application components can be found in the corresponding openUTM manual
“Using openUTM Applications”.

Information about creating application program units can be found in the openUTM
manuals “Programming Applications with KDCS” and “Creating Applications with
X/Open Interfaces”.

KDCROOT /

P
ro

g
ra

m
 u

n
it

1

P
ro

g
ra

m
 u

n
it

2

P
ro

g
ra

m
 u

n
it

n

P
ro

g
ra

m
 u

n
it

3

P
ro

g
ra

m
 u

n
it

4

P
ro

g
ra

m
 u

n
it

5

UTM application program

UTM system functions 1)

1)Under Unix systems and Windows systems the UTM system functions are part of the KDCROOT module

Introduction to the generation procedure Configuring the UTM application

Generating Applications 31

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

Information about creating formats in BS2000 systems can be found in the manuals
for FHS.

2.1 Configuring the UTM application

To execute the application program, you must define the following information for example:

– the application properties
– the UTM user IDs and data access control
– the properties of clients and printers
– the properties of partner applications (server applications)
– the properties of services, i.e. of transaction codes and program units
– message queues (user, TAC and temporary queues)
– the structure of the application (subdivision into load modules for use with BLS, shared

objects or DLLs)
– reserved locations in UTM object tables for dynamic configuration

These properties combine to form the configuration, and are defined using the KDCDEF
control statements. The KDCDEF control statements serve as input for the generation tool
KDCDEF.
The KDCDEF control statements are listed in accordance with their function group starting
on page 247.

The KDCFILE administrative file is used to store all configuration information and thus all
administrative data required to run the application.

B
B

KDCDEF run Introduction to the generation procedure

32 Generating Applications

2.2 Generating application components - result of the KDCDEF
run

You can generate the KDCFILE and the ROOT table sources in a single KDCDEF run or in
separate KDCDEF runs. The KDCDEF statement OPTION allows you to define the gener-
ation objects to be created by KDCDEF:

For UTM cluster applications, there is the additional option CLUSTER, see
section “OPTION - manage the KDCDEF run” on page 427.

The name of the ROOT tables is defined using the ROOT statement.

Under BS2000 systems rootname is the name of the ROOT table module.

Under Unix systems and Windows systems rootname is a name component of the ROOT
table source (ROOTSRC).

KDCDEF reads the control statements from standard input or from a file.

Under BS2000 systems standard input means SYSDTA (with the SDF command
ASSIGN-SYSDTA you can assign SYSDTA to a SAM or ISAM file, a library member of type
S, a PLAM library, or *SYSCMD, for example)

Under Unix systems and Windows systems standard input means stdin (i.e. from the Unix
or Windows command level).

You will find a detailed description of how to start KDCDEF and pass the control statements
to KDCDEF on page 256.

All KDCDEF statements are subjected to syntax and plausibility checks. If KDCDEF does
not detect any serious errors in this process, the files listed in figure 2 on page 33 are
created for a standalone UTM application.

Figure 5 on page 64 shows what files are created when you generate a UTM cluster appli-
cation.

OPTION...,GEN={ KDCFILE | ROOTSRC | NO | ALL }

ROOT rootname

B

X/W

X/W

B

B

B

X/W

X/W

Introduction to the generation procedure KDCDEF run

Generating Applications 33

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

i Even if the OPTION statement is used in a KDCDEF run to cause only part of the
configuration to be (newly) created, you nevertheless specify the statements for the
entire configuration for every generation run. Only then is KDCDEF able to check
the completeness and consistency of the generation statements.

KDCDEF always performs plausibility checks for all statements. If, for instance, only
a ROOT source is to be generated in a KDCDEF run, KDCDEF also checks the
statements that only affect the KDCFILE.

This complete check allows inconsistencies that arise on creating the ROOT table
module and the KDCFILE that would otherwise only be detected when the appli-
cation is started to be identified early and consequential errors to be avoided.

The following figure shows what files are created when you define a standalone UTM appli-
cation.

Figure 2: The result of the KDCDEF run (with OPTION ...,GEN=ALL) for a standalone UTM application.

KDCDEF generation tool

File containing KDCDEF
control statements

ROOT table
sources

KDCFILE

KDCDEF
log

KDCDEF run Introduction to the generation procedure

34 Generating Applications

KDCDEF statements for a minimal configuration

You must pass at least the following control statements to KDCDEF before you can run your
UTM application.

You must execute additional KDCDEF statements for distributed processing, connecting
specific clients and printers, etc. You will find more information on this subject in chapter
“Generating applications for distributed processing” on page 73, section “Connecting
clients to the application” on page 126 and section “Generating printers (on BS2000
systems and Unix systems)” on page 166.

The lines indicated by ’*’ are comments.

Minimal configuration for BS2000 systems:

* Specify which part of the application program is to be created *
* by KDCDEF *

OPTION GEN=...

* Specify the name of the Root table *

ROOT applroot

* Specify application parameters *

* Application name with which the application is started or with which
* clients can address the application

MAX APPLINAME=sample

* Specify the base directory of the application.

*MAX KDCFILE=filebase

* Define the maximum number of process of the UTM application:

MAX TASKS=2

B

B
B
B
B

B
B

B
B
B

B
B

B
B
B

B
B

B

B

B
B
B
B
B

Introduction to the generation procedure KDCDEF run

Generating Applications 35

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

* optional: Generate the database system (ORACLE in the example) *

* BS2000 systems:

DATABASE TYPE=XA

* optional:Specify the formatting system used *

* the statement FORMSYS must only be specified if your UTM application
* is to run in formatted mode

FORMSYS TYPE=FHS

* optional: Connection points (LTERM partners) for clients/TS applications *

* For example, generate open LTERM pools so that clients/TS applications
* can connect to the application

* LTERM pools for the various types of client --------------------------- (1)

TPOOL LTERM=client,NUMBER=...,PTYPE=*ANY,PRONAM=*ANY
TPOOL LTERM=clientr,NUMBER=...,PTYPE=UPIC-R,PRONAM=*ANY
TPOOL LTERM=appli,NUMBER=...,PTYPE=APPLI,PRONAM=*ANY
TPOOL LTERM=socket,NUMBER=...,PTYPE=SOCKET,PRONAM=*ANY

* Generate services *

* Some own program units that initiate services and generate the
* corresponding transaction codes
* (for COMP=... enter the compiler used or the runtime system, mostly
* „ILCS“,)

PROGRAM=userpu,COMP=...
TAC usertc,PROGRAM=userpu. ...--- (2)

B
B
B

B

B
B

B
B
B

B
B

B
B

B
B
B

B
B

B

B
B
B
B
B

B
B
B

B
B
B
B

B
B
B

KDCDEF run Introduction to the generation procedure

36 Generating Applications

* optional: Administration *

* Administration program KDCADM

PROGRAM KDCADM,COMP=ILCS)

* Generate administration command KDCSHUT so that the application
* can always be terminated normally

TAC KDCSHUT,PROGRAM=KDCADM ... -- (3)

* In applications with user IDs:
* user ID for the administrator

USER admin,PERMIT=ADMIN,PASS=....

* If administration will be done via WinAdmin/WebAdmin,
* then you need to submit the following TAC and PROGRAM statements
* and generate a connection for the UPIC client (an LTERM pool in this case)
* Furthermore, you should then generate the admin user ID with administration
* authorization and without the restart property or generate your own
* user ID with administration authorization and without the restart property
* for administration using WinAdmin/WebAdmin.

Administration program KDCWADMI

PROGRAM KDCWADMI,COMP=..
TAC KDCWADMI,PROGRAM=KDCWADMI,CALL=BOTH,ADMIN=Y

TPOOL LTERM=WADM,PTYPE=UPIC-R, PRONAM=*ANY, NUMBER=1 ---------------------(5)

*optional: Reserve space in the table for dynamic administration *

RESERVE OBJECT=...,NUMBER=... --- (4)

END

B
B
B

B

B

B
B

B

B
B

B

B
B
B
B
B
B
B

B

B
B

B
B

B
B
B

B
B
B
B

Introduction to the generation procedure KDCDEF run

Generating Applications 37

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

Comments

(1) For each of the client types (terminal, UPIC client, TS application) that are to connect
to the application, you must generate a separate LTERM pool. For terminals, a single
LTERM pool is sufficient - depending on the type of terminals that are to sign in to the
application. You can also generate the LTERM pools so that all clients of a particular
type can log in - regardless of the computer on which they are located.

You can also implement client connections with the help of the LTERM/PTERM state-
ments. In particular, you must use LTERM/PTERM statements if the UTM application
itself establishes connections to clients (e.g. TS applications) or if a printer is to be
generated.

(2) You can also assign several transaction codes to a program unit if the program unit
performs several different services.

(3) You can generate all administration commands that you will want to use in operation
using additional TAC statements. If you want to use your own administration programs
for administration purposes, then you must generate these programs with the corre-
sponding PROGRAM and TAC statements.

(4) You can add additional objects to the application configuration during live operation with
the help of the administration (see the openUTM manual “Administering Applications”).
You will need to create space in the tables in the KDCFILE for these objects in the
KDCDEF generation.

(5) PTERM/LTERM with privileged LTERM also possible, see openUTM manual “Adminis-
tering Applications”.

B

BB

B

B

B

B

B

B

B

B

BB

B

BB

B

B

B

BB

B

B

B

BB

B

KDCDEF run Introduction to the generation procedure

38 Generating Applications

Minimal configuration for Unix systems, Windows systems

* Specify which part of the application program is to be created *
* by KDCDEF *

OPTION GEN=...

* Specify the name of the Root table *

ROOT applroot

* Specify application parameters *

* Application name with which the application is started or with which
* clients can address the application

MAX APPLINAME=sample

* Specify the base directory of the application.
* This directory is the directory in which the KDCFILE is stored,
* amongst other things.

MAX KDCFILE=filebase

* Specify the key for the shared memory area

MAX CACHESHMKEY=..,IPCSHMKEY=...,KAASHMKEY=...
 [,OSISHMKEY=...,XAPTPSHMKEY=...] ------------------------ (1)

Define the semaphore key for the global application semaphore
MAX SEMARRAY=number,number1

* Define the maximum number of process of the UTM application.

MAX TASKS=2

* optional: Generate the database system (in the example ORACLE) *

RMXA XASWITCH=xaoswd,SPEC=C

X/W

X/W
X/W
X/W
X/W

X/W
X/W

X/W
X/W
X/W

X/W
X/W

X/W
X/W
X/W

X/W
X/W

X/W

X/W
X/W
X/W

X/W

X/W

X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W

X/W
X/W
X/W

X/W

X/W

Introduction to the generation procedure KDCDEF run

Generating Applications 39

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

* optional: Connection points (LTERM partners) for clients/TS applications *

* For example, generate open LTERM pools so that clients/TS applications
* can connect to the application

* LTERM pools for the various client types ------------------------------ (2)

TPOOL LTERM=CLIENTR,PTYPE=UPIC-R,NUMBER=...
TPOOL LTERM=CLIENTL,PTYPE=UPIC-L,NUMBER=...
TPOOL LTERM=APPLI,PTYPE=APPLI,NUMBER=...
TPOOL LTERM=SOCKET,PTYPE=SOCKET,NUMBER=...
TPOOL LTERM=TERM,PTYPE=TTY,NUMBER=...

* Generate services *

* Some own program units that initiate services and generate the

* corresponding transaction codes
* (for COMP=... enter the compiler used)

PROGRAM=userpu,COMP=...
TAC usertc,PROGRAM=userpu. ...--- (3)

X/W
X/W
X/W

X/W
X/W

X/W

X/W
X/W
X/W
X/W
X/W
X/W

X/W
X/W
X/W

X/W

X/W
X/W

X/W
X/W
X/W

KDCDEF run Introduction to the generation procedure

40 Generating Applications

Comments

(1) You only need to specify the shared memory key OSISHMKEY= and XAPTPSHMKEY=
if you generate objects for communication via OSI TP. The other shared memory areas
are needed by every UTM application, running under Unix systems or Windows.

(2) Under Unix systems or Windows systems you must generate a separate LTERM pool
for each type of client (terminal, UPIC client, TS application) that is to be able to connect
to the application. You can generate the LTERM pools so that all clients of a particular
type are able to sign on - regardless of the computer on which they are located.

* optional: Administration *

* Administration program KDCADM

PROGRAM KDCADM,COMP=C

* Generate administration command KDCSHUT so that the application
* can always be terminated normally

TAC KDCSHUT,PROGRAM=KDCADM ...--- (4)

* In applications with user IDs: user ID for the administrator

USER admin,PERMIT=ADMIN,PASS=....

* If administration will be done via WinAdmin/WebAdmin,
* then you need to submit the following TAC and PROGRAM statements
* and generate a connection for the UPIC client (an LTERM pool in this case)

* Administration program KDCWADMI

PROGRAM KDCWADMI,COMP=C
TAC KDCWADMI,PROGRAM=KDCWADMI,CALL=BOTH,ADMIN=Y

TPOOL LTERM=WADM,PTYPE=UPIC-R, NUMBER=1 ----------------------------------(6)

* optional: Reserve space in the table for dynamic administration *

RESERVE OBJECT=...,NUMBER=... --- (5)

END

X/W
X/W
X/W

X/W

X/W

X/W
X/W

X/W

X/W

X/W

X/W
X/W
X/W

X/W

X/W
X/W

X/W
X/W

X/W
X/W
X/W

X/W
X/W
X/W
X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

Introduction to the generation procedure KDCDEF run

Generating Applications 41

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

You can also implement client connections with the help of the LTERM/PTERM state-
ments. In particular, you must use LTERM/PTERM statements if the UTM application
itself establishes connections to clients (e.g. TS applications) or if a printer is to be
generated on Unix systems.

(3) You can also assign several transaction codes to a program unit if the program unit
performs several different services.

(4) You can generate all administration commands that you will want to use in operation
using additional TAC statements. If you want to use your own administration programs
for administration purposes, then you must generate these programs with the corre-
sponding PROGRAM and TAC statements.

(5) You can add additional objects to the application configuration during live operation with
the help of the administration (see the openUTM manual “Administering Applications”).
You will need to create space in the tables in the KDCFILE for these objects in the
KDCDEF generation.

(6) PTERM/LTERM with privileged LTERM also possible, see openUTM manual “Adminis-
tering Applications”.

Regenerating existing UTM applications

If you want to generate a new ROOT table source and/or a new KDCFILE for an existing
application (i.e. KDCROOT and KDCFILE already exist), then you must note the following:

You must enter the information on objects that are entered dynamically in the KDCFILE
during operation or whose properties have been changed in the new KDCFILE. The
“inverse KDCDEF“ function is provided for this purpose. With this function you create the
control statements from the configuration information of the current KDCFILE that can be
used immediately. You will need to call the CREATE-CONTROL-STATEMENTS control
statement in the KDCDEF run in order to do this.

Via the UTM administration you can also execute the inverse KDCDEF run while the appli-
cation is running.

 You will find more information on the “inverse KDCDEF“ function in section “Inverse
KDCDEF” on page 271.

X/W
X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

KDCDEF run Introduction to the generation procedure

42 Generating Applications

Figure 3: KDCDEF run with inverse KDCDEF

KDCDEF generation tool

KDCDEF

ROOT table
source

Newly created KDCDEF
log

CREATE-CONTROL-STATEMENTS...

OPTION DATA=control-statements-file

.

.

.

.

.

.

File(s) containing

KDCFILE
containing objects entered

KDCFILE

created from the
control statements

KDCFILE

dynamicallycontrol statements

Introduction to the generation procedure KDCFILE

Generating Applications 43

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

2.3 The KDCFILE

The KDCFILE contains all data required to run a UTM application. It is shared by all appli-
cation processes during runtime. In its most basic form, the KDCFILE consists of a single
file (a PAM file under BS2000 systems). The KDCFILE can also be distributed over several
files. For security reasons, it can be duplicated.

The KDCFILE is logically divided into three areas:

● Administrative data, see page 47

● Page pool, see page 47

● Restart area, see page 50

KDCDEF generation

The KDCFILE is generated during the KDCDEF run by specifying

in the KDCDEF statement.

The following characteristics of the KDCFILE must be specified at the KDCDEF generation:

● Data block size
Each area within the KDCFILE is organized in units of either 2K, 4K or 8K. These units
are known as UTM pages. You can define the block size of a UTM page using the
following control statement:

Whether a block size of 2K, 4K or 8K is to be favored depends on the sizes of the data
areas (GSSB, LSSB, etc.) and the lengths of the messages that your program uses.
See also section “Page pool” on page 47 for more information.

● Base name of the KDCFILE
You specify the base name (called the filebase in the following) and single or dual-file
operation of the KDCFILE with:

In the case of dual-file operation, the contents of both KDCFILE files are always
identical. If one of the files is corrupted, it can be restored by simply copying the other
file.

OPTION...,GEN=KDCFILE or GEN=ALL

MAX...,BLKSIZE={ 2K | 4K | 8K }

MAX..., KDCFILE={ filebase [, SINGLE | DOUBLE] }

KDCFILE Introduction to the generation procedure

44 Generating Applications

The name specified in filebase is also the base name of additional files and file genera-
tions of the application (for example, the system and user log file).
filebase is therefore the base name of the application.

The significance of the base name filebase is different for each of the various platforms:

BS2000 systems:

The full names of the files derived from filebase have the following format:

The total length of the file name must not exceed 54 characters. The base name filebase
can be up to 42 characters in length, including userid and catid. If no catid or userid is
specified when defining the base name (filebase=prefix), the lengths of these fields must
still be taken into consideration when determining the total length of the file name.

If file generation groups (i.e. USLOG files, SYSLOG generation group) are not used in
the application, prefix can be up to 33 characters in length. Otherwise, prefix must not
exceed 26 characters.

The KDCDEF generation tool then creates the following files:

– filebase.KDCA in the case of single-file operation (SINGLE)
– filebase.KDCA and filebase.KDCB in the case of dual-file operation (DOUBLE)

When splitting the KDCFILE, additional files are created, see section “Splitting the
KDCFILE” on page 55.

B

BB

B

B

B

B

B

B

B

B

B

B

[:catid:] [$userid.] prefix. suffix [(* number)]

Catalog ID
BS2000 user ID
Freely selectable name part
Name part assigned by openUTM, which describes the function
of the respective file
Identifies a file generation group, if necessary

catid
userid
prefix
suffix

(*number)

6 10 26 5 7

max.42 (= base name)

max.54

B

B

B

B

B

B

B

B

B

B

B

B

Introduction to the generation procedure KDCFILE

Generating Applications 45

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

Unix systems, Windows systems:

filebase specifies the name of the base directory in which the KDCFILE is stored.

The KDCFILE is created by KDCDEF under the filebase directory, where filebase is the
fully qualified name of a directory which must be created before the KDCDEF run.

The KDCDEF generation tool creates the following files in the filebase file directory:

– KDCA in the case of single-file operation (SINGLE)
– KDCA and KDCB in the case of dual-file operation (DOUBLE)

In addition to the KDCFILE, the filebase directory generally contains the following files
and subdirectories:

– files of the page pool or restart area in the case of a split KDCFILE
– directories for the user log files (USLOG files)
– the system log file (SYSLOG file) or the SYSLOG directory with the system log file

generations.
– ROOT table source
– the application program
– DUMP directory: The dump files are written to this directory, as are the temporary

KTA-TRCA files which are created on a PEND-ERROR and during program
exchange.

● Size of the page pool
You can define the size of the page pool using the following control statement:

Further information can be found in section “Page pool” on page 47.

● Size of the restart area
You can define the size of the buffer and the restart area using the following control
statement:

Further information can be found in section “Restart area” on page 50.

During generation, the page pool and the restart area can be distributed over several files.
Further information can be found in section “Splitting the KDCFILE” on page 55.

MAX...,PGPOOL=(number, warnlevel1, warnlevel2)

MAX ...,RECBUF=(number,length)

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCFILE Introduction to the generation procedure

46 Generating Applications

Data security - dual-file operation of the KDCFILE

For security reasons, it may make sense to duplicate the KDCFILE (dual-file operation). If
one of the files is destroyed, then you can continue working with the other KDCFILE without
losing data.

Dual-file operation of the KDCFILE does not have any significant effect on I/O times (these
are certainly not doubled), and therefore does not reduce performance.

With dual operation of the KDCFILE, it makes sense to store the two files on different
volumes (disks). If one of the volumes is physically damaged, this ensures that a viable
copy is still available.

BS2000 systems:

You can create the files on the desired volumes by issuing appropriate /CREATE-FILE
commands before the KDCDEF run or by copying the files after the KDCDEF run. When
generating the application, you can also use the CATID parameter of the MAX statement to
assign different CATIDs to the two files.

A copy of the KDCFILE is maintained when you specify MAX KDCFILE=(....,DOUBLE) in the
KDCDEF generation.

Unix systems:

Under Unix systems you can store the two KDCFILEs on different disks. This is generally
only possible with the help of symbolic links (ln -s) to raw devices or across different file
systems across different file systems. In this manner, you have a copy of the file even if one
of the two disks is physically destroyed.

A copy of the KDCFILE is maintained when you specify MAX KDCFILE=(....,DOUBLE) in the
KDCDEF generation.

Windows systems:

On Windows systems you can additional increase data security with the operating
resources already available. For example, you can use single-file operation for the
KDCFILE (MAX KDCFILE=(....,SINGLE)) and create a mirrored image of the disk on which
the KDCFILE is stored on another disk. During operation, all changes to the KDCFILE are
also made on the mirror disk. Even if one of the disks is physical destroyed, you can still
continue working with the other hard disk without losing data.

B

B

B

B

B

B

B

X

X

X

X

X

X

X

W

W

W

W

W

W

W

Introduction to the generation procedure KDCFILE - administrative data

Generating Applications 47

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

2.3.1 Administrative data

The administrative data area contains configuration information, such as application
runtime parameters, lists of all objects that can be addressed by name, administrative data
on the page pool and restart area, and tables of user IDs, clients, LTERM partners, trans-
action codes, key and lock codes, and function keys.

All tasks and work processes of the application work with the administrative data and use
the application to exchange information.

The administrative data itself is initialized using the KDCDEF generation tool. When starting
the application, it is loaded into a shared memory, which can then be accessed by all
tasks/work processes of the application.

Under BS2000 systems this memory is located in a Common Memory Pool.

Under Unix systems and Windows systems the administrative data is put into a shared
memory segment.

In a UTM-S application, openUTM writes the administrative data (including any modifica-
tions made in the meantime) back to the KDCFILE at certain intervals (Periodic Write). This
also occurs at the end of the application run. This version of the administrative data then
forms the basis for the next application run.

In a UTM-F application, openUTM writes only certain modified administrative data back to
the KDCFILE, e.g. changed user passwords and generation data incorporated by means of
dynamic administration.

2.3.2 Page pool

The page pool stores user data created during the application run. This includes:

– LSSBs, GSSBs, TLS blocks, and ULS blocks
– message queues, i.e. asynchronous messages (including time-driven messages) for

clients, asynchronous services and service-controlled queues, and the dead letter
queue, among other items

– buffered user log records (USLOG)
– service data (KB program area, last dialog message, etc.)
– dialog messages buffered after input as a result of TAC class or priority control
– output messages to clients

A number of specific characteristics apply to UTM cluster applications, see chapter “Notes
on generating a UTM cluster application” on page 61.

B

X/W

X/W

KDCFILE - page pool Introduction to the generation procedure

48 Generating Applications

The active UTM application accesses the page pool via the UTM cache. During KDCDEF
generation, you can define the size of the page pool (number of UTM pages) using the MAX
statement:

number Size of the page pool in UTM pages

warnlevel1 The first warning is output when the percentage utilization of the page pool
reaches the value specified here

warnlevel2 The second warning is output when the percentage utilization of the page pool
reaches the value specified here

The utility program KDCUPD provides a way of obtaining more detailed information about
the source of the data stored in the page pool. It is possible to display the number of pages
used for each application object, e.g. for each user. You will find more information on this
subject in the chapter “The tool KDCUPD – updating the KDCFILE” on page 591.

Estimating the necessary size of the page pool

Once the page pool size has been defined, it cannot be modified while the application is
running. When designing a UTM application, it is therefore recommended that you estimate
the page pool size which will be required during runtime. The page pool size cannot be
modified until after the application has been terminated. This involves regenerating the
KDCFILE using the KDCDEF generation tool, whereby the existing user data is copied then
from the old KDCFILE to the new KDCFILE using the KDCUPD tool. Further information
can be found in chapter “The tool KDCUPD – updating the KDCFILE” on page 591.

When estimating the required page pool size, you must examine the behavior of the
program units, identify which data areas are stored in the page pool, and determine their
size. The following must also be noted:

● The page pool is divided into UTM pages:
a UTM page is either 2KB, 4KB or 8KB in length, depending on the value of the
BLKSIZE= parameter in the MAX statement.

● The following applies for the data areas GSSB, LSSB, TLS, and ULS:
each of these data areas begins on a new UTM page. Of each UTM page, 1994 bytes
(in the case of a 2KB UTM page), 4042 bytes (in the case of a 4KB UTM page) or 8138
bytes (in the case of a 8KB UTM page) are available for user data. The remaining space
is reserved by openUTM.

MAX...,PGPOOL=(number, warnlevel1, warnlevel2)

Introduction to the generation procedure KDCFILE - page pool

Generating Applications 49

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

● The following applies to asynchronous messages:
Each message begins on a new UTM page. Of the first UTM page of a message, at
least 1914 bytes (in the case of a 2KB UTM page), 3962 bytes (in the case of a 4KB
UTM page) or 8058 bytes (in the case of a 8KB UTM page) are available for user data.
Of each follow-up page occupied by the message, at least 2030 bytes (in the case of a
2KB UTM page), 4078 bytes (in the case of a 4KB UTM page) or 8174 bytes (in the case
of a 8KB UTM page) are available for user data.

In future versions of openUTM, it is possible that less space will be provided for user
data on each UTM page. When programming, therefore, you should ensure that all the
available space is not exhausted.

● If an existing area is modified, openUTM stores the new area up to the end of the trans-
action at another location in the page pool. The area is thus temporarily duplicated.

Figure 4: Dual-file operation of changed areas in the page pool

i You must also allow for the volume of FPUT and LPUT messages. Make sure that
the page pool is not too small.

Page poolProgram unit

INIT

SGET

SPUT

.

PEND RE/FI/FC
Release old GSSB

..

..

.

..

.

New GSSB

..

.

Old GSSB

KDCFILE - restart area Introduction to the generation procedure

50 Generating Applications

Page pool overflow warning

It is vital that the page pool does not become full while the application is running. For this
purpose, openUTM provides the following protective measures:

● There are two warning levels (percentages), which can be set during generation. If utili-
zation of the page pool exceeds or falls short of these values, openUTM outputs UTM
message K040 or K041, so that the user can respond with a MSGTAC routine.

● Local asynchronous messages and LPUT calls to write records to the USLOG file are
rejected if utilization of the page pool has reached warning level 2.

● Asynchronous messages from a partner application via LU6.1 or OSI TP are rejected if
utilization of the page pool has reached warning level 2. The connection is cleared.
When communicating via OSI TP, the message K119 OSI-TP error information with
the insert DIA3=21 is output in both applications. The queued message is resent to the
partner application at regular intervals determined by the value in MAX CONRTIME.

● An asynchronous job issued by a terminal or TS application is reject with UTM message
K101 if utilization of the page pool has reached warning level 2.

2.3.3 Restart area

KDCS calls in a program unit will result in modifications to the administrative data.
openUTM collects information on all changes made within a transaction - i.e. from the first
INIT call to the end of the transaction - in a process-specific storage area. Under BS2000
systems this is a buffer in class 5 memory.

In a UTM-S application, openUTM uses the information in this buffer to create a restart data
record at the end of the transaction. It then writes this data record to the restart area of the
KDCFILE. The data record describes the modifications to the administrative data which
were made as a result of the transaction. In the case of a warm start, it is used by openUTM
to trace the effect of the transaction. The size of the restart area determines the interval at
which modifications to the administrative data must be transferred to the administrative data
area of the KDCFILE.

In a UTM-F application, restart data records are written only for transactions in which
passwords were changed or in which administrative data was modified by means of
dynamic configuration.

The data records in the restart area are combined by openUTM, i.e. a UTM page in this area
generally contains several data records.

Introduction to the generation procedure KDCFILE - restart area

Generating Applications 51

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

During KDCDEF generation, you can define the size of the buffer and the restart area using
the following statement:

number Size of the restart area for each process in the KDCFILE, specified in UTM
pages

length Size of the buffer for each process in the main memory, specified in bytes

Setting the length parameter

The length parameter lets you reserve for each process a buffer area that is length bytes long
in main memory. openUTM uses this area to buffer changes to administrative data while a
transaction is still open and can therefore still be reset.

For length, you must calculate the space requirements of the application’s transactions in
the buffer using default values:

● In addition to the basic requirement of 40 bytes per transaction, you must also allow for
the following:

– up to 50 bytes per KDCS call, but 80 bytes per MCOM call.
On 64-bit platforms you will need to double the memory requirement.

– up to 300 bytes per ADMI call.

● In the case of distributed processing, the following additional requirements must be
taken into consideration:

– 300 bytes per LU6.1 communication partner

– 200 bytes per OSI TP partner

● In the case of asynchronous administration by means of an FPUT call, please note that
all FPUT NT calls from a program unit to the same administration TAC are processed
by the UTM administration program in a single transaction. The individual adminis-
tration commands require the following buffer space, which must be taken into consid-
eration in length:

– 0 bytes for each KDCHELP and KDCINF administration command

– for all other administration command others
300 bytes under BS2000 systems
360 bytes under Unix systems and Windows systems

If RECBUF=length is generated too small, i.e. if the buffer is not large enough for a trans-
action, openUTM rejects the KDCS call or reset the transaction or cancel the transaction
abnormally.

MAX ...,RECBUF=(number,length)

B

X/W

KDCFILE - restart area Introduction to the generation procedure

52 Generating Applications

Setting the number parameter

The number parameter lets you reserve for each process a buffer area whose size is
number UTM pages in the KDCFILE. openUTM uses this area to buffer changes to the
administrative data of completed transactions until the changed data is written to the
KDCFILE in the next periodic write. A UTM page generally contains several data records,
since these generally occupy only slightly less space than the corresponding information in
the buffer.
If number is defined too low, KDCDEF automatically increases this to the minimum value.

When combined with the restart records, the administrative data in the KDCFILE always
represents the last valid state of the application. When using UTM-S, openUTM automati-
cally updates the administrative data in the KDCFILE (Periodic Write) before a restart area
becomes full during runtime. All pages containing administrative data in which modifications
have been made are written to the KDCFILE parallel to the transactions currently active. All
data records written previously to the restart areas thus become obsolete.

i If the restart area is large, the administrative data in the KDCFILE is updated less
frequently during runtime. When performing a warm start following termination of
the application, however, large quantities of data records from the restart areas
must be incorporated in the KDCFILE, i.e. the warm start takes longer. The opposite
applies if the restart area is small: since administrative data is updated frequently
during runtime, the time required for warm start is reduced.

number should be set such that the space available in the restart area is at least a multiple
of the buffer generated using the length parameter.

In a UTM-F application, the volume of administrative data written back to the KDCFILE is
much less, e.g. changed user passwords and generation data modified by means of
dynamic configuration. The number parameter can therefore be set lower.

Introduction to the generation procedure Creating a new KDCFILE during operation

Generating Applications 53

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

2.3.4 Creating a new KDCFILE during operation

To minimize the downtime for a UTM application during a new generation, it is also possible
to create a new KDCFILE for an application while the application is running. However, you
must bear the following in mind:

BS2000 systems:

The entire base name of the new KDCFILE consists of the catalog ID, user ID and prefix
and may not be the same as the old (current) KDCFILE (the structure of the file name is
described on page 44).

To ensure this, use the following procedure:

1. In the MAX statement, enter the file name without the userid in the filebase parameter.
And under prefix (see page 44) enter the same value as used for the generation of the
“old” KDCFILE.

2. Start the KDCDEF run under a BS2000 user ID which is different to the one under which
the application is running (for example, use userid2, if the old KDCFILE is called
:catid:$userid1.prefix.KDCA).

You can subsequently - when the application is not running - copy the KDCFILE to the
userid1 and execute a KDCUPD run, if necessary. You can copy the KDCFILE using:

/COPY-FILE FROM-FILE=$userid2.filebase.KDCA,TO-FILE=$userid1.filebase.KDCA

Start the KDCDEF run under userid1 or in MAX KDCFILE= enter the base name with the
user ID,. This will cause KDCDEF to interrupt the KDCDEF run with the message K404
"DMS error D5B1 on file ...".

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Creating a new KDCFILE during operation Introduction to the generation procedure

54 Generating Applications

Unix systems, Windows systems:

You must ensure that the directory in which the new KDCFILE will be written is not the same
directory as the base directory of the running UTM application.

To achieve this, proceed as follows:

1. Specify the base directory filebase with “.” in the MAX statement, i.e. the KDCFILE will
be written in the directory in which KDCDEF is started:

MAX KDCFILE=(.,S) or MAX KDCFILE(.,D)

2. You start KDCDEF in a directory other than the base directory of the UTM application.

You can then copy the KDCFILE to the base directory later and execute a KDCUPD run, if
necessary.

If you start the KDCDEF run in the base directory or specify the fully qualified base directory
in MAX KDCFILE= , then KDCDEF aborts the KDCDEF run with message U185.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Introduction to the generation procedure Performance aspects

Generating Applications 55

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

2.4 Performance aspects - tuning

An important factor in the performance of a UTM application is the efficiency with which
openUTM can access the KDCFILE, particularly in the case of high transaction rates. With
a large configuration, i.e. a large KDCFILE, it is recommended that you optimize the access
times. This can be achieved in two ways:

● splitting the KDCFILE (see below)

● KDCFILE on raw-device (only under Unix systems, see page 57)

● KDCFILE on stripe set (only under Windows systems, see page 60)

In BS2000 systems, you can also use the HIPERFILE concept to optimize performance,
see the manual "BS2000 OSD/BC - Introductory Guide to DMS".

2.4.1 Splitting the KDCFILE

In order to improve the I/O behavior of your application, you can split the KDCFILE by
swapping out the page pool and/or the restart area of the KDCFILE. Splitting the page pool
and restart area across several files is particularly advantageous if you have very high
transaction rates, since openUTM then distributes the number of access operations to
these areas across the various different files.

The administrative data is essentially stored in the main file KDCA. The swapped-out page
pool or restart area can be split between several files by means of generation. Provided this
results in the use of numerous different hardware paths, access times can be reduced
considerably thereby enhancing performance.

X

W

B

B

Splitting the KDCFILE Introduction to the generation procedure

56 Generating Applications

Generation notes

You can use the following operands of the KDCDEF control statement MAX to define the
areas of the KDCFILE to be swapped out during generation, and to specify the number of
files created for these areas:

● Page pool files

● Restart area files

In the case of dual-file operation, which is defined using the statement
MAX...,KDCFILE=(....,DOUBLE), these files are also maintained twice.

File names

The individual files of the KDCFILE that are contained in the swapped out areas have the
same base name filebase as the main file KDCA and have the following names:

– Page pool files: P01A, P02A, P03A,
If you are keeping a dual KDCFILE, the files P01B, P02B, P03B, ... are also created.

– Restart area: R01A, R02A, R03A,
If you are keeping a dual KDCFILE, the files R01B, R02B, R03B, ... are also created.

Example

You want to set up your KDCFILE as follows:

– Page pool distributed across two files.
– Restart area located in a separate file.
– Duplicated file names.

For the base names, the place holder FILEBASE is used in this example.

MAX...,PGPOOLFS=number

MAX...,,RECBUFFS=number

Introduction to the generation procedure KDCFILE on raw-device

Generating Applications 57

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

Under Unix systems and Windows systems, FILEBASE is the directory in which the files are
stored, and can be replaced, for example, by /home/userutm/base (Unix systems) or
C:\userutm\base (Windows systems).

In the KDCDEF generation you specify the following MAX statement:

KDCDEF then generates the following files:

2.4.2 KDCFILE on raw-device (Unix systems)

You can improve the performance of a UTM application under Unix systems considerably
by operating the KDCFILE on raw-device, i.e. as a character based device file. To do this,
create the KDCFILE on a separate disk partition, in other words a partition on which no file
system is stored.

Direct access to the KDCFILE via a device file without buffering in the system kernel
requires less time and less resources than access via the file system when the KDCFILE is
stored as a normal file in the filebase directory. The KDCFILE is stored as a contiguous data
area on the disk partition. If the KDCFILE is stored as a file within a file system, then the
data of the KDCFILE is often stored by the system in such a way that it is distributed across
several storage areas which leads to increased access times.

MAX...,KDCFILE=(FILEBASE,DOUBLE),PGPOOLFS=2,RECBUFFS=1,...

KDCFILE Original Copy

BS2000
systems:

Main file containing administrative data FILEBASE.KDCA FILEBASE.KDCB

Page pool FILEBASE.P01A
FILEBASE.P02A

FILEBASE.P01B
FILEBASE.P02B

Restart area FILEBASE.R01A FILEBASE.R01B

Unix systems: Main file containing administrative data FILEBASE/KDCA FILEBASE/KDCB

Page pool FILEBASE/P01A
FILEBASE/P02A

FILEBASE/P01B
FILEBASE/P02B

Restart area FILEBASE/R01A FILEBASE/R01B

Windows
systems:

Main file containing administrative data FILEBASE\KDCA FILEBASE\KDCB

Page pool FILEBASE\P01A
FILEBASE\P02A

FILEBASE\P01B
FILEBASE\P02B

Restart area FILEBASE\R01A FILEBASE\R01B

X/W
X/W

X/W

B
B
B
B
B
B

X
X
X
X
X

W
W
W
W
W
W

X

X

X

X

X

X

X

X

X

X

KDCFILE on raw-device Introduction to the generation procedure

58 Generating Applications

Splitting the KDCFILE across several files (swapping out the page pool and restart area)
requires you to use a separate disk partition for each file.

i The raw partition of the database system used should be located on another disk.

Estimating the size of the required disk partition

To allow the system administrator to create a sufficiently large disk partition for your
KDCFILE, you must calculate the size of the KDCFILE. This depends on the following
factors:

● the number of generated objects addressed by name
(transaction codes, users, program units, clients and printers, key sets, remote commu-
nication partners, connections for distributed processing, etc.)

● the generated size of the page pool (see page 47)

● the generated size of the restart area (see page 50)

● the number of work processes

To determine the size of the partition required for your KDCFILE, use KDCDEF to generate
the KDCFILE as the file filebase/KDCA. Then output the size of your KDCFILE using the
command ls -l. Please note that future modifications to the configuration generally affect the
size of the KDCFILE. As a precaution, you should therefore select a larger disk partition.

Creating the raw special file

The disk partitioning is defined by the system administrator when installing the Unix system.
Before system installation, therefore, you must inform your system administrator that you
require disk partitions in raw-device format without file systems for your UTM applications.
The system administrator can thus create several smaller partitions during installation,
which can then be combined to form the storage area for your KDCFILE depending on
requirements.

v CAUTION!
Many disks contain administrative data in the first track. This area of the disk must
therefore not be included in the partition for the KDCFILE.

Do not create a file system in the disk partition in which the KDCFILE is to be
stored. Do not mount the disk partition using the mount command.

Ask your system administrator to create a special file for accessing the disk partition. Make
sure that access to the KDCFILE takes place via a character-oriented special file (raw-
device), i.e. the name of the special file must begin with r and the identifier must be a c (first
character output by the ls -l command).

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Introduction to the generation procedure KDCFILE on raw-device

Generating Applications 59

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
0.

17
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
2

The owner of the special file must the user ID under which the application runs. Read and
write access to the special file must be granted exclusively to the owner (access rights 600).
Be careful when assigning access rights to the KDCFILE, as these are the only means of
protecting your KDCFILE against unauthorized access.

The ls -l command for the special file

ls -l /dev/rxxxx

returns the following output:

crw------- 1 utmaw other 0,1030 Jul 14 15:13 /dev/rxxxx

Writing the KDCFILE to the special file

There are two options for creating the KDCFILE in the disk partition.

● Delete the KDCFILE that you generated when determining the file size. Using the ln
command, create a symbolic reference between the special file and filebase/KDCA.
Regenerate the KDCFILE for your application using the KDCDEF generation tool.
openUTM writes the KDCFILE directly to the special file.

rm filebase/KDCA
ln -s /dev/rxxxx filebase/KDCA
utmpath/ex/kdcdef

● Copy the KDCFILE (generated when determining the file size) to the special file using
the cp or dd command, and then delete the KDCFILE filebase/KDCA.
Using the ln command, create a symbolic reference between the special file and
filebase/KDCA.

cp filebase/KDCA /dev/rxxxx
rm filebase/KDCA
ln -s /dev/rxxxx filebase/KDCA

In both cases, after issuing the ln command, use the ls -l command to check whether a link
exists between filebase/KDCA and the special file:

ls -l /dev/rxxxx filebase/KDCA

Output:

crw------- 1 utmaw other 0,1030 Jul 14 15:13 /dev/rxxxx
lrwxrwxrwx 1 utmaw other 9 Jul 14 15:49 filebase/KDCA -> /dev/rxxxx

X
X

X

X

X

X

X

X

X

X

X

X

X

X

X
X
X

X

X

X

X

X
X
X

X

X

X

X

X
X

KDCFILE on a stripe set Introduction to the generation procedure

60 Generating Applications

Dual-file operation

If you require dual-file operation of the KDCFILE for security reasons, you will need two disk
partitions. The disk partitions should be located on different disks. Ideally, the disks should
be operated by different controllers. The system administrator must create a raw special file
for each KDCFILE.

To ensure that openUTM can write each KDCFILE to the special file created for this
purpose, you must create the following symbolic references:

ln -s /dev/rxxx1 filebase/KDCA
ln -s /dev/rxxx2 filebase/KDCB

2.4.3 KDCFILE on a stripe set in (Windows systems)

You create the filebase file directory on a stripe set (Windows software RAID level 0). In a
stripe set, unused areas of matching size on different hard disks are combined to form a
logical drive. The data in a KDCFILE on a stripe set are therefore also distributed amongst
various hard disks, resulting in faster access and therefore in higher performance for the
UTM application.

You must use stripe sets with parity (RAID Level 5) to achiever better data security. Stripe
sets with parity can only be used under the Windows Server operating system.

Please consult the Windows documentation for more information on stripe sets.

X

X

X

X

X

X

X

X
X

W

W

W

W

W

W

W

W

Generating Applications 61

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
3

3 Notes on generating a UTM cluster application

Unlike a standalone application, a UTM cluster application is intended to be run on more
than one computer. Together, these computers are known as a cluster and the individual
computers on which the application is to run are known as nodes. A UTM cluster application
is made up of several identically generated UTM applications (the node applications) that
run on the individual nodes.

The configuration of the application, including the KDCFILEs for all nodes, is created in a
single generation run and is therefore always the same.

In BS2000 systems, a UTM cluster application can be distributed across up to 16 nodes
and on Unix or Windows systems across up to 32 nodes.

The computers that belong to a cluster must be equivalent in terms of hardware status and
software configuration. Discrepancies involving compatible correction statuses and
updates are possible. Mixed configurations, such as BS2000 and Unix computers in combi-
nation are not possible.

v CAUTION!
The nodes of a cluster must always have the same system time.

 You can find detailed information on operation and in particular on generating appli-
cations for UTM cluster applications in the relevant openUTM manual “Using
openUTM Applications”.

New UTM cluster application Generating a UTM cluster

62 Generating Applications

3.1 Generating a UTM cluster application

The generation of a UTM cluster application differs in the following ways from that of a
standalone UTM application:

● There are the additional statements CLUSTER and CLUSTER-NODE as well as the
operand value GEN=CLUSTER in the OPTION statement, see
section “KDCDEF statements” on page 67.

● When a UTM cluster application is generated, UTM cluster files are also generated, see
below.

● Only one copy of the KDCFILE is permitted, i.e. KDCFILE=(...,SINGLE) must be
specified in the MAX statement (default value).

● The size of a UTM page must be 4K or 8K (MAX statement, BLKSIZE operand)

Please also note the following important differences that apply during a UTM cluster appli-
cation run:

● In a UTM cluster applications, the user data that applies globally throughout the cluster
is stored in GSSB and ULS areas. In the case of UTM-F, the service data is also stored
in these areas.

● The KDCFILEs of the node applications contain only the user data that is local to the
node.

3.1.1 UTM cluster files

A UTM cluster application is generated in a generation run during which the KDCDEF utility
creates the following files:

● the cluster configuration file

● the cluster user file

● the cluster page pool files

● the cluster GSSB file

● the cluster ULS file

● an initial KDCFILE

● and the root source

The initial KDCFILE must be copied for each node application after the generation run.

The UTM cluster files generated by KDCDEF do not have to be generated as often for a
UTM cluster application as the KDCFILE or the root source.

Generating a UTM cluster New UTM cluster application

Generating Applications 63

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
3

Subsequent generation runs can be performed in order to

● modify the KDCFILE and/or the root source.

If you modify only the KDCFILE (but not the UTM cluster files) in a subsequent gener-
ation run, please note that:

– The sequence of TAC statements must not be modified. Otherwise services may be
terminated abnormally on service restarts. As a result, you must append new TAC
statements at the end and must not delete any TAC statements.

– The RESTART parameter in the USER statements must not be modified.

● regenerate the UTM cluster files.

You can perform a KDCUPD run for the UTM cluster application in order to take over
the data from the previous UTM cluster files into the newly generated files, see section
“Update generation with transfer from 32-bit to 64-bit architecture” on page 603.

If changes are made to the configuration, a new initial KDCFILE can, for instance, be
created with additional objects in a subsequent generation run.

The initial KDCFILE must be copied for each node application after the generation run.

i It must be possible to access the UTM cluster files and the KDCFILEs of all node
applications from all node applications. See also the section "UTM cluster appli-
cation under BS2000 systems" in the openUTM manual “Messages, Debugging
and Diagnostics in Unix Systems and Windows Systems” and the section "UTM
cluster application under Unix Systems" in the openUTM manual “Using openUTM
Applications under Unix Systems and Windows Systems”.

Figure 5 shows what files are created when you define a UTM cluster application.

New UTM cluster application Generating a UTM cluster

64 Generating Applications

Figure 5: The result of the KDCDEF run (with OPTION ...,GEN=(KDCFILE, ROOTSRC, CLUSTER)) for a UTM
cluster application.

If you also specify GEN=CLUSTER with the OPTION statement, a cluster configuration file
is created together with the following files.

● Cluster user file for managing user IDs in a UTM cluster application.

● Cluster page pool files for storing user data that applies globally in the cluster in a UTM
cluster application and for managing the cluster page pool.

● Cluster GSSB file and cluster ULS file for managing GSSB and ULS in a UTM cluster
application.

If you specify OPTION GEN=CLUSTER, then you must also specify a CLUSTER statement
and at least two CLUSTER-NODE statements.

KDCDEF utility program

File with KDCDEF
control statements

Source file for
KDCROOT

Initial
KDCFILE

reads

writeswrites

table module

KDCROOT
table module

compile

UTM cluster files

writes

Generating a UTM cluster New UTM cluster application

Generating Applications 65

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
3

Shared properties of the UTM cluster files

The UTM cluster files are generally only created once for a UTM cluster application. You
can only use a new cluster configuration after all the node applications of a UTM cluster
application have been terminated.

The following applies to the individual platforms:

● BS2000 systems

Under BS2000 systems, KDCDEF creates the UTM cluster files with the file name
cluster_filebase.UTM-C.suffix. Here, cluster_filebase is the file name specified in the
CLUSTER-FILEBASE operand of the CLUSTER statement. The value of suffix is fixed
and is specific to each of the UTM cluster files. In BS2000 systems systems it is
possible to rename the UTM cluster files. However, if you do this, you must retain the
file name suffix UTM-C.suffix.

● Unix/Windows systems

On Unix and Windows systems, the UTM cluster files are created with the file name
UTM-C.suffix in the directory defined with cluster_filebase. The UTM cluster files can be
copied to a different directory in order to operate the UTM cluster application.

Cluster configuration file

The cluster configuration file contains information on all node applications of a UTM cluster
application and specifications on data that is global to the cluster. It is used jointly by all
node applications of a UTM cluster application.

KDCDEF creates the cluster configuration file with the suffix CFG. The full file name or path
name is:

– BS2000 systems: cluster_filebase.UTM-C.CFG
– Unix systems: cluster_filebase/UTM-C.CFG
– Windows systems: cluster_filebase\UTM-C.CFG

Cluster user file

The cluster user file is used for managing users in a UTM cluster application.

The cluster user file can be extended during operation of a UTM cluster application. This
always happens when the administrator defines new users for a UTM cluster application.
You must therefore always also specify the cluster user file during subsequent generation
runs for creating a new KDCFILE. The entries in the new KDCFILE are merged with the
entries in the existing cluster user file and where necessary, KDCDEF extends the cluster
user file to include entries for new users.

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

B

X

W

New UTM cluster application Generating a UTM cluster

66 Generating Applications

KDCDEF creates the cluster user file with the suffix USER. The full file name or path name
is:

– BS2000 systems: cluster_filebase.UTM-C.USER
– Unix systems: cluster_filebase/UTM-C.USER
– Windows systems: cluster_filebase\UTM-C.USER

Cluster page pool files

The cluster page pool files are used to record user data that is managed for the entire
cluster in a UTM cluster application. This data consists of the GSSBs, ULS and the user
service data. The number of cluster page pool files is defined at generation time. Between
one and a maximum of ten files can be created.

KDCDEF creates the cluster page pool files with the with the suffix CPnn where nn= 01, 02
up to a maximum of 10. The full file name or path name of a cluster page pool file is:

– BS2000 systems: cluster_filebase.UTM-C.CPnn
– Unix systems: cluster_filebase/UTM-C.CPnn
– Windows systems: cluster_filebase\UTM-C.CPnn

A control file for the cluster page pool is also always created. The name of this file includes
the specification UTM-C.CPMD.

Cluster GSSB file

The cluster GSSB file is used for managing GSSBs in a cluster application.

KDCDEF creates the cluster GSSB file with the suffix GSSB. The full file name or path
name is:

– BS2000 systems: cluster_filebase.UTM-C.GSSB
– Unix systems: cluster_filebase/UTM-C.GSSB
– Windows systems: cluster_filebase\UTM-C.GSSB

The cluster GSSB file can be extended while an application is running. This is done
whenever the space left in the file is no longer sufficient to accept the current management
information.

B

X

W

B

X

W

B

X

W

Generating a UTM cluster New UTM cluster application

Generating Applications 67

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
3

Cluster ULS file

The cluster ULS file is used for managing ULSs in a cluster application.

KDCDEF creates the cluster ULS file with the suffix ULS. The full file name or path name is

– BS2000 systems: cluster_filebase.UTM-C.ULS
– Unix systems: cluster_filebase/UTM-C.ULS
– Windows systems: cluster_filebase\UTM-C.ULS

The cluster ULS file can be extended while an application is running. This is done whenever
the space left in the file is no longer sufficient to accept the current management infor-
mation.

3.1.2 KDCDEF statements

Special generation statements are required for generating a UTM cluster application:

● You define global properties of a UTM cluster application using the CLUSTER
statement. See page 303. These include, for instance
– the cluster filebase
– the BCAMAPPL name for cluster-internal communication
– timers for monitoring
– a failure command and an emergency command to be called if a node fails
– specifications on the cluster page pool files (number, warning level, size)
– specifications concerning behavior on user sign-on as well as on deadlock

handling.

● You specify node-specific properties for each node application with the CLUSTER-
NODE statement. See page 315. These include, for instance
– the base name of the KDCFILE, the user log file and the system log file SYSLOG
– the host name of the node
– the reference name of the node application

You must issue a separate CLUSTER-NODE statement for each node application.

i – If specifications in the CLUSTER statement or CLUSTER-NODE statements
are modified then it is always necessary to create a complete, new generation.
This means that the KDCFILE and the cluster files must be regenerated. The
only exception are increases in the size of the values for the cluster page pool.
For details, see information on enlarging the cluster page pool in the relevant
openUTM manual “Using openUTM Applications”.

– If the UTM cluster files are to be created on generation, you must specify the
GEN=CLUSTER parameter in the OPTION statement (see also page 429).

B

X

W

New UTM cluster application Generating a UTM cluster

68 Generating Applications

– You must specify MAX BLKSIZE=4K or 8K during KDCDEF generation for UTM
cluster applications.
For applications on BS2000 systems or 32-bit Unix or Windows systems, the
default value is 4K.
On 64-bit Unix or Windows systems, the default value is 8K.

– It is not possible to generate a UTM cluster application with two copies of the
KDCFILE, i.e. the value MAX KDCFILE=(..., SINGLE) must be specified (this is
the default value).

X/W

Generating a UTM cluster Reserve node application

Generating Applications 69

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
3

3.1.3 Initial KDCFILE

In the same way as with a standalone application, the initial KDCFILE is stored under the
base name that you specify in the KDCFILE operand of the MAX statement.

Each node application uses a copy of the initial KDCFILE at runtime of a node application.
To allow this, you must copy the initial KDCFILE once for each node application after the
generation run.

Because each node application is monitored by another ode application, all node applica-
tions must have mutual access to all KDCFILEs.

 You will find information on starting and monitoring the node applications and
detecting failures in the relevant openUTM manual “Using openUTM Applications”.

3.2 Generating a reserve node application

During generation with KDCDEF, you have the option of creating reserve node applications
with provisional values. You can subsequently use the administration facilities to change the
host name and the base name of the KDCFILE of these node applications. The node appli-
cation must not be active when this is done.

Ê To do this, specify the provisional, node-specific base name of the KDCFILE and the
host name of the reserve node using the CLUSTER-NODE statement. See page 315.

Ê At a subsequent time, you use KC_MODIFY_OBJECT administration statement to
change the node-specific properties of the reserve node application: Specify the object
type KC_CLUSTER_NODE to assign the spare node application actual values for the
host name of the cluster node and the base name of the KDCFILE of the node appli-
cation.

 For further details on possibilities for using reserve node applications, refer to the
openUTM manual “Using openUTM Applications under BS2000 Systems” or the
openUTM manual “Using openUTM Applications under Unix Systems and
Windows Systems”.

For detailed information on changing the node-specific properties using the admin-
istration facilities, refer to openUTM manual “Administering Applications”.

Using global memory areas Generating a UTM cluster

70 Generating Applications

3.3 Using global memory areas

GSSB and ULS

The UTM GSSB and ULS memory areas are available throughout the cluster in UTM
cluster applications. This means that all node applications have read and write access to
these areas. The user data is stored in cluster page pool files (see page 66) and the
management data for the GSSB and ULS areas is stored in the cluster GSSB file and
cluster ULS file, respectively, see page 66.

You can use the KDCDEF statement CLUSTER ... DEADLOCK-PREVENTION to specify
whether or not openUTM is to perform additional checks to prevent deadlocks if memory
areas are locked.

GSSB and ULS data are also saved in the case of UTM-F.

TLS

The UTM TLS memory areas are created locally to the nodes in UTM cluster applications,
as each TLS is assigned to an LTERM or (OSI-)LPAP and a connection can be established
to every LTERM or (OSI-)LPAP in every cluster node at any time. A separate version of the
memory area therefore exists in each cluster node.

3.4 Using users with RESTART=YES

In UTM cluster applications, a service restart is possible in all node applications for all
genuine user IDs that have been generated with USER …, RESTART=YES. Any genuine
user generated with USER ...,RESTART=YES is always signed on exclusively, i.e. the user
can only be signed on once to the UTM cluster application at any given time. Furthermore,
such users can have no more than one open dialog service throughout the entire cluster.

The open services of such users can be continued in any node application provided that the
open service is not bound to a node application, see below. A bound service can only be
continued in the node application to which it is bound.

i Note on UTM-F

The following data is lost when a node application is terminated:

– The service data of services which have a job receiver in a distributed trans-
action

– The service data of inserted services

Generating a UTM cluster Using users with RESTART=YES

Generating Applications 71

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
3

Furthermore, service data is not saved every time a transaction is terminated but
instead only when a user signs off. This means that if an application is terminated
abnormally then the service data of users who were signed on at the node appli-
cation at the time of the abnormal termination is lost.

Node-bound services

The following services are always node bound:

– Services that have started communications with a job receiver via LU6.1 or OSI TP and
for which the job-receiving service has not yet been terminated

– Inserted services in a service stack

– Services that have completed a SESAM transaction

In addition, following abnormal termination, an open service is bound to a node application
if the user was signed on at the node application at the time the application was terminated.

If a user who wants to sign on at another node application even though his service is bound
to a node application then the sign-on attempt is rejected if

– the node application to which the service is bound is running,

– or the bound service has a transaction in the state PTC (prepare to commit),

– or the UTM cluster application was generated with CLUSTER ... ABORT-BOUND-
SERVICE = NO.

Connection user IDs

The service restart for connection user IDs of TS applications is bound to the connection
and therefore to the node application. If a connection user ID has been generated by a TS
application with RESTART=YES then it can have a service context that permits restarts in
every node application.

Special issues Generating a UTM cluster

72 Generating Applications

3.5 Special issues in BS2000 systems

If the default catalog of the user ID under which the UTM cluster application is to be started,
does not correspond to the CATID of the shared pubset on which the KDCFILE is to be
stored, you must specify the CATID in the generation.

 CLUSTER-NODE statement on page 315
The CATID operand is used to specify the CATIDs of the global cluster files.

3.6 Special issues on Unix systems and Windows systems

You must create the appropriate directories for storing the global cluster files before the
generation run. These must exist and be accessible before the generation run.

The name for MAX KDCFILE and CLUSTER-NODE FILEBASE must not exceed
27 characters for UTM cluster applications.

3.7 Special issues with LU6.1 connections

More sessions (LSES statements) than connections (CON statements) can be assigned to
an LPAP partner for a UTM cluster application. KDCDEF warns you of this with message
K438, but a KDCFILE is created.

A node application is assigned to each session on generation (NODE-NAME operand in the
LSES and CLUSTER-NODE statements). As a result, UTM can choose the "right" session
when establishing a session with a partner application.

 For information on what you need to consider for LU6.1 communication between a
standalone application and a UTM cluster application, refer to the section “LU6.1-
LPAP bundles of a standalone application with a UTM cluster application” on
page 88.

B

B

B

BB

B

X/W

X/W

X/W

X/W

Generating Applications 73

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

4 Generating applications for distributed
processing

This chapter provides a summary of the most important generation notes for applications
with distributed processing and describes how the UTM generation is coordinated with the
generation of the transport system.

The term distributed processing is used to describe server-server communication using the
LU6.1 and OSI TP protocols. These protocols are used to implement global transaction
processing. The OSI TP protocol also makes it possible to communicate with OpenCPIC
clients and LU6.2 applications. The generation of OpenCPIC clients is described in section
“Connecting clients to the application” on page 126f. More information about connecting to
a LU6.2 application can be found in the openUTM manual “Distributed Transaction
Processing between openUTM and CICS, IMS and LU6.2 Applications”.

The basic principles of distributed processing are introduced in the openUTM manual
“Concepts und Functions”.

To generate applications with distributed processing, you must first ensure that the
individual applications have been generated without errors, and that the generation data of
all applications involved has been coordinated. Since the KDCDEF generation tool can only
check the generation data of a single application for consistency and syntactic accuracy,
conflicts generally cannot be identified until the applications begin to interact with each
other, e.g. during connection setup.

Generation when standalone UTM applications are to be linked to UTM cluster
applications

 You will find notes on generation when standalone UTM applications are to be
linked to UTM cluster applications in the section “LU6.1-LPAP bundles of a stand-
alone application with a UTM cluster application” on page 88 and in the section
“OSI-LPAP bundles” on page 104.

Distributed processing via LU6.1 Generating distributed processing

74 Generating Applications

4.1 Distributed processing via the LU6.1 protocol

Before discussing the rules and recommendations for generating UTM applications with
distributed processing, a number of SNA terms relevant for configuration are explained
below in context.

SNA terms are shown in italics in the next section. More information on SNA terms can be
found in the openUTM manual “Distributed Transaction Processing between openUTM and
CICS, IMS and LU6.2 Applications”.

4.1.1 Transport connections and SNA sessions

Communication between two applications is, from the openUTM point of view, carried out
using transport connections (in the sense of TRANSDATA), via which the SNA sessions are
handled.

The sessions are identified using session names. The session names serve to restart inter-
rupted communication between two applications. If, prior to an interruption, communication
via one of the possible transport connections is taking place using a given session name,
then when the session is restarted, it is started under the same session name, but not
necessarily using the same transport connection.

A session is defined using the KDCDEF control statement LSES, while its characteristics
(e.g. the way in which it is opened, controlled, and managed) are defined using the
SESCHA control statement.

The session name can be likened to the USER name in UTM applications: a USER can also
continue an interrupted service on another terminal, thus using a different transport
connection. In order to ensure that the session name in two connected applications does
not have to be the same, the session name is made up of two parts (symbolized using the
’+’ character):

session-name = local-session-name+remote-session-name.

Each part of the session name is a maximum of 8 characters in length, thus the entire
session name has maximum length of 16 bytes. The local-session-name refers to a common
session in the local application, and the remote-session-name refers to the same session in
the remote application. This means that the both the local and remote applications are
required to know the session names of the partner application. The local-session-name uses
the USER name defined in the local application to create a common name for the local
application, and the remote-sessionname uses the USER names defined in the remote appli-
cation to create a common name for the remote application.

At the start of a service, the “user ID" field in the KB header contains a local session name
if the requester is a remote LU6.1 application.

Generating distributed processing Distributed processing via LU6.1

Generating Applications 75

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

A session is exclusively occupied for the duration of the dialog between the job-sending
application and the job-receiving application (bracketing). In other words, another job-
sending application will be required to:

– wait until the session has been released or

– repeat its job later, as it will be rejected at this time or

– occupy a different free session and start its job from there. The prerequisite for this is
that there are several transport connections and sessions available for the remote
application.

The opening and closing of a session is always controlled by one of the partner applica-
tions. This application is then referred to as the primary logical unit or PLU. However, the
initiative for opening a session may come from both applications involved.

When opening a session, the partners agree on which application is to be responsible for
managing the brackets, i.e. for controlling the reservation of the session by jobs. This appli-
cation is known as the contention winner, while the other application is referred to as the
contention loser. In order to submit a job to the partner, the contention winner can reserve a
session without consulting the contention loser beforehand. The contention loser, on the
other hand, must request a session from the contention winner.

Distributed processing via LU6.1 Generating distributed processing

76 Generating Applications

4.1.2 Generation notes

When generating UTM applications that are to communicate using the LU6.1 protocol, you
must bear the following information in mind.

1. In each application, either one or two LPAP statements and the appropriate SESCHA,
CON and LSES statements must be generated for each of the partner applications.

Only one LPAP statement is required for a partner application if only one of the two
applications is to be sending jobs. However, if both applications are intended to send
jobs to the partner application, then both applications will require two LPAP statements.

2. An LPAP that is used mainly to send jobs is generated in its SESCHA statement using
CONTWIN=NO; this ensures that the local application becomes the contention winner
for this LPAP. The corresponding LPAP in the partner application must then be
generated with CONTWIN=YES.

3. In the case of standalone applications, the same number of CON and LSES statements
must be generated for each LPAP; the number of CON or LSES statements determines
the number of parallel connections to the partner application that are possible via this
LPAP. Other rules apply to UTM cluster applications, see section “Special issues with
LU6.1 connections” on page 72.

4. For each connection/each session, one CON or one LSES statement must be
generated in each of the partner applications.

For each CON statement, the CON name and the BCAMAPPL name in the one appli-
cation must correspond to the names in the partner application.
In the same way, for each LSES statement, the LSES name and the RSES name of the
one application must correspond to those in the partner application.

5. All CON and LSES statements of an LPAP must address the same partner application
and must also be assigned to a single LPAP name in the partner application. It is not
permitted to generate several CON statements leading to different applications for one
LPAP name.

It is also not permitted to generate several CON statements for a single LPAP which are
assigned to different LPAP statements via the corresponding CON statements in the
partner application.

This generation error cannot be recognized by openUTM, but will lead to errors during
connection or session establishment and during session restart.

6. In order to establish several parallel connections between two applications, a UTM
application opens several transport system end points at the transport system. Each
transport system end point of a UTM application is generated using its own BCAMAPPL
statement.

Generating distributed processing Distributed processing via LU6.1

Generating Applications 77

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Figure 6: Two applications with several transport connections

In the example above, A and B are the names of the applications as specified using the
MAX APPLINAME= statement; B1 and B2 are defined using separate BCAMAPPL state-
ments.

Terminals are able to establish connections to application A using the application name A
and to application B using the application name B. But application A is able to connect to
application B using the application names B, B1 or B2.

From the network administration point of view, the UTM application B consists of several
BCAM applications. BCAM administration commands for one of the application names
have an effect on the entire UTM application B. So in other words, a /BCLOSE B command
not only terminates UTM application B, but also signs the applications B1 and B2 off from
BCAM.

A

B

B1

B2

logical connections

(A,B1)

(A,B)

(A,B2)

UTM application A UTM application B

n Transport system end point n

Explanation:

Distributed processing via LU6.1 Generating distributed processing

78 Generating Applications

Between two given transport system end points of both applications only a single transport
connection can be established. If two transport system end points are generated in one of
the applications and three in the other, then up to six parallel connections can be estab-
lished between the two applications.

If both a contention winner LPAP and a contention loser LPAP are generated for a partner
application (SESCHA statement), then transport system end points (BCAMAPPL
statement) are established via the contention winner connections and should not be used
simultaneously for the contention loser connections! This means that both contention
winner and contention loser LPAPs are generated in a single application, thus the
BCAMAPPLs of this application should be split into two disjunctive groups, where the
BCAMAPPLs of the one group are assigned only to contention winner connections and the
BCAMAPPLs of the other group are only ever used for contention user connections.

Generating distributed processing Distributed processing via LU6.1

Generating Applications 79

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

4.1.3 Procedure when generating LU6.1 connections

When generating two applications that are to communicate using the LU6.1 protocol, you
should proceed as described below.

1. LPAP and SESCHA statements

First you must decide whether the two applications are to be sending jobs to each other
on an equally regular basis, or whether one of the applications is to be sending jobs
more frequently than the other.

In the first scenario, both applications must be generated with two LPAP statements
each; in the second scenario the applications require one LPAP statement each. In this
case, that LPAP statement that is designed to send more jobs than it receives is
generated with SESCHA ...,CONTWIN=NO; the corresponding LPAP in the partner
application is generated with SESCHA ...,CONTWIN=YES. When you have two LPAP
statements in an application, one should be generated with SESCHA ...
,CONTWIN=NO and the other with SESCHA ...,CONTWIN=YES.

 LPAP statement on page 351
The following operands can be used to define an LPAP partner as the logical
connection point for the partner application.

● lpapname

LPAP partner name; this is the logical name of the partner application via which
the program units of the local application and the partner application commu-
nicate. lpapname is only significant in the local application.

● SESCHA=

The session characteristics for communication between local application and
partner application as defined under sescha_name in the SESCHA statement are
assigned to the LPAP partner.

● PERMIT=

Specifies the level of authorization (right to carry out administration and prese-
lection functions) of the partner application.

● QLEV=

Specifies the maximum number of asynchronous messages that are permitted
to wait in the Message Queue of the LPAP partner.

● STATUS=

This defines whether the partner application is able to work with the local appli-
cation immediately the local application is started, or whether the administrator
must first set the status to ON.

Distributed processing via LU6.1 Generating distributed processing

80 Generating Applications

● BUNDLE=

Makes the LPAP a slave LPAP of an LU6.1-LPAP bundle and specifies the
associated master LPAP.

 SESCHA statement on page 483
You can use the following operands to define the session characteristics that
are to be assigned to one of the LPAP partners and therefore to the partner
application that connects via this LPAP partner.

● sescha_name

Defines the name under which the session characteristics are collected. This
name is entered in the LPAP statement in the operand SESCHA= to assign the
session characteristics to a LPAP partner.

● CONTWIN=

Specifies whether the local application is the contention winner (NO) or
contention loser (YES). The contention winner application manages the session
and controls the utilization of the session by jobs.

Default: If PLU=N, the local application is the contention loser, otherwise it is the
contention winner.

● PLU=

Specifies which application is able to initiate the session, or in other words,
whether the partner application is the primary logical unit (PLU) (YES) or the
local application (NO).
PLU=Y must be specified for one of the participating applications, and PLU=N
for the other.

● CONNECT=

Specifies whether the local application is to connect automatically to the partner
application on application startup (YES) or whether the connection to the
partner application is to be carried out by means of an administration command
(NO).

Generating distributed processing Distributed processing via LU6.1

Generating Applications 81

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Example

Application A sends jobs to Application B via LPAP B1 and application B sends jobs to
application A via LPAP A2.

2. BCAMAPPL statements

The next thing to do is to specify how many parallel connections are to be generated
between two LPAPs. In accordance with the number you specify, the BCAMAPPL
statement is used to generate additional transport system endpoints for both applica-
tions. Only one connection may be established between each transport system
endpoint and the transport system endpoint of the partner application. Should, for
example, nine parallel connections be generated between two LPAPs, then at least
three BCAMAPPL statements will be required on each side.

If two LPAPs to the partner application are generated in an application, the
BCAMAPPLs of this application should be split into two disjunctive groups. The first
LPAP communicates using just the BCAMAPPLs of the first group, and the second
LPAP uses the BCAMAPPLs of the second group.

 BCAMAPPL statement on page 295
The following operands are used to define an additional application name for
parallel connections to the communication partner.

● appliname

Additional (BCAM) name of the UTM application.

● T-PROT

Specifies the transport protocol. NEA is the default setting.

If an application communicates with several partner applications, the BCAMAPPLs
used to communicate with the one application may also be used to communicate with
the other applications.

Application A: Application B:

LPAP B1, SESCHA=B1
SESCHA B1, CONTWIN=NO, PLU=YES

LPAP B2, SESCHA=B2
SESCHA B2, CONTWIN=YES, PLU=NO

LPAP A1, SESCHA=A1
SESCHA A1, CONTWIN=YES, PLU=NO

LPAP A2, SESCHA=A2
SESCHA A2, CONTWIN=NO, PLU=YES

Distributed processing via LU6.1 Generating distributed processing

82 Generating Applications

3. CON and LSES statements

It is then necessary to assign one CON and one LSES statement to each LPAP
statement for each parallel connection via this LPAP. Each CON and each LSES
statement must be generated in each of the participating applications and both of these
generations must correspond to each other.

Thus:

– Each CON name in the one application corresponds to a BCAMAPPL name in the
other application and vice versa.

– Each LSES name in the one application corresponds to an RSES name in the other
application and vice versa.

 CON statement on page 318
The following operands can be used to assign the LPAP partner in the local
application to the real partner application.

● remote_appliname

Name of the partner application with which communication is to take place via
the logical connection.

● BCAMAPPL=

Refers to a name of the local application as specified in the control statement
MAX or BCAMAPPL. You cannot specify a BCAMAPPL name for which a
T-PROT=SOCKET has been generated.

● LPAP=

Name of the LPAP partner application to which the connection is to be estab-
lished. The name of the LPAP partner via which the partner application
connects must be defined using the statement LPAP lpapname.
Specifying several CON statements with the same lpapname allows you to
generate parallel connections to the partner application.

● PRONAM=

Name of the partner computer.

The CON statements that are used to describe the connection to the partner application
in the local application and the connection to the local application in the partner appli-
cation refer to the same connection. CON statements must therefore always be entered
in pairs. When using parallel sessions, several CON statements are generated for an
LPAP partner.

Generating distributed processing Distributed processing via LU6.1

Generating Applications 83

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

In the example, the assignment is made between the LPAP partner B1 (as generated
in application A) and the LPAP partner A1 (as generated in application B):

 LSES statement on page 354
The following operands can be used to agree the same session names for the
connection and assign them to the LPAP partner.

● local_sessionname

Name of the session in the local application.

● RSES=

Name of the session in the partner application.

● LPAP=

Name of the LPAP partner that is assigned to the partner application.
local_sessionname is used for communication with the partner application that is
assigned to the LPAP partner lpapname in the local application.

Session names are agreed in the local application and partner application. LSES state-
ments must therefore always be entered in pairs. Since the session name is assigned
to the LPAP partners, the LPAP partner assignment defined in the LSES statement
must be identical to that defined in the CON statements.

If two LPAP partners are assigned to each other, the LSES and RSES names agreed
in the LSES statements must match (see example below). In the case of parallel
sessions, several LSES statements are entered with different session names for an
LPAP partner lpapname.

BCAMAPPL A11

CON B11,BCAMAPPL=A11,LPAP=B1,...

BCAMAPPL B11

CON A11,BCAMAPPL=B11,LPAP=A1,..

Application A Application B

Distributed processing via LU6.1 Generating distributed processing

84 Generating Applications

The previous example can now be extended as follows.

BCAMAPPL A11
LPAP B1,...
CON B11,BCAMAPPL=A11,LPAP=B1,...

LSES SESA11,RSES=SESB11,LPAP=B1,...

BCAMAPPL B11
LPAP A1,...
CON A11,BCAMAPPL=B11,LPAP=A1,..

LSES SESB11,RSES=SESA11,LPAP=A1,...

Application A Application B

Generating distributed processing Distributed processing via LU6.1

Generating Applications 85

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Example

Notes

● In the case of applications with distributed processing, the length value specified in the
statement MAX...,RECBUF=(number,length),... may have to be increased. Further infor-
mation can be found in section “Restart area” on page 50.

● The behavior of an application can be influenced by the choice of timer (operand
IDLETIME= of the SESCHA statement, operands CONCTIME and PTCTIME of the
UTMD statement).

Application A: Application B:

BCAMAPPL A11
BCAMAPPL A12
LPAP B1, SESCHA=B1
SESCHA B1, CONTWIN=NO, PLU=YES

CON B11, BCAMAPPL=A11, LPAP=B1
CON B12, BCAMAPPL=A11, LPAP=B1
CON B11, BCAMAPPL=A12, LPAP=B1
CON B12, BCAMAPPL=A12, LPAP=B1
LSES SESA11, RSES=SESB11, LPAP=B1
LSES SESA12, RSES=SESB12, LPAP=B1
LSES SESA13, RSES=SESB13, LPAP=B1
LSES SESA14, RSES=SESB14, LPAP=B1

BCAMAPPL A21
BCAMAPPL A22
LPAP B2, SESCHA=B2
SESCHA B2, CONTWIN=YES, PLU=NO

CON B21, BCAMAPPL=A21, LPAP=B2
CON B22, BCAMAPPL=A21, LPAP=B2
CON B21, BCAMAPPL=A22, LPAP=B2
CON B22, BCAMAPPL=A22, LPAP=B2
LSES SESA21, RSES=SESB21, LPAP=B2
LSES SESA22, RSES=SESB22, LPAP=B2
LSES SESA23, RSES=SESB23, LPAP=B2
LSES SESA24, RSES=SESB24, LPAP=B2

BCAMAPPL B11
BCAMAPPL B12
LPAP A1, SESCHA=A1
SESCHA A1, CONTWIN=YES, PLU=NO

CON A11, BCAMAPPL=B11, LPAP=A1
CON A11, BCAMAPPL=B12, LPAP=A1
CON A12, BCAMAPPL=B11, LPAP=A1
CON A12, BCAMAPPL=B12, LPAP=A1
LSES SESB11, RSES=SESA11, LPAP=A1
LSES SESB12, RSES=SESA12, LPAP=A1
LSES SESB13, RSES=SESA13, LPAP=A1
LSES SESB14, RSES=SESA14, LPAP=A1

BCAMAPPL B21
BCAMAPPL B22
LPAP A2, SESCHA=A2
SESCHA A2, CONTWIN=NO, PLU=YES

CON A21, BCAMAPPL=B21, LPAP=A2
CON A21, BCAMAPPL=B22, LPAP=A2
CON A22, BCAMAPPL=B21, LPAP=A2
CON A22, BCAMAPPL=B22, LPAP=A2
LSES SESB21, RSES=SESA21, LPAP=A2
LSES SESB22, RSES=SESA22, LPAP=A2
LSES SESB23, RSES=SESA23, LPAP=A2
LSES SESB24, RSES=SESA24, LPAP=A2

Distributed processing via LU6.1 Generating distributed processing

86 Generating Applications

4.1.4 LU6.1-LPAP bundles

LU6.1=LPAP bundles allow messages to be distributed automatically across several LPAP
partners. If a UTM application has to exchange a very large number of messages with a
partner application then load distribution may be improved by starting multiple instances of
the partner application and distributing the messages across the individual instances. In an
LU6.1-LPAP bundle, openUTM is responsible for distributing the messages to the partner
application instances. To achieve this, the program units in the APRO call must address the
MASTER-LU61-LPAP.

One application scenario for distributing messages in this way is communication between
a UTM application and a UTM cluster application. This allows messages to the UTM cluster
application to be distributed across the individual node applications. You will find detailed
information on this in the section “LU6.1-LPAP bundles of a standalone application with a
UTM cluster application” on page 88.

An LU6.1-LPAP bundle consists of a master LPAP and multiple slave LPAPs. The slave
LPAPs are assigned to the master LPAP on generation. In normal circumstances, the
individual slave LPAPs address different partner applications.

Figure 7: Example of an LU6.1-LPAP bundle

MASTER-LU61-LPAP

LPAP 1

LPAP n

LSES 11 / CON 11

LSES 1j / CON 1j

LSES n1 / CON n1

LSES nk / CON nk

Slave LPAPs

Generating distributed processing Distributed processing via LU6.1

Generating Applications 87

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Generating an LU6.1-LPAP bundle

MASTER-LU61-LPAP statement on page 374
Specifies the name and properties of the master LPAP in an LU6.1-LPAP bundle.

● master-lpap-name

Name of the master LPAP.

● STATUS=

Specifies whether messages can be sent to this LPAP bundle.

LPAP statement on page 351
The following properties must be specified to generate a slave LPAP:

● lpap-name

Name of the slave LPAP.

● BUNDLE=master-lpap-name

Name of the master LPAP. The master LPAP specified here must be defined in a
MASTER-LU61-LPAP statement. If you specify BUNDLE, this LPAP becomes a
slave LPAP of the specified master LPAP.

MASTER-LU61-LPAP master, ...
LPAP slave-lpap, BUNDLE=master, ...

CONs of LPAPs belonging to an LU6.1-LPAP bundle

● No physical connections (CONs) can be assigned to a master LPAP. This means that it
cannot be specified as the LPAP in a CON statement. The master LPAP always uses
the connections assigned to the slave LPAPs.

Distribution of messages

For details, refer to the section “Distributing messages” on page 106.

Display in the KB header

For details, refer to the section “Information displayed in the KB header” on page 107.

Distributed processing via LU6.1 Generating distributed processing

88 Generating Applications

4.1.5 LU6.1-LPAP bundles of a standalone application with a UTM cluster
application

Note the following when generating LU6.1 communication between a standalone partner
application and a UTM cluster application:

● A partner application must generate one LPAP with a specific number of sessions and
connections for each node of the UTM cluster application with which it wants to commu-
nicate.

● To address the UTM cluster application, an LU6.1-LPAP bundle whose slave LPAPs are
assigned to the cluster node should be generated in the partner application (see the
section “MASTER-LU61-LPAP – Define the master LPAP of an LU6.1-LPAP bundle” on
page 374).

● In the UTM cluster application, more sessions (LSES) than connections (CON) must be
generated for the LPAP that represents the partner application: One session per cluster
node must be generated for each connection.

Each cluster node requires only exactly the number of connections assigned to each
LPAP in the partner application for the corresponding LPAP. However, because all
cluster nodes have identical generations, the sessions for all the LPAPs of the partner
application must be generated in every cluster node.

● During generation, the LU6-1 sessions must be explicitly assigned to the node applica-
tions. To do this, define the reference name of the node application in the NODE-NAME
parameter of the CLUSTER-NODE statement and specify this name in the NODE-
NAME parameter of the LSES statement. As a result, the "right" session is selected
when a session is established with a partner application.

Generating distributed processing Distributed processing via LU6.1

Generating Applications 89

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Example:

The example below shows a generation in which the standalone application SA on the
host HOSTSA is linked to the UTM cluster application CA on the cluster nodes
NODECAX, NODECAY and NODECAZ. 4 connections between the standalone appli-
cation and each of the node applications are generated. A MASTER-LU61-LPAP is
generated for the LPAPs that represent the node applications in the standalone appli-
cation. This represents the UTM cluster application.

Standalone application SA on HOSTSA UTM cluster application CA on
NODECAX/Y/Z

BCAMAPPL SA11
BCAMAPPL SA12
MASTER-LU61-LPAP MLPAPCA
LPAP LPAPCAX,SESCHA=SESCHCA-
, BUNDLE=MLPAPCA

LPAP LPAPCAY,SESCHA=SESCHCA-
, BUNDLE=MLPAPCA

LPAP LPAPCAZ,SESCHA=SESCHCA-
, BUNDLE=MLPAPCA

SESCHA SESCHCA, CONTWIN=NO, PLU=YES

CLUSTER-NODE NODE-NAME=NODECAX -
, HOSTNAME=NODECAX, -
, FILEBASE=BASE1

CLUSTER-NODE NODE-NAME=NODECAY -
, HOSTNAME=NODECAY, -
, FILEBASE=BASE2

CLUSTER-NODE NODE-NAME=NODECAZ -
, HOSTNAME=NODECAZ, -
, FILEBASE=BASE3

BCAMAPPL CA11
BCAMAPPL CA12

LPAP LPAPSA, SESCHA=SESCHSA

SESCHA SESCHSA, CONTWIN=YES,
PLU=NO

CON CA11, PRONAM=NODECAX –
, BCAMAPPL=SA11, LPAP=LPAPCAX

CON CA12, PRONAM=NODECAX –
, BCAMAPPL=SA11, LPAP=LPAPCAX

CON CA11, PRONAM=NODECAX –
, BCAMAPPL=SA12, LPAP=LPAPCAX

CON CA12, PRONAM=NODECAX –
, BCAMAPPL=SA12, LPAP=LPAPCAX

CON SA11, PRONAM=HOSTSA –
, BCAMAPPL=CA11, LPAP=LPAPSA

CON SA11, PRONAM=HOSTSA –
, BCAMAPPL=CA12, LPAP=LPAPSA

CON SA12, PRONAM=HOSTSA –
, BCAMAPPL=CA11, LPAP=LPAPSA

CON SA12, PRONAM=HOSTSA –
, BCAMAPPL=CA12, LPAP=LPAPSA

Distributed processing via LU6.1 Generating distributed processing

90 Generating Applications

CON CA11, PRONAM=NODECAY –
, BCAMAPPL=SA11, LPAP=LPAPCAY

CON CA12, PRONAM=NODECAY –
, BCAMAPPL=SA11, LPAP=LPAPCAY

CON CA11, PRONAM=NODECAY –
, BCAMAPPL=SA12, LPAP=LPAPCAY

CON CA12, PRONAM=NODECAY –
, BCAMAPPL=SA12, LPAP=LPAPCAY

CON CA11, PRONAM=NODECAZ –
, BCAMAPPL=SA11, LPAP=LPAPCAZ

CON CA12, PRONAM=NODECAZ –
, BCAMAPPL=SA11, LPAP=LPAPCAZ

CON CA11, PRONAM=NODECAZ –
, BCAMAPPL=SA12, LPAP=LPAPCAZ

CON CA12, PRONAM=NODECAZ –
, BCAMAPPL=SA12, LPAP=LPAPCAZ

LSES SAA2CAX, RSES= CA12SA1-
, LPAP=LPAPCAX

LSES SAB2CAX, RSES= CA12SA2-
, LPAP=LPAPCAX

LSES SAC2CAX, RSES= CA12SA3-
, LPAP=LPAPCAX

LSES SAD2CAX, RSES= CA12SA4-
, LPAP=LPAPCAX

LSES CA12SA1, RSES= SAA2CAX-
, LPAP=LPAPSA -
, NODE-NAME=NODECAX

LSES CA12SA2, RSES= SAB2CAX-
, LPAP=LPAPSA -
, NODE-NAME=NODECAX

LSES CA12SA3, RSES= SAC2CAX-
, LPAP=LPAPSA
, NODE-NAME=NODECAX

LSES CA12SA4, RSES= SAD2CAX-
, LPAP=LPAPSA -
, NODE-NAME=NODECAX

LSES SAA2CAY, RSES= CA22SA1-
, LPAP=LPAPCAY

LSES SAB2CAY, RSES= CA22SA2-
, LPAP=LPAPCAY

LSES SAC2CAY, RSES= CA22SA3-
, LPAP=LPAPCAY

LSES SAD2CAY, RSES= CA22SA4-
, LPAP=LPAPCAY

LSES CA22SA1, RSES= SAA2CAY-
, LPAP=LPAPS -
, NODE-NAME=NODECAY

LSES CA22SA2, RSES= SAB2CAY-
, LPAP=LPAPSA -
, NODE-NAME=NODECAY

LSES CA22SA3, RSES= SAC2CAY-
, LPAP=LPAPSA -
, NODE-NAME=NODECAY

LSES CA22SA4, RSES= SAD2CAY-
, LPAP=LPAPSA -
, NODE-NAME=NODECAY

Generating distributed processing Distributed processing via LU6.1

Generating Applications 91

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

LSES SAA2CAZ, RSES= CA32SA1-
, LPAP=LPAPCAZ

LSES SAB2CAZ, RSES= CA32SA2-
, LPAP=LPAPCAZ

LSES SAC2CAZ, RSES= CA32SA3-
, LPAP=LPAPCAZ

LSES SAD2CAZ, RSES= CA32SA4-
, LPAP=LPAPCAZ

LSES CA32SA1, RSES= SAA2CAZ-
, LPAP=LPAPSA -
, NODE-NAME=NODECAZ

LSES CA32SA2, RSES= SAB2CAZ-
, LPAP=LPAPSA -
, NODE-NAME=NODECAZ

LSES CA32SA3, RSES= SAC2CAZ-
, LPAP=LPAPSA -
, NODE-NAME=NODECAZ

LSES CA32SA4, RSES= SAD2CAZ-
, LPAP=LPAPSA -
, NODE-NAME=NODECAZ

Distributed processing via OSI TP Generating distributed processing

92 Generating Applications

4.2 Distributed processing via the OSI TP protocol

Before discussing the rules and recommendations for generating UTM applications with
distributed processing via OSI TP, a number of OSI terms relevant for configuration are
explained below. The OSI terms in this section are shown in italics.

4.2.1 OSI terms

If two partners wish to communicate with each other, the rules they must observe and the
services they must provide have been standardized in the OSI protocol (Open System
Interconnection).

ISO (International Organization for Standardization) has also developed the OSI reference
model, in which the various communication tasks are distributed over seven layers (instances).
The services to be provided by each layer are clearly defined. The seven layers form a
hierarchical structure, where each layer can access the services of the underlying layer.
These services are made available to the overlying layer at service access points.

During communication, the application accesses the services of the communication system
via one of these access points:

If two applications wish to communicate and exchange data, they must be linked via a
transport connection. A transport connection can only be established between two
addressable units in the network. It must therefore be possible to identify each application by
means of an address which is unique throughout the network.

In the OSI world, addresses are assigned to service access points rather than applications.
Within the network, the application is thus identified by means of the address of the access
point via which it communicates.

Each service access point is assigned an address which is unique throughout the network.
This consists of a selector and the address of the underlying access point. The following
diagram shows the format of addresses in the OSI reference model.

Layer N

Layer N - 1

Access point to the services of layer N-1

Generating distributed processing Distributed processing via OSI TP

Generating Applications 93

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Figure 8: Addresses of the service access points in the OSI reference model

OSI TP
Application layer UASE

UTM application

Layer 7

Access point

Layer 6 Presentation layer

Layer 5 Session layer

Layer 4 Transport layer

Layer 3 Network layer

Layer 2 Data link layer

* Access point layer n/n+1 = access point of layer n+1 to services of layer n

Access point of layer 4
to network layer services

Access point of layer 5 to
services of layer 4

Access point of layer 6 to
services of layer

Layer 1 Physical layer

Address:
address of access point layer 5/6 *
+ presentation selector

Address:
address of access point layer 4/5
+ session selector

Address:
address of access point layer 3/4
+ transport selector

OSI TP

system name (system address) **
Address:

** Under BS2000 systems assigned during BCAM generation

Distributed processing via OSI TP Generating distributed processing

94 Generating Applications

In order to communicate with other applications in the network, a UTM application links to
a service access point. This link is generated using the ACCESS-POINT statement. The
UTM application can then be accessed by its partners in the network via the address of this
access point.

The format of the access point address via which the application is accessed depends on
the access point hierarchy. If the UTM application communicates on the basis of OSI TP, it
links to an access point to the services of layer 6. The address of the access point in the
local system consists of the transport selector (selector of the transport layer), the session
selector (selector of the session layer), and the presentation selector (selector of the presentation
layer). The network address of the access point thus comprises the network address of the
system and the address of the access point in the local system.

The selectors of the individual layers must be unique in the local system. The system
address is unique throughout the entire network. When defining the access point address,
you must consult your network administrator.

The selectors consist of octets. An octet is a byte (8 bits) in which the bit numbering and thus
the order in which bits are transferred is fixed.

Order of bit transfer in an octet

It is possible to establish several parallel connections (also known as associations) to a certain
communication partner. All connections to a remote partner are generated in a single OSI-
CON statement. The OSI-LPAP statement can be used to define the number of parallel
connections to a particular partner. Each individual connection must be assigned an associ-
ation name, which is unique throughout the local system. The names of associations with a
remote partner are also generated in the OSI-LPAP statement.

Each connection between two partners is managed by one of the partners. This partner is
known as the contention winner, while the other partner is referred to as the contention loser.
Jobs can be initiated by both partners. If both partners submit a job at the same time, priority
is given to the contention winner. The contention winner of a connection should be the
communication partner that starts jobs most frequently.

Network

 O c t e t

8 7 6 5 4 3 2 1 Bit

Bit transfer

Generating distributed processing Distributed processing via OSI TP

Generating Applications 95

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

If several parallel connections exist between two partner, it is not necessary to define which
partner is the contention loser and which partner is the contention winner for each
connection. You simply specify the number of connections for which the individual partners
act as the contention winner (OSI-LPAP statement). The partner that starts jobs most
frequently should be defined as the contention winner.

openUTM supports TPSU-title (Transaction Processing Service User). This is an OSI TP
user which provides certain services within an application. In openUTM this is the sequence
of program units which form a service. A TPSU-title is a unique name within the application.
In openUTM it is the TAC name of the first program unit of a service. The initiating TPSU-
title is the TPSU-title of the job submitter and the recipient TPSU-title is the TPSU-title of the
job receiver.

openUTM supports the application entity title (AET) defined by ISO. This is required if you
are working with transaction management (commit functional unit), or if a heterogeneous
partner requires an AET in order to establish a connection. In openUTM, the AET is
specified for information purposes, but it is not used for addressing the partner.

The application context to be used for communication purposes must be defined for each
remote partner with which the UTM application wishes to communicate via the OSI TP
protocol.

The OSI terms application entity title and application context are described in further detail in
the following sections.

Application entity title (AET)

In the OSI world, communication partners are represented by application entities. An appli-
cation entity is an addressable unit in layer 7 of the OSI reference model (application layer).
An example would be the access point of a UTM application, via which an OSI TP commu-
nication partner can link to the UTM application. In the OSI TP standard, each application
entity is assigned an application entity title, which can be used to uniquely address the
application entity in the OSI network.

The ISO standard defines two forms of AET: the directory form and the object identifier form.
The latter is supported by openUTM. This is required if you are working with transaction
management (commit functional unit), or if a heterogeneous partner requires an AET in
order to establish a connection. In the case of homogeneous communication between UTM
and UTM, the AET is also specified, but is not used for addressing the partner. It consists
of two parts:

– the application process title (APT)
– the application entity qualifier (AEQ)

Distributed processing via OSI TP Generating distributed processing

96 Generating Applications

Application process title (APT)

The APT is used to identify the application. In accordance with the ISO standard, it must be
unique globally (i.e. worldwide). For this reason, it should be assigned and registered by a
standardization body, e.g. in Germany this is the Deutsche Gesellschaft for Warenken-
nzeichnung GmbH (DGWK = Germany company for registering trademarks).

An APT in object identifier form consists of up to 10 components:

(component1,component2,...,component10)

Some of the values for component1 through component10 have been standardized. Here,
symbolic names have been assigned to certain numbers. The value range for component2
depends on the value for component1. The table below lists the symbolic names and value
ranges supported by openUTM:

The APT specified in openUTM need not be assigned by a standardization body, i.e. it is
freely selectable. However, it must meet the following two requirements:

– it must be unique within the network
– it must contain permitted values, as shown in the table above

Application entity qualifier (AEQ)

The AEQ identifies an access point within an application. You can only assign AEQs to the
access points of an application if you have assigned an APT to the application itself.

The AEQ is a positive integer between 0 and 67108863.

The AEQ must be unique within the application, i.e. the application must not contain two
access points with the same AEQ. However, it is not necessary to assign an AEQ to all
access points in the application.

When there are parallel associations and a connection is being established, the AEQ is
checked to see if it is the same one as used for the first association established.

component1 0:CCITT 1:ISO 2:JOINT-ISO-CCITT

component2 0:RECOMMENDATION
1:QUESTION
2:ADMINISTRATION
3:NETWORK-OPERATOR

0:STANDARD
1:REGISTRATION-AUTHORITY
2:MEMBER-BODY
3:IDENTIFIED-ORGANIZATION

Value range:
0 - 39

Value range:
0 - 39

Value range:
0 - 67 108 863

component3
through
component10

Value range:
0 - 67 108 863

Value range:
0 - 67 108 863

Value range:
0 - 67 108 863

Generating distributed processing Distributed processing via OSI TP

Generating Applications 97

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Application context

The application context to be used for communication purposes must be coordinated with
each partner application with which your local application wishes to communicate via the
OSI TP protocol.

The application context must be explicitly defined for each partner application. It determines
the rules governing the transfer of messages between the local application and partner
application. openUTM supports the following predefined application contexts:

– UDTAC
– UDTDISAC
– XATMIAC
– UDTCCR
– UDTSEC
– XATMICCR

If you are not using one of the application contexts listed above you can use the
APPLICATION-CONTEXT statement which is described on page 289 to generate further
application contexts.

All the involved partners must agree the following when using an application context:

● An abstract syntax, which defines how the user data is encoded for transfer. By default,
openUTM supports the following abstract syntaxes:

– UDT (Unstructured Data Transfer)
– XATMI
– CCR
– UTMSEC

See also the ABSTRACT-SYNTAX statement on page 279.

● A transfer syntax, which defines the format in which the user data is transferred. By
default, openUTM supports the transfer syntax Basic Encoding Rules (BER).

See also the TRANSFER-SYNTAX statement on page 541.

Both communication partners must generate the same abstract syntaxes as the application
context used for communication. If the application context generated locally is not identical
to that generated in the partner, openUTM rejects any attempts to establish the association
with a corresponding message.

You only need to use the ABSTRACT-SYNTAX, TRANSFER-SYNTAX and APPLICATION-
CONTEXT statements if you are not using any of the standard application contexts made
available by openUTM.

Distributed processing via OSI TP Generating distributed processing

98 Generating Applications

4.2.2 Generation procedure for distributed processing based on OSI TP

The following KDCDEF statements are provided for generating the communication partners
of an application and the connections to these partners:

Statement Function

ABSTRACT-SYNTAX Define the abstract syntax for the user data:
– assign a unique object identifier
– assign the transfer syntax for data transfer

ACCESS-POINT Define the name and address of the local OSI TP access point:
– define the application entity qualifier (AEQ) of the local application

(address component of the application entity title)

APPLICATION-CONTEXT Define the application context for communication with the partner
application:
– assign the abstract syntax for the user data
– assign a unique object identifier

LTAC Assign local TAC names for services in the partner application, under
which these services are then started locally

MASTER-OSI-LPAP Define the name and properties of the master LPAP in a OSI-LPAP
bundle (see page 104)

OSI-CON Define connections between the local application and the remote
partner and assign these to the OSI-LPAP partner:
– specify a local OSI TP access point
– specify the network address of the partner application

OSI-LPAP Define an OSI-LPAP partner as the logical access point for the partner
application:
– specify the application entity title (i.e. APT and AEQ) of the

partner application
– specify the application context of the partner application
– define the number of (parallel) connections to the partner and the

names of these connections
– define the number of connections to be established automatically

when the application is started
– define the number of connections for which the local application

is to act as the contention winner
– define the access rights of the partner application in the local

application
– define the administration authorization level of the partner appli-

cation
– define maximum values for the message queue of the OSI-LPAP

partner
– define the status of the OSI-LPAP partner on connection setup
– if necessary, make the OSI-LPAP a slave LPAP of a OSI-LPAP

bundle and specify the associated master LPAP

Generating distributed processing Distributed processing via OSI TP

Generating Applications 99

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

To allow for communication based on the OSI TP protocol, you must perform the following
steps:

● Generate the application entity title (AET)

The statement UTMD...,APPLICATION-PROCESS-TITLE= is used to define the appli-
cation process title (APT) as the address component of the AET for your application. A
remote partner that requires AETs must know this APT in order to establish a
connection.

The application entity title is assigned to the OSI-LPAP partner. In the OSI-LPAP
statement, use the APPLICATION-PROCESS-TITLE= operand to specify the APT and
the APPLICATION-ENTITY-QUALIFIER= operand to specify the AEQ of the access
point for the partner application. The AEQ must already be generated for the access
point in the remote partner application.

Using the statement ACCESS-POINT...,APPLICATION-ENTITY-QUALIFIER=, define
the application entity qualifier (AEQ) as the address component of the AET for the
access point of the local application. A partner application must know the AEQ of the
access point via which communication takes place with the local application.

i The following applies to UTM cluster applications:
If you specify an APT with less than 10 elements in the UTMD statement for an
OSI-TP link then UTM adds an index (1, 2 etc.) to the APT generated for each
node application. This guarantees that the AET is unique. You are therefore
recommended to generate no more than 9 elements in UTM cluster applica-
tions.

TRANSFER-SYNTAX Define the transfer syntax for data transfer:
– assign a unique object identifier

UTMD Define global values and the address of the local UTM application:
– define the application process title (APT) (address component of

the application entity title)
– define the maximum waiting time for establishing an association
– define the maximum waiting time for confirmation of

asynchronous messages

The following additional parameters are available under Unix systems and Windows
systems:

MAX XAPTPSHMKEY Define an authorization key for the XAPTP shared memory segment.

MAX OSISHMKEY Define an authorization key for the OSS shared memory segment

MAX OSI-SCRATCH-AREA Define the size of the working area for dynamic data storage

Statement Function

Distributed processing via OSI TP Generating distributed processing

100 Generating Applications

● Define the application context for communication with the partner application

If you do not wish to work with one of the default application contexts listed on page 97,
you can generate the application context to be used for communication with the partner
application using the APPLICATION-CONTEXT statement. This involves assigning
defined abstract syntaxes and a unique object identifier to the application context.

The ABSTRACT-SYNTAX statement serves to specify the abstract syntax used for the
transfer of user data and to assign a unique object identifier to this abstract syntax.

The transfer syntax (which defines how the user data is to be encoded and decoded for
data transfer) is also defined using the ABSTRACT-SYNTAX statement. The transfer
syntax is identified by means of a unique object identifier.

● Define an access point to the OSI TP services for your UTM application, so that your
application can be addressed during communication based on OSI TP.

The ACCESS-POINT statement is used to specify the address of the access point
within the local system, and to assign a symbolic name for addressing the access point
in the local UTM application.

The address defined in ACCESS-POINT must be unique within the UTM application
and within the local system (under BS2000 systems for each host). When defining the
access point address, you must therefore consult your system or network administrator.

A partner application that wishes to communicate with the local application on the basis
of the OSI TP protocol identifies the local UTM application using the access point
address and the network address of your system. The network address of the access
point must be specified when generating the remote partner applications.

● Define a logical access point (OSI-LPAP partner) for each partner application and the
connections between the local application and partner application

This involves the definition of an OSI-LPAP statement and an OSI-CON statement. An
OSI-LPAP statement must be generated for each partner application. The OSI-CON
statement defines the connections between the UTM application and the communi-
cation partner. The definition is generated via the two access points (in the local appli-
cation and in the partner application) between which connections are to be established.
The OSI-CON statement is used to specify the network address of the remote access
point and the name of the local access point (defined in ACCESS-POINT). The OSI-
LPAP statement is used to define the number and names of parallel connections
(associations) to the partner application. The address of the remote access point must
match that of the access point generated in the partner application.

If connections are to be established automatically as soon as both communication
partners are available (i.e. started), this must be specified when generating both
partners. In openUTM, this is achieved using the statement OSI-LPAP...,CONNECT=.

Generating distributed processing Distributed processing via OSI TP

Generating Applications 101

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

The partner started last then establishes the connection. With OSI-LPAP...,CONTWIN=,
you can also define the number of connections to the communication partner for which
the local application is to act as the contention winner.

● Assign local transaction codes to the services of the partner applications, which are
then used to address remote services in the local application

Each of these transaction codes is defined using an LTAC control statement. The trans-
action code can be assigned uniquely to the partner application via the LPAP partner
using LTAC..., LPAP=osi-lpapname. In addition, you must specify the transaction code of
the program unit in the partner application using LTAC...,RTAC=. Ask the operator of
the partner application for this transaction code. If the name and type of the remote TAC
are specified incorrectly, this is not detected by the KDCDEF generation tool, since
KDCDEF does not have any information on the configuration of the partner application.
The error is not detected until the local application requests this LTAC.

You can also perform the following steps for communication based on OSI TP:

● Define global values for all connections from the application to communication partners

Using the UTMD statement, you can restrict and define the time spent waiting for confir-
mation from the communication partner, and specify the total number of jobs submitted
to partner applications that can be processed simultaneously in the local application (via
OSI TP and LU6.1). By defining appropriate limit values, you can prevent connections
from becoming blocked or from being terminated prematurely. You can also ensure that
all tasks of the application are occupied by jobs from remote applications. The values
defined here also apply for communication based on LU6.1.

● Generate replacement connections

Replacement connections can be generated by issuing two OSI-CON statements for
the same connection. They are used to interact alternatively with various partners
without having to take this into consideration in the program units. The two partners may
be located in different systems. The replacement connection is generated by assigning
two OSI-CON statements with different partner addresses (remote access point
addresses) to an OSI-LPAP statement, thereby allocating two different partners to the
same logical access point (LPAP partner). However, both connections to the alternative
partner applications must not be activated simultaneously. For this reason,
ACTIVE=YES may only be specified in one OSI-CON statement. You can switch to the
replacement connection to the alternative partner application using the KDCLPAP
administration command.

● Define data access control for services of the partner application

Using the statement LTAC...,LOCK= or LTAC..., ACCESS LIST=, you can secure a
partner application service with a lock code. This service is then available locally only
to those program units that are running under a user ID (KCBENID) and have been
started by a client (KCLOGTER) that have the appropriate authorization.

Distributed processing via OSI TP Generating distributed processing

102 Generating Applications

● Define data access control for services of the local application

If you wish to restrict a partner application’s access to certain services of the local appli-
cation, you can secure critical services with a lock code or an access list. With the KSET
statement, you can define a key set containing the key codes for services that can be
accessed by the partner application. This key set is assigned to the logical access point
of the partner application using the statement OSI-LPAP...,KSET=. The partner appli-
cation can then call only those TACs which are either not secured or for which the
partner application has the appropriate authorization.

● Assign administration authorization for TACs of the partner application

In the OSI-LPAP statement, you can define whether the partner is to be granted admin-
istration authorization in the local application. The authorization level is defined using
OSI-LPAP...,PERMIT=.

● Assign UTM SAT administration authorization for TACs of the partner application

Using OSI-LPAP...,PERMIT= you also can define whether the partner is to be granted
UTM SAT administration authorization in the local application.

The diagram on page 103 summarizes the areas in which the generation of the local appli-
cation must be coordinated with the generation of the partner application. A standard appli-
cation context generated by openUTM is used. You must not therefore enter an
APPLICATION-CONTEXT statement.
For more information on generating applications with distributed processing, in particular
via OSI TP, refer to the example generation „ComfoTravel“ on page 564ff.

Generating distributed processing Distributed processing via OSI TP

Generating Applications 103

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Figure 9: Coordination during the generation of OSI TP applications

.

.

ACCESS-POINT ACRMS,

P-SEL=(C’PRMS’,ASCII), (TS)

S-SEL=(C’SRMS’,ASCII), (TS)

T-SEL=C’RMS’ , (TS)

APPLICATION-ENTITY-QUALIFIER=11 (1)

OSI-CON CNAGENCY,

P-SEL=*NONE,

S-SEL=*NONE,

T-SEL=C’TRAVEL’, (TS)

N-SEL=C’HOST0002’ , (TS)

LOCAL-ACCESS-POINT=ACRMS,

OSI-LPAP=LPAGENCY

OSI-LPAP LPAGENCY,

APPLICATION-CONTEXT=UDTCCR,

APPLICATION-ENTITY-QUALIFIER=21, (2)

APPLICATION-PROCESS-TITLE =(1,2,3,20), (3)

ASSOCIATIONS=4,

ASSOCIATION-NAMES=AGENCY,

CONNECT=2,

CONTWIN=1

LTAC LTAGENCY,

LPAP = LPAGENCY,

RTAC = TCAGENCY, (4)

WAITTIME=(10,30)

UTMD MAXJR=200,

APPLICATION-PROCESS-TITLE =(1,2,3,10), (5)

CONCTIME=25,

.

.

OSI-CON CNRMS,

P-SEL=(C’PRMS’,ASCII) , (TS)

S-SEL=(C’SRMS’,ASCII) , (TS)

T-SEL=C’RMS’, (TS)

N-SEL=C’HOST0001’ , (TS)

LOCAL-ACCESS-POINT=ACTRAVEL,

OSI-LPAP=LPRMS

ACCESS-POINT ACTRAVEL,

P-SEL=*NONE,

S-SEL=*NONE,

T-SEL=C’TRAVEL’, (TS)

APPLICATION-ENTITY-QUALIFIER=21 (2)

OSI-LPAP LPRMS,

APPLICATION-CONTEXT=UDTCCR,

APPLICATION-ENTITY-QUALIFIER=11, (1)

APPLICATION-PROCESS-TITLE=(1,2,3,10), (5)

ASSOCIATIONS=4,

ASSOCIATION-NAMES=RMS,

CONNECT=2,

CONTWIN=3

TAC TCAGENCY, (4)

PROGRAM=PRAGENCY

UTMD MAXJR=200,

APPLICATION-PROCESS-TITLE=(1,2,3,20), (3)

CONCTIME=25,

Local application Partner application
Reservation Management Service Travel Agency

(n) specifies that values must correspond across both OSI TP generations.
(TS) means the values must also correspond to those of the transport system or network generation.

Distributed processing via OSI TP Generating distributed processing

104 Generating Applications

4.2.3 OSI-LPAP bundles

OSI-LPAP bundles allow automatic distribution of messages over multiple OSI-LPAP
partners. If a UTM application exchanges a large number of messages with a partner appli-
cation, it may make sense in terms of the load balancing to start several instances of the
partner application and distribute the messages among the separate instances. In a OSI-
LPAP bundle, openUTM takes care of distributing the messages to the instances of the
partner application.To achieve this, the program units in the APRO call must address the
MASTER-OSI-LPAP.

One case of an application with this type of message distribution when a UTM application
communicates via BeanConnect with a J2EE application server. If the application server is
run as a cluster application, then the messages sent to the application server should be
distributed among the separate instances of the cluster (see also the "BeanConnect for
openUTM" manual).

A further application scenario is communication from a standalone UTM application to a
UTM cluster application. This allows messages to the UTM cluster application to be
distributed across the individual node applications.

i Connecting a standalone UTM application to a UTM cluster application via an OSI-
LPAP bundle works in the same way as communication between two standalone
UTM applications with OSI-LPAP bundles. No special issues related to clusters
need to be observed.

An OSI-LPAP bundle consists of one master LPAP and several slave LPAPs. The slave
LPAPs are assigned to the master LPAP during generation. In this case, OSI-CONs that
belong to different slave LPAPs address the various partner applications.

Figure 10: Example of a OSI-LPAP bundle

MASTER-OSI-LPAP

OSI-LPAP 1

OSI-LPAP n

OSI-CON 1

...

OSI-CON n

Slave LPAPS

Generating distributed processing Distributed processing via OSI TP

Generating Applications 105

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Generating OSI-LPAP bundles

MASTER-OSI-LPAP statement on page 375
Defines the name and properties of the master LPAP in a OSI-LPAP bundle:

● master-lpap-name

Name for the master LPAP.

● APPLICATION-CONTEXT=

Application context to be used for the communication with the remote partner.

● STATUS=

Specifies whether messages can be sent to this LPAP bundle.

OSI-LPAP statement on page 439
The following properties must be specified for the generation of a slave LPAP:

● lpap-name

Name of the slave LPAP.

● BUNDLE=master-lpap-name

Name of the master LPAP. The master LPAP specified here must be defined in a
MASTER-OSI-LPAP statement. If you specify BUNDLE, this OSI-LPAP becomes a
slave LPAP of the specified master LPAP.

MASTER-OSI-LPAP master, ...
OSI-LPAP slave-lpap, BUNDLE=master, ...

● APPLICATION-CONTEXT=

Application context to be used for the communication with the remote partner.

All slave LPAPs of a LPAP bundle must be assigned to the same application context
as the master LPAP.

Distributed processing via OSI TP Generating distributed processing

106 Generating Applications

OSI-CONs of LPAPs in an OSI-LPAP bundle

● Physical connections (OSI-CONs) must not be assigned to master LPAP. This means
it may not be specified as an OSI-LPAP in a OSI-CON statement. The master LPAP
always uses the connections assigned to the slave LPAPs.

● All OSI-CONs of all slave LPAPs of a LPAP bundle must be assigned to the same local
ACCESS-POINT.

Distributing messages

i The following information on distributing messages applies equally to LU6.1 and
OSI TP.

Program units can address a slave LPAP as well as a master LPAP with the APRO call.
APRO calls to a slave LPAP are not distributed by openUTM. APRO calls to a master LPAP
are distributed as follows by openUTM:

● openUTM addresses the slave LPAPs in sequence using APRO calls sent to a master
LPAP.

– openUTM always attempts in this case to find a slave LPAP to which a connection
has already been established and, if a queued message is to be sent to the partner
(APRO AM), whose queue level has not been reached yet.

– If the first APRO call to a master LPAP in a transaction is APRO DM, then openUTM
only returns the return code 40Z/KD10 when there is no connection to any slave
LPAP.

– If the first APRO call to a master LPAP in a transaction is APRO AM, then openUTM
only selects a slave LPAP with a cleared connection when there is no connection
yet to any of the slave LPAPs. In this case the connection is initiated for the slave
LPAP.

– When searching for a slave LPAP with an established connection, a connection is
initiated for every slave LPAP found that does not have a connection yet.

● All APRO calls sent to the MASTER-LPAP in a single transaction address the same
slave LPAP.
For this reason, an APRO call for a second message to a partner application may be
rejected if, for example, the queue level for the slave LPAP has been exceed or the
connection has been lost in the meantime.

● Messages that have already been assigned to a slave LPAP are not reassigned in
sequence to another slave LPAP any more. if the connection for dialog messages is lost
after the APRO call, then the dialog message is rejected just like for "normal" LPAPs
and the transaction is reset, if necessary.

Generating distributed processing Distributed processing via OSI TP

Generating Applications 107

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

Information displayed in the KB header

i The following information on the display in the KB header applies equally to LU6.1
and OSI TP.

In services started for received messages, openUTM always displays the name of the
LTERM or (OSI-)LPAP through which the message was received in the KB header.

The following therefore applies for LPAP bundles:
In services started for messages received through a slave LPAP, the name of this slave
LPAP is displayed in the KB header and not the name of the master LPAP.

With INIT PU you can obtain information on whether the (OSI-)LPAP in the KB header is
the slave LPAP of an LPAP bundle as well as the name of the master LPAP.

UTM and BCAM generations (BS2000 systems) Generating distributed processing

108 Generating Applications

4.3 Coordinating the UTM and BCAM generations (BS2000
systems)

During distributed processing via LU6.1 and OSI TP network connections are required to
enable applications to communicate with each other. openUTM uses the services of the
BCAM transport system for these network connections.

To allow you to establish these network connections, addresses must be assigned to both
communication partners. These addresses must be unique throughout the network. The
network type required for communication is defined by means of appropriate entries in
KDCDEF generation (BCAMAPPL T-PROT= statement) and in BCAM generation. It is
important to note that openUTM does not distinguish between ISO and TCP/IP networks
(ISO and RFC1006 entries for the T-PROT parameter are synonymous). This distinction
must be made in BCAM generation when defining connections between participating
computers.

It is not usually necessary to make any entries in BCAM for a UTM application.

In the case of a connection via RFC1006, BCAM uses the number “102” as the partner’s
listener port number by default. However, if a different port number is used, e.g. because
the transport system of the partner cannot use port number 102, then a BCMAP entry must
be created for the remote application (SUBFUNCT=GLOBAL). This BCMAP entry is
created as shown below (see also the "BCAM User Guide"):

/BCMAP FUNCT=DEFINE,SUBFUNCT=GLOBAL,NAME=name-of-partner-application, -
/ ES=partner-processor-name,PPORT#=listener-port-no, -
/ PTSEL-I=tselector-of-partner-application

Generating distributed processing Address information for CMX

Generating Applications 109

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

4.4 Providing address information for the CMX transport system
(Unix systems and Windows systems)

In the case of distributed processing via LU6.1 or OSI TP and when connecting clients of
type PTYPE=APPLI and UPIC-R, openUTM uses the CMX transport access system (Unix
sytems and Windows systems). When communicating using CMX, the connection is estab-
lished using TCP/IP-RFC1006. openUTM obtains the IP addresses of the partner computer
when started from the corresponding database, e.g. from the hosts file or the domain name
server.

You can provide the address information for the transport system either via the UTM gener-
ation or by means of the TNS entries.

If you use the Mapped Hostname function then the address information is always retrieved
from the UTM generation (see section “Using mapped host names (Unix systems and
Window systems)” on page 121).

If you are not using the Mapped Hostname function then openUTM first searches through
the TNS directory. The following applies:

– If a matching TNS entry is found then it is used. In this case, the address information
present in the UTM generation is ignored.

– If no TNS entry is found then the address information from the UTM generation is used.

i It is recommended that you always store the complete address information with the
UTM generation.

Port number 102 for TCP/IP connections

The applications are accessed via port numbers in connections via TCP/IP-RFC1006. You
must note the following, regardless of how you provided the address information:

– Only port number 102 can be used for local transport system endpoints (BCAMAPPL,
ACCESS-POINT) in UTM applications on Unix systems and Windows systems as well
as for partner applications and clients running on Unix systems and Windows systems.

– In UTM applications running on Unix systems and Windows systems, you can only use
port number 102 for partner applications and clients on BS2000 systems.

Address information for CMX Generating distributed processing

110 Generating Applications

4.4.1 Providing address information with KDCDEF

The address information is stored in the PRONAM, N-SEL, LISTENER-PORT operands, as
well as in the T-PROT and TSEL-FORMAT operands. You must note the following:

– You must always specify the first TCP/IP host name in the database (hosts file,
DNS, ...) for PRONAM or N-SEL or an assigned mapped host name (see section “Using
mapped host names (Unix systems and Window systems)” on page 121). For actively
established connections, openUTM determines the name from the IP address, and for
passively established connections the IP address from the name. You must not specify
any other names, i.e. aliases, listed in the database (hosts file, DNS,...) here.

– You should always enter a port number for LISTENER-PORT. The port number must
always match the port number used by the communication partner.

– You must always specify RFC1006 for T-PROT.

– It is recommended to always enter data for the TSEL-FORMAT operand.
If you do not specify anything there, then KDCDEF assigns one of the following values,
depending on the OPTION statement:
– for CHECK-RFC1006=YES, a default value based on the set of characters in the

name of the corresponding application or partner
– for OPTION CECK-RFC1006=NO, the invalid value ’U’ or ’?’ (= undefined)

OSI TP connection

In the following example, port number 10000 is used in the local application and port number
12000 is used in the remote application. The remote application is running on the computer
named CENTRAL1.

ACCESS-POINT BSPOSITP -
,LISTENER-PORT=10000 -
,T-PROT=RFC1006 -
,TSEL-FORMAT=T -
,P-SEL=.., ,S-SEL=... ,T-SEL=... -
,...

OSI-CON OSICON01 -
,LOCAL-ACCESS-POINT=BSPOSITP -
,LISTENER-PORT=12000 -
,T-PROT=RFC1006 -
,N-SEL=CENTRAL1 -
,P-SEL=... ,S-SEL=... ,T-SEL=... -
,...

The specifications for P-SEL, S-SEL and T-SEL need to match the values specified in the
generation of the partner application (see the sample on page 103).

Generating distributed processing Address information for CMX

Generating Applications 111

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

LU6.1 connection

In the following example, port number 10010 is used in the local application and port number
12010 is used in the remote application. The remote application is running on the computer
named CENTRAL2.

BCAMAPPL BSPLU61 -
,LISTENER-PORT=10010 -
,T-PROT=RFC1006 -
,T-SEL-FORMAT=T -
,...

CON LU61PART -
,BCAMAPPL=BSPLU61 -
,PRONAM=CENTRAL2 -
,LISTENER-PORT=12010 -
,T-PROT=RFC1006 -
,TSEL-FORMAT=T -
,...

PTYPE=APPLI connection

In the following example, port number 10020 is used in the local application and port number
12020 is used in the remote application. The remote application is running on the computer
named CENTRAL3.

BCAMAPPL BSPAPPLI -
,LISTENER-PORT=10020 -
,T-PROT=RFC1006 -
,T-SEL-FORMAT=T -
,...

PTERM APPLPART -
,PTYPE=APPLI,
,BCAMAPPL=BSPAPPL -
,PRONAM=CENTRAL3 -
,LISTENER-PORT=12020 -
,T-PROT=RFC1006 -
,TSEL-FORMAT=T -
,...

PTYPE=UPIC-R connection

In the following example, port number 10030 is used in the local application and port number
12030 is used in the remote application. The remote application is running on the computer
named CENTRAL4.

Address information for CMX Generating distributed processing

112 Generating Applications

BCAMAPPL BSPUPR -
,LISTENER-PORT=10030 -
,T-PROT=RFC1006 -
,T-SEL-FORMAT=T -
,...

PTERM UPRPART -
,PTYPE=UPIC-R,
,BCAMAPPL=BSPUPR -
,PRONAM=CENTRAL4 -
,LISTENER-PORT=12030 -
,T-PROT=RFC1006 -
,TSEL-FORMAT=T -
,...

In the KDCDEF call consistency checks are performed on the address information. The
checks are performed because the OPTION statement uses the operand CHECK-
RFC1006=YES

Generating distributed processing Address information for CMX

Generating Applications 113

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

4.4.2 Converting address information from TNS entries to KDCDEF

If you have been providing the address information to date using TNS entries, then you
have only entered in the UTM generation the application name, possibly the host name of
the communication partner, and the name of your UTM application. You must specify these
names in TNS as GLOBAL NAMES. The host name/IP address associations are deter-
mined by the TNS entry.

When converting from TNS entries to KDCDEF, the only information you still need to specify
is the port number.

It is recommended that you always administer the full generation information for a UTM
application centrally. To do this, proceed as follows:

– Include the address information of the TNS entries that are of relevance for the UTM
application in the KDCDEF generation.

– Delete these TNS entries, including those from the TNS directory.

Based on the LU6.1 connection from the section “Providing address information with
KDCDEF” (see page 110), the following presents an example of the changes you will need
to make when converting:

LU6.1 connection

In the following example, port number 10010 is used in the local application BSPLU61 and
port number 12010 is used in the remote application LU61PART. The remote application is
running on the computer named CENTRAL2.

Before conversion

KDCDEF: BCAMAPPL BSPLU61-
CON LU61PART -
,BCAMAPPL=BSPLU61 -
,PRONAM=CENTRAL2
,...

TNS entries: BSPLU61\
TSEL RFC1006 T'BSPLU61'
TSEL LANINET A'10010'

LU61PART.CENTRAL2\
TA RFC1006 address of CENTRAL2 PORT 12010 T'LU61PART'

Address information for CMX Generating distributed processing

114 Generating Applications

After conversion

When converting you must specify

● for the local application name
the port number in the LISTENER-PORT parameter of the KDCDEF statement
BCAMAPPL instead of the port number in the TNS entry (TSEL LANINET).

● for the remote partner
the processor name of the partner computer in the PRONAM parameter and the port
number in the LISTENER-PORT parameter of the KDCDEF statement CON instead of
the address and port number in the transport address of the TNS entry (TA).

In order to be able to determine the IP address of the partner computer, the name CENTRAL2
must be known to the DNS.

KDCDEF: BCAMAPPL BSPLU61 -
,LISTENER-PORT=10010 -
,T-SEL-FORMAT=T -
,...

CON LU61PART -
,BCAMAPPL=BSPLU61 -
,PRONAM=CENTRAL2 -
,LISTENER-PORT=12010 -
,TSEL-FORMAT=T -
,...

Generating distributed processing Address information for CMX

Generating Applications 115

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

LU6.1 connection using symbolic names

In the following example, port number 10010 is used in the local application BSPLU61 and
port number 12010 is used in the remote application LU61PART. The remote application is
running on the computer named CENTRAL2.

Before conversion

After conversion

In contrast to the example “LU6.1 connection” on page 113, you must also change the
BCAMAPPL name and the CON name in the TSEL parameters of the TNS entries. In this
case this means you must use the real names instead of the symbolic names.

When converting you must

● change the name of the local application
in the BCAMAPPL parameter to the value you used in the local TNS entry (TSEL
RFC1006).

● for the local application name
as in the example “LU6.1 connection” on page 113, specify the port number in the
LISTENER-PORT parameter of the KDCDEF statement BCAMAPPL instead of the port
number in the TNS entry (TSEL LANINET).

● the name of the remote application
change the value in the CON statement to the value you used in the remote TNS entry
(TA).

● for the remote partner
as in the example “LU6.1 connection” on page 113, the processor name of the partner
computer in the PRONAM parameter and the port number in the LISTENER-PORT
parameter of the KDCDEF statement CON instead of the address and port number in
the transport address of the TNS entry (TA)

KDCDEF: BCAMAPPL LU61-
CON LU61 -
,BCAMAPPL=LU61 -
,PRONAM=PROLU61
,...

TNS entries: LU61\
TSEL RFC1006 T'BSPLU61'
TSEL LANINET A'10010'

LU61.PROLU61\
TA RFC1006 address of CENTRAL2 PORT 12010 T'LU61PART'

Address information for CMX Generating distributed processing

116 Generating Applications

In order to be able to determine the IP address of the partner computer, the name CENTRAL2
must be known to the DNS.

KDCDEF: BCAMAPPL BSPLU61 -
,LISTENER-PORT=10010 -
,T-SEL-FORMAT=T -
,...

CON LU61PART -
,BCAMAPPL=BSPLU61 -
,PRONAM=CENTRAL2 -
,LISTENER-PORT=12010 -
,TSEL-FORMAT=T -
,...

Generating distributed processing Address information for SOCKET

Generating Applications 117

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

4.5 Providing address information for the SOCKET transport
system (Unix systems and Windows systems)

In connections to a TS application with PTYPE=SOCKET, communication is performed via
the socket interface using native TCP/IP as the transport protocol. For these socket clients
the address information can only be provided with KDCDEF. openUTM obtains the IP
addresses of the partner computer when started from the corresponding database, e.g.
from the hosts file or the domain name server.

The address information is stored in the PRONAM and LISTENER-PORT operands as well
as in T-PROT and TSEL-FORMAT. In addition, the BCAMAPPL operand is also important.

Note the following points in this context:

● For PRONAM you must always specify the first TCP/IP host name generated in the
database (hosts file, DNS, ...) or an assigned mapped host name (see section “Using
mapped host names (Unix systems and Window systems)” on page 121). openUTM
determines the IP address from it. Other names specified in the database (hosts file,
DNS,...), e.g. aliases, must not be specified here.

● You must always enter a port number for LISTENER-PORT. The port number
absolutely must match the port number used by the communication partner. Specifi-
cation of a LISTENER-PORT is mandatory.

● You must always specify SOCKET for T-PROT.

● It is recommended to set a value in the TSEL-FORMAT operand.

● In BCAMAPPL you must specify an application name for which
T-PROT=SOCKET was generated.

Address information for SOCKET Generating distributed processing

118 Generating Applications

PTYPE=SOCKET connection

In the following example, port number 10010 is used in the local application and port number
12100 is used in the remote application LU61PART. The remote application is running on the
computer named CENTRAL5.

BCAMAPPL BSPSOC -
,LISTENER-PORT=10100 -
,T-PROT=SOCKET -
,T-SEL-FORMAT=T -
,...

PTERM SOCPART -
,PTYPE=SOCKET,
,BCAMAPPL=BSPSOC -
,PRONAM=CENTRAL5 -
,LISTENER-PORT=12100 -
,T-PROT=SOCKET -
,TSEL-FORMAT=T -
,...

Generating distributed processing Single/multi-threaded network access

Generating Applications 119

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

4.6 Single- and multi-threaded network access (Unix systems
and Windows systems)

During distributed processing, the UTM application is connected to the network via network
processes. These processes are responsible for handling connection setup requests and
for managing data transfer via the connection. During generation, you can define whether
the UTM application is to operate on the basis of single-threaded network processes or
distributed over multi-threaded network processes.

i For performance reasons, it is recommended to operate the UTM application with
multi-threaded net processes. This is also the default setting.

Use of multi-threaded and single-threaded net processes

For distributed processing via CMX connections on Unix systems, you can use multi-
threaded as well as single-threaded net processes.

For distributed processing via CMX connections on Windows systems, you can only use
multi-threaded net processes.

For distributed processing via Socket connections, you can only use multi-threaded net
processes.

Multi-threaded network process with CMX and socket connections

Multi-threaded network access allows you to maximize the process resources, since each
network process is capable of managing several connections.

The main process utmmain of a UTM application starts one or more network processes,
which can in turn establish and manage numerous connections. Assignments between
connections and processes are controlled through the use of listener IDs. All connections
with the same listener ID are managed by threads of the same network process.

There are different types of multi-threaded network process for CMX and socket connec-
tions. CMX connections use a process type called utmnet, and socket connections use
utmnets.

Multi-threaded network access is defined in the MAX statement using the following
operand:

● NET-ACCESS=MULTI-THREADED

Several parallel communication relationships are served by a single network
process (default setting).

Single/multi-threaded network access Generating distributed processing

120 Generating Applications

Listener IDs can be defined in the ACCESS-POINT statement for access points
and in the BCAMAPPL statement for application names:

● LISTENER-ID=number

This assigns a listener ID to the access point or application name as administrative
information used for assigning processes during multi-threaded network access.

Due to the different types of multi-threaded net processes, the listener IDs for CMX
connections and the listener IDs for Socket connections are separate value ranges.

The connection is assigned to a network process by means of the listener ID allocated to
the local application name or the local access point. If you have activated multi-threaded
network access for an application, openUTM assigns the listener ID 0 to all application
names and access points for which a listener ID has not been explicitly defined. All of these
connections are then served by a single network process.

Single-threaded network processes (for CMX connections on Unix systems only)

i When assigning connections to network processes, you should take account of the
maximum number of connections that the CMX transport system is able to support
for each network process. If you do not, the partner application may provoke
unwanted disconnections.

The main process utmmain of a UTM application starts a net main process utmnetm. The job
of this process is to completely establish all CMX connections of the UTM application. The
establishment of the connection can be initiated by the local UTM application as well as by
a remote partner application.

Once a connection has been established between the partners, utmnetm starts a child
network process utmnetc for this connection. This manages the transfer of data between the
partners, and continues to exist until the connection is shut down. A utmnetc process exists
for each connection established between the UTM application and its partner applications.
With single-threaded network access, therefore, each connection is managed by a
separate process.

Single-threaded network access is defined in the MAX statement using the
following operand:

● NET-ACCESS=SINGLE-THREADED

Each communication relationship is administered by a separate network process.

i For single-threaded network connections, the value of the listener ID you assigned
in the access point or application name has no meaning.

Generating distributed processing Mapped host names

Generating Applications 121

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

4.7 Using mapped host names (Unix systems and Window
systems)

Specify unique address information at the KDCADMI interface in order to allow openUTM
to communicate with remote partner applications. The address information contains the
UTM host name of the partner computer and the port number. The UTM host name is
generally the same as the IP host name (real host name). As an option, you can also map
a UTM host name to an IP host name. It makes sense to use host name mapping when

● there are real host names longer than 8 characters.

● the host name of a partner computer for the active establishment of a connection is
different from the host name returned during the passive establishment of a connection
(e.g. when a firewall is used).

● the various host names in a cluster in the openUTM partner application are mapped
internally to a fixed logical processor name of the cluster.

i In this case, openUTM only maps the host names if a valid conversion file exists
and if the UTM_NET_HOSTNAME environment variable is set (see the sections
“Conversion file for mapped host names” on page 122 and
“UTM_NET_HOSTNAME environment variable” on page 124).

Generation

If you want to use host name mapping, proceed as follows:

Ê Create a conversion file and specify the mappings of the UTM host names to the real
host names (see page 122).

Ê Set the UTM_NET_HOSTNAME environment variable to activate the conversion file
(see page 124).

Ê Change your input for the generation so that you specify a UTM host name and not the
real host name as the value for the host name in the corresponding KDCDEF state-
ments.

i If the UTM_NET_HOSTNAME environment variable is set to a valid conversion
file, then TNS functionality is deactivated for the entire UTM application.

Mapped host names Generating distributed processing

122 Generating Applications

Runtime

openUTM converts a UTM host name to a real host name and vice-versa at runtime:

● If there is a valid conversion file available and a connection is established actively, then
an attempt is made to convert the UTM host name of the partner computer to a real host
name before openUTM determines the associated IP address.

If it is impossible to convert the host name, then the IP address is determined from the
UTM host name.

● When connection is established passively, then the real host name is determined from
the IP address of the partner. If there is a valid conversion file available, then an attempt
is made to convert the real host name to a UTM host name.

– If the conversion was successful, then openUTM compares the generation infor-
mation to the converted host name.

– If the conversion was unsuccessful, then openUTM compares the generation infor-
mation to the real host name.

i You can check if the UTM host name was converted to a real host name or vice-
versa for a connection based on the value of the processor name in the TNSNAME
insert in the messages from the net process. If a conversion was performed, then
the value for the processor name consists of the UTM host name in parentheses
together with the real host name, e.g. system1(central). If no conversion was
performed, then the value for the processor name consists of just the real host
name, e.g. central.

4.7.1 Conversion file for mapped host names

The conversion file contains all rules according to which UTM host names are converted to
real host names and vice versa.

openUTM reads the conversion file when a UTM application is started and generates an
internal host name table from the data. The information in this table is used at runtime to
convert the host names.

During the installation of openUTM, a sample file named utmhostname is installed. You will
find the file directly in the utmpfad directory of openUTM.

i The conversion file does not need to contain an entry for every host name
generated, but only for the host names for which mapping is performed. The IP
address is determined from the UTM host name for all generated host names for
which there are no conversion rules.

Generating distributed processing Mapped host names

Generating Applications 123

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
4

File name

You can choose any name you wish for the conversion file.
Default: utmhostname

The filename may be a maximum of 300 characters long.

File format

The conversion file is a line-based file. The lines have the following format:

(#) openUTM Host Name File

Conversion rules

utm_hostname_1Ëreal_hostname_1Ë[real_hostname_2]Ë...
....
utm_hostname_nËreal_hostname_mË[real_hostname_o]Ë...
....

(#) openUTM Host Name File
Header of the conversion file. The header must always be placed in the first line of
the file.

Empty line
Empty lines are ignored when the file is read.

#Comments
Comment lines begin with the '#' character in column 1 and are ignored when the
file is read.

utm_hostname_x
UTM host name for which conversion to a real host name and vice versa is to be
performed.

The UTM host name must start in column 1.
Maximum length: 8 characters

real_hostname_y
Real host name of a partner computer as it is entered in the name service of the
local system (e.g. in the hosts file). You can specify several real host names
separated by one or more space/tab characters in a conversion rule.

If you have specified a real host name here for which no IP address can be found,
then you will receive a K154 message (IP address could not be found) during
runtime of the UTM application.

Maximum length: 64 characters

Mapped host names Generating distributed processing

124 Generating Applications

The following maximum values and rules apply to the conversion file:

● Maximum number of conversion rules per file: 500

● A conversion rule ends at the end of the line, there are no continuation lines.

● Maximum line length: 300 characters

● Maximum number of real host names in the conversion file: 2000

● Several conversion rules can be present for a single UTM host name.

● The order of the conversion rules in the file determines the priority of the conversion of
host names at runtime.

● Empty lines and comment lines are ignored.

● Lines containing syntax errors are ignored.

4.7.2 UTM_NET_HOSTNAME environment variable

The UTM_NET_HOSTNAME environment variable specifies the conversion file for host
names that will be assigned to the UTM application (see openUTM manual “Using
openUTM Applications under Unix Systems and Windows Systems” under "General
environment variables").

If this variable is set, then the conversion file specified is evaluated when a UTM application
is started.

The environment variable contains the full file name of the conversion file including the path.
If you only set UTM_NET_HOSTNAME and do not specify a file name, then openUTM
searches for the utmhostname file in the local directory (the directory in which the utmmain
process was started).

Generating Applications 125

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5 Generating selected objects and functions of
the application

This chapter describes how to configure certain objects of your UTM application and
explains which KDCDEF control statements or which of the individual operands are
relevant for describing the objects. This applies to the following UTM objects:

● Clients (page 126)

● Printers, printer control LTERMs, printer pools under BS2000 systems and Unix
systems (page 166) as well as RSO printers connected to a UTM application under
BS2000 systems (page 170)

● Service-controlled queues (page 179)

● Message modules (page 184)

● Multiplex connections of a UTM application under BS2000 systems (page 190)

● BLS load modules and common memory pools of a UTM application under BS2000
systems (page 197)

In addition, several selected UTM functions are described here that affect KDCDEF control
functions and whose operands are significant to the use of these functions. This is true for
the following functions:

● Job control using priorities and process constraints (page 206)

● Access control functions (page 217)

● Encryption of messages on connections to clients (page 226)

● Coupling of resource managers and databases (page 232)

● Internationalization of a UTM application under BS2000 systems (page 235)

● System access control using Kerberos under BS2000 systems (page 245)

See also the openUTM manual “Concepts und Functions”.

B/X

B/X

B/X

B

B

B

B

B

Connecting clients Generating UTM objects

126 Generating Applications

5.1 Connecting clients to the application

This section describes the generation of terminals, UPIC clients, transport system applica-
tions and OpenCPIC clients. Transport system applications are DCAM, PDN, CMX and
socket applications as well as UTM applications that are generated as transport system
applications. These will subsequently be referred to as TS applications.

The options that the UPIC clients offer are described in detail in the manual „openUTM-
Client for the UPIC Carrier System”.

Each client that wants to use the services of a UTM application must be known to the UTM
application. A client is known to a UTM application if it is assigned to a logical connection
point defined in the configuration. There are various different types of client:

● For terminals, UPIC clients and TS applications, a logical connection point is known as
an LTERM partner. There are two methods of connecting to an LTERM partner:

You generate the client for an individual connection by defining the physical client
using a PTERM statement and then assigning an exclusive LTERM partner, see
below. A client must always be generated with PTERM, when connections to this
client are to be established in the UTM application (e.g. to TS applications). You
only need to issue a PTERM statement to other clients when you want to assign the
other client a specific logical property, e.g. special access rights that you do not
want to assign to any LTERM pool.

– You define a pool of LTERM partners, also called an LTERM pool, see page 131.
You can connect several clients using the LTERM pool.

● For OpenCPIC clients, the logical connection point is known as the OSI LPAP partner.
It is possible to establish several parallel connections via an OSI LPAP partner.

The first two sections show the basic steps required to connect a client. The section
“Defining the client sign-on services” on page 142 through section “Examples of the gener-
ation of a client/server cluster” on page 161 go into more detail on certain topics, including
the signing-on process, security functions and addressing.

Generating UTM objects Connecting clients: LTERM partners

Generating Applications 127

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.1 Connecting clients via LTERM partners

If you wish to connect terminals, UPIC clients and TS applications individually, you will need
to supply the following generation statements for each client:

● an LTERM statement for the logical connection point

● a PTERM statement for the physical client.

UPIC clients and TS applications may also require a BCAMAPPL statement. Limits,
maximum values and parameters, which are to be set throughout the application for
communication between clients and the UTM application, are defined in the MAX
statement.

LTERMs and PTERMs may also be created dynamically (objects KC_LTERM and
KC_PTERM). Moreover, the assignment of the client to the LTERM partner in the PTERM
statement can be adapted dynamically at a later stage using administration functions. For
example, you can assign another client (of the same type) to an LTERM partner during
operation, or assign another LTERM partner – for which you may have defined different
access rights – to a client. See also the openUTM manual “Administering Applications”.

LTERM statement on page 363
The most important properties for LTERM partners, via which clients can connect to
an application, are defined with the following operands:

● ltermname

Name of the LTERM partner. Logical name via which the client, to which the LTERM
partner is assigned, is addressed by the program units of the application.

● KSET=

Key set of the LTERM partner, i.e. an authorization profile that defines which parts
of the application program (which TACs) are available to the client connecting to the
application via this LTERM partner.

● LOCALE= (only BS2000 systems)

LTERM-specific language environment of the clients that connect to the application
via this LTERM partner. This language environment is also used by openUTM to
output messages, as long as no user is signed on.

● LOCK=

Lock code as system access control. The connection is only established when the
client signs on to openUTM with a user ID, for which a key set was generated, using
a key code corresponding to this lock code.

B

B

B

B

Connecting clients: LTERM partners Generating UTM objects

128 Generating Applications

● USAGE=D

Type of communication partner. In this case, dialog partners are connecting to the
application via the LTERM partner. Messages can be exchanged in both directions.

● USER=

The user ID under which the client is automatically signed on when a connection
has been established, see section “Automatic sign-on under a specific user ID” on
page 143. You are also able to define other characteristics for this user ID, see
section “Generating security functions” on page 146.

PTERM statement on page 450
The most important properties for physical clients are defined with the following
operands:

● ptermname

Name of the client as generated in the system of the server application.

BS2000 systems (without Socket application):
The BCAM name of the client must be specified.

Socket applications:
If the connection is to be established from the local UTM application to the client,
then any ptermname can be selected. Otherwise, the name must have the format
PRTnnnnn.Here nnnnn means the port number used by the socket application to
establish the connection.

See section “Providing address information” on page 151 for more information.

● BCAMAPPL=

Name of the local application via which the transport system establishes the
connection between the client and the UTM application. This name must be defined
in a BCAMAPPL statement or using MAX ...APPLINAME=. If you omit this operand,
the name is taken from MAX ...APPLINAME=. Terminals may only use names that
are defined in MAX ... APPLINAME=.

● ENCRYPTION-LEVEL=

For UPIC clients and under BS2000 systems additionally for certain terminal emula-
tions you specify the minimum encryption level that must be maintained on the
connection to the client. You can specify trustworthy for the client, which means that
this client is permitted to work with the UTM application without encryption. See also
section “Message encryption on connections to clients” on page 226 for more infor-
mation on encryption.

B

B

Generating UTM objects Connecting clients: LTERM partners

Generating Applications 129

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

● LTERM=

The LTERM partner ltermname, via which the client connects to the UTM application,
is assigned to the physical client as a logical connection point.

● PRONAM=

Symbolic name of the processor on which the client resides.

● PTYPE=

Type of client connected via the LTERM partner. Here you specify whether the client
is a transport system application, a UPIC client or a terminal.

● T-PROT=, TSEL-FORMAT= (only under Unix systems and Windows),
LISTENER-PORT= (with PTYPE=SOCKET also under BS2000 systems)

Components of the transport address of a remote UPIC client or a TS application
see section “Providing address information” on page 151.

● USAGE=D (only BS2000 systems)

USAGE=D defines that the communication partner is a dialog partner. Messages
can be exchanged between the UTM application and the client.

● USP-HDR=

With a sockets application, this parameter controls which of the output messages
openUTM is to create a protocol header for, see section “USP headers for output
messages to socket connections” on page 149.

 BCAMAPPL statement on page 295
It is possible to define additional application names for UPIC clients and TS appli-
cations.

● appliname

Name of the local application used by the transport system to establish the
connection between the client and the UTM application. If this name is used for
socket applications, it may not be used by a different type of partner.

● SIGNON-TAC=

Specifies if and when a sign-on service takes place, when a client attempts to sign
on under this application name, see section “Generating sign-on services for
clients” on page 143.

X/W

B

B

B

Connecting clients: LTERM partners Generating UTM objects

130 Generating Applications

● TSEL-FORMAT=, LISTENER-ID= (only under Unix systems and Windows),
LISTENER-PORT= (with PTYPE=SOCKET also under BS2000 systems)
T-PROT=

For information about the components of the transport address under which client
contacts the UTM application, see section “USP headers for output messages to
socket connections” on page 149.

MAX statement on page 376
Default and maximum values, which are relevant for communication of clients with
the UTM application, are defined with the following operands:

● CONN-USERS=

Controls the utilization of the application. The operand defines the maximum
number of users who can simultaneously work with the application. In the case of
an application for which no user IDs are generated, CONN-USERS= defines the
maximum number of clients that can simultaneously connect to the application via
LTERM partners.

● TRMSGLTH=

Maximum length of the physical messages that can be exchanged between clients
and the UTM application.

● LOCALE= (under BS2000 systems only)

Defines the default language environment (locale) of the UTM application. The
locale generated here is assigned to the clients connected via LTERM partners or
LTERM- pools as the default value for the language environment. The default
setting applies unless a specific locale is defined for these objects in the corre-
sponding LTERM or TPOOL statements. See also section “Defining the language
environment – setting the locale” on page 238.

X/W

B

B

B

B

B

B

B

Generating UTM objects Connecting clients: LTERM pools

Generating Applications 131

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.2 LTERM pools

A particular number of LTERM partners with the same logical properties are defined for an
LTERM pool as logical connection points for clients. Different clients with the same technical
properties (partner and processor type) can connect dynamically to a UTM application via
these LTERM partners. The assignment only applies for the duration of a session; there is
no static assignment between a client and an LTERM partner.

An LTERM pool must be configured in a TPOOL statement (in place of LTERM/PTERM
statements). In addition, in the same way as for a single connection, a BCAMAPPL
statement may be necessary, see page 129. The settings in the MAX statement are also
valid for LTERM pools, see page 130.

Various types of LTERM pools can be configured:

● LTERM pools via which only clients of a particular type (PTYPE=), located on a
particular processor (PRONAM=), can connect to a UTM application.

● LTERM pools, via which clients of a particular type can connect to a UTM application,
regardless of the processor on which they reside (open LTERM pools).

In UTM applications under BS2000 systems you can also generate the following types of
LTERM pools:

● LTERM pools for all terminals regardless of the terminal type, yet located on a particular
processor.

● LTERM pools for all terminals regardless of the terminal type and regardless of type of
the computer on which it is located.

TPOOL statement on page 524
The most important properties for LTERM pools are defined with the following
operands:

● BCAMAPPL=

Name of the local application via which the transport system establishes the
connection between the client and the UTM application. The name must be defined
in a BCAMAPPL statement or using MAX ...APPLINAME=. If you omit this operand
the name is taken from MAX ...APPLINAME=.

In BS2000, terminals may only use the name from MAX ... APPLINAME=.

B

B

B

B

B

B

B

Connecting clients: LTERM pools Generating UTM objects

132 Generating Applications

● CONNECT-MODE=

With CONNECT-MODE= you specify if a UPIC client or TS application may connect
to the application multiple times under the same name via the LTERM pool.

● KSET=

Key set of the LTERM pool that uses key codes to define the access rights of the
clients which connect to the UTM application via the LTERM pool.

● USER-KSET=

In UTM applications with user IDs the USER-KSET key set for UPIC clients and
TS applications specify limited system access rights (in comparison with KSET).
The key set in USER-KSET takes effect when the client does not pass a user ID to
openUTM while establishing the connection/conversation or while in the sign-on
service.

● LOCK=

System access control of the LTERM pool, i.e. lock code assigned for all LTERM
partners of the pool. The connection is only established if the client signs on to
openUTM with a user ID whose key set has the corresponding key code.

● ENCRYPTION-LEVEL=

For UPIC clients and under BS2000 systems additionally for certain terminal emula-
tions you specify the minimum encryption level that must be maintained on the
connection to the client. You can specify trustworthy for the client. See also section
“Message encryption on connections to clients” on page 226 for more information
on encryption.

● LTERM=

LTERM prefix from which unique LTERM partner names are created with number
LTERM partners of the LTERM pool.

● NUMBER=

Number of LTERM partners configured for this LTERM pool. This also implicitly
defines the maximum number of clients that can connect to this LTERM pool.

● PRONAM=

Name of processor which must contain the client connected via the LTERM pool.

● PROTOCOL=

Specifies if the user services protocol is used or not.

B

B

Generating UTM objects Connecting clients: LTERM pools

Generating Applications 133

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

● PTYPE=

Type of client connected via the LTERM pool.

● LOCALE=

LTERM-specific language environment that applies to all clients which connect to
the application via LTERM partners. This language environment is also used by
openUTM to output messages, as long as no user is signed on.

Assignment of client when connecting via an LTERM pool

For clients that want to connect to an application via an LTERM pool, please note that
openUTM only assigns a client to one LTERM pool or no LTERM pool. When selecting the
LTERM pool, openUTM considers it more important to match the processor name than the
client type.

The table below shows the sequence in which openUTM attempts to connect a client using
the generated PTERMs and LTERM pools. The shaded rows in the table represent LTERM
pools that can only exist in a UTM application under BS2000 systems. These are ignored
under Unix systems and Windows.

Assignment
of client

KDCDEF statements: definition of client

1 PTERM LTERM=ltermname
PRONAM=processorname

2 TPOOL PTYPE=partnertype
PRONAM=processorname

3 TPOOL PTYPE=*ANY
PRONAM=processorname

only in BS2000 systems

4 TPOOL PTYPE=partnertype
PRONAM=*ANY

5 TPOOL PTYPE=*ANY
PRONAM=*ANY

only in BS2000 systems

B

B

B

B

BB
B

BB
B

Connecting clients: LTERM pools Generating UTM objects

134 Generating Applications

1. When establishing a connection, it is first of all checked whether a PTERM statement
exists for the client. A client that was explicitly generated with a PTERM statement
cannot connect to a UTM application via an LTERM pool.

2. If an LTERM pool is generated for the processor name (PRONAM) and type (PTYPE)
of a client, this client is assigned to this LTERM pool or to no LTERM pool.

3. (only in BS2000 systems)
If there is no LTERM pool with the processor name and type of the client, the client is
assigned to the LTERM pool with the same processor name and PTYPE=*ANY.

4. If no such LTERM pool exists, the client is assigned to an “open” LTERM pool with the
same type and PRONAM=*ANY, i.e. all clients of a type can connect to the UTM appli-
cation, regardless of the processor on which they reside.

5. (only in BS2000 systems)
If no such LTERM pool exists either, the client is assigned to an LTERM pool with
PTYPE=*ANY and PRONAM=*ANY.

If there is no LTERM pool of this type, the connection setup request is rejected.

B

B

B

B

B

B

Generating UTM objects Connecting clients: LTERM bundle

Generating Applications 135

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.3 LTERM bundle

With a LTERM bundle (connection bundle) you distribute queued messages to a logical
partner application equally among several parallel connections. The logical partner appli-
cation can comprise several instances of the partner application (e.g. a UTM cluster appli-
cation). This type of procedure makes sense when a UTM application sends a very large
number of queued messages to a partner application, possibly leading to the overloading
of the transport connection.

You define a LTERM bundle using LTERM and PTERM statements as already described in
the section “Connecting clients via LTERM partners” on page 127. The following text
describes the additional points you must note to work with LTERM bundles.

A LTERM bundle consists of one master LTERM and several slave LTERMs. The slave
LTERMs, which must be assigned using PTERM with PTYPE=APPLI or PTYPE=SOCKET,
are assigned to a master LTERM through generation.

Figure 11: Example of a LTERM bundle

FPUT/DPUT calls

FPUT and DPUT calls sent by program units to the master LTERM are assigned to one of
the slave LTERMs at the end of the transaction:

● openUTM first attempts to find a slave LTERM whose PTERM is connected. If
openUTM cannot find such a connection, then it searches for a slave LTERM that was
generated with RESTART=YES.

If openUTM finds a slave LTERM, then all queued messages sent in this transaction to
this master LTERM are assigned to the slave LTERM.

● If openUTM cannot find a slave LTERM, then all messages sent to the master LTERM
with FPUT or DPUT are rejected.

● If a slave LTERM is generated with RESTART=NO and the connection is cleared or lost,
then all messages pending output on this LTERM are rejected.

LTERM master

LTERM slave 1

LTERM slave n

LTERM slave 2

PTERM n

PTERM 2

PTERM 1

...

Connecting clients: LTERM bundle Generating UTM objects

136 Generating Applications

Program units can also send FPUT and DPUT calls directly to the slave LTERMs. However,
these FPUTs are not subject to the distribution algorithm described above.

Information displayed in the KB header

Messages can also be received through the slave LTERMs of a LTERM bundle. In services
started for received messages, openUTM always displays the name of the LTERM through
which the message was received in the KB header. The following therefore applies for
LPAP bundles:
In services started for messages received through a slave LTERM, the name of this slave
LTERM is displayed in the KB header and not the name of the master LTERM.

With the aid of the KDCS call INIT PU you can obtain information on whether the LTERM
in the KB header is the slave of an LTERM bundle as well as the name of the master LTERM
(see the openUTM manual „Programming Applications with KDCS”).

LTERM statement on page 363
In addition to the properties for LTERM partners already listed (see page 127), the
following operands must also be specified for LTERM bundles:

● BUNDLE=

Specifies the corresponding master LTERM in the definition of a slave LTERM. The
master LTERM specified her must have been generated in a preceding LTERM
statement:

LTERM master, ...
LTERM slave1, BUNDLE=master, ...
LTERM slave2, BUNDLE=master, ...

PTERM slave1, LTERM=slave1, PTYPE=APPLI|SOCKET, ...
PTERM slave2, LTERM=slave2, PTYPE=APPLI|SOCKET, ...

● RESTART=

Determines how queued messages are handled when the connection to the client
is cleared. Messages pending output on a LTERM that were generated with
RESTART=NO may be rejected if necessary (see the section “FPUT/DPUT calls”
on page 135).

Generating UTM objects Connecting clients: LTERM bundle

Generating Applications 137

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

i All LTERM parameters of slave LTERMs except for ltermname, USER, QAMSG,
RESTART, and STATUS must match the same parameters of the master LTERM.
Otherwise they will be overwritten by KDCDEF using the data specified in the
master LTERM. No message is output in this case.

When assigning the FPUT and DPUT calls to a slave LTERM at the end of a trans-
action, the QAMSG and RESTART settings are evaluated on the slave LTERM.

All slave LTERMs in a LTERM bundle should be generated identically. KDCDEF
does not check these specifications, though.

PTERM statement on page 450
In addition to specifying the properties for physical clients already listed (see
page 127), the following operands must also be specified for the PTERMs assigned
to the slave LTERMs in a LTERM bundle:

● PTYPE=APPLI | SOCKET

All PTERMs in a LTERM bundle must be generated with PTYPE=APPLI or
PTYPE=SOCKET. The same PTYPE must be specified here for all PTERMs in a
LTERM bundle.

● USAGE=D (BS2000 systems only)

All PTERMs in a LTERM bundle must be generated with USAGE=D.

i All PTERMs in a LTERM bundle should address the same partner application or a
partner application of the same type. KDCDEF does not check these specifications,
though.

B

B

Connecting clients: LTERM groups Generating UTM objects

138 Generating Applications

5.1.4 LTERM groups

In a LTERM group you assign one or more LTERMs a connection. The use of LTERM
groups is of value if a UTM application is to send queued messages to different partner
applications depending on which functional area the message belongs to. In this case, a
separate LTERM must be assigned to each functional area in the partner application.

The program units direct their FPUT and DPUT calls to the appropriate LTERM depending
on the function. If the partner application to function relationship is 1:1, then each LTERM
is assigned one PTERM. If the partner application to function relationship is n:1 and the
assignment may change in some cases, then n LTERMs are assigned to one PTERM.

An LTERM group consists of one or more alias LTERMs, called the group LTERMs, and one
primary LTERM. You define the group LTERMs using LTERM statements as described in
the section “Connecting clients via LTERM partners” on page 127. Do not assign a PTERM
to a group LTERM.

The primary LTERM must be a normal LTERM or the master LTERM of a LTERM bundle.
If the primary LTERM is a normal LTERM, then a PTERM with PTYPE=APPLI or
PTYPE=SOCKET must be assigned to it. You define the primary LTERM as described in
section “Connecting clients via LTERM partners” on page 127.

Figure 12: Example of a LTERM group

LTERM groups can also be used in conjunction with LTERM bundles. In this case the
primary LTERM is the master LTERM of the LTERM bundle.

Primary LTERM

Alias LTERM 1

Alias LTERM n

Alias LTERM 2

PTERM
...

Generating UTM objects Connecting clients: LTERM groups

Generating Applications 139

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Figure 13: Example of a LTERM group in conjunction with a LTERM bundle

FPUT/DPUT calls

FPUT and DPUT calls sent by program units to an alias LTERM are processed as follows:

In a LTERM group without a LTERM bundle:
FPUT and DPUT calls sent to an alias LTERM are sent by openUTM via the PTERM
assigned to the primary LTERM.

In a LTERM group whose primary LTERM is the master LTERM of a LTERM bundle:
If FPUT and DPUT calls are sent to an alias LTERM in this kind of LTERM group,
then all queued messages sent in the transaction to alias LTERMs in the group are
assigned by openUTM to exactly one of the slave LTERMs at the end of the trans-
action.

This procedure guarantees that the recipient receives the messages in the same
order as they would be generated in a transaction for an LTERM group.

Program units can also send FPUT and DPUT calls directly to the primary LTERM.

Information displayed in the KB header

If the primary LTERM of a LTERM group is not the master LTERM of a LTERM bundle, then
messages can also be received via the primary LTERM. In services started for received
messages, openUTM always displays the name of the LTERM or LPAP from which the
message was received in the KB header. The following also applies to LTERM groups:
In services started for messages received via the primary LTERM, the name of the primary
LTERM is displayed in the KB header and not the name of an alias LTERM.

With the help of the KDCS call INIT PU you can obtain information on whether the LTERM
in the KB header is the primary LTERM of a LTERM group (see openUTM manual
„Programming Applications with KDCS”).

Master LTERM

Alias LTERM 1

Alias LTERM n

Alias LTERM 2

PTERM 1

...

Slave LTERM 1

Slave LTERM n PTERM n

... ...

Connecting clients: LTERM groups Generating UTM objects

140 Generating Applications

LTERM statement on page 363
In addition to the properties for LTERM partners already listed (see page 127), the
following operands must also be specified for a LTERM group:

● GROUP=

Specifies the corresponding primary LTERM in the definition of an alias LTERM.
The primary LTERM specified here must have been generated in a preceding
LTERM statement:

LTERM primary, ...
PTERM primary, LTERM=primary, PTYPE=APPLI | SOCKET, ...

LTERM alias1, GROUP=primary, ...
LTERM alias2, GROUP=primary, ...

i All LTERM parameters of the alias LTERMs except for ltermname, USER, and
STATUS must match the same parameters of the primary LTERM. Otherwise they
will be overwritten by KDCDEF using the data specified in the primary LTERM. No
message is output in this case.

Only the generation parameters of the primary LTERM are evaluated for a FPUT or
DPUT call.

PTERM statement on page 450
In addition to specifying the properties for physical clients already listed (see
page 127), the following operands must also be specified for the PTERM assigned
to the primary LTERM of a LTERM group:

● PTYPE=APPLI | SOCKET

The PTERM in a LTERM group must be generated with PTYPE=APPLI or
PTYPE=SOCKET.

● USAGE=D (BS2000 systems only)

The PTERM in a LTERM group must be generated with USAGE=D.

B

B

Generating UTM objects Connecting clients: OpenCPIC clients

Generating Applications 141

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.5 Connecting OpenCPIC clients

OpenCPIC clients are treated as OSI TP partners. For this reason, this section only
describes the client-specific features of OSI TP generation.

Generation

An OpenCPIC client is generated in a similar way to a server/server link, see section
“Distributed processing via the OSI TP protocol” on page 92. The only difference is that
LTAC statements are not required if it is just a client.

The statements ABSTRACT-SYNTAX, APPLICATION-CONTEXT and TRANSFER-
SYNTAX are only necessary of you want to define your own application context.

More information about addressing and coordination with the OpenCPIC generation can be
found as of page 158.

Connecting clients: sign-on services Generating UTM objects

142 Generating Applications

5.1.6 Defining the client sign-on services

This section describes the interface between generation and the sign-on service for clients
if the application is generated using user IDs. The sign-on service is made up of the
following two stages: establishing the connection and signing on.

The connection is established using the application names as specified in the operand
BCAMAPPL= or, for OpenCPIC, specified in the operand LOCAL-ACCESS-POINT=.

Signing on to a UTM application

Signing on to a UTM application is carried out using a user ID. The following stages are
required, regardless of whether the default sign-on service is used or another sign-on
service:

● When using terminals, the terminal user must prove their authorization once a
connection has been established. To do this the user must enter at least one user ID.
This user ID must be generated in a USER statement. This is also called the real user
ID.

● TS applications and UPIC clients are signed on after connection using a so-called
connection user ID. This is a user ID which is implicitly generated by openUTM using
the LTERM name if no user ID is specified in the operand USER= of the LTERM
statement. If a user ID is specified in the operand USER= (explicit connection user ID),
then this must be generated with a USER statement, see section “Automatic sign-on
under a specific user ID” on page 143. This user ID cannot be used as a real user ID.

● OpenCPIC clients are signed on under their association names once the association
has been established. The association names are formed using the names specified in
the operand ASSOCIATION-NAMES= and a sequential number, for example,
ASSOC03, see page 439f.

UPIC clients, TS applications and OpenCPIC clients can then subsequently sign on using
a real user ID.

The execution of the sign-on service can be defined by the generation, for example, using
automatic connection establishment, automatic sign-on under a specific user ID, separate
sign-on service or by permitting multiple sign-ons.

i Detailed information about the sign-on service can be found in the relevant section
of the openUTM manual “Using openUTM Applications”. The individual steps
required for a client to sign on to a UTM application are described there.

Generating UTM objects Connecting clients: sign-on services

Generating Applications 143

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.6.1 Establishing an automatic connection

Certain clients can be generated in such a way that openUTM attempts to establish a
connection to the client as soon as the application is started. This is possible when using:
– OpenCPIC clients,
– individually generated terminals and TS applications in BS2000 systems
– individually generated TS applications in Unix systems and Windows.

An automatic connection can be established as follows:

● For TS applications and terminals:

PTERM ... ,CONNECT=YES

● For OpenCPIC clients:

OSI-LPAP ... ,CONNECT=n (n>0)

5.1.6.2 Automatic sign-on under a specific user ID

You can explicitly assign all clients defined using LTERM/PTERM a user ID under which this
client automatically signs on once a connection is established. If you do so, the authoriza-
tions that apply to that client are the ones assigned to the specified user ID, see section
“Generating security functions” on page 146. To do this you will need the following gener-
ation statements:

LTERM ... USER=username
USER username ...

Terminals are then always signed on under this user ID. For TS applications and UPIC
clients this user ID is a connection user ID and thus cannot be replaced by a real user ID,
e.g. in a sign-on service, see below.

5.1.6.3 Generating sign-on services for clients

It is possible to program special sign-on services for terminals, UPIC clients and TS appli-
cations. A sign-on service is linked to an application name. This means that you can assign
a sign-on service to any application name. Application names are defined using MAX
APPLINAME= or in a BCAMAPPL statement.

If a client signs on using a specific application name, then the sign-on service assigned to
this application name is started. The application name under which the client signs on is
specified in PTERM/TPOOL in the operand BCAMAPPL.

Connecting clients: sign-on services Generating UTM objects

144 Generating Applications

Sign-on services are generated as follows:

● The sign-on service for the default application name (as defined in
MAX ... APPLINAME) is generated using:

TAC KDCSGNTC, PROGRAM=signon-prog1
PROGRAM signon-prog1 ...

signon-prog1 is the name of the program unit that is initially run in the sign-on service.

If a default application name is generated for a sign-on service, this is then taken as the
default value for all application names generated using BCAMAPPL.

● The sign-on service for an application name defined using BCAMAPPL is generated
using:

BCAMAPPL appliname2...,SIGNON=signon-tac
TAC signon-tac, PROGRAM=signon-prog2
PROGRAM signon-prog2

signon-prog2 is the name of the program unit that is initially run in the sign-on service.

● If sign-on services are also to be run for UPIC clients, you must specify the following in
the SIGNON statement:

SIGNON ... UPIC=YES

If this setting is not made, UPIC clients cannot use sign-on services, not even if an
appropriate sign-on service has been generated for the application name.

More information about the programming can be found in the openUTM manual
„Programming Applications with KDCS”.

5.1.6.4 Multiple sign-ons

When using user IDs, it is usually only possible for a single client to sign on to an application
at any given time, a second attempt to sign on under the same user ID is thus rejected.

If you want to enable multiple sign-ons for specific user IDs you must generate the following:

SIGNON ... MULTI-SIGNON=YES

This means that it is possible, at any given time, for several clients to sign on to an appli-
cation under a single real user ID without a restartable service context
(USER username... RESTART=NO), but only one of these clients may be a terminal client.

OpenCPIC clients that have selected the functional unit "Commit", may perform a multiple
sign-on under any real user ID.

Generating UTM objects Connecting clients: maximum waiting times

Generating Applications 145

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.7 Specifying maximum waiting times for dialog prompting

In the KDCDEF control statement MAX, you can specify the maximum waiting times for
dialog prompting using the operand TERMWAIT= and PGWTIME= as well as the
IDLETIME= operand of the PTERM statement.

● The operand PGWTTIME= is used to set the maximum permitted length of the interval
between the output of a dialog message to the client after a blocking call (for example,
a PGWT call) and the subsequent dialog input. If no input is made during this period of
time, openUTM is forced to interrupt the service.

● The operand TERMWAIT= is used to set the maximum permitted length of the interval
between the dialog output at a terminal after a PEND KP and the subsequent dialog
input. If no input is made during this period of time, openUTM is forced to interrupt the
service.

● The operand IDLETIME= is used to limit the waiting time after PEND RE and PEND
FI/ER/FR, or in other words, after the end of a transaction.
Monitoring the waiting time after the end of a transaction is used for data protection
purposes. Should a user forget to sign off after completing work with the application, this
function allows you to reduce the risk of unauthorized persons working on the client
without signing on.

Remember that with non-blocking calls the UTM process is released and its able to take on
other tasks, whereas with a blocking call the process remains occupied. If a service waits
after a PEND KP call or PGWT KP call for a dialog input, then the transaction remains open
(“multi-step transaction”) and usually keeps global resources locked (for example, GSSBs,
data areas in database systems). A delay in the dialog input would block the work of other
users wanting to access this data. Monitoring the time intervals for the instances indicated
above can help to avoid this undesired effect.

i The attention of the user must be drawn towards this fact. The users must be shown
the critical points of the dialog interaction so that they are aware of the effect an
input delay may have on the performance of the application as a whole.

Connecting clients: security Generating UTM objects

146 Generating Applications

5.1.8 Generating security functions

The security functions are made up of the following components:

● System access control:
System access control is defined in the USER statement, see below.

● Administration authorization:
Administration authorization is assigned in the USER statement or the OSI-LPAP
statement (OpenCPIC), see page 147.

● Data access control:
Data access control is specified using the operands KSET, USER-KSET or ASS-KSET
of the USER, LTERM, TPOOL or OSI-LPAP statement. Data access protection must be
defined within the framework of a lock/key code concept or of the access list concept
and is described in detail in section “Data access control” on page 217. Data access
control for OpenCPIC clients is generated in the same way as described in section
“Protection measures for job-receiving services” on page 225.

● Encryption:
The encryption level is specified in the operand ENCRYPTION-LEVEL of the PTERM,
TPOOL or TAC statement. A detailed description of message encryption can be found
in section “Message encryption on connections to clients” on page 226f. Encryption by
openUTM is not supported for OpenCPIC clients.

5.1.8.1 Defining system access control

System access control is only relevant for real user IDs and is generated in the USER
statement.

You define system access control by assigning a password to each user ID and by speci-
fying a certain level of complexity for the password. A hexadecimal password may not be
specified for client/server communication.

USER userid-name,PASS=password,PROTECT-PW=complexity-level

On signing on, the client must pass the specified values for userid-name and password to
openUTM.

Generating UTM objects Connecting clients: security

Generating Applications 147

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.8.2 Assigning administration authorizations

● You can specify the administration authorizations for the user ID using the USER
statement:

USER userid-name,PERMIT=ADMIN

Under BS2000 systems you can also assign UTM-SAT administration authorizations for
a user ID (PERMIT operand) and specify the type and range of the SAT logging
(SATSEL operand):

USER userid-name,PERMIT=SATADM,SATSEL=...

● You can assign administration authorization to an OpenCPIC client in OSI-LPAP:

OSI-LPAP ... PERMIT=ADMIN

Under BS2000 systems you can also assign UTM-SAT administration authorizations for
a client:

OSI-LPAP ... PERMIT=SATADM or PERMIT=(ADMIN,SATADM)

If the OpenCPIC client signs on under a real user ID, then the data access rights that
are generated for that user ID are valid and not the data access rights of the OSI-LPAP.

B

B

B

B

B

B

B

Connecting clients: restart Generating UTM objects

148 Generating Applications

5.1.9 Generating a restart

The restart function for a client is linked to the user ID that the client has used to sign on to
the UTM application.

Restart function for real user IDs

The restart function for real user IDs is specified in the RESTART operand of the USER
statement.

USER userid-name...RESTART=YES | NO

If this is generated as RESTART=YES then the type of client and any generated sign-on
services will also play a role in service restart:

– If a sign-on service has been generated for a client that signs on using this user ID, then
this service will control whether a service restart is performed or whether the open
service is terminated abnormally, see the description of the sign-on service in the
openUTM manual „Programming Applications with KDCS”.

– If a terminal or TS application does not sign on via a sign-on service, then openUTM
always initiates a service restart.

– If a UPIC client does not sign on via a sign-on service then the UPIC client must
explicitly initiate the restart service, otherwise the open service is terminated abnor-
mally see the manual „openUTM-Client for the UPIC Carrier System”.

– When using OpenCPIC clients, restart is only possible with cooperative processing
(functional unit not equal to "Commit"). The OpenCPIC client must explicitly initiate the
restart service, otherwise the open service is terminated abnormally, see manual
“openUTM-Client for the OpenCPIC Carrier System”.

Restart function for connection user IDs

If individually generated TS applications sign on via implicit (created by openUTM)
connection user IDs, then the restart function is controlled by the RESTART operand in the
LTERM statement:

LTERM ltermname ... RESTART=YES | NO

This parameter is irrelevant for the service restart if the TS application is signed on via an
explicitly generated connection user ID or a real user ID.

i No service restart is possible for UPIC clients that do not sign on under a genuine
user ID.

Explicitly generated connection user IDs to UPIC clients are always generated
without any message with RESTART=NO.

Generating UTM objects Connecting clients: socket

Generating Applications 149

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.10 USP headers for output messages to socket connections

In order that the UTM application is able to communicate with the TS application via the
socket interface, a UTM socket protocol (USP) is used on top of TCP/IP. openUTM uses
this protocol to convert a bytestream received via the socket interface into a message. The
partner application must issue the protocol and prefix it with the input message as the
protocol header. openUTM does not usually create a protocol for output messages.

It is possible to set each generation option so that openUTM also prefixes a protocol header
for output messages. This is specified in the PTERM or TPOOL statement using the
operand USP-HDR=:

● USP-HDR=ALL ensures that openUTM prefixes all output messages of this connection
(dialog, or asynchronous message, K message) with a protocol header.

● With USP-HDR=MSG the protocol header is prefixed for K messages only.

● USP-HDR=NO means that no protocol header is prefixed for output messages.

The structure of the protocol header is described in the openUTM manual „Programming
Applications with KDCS”.

Connecting clients: code conversion Generating UTM objects

150 Generating Applications

5.1.11 Code conversion

During communication between the UTM application and a client it may be that the two
communication partners are using different codes (EBCDIC, ASCII/ISO8859-1).To ensure
that the communication between the partners remains simple despite this, you can
generate an automatic code conversion for the following client. This will convert
ASCII/ISO8859-1 to EBCDIC and vice versa:

● BS2000 systems: TS applications of type SOCKET

● Unix systems, WIndows systems:

– OpenCPIC clients and TS applications of type SOCKET and APPLI.

– Server-server communication with LU6.1 and OSI TP partners

You must remember that only printable messages may be exchanged, as binary data may
become errored if converted.

The code conversion is controlled using the operand MAP=:

● BS2000 systems:

PTERM/TPOOL ... MAP= USER | SYSTEM | SYS1 | SYS2 | SYS3 | SYS4

Under BS2000 systems, you can use various conversion tables. The operator of a UTM
application under a BS2000 system can also create their own tables.

● Unix system / Windows system:

PTERM/TPOOL ... MAP = USER | SYSTEM (TS applications)
OSI-CON ... MAP = USER | SYSTEM (OSI TP partner)
SESCHA ... MAP = USER | SYSTEM (LU6.1 partner)

Under Windows systems and Unix systems it is possible to modify the conversion table.

By default code conversion is not used, or in other words MAP=USER. If MAP=SYSTEM
or SYS1, ..., SYS4, openUTM converts the data from ASCII to EBCDIC and vice versa.
Conversion tables are provided for code conversion.

 Additional information about code conversion can be found in the openUTM manual
„Programming Applications with KDCS”.

B

X/W

X/W

X/W

B

B

B

B

X/W

X/W

X/W

X/W

X/W

Generating UTM objects Connecting clients: address information

Generating Applications 151

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.12 Providing address information

For TS applications, remote UPIC clients and OpenCPIC clients, address information is
required to establish a connection. This information is stored in the UTM generation.
For socket applications, there is no difference between BS2000 systems and Unix systems
or Windows systems. For other clients, the characteristics of the transport system take
effect. This information is therefore divided into separate paragraphs.

Port number 102 for TCP/IP connections

For connections via TCP/IP, applications are addressed using port numbers, where the port
number 102 plays a special role. You must bear the following in mind:

– In BS2000 systems the port number 102 is often used, in particular because a BCMAP
entry is not required for port number 102.

– In Unix systems and Windows systems, you may not use port number 102.

5.1.12.1 Providing the address information for clients of type SOCKET

When communicating with TS applications via TCP/IP the socket interface is used directly.

The address information required for communication is, for the most part, provided in the
UTM generation. openUTM obtains the remaining information from the hosts file/database.
Thus no BCMAP entries on BS2000 systems are required.

KDCDEF generation

The address information is stored in the operands LISTENER-PORT=, T-PROT= and
PRONAM= of the BCAMAPPL and TPOOL/PTERM statements.

● BCAMAPPL statement

You must always specify a BCAMAPPL statement for socket applications. The following
applies:

– In LISTENER-PORT= you must always enter a port number under which the UTM
application waits for the requests of the socket application. The port number must
always correspond to the settings of the communication partner.

– In T-PROT= you must always enter SOCKET.

– LISTENER-ID= assigns the connection an optional listener ID. The values for the
LISTENER-ID of non-socket connections and socket connections may be assigned
independently of each other.

B

B

X/W

X/W

X/W

X/W

Connecting clients: address information Generating UTM objects

152 Generating Applications

● PTERM statement

If you generate the socket applications individually, you will need to specify the following
operands and parameters:

– If the socket application is to establish the connection, the PTERM name must have
the format PRTnnnnn, where nnnnn is the port number from which the socket appli-
cation establishes the connection. The name may be supplemented by leading
zeros.

– In BCAMAPPL= enter the application name as defined in the BCAMAPPL
statement.

– In PRONAM= you must always specify the first TCP/IP host name that is generated
in the data resources (hosts file, DNS, ...). If you want to use the "mapped host
name" function, then you must specify the UTM host name here (see page 121).
You must not specify any other names, i.e. aliases, found in the database (hosts file,
DNS, ...).

– In the LISTENER-PORT= operand, you must specify the port number at which the
socket application is waiting for connection establishment requests.

● TPOOL statement

If you link the socket application using a LTERM pool, then:

– In PRONAM= you must always specify the first TCP/IP host name that is generated
in the data resources (hosts file, DNS, ...). If you want to use the "mapped host
name" function, then you must specify the UTM host name here (see page 121).
You must not specify any other names, i.e. aliases, found in the database (hosts file,
DNS, ...).

If you enter PRONAM=*ANY, then clients from any computer can sign on assuming
they are of the same type as specified in PTYPE= .

– In BCAMAPPL= enter the application name as defined in the BCAMAPPL
statement.

X/W

X/W

Generating UTM objects Connecting clients: address information

Generating Applications 153

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Example

The following example uses the port number 10100. The socket application is linked via the
LTERM pool and runs on the computer PCSOCK01.

BCAMAPPL BSPSOCK -
,LISTENER-PORT=10100 -
,T-PROT=SOCKET -
,...

TPOOL ...
,PTYPE=SOCKET -
,BCAMAPPL=BSPSOCK -
,PRONAM=PCSOCK01 -
,...

5.1.12.2 Providing address information for clients of type UPIC and APPLI in BS2000 systems

For RFC1006 (or ISO) connections you must always generate a separate application name.
This can be used for all RFC1006 (or ISO) connections regardless of client type.

KDCDEF generation

● BCAMAPPL statement

In T-PROT= enter either ISO or RFC1006 (these two values are treated identically in
BS2000 systems). You may not specify T-PROT=SOCKET.

● PTERM statement

If you want to generate the clients individually, specify the following operands and
parameters:

– Under PTERM name, you must enter the name that was defined for this client when
the network was generated.

– In BCAMAPPL= enter the application name defined in the BCAMAPPL statement.

– In PRONAM= enter the name of the computer on which the client is running. This
name is specified when the network is generated.

– In PTYPE= you must enter either UPIC-R or APPLI, the option PTYPE=*ANY is not
permitted.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Connecting clients: address information Generating UTM objects

154 Generating Applications

● TPOOL statement

If you want to link clients via the LTERM pool, then:

– In BCAMAPPL= enter the application name that is defined in the BCAMAPPL
statement.

– In PRONAM= you can enter the name of the computer on which the clients are
running. If you specify PRONAM=*ANY the clients can sign on from any computer
as long as it is of the type specified in PTYPE=.

– In PTYPE= you must enter either UPIC-R or APPLI, the option PTYPE=*ANY is not
permitted.

Coordination with the BCAM generation

If a client is linked to a UTM application via RFC1006 and uses a port number that is î 102,
then a BCMAP entry is required for this client:

/BCMAP FUNCT=DEFINE,SUBFUNCT=GLOBAL,NAME=name-of-client, -
/ ES=partner-processorname,PPORT#=listener-port-no, -
/ PTSEL-I=tselector-of-client

5.1.12.3 Providing address information for clients of type UPIC and APPLI in Unix systems
and Windows systems

Under Unix systems and Windows it is possible to write your own BCAMAPPL statement
for an application name that is generated using MAX APPLINAME=. This statement can
then be used to specify all the parameters you require.

To link clients via RFC1006, see section “Providing address information for the CMX
transport system (Unix systems and Windows systems)” on page 109. The KDCDEF
generation must contain all the necessary address information.

KDCDEF generation for RFC1006

● BCAMAPPL statement

– appliname: You can select any application name, but the name must be unique
within the network, as KDCDEF uses it to create a T-selector.

– If OPTION CHECK-RFC1006=YES then a port number must be specified for
LISTENER-PORT.
In all other cases, the default value is 0 (no port number).

– In T-PROT you must always enter RFC1006.

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Generating UTM objects Connecting clients: address information

Generating Applications 155

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

– In TSEL-FORMAT= enter the format indicator for the name that you have defined
as the appliname (see above). It is recommended that you always make an entry for
the operand TSEL-FORMAT=.

● PTERM statement

If you want to generate the client individually via a PTERM statement, enter the
following:

– As PTERM name use the T-selector of the client. The client on the client computer
must be entered with this T-selector as the local application.

– In BCAMAPPL= enter the application name as defined above.

– In LISTENER-PORT= enter the port number which the client is reached as output
port on the client computer.

– In PRONAM= you must always enter the first TCP/IP host name of the client
computer, as generated in the data resources (hosts file, DNS,...). If you want to use
the "mapped host name" function, then you must specify the UTM host name here
(see page 121). You must not specify any other names, i.e. aliases, found in the
database (hosts file, DNS, ...).

– In PTYPE= you must specify wither UPIC-R or APPLI.

● TPOOL statement

If you want to connect the client via an LTERM pool, enter the following:

– In BCAMAPPL= enter the application name as defined above.

– In PRONAM= you can enter the name of the computer on which the client is
running. This must be the first TCP/IP host name that is listed in the data resources
(hosts file, DNS,...). If you want to use the "mapped host name" function, then you
must specify the UTM host name here (see page 121). You must not specify any
other names, i.e. aliases, found in the database (hosts file, DNS, ...).

If you enter PRONAM=*ANY the clients can sign on from any computer as long as
it is of the same type specified in PTYPE=.

– In PTYPE= you must enter either UPIC-R or APPLI.

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Connecting clients: address information Generating UTM objects

156 Generating Applications

Example

The following example uses the port number 10030 locally and the remote application has
the port number 12030. The UPIC client runs on a computer called PCUPR.

BCAMAPPL BSPUPR -
,LISTENER-PORT=10030 -
,T-PROT=RFC1006 -
,T-SEL-FORMAT=T -
,...

PTERM UPRPART -
,PTYPE=UPIC-R -
,BCAMAPPL=BSPUPR -
,PRONAM=PCUPR -
,LISTENER-PORT=12030 -
,T-PROT=RFC1006 -
,T-SEL-FORMAT=T -
,...

The statements for a TS application are created analogue, except that you must specify
PTYPE=APPLI in PTERM.

X/W

X/W

X/W

X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W
X/W

X/W

X/W

Generating UTM objects Connecting clients: address information

Generating Applications 157

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.12.4 Additional information for LTERM pools in Unix systems and Windows systems

An LTERM pool can be used by any partner application on a specific computer to establish
a connection to the UTM application, if the partner application is of the appropriate type
(PTYPE). If PRONAM=*ANY is generated in the TPOOL statement, then TS applications
of the generated type can connect to the UTM application from any computer.

The TPOOL statement does not specify a name (station name) for this communication
partner. The UTM application determine this name from the Transport Name Service that is
supplied when the connection is established.

The following procedure is used:

● If a TS application is communicating with the UTM application, an attempt is made to
find out the computer name using the local Name Service.

● If the TS application is communicating with the UTM application via the Internet, an
attempt is made to find out the computer name using the Internet Name Service.

● If no name can be located for the computer the network process assigns it the name
*ANY.

● Then an attempt is made to obtain the T-selector from the transport address. If a
T-selector is found then it is used as the station name.

● If no T-selector can be found, then the station name 'NETMnnnn' is used for the
TS application. nnnn stands for a number between 0000 and 9999 and is automatically
incremented by openUTM.

It often makes sense to communicate with LTERM pools via TCP/IP connections, if LTERM
pool is generated with processor names (TPOOL ...,PRONAM=).

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Connecting clients: address information Generating UTM objects

158 Generating Applications

5.1.12.5 Providing address information for OpenCPIC clients in BS2000 systems

The address information for OpenCPIC clients is stored in the ACCESS-POINT and
OSI-CON statements. This information must match that in the OpenCPIC generation.

KDCDEF generation

● ACCESS-POINT statement

– In access_point_name, define the name of the local OSI TP access point.

– In TRANSPORT-SELECTOR= specify a BCAM name for the local UTM application.

– If necessary, you must also enter the session and presentation selector of the local
OSI TP access point in SESSION-SELECTOR= and PRESENTATION-
SELECTOR=. If these selectors are not required, enter *NONE in both cases.

● OSI-CON statement

– In LOCAL-ACCESS-POINT= enter the name of the OSI TP access point as defined
above.

– In NETWORK-SELECTOR= enter the name of the computer on which the
OpenCPIC client is running.

– In TRANSPORT-SELECTOR= enter the BCAM application name of the OpenCPIC
client.

– If necessary, you must also enter the session and presentation selector of the local
OSI TP access point in SESSION-SELECTOR= and PRESENTATION-
SELECTOR=. If these selectors are not required, enter *NONE in both cases.

Coordination with the BCAM generation

If an OpenCPIC client is connected to the UTM application via RFC1006 and uses port
number î 102, then this client requires a BCMAP entry:

/BCMAP FUNCT=DEFINE,SUBFUNCT=GLOBAL,NAME=name-of-client, -
/ ES=partner-processorname,PPORT#=listener-port-no, -
/ PTSEL-I=tselector-of-client

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B

Generating UTM objects Connecting clients: address information

Generating Applications 159

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.12.6 Providing address information for OpenCPIC clients in Unix systems and Windows
systems

The address information for OpenCPIC clients is stored in the ACCESS-POINT and OSI-
CON statements. This information must be coordinated with both the OpenCPIC gener-
ation.

To connect clients via RFC1006 is described in section “Providing address information for
the CMX transport system (Unix systems and Windows systems)” on page 109. The
KDCDEF generation must contain all the required address information.

KDCDEF generation for RFC1006

The KDCDEF generation must be coordinated with the client generation, see the example
shown on page 163.

● ACCESS-POINT statement

– In access_point_name define the name of the local OSI TP access point.

– In TRANSPORT-SELECTOR= you must specify the T-selector of the local OSI TP
access point. This name must be coordinated with the generation on the client side.

– In TSEL-FORMAT= enter the format indicator of the T-selector. It is recommended
that you always provide a value for the TSEL-FORMAT= operand.

– If necessary, you must also enter the session and presentation selectors of the local
OSI TP access point in SESSION-SELECTOR= and PRESENTATION-
SELECTOR=. This name must be coordinated with the generation on the client
side.

If these selectors are not required, you must specify *NONE in both cases.

– In LISTENER-PORT= enter the port number under which the OpenCPIC client
contacts the local UTM application.

– In T-PROT= you must always specify RFC1006.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Connecting clients: address information Generating UTM objects

160 Generating Applications

● OSI-CON statement

– In LOCAL-ACCESS-POINT= enter the name of the OSI TO access point as defined
above.

– In NETWORK-SELECTOR= you must enter the name of the computer on which the
OpenCPIC client is running. This must always be the first TCP/IP host name that is
generated in the data resources (hosts file, DNS, ...). If you want to use the
"mapped host name" function, then you must specify the UTM host name here (see
page 121). You must not specify any other names, i.e. aliases, found in the
database (hosts file, DNS, ...).

– In TRANSPORT-SELECTOR= you must specify the T-selector of the client. This
name must be coordinated with the generation on the client side.

– In TSEL-FORMAT= enter the format indicator of the T-selector. It is recommended
to always provide values for the TSEL-FORMAT= operand.

– If necessary, you must also enter the session and presentation selectors of the
OpenCPIC client in SESSION-SELECTOR= and PRESENTATION-SELECTOR=.
This name must be coordinated with the generation on the client side.

If these selectors are not required, you must specify *NONE in both cases.

– In LISTENER-PORT enter the port number of the OpenCPIC client.

– In T-PROT you must always specify RFC1006.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Generating UTM objects Connecting clients: examples

Generating Applications 161

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.1.13 Examples of the generation of a client/server cluster

The following examples show how to connect a UPIC client which is running on a Windows
system PC to a UTM application in BS2000 and Unix systems.

Example 1: Connecting a UPIC client to openUTM under BS2000 systems

The UTM server application is located on a host with the name BS2HOST1, the client
program is running on a PC with the computer name PCCLT002. The transport connection
is to be established via TCP/IP (address format RFC1006).

● UTM generation under the BS2000 system

*** Define BCAM application name for the UTM server application:***
BCAMAPPL SERVER, T-PROT=RFC1006

*** Generate client:***
PTERM UPICTTY, PTYPE=UPIC-R, LTERM=UPICLT, BCAMAPPL=SERVER, -
 PRONAM=PCCLT002
LTERM UPICLT

*** Define TAC for the client:***
TAC TAC1, PROGRAM=SERVICE

The statement LTERM UPICLT means that when signing on openUTM implicitly uses a
connection user ID called UPICLT.

When establishing a link via the RFC1006 protocol, no BCMAP entries are required.

● Entries in the side information file (upicfile) of the openUTM client

* UTM application under the BS2000 system
SDsamplaw SERVER.BS2HOST1 TAC1
* or, if you require automatic conversion of user data
* from ASCII to EBCDIC and vice versa
HDsamplaw SERVER.BS2HOST1 TAC1

● Specification in the client program

Enable_UTM-UPIC "UPICTTY"
Initialize_Conversation "samplaw"

B

B

B

B

B

B
B

B
B
B
B

B
B

B

B

B

B

B
B
B
B
B

B

B
B

Connecting clients: examples Generating UTM objects

162 Generating Applications

Example 2: Connecting an UPIC client to openUTM under Unix system

This example describes the TCP/IP RFC1006 connection of a UPIC client to a UTM appli-
cation under Unix system. The example shows the coordination of the generation for both
communication partners.

The UTM application is running on a computer with the name UXHOST01. The client is
located on a Windows system for which the name PCCLT001 has been generated in the
KDCDEF. The UTM application receives the local port number 1230 and the client has the
port number 1240.

● Generating the UTM server on the UNX computer

BCAMAPPL UTMUPICR,LISTENER-PORT=1230,T-PROT=RFC1006,TSEL-FORMAT=T

PTERM UPICTTY,PTYPE=UPIC-R,LTERM=UPIC,BCAMAPPL=UTMUPICR,PRONAM=PCCLT001, \
 LISTENER-PORT=1240,T-PROT=RFC1006,TSEL-FORMAT=T

LTERM UPIC,USER=UPICUSER
USER UPICUSER,PERMIT=ADMIN

The statement USER UPICUSER... is used to generated an explicit connection user ID.

● Entries in the side information file of the client computer

* Local application
LNUPICTTY UPICTTY PORT=1240

* UTM application under Unix system with port 1230, TCP/IP host
name=UXHOST01
SDsampladm UTMUPICR.UXHOST01 KDCHELP PORT=1230

● Entries in the hosts file of the client computer

In the HOSTS file of the Windows system you must make the following entry for the
mapping of the computer name UXHOST01 to the IP address of the Unix system:

ip-address UXHOST01

● Specification in the client program

Enable_UTM_UPIC "UPICTTY"
Initialize_Conversation "sampladm"

X

X

X

X

X

X

X

X

X

X

X
X
X
X

X

X

X
X

X
X
X

X

X

X

X

X

X
X

Generating UTM objects Connecting clients: examples

Generating Applications 163

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Example 3: Connecting an OpenCPIC client

An OpenCPIC client is running on a Unix system with the host name UNIXPRO1. The client
connects itself via RFC1006 to a UTM application under BS2000 system and to a UTM
application under Unix system. The following is to apply:

– In the UTM application under BS2000 system, the client calls the transaction code
TRAVEL02 and in the UTM application under Unix system it calls the transaction code
STATIST1.

– It is to be possible to have up to 10 parallel connections to BS2000, and up to 2 parallel
logical connections to Unix system.

– The UTM application under BS2000 system uses the local port number 102. The UTM
application under Unix system uses the local port number 12000.

– The OpenCPIC xlient uses local port number 13000.

● UTM generation under BS2000 system

UTMD APT = (2, 7, 16, 2)

ACCESS-POINT SERVER,
T-PROT = RFC1006,
P-SEL = *NONE,
S-SEL = *NONE,
T-SEL = C'UTMSERV1',
AEQ = 1

OSI-CON CONNECTB,
LOCAL-ACCESS-POINT = SERVER,
P-SEL = *NONE,
S-SEL = *NONE,
T-SEL = C'CPICCLT1',
N-SEL = C'UNIXPRO1',
OSI-LPAP = OSILPAPB

OSI-LPAP OSILPAPB,
APT = (2, 7, 16, 4),
APPLICATION-CONTEXT = UDTSEC,
AEQ = 1,
ASS-NAMES=CPIC,
ASSOCIATIONS=10,
CONTWIN=0

TAC TRAVEL02 ...

When linking via the RFC1006 protocol using port number 102, no BCMAP entries are
required.

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

X

B

B

B
B
B
B
B
B

B
B
B
B
B
B
B

B
B
B
B
B
B
B

B

B

B

Connecting clients: examples Generating UTM objects

164 Generating Applications

● UTM generation under Unix system

UTMD APT = (2, 7, 16, 3)

ACCESS-POINT STATSERV,
T-PROT = RFC1006,
P-SEL = *NONE,
S-SEL = *NONE,
T-SEL = C'UTMSERV2',
LISTENER-PORT = 12000,
T-PROT = RFC1006,
T-SEL-FORMAT = T,
AEQ = 1

OSI-CON CONNECTX,
LOCAL-ACCESS-POINT = STATSERV,
P-SEL = *NONE,
S-SEL = *NONE,
T-SEL = C'CPICCLT1',
N-SEL = C'UNIXPRO1',
LISTENER-PORT = 13000,
T-PROT = RFC1006,
T-SEL-FORMAT = T,
OSI-LPAP = OSILPAPX

OSI-LPAP OSILPAPX,
APT = (2, 7, 16, 4),
APPLICATION-CONTEXT = UDTSEC,
AEQ = 1,
ASS-NAMES=CPIC,
ASSOCIATIONS=2,
CONTWIN=0

TAC STATIST1 ...

● OpenCPIC generation

*** Entry for the local application
LOCAPPL OPENCPIC,

APT = (2, 7, 16, 4),
AEQ = 1

*** Connection to UTM application under BS2000 system
PARTAPPL UTMSBS20,

APT = (2, 7, 16, 2),
APPLICATION-CONTEXT = utm-secu,
AEQ = 1,
ASSOCIATIONS = 10,
CONTWIN = (10,10),
CONNECT = 10

X

X

X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X
X
X

X
X
X
X
X
X
X

X

B/X

B/X
B/X
B/X
B/X

B
B
B
B
B
B
B
B

Generating UTM objects Connecting clients: examples

Generating Applications 165

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

*** TAC in the UTM application under BS2000 system
SYMDEST TRAVEL,

PARTNER-APPL = UTMSBS20,
PARTNR-APRO = TRAVEL02

*** Connection to UTM application under Unix system
PARTAPPL UTMSUNIX,

APT = (2, 7, 16, 3),
APPLICATION-CONTEXT = utm-secu,
AEQ = 1,
ASSOCIATIONS = 2,
CONTWIN = (2,2),
CONNECT = 2

*** TAC in the UTM application under Unix system
SYMDEST STATIST,

PARTNER-APPL = UTMSUNIX,
PARTNR-APRO = STATIST1

● TNS entries in the OpenCPIC client computer (tnsxfrm format)

OPENCPIC\
PSEL V''
SSEL V''
TSEL RFC1006 T'CPICCLT1'
TSEL LANINET A'13000'

UTMSBS20\
PSEL V''
SSEL V''
TA RFC1006 ip-address-bs2 PORT 102 T'UTMSERV1'

UTMSUNIX\
PSEL V''
SSEL V''
TA RFC1006 ip-address-unix PORT 12000 T'UTMSERV2'

B
B
B
B

X
X
X
X
X
X
X
X

X
X
X
X

B/X

B/X
B/X
B/X
B/X
B/X

B
B
B
B

X
X
X
X

Generating printers (BS2000, Unix systems) Generating UTM objects

166 Generating Applications

5.2 Generating printers (on BS2000 systems and Unix systems)

i Printers cannot be generated in UTM applications under Windows systems.

Printers that are to be used by a UTM application are connected via LTERM partners that
are configured with the logical properties for printers. LTERM partners for printers are
defined in the LTERM statement. Printers cannot be connected via LTERM pools. Physical
printers are defined with the PTERM statement, which is also where the assignment is
made to the LTERM partner.

The connection setup by openUTM can be defined either with PTERM...,CONNECT=YES
or with LTERM...,PLEV=. The connection can also be established using administration
functions. See also the openUTM manual “Administering Applications”.

LTERM statement on page 363
The most important properties for LTERM partners via which printers can connect
to an application are defined with the following operands:

● ltermname

Name of the LTERM via which the printer is connected to the UTM application.

● CTERM=

Defines the printer control LTERM so that the user can administer printers, print
jobs, and the print jobs in the message queue of the LTERM partner.

● PLEV=

Number of printer messages for which openUTM attempts to establish a connection
to the printer assigned to this LTERM partner.

– If PLEV=1, a connection is established for each print job.

– If PLEV=n, the connection is established for the nth print job
(n=1 to 32767).

– If PLEV=0, the connection setup is not initiated by pending print jobs, rather is
initiated explicitly by the administrator using the command
KDCLTERM...ACT=CON or KDCPTERM.

The connection is shut down again as soon as there are no further messages for
this printer.

W

W

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

Generating UTM objects Generating printers (BS2000, Unix systems)

Generating Applications 167

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

PLEV= makes it easier for the user to use printers from various UTM applications
(printer sharing). In this case, the connection between a UTM application and the
printer is only kept open while the print job is being transmitted, in order to allow
other applications to establish a connection. If there are unprocessed print
messages for a printer in the message queue of the LTERM partner when the UTM
application terminates, these print messages are retained until the next application
start. Before terminating the application, the administrator can initiate the
processing of the outstanding print messages using the command KDCAPPL
SPOOLOUT=ON.

● QAMSG=

Messages to printers can be buffered in the message queue of the LTERM partner,
even if the printer is not connected to the application.

● USAGE=O

USAGE=O defines a printer as a communication partner which can connect to an
application via the LTERM partner. Messages can only be sent from the application
to the printer.

Each printer must be described in the configuration, i.e. for each printer, a PTERM
statement is written with the physical properties of the printer and the assignment is made
to an LTERM partner. The assignment between the printer and LTERM partner is static, i.e.
the assignment applies until it is canceled using administration commands. You can assign
another printer (of the same type) to an LTERM partner during operation, e.g. in the event
of a printer fault.

PTERM statement on page 450
The most important properties for printers are defined with the following operands:

● ptermname

Name of the printer

BS2000 systems:
The BCAM name or the RSO name of the printer must be specified.

Unix systems:
The name of a printer group of the spool system must be specified. A printer group
used by UTM applications should comprise only one printer. This is the only way to
ensure that all parts of a message are output to the same printer if a message
comprises message segments (see also the information on printer pools).

B/X
B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B

B

X

X

X

X

X

Generating printers (BS2000, Unix systems) Generating UTM objects

168 Generating Applications

● CID=

The printer is assigned a printer ID printer_id via which the printer can be identified
by a printer control LTERM. The printer control LTERM attaches to the LTERM
partner to which the printer is assigned.

● CONNECT=

Specifies whether or not openUTM automatically establishes a connection to the
printer when the application starts. The printer is then explicitly occupied by the
application until the next time the connection is cleared down, even if there are no
print jobs.

● LTERM=

Name of the LTERM partner assigned to the printer ptermname and via which the
printer is connected to the UTM application.

● PTYPE=

BS2000 systems:
Printer type or *RSO.

Unix systems:
Printer type.
To output the data, the printer process (utmprint) calls the utmlp script. The call also
passes parameters to utmlp in addition to the data to be printed. By default, utmlp
then passes the data to the lp command (see PTYPE=PRINTER on page 465).

● USAGE=O (only BS2000 systems)

The communication partner is a printer.

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B

B

X

X

X

X

B

B

Generating UTM objects Generating printers (BS2000, Unix systems)

Generating Applications 169

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

The maximum values and limits that are to apply throughout the application for printers are
defined with the MAX statement.

MAX statement on page 376
The default and maximum values relevant throughout the application for printers
are defined with the following operands:

● CONRTIME=

Time in minutes after which openUTM makes cyclical attempts to reestablish a
logical connection. openUTM attempts this for:

– Printers to which openUTM establishes a connection as soon as the number of
print jobs for this printer exceeds the generated threshold value
(LTERM...,PLEV>0). When the connection is aborted, the number of print jobs
must be greater than or equal to the threshold value if openUTM is to attempt
to re-establish the connection.

– Printers to which openUTM automatically establishes a connection
(PTERM...,CONNECT=YES), provided that the connection was not terminated
by the administration.

If no connection is established when the application starts or if the connection is
interrupted during operation, openUTM attempts to reestablish the connection at
intervals of CONRTIME=.

● PGPOOL=

A sufficiently large value must be specified for the PGPOOL operand so that the
page pool can accommodate all print messages and does not overflow in the event
of a high print volume.

● TRMSGLTH=

Maximum length of physical messages that can be exchanged between the UTM
application and printers.

● LOGACKWAIT=

Maximum time in seconds that openUTM is to wait for an acknowledgment from the
output devices. This acknowledgment is
– for a printer, the logical print acknowledgment from the printer,
– for an RSO printer, the acknowledgment from RSO,
– with an FPUT call to another application, a transport acknowledgment.

B/X
B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B

B

B

B

B

B

Generating RSO printers Generating UTM objects

170 Generating Applications

5.2.1 Generating RSO printers (BS2000 systems)

Via the OLTP interface of RSO (remote spool output), openUTM obtains access to all
printers that support RSO, i.e. including printers connected via LAN or PC. openUTM does
not establish a transport connection to these printers, rather serves them via the OLTP
interface, i.e. openUTM reserves the printer for RSO and transfers the print job to RSO.

5.2.1.1 Entries for the KDCDEF generation

To print to an RSO printer from openUTM, the desired printer is defined in the generation
under its RSO name as an RSO printer in the PTERM statement. The printer must be
defined and activated on the RSO side. This section only lists the RSO specific statements
and operands, the other printer-specific parameters are described on page 166f.

PTERM statement on page 450
RSO printers served by openUTM via the OLTP interface are defined with the
following operands:

● ptermname

For an RSO printer, the name of the printer must be specified here as it was defined
in RSO (logical RSO device name).

● PTYPE=

PTYPE=*RSO is specified as the printer type. No particular printer type is specified
for RSO printers. openUTM obtains the printer type in accordance with the RSO
device information in the RSO call.

● PRONAM=

For an RSO printer, *RSO must be specified as the processor name.

MAX statement on page 376
Limit values relevant in the application for printers are defined with the following
operands:

● TRMSGLTH=

Maximum length of the physical messages that can be exchanged between the
UTM application and printers.
If RSO printers are defined, REMOTE-BUFFER-SIZE in the SPOOL parameter file
must be greater than TRMSGLTH.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Generating RSO printers

Generating Applications 171

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.2.1.2 Entries for RSO and SPOOL

In order for openUTM to use the OLTP interface of RSO, RSO and the software products
required by RSO must be installed. The RSO subsystem must be active. If you have
specific questions, read the RSO manual:

Device definition

With the UTM tool SPSERVE, you open the SPOOL parameter file for the printer definition.
The system administrator must configure the printer in RSO for UTM print jobs:

ADD-SPOOL-DEVICE...ADMINISTRATOR=*ADMINISTRATOR(...),
PROCESSING-CONTROL=*PAR(

DISCONNETION=*YES
RESET={*YES | *NO }
CONTROLLER-START=AT-PRINTER-START)

● If a new printer is configured, up to 8 RSO device managers can be entered with the
parameter ADMINISTRATOR=*ADMINISTRATOR(...). An RSO device manager can
modify a device with MODIFY-SPOOL-DEVICE or start a DEVICE with START-
PRINTER-OUTPUT.

● It is advisable to work with the parameter DISCONNECT=*YES, because with
SOCKETS the printer shuts down the connection when the time set on the printer has
expired.

● The parameter CONTROLLER-START must be set to AT-PRINTER-START.

● If RESET=*YES, the settings of the printer menu are used. This also applies regardless
of the device entry if openUTM is working with formats. If “logical” formats are used (see
note at the end of the section) then openUTM behaves as if no formats are used.

– If a format name is transferred by openUTM with an FPUT in the KCMF field, a
RESET=*YES is sent by default to the printer by FHS before the message, so that
the menu setting of the printer comes into effect before printing. In the printer menu
you can set various fonts or CPI values, for example. In this case, RSO processes
a message with format names as per the setting CONTROL=TRANSPARENT.

– If no format name is transferred by openUTM with an FPUT in the KCMF field, RSO
only sends a RESET to the printer before the message if RESET=*YES is entered
in the device definition. If no RESET was sent to the printer, the applicable values
are the printer menu values currently set on the printer, which may have been
changed by a previous print job. RSO handles a printer message without format
names as per the setting CONTROL=PHYSICAL.

B

B

B

B

B

B

B
B
B
B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating RSO printers Generating UTM objects

172 Generating Applications

The commands ADD-SPOOL-FORM for form entries and ADD-SPOOL-CHARACTER for
character sets have no effect on UTM print jobs. If both UTM RSO print jobs and RSO
SPOOLOUT are processed under the same logical RSO device name, forms and character
sets are only relevant for the latter. As the only printer control character, RSO adds the
RESET character string for UTM print jobs.

A UTM print job to an RSO printer is not placed in the SPOOL queue.

Sample device entry

Output of a device entry under which the printer is defined for RSO:

/show-spool-dev PGTP0041,inf=*all
DEVICE-NAME : PGTP0041
DEVICE-TYPE : 9021RP
ACCESS-DATE : 2006-11-27
-------------------------------- DEVICE-ACCESS ------------------------------
DEVICE-ACCESS : *TCP-ACCESS
ACCESS-TYPE : *TACLAN
PROCESSOR-NAME : *NONE
STATION-NAME : *NONE
MNEMONIC-NAME : *NONE
PROGRAM-NAME : *NONE
INTERNET-ADDRESS : PGTP0041
PORT-NAME : 9100
LPD-PRINTER-NAME : *NONE
FROM-PORT-NUMBER : 0
TO-PORT-NUMBER : 0
------------------------------- TWIN-DEVICE-DEF -----------------------------
SLAVE-MNEMONIC-NAME : *NONE
ESD-SIZE : 0
----------------------------- DEVICE-INFORMATION ----------------------------
FORMS-OVERLAY-BUFFER: 32767
CHARACTER-SET-NUMBER: 64
ROTATION : NO
DUPLEX-PROCESSING : NO
FORMS-OVERLAY : NO
RASTER-PATTERN-MEM : *NONE
TRANSMISSION : IGN
FONT-TYPE : IGN
FACE-PROCESSING : NO
MAXIMUM-INPUT-TRAY : 1
MONJV : NO
NOTIFICATION : NO
ENCRYPTION : NO
UNICODE : NO
SUPP-FORMAT-NAME :
 TEXT

B
B

B

B

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Generating UTM objects Generating RSO printers

Generating Applications 173

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

 PLAIN-TEXT
-------------------------------- ADMINISTRATOR ------------------------------
USER-IDENTIFICATION : *NONE

IDENTIFICATION : OEC MW 135
TERMINAL : PROCESSOR-NAME :
 STATION-NAME :
------------------------------ SPOOLOUT-CONTROL -----------------------------
SHIFT : 0
LINE-FEED-COMPRESS : YES
BLANK-COMPRESSION : YES
START-FORM-FEED : YES
FORM-FEED : *SINGLE-SHEET
 DEFAULT-TRAY-NUMBER : 1
 OUTPUT-TRAY-NUMBER : 0
SKIP-TO-CHANNEL : OPTIM
SKIP-TO-NEXT-PAGE : BY-FORM-FEED
ESCAPE-VALUE : NONE
----------------------------- PROCESSING-CONTROL ----------------------------
CONTROLLER-RESERVED : NO
FORM-NAME : STD

DISCONNECTION : YES
BUFFER-SIZE : 1024
RESET : YES
REPEAT-MESSAGE : TYPE : SYS
 LIMIT : NO
 RETRY-TIME : GLB
RESTART-ACTION : LIMIT : NO
 RETRY-TIME : GLB
SYNCHRONIZATION : PRINTER
TIMEOUT-MAX : 2
PAGE-EJECT-TIMEOUT : NO
BAND-IDENTIFICATION : *NONE
LOAD : NO
MODULO2 : NO
RECOVERY-RULES : *SYSTEM
POLLING : NO
PRINTER-PARAM-FILE : *SYSTEM
RESOURCE-FILE-PREFIX: *SYSTEM
CONTROLLER-START : AT-PRINTER-START
------------------------------ CHARACTER-SET-POS ----------------------------
POSITION-1 : N-U
POSITION-2 : N-U
POSITION-3 : N-U
POSITION-4 : N-U
POSITION-5 : N-U
POSITION-6 : N-U

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

Generating RSO printers Generating UTM objects

174 Generating Applications

POSITION-7 : N-U
POSITION-8 : N-U
POSITION-9 : N-U
POSITION-10 : N-U
POSITION-11 : N-U
POSITION-12 : N-U
POSITION-13 : N-U
POSITION-14 : N-U
POSITION-15 : N-U
POSITION-16 : N-U
-------------------------------- MISCELLANEOUS ------------------------------
REDIRECTION-DEVICE : *NONE
LANGUAGE-EXT-TYPE : *SYSTEM
LINE-SIZE : 150
CHARACTER-IMAGE : *NONE

Defining the RSO buffer size

To be able to print out messages of any length, the RSO buffer must be greater than or
equal to the maximum message length in openUTM (MAX ...,TRMSGLTH=). Since the
maximum value for the UTM buffer size is 32 KB, the RSO buffer size in a session in which
openUTM is running, must be adapted to this value:

/MODIFY-SPOOL-PARAMETER...SPOOLOUT-OPTIONS=*PAR(REMOTE-BUFFER-SIZE=32)

A smaller value can also be selected if smaller values are generated for openUTM. Any
modification will come into effect in the next SPOOL session.

VTSU codes

When UTM messages containing VTSU codes are output to printers connected directly via
BCAM, openUTM calls the VTSU program in order to convert VTSU codes into printer-
dependent escape sequences. If UTM messages are output to RSO printers, the
conversion of the VTSU codes is carried out by RSO. An extensive adaptation to the known
VTSU control characters was striven for in this case. Additional information can be found in
the RSO manual.

5.2.1.3 Activating printers for openUTM

Each printer used in an RSO session must be started with START-PRINTER-OUTPUT. A
START-PRINTER-OUTPUT statement can be contained in an ENTER file which is
processed automatically when the RSO subsystem starts, or the system administrator or
RSO device manager uses this statement to explicitly start the printer after the subsystem
has started.

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Generating RSO printers

Generating Applications 175

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

If you want to print to an RSO printer from openUTM, the printer must be released for
openUTM:

/START-PRINTER-OUTPUT DEVICE-NAME=*RSO(NAME=devicename,
ALLOWED-ACCESSES=‘UTM‘)

or ALLOWED-ACCESSES=(‘RSO‘,‘UTM‘))

5.2.1.4 Querying printer information

Printer information in openUTM

The administration command KDCINF can be used in openUTM to query the current printer
status. If required, the connection to the printer can be set up/shut down or locked using the
administration commands KDCPTERM and KDCLTERM or via the program interface for
administration. See also the openUTM manual “Administering Applications”.

Printer information in RSO

Using BS2000 information functions, users and RSO device managers can output the
printer status of the RSO printers with the following command:

/SHOW-SYSTEM-STATUS INFORMATION=*REMOTE(DEVICE=NAME)

5.2.1.5 Releasing printers in the event of an error

If the automatic repetition of the print job by openUTM and RSO was not successful in the
event of an error, the RSO device manager can temporarily release the printer with the
command

/STOP-PRINTER-OUTPUT DEVICE-NAME=RSO-PRINTER(NAME=rso-printer,STOP=IMMEDIATE)

so that the printer can then be reserved again for openUTM with the START-PRINTER-
OUTPUT command.

The parameter TRACE=YES can be specified under $TSOS for diagnostic purposes. In this
case, a trace is generated and is stored under
$SYSSPOOL.SYSTRC.RSO.devicename.date.time:

/START-PRINTER-OUTPUT DEVICE-NAME=*RSO(NAME=devicename,
TRACE=YES,
ALLOWED-ACCESSES=(‘RSO‘,‘UTM‘))

See also the "RSO" manuals.

B
B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B

B

Generating printer pools Generating UTM objects

176 Generating Applications

5.2.2 Generating printer pools

A printer pool is made up of several printers (=printer groups in Unix systems) assigned to
one LTERM partner. A PTERM statement with the same ltermname for PTERM...,LTERM=
is written for each printer in the pool.
openUTM distributes the print output as evenly as possible to the printers in the pool.
Messages that are made up of message segments are always output in full by openUTM
to one printer or printer group (in Unix systems) in the pool.

5.2.3 Bypass mode (BS2000 systems)

With a locally connected printer, the term bypass mode is also used instead of spool mode.
Bypass mode is possible if the terminal can conduct dialog independently of the print
output. Bypass mode must only be implemented for terminal types 975x and 9763 or a
corresponding emulation (see the manual "MT9750, 9750 Emulation under Windows")

B/X

B/X

B/X

B/X

B/X

B/X

B

B

B

B

Generating UTM objects Generating printer control LTERMs

Generating Applications 177

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.2.4 Generating printer control LTERMs

In the generation you can define printer control LTERMs so that users themselves can
administer the default printers and print job queues even without administration authori-
zation, e.g. delete the current print job.

Each printer is assigned an LTERM partner, which is configured for an output medium
(LTERM...,USAGE=O). All output jobs for this printer are “sent” by openUTM to the
message queue of the associated LTERM partner, which thus becomes the print job queue.
It is also possible to assign several printers to an LTERM partner (printer pool). In this case,
all printers work with this print job queue.

A print control LTERM is an LTERM partner which is configured as a dialog partner
(LTERM...,USAGE=D). Via this LTERM partner, a client or a terminal user can connect to
the application in order to administer printers and the associated print job queues.

You assign the printers to the respective printer control LTERM via the LTERM partner, i.e.
for the LTERM partner you specify the printer control LTERM to which the printers are
assigned with LTERM...,CTERM=printercontrol-ltermname.

To enable the printer control LTERMs to identify the printers assigned to them, you assign
a control identification (CID) to each printer in the PTERM statement. This CID must be
unique within the area of a printer control LTERM, because the printer control LTERM
addresses the printers using the printer ID. It is particularly important for the printer IDs to
be unique in the case of printer groups. Each printer in the pool must be assigned a
separate printer ID which does not belong to any other printer in the printer control LTERM.

To restrict access to the printer control LTERM to a particular group of users, you can assign
a lock code to the printer control LTERM just like any other LTERM partner.

An acknowledgment procedure is used for the printers assigned to a printer control LTERM.
This procedure can be switched on and off as required for each individual printer. All
printers assigned to a printer control always run in automatic mode with their first appli-
cation start after a regeneration.

For further information on printer administration, see the openUTM manual “Administering
Applications”.

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

Generating printer control LTERMs Generating UTM objects

178 Generating Applications

Figure 14: Configuring a printer control LTERM and the associated printers

1)The printer IDs (CID) XY1 to XY5 must differ from each other.

CLIENT
program
or
terminal

PTERM CL-NAME,
LTERM=CTER

M1
:

Printer
control
LTERM

LTERM CTERM1,
USAGE=D,
LOCK=123
:

LTERM
partner of
printer pool

LTERM
partner of
printer2

LTERM
partner of
printer1

 LTERM LT-PR1,
USAGE=O,
CTERM=CTERM1,
:

PRINTER1
PTERM PRINTER1,

CID=XY1 1),
LTERM=LT-PR1
:

 LTERM LT-PR2,
USAGE=O,
CTERM=CTERM1

,
:

PRINTER2
PTERM PRINTER2

CID=XY2 1)
LTERM=LT-PR2
:

 LTERM LT-PRB,
USAGE=O,
CTERM=CTERM1

,
:

POOLPRINTER1
PTERM BD-PR1,

CID=XY3 1),
LTERM=LT-PRB,...

POOLPRINTER2
PTERM BD-PR2,

CID=XY4 1),
LTERM=LT-PRB,...

POOLPRINTER3
PTERM BD-PR3,

CID=XY5 1),
LTERM=LT-PRB,...

Generating UTM objects Generating service-controlled queues

Generating Applications 179

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.3 Generating service-controlled queues

openUTM offers service-controlled queues, that is, message queues the processing of
which is controlled by the program units of the application. A program unit of a dialog or
asynchronous service must read the message of a service-controlled queue itself using the
KDCS call DGET. A service may also be designed to wait for the arrival of a message.

Since the messages are saved in the page pool, you must ensure that the page pool is
configured at a sufficient size.

openUTM provides three different service-controlled queue types:

– USER queues (user-specific)
– TAC queues (defined using TAC statements)
– temporary queues (created using QCRE calls and deleted using QREL calls)

 A general introduction to service-controlled queues and their application scenarios
can be found in the openUTM manual “Concepts und Functions”.

The implementation of the application scenarios is described in the openUTM
manual „Programming Applications with KDCS”. This also contains information
about processing service-controlled queues (reading, writing and deleting).

5.3.1 USER queues

Each user of a UTM application is automatically provided with a permanent message queue
which is addressed using the user ID.

For USER queues it is possible to generate the data access control which prevents reading
or writing by using Q-READ-ACL or Q-WRITE-ACL (USER statement).

 USER statement on page 543
The following operands are available for USER queues:

● QLEV=

QLEV can be used to prevent the page pool becoming overloaded with messages
for this USER.
QLEV specifies the maximum number of asynchronous messages that may be
buffered in the USER queue (default setting: 32767, i.e. no limit). If the specified
value is exceeded, the subsequent behavior is determined by the value in the
QMODE parameter.

Generating service-controlled queues Generating UTM objects

180 Generating Applications

● QMODE=

Determines the behavior of openUTM in the event that the USER queue has
already exceeded the maximum number of permitted messages that may be
buffered and has thus reached the Queue level (operand QLEV=). If the value STD
is set all new DPUT calls are rejected, if WRAP-AROUND is set the oldest message
is overwritten by the new message.

● Q-READ-ACL=

Specifies the read and delete authorizations in the USER queue for external users.
If you do not specify Q-READ-ACL= all users have read and delete authorization in
the queue.

● Q-WRITE-ACL=

Specifies the write authorization in the USER queue for external users.
If you do not specify Q-WRITE-ACL= all users have write authorization in the
queue.

5.3.2 TAC queues

The generation of transaction codes with TYPE=Q (queue) creates permanent Message
Queues with fixed names.

The TAC queue with the fixed name KDCDLETQ is called the dead letter queue. openUTM
provides this TAC queue to save queued messages sent to transaction codes or TAC
queues that could not be processed (see page 503).

TAC queues may be locked for reading or writing (see page 222).

 TAC statement on page 496
The following operands are important for the generation of a queue defined using
TAC statements:

● tacname

Name of the TAC.

● TYPE=Q

TYPE=Q must be specified for TAC queues. A Message Queue is generated. It is
possible to use an FPUT or DPUT call to write a message to a queue of this nature,
or to use a DGET call to read a message from the queue.

Generating UTM objects Generating service-controlled queues

Generating Applications 181

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

● ADMIN=

Specifies whether access to this queue requires administration authorization.

● DEAD-LETTER-Q=

Specifies whether queued messages in this message queue are to be saved in the
dead letter queue if not processed correctly when the maximum number of attempts
to redeliver the message (MAX statement, REDELIVERY parameter) has been
reached.

● QLEV=

QLEV can be used to ensure that the page pool is not overloaded by jobs for this
TAC queue.
QLEV specifies the maximum number of asynchronous messages that may be in
the Message Queue of this transaction code.

● QMODE=

Determines the behavior of openUTM in the event that the maximum permitted
number of messages is already saved in a queue and thus the queue level is
reached.

● Q-READ-ACL=

The key set defines the authorizations that permit reading or deletion of messages
in this queue.

● Q-WRITE-ACL=

The key set defines the authorizations that permit writing messages to this queue.

● STATUS=

Specifies whether the message queue is locked or released when the application is
started.

Generating service-controlled queues Generating UTM objects

182 Generating Applications

5.3.3 Temporary queues

Temporary queues are created and deleted dynamically by program calls. The name of the
queue may be determined by the user or assigned by openUTM.

The maximum number of temporary queues is defined within the QUEUE statement.

 QUEUE statement on page 470
The following operands are used to define temporary queues:

● NUMBER=

Specifies the maximum number of temporary queues that may exist at any one time
during an application run (1 Î NUMBER Î 500 000).

● QLEV=

QLEV can be used to prevent the page pool becoming overloaded with messages
for this temporary queue.
QLEV specifies the default value for the maximum number of messages that may
exist in a temporary messages queue at any one time (default value: 32767, in other
words an unlimited queue length).

● QMODE=

Determines the behavior of openUTM in the event that the maximum permitted
number of messages is already saved in a temporary queue and thus the queue
level is reached.

Generating UTM objects Generating service-controlled queues

Generating Applications 183

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.3.4 Specifying the maximum waiting time for reading from
service-controlled queues

At generation it is possible to set the maximum length of time that a service is permitted to
wait for a message for a queue. This maximum wait time may be defined separately for the
dialog and asynchronous services (MAX statement, QTIME operand). This ensures that a
terminal user or client does not have to wait several minutes for the system to react to an
error in a UTM program unit, or that a resource remains blocked for too long.

 MAX statement on page 376
The following operands are used to specify the maximum length of time that a
service is permitted to wait for a message in a service-controlled queue:

● QTIME=

Specification of the maximum waiting time in seconds (default: 32767 seconds).
You can define separate maximum values for the waiting time for the dialog or
asynchronous services.
If a greater waiting time is specified in a program unit run than specified in QTIME
then openUTM resets the waiting time to the value defined here.

5.3.5 Limiting the maximum number of redeliveries to service-controlled
queues

At generation you can define whether a message to a service-controlled queue is to be
placed back in the queue if the transaction in which the message was read is reset. You can
also limit the number of redeliveries at generation (MAX statement, REDELIVERY
operand). This prevents, for example, endless loops if a program error occurs.

 MAX statement on page 376
The maximum number of redeliveries of messages to service-controlled queues is
defined using the following operand.

● REDELIVERY= (...,number2)

number2 is the maximum number of redeliveries of messages to a service-controlled
queue (0 ≤ number2 ≤ 255).

Values between 0 and 254 indicate the number of redeliveries. The value 255
means that the message can be redelivered any number of times.

Default 255, i.e. the number of redeliveries is unlimited.

Message modules Generating UTM objects

184 Generating Applications

5.4 UTM messages

openUTM generates UTM messages that inform about certain events or request dialog
input. The UTM messages are located in a message module which is supplied with
openUTM (standard message module).

You can modify the messages of openUTM using the message tools KDCMTXT and
KDCMMOD, and create own message modules (user message modules) which are
adapted to your own needs.

You can adapt the standard UTM messages by:

– modifying UTM message texts (e.g. translation into other languages)
– deleting or adding UTM message destinations
– modifying inserts

You must declare user message modules in the configuration using the MESSAGE
statement.

 The entire event reporting mechanism and the tools KDCMTXT and KDCMMOD
are described in detail in the openUTM manual ”Messages, Debugging and
Diagnostics”.

5.4.1 Messages in openUTM under BS2000 systems

The following components of UTM event reporting are included in the delivery package:

● the German standard message module KCSMSGS

● the English standard message module KCSMSGSE

● the message definition file SYSMSH.UTM.063.MSGFILE

The message definition file contains the message texts in German and English and forms
the basis for the creation of user message modules.

You must declare user message modules in the configuration using the MESSAGE
statement. If you do not issue a MESSAGE statement, the German standard message
module KCSMSGS is used to output messages

In order to internationalize your application you can create multiple user specific message
modules in a variety of languages and include them in the configuration of a UTM appli-
cation. In this way, UTM messages can be output to a terminal user in a variety of
languages within any given UTM application. The language used to communicate with the
user depends on the locale (language identifier lang_id and territorial identifier terr_id) that
you assign the user during generation as well as on the availability of the user message
module which has been assigned an appropriate locale during generation.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Message modules

Generating Applications 185

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

If more than one message module is assigned for a UTM application, then a locale must be
assigned to each message module.

 MESSAGE statement on page 417
User message modules are defined with the following operands:

● MODULE=

Name of the message module you want to incorporate in the configuration.

● LIB=

Identifies the object module library from which the message module is loaded
dynamically. If a generated message module modulename is not contained under the
name lmodname in the library omlname when linking the application, the linkage
editor reports that the module is missing. The message module can be loaded
dynamically.

● LOCALE=

Defines the language environment (locale) of the message module if language-
specific message modules have been created for specific message output. These
national-language message modules are used for users and LTERM partners
whose language and territorial identifiers match the locale defined here. For further
information, see section “Internationalizing the application – XHCS support
(BS2000 systems)” on page 235.

 USER statement on page 543 and LTERM statement on page 363
With the following operand you specify the message module (and the language)
which is used to output messages to the user/client:

● LOCALE=

Language environment (locale) of the user/client.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Message modules Generating UTM objects

186 Generating Applications

Application message module and user message modules

If multiple message modules are used for an application, then a distinction is drawn
between application and user message modules. The application message module is the
message module in whose MESSAGE statement the locale specifications correspond to
those in the MAX statement. The application message module has a special significance
within the application. The message destination specifications entered for the application
message module determine the destination for message output. The message destination
specifications in the other message modules have no significance. The application
message module is used to output messages to the message destinations SYSLST,
SYSOUT and CONSOLE.

Messages to the destinations STATION, SYSLINE and PARTNER employ the message
module whose lang_id and terr_id specifications (of the Locale) correspond to those of the
user or LTERM partner for which the message is output. Here, the user specification takes
priority over the LTERM partner specification, i.e. if a user is signed on when the message
is output, openUTM uses the message module which corresponds to this user.

If a locale (lang_id, terr_id) for which there is no message module in the application has
been generated for a user or LTERM partner, then the user or LTERM partner is assigned
a message module which corresponds with the lang_id and for which no terr_id has been
generated. If no such message module is present, the application message module is used
to output messages to this user or LTERM partner.

 MAX statement on page 376
With the following operand you specify the message module which is used as appli-
cation message module:

● LOCALE=

The locale of the message module that is to be used as the application message
module. A message module with this locale must be generated with a MESSAGE
statement.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Message modules

Generating Applications 187

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.4.2 Messages in openUTM under Unix systems and Windows systems

The following components of UTM event reporting are included in the delivery package:

● Standard message module of openUTM

The standard message module contains the text for the standard messages in English
and standard settings for the message destinations (e.g. terminals, SYSLOG file).
openUTM only generates the messages from the standard message module if no NLS
message catalogs and no user message modules exist for a language.

v CAUTION!
The standard message module must be linked in each UTM application
program.

Unix systems

The standard message modules kcsmsgs.o (K and P messages) and kcxmsgs.o
(U messages) are supplied with openUTM on Unix systems. Both are contained in the
library libwork under the path utmpath/sys.

The expression “standard message module“ is used for both modules.

Windows systems

The standard message module kcsmsgs.obj is supplied in the library
utmpath\sys\libwork.lib.

● Message definition file msgdescription (in the utmpath)

It contains the standard message texts in German and English, as well as the
framework definitions for the UTM messages (structures of messages).

● NLS standard message catalogs (Unix systems) / message DLLs (Windows systems)

NLS standard message catalogs are supplied with openUTM in German and in English.
Under Windows systems the message catalogs are implemented as message DLLs.

The message catalogs only contain the message texts. When structuring the messages
from an NLS catalog, openUTM uses the structure information and message destina-
tions of the default message module, or if available, the user message module.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X

X

X

X

X

W

W

W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Message modules Generating UTM objects

188 Generating Applications

Unix systems

Under Unix systems, the NLS standard message catalogs are stored in the directories
utmpath/nls/msg/xxx. In this case, xxx is the language ID for the corresponding
language.

On Unix systems you can modify existing NLS message catalogs and create your own
NLS message catalogs for other languages.

You can set the language to be used for the messages to your preferred language in
the LANG shell variable.

Windows system

Under Windows system, the message DLLs are stored in the directories
utmpath\nls\msg\xxx.

On Windows systems you can change the message destinations with your own
message module, but you cannot change the text of the messages.

You can set the language to be used for the messages to your preferred language in
the LANG shell variable.

In the simplest case, you operate your application with the standard UTM messages, i.e.
you do not modify the UTM messages nor the UTM message destinations. In this case, no
additional specifications are required in the KDCDEF generation. You must merely link the
standard message module utm-directory/sys/kcsmsgs.o to the application program.

When generating an application, you use the MESSAGE statement to define the name of
the message module. This message module is then created using a C source file written by
KDCMMOD.

 MESSAGE statement on page 417
Use the following operand to define the message module when generating the
application:

● MODULE=

Name of the module that is to be created using the tool KDCMMOD.

To modify the standard messages, use the message tools KDCMTXT and KDCMMOD (see
openUTM manual “Messages, Debugging and Diagnostics in Unix Systems and Windows
Systems”).

X

X

X

X

X

X

X

X

W

W

W

W

W

W

W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

Generating UTM objects Message modules

Generating Applications 189

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.4.3 User-specific message destinations

In addition to the message destinations, CONSOLE, SYSOUT etc., there are also four so-
called user-specific message destinations. The user can define up to four message desti-
nations of their own. These message destinations are named using USER-DEST-number
and may be user queues, TAC queues, asynchronous TACs or LTERM partners.

i This makes it, among other things, possible to display the K and P messages of
your application to the administrator at the WinAdmin or WebAdmin administration
workstation (see also online help for WinAdmin/WebAdmin).

Messages indicating warning level violations cannot however always be delivered
to their user-specific message destination.

The new KDCDEF statement, MSG-DEST, is used to agree the user-specific message
destinations.

 MSG-DEST statement on page 423
Using the following operands you can agree a maximum of four user-specific
message destinations:

● msg-destination

Refers to the message destination with the specification USER-DEST-number
(number=1..4). Message destinations must be assigned to the messages using the
KDCMMOD.

● NAME=

Specifies the name of a user or TAC queue or an asynchronous TAC or LTERM
partner to which the messages are to be sent (this name must be defined using a
TAC, USER or LTERM statement).

● DEST-TYPE=

Type of message destination (USER queue, TAC or LTERM).

● MSG-FORMAT=

Specifies the format of the messages that are to be sent. Only the inserts of a non-
printable format (FILE; default) or the inserts and messages texts of a printable
format (PRINT) are transferred.

Assigning the message destination USER-DEST-number

Messages that openUTM is to output to a message destination, USER-DEST-number, must
also be assigned to this message destination using the utility KDCMMOD (MODMSG
statement).

Generating multiplex connections (BS2000 systems) Generating UTM objects

190 Generating Applications

5.5 Message distribution and multiplexing with OMNIS (BS2000
systems)

The services of the BS2000 software product OMNIS can be used for UTM applications in
BS2000 systems. OMNIS is a Session Manager that enables a terminal user to call the
services of various UTM applications directly, even if the UTM applications are distributed
in the network. In this case, the terminal user need not know the processor nor the UTM
application in which the service is located. OMNIS automatically establishes a connection
to the “correct” UTM application and controls the assignment of messages (message distri-
bution).

When implementing OMNIS, you can also use the multiplex function provided by openUTM
in BS2000 systems: a large number of terminals can be connected to a UTM application via
a small number of transport connections.

Figure 15: Message distribution and multiplexing with OMNIS

See also the manuals “OMNIS/OMNIS-MENU Functions and Commands” and
“OMNIS/OMNIS-MENU Administration and Programming”.

B

B

B

B

B

B

B

B

B

B

OMNIS

UTM
application 2

UTM
application 3

UTM
application 4

UTM
application 1

. . .

. . .

Processor 1 Processor 2 Processor 3

B

B

Generating UTM objects Generating multiplex connections (BS2000 systems)

Generating Applications 191

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.5.1 Multiplex connections

In normal dialog mode, one transport connection exists between a terminal and a UTM
application on the processor. In order for a user to be able to call the services of an appli-
cation, the user must open a session with the application, i.e. a communication relationship
between two addressable units in the network. A session setup generally means that the
user must provide identification to the application. This can also occur implicitly.

OMNIS now offers you the option of connecting simultaneously to several UTM applica-
tions, even on different processors. However, you are only actually connected to one
communication partner (namely OMNIS). The Session Manager now transmits the input
messages (user jobs) to the applications with which you are connected.

Transport connections and sessions exist on both links of the communication relationship,
i.e. the link from user → Session Manager and from Session Manager → application. This
is illustrated in the diagram below:

Figure 16: Transport connections and sessions when multiplexing

B

B

B

B

B

B

B

B

B

B

B

B

Transport connection 1

Session 1

Session 2

Transport connection2

Session n

Transport connection n

Session 1

Session 2

Transport connection

Session n

Terminal 1

Terminal n

OMNIS

.

.

.

.

.

.

UTM
application

Generating multiplex connections (BS2000 systems) Generating UTM objects

192 Generating Applications

A transport connection is a connection between two programs or between one program
and a terminal, via which messages can be exchanged. A transport connection has a
defined beginning (connection setup) and a defined end (connection shutdown) and is
known to the transport system.

A session is one of several completely different data streams, which is maintained via a
transport connection. A session has a defined start (session setup) and a defined end
(session shutdown) and is known to the transport system. In the special case of OMNIS and
openUTM, a session is understood to be a communication relationship between a UTM
application and an OMNIS terminal, which begins with the logical opening of the session
and ends when the session is closed.

A one-to-one assignment between transport connection and session exists on the link from
terminal → Session Manager.

This one-to-one assignment is cancelled on the link from Session Manager → application
and several sessions can be assigned to a transport connection. In this way, a number of
terminals can “multiplex”, i.e. connect to an application via a transport connection. In
extreme cases, all sessions between the Session Manager and the application can be
processed via a single transport connection.

5.5.1.1 Defining multiplex connections

Each multiplex connection must be described with a MUX statement. It is not possible to
enter multiplex connections dynamically.

When multiplexing, the communication between the Session Manager and the application
takes place using the PUTMMUX protocol. The task of this protocol is to enable several
sessions to be processed via one transport connection and to provide the Session Manager
with status information on the UTM application under BS2000 system.

A PUTMMUX connection can exist between a UTM application under BS2000 system and
OMNIS as the Session Manager. PUTMMUX connections, also called “multiplex connec-
tions”, are defined by the MUX statement when generating the UTM application.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Generating multiplex connections (BS2000 systems)

Generating Applications 193

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

 MUX statement on page 425
The most important properties for multiplex connections are defined with the
following operands:

● name

Name of the multiplex connection.

● BCAMAPPL=

Local application name of the UTM application, used by the Session Manager to
establish the connection to the UTM application.

● CONNECT=

Establishment of a transport connection to the Session Manager when the appli-
cation starts.

● MAXSES=

Maximum number of simultaneously active sessions between the Session Manager
and the UTM application.

When establishing a multiplex connection, openUTM and OMNIS negotiate which MUX
protocol versions are supported by both sides of the connection. If there are no MUX
protocol versions supported by both partners, the multiplex connection is not established
(UTM messages K140 and K141).

The following restrictions apply with the current definition of the protocol:

– connections between two UTM applications are not supported
– printers are not supported
– only the Session Manager can open a session to a UTM application.

The add-on product OMNIS-MENU is available if you are using OMNIS in menu-driven
mode. OMNIS-MENU enables you to communicate with various UTM applications via a
user-friendly, menu-driven interface. For further details, see the manuals “OMNIS/OMNIS-
MENU Functions and Commands” and “OMNIS/OMNIS-MENU Administration and
Programming”.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating multiplex connections (BS2000 systems) Generating UTM objects

194 Generating Applications

5.5.1.2 Confirming the connection shutdown by the partner

If a user is connected to a UTM application via a multiplex connection, each of the two
partners – the UTM application or the user – can request the closedown of this session. As
a result of this request, the session switches to the state ”DISCONNECT PENDING”. The
session is not yet released. The session is not definitively closed until the partner on the
other side confirms the session closedown.

For a specific length of time (approx. 10 minutes) after the request for session closedown
has been issued, the session can be released by the closedown confirmation of the partner.
Only after this time span has expired can the administrator of the UTM application also
release the session (administration command KDCPTERM).

From the output of the administration commands KDCINF PTERM and KDCPTERM, the
administrator of the UTM application can determine whether the session is in the state
”DISCONNECT PENDING”. See also the openUTM manual “Administering Applications”.

5.5.2 Statistics on multiplex connections

The administrator of the UTM application can use the command

KDCINF MUX,OPTION=MONITORING

to instruct openUTM to output statistics on multiplex connections. See also the openUTM
manual “Administering Applications”. The UTM administrator receives information on:

● The utilization level of the multiplex connection.

Information is supplied on the number of input and output messages exchanged via
multiplex connections since the start of the application.

● BCAM bottlenecks.

openUTM supplies information on the number of application messages that could not
be accepted by BCAM since the application start due to BCAM bottlenecks, and hence
the number of messages openUTM must request be sent again.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Generating multiplex connections (BS2000 systems)

Generating Applications 195

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.5.3 Combination of multiplex connections and direct connections

If you are connecting terminals to your UTM application via direct connections as well as
via multiplex connections of the Session Manager, the messages are distributed as follows:

Figure 17: Combination of multiplex and direct connections

This means that messages via direct connections can overtake messages via multiplex
connections. In particular load situations, this leads to shorter response times on the direct
connection if a data jam occurs on the multiplex connections. There can be several reasons
for this:

● The volume of messages from the terminals is so high that the multiplex connections
are overloaded.

● All UTM processes are occupied with jobs and therefore cannot retrieve all incoming
messages immediately.

There are two ways in which the UTM administrator can avoid the probability of a data jam:

● Increase the number of multiplex connections and distribute the volume of messages
evenly over these lines.

● Increase the current number of UTM processes.

B

B

.

OMNIS

Message 1

Message 2

Message n

Message 2 ... Message n

Terminal 1

Terminal 2

Terminal n

.

.

.

UTM
application

B

B

B

B

B

B

B

B

B

B

B

B

Generating multiplex connections (BS2000 systems) Generating UTM objects

196 Generating Applications

To guarantee the administrator the fastest possible access to the UTM application at all
times, the administrator’s terminal should be connected to the application via a direct
connection.

B
B

B

Generating UTM objects Generating load modules (BS2000 systems)

Generating Applications 197

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.6 Generating load modules, common memory pools and
shared code (BS2000 systems)

This section describes how to generate program units, areas and load modules.

 In the openUTM manual “Using openUTM Applications under BS2000 Systems”
you will find more information and recommendations

– on structuring an application program
– on providing shared code in the system memory or in common memory pools
– on the sequence in which modules are loaded and how the external references

are resolved
– on program exchange during live operation

5.6.1 Generating load modules

It is only necessary to statically link part of the application to the application program (start
LLM, see the openUTM manual “Using openUTM Applications under BS2000 Systems”).
The other parts of the application program must then be available in the form of dynamically
loadable load modules.

As early as the KDCDEF generation you must specify at what point in time you want to load
the application parts that are not to statically linked, and to which part of the memory they
are to be loaded. You also specify which program units are to be exchangeable during live
operation.

The individual load modules of the application must be generated with LOAD-MODULE
statements for BLS implementation. You also specify when the module is to be loaded and
to where. The sequence with which you generate the load modules determines the
sequence in which the load modules are loaded (see LOAD-MODULE statement on
page 346 and in the openUTM manual “Using openUTM Applications under BS2000
Systems”, loading modules).

The assignment of objects (program units and shareable data areas) to load modules is
likewise defined in the generation. In the PROGRAM and AREA statements in which
program units or shareable data areas are generated, the name you assigned to the
associated load module in the LOAD-MODULE statement must be specified in the LOAD-
MODULE operand.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating load modules (BS2000 systems) Generating UTM objects

198 Generating Applications

v CAUTION!
openUTM cannot verify whether the assignment defined with the LOAD-MODULE
statement and the LOAD-MODULE operand in the PROGRAM and AREA state-
ments corresponds to the actual division of the load modules in the libraries.
When dynamically loading the load modules, openUTM relies on the specifications
made in the generation. You must therefore ensure that the link procedures you use
for the individual parts of the application program correspond with the specifications
made in the generation. Otherwise, openUTM cannot guarantee that a required
program will be loaded in the working memory with a particular load module.

The load modules are described at generation in the following manner:

 LOAD-MODULE statement on page 346
The properties for load modules are defined with the following operands:

● lmodname

Name of the load module. This name is used to assign objects to load modules
during generation (program units, areas).

For load modules, you must only specify the names of OMs or LLMs. For perfor-
mance reasons, openUTM does not support dynamic loading using CSECT or
ENTRY names.

● LOAD-MODE=

Specifies when a load module is to be loaded, and specifies the memory area to
which it is to be loaded. The load modules can be loaded in the standard context to
the local task memory, to a common memory pool or to the system memory.

The parts of the application program can be:

– Linked statically to the application program
(LOAD-MODE=STATIC)

The part of the application program that is loaded to the standard context of the
application using the command START-EXECUTABLE-PROGRAM or
LOAD-EXECUTABLE-PROGRAM .

– Dynamically loaded to the standard context of the local task memory when the
application is started (LOAD-MODE=STARTUP).

These should be program units that are continuously required by the
UTM application, or which contain external references to shareable parts of the
application.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Generating load modules (BS2000 systems)

Generating Applications 199

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

– Loaded to the standard context of the local task memory at the first call
(LOAD-MODE=ONCALL)

These should be program units that are not continuously required by the appli-
cation.

– Loaded to a common memory pool
(LOAD-MODE=(POOL,poolname,...))

The common memory pool must be generated with a MPOOL statement (see
page 203).
The program units that should be loaded to the common memory pool are those
that are required by all processes of a UTM application, and which are
shareable, for example, the shareable parts of your program unit or also formats
or data areas.
If an LLM contains public and private slices, the public slice is loaded in a
common memory pool and the private slice is loaded in the standard context in
the local task memory. You can specify whether the non-shareable part is to be
loaded when the application is started (LOAD-MODE=(POOL, pool name,
STARTUP)) or only then when that program unit is called
(LOAD-MODE=(POOL, pool name, ONCALL)). For more information about the
generation of shared code see also page 202ff.

– Loaded to the system memory as a non-privileged subsystem.

These application parts must be loaded to the system memory by the BS2000
system administrator before the application is started.

The private slice of a shareable part contained in nonprivileged subsystems can
be linked to the static part of an application program, either when the application
is started or the first time it is called.
How to generate the non-shareable parts is described on page 202.

● LIB=

Specifies the library from which the load module is to be loaded

You can specify object module libraries (OML) or program libraries (PL) which
contain type R or L elements.

● VERSION=

Specifies which version of a load module is to be loaded

A program library can contain several versions of an element at the same time. You
use the version number to define which version of an element is to be loaded.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating load modules (BS2000 systems) Generating UTM objects

200 Generating Applications

● ALTERNATE-LIBRARIES=

Specifies whether autolink is to be used for linking

The shareable parts of the load module are always loaded without using the
Autolink function. You can control whether or not the Autolink function is to be used
for loading with the LOAD-MODULE statement.

openUTM suppresses the BLS autolink function when loading dynamically and
when exchanging programs, if you specify ALTERNATE-LIBRARIES=NO. The load
module then must only have open external references to program components that
already exist in the working memory when this module is loaded.
For load modules that are generated using POOL or STARTUP, the sequence of the
LOAD-MODULE statements at generation is critical for the resolving of open
external references at loading. The sequence with which you generate the load
modules determines the sequence in which the load modules are loaded.

ALTERNATE-LIBRARIES=YES ensures that runtime system modules that are also
required are dynamically linked when an exchange is made. The autolink function
may only be used for modules of the runtime system but must not be used for user-
specific modules because modules loaded with autolink are not unloaded in a
subsequent exchange.

Modules that are neither program units of the application program nor data areas (AREA)
(e.g. the modules of the runtime systems of the programming languages) need not be
declared as dynamically loaded modules with the KDCDEF generation tool, even if these
modules are not linked statically. You can statically link these modules to larger load
modules (LLM) and need only generate the name of the load module in the LOAD-
MODULE statement.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Generating load modules (BS2000 systems)

Generating Applications 201

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

The assignment of objects (PROGRAM, AREA statement) to load modules (LOAD-
MODULE statement) is also defined in the generation.

 AREA statement on page 292, PROGRAM statement on page 447
The assignment to load modules is defined the following operand:

● LOAD-MODULE=

Name of the load module (lmodname in the LOAD-MODULE statement), to which
the program is linked.

Program units, modules, and data areas must be linked statically to the application
program if the load module to which they are assigned was generated with LOAD-
MODE=STATIC or if they are not assigned to any load module.

The administration modules (e.g the KDCADM administration program) are to be
statically linked to the start LLM or to one of their own load modules. This load
module must be loaded when the application is started (LOAD-MODE=STARTUP).
The same applies to the START, SHUT, INPUT and FORMAT event exits and the
BADTAC, MSGTAC and SIGNON event services.

If specifications for objects in the statements AREA, LOAD-MODULE, MPOOL, PROGRAM
and TAC are modified in the generation, only one new KDCFILE need be created. The next
application start must then be based on the new KDCFILE.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Shared code, common memory pools Generating UTM objects

202 Generating Applications

5.6.2 Generating shared code and common memory pools

Many compilers offer the option of creating a shareable part when compiling programs. This
shareable part need not necessarily be saved in a separate object module, rather can be
contained with the non-shareable part in an LLM, which is subdivided into a public and a
private slice.

i If parts of a program unit are to be shareable, this must be taken into account in the
programming. For further information, see the openUTM manual „Programming
Applications with KDCS” or the appropriate language supplement.

5.6.2.1 Shared code in system memory

Using the interfaces provided in BS2000 systems, shareable parts of the application
program units and parts of the runtime systems can be loaded either as shareable
programs in nonprivileged subsystems.

The shareable modules must be loaded in the memory by the administrator before the
application is started. They can be exchanged while the application is running.

Non-shareable parts of the program units must be created as follows:

● The entry point of the program unit (it is in the non-shareable part or in the private slice)
must be described in a PROGRAM statement and assigned to a load module there
using the LOAD-MODULE operand in the PROGRAM statement.

● The load module must be generated with a LOAD-MODULE statement with LOAD-
MODE={STARTUP | ONCALL}. The load module or its private slice is loaded dynami-
cally into the local task memory (class 6 memory) at the start of the application program.
The links in the shared code are established dynamically using the external references
to the shareable modules.

The load modules (OM format) containing the shareable modules of the program unit and
the load modules containing the non-shareable program components must not occur
together in a program library.

Example

PROGRAM NONSHARE,LOAD-MODULE=NAME1,COMP=ILCS
LOAD-MODULE NAME1,LIB=UTM.PLIB,LOAD-MODE=STARTUP,VERSION=001

NONSHARE is located in the non-shareable part (for LLMs in the private slice) of the
program unit.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

Generating UTM objects Shared code in common memory pools

Generating Applications 203

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.6.2.2 Shared code in common memory pools

Objects that are not linked statically when linking the application program can be loaded into
a common memory pool. In a common memory pool you can dynamically load several load
modules.

A common memory pool must be generated with the KDCDEF statement MPOOL.

 MPOOL statement on page 421
The most important properties for common memory pools are defined with the
following operands:

● poolname

Name of the common memory pool. This name is used at generation to assign to a
pool those load modules whose Public Slice is to be loaded to the pool (see
LOADE-MODULE statement).

● SCOPE=

Specifies the scope of the pool (local application with SCOPE=GROUP or global
application with SCOPE=GLOBAL).
For each BS2000 user ID, BLS supports a maximum of eight common memory
pools with SCOPE=GROUP and eight common memory pools with
SCOPE=GLOBAL.

● PAGE=

Hexadecimal address in the form X’xxxxxxxx’.
If global common memory pools with the same contents/names are used in several
UTM applications, the parameter PAGE=X’xxxxxxxx’ must be specified with the
same address in all applications. The address entered using PAGE= is to be
selected in such a way that the address area reserved is available in all these appli-
cations.

● SIZE=

Specifies the size of the common memory pool.
The size is specified in units of 64 KB. With 24-bit addressing, the size of a common
memory pool is always a multiple of 64 KB. With 31-bit addressing, the size of the
common memory pool is calculated by n * 1MB ≥ SIZE * 64 KB (where n is selected
as a minimum).

i Only one common memory pool should be defined with SCOPE=GROUP. A number
of statically linked load modules can be loaded into this pool. This reduces the time
required to set up and load the common memory pools and thereby minimizes the
time needed to start the application.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Shared code in common memory pools Generating UTM objects

204 Generating Applications

Generating shareable objects that are to be loaded in a common memory pool

The following section describes how you generate shareable objects that are to be loaded
in a common memory pool if you are working with BLS.

● For performance reasons, all shareable parts of an application program that are to be
loaded in a common memory pool should, as far as possible, be combined into one load
module.

● The program’s shareable code module created by the compiler must be contained in an
LLM or OM. LLMs with slices can be generated with a single LOAD-MODULE
statement:

LOAD-MODULE llm-name,VERSION=version-
,LOAD-MODE=(POOL,poolname,{STARTUP|ONCALL}-
,LIB=program-lib-
.ALTERNATE-LIBRARIES={YES|NO}

With this statement, the public slice of the LLM is loaded in the common memory pool
poolname, and the private slice is loaded dynamically either when the application starts
(STARTUP) or when the program is called (ONCALL). Additional PROGRAM state-
ments are required for the programs of these LLMs that are called by openUTM.

If a compiler created two separate object modules for the shareable and non-shareable
part, then should link these modules beforehand to an LLM with slices using the linker.
You can then generate this LLM as described above.

Alternately, you can also generate the shareable and non-shareable module using two
LOAD-MODULE statements. You should avoid this, if possible, because you cannot
exchange these two modules without having inconsistencies arise.

● A shareable data area which is to be loaded in the common memory pool must be
described with an AREA statement. The area must then be contained in the load
module which is generated as follows:

LOAD-MODULE ar-share ,VERSION=version -
,LOAD-MODE=(POOL,poolname,NO-PRIVATE-SLICE) -
,LIB=libname

Areas that were assigned the PUBLIC attribute during compilation or by the linker can
also be linked together beforehand with other modules in one LLM with slices. This LLM
can be generated in the following manner:

LOAD-MODULE llm-with-slices ,VERSION=version -
,LOAD-MODE=(POOL,poolname,STARTUP)-
,LIB=libname

B

B

B

B

B

B

B

B

B

B
B
B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B

B

B

B

B
B
B

Generating UTM objects Shared code in common memory pools

Generating Applications 205

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Example

The example assumes that the COBOL85 compiler was used for compiling and that the
compiler has saved the objects in an LLM.

The shareable modules of the COBOL program units PU1 and PU2, and the data module
DATAMOD are to be loaded in the local application pool LCPOOL. LCPOOL is to be loaded
at address X’020000’, occupy 128 KB, and be write-protected.

/MPOOL LCPOOL,SIZE=2,SCOPE=GROUP,ACCESS=READ,PAGE=X'20000'
/LOAD-MODULE LLM-LCPOOL,VERSION=1, -
/ LOAD-MODE=(POOL,LCPOOL,STARTUP), -
/ LIB=libname
/PROGRAM PU1 ,LOAD-MODULE=LLM-LCPOOL,COMP=ILCS
/PROGRAM PU2 ,LOAD-MODULE=LLM-LCPOOL,COMP=ILCS
/AREA DATAMOD,LOAD-MODULE=LLM-LCPOOL

The object modules must be statically linked to the LLM-LCPOOL LLM before the appli-
cation is started, i.e. you must specify the option BY-ATTRIBUTES(PUBLIC=YES) in the
BINDER statement START-LLM-CREATION, whereby the LLM is divided into a public slice
and a private slice. The LLM created in this way must be made available in the library
libname.

B

B

B

B

B

B

B
B
B
B
B
B
B

B

B

B

B

B

Job control Generating UTM objects

206 Generating Applications

5.7 Job control - priorities and process limitations

openUTM provides two methods with which you can control the distribution of released
UTM processes amongst the jobs ready for processing. This means that you can affect the
order in which openUTM starts the processing of jobs on transaction codes.

By using one of the methods for job control, you can:

● give important jobs higher processing priority

● prevent many jobs of the same type from running at the same time, thereby causing the
processing of other jobs to be delayed

● prevent the blocking of job processing due to long-running jobs. Long-running jobs are
services whose processing takes an extremely long time, e.g. because their program
units are searching through data or they contain program waits (blocking calls such as
PGWT).

● in UTM cluster applications, prevent too many tasks from simultaneously accessing
memory areas that are available globally in the cluster.

With both methods you must assign TAC classes to the transaction codes that are subject
to a specific job control. You can then alternatively select one of the two methods for job
control between TAC classes:

● Priority control
The distribution the processes amongst the TAC classes is controlled by priorities.
These priorities are used by openUTM to determine when the outstanding jobs are to
be processed. You turn priority control on with the KDCDEF statement TAC-PRIOR-
ITIES.

● Process limitations
You limit the number of the processes that are allowed to process jobs of a certain TAC
class simultaneously, or you specify how many processes are to remain free for
processing jobs of other TAC classes. The process number can be specified individually
for every TAC class. The KDCDEF control statement TACCLASS is provided for speci-
fying the number of processes.

You cannot use the two methods together in an application, i.e. you must not use the control
statements TAC-PRIORITIES and TACCLASS together in the KDCDEF generation.

Generating UTM objects Job control

Generating Applications 207

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Dividing the transaction codes into TAC classes

openUTM differentiates between a total of 16 TAC classes. There are 8 classes each
available for dialog and asynchronous transaction codes, classes 1 through 8 for dialog
transaction codes and classes 9 through 16 for asynchronous transaction codes.

You specify the assignment of the transaction codes to the TAC classes in the KDCDEF
generation.

TAC statement on page 496
Operand TACCLASS=

openUTM makes the following assignments for transaction codes to which you have not
explicitly assigned a TAC class (no entry in TACCLASS=):

– dialog transaction codes are not assigned to a TAC class
– asynchronous transaction codes are assigned to TAC class 16

You should combine the transaction codes of similar types of services into one TAC class.
A TAC class then represents a type of job in your application.

Which jobs are subject to job control?

Generally only jobs that have been placed in a job queue by openUTM are subject to job
control.

Jobs for asynchronous transaction codes are always placed in a job queue first before
openUTM selects them for processing.

Jobs for dialog transaction codes, on the other hand, are only placed in a queue in
bottleneck situations, e.g. when the number of the available processes has been
exhausted.
If the load on the application is low, then the dialog jobs are processed immediately because
they will not block each other significantly and buffering in the queue would appear to slow
the system.

For this reason, the methods for job control for asynchronous jobs are always used, while
the methods for job control for dialog jobs are only used in bottleneck solutions.

Job control Generating UTM objects

208 Generating Applications

In addition, the following jobs are not subject to job control:

● Jobs for dialog transaction codes that are not assigned a TAC class.
These jobs are always started immediately after they have been received from the
transport system.

● Jobs for the transaction codes KDCSGNTC, KDCMSGTC and KDCBADTC with which
the event services (sign-on service, MSGTAC and BADTACS program) are started.

Distribution of resources amongst dialog, asynchronous and PGWT processing

In an initial stage of job processing you should - regardless of the methods used for job
control - specify the maximum number of processes of the application that are allowed to
process asynchronous jobs at the same time or to wait in Program Wait at the same time.
In this manner you can prevent the dialog operation of your application from slowing down
due to the processing of such jobs.

MAX statement on page 376
The process numbers are with the following operands generated:

● ASYNTASKS=(atask_number,...)

With atask_number you specify the maximum number of the processes of the appli-
cation that may simultaneously process jobs for asynchronous TAC classes.

● TASKS-IN-PGWT=

The maximum number of processes of the UTM application in which program units
with blocking calls are allowed to run simultaneously. You must specify
TASKS-IN-PGWT > 0 if you want to assign the PGWT=YES property to transaction
codes or TAC classes.

The values specified for ASYNTASKS=(atask_number,...) and TASKS-IN-PGWT in the MAX
statement are maximum values. When starting the application and in application mode, you
can lower the number of processes via the administration to adapt to the current situation.

Generating UTM objects Job control

Generating Applications 209

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Default setting

If you do not create any TAC classes, i.e. you do not specify the TACCLASS operand in the
TAC statement, then openUTM does not perform any special job control.
Program unit runs with blocking calls are not allowed then. Dialog jobs are processed in the
order in which they arrive in openUTM.

If you do not issue a TACCLASS or a TAC-PRIORITIES statement in the generation, then
openUTM automatically applies the methods used to limit the number of processes. All TAC
classes are administrable, i.e. the UTM administrator can specify numbers of processes for
the TAC classes.

5.7.1 Job processing via priority control

To activate job control via priorities you must issue the TAC-PRIORITIES statement in the
KDCDEF generation. In it you also specify the algorithms with which the individual dialog
or asynchronous TAC classes are to be prioritized.

TAC-PRIORITIES statement on page 518
You specify the algorithms for the priority control with the following operands:

● DIAL-PRIO=
Priority with which the available processes of the application are to be distributed
amongst the dialog TAC classes.

● ASYN-PRIO=
Priority with which processes for the asynchronous TAC classes with ready
asynchronous jobs or interrupted asynchronous jobs are to be distributed.

You can select between the absolute, a relative or the same priority for both dialog and
asynchronous TAC classes.

The following is always true, regardless of which algorithm you select:

– The TAC class 1 of the dialog TAC classes has a higher or the same priority as TAC
class 2, and this has a higher or the same priority as TAC class 3, etc.

– For asynchronous TAC classes, class 9 has a higher or the same priority as TAC class
10, and this has a higher or the same priority as TAC class 11, etc.

If absolute priority is selected, then free processes of the application are always assigned
the TAC class with the highest priority, meaning 1 (dialog) or 9 (asynchronously) as long as
there are jobs waiting for this TAC class. Only after there are no more jobs waiting in the
TAC class with the highest priority are waiting jobs of the TAC class with the next lower

Job control Generating UTM objects

210 Generating Applications

priority processed. When the load is high, absolute priorities leads to waiting jobs of a TAC
class with a lower priority not being processed for a long time. If you want to prevent this,
then you should use relative priorities.

If relative priority is selected, then jobs from TAC classes with higher priorities are
processed more often than jobs from TAC classes with lower priorities, i.e. free processes
are more often assigned higher priority TAC classes (e.g. 1) than lower priority TAC classes
if there are jobs ready and available for this. If there ar e jobs available for all TAC classes,
then class 1 is serviced twice as often as class 2, and class 2 is serviced twice as often as
class 3 (and so on). The same is true for asynchronous TAC classes.

If same priorities is selected, then the same number of jobs (if there are any) from every
TAC class are processed.

Jobs within the TAC classes, however, whose processing leads to program waits (TACs
with PGWT=YES) are only processed if the maximum number of processes allowed to
process the PGWT jobs has not yet been reached.

Reserving processes for dialog jobs outside of the TAC classes

When using priority control for the TAC classes, you can limit the number of processes that
process the jobs of the TAC classes to keep some processes free for administrative tasks
or internal UTM jobs.
This limitation is the same, however, for all asynchronous TAC classes and for all dialog
TAC classes.

You limit the maximum number of processes for asynchronous TAC classes with
MAX ASYNTASKS=(atask_number,...) as described in “Distribution of resources amongst
dialog, asynchronous and PGWT processing” on page 208.

You limit the number of processes for the dialog TAC classes with the FREE-DIAL-TASKS=
operand of the TAC-PRIORITIES statement.

The number of processes specified in FREE-DIAL-TASKS is reserved for the processing of
jobs that do not belong to any dialog TAC class. These jobs are asynchronous jobs and
dialog jobs that are not assigned a dialog TAC class, and in particular are internal UTM
tasks (establishing connections, sending acknowledgments, starting the MSGTAC routine,
etc.). One of the internal UTM tasks is to pick up the incoming jobs for the UTM application
at the job market and, if necessary, enter these in the job queues of the application. These
“reserved processes“ then help to offload the job market. In particular, if many jobs sent to
the application come from the network, then this will prevent a backlog in the network that
may reach all the way back to the communication partner.

The number of processes you should reserve for this task depends on your application. It
is recommended to reserve one or two processes for this task.

You can change the number of free processes via the administration.

Generating UTM objects Job control

Generating Applications 211

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

 See the openUTM manual “Administering Applications”; KDCADMI operation code
KC_MODIFY_OBJECT with object type KC_TASKS_PAR

Example

The following maximum number of processes is specified in the KDCDEF generation:

MAX TASKS=7,ASYNTASKS=2
TAC-PRIORITIES ...,FREE-DIAL-TASKS=3

If the application is then started with six processes (start parameter TASKS=6), then the
following process numbers are available:

– Three processes for processing jobs for the dialog TAC classes 1 through 8 (deter-
mined by: TASKS – FREE-DIAL-TASKS = 6 – 3 = 3)

– Two (=ASYNTASKS) processes for processing jobs for the asynchronous TAC classes
9 through 16

– One process for internal UTM tasks and dialog jobs for transaction codes that are not
assigned any TAC class
(determined by: FREE-DIAL-TASKS – ASYNTASKS = 3 – 2 = 1)

 For information on the use of TAC priorities in UTM cluster applications, see also
the applicable openUTM manual “Using openUTM Applications”, section "Using
global memory areas" in the chapter "UTM cluster applications".

Job control Generating UTM objects

212 Generating Applications

5.7.2 Job processing via process limitation for TAC classes control

Job control via process limitation is generated using the TACCLASS statement. Process
limitation depends on the TAC classes, i.e. you can issue a separate TACCLASS statement
for every TAC class.

TACCLASS statement on page 513
You can alternatively specify one of the two following operands to set up process
limitation:

● TASKS=

The maximum number of processes that are allowed to process jobs for this TAC
class.

● TASKS-FREE=

The minimum number of processes that are to be kept free for the processing of
jobs from other TAC classes or of jobs that are not assigned a TAC class.

In this method the number of the TAC class says nothing about the priority with which its
jobs are processed. Only the number of processes that you allow for this TAC class
specifies how strongly the processing of the jobs is suppressed as compared to other TAC
classes.

This method can then be used sensibly when only a few different types of jobs (and
therefore only a few TAC classes) in a application and, for example, when you want to
prevent long-running jobs from reserving all the processes of an application and therefore
unnecessarily slowing down the processing of other important jobs, e.g. administration
jobs.

 For information on the use of TAC classes in UTM cluster applications, see also the
applicable openUTM manual “Using openUTM Applications”, section "Using global
memory areas" in the chapter "UTM cluster applications".

Generating UTM objects Job control

Generating Applications 213

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.7.3 Comparison of some of the properties of the two methods

You can only use one of the two methods for job control in your UTM application. Which of
the two possibilities you should select for your application also depends on the sometimes
different properties of the two methods.

Program units with blocking calls

● Priority control

Transaction codes from program units that execute blocking calls may be assigned any
TAC class as long as a value > 0 is generated in the TASKS-IN-PGWT operand of the
MAX statement. You must specify the operand PGWT=YES in the TAC statement for
transaction codes with blocking calls.

TAC ..., TACCLASS=number,PGWT=YES

This also allows you to process corresponding jobs with different priorities.

● Process limitation

All transaction codes from program units that execute blocking calls must be assigned
the same dialog or asynchronous TAC class. You must generate these dialog or
asynchronous TAC class as follows:

TACCLASS ...,PGWT=YES

The corresponding dialog or asynchronous jobs are thus handled in the same way.

Job control Generating UTM objects

214 Generating Applications

Temporarily stopping the execution of certain asynchronous jobs

Both methods for job control provide a mechanism with which you can temporarily prevent
the processing of certain asynchronous jobs. These jobs are then received and accepted
by openUTM and written in the message queue of the corresponding transaction code. The
processing of these jobs is only initiated after the “processing lock“ is removed by the UTM
administration.

To temporarily prevent the execution of jobs, set the status of the transaction code to KEEP.
You can do this during live operation via the UTM administration or do this during the gener-
ation of the transaction codes by specifying the following:

TAC ...,STATUS=KEEP

openUTM processes the buffered jobs first if you set the status of the transaction code
to ON.

 See the openUTM manual “Administering Applications”; KDCADMI operation code
KC_MODIFY_OBJECT with object type KC_TAC or the administration command
KDCTAC

When using the process limitation method, the execution of jobs can also be prevented for
all transaction codes of an asynchronous TAC class. In this case you must set the maximum
number of processes that are available for jobs of this TAC class to 0.

TACCLASS ...,TASKS=0

openUTM only processes the jobs again if you increase the maximum number of
processes.

 See the openUTM manual “Administering Applications”; KDCADMI operation code
KC_MODIFY_OBJECT with object type KC_TACCLASS or the administration
command KDCTCL

You can use both mechanisms, for example, to collect jobs that are to be executed at a later
point in time when the load on the application is lower (e.g. at night).

i In both cases you should limit the message queue of the transaction code(s) to
prevent overloading the page pool with too many buffered jobs. This is done for
each TAC by:

TAC ...,QLEV=

Generating UTM objects Job control

Generating Applications 215

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Change of process when processing jobs

● Priority control

If a service consists of several program units (follow-up TAC after a PEND PA/PR), then
a change of process can always occur when processing the service, regardless of
whether the current TAC and follow-up TAC belong to the same TAC class or not.

● Process limitation

For job control via process limitation, openUTM guarantees that no change of process
will occur after a PEND PA/PR and SP when the service TAC and follow-up TAC are
assigned the same TAC class.

If the current TAC and follow-up TAC belong to different TAC classes, then a change of
process can also occur when using this method.

Change of process for asynchronous services

When a change of process occurs, an asynchronous service is inactive at first and does not
reserve a UTM process although it remains open.

You can limit the maximum number of simultaneously open asynchronous services. You
must specify the following in the MAX statement to do this:

MAX ...,ASYNTASKS=(...,service_number).

If service_number of open asynchronous services exist, then no new asynchronous job that
is ready is started. An interrupted open asynchronous service is selected from the next
process that becomes free, and this service is resumed.

Job control Generating UTM objects

216 Generating Applications

5.7.4 Process priorities in BS2000 systems

openUTM uses the methods described above for job control to select a job that is to be
restarted or resumed. Jobs that are currently being processed cannot be influenced with
these methods.

You can use the scheduling mechanisms of BS2000 systems for prioritizing jobs to
influence the priority of the active jobs. The RUNPRIO operand of the TAC statement can
be used for this purpose. With RUNPRIO you assign a transaction code a process priority
(Run-priority) in the KDCDEF generation. You can influence the speed with which a running
job is processed with the process priority. A job for a transaction code with a higher process
priority will be given preference when distributing the CPU resources in comparison to other
jobs with lower priorities.

If you have generated a process priority for a transaction code, then openUTM sets the
BS2000 process priority of the process that is processing a job for this transaction code to
the value generated in RUNPRIO.
You can specify a value between 30 (highest priority) and 255 (lowest priority) in RUNPRIO.

 TAC statement on page 496
operand RUNPRIO

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Data access control

Generating Applications 217

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.8 Data access control

When you have services that access security-relevant data, it is sensible to restrict access
to a limited number of authorized users. openUTM offers two possible methods of data
access control which allow you to set different data access authorizations in a UTM appli-
cation:

– access list concept (service-oriented)

– lock/key code concept (user-oriented)

Both processes use, for the most part, the same generation interfaces.
The greatest difference lies in the way in which the UTM objects are seen: The access list
concept allows you to specify a list of codes for each service. These codes specify which
user (types) are permitted to access the data. The lock/key code concept allows you to
define an (individual) lock code for each service and then assigns each user the appropriate
key codes.

Services whose TACs are not secured by a lock code or access list can be called by all
users without restriction.

 For detailed information about the access list and the lock/key code concepts see
the openUTM manual “Concepts und Functions”.

5.8.1 Lock/key code concept

A lock code is a number which symbolizes a logical lock. The objects that are to be
protected - for example, the LTERM partner and the transaction codes assigned to the
services - are assigned a lock code (TAC or LTERM statement).
Key codes are defined for user IDs and for LTERM partners (USER or LTERM statement).
Only when the key code corresponds to the lock code of a protected object is access to this
object permitted.
Since a user ID or LTERM partner usually has access to several services, they must also
have several key codes. The individual key codes are thus organized into key sets (KSET
statement).

Data access control Generating UTM objects

218 Generating Applications

The lock/key code concept has the following significance:

● It is only possible to sign on under a UTM user ID if the specified user ID is assigned a
key code which corresponds to the lock code of the LTERM partner via which sign-on
is performed.

● A user can only call a service when both the key set of the current (UTM) user ID and
that of the LTERM partner contain a key code that corresponds to the lock code of the
transaction code.

 KSET statement on page 344
You can use the following operands to define a key set.

● keysetname

Name of the key set.

● KEYS=

When assigning a key set to a user (USER):
Specification of one or more key codes (numeric) that are assigned to the user.

When assigning a key set to an LTERM partner (LTERM):
Specification of one or more key codes (numeric) that are assigned to the LTERM
partner.

 TAC statement on page 496
You can use the following operands to control access to the TAC.

● tacname

Name of the TAC.

● LOCK=

Specifies the lock code that is assigned as a form of logical combination lock to the
TAC of a service.

A service that is protected by a lock code can only then be started if the key set of
the user and the key set of the LTERM partner both contain a key code that corre-
sponds to the lock code.

This operand may not be specified in conjunction with the operand ACCESS-LIST=.

Generating UTM objects Data access control

Generating Applications 219

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

 USER statement on page 543
You can use the following operands to assign a key set to a user.

● username

UTM user ID.

● KSET=

Specifies the name of the key set that is assigned to the user ID. The key set must
be defined using the KSET statement. A maximum of one key set can be assigned
to a user.
A user is only able to access a service whose first TAC is protected by a lock code
if one of the key codes in the key set of the user corresponds to the lock code.
Otherwise access to the service is denied.

 LTERM statement on page 363 / TPOOL statement on page 524
You can use the following operands to assign a key set to an LTERM partner.

● ltermname

Name of the LTERM partner (only for LTERM statement).

● LTERM= , NUMBER=

Name of the LTERM partner (only for TPOOL statement).

● KSET=

Specifies the name of the key set that is assigned to the LTERM partner. The key
set must be defined using the KSET statement. For the LTERM partners of a UPIC
client or a TS application without an explicitly generated connection user ID this key
set is also the key set of the connection user ID.

● USER-KSET= (only for TPOOL statement)

In LTERM pools for TS applications or UPIC clients this specifies the name of the
key set that is assigned to the connection user ID. This key set must be defined
using the KSET statement. The access authorizations are derived from the inter-
section of the key sets from KSET= and USER-KSET=.

● LOCK=

The lock code that is assigned to the LTERM partner as the logical combination
lock. Only valid for clients (USAGE=D).

Only a (UTM) user for whom a key set has been generated with a key code that
matches the lock code of the LTERM partner can sign on to the application via an
access-controlled LTERM partner.

Data access control Generating UTM objects

220 Generating Applications

5.8.2 Access list concept

An access list is a number of access codes (numeric codes) that are assigned to a service.
The access codes in the access list defines user access to a service and can be interpreted
as the roles of the users within the structure of their organization (for example, general
users, heads of department, system administrators).
If you use the administration tool WinAdmin or WebAdmin you can use meaningful names
in place of numeric codes.

An access list is defined using the KSET statement and assigned to a service using the TAC
statement. The roles for the user (USER) are also defined and assigned as a key set using
a KSET statement. In the same way, it is also possible to assign an LTERM partner a certain
number of roles.

A user can only access a service (TAC) protected in this way if both the key set of the user
and the key set of the LTERM partner via which the user has signed on contains at least
one of the roles that are contained in the access list of the service.

 The differences between the lock/key code and the access list concepts are
described in detail in the security function section of the openUTM manual
“Concepts und Functions”.

 KSET statement on page 344
The following operands can be used to define key sets or access lists.

● keysetname

Name of the key set or access list.

● KEYS=

When assigning an access list to a service (TAC):
Specification of one or more roles (as numerical values) that have access to the
service protected by keysetname.

When assigning a key set to a user (USER):
Specification of one or more roles (as numerical values) that are to be assigned to
the user.

When assigning a key set to an LTERM partner (LTERM):
Specification of one or more roles (as numerical values) that may be performed
when signing on via this LTERM partner.

i When using WinAdmin or WebAdmin you may also assign roles with alpha-
numeric names.

Generating UTM objects Data access control

Generating Applications 221

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

 TAC statement on page 496
The following operands are used to control the accesses to the TAC.

● tacname

Name of the TAC.

● ACCESS-LIST=

Specifies the access list that controls access to this TAC. Only users whose key set
contains at least one of the roles contained in this access list and that sign on via a
terminal that has also been assigned one of these roles may access this TAC.
ACCESS-LIST may not be specified in conjunction with LOCK.

 USER statement on page 543
The following operands are used to assign a key set to a user.

● username

UTM user ID.

● KSET=

Specifies the name of the key set that the user ID is assigned to. The key set must
be defined using the KSET statement. Each user can be assigned a maximum of
one key set.
If a user wishes to access a service that is protected with an access list then at least
one of the roles of the user must be contained in the access list. Otherwise access
to the service will be denied.

 LTERM statement on page 363 / TPOOL statement on page 524
The following operands are used to assign a key set to an LTERM partner.

● ltermname

Name of the LTERM partner (only for LTERM statement).

● LTERM= , NUMBER=

Name of the LTERM partners (only for TPOOL statement).

● KSET=

Specifies the name of the key set assigned to the LTERM partner. For the LTERM
partner of a UPIC client or a TS application without explicitly generated connection
user ID this key set is the same as the key set of the connection user ID. The key
set must be defined using the KSET statement. Each LTERM partner may be
assigned a maximum of one key set.

Data access control Generating UTM objects

222 Generating Applications

● USER-KSET= (only for TPOOL statement)

In LTERM pools, specifies the name of the key set for TS applications or UPIC
clients that is assigned to the connection user ID. The key set must be defined using
the KSET statement. The access authorizations are derived from the intersection of
the key sets of KSET= and USER-KSET=.

i Access to the LTERM partner may not be protected using access lists.
When using access lists to provide data access control to services, you
should not use access protection on the LTERM partner, or in other words
the parameter LOCK of the LTERM and TPOOL statements may not be
specified.

Data access control for service-controlled queues using access lists

It is also possible to protected service-controlled queues from unauthorized read, delete or
write access. To do this an access list is defined (TAC/USER statement).

 TAC statement on page 496
The following operands are used to control access for TAC queues.

● tacname

Name of the TAC queue.

● Q-READ-ACL=

● Q-WRITE-ACL=

Name of the access list that controls the read, delete and write access of a user to
this queue. The access list must be generated using a KSET statement.

A user only has read or write access to the TAC queue if the key set of the user and the key
set of the LTERM partner via which the user has signed on both contain at least one of the
roles that are defined in the access list for the TAC queue.
The key set must be generated for the user and the LTERM partner using the USER or
LTERM statements.

Generating UTM objects Data access control

Generating Applications 223

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

 USER statement on page 543
The following operands can be used to control the access for USER queues.

● username

UTM user ID.

● KSET=

Specifies the name of the key set to which the user ID is assigned.
The key set must be defined using the KSET statement. Each user may be
assigned a maximum of one key set.

● Q-READ-ACL=

● Q-WRITE-ACL=

Name of the access list via which the user is able to protect their own USER queues
from read, delete or write access. The access list must be generated using the
KSET statement.

i The owner of a queue always has read, write and delete authorization for
their queue, regardless of whether the read/write authorizations are
restricted for other users.

An external user only has read or write access to the USER queue of
another user if the key set of the external user and the key set of the LTERM
partner via which the external user has signed on each contain at least one
of the roles defined in the access list for the USER queue.

If you do not specify Q-READ-ACL/Q-WRITE-ACL all users have read,
delete and write authorization within the queue.

 For more detailed information on Message Queues see page 179ff.

Data access control Generating UTM objects

224 Generating Applications

5.8.3 Data access control with distributed processing

You can use the data access control mechanisms of openUTM with distributed processing.
The protection methods are specified when the applications are generated. A distinction is
made between the job-submitting and job-receiving service.

Protection methods for job-submitting services

When generating an application you generally initially specify which services of a remote
partner application may be called. For each remote service that is to be used you must
agree an LTAC local transaction code (LTAC statement). Access is generally denied to
remote services for which no LTACs have been agreed.

In order to further graduate the data access control you can also assign lock codes to
individual TACs (see page 217) or use access lists (see page 220).
A service of the local application can only address a remote service if the service was
started under a user ID (KCBENID) and from a client (KCLOGTER) that have the approp-
riate access permissions.

 LTAC statement on page 356
The following operands are used to define which services of a remote partner appli-
cation may be called and which access authorizations are placed on the LTAC. The
operands ACCESS-LIST and LOCK are mutually exclusive.

● ltacname

Name of a local TACs (LTAC) for the remote service program.

● ACCESS-LIST=

Name of an access list. In order to be able to start the remote service program the
key set of the user of a local application must have been assigned at least one of
the roles defined in the access list (as defined in the USER statement).
The access list must be defined using a KSET statement.

● LOCK=

Definition of the lock code for access to the remote service program. A service of
the local application can only address this remote service if the local service was
started under a user ID (KCBENID) and from a client (KCLOGTER) that have the
appropriate access permissions.
ACCESS-LIST and LOCK cannot be specified simultaneously.

i If you enter neither ACCESS-LIST nor LOCK then the LTAC is not protected and
any user of the local application is able to address the remote service program.

Generating UTM objects Data access control

Generating Applications 225

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Protection measures for job-receiving services

You protect job-receiving services by assigning a key set to the logical access point of a
partner application (LPAP or OSI-LPAP). Only if this key set contains a key code or access
code that corresponds to the lock code or access list of the requested service is it possible
for the process requested by the partner application to be started.

In order to be able to access a remote service, the service that is being called must be
generated with a TAC and the following conditions must be fulfilled:

● LU6.1 connections:

The key set for the partner as defined in LPAP ...,KSET= must contain a key code that
corresponds to LOCK= or ACCESS-LIST= of the TAC.

● OSI TP connections:

– If a partner attempts to sign on without a user ID, then the key set defined in
OSI-LPAP ...KSET and OSI-LPAP ...,ASS-KSET= must contain a code that corre-
spond to LOCK= or ACCESS-LIST= of the TAC.

The access authorizations are derived from the intersection of the key sets of
KSET= and ASS-KSET=. Thus KSET= should always be a superset of
ASS-KSET=.
You can define suitable restrictions on the key set defined with OSI-LPAP ...,ASS-
KSET to ensure that specific TACs cannot be called unless the partner specifies a
real user ID.

– If a partner attempts to sign on with a real user ID, then the key set of this user ID
and that defined in OSI-LPAP ... KSET= must contain a code that corresponds to
LOCK= or ACCESS-LIST= of the TAC.

This also applies to a client/server link with OpenCPIC.

 For more detailed information about data access control with distributed processing
see openUTM manual “Concepts und Functions”.

Message encryption Generating UTM objects

226 Generating Applications

5.9 Message encryption on connections to clients

Clients often access UTM services via open networks. This allows unauthorized persons
the opportunity to read data from the line and obtain passwords for UTM user IDs or
sensible user data, for example. To prevent this, openUTM supports the encryption of
passwords and user data on connections to UPIC clients and under BS2000 systems
additionally on connections to certain terminal emulations. Several encryption levels are
available for selection for connections to UPIC clients (DES key or AES key with three
different key lengths, see page 229).

Encryption in openUTM not only serves to secure the data on the connection between the
client and the server application, but it can also be used to limit access for clients and
access to certain services. Two encryption levels are available for selection (DES or
AES method, see page 230).

5.9.1 Requirements

Connecting a server application to a UPIC client

The requirements for encryption between an openUTM server application and a UPIC client
are:

● The openUTM-Crypt encryption component must be available on the server in the UTM
system code for encryption on connections to UPIC clients.
For legal reasons the encryption functions in openUTM are supplied as a separate
product, openUTM-CRYPT, that must be installed separately (for more information see
the openUTM Release Notice and for openUTM under BS2000 systems the installation
information in the openUTM manual “Using openUTM Applications under BS2000
Systems”).

● openUTM-Client for the UPIC carrier system with the encryption functions must be used
in the UPIC client.

Connecting a server application to a terminal emulation (BS2000 systems)

The encryption of VTSU is offered for connections between UTM applications under
BS2000 systems and terminal emulations. VTSU-B uses a separate key management. In
this manner the encryption of openUTM is not used on connections to a terminal emulation
and the openUTM-CRYPT product is not required. The data and system access control
mechanisms that come in conjunction with encryption are in effect, however. openUTM
receives information from VTSU via the encryption level that was negotiated for the
connection to the client.

B

B

B

B

B

B

B

B

Generating UTM objects Message encryption

Generating Applications 227

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

The following requirements must be fulfilled:

● One requirement is the use of VTSU-B and the VTSU-SEC selectable unit.
Which of the current versions you must use is described in the release notes for
openUTM. You can consult the Release Notice for VTSU-SEC to determine which
VTSU parameters must be set.

● A terminal emulation must be in use on the client that supports the encryption functions
(e.g. DESK2000).

These communication partners are called VTSU partners in the following.

5.9.2 Encryption methods

openUTM uses a combination of the AES method (Advanced Encryption Standard) and
RSA method (named after its authors Rivest, Shamir and Adleman) for encryption.

AES and DES methods

User data and passwords on a connection are encrypted with a symmetrical AES key or a
DES key. The client and UTM application both use the same AES/DES key to encode and
decode the messages.

The AES/DES key is created by the client and passed to the UTM application when the
connection is established. The key is connection-specific, i.e. a separate key is created for
every connection, and only this one connection uses this key.

RSA methods

The AES or DES key itself is encrypted before transmission to increase the security.
openUTM creates an RSA key pair during generation for this purpose. The RSA key pair
consists of a public and a secret, private key. The RSA key is connection-specific and is
used to encrypt the AES/DES key on all relevant connections of the UTM application to
clients:

● The RSA public key is passed directly to the client when the connection is established
from the UTM application.

● The client then encrypts the AES/DES key and transmits the AES/DES key to the UTM
application.

● The UTM application decrypts the AES/DES key using the associated private RSA key.

Several encryption levels are available for selection. They differ in the length of the RSA
keys used. Consequently, there may be several RSA key pairs with different key lengths in
a UTM application.

B

B

B

B

B

B

B

B

Message encryption Generating UTM objects

228 Generating Applications

The administrator of the application can create and activate new RSA key pairs at any time
(see section “Creating the RSA key pair and reading the public key” on page 231).

RSA key pairs are transferred by KDCUPD from an old KDCFILE to the new KDCFILE.

Encryption methods for BS2000 terminal emulations

The RSA key pair of the UTM application is not used for connections to VTSU partners. A
key pair created by VTSU-B is used here. VTSU-B uses the same algorithms and methods
as openUTM for encryption.

5.9.3 Encrypting passwords and user data

User data and passwords are not passed in encrypted form on connections between UTM
application and trusted clients (i.e. clients generated trusted clients; see point 3 on
page 230).

Passwords from (non-trusted) UPIC clients are always encrypted and then passed to the
UTM application in openUTM if the client as well as the server supports encryption.
Passwords are also encrypted in this case if no encryption was agreed to for the
connection.

Passwords are only passed in encrypted form on connections between UTM applications
under BS2000 systems and VTSU partners if encryption was agreed to for the connection
or if the password was entered in a blanked-out field.

The encryption of user data is optional. This is negotiated between the client and the server
when a UPIC conversation or connection to a VTSU partner is established.

– The client can force encryption.
The ENCRYPTION-LEVEL keyword in the Side Information file and the
Set_Encryption_Level function call are available for a UPIC client for this purpose.
The encryption level is defined on the host for VTSU partners. Various encryption levels
can be specified, from unconditional encryption for all applications through the
encryption of individual messages that the user himself has selected.

– A UTM application can request encryption for a certain service or a certain partner.

If one of the partners requests encryption, then the request for encryption is either accepted
by the other side or the conversation/connection between the partners is not established.

Encryption is always negotiated on a conversation-to-conversation or connection-to-
connection basis. Message-specific encryption via the program interface is not possible.

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Message encryption

Generating Applications 229

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

You can assign every client and every service an encryption level in the configuration of the
UTM application. The encryption level specified whether or not messages from the client
must be encrypted. The encryption levels are defined with the KDCDEF option
ENCRYPTION-LEVEL in the TAC, PTERM and TPOOL statements.

The encryption levels can be used by openUTM to control the access of clients as well as
the access to certain services.

5.9.3.1 System access control

You can specify an encryption level for every client (PTERM) and every client group
(LTERM pool; TPOOL) in the UTM configuration. The encryption level specifies if and how
clients must encrypt messages or may encrypt messages. In this manner a UTM appli-
cation can protect itself from accesses via insecure clients.

You specify the encryption level for a client in the KDCDEF generation in the PTERM
statement of the client:

PTERM ...,ENCRYPTION-LEVEL=

You specify the encryption level as follows for clients that connect to the application via an
LTERM pool:

TPOOL ...,ENCRYPTION-LEVEL=

There are following encryption levels:

1. openUTM requests the use of encryption from the client.
The client must encrypt in all cases, otherwise it will not gain access to the UTM appli-
cation. The minimum length of the RSA key used is predefined. If the partner does not
support encryption or cannot use the RSA key of the requisite key length, then it cannot
establish any connections to the UTM application.
In this case, generate with following variants:

ENCRYPTION-LEVEL=1 (RSA key length 200 byte, DES methods)
ENCRYPTION-LEVEL=2 (RSA key length 512 byte, AES methods)
ENCRYPTION-LEVEL=3 (RSA key length 1024 byte, AES methods)
ENCRYPTION-LEVEL=4 (RSA key length 2048 byte, AES methods)

2. openUTM does not request encryption and the client can specify whether or not the
connection is to use encryption.
The client is also allowed access without encryption, but it must encrypt if a service
explicitly demands it (see section “Data access control” on page 230).
In this case, generate with:

ENCRYPTION-LEVEL=NONE

Message encryption Generating UTM objects

230 Generating Applications

3. The client is trusted (trusted client). Encryption is not used on connections to such
clients. A trusted client can also call „protected“ services without encryption (see section
below).
You should only generate clients as trusted when you are sure that communication
occurs via a secure line.
In this case, generate with:

ENCRYPTION-LEVEL=TRUSTED

i Unix systems, Windows:
Local UPIC clients (type UPIC-L) are always trusted clients.

5.9.3.2 Data access control

You can protect individual services from accesses via insecure clients with the help of the
encryption functions. A client may only access "protected" services if it is a trusted client or
if it is able to encrypt using the requisite method.

You can protect a service by assigning encryption level 1 or 2 to the corresponding service
TAC:

TAC ...,ENCRYPTION-LEVEL=1 (encryption according to the DES method)

TAC ...,ENCRYPTION-LEVEL=2 (encryption according to the DES method)

If a service is protected in this manner, then the following is true:

● A trusted client can start such a service without using encryption.

● For non-trusted clients that support the encryption function, the service belonging to the
transaction code is only started if the client has passed the input message encrypted
with the requisite method. Otherwise
– In the case of UPIC clients, conversation establishment is rejected by openUTM.
– In the case of VTSU partners, this leads to a BADTAC or message K009 is output.

If the service is called via a transaction code without user data (e.g. for terminal emula-
tions via a function key) or started due to service chaining, then the service is also
started without encryption. openUTM encrypts then all dialog output messages to the
client. openUTM expects all further input messages from the client to be encrypted for
multi-step services. If the input message contains unencrypted user data, then the
service is terminated abnormally.

X/W

X/W

B

Generating UTM objects Message encryption

Generating Applications 231

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

● If a non-trusted client that does not support the encryption functions attempts to start
the service, then the conversation to the UPIC client is rejected. If an attempt is made
to start the service using service chaining, the service is terminated abnormally.
If the service is called via a VTSU partner (terminal emulation), then this leads to a
BADTAC or message K009is output.

Encryption is optional when you generate a service TAC as follows (default):

TAC ...,ENCRYPTION-LEVEL=NONE

Information for encryption on the KDCS program interface

You also have the possibility of writing separate program units that execute an access
authorization check. Encryption data is displayed on the program interface for the INIT PU
call. The following information is displayed:

– the encryption levels that are generated for the client and transaction code
– whether encryption was negotiated for the conversation
– whether the client supports encryption in principle
– whether the last input message was encrypted

5.9.4 Creating the RSA key pair and reading the public key

You should replace the RSA key pair with a new RSA key pair in your UTM application in
regular intervals for security reasons. The administration program interface and the admin-
istration tools WinAdmin and WebAdmin provide the corresponding functions.

 See the openUTM manual “Administering Applications”; KDCADMI operation code
4KC_ENCRYPT or the help system for WinAdmin or WebAdmin.

With the help of the administration you can create a new key pair, read the public key and
activate the new key pair. Only after activation can the new key pair be used by the UTM
application for encryption. An activated key pair can also be deleted using administration
facilities.

To further increase the security of the data on a connection you can read the public key of
the RSA key pair, pass it to the client using your own method and store it there. You should
only activate the new RSA key pair once this has been accomplished. With the help of the
public RSA key you have stored, the client can verify if the public key received over the
connection to the UTM application really came from the UTM application.

B

B

Defining UTM database linking Generating UTM objects

232 Generating Applications

5.10 Defining database linking

When configuring the application you must use the KDCDEF control statements to define
the database system with which the UTM application is to coordinate.

i If a UTM application is to be linked with a database, additional parameters must be
specified when linking and starting. See also the openUTM manual “Using
openUTM Applications”.
The remaining UTM generation is not affected by the linking.

5.10.1 Linking databases under BS2000 systems

openUTM supports coordination with the following database systems:

– UDS/SQL
– SESAM/SQL
– XA
– PRISMA
– LEASY (the LEASY file systems behaves like a database system in relation to

openUTM)

A UTM application can work in coordination with up to 2 (up to 8 with special release)
different databases. Each database system is defined with a DATABASE statement for the
KDCDEF run.

 DATABASE statement on page 328:
Definition of the database with which the UTM application works together:

● ENTRY=

Entry name of the supported database, which can be seen in the table on page 328.

● LIB=

● USERID= and PASSWORD=

User name and password for the database system, supported only for Oracle
databases (TYPE=XA).

Object module library from which the connection module to the database system is
to be loaded dynamically.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Defining UTM database linking

Generating Applications 233

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

● TYPE=

Type identifier of the database system.
– You can connect to database systems not contained in the list above but that

support the IUTMDB interface with TYPE=DB.
– The link to a XA resource is generated with TYPE=XA.

5.10.2 Linking to a Resource Manager under Unix systems and Windows
systems

openUTM is linked with Resource Managers (e.g. database systems) via the XA interface
standardized by X/Open. It coordinates the transactions of openUTM with the services of
the Resource Manager. The XA interface is supported in the CAE version of the XA
interface (XA-CAE).

openUTM for Unix systems and Windows systems supports coordination with the following
data base systems:

– Oracle
– INFORMIX

 RMXA statement on page 478
The Resource Manager to which openUTM is to be linked and the version of the
XA interface via which the link is to be made must be defined in the generation with
the RMXA statement:

● XASWITCH=

Name of the xa_switch_t structure of the Resource Manager, which is made known
to openUTM.

● USERID= and PASSWORD=

User name and password for the database system, supported only for Oracle
databases.

The following must be noted for the linked operation of openUTM with XA:

● Several Resource Managers (i.e. database systems) can be served within a UTM appli-
cation.

● It is not permitted to generate more than one Resource Manager with the same gener-
ation parameters. In other words, within a generation run there cannot be more than
one RMXA statement with the same name for the xa_switch_t structure of the Resource
Manager.

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Defining UTM database linking Generating UTM objects

234 Generating Applications

● The simultaneous operation of several entities (databases) of a Resource Manager
(database system) is possible provided the Resource Manager supports multi-instance
mode. The databases with which the UTM application is linked are determined by corre-
sponding start parameters for the application. For multi-instance mode, you must
specify several open strings at the start.

Below is a description of how you must generate the linking of your UTM application with
the individual Resource Managers for Oracle and INFORMIX. The database-specific
names specified here (xa_switch_t structure) may change, which is why you should check
that the specifications are correct. For more information, see the documentation for the
individual database systems.

Linking with Oracle

On Windows systems, only the static XA link is supported.

RMXA XASWITCH=xaosw
or
RMXA XASWITCH=xaoswd

Linking with INFORMIX

RMXA XASWITCH=infx_xa_switch

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

W

X/W

X
X

X/W

X/W

Generating UTM objects Internationalization - XHCS support (BS2000 systems)

Generating Applications 235

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.11 Internationalizing the application – XHCS support (BS2000
systems)

A UTM application in BS2000 system can be programmed such that communication
partners with different languages can receive the messages from the program units in their
respective language. Even regional differences within a language can be taken into
account. Date specifications, time, units of measurement, and currency symbols can be
displayed in accordance with language-specific conventions.

To display the fonts and special characters of the individual languages on a terminal or
printer, you may require various extended character sets (8-bit codes). Using the BS2000
software product XHCS (Extended Host Code Support), several extended character sets
can be used simultaneously in a BS2000 system. openUTM supports the functions of
XHCS. This means that you can assign a particular language environment – also called a
locale – to the UTM objects. In other words, you can assign a standard locale. Individual
users and LTERM partners that clients use to connect to the application are assigned
specific locales that are used to edit the messages.

To implement multilingualism in UTM applications, openUTM offers the following functions.

● When generating the application, specific languages and the character sets to be used
for output can be assigned to the application, the user IDs, the LTERM partners, and
the LTERM partners of the LTERM pools. In this case you define locales, which define
the language environment and character set, for the objects.

● You can define locales for user message modules that take account of language-
specific requirements. These language-specific message modules are assigned to
users and LTERM partners whose language and territorial identifiers match the locale
of the language-specific message module. See also section “UTM messages” on
page 184.

● While the application is running, you can change the assignment of language and
character set for your user ID. The KDCS interface provides the SIGN CL call for this
purpose.

● Using the variants INIT PU and INFO LO of the function calls INIT and INFO, a UTM
program can read the language and character set of the user ID, the application, a
particular LTERM partner, or the LTERM partners in a pool. The program unit thus
obtains information on the character sets supported by the terminal and the character
set of the input message. With this information, the program unit can correctly interpret
the input of the user and send messages to the user in the correct language and with
the appropriate character set.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Internationalization - XHCS support (BS2000 systems) Generating UTM objects

236 Generating Applications

● If the message of a program unit is sent to a terminal/printer, openUTM transfers the
logical message of the program unit to VTSU-B together with the name of the character
set to be used for editing. VTSU-B edits the message for outputting to the terminal or
printer. For information on the character set is used to edit a message please refer to
the openUTM manual „Programming Applications with KDCS”.

If the job submitter in a service is a partner program, the logical message is transferred
to the job submitter without editing.

● The program unit can use INFO LO to request information from openUTM regarding the
language and character set of the LTERM partner, and the character sets supported by
the terminal/printer assigned to this LTERM partner. The character set used to edit the
message for outputting to the terminal/printer must be compatible with one of the
character sets supported by this terminal/printer.

Before discussing these functions, we will explain specific XHCS terms.

5.11.1 Definitions of XHCS terms

ISO character sets, variant numbers

Various extended character sets for various language areas are standardized in ISO 8859,
for example ISO 8859-1, ISO 8859-2, etc. The numbers at the end (-1, -2, etc.) are called
the variant numbers. An extended character set contains all the characters required to
represent the language of a language area.
ISO 8859 codes are extensions of the ASCII code ISO 646. They are used by terminals and
Unix systems, for example. All ISO 8859 character sets contain the ASCII code as the
shared part in the low-order half of the code table.

EBCDIC character sets

EBCDIC character sets are used in the BS2000 operating system. An extension of
EBCDIC.DF.03-IRV or -DRV exists for each ISO 8859 code. EBCDIC.DF.03-IRV is the
international reference version and EBCDIC.DF.03-DRV is the German reference version
of the non-extended EBCDIC code. Both codes contain the EBCDIC kernel as the shared
character set and only differ in certain symbols. The extensions of these EBCDIC character
sets are called EBCDIC.DF.04-1, EBCDIC.DF.04-2 through EBCDIC.DF.04-10.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Internationalization - XHCS support (BS2000 systems)

Generating Applications 237

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Compatible character sets

Extended ISO and EBCDIC character sets with the same variant number are compatible, i.e.
they contain the same characters. The individual characters are located at different code
positions within the code table. The codes can be transferred using conversion tables.

The BS2000 system administrator can use XHCS to modify the EBCDIC character sets by
assigning different code positions in the code table to the individual characters of a
character set. The complete set of characters is retained. The modified EBCDIC character
sets are compatible with the EBCDIC.DF.04-n character set from which they were
generated.

Reference code

XHCS combines all compatible character sets of the system into a group. A group therefore
contains an ISO variant and the EBCDIC character sets compatible with this variant. The
EBCDIC.DF.04-n character set of the group is the reference code of the group. All character
sets in a group can be converted to the reference code of the group using XHCS.

Coded character set name (CCS name)

A name containing a maximum of eight characters, known as the CCS name or the CCSN,
is assigned to each character set used in the system. The CCS name uniquely identifies
the character set in the system. The CCS names of the reference codes are predefined by
XHCS. EBCIDIC.DF.04-1 has the CCS name EDF041, for example.

A list of the CCS names for the character sets available in your BS2000 can be obtained
using EDT. To request this information, call EDT and enter the EDT statement @SHOW CCS.
EDT then supplies a list of the available character sets.

Default system code

The BS2000 system administrator can define several extended character sets (also for
various ISO variants), which can be used simultaneously by the system components.

The system administrator can define one of these character sets as the default system
code. The default system code currently set is indicated in the output of the command
/SHOW-SYSTEM-PARAMETERS PAR=*AL. It is specified in the HOSTCODE parameter.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Defining the language environment (BS2000 systems) Generating UTM objects

238 Generating Applications

Default user character set

The BS2000 system administrator can assign one of the character sets defined in the
system as the default user character set for each BS2000 user ID. If a default user
character set is defined for the BS2000 user ID, its CCS name is displayed in the output
field CODED-CHARACTER-SET of the /SHOW-USER-ATTRIBUTES command.

i For further information on XHCS, see the User Guide “XHCS 8-Bit Code Processing
in BS2000/OSD - Internationalization”.

5.11.2 Defining the language environment – setting the locale

When generating a UTM application, a separate language environment can be defined for
the UTM application, for each LTERM partner, for all LTERM partners in an LTERM pool,
and for each user ID. To do this, you assign the application and the individual objects a
triplet comprising the language identifier, territorial identifier, and name of a character set,
which is known as the locale. The locale is specified as follows:

LOCALE=(lang_id,terr_id,ccsname)

lang_id The language identifier lang_id identifies the language in which the user is
to be addressed by the UTM program units. The language identifier can be
up to 2 bytes long. The descriptor of a language can be freely selected.

terr_id The territorial identifier terr_id enables you to take account of regional differ-
ences within a language (e.g. English in England and America) or different
units of currency and measurement in the various countries (dollar and
sterling). The territorial identifier can be up to 2 bytes long and can be freely
selected.

ccsname The character set name ccsname specifies which character set can be used
to edit a message for outputting to the terminal. As the character set name,
specify the CCS name of a character set defined in the BS2000 system.
CCS names are assigned by the BS2000 system administrator.

If all users come from the same language area, e.g. Western Europe, it is sufficient to
assign an extended character set to the UTM application. It is only necessary to use user-
specific character sets if the various users of an application speak languages that cannot
all be represented by an extended character set.

In order to support extended character sets, the subsystem XHCS must be available on the
processor on which the UTM application is running. For all character set names generated
in the UTM application, associated EBCDIC character sets must be defined in XHCS. In
addition, the terminals must support an ISO character compatible with the respective
EBCDIC character set. Only particular types of terminals and printers support 8-bit
character sets.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Defining the language environment (BS2000 systems)

Generating Applications 239

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

Application-specific language environment – standard-language environment

MAX statement on page 376
You assign the locale to the UTM application in the generation using the MAX
statement:

● LOCALE=

The locale generated for the application is assigned to each user ID, each LTERM
partner, and each LTERM pool as the default value for the language environment.
This default setting applies as long as no specific locale is defined for these objects.

User-specific language environment

USER statement on page 543
You assign a locale to a user ID using the USER statement:

● LOCALE=

The character set assigned to a user ID is used to output dialog messages to the
screen (see the character sets section of the openUTM manual „Programming
Applications with KDCS”).

LTERM partner-specific language environment

LTERM statement on page 363 and TPOOL statement on page 524
You use the LTERM statement to assign a locale to an LTERM partner via which a
terminal or printer connects to the application. For an LTERM pool, a locale is
defined for all LTERM partners in this pool using the TPOOL statement:

● LOCALE=

The character set defined for the LTERM partner is used to output asynchronous
messages (see also page 184).

The LTERM partner-specific locale is also used in the first part of the sign-on
service, for example, if the user has not yet signed on, i.e. the user-specific
language environment is not yet created.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Defining the language environment (BS2000 systems) Generating UTM objects

240 Generating Applications

Example

The language identifier DE for German is used in the application. To be able to take account
of the different units of currency in messages to users in Germany and Switzerland (Euro
and franc), the territorial identifiers De for Germany and CH for Switzerland are defined. The
EBCDIC character set EBCDIC.DF.04-1 can be used to output messages. Its CCS name is
EDF041.

● The locale for users in Germany can be defined as the standard language environment
for the application. To this end, specify the following in the MAX statement:

MAX ..., LOCALE=(DE,DE,EDF041)

In this case, no separate locale need be defined for users and terminals in Germany
that connect to the application via LTERM partners.

● If language-specific requirements are to be taken into account for users and terminals
in Switzerland, the following must be generated:

USER username ,..., LOCALE=(DE,CH,EDF041)
LTERM ltermname ,..., LOCALE=(DE,CH,EDF041)

● However, you can also use the DEFAULT statement to set the locale (DE,DE,EDF041)
for all USER and LTERM statements:

DEFAULT USER LOCALE=(DE,DE,EDF041)
DEFAULT LTERM LOCALE=(DE,DE,EDF041)

You must then also generate the following for users and terminals in Switzerland that
connect to the application via LTERM partners:

USER username ,..., LOCALE=(,CH)
LTERM ltermname ,..., LOCALE=(,CH)

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B
B

B

B

B
B

Generating UTM objects Character set names (BS2000 systems)

Generating Applications 241

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.11.3 Character set names for edit profiles and formats

In addition to the user-specific and LTERM partner-specific assignment of character set
names, a separate character set name can be assigned to each edit profile defined in the
application.

The name of a character set can be assigned to each format when creating formats with
FHS/IFG.

For information on which of the generated character set names (application-specific, user-
specific, LTERM partner-specific character set, or the character set name assigned to an
edit profile or to a format) is used to edit a message for outputting to the screen or printer,
as described in section “Character sets for editing messages” on page 242.

5.11.4 Querying the language environment in a UTM program unit

In the initialization phase, openUTM transfers information to a program unit regarding the
locale of the user who started the associated service. The prerequisite is that the INIT call
is used with the operation modification PU and that the program requests the information.
See also the openUTM manual „Programming Applications with KDCS”.

If the user has not yet signed on, openUTM transfers the locale of the LTERM partner via
which the connection to the application was established. The program unit can then
correctly interpret the code and terminology in the input from the communication partner
and can generate messages in the language used by the communication partner.

Specifications on the user-specific character set are required because the user-specific
character set is used to output dialog messages to 8-bit terminals if no edit profile or format
with CCS names is assigned with MPUT. The program unit must take this into account when
structuring the message.

The character set of the LTERM partner is used to output asynchronous messages to 8-bit
terminals if no edit profile or format with CCS name is specified with FPUT. Information on
the character sets supported by the terminal can be obtained using the KDCS call INFO LO.

In addition to the locale of the LTERM partner associated with the service, you can also use
INFO LO to query the ISO character sets supported by the terminal. If the user-specific or
LTERM partner-specific character set is not compatible with one of the ISO character sets
supported, the service may be aborted or, in the case of asynchronous messages, the
message may be lost.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Character set names (BS2000 systems) Generating UTM objects

242 Generating Applications

5.11.5 Character sets for editing messages

If the message of a program unit is sent to a terminal or printer, openUTM transfers the
logical message and a character set name to VTSU-B. VTSU-B edits the message for
output. The type of message and type of client determine which of the generated character
sets is transferred from openUTM to VTSU-B.

A distinction is made here between three message types:

– message in line mode without edit profile or messages created by event exit FORMAT
– message in line mode with edit profiles
– message in format mode.

Message in line mode without edit profile and messages created by event EXIT
FORMAT

● The terminal or printer to which the message is addressed supports none of the
extended character sets.

The message is transferred to VTSU-B without specifying a character set
name.Characters that do not belong to the EBCDIC kernel are replaced by smudge
characters or substitute characters.

● The terminal or printer to which the message is addressed supports extended character
sets.

Dialog messages are edited using the user-specific character set.

Asynchronous messages are edited using the LTERM partner-specific character set of
the LTERM partner whose message queue contains the message.

In this way, the program unit can correctly serve 8-bit printers, amongst others. The
program unit uses INFO LO to obtain information on the character set names generated
in the locale of the LTERM partner assigned to the printer. It then transfers the character
set name together with the message to VTSU for editing.

You must ensure that the EBCDIC character set associated with the character set name
is compatible with an ISO character set supported by the printer. This is not checked by
VTSU-B, as VTSU-B does not know which ISO character sets are supported by the
printer. The supported character sets are indicated in the printer description.

In order that VTSU-B can serve the printer in 8-bit mode, the VTSU-operating param-
eters xxxxxDEV8 and xxxxxLIN8 must be set. Any modification to the operating param-
eters does not come into effect until VTSU is loaded dynamically. See the User Guide
“VTSU - Virtual Terminal Support”.

If the EBCDIC character set of the message is not compatible with any ISO character
set of the 8-bit client, one of the following errors will occur:

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects Character set names (BS2000 systems)

Generating Applications 243

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

– A dialog service is terminated with PEND ER. A PEND ER dump is created and
UTM message K017 is sent.

– An asynchronous output message is discarded. A UTM dump is created and a UTM
message is sent.

– UTM message K106 is output to the screen if an asynchronous message was
retrieved with KDCOUT (LTERM...,ANNOAMSG=YES) or if part of the message
was already sent before the error occurred.

– An error message is written to SYSLOG.

In relation to the character set, formatted messages created by the format exit are
handled like messages in line mode.

Message in line mode with edit profiles

● No character set name is assigned to the edit profile.

In relation to the character set used, these messages are handled like messages in line
mode without edit profile.

By using user-specific and LTERM partner-specific character sets, you can thus perma-
nently serve users in 8-bit mode without having to explicitly generate 8-bit edit profiles.

● A character set name is assigned to the edit profile.

openUTM always transfers the character set name of the edit profile together with the
logical message to VTSU-B for editing.

If a message is sent to a terminal or printer that only permits 7-bit mode, the service is
terminated with PEND ER in the case of dialog services. An asynchronous message is
discarded in this case and a UTM message is sent.

In the case of messages to 8-bit terminals or printers, the EBCDIC character set used
must be compatible with an ISO character set supported by the terminal/printer. With
asynchronous messages, VTSU-B cannot check this compatibility. For this reason, the
message should only be sent in the character set assigned to the edit profile.

You need only explicitly assign a character set to an edit profile if this character set is
not identical to the user-specific or LTERM partner-specific character set and if the
message to be sent contains characters from this character set which do not, however,
belong to the EBCDIC kernel.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Character set names (BS2000 systems) Generating UTM objects

244 Generating Applications

Message in format mode

● Format to which no character set was assigned when creating IFG.

In relation to the character set used, openUTM handles these messages in the same
way as messages in line mode without edit profile, i.e. a dialog message is edited using
the user-specific character set, and an asynchronous message is edited using the
LTERM partner-specific character set, if this message is directed to an 8-bit terminal or
corresponding printer.

● Format with character set name, i.e. a character set was assigned to the format when
creating with IFG.

The character set name assigned to the format is transferred by openUTM for editing.

If the message is directed to printers or clients that only permit 7-bit mode, the service
is terminated with PEND ER in dialog services. An asynchronous output message is
discarded in this case and a UTM message is sent.

With messages to 8-bit terminals or printers, the EBCDIC character set used by the
message must be compatible with one of the ISO character sets supported by the
terminal/printer.

A character set need therefore only be explicitly assigned to the format to be sent if it
contains characters that do not belong to the EBCDIC kernel.

A character set need only be explicitly assigned to the format if the character set used
for representation is not identical to the user-specific or LTERM partner-specific
character set.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

Generating UTM objects System access control using Kerberos (BS2000 systems)

Generating Applications 245

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

23
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
5

5.12 Generating system access control using Kerberos (BS2000
systems)

The following generation statements are of significance for generating access control using
the distributed authentication service Kerberos:

● LTERM KERBEROS-DIALOG=

If you specify LTERM KERBEROS-DIALOG=YES, a Kerberos dialog is carried out
when a connection is established for terminals that support Kerberos and that connect
to the application directly via this LTERM partner (not via OMNIS) (see page 367ff).

● TPOOL KERBEROS-DIALOG=

If you specify TPOOL KERBEROS-DIALOG=YES, a Kerberos dialog is carried out
when a connection is established for terminals that support Kerberos and that connect
to the application directly via this terminal pool (not via OMNIS) (see page 531ff).

openUTM stores the Kerberos information in the length resulting from the maximum lengths
generated for MAX PRINCIPAL-LTH and MAX CARDLTH (see page 401 and page 384). If
the Kerberos information is longer, it is truncated to this length and stored.

B

B

B

B

B

B

B

B

B

B

B

B

B

System access control using Kerberos (BS2000 systems) Generating UTM objects

246 Generating Applications

Generating Applications 247

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6 The KDCDEF generation tool

In order to generate a new UTM application or adapt an existing UTM application, you must
first define the application configuration using KDCDEF control statements, and then use
the KDCDEF generation tool to generate the UTM components KDCFILE and KDCROOT
from which the UTM application program is created. For further information, see chapter
“Introduction to the generation procedure” on page 29.

You can also modify the configuration of an application dynamically during operation. To do
this, the RESERVE statement can be used during generation to reserve certain table
locations for UTM objects. You can thus insert or remove clients, printers, user IDs, and
services, KSETs, LTACs, CONs and LSESes in the configuration “on-the-fly” without
affecting availability. The dynamic entry of objects is described in detail in the openUTM
manual “Administering Applications”.

By issuing a CREATE-CONTROL-STATEMENTS statement during the KDCDEF run, you
can read out the configuration information defined in the KDCFILE of a dynamically
configured application, and convert this information to control statements. This function is
known as inverse KDCDEF. The control statements which are generated in this way are
written to a file which you can re-use directly as the input file for the KDCDEF run. For more
information, see section “Inverse KDCDEF” on page 271.

6.1 Creating the ROOT table source and KDCFILE

Based on the configuration information in the KDCDEF control statements, the KDCDEF
generation tool creates the KDCFILE. This file contains all configuration and administrative
data, as well as the ROOT table source for the main routine KDCROOT.

The KDCFILE and the ROOT table source can be generated simultaneously in a single
KDCDEF run or individually in separate KDCDEF runs. This is defined in the KDCDEF
statement OPTION ...,GEN=.

All KDCDEF statements provided for defining the UTM application are listed in the following
sections in accordance with their function group.

Overview of the KDCDEF statements KDCDEF generation tool

248 Generating Applications

6.1.1 Statements for controlling the KDCDEF run

6.1.2 Statements for creating the ROOT table source

Statement Function

EJECT Initiate a page feed in the log

END Terminate KDCDEF input

OPTION Manage the KDCDEF run

REMARK or * Insert a comment line

additional statement under BS2000 systems

DEFAULT Define default values

Statement Function

AREA Define names for additional data areas

EXIT Define event exits

FORMSYS Define the format handling system

MAX Define UTM application parameters

MESSAGE Define the UTM message module

PROGRAM Define program units

RESERVE Reserve table locations for objects that can be entered dynamically

ROOT Define a name for the ROOT table source

additional statements under BS2000 systems

DATABASE Define the database system (BS2000 systems)

LOAD-MODULE Define load modules for BLS

MPOOL Define a common memory pool

TCBENTRY Define a group of TCB entries

additional statements under Unix systems and Windows systems

RMXA Define a name for a resource manager on Unix systems and Windows
systems (database connection via the X/Open XA interface)

SHARED-OBJECT Define shared objects/DLLs for exchanging programs

B

BB

B

BB

BB

BB

BB

X/W

X/WX/W
X/W

X/WX/W

KDCDEF generation tool Overview of the KDCDEF statements

Generating Applications 249

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.1.3 Basic statements for creating a KDCFILE

Statement Function

ACCOUNT Define UTM accounting parameters

BCAMAPPL Define additional application names for parallel connections

CLUSTER Define global properties of a UTM cluster application

CLUSTER-NODE Define a node application of a UTM cluster

CREATE-CONTROL-
STATEMENTS

Create control statements from the existing KDCFILE for a new KDCDEF
run

KSET Define a key set

LTERM Define an LTERM partner as the logical access point for clients and printers

MAX Define the name and runtime parameters of the UTM application

MESSAGE Define a UTM message module

MSG-DEST Define a user message line

PROGRAM Define the names and properties of program units

PTERM Define clients and printers

QUEUE Reserve table entries for temporary message queues

RESERVE Reserve table locations for objects that can be entered dynamically

SFUNC Define special functions for the F and K keys

SIGNON Control the sign-on procedure

TAC Define the names and properties of transaction codes

TACCLASS Define the number of processes for a TAC class

TAC-PRIORITIES Define priorities for the TAC classes

TLS Define a name for a TLS block

TPOOL Define an LTERM pool

ULS Define the names of ULS blocks

USER Define user IDs

additional basic statements under BS2000 systems

DATABASE Define the database system

EDIT Define edit options

LOAD-MODULE Define load modules for BLS

MPOOL Define a common memory pool

MUX Define a multiplex connection

SATSEL Define SAT logging

B

BB

BB

BB

BB

BB

BB

Overview of the KDCDEF statements KDCDEF generation tool

250 Generating Applications

additional basic statement under Unix systems and Windows systems

RMXA Define a name for a resource manager

SHARED-OBJECT Define shared objects/DLLs for exchanging programs

Statement Function

X/W

X/W

X/WX/W

KDCDEF generation tool Overview of the KDCDEF statements

Generating Applications 251

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.1.3.1 Creating the KDCFILE - additional statements for distributed processing via LU6.1

6.1.3.2 Creating the KDCFILE - additional statements for distributed processing via OSI TP

Statement Function

BCAMAPPL Define additional application names for parallel connections

CON Define a logical connection to a UTM partner application

LPAP Define an LPAP partner as the logical access point for a UTM partner
application

LSES Define a session name for the connection between two UTM applica-
tions

LTAC Define local names for TACs in UTM partner applications

MASTER-LU61-LPAP Define the master LPAP of an LU6.1-LPAP bundle

RESERVE Reserve table locations for objects that can be entered dynamically
(CON, LSES, LTAC)

SESCHA Define the session characteristics

UTMD Define the global values

Statement Function

ABSTRACT-SYNTAX Define the abstract syntax

ACCESS-POINT Create an OSI TP access point for the local UTM application

APPLICATION-CONTEXT Define the application context

LTAC Define local names for TACs in UTM partner applications

MASTER-OSI-LPAP Define a master LPAP for a OSI-LPAP bundle

OSI-CON Define a logical connection to the partner application

OSI-LPAP Define an OSI-LPAP partner as the logical access point for the partner
application

RESERVE Reserve table locations for objects that can be entered dynamically
(LTAC)

TRANSFER-SYNTAX Define the transfer syntax

UTMD Define global values and the address of the local UTM application

additional statements under Unix systems and Windows systems

MAX XAPTPSHMKEY Define the key for the XAPTP shared memory segment

MAX OSISHMKEY Define an authorization key for the OSS shared memory segment

MAX OSI-SCRATCH-AREA Define the size of the working area for dynamic data storage

X/W

X/WX/W

X/WX/W

X/WX/W

Overview of the KDCDEF statements KDCDEF generation tool

252 Generating Applications

6.1.3.3 Generating KDCFILE and UTM cluster files - additional statements for UTM cluster
applications

Statement Function

CLUSTER Define global properties of a UTM cluster application

CLUSTER-NODE Define a node application of a UTM cluster application

MAX 1
 APPLIMODE
 ,APPLINAME
 ,GSSBS
 ,KB
 ,LSSBS
 ,NB,
 ,ULS
 ,VGMSIZE

1 If the values of the operands listed here are modified then the UTM cluster files must be regenerated with
OPTION GEN=(CLUSTER,...).

Define UTM application parameters

OPTION
 ,GEN=(CLUSTER,..

Generate the UTM cluster files

KDCDEF generation tool Effects on the generation objects

Generating Applications 253

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.1.4 Effects of the KDCDEF statements on the generation objects

Not all statements of the KDCDEF generation tool have the same effect on the KDCFILE
and ROOT table source. The table below shows which control statements affect which
generation objects during the KDCDEF run:

KDCDEF control statement
KDCFILE ROOT

tables
KDCDEF
control

Distributed
processing via

LU6.1 OSI TP

ABSTRACT-SYNTAX X X

ACCESS-POINT X X

ACCOUNT X

APPLICATION-CONTEXT X X

AREA X X

BCAMAPPL X X

CLUSTER X

CLUSTER-NODE X

CON X X

CREATE-CONTROL-STATEMENTS1

EJECT X

END X

EXIT X X

FORMSYS2 X X

KSET X

LPAP X X

LSES X X

LTAC X X X

LTERM X

MASTER-LU61-LPAP X X

MASTER-OSI-LPAP X X

MAX3 X X X

MESSAGE X X

MSG-DEST X

OPTION4 X X X (X) (X)

OSI-CON X X

OSI-LPAP X X

Effects on the generation objects KDCDEF generation tool

254 Generating Applications

PROGRAM X X5

PTERM X

QUEUE X

REMARK X

RESERVE X X6

ROOT X

SESCHA X X

SFUNC X

SIGNON X

TAC X

TACCLASS X

TAC-PRIORITIES X

TLS X

TPOOL X

TRANSFER-SYNTAX X X

ULS X

USER X

UTMD X X X

BS2000 specific statements

DATABASE X X

DEFAULT7 X X X

EDIT X

LOAD-MODULE X X8

MPOOL X X9

MUX X

SATSEL X

TCBENTRY X

KDCDEF control statement
KDCFILE ROOT

tables
KDCDEF
control

Distributed
processing via

LU6.1 OSI TP

B

B

B

B

B

B

B

B

B

KDCDEF generation tool Effects on the generation objects

Generating Applications 255

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

The MAX, ULS, CLUSTER and CLUSTER-NODE statements also affect the UTM cluster
files. If you change parameters of the ULS, CLUSTER and/or CLUSTER-NODE statement
when performing a new generation, you must specify OPTION GEN=CLUSTER in order for
the changes to take effect, see also page 429.

The KDCDEF control statement OPTION...GEN= is used to define which objects (the
KDCFILE, ROOT table sources and UTM cluster files) are to be generated by the KDCDEF
generation tool.

When a new ROOT table source is created, this must be compiled (assembled under
BS2000 systems) and relinked to your application. Relinking of an application program is
only necessary if the table module is not dynamically loaded.
This is not necessary if you merely modify the KDCFILE. You can run the application with
the new KDCFILE and the old main routine KDCROOT.

Unix system and Windows system specific statements

RMXA X X

SHARED-OBJECT X X

1 Based on the configuration information defined in an existing KDCFILE, the CREATE-CONTROL-
STATEMENTS statement generates an input file containing KDCDEF control statements for a new KDCDEF
run.

2 Under Windows systems, the statement has no effect, no formatting system is supported.
3 The operands CLRCH=, KB=, NB= and SPAB= only affect the generation of the ROOT table source. The other

operands only affects the generation of the KDCFILE.
4 The effect of the OPTION statement on the KDCFILE and the ROOT table source depends on the values

entered for OPTION ...,GEN=.
5 Only when generating a UTM application without load modules (under BS2000 systems), shared objects (under

Unix systems) or DLLs (under Windows systems).
6 Only when generating without the operand PROGRAM= and without load modules, shared objects or DLLs.
7 The effect of the DEFAULT statement on the KDCFILE and the ROOT table source depends on the specified

substatement.
8 Only when extending the generation by n load modules.
9 Only when generating without load modules.

KDCDEF control statement
KDCFILE ROOT

tables
KDCDEF
control

Distributed
processing via

LU6.1 OSI TP

X/W

X/W

X/W

Calling KDCDEF and entering the control statements KDCDEF generation tool

256 Generating Applications

6.2 Calling KDCDEF and entering the control statements

6.2.1 Starting KDCDEF and executing a KDCDEF run

i You can also start the KDCDEF run from WinAdmin. For further information, please
see the WinAdmin online Help system.

6.2.1.1 BS2000 systems

The KDCDEF generation tool is started using the command:

START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM
 (LIBRARY=$userid.SYSLNK.UTM.063.UTIL,ELEMENT-OR-SYMBOL=KDCDEF)

Alternatively, you can also call KDCDEF via the SDF command START-KDCDEF. This
command is located in the SDF UTM application area. For more detailed information, see
openUTM manual “Using openUTM Applications under BS2000 Systems” section "Calling
UTM tools".

KDCDEF reads the generation statements from SYSDTA from a SAM or ISAM file or from
an LMS library element.. The control options for the KDCDEF run (see the OPTION
statement, page 427) are only processed by KDCDEF if it is read from SYSDTA. All other
control statements for KDCDEF can be read from SYSDTA as well as from SAM or ISAM
files or from an LMS library element.

The following restrictions apply to the use of LMS library elements:
Delta elements are not supported.
– The record type of read records is not evaluated.
– The records in the LMS elements may be a maximum of 256 characters in length.

The SAM or ISAM files or LMS library elements can be defined as input sources as
described below:

● Assign an input file using the BS2000 commando ASSIGN-SYSDTA:

/ASSIGN-SYSDTA TO-FILE=inputsource
/START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM

(LIBRARY=SYSLNK.UTM.063.UTIL,ELEMENT=KDCDEF)

● Assign input files using the KDCDEF control statement OPTION ...,DATA=:

/ASSIGN-SYSDTA TO-FILE=*SYSCMD
/START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM

(LIBRARY=SYSLNK.UTM.063.UTIL,ELEMENT=KDCDEF)
OPTION DATA=inputsource1
OPTION DATA=inputsource2
etc.
END

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B
B

B

B
B
B
B
B
B
B

KDCDEF generation tool Calling KDCDEF and entering the control statements

Generating Applications 257

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

i You can catalog the files of the KDCFILE with the required attributes before calling
the KDCDEF utility program. In particular, you can assign the volume and suitable
primary and secondary allocation values as appropriate. If a KDCFILE file has
already been cataloged then KDCDEF takes over the predefined attributes.

If a file has not been cataloged then KDCDEF assigns the value 192 for both
primary and secondary allocation when creating the file.

B
B

B

B

B

B

Calling KDCDEF and entering the control statements KDCDEF generation tool

258 Generating Applications

6.2.1.2 Unix systems

Proceed as follows to start the KDCDEF too and to execute a KDCDEF generation:

1. Add the directory below to the PATH environment variable:
utm-path/ex.
The kdcdef program used to start the KDCDEF generation tool is located in this
directory.

2. Create one or more source files with an ASCII editor with control statements for the
UTM generation. You must observe the information stated in section “Order of the
control statements” on page 260 and section “Format of the control statements” on
page 261.

3. Create the filebase directory (base directory of the application) in which openUTM stores
the KDCFILE and other application-specific files. Enter the following command to
create this directory:

mkdirËfilebase

You must create the directory before starting KDCDEF. filebase is the directory that you
specified in the MAX statement in the FILEBASE= operand.

4. You start the KDCDEF tool with the kdcdef program.

By default, KDCDEF reads the KDCDEF control statements from stdin. Only the control
options for the KDCDEF run are read in from a shell script (see OPTION statement on
page 427), while the actual generation statements for KDCDEF are read from the files
created in Step 2. You can specify these files directly at the start of KDCDEF:

kdcdef < definput

or after KDCDEF has been started using the KDCDEF statement OPTION:

OPTION DATA=definput
END

The messages and logs from KDCDEF are written to stdout and stderr, i.e. everything is
displayed on the screen if you have not redirected the output. You can redirect the output
to a file as follows (you can select any name you want for the files):

kdcdef < definput 2>def.err 1>def.prot

All UTM messages are recorded in def.err and def.prot contains the complete log of the
KDCDEF run.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X

X

X

X

KDCDEF generation tool Calling KDCDEF and entering the control statements

Generating Applications 259

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.2.1.3 Windows systems

Proceed as follows to start the KDCDEF too and to execute a KDCDEF generation:

1. Add the directory below to the PATH environment variable:
utmpath\ex.
The kdcdef.exe program used to start the KDCDEF generation tool and other utility
programs and DLLs are located in this directory. Proceed as follows:

– Select Start / Settings / Control Panel / System and click on the environment tab.
– Enter the path listed above to the PATH variable and click on the "Set" button.

2. Create one or more source files with control statements using an ASCII editor such as
the NOTEPAD for the openUTM generation. You must observe the information stated
in section “Order of the control statements” on page 260 and in section “Format of the
control statements” on page 261.

3. Create the filebase directory (project directory) in which openUTM stores the KDCFILE
and other application-specific files. You must create the directory before starting
KDCDEF. filebase is the directory that you specified in the MAX statement in the
FILEBASE= operand.

4. Now start the KDCDEF tool. Open a command mode window to do this with Start /
Programs / Command Prompt. KDCDEF reads the KDCDEF control statements from
stdin by default, i.e. directly from the command prompt. Enter the following to have
KDCDEF read the control statements from a file (e.g. definput.txt):

kdcdef < definput.txt

or start KDCDEF with kdcdef and pass the file using the KDCDEF statement OPTION:

OPTION DATA=definput.txt

The messages and logs from KDCDEF are written to stdout and stderr, i.e. everything is
displayed on the screen if you have not redirected the output. You can redirect the output
to a file as follows (you can select any name you want for the files):

kdcdef < definput.txt 2>def.err 1>def.prot

All UTM messages are recorded in def.err and def.prot contains the complete log of the
KDCDEF run.

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

Calling KDCDEF and entering the control statements KDCDEF generation tool

260 Generating Applications

6.2.2 Order of the control statements

Apart from the following exceptions, the control statements can be entered in any order.
Apart from END and UTMD, all control statements can be entered several times.

● The END statement is always specified last, and concludes the sequence of control
statements.

● In the OPTION statement, the last parameter value specified always applies.

● The order of the AREA statements indicates the order in which these areas must be
specified in the parameter list and declared in the program unit (e.g. in the LINKAGE-
SECTION in COBOL). See the openUTM manual „Programming Applications with
KDCS”.

● The sequence of the EXIT statements with USAGE=START and USAGE=SHUT
defines the sequence in which the programs of the event exits START and SHUT are
executed when the application is started or shut down.

● The master LTERM of a LTERM bundle must be generated before the slave LTERMs
of this LTERM bundle.

● The primary LTERM of a LTERM group must be generated before the alias LTERMs of
this LTERM group.

● The DEFAULT statement refers only to the control statements entered thereafter.

● Load modules are loaded in the same order as that in which the LOAD-MODULE state-
ments are entered. Refer to the LOAD-MODULE statement on page 346 and openUTM
manual “Using openUTM Applications under BS2000 Systems”.

● Shared objects/DLLs are loaded in the same order as that in which the SHARED-
OBJECT statements are entered.

B

B

B

B

X/W

X/W

KDCDEF generation tool Calling KDCDEF and entering the control statements

Generating Applications 261

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.2.3 Format of the control statements

All KDCDEF control statements (apart from the DEFAULT statement under BS2000
systems) have the following format:

control-statementËoperand1, operand2,...

– control-statement can be entered starting in column 1 or later.
– control-statement must be separated from the operands by at least one blank.
– Each line of the control statement can be up to 240 characters in length. The control

statements can be up to 3096 characters in length when continuation lines are used
(see section “Continuation lines in control statements” on page 261).

– Comments can be inserted using the statement REMARK or by entering an asterisk (*)
in column 1.

– The EJECT statement initiates a page feed in the log. The EJECT line itself is not
logged.

6.2.4 Continuation lines in control statements

A control statement for the KDCDEF generation tool can consist of one or more lines, in
which the hyphen (-) or backslash (\) can be used as the continuation character. In other
words, if the last character of a line (apart from blanks) is a hyphen or a backslash,
KDCDEF interprets the following line as belonging to the last statement specified. The
continuation line can be entered starting in column 1 or later.

Each control statement can be up to 3096 characters in length, excluding comment lines,
continuation characters, and blanks after the continuation character.

All comment lines must be marked with REMARK or an * in column 1.

Calling KDCDEF and entering the control statements KDCDEF generation tool

262 Generating Applications

6.2.5 Syntax and plausibility checks

KDCDEF carries out syntax and plausibility checks for all control statements entered. If
KDCDEF does not detect any serious errors, then KDCDEF creates the KDCFILE and/or
the source code for the ROOT tables, depending on what you have specified in OPTION.

In the case of UTM cluster applications, the UTM cluster files are also created where
necessary.

KDCDEF always executes the plausibility checks for all control statements. If only one
ROOT table source is created in a KDCDEF run, for example, then KDCDEF also checks
the control statements that only affect the KDCFILE.

For this reason you should execute every KDCDEF run using all generation information,
regardless of whether on the source code for the ROOT tables or only the KDCFILE is to
be created.

Inconsistencies arising during the creation of the ROOT table module and KDCFILE that
would otherwise only be detected once the application is started can be detected much
earlier when complete plausibility checks are used. Errors are avoided.

6.2.6 KDCDEF logging

To improve legibility, KDCDEF logging can be structured as follows:

● Comments can be inserted in the KDCDEF log:

– As a string surrounded by quotes:
KDCDEF control statement "comment“
The comment entered after a KDCDEF control statement must not contain quotes.

– With * comment or REMARK comment
A * in column 1 or a REMARK statement create a comment line with a line number.

● Markers can be inserted in front of KDCDEF control statements, and must be preceded
by a period (.marker). marker can be up to eight alphanumeric characters in length, and
must begin with a letter.

● The EJECT statement initiates a page feed in the log. The EJECT line itself is not
logged.

KDCDEF generation tool Format and uniqueness of the object names

Generating Applications 263

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.2.7 Format and uniqueness of object names

When configuring objects of the application, you must assign names to the objects. These
names are then used by openUTM or the user to address specific objects. The following
conditions should be borne in mind when assigning names:

– You must not use a reserved name.
– The object name must be unique within that particular object class.
– The name must not exceed the defined maximum length, and must contain permitted

characters only.

6.2.7.1 Reserved names

Please note the comments below in order to ensure that the allocation of names does not
result in unexpected, undefined UTM application behavior:

● Names which start with KDC are reserved for the transaction codes of the event
services, the administration commands (KDCADM), the Dead Letter Queue and the
SAT administration (BS2000 systems) and should only be used for such objects.
This does not apply to the load modules belonging to a UTM application under BS2000
systems.

● Under BS2000 systems program unit names must not start with prefixes which are used
for runtime systems such as IT, IC etc.

● Under Unix systems and Windows systems the names of UTM objects must not start
with KDC, KC, x, ITS or mF. External names (e.g. program unit names) must not start
with ’t_’, ’a_’, ’o_’ or ’s_’ which are reserved for CMX (t_) or OSS (a_, o_, s_).

6.2.7.2 Format of names

The following conventions must be observed for names entered in KDCDEF control state-
ments:

● The base name of the KDCFILE (MAX ...,KDCFILE=) must comply with the rules for file
names of the operating system, under which the application is to run (for further infor-
mation, see MAX statement on page 376).

B

B

B

B

X/W

X/W

X/W

Format and uniqueness of the object names KDCDEF generation tool

264 Generating Applications

● The names of LTERM partners, clients and printers, transaction codes and TAC queues
etc. can be up to eight characters in length, where the following characters are
permitted:

– A,B,C,...,Z
– 0,1,...,9
– #, @, $

Under Unix systems and Windows systems, names may also contain lowercase letters
(a,b,c,...,z). The names are case sensitive.

● Program names specified as entry/object names in the PROGRAM statement may be
up to 32 characters long. This also applies for program names in TAC PROGRAM= and
EXIT PROGRAM=.

The following characters are permitted in program names:

– A,B,C,...,Z
– 0,1,...,9
– #, @, $

If other special characters are used, the program name must be enclosed in quotes, see
below.

● Additional special characters in names:

– Program names or passwords may also include other special characters such as
"_" (underscore) and "-" (hyphen) if permitted by the particular system environment.

– Load module names in BS2000 systems (LOAD-MODULE) may also include the "."
(period) and "-" (hyphen) characters.

– Names that include special characters (program names, passwords, etc.) must be
enclosed in quotes.

● Exceptions to name length rules:

– Presentation and session selectors in the ACCESS-POINT and OSI-CON state-
ments can be up to 16 characters in length.

– program names can be up to 32 characters long.
– Under BS2000 systems, load module names in BLS generation can be up to 32

characters long; the names of common memory pools (Mpools) can be up to 50
characters long.

X/W

X/W

B

B

B

B

B

KDCDEF generation tool Format and uniqueness of the object names

Generating Applications 265

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.2.7.3 Number of names

A name is created for each of the following control statements:

Additional names are generated for the CLUSTER, CLUSTER-NODE; LTERM, MUX and
TPOOL statements:

● 1 BCAMAPPL is also generated for the CLUSTER statement.

● 1 PTERM, 1 LTERM and 1 USER are also generated for each CLUSTER-NODE
statement.

● If an application is generated without USER, two names are created for each LTERM
statement.

● Two names are created for an LTERM statement belonging to a PTERM statement with
PTYPE=APPLI, SOCKET, UPIC-R or UPIC-L if the implicit (connection) user belonging
to this LTERM is not generated with an explicit USER statement.

● For each TPOOL statement, the number of names created is double that specified in
the NUMBER= operand of the TPOOL statement. In the case of a TPOOL statement
with PTYPE=APPLI, SOCKET, UPIC-R, the number of names created is triple that
specified in NUMBER=.

● Two names are created for each MUX statement.

Furthermore, up to six additional names are created during generation, which are required
by openUTM for event services (KDCSGNTC, KDCBADTC, KDCMSGTC, KDCMSGUS,
KDCMSGLT, KDCAPLKS). The first three names can also be specified in a TAC statement.
The last three names may not be specified.

If XATMI program units are generated for a UTM application, i.e. if API=(XOPEN,XATMI) is
set in at least one TAC statement, then a TAC entry named KDCTXCOM and a PROGRAM
entry named KDCTXRLB are created by openUTM.

ACCESS-POINT
BCAMAPPL
CON
EDIT
KSET
LOAD-MODULE (BS2000 systems)
LPAP
LSES
LTAC
LTERM
MASTER-OSI_LPAP
MASTER-LU61-LPAP

MUX (BS2000 systems)
OSI-CON
OSI-LPAP
PROGRAM
PTERM
SHARED-OBJECT (Unix systems, Windows systems)
TAC
TLS
TPOOL
USER
ULS

B

Format and uniqueness of the object names KDCDEF generation tool

266 Generating Applications

The name KDCDLETQ is created for the dead letter queue during generation. The
properties of this TAC queue can also be defined in a separate TAC statement.

Maximum values for names

The table below shows the maximum number of names that can be created using KDCDEF
control statements. If this number is exceeded, then the generation is terminated.

Description of placeholders:

#statement Number of names generated using this KDCDEF statement

#APPLI Number of PTERM statements plus the TPOOLNR values of the TPOOL
statements with PTYPE=APPLI/SOCKET/UPIC-R and UPIC-L (UPIC-L
only under Unix systems and Windows systems)

In the case of UTM cluster applications, the values of #PTRM, #LTRM and
#APPLI are each increased by the number of specified CLUSTER-NODE
statements.

#MUX Total number of generated MUX statements (only under BS2000 systems)

Group of KDCDEF control statements Maximum number
of generated

names

#USER + #APPLI + #LSES + #OSI-ACTIVE-ASSOCIATIONS +
(2 * #TASKS) + 1

Î 500000

#PTERM + #CON + TPOOLNR + #OSI-ASSOCIATIONS + #MUX1

1 Only supported under BS2000 systems

Î 500000

#LTERM + #LPAP + TPOOLNR + #OSI-LPAP + #TASKS + #MUX1 + 1 Î 500000

#PTERM + #CON + TPOOLNR + #OSI-ASSOCIATIONS Î 500 000

#LTERM + #LPAP + TPOOLNR + #OSI-LPAP + #TASKS + 1 Î 500 000

#PROGRAM Î 32000

#TAC + 4 Î 32000

#LSES Î 65000

#CON Î 65000

#KSET + 1 Î 32000

#LTAC Î 32000

#MUX1 Î 9999

Total of all names + 2 Î 32767

B

B

B

X/W

X/W

BB

KDCDEF generation tool Format and uniqueness of the object names

Generating Applications 267

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

#OSI-ACTIVE-ASSOCIATIONS
Number of active parallel OSI connections of the generated operand values
(OSI-CON ...,ACTIVE=YES and associated
OSI-LPAP ...,ASSOCIATIONS=number). This is the sum of all
ASSOCIATIONS values in all OSI-LPAP statements.

#OSI-ASSOCIATIONS
#OSI-ACTIVE-ASSOCIATIONS plus the number of inactive parallel
OSI-connections. (OSI-CON ...,ACTIVE=YES/NO and associated
OSI-LPAP ...,ASSOCIATIONS=number). This is the sum of all
ASSOCIATIONS values in all OSI-LPAP statements, including the values of
OSI-LPAP statements for which backup connections are generated.

TPOOLNR Sum of all NUMBER= operands (number of LTERM partners in each
LTERM pool) in all generated TPOOL statements

The following must also be noted:

● The number of names for #PROGRAM, #TAC, #LTERM, #PTERM, #USER, #KSET
and #LTAC includes names generated statically and reserved names for objects that
can be entered dynamically.

● The names of MASTER-LU61-LPAP statements must also be counted with #LPAP.

● The names of MASTER OSI-LPAP statements must also be counted for #OSI-LPAP.

● If the application was generated without USER statements, #USER must be replaced
by #LTERM + TPOOLNR in the first condition.

● You can generate up to 100 ULS blocks and 100 TLS blocks.

● The number of generated user IDs (#USER) plus the number of entries intended for
service stacking (defined in MAX NRCONV=) is restricted to a maximum of 500000.

● The number of generated user IDs (#USER) plus the number of entries intended for
service stacking (MAX NRCONV) plus the maximum number of possible parallel
asynchronous services (defined in MAX ASYNTASKS = (...,service_number)) plus the
number of entries reserved for sign on services (SIGNON CONCURRENT-TERMINAL-
SIGNON) is restricted to a maximum of 665000.

Format and uniqueness of the object names KDCDEF generation tool

268 Generating Applications

6.2.7.4 Uniqueness of names and addresses

The objects of a UTM application are combined in shared name spaces which are defined
for specific object types. The names and address of objects of the permitted types must be
unique throughout the name class. A name or address must only be assigned once within
the name class. There are three name classes:

Name class 1

● LTERM partners (statement LTERM ltermname)

● LTERM partners created by openUTM for the LTERM pools
(statement TPOOL ...,LTERM=ltermprefix, NUMBER=number)

● transaction codes and TAC queues (statements TAC tacname)

● LPAP or OSI-LPAP partners for server-to-server communication
(statements OSI-LPAP osi_lpap_name and LPAP lpapname)

Name class 2

● user IDs (statement USER username)

● sessions for distributed processing based on LU6.1 (statement LSES sessionname)

● connections and associations for distributed processing based on OSI TP
(statement OSI-LPAP ..., ASSOCIATION-NAMES=, ASSOCIATIONS=)

Name class 3

● clients and printers (PTERM statement)
Clients are terminals, UPIC-clients, transport system applications (DCAM, PDN, CMX
and socket applications), and UTM partner applications that do not use a higher-level
protocol (LU6.1, OSI TP) during communication.

● name of the partner application for distributed processing based on LU6.1 (CON
statement)

● name of the partner application for distributed processing based on OSI TP (OSI-CON
statement)

● multiplex connections of a UTM application under BS2000 systems (MUX statement) B

KDCDEF generation tool Format and uniqueness of the object names

Generating Applications 269

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

The objects listed above are communication partners of the UTM application. openUTM
must be able to uniquely identify these objects and the connections to them. For this
purpose, it assigns a name triplet to each communication partner. This name triplet must be
unique within the UTM application and consists of the following components:

● the name of the communication partner.
This is specified in ptermname in the PTERM statement, in remote_appliname in the CON
statement, in TRANSPORT-SELECTOR= in the OSI-CON statement and in name in the
MUX statement.
Under BS2000 systems the BCAM name of the communication partner must be
specified.

● the name of the system on which the communication partner is located.
This is specified in the PRONAM= operand of the PTERM, CON and MUX statements
and in the NETWORK-SELECTOR= operand of the OSI-CON statement.

● the name of the local application via which the connection to the communication partner
is established. This is specified in the BCAMAPPL= operand of the PTERM, MUX and
CON statements and in the LOCAL-ACCESS-POINT= operand of the OSI-CON
statement.

B

B

Result of the KDCDEF run KDCDEF generation tool

270 Generating Applications

6.2.8 Result of the KDCDEF run

Depending on the entries made during generation, the KDCDEF generation tool creates the
following:

● BS2000 systems:

– the KDCFILE with the main file filebase.KDCA and, if dual-file operation is used, the
duplicate file filebase.KDCB

– the ROOT table source
– the page pool filebase.PnnA, possibly with the duplicate filebase.PnnB
– the restart area filebase.RnnA, possibly with the duplicate filebase.RnnB

● Unix systems and Windows systems:

– the main file KDCA in the filebase directory and, if dual-file operation is used, the
duplicate file KDCB, also in the filebase directory

– the ROOT table source in the form of a C/C++ source
– the page pool PnnA, possibly with the duplicate PnnB, in the filebase directory
– the restart area RnnA, possibly with the duplicate RnnB, in the filebase directory

● Additionally, if a UTM cluster application is being generated, see also the chapter
“Notes on generating a UTM cluster application” on page 61:

– the cluster configuration file
– the cluster user file
– the cluster page pool files (a control file and one or more files for the user data)
– the cluster GSSB file
– the cluster ULS file

The format of the KDCFILE is described in detail in section “The KDCFILE” on page 43.

KDCDEF outputs a message to SYSOUT (BS2000 systems) or stderr (Unix systems,
Windows systems) indicating whether the KDCFILE was created successfully and speci-
fying the size of the KAA (KDC Application Area) occupied by the application. It also outputs
a log containing the control statements and any error messages to SYSLST (BS2000
systems) or stdout (Unix systems, Windows systems).

Note for KDCDEF under BS2000 systems

If the KDCDEF generation tool terminates abnormally due to an error, it sets process switch
3 (as occurs with all UTM tools). In this case, no files are generated apart from those
created by the CREATE-CONTROL-STATEMENTS statement.

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

B

B

B

B

KDCDEF generation tool Inverse KDCDEF

Generating Applications 271

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.3 Inverse KDCDEF

The inverse KDCDEF function provided by openUTM is used to ensure that all changes
made to the configuration dynamically during runtime are not lost when your application is
regenerated. It creates control statements for the KDCDEF generation tool from the config-
uration data in the current KDCFILE.

Inverse KDCDEF generates control statements for object types that can be entered and
deleted dynamically:

● USER statements

For all user IDs currently defined in the application. Inverse KDCDEF does not create
USER statements for user IDs defined internally by UTM for the LTERM partners of
clients of type UPIC-R, APPLI and SOCKET.

● LTERM statements

For all LTERM partners of the application which do not belong to an LTERM pool or to
a multiplex connection (BS2000 systems).

● PTERM statements

For all clients and printers entered in the configuration. No PTERM statements are
created for clients that connect via an LTERM pool to the application or that belong to
a multiplex connection.

● PROGRAM statements

For all program units and conversation exits currently defined in the application config-
uration.

● TAC statements

For all transaction codes and TAC queues of the application.

● KSET statements

For all key sets of the application.

● CON statements

For all LU6.1 connections of the application.

● LSES statements

For all LU6.1 session names of the application.

● LTAC statements

For all local transaction codes for VTV partner applications.

Inverse KDCDEF KDCDEF generation tool

272 Generating Applications

Control statements are also generated for objects of the types listed above, which were
created statically in a previous KDCDEF generation. All modifications entered dynamically
for these objects during runtime are taken into consideration.

Inverse KDCDEF does not create control statements for object types other than those listed
above. Nor does it generate control statements for other components of the application or
for application parameters.

It does not create control statements for objects that were dynamically deleted from the
application configuration. After regeneration, these objects are thus permanently removed
from the configuration. They do not occupy a table location and their object names are no
longer reserved.

After regeneration with KDCDEF, the update tool KDCUPD does not transfer any appli-
cation data from the old KDCFILE to the new KDCFILE, which relates to objects deleted
dynamically. This applies even if the new KDCDEF generation includes an object with the
same name and type as a deleted object. In particular, KDCUPD does not transfer any
asynchronous jobs created by LTERM partners or user IDs that have since been deleted.

The USER statements created by inverse KDCDEF do not include any passwords. For user
IDs generated with a password, inverse KDCDEF creates USER statements with the
following format:

USER username, PASS=∗RANDOM,....

Once the KDCDEF run is complete and the new KDCFILE has been created, you must
transfer the passwords of the user IDs to the new KDCFILE using the KDCUPD tool. This
is also possible in a UTM-F application. For further information, see chapter “The tool
KDCUPD – updating the KDCFILE” on page 591.

It is not generally necessary to transfer the passwords with KDCUPD with UTM cluster
applications. In UTM cluster applications, the current passwords are stored in the cluster
user file and not in the KDCFILE.

You only need to transfer the passwords with KDCUPD if a new cluster user file has been
generated and you wish to retain the passwords from the last application run.

i In order to ensure that the KDCFILE contains the current passwords, the current
information on all users must be read once (e.g. using WinAdmin or WebAdmin.)
before the application is terminated.

KDCDEF generation tool Inverse KDCDEF

Generating Applications 273

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.3.1 Starting inverse KDCDEF

Inverse KDCDEF can be started online or offline.

The inverse KDCDEF run is started online by issuing the KC_CREATE_STATEMENTS call
via the program interface for administration. Further information can be found in the
openUTM manual “Administering Applications”. Inverse KDCDEF can only be started
offline if the application is not running, i.e. outside the application runtime. Since inverse
KDCDEF reads data from the KDCFILE, you must ensure that this data is not modified
during the inverse KDCDEF run.

 Inverse KDCDEF can be started offline by calling the KDCDEF generation tool and
issuing the control statement CREATE-CONTROL-STATEMENTS. This statement
is described on page 323.

You can start inverse KDCDEF such that KDCDEF control statements are created
either for all permitted object types, or only for those object types combined in the
object groups CON, DEVICE, KSET, LSES, LTAC, PROGRAM and USER.

● CREATE-CONTROL-STATEMENTS *ALL

KDCDEF control statements are created for all objects of type TAC, PROGRAM,
PTERM, LTERM USER, KSET, LTAC, CON and LSES.

● CREATE-CONTROL-STATEMENTS DEVICE

LTERM and PTERM statements are created for LTERM partners, clients and
printers.

● CREATE-CONTROL-STATEMENTS PROGRAM

PROGRAM and TAC statements are created for program units, conversation exits,
and transaction codes.

● CREATE-CONTROL-STATEMENTS USER

USER statements are created for user IDs.

● CREATE-CONTROL-STATEMENTS KSET

KSET statements are created for key sets.

● CREATE-CONTROL-STATEMENTS LTAC

LTAC statements are created for transaction codes. These are used to start the
service programs in partner applications.

● CREATE-CONTROL-STATEMENTS CON

CON statements are created for transport connections to remote LU6.1 applica-
tions.

Inverse KDCDEF KDCDEF generation tool

274 Generating Applications

● CREATE-CONTROL-STATEMENTS LSES

LSES statements are created for assigning new LU6.1 session names.

6.3.2 Result of inverse KDCDEF

With inverse KDCDEF, you can define that

● all control statements are to be written to a file or - in BS2000 systems - to an LMSlibrary
element.

● or that the control statements of a particular object group are to be written to a separate
file or to a separate LMS library element.

When starting inverse KDCDEF, you specify the name(s) of the file(s) or LMS library
element(s) to be created. If a file or LMS library element with this name does not exist, the
file or library element is created automatically. If a file or LMS library element with this name
already exists. It is created automatically. Otherwise you can define whether it is to be
overwritten or updated.

The CREATE-CONTROL-STATEMENTS statement is applied immediately. You can
therefore issue the OPTION statement immediately after the CREATE-CONTROL-
STATEMENTS statement in the same KDCDEF run. This transfers the files created by
inverse KDCDEF to KDCDEF. For example:

:
CREATE-CONTROL-STATEMENTS *ALL, TO-FILE=control_statements_file

, MODE=CREATE,FROM-FILE=kdcfile
OPTION DATA=control_statements_file
:
:
END

The diagram below illustrates how you can transfer the files generated by inverse KDCDEF
directly as input files to KDCDEF. However, you can also edit them, i.e. modify them before
the KDCDEF run and pass them to KDCDEF later as part of a regeneration. In this case,
you simply terminate the generated control statements with the END statement. You assign
each generated input file to KDCDEF with the control statement OPTION
DATA=control_statements_file before the start.

KDCDEF generation tool Inverse KDCDEF

Generating Applications 275

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Figure 18: KDCDEF run with inverse KDCDEF

KDCDEF generation tool

KDCDEF control statements

ROOT table
source

Newly created
KDCDEF

log

CREATE-CONTROL-STATEMENTS...

OPTION DATA=control-statements-file

.

.

.

.

.

.

File(s) containing

for objects that can only be
modified statically

KDCFILE
containing objects entered

KDCFILE

generated from the
control statements

KDCFILE

dynamically

Inverse KDCDEF KDCDEF generation tool

276 Generating Applications

6.3.3 Creating KDCDEF control statements in upgrades

To enable inverse KDCDEF to read information from the KDCFILE, you must ensure that
the KDCFILE was created with the same UTM version as the KDCDEF generation tool
used for the inverse KDCDEF run.

If you upgrade to a new openUTM version, the KDCDEF control statements must first be
created in the previous version, i.e. you must start the inverse KDCDEF of the previous
version. The generated files can then be used as input files for the KDCDEF of the new
openUTM version.

KDCDEF generation tool Recommendations for regeneration

Generating Applications 277

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.4 Recommendations when regenerating an application

During the operation of a UTM application, it may become necessary to regenerate the
application.

In the case of UTM cluster applications, there are changes that can be made with a new
generation of the KDCFILE with a running UTM cluster application and changes that can
only be made when the UTM cluster application has been completely terminated.

 A list of changes that require the UTM cluster application to be completely termi-
nated before the application is started with the new KDCFILE can be found in the
following manuals:

● openUTM manual “Using openUTM Applications under BS2000 Systems”

● openUTM manual “Using openUTM Applications under Unix Systems and
Windows Systems”

Possible reasons for initiating a new KDCDEF run are listed below:

● to adjust the maximum values defined during generation

● to create new objects for distributed processing based on LU6.1 or OSI TP, because the
server group is to be expanded during distributed processing
A KDCDEF run is only needed for distributed processing based on LU6.1 if it is
necessary to insert LPAP objects. Objects of the types CON, LSES and LTAC, on the
other hand, can be created with dynamic administration (provided that sufficient table
entries were reserved with the RESERVE statement).

● to enter new load modules (BS2000 systems), shared objects (Unix systems) or DLLs
(Windows systems) in the application program

● in cases where table locations reserved for the dynamic entry of objects in the configu-
ration are occupied, to extend the table or to remove objects marked for deletion in
order to release the table locations and object names for further use

The application downtime associated with regeneration can be reduced by observing the
following recommendations:

● When generating your application for the first time, split the KDCDEF control state-
ments between various files depending on whether the objects involved can only be
generated statically or can be entered dynamically. These files can then be provided to
KDCDEF as input files using the OPTION DATA= statement.

● The control statements USER, LTERM, PTERM, PROGRAM TAC, CON, KSET, LSES
and LTAC should be entered separately in files in accordance with the various object
groups. When regenerating the application, you can simply replace these files with
those created by inverse KDCDEF (DEVICE, PROGRAM, and USER, CON, KSET,

Recommendations for regeneration KDCDEF generation tool

278 Generating Applications

LSES and LTAC). Further information can be found in the description of the CREATE-
CONTROL-STATEMENTS statement on page 323.

Before regenerating the application or initiating the inverse KDCDEF run, it is recom-
mended that you dynamically delete all objects that are to be excluded from the new config-
uration (KC_DELETE_OBJECT call). Further information can be found in the openUTM
manual “Administering Applications”.

i In UTM cluster applications, objects that can be administered dynamically must
always be deleted using the administration facilities. Only deleting the objects in the
KDCDEF source leads to inconsistencies in the individual node applications of the
UTM cluster application.

Compared to the manual deletion of control statements from the input file for the KDCDEF
run, dynamic deletion offers the following advantages:

● If an object is manually deleted from the input file during regeneration, and another
object is defined with the same name and type but with different properties in the same
generation run, the KDCUPD tool does not recognize these as two different objects,
and transfers the data of the deleted object to the KDCFILE. This can be avoided by
dynamically deleting the object beforehand, and then creating an object with the same
name and type during regeneration. In this case, KDCUPD will recognize these as two
different objects, and will not transfer the data of the old object into the new KDCFILE.

● The manual deletion of KDCDEF statements from the KDCDEF input file is both tedious
and prone to errors. During deletion, you must look out for dependencies between
objects and thus between the KDCDEF statements. If dependencies are inadvertently
overlooked, the KDCDEF run will have to be repeated thus increasing downtimes.

● The processes performed during regeneration can be automated. Within a single
procedure, you can call inverse KDCDEF, transfer the generated files directly to
KDCDEF, and call the KDCUPD update tool. This fully automatic procedure minimizes
downtimes during regeneration.

To prevent undesirable repercussions from dynamic deletion, make sure for instance that
there are no jobs pending for objects deleted or loaded dynamically during runtime.

KDCDEF control statements ABSTRACT-SYNTAX

Generating Applications 279

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.5 KDCDEF control statements

ABSTRACT-SYNTAX - define the abstract syntax

The ABSTRACT-SYNTAX control statement is only required if you want to define your own
Application Context for communication via the OSI-TP protocol (see the APPLICATION-
CONTEXT statement on page 289).

ABSTRACT-SYNTAX defines a local name for an abstract syntax, and to assign an object
identifier and the transfer syntax selected for transferring the user data. Since openUTM
automatically generates the abstract syntaxes CCR, UDT, XATMI and UTMSEC. Therefore,
they need not be explicitly generated using the ABSTRCT-SYNTAX statement. It is possible
to generate up to 50 abstract syntaxes, including those generated implicitly by openUTM.

abstract_syntax_name
Local name for an abstract syntax up to eight characters in length. This
name must be unique within the UTM application.

abstract_syntax_name must be specified in MGET/MPUT or FGET/FPUT
when sending or receiving data in this abstract syntax.

OBJECT-IDENTIFIER=object_identifier
Object identifier of the abstract syntax specified as follows:

object_identifier=(number1,number2, ... ,number10)

number is a positive integer in the range 0 to 67108863. For object_identifier,
you can specify two to ten integers enclosed in parentheses, each of which
is separated by a comma. The number of integers entered and their
positions are relevant.

Instead of the integer itself, you can also specify the symbolic name
assigned to this integer. The table on page 96 shows the permitted values
for number at the various positions.

object_identifier must be unique with the UTM application, i.e. another
abstract syntax must not be generated with the same object identifier.

ABSTRACT-SYNTAXË abstract_syntax_name

,OBJECT-IDENTIFIER=object_identifier

[,TRANSFER-SYNTAX=transfer_syntax_name]

ABSTRACT-SYNTAX KDCDEF control statements

280 Generating Applications

TRANSFER-SYNTAX=transfer_syntax_name
Name of a transfer syntax defined using the TRANSFER-SYNTAX control
statement.

Default: BER (Basic Encoding Rules)

openUTM automatically generates the abstract syntaxes CCR, UDT, XATMI and UTMSEC,
which are defined as follows:

Generation of “CCR”:

ABSTRACT-SYNTAXËCCR, -
OBJECT-IDENTIFIER=(2, 7, 2, 1, 2), -
TRANSFER-SYNTAX=BER

Symbolic representation of the object identifier:

(joint-iso-ccitt, ccr, abstract-syntax, apdus, version2)

Generation of “UDT”:

ABSTRACT-SYNTAXËUDT, -
OBJECT-IDENTIFIER=(1, 0, 10026, 6, 1, 1), -
TRANSFER-SYNTAX=BER

Symbolic representation of the object identifier:

(iso, standard, tp, udt, generic-abstract-syntax, version)

Generation of “XATMI”:

ABSTRACT-SYNTAXËXATMI, -
OBJECT-IDENTIFIER=(1, 2, 826, 0, 1050, 4, 1, 0), -
TRANSFER-SYNTAX=BER

Symbolic representation of the object identifier:

(iso, national-member-body, bsi, disc, xopen, xatmi, apdus-abstract-
syntax, version1)

Generation of “UTMSEC”:

ABSTRACT-SYNTAXËUTMSEC, -
OBJECT-IDENTIFIER=(1, 3, 0012, 2, 1107, 1, 6, 1, 2, 0), -
TRANSFER-SYNTAX=BER

Symbolic representation of the object identifier:

(iso, identified-organisation, icd-ecma, member-company, siemens-units,
sni, transaction-processing, utm-security, abstract-syntax, version)

KDCDEF control statements ACCESS-POINT

Generating Applications 281

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ACCESS-POINT - create an OSI TP access point

The ACCESS-POINT control statement is required only for communication based on the
OSI TP protocol. It defines a local access point to the services of OSI TP.

i If you issue more than one ACCESS-POINT statement per application, then
KDCDEF outputs warning K492.

Using the information specified in the ACCESS-POINT statement, a partner application can
address the local application.

You specify the following parameters for an access point in the ACCESS-POINT statement:

● Address of the access point within the local system
The address of the access points consists of the presentation selector, session selector
and transport selector components.

The address specifications must be coordinated with the communication partners.
The TRANSPORT-SELECTOR specification is mandatory in all cases.

Unix systems and Windows systems:
On Unix systems and Windows systems the address of the access point also comes
from the LISTENER-PORT, T-PROT, and TSEL-FORMAT components.
See section “Providing address information for the CMX transport system (Unix
systems and Windows systems)” on page 109 for more information.

● Application Entity Qualifier
You can define an application entity qualifier (AEQ) as additional address information.
The application entity qualifier (AEQ) is combined with the application process title
(APT) defined in the UTMD statement to form the application entity title (AET).
The AET is a globally unique name for an application entity within the OSI TP
environment. During transaction-oriented processing, the partner application requires
the AET of the local UTM application in order to establish a connection. Similarly, the
local application requires the AET of the partner application. It must be specified in the
OSI-LPAP control statement that defines the partner application.
The transport selector for the access point is still a mandatory entry.

● Listener ID (Unix systems, Windows systems)
Under Unix systems and Windows systems the access point is assigned a listener ID if
the application accesses the network using multi-threaded processes. Network connec-
tions managed by the same network process can thus be combined. The connection to
the network is always set up using multi-threaded processes under Windows systems.

Each ACCESS-POINT is signed on to the transport system when the application is started
(provided this is possible), and is not signed off until the application is terminated.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

ACCESS-POINT KDCDEF control statements

282 Generating Applications

access-point_name
Name of the OSI TP access point, which is then used to identify the access
point in the local UTM application.

access-point_name can be up to eight characters in length. access-point_name
must be unique within the local UTM application.

APPLICATION-ENTITY-QUALIFIER=aequalifier
Address component of the application entity title (AET). The AET is required
if you are working with transaction management (commit functional unit), or
if a heterogeneous partner requires an AET in order to establish a
connection.

An application entity qualifier (AEQ) can be specified only if an application
process title (APT) is also defined for the application in the UTMD
statement.

However, an APT need not necessarily be assigned an AEQ. If AEQ is not
defined , the access point has no application entity title (AET), i.e. it cannot
be used for transaction management (commit functional unit).

i If the application context of an OSI-LPAP partner that operates via this
access point (OSI-CON statement) contains the CCR syntax, you must
enter an application entity qualifier here.

ACCESS-POINTË access_point_name

[,APPLICATION-ENTITY-QUALIFIER=aequalifier]

,PRESENTATION-SELECTOR={ *NONE |
(C'c' [,STD | EBCDIC | ASCII]) |
X'x' }

,SESSION-SELECTOR={ *NONE |
(C'c' [, STD | EBCDIC | ASCII]) |
X'x' }

,TRANSPORT-SELECTOR=C'c'

further operands for Unix systems and Windows systems

[,LISTENER-ID=number]

[,LISTENER-PORT=number]

[,T-PROT=(RFC1006)]

[,TSEL-FORMAT={ T | E | A }]

X/W

X/W

X/W

X/W

KDCDEF control statements ACCESS-POINT

Generating Applications 283

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

For aequalifier, specify a positive integer. aequalifier must be unique within
the application, i.e. aequalifier=integer1 must not be specified as the AEQ in
any other ACCESS-POINT statement.

Minimum value: 1
Maximum value: 67108 863 (226-1)

LISTENER-ID=number
This assigns a listener ID to the access point as administrative information
used for multi-threaded network access.

Listener IDs can be specified for access points and application names.
Further information can be found in the description of the BCAMAPPL
statement.

Multi-threaded network accesses (MAX ...,NET-ACCESS=
MULTI-THREADED) allows you to manage several connections in a single
network process. All connections with the same listener ID are managed
within the same network process. Listener IDs also allow you to distribute
the management of network access over a number of network processes.

If you do not explicitly specify a listener ID, openUTM assigns the value 0
and combines all connections without a listener ID into a single network
process.

Default value: 0
Minimum value: 0
Maximum value: 32767

BCAMAPPL names that were created for communication via the socket
interface (native TCP/IP) use separate network processes. Their listener
IDs comprise a separate number space. i.e. they are administered in a
different network process even if they have the same listener ID as this
access point.

LISTENER-PORT=number
Port number of the access point for establishing TCP/IP connections.

Permitted values: 1025 - 32767

Default: 0 (i.e. no port number)
102 for OPTION CHECK-RFC1006

If OPTION CHECK-RFC1006=YES, then a port number must be entered
for LISTENER-PORT.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

ACCESS-POINT KDCDEF control statements

284 Generating Applications

PRESENTATION-SELECTOR=
Presentation selector for the address of the OSI TP access point.

*NONE The address of the OSI TP access point does not contain a presentation
selector.

C’c’ The presentation selector is entered in the form of a character string (c). The
value specified for c can be up to 16 characters in length. The presentation
selector is case-sensitive.

In the case of a character string, you can chose the code in which the
characters are interpreted.

STD The characters are interpreted as a machine-specific code
(BS2000 = EBCDIC; Unix systems and Windows systems = ASCII).

Default: STD

EBCDIC
The characters are interpreted as EBCDIC code.

ASCII The characters are interpreted as ASCII code.

X’x’ The presentation selector is entered in the form of a hexadecimal number
(x). The value specified for x can be up to 32 hexadecimal digits (ï 16 bytes)
in length. You must enter an even number of hexadecimal digits.

SESSION-SELECTOR=
Session selector for the address of the OSI TP access point.

*NONE The address of the OSI TP access point does not contain a session
selector.

C’c’ The session selector is entered in the form of a character string (c). The
value specified for c can be up to 16 characters in length. The session
selector is case-sensitive.

In the case of a character string, you can chose the code in which the
characters are interpreted.

STD The characters are interpreted as a machine-specific code
(BS2000 = EBCDIC; Unix systems and Windows systems = ASCII).

Default: STD

EBCDIC
The characters are interpreted as EBCDIC code.

ASCII The characters are interpreted as ASCII code.

KDCDEF control statements ACCESS-POINT

Generating Applications 285

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

X’x’ The session selector is entered in the form of a hexadecimal number (x).
The value specified for x can be up to 32 hexadecimal digits (ï 16 bytes) in
length. You must enter an even number of hexadecimal digits.

TRANSPORT-SELECTOR=C’c’
Transport component for the address of the OSI TP access point.

The specification of T-SEL=C’c’ is mandatory.

You can enter up to eight printable characters. Permitted characters include
uppercase letters, numbers, and the special characters $, # and @.
Hyphens are not permitted. The first character of the name must be an
uppercase letter.

The name defined in T-SEL must be unique in the local UTM application. It
must not be the same name as the primary application name specified in
MAX APPLINAME, a BCAMAPPL name or the name specified with a
T selector in an ACCESS-POINT control statement.

BS2000 systems:

T-SEL= specifies the local BCAM application name.The transport selector
must be unique in the local system for each host.

Unix systems and Windows systems:

You must match T-SEL to the transport selector of the OSI TP partner. If, for
example, the partner is a UTM application, the specification in T-SEL must
match the transport selector of the OSI-CON statement on the partner.

T-PROT= Address formats of the T-selectors of the access point

Further Information, see “PCMX documentation” on page 18.

RFC1006 Address format RFC1006, ISO transport protocol based on TCP/IP and
RFC1006 convergence protocol.

Default: RFC1006

B

B

B

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/W

ACCESS-POINT KDCDEF control statements

286 Generating Applications

TSEL-FORMAT=
Format indicator of the T-selectors of the access point
(operand TRANSPORT-SELECTOR)

The format indicator specifies the encoding of the T-selectors in the
transport protocol. You will find more information in the “PCMX documen-
tation” on page 18.

T TRANSDATA format (encoded in EBCDIC)

E EBCDIC character format

A ASCII character format

Default:
T if the character set of the T-selector corresponds to the TRANSDATA

format
E in all other cases

It is recommended to specify a value explicitly for TSEL-FORMAT.

X/W
X/W

X/W

X/W

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

KDCDEF control statements ACCOUNT

Generating Applications 287

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ACCOUNT - define the accounting functions

The ACCOUNT control statement allows you to define:

● whether the accounting or calculation phase of the UTM accounting is to be activated
at the start of the UTM application,

● when an accounting record is written,

● the weighting with which resources are to be evaluated in the accounting phase.

If the ACCOUNT control statement is not specified, then this has the same effect as
ACCOUNT ACC=NO. Only the first ACCOUNT statement of a KDCDEF run is evaluated.

UTM accounting can also be activated and deactivated via the administration, even if no
ACCOUNT statement is issued in the KDCDEF generation. In this case the default values
apply.

You may only specify the ACCOUNT statement once within a KDCDEF run.

i The UTM accounting functions and the format of accounting records written by
openUTM are described in the openUTM manual “Using openUTM Applications”.

ACC= specifies which UTM accounting functions are to be executed. ACC is a
mandatory operand.

YES openUTM is to activate the accounting phase of UTM accounting after the
application start.

NO The accounting functions are not activated after the application start.
You can switch on the accounting functions during live operation using the
administration command KDCAPPL ..., ACC=ON or via the program
interface for administration (see the openUTM manual “Administering Appli-
cations”).

CALC openUTM is to activate the calculation phase after the application start.

ACCOUNTË ACC={ YES | NO | CALC }

[,CPUUNIT=cpuunit]

[,IOUNIT=iounit]

[,MAXUNIT=maxunit]

[,OUTUNIT=outunit]

ACCOUNT KDCDEF control statements

288 Generating Applications

CPUUNIT=cpuunit
specifies the weighting with which a CPU second is evaluated in the
accounting phase of the UTM accounting. Fractions of a CPU second are
billed proportionally.
You must enter an integer here.

Default value: 0
Minimum value: 0
Maximum value: 32767

IOUNIT=iounit
specifies the weighting with which 100 disk I/Os are evaluated in the
accounting phase.

Fractions of 100 inputs/outputs are billed accordingly.
You must enter an integer here.

Default value: 0
Minimum value: 0
Maximum value: 32767

i Unix systems and Windows systems:
This operand is not used because these operating systems do not provide
information on disk I/O.

MAXUNIT=maxunit
specifies the number of accounting units at which openUTM is to create an
accounting record for a particular user (USER).
You must enter an integer here.

Default value:
99 999 999 (=108-1)
i.e. an accounting record is normally created only on connection shutdown.

Minimum value: 1
Maximum value: 99 999 999 (=108 - 1)

OUTUNIT=outunit
specifies the weighting with which a print job (FPUT NE) is evaluated for
accounting purposes.
You must enter an integer here.

Default value: 0
Minimum value: 0
Maximum value: 4095

X/W

X/W

X/W

KDCDEF control statements APPLICATION-CONTEXT

Generating Applications 289

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

APPLICATION-CONTEXT - define the application context

The APPLICATION-CONTEXT control statement is required only for communication based
on the OSI TP protocol. You only have to specify the APPLICATION-CONTEXT statement
if you want to define an additional application context.

It allows you to define the application context used for communication via OSI TP. The appli-
cation context determines the rules governing data transfer between the communication
partners. It defines how the user data is encoded for transfer, and the format in which data
is transferred. The application context must be coordinated with the partner.

The APPLICATION-CONTEXT statement enables you to define a local name for an appli-
cation context, and to assign an object identifier and the abstract syntaxes belonging to this
application context.

openUTM generates the standard application contexts UDTAC, UDTDISAC, XATMIAC,
UDTCCR, UDTSEC and XATMICCR.

application_context_name
A local name for an application context up to eight characters in length.

application_context_name must be unique within the UTM application.

OBJECT-IDENTIFIER=object_identifier
Object identifier of the application context specified as follows:

object_identifier=(number1,number2, ... ,number10)

number is a positive integer in the range 0 to 67108863. For object_identifier,
you can specify two to ten integers enclosed in parentheses, each of which
is separated by a comma. The number of integers entered and their
positions are relevant.
Instead of the integer itself, you can also specify the symbolic name
assigned to this integer. The table on page 96 shows the permitted values
for number at the various positions.

object_identifier must be unique within the UTM application, i.e. another
application context must not be generated with the same object identifier.

APPLICATION-CONTEXTË application_context_name

,OBJECT-IDENTIFIER=object_identifier

,ABSTRACT-SYNTAX={ abstract_syntax_name |
(abstract_syntax_name,...) }

APPLICATION-CONTEXT KDCDEF control statements

290 Generating Applications

ABSTRACT-SYNTAX=
Abstract syntax assigned to the application context for the transfer of user
data.

abstract_syntax_name
Name of an abstract syntax defined using the ABSTRACT-SYNTAX control
statement.

(abstract_syntax_name, ..., abstract_syntax_name)
List of up to nine abstract syntaxes separated by commas. Each abstract
syntax specified in abstract_syntax_name must be defined beforehand using
the ABSTRACT-SYNTAX statement.

The default UTM syntaxes CCR, UDT, XATMI, and UTMSEC need not be
explicitly generated.

To work with transaction processing, a application context must be selected that contains
the abstract syntax CCR.

If sign-on data is to be passed in a APRO call, then a application context must be selected
that contains the abstract syntax UTMSEC.

If both partners use the XATMI interface, then a application context must be selected that
contains the abstract syntax XATMI.

openUTM automatically generates the application contexts UDTAC, UDTDISAC,
XATMIAC, UDTCCR, UDTSEC and XATMICCR, which are defined as follows:

Generation of “UDTAC”:

APPLICATION-CONTEXTËUDTAC, -
OBJECT-IDENTIFIER=(1, 0, 10026, 6, 2), -
ABSTRACT-SYNTAX=UDT

Symbolic representation of the object identifier:

(iso, standard, tp, udt, application-context)

Generation of “UDTDISAC”:

APPLICATION-CONTEXTËUDTDISAC, -
OBJECT-IDENTIFIER=(1, 0, 10026, 6, 2, 1), -
ABSTRACT-SYNTAX=UDT

Symbolic representation of the object identifier:

(iso, standard, tp, udt, application-context, with-tp)

KDCDEF control statements APPLICATION-CONTEXT

Generating Applications 291

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Generation of “XATMIAC”:

APPLICATION-CONTEXTËXATMIAC, -
OBJECT-IDENTIFIER=(1, 2, 826, 0, 1050, 4, 2, 1), -
ABSTRACT-SYNTAX=(XATMI)

Symbolic representation of the object identifier:

(iso, national-member-body, bsi, disc, xopen, xatmi, application-context,
atpll-21-31)

Generation of “UDTCCR”:

APPLICATION-CONTEXTËUDTCCR, -
OBJECT-IDENTIFIER=(1, 0, 10026,´6, 2), -
ABSTRACT-SYNTAX=(UDT, CCR)

Symbolic representation of the object identifier:

(iso, standard, tp, udt, application-context)

Generation of “UDTSEC”:

APPLICATION-CONTEXTËUDTSEC, -
OBJECT-IDENTIFIER=(1, 3, 0012, 2, 1107, 1, 6, 1, 3, 0), -
ABSTRACT-SYNTAX=(UDT, UTMSEC, CCR)

Symbolic representation of the object identifier:

(iso, identified-organisation, icd-ecma, member-company, siemens-units,
sni, transaction-processing, utm-security, application-context, version)

Generation of “XATMICCR”:

APPLICATION-CONTEXTËXATMICCR, -
OBJECT-IDENTIFIER=(1, 2, 826, 0, 1050, 4, 2, 1), -
ABSTRACT-SYNTAX=(XATMI, CCR)

Symbolic representation of the object identifier:

(iso, national-member-body, bsi, disc, xopen, xatmi, application-context,
atpll-21-31)

AREA KDCDEF control statements

292 Generating Applications

AREA - define additional data areas

The AREA statement allows you to define the name, properties, and sequence of additional
shareable data areas. The structure of these areas is not defined by openUTM and can be
defined as chosen. The addresses of such areas are passed to the program unit as param-
eters at the start of the program with the address of the communication area and the
standard primary working area.

i You have an alternative to administering areas with openUTM using AREA state-
ments in most programming languages (especially under COBOL and C/C++). The
alternative is to declare areas as external data areas and to access these areas
from the program units. This option offers a number of benefits compared with
AREAs. You will find more information on this subject in the openUTM manual
„Programming Applications with KDCS”.

Each area to be defined in openUTM must be defined in a separate AREA statement. The
order of the AREA statements indicates the order in which these areas must be specified
in the parameter list and declared in the program unit (e.g. under BS2000 systems in the
LINKAGE-SECTION under COBOL). If the area defined on the n-th location is required,
then all areas in the parameter list and in the data declaration must be specified or declared
up to this area.

It is possible to specify up to 99 AREA statements in a single generation run irrespective of
the operating system.

i AREAs in cluster applications are local to the node, i.e. each node application has
its own instance of each AREA.

KDCDEF control statements AREA

Generating Applications 293

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Generating areas under BS2000 systems

Under BS2000 systems areas can be created:

● in the global common memory pool (for all applications).

● in the local common memory pool (for all application processes started under the same
user ID).

● in non-privileged subsystems.

● in the linked application program.

The following applies for the AREA statement:

● If you specify the operand LOAD-MODULE=, you must also write a LOAD-MODULE
statement. Note that no load module may be referenced which has been generated with
LOAD-MODULE ...LOAD-MODE=ONCALL.

● AREA statements that do not contain the LOAD-MODULE operand define data areas
that are linked statically to the application program.

● The default values for AREA are set using the DEFAULT PROGRAM statement.

areaname Name of the area. areaname is an alphanumeric value up to 32 characters
in length. areaname must be a module.

LOAD-MODULE=lmodname
lmodname can be up to 32 characters in length.

LOAD-MODULE= identifies the name of the load module to which the
module is linked. This load module must be defined using the LOAD-
MODULE statement, and must not be generated with the operand LOAD-
MODE=ONCALL.

AREAË areaname

{ [,LOAD-MODULE=lmodname] |

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

AREA KDCDEF control statements

294 Generating Applications

Generating areas under Unix systems and Windows systems

An area must be explicitly defined, compiled, and linked to the program unit as external
C/C++ data structures.

In the AREA statement, you can define whether the area is transferred directly to the
program unit, or is accessed indirectly by means of a pointer. When accessing indirectly, a
pointer must be supplied with the address of the area before the first program unit is started.
You can set the addresses before compiling or during the application run in the event exit
START, for example.

areaname Name of the area. areaname is an alphanumeric value up to 32 characters
in length. areaname must be a module.

ACCESS= Mode of access to the additional data area

DIRECT The area is defined directly as a C data structure.

Default: DIRECT

INDIRECT The area is defined as a pointer. The pointer areaname must be supplied
with the address of the area. It is possible to first set the address during the
application run, e.g. you can store the address of a shared memory area in
the pointer in the START event exit.

AREAË areaname

[,ACCESS={ DIRECT | INDIRECT }]

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/WX/W

X/W

X/WX/W

X/W

X/W

X/W

KDCDEF control statements BCAMAPPL

Generating Applications 295

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

BCAMAPPL - define additional application names

The BCAMAPPL statement allows you to assign additional application names to the UTM
application for client/server communication and distributed processing via LU6.1. You must
also assign every BCAMAPPL name an address within the local system (T-selectors or
station names) so that the application is addressable from the communication partner.

The primary application name of the UTM application is specified in the APPLINAME
operand of the MAX statement. Please note the following:

● BS2000 systems:
You may issue the BCAMAPPL statement only for additional BCAM names of the appli-
cation. You must not issue a BCAMAPPL statement for the primary application name.

● Unix systems and Windows systems:
You will also need to issue a BCAMAPPL statement for the primary application name if
you also wish to establish connections via this name to partner applications or clients.

It is necessary to generate additional application names for your UTM application if:

● parallel connections via LU6.1 are to be defined to other applications (distributed
processing). In this event, additional application names must be generated in at least
one of the applications involved.

● communication with a partner is to be done via the socket interface (native TCP/IP).
You will need a separate BCAMAPPL name (with T-PROT=SOCKET) for the commu-
nication via the socket interface. This name cannot be used for communication via other
transport protocols.

● you select the transport protocol (not NEA) for a partner of a UTM application generated
with PTYPE=APPLI, PTYPE=UPIC-R, or generated as a partner of a LU6.1 application.

● you establish multiplex connections to a partner of a UTM application.

● you want to communicate with a UTM application on Unix or Windows systems.

● you want to establish connections via the RFC1006 protocol. In this case you must
define a separate BCAMAPPL name for the communication via RFC1006.

The BCAMAPPL statement can be issued several times. However, to ensure that resources
are not unnecessarily occupied, you should only generate as many BCAMAPPL statements
(i.e. application names) as are necessary.

i All K messages that refer to the UTM application name contain the name defined in
the MAX statement rather than the BCAMAPPL statement.

B

B

B

X/W

X/W

X/W

B

B

B

B

X/W

X/W

BCAMAPPL (BS2000 systems) KDCDEF control statements

296 Generating Applications

BCAMAPPL statement under BS2000 systems

appliname Additional BCAM name of the UTM application. appliname can be up to eight
characters in length. appliname must not be identical to the application name
you specified in MAX ...,APPLINAME= or in ACCESS-POINT ...,
TRANSPORT-SELECTOR=.

In addition, the name must be different from the application name that you
specified in the BCAMAPPL operand of the CLUSTER statement.

appliname must be unique in the local system for each host.

LISTENER-PORT=number
Only permitted for T-PROT=SOCKET. In this case, it is mandatory to specify
the LISTENER-PORT.

LISTENER-PORT specifies the port number on which openUTM waits for
external connection establishment requests.

All port numbers are allowed.

A port number may only be used once in the local system to listen for
connections being established via the socket interface (TCP-IP-APPLI).
It may be when starting openUTM that some port numbers are already
reserved by the system or other TCP/IP applications, or that privileged port
numbers may not be used. In this case, the start of the UTM application is
aborted.

SIGNON-TAC =
Specifies whether a sign-on service is to be started for connections that are
established using the application names appliname (=transport system
access point). If a sign-on service is to be started, you must specify the
name of the transaction code via which the sign-on service is to be started.

*NONE For connections to the UTM application that are to be established using the
application name appliname, no sign-on service is to be started, regardless
of whether the TAC is generated with KDCSGNTC or not.

BCAMAPPLË appliname

,LISTENER-PORT=number only allowed and mandatory for T-PROT=SOCKET

[,SIGNON-TAC={ *NONE | tacname }]

[,T-PROT={ NEA | ISO | RFC1006 | SOCKET }]

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

KDCDEF control statements BCAMAPPL (BS2000 systems)

Generating Applications 297

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

tacname Name of the service TAC started via the sign-on service.

The transaction code tacname must be generated using a TAC statement. In
the TAC statement, you must not modify the following default settings for the
transaction code:

– API = KDCS,
– CALL = FIRST or BOTH,
– ENCRYPTION-LEVEL = NONE,
– PGWT = NO,
– TACCLASS = 0,
– TYPE = D,
– no limitation on data access authorizations, i.e. the operands ACCESS-

LIST and LOCK may not be specified

For UPIC partners, the sign-on service is only started if UPIC=YES is
generated in the SIGNON statement. In the case of UPIC partners, the
signon service is not started when the connection is established. Instead, it
is started before a UPIC conversation is started (see also SIGNON
statement, OMIT-UPIC-SIGNOFF= parameter on page 494).
For LU6.1 partners, no sign-on service is started.

tacname may not be assigned to a program (PROGRAM operand of a TAC
statement) that is located in a load module generated with LOAD-
MODE=ONCALL.

Default:
– KDCSGNTC as far as it is generated in the application (KDCSGNTC =

standard sign-on service; generated with a TAC statement)
– otherwise *NONE

v CAUTION!
Those communication partners that establish their connection to the UTM
application via the primary application name (generated in MAX
APPLINAME=) can only have a sign-on service that is generated using the
transaction code KDCSGNTAC.

T-PROT= Transport protocols to be used on the connections to partner applications
that are established through this application name.

NEA An NEA transport protocol is used.

Default: NEA

ISO An ISO transport protocol is used.

Whether or not an ISO transport connection can be established to this appli-
cation and which transport protocol will actually be used depends on the
generation of the transport system. As parallel connections are allowed for

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

BB

B

BB

B

B

B

BCAMAPPL (BS2000 systems) KDCDEF control statements

298 Generating Applications

ISO transport connections although they are not supported by openUTM,
openUTM accepts the connection of the contention winner (CON) or of the
partner with the alphabetically smaller name pair (ptermname, processor
name, PTERM statement) in case of a contention.

RFC1006 TCP/IP is used with the RFC1006 convergence protocol.
RFC1006 is synonymous with T-PROT=ISO in BS2000 systems.

T-PROT=RFC1006 or T-PROT=ISO must be used for communication with
openUTM under Unix systems or Windows systems.

.

SOCKET Native TCP/IP is to be used as the transport protocol, i.e. communication is
to be handled via the socket interface.
If you specify T-PROT=SOCKET, then you must define a port number in the
LISTENER-PORT operand.
You will find more information on SOCKET on page 151ff.

B
B

B

B

BB

B

B

B

B

BB

B

B

B

B

KDCDEF control statements BCAMAPPL (UNIX, Windows)

Generating Applications 299

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

BCAMAPPL statement under Unix systems and Windows systems

Under Unix systems and Windows systems the operands appliname, LISTENER-PORT
(TCP/IP port number), T-PROT (transport protocols used) and TSEL-FORMAT (format
identifier) are used to specify the address.

If the application accesses the network using multi-threaded processes, then you should
define a listener ID. This listener ID is used to assign the network connections to a network
process based on the BCAMAPPL name.

appliname Additional name of the UTM application. appliname can be up to eight
characters in length. appliname must not be identical to the application name
you specified in ACCESS-POINT ...,TRANSPORT-SELECTOR=.

In addition, the name must be different from the application name that you
specified in the BCAMAPPL operand of the CLUSTER statement.

appliname must be unique throughout the network.

KDCDEF creates a T-selectors from appliname for the transport system. The
T-selectors is part of the transport address of the application that is used to
address the application from partner applications when establishing a
connection.

Exception:
appliname is only relevant internally in UTM for T-PROT=SOCKET, e.g. for
the administration. The name only needs to be unique within the appli-
cation.

BCAMAPPLË appliname

[,LISTENER-ID=number]

[,LISTENER-PORT=number]

[,SIGNON-TAC={ *NONE | tacname }]

[,T-PROT={ SOCKET | RFC1006 }]

[,TSEL-FORMAT={ T | E | A }]

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

BCAMAPPL (UNIX, Windows) KDCDEF control statements

300 Generating Applications

LISTENER-ID=number
This assigns a listener ID to the application name as administrative infor-
mation used for multi-threaded network access.

Listener IDs can be specified for application names and access points.
Further information can be found in the description of the ACCESS-POINT
statement.

Multi-threaded network access (MAX ...,NET-ACCESS=MULTI-
THREADED) allows you to manage several connections of threads in a
single network process. All connections with the same listener ID are
managed within the same network process. Listener IDs also allow you to
distribute the management of network access over a number of network
processes.

BCAMAPPL names with T-PROT=SOCKET (communication via the socket
interface) comprise a separate set of numbers, i.e. no BCAMAPPL names
that were created for communication via the socket interface are combined
with BCAMAPPL names and access points for other transport protocols in
one network process, even if the listener ID is the same.

All BCAMAPPL names for the socket interface with the same listener ID are
always combined in a network process, even if
NET-ACCESS=SINGLE-THREADED was generated.

If multi-threaded network connection is generated and you do not specify a
listener ID, then openUTM assigns the value 0 as the listener ID. openUTM
then combines all connections without a listener ID. All connections without
a listener ID that are not established via the socket interface are combined
into a single network process, and all connections without a listener ID that
are established via the socket interface are combined into another single
network process.

Default value: 0
Minimum value: 0
Maximum value: 32767

LISTENER-PORT=number
Port number of the UTM application for establishing TCP/IP connections.

Permitted values for number:
T-PROT=RFC1006: Port numbers 1025 through 32767 are permitted.
T-PROT=SOCKET: Port numbers 1 through 65535 are permitted.

With T-PROT=RFC1006 and OPTION CHECK-RFC1006=YES and with
T-PROT=SOCKET, a port number must be specified for LISTENER-PORT.
In all other cases, the default value is 0 (no port number).

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements BCAMAPPL (UNIX, Windows)

Generating Applications 301

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

i – A port number may only be used once per processor to listen for
connections being established via the socket interface (SOCKET).

– If the default value is used (port number 0), the default port number
assigned by PCMX is used internally. This can result in conflicts if, for
example, the port is used by different applications.

SIGNON-TAC =
Specifies whether a sign-on service is to be started for connections that are
established using the application names appliname (=transport system
access point). If a sign-on service is to be started, you must specify the
name of the transaction code via which the sign-on service is to be started.

*NONE
For connections to the UTM application that are to be established using the
application name appliname, no sign-on service is to be started, regardless
of whether the TAC is generated with KDCSGNTC or not.

tacname Name of the service TAC started via the sign-on service.

The transaction code tacname must be generated using a TAC statement. In
the TAC statement, you must not modify the following default settings for the
transaction code:

– API = KDCS,
– CALL = FIRST or BOTH,
– ENCRYPTION-LEVEL = NONE,
– PGWT = NO,
– TACCLASS = 0,
– TYPE = D,
– no limitation on data access authorizations, or in other words, the

operands ACCESS-LIST and LOCK may not be specified

For UPIC partners, the sign-on service is only started if UPIC=YES is also
generated in the SIGNON statement. In the case of UPIC partners, the
signon service is not started when the connection is established. Instead, it
is started before a UPIC conversation is started (see also SIGNON
statement, OMIT-UPIC-SIGNOFF= parameter on page 494).
For LU6.1 or OSI TP partners, no sign-on service is started.

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

BCAMAPPL (UNIX, Windows) KDCDEF control statements

302 Generating Applications

Default:
– KDCSGNTC as far as it is generated in the application (KDCSGNTC =

standard sign-on service; generated with a TAC statement)
– otherwise *NONE

v CAUTION!
If the application name specified in appliname corresponds to the primary
application name (generated in MAX APPLINAME=) then for
SIGNON-TAC= you may specify KDCSGNTC (standard sign-on service),
*NONE or leave it blank.

T-PROT= Address formats of the T-selectors in the transport address.

You can specify the following address formats for T-PROT.

SOCKET Communication is done via the socket interface.
No other address specifications are required other than T-PROT=SOCKET,
LISTENER-PORT and appliname.
You will find more information on SOCKET in section “Providing the address
information for clients of type SOCKET” on page 151.

RFC1006 Address format RFC1006

You will find more information on the RFC1006 address format in the
“PCMX documentation” on page 18.

Default: RFC1006

TSEL-FORMAT=
Format identifier of the T-selectors to be created from appliname.

The format identifier specifies the encoding of the T-selector in the transport
protocol. You will find more information in the “PCMX documentation” on
page 18.

T TRANSDATA format (coding in EBCDIC)
In this case appliname must be exactly 8 characters long and must not
include lowercase letters.

E EBCDIC format

A ASCII format

Default:
T if the character set of appliname matches to the TRANSDATA format
E in all other cases

It is recommended for TNS-less operation via RFC1006 to explicitly specify
a value for TSEL-FORMAT.

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/WX/W

X/W

X/WX/W

X/WX/W

X/W

X/W

KDCDEF control statements CLUSTER

Generating Applications 303

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

CLUSTER – Define global properties of a UTM cluster application

The CLUSTER statement is used to configure a UTM cluster application. The operands of
the CLUSTER control statement can be split over several CLUSTER statements.

If you specify the same operand in several CLUSTER statements, the first specification is
taken as the valid one. No message is issued. Every mandatory operand must be specified
once.

If a cluster statement is specified, you must also specify at least two CLUSTER-NODE
statements. If a CLUSTER statement is specified, KDCDEF implicitly generates a
BCAMAPPL entry with the BCAMAPPL name specified in the CLUSTER statement.

i The effect of the CLUSTER statement depends on the value specified in the
OPTION statement, see section “OPTION - manage the KDCDEF run” on
page 427.

If you change specifications in the CLUSTER statement or the CLUSTER-NODE
statements with a new generation, you must create new UTM cluster files and a new
KDCFILE (OPTION GEN=CLUSTER, KDCFILE) and use this file to apply the
changes.
Exception:
The size of the cluster page pool can be increased during operation, i.e. without it
being necessary to generate new UTM cluster files. When this is done, the number
of cluster page pool files must not be changed.

CLUSTER KDCDEF control statements

304 Generating Applications

CLUSTER CLUSTER-FILEBASE = cluster_filebase

,BCAMAPPL = cluster_applname

,USER-FILEBASE = user_filebase

[,ABORT-BOUND-SERVICE = { NO | YES }

[,CHECK-ALIVE-TIMER-SEC = time]

[,COMMUNICATION-REPLY-TIMER-SEC = time]

[,COMMUNICATION-RETRY-NUMBER = number]

[,DEADLOCK-PREVENTION = { NO | YES }

[,EMERGENCY-CMD = command_string1]

[,FAILURE-CMD = command_string2]

[,FILE-LOCK-RETRY = number]

[,FILE-LOCK-TIMER-SEC = time]

[,PGPOOL=(number,warnlevel)]

[,PGPOOLFS=number]

[,RESTART-TIMER-SEC = time]

Additional operand in BS2000 systems

[,IMPORT-USER-LOCALES = { NO | YES }

Additional operands in Unix systems and Windows systems

 ,LISTENER-PORT = port_number

[,LISTENER-ID=number]

B

B

X/W

X/W

X/W

KDCDEF control statements CLUSTER

Generating Applications 305

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Mandatory operands

i The operands CLUSTER-FILEBASE, BCAMAPPL, LISTENER-PORT (Unix
systems and Windows systems) and USER-FILEBASE must always be specified.
The specifications in the OPTION statement determine whether and in what way
these operands are then evaluated.

CLUSTER-FILEBASE=cluster_filebase
Name prefix or directory for the UTM cluster files. Some of the UTM cluster
files are generated by KDCDEF (see list below) while others are not
generated until runtime.

The operand CLUSTER-FILEBASE is only evaluated if GEN=CLUSTER or
GEN=(CLUSTER,...) is specified in the OPTION statement. In this case,
KDCDEF generates the following files:
– the cluster configuration file
– the cluster user file
– the cluster page pool files.
– the cluster GSSB file
– the cluster ULS file

In this case, these files must not already exist.

Mandatory operand.

BS2000 systems:

The UTM cluster files are created by KDCDEF under the file name
cluster_filebase.UTM-C.xxxx where xxxx is file-specific, see page 65ff.
These files can be renamed and/or copied to a different location to operate
the UTM cluster application. If this is done, the suffix .UTM-C.xxxx must be
retained. When an application is started, the valid name of the filebase must
be specified in the start parameters. The name can be up to 42 characters
in length and must comply with the syntax for file names. If you specify the
name of the filebase without the catalog ID and user ID, you nevertheless
still have to take account of the lengths of these. See also the section
“BS2000 systems:” on page 44.

Unix systems / Windows systems:

cluster_filebase defines the directory in which the UTM cluster files are to be
stored. The directory must be created before the KDCDEF run.

The UTM cluster files are created under the file names UTM-C.xxxx, where
xxxx is file-specific, see page 65ff.

B

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

CLUSTER KDCDEF control statements

306 Generating Applications

The files can be copied to a different directory to operate the UTM cluster
application. Specify the name which is then valid in the start parameters
when the application is started. The name can be up to 42 characters in
length and must comply with the syntax for file names.

BCAMAPPL=cluster_applname
Name of the communication end point for cluster-internal communication.

The name specified here must be different from the names specified for
TRANSPORT-SELECTOR under MAX APPLINAME, in other BCAMAPPL
statements or in ACCESS-POINT statements. In addition, the name
specified here must not be used by other applications on the computers of
the UTM cluster application as the name of a communication end point.

The name generated here must not be referenced in other statements (e.g.
in the PTERM statement) as the BCAMAPPL name.

The name can be up to 8 characters in length.

Mandatory operand.

LISTENER-PORT=port_number
Port number for cluster-internal communication.

This operand specifies the port number on which the local application
listens for external connection requests. Enter any port number between
1025 and 65535.

Note that the port number specified here must not be used anywhere else
on the computers of the UTM cluster. The port number must also differ from
the other port numbers used by this application. KDCDEF does not,
however, check this.

Mandatory operand.

USER-FILEBASE=user_filebase
Name prefix or directory for the current cluster user file of a UTM cluster
application. The operand USER-FILEBASE is only evaluated if
GEN=KDCFILE, GEN=(KDCFILE,ROOTSRC) or GEN=ROOTSRC is
specified in the OPTION statement.

– If GEN=KDCFILE or GEN=(KDCFILE,ROOTSRC), the cluster user file
must exist under the name taken from user_filebase. KDCDEF evaluates
the file and extends it if necessary. The cluster user file can already be
open for the KDCDEF run of a running UTM cluster application.

– If GEN=ROOTSRC then the cluster user file may already exist but this
is not mandatory. If it does exist then it is checked but not modified.

Mandatory operand.

X/W
X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements CLUSTER

Generating Applications 307

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

BS2000 systems:

The name can be up to 42 characters in length and must comply with the
syntax for file names. If you specify the name of the filebase without the
catalog ID and user ID, you nevertheless still have to take account of the
lengths of these.

Unix systems / Windows systems:

The name can be up to 42 characters in length and must comply with the
syntax for file names.

Optional operands

ABORT-BOUND-SERVICE
This parameter determines how UTM behaves when a user who has an
open service in a node application signs on.

NO If there is a node-bound service for a user on sign-on (see note), then the
user can only sign on at the node application to which the open service is
bound; Sign-on attempts at any other node application are rejected.

Default in UTM-S applications.

This value is not permitted in UTM-F applications.

YES If when a user signs on at a node application, there is a node-bound service
for this user that is bound to another node application that has been termi-
nated, then the user is able to sign on provided that no transaction of the
open service has the state PTC. No service restart is performed

The open service is terminated abnormally the next time the node appli-
cation to which it is bound is started.

Default in UTM-F applications.

i A service is node-bound if it
– has a job-receiver service
– or has terminated a SESAM transaction
– or is an inserted service resulting from service stacking.
In addition, a service associated with a user is node-bound as long as the
user is signed-on at a node application.

CHECK-ALIVE-TIMER-SEC=time
Interval in seconds at which a node application of a UTM cluster application
checks the availability of another node application.

Minimum value: 30
Maximum value: 3600
Default value: 600

B

B

B

B

B

X/W

X/W

X/W

CLUSTER KDCDEF control statements

308 Generating Applications

COMMUNICATION-REPLY-TIMER-SEC=time
Time in seconds that a node application of a UTM cluster application waits
for a response after sending a message to another node application.

If there is no response in the time specified here, it must be assumed that
the other node application has failed. If you have selected a value greater
than zero for COMMUNICATION-RETRY-NUMBER, it is only assumed that
the other node application has failed after the number of retry attempts has
been reached.

Minimum value: 1
Maximum value: 60
Default value: 10

COMMUNICATION-RETRY-NUMBER=number
Number of retry attempts to establish communication with another node
application if this node application does not respond within the time
specified under COMMUNICATION-REPLY-TIMER. If the monitored node
application also fails to respond to any of the retry attempts, it is flagged as
failed.

Minimum value: 0, i.e. no retry after a timeout.
Maximum value: 10
Default value: 1

DEADLOCK-PREVENTION=
In UTM cluster applications, information concerning locked data areas
(GSSB, TLS, ULS) is stored in a file. Before a service waits at a locked data
area, UTM can check whether the new wait situation might result in a
deadlock. To do this, additional file I/Os are necessary.

This parameter specifies whether or not UTM performs additional checks in
order to prevent deadlocks.

YES UTM performs additional checks of the GSSB, TLS and ULS data areas in
order to prevent deadlocks.

NO UTM does not perform any additional checks of the GSSB, TLS and ULS
data areas in order to prevent deadlocks If a deadlock occurs in one of
these data areas then this is resolved by means of a timeout. See also MAX
statement, operand RESWAIT=time1 (page 404).

Default: NO

In productive operation, it is advisable to set this parameter to YES only if
timeouts occur frequently when accessing these data areas.

KDCDEF control statements CLUSTER

Generating Applications 309

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

EMERGENCY-CMD=command_string1
Name of an executable procedure (BS2000 systems) or a script (Unix and
Windows systems).

This operand passes a command string containing a command to be
executed.

The emergency procedure or emergency script is called by openUTM if a
failed node application was not restarted after the FAILURE script has been
called and the restart timer (RESTART-TIMER-SEC parameter) has
expired.

The emergency procedure (or script) can be used, for example, to restart
the failed computer in a cluster or perform a node recovery for a failed node
application.

The emergency procedure (or script) is always executed on the computer
of the monitoring node application.

The name passed here is not parsed by KDCDEF.

command_string1 can be up to 200 characters in length. The way in which
the emergency procedure (or script) is specified depends on the operating
system.

i When openUTM is installed, platform specific templates are
supplied with the name
UTM-C.EMERGENCY or utm-c.emergency.

BS2000 systems:

Specify the The name of a BS2000 SDF procedure as described under the
SDF command ENTER-PROCEDURE (see the "BS2000 OSD/BC
Commands" manual). The SDF procedure called must have six positional
parameters. %s must be specified as a placeholder for each of the six
procedure operands.

Example:
EMERGENCY-CMD = 'FROM-FILE=*LIB(SYSLIB.EXAMPLE,
UTM-C.EMERGENCY),PROC-PAR=(%s,%s,%s,%s,%s,%s)'

You can also specify further operands of the ENTER-PROCEDURE
command.

Example:
EMERGENCY-CMD = 'FROM-FILE=*LIB(SYSLIB.EXAMPLE,EMERGENCY),
PROC-PAR=(%s,%s,%s,%s,%s,%s), LOGGING=*YES, JOBCLASS=<jobclass>

B

B

B

B

B

B

B

B

B

B

CLUSTER KDCDEF control statements

310 Generating Applications

Unix systems:

Specify the fully qualified name of a Unix Sshell script.

Example:
EMERGENCY-CMD = 'utmpath/shsc/utm-c.emergency'

Windows systems:

Specify the fully qualified name of a Windows command script.

Example:
EMERGENCY-CMD = 'utmpath\shsc\utm-c.emergency.cmd'

Calling the procedure or script command_string1 during an application run

Six arguments are passed to the procedure or script command_string1.
These identify the failed cluster node and allow corrective measures to be
initiated.

The arguments are passed in the following sequence:

1st argument
Name of the UTM application

2nd argument
Filebase name of the KDCFILE of the failed node application

3rd argument
Host name of the failed node

4th argument
Virtual host name of the failed node

5th argument
Reference name of the failed node application (NODE-NAME
parameter in the CLUSTER-NODE statement)

6th argument
Term Application Reason: Error code in the UTM dump of the failed
node, see message K060 in openUTM manual ”Messages,
Debugging and Diagnostics”. You can decide whether or not to
restart the node application on the basis of this error code.

– The error code ASIS99 means that the node was terminated
abnormally by the administrator with KDCSHUT KILL and that it
should not normally be restarted.

– In the case of all other error codes (with the exception of
ENDPET), the node application was terminated abnormally and
should normally be restarted.

X

X

X

X

W

W

W

W

KDCDEF control statements CLUSTER

Generating Applications 311

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

– The error code ENDPET means that the node application was
terminated normally by the administrator with KDCSHUT even
though there was at least one distributed transaction in the PTC
state (prepare to commit). In this case the node application
should be restarted if possible in order to resolve the PTC state
and release any locks in the node application or a partner appli-
cation.

The return code of the procedure or script is not evaluated.

BS2000 systems:

In BS2000 systems, the configured procedures are called with the ENTER-
PROCEDURE command.

The BS2000 procedure called must have 6 positional parameters.

The %s placeholders are replaced by the values of the six arguments listed
above when the procedure is called.

Unix systems:

The generated script command_string1 is started as a background process.

It is called with the six arguments listed above.

Windows systems:

The command script command string is called with the Windows command
START without waiting for it to terminate.

It is called with the six arguments listed above.

FAILURE-CMD=command-string2
Name of an executable procedure (BS2000 systems) or a script
(Unix/Windows systems).

command_string2 can be up to 200 characters in length. The way in which
the failure procedure (or script) is specified depends on the operating
system.

The failure procedure or failure script is called by openUTM if a node appli-
cation terminates abnormally or if failure of a node application is detected.
A user can use the failure procedure (or script) to restart the failed node
application, for instance.

The failure procedure (or script) is always executed on the computer of the
monitoring node application.

Otherwise, the syntax and call method for FAILURE-CMD are identical to
the syntax and call method of EMERGENCY-CMD (see page 309).

B

B

B

B

B

B

X

X

X

W

W

W

X

CLUSTER KDCDEF control statements

312 Generating Applications

i When openUTM is installed, platform specific templates are
supplied with the name
UTM-C.FAILURE or utm-c.failure.

FILE-LOCK-RETRY=number
Number of retries for a lock request for a file that is global to the cluster if
the lock was not assigned in the time specified in FILE-LOCK-TIMER-SEC.

Minimum value: 1
Maximum value: 10
Default value: 1

FILE-LOCK-TIMER-SEC=time
Maximum time in seconds that a node application of a UTM cluster appli-
cation waits for a lock to be assigned to a file that is global to the cluster.

Minimum value: 10
Maximum value: 60
Default value: 30

IMPORT-USER-LOCALES=

YES KDCDEF takes over the specifications for user locales into the cluster user
file from the generation statements for users.

NO KDCDEF does not take over the specifications for user locales into the
cluster user file from the generation statements for users already contained
in the cluster user file.

Default value: NO

LISTENER-ID=number
This parameter is used to select a network process for internal cluster
communication if multi-threaded network connections have been generated
(MAX ...,NET-ACCESS=MULTI-THREADED). In this case, it is possible to
manage multiple thread connections in a network process, i.e. the commu-
nications of all ACCESS-POINTs and BCAMAPPLs with T-PROT≠SOCKET
and the same LISTENER-ID are handled using the same network process.

Minimum value: 0
Maximum value: 32767
Default value: 0

PGPOOL=(number, warnlevel)
Specifies the size of the cluster page pool and the warning level for cluster
page pool utilization. The cluster page pool stores the GSSB, ULS and the
service data of users (USER statement) who are generated with
RESTART=YES.

B

BB

B

BB

B

B

B

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements CLUSTER

Generating Applications 313

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

The cluster page pool can be extended during cluster operation while
leaving the number of files unchanged, see the applicable openUTM
manual “Using openUTM Applications”.

number Size of the cluster page pool in UTM pages.

For each generated node, at least 500 UTM pages are needed in the cluster
page pool. The size of a UTM page is defined in the BLKSIZE operand of
the MAX statement.

Default: 10,000 or the minimum size
Minimum value: 500 * number of cluster nodes
Maximum value: 16777215 - (2 * number in CLUSTER PGPOOLFS)

If the value specified here is smaller than the minimum value that UTM
calculates from the number of generated nodes and the length generated in
MAX RECBUF=length, then UTM increases number to the minimum size.

warning level Percentage value specifying the cluster page pool utilization level at
which a warning (message K041) is output.

Default: 80
Minimum value: 60
Maximum value: 99

Please note that the messages indicating that cluster page pool utilization
has risen above or fallen below the warning level are only output for the
node application that triggers the associated change in state. In contrast, all
running node applications are affected by a potential cluster page pool
bottleneck.

CLUSTER KDCDEF control statements

314 Generating Applications

PGPOOLFS=number
Number of files over which the user data is to be distributed in the cluster
page pool.

The cluster page pool files are created using the cluster filebase that is
specified in the CLUSTER-FILEBASE operand. They are given the suffixes
CP01, CP02, CP10.

In addition, KDCDEF always creates a file with the suffix CPMD which is
used to manage the cluster page pool and does not contain any user data.

Default: 1
Minimum value: 1
Maximum value: 10

RESTART-TIMER-SEC=time
Maximum time in seconds that a node application requires for a warm start
after a failure.

After a failure has been detected and the failure command for a failed node
application has been called, the monitoring node application starts a timer
with the time specified here. If the failed node application is not available
after this time has expired, the emergency command is started for the failed
node application.

If a value of 0 is specified, no timer is set for monitoring the restart of the
failed node application.

Minimum value: 0, i.e. restart of the application is not monitored.
Maximum value: 3600
Default value: 0

KDCDEF control statements CLUSTER-NODE

Generating Applications 315

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

CLUSTER-NODE – Define a node application of a UTM cluster
application

You use the CLUSTER-NODE statement to configure a node application of a UTM cluster
application.

An XCS cluster of BS2000 systems supports a maximum of 16 node applications started
simultaneously.

In Unix systems and Windows systems, you can start up to 32 node applications simulta-
neously.

You are allowed to specify the CLUSTER-NODE statement up to 32 times for each UTM
cluster application.

You must specify at least two CLUSTER-NODE statements if you want to generate a UTM
cluster application. A CLUSTER statement must also be generated if you have specified a
CLUSTER-NODE statement.

i If you change specifications in the CLUSTER statement or the CLUSTER-NODE
statements with a new generation, you must create a new cluster configuration file
(OPTION GEN=CLUSTER) and use this file to apply the changes.

FILEBASE = node_filebase
Base name of the KDCFILE, the user log file and the system log file
SYSLOG for this node application. When a node application is started, the
UTM system files are expected under the name specified here. The
KDCFILE must be accessible from all node applications.

This operand replaces the FILEBASE start parameter in a standalone UTM
application.

The base names of the CLUSTER-NODE statements must differ from each
other. The same restrictions apply as for MAX KDCFILE=filebase.

Mandatory operand.

CLUSTER-NODE FILEBASE = node_filebase

,HOSTNAME = host_name

[,NODE-NAME = node_name]

[,VIRTUAL-HOST = virtual_host_name]

Additional operand in BS2000 systems

[,CATID = <catid_A>

B

B

X/W

X/W

B

B

CLUSTER-NODE KDCDEF control statements

316 Generating Applications

BS2000 systems:

When a node application of a UTM cluster application is started, the UTM
system files for this node application are expected under the name specified
here. The node_filebase can contain a BS2000 user ID, but it must be
specified without CATID. You must specify CATIDs using the CATID
operand. The name can be up to 42 characters long – including CATID and
USERID. See also the section “BS2000 systems:” on page 44.

Unix systems / Windows systems:

node_filebase identifies the directory containing the KDCFILE and all the files
of the application when a node application of a UTM cluster application is
started. The name specified here must identify the same directory from
the perspective of all the computers of the cluster. The name can be up
to 27 characters in length.

HOSTNAME=host_name
Host name of this node. Specify the primary name of this host.

The name can be up to 8 characters in length.

The host names of the CLUSTER-NODE statements must differ from each
other. Host names that only differ in terms of case are regarded as identical.

In the case of Unix systems, you must specify the name of the computer that
is output by the command uname -n.

In Windows systems, you must specify the name of the computer that is
entered in the Control Panel.

On Unix and Windows systems, no distinction is made between uppercase
and lowercase notation; KDCDEF always converts the host names into
uppercase.

Mandatory operand.

NODE-NAME=node_name
Defines a reference name for the node application. This name can be used
when configuring LU6.1 sessions as well as for node recoveries:

– Configuring LU6.1 sessions:
The reference name defined here can be specified in the NODE-NAME
parameter of an LSES statement in order to assign the LU6.1 session
unambiguously to a node application. This enables openUTM to select
the "right" session when establishing a session with a partner appli-
cation.

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X

X

W

W

X/W

X/W

X/W

B/X

B/X

B/X

B/X

B/X

KDCDEF control statements CLUSTER-NODE

Generating Applications 317

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

– Node recovery:
If a node recovery is to be performed for the node application generated
here then the reference name defined here must be specified in the
NODE-TO-RECOVER start parameter. For more details, consult "node
recovery" in the openUTM manual “Using openUTM Applications”.

Default value: NODEnn
nn = 01..32 (or 01..16 in BS2000 systems), where nn is determined by the
sequence of CLUSTER-NODE statements during generation.

VIRTUAL-HOST=virtual_host_name
Has the same function as the MAX HOSTNAME parameter with UTM
cluster applications. You are not allowed to specify the MAX HOSTNAME
parameter in UTM cluster applications.

BS2000 systems:

Name of the virtual host on which the node application is to run from the
perspective of BCAM.

Default value: 8 blanks, i.e. the node application runs under the name of the
real host.

Unix systems / Windows systems:

VIRTUAL-HOST allows the sender address for network connections estab-
lished from this node application to be specified. 8 blanks is the default. This
means that the default sender address of the transport system is used when
connections are established. This function is required in a cluster if the
relocatable IP address is to be used as the sender address instead of the
static IP address when establishing a connection.

On Unix and Windows systems, no distinction is made between uppercase
and lowercase notation; KDCDEF always converts the virtual host names
into uppercase.

CATID=(catid_A)
This operand specifies which which catalog ID the KDCFILE files are
assigned to.

This operand replaces the CATID start parameter in a standalone UTM
application. When a node application of a UTM cluster application is started,
the UTM system files for this node application are expected in the catalogs
specified here.

Please note that in UTM cluster applications, only single-file operation of the
KDCFILE is permitted.

Default: No CATID

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

BB

B

B

B

B

B

B

B

B

B

CON KDCDEF control statements

318 Generating Applications

CON - define a connection for distributed processing based on LU6.1

The CON statement allows you to define a transport connection between the local UTM
application and a partner application. It also assigns an LPAP partner to the real partner
application, i.e. the logical access point of the partner application in the local application.
You must define the LPAP partner in an LPAP statement (see page 351).
By issuing several CON statement for the same partner application, you can also define
parallel transport connections.

 For more information on generating LU6.1 connections see section “Distributed
processing via the LU6.1 protocol” on page 74.

When generating the CON, PTERM and MUX statements, please note that the name triplet
(appliname or ptermname, processorname, local_appliname) must be unique within the gener-
ation run.

Example

If a PTERM statement has already been generated with
PTERM partner_name1,PRONAM=processorname1,

you cannot generate a CON statement with
CON partner_name1,PRONAM=processorname1,

but you can enter
CON partner_name1,PRONAM=processorname1,BCAMAPPL=local_appliname1,

provided local_appliname1 is not identical to the primary UTM application name.

The statements MUX partner_name1 ... and CON partner_name1 are also mutually
exclusive.

CONË remote_appliname

[,BCAMAPPL=local_appliname]

[,LPAP=lpapname]

,PRONAM=processorname only mandatory under BS2000 systems

[,TERMN=termn_id]

Unix system and Windows system specific operands

[,LISTENER-PORT=number]

[,T-PROT=RFC1006]

[,TSEL-FORMAT={ T | E | A }]

B

B

X/W

X/W

X/W

X/W

KDCDEF control statements CON

Generating Applications 319

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

remote_appliname
Name of the partner application with which you wish to communicate via the
logical connection.

remote_appliname can be up to eight characters in length. Permitted
characters are capital letters, numbers and the characters $, # and @.
Hyphens are not allowed in names. The first letter must be a capital letter.
If lowercase letters are used in a name, you must enter it in single
quotes ('...') .

remote_appliname is a mandatory specification.

BS2000 systems:
remote_appliname can be either the BCAM name of a UTM partner appli-
cation (in the case of a homogenous link) or the name of a TRANSIT appli-
cation (in the case of a heterogeneous link).
The first letter must be uppercase.

Unix systems, Windows systems:
You must specify the T-selector that the partner application uses to sign on
to the transport system for remote_appliname.
The first character must be a letter.

B

B

B

B

B

X/W

X/W

X/W

X/W

CON KDCDEF control statements

320 Generating Applications

BCAMAPPL=local_appliname
A name for the local application, as defined in the MAX or BCAMAPPL
control statement. A BCAMAPPL name may not be specified for which
T-PROT=SOCKET is generated.

Under Unix systems and Windows systems this name must not begin with
a ’$’.

The BCAMAPPL name specified in the CLUSTER statement is not
permitted here.

Default:
If nothing is specified, then the primary application name defined in
MAX ...,APPLINAME= is used.

LISTENER-PORT=number
Port number of the partner application if the connection to the partner appli-
cation is established via TCP/IP.

Permitted values: 102 and 1025 - 32767

Default: 0 (no port number)
If OPTION CHECK-RFC1006=YES, then a port number must be entered
for LISTENER-PORT.

LPAP=lpapname
Name of the LPAP partner of the partner application with which the
connection is to be established. The name of the LPAP partner via which
the partner application signs on must be defined using the statement LPAP
lpapname.

By issuing several CON statements with the same lpapname, you can
establish parallel connections to the partner application.

Please note, however, that these parallel connections lead to the same
partner application (remote_appliname and processorname).

Mandatory parameter

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements CON

Generating Applications 321

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

PRONAM={ processorname | C’processorname’ }
Name of the host partner up to 8 characters in length
If the processorname contains lower case letters or special characters it must
be entered as a character string using C’...’.

Mandatory operand for BS2000 systems

BS2000 systems:
For processorname you must specify the name of the processor on which the
partner application remote_appliname runs. This is either the name of a Unix
system, Windows system or BS2000 system, or the TRANSDATA name of
a communication computer or front-end processor in the case of a hetero-
geneous link. This name is defined during generation of the network. Please
consult your network administrator.

PRONAM needs not to be specified if a default value for this operand is
defined beforehand using the DEFAULT statement.

Unix systems and Windows systems:
There are two options for specifying the processorname:

– You enter the real host name under which the IP address of the partner
computer is entered in the name service of the local system (e.g. the
hosts file). You must not specify an alias of the computer.

– You enter the UTM host name of the partner computer.
This is only possible when you have set the UTM_NET_HOSTNAME
environment variable and have specified the UTM host name in the
conversion file (see the section “Using mapped host names (Unix
systems and Window systems)” on page 121).

No distinction is made betweenuppercase and lowercase; KDCDEF always
converts the host name into uppercase.

Default: 8 blanks

TERMN=termn_id
Identifier up to two characters in length, which indicates the type of commu-
nication partner. termn_id is not queried by openUTM, but is used by the
user when querying or grouping terminal types, for example. termn_id is
entered in the KB header for job-receiving services, i.e. for services started
by a partner application in the local application.

Default: A4

T-PROT= Address format with which the partner application signs on to the transport
system. The following address formats are explained in the “PCMX
documentation” on page 18.

B

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

CON KDCDEF control statements

322 Generating Applications

RFC1006 Address format RFC1006

Default: RFC1006

TSEL-FORMAT=
Format identifier of the T-selector. The format indicator specifies the
encoding of the T-selectors in the transport protocol. You will find more infor-
mation in the “PCMX documentation” on page 18.

T TRANSDATA format (encoded in EBCDIC)

E EBCDIC character format

A ASCII character format

Default:
T if the character set of the T-selector corresponds to the TRANSDATA

format.
E in all other cases

It is recommended to specify a value explicitly for TSEL-FORMAT for
operation via RFC1006.

The address of a partner application of a UTM application under Unix systems and
Windows systems

In order to be able to establish a connection to a partner application, the UTM application
must know the address of the partner application. You can enter the address using the
following operands:

– remote_appliname (address of the partner application in the partner processor)
– PRONAM (real host name or UTM host name of the partner processor)
– LISTENER-PORT (port number for RFC1006)
– T-PROT (the transport protocol used)
– TSEL-FORMAT (format indicator of the T-selector)

See section “Providing address information for the CMX transport system (Unix systems
and Windows systems)” on page 109.

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements CREATE-CONTROL-STATEMENTS

Generating Applications 323

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

CREATE-CONTROL-STATEMENTS -
Create KDCDEF control statements

When regenerating your application, inverse KDCDEF allows you to retain UTM objects in
the configuration which were entered dynamically during runtime. Further information can
be found in section “Inverse KDCDEF” on page 271.

As the first statement in the KDCDEF run, CREATE-CONTROL-STATEMENTS generates
KDCDEF control statements for the UTM objects entered dynamically, and outputs them to
the file control_statements_file (inverse KDCDEF). During the same KDCDEF run, you can
use control_statements_file as the basis for generation by defining it as an input file using the
statement OPTION ...,DATA=control_statements_file.

If the file control_statements_file containing the generated KDCDEF control statements is to
be processed at a later point in time in a KDCDEF run, you must conclude the control state-
ments in the file using the END statement.

Inverse KDCDEF can generate control statements for UTM objects of type TAC,
PROGRAM, PTERM, LTERM, USER, CON, LTAC, LSES and KSET.

If, when performing regeneration with KDCDEF, no user is specified with PTYPE=APPLI,
SOCKET or UPIC-R for a PTERM or TPOOL statement in an assigned LTERM definition,
KDCDEF implicitly generates a user with the LTERM name. However, for users generated
in this way, inverse KDCDEF neither creates USER statements nor adds the user name in
the USER= operand in the LTERM statement.

It does not transfer UTM objects to the file control_statements_file, which were marked for
deletion by administration using KC_DELETE_OBJECT. Following a KDCDEF run in which
control_statements_file is defined as an input file, the names of the deleted UTM objects are
no longer reserved.

You can start KDCDEF for inverse KDCDEF with at least one
CREATE-CONTROL-STATEMENTS statement and without any further KDCDEF control
statements.

i If you upgrade to a new version, the KDCDEF control statements must first be
created in the previous version before being processed in a later version by the
KDCDEF generation tool.

CREATE-CONTROL-STATEMENTS KDCDEF control statements

324 Generating Applications

*ALL KDCDEF control statements are generated for the following object types:
– KSET
– LSES
– LTAC
– TAC
– CON
– PROGRAM
– PTERM
– LTERM
– USER

They cannot be created for other object types.

CON This creates KDCDEF control statements for the transport connections to
remote applications.

DEVICE KDCDEF control statements are generated for LTERM partners, clients and
printers, i.e. for the following object types:
– PTERM
– LTERM

KSET KDCDEF control statements are generated for key sets, i.e. for objects of
type KSET.

LSES This creates KDCDEF control statements for the assignment of session
names.

LTAC KDCDEF control statements are generated for transaction codes via which
service programs in partner applications are started. These are objects of
the type LTAC.

CREATE-CONTROL-STATEMENTSË { *ALL | CON | DEVICE | KSET | LSES | LTAC |
PROGRAM | USER }

,FROM-FILE=kdcfile

,TO-FILE=control_statements_file |
 *LIBRARY-ELEMENT(LIBRARY=<lib-name>
 ,ELEMENT=<element>
 [,VERSION=C‘<version>‘ |
 *HIGHEST-EXISTING |
 *UPPER-LIMIT |
 *INCREMENT]
 [,TYPE=<element-type>])]

[,MODE={ CREATE |EXTEND }]

B
B
B
B
B
B
B

KDCDEF control statements CREATE-CONTROL-STATEMENTS

Generating Applications 325

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

PROGRAM KDCDEF control statements are generated for programs, service exits
transaction codes and TAC queues , i.e. for the following object types:
– TAC
– PROGRAM

USER KDCDEF control statements are generated for user IDs, i.e. for objects of
type USER.

i Please note that passwords cannot be reconstructed. In the case of user
IDs with passwords, statements are created with the following format:
USER username, PASS=*RANDOM, ...
In the case of standalone applications, you must use the KDCUPD tool to
transfer the passwords to the new KDCFILE after the KDCDEF run has
finished. This is also possible for the UTM-F generation variant.

FROM-FILE=kdcfile
Name of the KDCFILE from which the control statements are to be
generated.

i The openUTM version of the KDCFILE must match that of the KDCDEF
generation tool.

TO-FILE= Specifes where the KDCDEF control statements are to be written to.

control_statements_file
The generated KDCDEF control statements are written to the file specified
in control_statements_file. For control_statements_file, you must enter a valid
file name. control_statements_file can be defined as an input file for the
KDCDEF run using the statement OPTION ...,DATA=control_statements_file.

*LIBRARY-ELEMENT(...)
The KDCDEF control statements are written to the LMS library element
specified here. The following restrictions apply:
– Delta elements are not supported.
– UTM always writes records with record type "1".

LIBRARY=<lib-name>
Name of an LMS library. The file name can be up to 54 characters in length.
If the library does not yet exist, it is created.
LIBRARY is a mandatory parameter of *LIBRARY-ELEMENT(...).

ELEMENT=<element>
Name of the LMS element.
The element name may be up to 64 characters in length and consists of an
alphanumeric string which can be subdivided into multiple substrings
separated by periods or hyphens.
ELEMENT is a mandatory parameter of *LIBRARY-ELEMENT(...).

BB

B

B

B

B

BB

B

B

B

BB

B

B

B

B

B

CREATE-CONTROL-STATEMENTS KDCDEF control statements

326 Generating Applications

VERSION =
Version of the LMS element.

C'<version>'
The element version is specified as an alphanumeric string of up to 24
characters in length which can be subdivided into multiple substrings
separated by periods or hyphens.

*HIGHEST-EXISTING
The statements are written to the highest version of the specified element
present in the library.

*UPPER-LIMIT
The statements are written to the highest possible version of the specified
element. LMS indicates this version by means of an "@".

*INCREMENT
A new version is created for the specified element. *INCREMENT may only
be specified if MODE=CREATE.

Default value:
– *HIGHEST-EXISTING in MODE=EXTEND
– *INCREMENT in MODE=CREATE

i If MODE=CREATE and VERSION is not equal to *INCREMENT then any
existing element is overwritten with the specified version.

TYPE=<element-type>
Type of LMS element. An alphanumeric string of up to 8 characters in length
can be specified for the type.
Default value: S

i KDCDEF does not check whether the specifications for ELEMENT,
VERSION or TYPE comply with the LMS syntax rules. For further infor-
mation on the syntax rules for the names of LMS elements and a specifi-
cation of version and type, see the manual "LMS SDF Format".

MODE= Write mode of the file containing the generated KDCDEF control statements

CREATE
The file specified in control_statements_file is created.

Under BS2000 systems the file is created as a SAM file or an LMS library
element. The following applies:
– If a file with the same name already exists, this must be a SAM file. This

SAM file is then overwritten.
– If an element of the same name already exists and if *HIGHEST-

EXISTING or *UPPER-LIMIT is specified for VERSION=C'<version>
then the element is overwritten.

BB
B

BB

B

B

B

BB

B

B

BB

B

B

BB

B

B

B

B

B

BB

B

BB

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements CREATE-CONTROL-STATEMENTS

Generating Applications 327

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

If a file with the same name already exists under Unix systems or Windows
systems, it is overwritten.

EXTEND
The generated control statements are appended to the existing
control_statements_file. If this file does not exist, it is created.

If an LMS library is specified in the BS2000 system then the library must
already exist. In this case, an existing element of the specified version is
extended. If the element does not yet exist in this version then it is created.

X/W
X/W

B

B

B

DATABASE KDCDEF control statements

328 Generating Applications

DATABASE - define the database system (BS2000 systems)

The DATABASE control statement allows you to define the database systems with which
the UTM application is to coordinate.

Each database system must be defined in a separate DATABASE statement. By issuing
several DATABASE statements for the same database system, you can assign several
entry names to that database system.

The DATABASE statement can be issued several times. It is thus possible to define up to
two (in a special release, up to eight) different database systems.

ENTRY=entryname
Entry name of the database. The following default values apply:

When generating the XA connection with TYPE=XA in openUTM under
BS2000 systems, the name of the XA switch as it is provided by the
database system must be specified with the ENTRY parameter. It is
possible to generate several XY switches in the DATABASE statement.

i A database connection to Oracle must be generated with TYPE =
XA.

Other entry names (e.g. SQLUDS for UDS/SQL) can be found in the
manuals for the respective database systems.

USERID=username | C‘username‘
Specifies a user name for the database system. The user name can be up
to 30 characters in length.

DATABASEË [ENTRY=entryname]

[,USERID=username | C‘username‘]

[,PASSWORD=C'password']

[,LIB=omlname | LOGICAL-ID(logical-id) }]

[,TYPE={ UDS | SESAM | PRISMA | LEASY | DB | XA}]

$UNIBASE if TYPE = UDS

SESAM if TYPE = SESAM

PRISCON if TYPE = PRISMA

LEASY if TYPE = LEASY

DB if TYPE = DB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

BB

BB

BB

BB

B

B

B

B

B

B

B

B

BB

B

B

KDCDEF control statements DATABASE

Generating Applications 329

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

This functionality is only provided for Oracle databases. openUTM passes
this name to the database system in the Open string.

If a user name is to be passed to the database system in lowercase
characters, then you must use the format C'username'.

PASSWORD = C'password'
Specifies a password for the database system. The password can be up to
30 characters in length.

This functionality is only provided for Oracle databases. openUTM passes
the password to the database system in the Open string.

LIB= Specifies library from which the connection module for the database system
is dynamically loaded.

omlname
OML name which the connection module for the database system is to be
loaded dynamically. omlname can be up to 54 characters in length.

LOGICAL-ID(logical-id)
Specifies that a search is to be made for the connection module in the IMON
installation path for the database system and that the module is to be loaded
from there.
logical-id is a name up to 15 characters long. It may be specified only for
SESAM/SQL and UDS/SQL; it is SYSLNK for both database systems, refer
also to the notes on page 329.

If you do not specify LIB= , then LIB= is set to TASKLIB. This does not corre-
spond to the SET-TASKLIB command, rather a library named TASKLIB
must exist. Dynamic loading of the connection module from the library
assigned with SYSFILE-TASKLIB is not supported.

i During the dynamic load, the DBL searches for the connection module first
in the library that you specified in LIB= . If this library does not exist, then
the DBL aborts the search. If the library exists but the connection module is
not found there, then the DBL searches the alternative libraries. These
libraries are the libraries that have been assigned a file chain name
BLSLIBnn (0≤nn≤99).

If several DATABASE statements are issued with the same TYPE in order
to generate a number of entries for the same database, the connection
module is loaded from the library specified in the LIB operand of the first
DATABASE statement with the relevant TYPE.

Notes on using LOGICAL-ID

B
B

B

B

BB

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

DATABASE KDCDEF control statements

330 Generating Applications

– LIB=LOGICAL-ID(logical-id) may be specified only if the database
system was correctly installed with IMON. If the database system was
not installed with IMON, you must either statically link the connection
module (without the LIB= operand) or you must specify LIB=omlname.

– Using LOGICAL-ID(logical-id) instead of omlname has the advantage
that the openUTM application is then independent of the installation
paths and library names of the database system.

– If you specify LIB=LOGICAL-ID(SYSLNK) and if several product
versions are installed, the most recent version is used by default.

– If you do not want the most recent version to be loaded, you must either
specify the library of a less recent version using LIB=omlname or you
must assign the version before starting the openUTM application (using
the SELECT-PRODUCT-VERSION command of IMON).

– If an error occurs when searching for the connection module in the
IMON installation path, application start is aborted and the error is
logged to SYSOUT.

TYPE= This identifies the database system.

With TYPE=DB you can also connect to database systems other than those
named above. This is only possible when the database system supports the
IUTMDB interface.

Default: UDS

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

KDCDEF control statements DEFAULT

Generating Applications 331

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

DEFAULT - define default values (BS2000 systems)

The DEFAULT control statement allows you to define default values for the operands of a
KDCDEF control statement. A default operand value set using DEFAULT applies until the
next DEFAULT statement is issued for the same operand in the same control statement. If
you subsequently wish to reset the default value to the UTM standard setting, you must
reassign this standard setting using the DEFAULT statement. If this is not possible (e.g.
FORMAT = blanks), then the default value is set in the (STD) or *STD entry.

Statement-specific default values offer the following advantage:
If you issue a control statement several times (e.g. PTERM), there is no need to specify the
same operand values over and over again in each statement (e.g. the processor name in
PRONAM).

i When porting BS2000 systems openUTM applications to Unix systems or Windows
systems, please note that the DEFAULT statement is not supported by openUTM
under Unix systems and Windows systems.

control-statement
KDCDEF control statement for which new default values are to be defined
in this DEFAULT statement. The following operands are dependent on this
control statement, and apply only for this control statement class. Please
note that the PROGRAM and AREA statements form a single class, i.e.
modified default values of the PROGRAM statement also apply for the other
statements in this class.

You must insert at least one blank between control_statement and the
following operands. The table on the next page shows the control state-
ments that can be specified here.

operand ,... One or more operands of the KDCDEF control statement control_statement.
Each operand is separated by a comma. The table on the next page shows
the operands permitted for control_statement.

DEFAULTË control-statementËoperand [,operand] [,...]

Permitted control statements Permitted operands

CON BCAMAPPL={local_appliname|(STD)}
LPAP={lpapname|(STD)}
PRONAM={processorname | C’processorname’}
TERMN=termn_id

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

BB

B

B

B
B
B
B

DEFAULT KDCDEF control statements

332 Generating Applications

LPAP NETPRIO=netprio
QLEV=queue_level
STATUS={ON|OFF}
SESCHA=sescha_name

LSES LPAP=sessionname
NODE-NAME=node_name

LTAC LPAP=lpapname
LTACUNIT=%_ltacunit
STATUS={ON|OFF}
TYPE={D|A}
WAITTIME=(time1,time2)

LTERM ANNOAMSG={Y|N}
FORMAT={formatname|(STD)}
KERBEROS-DIALOG={YES | NO}
LOCALE={ ([lang_id], [terr_id],[ccsname]) | *STD}
NETPRIO=netprio
PLEV=print_level_number
QAMSG={Y|N|(STD)}
QLEV=queue_level_number
RESTART={YES|NO}
STATUS={ON|OFF}
USAGE={D|O}

LOAD-MODULE LIB=libname
LOAD-MODE=loadmode
VERSION=version

OSI-CON ACTIVE={YES|NO}
LOCAL-ACCESS-POINT=access-point_name

OSI-LPAP APPLICATION-CONTEXT=application_context
IDLETIME=time
QLEV=queue_level_number
STATUS={ON|OFF}
TERMN=termn_id

PROGRAM COMP=compiler
LOAD-MODULE={lmodname|*STD}

Permitted control statements Permitted operands

B
B
B
B

B

B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
B

B
B
B

B
B

B
B
B
B
B

B
B

KDCDEF control statements DEFAULT

Generating Applications 333

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

PTERM BCAMAPPL=local_appliname
CONNECT={A|N}
ENCRYPTION-LEVEL={NONE | 1 | 2 | 3 | 4 | TRUSTED}
IDLETIME=time
MAP={USER | SYSTEM | SYS | SYS1 | SYS2 | SYS3 | SYS4}
PRONAM={processorname | C’processorname’ | *RSO}
PROTOCOL={N|STATION}
PTYPE={partnertyp | *RSO | *ANY}
STATUS={ON|OFF}
TERMN={termn_id|(STD)}
USAGE={D|O}
USP-HDR={ALL | MSG | NO}

SESCHA CONNECT={Y|N}
CONTWIN={Y|N|(STD)}
DPN={instance_name|(STD)}
IDLETIME=time
PLU={Y|N|(STD)}
PACCNT=number

TAC ADMIN={Y | N}
CALL={BOTH | FIRST | NEXT | (STD)}
DEAD-LETTER-Q={NO | YES}
ENCRYPTION-LEVEL={NONE | 1 | 2 }
EXIT={exit | (STD) }
PGWT={NO | YES}
PROGRAM={program_name|(STD)}
QLEV=queue_level_number
QMODE = {STD | WRAP-AROUND}
RUNPRIO=priority
SATADM={NO|YES}
SATSEL={BOTH|SUCC|FAIL|NONE}
STATUS={ON | OFF | HALT | KEEP}
TACCLASS={class|(STD)}
TACUNIT=tacunit
TCBENTRY={name_of_tcbentry-statement | (STD)}
TIME={time1 | (time1,time2)}
TYPE={D | A | Q}

Permitted control statements Permitted operands

B
B
B
B
B
B
B
B
B
B
B
B

B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

DEFAULT KDCDEF control statements

334 Generating Applications

TPOOL ANNOAMSG={ Y | N }
BCAMAPPL=appliname
ENCRYPTION-LEVEL={ NONE | 1 | 2 | 3 | 4 | TRUSTED}
FORMAT={formatname|(STD)}
IDLETIME=time
KERBEROS-DIALOG={YES | NO}
LOCALE={ ([lang_id], [terr_id],[ccsname]) | *STD }
MAP={ USER | SYSTEM | SYS | SYS1 | SYS2 | SYS3 | SYS4}
NETPRIO={ MEDIUM | LOW }
NUMBER=number1
PRONAM={ processorname | C’processorname’ | *ANY }
PROTOCOL={ N | STATION }
PTYPE={ partnertyp | *ANY }
QLEV=queue_level_number
TERMN={ termn_id | (STD) }
USP-HDR={ALL | MSG | NO}

USER FORMAT={formatname|(STD)}
LOCALE={ ([lang_id], [terr_id],[ccsname]) | *STD }
PERMIT={NONE | ADMIN | SATADM | (ADMIN,SATADM)}
PROTECT-PW=(length,level_of_complexity,max_time,min_time)
QLEV=queue_level_number
QMODE = {STD | WRAP-AROUND}
Q-READ-ACL = keysetname
Q-WRITE-ACL = keysetname
RESTART={YES | NO}
SATSEL={BOTH | SUCC | FAIL | NONE}
STATUS={ON | OFF}

Permitted control statements Permitted operands

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B
B
B
B
B
B
B
B
B
B
B

KDCDEF control statements EDIT

Generating Applications 335

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

EDIT - define edit options (BS2000 systems)

The EDIT control statement allows you to combine screen functions and screen output
properties in line mode (edit options) in groups known as edit profiles. It also enables you
to assign names to these edit profiles, which can then be used to address a set of edit
options from a program unit.

The EDIT statement can be issued several times within a generation run. However, a
different name (name operand) must be specified in each EDIT statement.

The edit profile names are specified in the KCMF field of the MPUT, MGET, DPUT, FPUT
and FGET calls at the programming interface, where a blank is entered as the format
control character.

openUTM interprets the entries in the KCMF field as follows:

A detailed description of the operands described below can be found in the TRANSDATA
TIAM User Guide. Further information on working with edit profiles can be found in the
openUTM manual „Programming Applications with KDCS”.

No edit profiles generated Edit profiles generated

If a blank is entered as the format control
character, openUTM ignores the remaining
characters in the field.

If a blank is entered as the format control character,
the remaining characters in the field must contain
either the name of a valid edit profile or further
blanks.

EDITË name

[,BELL={ NO | YES }]

[,CCSNAME=ccsname]

[,HCOPY={ NO | YES }]

[,HOM={ NO | YES }]

[,IHDR={ NO | YES }]

[,LOCIN={ NO | YES }]

[,LOW={ YES | NO}]

,MODE={ EXTEND | INFO | LINE | PHYS | TRANS }

[,NOLOG={ NO | YES }]

[,OHDR={ NO | YES }]

[,SAML={ NO | YES }]

[,SPECIN={ C | I | N }]

B

B

B

B

B

B

B

B

B

B

BB

B
B
B

B
B
B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

EDIT KDCDEF control statements

336 Generating Applications

name Alphanumeric name up to seven characters in length for the set of edit
options to be defined.

BELL= This specifies whether or not an acoustic alarm is triggered on the terminal
when a message is output.

CCSNAME=ccsname
(coded character set name)
Name of the character set (CCS name) used to format a message. This
name can be up to eight characters in length. The specified CCS name
must belong to one of the EBCDIC character sets defined under the
BS2000 system (see also the XHCS User Guide). The character set must
be compatible with an ISO character set supported by the terminal to which
the message is directed.
During generation, KDCDEF cannot check the validity of the CCS name
under the BS2000 system or the compatibility condition.

A CCS name must not be assigned to the edit profile if the value TRANS
(transparent mode) is defined for the MODE operand.

i If the edit profile is used to output messages to an RSO printer, only the
CCSNAME= parameter of the edit profile is evaluated.

HCOPY= (hard copy)
This specifies whether the output message is to be logged on a connected
hardcopy printer in addition to being displayed on the terminal.

HOM= (homogeneous)
This specifies whether the output message is to be output unstructured, i.e.
in homogeneous format. If you enter NO here, the message is output in a
structured format, i.e. in non-homogeneous format. In this case, a logical
line is regarded as an output unit.

IHDR= (input header)
This specifies whether the header of the input message is to be transferred
to the program unit.

LOCIN= (local parameter input)
This operand applies only for terminals that support local parameters (e.g.
9763). If you enter YES here, local attributes in the input message are
forwarded to the user as logical control characters. If you enter NO here,
local attributes are removed from the input message and are not forwarded.
LOCIN=YES is permitted only if MODE=EXTEND.

LOW= (lowercase)
This specifies whether lowercase letters are permitted in the input message
transferred to the program unit. If you enter NO here, the system converts
all lowercase letters into uppercase.

BB
B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

BB

B

B

B

B

BB

B

B

BB

B

B

B

B

B

BB

B

B

B

KDCDEF control statements EDIT

Generating Applications 337

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

MODE=

EXTEND (extended line mode)
This specifies whether the message is to be output in extended line mode.
If you enter MODE=EXTEND, the value YES is permitted only for the BELL,
LOW, and LOCIN edit options. The value N must be entered for the SPECIN
operand.

INFO The message is to be output in a special information line (system line)
without overwriting important data at the terminal.

This specification is primarily intended for application programs that send
"asynchronous" messages to terminals without knowing what is currently
being displayed at the terminal. At terminals with a hardware display line
(e.g. DSS 9749, 9750, 9763), the data is always output protected in a
hardware system line; in all other cases, it is output in the same way as a
normal line mode message.

LINE (line mode)
The message is to be output in line mode. It can be structured using logical
control characters, and is formatted by the system. If you enter
MODE=LINE, the value NO must be entered for IHDR, OHDR and LOCIN.

PHYS (physical mode)
The message is to be output or read in physical mode, i.e. without being
formatted by the system. If you enter MODE=PHYS, the value YES is
permitted only for the IDHR, LOW and OHDR edit options. The value N
must be entered for the SPECIN operand.

This specification should not be used for messages output on a printer.
Physical messages to a printer can only be implemented using a format
exit.

TRANS (transparent mode)
The output message is to be transferred in transparent mode. If you enter
MODE=TRANS, the value YES must not be specified for any other edit
option.

The value N must be entered for the SPECIN= operand.
The CCSNAME= operand must not be specified.

NOLOG= (no logical characters)
This specifies how the system is to handle non-printable characters.

YES The logical control characters are not evaluated. All characters less than
X’40’ in EBCDIC code are replaced by alternate characters (SUB). Only
printable characters are allowed through.

B

BB

B

B

B

B

BB

B

B

B

B

B

B

B

BB

B

B

B

BB

B

B

B

B

B

B

B

BB

B

B

B

B

B

BB

B

BB

B

B

EDIT KDCDEF control statements

338 Generating Applications

NO All logical control characters are evaluated. Special physical control
characters are allowed through. All other characters less than X’40’ are
replaced by alternate characters (SUB). Printable characters are allowed
through.

Default: NO

OHDR= (output header)
This specifies whether the output message contains a header. The length
of the message header + 1 must be entered in binary format in the first byte
of the message.

SAML= (same line)
This applies only for printer stations.
If SAML=YES, the message is not preceded by a line feed. If SAML=NO
applies, the message begins at the start of the next line.

SPECIN= (special input)

C (confidential)
This specifies whether the display of input data is to be suppressed on the
terminal, thus protecting confidentiality.

I (id-card)
This specifies whether input data is to be entered via the ID card reader.

N (normal)
The terminal requires normal input.

BB
B

B

B

B

BB

B

B

B

BB

B

B

B

BB

BB

B

B

BB

B

BB

B

KDCDEF control statements EJECT

Generating Applications 339

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

EJECT - initiate a page feed in the log

The EJECT control statement allows you to initiate a page feed in the log. The EJECT line
itself is not logged or counted.

EJECTË

END KDCDEF control statements

340 Generating Applications

END - terminate KDCDEF input

The END control statement identifies the end of the sequence of control statements, and is
the last statement entered.

i If a file with OPTION DATA=filename is defined as a KDCDEF input file and contains
an END statement, KDCDEF input is terminated as soon as this statement is
processed.

ENDË

KDCDEF control statements EXIT

Generating Applications 341

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

EXIT - define event exits

The EXIT control statement allows you to define event exits, which are used in the appli-
cation.

For the event exits FORMAT and INPUT, you may only specify a single EXIT statement for
each KDCDEF run.
For the event exits START and SHUT, you may specify up to eight EXIT statements.
However, the specifications for the PROGRAM= operand must differ for the EXIT state-
ments.

When starting or terminating a UTM process, all of the programs defined as START or
SHUT exits are called one after the other. The sequence of the EXIT statements in the
KDCDEF run determines the sequence in which openUTM activates the START or SHUT
exit program.

Further information on event exits can be found in the openUTM manual „Programming
Applications with KDCS”.

Event exits under BS2000 systems:
The event exits START, SHUT, INPUT and FORMAT must not be assigned to a load module
generated with LOAD-MODULE LOAD-MODE=ONCALL.

i The event services MSGTAC, BADTACS and SIGNON must be defined using the
TAC statement.

PROGRAM=name
Name of the program containing the functions to be executed for the event
exit. A PROGRAM statement with this name (objectname) must be issued.

EXITË PROGRAM=objectname

,USAGE={ START |
SHUT |
(INPUT, { ALL | FORMMODE | LINEMODE | USERFORM1 }) |
FORMAT1 }

1 FORMAT and USERFORM are only permitted under BS2000 systems

B

B

B

B

EXIT KDCDEF control statements

342 Generating Applications

USAGE= Type of event exit

START Used as event exit START

SHUT Used as event exit SHUT

INPUT Used as event exit INPUT
Additionally you must specify the type of INPUT exit:

ALL Event exit INPUT, which handles messages of all format control characters
as well as LINEMODE messages.

i If you specify ALL here, this is the only event exit INPUT of the application.
Further INPUT event exits cannot be defined.

FORMMODE
Event exit INPUT for +, *, and #formats

LINEMODE
Event exit INPUT for LINEMODE messages

USERFORM
Event exit INPUT for -formats

FORMAT Used as event exit FORMAT

B

B

BB

KDCDEF control statements FORMSYS

Generating Applications 343

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

FORMSYS - define the format handling system

The FORMSYS control statement allows you to define the format handling system. Only the
first FORMSYS statement is evaluated.

TYPE=typ This identifies the format handling system.

– Under BS2000 systems, only the value FHS is supported.

Default: FHS

ENTRY=entryname
Entry name for the format handling system

Default value: KDCFHS with TYPE=FHS

LIB=omlname Designates the object module library (OML) from which the connection
module for the format handling system is loaded. omlname can be up to
54 characters in length.

If you do not specify LIB= , then LIB= is set to TASKLIB. This does not corre-
spond to the SET-TASKLIB command, rather a library named TASKLIB
must exist. Dynamic loading of the connection module from the library
assigned with SYSFILE-TASKLIB is not supported.

i During the dynamic load, the DBL searches for the connection module first
in the library that you specified in LIB= . If this library does not exist, then
the DBL aborts the search. The DBL does not abort the search if LIB was
not specified but was preset to TASKLIB and no file with this name exists.
If the library exists but the connection module is not found there, then the
DBL searches the alternative libraries. These libraries are the libraries that
have been assigned a file chain name BLSLIBnn (0≤nn≤99).

FORMSYSË [TYPE=typ]

[,ENTRY=entryname]

[,LIB=omlname]

B

B

B

B

B

BB

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

KSET KDCDEF control statements

344 Generating Applications

KSET - define a key set

The KSET control statement allows you to combine the key codes of an application, which
were defined for data access control, to form a logical key set. You can specify several
control statements for a single key set.

KDCDEF implicitly generates the KDCAPLKS key set, which by default contains all key
codes.

keysetname Name of the defined key set up to eight characters in length.

You can assign this key set
– to a user (in a USER statement on page 547)
– to an LTERM partner (in a LTERM statement on page 368)
– to a partner application (in an LPAP or OSI-LPAP statement on

page 352 or page 445)
– to a TAC (in the TAC statement on page 505)
– to an LTAC (in the LTAC statement on page 357)
– to a TPOOL (in the TPOOL statement on page 532 or page 539)

After the connection has been established, the key set of the LTERM or
(OSI-)LPAP partner assigned to the connection is available to the client or
partner application. After signing on to the application, the key set of the
user ID is available to the client or partner application.
The lock/key code and the access list concept are described in detail in the
openUTM manual “Concepts und Functions”. An introduction to access
control can be found in section “Lock/key code concept” on page 217.

KSETË keysetname

,KEYS={ (key1,key2,... keyn) | MASTER }

KDCDEF control statements KSET

Generating Applications 345

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

KEYS= Key or access codes of the key set keysetname

(key1,..., keyn)
List of numbers between 1 and the maximum value permitted by the appli-
cation (MAX ...,KEYVALUE=number). These numbers correspond to the
key codes contained in this key set.

A key or access code grants access to a resource secured with a lock code
or an access list, provided the key code and lock code match or the access
code is contained in the access list.

You can specify up to 60 key codes/access codes in each KSET statement.
If a key set contains more than 60 key codes, you must issue another KSET
statement with the same keysetname.

If you only specify one key code, you can omit the parentheses.

If you enter the value 0 for key, this is ignored by openUTM. No message is
output.

MASTER The MASTER key set contains all the key codes/access codes of the appli-
cation.

LOAD-MODULE KDCDEF control statements

346 Generating Applications

LOAD-MODULE - define a load module (BLS, BS2000 systems)

The LOAD-MODULE control statement allows you to define the name, version and
properties of load modules. If you use the BLS interface, this statement must be issued for
all load modules that can be exchanged or loaded as independent units during the program
run. Each load module must be defined in a separate LOAD-MODULE statement.

The load modules that can be processed with BLS are either LLMs (link and load modules)
or OMs (object modules). However, it is recommended that the program components and
data areas to be loaded dynamically are linked to LLMs (see the BLS manuals).

A load module can contain several program units and data areas, which are defined using
PROGRAM or AREA statements. You can assign one or more PROGRAM and/or AREA
statements to a single LOAD-MODULE statement. This takes place on the basis of the load
module name lmodname, which must also be entered in the LOAD-MODULE operand of the
PROGRAM or AREA statement. However, it is also possible to generate LOAD-MODULE
statements without assigning a PROGRAM or AREA statement (e.g. load modules that
contain parts of the runtime system of a programming language).

At least one LOAD-MODULE statement must be generated if the "program exchange"
function (KDCAPPL PROGRAM=NEW) is to be used under BS2000 systems.

When starting the UTM application, the load modules are loaded in accordance with the
sequence of LOAD-MODULE statements and the value of the LOAD-MODE operand. The
load sequence is as follows:

● The basic part of the application, including all load modules linked in statically to the
application program (LOAD-MODE=STATIC).

● All load modules loaded into a global common memory pool when starting the UTM
application. These are generated with LOAD-MODULE LOAD-MODE=(POOL,
poolname,...) and MPOOL poolname,SCOPE=GLOBAL.
The common memory pools are loaded in accordance with the sequence of MPOOL
statements in the generation run. Within a pool, the sequence of LOAD-MODULE state-
ments that refer to this pool applies.

● All load modules loaded into a local common memory pool when starting the UTM appli-
cation. These are generated with LOAD-MODULE LOAD-MODE=(POOL, poolname,...)
and MPOOL poolname,SCOPE=GROUP.
The pools are loaded in accordance with the sequence of MPOOL statements. Within
a pool, the sequence of LOAD-MODULE statements that refer to this pool applies.

● All load modules to be loaded dynamically as independent units during startup. These
are generated with LOAD-MODULE LOAD-MODE=STARTUP. The load modules are
loaded in accordance with the sequence of LOAD-MODULE statements defined in this
way.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements LOAD-MODULE

Generating Applications 347

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Load modules generated with LOAD-MODE=ONCALL are loaded the first time an assigned
program unit is called.

Please note the following:

● Load modules containing TCB entries cannot be exchanged.

● When dynamically linking a load module with the generation ALTERNATE-
LIBRARIES=YES, you must ensure that only RTS modules are actually linked. This is
because when load modules are exchanged, only the load module itself is removed
from memory. If the load module is used to dynamically load other modules using the
autolink function, these modules remain in memory following the exchange process
even though shared data structures, for example, have been modified.

● When linking with the SYSLNK.CRTE.PARTIAL-BIND library, the entry ALTERNATE-
LIBRARIES=YES is not required for load modules that only contain C code and
possibly data objects (areas), and should therefore be avoided.

lmodname Name of the load module up to 32 characters in length

This name is subject to the same rules as the element names of a program
library (see also section “Format of names” on page 263).

ALTERNATE-LIBRARIES=
This is used to control the autolink function when dynamically linking the
private slice of the load module.

NO The autolink function is not executed when linking the load module.

Default: NO

LOAD-MODULEË lmodname

[,ALTERNATE-LIBRARIES={ NO | YES }

[,LIB=libname]

[,LOAD-MODE={ STARTUP |
ONCALL |
STATIC |
(POOL,poolname,{ NO-PRIVATE-SLICE |

STARTUP |
ONCALL })

}]

,VERSION=version

B
B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B
B
B
B
B
B
B

B

BB

B

B

B

B

B

BB

B

LOAD-MODULE KDCDEF control statements

348 Generating Applications

YES The BLS autolink function is activated.
For instance, if a load module requires other RTS modules for exchange
purposes and these have not yet been loaded into memory, this function is
used to load these RTS modules dynamically. Before starting the UTM
application, the required RTS libraries must be reserved with Linkname
BLSLIBnn (00 ≤ nn ≤ 99). If open external references cannot be resolved by
the loaded modules, these libraries are then searched in ascending order
(as specified in nn) for appropriate definitions when dynamically loading the
load modules.

ALTERNATE-LIBRARIES=YES may only be used to dynamically load RTS
modules and not to dynamically load user programs.

Further information on the Autolink function can be found in the openUTM
manual “Using openUTM Applications under BS2000 Systems”.

i The operand values LOAD-MODE=STATIC / (POOL,poolname,NO-
PRIVATE-SLICE) cannot be combined with ALTERNATE-
LIBRARIES=YES. Such a combination will be rejected by the KDCDEF run.

LIB=libname Program library from which the load module is to be loaded dynamically.
libname can be up to 54 characters in length.

If LOAD-MODE = STATIC, the LIB= operand is ignored. In all other cases,
you must assign a value to LIB= either in the LOAD-MODULE statement or
in a preceding DEFAULT statement.

LOAD-MODE=
Load mode of the load module

STARTUP The load module is loaded dynamically as an independent unit when the
application is started. External references from the subsystem, from class
3/4 memory, and from all other modules of the UTM application which are
already loaded are resolved. For runtime system functions, see also the
description of the operand ALTERNATE-LIBRARIES=YES.

i Load modules which are generated with LOAD-MODE=STARTUP and
which contain TCB entries must not be exchanged during runtime.

Default: STARTUP

BB
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

BB

B

BB

B

B

B

B

B

B

B

KDCDEF control statements LOAD-MODULE

Generating Applications 349

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ONCALL The load module is loaded dynamically as an independent unit the first time
a program unit or conversation exit assigned to the load module is called.
External references from class 3/4 memory and from all other modules of
the UTM application which are already loaded are resolved.

i Load modules containing TCB entries must not be generated with
LOAD-MODE=ONCALL.

If you are working with several processes, this load module must not be
overwritten in the library LIB=libname during runtime. Otherwise, different
versions of the load module will be executed during the application run.

STATIC The load module must be linked in statically to the application program.

(POOL,poolname, NO-PRIVATE-SLICE)
The memory pool is defined using the MPOOL statement.

poolname can be up to 50 characters in length.

When the application is started, the load module is loaded into the common
memory pool poolname. It is not divided into public and private slices. A
private slice is therefore not linked (even statically) into the application
program.

(POOL,poolname, STARTUP)
When the application is started, the public slice of the load module is loaded
into the common memory pool poolname. The private slice belonging to the
load module is then loaded into the local task memory.

(POOL,poolname, ONCALL)
When the application is started, the public slice of the load module is loaded
into the common memory pool poolname. The private slice belonging to the
load module is then loaded into the local task memory when the first
program unit assigned to this load module is called.

Only external references from class 3/4 memory, from the subsystems, and
from the local memory pool are resolved.

BB
B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

LOAD-MODULE KDCDEF control statements

350 Generating Applications

VERSION=version
Version number of the load module up to 24 characters in length.

This version number is subject to the same rules as the version numbers of
elements of a program library.

If VERSION=@, then the BLS addresses the load module lmodname in a
PLAM library, which was last entered in this PLAM library without an explicit
version specification. If you work with explicit versions in LMS, you cannot
use @ as the load module version.

The rules governing the versions of elements in a program library also apply
to name allocation. However, there is one limitation: if version contains the
character “.” then the version must start with a letter.

B
B

B

B

B

B

B

B

B

B

B

KDCDEF control statements LPAP

Generating Applications 351

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

LPAP - define an LPAP partner for distributed processing based on
LU6.1

The LPAP control statement allows you to define a logical access point for the partner appli-
cation in the local application. An LPAP statement is only required if communication with
the partner application is to be carried out using the LU6.1 protocol. This logical access
point is known as an LPAP partner. For each LPAP partner, you must define a logical name,
possibly administration authorization for the partner application, maximum values for the
message queue of the LPAP partner, and logical properties for communication with the
partner application based on the LU6.1 protocol.

 For information about generating LU6.1 connections see section “Distributed
processing via the LU6.1 protocol” on page 74.

The CON statement is used to assign a real partner application to the LPAP partner (see
the CON statement on page 318).

lpapname LPAP partner name, i.e. the logical name of the partner application, which
is used by the program units of the local application to address the partner
application. lpapname applies only in the local application, and can be up to
eight characters in length.

The specified name must be unique and must not be assigned to any other
object in name class 1. See also section “Uniqueness of names and
addresses” on page 268.

LPAPË lpapname

[,BUNDLE = master_lpap_name]

[,KSET=keysetname]

[,LNETNAME=local_netname]

[,PERMIT={ ADMIN | SATADM1 | (ADMIN,SATADM)1 }]

[,QLEV=queue_level_number]

[,RNETNAME=remote_netname]

,SESCHA=sescha_name

[,STATUS={ ON | OFF }]

additional operand under BS2000 systems

[,NETPRIO={ MEDIUM | LOW }]

1 only permitted under BS2000 systems B

B

B

LPAP KDCDEF control statements

352 Generating Applications

Together with the LTERM names and the OSI-LPAP names, the LPAP
names form a common name class.

BUNDLE=master_lpap_name
Name of the master LPAP.
If this operand is specified, the LPAP becomes a slave LPAP of an LU6.1-
LPAP bundle.

You define the master_lpap_name with a MASTER-LU61-LPAP statement.

Messages sent to the master LPAP of an LPAP bundle with an APRO call
are distributed to the slave LPAPs of this LPAP bundle by openUTM. This
allows the application to distribute the messages to be sent across several
partner applications of the same type without the need to program this
explicitly.

KSET=keysetname
Name of the key set assigned to the partner application in the local appli-
cation. The key set is defined using the KSET statement. The partner appli-
cation can only start those services or address those remote services
generated in the local application
– which are not locked, i.e. for which no lock code has been defined, and
– whose key codes are defined in the key set keysetname.

The local application can thus be secured against unauthorized access by
the partner application.

Default: No key set,
i.e. only transaction codes that are not protected with lock codes can be
started by the partner application.

LNETNAME=local_netname
This is required only for heterogeneous links. local_netname identifies the
VTAM name defined for the UTM application in the CICS or IMS partner
application.

Default: Blanks

NETPRIO= Transport priority to be used on the transport connection assigned to this
LPAP partner.

Default: MEDIUM

PERMIT= Authorization level of the partner application

ADMIN The partner application can execute administration functions in the local
application.

BB

B

B

KDCDEF control statements LPAP

Generating Applications 353

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

SATADM The partner application can execute preselection functions in the local
application, i.e. it can activate and deactivate the SAT logging of certain
events (UTM SAT administration authorization).

(ADMIN,SATADM)
The partner application can execute administration and preselection
functions in the local application.

Default:
The partner application cannot execute administration functions in the local
application.

QLEV=queue_level_number
Maximum number of asynchronous messages that can be accommodated
in the message queue of the LPAP partner. If this threshold value is
exceeded, further APRO-AM calls to this LPAP partner are rejected with
UTM message 40Z.

Default: 32767
Minimum value: 0
Maximum value: 32767 (i.e. unlimited)

RNETNAME=remote_netname
This parameter is required only for heterogeneous links. remote_netname
identifies the VTAM name of the CICS or IMS partner application.

Default: Blanks

SESCHA=sescha_name
The session characteristics that apply for communication between the local
application and the partner application are defined under sescha_name in the
SESCHA statement (see page 483). By specifying sescha_name here, you
can assign this set of session characteristics to the LPAP partner.

This is a mandatory operand.

STATUS= Specifies whether the LPAP partner is locked. The status can be changed
during operation using the administration command KDCLPAP.

ON The LPAP partner is not locked. Connections can be established between
the partner application and the local application or connections already
exist.

Default: ON

OFF The LPAP partner is locked. No connections can be established between
the partner application and the local application.

BB
B

B

B

B

B

LSES KDCDEF control statements

354 Generating Applications

LSES - define a session name for distributed processing based on
LU6.1

The LSES control statement required only for communication based on the LU6.1 protocol.

 For more information about generating LU6.1 connection see section “Distributed
processing via the LU6.1 protocol” on page 74.

It allows you to define a common session name for the connection established between two
applications for distributed processing. This name is then used to resume an interrupted
communication process. LSES also enables you to allocate the session to an LPAP partner.
For this purpose, each LPAP statement must be assigned at least one LSES statement. In
the case of parallel sessions, several different session names must be defined for the LPAP
partner lpapname.

An LPAP partner must be always be assigned the same number of sessions (LSES
statement) and transport connections (CON statement).

Exception: More LSES statements than CON statements can be assigned to an LPAP
partner for a UTM cluster application.

If a session is defined for the local application with LSES AAA, RSES=BBB, this session
must be defined with LSES BBB, RSES=AAA in the generation of the partner application.

To ensure that the USER and session name need not be unique in two connected applica-
tions, the common session name consists of two parts:
sessionname = local_sessionname + remote_sessionname

local_sessionname
Name of the session in the local application.
The specified name must be unique and must not be assigned to any other
object in name class 2. See also section “Uniqueness of names and
addresses” on page 268.

LPAP=lpapname
Name of the LPAP partner assigned to the partner application.
local_sessionname is used for communicating with the partner application
assigned to the LPAP partner lpapname in the local application.

LSESË local_sessionname

,LPAP=lpapname

[,NODE-NAME=nodename]

[,RSES=remote_sessionname]

KDCDEF control statements LSES

Generating Applications 355

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

NODE-NAME=node_name
This parameter is only relevant for UTM cluster applications.

To ensure that openUTM is able to select the "right" session when estab-
lishing a session with a partner application, you must assign the LU6.1
sessions to the node applications via the NODE-NAME operand. The
following dependencies apply:

– The name specified in NODE-NAME must be defined in a CLUSTER-
NODE statement using the identically named NODE-NAME operand.

– The host name for the node (HOSTNAME) specified in this CLUSTER-
NODE statement must be referenced in a CON statement in the partner
application (PRONAM).

– The LPAP name specified in this CON statement must, in the partner
application, be specified in an LSES statement that matches the LSES
statement generated here. I.e. the local session name in the partner
application corresponds to the RSES name that is specified here and
vice versa.

See also section “Generation notes” on page 76 and section “Procedure
when generating LU6.1 connections” on page 79.

Default value: eight spaces, i.e. not a node application.

In the case of standalone applications, NODE-NAME may not contain any
values other than spaces.

RSES=remote_sessionname
Remote half session name

Default: remote_sessionname=local_sessionname is set, if RSES is not named.

LTAC KDCDEF control statements

356 Generating Applications

LTAC - define a transaction code for the partner application

The LTAC control statement allows you to define a local transaction code for a service or
remote service program in a partner application. LTAC statements can be generated for
communication based on both the LU6.1 protocol and the OSI TP protocol.

The local transaction code is assigned either

● the name of a transaction code in a specific partner application (with single-step
addressing), in which case the local transaction code addresses both the partner appli-
cation and the transaction code in this application, or

● the name of a transaction code in any partner application (with double-step addressing).
The partner application in which the service program addressed by the local transaction
code is to run must be specified explicitly in the program interface.

ltacname Name of a local transaction code defined for the remote service program

LTACË ltacname

[,{ ACCESS-LIST=keysetname | LOCK=lockcode }]

[,LPAP=lpapname]

[,LTACUNIT=ltacunit]

[,RTAC={ C'rtacname' |
rtacname |
recipient_TPSU_title [,CODE={ STANDARD |

PRINTABLE-STRING |
T61-STRING |
INTEGER }

]
}

]

[,STATUS = { ON | OFF }]

[,TYPE={ D | A }]

[,WAITTIME=(time1,time2)]

KDCDEF control statements LTAC

Generating Applications 357

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ACCESS-LIST=keysetname
ACCESS-LIST= is used to specify the access authorizations that the user
of the local UTM application must have in order to be able to send a job to
the remote program. Whether the job is actually carried out by the remote
application will depend on the access authorizations that are defined there.

ACCESS-LIST may not be specified in conjunction with the LOCK=lockcode
operand.

For keysetname you must enter the name of a key set. The key set must be
defined using a KSET statement.

A user can only access the LTAC if the key set of the user (USER ...,KSET=)
contains at least one of the key codes contained in the key set (access list)
keysetname of the LTACs.

If you enter neither ACCESS-LIST=keysetname nor LOCK=lockcode the
LTAC is not protected and any user of the local application is able to start
the remote service program.

Default: no key set

LOCK=lockcode
May not be specified in conjunction with the ACCESS-LIST= operand.

LOCK= specifies the Lock code of the remote service program. A service
secured with a lock code can only be addressed by a program unit if the
program unit was started under a user ID (KCBENID) and from a client or a
partner application (KCLOGTER) whose key set contains a key code that
matches the lock code.

If you enter neither ACCESS-LIST=keysetname nor LOCK=lockcode the
LTAC is not protected and any user of the local UTM application is able to
start the remote service program.

Default: 0 (no lock code)
Maximum value: Value of MAX ...,KEYVALUE=number

LPAP=lpapname
This identifies the partner application to which the service program belongs.
You must enter the name of the LPAP partner assigned to this partner appli-
cation or the name of an LU6.1-LPAP bundle or an OSI-LPAP bundle.

If the LPAP= operand is not specified, the name of the partner application
must be entered in the APRO function call (in the KCPA field).

LTAC KDCDEF control statements

358 Generating Applications

LTACUNIT=ltacunit
Specifies the number of accounting units that are calculated for each call of
this LTAC in the accounting phase of the UTM accounting. The accounting
units are added to the accounting unit counter of the user ID that called the
LTAC.
You may only specify integer values. This operand is only relevant if you are
using the “UTM Accounting” function. Further information on the UTM
Accounting can be found in the openUTM manual “Using openUTM Appli-
cations”.

Default value: 1
Minimum value: 0
Maximum value: 4095

RTAC= Name of the transaction code for the remote service program in the partner
application. ltacname is used in the local application to address a service
program defined under this transaction code (recipient TPSU-title) in the
partner application.

Default: rtacname=ltacname

C‘rtacname‘
rtacname
recipient_TPSU_title

The name of the transaction code for the remote service program in the
partner application (recipient_TPS_title) can be specified in the form of a
character string or a number. A character string can be entered in the format
C‘rtacname‘ or rtacname.

For recipient_TPSU_title, the OSI TP standard distinguishes between the
code types printable string, T.61 string, and integer, which are used inter-
nally by openUTM to represent the RTAC name.

CODE=STANDARD
If recipient_TPSU_title is specified in the form of a character string, it can be
up to eight characters in length. It can only contain characters that are
permitted for TAC names. Further information can be found in section
“Format of names” on page 263.

CODE=STD must be used for communication based on the LU6.1 protocol,
and is recommended if the partner application is a UTM application.

For communication based on the OSI TP protocol, CODE=PRINTABLE-
STRING is used internally.

Default: STANDARD

KDCDEF control statements LTAC

Generating Applications 359

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

CODE=PRINTABLE-STRING
The recipient_TPSU_title string can be up to 64 characters in length, and is
case-sensitive.

If the partner application is a UTM application, recipient_TPSU_title can be
up to eight characters in length. It can only contain characters permitted for
TAC names. If these requirements are not met, the string can only be used
for heterogeneous links based on the OSI TP protocol.

The following characters are permitted for the code type PRINTABLE-
STRING:

– A, B, C, . . . , Z
– a, b, c, . . . , z
– 0, 1, 2, . . . , 9

and the following special characters:

apostrophe ’

hyphen -

blank Ë

colon :

question mark ?

equals sign =

comma ,

plus sign +

period .

left parenthesis (

right parenthesis)

slash /

LTAC KDCDEF control statements

360 Generating Applications

CODE=T61-STRING
With the code type T61-STRING, openUTM supports all characters of the
code type PRINTABLE-STRING as well as the following special characters:

CODE=INTEGER
For recipient_TPSU_title, you can specify a positive integer between 0 and
67108863.

This is permitted only for partner applications which are not UTM applica-
tions and which communicate on the basis of the OSI TP protocol.

STATUS= This defines whether or not the ltacname of the remote service program is
locked when the local application is started.

The value entered for STATUS= applies until it is changed using the
KDCLTAC administration command.

ON The transaction code ltacname is not locked, i.e. jobs are accepted for the
corresponding service program.

Default: ON

OFF The transaction code ltacname is locked, i.e. jobs are not accepted for the
remote service program.

TYPE= This defines whether the remote service program is operated in dialog or
asynchronous mode.

D The remote service program is operated in dialog mode.

Default: D

A The remote service program is operated in asynchronous mode.

dollar sign $

greater than sign >

less than sign <

ampersand &

commercial at @

number sign #

semicolon ;

percentage sign %

asterisk *

underscore _

KDCDEF control statements LTAC

Generating Applications 361

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

WAITTIME=(time1,time2)
Maximum time spent waiting for a session to be reserved. By appropriately
selecting this wait time, you can limit the wait time of a user on the terminal
that requests the remote service.

time1 Number of seconds spent waiting for a session to be reserved (possibly
including connection setup) or for an association to be established when
starting a remote service program.

– time1 ≠ 0 for asynchronous TACs:
An asynchronous job is always placed in the message queue of the
partner application.

– time1 ≠ 0 for dialog TACs:
A dialog job is accepted if a logical connection exists to the partner
application.

– time1 = 0 for asynchronous TACs:
An asynchronous job (FPUT job) that is not time-driven is only entered
in the message queue of the partner application if there is a logical
connection to the partner application. If there is no connection, then the
FPUT call is rejected with the return code 40Z, KD13.

– time1=0 for dialog TACs:
If there is no session or association generated for which the local appli-
cation is the contention winner, then the dialog job (APRO DM call) is
rejected with 40Z, KD11. If there are sessions/associations for which the
local application is the contention winner, but none are free when the
program ends, then the transaction is rolled back.

In the case of asynchronous jobs to OSI TP partners time1 is always set
internally to 60 seconds, regardless of the value actually set.

If there is no logical connection to the partner application, then dialog jobs
are rejected, regardless of the value of time1. The establishment of a
connection is initiated at the same time.

LTAC KDCDEF control statements

362 Generating Applications

time2 Maximum number of seconds spent waiting for a response from the job
receiver. This can be used to restrict the wait time for the terminal user.
time2 = 0 means “wait indefinitely”.
time2 is only relevant for dialog LTACs, the wait times for asynchronous
LTACs are defined using UTMD ... CONCTIME=(...,time2).

i If a value > 0 is specified in time2 then this value is ignored by
openUTM if a KDCSHUT WARN or GRACE has been issued and
the local service has initiated the end of the transaction. In this case,
openUTM chooses the wait time in such a way that the transaction
is rolled back before the application is terminated in order, if
possible, to prevent the application from being terminated abnor-
mally with ENDPET.

Default value: WAITTIME = (30,0).
Minimum value: WAITTIME = (0,0)
Maximum value: WAITTIME = (32767,32767)

Wait times can be modified using the UTM administration (e.g. with the
KDCLTAC command).

KDCDEF control statements LTERM

Generating Applications 363

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

LTERM - define an LTERM partner for a client or printer

The LTERM control statement allows you to define an LTERM partner as the logical access
point for a client or printer of the application. Clients are terminals, UPIC clients and
transport system applications (DCAM, PDN, CMX and socket applications, or UTM appli-
cations generated as transport system applications).

LTERM partners are used by clients and printers to establish a connection with the UTM
application. They are assigned physical clients or printers using the PTERM statement. You
can also define pools of LTERM partners; further information can be found in the description
of the TPOOL statement on page 524.

LTERM partners can also be predefined, i.e. they aren’t assigned to a client/printer yet. The
LTERM partner → PTERM assignment can be defined later on during operation using the
KDCSWTCH administration command.

A separate LTERM statement must be issued for all clients defined in a PTERM statement.

i Printers are not supported by openUTM under Windows systems. W

LTERM KDCDEF control statements

364 Generating Applications

i The operands LOCK=, KSET=, USER= and ANNOAMSG= are only valid for clients;
the operands CTERM= and PLEV= are only valid for printers.

LTERMË ltermname

[,BUNDLE=master-lterm]

[,GROUP=primary-lterm]

[,KSET=keysetname]

[,LOCK=lockcode]

[,QAMSG={ YES | NO }]

[,QLEV=queue_level_number]

[,RESTART={ YES | NO }]

[,STATUS={ ON | OFF }]

[,USAGE={ D | O }]

[,USER=username]

BS2000 and Unix system specific operands

[,CTERM=ltermname2]

[,PLEV=print_level_number]

BS2000 specific operands

[,ANNOAMSG={ Y | N }]

[,FORMAT= { + | * | # }formatname]

[,KERBEROS-DIALOG = { YES | NO }]

[,LOCALE=([lang_id][,[terr_id][,ccsname]])]

[,NETPRIO={ MEDIUM | LOW }]

B/X

B/X

B/X

B

B

B

B

B

B

KDCDEF control statements LTERM

Generating Applications 365

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ltermname Name of the LTERM partner up to eight characters in length

ltermname is used

– to assign a client or printer to the LTERM partner in the PTERM
statement.

– by the program units of the application to address clients, printers, and
other TS applications (not server-to-server communication) assigned to
the LTERM partner.

The specified name must be unique and must not be assigned to any other
object in name class 1. See also section “Uniqueness of names and
addresses” on page 268.

ANNOAMSG= (announce asynchronous message)
This applies only for LTERM partners used by terminals (USAGE=D) to sign
on to the UTM application.

Y An asynchronous message to this terminal is announced in advance by
outputting UTM message K012 in the system line. The user must then
request the message using the UTM command KDCOUT.

Default: Y

N An asynchronous message to this terminal is sent immediately, i.e. without
prior announcement.

BUNDLE=master-lterm
Name of a master LTERM in a LTERM bundle (connection bundle). By
specifying master-lterm, this LTERM becomes a slave LTERM of the corre-
sponding connection bundle.

The master LTERM specified here must have been generated in a
preceding LTERM statement. Do not assign a PTERM to a master LTERM.

Connection bundles permit load balancing (see the section “LTERM bundle”
on page 135).

Connection bundles can be generated for APPLI or SOCKET connections
(PTYPE operand of the corresponding PTERM statement).

BUNDLE must not be specified together with GROUP or CTERM.

BB

B

B

BB

B

B

B

BB

B

LTERM KDCDEF control statements

366 Generating Applications

CTERM=ltermname2
(control terminal)
This only needs to be specified for LTERM partners generated for printers
(USAGE=O).
ltermname2 is the name of an LTERM partner (up to eight characters in
length) which was configured as a printer control LTERM
(LTERM ...,USAGE=D). The printer control LTERM can be assigned one or
more LTERM partners which were configured for printers. It is used to
manage printers, print jobs, and printer queues.

Default: Blanks, i.e. no printer control LTERM

GROUP=primary-lterm
Name of a primary LTERM. By specifying primary-lterm, this LTERM
becomes an alias LTERM of the corresponding primary LTERM. They
define a LTERM group.

In a LTERM group you assign several LTERMs to one connection (see the
section “LTERM groups” on page 138).

The primary LTERM specified here must have been generated in a
preceding LTERM statement. The primary LTERM must be a normal
LTERM assigned to a PTERM with PTYPE=APPLI or PTYPE=SOCKET or
the master LTERM of a connection bundle. Do not assign a PTERM to an
alias LTERM.

i GROUP must not be specified together with BUNDLE or CTERM.

FORMAT= Designates the start format of the LTERM partners. Start formats can only
be defined for terminals. It only makes sense to specify a start format if the
application is generated without user IDs or if you are using your own sign-
on service.

If the LTERM partner is assigned to a UPIC client, then specifying a start
format has no effect.

If the application is generated without user IDs, this format is output instead
of UTM message K001. Following a terminal-specific restart, the start
format is not displayed, rather the KDCDISP command is executed.

If the application is generated with user IDs, the name of the start format
can be queried in the first part of the sign-on procedure using the SIGN ST
call. If you do not use your own sign-on procedure, you cannot use the
LTERM-specific start format.

B/X
B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

BB

B

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements LTERM

Generating Applications 367

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

The sign of the format consists as follows:

+, * or # followed by an alphanumeric name (formatname) up to seven
characters in length.

#formats can only be used in the context of a sign-on procedure.

The terms have the following meanings:

+ When the next MGET call of the program unit is issued, each entry in a
format field is preceded by 2 bytes for the attribute field in the KDCS
message area, i.e. the field properties can be modified by the program unit.
The format name at the KDCS interface is +formatname.

* When the next MGET call of the program unit is issued, the entry in a format
field is not preceded by any bytes for an attribute field, i.e. the field
properties cannot be modified by the program unit. The format name at the
KDCS interface is *formatname.

This identifies a format with extended user attributes. The field properties
and global format properties can be modified by the program unit. The
format name at the KDCS interface is #formatname.

Default: no start format

KERBEROS-DIALOG =

YES A Kerberos dialog is performed when a connection is established for
terminals that support Kerberos and that connect to the application directly
via this LTERM partner (not via OMNIS).

openUTM stores the Kerberos information in the length resulting from the
maximum lengths generated for MAX PRINCIPAL-LTH and MAX
CARDLTH. If the Kerberos information is longer, it is truncated to this length
and stored.

The KDCS call INFO (KCOM=CD) allows a program unit run to read this
information unless a user subsequently signs on with an ID card. In this
event, the Kerberos information is overwritten by the ID card information.

If the maximum of the lengths generated for MAX PRINCIPAL-LTH and
MAX CARDLTH is zero, a warning message is issued.

NO No Kerberos dialog is performed.

Default.

B

B

B

B

B

BB

B

B

B

BB

B

B

B

BB

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

BB

B

LTERM KDCDEF control statements

368 Generating Applications

KSET=keysetname
This applies only to clients generated as dialog partners (USAGE=D).
keysetname is the name of a key set defined using the KSET statement and
assigned to the LTERM partner ltermname. keysetname may be up to
8 characters long.

A maximum of one key set can be assigned to each LTERM partner. This
defines the access permissions for this LTERM partner with respect to using
the services of the application and remote services (LTACs) generated in
this application.

This LTERM partner can only be used to start services of the application that
are protected with a lock code or an access list and only address remote
services that are protected with a lock code or an access list if the following
applies: The key set assigned to the LTERM partner and the KSET of the
UTM user ID under which sign-on using this LTERM partner was performed
must contain the key code or access code that matches the lock code or
access list.
The lock/key code concept and the access list concept are described in
detail in the openUTM manual “Concepts und Functions”. An introduction to
data access control can be found in section “Lock/key code concept” on
page 217.

Services whose TACs are not secured with codes can be called by the user
or the client program without restriction.

In the case of an application in which user IDs have been defined and for
which data access control is not required for terminals, you can assign all
key codes to the terminals as follows:

LTERMË...,KSET=MASTERSET
KSETËMASTERSET,KEYS=MASTER

Default: No key set

LOCALE=(lang_id,terr_id,ccs_name)
Language environment of the client that signs on to the application via this
LTERM partner.

lang_id Freely selectable language identifier for the client, up to two characters in
length.

The language identifier may be queried by the program units of the appli-
cation, so that messages can be sent to the terminal in the communication
partner’s language.

terr_id Freely selectable territorial identifier for the client, up to two characters in
length.

B

B

B

BB

B

B

B

B

BB

B

KDCDEF control statements LTERM

Generating Applications 369

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

The territorial identifier may be queried by the program units of the appli-
cation, so that messages can be sent to the terminal taking into consider-
ation any special territorial features of the communication partner’s
language.

ccsname (coded character set name)
Name of an extended character set (CCS name) up to eight characters in
length. The specified CCS name must belong to one of the EBCDIC
character sets defined under the BS2000 system (see also the XHCS User
Guide). The character set must be compatible with an ISO character set
supported by the terminal assigned to this LTERM partner.

During generation, KDCDEF cannot check the validity of the CCS name
under the BS2000 system or the compatibility condition. If you specify a
CCS name which is not defined in XHCS, this results in a PEND ER when
an attempt is made to establish a connection via this LTERM partner during
runtime.

The character set with the specified CCS name is used for:

– outputting dialog messages on 8-bit terminals if the application is
generated without user IDs or if a user is not signed on to the terminal,
and another CCS name is not explicitly selected using an edit profile or
a format.

– outputting asynchronous messages on 8-bit terminals if another CCS
name is not explicitly selected using an edit profile or a format.

Default: Locale defined in the MAX statement

LOCK=lockcode
This applies only for clients (USAGE=D).
Lock code assigned to the LTERM partner as a logical numerical lock.
lockcode is a number between 1 and the maximum value permitted by the
application (MAX ...,KEYVALUE=number). It is only possible to sign on to
this LTERM partner under a UTM user ID (USER) for which a key set has
been generated with a key code that contains the lock code of the LTERM
partner.
If the application is generated without user IDs (no USER statement), the
LOCK= operand is ignored.

Default: 0, i.e. no lock code
Maximum value: Value of MAX ...,KEYVALUE=number

B
B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

LTERM KDCDEF control statements

370 Generating Applications

NETPRIO= Transport priority to be used on the transport connection assigned to this
LTERM partner.

NETPRIO has no significance for LTERM partners that are assigned to a
PTERM using PTYPE=SOCKET or PTYPE=*RSO.

Default:
MEDIUM for clients
LOW for printers

PLEV=print_level_number
(print level)
This applies only for printers. The PLEV= operand allows you to access
printers from various UTM applications (printer sharing). The connection
between the UTM application and the printer exists only while the print job
is being transferred, thus allowing other applications to establish a
connection as required.

This operand defines the number of printer messages at which openUTM
attempts to establish a connection with the printer. openUTM continues to
collect these messages until the threshold value defined with PLEV= is
reached. It then establishes a logical connection to the printer. The
connection is shut down again as soon as there are no further messages
for this printer. Another application can then output messages to the printer
if necessary. If the client is assigned a printer pool, openUTM attempts to
establish a connection to all printers in the pool as soon as the threshold
value is reached. When all messages have been sent, the connection to all
printers in the pool is shut down again.

If the connection to the printer is shut down (e.g. by administration) even
through the threshold value PLEV= is still exceeded, openUTM attempts to
reestablish the connection at intervals defined in MAX ...,CONRTIME=time.

If PLEV=0 is specified, the connection is not shut down even if there are no
further output messages.

If PLEV>0 is specified, the operands RESTART=NO or USAGE=D must not
be specified for the LTERM partner. Under BS2000 systems QAMSG=NO
must also not be specified.

i If PLEV>0 is specified, the operand CONNECT=YES of the associated
PTERM statement has no effect.

Default value: 0
Minimum value: 0
Maximum value: 32767
If you exceed the maximum value, KDCDEF automatically resets your entry
to the default value without outputting a UTM message.

BB
B

B

B

B

B

B

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

KDCDEF control statements LTERM

Generating Applications 371

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

QAMSG= (queue asynchronous message)

YES An asynchronous message (FPUT job) to the client or printer is buffered by
openUTM in the message queue of this LTERM partner, even if the client or
printer is not connected to the application.

Default: If RESTART= YES

NO An FPUT job sent to this client or printer is rejected with the return codes
KCRCCC=44Z and KCRCDC=K705 if the client or printer is not connected
to the application.

Default: If RESTART=NO

QLEV=queue_level_number
(queue level)
Specifies the maximum number of asynchronous messages simultaneously
buffered by openUTM in the message queue of the LTERM partner. If this
threshold value is exceeded, openUTM rejects all further FPUT or DPUT
calls for this LTERM partner with 40Z.
QLEV= can be used to control the size of the page pool more effectively.
This is because the number of asynchronous messages cannot exceed the
queue_level_number.

Default value: 32767
Minimum value: 0
Maximum value: 32767 (i.e. unlimited)
If you exceed the maximum value, KDCDEF automatically resets your entry
to the default value without outputting a UTM message.

i You should not specify a QLEV < PLEV for a printer, as this would mean that
the connection to this printer would have to be established by adminis-
tration.

RESTART= Processing of asynchronous messages when the client link is discon-
nected.

YES When the link to the client assigned to this LTERM partner is disconnected,
asynchronous messages are retained. If user IDs are not generated in this
application, openUTM performs an automatic service restart for this LTERM
partner.

Default: YES

NO When the link to the client assigned to this LTERM partner is disconnected,
openUTM deletes all asynchronous messages in the message queue of the
LTERM partner. If these are messages of a UTM message complex, the
negative confirmation job is activated. It is possible to relieve the load on the
page pool by specifying RESTART=NO.

LTERM KDCDEF control statements

372 Generating Applications

If QAMSG=YES is specified, you must not specify RESTART=NO.

If user IDs are not defined in the application, openUTM does not perform an
automatic service restart for clients or printers, i.e.:

– If the connection is shut down by KDCOFF, if it is lost, or if the appli-
cation is terminated normally, the service is reset to the last synchroni-
zation point and terminated. The event exit VORGANG is then called
with KCKNZVG=D (=Disconnect).

– During a UTM warm start following abnormal termination of the appli-
cation, an open service for this LTERM partner is terminated without
calling the event exit VORGANG.

– Following connection setup, KDCDISP/KDCLAST behaves in the same
way as after regeneration, i.e. the UTM message K020 NO MESSAGE(S)
PRESENT is output.

STATUS= Status of the LTERM partner following connection setup. This can be
modified during runtime using the administration command KDCLTERM.

ON The client or printer assigned to this LTERM partner is not locked, i.e. you
can work with it as soon as the connection has been established.

Default: ON

OFF The client or printer assigned to this LTERM partner is locked.

USAGE= Type of LTERM partner

D The LTERM partner is configured as a dialog partner. Both the client and the
application can send messages via the connection between the client and
the local application.

Default: D

O The LTERM partner is configured for an output medium. It is only possible
to send messages from the application to the printer or TS application etc.

USER=username
This only applies if the LTERM has been configured as a dialog partner
(USAGE=D). Depending on the type of the assigned client, this operand
has the following effect:

– If a terminal is assigned to the LTERM partner, openUTM executes an
automatic KDCSIGN for the user ID username when establishing a
logical connection between the client assigned to this LTERM partner
and the UTM application. Note that when the automatic KDCSIGN is
used, access protection is limited. You should not specify this operand
unless you are certain that an authorized user is working under this user
ID at this client. After the logical connection is set up, the client is in the

KDCDEF control statements LTERM

Generating Applications 373

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

same state as if the user username executed the KDCSIGN command
(BS2000 systems) or sign-on check (Unix systems and Windows
systems) successfully. The user ID must be defined using the USER
statement.

– If the LTERM partner is assigned a client of type APPLI or UPIC, then
the user ID username is reserved for this client (as the connection user
ID). The client is signed on under this user ID when the connection is
established. Another client or terminal user cannot sign on to the UTM
application with this user ID.
If a user ID with the name of the LTERM partner was generated explicitly
by means of a USER statement, openUTM assigns this user ID exclu-
sively to the LTERM partner.
If the LTERM partner is to send administration calls to the application,
then a user ID with administration authorization must be specified if the
client is not signed-on using a real user ID.
If transaction codes are to be called from this client that are protected
by lock codes, then this user ID must be assigned an appropriate key
set.
If no user ID was specified, then KDCDEF implicitly creates a user ID
with the name of the LTERM partner and the value defined in
LTERM ...,RESTART=.

Default: No automatic KDCSIGN

MASTER-LU61-LPAP KDCDEF control statements

374 Generating Applications

MASTER-LU61-LPAP – Define the master LPAP of an LU6.1-LPAP
bundle

The MASTER-LU61-LPAP statement allows you to specify the name and properties of a
master LPAP for an LU6.1 LPAP bundle.

Slave LPAPs are assigned to a master LPAP of an LU6.1 LPAP bundle with the BUNDLE
parameter of the LPAP statement. The master LPAP and the slave LPAPs together form an
LPAP bundle. LPAP bundles allow messages to be distributed automatically across several
LPAP partners (see the section “LU6.1-LPAP bundles” on page 86).

master_lpap_name
Name of the master LPAP of an LU6.1 LPAP bundle. This name is only of
significance in the local application and must differ from the names of
LTERMs, LPAPs, OSI-LPAPs and TACs defined in this application.

master_lpap_name can be up to 8 characters in length.

STATUS= Specifies whether the MASTER-LU61-LPAP is locked.

ON The MASTER-LU61-LPAP is not locked.

OFF The MASTER-LU61-LPAP is locked. Jobs for the MASTER-LU61-LPAP are
rejected.

MASTER-LU61-LPAP master_lpap_name

[,STATUS={ ON | OFF }]

KDCDEF control statements MASTER-OSI-LPAP

Generating Applications 375

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

MASTER-OSI-LPAP - Defining the master LPAP of an OSI-LPAP bundle

WIth the control statement MASTER-OSI-LPAP you specify the name and properties of a
master LPAP for an OSI-LPAP bundle.

A master LPAP of an OSI-LPAP bundle is assigned slave LPAPs with the BUNDLE
parameter of the OSI-LPAP statement. The master LPAP and the slave LPAPs together
form a LPAP bundle. LPAP bundles allow messages to be distributed automatically across
several LPAP partners (see the section “OSI-LPAP bundles” on page 104).

master_lpap_name
Name for the master LPAP in an OSI-LPAP bundle. This name is only signif-
icant in the local application. It must be different from the names of the
LTERMs, LPAPs, OSI-LPAPs, and TACs defined in the application.
master_lpap_name can be a maximum of 8 characters long.

APPLICATION-CONTEXT=context-name
Name of the application context to be used for communication with the
remote partner.

All slave LPAPs in an OSI-LPAP bundle must be assigned to the same
application context as the master LPAP.

STATUS= Specifies whether the MASTER-OSI-LPAP is locked.

ON The MASTER-OSI-LPAP is not locked.

OFF The MASTER-OSI-LPAP is locked. Jobs for the MASTER-OSI-LPAP are
rejected.

MASTER-OSI-LPAP master_lpap_name

,APPLICATION-CONTEXT=context_name

[,STATUS={ ON | OFF }]

MAX KDCDEF control statements

376 Generating Applications

MAX - define UTM application parameters

The MAX control statement allows you to define the maximum values, timers, process
values and system parameters of a UTM application. For instance, these include:

● the name of the application

● the base name or the base directory for UTM files

● single or dual-file operation of the KDCFILE

● size of a UTM page (block size of UTM storages and buffers)

● the maximum number of
– processes
– key codes
– GSSBs
– LSSBs
– UTM pages in the buffer for user log records, etc.

● threshold values for monitoring the size of SYSLOG file generations if the SYSLOG is
created as an FGG (SYSLOG-SIZE operand)

● the default language environment of the UTM application (LOCALE operand)

● whether or not SM2 can be used for performance monitoring in the application

● the network access mode, i.e. multi- or single-threaded.

The parameters of the MAX control statement can be split into several MAX statements. If
the same operand is inadvertently entered in several MAX statements, the first value
entered for this operand is taken as valid.

Mandatory operands:

APPLINAME=, KDCFILE= and TASKS=.

Additional mandatory operands under Unix systems and Windows systems:

SEMKEY= or SEMARRAY= (semaphore keys), IPCSHMKEY=, KAASHMKEY= and
CACHESHMKEY=.

In OSI TP applications additionally: XAPTPSHMKEY= and OSISHMKEY=.

The mandatory operands need to be defined once.

Note on UTM cluster applications:

If you modify one of the operands APPLINAME, APPLIMODE, GSSBS, LSSBS, KB, NB,
VGMSIZE then you must regenerate both the initial KDCFILE and the UTM cluster files by
specifying GEN=(CLUSTER,KDCFILE) in the OPTION statement.

B

X

X/W

X/W

X/W

X/W

KDCDEF control statements MAX

Generating Applications 377

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

For clarity, all operands of the MAX statement are listed in a table following the operand
descriptions.

MAXË

Operands valid for all operating systems

[APPLIMODE={ SECURE | FAST }]

,APPLINAME=appliname

[,ASYNTASKS={ atask_number | (atask_number,service_number) }]

[,BLKSIZE={ 2K | 4K | 8K }]

[,CACHESIZE=(number,paging,{ NORES | RES }1)]

[,CLRCH={ c | C'c'| X'xx' }]

[,CONN-USERS=number] (mandatory under Unix systems and Windows systems)

[,CONRTIME=time]

[,DEAD-LETTER-Q-ALARM=number]

[,DESTADM=destination]

[,DPUTLIMIT1=(day,hour,minute,second)]

[,DPUTLIMIT2=(day,hour,minute,second)]

[,GSSBS=number]

[,HOSTNAME=name]

[,KB=length]

,KDCFILE=(filebase [, { SINGLE | DOUBLE }])

[,KEYVALUE=number]

[,LEADING-SPACES={ NO | YES }]

[,LPUTBUF=number]

[,LPUTLTH=length]

[,LSSBS=number]

[,NB=length]

[,NRCONV=number]

[,OSI-SCRATCH-AREA=value]

[,PGPOOL=(number,warnlevel1,warnlevel2)]

[,PGPOOLFS=number]

1 NORES | RES only permitted under BS2000 systemsB

MAX KDCDEF control statements

378 Generating Applications

continued:

MAXË [,PGWTTIME=time]

[,PRIVILEGED-LTERM = <lterm-name>]

[,QTIME = (qtime1,qtime2)]

[,RECBUF=(number,length)]

[,RECBUFFS=number]

[,REDELIVERY=(number1, number2)]

[,RESWAIT={ time1 | (time1, time2) }]

[,SM2={ NO | OFF | ON }]

[,SPAB=length]

[,STATISTICS-MSG={ NONE | FULL-HOUR }]

[,SYSLOG-SIZE=size]

,TASKS=number

[,TASKS-IN-PGWT=number]

[,TERMWAIT=time]

[,TRACEREC=number]

[,TRMSGLTH=length]

[,USLOG={ SINGLE | DOUBLE }]

further operands for BS2000 systems

[,BRETRYNR=number]

[,CARDLTH=length]

[,CATID=(catalog_A,catalog_B)]

[,LOCALE=([lang_id][,[terr_id][,ccsname]])]

[,LOGACKWAIT=time]

[,MP-WAIT=number]

[,PRINCIPAL-LTH=length]

[,REQNR=number]

[,SAT={ ON | OFF }]]

[,VGMSIZE=number]

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements MAX

Generating Applications 379

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

continued:

APPLIMODE= This specifies whether the application is a UTM-S or UTM-F application.

SECURE The application is generated as a UTM-S application.

With UTM-S, openUTM logs all user data so that this data is retained after
the application is terminated or following a system crash. In the event of
errors, UTM-S guarantees the integrity and consistency of the application
data. If a UTM-S application is terminated abnormally, an automatic restart
is automatically performed. For this purpose, this variant of openUTM logs
all modifications at the end of transactions.

Default: SECURE

FAST The application is generated as a UTM-F application.

UTM-F offers enhanced performance by eliminating the disk input/output
operations performed by UTM-S when logging user and transaction data.
With a standalone UTM-F application, openUTM only logs user passwords
and changes to the configuration which were made by means of dynamic
administration. These modifications are thus retained for the next appli-
cation run. However, UTM-F applications do not log changes to the user
data. They are therefore suitable only for installations in which performance
is the most important criterion and the restart facility is not required. This
applies in the case of pure information systems, or if all logging functions
can be provided by the database system used.

In UTM cluster applications, user data that is valid globally in the cluster is
also saved for UTM-F.

APPLINAME=appliname
Name of the UTM application up to eight characters in length

MAXË

further operands for Unix systems and Windows systems

,CACHESHMKEY=number

,IPCSHMKEY=number

[,IPCTRACE=number]

,KAASHMKEY=number

[,NET-ACCESS={ | MULTI-THREADED | SINGLE-THREADED }]

,OSISHMKEY=number only mandatory if you generate OSI TP partners

,{ SEMARRAY=(number,number1) | SEMKEY=(number,...) }

,XAPTPSHMKEY=number only mandatory if you generate OSI TP partners

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

MAX KDCDEF control statements

380 Generating Applications

This is a mandatory operand.

If several application names are required, for example, for distributed
processing based on the LU6.1 protocol, these can be assigned to the
application using the BCAMAPPL statement. With APPLINAME= you
define the primary application name.

appliname must be unique within the local system and may not begin with
the character ’$’.

BS2000 systems:

This name is subject to the name conventions for BCAM applications.

appliname must not begin with a number or with ’$’ as this is prohibited by
BCAM and the application cannot be started otherwise. Please note that
KDCDEF cannot intercept numbers.

Unix systems and Windows systems:

appliname must be specified when establishing a connection from the
terminal (dialog terminal process).

If connections are to be established with partner applications using the
application name defined with APPLINAME=, you must also issue an
appropriate BCAMAPPL statement (see page 295).

ASYNTASKS=(atask_number,service_number)
Maximum number of resources that may be reserved to process
asynchronous jobs.

atask_number
Maximum number of processes (BS2000 tasks or work processes under
Unix systems/Windows systems) of the application which can simultane-
ously handle jobs with asynchronous transaction codes. This operand
allows you to prevent long-running asynchronous processes from affecting
dialog operation.

If ASYNTASKS=0, asynchronous TAC classes cannot be generated.

Default: 1
Minimum value: 0
Maximum value: TASKS -1

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements MAX

Generating Applications 381

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

service_number
Maximum number of asynchronous services that may be open at the same
time.

You should set service_number to be larger than atask_number when one of
the two following cases can arise:

– Process switch while processing an asynchronous service:
If an asynchronous service consists of several program units and if the
transaction code of a follow-up program (follow-up TAC after PEND
PA/PR or PEND SP) is located in a different TAC lass than the calling
program unit or the priority control is generated for TAC classes
(TAC-PRIORITIES statement), then a process switch can occur during
processing. The asynchronous service is inactive at first and does not
allocate a UTM process, although it remains open.

– Dialogs initiated by synchronous services with LU6.1 or OSI TP partner
applications:
If a dialog is initiated with a partner application within an asynchronous
service (with APRO DM) and it must wait for a response from the
partner (via PEND KP or PEND RE), then the asynchronous service
remains open until the response arrives (or until a timeout), but it does
not allocate a UTM process.

If these cases arise in the application and the value of service_number is too
small, then the asynchronous processing may be temporarily blocked
because service_number of inactive services already exist. New
asynchronous services cannot be started although no UTM processes are
processing asynchronous services at this time.

Default: atask_number
Minimum value: atask_number
Maximum value: 32767

MAX KDCDEF control statements

382 Generating Applications

BLKSIZE= Size of a UTM page

Please note that, depending on the BLKSIZE specification, each user
storage area occupies at least 2K, 4K or 8K in the page pool.

You can only specify BLKSIZE=4K or 8K for UTM cluster applications.

Default
– standalone UTM applications: 2K
– UTM cluster applications that run on BS2000 systems or 32-bit Unix or

Windows systems: 4K
– UTM cluster applications that run on 64-bit Unix systems: 8K
Possible values: 2K, 4K, 8K
Maximum value: 8K

i Under BS2000 systems you must specify BLKSIZE=4K or 8K
– if the KDCFILE and the USLOG file are created on NK4 disks, or
– if the KDCFILE is to be used as a Hiperfile (high-performance file).

BRETRYNR=number
Number of attempts made by openUTM to transfer a message to the
transport system (BCAM) if BCAM cannot accept the message immediately.
If this number is exceeded, the connection to the dialog partner is shut
down.

BRETRYNR is irrelevant for asynchronous messages output to a dialog
partner with PTYPE=APPLI (PTERM statement). If such a message from
the transport system is rejected due to a temporary bottleneck, then
openUTM releases the process, but does not clear down the connection.
After waiting for three seconds, openUTM makes up to three attempts to
transfer the message to BCAM. If after the third attempt BCAM still cannot
accept the message, then openUTM waits for 3 more seconds before it
makes another three attempts to send the message to BCAM. If still unsuc-
cessful, it waits another 3 seconds before making another three attempts,
and so on.

Default: 10
Minimum value: 1
Maximum value: 32767 (theoretical value)

CACHESHMKEY=number
Authorization key for the shared memory segment containing the global
buffer for file access. Keys are global parameters under the Unix systems
and Windows systems. You cannot specify more than one key. You must
enter a decimal number for number.

This is a mandatory operand.

X/W

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements MAX

Generating Applications 383

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

CACHESIZE=(number,paging,NORES or RES)
(NORES, RES only under BS2000 systems)

This specifies the size and properties of the cache memory (further infor-
mation can be found in the openUTM manual “Concepts und Functions”).
The values entered here affect the performance of your UTM application.

number Number of UTM pages in the cache. The size of each UTM page is defined
in the BLKSIZE= operand. The cache is used for accessing the page pool,
i.e. all input and output operations involving LSSBs, GSSBs, TLSs, LPUT
messages, FPUT messages, MPUT messages to clients, and some types
of UTM administrative data. Data is not written to the KDCFILE until the
cache becomes full or the transaction is terminated.

KDCDEF rounds up this number to a multiple of 32.

Default value:
1024 (ï 2, 4 or 8 MB, depending on the value of BLKSIZE=)
Minimum value:
32 (ï 64, 128 or 256 KB, depending on the value of BLKSIZE=)
Maximum value:
Depends on the hardware and operating system, but not larger than
16777184.

i Under BS2000 systems the cache is located in a common memory pool
whose size is always a multiple of 1 MB. The BS2000 system automatically
rounds the value specified in CACHESIZE. CACHESIZE should be
requested in multiples of 1 MB so that address space is not wasted.

paging Percentage of cache pages to be written to the KDCFILE in a single batch
in the event of a bottleneck, thereby freeing space in the cache. This must
correspond to at least eight pages. The value specified here can be
modified using the administration command KDCAPPL
CACHE=%_utm_pages.

Default value: 70(%)
Minimum value: 0, i.e. eight pages are swapped out
Maximum value: 100 (%)

NORES The cache is created as non-resident.

Default: NORES

RES The cache is created as resident.

Resident cache offers enhanced performance in productive mode, as the
cache paging algorithm is designed specifically for use with this type of
cache.

B

B

B

B

B

BB

B

BB

B

B

B

MAX KDCDEF control statements

384 Generating Applications

i The number of resident pages used in the creation of a resident cache
cannot be checked using the COREBIAS operand of the BS2000 command
BIAS.

CARDLTH=length
Length of the ID card information in bytes. If the ID card reader is used for
sign-on, openUTM stores the ID card information in the length resulting
from the maximum of the length specified here and the value generated for
MAX PRINCIPAL-LTH. If the information on the ID card is longer, it is
truncated and stored in this length.

The KDCS call INFO (KCOM=CD) enables a program to read this infor-
mation.

CARDLTH must be big enough to ensure that the following applies for all
USER statements with
USER ..., CARD = (pos, string):
pos + length (string) -1 Î CARDLTH.

Default: 0
Maximum value: 255

When a value > 255 is specified, 255 is assumed.
No warning message is output.

CATID=(catalog_A,catalog_B)
Catalog IDs to which your KDCFILE is assigned.

If you work with CATIDs, enter the base name without the CATID in
KDCFILE=filebase (see page 391).

In the case of single-file operation of the KDCFILE, specify the CATID to
which the KDCFILE is to be assigned in catalog_A. In this case, catalog_B is
not specified.

In the case of dual-file operation of the KDCFILE (see section “The
KDCFILE” on page 43ff), you can assign files with the suffix A to CATID
catalog_A and files with the suffix B to catalog_B. If you only specify a value
for catalog_A, both files are assigned to this CATID.

In UTM cluster applications, only single-file operation of the KDCFILE is
permitted.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements MAX

Generating Applications 385

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

CLRCH= Character with which the KB program area and the standard primary
working area are overwritten at the end of a dialog step. Possible entries
are:

c
C’c’
X’xx’

Where c is an alphanumeric character and x a hexadecimal character.

Default:
The communication area and standard primary working area are not
overwritten.

CONN-USERS=number
This operand is used to control the load on the application.
It defines the maximum number of users that can work simultaneously with
the application. In the case of an application for which user IDs have not
been generated, CONN-USERS= can be used to define the maximum
number of clients that can sign simultaneously on to the application via
LTERM partners.

– CONN-USERS < number of users/clients
This prevents all users/clients from working simultaneously with the
application.

– CONN-USERS=0
The number of simultaneously active users/clients is unrestricted.

– CONN-USERS > number of users/clients
The application load is not controlled. CONN-USERS= is ignored.

User IDs and clients generated with administration authorization can sign
on to the UTM application, even if the maximum number of simultaneously
active user IDs has already been reached.

Default value in BS2000 systems: 0 (i.e. no restriction)
Minimum value: 0
Maximum value: 500000

i CONN-USERS is a mandatory operand in Unix systems and
Windows systems. Please note that number cannot be set to a
higher value that the number of concurrent user licenses obtained.

B

X/W

X/W

X/W

MAX KDCDEF control statements

386 Generating Applications

CONRTIME=time
(connection request time) Time in minutes after which openUTM retries to
establish a connection after failing to establish a connection generated to be
established automatically.
If CONRTIME > 0 then, following a disconnection, openUTM first attempts
to reestablish the connection immediately and then at the intervals specified
in CONRTIME. This applies to the following partners:

– TS applications (PTYPE=APPLI or PTYPE=SOCKET) which openUTM
generates with automatic connection setup (PTERM ...,CONNECT=A,)
provided that the connection was not terminated by an administration
command or due to the IDLETIME timer running down (see the PTERM
statement on page 450f) .

– OSI TP or LU6.1 partner applications which were generated with
automatic connection setup, provided that the connection was not
terminated by an administration command or because of the expiry of
an IDLETIME timer.

– OSI TP partner to which the asynchronous messages were sent and
with which no connection existed at the creation time of the messages.

– Printers to which openUTM establishes a connection as soon as the
number of print jobs for this printer exceeds the generated threshold
value (LTERM ...,PLEV>0). On disconnection, the number of print jobs
must be greater than or equal to the threshold value if openUTM is to
attempt to re-establish the connection.
If CONRTIME≠0, openUTM also attempts to re-establish the connection
if this was previously explicitly disconnected using an administration
command.

– Printers to which openUTM automatically establishes a connection
(PTERM ...,CONNECT=YES), provided that the connection was not
terminated by an administration command.

– Message distributor (MUX) to which openUTM automatically estab-
lishes a connection on start-up, provided that the connection was not
terminated by an administration command.

If a connection to this partner is not established when the application is
started or the administration command KDCPTERM or KDCLPAP is issued,
openUTM attempts to reestablish the connection at intervals specified in
CONRTIME=.

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B

B

B

KDCDEF control statements MAX

Generating Applications 387

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

If CONRTIME=0, openUTM does not make any attempt to set up the
connection. Exception: A wait time of 10 minutes is set for asynchronous
messages to OSI TP partners.

Default: 10 min.
Maximum value: 32767 min.

DEAD-LETTER-Q-ALARM
Controls monitoring the number of messages in the dead letter queue.

The K134 message is output each time the threshold is reached. for this
message the destination MSGTAC can be defined in order to automate
handling of the dead letter queue.

Default: 0, monitoring is disabled.
Maximum value: 65535

DESTADM=destination
Destination to which openUTM sends the results of administration calls
processed asynchronously. For destination, you can specify:

– an LTERM partner
Exception: UPIC-LTERM partners are not permitted!

– the TAC of an asynchronous program
– the TAC queue (type=Q).

Default: Blanks, i.e. no destination; the results are thus lost.

DPUTLIMIT1=(day,hour,minute,second)
Defines the latest possible execution time of a job. Can be specified in
relative or absolute time:

time of execution < time of DPUT call + DPUTLIMIT1

The following applies for time specifications in DPUTLIMIT1:

day Maximum value: 364
Minimum value: 0

hour Maximum value: 23
Minimum value: 0

minute Maximum value: 59
Minimum value: 0

second Maximum value: 59
Minimum value: 0

MAX KDCDEF control statements

388 Generating Applications

Default value: DPUTLIMIT1 (360, 0, 0, 0) = 360 days
Default value: DPUTLIMIT2 (1, 0, 0, 0) = 1 day
Minimum value: (0, 0, 0, 0)
Maximum value: (364, 23, 59, 59)

The following must apply for the DPUTLIMIT1 and DPUTLIMIT2 operands:

DPUTLIMIT1 + DPUTLIMIT2 ≤ (364, 23, 59, 59) < 365 days

i.e. if you enter (364, 23, 59, 59) for DPUTLIMIT1, you must specify
DPUTLIMIT2=(0, 0, 0, 0).

DPUTLIMIT2=(day,hour,minute,second)
The time specification for the DPUT call does not contain a number for the
year. Furthermore, the desired execution time may already have passed if
the DPUT call was delayed.

For this reason, you must decide whether the execution time of a job with
an absolute time specification should be attributed to the past, current, or
next year.

Since DPUTLIMIT1 + DPUTLIMIT2 must be < 1 year, only one of these
three alternatives will be in the permissible open time period
(call time - DPUTLIMIT2, call time + DPUTLIMIT1):

– If the only alternative allowed is before the call time, then the DPUT is
handled as an FPUT and executed as soon as possible.

– If the only alternative allowed is after the call time, then the DPUT is
saved and only converted to an FPUT and executed at the alternative
time.

– If none of the three alternatives are in the permissible time period, then
the DPUT is rejected.

DPUTLIMIT2 therefore allows you to backdate the specified execution time
into the past for time-driven jobs with absolute time specifications. You
cannot backdate jobs with relative time specifications.

DPUTLIMIT1 restricts the predating of jobs with absolute or relative time
specifications into the future only.

KDCDEF control statements MAX

Generating Applications 389

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Example 1

DPUTLIMIT1 = (300,0,0,0)
DPUTLIMIT2 = (010,0,0,0)

The DPUT call time is (005,0,0,0). The current and last years are not leap
years.

– DPUTs with relative time (000,0,0,0) to (299,23,59,59) are accepted.
– DPUTs with absolute times (001,0,0,0) to (005,0,0,0) and (360,0,0,1) to

(365,23,59,59) are handled as FPUT.
– DPUTs with absolute time (005,0,0,1) to (304,23,59,59) are handled as

DPUT.
– DPUTs with absolute time (305,0,0,0) to (360,0,0,1) are rejected.

 -|---------------|------------- ... --------------|-----------|
 360 5 305 360
 FFFFFFFFFFFFFFFFFDDDDDDDDDDDDD ... DDDDDDDDDDDDDDD

Example 2

DPUTLIMIT1 and DPUTLIMIT2 are defined exactly as in Example 1, but the
DPUT call time is (360,0,0,0).

– DPUTs with relative time (000,0,0,0) to (299,23,59,59) are accepted.
– DPUTs with absolute time (350,0,0,1) to (360,0,0,0) are handled as

FPUT.
– DPUTs with absolute time (001,0,0,0) to (294,23,59,59) and (360,0,0,1)

to (365,23,59,59) are handled as DPUT.
– DPUTs with absolute time (295,0,0,0) to (350,0,0,0) are rejected.

 -|---------------|-------------- ... -----------|-------------|
 350 360 295 350
FFFFFFFFFFFFFFFFFFDDDDDDDDDDDDD ... DDDDDDDDDDD

The default values are listed under the description of the DPUTLIMIT1
operand.

GSSBS=number
Maximum number of GSSBs (global secondary storage areas) that can
exist simultaneously in the application.

Default: 32
Minimum value: 0
Maximum value: 30000

MAX KDCDEF control statements

390 Generating Applications

HOSTNAME=name
Can only be specified in standalone applications.

In UTM cluster applications, you can specify a virtual host name in the
VIRTUAL-HOST parameter of the CLUSTER-NODE statement.

BS2000 systems:
Name of the virtual host on which the UTM application runs (from the point
of view of BCAM). This virtual host must also be generated in BCAM.
Default value:
8 blanks, i.e the applications runs under the real host.

Unix systems and Windows systems:
Name of the host that is specified as the sending address when a
connection is established from the UTM application end. HOSTNAME= is
required in cluster systems that use the “relocatable” IP address as the
sending address and not the stationary IP address.
Default: 8 blanks, the default processor name of the transport system is
used as the sending address.

IPCSHMKEY=number
Authorization key for the shared memory segment, which is used for
communication between work processes on one side and the dialog
terminal or printer processes and the timer process (external processes of
an application) on the other side. Keys are global parameters under the
Unix systems and Windows systems. You cannot specify more than one
key. You must enter a decimal number for number.

This is a mandatory operand.

IPCTRACE=number
In test mode (startup with TESTMODE=ON, see openUTM manual “Using
openUTM Applications under Unix Systems and Windows Systems”),
openUTM writes entries in the trace area of the IPC (shared memory
segments for interprocess communication). These entries contain internal
information which is required for diagnostic purposes. Each entry occupies
32 bytes. IPCTRACE defines the number of entries in the trace area. If this
number is exceeded, openUTM overwrites the existing entries, beginning
with the oldest entry.

Default: 1060
Minimum value: 1
Maximum value: 32500

KDCDEF automatically resets values < 1 or > 32500 to the minimum or
maximum value without outputting a UTM message.

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements MAX

Generating Applications 391

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

KAASHMKEY=number
Authorization key for the shared memory segment containing the global
data. Keys are global parameters under the Unix systems and Windows
systems. You cannot specify more than one key. You must enter a decimal
number for number.

This is a mandatory operand.

KB=length Length of the communication area (KB) in bytes, excluding the KB header
and KB return area.

Default: 512
Minimum value: 0
Maximum value: 32767

KDCFILE=

filebase Base name of the KDCFILE, the user log file, and the system log file
SYSLOG. The name entered here must also be specified in the start
parameter FILEBASE=filebase when starting the application program (see
openUTM manual “Using openUTM Applications”).

This is a mandatory operand.

BS2000 systems:
If you use the CATID= parameter to assign catalog IDs to your KDCFILE,
the base name must be specified without a CATID. (see section “BS2000
systems:” on page 44 for the format and length of the name).

Unix systems and Windows systems:
filebase is the name of the directory containing the KDCFILE and all
application files. This directory must be created before the KDCDEF run.
filebase can be fully or partially qualified and can be a maximum of 29
characters in length for standalone applications, irrespective of whether the
name is fully or partially qualified.
filebase can be a maximum of 27 characters in length for UTM cluster appli-
cations.

SINGLE Single-file operation is activated for the KDCFILE.

If the KDCFILE is split (see section “Splitting the KDCFILE” on page 55), all
KDCFILE files are subject to single-file operation.

Default: SINGLE

DOUBLE For security reasons, dual-file operation is activated for the KDCFILE.

If the KDCFILE is split (see section “Splitting the KDCFILE” on page 55), all
KDCFILE files are subject to dual-file operation.

In UTM cluster applications, only SINGLE may be specified.

X/W
X/W

X/W

X/W

X/W

X/W

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

MAX KDCDEF control statements

392 Generating Applications

KEYVALUE=number
Value of the highest key code of the application, and thus the value of the
corresponding highest lock code that can be assigned to a transaction code
or a terminal for data access control.
The operand KEYVALUE=number can also be used to define the maximum
number of key codes per key set. openUTM uses this information to
optimize the key set tables.
You can define up to 4000 key and lock codes. Only numerical lock codes
can be defined.

Default: 32

Minimum value: 1

Maximum value: 4000

Exceptions:
– Maximum value (32-bit Unix systems and Windows systems):

1976 for MAX ...,BLKSIZE=2K
– Maximum value (64-bit Unix systems):

3900 for MAX ...,BLKSIZE=4K

If you enter a value < 1, KDCDEF automatically sets KEYVALUE=1 without
outputting a UTM message.

LEADING-SPACES=
Specifies how the leading spaces in a messages from a terminal or from a
TS application (PTERM ... PTYPE=APPLI or SOCKET) are to be handled.

YES When calling a program unit, leading blanks in messages are passed on to
the program unit. The same applies for messages sent to a client with
PTYPE=APPLI. A blank acting as a separator between TAC and message
is removed if the TAC name < 8 characters.

Example

With the message, TACNAMEËËMessage for a TAC called TACNAME in
FGET/MGET, the following message will be sent to the program unit:

ËMessage

NO Leading blanks are suppressed.

Default: NO

X/W

X/W

X

X

KDCDEF control statements MAX

Generating Applications 393

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

LOCALE=(lang_id,terr_id,ccsname)
Default language environment of the UTM application (see also section
“UTM messages” on page 184).

i The locale generated here is assigned to all user IDs and clients that sign
on via LTERM partners or LTERM pools as the default language
environment. This default setting applies unless another locale is explicitly
defined for these objects in the corresponding USER, LTERM, or TPOOL
statements.

The message module whose language and territorial identifiers match the
specifications in the MESSAGE ...LOCALE= and MAX ...,LOCALE= state-
ments becomes the application message module. openUTM sends
messages to the message destinations SYSOUT, SYSLST, and CONSOLE
from this application message module. The specifications in the application
message module also determine the destination of a particular message.

lang_id Freely selectable language identifier for the UTM application up to two
characters in length.

Default: Blanks

terr_id Freely selectable territorial identifier up to two characters in length.

Default: Blanks

ccsname (coded character set name)
Name of an extended character set (CCS name) up to eight characters in
length. The specified CCS name must belong to one of the EBCDIC
character sets defined under the BS2000 system (see also the XHCS User
Guide). During generation, openUTM cannot check whether this condition
is fulfilled. KDCDEF will thus accept CCS names to which no character set
is assigned.

Default: Blanks, i.e. 7-bit mode

B
B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

BB

B

BB

B

B

B

B

B

B

B

MAX KDCDEF control statements

394 Generating Applications

LOGACKWAIT=time

The maximum length of time in seconds that openUTM is to wait for an
acknowledgment from an output device. This acknowledgment is

– for a printer, the logical print acknowledgment from the printer,
– for an RSO printer, the acknowledgment from RSO,
– for an FPUT call to another application, the transport acknowledgment.

If confirmation does not arrive within this period, e.g. because the printer
has run out of paper, openUTM shuts down the logical connection to the
device.

Default: 600
Minimum value: 10
Maximum value: 32767

LPUTBUF=number
Size of the LPUT buffer in UTM pages. The LPUT buffer of the KDCFILE is
used to temporarily store LPUT data. This data is not copied to the user log
file until the value specified in number is exceeded. The user log file USLOG
is open only during this copy process.

Default: 1
Minimum value: 1
Maximum value: 1000
KDCDEF automatically resets values > 1000 to 1000 without outputting a
UTM message.

v CAUTION!
This operand must be set > 1 if the application contains LPUT calls.
Otherwise, the copy process will be started too often. This involves opening
and closing the user log files.
The value entered in LPUTBUF must be selected such that the buffer can
accommodate the longest LPUT record. The following must apply:

LPUTBUF ∗ UTM page size ≥ LPUTLTH + length of KB header (84 bytes)

B

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements MAX

Generating Applications 395

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

LPUTLTH=length
Maximum length of the user data in LPUT records in bytes (excluding the
KB header).

The maximum length of an LPUT record in the user log file is calculated as
follows (see also the openUTM manual „Programming Applications with
KDCS”, user log file):

length + 84 bytes for the KB header + 12 bytes for length fields.

Default: 1948
Minimum value: 0
Maximum value (BS2000 systems): 32652, irrespective of the storage
medium for the user log file
Maximum value (Unix systems and Windows systems): 32668

BS2000 systems:

openUTM uses length to determine the block size of the user log file. To do
this, openUTM calculates the next largest value of (length + 100 bytes) that
is a multiple of 2 kbytes. openUTM uses this multiple as the block length for
the user log file. The 100 bytes comprise of 84 bytes for the KB header + 12
bytes for the record length fields + 4 bytes for the block length fields.

If the user log file USLOG is created on a non-key disk (NK2, NK4), then
you must select the value of length such that:

length + 100 byte + 16 bytes block-specific internal DVS administration infor-
mation

is a multiple of 2 Kbytes (on NK2 disks) or 4 Kbytes (on NK4 disks). This
allows you to optimally utilize disk space.

The 16 byte block-specific internal DVS administration information are
therefore not available for use as user data. You will find more information
on this subject in the BS2000 manual "Introductory Guide to DMS".

LSSBS=number
Maximum number of LSSBs (local secondary storage areas) that can be
created in a service.

Default: 8
Minimum value: 0
Maximum value: 1600

B

B

X/W

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

MAX KDCDEF control statements

396 Generating Applications

MP-WAIT=number
Maximum number of seconds for which openUTM waits for a process to
sign on to a common memory pool.

Default value: 180
Minimum value: 1
Maximum value: 32000

v CAUTION!
The default value of 180 seconds should only be changed in exceptional
circumstances, e.g. if a process terminates with K078 ENQAR and a user
dump with the return code KDCSST01.

NB=length Maximum length of a working area for
– logical inputs and outputs to and from terminals and transport system

applications of the APPLI type
– asynchronous output messages to printers and transport system appli-

cations of the SOCKET type

This should be equal to the length of the largest KDCS message area of the
program units in bytes.
Under BS2000 systems the value entered here must not exceed the value
specified for TRMSGLTH. Under Unix systems and Windows systems the
value of length must not exceed the value TRMSGLTH - 24 (see
MAX ...,TRMSGLTH=).

Default: 2048
Minimum value: 2048
Maximum value (BS2000 systems): 32700
Maximum value (Unix systems and Windows systems): 32676

BS2000 systems:
If RSO printers are defined, the size of the RSO buffer (REMOTE-BUFFER-
SIZE in the SPOOL parameter file) must be greater than or equal to length.
See page 174.

NET-ACCESS=
This specifies whether the application accesses the network in single- or
multi-threaded mode.

The value specified in NET-ACCESS does not affect connections via the
socket interface (native TCP IP generated with T-PROT=SOCKET).

B
B

B

B

B

B

B

B

B

B

B

X/W

B

B

B

B

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements MAX

Generating Applications 397

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

MULTI-THREADED
Several network connections are managed in a single network process.

Network connections are allocated to network processes on the basis of
listener IDs that are assigned to the application name (BCAMAPPL
statement, see page 295) and access points (ACCESS-POINT statement,
see page 281) of your application. All connections with the same listener ID
are managed by the same network process. If you specify NET-ACCESS=
MULTI-THREADED, you should also generate listener IDs. Otherwise, all
access points and application names are implicitly assigned the listener ID
0 and all connections are managed by the same network process.

Default: MULTI-THREADED

SINGLE-THREADED
Each network connection is managed in a separate network process.

This type of network connection is not supported by Windows systems. If
you enter SINGLE-THREADED in a UTM application that is to be run under
Windows systems, then KDCDEF replaces the value with MULTI-
THREADED without informing the user.

i SINGLE-THREADED is supported for the last time in Unix systems in the
current version.

NRCONV=number
(number of conversations)
Maximum number of services that can be simultaneously stacked by the
user. NRCONV=0 means that services cannot be stacked.

The following limits are valid:

Number of user IDs + maximum number of services that can be placed on
the stack (number of services =number ∗ number of user IDs) ≤ 500000

If the limit value of 500000 is exceeded (by the values specified for
NRCONV in the RESERVE statement, see page 473, and by the number of
USER statements, see page 543), then openUTM automatically creates
fewer entries for stacking services. In this case, not all users will be able to
place number services on the stack.

Default: 0
Minimum value: 0
Maximum value: 15

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

W

W

W

W

X

X

MAX KDCDEF control statements

398 Generating Applications

OSISHMKEY=number
Authorization key for the shared memory segment, which is used by OSS
for communication based on OSI TP. You must enter a decimal number for
number.
This is a mandatory operand if the application communicates on the basis
of OSI TP.

OSI-SCRATCH-AREA=value
Size in KB of an internal UTM working area for dynamic data storage when
using the OSI TP protocol.

Default: 256
Minimum value: 128
Maximum value: 32767

Under BS2000 systems this working area is automatically extended during
runtime, if required.

Under Unix systems and Windows systems the size of the internal working
area must not be modified during runtime. It is recommended that you
select the default value. However, if this proves to be insufficient during
operation, increase the value of OSI-SCRATCH-AREA and repeat the
generation procedure.

PGPOOL=(number,warnlevel1,warnlevel2)
Size of the page pool in UTM pages and the warning levels for utilization of
the page pool.

number Number of UTM pages to be used for the page pool in the KDCFILE (see
page 47). The size of each UTM page is defined in the BLKSIZE= operand.

Default: 100
Minimum value: 20
Maximum value: 16777215 - (2 * number of PGPOOLFS)

If you enter a value less than 20, KDCDEF automatically sets PGPOOL=20
without outputting a UTM message.

Under Unix systems and Windows systems the value of PGPOOL is always
an even number. If you enter an uneven number, openUTM subtracts 1 from
your entry.

warnlevel1
Numeric value (percentage) indicating the page pool utilization level at
which the first warning (UTM message K041) is output.

Default: 80
Minimum value: 1
Maximum value: 99

X/W
X/W

X/W

X/W

X/W

X/W

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements MAX

Generating Applications 399

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

warnlevel2
Numeric value (percentage) indicating the page pool utilization level at
which the second warning is to be output. If warnlevel2 is exceeded, all
asynchronous jobs are rejected. In this case, the user receives a
K message, and a corresponding return code is sent to a program unit.

Default: 95
Minimum value: warnlevel1 + 1
Maximum value: 100

PGPOOLFS=number
Number of files between which the page pool is to be split. If PGPOOLFS =
0, the page pool is located in the main file (under BS2000 systems in the file
filebase.KDCA, under Unix systems and Windows systems in the file KDCA
in the filebase file directory). In the case of dual-file operation
(MAX ...,KDCFILE=(...,DOUBLE)), the value specified in number does not
include the two file copies.
The file names are defined by KDCDEF.

Default: 0, i.e. the page pool is located in the main file

Maximum value (BS2000 systems): 99 (and PGPOOL=number / 2)
Maximum value (Unix systems and Windows systems): 10

Minimum value:
The minimum value depends on the number of UTM pages, the UTM page
size and the maximum file size permitted on the relevant system.
– In BS2000 systems, an individual UTM file must not be larger than

32 Gbytes in size.
For BS2000 systems, this results in the following minimum value
depending on the size of a UTM page:
4 if BLKSIZE = 8K and PGPOOL number Ï 4194304
2 if BLKSIZE = 4K and PGPOOL number Ï 8388608
0: other, for meaning, see above.

– On Unix systems in 32-bit mode and in Windows, files up to 2 Gbyte in
size are supported.

– On Unix systems in 64-bit mode, openUTM can also use larger files as
defined by the limits of the operating system and file system.

B

X/W

B

B

B

B

B

B

B

X/W

X/W

X

X

MAX KDCDEF control statements

400 Generating Applications

PGWTTIME=time
Maximum number of seconds for which a program unit can wait for
messages to arrive after a blocking call (e.g. PGWT call). During this period,
a process of the UTM application is exclusively reserved for this program
unit.

Default: ï time in TERMWAIT=time
Minimum value: 60
Maximum value: 32767

PRIVILEGED-LTERM=lterm-name

Identifies an LTERM as a privileged connection. Jobs sent to the UTM appli-
cation via this LTERM are prioritized for processing by UTM in situations in
which the UTM application is subject to a high load.

To permit rapid responsiveness even in high-load situations, additional
processes (referred to as UTM system processes) are started for a UTM
application. The UTM system processes only handle selected jobs. These
are primarily internal jobs or jobs issued by an administrator who is signed
on at the UTM application via the privileged LTERM.

If optimum use is to be made of this functionality, the PRIVILEGED-LTERM
should always be explicitly generated. Only then is it possible for all the
mechanisms that allow this LTERM to be privileged in high-load situations
to take effect. More specifically, the following approach is recommended:

– The administrator's workstation should be generated via a PTERM- and
an LTERM statement.

– The administrator's LTERM should be declared as a PRIVILEGED-
LTERM.

If a connection is established via this LTERM then the following applies:

– If a sign-on service is started for this connection then this sign-on
service is also processed by the UTM system processes.

– If an administrator signs on via this connection then program unit runs
for this connection are also handled by the UTM system processes.

– If a normal user signs on via this connection then this connection is
handled exclusively using "normal" processes until the user signs off.

The LTERM must be generated as a dialog LTERM in an LTERM statement.

If no PRIVILEGED-LTERM is generated then it is dynamically determined
as follows:

– After the start of the application, the first LTERM to which an adminis-
trator signs on becomes the privileged LTERM.

KDCDEF control statements MAX

Generating Applications 401

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

– If this administrator then signs off again then the next LTERM to become
the privileged LTERM is that at which an administrator signs on or at
which an administrator who is already signed on starts a program unit.

PRINCIPAL-LTH=length
Maximum length of a Kerberos principal in bytes.
This parameter is only of significance if at least one user is generated with
USER ..., PRINCIPAL= or at least one LTERM or TPOOL is generated with
KERBEROS-DIALOG=YES. The length of the value specified with USER ...
PRINCIPAL= must not be larger than the value generated with MAX
PRINCIPAL-LTH=.

When a Kerberos dialog is performed with a client, openUTM saves the
Kerberos information in the length resulting from the maximum of this length
and the length generated for MAX CARDLTH. If the Kerberos information is
longer, it is truncated to this length and stored.
The KDCS call INFO (KCOM=CD) allows the program unit run to read this
information if no user signs on to the same client with an ID card after the
Kerberos dialog. In this event, the Kerberos information is overwritten by the
ID card information.

Default: 0
Minimum value: 0
Maximum value: 100

QTIME = (qtime1, qtime2)
Specifies the maximum permitted length of time that a service is to wait for
the arrival of a message in a message queue. QTIME= refers to user-
specific (USER queues), permanent (TAC queues) and temporary message
queues.

It is possible to define individual maximum values for wait times in dialog or
asynchronous services.
If a greater wait time value is specified in a program unit run than is
generated in QTIME=, openUTM resets the wait time to the generated
value.

qtime1 Maximum length of wait time for dialog services

qtime2 Maximum length of wait time for asynchronous services

Both times are specified in seconds.

Default: 32767 (seconds)
Maximum value: 32767 (seconds)
Minimum value: 0 (seconds)

RECBUF=(number,length)

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

MAX KDCDEF control statements

402 Generating Applications

Size of the transaction-oriented restart area. This area contains the data
required for a restart following a transaction or system error. Further infor-
mation on the restart area can be found on section “Restart area” on
page 50.

number Number of UTM pages per process to be used in the KDCFILE to store data
for a restart following a system error. The size of each UTM page is defined
in the BLKSIZE= operand. If this area is large, the application load is
reduced but the restart process following a system error is slower. If this
area is small, the application load is increased but the restart process
following a system error is faster.

Default: 100 (per process)
Minimum value: 5 (per process)
Maximum value: 32767 (per process)

length Size in bytes of the buffer available to each application process for tempo-
rarily storing restart data. This data is required for a restart following a trans-
action or system error.

Default: 8192
Minimum value: 1024
Maximum value: 16777212 (16 MB)

RECBUFFS=number
Number of files between which the restart area is to be split. If
RECBUFFS=0, the restart area is located in the main file of KDCFILE. In
the case of dual-file operation (MAX ..., KDCFILE=(...,DOUBLE)), the value
specified in number does not include the two file copies. The file names are
defined by KDCDEF.

number must not be greater than the maximum number of processes
defined in TASKS=. If this requirement is not fulfilled, the default value is
used.

Default: 0
Maximum value (BS2000 systems): 99, or value of the TASKS parameter
Maximum value (Unix systems and Windows systems):
10, or value of the TASKS parameter

B

X/W

X/W

KDCDEF control statements MAX

Generating Applications 403

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

REDELIVERY=(number1, number2)
Maximum number of redeliveries of an asynchronous message after the
service or transaction was reset. number1 and number2 apply for different
message destinations.

number1 Maximum number of redeliveries of messages to an asynchronous TAC.
Delivery is always repeated after an asynchronous service was terminated
abnormally with PEND ER/FR or system PEND ER without at least one
transaction having been completed successfully. Restart of an
asynchronous service after PEND RS within the first transaction is not
regarded as a redelivery.
When redelivery is made, the program unit assigned to the TAC is restarted.
With the FGET call, the number of redeliveries is output in the KB return
area.

number2 Maximum number of redeliveries of messages to a service-controlled
queue. Delivery is always repeated if the message was processed and the
transaction was then reset.

With the DGET call, the number of redeliveries is output in the KB return
area.

Default: (0, 255)
Minimum value for number1 and number2: 0
Maximum value for number1 and number2: 255 (i.e. the number is unlimited)

A value of 0 means that the message is deleted or saved to the dead letter
queue after reset, depending on the value in TAC ...,DEAD-LETTER-Q.

If the value is set to 255, a message is redelivered any number of times.
Note that this can result in an endless loop if, for example, a program unit
is reset because of a programming error. Additionally the message cannot
be saved to the dead letter queue in case of an endless loop.

REQNR=number
Maximum number of PAM read/write jobs that can be issued in parallel at
the same time for a file in a UTM process. This value can be used to control
the parallel processing of input/output operations within certain limits.

Default: 20
Minimum value: 1
Maximum value: 100
KDCDEF replaces an invalid value with the maximum value without
outputting a message.

B

B

B

B

B

B

B

B

B

MAX KDCDEF control statements

404 Generating Applications

RESWAIT=(time1,time2)
(resource wait)
The times specified for time1 and time2 can be modified during runtime using
the administration command KDCAPPL.

time1 Maximum number of seconds for which a program unit can wait for a
resource locked by another transaction: GSSBs, TLSs, ULSs, and under
BS2000 systems possibly LTERM partners if ANNOAMSG=N.
If the resource does not become available within this time, the program unit
receives an appropriate return code.
If the transaction currently occupying the resource is waiting for an input
message following a PEND KP or PGWT KP program call, the program unit
receives an appropriate return code immediately without having to wait for
the period specified in time1. If a PEND KP or PGWT KP call is issued in a
blocking transaction, all pending program units are informed of this by
means of a return code.

RESWAIT=0: The application program does not wait for the resource to
become available. If the resource is locked by another transaction, the
requesting program unit immediately receives an appropriate return code.

Default: 120
Minimum value: 0
Maximum value: 32767

i Under BS2000 systems the real waiting time depends on the precision with
which the bourse waiting time was set in the operating system.

time2 Maximum number of seconds for which you can wait for a resource locked
by another process. If time2 is exceeded, the application is terminated
abnormally.

time2 should not be set too low, since certain activities in the UTM appli-
cation must be performed and completed by a process before the same
activities can be initiated in another process.

Example
When sending a message, a process locks the terminal to which the
message is directed. If another process wishes to access an input
message of the same terminal, it must wait for the terminal to become
available again.

B

B

KDCDEF control statements MAX

Generating Applications 405

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

In particular, the value entered for time2 must be at least equal to the longest
processing time (real time) required in the following cases:
– In the case of a communication partner generated with

PTERM ...,PTYPE=APPLI, the resources are locked for the entire
duration of a processing step. This includes the time required to process
the event exit VORGANG at the start and/or end of a conversation.

– At the end of a conversation, the resources remain locked as long as
the event exit VORGANG is running.

Default: 300
Minimum value: 300
Maximum value: 32767

If the value 0 is specified for time2, KDCDEF uses the default value 300
without outputting a UTM message. If you specify a value between 0 and
300, however, KDCDEF issues an appropriate UTM message.

SAT= (security audit trail)
Minimum event logging with SAT. Further information about "SAT logging"
can be found in the openUTM manual “Using openUTM Applications under
BS2000 Systems”.

ON SAT logging is switched on.

Minimum logging with SAT is switched on for the following events:
– signing a process on to and off from the UTM application
– switching the memory protection key
– exchanging programs
– executing a UTM SAT administration command.

Minimum logging can be extended and controlled by means of preselection.
This is generated using the SATSEL statement and the SATSEL= operand
in the USER and TAC statements. The administration command KDCMSAT
can be used to modify the preselection values defined during generation.

OFF SAT logging is switched off
The logging procedure only covers attempts to access the SAT adminis-
tration TAC KDCMSAT (apart from KDCMSAT HELP). All other events are
ignored. SAT logging can be switched on and off using the SAT adminis-
tration TAC KDCMSAT (see the openUTM manual “Using openUTM Appli-
cations under BS2000 Systems”).

Default: OFF

BB

B

B

B

BB

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

MAX KDCDEF control statements

406 Generating Applications

SEMARRAY=(number,number1)
Range of semaphore keys for global semaphores (process synchroni-
zation). Semaphore keys are global parameters under the Unix systems
and Windows systems. With SEMARRAY, you enter an initial value number
and an upper limit number. openUTM then reserves these keys, incre-
menting them by 1 starting with the initial value. For further information,
please contact your system administrator.

i The SEMARRAY= and SEMKEY= parameters are mutually exclusive.
Compared to SEMKEY=, SEMARRAY= offers the advantage of allowing
openUTM to reserve more than ten semaphore keys. To calculate the
number of semaphore keys required for a UTM application, see the
following description of SEMKEY and the description of the global system
resources in the openUTM manual “Using openUTM Applications under
Unix Systems and Windows Systems”.

This is a mandatory operand if SEMKEY= is not specified.

number Initial value (numeric value)

number1 Number of keys to be reserved

Minimum value: 1
Maximum value: 1000

SEMKEY=(number,...)
(semaphore key)
Semaphore keys for global semaphores (process synchronization).
Semaphore keys are global parameters under the Unix systems and
Windows systems. You can define up to 10 semaphore keys in a list. All
semaphore keys (number,...) are specified in the form of a decimal number.
For further information, please contact your system administrator.

The SEMARRAY= and SEMKEY= parameters are mutually exclusive.

This is a mandatory operand if SEMARRAY is not specified.

i The following formula can be used to calculate the number of semaphore
keys required for a UTM application. The resulting value should be rounded
up to the nearest integer.

number of semaphore keys = (9 + n + m) / 10

Where:

– 9 = constant value required by openUTM for internal synchronization
– n = maximum number of work processes that can be simultaneously

active during runtime
– m = maximum number of external processes that can be simultaneously

connected during runtime

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements MAX

Generating Applications 407

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

For more information on this subject see also: openUTM manual “Using
openUTM Applications under Unix Systems and Windows Systems”, Global
system resources.

SM2= This defines whether the UTM application is to supply data to SM2 or
openSM2 for performance monitoring.

NO Performance monitoring with SM2/openSM2 is generally prohibited for the
UTM application, i.e. the UTM application cannot supply data to
SM2/openSM2, nor can this be explicitly activated by the UTM adminis-
trator.

OFF The UTM application can supply data to SM2/openSM2, but this must be
explicitly activated by the administrator using KDCAPPL SM2=ON. The
supply of data can be deactivated again at any time using the administration
command KDCAPPL=OFF.

Default value: OFF

ON The UTM application can supply data to SM2/openSM2. This is activated
automatically when starting the UTM application. It can be deactivated
again at any time by the UTM application administrator using the adminis-
tration command KDCAPPL SM2=OFF.

SPAB=length Maximum length of the standard primary working area in bytes

Default: 512
Minimum value: 0
Maximum value: 32767

STATISTICS-MSG=
Specifies whether or not openUTM is to produce statistics message K081
hourly.

FULL-HOUR
Statistics message K081 is produced every hour and written in the
SYSLOG. At the same time, openUTM resets the following application-
specific statistical values to 0:

– number of messages received (term_input_msgs)
– number of messages sent/output (term_output_msgs)
– number of requests to write records in the user log file USLOG

(logfile_writes)
– percentage of requests from buffers in the cache that led to wait times

(cache_wait_buffer)

NONE Statistics message K081 is not produced and the statistical values listed
above are not automatically reset to 0.

X/W
X/W

X/W

MAX KDCDEF control statements

408 Generating Applications

You should choose NONE if you want to reset the statistical values listed
above via the administration when needed (see the openUTM manual
“Administering Applications”, KC_MODIFY_OBJECT).

Default: FULL-HOUR

SYSLOG-SIZE=size
Automatic size monitoring of the system log file SYSLOG by openUTM.

– size≠0
This can only be specified if the system log file SYSLOG is created as
a file generation group (FGG). If SYSLOG is a normal file and a value
other than 0 is entered for size, openUTM aborts the application startup
with the start error 58. If SYSLOG is created as an FGG, you can use
SYSLOG-SIZE to activate the automatic size monitoring of the
SYSLOG by openUTM. In this case, size defines the file generation size
at which openUTM switches to the next file generation.

– size=0
If the value 0 is specified for size (default), openUTM does not monitor
the size of the SYSLOG file. Instead, it outputs all UTM messages
directed to SYSLOG to the same file generation until openUTM
switches to another file generation by means of administration
(KDCSLOG command), or until size monitoring is activated.

– size≥100
Values ≥ 100 are interpreted by openUTM as follows: the size of each
individual SYSLOG file generation must not exceed the value (size ∗
size of a UTM page). The size of each UTM page is defined in BLKSIZE.
When the size of the SYSLOG file exceeds this threshold value,
openUTM automatically switches to the next SYSLOG file generation.

– size<100
openUTM automatically resets values between 1 and 99 to 100. In this
case, a UTM message is output for information purposes.

– size<0
Values < 0 are rejected by KDCDEF.

The administrator can modify the generated threshold value, and activate
or deactivate size monitoring as desired during operation (e.g. with the
KDCSLOG command).

Default: 0 (no size monitoring)
Minimum value: 100
Maximum value: (231 - 1)

KDCDEF control statements MAX

Generating Applications 409

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

TASKS=number
Maximum number of processes that can be used simultaneously for the
application.

This is a mandatory operand.

Minimum value: 2
Maximum value: 240

KDCDEF automatically resets values < 2 to 2 without outputting a UTM
message.

The current number of processes is defined when starting the application.
You can specify TASKS=1 during startup. The administrator can dynami-
cally modify the number of processes during runtime (e.g. with the adminis-
tration command KDCAPPL).
The number of processes specified during startup or set by the adminis-
trator must not exceed the value generated here.

TASKS-IN-PGWT=number
Maximum number of processes of the UTM application in which program
units with blocking calls, e.g. the KDCS call PGWT, may run simultaneously.
The value of TASKS-IN-PGWT must be less than that of the TASKS=
operand.

If TASKS-IN-PGWT=0, it is not possible to generate a TAC class or a trans-
action code (TAC) for which blocking calls are permitted (see
TAC/TACCLASS ...,PGWT=). In this case, PGWT=NO must be specified in
all TACCLASS and TAC statement (see also the TAC statement on
page 496 and the TACCLASS statement on page 513 for more infor-
mation).

Default value: 0
Minimum value: 0
Maximum value: number in TASKS -1

TERMWAIT=time
(terminal wait)

time Maximum time in seconds that may elapse in a multi-step transaction (i.e.
after PEND KP) between dialog output to the partner and the subsequent
dialog response from the partner. This value applies for all dialogs in which
the partner assumes the client role (terminals, UPIC clients, OSI TP, LU6.1
and LU6.2 job submitters). For terminal clients, for example, time is the time
the user has to think after PEND KP.
In the event of a timeout, the transaction is reset and the resources reserved
by the transaction are released. The connection to the partner is shut down.

MAX KDCDEF control statements

410 Generating Applications

Default: 600
Maximum value: 32767
Minimum value: 60

TRACEREC=number
Maximum number of entries in the process-specific trace areas handled by
openUTM. This value applies to the trace area
– of the main routine KDCROOT (UTM-DIAGAREA)
– of the UTM system code (KTA trace)
– of the XAPTP module (XAP trace) for OSI TP applications

openUTM writes trace information to these areas for diagnostic purposes.

Length of the entries:
– Entry in UTM-DIAGAREA: 138 bytes (on 32-bit systems) or 256 bytes

(on 64-bit systems)
– KTA and XAP trace entry: 64 bytes (on 32-bit systems) or 112 bytes (on

64-bit systems

Default: 32500
Minimum value: 1
Maximum value: 32500 (depending on the available resources)

KDCDEF automatically resets values < 1 to the default value and
values > 32500 to the maximum value without outputting a UTM message.

TRMSGLTH=length
This defines the maximum value for the following:
– The length of physical output messages sent to a terminal, printer or

transport system application (PTYPE=APPLI) or received by a terminal
or transport system application with PTYPE=APPLI. When the
message length is calculated, all characters to be transmitted, including
control characters etc., must be included.

– The length of asynchronous output messages to transport system appli-
cations of the SOCKET type.

– The length of the message section of the input message received from
an UPIC client that uses TCP/IP via the socket interface. During the
calculation of the length, it is necessary to take account of all the
characters that are to be transferred, including protocol elements.

Default: 4096 bytes
Minimum value: 4096 bytes
Maximum value: 32700 bytes

In BS2000 systems, the value specified in length must be at least as large
as the value specified in the NB operand.

B

B

KDCDEF control statements MAX

Generating Applications 411

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Under Unix systems and Windows systems the value entered in length must
be at least 24 bytes greater than that specified for the NB= operand.

If you use RSO printers, the size of the RSO buffer (REMOTE-BUFFER-
SIZE in the SPOOL parameter file) must be greater than or equal to
TRMSGLTH=length. See also section “Defining the RSO buffer size” on
page 174 for more information.

USLOG= This defines single- or dual-file operation for the user log file USLOG.

SINGLE Single-file operation is activated for the user log file.

Default: SINGLE

DOUBLE For security reasons, dual-file operation is activated for the user log file.
Further information on the user log file can be found in openUTM manual
“Using openUTM Applications”.

VGMSIZE=number
This parameter is used to generate a buffer area with the specified size for
the service memory of an SQL database system. It also restricts the user’s
share of the page pool. VGMSIZE= is specified in KB.

If the service memory area to be logged when the PEND call is issued is
greater than number, the service is terminated with PEND ER.

Default value: 32KB
Minimum value: 32KB
Maximum value: 256KB

XAPTPSHMKEY=number
Authorization key for the XAPTP shared memory segment

Keys are global parameters under the Unix systems and Windows systems.

XAPTPSHMKEY is a mandatory operand if the application is to commu-
nicate via the OSI TP protocol.

X/W
X/W

B

B

B

B

B

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

MAX KDCDEF control statements

412 Generating Applications

The table below provides an overview of the purpose and default values of the individual
operands of the MAX statement:

Operand Purpose Manda-
tory

Default value

Operands valid for all operating systems

APPLIMODE= Choice of UTM variant: UTM-S or UTM-F SECURE

APPLINAME= Name of the UTM application X -

ASYNTASKS= Asynchronous processing
(number of processes for asynchronous
processing and asynchronous services open
at the same time)

1, 1

BLKSIZE= Size of a UTM page 2K
(in UTM cluster appli-
cations: 4K or 8K)

CACHESIZE= Tuning feature
(size and properties of the cache)

Depending on the
system:
BS2000 systems:
(1024,70%, NORES)
Unix systems,
Windows systems
(1024,70%)

CLRCH= Character for overwriting the communication
area and standard primary working area

None

CONN-USERS= Restriction on the number of users or clients
active simultaneously

Depending on the
system:
BS2000 systems:
No restriction
Unix systems,
Windows systems:
Mandatory operand

CONRTIME= Automatic connection setup for printers
(waiting time for reconnection)

10 minutes

DEAD-LETTER-Q-
ALARM=

Monitors the number of messages received
in the dead letter queue

0, i.e. no monitoring

DESTADM= Asynchronous administration None

DPUTLIMIT1= Time-driven jobs (upper limit) 360 days

DPUTLIMIT2= Time-driven jobs (lower limit) 1 day

GSSBS= GSSB storage areas (maximum number) 32

HOSTNAME= Virtual host name for the UTM application 8 blanks

B
B
B
B

X/W
X/W
X/W

B
B
B
B

X/W
X/W
X/W

KDCDEF control statements MAX

Generating Applications 413

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

KB= Maximum length of the communication area 512

KDCFILE= Assigning a KDCFILE X -

KEYVALUE= Data access control using the lock/key code
concept (number of the highest key code)

32

LEADING-
SPACES=

Pass leading blanks in messages from
terminals or from TS applications
(PTYPE=APPLI/SOCKET) to the program
unit

NO

LPUTBUF= Logging of user data with LPUT
(number of PAM pages in the page pool)

1

LPUTLTH= Logging of user data with LPUT
(maximum LPUT message length)

1948 bytes

LSSBS= LSSB storage areas (maximum number) 8

NB= Maximum length of the KDCS message area 2048

NRCONV= Maximum number of stacked services 0

OSI-SCRATCH-
AREA=

Size in KB of an internal UTM working area 256

PGPOOL= Size of the page pool and warning levels 100 UTM pages,
80%, 95%

PGPOOLFS= Tuning feature: splitting the page pool Page pool in
KDCFILE

PGWTTIME= Maximum time for the KDCS call PGWT TERMWAIT=time

PRIVILEGED-
LTERM=

Define the privileged LTERM -

QTIME Maximum permitted wait time for messages
from service-controlled queues

32767 seconds

RECBUF= Tuning feature:
size of the restart area in KDCFILE or
process-oriented system memory

5 PAM pages
per process,
512 bytes

RECBUFFS= Tuning feature:
splitting the restart area

In KDCFILE

REDELIVERY= Maximum number of redeliveries of an
asynchronous message

0 for UTM-controlled
queues,
255 for service-
controlled queues

Operand Purpose Manda-
tory

Default value

MAX KDCDEF control statements

414 Generating Applications

RESWAIT= Waiting time for a resource (e.g. GSSB, TLS)
locked by another transaction (time1) or
process (time2)

120 seconds
300 seconds

SPAB= Maximum SPAB length 512

SM2= Permitting, activating, and deactivating the
supply of UTM data to SM2

OFF

STATISTICS-
MSG=

Statistics message K081 is produced and
the counter is automatically reset to 0

FULL-HOUR

SYSLOG-SIZE= Automatic size monitoring of the SYSLOG
file by openUTM

0

TASKS= Number of UTM processes X -

TASKS-IN-PGWT= Number of processes for PGWT jobs 0

TERMWAIT= Maximum waiting time for dialog input within
a transaction

600 seconds

TRACEREC= Space reserved for diagnostic information
(number of entries)

32500

TRMSGLTH= Maximum message length 4096 bytes

USLOG= Single- or dual-file operation of the user log
file

SINGLE

VGMSIZE= Generate the buffer area with the specified
size

32 KB

BS2000-specific operands

BRETRYNR= Communication with BCAM
(number of retries when sending messages)

10,0

CARDLTH= ID card reader for KDCSIGN check 0

CATID= Catalog IDs for the KDCFILE Default CATID

LOCALE= Default language environment Blanks

LOGACKWAIT= Support for output devices
(waiting time for confirmation)

600 seconds

MP-WAIT= Maximum waiting time per process for
connection to the common memory pool

180 seconds

PRINCIPAL-LTH= Maximum length of a Kerberos principal in
Byte

32

REQNR= Tuning feature: PAM I/O jobs
(maximum number of parallel jobs)

20

Operand Purpose Manda-
tory

Default value

B

B
B

BB

B

B

B
B

B
B

BB
B

BB
B

KDCDEF control statements MAX

Generating Applications 415

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

SAT= Minimum logging of events with SAT OFF

VGMSIZE= Size of the buffer area for the service
memory of an SQL database system

32KB

Operand Purpose Manda-
tory

Default value

B

BB
B

MAX KDCDEF control statements

416 Generating Applications

Unix system- and Windows system-specific operands

CACHESHMKEY= Authorization key for a shared memory
segment (global buffer for file access)

X -

IPCSHMKEY= Authorization key for a shared memory
segment (communication between UTM
processes)

X -

IPCTRACE= Number of UTM entries in the IPC trace area 1060

KAASHMKEY= Authorization key for a shared memory
segment (global data)

X -

NET-ACCESS= Mapping of network connections to network
processes

MULTI-THREADED

OSISHMKEY= Authorization key for an OSS shared
memory segment

With
OSI TP

-

SEMARRAY= Range of semaphore keys for global
semaphores (alternative to SEMKEY)

X -

SEMKEY= Semaphore keys for global semaphores
(alternative to SEMARRAY)

X -

XAPTPSHMKEY= Authorization key for the XAPTP shared
memory segment

With
OSI TP

-

Operand Purpose Manda-
tory

Default value

X/W

X/W
X/W

X/W
X/W
X/W

X/W

X/W
X/W

X/W
X/W

X/W
X/W

X/W
X/W

X/W
X/W

X/W
X/W

KDCDEF control statements MESSAGE

Generating Applications 417

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

MESSAGE - define a UTM message module

The MESSAGE control statement allows you to incorporate user message modules in the
configuration. It is possible to use a separate user message module to adapt the message
texts and/or the message destinations of individual messages to suit your requirements.

For more information on message modules see also section “UTM messages” on page 184
in this manual and the openUTM manual ”Messages, Debugging and Diagnostics”.

Generating message modules under BS2000 systems

In order to internationalize the application, it is possible to create several user message
modules which output the UTM messages of an application in the appropriate language.

The respective language environment can be defined for a user message module by means
of a locale, i.e. a unique pair of language and territorial identifiers. The language-specific
message modules are assigned for message output in accordance with the locale defined
for the user and LTERM partner.

The German UTM message module KCSMSGS and the standard English UTM message
module KCSMSGSE are supplied with openUTM.

MODULE=name
Name of the user-specific message module up to eight characters in length.
This module is created using the KDCMMOD tool (see the openUTM
manual “Messages, Debugging and Diagnostics in BS2000 Systems”).

This is a mandatory operand.

The name specified here must be unique within the application.

MESSAGEË MODULE=name

[,LIB=onlname]

[,LOCALE = (lang-id [,terr-id])]

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

MESSAGE (BS2000 systems) KDCDEF control statements

418 Generating Applications

LIB=omlname Object module library from which the user-specific message module is to be
loaded dynamically. omlname can be up to 54 characters in length.

If the user-specific message module is to be loaded dynamically, it must not
be linked to the application.

If nothing is specified for LIB= , TASKLIB is assumed. This does not corre-
spond to the SET-TASKLIB command, rather a library named TASKLIB
must exist in this case. Dynamic loading of the user message module from
the library assigned with SYSFILE-TASKLIB is not supported.

i When loading dynamically, the DBL searches for the user message module
first in the library that you have assigned in LIB= . If this library does not
exist, the DBL aborts the search. If the library exists but the user message
module could not be found there, the DBL searches through the alternative
libraries. The alternative libraries are those that have been assigned a file
link name BLSLIBnn (0≤nn≤99).

LOCALE=(lang_id, terr_id)
Language environment of the user-specific message modules defined by
means of a language identifier and possibly a territorial identifier. By making
the appropriate entries in the LOCALE= parameter of the USER or LTERM
statement, you can assign a corresponding UTM message module.
Messages are then output in the user’s language.

If you issue more than one MESSAGE statement, each statement must
contain the LOCALE= parameter. The lang_id and terr_id combination must
be unique in each MESSAGE statement for a UTM message module.

lang_id Freely selectable language identifier for a UTM message module, up to two
characters in length.

There is no default value for lang_id, i.e. this is a mandatory parameter.

BB
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

KDCDEF control statements MESSAGE (BS2000 systems)

Generating Applications 419

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

terr_id Territorial identifier for a UTM message module up to two characters in
length. You can also specify blanks for terr_id.

If you specify MESSAGE ...,LOCALE=, you must also define the
MAX ...,LOCALE (see page 393). The application message module of the
UTM application is automatically the message module whose lang_id and
terr_id in the MESSAGE statement match the locale in the MAX statement.
openUTM uses the application message module for messages to SYSLST,
SYSOUT and CONSOLE. The message destinations specified in the other
message modules have no significance.

The UTM message module whose lang_id and terr_id in the MESSAGE
statement are identical to the values entered for LOCALE= in the USER or
LTERM statement is used for messages to STATION, SYSLINE and
PARTNER.

Specifications relating to the user have priority over those relating to the
LTERM partner, i.e. if a user is signed on when a message is output,
openUTM uses the UTM message module appropriate for that user. If the
UTM message modules are assigned using language and territorial identi-
fiers, the procedure is as follows:

– If a UTM message module exists with a lang_id and terr_id combination
identical to the entries in the USER or LTERM statement, UTM
messages are output in this language environment.

– If an identical combination cannot be found, the UTM message module
with the same lang_id but for which no terr_id has been generated is
used.

– If this is not possible, the application message module is used.

BB
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

MESSAGE (Unix and Windows systems) KDCDEF control statements

420 Generating Applications

Generating message modules under Unix systems and Windows systems

Under Unix systems and Windows systems, you can generate exactly one user-defined
message module with the MESSAGE statement, i.e. you may only specify the MESSAGE
statement once within a single KDCDEF run.

If a MESSAGE statement is not issued, the name of the external C/C++ structure is
KCSMSGS. An object module with a C/C++ structure with this name is supplied with
openUTM as a file.

Under Unix systems, the file is the object module kcsmsgs.o in the library
libwork under the path utmpath/sys.

Under Windows systems the module kcsmsgs.obj in the library
utmpath/sys/libwork.lib.

MODULE=name
Name of the external C/C++ structure with which messages are addressed.
In the case of a user-specific message module (see the description of the
KDCMMOD tool in the openUTM manual “Messages, Debugging and
Diagnostics in Unix Systems and Windows Systems”), the name specified
here must match the name of this module. name can be up to eight
characters in length.

This is a mandatory operand.

MESSAGEË MODULE=name

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X

X

W

W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements MPOOL

Generating Applications 421

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

MPOOL - define a common memory pool (BS2000 systems)

The MPOOL control statement allows you to define the properties of a common memory
pools.

The MPOOL statement can be issued several times, the only limit being the number of
pools that can be created by a single process. Support is provided for up to eight common
memory pools with SCOPE=GROUP or SCOPE=GLOBAL under a single user ID.

The common memory pools are always created as FIXED. Every task that connects to an
existing common memory pool is assigned the same address as the task that set up the
common memory pool.

The sequence of MPOOL statements within the generation run determines the order in
which the common memory pools are created. Firstly, all common memory pools generated
with SCOPE=GLOBAL are created in accordance with the sequence of MPOOL state-
ments. This is followed by the creation of all common memory pools generated with
SCOPE=GROUP, as defined by the sequence of MPOOL statements.

poolname Name of the common memory pool. poolname must be unique within the
UTM application and can be up to 50 characters in length.

A number is appended to the name.

ACCESS= Access authorization

READ Read-only access to the common memory pool

Default: READ

WRITE Read and write access to the common memory pool

MPOOLË poolname

[,ACCESS={ READ | WRITE }]

[,PAGE=X'xxxxxxxx']

[,SCOPE={ GROUP | GLOBAL }]

,SIZE=poolsize

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

BB

BB

B

BB

MPOOL KDCDEF control statements

422 Generating Applications

PAGE=X’xxxxxxxx’
Hexadecimal address in the format X’xxxxxxxx’.

– 24-bit addressing mode:
If the address is not a multiple of 64K (the four low-order half-bytes are
0), it is rounded off to a multiple of 64K.

– 31-bit addressing mode:
The address is a multiple of 1MB. If this is not the case, it is rounded off
to a multiple of 1MB.

Default:

– 24-bit addressing mode:
The pool is created starting with the lowest possible address.

– 31-bit addressing mode:
The pool is created starting with the lowest possible address above
X'01000000'.

i If, in BS2000, global common memory pools are used in several UTM appli-
cations with the same contents/names, the parameter PAGE=X'xxxxxxxx'
must be specified with the same address in all applications. The address
specified using PAGE= must be selected in such a way that the address
area reserved is available in all these applications.

The common memory pools are always created as FIXED, i.e. all tasks of
the UTM application find the pool at the same address in their virtual
address space.

An alternative to the use of PAGE= is to ensure that all the shared pools are
generated in the same sequence in all applications. The MPOOL state-
ments for shared pools must be specified at the beginning of the MPOOL
statements.

SCOPE= Scope of the memory pool

GLOBAL All processes in the system

GROUP All processes that run under the same user ID.

Default: GROUP

SIZE=poolsize
Number of 64 KB memory segments in the pool (1 unit ï 64KB)

In 31-bit addressing mode, the memory segments are 1MB in length. The
size of the common memory pool is thus rounded up to the nearest MB,
which is calculated by multiplying poolsize by 64KB.

This is a mandatory operand.

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

BB

BB

B

B

B

B

B

B

B

KDCDEF control statements MSG-DEST

Generating Applications 423

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

MSG-DEST - define user-specific messages destinations

This statement allows you to define up to four additional user-specific message destinations
for the UTM messages.

For this purpose, openUTM provides the unoccupied UTM message destinations,
USER-DEST-1, USER-DEST-2, USER-DEST-3 and USER-DEST-4. MSG-DEST allows
you to assign these UTM message destinations to concrete destinations. These destina-
tions may be:

● a USER queue, or in other words, the message queue of a user ID

● a TAC queue

● an asynchronous TAC

● or an LTERM partner, that is not assigned to a UPIC client.

You can also assign several message destinations of the same type, for example, three
LTERM partners and one USER queue. By defining the USER or TAC queue as the user-
specific message destination you can ensure that the UTM messages are output to the
WinAdmin or WebAdmin administration workstation. More information can be found in the
openUTM manual ”Messages, Debugging and Diagnostics”.

msgdest Name of the UTM message destination to which you wish to assign a user-
specific message destination. Possible values are:

USER-DEST-1, USER-DEST-2, USER-DEST-3 or USER-DEST-4.

msgdest must also be assigned, using KDCMMOD, to the messages you
wish to output to this user-specific message destination. For more infor-
mation see section “User-specific message destinations” on page 189 and
the description of KDCMMOD in the openUTM manual ”Messages,
Debugging and Diagnostics”.

MSG-DESTË msgdest

,NAME=name

,DEST-TYPE={ LTERM | USER-QUEUE | TAC }

[,MSG-FORMAT={ FILE | PRINT }]

MSG-DEST KDCDEF control statements

424 Generating Applications

NAME=name Name of the user-specific message destination. Possible values are:
– Name of a UTM user ID. This must be generated in a USER statement.
– Name of an asynchronous TAC. This must be generated in a TAC

statement with TYPE=A.
– Name of a TAC queue. This must be generated in a TAC statement with

TYPE=Q.
– BS2000 systems:

Name of an LTERM partner. This must be generated in an LTERM appli-
cation and may not be assigned to a PTERM with PTYPE=UPIC-R.

– Unix systems and Windows systems:
Name of an LTERM partner. This must be generated in an LTERM appli-
cation and may not be assigned to a PTERM with PTYPE=UPIC-R or
UPIC-L.

All messages that are linked via KDCMMOD to msgdest are then also output
to the destination specified in name.

i User-specific message destinations should not be locked or dynam-
ically deleted because then no more messages will be output at this
destination.

DEST-TYPE= Specifies the type of the message destination in name:

LTERM The message destination specified in name is an LTERM partner.

TAC The message destination specified in name is an asynchronous TAC or a
TAC queue.

USER-QUEUE
The message destination specified in name is a USER queue.

MSG-FORMAT=
Specifies the format in which the message is passed to the message desti-
nation.

FILE The format corresponds to the data structures for the MSGTAC program. So
only message inserts without messages texts are passed, the message
inserts are not converted to a printable format.

PRINT The format corresponds to the output format of the UTM tool KDCPSYSL.
So the message is prefixed with the date and time, followed by the message
text with the text inserts and additional inserts. All inserts are printable.

KDCPSYSL is described in the openUTM manual “Using openUTM Appli-
cations”.

Default: FILE

B

B

B

X/W

X/W

X/W

X/W

KDCDEF control statements MUX

Generating Applications 425

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

MUX - define a multiplex connection (BS2000 systems)

The MUX control statement allows you to define the name and properties of a multiplex
connection between the UTM application and a Session Manager (OMNIS). This multiplex
connection can then be used simultaneously by several terminals to sign on to the UTM
application.

The initiative for establishing the transport connection between openUTM and the Session
Manager can come from either side, but only the Session Manager can open a session.

name Name of the multiplex connection

i The specified name must be unique and must not be assigned to any other
object in name class 3. See also section “Uniqueness of names and
addresses” on page 268.

BCAMAPPL=local_appliname
Local name of the UTM application as defined in the MAX statement
(APPLINAME on page 379) or BCAMAPPL statement (see page 295). This
name is then used to establish a connection to the Session Manager, i.e.
the Session Manager must specify local_appliname as the partner name
when connecting to the UTM application. By issuing several MUX state-
ments with different BCAMAPPL names, you can set up parallel connec-
tions to the Session Manager.

The BCAMAPPL name specified in the CLUSTER statement is not
permitted here.

Default:
Application name defined in the statement MAX APPLINAME=appliname

MUXË name

[,BCAMAPPL=local_appliname]

[,CONNECT={ Y | N }]

[,MAXSES=number]

[,NETPRIO={ MEDIUM | LOW }]

,PRONAM={ processorname | C’processorname’ }

[,STATUS={ ON | OFF}]

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

MUX KDCDEF control statements

426 Generating Applications

CONNECT= Set up the local transport connection on application start

Y When starting the application, openUTM attempts to establish a logical
transport connection to the Session Manager.

If unsuccessful, openUTM repeats its attempt to establish the connection at
intervals defined in MAX ...,CONRTIME=time.

Default: Y

N When starting the application, openUTM does not attempt to establish a
connection to the Session Manager.

MAXSES=number
Maximum number of simultaneously active sessions between the Session
Manager and the UTM application

i openUTM creates number LTERM partners internally for the specified
number of sessions. The number of LTERM partners must be taken into
consideration in the maximum number of UTM names. See section
“Maximum values for names” on page 266.

Default value: 10
Minimum value: 1
Maximum value: 65000 (theoretical value)

NETPRIO= Transport priority to be used on the transport connection between the
Session Manager and the UTM application

Default: MEDIUM

PRONAM={ processorname | C’processorname’ }
Name of the system on which the Session Manager is located.
If the processorname contains special characters it must be entered as a
character string using C’...’.

STATUS= Status of the multiplex connection

ON The connection to the Session Manager is not locked.

Default: ON

OFF The connection to the Session Manager is locked. A connection cannot be
established between the Session Manager and the UTM application.

This status can be modified by the administrator.

BB

BB

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

BB

BB

B

BB

B

B

KDCDEF control statements OPTION

Generating Applications 427

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

OPTION - manage the KDCDEF run

The OPTION control statement allows you to manage the KDCDEF run. openUTM can only
read the KDCDEF options from a procedure file or shell script; the actual generation state-
ments are read from other files (under BS2000 systems from SAM or ISAM files or from
LMS library elements).

openUTM only processes OPTION statements if they have been read in by SYSDTA or
stdin.

OPTION statements are ignored by KDCDEF, if is read from a file that is assigned using
OPTION DATA=.

If you issue more than one OPTION statement, the values last specified are taken as valid.

If the OPTION statement is not specified, only the KDCFILE is generated, i.e. the default
setting GEN=KDCFILE applies.

CHECK-RFC1006=
Extended check of the UTM generation for the communication via TCP/IP
connections with RFC1006.

OPTIONË [,DATA= { filename |
 *LIBRARY-ELEMENT(LIBRARY=<lib-name>
 ,ELEMENT=<element>
 [,VERSION=C‘<version>‘ |
 *HIGHEST-EXISTING |
 *UPPER-LIMIT]
 [,TYPE=<element-type>])]

[,GEN= { KDCFILE | ROOTSRC | NO | ALL |
 CLUSTER |
 (KDCFILE,ROOTSRC) |
 (CLUSTER,KDCFILE) |
 (CLUSTER,ROOTSRC) |
 (CLUSTER,KDCFILE,ROOTSRC) }]

[,GEN-RSA-KEYS={ YES | NO }]

BS2000-specific operand

[,ROOTSRC=filename]

further operand for Unix systems and Windows systems

[,CHECK-RFC1006={ NO | YES }]

B
B
B
B
B
B

B

B

X/W

X/W

X/W

X/W

X/W

OPTION KDCDEF control statements

428 Generating Applications

YES KDCDEF checks the specifications of transport addresses for all communi-
cation partners and local transport system end points that are generated
with T-PROT= RFC1006 for completeness and plausibility. When OPTION
CHECK-RFC1006=YES, a port number must be specified in the
LISTENER-PORT parameters of the ACCESS-POINT, BCAMAPPL, CON,
OSI-CON, and PTERM statements.

Default: YES

NO KDCDEF does not execute any extended checks.

DATA= Specifies the source from which the KDCDEF control statements are read.
The source can also have been generated by inverse KDCDEF by means
of the statement CREATE-CONTROL-STATEMENTS.

For information on the inverse KDCDEF function, see section “Inverse
KDCDEF” on page 271.

filename The KDCDEF control statements are read from the file specified here (in
BS2000 systems, from a SAM or ISAM file). If the end-of-file is reached then
the next KDCDEF control statements are read from SYSDTA or stdin again.

*LIBRARY-ELEMENT(...)
The KDCDEF control statements are read from the LMS library element
specified here. If the end of the file is reached then the next KDCDEF
control statements are again read from SYSDTA.
If the specified library element does not exist then KDCDEF cancels the
generation run with an error message.

LIBRARY=<lib-name>
Name of an LMS library. The file name can be up to 54 characters in length.
LIBRARY is a mandatory parameter.

ELEMENT=<element>
Name of an LMS element.
The element name may be up to 64 characters in length and consists of an
alphanumeric string which can be subdivided into multiple substrings
separated by periods or hyphens.
ELEMENT is a mandatory parameter.

VERSION =
Version of the LMS element.

C'<version>'
The element version is specified as an alphanumeric string of up to 24
characters in length which can be subdivided into multiple substrings
separated by periods or hyphens.

X/WX/W
X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

BB

B

B

B

B

B

BB

B

B

BB

B

B

B

B

B

BB

B

BB

B

B

B

KDCDEF control statements OPTION

Generating Applications 429

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

*HIGHEST-EXISTING
The highest version of the specified element present in the library is read.

Default: *HIGHEST-EXISTING

*UPPER-LIMIT
The highest possible version of the specified element is read. LMS indicates
this version by means of an "@".

TYPE=<element-type>
Type of LMS element. An alphanumeric string of up to 8 characters in length
can be specified for the type.
Default value: S

i For further information on the syntax rules for the names of LMS elements
and a specification of version and type, see the manual "LMS SDF Format".

GEN= Specifies what objects are to be generated.

KDCFILE The KDCFILE is generated.

In the case of a UTM cluster application, the cluster user file must already
exist. This is evaluated and extended if required.

Default: KDCFILE

ROOTSRC
The ROOT table source is generated.

(KDCFILE,ROOTSRC)
The KDCFILE and the ROOT table source are generated.

In the case of a UTM cluster application, the cluster user file must already
exist. This is evaluated and extended if required.

CLUSTER
The following UTM cluster files are generated:
– the cluster configuration file
– the cluster user file
– the cluster page pool files
– the cluster GSSB file
– the cluster ULS file

These files must not already exist.

i If you have specified OPTION GEN=CLUSTER or (CLUSTER,...),
you must also specify a CLUSTER statement and at least two
CLUSTER-NODE statements.

BB
B

B

BB

B

B

BB

B

B

B

BB

B

OPTION KDCDEF control statements

430 Generating Applications

(CLUSTER,KDCFILE)
The UTM cluster files listed above are generated together with the
KDCFILE.

(CLUSTER,ROOTSRC)
The UTM cluster files listed above are generated together with the ROOT
table source.

(CLUSTER,KDCFILE,ROOTSRC)
The UTM cluster files listed above are generated together with the
KDCFILE and the ROOT table source.

NO The parameters are only checked.

ALL The KDCFILE and the ROOT table source are generated.

i If a ROOT table source is generated, the ROOT statement must be
specified. This is the case with the following specifications:
– ROOTSRC
– (KDCFILE,ROOTSRC)
– ALL
– (CLUSTER,ROOTSRC)
– (CLUSTER,KDCFILE,ROOTSRC)

The following must be noted for Unix systems and Windows systems:

– KDCDEF generates the ROOT table source as a C/C++ program under
the name rootname.c (see the ROOT statement) in the directory filebase
(see the MAX ...,KDCFILE=filebase... statement).

GEN-RSA-KEYS =
Specifies whether RSA keys are to be created.

YES KDCDEF is to generate RSA keys.

RSA keys are required by applications in which objects (TAC, PTERM or
TPOOL) are generated with an encryption level.

If GEN-RSA-KEYS=YES then KDCDEF always generates RSA keys for
password encryption irrespective of the type of objects generated.

If GEN-RSA-KEYS=YES is set but the encryption component (openUTM-
CRYPT) is unavailable then KDCDEF issues the warning message K508.
However, the KDCFILE is still generated and the application can be
operated (without encryption).

Default: YES

NO KDCDEF is not to generate RSA keys.

GEN-RSA-KEYS=NO should not be used unless

X/W

X/W

X/W

X/W

KDCDEF control statements OPTION

Generating Applications 431

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

– openUTM is being run without the encryption component (openUTM-
CRYPT),

– or, after the KDCDEF run, the RSA keys are transferred from an old
KDCFILE to the new KDCFILE using KDCUPD. For more information
on transferring RSA keys with KDCUPD see page 591.

If objects with encryption are generated in an application and if no RSA keys
are available, the application can run but with certain restrictions, i.e.:
– TACs with encryption level cannot be called,
– no connection can be established to PTERMs or TPOOLs generated

with encryption level.

ROOTSRC=filename
This parameter is significant only when generating the ROOT table source.

filename can be up to 54 characters in length.

A ROOT source with the CSECT name rootname is generated and stored in
the KDCROOT file filename. rootname is defined in the ROOT statement.

Default: ROOT.SRC.ASSEMB.rootname

B

B

B

B

B

B

OSI-CON KDCDEF control statements

432 Generating Applications

OSI-CON - define a logical connection to an OSI TP partner

The OSI-CON control statement allows you to assign a real partner application to an
OSI-LPAP partner for communication based on the OSI TP protocol. It is used to define
logical connections between the local UTM application and a partner application. For this
purpose, you must specify:

● the name of the OSI TP access point in the local application, via which the connection
is to be established. This is defined using the ACCESS-POINT statement.

● the address of the OSI TP access point of the partner application. This address consists
of a P-selector, an S-selector, a T-selector and an N-selector.

Under Unix systems and Windows systems the following operands are used to describe
the T-selector:

– TRANSPORT-SELECTOR (=address of the partner application on the partner
computer)

– T-PROT (the transport protocol used)
– TSEL-FORMAT (format identifier of the T-selector)
– LISTENER-PORT (port number for RFC1006)

See section “Providing address information for the CMX transport system (Unix
systems and Windows systems)” on page 109ff for more information.

The partner application sets up the connection to the local application via an OSI-LPAP
partner, which is defined in the OSI-LPAP statement. Here you generate the number of
connections, the names of the individual connections, and so on. The communication
parameters of the OSI-LPAP partner are assigned to the OSI-CON statement using the
operand OSI-LPAP=osi_lpap_name. The logical connection is thus generated in a single
OSI-CON statement, even if there are several parallel connections to the partner appli-
cation.

If a partner application can be accessed in various remote systems at different times, you
must define several addresses and thus replacement connections for the OSI-LPAP partner
assigned to this application. For generation purposes, this involves assigning several
OSI-CON statements (OSI-CON statements with the same osi_lpap_name and LOCAL-
ACCESS-POINT) to a single OSI-LPAP statement (see page 439). However, only one
OSI-CON statement can be active at any one time. You can switch to a replacement
connection by means of administration.

When you use OSI-LPAP bundles, then the following also applies to the OSI-CONs of the
slave LPAPs in a LPAP bundle:
All OSI-CONs of all slave LPAPs in a LPAP bundle must be assigned the same access point
(see also section “MASTER-OSI-LPAP - Defining the master LPAP of an OSI-LPAP bundle”
on page 375“).

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements OSI-CON

Generating Applications 433

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

connection_name
Name of the logical connection between the local UTM application and the
partner application for communication based on the OSI TP protocol.
connection_name identifies the connection in the local application. It can be
up to eight characters in length and must be unique in the local application.

ACTIVE= Status (active or inactive) of the logical connection to the partner appli-
cation. In the case of replacement connections to the partner application,
several OSI-CON control statements are issued with the same
osi_lpap_name of an OSI-LPAP partner. However, only one OSI-CON
statement can be generated with ACTIVE=YES. All others must be defined
with ACTIVE=NO. You can then switch to the replacement connections by
means of administration.

YES The connection defined in this OSI-CON statement is active.

Default: YES

NO The connection defined in this OSI-CON statement is inactive.

OSI-CONË connection_name

[,ACTIVE={ YES | NO }]

,LOCAL-ACCESS-POINT=access_point_name

,NETWORK-SELECTOR=C'c'

,OSI-LPAP=osi_lpap_name

,PRESENTATION-SELECTOR={ *NONE |
(C'c' [, STD | EBCDIC | ASCII]) |
X'xx' }

,SESSION-SELECTOR={ *NONE |
(C'c' [, STD | EBCDIC | ASCII]) |
X'xx' }

,TRANSPORT-SELECTOR=C'c'

further operands for Unix systems and Windows systems

[,LISTENER-PORT=number]

[,MAP={ USER | SYSTEM }]

[,T-PROT={ RFC1006]

[,TSEL-FORMAT={ T | E | A }]

X/W

X/W

X/W

X/W

X/W

OSI-CON KDCDEF control statements

434 Generating Applications

LISTENER-PORT=number
Port number of the partner application if the connection to the partner appli-
cation is to be established via TCP/IP.

Permitted values: 102 and 1025 - 32767

Default: 0 (no port number)
When OPTION CHECK-RFC1006=YES, a port number must be specified
for the LISTENER-PORT.

LOCAL-ACCESS-POINT=access-point_name
Name of the local OSI TP access point used for communication with the
partner application. This is defined using the ACCESS-POINT control
statement.

If replacement connections (several OSI-CON statements with the same
osi_lpap_name) have been defined for the OSI-LPAP partner to which the
partner application is assigned, the same local access point must be
specified for all replacement connections.

If the application context of the OSI-LPAP partner uses the CCR syntax, the
following address components must also be defined for the local access
point:
– APPLICATION-ENTITY-QUALIFIER (see the description of the

ACCESS-POINT statement on page 281)
– APPLICATION-PROCESS-TITLE (see the description of the UTMD

statement on page 557)

MAP= This controls ASCII/EBCDIC conversion when exchanging unformatted
messages with partner applications.
Formatted messages (where KCMF contains a format identifier) are
generally not subject to message handling by openUTM.

USER openUTM does not perform message handling, i.e. the data in the KDCS
message area is transferred to the partner application unchanged.

Default: USER

SYSTEM openUTM converts the data of the message area from ASCII to EBCDIC
before sending and from EBCDIC to ASCII after receiving. The message
may only contain printable characters and must be created in line mode
(KCMF = blank).

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

KDCDEF control statements OSI-CON

Generating Applications 435

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

NETWORK-SELECTOR=C’c’
Name of the partner computer. The name may be up to 8 characters long.

N-SEL= is a mandatory operand.

BS2000 systems:
In N-SEL= you must specify the BCAM processor name of the system on
which the partner application is located.

Unix systems and Windows systems:
There are two options for specifying N-SEL:

– You enter the real host name under which the IP address of the partner
computer is entered in the name service of the local system (e.g. the
hosts file). You must not specify alias names of the computer.

– You enter the UTM host name of the partner computer.
This is only possible when you have set the UTM_NET_HOSTNAME
environment variable and specified the UTM host name in the
conversion file (see the section “Using mapped host names (Unix
systems and Window systems)” on page 121).

No distinction is made between uppercase and lowercase notation;
KDCDEF always converts the name of the partner computer into
uppercase.

i Please note that the name pair (TRANSPORT-SELECTOR, NETWORK-
SELECTOR) specified here must not be identical to the name pair
(remote_appliname, PRONAM) defined in a CON statement (page 318) , or
to the name pair (ptermname, PRONAM) defined in a PTERM statement
(page 450).

OSI-LPAP=osi-lpap_name
Name of the OSI-LPAP partner defined as the logical access point for the
partner application in the local application.
osi_lpap_name must be defined in a OSI-LPAP statement.
osi_lpap_name can be up to eight characters in length.

PRESENTATION-SELECTOR=
Presentation selector of the partner application. This is the address
component of the OSI TP access point in the remote partner’s system. The
specified value must match the presentation selector defined for this access
point in the partner application.

*NONE A symbolic presentation selector is not defined.

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

OSI-CON KDCDEF control statements

436 Generating Applications

C’c’ The presentation selector is entered in the form of a character string (c). The
value specified for c can be up to 16 characters in length. The presentation
selector is case-sensitive.

In the case of a character string, you can chose the code in which the
characters are interpreted:

STD The characters are interpreted as a machine-specific code
(BS2000 = EBCDIC; Unix systems and Windows systems = ASCII).

Default: STD

EBCDIC
The characters are interpreted as EBCDIC code.

ASCII The characters are interpreted as ASCII code.

X’x’ The presentation selector is entered in the form of a hexadecimal number
(x). The value specified for x can be up to 32 hexadecimal digits (ï16 bytes)
in length. You must enter an even number of hexadecimal digits.

SESSION-SELECTOR=
Session selector of the partner application. This is the address component
of the OSI TP access point in the remote partner’s system. The specified
value must match the session selector defined for this access point in the
partner application.

*NONE A session selector is not defined.

C’c’ The session selector is entered in the form of a character string (c). The
value specified for c can be up to 16 characters in length. The session
selector is case-sensitive.

In the case of a character string, you can chose the code in which the
characters are interpreted:

STD The characters are interpreted as a machine-specific code
(BS2000 = EBCDIC; Unix systems and Windows systems = ASCII).

Default: STD

EBCDIC
The characters are interpreted as EBCDIC code.

ASCII The characters are interpreted as ASCII code.

X’x’ The session selector is entered in the form of a hexadecimal number (x).
The value specified for x can be up to 32 hexadecimal digits (ï 16 bytes) in
length. You must enter an even number of hexadecimal digits.

KDCDEF control statements OSI-CON

Generating Applications 437

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

TRANSPORT-SELECTOR=C’c’
Transport selector of the partner application.

You can enter up to eight printable characters. Permitted characters include
uppercase letters, numbers, and the special characters $, # and @.
Hyphens are not permitted. The first character must be an uppercase letter.

T-SEL= is a mandatory operand.

In T-SEL= you must specify the following:

– BS2000 systems:
The BCAM application name of the remote partner.

– Unix systems and Windows systems:
T-selector of the partner application.

You must specify the T-selector in T-SEL that is assigned to the partner
application in the remote system for CHECK-RFC1006=YES.

i Please note that the name pair (TRANSPORT-SELECTOR, NETWORK-
SELECTOR) specified here must not be identical to the name pair
(remote_appliname, PRONAM) defined in a CON statement (on page 318),
or to the name pair (ptermname, PRONAM) defined in a PTERM statement
(on page 450).

T-PROT= The address format with which the OSI TP partner signs on to the transport
system.

Information on the following address formats can be found in the “PCMX
documentation” on page 18.

RFC1006 Address format RFC1006
ISO transport protocol based on TCP/IP and RFC1006 convergence
protocol.

Default: RFC1006

TSEL-FORMAT=
The format identifier of the T-selector
The format identifier specifies the coding of the T-selector in the transport
protocol. You will find more information in the “PCMX documentation” on
page 18.

T TRANSDATA format

E EBCDIC format

A ASCII format

B

B

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

OSI-CON KDCDEF control statements

438 Generating Applications

Default:
T If the character set of the value of T-SEL corresponds to the

TRANSDATA format
E Otherwise

It is recommended to explicitly specify a value for TSEL-FORMAT operation
via TCP/IP with RFC1006.

X/W
X/WX/W

X/W

X/WX/W

X/W

X/W

KDCDEF control statements OSI-LPAP

Generating Applications 439

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

OSI-LPAP - define an OSI-LPAP partner for distributed processing
based on OSI TP

The OSI-LPAP control statement allows you to define a logical access point in the local
application for a partner application with which you wish to communicate on the basis of the
OSI TP protocol. This logical access point is known as an OSI-LPAP partner. For each
OSI-LPAP partner, you must define a logical partner name and the following logical
connection properties:

● the application entity title (AET) of the partner application. This must be defined if you
are working with transaction management (commit functional unit) or if a heteroge-
neous partner requires an AET in order to establish a connection. The AET consists of
the following components, which must be specified for the partner application:

– the application entity qualifier (AEQ) of the remote access point
(see the description of the ACCESS-POINT statement on page 281)

– the application process title (APT) of the partner application
(see the description of the UTMD statement on page 557)

● the application context used for communication with the partner application based on
the OSI TP protocol. If you are not using a standard application context, you define your
application context using the APPLICATION-CONTEXT statement (see page 289). If
the application context of the OSI-LPAP partner contains the CCR syntax, an AEQ and
an APT must be specified for the partner application.

● the number and properties of connections to the partner application

● access rights of the partner application in the local application
The operands KSET and ASS-KSET are provided to define the access rights. In KSET
you specify the highest level of access rights of the OSI TP partner that the OSI TP
partner will have when it signs on to the local application with a user ID. You can restrict
these access rights with the ASS-KSET operand. The restricted access rights take
effect when the OSI TP partner does not pass a user ID when signing on, i.e. the
"association user" is active.

● administration authorization of the partner application in the local application

● maximum values for the message queue of the OSI-LPAP partner.

If a communication partner can be accessed in various remote systems at different times,
you can assign several addresses to this partner. This involves assigning several OSI-CON
statements (with the same osi_lpap_name, see page 432) to a single OSI-LPAP statement.
However, only one OSI-CON statement can be active at any one time. You can switch to a
replacement connection by means of administration. All OSI-CON connections belonging
to an OSI-LPAP partner must have the same local access point.

OSI-LPAP KDCDEF control statements

440 Generating Applications

You can generate a maximum of 21000 associations.

osi_lpap_name
Name of the OSI-LPAP partner of the partner application, which is used by
the program units of the local UTM application to address the partner appli-
cation. osi_lpap_name can be up to eight characters in length.

osi_lpap_name must be unique and must not be assigned to any other object
in name class 1. See also section “Uniqueness of names and addresses”
on page 268.

OSI-LPAPË osi_lpap_name

,APPLICATION-CONTEXT=application_context_name

[,APPLICATION-ENTITY-QUALIFIER=application_entity_qualifier

,APPLICATION-PROCESS-TITLE=object_identifier]

[,ASS-KSET=keysetname2]

,ASSOCIATION-NAMES=association_name

[,ASSOCIATIONS=number]

[,BUNDLE=master-lpap-name]

[,CONNECT=number]

,CONTWIN=number

[,IDLETIME=time]

[,KSET=keysetname1]

[,PERMIT={ ADMIN | SATADM1 | (ADMIN,SATADM)1 }]

[,QLEV=number]

[,STATUS={ ON | OFF }]

[,TERMN=termn_id]

1 only permitted under BS2000 systems B

KDCDEF control statements OSI-LPAP

Generating Applications 441

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

APPLICATION-CONTEXT=application_context_name
Name of the application context to be used by the partner application.

This is a mandatory operand.

By default, openUTM supports the following application contexts:
– UDTAC
– UDTDISAC
– XATMIAC
– UDTCCR
– UDTSEC
– XATMICCR

Further information can be found in the description of the APPLICATION-
CONTEXT statement on page 289. If the generated application context
does not match that used by the partner application, openUTM rejects the
connection request with the following UTM messages:

P001 APPLICATION CONTEXT NOT SUPPORTED or
P011 Abstract syntax not permitted

APPLICATION-ENTITY-QUALIFIER=application_entitiy_qualifier
Application entity qualifier of the partner application. This is combined with
the application process title to address a partner application when using a
heterogeneous link or working with transaction management (commit
functional unit). application_entitiy_qualifier is a positive integer used to call
the partner application in the remote system.

If the application context contains the CCR syntax, this is a mandatory
operand. The name pair application_entity_qualifier and object_identifier
must be unique within the UTM application.

The application_entity_qualifier specified here must be assigned to access
point in the partner application.

Minimum value: 1
Maximum value: 67108 863 (226-1)

OSI-LPAP KDCDEF control statements

442 Generating Applications

APPLICATION-PROCESS-TITLE=object_identifier
The application process title of the partner application is to be specified as
the object_identifier. The application process title is combined with the appli-
cation entity qualifier to address a partner application when using a hetero-
geneous link or working with transaction management (commit functional
unit).

If the partner application is a UTM cluster application then the application
process title (APT) of a node application must be specified here. Here it
should be noted that when a node application is started, openUTM may
extend the APT generated for this application by the node index of the appli-
cation. See also the description of the APPLICATION-PROCESS-TITLE
operand in the UTMD statement on page 557.

If the application context contains the CCR syntax, this is a mandatory
operand. The name pair application_entity_qualifier (of the OSI-LPAP
statement) and object_identifier must be unique within the UTM application.

For information on defining the APT, see the UTMD statement on page 557.

ASS-KSET=ksetname2
ASS-KSET is only allowed if the local application is generated with user IDs.
You may only set ASS-KSET in conjunction with KSET.

You must specify the name of the key set in ksetname2. The key set must be
defined with a KSET statement.

You specify the minimum access rights that the partner application can have
in the local application with ASS-KSET= .

The key set specified in ksetname2 takes effect when the partner application
does not pass a user ID to openUTM when establishing the association.
The access rights result from the set of key codes contained in the key set
generated with KSET= and with ASS-KSET= (intersection of the sets). For
this reason, all key codes contained in ASS-KSET=ksetname2 should also
be contained in KSET=ksetname1.

Default: No key set
The access rights specified in KSET are always valid.

KDCDEF control statements OSI-LPAP

Generating Applications 443

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ASSOCIATION-NAMES=association_name
Name defined in the local application for logical connections to the partner
application.

Connection names consists of the value of association_name as a prefix,
followed by a serial number between 1 and the value of the ASSOCIA-
TIONS operand, i.e. the number of parallel connections. The entire name
can be up to eight characters in length. The maximum length of
association_name depends on the value specified for ASSOCIATIONS. The
following applies for the number of connections:

Number of decimal places in the value specified for ASSOCIATIONS +
number of characters in association_name ≤ 8

Example

If ASSOCIATIONS=10 and
ASSOCIATION-NAMES=ASSOC,

The connection names are ASSOC01, ASSOC02,...,ASSOC10.

These are used as association names in the local UTM application. The
same name must not be defined for a user ID (USER) or a session name
for distributed processing based on LU6.1 (LSES).

ASSOCIATIONS=number
Maximum number of parallel connections to the partner application. This
depends on layers 1 - 6 of the OSI reference model defined by ISO (in
particular on layer 4, the transport layer).

The number of parallel connections must be coordinated with the gener-
ation of the partner application.

Default: 1
Minimum value: 1
Maximum value: The maximum number of associations is restricted by the
size of the name space of the UTM application (see section “Number of
names” on page 265).

OSI-LPAP KDCDEF control statements

444 Generating Applications

BUNDLE=master-lpap-name
Name of a master LPAP. By specifying master-lpap-name, this OSI-LPAP
partner becomes a slave LPAP of the corresponding master LPAP.

The master LPAP specified here must be generated with a MASTER-OSI-
LPAP statement.

CONNECT=number
Number of connections to be established automatically with the partner
application when the local application is started. Automatic connection
setup can be requested in either the local application or the partner appli-
cation. The connection is established as soon as both partners are
available.

Default: 0
Maximum value: Number of parallel connections specified in the
ASSOCIATIONS operand.

CONTWIN=number
Number of connections for which the local application is to act as the
contention winner. The local application is the contention loser for all other
connections (ASSOCIATIONS= entry minus CONTWIN= entry).

The contention winner of a connection is responsible for managing that
connection. However, jobs can be started both by the contention winner and
by the contention loser. If both communication partners attempt to initiate a
job simultaneously, the connection is reserved by the contention winner job.

This is a mandatory operand.

The number of contention winners and contention losers must be coordi-
nated with the generation of the partner application.
The contention winner should be the communication partner that initiates
jobs most frequently.

Minimum value: 0
Maximum value: Number of parallel connections specified for the
ASSOCIATIONS operand.

IDLETIME=time
Number of seconds for which the idle state of a connection is monitored. If
the connection is not reserved by a job within the period specified in time,
openUTM shuts down the connection.

IDLETIME=0 means that the idle state of the connection is not monitored.

Default: 0
Minimum value: 60
Maximum value: 32767

KDCDEF control statements OSI-LPAP

Generating Applications 445

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

If you specify a value that is greater than zero and smaller than the minimum
value, KDCDEF replaces the value with the minimum value.

KSET=keysetname1
Specifies the maximum access rights of the partner application in the local
application. The name of a key set is to be specified in keysetname1. The key
set must be defined with a KSET statement.

If the OSI TP partner does not pass a user ID to the local application for an
OSI TP dialog, then its access rights for this OSI TP dialog result from the
set of key codes that are in the key set generated with KSET= as well as
with ASS-KSET= (intersection).
The key set keysetname1 should therefore also contain all key codes that are
in the key set generated with ASS-KSET= .

If the OSI TP partner does pass a user ID, then its access rights for this
OSI TP dialog result from the set of key codes that are contained in the key
set of the user ID as well as in the key set of the OSI-LPAP generated with
KSET.

Default: No key set,
i.e. only those services can be started or remote services (LTAC) generated
in the local application can be addressed that are not secured with a lock
code.

PERMIT= Authorization level of the partner application

ADMIN The partner application can execute administration functions in the local
application.

SATADM The partner application can execute SAT preselection functions in the local
application, i.e. it can activate and deactivate the SAT logging of certain
events (UTM SAT administration authorization).

(ADMIN,SATADM)
The partner application can execute administration and SAT preselection
functions in the local application.

Default:
If the operand is not specified, the partner application cannot execute
administration and SAT preselection functions in the local application.

QLEV=queue_level_number
Maximum number of asynchronous messages that can be accommodated
in the message queue of the OSI-LPAP partner. If this threshold value is
exceeded, further APRO-AM calls to this LPAP partner are rejected with
UTM message 40Z.

Default: 32767

BB

B

B

B

B

B

OSI-LPAP KDCDEF control statements

446 Generating Applications

Minimum value: 0
Maximum value: 32767 (i.e no restriction of the queue length)

STATUS= Specifies whether the OSI-LPAP partner is locked. This status can be
modified by the administrator using the KDCLPAP administration
command.

ON The OSI-LPAP partner is unlocked. Connections between the partner appli-
cation and the local application can be established or may be already in
place.

Default: ON

OFF The OSI-LPAP partner is locked. Connections cannot be established
between the partner application and the local application.

TERMN=termn_id
Identifier up to two characters in length, which indicates the type of commu-
nication partner. termn_id is not queried by openUTM, but is used by the
user when querying or grouping terminal types, for example. termn_id is
entered in the KB header for services, i.e. for services started by the partner
application in the local application.

Default: A6

KDCDEF control statements PROGRAM

Generating Applications 447

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

PROGRAM - define a program unit

The PROGRAM control statement allows you to define the name and properties of a
program unit.
If a ROOT table source is to be generated in the KDCDEF run (OPTION statement with
GEN=ROOTSRC or GEN=ALL), then you must issue at least one PROGRAM statement.

Generating UTM program units under BS2000 systems

objectname Access point for a program unit (CSECT or ENTRY name). objectname may
be up to 32 characters in length.

For details on the characters allowed refer to the section “Format of names”
on page 263.

COMP= Designates the runtime system that the program unit will be used for.

This is a mandatory operand.

You must specify COMP=ILCS for all program units that support ILCS (Inter
Language Communication Services), e.g. program units under COBOL85,
FORTRAN90, C, etc.
Whether or not ILCS is supported depends on the compiler version used
and on the runtime system version under which the program unit runs.

The value that you must specify for COMP can be found in the appendix of
the openUTM manual “Using openUTM Applications under BS2000
Systems”. Please consider these notes especially if the programs were
compiled with an older compiler version.

i COMP=C is a synonym for COMP=ILCS

The KDCADM administration program must be generated with
COMP=ILCS and the KDCSHUT transaction code must be assigned at
least with a TAC statement.

PROGRAMË objectname

, COMP={ ASSEMB |
C |

 COB1 |
 FOR1 |

PASCAL-XT|
PLI1 |
SPL4 |
ILCS }

[,LOAD-MODULE=lmodname]

B

B

B
B
B
B
B
B
B
B

B

BB

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

PROGRAM (BS2000 systems) KDCDEF control statements

448 Generating Applications

LOAD-MODULE=lmodname
LOAD-MODULE identifies the name of the load module in which the
program unit was linked. This load module must be defined using the
LOAD-MODULE statement. lmodname can be up to 32 characters in length.
This name is subject to the same rules as the element names of a program
library (see also section “Format of names” on page 263).

Please note the following when using the LOAD-MODULE operand:

– The KDCADM administration program must not be assigned to a load
module generated with LOAD-MODE=ONCALL in the LOAD-MODULE
statement.

B
B

B

B

B

B

B

B

B

B

KDCDEF control statements PROGRAM (Unix systems, Windows)

Generating Applications 449

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Generating UTM program units under Unix systems or Windows systems

objectname Name of the access point of the program unit. The name must be alphanu-
meric and may be up to 32 characters in length. For details on the
characters allowed refer to the section “Format of names” on page 263.

COMP= Designates the compiler used to compile the program unit.

C C compiler

Default: C

CPP C++ compiler

COB2 COBOL compiler (Server Express / NetExpress / Visual COBOL)
This generates a COBOL program that was compiled using a COBOL
complier from Micro Focus.
Only numbers and uppercase letters can be used for the PROGRAM-ID
and the access points. This not only complies with IBM conventions, but
also guarantees the portability of the programs.

MFCOBOL
COBOL compiler (Server Express / NetExpress / Visual COBOL), has the
same effect as COB2. I.e. a COBOL program that was compiled using a
Micro Focus Cobol compiler is generated.

NETCOBOL
NetCOBOL compiler from Fujitsu.
A COBOL program that was compiled using the Fujitsu NetCOBOL
compiler is generated.

v CAUTION!
In a UTM application, programs must not be simultaneously generated with
MFCOBOL/COB2 and NETCOBOL!

SHARED-OBJECT=shared_object_name
(Program exchange using the dynamic linker)
This operand need only be specified if the program unit is to be loaded
dynamically. shared_object_name is the name of the shared object (Unix
system) or DLL (Windows system) into which the program unit was incorpo-
rated. This shared object/DLL must be defined using the SHARED-
OBJECT statement.

PROGRAMË objectname

,COMP={ C | COB2 | CPP | MFCOBOL | NETCOBOL }

[,SHARED-OBJECT=shared_object_name]

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/WX/W

X/W

X/WX/W

X/WX/W

X

X

X

X

X

X/WX/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

PTERM KDCDEF control statements

450 Generating Applications

PTERM - define the properties of a client/printer and assign an LTERM
partner

The PTERM control statement allows you to define the properties of a physical client or
printer of the UTM application.

Clients are terminals, UPIC clients and transport system applications. Transport system
applications (for short TS application) are understood to be all applications that are
generated as PTYPE=APPLI or PTYPE=SOCKET. See also the PTYPE operand in the
table on page 463 (BS2000 systems) or page 467 (Unix systems and Windows systems).

You must always issue a PTERM statement for clients when connections to the client or
printer are to be established from the local UTM application.

The PTERM statement allows you to assign an LTERM partner defined using the LTERM
statement to the client/printer. A separate LTERM statement must be written for each client
or printer (see also page 363 for more information on this subject).

If desired, you can first define the client/printer in a PTERM statement and then assign it to
an LTERM partner later on during operation by means of dynamic administration. Excep-
tions are UPIC clients and TS applications. You need to assign an LTERM partner to these
immediately.

If LTERM pools have not been generated (TPOOL statement, see page 524), you must
assign a client in the LTERM= operand of at least one PTERM statement. Only then can a
connection be established in order to access the application.

i Printers are not supported by openUTM under Windows systems.

Address of the client or printer

For the application to be able to establish connections to the partner application, you must
specify the partner address. The following operands are used to do this:

– ptermname (name/T-selector of the communication partner)
– PRONAM (name of the host partner) 1)

– LISTENER-PORT (TCP/IP port number).2)

1) Under Unix systems and Windows systems, the name of the partner processor may
only be specified if the partner is a remote UPIC client (UPIC-R) or a TS application
(PTYPE= APPLI or SOCKET).

2) Under BS2000 systems, LISTENER-PORT may only be specified with
PTYPE=SOCKET.

W

X/W

X/W

X/W

B

B

KDCDEF control statements PTERM

Generating Applications 451

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

The following operands are used for further definition of the partner address under Unix
systems and Windows systems:

– T-PROT (address format for the transport protocol used)
– TSEL-FORMAT (format identifier of the T-selector)

See section “Providing address information for the CMX transport system (Unix systems
and Windows systems)” on page 109ff for more information
or section “Providing address information for the SOCKET transport system (Unix systems
and Windows systems)” on page 117.

If the connection to a TS application is to be established via the socket interface with native
TCP/IP as the transport protocol, then you must specify the computer on which the TS
application will run in PRONAM and the port number on the host partner on which the TS
application waits for requests to establish a connection from the network in LISTENER-
PORT. You must specify an application name that was generated for T-PROT=SOCKET in
BCAMAPPL (see also page 295).
You can specify whether or not openUTM is to handle messages in the MAP operand.

Uniqueness of names

When generating the CON, PTERM and MUX statements, please note that the name triplet
(appliname or ptermname, processorname, local_appliname) must be unique within the gener-
ation run.

i In order to make the generation of your UTM application more independent of the
PDN generation, it is possible to incorporate terminals in the configuration without
explicitly specifying their type. For this purpose, set the PTYPE operand to *ANY.
During connection setup, openUTM then takes the partner type (PTYPE) from the
user services protocol (connection letter) and checks whether or not this type is
supported. If not, openUTM rejects the connection request.

X/W
X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

B

B

B

B

PTERM KDCDEF control statements

452 Generating Applications

PTERMË ptermname

[,BCAMAPPL=local_appliname]

[,CONNECT={ YES | NO }]

[,ENCRYPTION-LEVEL={ NONE | 1 | 2 | 3 | 4 | TRUSTED }]

[,IDLETIME=time]

[,LISTENER-PORT=number]

[,LTERM=ltermname]

[,MAP={ USER | SYSTEM | SYS11 | SYS21 | SYS31 | SYS41}]

,PRONAM={ processorname | C’processorname’| *RSO1
} only mandatory in BS2000 systems

[,STATUS={ ON | OFF }]

[,TERMN=termn_id]
[,USP-HDR={ NO | MSG | ALL }]

BS2000 and Unix system specific operand

[,CID=printer_id]

BS2000 specific operands

[,PROTOCOL={ N | STATION }]

,PTYPE={ partnertyp | *ANY | *RSO }

[,USAGE={ D | 0 }]

Unix system and Windows system specific operands

[,PTYPE={ partnertyp |
PRINTER2 | (PRINTER ,printertype [,class])2 }]

[,T-PROT=RFC1006 | SOCKET]

[,TSEL-FORMAT={ T | E | A }]

1 These operand values are only permitted under BS2000 systems.
2 These operand values are only permitted under Unix systems

B

B/X

B/X

B

B

B

B

X/W

X/W
X/W

X

X/W

X/W

KDCDEF control statements PTERM

Generating Applications 453

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ptermname Name of the client or printer up to 8 characters in length

The specified name must be unique and must not be assigned to any other
object in name class 3. See also section “Uniqueness of names and
addresses” on page 268

The following cases can arise:

Socket applications (PTYPE=SOCKET)

– If the connection is to be established from the local application to the
client, then any ptermname can be selected. It is only relevant internally
in UTM then, e.g. for administration.

– If the connection is to be established externally (initiated by the client),
then ptermname must contain the port number via which the client
addresses the UTM application. You must then specify the prefix “PRT“
followed by 5 digits (with leading zeros, if necessary) that designate the
port number as the ptermname. For example, you must specify
ptermname=PRT08050 if the client is to address the UTM application via
the port 8050.

Establishing the connection externally to a specific PTERM is only
possible by partners that set their port numbers themselves when
establishing a connection. openUTM does not do this, i.e. you cannot
issue any PTERM statements for a remote UTM application that is to
establish SOCKET connections to the local application. In this case, you
need to connect via an LTERM pool.

Clients (≠ socket applications) and printers connected to a application under
BS2000 systems

You must specify the name of client or printer defined during generation of
the network. Please consult your network administrator.

When defining an RSO printer (PTYPE=*RSO), you must specify the name
of the printer as defined for RSO.

UPIC clients and TS applications (≠ socket applications) connected to a UTM
application under Unix systems or Windows systems

For OPTION CHECK-RFC1006=YES you must specify the T-selector that
is assigned to the client in the remote system for ptermname.

B

B

B

B

B

B

X/W

X/W

X/W

X/W

PTERM KDCDEF control statements

454 Generating Applications

Printers connected to a UTM application under Unix systems

In the case of printers, ptermname is the name of the spool queue or printer
group as defined during generation of the Unix system.
To output the data, the printer process (utmprint) calls the utmlp script (see
PTYPE=PRINTER on page 465).

Terminals connected to a UTM application under Unix systems

In the case of local terminals and pseudo terminals, the result of the
command basename ̀ tty` must be specified for ptermname in each PTERM
statement so that the UTM generation matches the terminal generation
under the Unix system.

Under Unix systems, the default ptermname assigned by openUTM may not
be unique. Depending on the type of network to which the system is
connected, it is possible to have two or more pseudo terminals for which the
last term of the tty (after the last slash) is identical. Only one terminal can
use this ptermname to establish a connection with the application. The
connection request from the second terminal will be rejected by openUTM.

Example
The system contains the ttys /dev/pts/12 and /dev/inet/12. If terminal
/dev/pts/12 requests a connection to the application with the ptermname
12 and terminal /dev/inet/12 is already linked to the application, the
connection request issued by /dev/pts/12 is rejected. You must use the
last two parts of the output of the tty command as the ptermname; e.g.
instead of PTERM 12, enter the statements PTERM pts/12 and PTERM
inet/12.

You can also generate an LTERM pool with PTYPE=TTY instead.

Terminals connected to a UTM application under Windows systems

Any name can be specified for ptermname.

BCAMAPPL=local_appliname
Name of the local UTM application as defined in MAX ...,APPLINAME= or
the BCAMAPPL statement (see also page 295). When establishing a
connection between the client/printer and the UTM application,
local_appliname must be specified as the partner name.
In the case of terminals and printers, the name defined in
MAX ...,APPLINAME= must be used here.
For PTERMs with PTYPE=SOCKET you must specify a name in
local_appliname that is generated using BCAMAPPL ... T-PROT=SOCKET.

The BCAMAPPL name specified in the CLUSTER statement is not
permitted here.

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

W

W

KDCDEF control statements PTERM

Generating Applications 455

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Default value:
Value in MAX APPLINAME= (primary name of the UTM application). This
default value applies if BCAMAPPL= is not specified or contains blanks
only.

CID=printer_id
This applies only for printers assigned to a printer control LTERM. printer_id
is used to identify the printers at the printer control LTERM, and can be up
to eight characters in length.

The printer control LTERM is used to manage printers, printer queues and
print jobs.

If the printer is assigned an LTERM partner for which a printer control
LTERM has been defined using LTERM ...,CTERM=ltermname2, the printer
itself is also assigned to this printer control LTERM. The combination of
ltermname2 of the printer control LTERM and CID must be unique.

Default: A CID is not assigned to the printer

CONNECT= Specifies whether or not openUTM establishes a connection to the client or
printer when starting the application.

– Under BS2000 systems CONNECT= is only relevant for TS applica-
tions, terminals and printers.

– Under Unix systems CONNECT= is only relevant for TS applications
and printers.

– Under Windows systems CONNECT= is only relevant for TS applica-
tions.

YES When starting the application, openUTM automatically attempts to establish
a connection.

In the case of printers generated with LTERM ...,PLEV > 0, openUTM does
not attempt to establish the logical connection until the PLEV value is
exceeded.

If a connection cannot be established to a printer or TS application,
openUTM makes repeated attempts to establish the connection at intervals
defined in MAX ...,CONRTIME.

BS2000 systems:
If a logical connection to a terminal cannot be set up, this can be performed
explicitly by the user at a later point in time.

Unix systems:
When starting the application, openUTM automatically creates a printer
process for executing print jobs, which is assigned to ptermname.

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B/X

B

B

X

X

W

W

B

B

B

X

X

X

PTERM KDCDEF control statements

456 Generating Applications

NO When starting the application, openUTM does not attempt to establish a
connection.

CONNECT=NO must be specified for clients with PTYPE=UPIC-R and
UPIC-L.

Default: NO

i Unix systems:
A printer process is not created for ptermname. This can only be achieved by
issuing the administration command KDCPTERM ACT=C (or KDCLTERM
for the assigned LTERM partner). The printer process can then accept print
jobs from work processes, which are directed to the appropriate spool
queue.

ENCRYPTION-LEVEL=
Only relevant for UPIC clients that support encryption and under BS2000
systems for some terminal emulations that support encryption also.

In ENCRYPTION-LEVEL you set the minimum encryption level for the
communication with the client.
You specify whether or not the UTM application should request encryption
of the message on the connection to the client. You can also define the
client as a "trusted" client. See also section “Message encryption on
connections to clients” on page 226 for more information on encryption.

The client must be a openUTM-Client with the UPIC carrier system and with
encryption functions to be able to encrypt data on the connection to the
client.

A prerequisite for the use of encryption on connections between openUTM
and terminal emulations is VTSU-B ≥ V12.0C.

You can specify the following:

NONE Encryption of the messages exchanged between the client and the UTM
application is not requested by openUTM by default.
Passwords are transmitted in encrypted form if both partners support
encryption. They are transmitted with the longest available key, i.e. with
AES if an RSA key with a length of ≥ 512 bits is available; otherwise with
DES. The AES key is also encrypted with the longest RSA key available.
Services for which encryption was generated for their service TACs (see
ENCRYPTION-LEVEL in the TAC statement starting on page 496) can only
be started by this client if the client negotiates encryption when establishing
the connection or establishing the conversation.

X

X

X

X

X

X

B

B

KDCDEF control statements PTERM

Generating Applications 457

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

1 | 2 | 3 | 4 Encryption of the messages exchanged between the client and the UTM
application is requested by openUTM by default. The value (1 ... 4) specifies
the encryption level. The client cannot connect unless it supports at least
this encryption level. Otherwise openUTM rejects connection setup.

Values 1 to 4 have the following meaning:

1 Passwords and input/output messages are encrypted using the DES
algorithm. An RSA key with a key length of 200 bits is used to exchange
the DES key.

2 Passwords and input/output messages are encrypted using the AES
algorithm. An RSA key with a key length of 512 bits is used to exchange
the AES key.

3 Passwords and input/output messages are encrypted using the AES
algorithm. An RSA key with a key length of 1024 bits is used to
exchange the AES key.

4 Passwords and input/output messages are encrypted using the AES
algorithm. An RSA key with a key length of 2048 bits is used to
exchange the AES key.

ENCRYPTION-LEVEL=1 to 4 makes sense for UPIC partners only if the
encryption functionality of openUTM is installed on your system. Otherwise
the client cannot connect.

VTSU encryption is used for VTSU partners.

The following applies for the individual client types with regard to the
encryption level:

– Encryption levels 1 to 4 are meaningful for remote UPIC clients
(PTYPE=UPIC-R).

– Only encryption level 1 (ENCRYPTION-LEVEL=1) is meaningful for
clients with PTYPE= T9763 or *ANY under BS2000 systems. Levels 2,
3 and 4 are changed to 1 by KDCDEF without issue of a message.

– Encryption level 1, 2, 3 or 4 is changed to TRUSTED without issue of a
message for local UPIC clients (PTYPE=UPIC-L) of an application
under Unix systems or Windows systems.

– If 1 to 4 is specified for a partner of another type, the value is changed
to NONE by openUTM without issue of a message.

B

B

B

B

X/W

X/W

X/W

PTERM KDCDEF control statements

458 Generating Applications

i If the application is generated with OPTION GEN-RSA-KEYS=NO,
no RSA keys are created in the KDCDEF run. In order to use the
encryption functions, you must create the required keys using
administration facilities (KC_ENCRYPT or WinAdmin or
WebAdmin) or transfer them from an old KDCFILE using KDCUPD.

TRUSTED
The client is a "trusted" client.
Messages between the client and the application are not encrypted.
A "trusted" client can also start services whose service TACs request
encryption (generated with TAC ENCRYPTION-LEVEL=1 | 2).

TRUSTED should only be selected if the client is not accessible for
everyone and communication is conducted through a secure connection.

TRUSTED is the only value allowed for local UPIC clients (UPIC-L). Any
other specification is changed to TRUSTED by openUTM without
announcement.

Default: NONE

IDLETIME=time
May only be specified for dialog partners.
In time you enter the maximum time in seconds that openUTM may wait for
input from the client outside of a transaction, i.e. after the end of a trans-
action or after signing on. If this time is exceeded, then openUTM clears
down the connection to the client. If the client is a terminal, then message
K021 is output before the connection is cleared.

This function serves to improve data security:
If a user forgets to sign off from the terminal when taking a break or when
finishing his or her work on the terminal, then the connection to the terminal
or client is automatically cleared down after the wait time has run out. This
reduces the chance of someone gaining unauthorized access to the
system.

Default: 0 (= no wait time limit)
MAX TERMWAIT=(...,time2) is used for terminals (when it is set).
Maximum value: 32767
Minimum value: 60

If you specify a value that is greater than zero and smaller than the minimum
value, KDCDEF replaces the value with the minimum value.

X/W

X/W

X/W

KDCDEF control statements PTERM

Generating Applications 459

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

LISTENER-PORT=number
Port number for establishing TCP/IP connections

With socket applications (T-PROT=SOCKET) the LISTENER-PORT= is a
mandatory operand.

BS2000 systems:

Under BS2000 systems LISTENER-PORT may only be specified for socket
applications (PTYPE=SOCKET).
In this case, LISTENER-PORT is a mandatory operand.

For number you must specify the port number on which the socket appli-
cation waits for requests to establish a connection, i.e. the port number on
the host partner through which the socket application is addressed.

All port numbers are allowed.

Unix systems and Windows systems:

LISTENER-PORT is relevant for remote UPIC clients (PTYPE=UPIC-R)
and TS applications (PTYPE=SOCKET or APPLI).

Permitted values:
T-PROT=RFC1006: Port numbers 102 and 1025 - 32767
T-PROT=SOCKET: Port numbers1 - 65535.

The LISTENER-PORT is used with T-PROT=SOCKET to specify the port
number used to address the partner. No other addressing information is
necessary.

Default: 0 (no port numbers)
When OPTION CHECK-RFC1006=YES, a port number must be specified
in LISTENER-PORT for PTERMs with PTYPE=APPLI or SOCKET.

LTERM=ltermname
Name of the LTERM partner assigned to the client/printer ptermname. This
name is used by the client/printer to sign on to the UTM application, and can
be up to eight characters in length.

The LTERM operand is mandatory for clients with PTYPE=SOCKET, APPLI
and UPIC-R.

The LTERM partner assigned to a client/printer can be changed during
runtime using the KDCSWTCH administration command, e.g. if the printer
fails. However, it is not possible to assign a dialog LTERM partner
(LTERM USAGE=D) to a printer.

i For the printer pool function, you must issue several PTERM statements
with the same ltermname. A printer pool consists of numerous printers
assigned to a single LTERM partner (see also section “Generating printer

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B/X

B/X

B/X

PTERM KDCDEF control statements

460 Generating Applications

pools” on page 176). openUTM then distributes print jobs cyclically to the
various printers in the pool.

MAP= In MAP you specify whether or not openUTM is to convert the code of user
messages exchanged with the communication partner
(ASCII <-> EBCDIC).

User messages are passed in the message area on the KDCS interface in
the message handling calls (MPUT/MGET/FPUT/DPUT/FGET).

MAP= controls the conversion when exchanging unformatted messages
with other applications. openUTM does not generally execute any message
handling for formatted messages.

MAP≠USER is only permitted

– under BS2000 systems for socket applications (PTYPE=SOCKET).

– under Unix systems and Windows systems for all TS applications
(PTYPE=SOCKET or APPLI).

USER openUTM does not convert the data of the message area, i.e. the messages
are transferred to the partner application unchanged and the messages
received from the partner are transferred unchanged to the program unit.
Note that the user message contains the transaction code in TS applica-
tions (partners with PTYPE=SOCKET or APPLI). It must be encoded in the
form that the receiving system expects, i.e. under BS2000 systems in
EBCDIC and in ASCII under Unix systems and Windows systems.

Default: USER

SYSTEM / SYS / SYS1 / SYS2 / SYS3 / SYS4 (BS2000 systems)
This parameter may only be specified when the messages received by the
socket application are not encoded in EBCDIC, or when the socket appli-
cation expects messages encoded in ASCII from the UTM application.

If you specify one of the values above, then openUTM converts the data in
the message from EBCDIC to ASCII before the message is sent and from
ASCII to EBCDIC after receiving a message. openUTM assumes that the
messages only contain printable characters when converting back and
forth.

You specify the conversion table to be used by openUTM for the code
conversion with SYSTEM, SYS, SYS1, SYS2, SYS3, SYS4.
The conversion tables must be defined in the module KDCEA (see the
section “ASCII-EBCDIC code conversion” in the openUTM manual
„Programming Applications with KDCS”).

B/X
B/X

B

X/W

X/W

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements PTERM

Generating Applications 461

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

SYSTEM, SYS and SYS1 are synonyms. If you specify one of these values,
then openUTM uses the standard code table for the conversion that
converts EBCDIC to 7-bit ASCII. The standard code table (Table 1) is
already defined in KDCEA and can be used without any additional prepa-
ration.

If openUTM is to execute a different conversion from EBCDIC to ASCII,
then you must define the corresponding conversion table yourself in
KDCEA. You can define up to a maximum of three conversion tables in
KDCEA (Table 2 through Table 4).

If you specify SYS2, then openUTM converts the user messages using
Table 2. openUTM uses Table 3 when SYS3 is specified and Table 4 when
SYS4 is specified.

This parameter is only permitted for PTYPE=SOCKET.

SYSTEM (under Unix systems and Windows systems)
openUTM converts the data in the KDCS message area from ASCII to
EBCDIC before sending messages, or from EBCDIC to ASCII after
receiving messages. Messages must contain printable characters only, and
must be created in line mode (KCMF = blank).
This parameter is permitted only in conjunction with PTYPE=SOCKET or
APPLI.

PRONAM={ processorname | C’processorname’ }
Symbolic name of the host partner up to 8 characters in length.
If processorname contains special characters it must be entered as a
character string using C’...’.

BS2000 systems:

This name is defined during generation of the network. Please consult your
network administrator. The assignment of ptermname to processorname must
be unique.

If a TS application is described with which the UTM application communi-
cates via the socket interface, then you must specify the symbolic address
of the host partner for processorname. The association of the symbolic
address to the real IP address must be entered in the name service of the
local system (in the RDF file). You must not specify an alias of the host.

When defining an RSO printer (PTYPE=*RSO), you must specify *RSO
here.

This is a mandatory operand.

PRONAM need not be specified if a default value for this operand is defined
beforehand using the DEFAULT statement.

B
B

B

B

B

B

B

B

B

B

B

B

B

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

B

B

B

B

B

B

B

B

B

B

B

B

PTERM KDCDEF control statements

462 Generating Applications

Unix systems and Windows systems:

Under Unix systems and Windows systems PRONAM= is permitted only for
remote UPIC clients (PTYPE=UPIC-R) and TS applications
(PTYPE=SOCKET or APPLI).

You have two options for specifying the processorname:

– You enter the real host name under which the IP address of the partner
computer is entered in the name service of the local system (e.g. the
hosts file). You must not specify alias names of the computer.

– You enter the UTM host name of the partner computer.
This is only possible when you have set the UTM_NET_HOSTNAME
environment variable and specified the UTM host name in the
conversion file (see the section “Using mapped host names (Unix
systems and Window systems)” on page 121).

No distinction is made between uppercase and lowercase notation;
KDCDEF always converts the name of the partner computer into
uppercase.

processorname is a mandatory operand.

Default: 8 blanks

PROTOCOL= User services protocol used on connections between the UTM application
and the client/printer

N A user services protocol is not used between the UTM application and the
client/printer.

PROTOCOL=N must be set for UPIC clients (PTYPE=UPIC-R), TS applica-
tions (PTYPE=SOCKET or APPLI) that communicate with the UTM appli-
cation via the socket interface (native TCP/IP) and for printers accessed via
RSO (PTYPE=*RSO).

Clients with PROTOCOL=N cannot sign on to the UTM application via a
multiplex connection (MUX statement).

If you specify PTYPE=*ANY, openUTM ignores the entry PROTOCOL=N
and automatically sets PROTOCOL=STATION.

Default with PTYPE=SOCKET, APPLI, UPIC-R or *RSO.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

BB

B

BB

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements PTERM

Generating Applications 463

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

STATION The user services protocol (NEABT) is used between the UTM application
and the client/printer.

PROTOCOL=STATION must be specified for clients generated with
PTYPE=*ANY. In this case, openUTM requires the user services protocol
(NEABT) to determine the device type of the client or printer.

For UPIC clients (PTYPE=UPIC-R), TS applications (PTYPE=APPLI or
SOCKET) or printers that are addressed via RSO (PTYPE=*RSO), you are
only permitted to specify PROTOCOL=N. If you specify
PROTOCOL=STATION it will be ignored.

Default with PTYPE≠SOCKET , UPIC-R or *RSO.

PTYPE= Type of communication partner

This is a mandatory operand under BS2000 systems.

PTYPE under BS2000 systems:

For PTYPE you must specify the partner type partnertyp of the client or
printer, the value *ANY, or the value *RSO for RSO printers.

partnertyp Type of communication partner, i.e. type of client or printer. The value
specified in partnertyp must match that defined during PDN generation. The
partner type must be entered either in the PTYPE parameter here, or using
a DEFAULT statement. The following partner types are supported:

Partner PTYPE TERMN

DSS 9748 T9748 2) FE

DSS 9749 T9749 FE

DSS 9750 T9750 2) FE

DSS 9751 T9751 FE

DSS 9752 T9752 FF

DSS 9753 T9753 FE

DSS 9754 T9754 FI

DSS 9755 T9755 3) FG

DSS 9756 T9756 3) FG

DSS 9763 T9763 FH

DSS 9770 T9770 FK

DSS 9770R T9770R FK

FHS-DOORS Front End DSS-FE FH

BB
B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

PTERM KDCDEF control statements

464 Generating Applications

The VTSU version in which the individual terminals are supported can be
found in the respective DCAM, FHS and TIAM manuals. If a terminal is not
supported by VTSU, openUTM rejects connection requests from this
terminal and outputs UTM messages K064 and K107.

DSS 3270 (IBM) T3270 FL

DSS X28 (TELETYPE) THCTX28 C5

DSS X28 (VIDEO) TVDTX28 C6

FHS-DOORS Front End DSS-FE FH

Data station PT80 TPT80 C4

9001 printer T9001 C7

9002 printer T9002 FA

9003 printer T9003 F9

9004 printer T9004 FD

9001-3 printer T9001-3 CA

9001-893 printer T9001-893 CB

9011-18 printer T9011-18 CC

9011-19 printer T9011-19 CD

9012 printer T9012 CE

9013 printer T9013 C9

9021 printer T9021 CH

9022 printer T9022 CF

3287 printer T3287 CG

Intelligent terminal THOST A3

PDN application APDN 1) A2

Transport system application that is not a socket appli-
cation, e.g.: DCAM, PDN, CMX or UTM application.

SOCKET
APPLI

A7
A1

Socket application SOCKET A7

UPIC client UPIC-R A5

1) A PDN application can also be generated with PTYPE=SOCKET or APPLI. UTM differ-
entiates between applications and stations. APDN is handled as a station and SOCKET
or APPLI as an application.

2) The PTYPEs T9748 and T9750 refer to the same terminal type.
3) The PTYPEs T9755 and T9756 refer to the same terminal type.

Partner PTYPE TERMN

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B
B
B

B

B

B

B

B

B

KDCDEF control statements PTERM

Generating Applications 465

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

*ANY A PTYPE=*ANY entry generates a VTSU client. The client/printer is incor-
porated in the configuration without precise information on the device type.
During connection setup, openUTM takes the device type from the user
services protocol. Only then can it be determined whether or not the partner
type is supported.

The advantage of PTYPE=*ANY is that it allows you to include clients in the
configuration without having to know how they are generated in PDN. The
configuration is also easier to maintain if, following regeneration in PDN,
these clients can still sign on to the application without having to modify the
KDCDEF generation.

If terminal mnemonics (TERMN operand) are not explicitly generated for
clients defined with PTYPE=*ANY, the default terminal mnemonic of the
partner type is used for connection setup.

*RSO If PTYPE=*RSO, support is provided for printers via RSO. Instead of estab-
lishing a transport connection, openUTM reserves the printer in RSO and
transfers the message to be printed to RSO.

PTYPE under Unix systems and Windows systems:

partnertyp Type of communication partner, i.e. type of client or printer. For partnertyp
you can specify the following:

PRINTER (only under Unix systems)
Printer without additional parameters.
To output the data, the printer process (utmprint) calls the utmlp script.
Parameters are also passed to utmlp in the call in addition to the data to be
printed. utmlp then passes the data by default to the lp command (for infor-
mation on the utmlp script see page 466).

 TTY The client is a terminal.
Default: TTY

APPLI The client is a transport system application that does not use the
socket interface (for example UTM, CMX or DCAM application).

SOCKET The client is a socket application.

UPIC-L The client is a local UPIC client.

UPIC-R The client is a remote UPIC client (usually on another system).

BB
B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

X/W

X/WX/W

X/W

X/WX/W
X/W

X/WX/W
X/W

X/WX/W

X/WX/W

X/WX/W

XX

X

X

X

X

X

PTERM KDCDEF control statements

466 Generating Applications

(PRINTER, printertype,[class]) (only under Unix systems)
Printer with extended parameters.
To output the data, the printer process (utmprint) calls the utmlp script.
Parameters are also passed to utmlp in the call in addition to the data to be
printed. utmlp passes the data with the value of class set to destination to the
lp command (for information on the utmlp script utmlp see below).

printertype
Designates the printer type of the printer to be used for printing.
If there are special characters in the value of the printertype parameter, then
you must place the value in single quotes.
Maximum length of printertype: 8 characters

class
Name of the printer group (printer class).
If the name of the printer group contains special characters, then you must
place the value in single quotes.
Maximum length: 40 characters
Default value: value of ptermname

Information on the utmlp script

– The utmlp script is also supplied. You will find it in the $UTMPATH/shsc
directory.

– The parameters are documented in the script itself.

– The script is accessed at runtime using the $PATH variable.

– You can edit the script to modify the message before printing or print it
over the network, for example.

– If printing was successful, the script returns exit code 0 (null).
If the script returns an exit code other than 0, then the connection to the
printer process is cleared and another attempt is made to output the
data once the connection has be reestablished.

i With clients of type APPLI,SOCKET or UPIC-R, it may appear to
openUTM that a connection to the client still exists, even though the
client is no longer actually linked to the application and therefore
attempts to reestablish the connection. For this purpose, the client
sends a connection request to openUTM, which causes openUTM
to shut down the “existing” connection.

With clients of type APPLI or SOCKET, openUTM then automati-
cally initiates the setup of a new connection.
For UPIC clients, the initiation to establish a new connection must
be made by the UPIC client.

XX
X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

KDCDEF control statements PTERM

Generating Applications 467

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

STATUS= Status (locked or unlocked) of the client/printer when the application is
started.

ON The client or printer is unlocked. If the LTERM partner used by the
client/printer to sign on to the UTM application is not locked, connections
can be establish or may already be in place.

Default: ON

OFF The client or printer is locked. Connections cannot be established between
the client/printer and the local application. The client/printer can be released
by the administrator.

TERMN=termn_id
Identifier up to two characters in length, which indicates the type of client.
openUTM provides this identifier to the application program in the
KCTERMN field of the KB header. termn_id is not queried by openUTM, but
can be used by the user for analysis purposes.

Default values:

If this operand is not specified, openUTM sets the KCTERMN field to the
default ID of the partner type specified in the PTYPE operand. However, the
user can select other values if desired.

– BS2000 systems:
The default values are listed in the partner type table for the PTYPE=
operand on page 463.
If TERMN is not explicitly specified for clients generated with
PTYPE=*ANY, openUTM does not enter the terminal mnemonic in
KCTERMN until the connection is established. This is the default
terminal mnemonic of the type specified in the user services protocol of
the connection request.

– Unix systems and Windows systems:
The default values are listed in the table below.

PTYPE TERMN

TTY F1

PRINTER F2

PRINTER,fotyp,class F2

APPLI A1

UPIC-L A2

UPIC-R A5

SOCKET A7

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X

X

X/W

X/W

X/W

X/W

PTERM KDCDEF control statements

468 Generating Applications

T-PROT= The address format with which the OSI TP partner signs on to the transport
system. Is only relevant for PTYPE=SOCKET, APPLI and UPIC-R.

Information on the following address formats can be found in the “PCMX
documentation” on page 18.

RFC1006 Address format RFC1006

SOCKET Communication is conducted via the socket interface.
SOCKET may only be specified if the name of the local UTM application that
you specified in BCAMAPPL is generated with T-PROT=SOCKET.
The specification of a port number in the LISTENER-PORT operand is
mandatory.

The default value for T-PROT depends on the PTYPE specification:

T-PROT=RFC1006 when PTYPE=APPLI or UPIC-R
T-PROT=SOCKET when PTYPE=SOCKET

TSEL-FORMAT=
The format identifier of the T-selector in the transport address of the client.
TSEL-FORMAT is only relevant for PTYPE=SOCKET, APPLI and UPIC-R.

The format identifier specifies the coding of the T-selector in the transport
protocol. You will find more information in the “PCMX documentation” on
page 18.

T TRANSDATA format

E EBCDIC format

A ASCII format

It is recommended to explicitly specify a value for TSEL-FORMAT for
operation via RFC1006.

USAGE= This specifies whether the communication partner is a dialog partner or
purely an output medium.

D The client is a dialog partner. Messages can be exchanged between the
client and the local application in both directions.

UPIC clients (PTYPE=UPIC-R) are always dialog partners.

An LTERM partner with USAGE=D must not be assigned to a client with
USAGE=O.

This is the default value if PTYPE=SOCKET, APPLI, UPIC-R, and for
terminals.

X/WX/W
X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/WX/W

X/WX/W

X/W

X/W

BB

B

BB

B

B

B

B

B

B

KDCDEF control statements PTERM

Generating Applications 469

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

O The communication partner is a printer. Messages can only be sent from the
application to the printer.

Default:
This is the only value permitted for partners generated with PTYPE=*RSO.

USP-HDR= This parameter is used to control the output messages for which openUTM
is to establish a UTM socket protocol header on this connection.
A description of the USP header can be found in the openUTM manual
„Programming Applications with KDCS”.

This parameter is only relevant for PTERMs with PTYPE=SOCKET.

NO openUTM does not create a UTM socket protocol header for any of the
output messages.

Default.

MSG Only when outputting K messages does openUTM create and prefix the
message with a UTM socket protocol header.

ALL openUTM creates and prefixes all output messages (dialog, asynchronous,
K messages) with a UTM socket protocol header.

BB
B

B

B

QUEUE KDCDEF control statements

470 Generating Applications

QUEUE - reserve table entries for temporary messages queues

The QUEUE control statement allows you to specify the number of temporary queues that
are permitted to exist in the application at any one time. In the KDCFILE the appropriate
number of table entries are reserved for temporary queues. You can also define the default
settings for these queues.

Temporary queues are suitable, for example, for communication between two services.
These can be created and deleted dynamically during operation using the KDCS calls
QCRE and QREL.

The QUEUE statement may only be specified once during a generation run!

For more information about queues and possible applications please refer the openUTM
manual “Concepts und Functions”.

NUMBER=queue-number
Specifies the maximum number of temporary queues that are permitted to
exist at any one time during an application run.

Minimum value: 1
Maximum value: 500.000

QLEV=queue_level_number
(Queue Level)
Specifies the standard value for the maximum number of messages that
may exist at any one time in a temporary message queue.
The maximum number of messages can be defined specifically using the
KDCS call QCRE (KCLA parameter) for each queue when the queue is
generated. The default value generated with QLEV= is used if the value 0
is entered in the parameter KCLA.

QLEV=32767 means that the number of messages in the queue is not
limited by default.

Default: 32767 (or in other words, an unrestricted queue length)
Minimum value: 1
Maximum value: 32767 (or in other words, an unrestricted queue length)

QUEUEË NUMBER=queue-number

[,QLEV=queue_level_number]

[,QMODE = { STD | WRAP-AROUND }]

KDCDEF control statements QUEUE

Generating Applications 471

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

QMODE = (Queue Mode)
Determines the behavior of openUTM in the event that the maximum
number of messages saved in a temporary queue has been exceeded and
the queue level is thus reached.
The value generated here is used when dynamically creating a temporary
queue if no other value is specified in the KDCS call QCRE.

STD openUTM rejects all additional messages for the queue with a negative
return code if the queue level has been reached.

Default: STD

WRAP-AROUND
openUTM continues to accept messages for the temporary queue, even if
the queue level has already been reached. When writing a message to the
queue openUTM deletes the oldest messages in the queue and replaces it
with the new one.

REMARK KDCDEF control statements

472 Generating Applications

REMARK - insert a comment line

The REMARK control statement allows you to insert a comment in the KDCDEF control
statements. Comments must not extend beyond one line.

comment Any character string

A comment line can also be created by inserting an asterisk * in column 1.

REMARKË comment

KDCDEF control statements RESERVE

Generating Applications 473

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

RESERVE - reserve table locations for UTM objects

If you use the functions of the program interface KDCADMI for dynamic configuration during
application operation, or want to add dynamic objects using the WinAdmin or WebAdmin
administration workstation, then you must use the RESERVE statement to reserve table
spaces in the object tables of openUTM at the KDCDEF generation.

Further information on dynamic configuration can be found in chapter “Changing the config-
uration of an application dynamically” on page 583.

The RESERVE statement can only be issued once for each object type. The following is
valid for a RESERVE statement with OBJECT=ALL:

● After RESERVE OBJECT=ALL is specified, it is not possible to enter any additional
RESERVE statements.

● Before RESERVE OBJECT=ALL all object-specific RESERVE statements are
permitted. These object-specific RESERVE statements take priority.

Due to internal dependencies, the KDCDEF generation tool may reserve more objects than
specified in RESERVE statements. The exact number of objects of the reserved entries for
an object type is output in a message.

RESERVEË OBJECT={ ALL [,CARDS=percent11] [,PRINCIPALS=percent21]|
CON |
KSET |
LSES |
LTAC |
LTERM |
PROGRAM |
PTERM |
TAC |
USER [,CARDS=percent11] [,PRINCIPALS=percent21] }

[{ ,NUMBER=number | ,PERCENT=percent3 }]

1 only permitted under BS2000 systemsB

RESERVE KDCDEF control statements

474 Generating Applications

OBJECT= Table locations are reserved for objects of the specified type. These objects
can then be entered in the configuration dynamically as required.

ALL [,CARDS=percent1] [,PRINCIPALS=percent2]
(CARDS= and PRINCIPALS= are only permitted under BS2000 systems)
Table locations can be reserved for objects of type CON, KSET, LSES,
LTAC, LTERM, PROGRAM, PTERM, TAC and USER, which are then
entered dynamically.

With objects of type USER, CARDS=percent1 means that up to percent1% of
users entered dynamically can be defined with an ID card.
PRINCIPALS=percent2 means that up to percent2% of users entered dynam-
ically can be defined with a Kerberos authentication.

Default for percent1/percent2: 0%, i.e. no users can be entered dynamically
with an identity card or Kerberos authentication.
Maximum value for percent1/percent2: 100%

CON Table entries are reserved for the transport connections to LU6.1 partner
applications, for example, for objects of type CON.

KSET Table entries are reserved for the key sets, for example, for objects of type
KSET.

LSES Table entries are reserved for the LU6.1 session names, for example, for
objects of type LSES.

LTAC Table entries are reserved for the local service names via which the service
programs in partner applications can be started. These are objects of the
type LTAC.

LTERM Table locations are reserved for objects of type LTERM

Please note that the following object components must be generated stati-
cally and cannot be entered dynamically:

– A client with PTYPE=APPLI cannot be assigned dynamically to an
LTERM partner without an autosign USER with the name of a statically
generated USER.

– A client with PTYPE=APPLI cannot be assigned dynamically to an
LTERM partner without an autosign USER defined with the name of a
statically generated user.

– the format handling system when using formats
– the sign-on procedure with #formats.

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements RESERVE

Generating Applications 475

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

PROGRAM
Table locations are reserved for objects of type PROGRAM
Objects of type PROGRAM can only be entered dynamically in applications
generated with load modules (BS2000 systems), shared objects (Unix
systems) or DLLs (Windows systems).

Please note that the following object components must be generated stati-
cally and cannot be entered dynamically:

– Programming languages (PROGRAM ...,COMP=) must be generated
statically using the PROGRAM statement.

– With ILCS-compatible languages (COMP=ILCS), the static generation
of an ILCS program is sufficient.

– LOAD-MODULEs in PROGRAM must be generated statically using the
LOAD-MODULE statement.

– For applications generated without load modules under BS2000, the
PROGRAM names specified when entering a new TAC must be
generated statically.

– For applications generated without shared objects/DLLs, the program
names specified when entering a TAC must be generated statically.

PTERM Table locations are reserved for objects of type PTERM.

For each client with PTYPE=APPLI, SOCKET, UPIC-R or UPIC-L,
openUTM implicitly creates a USER. If such clients generated dynamically,
this must be taken into consideration in the NUMBER= or PERCENT=
operand for OBJECT=USER.

Please note that BCAMAPPL names must be generated statically and
cannot be entered dynamically.

TAC Table locations are reserved for objects of type TAC.

Please note that the following object components must be generated stati-
cally and cannot be entered dynamically:

– TAC classes
– If TACs are to be created dynamically for X/Open program units, at least

one X/Open TAC must be generated statically.

USER [,CARDS=percent1] [,PRINCIPALS=percent2]
(CARDS= and PRINCIPALS= are only permitted under BS2000 systems)
Table locations are reserved for objects of type USER.

If user IDs have not been generated for an application, i.e. the generation
does not contain any USER statements, table locations cannot be reserved
for objects of type USER. This is because KDCDEF already reserves an

B

B

B

B

B

B

B

X/W

X/W

B

RESERVE KDCDEF control statements

476 Generating Applications

object of type USER internally for each reserved object of type LTERM. The
number of users reserved by KDCDEF in this way is output in a UTM
message.

Under BS2000 systems CARDS=percent1 means that up to percent1% of
users entered dynamically can be defined with an ID card.
PRINCIPALS=percent2 means that up to percent2% of users entered dynam-
ically can be defined with a Kerberos authentication.

Default for percent1/percent2: 0%, i.e. no users can be entered dynamically
with an identity card or Kerberos authentication.
Maximum value for percent1/percent2: 100%

Please note that the following object components must be generated stati-
cally and cannot be entered dynamically:

– the format handling system when using formats
– the sign-on procedure with #-formats

UTM creates an internal user ID for all TS applications (PTYPE=APPLI/
SOCKET) and UPIC clients (PTYPE=UPIC-R). The NUMBER or
PERCENT specification must be increased appropriately if these PTERMs
are to be entered dynamically.

NUMBER=number
Maximum number of objects of the specified type which can be entered
dynamically.

If OBJECTS=ALL, up to number objects of the types listed in the syntax
diagram can be entered dynamically.

– NUMBER=0
The number of objects of the specified type can be increased dynami-
cally to the maximum value, i.e. the maximum number of names that
can be generated as specified in section “Number of names” on
page 265.

– NUMBER≠0
This reduces the storage space occupied by the UTM application. If the
number of objects to be reserved is greater than the maximum number
of names that can be generated (see section “Number of names” on
page 265), then this statement has the same effect as NUMBER=0.

Minimum value: 0
Maximum value:
32 000 for LTAC, KSET, TAC and PROGRAM
65 000 for CON, LSES, LTERM, PTERM
500 000 for USER, LTERM, PTERM

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements RESERVE

Generating Applications 477

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

The following also apply:

– The sum of the reserved entries for an object type and the number of
statically generated names of the associated name classes must not
exceed the maximum number of permitted entries for these name
classes (see section “Number of names” on page 265).

– The sum of the reserved CONs and PTERMs must not be greater than
500 000.

– The sum of the reserved LSES and USER must not be greater than
500 000.

At the end of the KDCDEF run, the number of entries reserved for each
object type is output with message K502.

PERCENT=percent3
Number of objects of the specified type which can be entered dynamically,
expressed as a percentage of the total number of objects of this type which
have been generated statically.

The advantage of a percentage specification is that the number of objects
that can be entered dynamically automatically increases at the same rate
as the number of statically generated objects of the respective type in each
generation (assuming the RESERVE statements are not modified).

PERCENT=percent3 has the same effect as the equivalent
NUMBER=number, i.e. PERCENT=0 has the same effect as NUMBER=0.

PERCENT≠0 reduces the storage space occupied by the UTM application.
If the number of objects to be reserved is greater than the maximum number
of names that can be generated (see section “Number of names” on
page 265), this statement has the same effect as PERCENT=0.

Default: 10
Minimum value: 0
Maximum value: Number of names that can be generated

RMXA KDCDEF control statements

478 Generating Applications

RMXA - define a name for an XA (database) connection (Unix systems,
Windows systems)

The XA interface standardized by X/Open allows you to link openUTM to any Resource
Manager that supports this interface, e.g. the database systems INFORMIX and Oracle.
openUTM supports this connection via the XA CAE interface (CAE specification).

A separate RMXA statement must be issued for each Resource Manager.

The start parameters for the Resource Manager generally determine the database to which
openUTM is linked via the Resource Manager.

XASWITCH=name
Name of the xa_switch_t structure of the Resource Manager, which is made
known to openUTM. The value entered for name is predefined in the
respective Resource Manager. (Further information can be found in section
“Defining database linking” on page 232.)

This is a mandatory operand.

USERID=username | C‘username‘
Specifies a user name for the database system. The user name can be up
to 30 characters in length. openUTM passes this name to the database
system if the placeholder *UTMUSER has been specified for the user name
in the Open string.

If a user name is to be passed to the database system in lowercase
characters, then you must use the format C'username'.

PASSWORD = C'password'
Specifies a password for the database system. The password can be up to
30 characters in length. openUTM passes the password to the database
system if the placeholder *UTMPASS has been specified for the password
in the Open string.

DLLIMPORT= Specifies how the xa_switch_t structure of the Resource Manager is to be
addressed.

YES Only permitted in openUTM under Windows systems.
The xa_switch_t structure is addressed with dllimport.

RMXAË XASWITCH=name

[,USERID=username | C‘username‘]

[,PASSWORD=C'password']

[,DLLIMPORT={ YES | NO }]

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

B

B

X/WX/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

WW

W

KDCDEF control statements RMXA

Generating Applications 479

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

You must generate DLLIMPORT=YES to connect to Oracle on Windows
systems.

NO The xa_switch_t structure is addressed using extern.

Default: NO

W
W

X/WX/W

X/W

ROOT KDCDEF control statements

480 Generating Applications

ROOT - define a name for the ROOT table source

The ROOT control statement must be specified when creating a ROOT table source. It can
be omitted if only the KDCFILE is to be created, i.e.neither the operand GEN=ALL nor
GEN=ROOTSRC is specified in the OPTION statement. The ROOT statement can only be
issued once.

rootname mandatory operand. You have to specify:

BS2000 systems:
CSECT name of the KDCROOT table to be incorporated.

When using the ROOT dynamic loading mechanism, this module is loaded
during application startup from the library specified in the start parameter
TABLIB=libname. If this is not the case, the module must be linked statically.

Unix systems and Windows systems:
Name part of the file containing the ROOT table source as a C/C++
program. rootname is an alphanumeric name up to eight characters in
length. The fully qualified name is filebase/rootname.c (Unix systems) or
filebase\rootname.c (Windows systems).

ROOTË rootname

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements SATSEL

Generating Applications 481

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

SATSEL - define SAT logging (BS2000 systems)

The SATSEL control statement allows you to define which events from which UTM event
class are to be logged using SAT (preselection of the events to be logged). This involves
specifying the event class to which the events belong, and then restricting the logging
procedure within each event class by defining whether only successful results or only
unsuccessful results are to be logged.

The SATSEL statement can be issued several times. If an event class is specified in several
SATSEL statements, the values entered in the first statement determine the logging mode.

If SAT logging is to be activated when the application is started, this must be defined during
generation (MAX ...,SAT=ON).

If MAX ...,SAT=OFF is generated, you can use SATSEL to define the events to be logged
in the generation, even if SAT logging is deactivated. In this case, the SATSEL statements
are not effective, but SAT logging is predefined. When required, SAT logging can then be
activated during operation (KDCMSAT administration command).

The event logging mode can also be defined using the SATSEL operand in the USER (user-
specific) and TAC (TAC-specific) statements. If entries are made in various statements, the
following applies:

● Logging is switched on as soon as it is activated in a statement. The logging mode
(SUCC, FAIL, or BOTH) is unique.

● SAT logging can be activated in several statements (SATSEL, USER, and TAC state-
ments). If different logging modes are specified in the various statements, openUTM
creates a superset of logging modes by ORing the individual settings. However, there
is one exception: if an event class is set to OFF in the SATSEL statement, logging is
deactivated for this event class even if it is activated in the USER or TAC statement.
Further information on the possible combinations of SAT logging conditions and their
effect can be found in the openUTM manual “Using openUTM Applications under
BS2000 Systems”.

● Each event to be logged (apart from SIGN, CHANGE-PW) is assigned to a USER and
TAC. Logging of an event can thus be activated using the SATSEL statement (activate
logging for a particular event) or the SATSEL operand of the USER or TAC statement.

i You can find further information about the SAT logging and about possible combi-
nations of conditions of SAT-loggings and their result in the openUTM manual
“Using openUTM Applications under BS2000 Systems”.

SATSELË { BOTH | SUCC | FAIL | NONE | OFF }

, EVENT=(event1, event2, ...)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

SATSEL KDCDEF control statements

482 Generating Applications

BOTH Both successful and unsuccessful events of the class specified in EVENT
are logged.

SUCC Only successful events of the class specified in EVENT are logged. SAT
logging is also performed as defined in the SATSEL operand of the USER
and TAC statements.

FAIL Only unsuccessful events of the class specified in EVENT are logged. SAT
logging is also performed as defined in the SATSEL operand of the USER
and TAC statements.

NONE Event-specific SAT logging is not performed. SAT logging takes place only
if activated for a specific user and/or TAC.

OFF None of the events of the class specified in EVENT are logged, even if SAT
logging has been activated in the USER or TAC command. This allows you
to exclude events from logging which are not relevant to security (e.g.
access to TLS areas), and thus to restrict the quantity of log data.

EVENT=(event1, event2, ...)
Event classes to be logged. The following event classes can be selected:

SIGN Events that occur when the user signs on.

CHANGE-PW
Events that occur when the user password is changed.

START-PU
Events that occur when starting a program unit run, or when accepting a
dialog or asynchronous job.

END-PU Events that indicate the end of the program unit run.

GSSB Events that indicate access to a global secondary storage area (GSSB).

TLS Events that indicate access to a terminal-specific long-term storage area
(TLS).

ULS Events that indicate access to a user-specific long-term storage area (ULS).

ADM-CMD
Events that affect the execution of an administration command issued by
direct input or via a program interface.

BB
B

BB

B

B

BB

B

B

BB

B

BB

B

B

B

B

B

BB

B

B

B

B

B

BB

BB

BB

B

BB

BB

B

B

KDCDEF control statements SESCHA

Generating Applications 483

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

SESCHA - define session characteristics for distributed processing
based on LU6.1

The SESCHA control statement allows you to define session characteristics between the
local application and the partner application. The set of session characteristics defined here
is stored under a name, which can then be assigned to an LPAP partner using the
SESCHA= operand of the LPAP statement (see page 351).

When generating LU6.1 connections, you must bear in mind the information in section
“Distributed processing via the LU6.1 protocol” on page 74.

sescha_name Name under which the session characteristics are combined. This is
specified for the SESCHA= operand of the LPAP statement in order to
assign these session characteristics to a particular LPAP partner.

CONNECT= This defines whether the local application is to establish the connection to
the partner application during startup.

NO The connection to the partner application must be established using an
administration command.

Default: NO

YES The connection to the partner application is established when the local
application is started.
If unsuccessful, openUTM repeats its attempt to establish the connection at
intervals defined in MAX ...,CONRTIME=.

CONNECT=Y can be specified both in the local application and in the
partner application. This means that the connection is established automat-
ically as soon as both applications are available.

SESCHAË sescha_name

[,CONNECT={ YES | NO }]

[,CONTWIN={ YES | NO }]

[,DPN=destination_process_name]

[,IDLETIME=pacing_count_time]

[,PACCNT=pacing_count_number]

,PLU={ YES | NO }

further operand for Unix systems and Windows systems

[,MAP={ USER | SYSTEM }]

X/W

X/W

SESCHA KDCDEF control statements

484 Generating Applications

CONTWIN= (contention winner)
This defines whether the local application is the contention winner or the
contention loser. The contention winner application is responsible for
managing the session and controlling the reservation of sessions by jobs.
You must specify CONTWIN=Y in one of the two participating applications
and CONTWIN=N in the other.

YES The partner application is the contention winner.

NO The local application is the contention winner.

In both cases, jobs can be started by either application. If both applications
simultaneously attempt to initiate a job, the session is reserved by the job
issued by the contention winner.

The correct selection of this parameter is important for performance in
communication between two applications: CONTWIN=Y must be specified
in one of the applications, and CONTWIN=N in the other.

Default:
If PLU=N, the local application is the contention loser; otherwise, it acts as
the contention winner.

DPN=destination_process_name
Entity that processes asynchronous messages. This operand is significant
only for links to IBM systems.

Default: 8 blanks

IDLETIME=dle_time
Number of seconds for which the idle state of a session is monitored. If the
session is not reserved by a job within the period specified in IDLETIME=,
openUTM shuts down the connection.

IDLETIME = 0 means that the idle state of the connection is not monitored.

Default value: 0
Minimum value: 60
Maximum value: 32767

If you specify a value that is greater than zero and smaller than the minimum
value, KDCDEF replaces the value with the minimum value.

KDCDEF control statements SESCHA

Generating Applications 485

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

MAP= This controls ASCII/EBCDIC conversion when exchanging unformatted
messages with other applications.
openUTM does not generally execute any message handling for formatted
messages (KCMF contains a format identifier).

USER openUTM does not perform message handling, i.e. the data in the KDCS
message area is transferred to the partner application unchanged.

Default: USER

SYSTEM openUTM converts the data in the KDCS message area from ASCII to
EBCDIC before sending messages, or from EBCDIC to ASCII after
receiving messages. Messages must contain printable characters only.

PACCNT=pacing_count_number
Maximum number of message segments of a long message which can be
received by the local application without issuing a response. If this value is
too high, this may result in network congestion or loss of messages.

If PACCNT=0, pacing does not take place.

Default: 3
Minimum value: 0
Maximum value: 63

v CAUTION!
If only short messages are to be exchanged with the partner application
(less than 4000 byte) then pacing should be deactivated (PACCNT=0); this
saves on overhead in communication with the partner. If data flow problems
still occur, then either the default must be reset or the generation of the
transport system must be modified accordingly.

PLU= Application that opens the session, i.e. the primary logical unit (PLU).

YES The partner application is the primary logical unit.

NO The local application is the primary logical unit.

PLU=Y must be specified for one of the applications, and PLU=N for the
other.

X/WX/W
X/W

X/W

X/W

X/WX/W

X/W

X/W

X/WX/W

X/W

X/W

SFUNC KDCDEF control statements

486 Generating Applications

SFUNC - define function keys

The SFUNC control statement allows you to assign

– transaction codes,
– KDCS return codes transferred to the program units,
– KDC commands, and
– the stacking function

to the function keys of terminals.

It should be issued once for each function key to be used.

A function key can be selected in UPIC clients and transferred to the UTM application.
If openUTM receives a function key from a UPIC client, then only the parameter RET is
evaluated. If the parameter is not generated, openUTM returns the return code 19Z for the
MGET call.

i ● F and K keys reserved using SFUNC cannot be used by FHS-DE (see the "FHS
User Guide").

● Under Unix systems and Windows systems function keys are only relevant for
UPIC clients. Only the RET operand is evaluated.

functionkey Short name for the function key. The following values are possible:

BS2000 systems: K1 to K14 and F1 to F24
Unix systems and Windows systems: F1 to F20

With F keys, the value of the F key and an input message are displayed.

With K keys, a short message is output indicating the value of the K key.
K14 is required for ID card readers (see the openUTM manual
„Programming Applications with KDCS”).

SFUNCË functionkey

{ [,CMD={ KDCDISP | KDCFOR1 | KDCLAST | KDCOFF | KDCOFF-BUT |
KDCOUT | KDCSIGN1 }]

|

[,TAC=tac1] {[,RET=xxZ] | [,STACK=tac2]} }

1 only permitted under BS2000 systems

B

B

X/W

X/W

B

B

X/W

B

B

B

KDCDEF control statements SFUNC

Generating Applications 487

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

CMD= Name of the KDC command to be assigned to this function key. If the CMD
is specified, it is not possible to define any further operands.

TAC=tac1 Name of the transaction code to be assigned to the function key. This must
be defined as a service TAC using the TAC statement
(CALL=FIRST/BOTH). If the function key is pressed outside the service,
this has the same effect as entering the transaction code. If the function key
is pressed within the service and neither RET nor STACK is specified, the
first MGET call in the next program unit of this service issues return
code 19Z.

RET=xxZ Return code contained in the KCRCCC field of the communication area
following an MGET call if a particular function key is pressed during a
service.

If the function key at the terminal is pressed at the beginning of a service
and TAC=tac1 is not set, openUTM responds by outputting the messaged
K009 or by starting the BADTACS program unit.
At the first MGET call, the BADTACS program unit receives the return code
assigned to the function key in the field KCRCCC.

If the function key activated from the UPIC client at the beginning of a
conversation, that service is started that belongs to the TAC (TP_NAME) set
by the UPIC client. At the first MGET call, the program unit receives the
return code assigned to the function key in the field KCRCCC.

The RET and STACK operands are mutually exclusive.

Value range: 20 ≤ xx ≤ 39.
The assignment is freely selectable.

STACK=tac2 Name of the transaction code to be assigned to the function key. This must
be defined as a dialog service TAC using the TAC statement (TYPE=D and
CALL=FIRST/BOTH). If the function key is pressed within the service, the
current service is stacked and the service with the transaction code tac2 is
started. If the function key is pressed outside the service, transaction code
tac1 is started. If transaction code tac1 is not specified, pressing the function
key starts the service with the transaction code tac2.

The RET= and STACK= operands are mutually exclusive.

SFUNC KDCDEF control statements

488 Generating Applications

Alternative assignments under BS2000 systems

The following alternative assignments can be specified for K and F keys not available on
the keyboard:

The 9763 terminal has 24 function keys (F1 to F24). Keys F1 to F20 are activated by
pressing SHIFT and the appropriate Fx(x) key. Keys F21 to F24 are activated by pressing
CTRL and the appropriate Fxx key.

Key Alternative

K1
K2
K3
K4
K5
K6
K7
K8
K9
K10
K11
K12
K13
K14
F1
F2
F3
F4
F5

ESC V
ESC W
ESC M
ESC N
ESC O
ESC ?
ESC >
ESC =
ESC <
ESC ;
ESC :

ESC ^
ESC _

B

B

B

B

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

B

B

B

KDCDEF control statements SHARED-OBJECT

Generating Applications 489

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

SHARED-OBJECT - define shared objects/DLLs (Unix systems,
Windows systems)

The SHARED-OBJECT control statement allows you to define

● under Unix systems: the name and properties of a shared object if programs are to be
exchanged using the dynamic linker.

● under Windows systems: the name and properties of DLLs used for dynamic loading.

The program exchange functions are supported on all Unix systems except AIX systems.

shared_object_name
Name of the shared object/DLL up to 32 characters in length.

DIRECTORY= directory_name
Directory in which the shared object is stored. directory_name can be up to
54 characters in length.

Default: No entry, i.e. the current directory is used.

Unix systems:
If a directory is not specified for DIRECTORY=, the filebase directory is
searched for the shared object. If the shared object cannot be found there,
the environment variable LD_LIBRARY_PATH is used as the search path.

LOAD-MODE=
Load mode of the shared object/DLL

STARTUP The shared object/DLL is loaded when the application is started.

Default: STARTUP

ONCALL The shared object/DLL is loaded when the first call of a program unit or of
a conversation exit is issued.

Shared objects/DLLs generated with LOAD-MODE=ONCALL can only be
exchanged if the openUTM version support for shared objects/DLLs is
used.

SHARED-OBJECTË shared_object_name

[,DIRECTORY=directory_name]

[,LOAD-MODE={ STARTUP | ONCALL }]

[,VERSION=version]

X/W

X

X

W

X

X/W

X/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X

X

X

X

X/W

X/W

X/WX/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

SHARED-OBJECT KDCDEF control statements

490 Generating Applications

VERSION= Shared object/DLL version up to 24 characters in length.

VERSION= is evaluated only if openUTM version support is used. This is
described in the openUTM manual “Using openUTM Applications under
Unix Systems and Windows Systems”.

Default: No version specification

i Under Windows systems it is highly recommended that you use the
VERSION= operand since the search for the "lexically largest name" can
return unexpected results on Windows systems.

If VERSION= is not specified and if shared_object_name is a directory name,
the shared object/DLL is addressed using the highest version name (in
lexical terms). openUTM regards the version name merely as an identifier,
i.e. the lexical sequence does not necessary mean “older” or “newer”. The
UTM administrator is responsible for version management.

Shared object file name without version support:

Unix systems:
The fully qualified file name of the shared object is
directory_name/shared_object_name. If directory_name/shared_object_name is a
directory the file is loaded with the highest file name (in lexical terms) from
this directory.

If the generation statement is
SHARED-OBJECT aaa.so, DIRECTORY=.
the file ./aaa.so is loaded.

Shared object file name with version support:

Unix systems:
The fully qualified file name of the shared object is
directory_name/shared_object_name/version.

If the generation statement is
SHARED-OBJECT aaa, DIRECTORY=., VERSION=V1.S0
the file ./aaa/V1.S0 is loaded.

Windows systems:
The fully qualified file name of the shared object is
directory_name\shared_object_name\version.

For the generation specification,
SHARED-OBJECT aaa, DIRECTORY=., VERSION=V1
the file .\aaa\V1.dll is loaded.

The suffix .dll is added automatically.

X/WX/W

X/W

X/W

X/W

X/W

W

W

W

X/W

X/W

X/W

X/W

X/W

X/W

X

X

X

X

X

X

X

X

X/W

X

X

X

X

X

X

W

W

W

W

W

W

W

KDCDEF control statements SIGNON

Generating Applications 491

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

SIGNON - control the sign-on procedure

You can specify options and parameters for the sign-on procedure of your UTM application
with the SIGNON control statement. The signing on of users is controlled by the SIGNON
parameter.

The parameters UPIC, RESTRICTED and CONCURRENT-TERMINAL-SIGNON are only
relevant if a sign-on service is generated.

If you enter an invalid value for the SIGNON operand, then KDCDEF uses the corre-
sponding default value. This is currently done without outputting a corresponding message
(see the following descriptions of the operands).

CONCURRENT-TERMINAL-SIGNON=%_value
This is only relevant when your application is generated with a sign-on
service.
You specify the percentage of users generated for which a sign-on service
may be active at the same time in CONCURRENT-TERMINAL-SIGNON.
openUTM attempts to allocate the necessary resources according to this
specification.

The value %_value is based only on sign-on services that are started for
terminal users and TS applications.

Default: 25 (%)
Minimum value: 1 (%)
Maximum value: 100 (%)

If you enter a value < 1 or > 100 for %_value, KDCDEF sets the default value
of 25 % without outputting a message.

SIGNONË [CONCURRENT-TERMINAL-SIGNON=%_value]

[,GRACE={ NO | YES }]

[,MULTI-SIGNON={ YES | NO }]

[,OMIT-UPIC-SIGNOFF={ YES | NO }]

[,PW-HISTORY=number]

[,RESTRICTED={ YES | NO }]

[,SILENT-ALARM=number1]

[,UPIC={ YES | NO }]

SIGNON KDCDEF control statements

492 Generating Applications

GRACE= (Grace-Sign-On)
Specifies if a user may still change his or her password after the password
validity period has expired (see USER PROTECT-PW, page 551).

YES The user can still change his or her password after the password validity
period has expired.
The change must be made within the sign-on procedure, before the user is
completely signed on.
If a sign-on service is activated, the password can be changed there using
the KDCS call SIGN CP, regardless of the client type. A sign-on service is
always activated when a user signs on via a connection for whose transport
access point a sign-on service has been generated.

The table below shows how the individual client types behave when a
password has expired and how this behavior depends on whether a sign-on
service is activated.

Client type Behavior if the password has expired1)

UPIC Regardless of whether a sign-on service is activated, the
password can be changed using the
Set_Conversation_Security_New_Password function.

BS2000 terminal If the password is blanked out, openUTM prompts the user
to change the password, regardless of whether a sign-on
service is activated.

If the password is not blanked out, openUTM prompts the
user to change the password only if no sign-on service is
activated.

Terminal on
Unix systems/
Windows systems

openUTM prompts the user to change the password,
regardless of whether a sign-on service is activated.

TS application The user can no longer change the password without
activation of a sign-on service.

1) The password can always be changed via the administration interface. By default,
passwords with limited periods of validity are immediately set to "expired" when changes
are made via the administration interface. If you want to prevent this, then you must
explicitly request this in the administration interface.

BB
B
B

B
B
B

X/W
X/W
X/W

X/W
X/W

KDCDEF control statements SIGNON

Generating Applications 493

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Note the following particularities after regeneration or change generation:

– If, after regeneration (followed by a KDCUPD run), the password of a
user becomes invalid because the complexity requirement has been
increased, the user can change his or her password in the sign-on
service only (using SIGN CP).

– After regeneration (without a subsequent KDCUPD run), openUTM
forces users to change passwords generated with a validity period when
they first sign on.

NO The user cannot change his or her password after the validity period has
expired. The password may only be changed by an administrator after the
validity period has expired.

Default: NO

MULTI-SIGNON=
Specifies if a user may be signed on to the application multiple times under
the same user ID simultaneously.

i The MULTI-SIGNON operand does not have any effect on the receiving and
starting of asynchronous services via OSI TP.

YES The following cases can arise:

– The user ID is generated with USER..,RESTART=NO:
In this case the user may sign on to the application a multiple number
of times simultaneously. However, the user may only sign on once
through an application. The user can also sign on via UPIC, APPLI,
SOCKET and OSI TP connections.

– The user ID is generated with USER...,RESTART=YES:
In this case the user may sign on no more than once to the application,
although additional job-receiving services can be active in the appli-
cation for the user if these services are started via OSI TP connections
and the commit functional unit was selected.

NO Every user ID may only be signed on once, and no more than one dialog
service can be active at a time for each user.

Default: YES

SIGNON KDCDEF control statements

494 Generating Applications

OMIT-UPIC-SIGNOFF=
Specifies whether a user who has signed on over a UPIC connection
remains signed on or not after the conversation has finished.

YES If a user has signed on over a UPIC connection, they remain signed on after
the conversation has finished. This user is only signed off
– if another user is passed in the UPIC protocol before a new UPIC

conversation is started over the same UPIC connection,
– or when the connection is cleared.

If no other user is passed in the UPIC protocol, no sign-on service is started
before the UPIC conversation is started.

If the application is generated without users, the user ID is never changed
for an existing connection. In this case, therefore, a sign-on service is only
started where necessary before the first conversation is started after the
connection has been established.

Default in UTM cluster applications.

NO If a user has signed on over a UPIC connection, they are signed off after the
conversation has finished.

Default in standalone applications.

PW-HISTORY=number
Specifies if and how many password changes are to be maintained by
openUTM in the password history.

If you enter a value > 0 for number, then openUTM maintains a password
history. number is the number of passwords for a user ID that are recorded
by openUTM.

If a user changes his or her password and if a maximum period of validity is
generated for the password in the USER statement, then the new password
must be different from the current password and the last number of
passwords used by the user.
number=0 means that openUTM will not maintain a password history.

Default: 0
Minimum value: 0
Maximum value: 10

If you specify a value > 10 for PW-HISTORY, then KDCDEF sets it to the
maximum value of 10.

The password history only applies to the user; the administrator can change
the password irrespective of the history.

KDCDEF control statements SIGNON

Generating Applications 495

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

RESTRICTED=
Specifies if DB calls and access to global UTM storage is prohibited in the
first part of the sign-on service.

YES DB calls and access to global UTM storage is prohibited in the first part of
the sign-on service.

NO DB calls and access to global UTM storage is permitted in the first part of
the sign-on service.

Default: YES

SILENT-ALARM=number1
Specifies the number of unsuccessful sign on attempts that may occur one
after the other via an LTERM partner or a terminal user. A silent alarm
(message K094) is triggered when this number is exceeded. The message
is output after number1 unsuccessful sign-on attempts in a row by a user or
by a client.

Default: 10
Minimum value: 1
Maximum value: 100

UPIC= This is only relevant when a sign-on service is generated in your appli-
cation.
With UPIC= you specify in UPIC if the sign-on service is activated when a
UPIC client wants to start a conversation.

YES If a sign-on service is generated for the transport system end point
(BCAMAPPL) via which the UPIC client has connected to the application,
this is started before every UPIC conversation.

NO No sign-on service is started for UPIC clients.

Default: NO

TAC KDCDEF control statements

496 Generating Applications

TAC - define the properties of transaction codes and TAC queues

The TAC control statement allows you to define the name and properties of a transaction
code and (permanent) message queues of the UTM application.

Transaction codes are the “calling names” for program units of the application. You must
always assign a program name (PROGRAM= operand) to a transaction code.

TAC queues are application-wide message queues that exist independently of a program
unit. The operand PROGRAM= may not be specified. TAC queues are service-controlled,
which means that the program units of the UTM application are responsible for reading
messages from queues, openUTM - unlike transaction codes - does not carry out sched-
uling.

The dead letter queue is a TAC queue with the fixed name KDCDLETQ. It is always
available for backing up queued messages sent to transaction codes or TAC queues which
absolutely could not be processed, i.e. the maximum number of redelivery attempts may
have been exceeded. These messages can be read with DGET BF/BN and moved for
further processing to other message queues with DADM MV/MA. You cannot generate or
process messages for the dead letter queue KDCDLETQ.

The backing up of queued messages in the dead letter queue can be enabled and disabled
for each message destination individually using the DEAD-LETTER-Q parameter of the
TAC statement. Main jobs to message complexes with negative acknowledgement jobs are
never backed up in the dead letter queue.

The name KDCDLETQ is created for the dead letter queue during generation. The following
properties are set for the generation:

TYPE=Q, STATUS=ON, ADMIN=N, QMODE=STD, QLEV=32767

The properties of this TAC queue can also be defined in a separate TAC statement.

A message to a TAC queue cannot be processed when the transaction containing the
DGET FT/NT or PF/PN call is reset. A message to a asynchronous TAC cannot be
processed when the asynchronous service started with PEND ER/FR terminates abnor-
mally before reaching a synchronization point first.

KDCDEF control statements TAC

Generating Applications 497

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Generating transaction codes

● The parameters QMODE, Q-READ-ACL and Q-WRITE-ACL have no significance for
transaction codes.

● When defining transaction codes for program units containing calls of the X/Open
CPI-C or XATMI interface, you must use the API= operand to assign the identifier of the
program interface used to the TAC.

● The administration commands used to manage the application must also be defined as
TACs. They can be generated as dialog TACs or asynchronous TACs. At least one
administration TAC (preferably the KDCSHUT administration command) must be
generated and defined in the application. You must also generate at least one user with
administration authorization.

● The event services BADTACS, MSGTAC are defined by entering TAC statements with
the privileged TAC names KDCBADTC and KDCMSGTC in the generation.

● An event service SIGNON (= sign-on service) may be defined in several ways:

– using the privileged TAC name KDCSGNTC. You use this to define the event
service for the access point specified in MAX APPLINAME=appliname. This event
service is then also the default for all other access points that are generated using
a BCAMAPPL statement.

– using BCAMAPPL appliname2,SIGNON-TAC=signon-tac in conjunction with
TAC signon-tac. You use this to define an own event service for the access point
appliname2. In this way you can define several SIGNON services.

The event service generated with KDCSGNTC is default for all other access points that
are generated with a BCAMAPPL statement.

TAC KDCDEF control statements

498 Generating Applications

● For the event services BADTACS, MSGTAC and SIGNON, there are preset values for
some operands. These are listed in the table below. These preset values cannot be
modified for KDCBADTC, KDCMSGTC and KDCSGNTC. With TAC signon-tac that you
must set the values as described below.

These default settings mean that, for example, the TACs KDCSGNTC, KDCBADTC
and KDCMSGTC are not subject to access protection by key sets and lock codes and
cannot be used by the user or specified in a FPUT or DPUT call.

The TACs KDCBADTC, KDCSGNTC and KDCMSGTC are not subject to processing
control by the TAC classes. This also applies for KDCMSGTC although KDCMSGTC is
assigned to TAC class 16.

All TACs running within a sign-on service are not subject to processing control by TAC
classes.

● DEAD-LETTER-Q=NO is set for KDCMSGTC and cannot be changed.

Operand in
TAC statement

Preset value for

KDCBADTC KDCMSGTC KDCSGNTC or
TAC signon-tac

ACCESS-LIST= Blank Blank Blank

ADMIN= NO (freely selectable) NO

API= KDCS KDCS KDCS

CALL= FIRST FIRST BOTH

ENCRYPTION-LEVEL= NONE NONE NONE

LOCK= 0 0 0

SATADM=
(BS2000 systems)

NO NO NO

SATSEL=
(BS2000 systems)

NONE NONE NONE

STATUS= OFF OFF OFF

TACCLASS= no TAC class 16 no TAC class

TYPE= D A D

B
B

B
B

KDCDEF control statements TAC

Generating Applications 499

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

● Note the following when generating TACs:

– The programs assigned to the TACs KDCBADTC, KDCMSGTC and KDCSGNTC
and TAC signon-tac must not be assigned to a load module to be loaded dynamically
when the first call of one of its program units is issued (LOAD-MODULE statement
with LOAD-MODE=ONCALL).

– The event exit VORGANG and the program units of the service must be located in
the same load module if the load module is generated with LOAD-MODE=ONCALL.

● UTM SAT administration commands (preselection commands) can only be generated
as dialog TACs. The names of these TACs can be found in the openUTM manual “Using
openUTM Applications under BS2000 Systems”.

Generating TAC queues

Only the following operands of TAC statements are relevant for the generation of a TAC
queue (TYPE=Q):

tacname, ADMIN, DEAD-LETTER-Q, QLEV, QMODE, Q-READ-ACL, Q-WRITE-ACL,
STATUS and TYPE.

The ADMIN, QLEV, QMODE, Q-READ-ACL, and STATUS operands can be used as
desired for the dead letter queue KDCDLETQ.

All other operands are not evaluated for TAC queues.

 More information about TAC queues and the applications they make possible can
be found in the openUTM manual “Concepts und Functions”.

B

B

B

B

B

B

B

B

B

B

TAC KDCDEF control statements

500 Generating Applications

TACË tacname

[,{ ACCESS-LIST=keysetname | LOCK=lockcode }]

[,ADMIN={ YES | NO | READ }]

[,API={ KDCS | (XOPEN,{ XATMI | CPIC })]

[,CALL={ BOTH | FIRST | NEXT }]

[, DEAD-LETTER-Q={ NO | YES }

[,ENCRYPTION-LEVEL={ NONE | 1 | 2}]

[,EXIT=conversation_exit]

[,PGWT={ NO | YES }] only allowed when TAC-PRIORITIES are used

[,PROGRAM=objectname] only allowed with TYPE=D | A

[,QLEV=queue_level_number]

[,QMODE = { STD | WRAP-AROUND }]

[,Q-READ-ACL = keysetname]

[,Q-WRITE-ACL = keysetname]

[,STATUS={ ON | OFF | HALT | KEEP }]

[,TACCLASS=tacclass]

[,TACUNIT=tacunit]

[,TYPE={ D | A | Q }]

further operands for BS2000 systems

[,DBKEY=dbkey]

[,RUNPRIO=priority]

[,SATADM={ NO | YES }]

[,SATSEL={ BOTH | SUCC | FAIL | NONE }]

[,TCBENTRY=name_of_tcbentry_statement]

[,TIME={ time1 | (time1,time2) }]

further operand for Unix systems and Windows systems

[,RTIME=rtime]

B

B

B

B

B

B

B

X/W

X/W

KDCDEF control statements TAC

Generating Applications 501

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

tacname Name of the transaction code or the message queue (TAC name) up to
eight characters in length.

i The specified name must be unique and must not be assigned to any other
object in name class 1. See also section “Uniqueness of names and
addresses” on page 268.

ACCESS-LIST=keysetname

This allows you to define user access authorizations for this transaction
code. ACCESS-LIST= may not be specified in conjunction with the operand
LOCK=lockcode.

Under keysetname you must specify the name of a key set. The key set must
be defined with a KSET statement.

A user is then only able to access the transaction code if the key set of the
user (USER ...,KSET=), the key set of the LTERM partner via which the user
is signed on and the key set specified under keysetname all contain at least
once common key code.

If you specify neither ACCESS-LIST=keysetname nor LOCK=lockcode the
transaction code is not protected and any user is able to call the transaction
code.

Default: no key set

ADMIN= Authorization required by the user in order to call the transaction code, the
TAC-queue or a service containing this transaction code as a follow-up
TAC.

YES Meaning for one TAC (TYPE=A or D):
The TAC can only be called by the administrator or by a user with adminis-
tration authorization. All functions of the program interface for adminis-
tration can be used in the associated administration program.

Meaning for a TAC queue (TYPE=Q):
Only the administrator or a user with administration authorizations may read
messages in this queue/write messages to this queue.

NO Administration authorization is not required for this TAC or this TAC-queue

READ Administration authorization is not required for this TAC or this TAC-queue

Only those functions of the program interface for administration that have
read-only access to the application data can be used in the associated
administration program (only KDCADMI with the operation code
KC_GET_OBJECT).

TAC KDCDEF control statements

502 Generating Applications

API= Program interface used by the program unit belonging to the transaction
code

This is a mandatory operand if you use the X/Open CPI-C or XATMI
interface.

KDCS The program unit is a KDCS program.

Default: KDCS

(XOPEN,CPIC)
The program unit is a CPI-C program.

(XOPEN,XATMI)
The program unit is an XATMI program.

CALL= This specifies whether or not a service is started with the transaction code,
i.e. whether the transaction code is the first TAC of a service or a follow-up
TAC in a service.

BOTH The TAC can be used as the first TAC or a follow-up TAC in a service.

Default: BOTH

FIRST The TAC can only be used as the first TAC in a service.

NEXT The TAC can only be used as a follow-up TAC in a service. No queued jobs
can be generated in this TAC.

i CPI-C programs must be generated with CALL=FIRST or BOTH.
XATMI programs must be generated with CALL=FIRST.

DBKEY=dbkey
This is only relevant if the program unit issues database calls.

dbkey is a name with a maximum length of 8 characters under which the
activities of this transaction code are registered with the database system.
The format of the key depends on the database system used. The DBKEY
is only used for UDS databases. As of UDS/SQL V1.2, the DBKEY serves
as a special indicator for activity in the UDS monitor ("program-name"). In
previous versions of openUTM, this name was also used in the context of
permission checking (hence the designation DBKEY). For more infor-
mation, see the chapter "BPRIVACY" in the UDS/SQL manual "Creation
and Restructuring".

Default: UTM

The default value DBKEY=UTM causes the value of the start parameter
DBKEY to be passed at the database interface (see openUTM manual
“Using openUTM Applications”, Start parameters).

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements TAC

Generating Applications 503

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

DEAD-LETTER-Q=
Specifies whether asynchronous messages of this message queue are to
be placed in the dead letter queue after incorrect processing and
unsuccessful redelivery.

The statement MAX ...,DEAD-LETTER-Q-ALARM can be used to enables
monitoring the number of messages in the dead letter queue.

YES Messages to this asynchronous TAC or this TAC queue which could not be
processed are backed up in the dead letter queue if they are not redelivered
and (with message complexes) no negative acknowledgement job has
been defined from.

NO Messages to this asynchronous TAC or this TAC queue which could not be
processed are not saved in the dead letter queue.
This value must be generated for all dialog TACs, for asynchronous TACs
with CALL=NEXT and for KDCMSGTC and KDCDLETQ.

Default: NO

i Main jobs to message complexes (MCOM) with negative acknowledgement
jobs are never saved into the dead letter queue since the negative acknowl-
edgement jobs are activated if an error occurs.

If the number of messages in the dead letter queue is limited with QLEV,
messages from asynchronous TACs or TAC queues can be lost if an error
occurs. If this limit is not applied, the openUTM page pool must be dimen-
sioned large enough. If there is a danger of a page pool bottleneck, the dead
letter queue can be blocked during operation with STATUS=OFF.

ENCRYPTION-LEVEL=
In ENCRYPTION-LEVEL you set the minimum encryption level that must
be used by a service started through this transaction code. The encryption
level specified here applies to all messages that are send and received in
the service.

NONE Encryption of the messages is not necessary.
You must set ENCRYPTION-LEVEL=NONE for transaction codes
generated with CALL=NEXT.

Default: NONE

1 | 2 A service can only be started with this transaction code if the input message
from the client is transmitted in encrypted form.
Dialog output messages of the service are transmitted to the client in
encrypted form.

TAC KDCDEF control statements

504 Generating Applications

The value (1 or 2) specifies the algorithm to be used for encryption:

1 Encryption of input/output messages using the DES algorithm.

2 Encryption of input/output messages using the AES algorithm.

If a client does not encrypt the first input message with at least the requisite
encryption level or does not support encryption, then no service is started.
The following exceptions apply:
– The calling client is generated as a trusted client)

(PTERM/TPOOL ...,ENCRYPTION-LEVEL=TRUSTED).
– The service is an asynchronous service and is started locally.
– The service is started by means of service chaining.
– The service is started without user data.

If the transaction code is started through service chaining, then the first
input message of the client does not have to be encrypted.

If the transaction code is called without user data or started through service
chaining, then the client must be able to encrypt because openUTM
transmits all dialog output messages in encrypted form and, for multi-step
services, expects all additional input messages from non-trusted clients to
be encrypted.

You may only specify ENCRYPTION-LEVEL=1 | 2 for transaction codes
used to start a service (CALL=FIRST or CALL=BOTH).

i Transaction codes with ENCRYPTION-LEVEL=1 | 2 can only be started by
clients that are generated as trusted clients in systems in which the
openUTM encryption functionality is not installed.

EXIT=conversation_exit Name of the event exit VORGANG to be assigned to this TAC.
EXIT= can only be specified in conjunction with CALL=FIRST or
CALL=BOTH. The event exit VORGANG must be defined in a separate
PROGRAM statement.

Default: No event exit VORGANG

LOCK=lockcode
Lock code assigned to the transaction code of a service in the form of a
numerical lock. lockcode is a number between 1 and the maximum value
permitted by the application (MAX ...,KEYVALUE=).
This may not be specified in conjunction with the operand ACCESS-LIST=.

For data access control, key sets can be defined for (UTM) user IDs (USER)
and for the LTERM/(OSI-)LPAP partners. If a service is secured by means
of a lock code, it can only be started if the appropriate key code is contained
both in the key set of the user ID, and in the key set of the LTERM/(OSI-
)LPAP partner.

KDCDEF control statements TAC

Generating Applications 505

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Services whose TACs are not secured with a lock code or an ACCESS-LIST
can be called by any user ID and any LTERM/(OSI-)LPAP partner without
restriction. Further information on the lock/key code and access list
concepts can be found in the openUTM manual “Concepts und Functions”.

v CAUTION!
If the user and the LTERM/(OSI-)LPAP partner do not also have the key
code for a continuation program called by this TAC, openUTM aborts the
service with an error.

Default: 0 (the TAC is not secured with a lock code)
Maximum value: Value of MAX ...,KEYVALUE=number

PGWT You may only specify PGWT if the jobs to TAC classes are processed
according to their priority in your application, i.e. the KDCDEF generation
contains the TAC-PRIORITIES statement. You specify whether or not
blocking calls (e.g. PGWT) are allowed to be executed in a program unit run
that was started for this transaction code with PGWT.

YES Blocking calls are permitted.
If you specify PGWT=YES, then you must assign a TAC class to this trans-
action code, i.e. you must set TACCLASS= .

Note the following cases:

– CPI-C program units
If a CPI-C program unit is to conduct dialog conversations in which send
authorization is transferred to the conversation partner using a
Set_Send_Type call with send_type=CM_SEND_AND_PREP_TO_RECEIVE or by
issuing a Receive call in Send status, then the transaction code of this
CPI-C program unit must be assigned to a TAC class generated with
PGWT=YES.

– XATMI program units
If an XATMI application contains both requests and conversational
services, at least two tasks must be started and the transaction code for
the service must be generated with PGWT=YES.

NO Blocking calls are not permitted.

Default: NO

PROGRAM=objectname
Name of the program unit to which this TAC is to be assigned.

A program name must be generated for asynchronous and dialog TACs; the
PROGRAM parameter is not permitted for TAC queues.

Default: Blanks, no program name

TAC KDCDEF control statements

506 Generating Applications

If the program is not loaded in application operation, or the access authori-
zations do not permit the call, openUTM calls the BADTACS dialog service.
If BADTACS is not generated in the application, UTM outputs the message
K009 instead.

QLEV=queue_level_number
(queue level)
For asynchronous transaction codes (TYPE=A), this operand specifies the
maximum number of asynchronous messages that can be accommodated
in the message queue of the transaction code. QLEV can be used to
prevent the page pool from becoming overloaded with jobs for this TAC or
this TAC queue. openUTM does not take the asynchronous jobs into
consideration until the end of the transaction. It is possible to exceed the
number of messages for a messages queue as specified in QLEV if several
messages are created for the same queue in a transaction.

If an additional message is to be created once QLEV has been reached, the
behavior of openUTM will depend on the setting made in QMODE= (see
below).

Default: 32767
Minimum value: 0
Maximum value: 32767 (i.e. unlimited)
If you exceed the maximum value, KDCDEF automatically resets your entry
to the default value without outputting a UTM message.

QMODE = (Queue Mode)
This determines the behavior of openUTM in the event that the maximum
permitted number of messages saved in a queue has already been reached
and thus the Queue Level has been reached.

STD If, at the time of an FPUT or DPUT call, the number of messages saved in
this queue is greater than or equal to the maximum number generated in
QLEV=, the FPUT or DPUT call is rejected with 40Z or with an appropriate
message, if this TAC was entered at a terminal.

WRAP-AROUND
Only for TACs with TYPE=Q (TAC queues):
openUTM continues to accept messages for this queue, even when the
Queue Level has been reached. When writing the next messages to the
queue openUTM deletes the oldest existing message from the queue
providing that its start time has been reached and it is not currently being
read.

Default: STD

KDCDEF control statements TAC

Generating Applications 507

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Q-READ-ACL=read-keysetname
This parameter is only evaluated for TACs with TYPE=Q (TAC queues).
This parameter is used to specify the authorizations that a user requires to
be able to read and delete messages from this queue.

In this parameter you can specify the name if a KSET that is defined with a
KSET statement. In this case, a user can only then have read access to this
TAC queue if the key set (KSET) of the user and that of the logical terminal
via which the user has signed on, both contain at least one key code that
corresponds to the key code specified in the key set entered here.

If no key set is specified in Q-READ-ACL, all users are able to read and
delete messages from this queue.

Default: no key set

Q-WRITE-ACL=write-keysetname
This parameter is only evaluated for TACs with TYPE=Q (TAC queues). It
may not be specified for the dead letter queue.
This parameter is used to set the authorizations that a user requires to be
able to write messages to this queue.

Using this parameter you can specify the name of a KSET that has been
defined using a KSET statement. In this case, a user can only have write
access to this TAC queue if the key set (KSET) of the user and that of the
logical terminal via which the user is signed on, both contain at least one of
the key codes contained in the key set specified here.

If no key set is specified in Q-WRITE-ACL, all users are able to write
messages to this queue.

Default: no key set

RTIME=rtime Maximum real time (in seconds) available to a program unit started using
this TAC. If the program unit runs over the specified time, openUTM termi-
nates the service and outputs an error message (K017 with cause
70Z/XTnn, see the openUTM manual “Messages, Debugging and
Diagnostics in Unix Systems and Windows Systems”).

i Monitoring of the program unit run also includes the PEND/PGWT
call as well as any database calls. In the case of PGWT calls, the
PGWT wait time is also included, i.e. in RTIME, you must also take
account of the maximum wait time in PGWT (MAX PGWTTIME).

rtime = 0 means that the program unit real time is not monitored.

Default: 0
Minimum value: 0
Maximum value: 32767

X/WX/W

X/W

X/W

X/W

X/W

X/WX/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

TAC KDCDEF control statements

508 Generating Applications

RUNPRIO=priority
BS2000 run priority of the TAC. This run priority is assigned to the UTM
process in which the program unit runs (PROGRAM). You can thus use the
BS2000 scheduling mechanisms to control the sequence of UTM program
units. However, the RUNPRIO operand cannot influence the time at which
openUTM starts a program unit.

When starting a program unit, openUTM attempts to set the run priority of
the current process to the value defined in RUNPRIO for the current TAC.
If the generated run priority is incompatible with the JOIN entries of the
corresponding user ID, the run priority of the current process is not changed
and openUTM outputs a corresponding K message. If the maximum
permitted RUNPRIO values for the user ID and the job class are different,
the value most beneficial to the user is permitted. If JOIN entries have not
been defined, the run priority specified in RUNPRIO is set.

After the program unit is terminated, openUTM resets the run priority to its
original value, unless it was changed during the program unit run using the
CHANGE-TASK-PRIORITY command. In this case, the run priority set
externally is retained after the end of the program unit.

If RUNPRIO=0, a TAC-specific run priority is not generated for this TAC.

Default: 0
Minimum value: 30 (highest priority)
Maximum value: 255 (lowest priority)

SATADM= This defines whether UTM SAT administration authorization is required in
order to call the TAC.

YES The TAC can only be called by users/clients or partner applications for
which administration authorization for SAT logging (PERMIT=SATADM) has
been generated in the USER, LPAP or OSI-LPAP statement.

NO The user/client or partner application does not require UTM SAT adminis-
tration authorization to use the TAC.

SATSEL= SAT logging mode when running the program unit called using this TAC.

If SAT logging is activated (MAX ...,SAT=ON), TAC-specific events are
logged as defined in this operand during a program run under this TAC.

The SATSEL control statement is used to define the general SAT logging
mode for all TACs and users. This can be supplemented by the SATSEL
operand of the TAC statement, which allows you to define TAC-specific
logging. If the logging of an event class is prohibited in the SATSEL
statement, events of this class are not logged. (For information on the link
between EVENT-, TAC- and USER-specific log settings, see openUTM
manual “Using openUTM Applications under BS2000 Systems”).

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

BB

B

B

BB

B

BB

B

B

B

B

B

B

B

B

B

KDCDEF control statements TAC

Generating Applications 509

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

SATSEL can be generated even if SAT logging is deactivated
(MAX ...,SAT=OFF). In this case, the statements are not effective when the
application is started, but SAT logging is predefined. When required, SAT
logging can then be activated during operation with the UTM SAT adminis-
tration command KDCMSAT.

BOTH Both successful and unsuccessful events are logged.

SUCC Only successful events are logged.

FAIL Only unsuccessful events are logged.

NONE A TAC-specific SAT logging mode is not defined.

Default: NONE

STATUS= Status (locked or unlocked) of the TAC or the TAC queue when the appli-
cation is started.

ON Meaning for TACs: The TAC is unlocked, and is available once the appli-
cation is started, until such time as the administrator locks it.

Meaning for TAC queues: Read and write access is permitted for this
queue.

Default: ON

OFF The TAC is locked when the application is started. Jobs for this TAC are not
accepted until the TAC is unlocked by the administrator.

If the transaction code belongs to a KDCS program unit and is generated
with CALL=BOTH or CALL=NEXT, it is locked as a service TAC (first TAC
of a service) but not as a follow-up TAC.

Meaning for TAC queues: The queue is locked to write access. Read
access is permitted.

HALT The TAC is locked in full when the application is started, i.e. even as a
follow-up TAC in an asynchronous service or a dialog service.

If the TAC is called as a follow-up TAC, the service is terminated with PEND
ER (74Z). The TAC must be released by the system administrator.
Asynchronous jobs already buffered in the message queue of the TAC are
not started. They remain in the message queue until the TAC status is set
to ON or OFF by the UTM administrator.

Meaning for TAC queues: The queue is locked to both read and write
access.

B
B

B

B

B

BB

BB

BB

BB

B

TAC KDCDEF control statements

510 Generating Applications

KEEP May only be specified for TAC queues and for asynchronous transaction
codes that are also service TACs (CALL=BOTH or CALL=FIRST).
openUTM accepts jobs for the transaction code. The jobs are not
processed, however, rather just written in the message queue of the trans-
action code. They are processed as soon as the administrator changes the
status of the transaction code to ON or OFF.

You can use STATUS=KEEP to collect jobs that are to be executed later at
a time when the application load is lower (e.g. at night).
To avoid overloading the page pool with too many temporarily stored jobs,
you should limit the size of the job queue of the transaction code using the
QLEV parameter.

Meaning for TAC queues: The queue is locked to read access. Write access
is permitted.

i The status us always set to ON for the KDCSHUT and KDCTAC adminis-
tration commands, even if you specify a different value for STATUS. Your
application can always be administered in this manner.

TACCLASS= Assigns the transaction code a TAC class.

The TAC classes are required for controlling the processing of dialog and
asynchronous jobs. Jobs that are assigned different TAC classes are
started according to different criteria by openUTM. The TAC class, which is
assigned a transaction code, controls whether a job is processed immedi-
ately or temporarily stored in the message queue of the transaction code
first, and when it will be read out of the message queue and processed.
There are two different methods available to control job processing (see
section “Job control - priorities and process limitations” on page 206).

tacclass The following numerical values are permitted:

– 1 - 8 for dialog TACs
– 9 - 16 for asynchronous TACs

If asynchronous TAC classes are generated, then the value in
MAX ...,ASYNTASKS must be greater than 0.

If your application is generated without TAC-PRIORITIES statements and
encounters blocking calls in the program unit belonging to this TAC (e.g. the
KDCS call PGWT), then you must specify the dialog or asynchronous TAC
class for tacclass for which TACCLASS PGWT=YES is set.

If your application is generated with TAC-PRIORITIES statements, then
you can assign any dialog or asynchronous TAC class to this TAC. You just
need to set TAC ...,PGWT=YES in this case.

KDCDEF control statements TAC

Generating Applications 511

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Default for dialog TACs:
Dialog TACs are normally not assigned to a TAC class. The program unit
belonging to the dialog TAC is started as soon as a process retrieves the
corresponding message from the job bourse of the application.

Default for asynchronous TACs:
The default value for asynchronous TACs is 16.

i If the transaction code is generated with PGWT=YES, then you must assign
a TAC class to the transaction code.

TACUNIT= tacunit
Specifies the number of accounting units that are charged in the accounting
phase of the UTM accounting each time this transaction code is called. The
accounting units are added to the accounting unit counter of the user ID that
called the transaction code.
This operand is required only if openUTM is to collect accounting data (see
also the ACCOUNT statement on page 287 and "Accounting" in the
openUTM manual “Using openUTM Applications”. You must enter an
integer here.

Default value: 1
Minimum value: 0
Maximum value: 4095

TCBENTRY=name_of_tcbentry_statement
Only relevant for transaction codes from program units that are generated
with PROGRAM ...,COMP=COB1.

name_of_tcbentry_statement designates the name of a TCBENTRY statement
in which the TCB entries assigned to this TAC have been combined.

Default: No name

TIME= Check CPU resource consumption for a program unit.

time1 Maximum CPU time (in milliseconds) available to the program unit with this
TAC. If the program unit runs over the specified time, openUTM terminates
the service and outputs UTM message K017 for dialog programs or K055
for asynchronous programs. KCRCCC is set to 70Z, and KCRCDC to XT20
(see the openUTM manual “Messages, Debugging and Diagnostics in
BS2000 Systems”).
The value 0 means that the program unit started using this TAC is not
subject to a timeout. Values 1 to 999 are not permitted and are replaced with
1000.

Default: 30000 ms
Minimum value: 0 ms
Maximum value: 86400000 ms

B

B

B

B

B

B

BB

BB

B

B

B

B

B

B

B

B

B

B

B

TAC KDCDEF control statements

512 Generating Applications

v CAUTION!
With the administration TACs KDCSHUT, KDCSHUTA, KDCDIAG and
KDCDIAGA, the value of TIME=time1 should be set to a value greater than
the default value (at least twice as large; ≥ 60000 ms).

With KDCSHUT WARN, applications with large numbers of generated
terminals may require more CPU time than permitted by the default value.
(See also the openUTM manual “Administering Applications”.)
The same is true when you request a diagnostics dump with KDCDIAG
DUMP=YES in large applications.

time2 Maximum real time (in seconds) available to the program unit with this TAC.
If the program unit runs over the specified time, openUTM terminates the
service with UTM message K017 for dialog programs or K055 for
asynchronous programs. KCRCCC is set to 70Z, and KCRCDC to XTA0
(see the openUTM manual “Messages, Debugging and Diagnostics in
BS2000 Systems”. The value 0 means that the real time is not monitored
for the program unit started using this TAC.

i Monitoring of the program unit run also includes the PEND/PGWT
call as well as any database calls. In the case of PGWT calls, the
PGWT wait time is also included, i.e. in TIME=(...,time2), you must
also take account of the maximum wait time in PGWT (MAX
PGWTTIME).

Default: 0 s
Minimum value: 0 s
Maximum value: 32767 s

TYPE= This defines whether jobs with this transaction code are processed in
dialog, in an asynchronous mode or whether a TAC queue is created.

D The TAC is a dialog transaction code, i.e. a job with this TAC is processed
in the dialog with the job submitter.

Default: D

A The TAC is an asynchronous transaction code, i.e. a job with this TAC
creates an asynchronous job in the message queue of the transaction code.
Processing takes place independently of the job submitter.

Q This TAC statement is used to generate a TAC queue. In a queue of this
nature it is possible to use a FPUT or DPUT call to write a message to a
queue and to use a DGET call to read a messages in the queue.

B
B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements TACCLASS

Generating Applications 513

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

TACCLASS - define the number of processes for a TAC class

You specify the method used to control job processing in this UTM application with the
TACCLASS control statement. This means that you specify the criteria used by openUTM
to start the jobs for transaction codes that have been assigned a TAC class.

The specification of these criteria can also be done using the TACCLASS statement or the
TAC-PRIORITIES statement.

A TAC class consists of a subset of the generated transaction codes of the application.
These TACs are divided into TAC classes using the TACCLASS= operand of the TAC
statement.

By generating at least one TACCLASS statement, you specify that job processing in your
application is controlled by the limitation of the number of processes for the individual TAC
classes. You may not issue any TAC-PRIORITIES statements in this case, then.

The TACCLASS statement allows you to define how many processes of the UTM appli-
cation are allowed to work at the same time for the TACs of a TAC class. You can also
specify in the PGWT operand whether or not blocking calls (e.g. the KDCS call PGWT) are
allowed or not in program unit runs that are started by transaction codes of the TAC class.
You may only assign the PGWT=YES property, i.e. blocking calls are allowed, to one dialog
and one asynchronous TAC class.

The number of processes of a TAC class that you specify in the TACCLASS statement can
be changed by the administrator (see the openUTM manual “Administering Applications”).

You can thus control the load on the UTM application exerted by the program units of
individual TACs. For example, you can prevent long-running program units from blocking
the application. If asynchronous services are used for distributed processing, then you can
avoid situations where all the application processes available for asynchronous processing
are allocated by this service.

Default values

All TAC classes are created implicitly in the KDCDEF generation if you generate a trans-
action code with the TAC ...,TACCLASS= statement, or if you generate a TAC class with
TACCLASS.

If you do not issue any TAC-PRIORITIES statements, then you should write a TACCLASS
statement for every TAC class used. In this case, openUTM assigns the minimum value for
TASKS and TASKS-FREE to those TAC classes for which no TACCLASS statement is
issued. You must always issue TACCLASS statements for TAC classes with PGWT=YES!

TACCLASS KDCDEF control statements

514 Generating Applications

If you do not use TAC classes, i.e. the TACCLASS= operand is not specified in any TAC
statement and there are no TACCLASS or TAC-PRIORITIES statements, then the following
applies:

● Dialog TACs are processed without restriction.

● Asynchronous TACs are restricted by the number of processes specified in the
ASYNTASKS start parameter. This value can be modified by the administration.

 You will find a detailed description of the TAC classes and priority control in section
“Job control - priorities and process limitations” on page 206.

tacclass Number of the TAC class for which the number of processes is to be
specified. You may specify the following TAC classes:

– the dialog TAC classes 1 - 8
– the asynchronous TAC classes 9 - 16.

You assign a transaction code to this TAC class by specifying
TACCLASS=tacclass in the corresponding TAC statement.

You may only specify an asynchronous TAC class if you have generated a
non-zero value in MAX ...,ASYNTASKS.

Asynchronous transaction codes that are not assigned a TAC class are
automatically assigned TAC class 16.

i The TAC class numbers are not priorities, rather only a designation for the
TAC class. Only the number number1 of permitted processes can determine
the extent to which processing of a TAC class is restricted so that the TACs
of other classes can be processed quicker. This is possible only if number1
is less than the number of active processes of the application.

TACCLASSË tacclass

,{ TASKS=number1 | TASKS-FREE=number2 }

[,PGWT={ NO | YES }]

KDCDEF control statements TACCLASS

Generating Applications 515

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

TASKS=number1
Maximum number of application processes that can be executed simultane-
ously for the TACs of this class. The values permitted here depend on the
value of the PGWT operand and the values defined for the TASKS, TASKS-
IN-PGWT, and ASYNTASKS operands of the MAX statement.
The value ranges permitted for TASKS=number1 are given in the table
below.

This is a mandatory operand if TASKS-FREE= is not specified.

If you enter TASKS=0 for a dialog TAC class, openUTM automatically resets
this value to 1.

i The total number of tasks entered in the TASKS= operand of the individual
TACCLASS statements can be greater than the maximum number of
processes permitted by the application (MAX ...,TASKS=).

TASKS-FREE=number2
TASKS-FREE specifies for

– dialog TAC classes:
Minimum number of processes of the UTM application to be kept free
for processing TACs of other classes.

– asynchronous TAC classes:
Minimum number of processes permitted for asynchronous jobs (MAX
...,ASYNTASKS=) to be kept free for processing TACs of other classes.

Compared to the TASKS parameter, TASKS-FREE offers the advantage of
dynamically adapting the number of processes permitted for a TAC class if
the total number of application processes is changed.

Class 1 - 8 Dialog TACs Class 9 - 16 Asynchronous TACs

Minimum
value

PGWT =NO PGWT=YES PGWT= NO PGWT=YES

1 1 0 0

Maximu
m value

TASKS *) TASKS-IN-
PGWT *)

ASYNTASKS*
)

The lesser of the two
values: ASYNTASKS, *)

TASKS-IN-PGWT *)

*) As specified in the MAX statement

TACCLASS KDCDEF control statements

516 Generating Applications

The values permitted for TASKS-FREE=number2 depends on the values
defined for the TASKS and ASYNTASKS operands of the MAX statement.
The value ranges permitted for TASKS-FREE= are given in the table below:

This is a mandatory operand if TASKS= is not specified.

If you enter TASKS-FREE=0, openUTM automatically resets this value to 1.

PGWT= (program wait)
This specifies whether or not program units containing blocking calls (e.g.
KDCS call PGWT) can be executed in this TAC class.
(Further information on PGWT can be found in the openUTM manual
„Programming Applications with KDCS” and in the openUTM manual
“Concepts und Functions”).

YES Blocking calls are permitted in this TAC class.
PGWT=YES can only be generated if MAX ...,TASKS-IN-PGWT ≠0 is
defined. It can be specified for up to one dialog TAC class and one
asynchronous TAC class. Program units containing PGWT calls must be
assigned to this TAC class.

– CPI-C program units
If a CPI-C program unit is to conduct dialog conversations in which send
authorization is transferred to the conversation partner using a
Set_Send_Type call with
send_type=CM_SEND_AND_PREP_TO_RECEIVE or by issuing a
Receive call in Send status, the transaction code of this CPI-C program
unit must be assigned to a TAC class generated with PGWT=YES, e.g.:

MAX TASKS=2
MAX TASKS-IN-PGWT=1
TACCLASS 1,TASKS=1,PGWT=YES
TAC CPIC1,PROGRAM=xyz,API=(XOPEN,CPIC),TACCLASS=1

– XATMI program units
If an XATMI application contains both requests and conversational
services, at least two tasks must be started and a TAC class that permits
PGWT calls must be generated. A service is always linked to the task.
This is not necessary for applications that only contain
request/response services.

Class 1 - 8 Dialog TACs Class 9 - 16 Async. TACs

Min. value 1 1

Max. value TASKS-1 *) ASYNTASKS *)

*) As specified in the MAX statement

KDCDEF control statements TACCLASS

Generating Applications 517

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

NO Program units that contain blocking calls are not permitted in this TAC class.

Default: NO

i Blocking calls for asynchronous TACs are not processed until all jobs in the
messages queues of dialog TAC classes have been executed.

Example

The table below shows how the value defined for TASKS-FREE affects that defined for the
TAC class under certain marginal conditions.

● The CURRENT TASKS column contains the maximum number of processes currently
available to the UTM application. CURRENT ASYNTASKS contains the maximum
number of processes available for performing asynchronous services. The global
maximum values for CURRENT TASKS and CURRENT ASYNTASKS are defined in
the TASKS and ASYNTASKS operands of the MAX statement. During runtime, the
current values can be modified dynamically within this upper limit using the TASKS and
MAXASYN operands of the KDCAPPL command.

● The DIALOG column contains the maximum number of processes available for a
particular DIALOG-TAC class if TASKS-FREE=nn is specified for this TAC class.

● The ASYNCH column contains the maximum number of processes available for a
particular asynchronous TAC class if TASKS-FREE=number2 is specified for this TAC
class.

CURRENT
 TASKS

 CURRENT
ASYNTASKS TASKS-FREE DIALOG ASYNCH

10
 6
 3
 2
 1
10
 6

9
6
3
2
1
5
5

2
2
2
2
2
3
3

8
4
1
1
1
7
3

7
4
1
0
0
2
2

TAC-PRIORITIES KDCDEF control statements

518 Generating Applications

TAC-PRIORITIES - specify priorities of the TAC classes

With the TAC-PRIORITIES control statement you specify the method to be used to control
job processing in this UTM application. This means that you specify the criteria used to start
jobs for transaction codes that are assigned a TAC class.

You can also specify these criteria using the TAC-PRIORITIES statement or the
TACCLASS statement.

A TAC class consists of a subset of the generated transaction codes of the application. The
dividing of transaction codes into TAC classes is done in the TAC statement with the
TACCLASS= operand.
If the TACCLASS operand is not specified, then dialog TACs are not assigned a TAC class
and asynchronous TACs are not assigned asynchronous TAC class 16.

You can specify the following in particular with TAC-PRIORITIES:

● That the distribution of processes amongst the TAC classes is to be done according to
priorities. You must not issue any TACCLASS statements in this case.

● The algorithm to be used to distribute the available processes of the application
amongst the dialog and asynchronous TAC classes.
Operands: DIAL-PRIO and ASYN-PRIO

● The maximum number of processes of the application that are allowed to process jobs
to dialog TAC classes.
Operand: FREE-DIAL-TASKS

Specifying priorities for the TAC classes

In priority control you can select between absolute, relative or equal priorities for dialog jobs
and for asynchronous jobs. The control of job processing of dialog and asynchronous jobs
is done separately from each other.

Jobs for dialog TACs that are not assigned any TAC class are processed regardless of the
priorities set for dialog jobs. These jobs are always started immediately after they are
received from the transport system.

The number of the TAC class plays a role for absolute and relative priorities. Jobs to TAC
classes with a low number have a higher priority that jobs to TAC classes with a higher
number. This means that for dialog TAC classes, TAC class 1 has the highest priority and
TAC class 8 the lowest priority. For asynchronous TAC classes, TAC class 9 has the highest
priority and TAC class 16 the lowest priority.

When absolute priorities are used, processes of the application that are free and available
for processing the TAC classes are always assigned the TAC class with the highest priority,
i.e. 1 or 9, as long as there are jobs waiting for this TAC class.

KDCDEF control statements TAC-PRIORITIES

Generating Applications 519

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Only after there are no more jobs waiting in the TAC class with the highest priority are jobs
waiting for the TAC class with the next lowest priority processed.

If you want to prevent jobs waiting for a TAC class with a lower priority from not being
processed for a long time, then you should use relative priorities.

When relative priorities are used, jobs from TAC classes with higher priority are processed
more often than jobs from TAC classes with lower priority.

When matching priorities are used, then the same number of jobs from each TAC class are
processed as long as there are waiting jobs available.

Limiting the number of processes that process jobs to TAC classes

You can limit the number of processes that process jobs of a TAC class when using priority
control for the TAC classes to keep some processes free for administrative tasks or internal
jobs.

You limit the number of processes for the dialog TAC classes relative to the total number of
processes using the FREE-DIAL-TASKS operand.
With MAX ASYNTASKS=(atask_number,...) you limit the number of processes for
asynchronous TAC classes.

This limit is the same, however, for all asynchronous and for all dialog TAC classes.

Transaction codes that start program unit runs with blocking calls

When the TAC-PRIORITIES statement is used, transaction codes with blocking calls (e.g.
the KDCS call PGWT) can be assigned any TAC class as long as the TASKS-IN-PGWT
operand of the MAX statement is generated with a value > 0. You must generate
TAC PGWT=YES for these transaction codes.

i If no TACCLASS statement or TAC-PRIORITIES statement is issued in the gener-
ation although the TACCLASS parameter was specified for at least one TAC
statement, then the default values of the TACCLASS statement are applied. TAC
priorities are not used in this case. See the TACCLASS description on page 513 for
more information.

 You will find a detailed description of the TAC classes and priority control in section
“Job control - priorities and process limitations” on page 206.

TAC-PRIORITIESË [DIAL-PRIO={ABS | REL | EQ }]

[,ASYN-PRIO = { ABS | REL | EQ }]

[,FREE-DIAL-TASKS = number]

TAC-PRIORITIES KDCDEF control statements

520 Generating Applications

DIAL-PRIO = Specifies according to which priority free processes will be distributed
amongst the dialog TAC classes with waiting jobs. Waiting dialog jobs can
only arise when more jobs are obtained from the job bourse at a specific
time than there are processes available for the dialog TAC classes. The jobs
are then written to the job queues of the transaction codes from which they
will then be read out and processed according to their priority by the
processes that become free.

ABS Absolute priority:
A free process is always assigned the TAC class with the highest priority
(TAC class 1) as long as there are jobs waiting for this TAC class. TAC
classes with lower priority are only serviced if there are no more jobs waiting
in all TAC classes with higher priority.

REL Relative priority:
Free processes are assigned TAC classes with higher priority more often
than TAC classes with lower priority as long as there are jobs waiting for the
TAC classes with higher priority. If jobs are available for all dialog TAC
classes, then a free process will be assigned TAC class 1 twice as often as
TAC class 2, and TAC class 2 will be assigned processes twice as often as
TAC class 3, etc.

EQ Equal priority:
As long as there are jobs available, all TAC classes are services equally
often. This equal distribution can be interrupted if a TAC class does not have
any jobs waiting for a while or when program unit runs with blocking calls
(e.g. the KDCS call PGWT) often arise.

Default: EQ

ASYN-PRIO= Specifies according to which priority processes will be distributed amongst
the asynchronous TAC classes with outstanding asynchronous jobs or inter-
rupted asynchronous jobs.

If the maximum number of simultaneously open asynchronous services is
reached (set in MAX ASYNTASKS=(...,service_number)), then no more
asynchronous jobs are started. An interrupted open asynchronous service
is selected according to its priority and resumed.

KDCDEF control statements TAC-PRIORITIES

Generating Applications 521

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ABS Absolute priority:
A free process is always assigned the TAC class with the highest priority,
i.e. TAC class 9, as long as there are asynchronous jobs or interrupted
asynchronous jobs waiting for this TAC class.
Free processes only process the jobs of a TAC class with a lower priority
when there are no more outstanding or interrupted asynchronous jobs in the
message queues of all TAC classes with higher priority.

REL Relative priority:
Free processes are assigned TAC classes with higher priority more often
than TAC classes with lower priority as long as there are outstanding or
interrupted jobs waiting for the TAC classes with higher priority. If jobs are
available for all TAC classes, then a free process will be assigned TAC class
9 twice as often as TAC class 10, and TAC class 10 will be assigned
processes twice as often as TAC class 11, etc.

EQ Equal priority:
As long as there are jobs available, all TAC classes are services equally
often. This equal distribution can be interrupted if a TAC class does not have
any jobs waiting for a while or when program unit runs with blocking calls
(e.g. the KDCS call PGWT) often arise.

Default: EQ

FREE-DIAL-TASKS=number
With FREE-DIAL-TASKS you limit the total number of processes that may
process jobs to dialog TAC classes relative to the number of all processes
of the application. In number you specify the minimum number of processes
of the application that are to be reserved for processing jobs that do not
belong to any dialog TAC class.

i The maximum number of processes that may simultaneously process
asynchronous jobs is not limited by FREE-DIAL-TASKS= . The MAX
operand ASYNTASKS=atask_number is provided for this purpose.

Minimum value: 0 (no limit)
Maximum value: TASKS - 1 (TASKS from the MAX statement)
Default value: 1

Example
TASKS=7 and ASYNTASKS=2 was set in the MAX statement. FREE-DIAL-
TASKS=3 is generated in the TAC-PRIORITIES statement. The application
is operated with six processes. A maximum of three processes may process
jobs in TAC classes 1 through 8 then. A maximum of two processes can
process jobs in TAC classes 9 through 16. One process is reserved for
dialog jobs that are not assigned a TAC class.

TCBENTRY KDCDEF control statements

522 Generating Applications

TCBENTRY - define a group of TCB entries (BS2000 systems)

The TBCENTRY control statement is permitted only for COB1 program units. COBOL
program units that are not ILCS-compatible must be generated with
PROGRAM ...,COMP=COB1 in openUTM. TCB entries offer benefits when used in
conjunction with COBOL-DML, and in the case of a GOTO in a PERFORM routine. Further
information can be found in the openUTM manual „Programming Applications with KDCS”.

TCB entries are used to create nested reentrant COBOL programs. They are required in
the following cases:

● In conjunction with COBOL-DML:
if the USE-DATABASE-EXEPTION clause is used in a DECLARATIVES subsection
and the program run is terminated within these declaratives using PEND. In this case,
you must specify the TCB entry I$ITCUPS; otherwise, the DECLARATIVES counter will
not be reset, resulting in a COBOL error action. I$ITCUPS therefore resets the counter
if a PEND occurs within the declaratives.

● In the case of a GOTO in a PERFORM routine:
If a program unit is terminated in a PERFORM routine, the COBOL runtime system
notes the return address. If you branch to the PERFORM routine using GOTO in the
next program unit, the program unit behaves as if the PERFORM routine were still open
and branches to the return address. Markers are reset by specifying a TCB entry (with
any name).

TCB entries must also be made known to the COB1 compiler using the COBRUN
parameter.

The TCBENTRY statement can be issued several times.

tcbentry_groupname
Freely selectable name up to eight characters in length, which is used to
address the group of TCB entries defined in this TCBENTRY statement,
and to link the group of TCB entries to a TAC statement.

ENTRY= TCB entry name.

TCBENTRYË tcbentry_groupname

,ENTRY=(entry1,..., entry18)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

KDCDEF control statements TLS

Generating Applications 523

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

TLS - define a name for a TLS block

Each LTERM partner can be assigned a terminal-specific long-term storage area (TLS),
which can contain several blocks. The TLS control statement allows you to define a name
for a TLS block. The TLS block is then identified using the name of the LTERM partner
(ltermname) and the block name defined here. openUTM provides each LTERM partner with
a TLS block with this name. By issuing several TLS statements with different block names,
you can define several blocks for each LTERM partner.

In the case of distributed processing, the TLS blocks defined in a TLS statement are also
assigned to LPAP and OSI-LPAP partners.

You can issue up to 100 TLS statements.

name Name of a TLS block up to eight characters in length

TLSË name

TPOOL KDCDEF control statements

524 Generating Applications

TPOOL - define an LTERM pool

The TPOOL control statement allows you to define the name and properties of an
LTERM pool. LTERM pools allow you to connect numerous clients with the same technical
properties (partner and processor type) to a UTM application via LTERM partners. Printers
are not supported in this case. The TPOOL statement merely defines the type (PTYPE=)
and processor name (PRONAM=) for the client. The LTERM partner assigned to the client
is specified dynamically in the UTM system code during connection setup on the basis of
the LTERM partner name and client name defined in the TPOOL statement. This
assignment applies only for the duration of a session, i.e. it is not a static assignment as in
the case of the statement pair LTERM / PTERM. The clients contained in an LTERM pool
need not be configured explicitly in the application (by defining a PTERM). The number of
clients that can be simultaneously signed on is equal to the number of LTERM partners
generated in the LTERM pool.

For clients that connect via an LTERM pool (i.e. that are not explicitly generated), the estab-
lishment of the connection can only be initiated "from outside", i.e. from the client itself. It is
therefore not possible to establish a connection via UTM administration commands.

Also it is not possible to establish a connection via BCAM administration commands or
using predefined BCAM connections under BS2000 systems.

The TPOOL statement allows you to define LTERM pools with different levels of availability
for connection setup:

● With PRONAM=processorname and PTYPE=partnertyp, the LTERM pool is generated
such that only clients of the same type located on the specified system can establish
connections with the UTM application via this LTERM pool.

● With PRONAM=*ANY, all clients of a particular type can sign on to the UTM application
irrespective of the system on which they are located.

● Under BS2000 systems with PTYPE=*ANY, you can define an LTERM pool without
specifying the client type. This LTERM pool can then be used by clients of all types
located on the specified system to establish connections with the UTM application.

● With PRONAM=*ANY and PTYPE=*ANY, all clients on all systems can sign on to the
UTM application under BS2000/PSD (open LTERM pool).

B

B

B

B

B

B

B

KDCDEF control statements TPOOL

Generating Applications 525

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

It is possible to define several LTERM pools, i.e. issue several TPOOL statements in each
KDCDEF run. However, please note the following:

● BS2000 systems:

The combination PRONAM / PTYPE / BCAMAPPL must be unique for LTERM pools for
which the NEABT user protocol is defined (PROTOCOL=STATION). The combination
PRONAM/BCAMAPPL must also be unique for LTERM pools with PROTOCOL=NO.

The client must support the user services protocol specified in the TPOOL statement.
PROTOCOL=NO must be generated for clients with PTYPE=APPLI, PTYPE=SOCKET
or PTYPE=UPIC-R. PROTOCOL=STATION must be specified for LTERM pools
generated with PTYPE=*ANY.

During connection setup, openUTM takes the type (PTYPE) of the client generated with
PTYPE=*ANY from the user services protocol (connection letter). openUTM then
checks whether or not this client type is supported. If not, the connection request is
rejected.

● Unix systems and Windows systems:

The combination PRONAM/PTYPE/BCAMAPPL must be unique for LTERM pools.

The LTERM partners of an LTERM pool are generated with LTERM ..., RESTART=NO.
During connection setup, therefore, all messages buffered in the message queue of the
LTERM partners of the LTERM pool are deleted. An LTERM-specific service restart is not
performed. In applications generated without user IDs, a service restart cannot be executed
after a connection is cleared and then re-established for clients that are connected to the
application via an LTERM pool.

You can specify access rights for an LTERM pool (KSET operand) that clients connected
through the LTERM pool may exercise. In applications with user IDs you can limit the
access rights specified with KSET for LTERM pools generated for connecting UPIC clients
or
TS applications using the USER-KSET operand. The access rights in KSET are then
applicable to clients that explicitly specify a user ID when signing on. The limited access
rights in USER-KSET take effect when the client does not specify a user ID when signing
on, i.e. when the “connection user ID“ is active.

B

B

B

B

B

B

B

B

B

B

B

B

X/W

X/W

TPOOL KDCDEF control statements

526 Generating Applications

Using the LOCALE operand, you can define a client-specific language environment for
each LTERM pool.

TPOOLË [,BCAMAPPL=local_appliname]

[,CONNECT-MODE={ SINGLE | MULTI }

[,ENCRYPTION-LEVEL={ NONE | 1 | 2 | 3 | 4 | TRUSTED }]

[,IDLETIME=time]

[,KSET=keysetname1]

[,LOCK=lockcode]

,LTERM=ltermprefix

[,MAP={ USER | SYSTEM | SYS11 | SYS21 | SYS31 | SYS41}]

,NUMBER=number1

,PRONAM={ processorname | C'processorname' | *ANY }
 only mandatory in BS2000 systems

,PTYPE={ partnertyp | *ANY2 }

[,QLEV=queue_level_number]

[,STATUS=({ ON | OFF }[, number2)]

[,TERMN=termn_id]

[,USER-KSET=keysetname2]

[,USP-HDR={ALL | MSG | NO}]

BS2000-specific operands

[ANNOAMSG={ Y | N }]

[,FORMAT= { + | * | # }formatname]

[,KERBEROS-DIALOG={ YES | NO }]

[,LOCALE=([lang_id][,[terr_id][,ccsname]])]

[,NETPRIO={ MEDIUM | LOW }

[,PROTOCOL={ N | STATION }]

1 The values SYS1, SYS2, SYS3 and SYS4 are only permitted under BS2000 systems .
2 *ANY is only permitted under BS2000 systems.

B
B

B

B

B

B

B

B

B

B

B

KDCDEF control statements TPOOL

Generating Applications 527

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ANNOAMSG=(announce asynchronous message) This applies only to LTERM pools
used by terminals to sign on to the UTM application. It defines whether or
not openUTM announces asynchronous messages before outputting them
in the system line on the terminal.

Y Asynchronous messages are announced in advance. The user must then
request the message using the KDCOUT command.

Default: Y

N Asynchronous messages are sent without prior announcement.

BCAMAPPL=local_appliname
Name of the local UTM application. This name is then used to establish a
connection between the client and the UTM application. local_appliname is
defined either with MAX ...,APPLINAME= or in the BCAMAPPL statement
(see page 295).

If you specify a value other than APPLI, SOCKET or UPIC-R for the
PTYPE= operand, you can only specify the name defined with
MAX ...,APPLINAME=appliname for local_appliname.

The BCAMAPPL name specified in the CLUSTER statement is not
permitted here.

Default: appliname, specified under MAX ...,APPLINAME=.

BS2000 systems:

The BCAMAPPL statement allows you to define whether or not NEA or ISO
transport protocols or native TCP/IP (socket interface) are to be used when
communicating with partners that sign on to this application.

To establish a connection with the UTM application, the client must
generally specify local_appliname as the partner name.

One exception are LTERM pools that are generated with
PTYPE=SOCKET. In this case, clients that connect via the LTERM pool
must know the port number on which the UTM application "listens". This
port number is specified in BCAMAPPL LISTENER-PORT= .

BB
B

B

B

BB

B

B

BB

B

B

B

B

B

B

B

B

B

B

TPOOL KDCDEF control statements

528 Generating Applications

CONNECT-MODE=
This defines whether a client can use the same name for multiple sign-ons
to the UTM application via this LTERM pool.

SINGLE Multiple sign-ons via the LTERM pool under the same name are not
permitted.

Default: SINGLE

MULTI This is permitted only for LTERM pools that are used by UPIC partners or
TS applications to connect.
A UPIC client program (PTYPE=UPIC-R or UPIC-L) or TS application
(PTYPE=APPLI or SOCKET) can connect several times to the UTM appli-
cation via the LTERM pool under the same name. A new name need not be
created for each connection.

A UPIC client or TS application can connect a maximum of number1 times
to the LTERM pool (see NUMBER=number1, page 535).

In the case of CONNECT-MODE=MULTI, the UTM application does not
identify the communication partner or the connection to the partner (as
usual) using the name of the partner that the partner specified when the
connection was established. The UTM application does not even know the
partner under its application name. Instead, the partner is identified using
the name of the pool LTERM partner (ltermname) through which it is
connected. In order for openUTM to be able to uniquely identify the partner,
the triplet consisting of the ltermname of the LTERM pool, the processorname
and the local_appliname must not be explicitly generated in any PTERM,
CON or OSI-CON statement. Additionally, the name that the partner
specifies when establishing the connection may not match any LTERM
name of the LTERM pool.

ENCRYPTION-LEVEL=
Only relevant for UPIC clients that support encryption and under BS2000
systems for some terminal emulations that support encryption also.

In ENCRYPTION-LEVEL you set the minimum encryption level for the
communication with the clients, that connect via an LTERM pool with the
application.

You specify whether or not the UTM application should request encryption
of the message on the connection via the LTERM pool to the client. You can
also define the client as a "trusted" client. This means that every client that
connects via this LTERM pool is considered to be a trusted client.(see also
section “Message encryption on connections to clients” on page 226 for
more information on encryption).

KDCDEF control statements TPOOL

Generating Applications 529

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

You can specify the following:

NONE Encryption of the messages exchanged between the client and the UTM
application is not requested by openUTM by default.
Passwords are transmitted in encrypted form provided both partners
support encryption with the longest available key, i.e. with AES if an RSA
key with a length of ≥ 512 bits is available; otherwise with DES. The AES
key is also encrypted with the longest available RSA key.
Services for which encryption was generated for their service TACs (see
ENCRYPTION-LEVEL in the TAC statement starting on page 496) can only
be started by this client if the client explicitly selects an encryption level that
corresponds to at least the required level when establishing the conver-
sation or connection.

Default: NONE

1 | 2 | 3 | 4 Messages exchanged between the client and the UTM application are
encrypted by openUTM by default. The value (1 to 4) specifies the
encryption level. Only clients that support at least this encryption level can
connect via this LTERM pool. If a client does not support the specified
encryption level, openUTM rejects connection setup to the client.

Values 1 to 4 have the following meaning:

1 Passwords and input/output messages are encrypted using the DES
algorithm. An RSA key with a key length of 200 bits is used to exchange
the DES key.

2 Passwords and input/output messages are encrypted using the AES
algorithm. An RSA key with a key length of 512 bits is used to exchange
the AES key.

3 Passwords and input/output messages are encrypted using the AES
algorithm. An RSA key with a key length of 1024 bits is used to
exchange the AES key.

4 Passwords and input/output messages are encrypted using the AES
algorithm. An RSA key with a key length of 2048 bits is used to
exchange the AES key.

ENCRYPTION-LEVEL=1...4 makes only sense for UPIC partner, if the
encryption functionality of openUTM is installed on your system. Otherwise
clients cannot connection via the LTERM pool.

VTSU encryption is used for VTSU partners.

TPOOL KDCDEF control statements

530 Generating Applications

The following applies for the individual client types with regard to the
encryption level:

– Encryption levels 1 to 4 are meaningful for remote UPIC clients
(PTYPE=UPIC-R).

– Only encryption level 1 (ENCRYPTION-LEVEL=1) is meaningful for
clients with PTYPE= T9763 or *ANY under BS2000 systems. Levels 2,
3 and 4 are changed to 1 by KDCDEF without issue of a message.

– Encryption level 1, 2, 3 or 4 is changed to TRUSTED without issue of a
message for local UPIC clients (PTYPE=UPIC-L) of an application
under Unix systems or Windows systems.

– If 1 to 4 is specified for a partner of another type, the value is changed
to NONE by openUTM without issue of a message.

i If the application is generated with OPTION GEN-RSA-KEYS=NO,
no RSA keys are created in the KDCDEF run. In order to use the
encryption functions, you must create the required keys using
administration facilities (KC_ENCRYPT or WinAdmin or
WebAdmin) or transfer them from an old KDCFILE using KDCUPD.

TRUSTED Messages between the client and the application are not encrypted.
A "trusted" client can also start services whose service TACs request
encryption (generated with TAC ENCRYPTION-LEVEL=1 or 2). This means
that every client that connects via this LTERM pool is considered to be a
trusted client.

TRUSTED should only be selected for an LTERM pool if all of the “physical”
clients belonging to the pool are not accessible for everyone and communi-
cation is conducted through a secure connection.

i Unix systems and Windows systems:
TRUSTED is the only value allowed for local UPIC clients (UPIC-L). Any
other specification is changed to TRUSTED by openUTM without
announcement.

FORMAT= Start format for users on terminals that sign on to the application via this
LTERM pool (see also the statement LTERM ...,FORMAT=, on page 366).
Once the connection is established, the format specified in formatname is
output on the terminal, provided a terminal-specific restart has not been
performed.

Default: No start format

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

BB

B

B

B

B

B

KDCDEF control statements TPOOL

Generating Applications 531

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

IDLETIME=time
The maximum time in seconds that openUTM may wait for input from the
client outside of a transaction, i.e. after the end of a transaction or after
signing on. If this time is exceeded, then openUTM clears down the
connection to the client. If the client is a terminal, then message K021 is
output before the connection is cleared.

This function serves to improve data security:
If a user forgets to sign off from the terminal when taking a break or when
finishing his or her work on the terminal, then the connection to the terminal
or client is automatically cleared down after the wait time has run out. This
reduces the chance of someone gaining unauthorized access to the
system.

Default: 0 (= no wait time limit)
Maximum value: 32767
Minimum value: 60

If you specify a value that is greater than zero and smaller than the minimum
value, KDCDEF replaces the value with the minimum value.

KERBEROS-DIALOG =

Y A Kerberos dialog is performed when a connection is established for
terminals that support Kerberos and that connect to the application directly
via this terminal pool (not via OMNIS).

openUTM stores the Kerberos information in the length resulting from the
maximum lengths generated for MAX PRINCIPAL-LTH and MAX
CARDLTH. If the Kerberos information is longer, it is truncated to this length
and stored.
If a length greater than zero is generated neither for MAX PRINCIPAL-LTH
nor for MAX CARDLTH, a warning message is issued.

The KDCS call INFO (KCOM=CD) allows a program unit run to read this
information.
Exception: A user has subsequently signed on to this client with an ID card.
In this event, the Kerberos information is overwritten by the card ID infor-
mation.

N No Kerberos dialog is performed,
Default.

BB

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

TPOOL KDCDEF control statements

532 Generating Applications

KSET=keysetname1
Name of a key set assigned to this LTERM pool. The key set must be
defined with a KSET statement.

This defines the access permissions for the LTERM partners of this LTERM
pool with respect to using the services of the application and remote
services (LTACs) generated in this application.

An LTERM partner of this LTERM pool can only be used to start services of
the application that are protected with a lock code or an access list and only
address remote services that are protected with a lock code or an access
list if the following applies: The key set assigned to the LTERM partner and
the KSET of the UTM user ID under which sign-on using this LTERM partner
was performed must contain the key code or access code that matches the
lock code or access list.

With PTYPE=APPLI, SOCKET, UPIC-R, UPIC-L the following additionally
applies with respect to the key set of the user ID:

– If the client does not pass a real user ID to openUTM for the
session/conversation, then its access rights are the result of the set of
key codes that are contained in the key set generated with KSET and
the key set generated with USER-KSET.
The key set keysetname1 should therefore contain all key codes that are
also contained in the key set generated with USER-KSET.

– If the client passes a user ID, then its access rights are the result of the
set of key codes that are contained in the key set of the user ID and the
key set generated with KSET.

LOCALE=(lang_id,terr_id,ccsname)
Language environment of clients that sign on to the UTM application via the
LTERM pool.

lang_id Freely selectable language identifier for the clients of the LTERM pool, up
to two characters in length.
The language identifier may be queried by the program units of the appli-
cation, so that messages can be sent to the terminals in the client’s
language.

terr_id Freely selectable territorial identifier for the clients of the LTERM pool, up to
two characters in length.

The territorial identifier may be queried by the program units of the appli-
cation, so that any special territorial features of the client’s language can be
taken into consideration in messages.

B

B

B

BB

B

B

B

B

BB

B

B

B

B

KDCDEF control statements TPOOL

Generating Applications 533

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

ccsname (coded character set name)
Name of an extended character set (CCS name) up to eight characters in
length. The specified CCS name must belong to one of the EBCDIC
character sets defined under the BS2000 system (see also the XHCS User
Guide). The character set must be compatible with an ISO character set
supported by all terminals in the LTERM pool.
During generation, KDCDEF cannot check the validity of the CCS name
under the BS2000 system or the compatibility condition.

The character set with the specified name is used for:

– outputting dialog messages on 8-bit terminals if the application is
generated without user IDs, or if a user has not yet signed on to the
LTERM partner of the LTERM pool and another CCS name has not
been explicitly selected using an edit profile or a format.

– outputting asynchronous messages on 8-bit terminals if another CCS
name is not explicitly selected using an edit profile or a format.

Default: If TPOOL ...,LOCALE is not specified, then the locale of the appli-
cation defined in the MAX statement is used.

LOCK=lockcode
Access protection to the LTERM pool. Lock code assigned to the LTERM
partners of the LTERM pool. lockcode is a numeric value between 1 and the
maximum value permitted in the application (MAX ...,KEYVALUE=). You
can only sign on to the application on an LTERM partner of this LTERM pool
under a UTM user ID (USER) for which a key set was generated with a key
code that matches the lock code of the LTERM pool.

Default: 0 (the LTERM pool is not secured with a lock code)
Maximum value: Value of KEYVALUE defined in the MAX statement

LTERM=ltermprefix
Prefix for the names of LTERM partners of the LTERM pool. LTERM names
are eight characters in length, and consist of the prefix specified here
followed by a serial number between 1 and the value defined for
NUMBER=number1.

The maximum length of ltermprefix depends on the number of decimal
places in number1. The number of characters in ltermprefix plus the number
of decimal places in number1 must be less than 8.

When specifying ltermprefix and number1, please note that LTERM partner
names must be unique within the application. This applies for names
generated with TPOOL ...,LTERM= (in all TPOOL statements) and for
names defined in LTERM statements.

BB
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

TPOOL KDCDEF control statements

534 Generating Applications

Example
With number1=1000 and LTERM=LTRM, the LTERM partners defined for
the LTERM pool are assigned the names
LTRM0001,LTRM0002,...,LTRM1000.

These names must not be specified in any LTERM statement.

i The specified names must not be assigned to any other object in name
class 1. See also section “Uniqueness of names and addresses” on
page 268.

MAP= In MAP you specify whether or not openUTM is to convert the code of user
messages exchanged with the communication partner (EBCDIC <->ASCII).
User messages are passed in the message area on the KDCS interface in
the message handling calls (MPUT/MGET/FPUT/DPUT/FGET).

MAP= controls the conversion when exchanging unformatted messages
with other applications. openUTM does not generally execute any message
handling for formatted messages.

BS2000 systems:

MAP≠USER is only permitted for LTERM pools with PTYPE=SOCKET.

Unix systems and Windows systems:

MAP≠USER is permitted for all TS applications (PTYPE=APPLI or
SOCKET).

USER openUTM does not convert the data of the message area, i.e. the messages
are transferred to the partner application unchanged and the messages
received from the partner are transferred unchanged to the program unit.
Note that the user message contains the transaction code. It must be
encoded in the form that the receiving system expects, i.e. under BS2000
systems in EBCDIC and in ASCII under Unix systems and Windows
systems.

Default: USER

SYSTEM / SYS / SYS1 / SYS2 / SYS3 / SYS4 (BS2000 systems)
These may only be specified when the messages received by the TS appli-
cation are not encoded in EBCDIC, or when the TS application expects
messages encoded in ASCII from the UTM application.

If you specify one of the values above, then openUTM converts the data in
the message from EBCDIC to ASCII before the message is sent and from
ASCII to EBCDIC after receiving a message. openUTM assumes that the
messages only contain printable characters when converting back and
forth.

B

B

X/W

X/W

X/W

B

B

B

B

B

B

B

B

B

KDCDEF control statements TPOOL

Generating Applications 535

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

You specify the conversion table to be used by openUTM for the code
conversion with SYSTEM, SYS, SYS1, SYS2, SYS3, SYS4.
The conversion tables must be defined in the module KDCEA (see
openUTM manual „Programming Applications with KDCS”).

SYSTEM, SYS and SYS1 are synonyms. If you specify one of these values,
then openUTM uses the standard code table for the conversion that
converts EBCDIC to 7-bit ASCII. The standard code table is already defined
in KDCEA and can be used without any additional preparation.

If openUTM is to execute a different conversion from EBCDIC to ASCII,
then you must define the corresponding conversion table yourself in
KDCEA. You can define up to a maximum of three conversion tables in
KDCEA (Table 2 through Table 4).

If you specify SYS2, then openUTM converts the user messages using
table 2. openUTM uses table 3 when SYS3 is specified and table 4 when
SYS4 is specified.

SYSTEM (Unix systems and Windows systems)
openUTM converts the data in the KDCS message area from ASCII to
EBCDIC before sending messages, or from EBCDIC to ASCII after
receiving messages. Messages must contain printable characters only and
must be created in line mode (KCMF = blank). The parameter is only
allowed for PTYPE=APPLI or SOCKET.

NETPRIO= Transport priority to be used on the transport connections assigned to this
LTERM pool.

NETPRIO is not relevant when the connection from the partner application
is established via the socket interface (transport protocol SOCKET).

Default: MEDIUM

NUMBER=number1
Maximum number of LTERM partners in this LTERM pool. Up to number1
clients can then sign on to the application via the LTERM pool. The
maximum value permitted for number1 depends on the number of names
generated in the UTM application (see section “Number of names” on
page 265).

Minimum value: 1

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

X/WX/W

X/W

X/W

X/W

X/W

X/W

BB

B

B

B

B

TPOOL KDCDEF control statements

536 Generating Applications

PRONAM= System on which the clients must be located in order to sign on to the appli-
cation via this LTERM pool.

BS2000 systems:

PRONAM= is a mandatory operand.

– If PROTOCOL=STATION is set, the combination of
PRONAM/PTYPE/BCAMAPPL must be unique.

– If PROTOCOL=NO is set, the combination of PRONAM/BCAMAPPL
must be unique.

Unix systems and Windows systems:

– PRONAM= may only be specified for LTERM pools of type
PTYPE=APPLI, SOCKET or UPIC-R.

– No distinction is made between uppercase and lowercase notation;
KDCDEF always converts the name of the partner computer into
uppercase.

– The combination of PRONAM/PTYPE/BCAMAPPL must be unique.

Default value under Unix systems and Windows systems: 8 blanks

{ processorname | C’processorname’ }
Host name, up to eight characters in length. Only clients connected to this
system can sign on to the application via this LTERM pool.
If processorname contains special characters it must be entered in the form
of a character string using C’...’ .

If an LTERM pool is generated using PTYPE= SOCKET, then you must
specify the symbolic address (official host name) under which the IP
address of the host partner is entered in the name service of the local
system (e.g. the hosts file under Unix systems and Windows systems or the
RDF file under BS2000 systems) for processorname. You must not specify an
alias of the host.

Unix systems and Windows systems:
There are two options for specifying the processorname:

– You enter the real host name under which the IP address of the partner
computer is entered in the name service of the local system (e.g. the
hosts file). You must not specify an alias of the computer.

– You enter the UTM host name of the partner computer.
This is only possible when you have set the UTM_NET_HOSTNAME
environment variable and specified the UTM host name in the
conversion file (see the section “Using mapped host names (Unix
systems and Window systems)” on page 121).

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

KDCDEF control statements TPOOL

Generating Applications 537

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

*ANY Any client that fulfills the following conditions can sign on to the application
via the LTERM pool:

– The client must not be explicitly generated in a PTERM statement.
– The client type must match the entry in PTYPE.
– Another LTERM pool must not generated for the system on which the

client is located or for the same client type. This prevents open LTERM
pools from being used as an “overflow” for other LTERM pools.

PROTOCOL= This specifies whether or not the user services protocol (NEABT) is to be
used between the UTM application and the clients accessed via this LTERM
pool.

N openUTM does not use a user services protocol.
If PROTOCOL=N is generated, it is not possible to establish connections to
terminals in this LTERM pool via a multiplex connection (see the description
of the MUX statement on page 425).
PROTOCOL=N must be generated for UPIC client programs
(PTYPE=UPIC-R) and for TS applications (PTYPE=APPLI or SOCKET). In
this case, openUTM ignores the entry PROTOCOL=STATION without
outputting a UTM message.

If you specify PTYPE=*ANY, openUTM ignores the entry PROTOCOL=NO.

STATION The user services protocol (NEABT) is used between the UTM application
and the clients accessed via this LTERM pool.

With PTYPE=*ANY, you must specify PROTOCOL=STATION. In this case,
openUTM requires the user services protocol (NEABT) to determine the
partner type if this is not explicitly specified during generation
(PTYPE=*ANY).

Default:
N if PTYPE=APPLI, SOCKET or UPIC-R
STATION if PTYPE≠APPLI, SOCKET or UPIC-R.

PTYPE= Type of client that can sign on to the application via this LTERM pool.

If you have specified an application name in BCAMAPPL= that is generated
for communication via the socket interface (BCAMAPPL statement with
T-PROT=SOCKET), then you must set PTYPE=SOCKET.

This is a mandatory operand.

partnertyp Type of client.
A list of partner types supported can be found in the description of the
PTERM control statement on page 463 (BS2000 systems) and on page 465
(Unix systems and Windows systems). Please note that printers cannot be
connected via LTERM pools.

BB

B

B

BB

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

TPOOL KDCDEF control statements

538 Generating Applications

*ANY only permitted under BS2000 systems.
PTYPE=*ANY describes an open LTERM pool. All clients that support the
user services protocol (PROTOCOL=STATION) and that are located on the
processor defined with PRONAM= may connect to this LTERM pool.

In this case, openUTM takes the partner type from the user services
protocol during connection setup. Only then can it be determined whether
or not the partner type is supported.

The advantage of PTYPE=*ANY is that it allows you to include clients in the
configuration without having to know how they are generated in PDN. The
configuration is also easier to maintain if, following regeneration in PDN,
these clients can still sign on to the application without having to modify the
KDCDEF generation.

QLEV=queue_level_number
(queue level)
Maximum number of asynchronous messages that can be accommodated
in the message queue of the LTERM partner. If this threshold value is
exceeded, openUTM rejects all further FPUT calls for this LTERM partner
with UTM message 40Z.

Default: 32767
Minimum value: 0
Maximum value: 32767

If you exceed the maximum value, KDCDEF automatically resets your entry
to the default value without outputting a UTM message.

STATUS= NUMBER=number1 defines the number of LTERM partners in the LTERM
pool. STATUS=number2 defines the number of clients that are unlocked
(ON) and locked (OFF) for the LTERM pool when the application is started.
The status can be modified by administration during operation.

Default:
STATUS=(OFF , 0), i.e. all clients of the LTERM pools are unlocked.

ON number2 clients are unlocked.

OFF number2 clients are locked.

number2 Number of clients (and thus the number of LTERM partners of the LTERM
pool) which are locked or unlocked.

BB
B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements TPOOL

Generating Applications 539

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

TERMN=termn_id
Identifier up to two characters in length, which indicates the type of client.
openUTM provides this identifier to the application program in the
KCTERMN field of the KB header.

termn_id is not queried by openUTM, but can be used by the user for
analysis purposes.

Default values:

If this operand is not specified, openUTM sets the KCTERMN field to the
default ID of the partner type specified in the PTYPE operand. However, the
user can select other values if desired.

– BS2000 systems:
The default values are listed in the partner type table for the PTYPE=
operand of the PTERM statement on page 463.
If TERMN is not explicitly specified for clients generated with
PTYPE=*ANY, openUTM does not enter the terminal mnemonic in
KCTERMN until the connection is established. This is the default
terminal mnemonic of the type specified in the user services protocol of
the connection request.

– Unix systems and Windows systems:
The default values are listed in the table below.

PTYPE TERMN

TTY F1

APPLI A1

UPIC-L A2

UPIC-R A5

SOCKET A7

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

TPOOL KDCDEF control statements

540 Generating Applications

USER-KSET=keysetname2
This is only allowed if the application is generated with user IDs and
PTYPE=APPLI, SOCKET, UPIC-R or UPIC-L is specified. You may only set
USER-KSET= in conjunction with KSET= .

You must specify the name of a key set for ksetname2. The key set must be
defined with a KSET statement.

You specify the minimum access rights that a client connected via this
LTERM pool can exercise with USER-KSET= .

ksetname2 takes effect when the client is signed on under the connection
user ID. Its access rights are the result of the set of key codes that are
contained in the key set generated with KSET= and in the key set generated
with USER-KSET= (intersection). For this reason, all key codes contained
in USER-KSET=ksetname2 should also be contained in KSET=ksetname1.

Default: No key set
The access rights specified in KSET are always valid.

USP-HDR= Specifies the output messages for which openUTM is to create a UTM
socket protocol header for the connections generated with this statement.

A value that is not equal to NO may only be specified with LTERM pools for
which communication is configured via socket connections
(PTYPE=SOCKET).

A description of the USP header can be found in the openUTM manual
„Programming Applications with KDCS”.

ALL For all output messages (dialog, asynchronous, K messages) openUTM
creates a UTM socket protocol header and adds this to the front of the
message.

MSG openUTM only creates a UTM socket protocol header and adds this to the
front of the message for K messages only.

NO No UTM socket protocol headers are created.

Default: NO

KDCDEF control statements TRANSFER-SYNTAX

Generating Applications 541

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

TRANSFER-SYNTAX - define the transfer syntax

You only need the TRANSFER-SYNTAX control statement when you want to define your
own application context for communication based on the OSI TP protocol (see the
APPLICATION-CONTEXT statement on page 289).

It allows you to define a local name for a transfer syntax, and to assign an object identifier.
The transfer syntax determines the rules governing the encoding and decoding of the
abstract syntax defined in the object identifier.

The transfer syntax defined here must be supported by the OSS version used. OSS only
supports the BER transfer syntax at the present time.

transfer_syntax_name
Local name for a transfer syntax up to eight characters in length. This name
must be unique within the UTM application.

The transfer_syntax_name BER (Basic Encoding Rules) is reserved.

OBJECT-IDENTIFIER=object_identifier
Object identifier of the transfer syntax specified as follows:

object_identifier=(number1,number2, ... ,number10)

number is a positive integer in the range 0 to 67108863. For object_identifier,
you can specify two to ten integers enclosed in parentheses, each of which
is separated by a comma. The number of integers entered and their
positions are relevant.
Instead of the integer itself, you can also specify the symbolic name
assigned to this integer. The table on page 96 shows the permitted values
for number at the various positions.

object_identifier must be unique within the UTM application, i.e. another
transfer syntax must not be generated with the same object identifier.

openUTM generates the BER transfer syntax by default:

TRANSFER-SYNTAXËBER, -
OBJECT-IDENTIFIER=(2, 1, 1) -

Symbolic description of the object identifier:

(joint-iso-ccitt, ansl, basic-encoding)

TRANSFER-SYNTAXË transfer_syntax_name

,OBJECT-IDENTIFIER=object_identifier

ULS KDCDEF control statements

542 Generating Applications

ULS - define a name for a ULS block

Each UTM user ID can be assigned a user-specific long-term storage area (ULS), which
can contain several blocks each of which is addressed by means of a name.

The ULS control statement allows you to define a name for a ULS block. openUTM then
provides each UTM user ID with a ULS block with this name. By issuing several ULS state-
ments with different block names, you can define several blocks.

In the case of distributed processing based on LU6.1, the ULS blocks defined in a ULS
statement are also assigned to sessions (LSES).

This statement is required only if the application is generated with user IDs.

You can issue up to 100 ULS statements.

Note on UTM cluster applications

If you modify, remove or add ULS statements then you must regenerate both the initial
KDCFILE and the UTM cluster files by specifying GEN=(CLUSTER,KDCFILE) in the
OPTION statement.

blockname Name of a ULS block up to eight characters in length, which can be used to
address the block from a program unit.

ULSË blockname

KDCDEF control statements USER

Generating Applications 543

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

USER - define a user ID

The USER control statement allows you to define user IDs for the UTM application. These
are then used by users and client programs to sign on to the application. The following can
be defined for user IDs:

– the authentication procedure (password, magnetic strip card under BS2000 systems
and Unix)

– complexity level and period of validity of password
– access rights (lock/key code or access list concept)
– administration authorization
– the user status
– properties of the USER queue that belongs to the user ID
– the start format
– UTM SAT administration authorization (BS2000 systems)
– the user-specific language environment (BS2000 systems).
– Method and type of authentication (BS2000 systems: password, magnetic strip card,

Kerberos principal)

At least one user ID must be assigned administration authorization in order to manage the
application. Administration authorization can be granted to several user IDs, thereby
enabling several users to simultaneously call administration functions under the respective
user ID. Under BS2000 systems the same is true for the UTM SAT administration authori-
zation and calling SAT preselection functions.

An application can also be generated without user IDs. In this case, users are not required
to identify themselves, and openUTM uses the name of the respective client internally as
the user ID. All users can thus issue administration commands and under BS2000 systems
UTM SAT administration commands. If you work without user IDs, openUTM will not be able
to use some data protection functions.

B

B

B

B

B

USER KDCDEF control statements

544 Generating Applications

USERË username

[,KSET=keysetname]

[,PASS={ (password,DARK) |
(*RANDOM,DARK) |
password |
*RANDOM }]

[,KSET=keysetname]

[,PERMIT={ NONE |ADMIN | SATADM1 | (ADMIN,SATADM)1 }

[,PROTECT-PW=([length]
,[{ NONE | MIN | MED | MAX }]
,[maxtime]
,[mintime])]2

[,QLEV=queue_level_number]

[,QMODE = { STD | WRAP-AROUND }]

[,Q-READ-ACL=read-keysetname]

[,Q-WRITE-ACL=write-keysetname]

[,RESTART={ YES | NO }]

[,STATUS={ ON | OFF }]

BS2000-specific operands

[,CARD=(position,characterstring)]

[,CERTIFICATE={ *NONE |
 number [,CERTIFICATE-AUTHORITY = number1] }]

[,FORMAT= { + | * | # }formatname]

[,LOCALE=([lang_id][,[terr_id][,ccsname]])]

[,PRINCIPAL=characterstring]

[,SATSEL={ NONE | BOTH | SUCC | FAIL }]

1 only permitted under BS2000 systems
2 Commas at the end can be omitted, i.e. you can specify (8,NONE) instead of (8,NONE,,).

B

B

B

B
B

B

B

B

B

KDCDEF control statements USER

Generating Applications 545

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

username UTM user ID specified by the user when signing on to the application, or by
a client when opening a conversation with the application. username can be
up to eight characters in length.
(See also the operand USER=username in the LTERM statement starting on
page 363).

i The specified name must be unique and must not be assigned to any other
object in name class 2. See also section “Uniqueness of names and
addresses” on page 268.

If username is identical to the name of an LTERM that is assigned to a
PTERM with PTYPE=APPLI, SOCKET or UPIC-R, you must bear in mind
the notes detailed under LTERM.

CARD= (only allowed under BS2000 systems)
specifies whether a magnetic strip card is to be checked when signing on to
the application under this user ID, and defines the ID card information to be
verified. Enter a subfield of the information stored on the magnetic strip
card, which is to be checked by openUTM.

The following must apply for this parameter:
pos + length(string) -1 Î MAX CARDLTH
Otherwise the parameter is ignored.

You cannot specify CERTIFICATE= or PRINCIPAL= if you have specified
CARD=.

position Start position of the ID card information to be checked:
position = 1 corresponds to the first byte, etc.

characterstring
When signing on to the application, openUTM checks whether the ID card
information starting at the defined position begins with this character string.

characterstring can be specified in the following format:

– as a hexadecimal character string; hexadecimal characters always
occur in pairs, e.g. X’DDEF’

– as an alphanumeric character string, e.g. FRIDOLIN or C’@FRIEDEL’.

Special characters must be entered in the format C’...’ or X’...’.

Default: No ID card check performed when signing on to the application
Maximum length: 100 bytes (see also MAX ...,CARDLTH=)

BB

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

USER KDCDEF control statements

546 Generating Applications

CERTIFICATE= (only permitted in BS2000 systems)
specifies whether a user is to sign on to a UTM application using a chip card
which contains the generated certificate. When signing on openUTM
checks to see whether the certificate it has received corresponds to the
generated certificate. For more information see also openUTM manual
“Concepts und Functions”.

You cannot specify CARD=, PASS= or PRINCIPAL= if you have specified
CERTIFICATE=.

*NONE The user is not required to identify themselves using a certificate.

Default: *NONE

number The user is required to identify themselves using a certificate. Here number
is the number of the certificate that the user must provide.

Minimum: 0
Maximum: 2147483674

CERTIFICATE-AUTHORITY=number1

The number of the certificate authority that issued the certificate. If number1
is omitted or number1=0 specified, then the number of the certificate
authority is not checked when the user signs on.

Default: 0 (= no check)
Minimum: 0 or 1 (for a real number)
Maximum: 2147483674

FORMAT= Format identifier for a user-specific start format.
This start format is automatically output after each successful attempt to
sign on to the application, provided an open service does not exist for this
user. However, if an open service exists for the user (USER) following a
successful sign-on check, the start format is not displayed, rather the last
dialog screen appears (service restart). If you use your own sign-on
procedure, the name of the user-specific start format may be queried in the
second part of the sign-on procedure using the SIGN ST call.

The format identifier composes as follows:

+, * or # followed by an alphanumeric name (formatname) up to seven
characters in length.

#formats can only be used in the context of a sign-on procedure.

BB
B

B

B

B

B

B

B

BB

B

BB

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements USER

Generating Applications 547

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

The terms have the following meanings:

+ When the next MGET call of the program unit is issued, each entry in a
format field is preceded by 2 bytes for the attribute field in the KDCS
message area, i.e. the field properties can be modified by the program unit.
The format identifier at the KDCS interface is thus +formatname.

* When the next MGET call of the program unit is issued, the entry in a format
field is not preceded by any bytes for an attribute field in the KDCS message
area, i.e. the field properties cannot be modified by the program unit. The
format identifier at the KDCS interface is thus *formatname.

This identifies a format with extended user attributes. The field properties
and global format properties can be modified by the program unit. The
format identifier at the KDCS interface is thus #formatname.

Default: No start format

KSET=keysetname
Name of the key set assigned to the user ID. The key set is defined with the
KSET statement. A maximum of one key set can be assigned per USER.

The key set defines the access permissions for this user ID with respect to
using the services of the application and remote services (LTACs)
generated in this application.

This user ID can only be used to start services of the application that are
protected with a lock code or an access list and only address remote
services that are protected with a lock code or an access list if the following
applies: The key set assigned to the user ID and the key set of the LTERM
partner under which sign-on using this user ID was performed must contain
the key code or access code that matches the lock code or access list.

The lock/key code concept and the access list concept are both described
in detail in the openUTM manual “Concepts und Functions”. An introduction
to data access control can be found as of page 217.

Services whose service TACs are not secured with codes can be called by
the user or the client program without restriction. Further information on the
lock/key code concept can be found in the openUTM manual “Concepts und
Functions”.

Default: No key set, i.e. the user can only access clients and LTERM
partners that have not been secured with lock codes.

B

BB

B

B

B

BB

B

B

B

BB

B

B

B

USER KDCDEF control statements

548 Generating Applications

LOCALE=(lang_id,terr_id,ccsname)
Language environment of the user

lang_id Freely selectable language identifier for the UTM user ID, up to two
characters in length.

The language identifier may be queried by the program units of the appli-
cation, so that messages can be sent by the program units to the user ID in
the user’s language.

terr_id Freely selectable territorial identifier for the UTM user ID, up to two
characters in length.

The territorial identifier may be queried by the program units of the appli-
cation, so that any special territorial features of the user’s language can be
taken into consideration in messages to the user.

ccsname (coded character set name)
Name of an extended character set (CCS name) up to eight characters in
length. The specified CCS name must belong to one of the EBCDIC
character sets defined under the BS2000 system (see also the "XHCS User
Guide").
During generation, openUTM cannot check the validity of the CCS name
under the BS2000 system.

The character set with the specified CCS name is used for outputting dialog
messages, provided the user is signed on to an 8-bit terminal and another
CCS name is not explicitly selected using an edit profile or a format.
The character set must be compatible with an extended ISO character set
supported by the terminal. During generation, openUTM cannot check this
compatibility condition, i.e. incorrect entries cannot be intercepted by
KDCDEF.

Default:
Locale of the application defined in the MAX statement is used if
USER ...,LOCALE is not specified.

BB
B

BB

B

B

B

B

BB

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements USER

Generating Applications 549

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

PASS= Password up to eight characters in length which must be specified by the
user during the sign-on check. This password must comply with the level of
complexity defined in the PROTECT-PW= operand.

PASS= may not be specified together with CERTIFICATE= or
PRINCIPAL=.

If you enter *RANDOM here, a secret random password is generated for the
user ID. A valid password must then be transferred to the user ID using the
KDCUPD tool or by means of administration. Passwords created in this way
are not subject to the conditions set in PROTECT-PW=.

i Make sure that at least one user ID is configured with administration autho-
rization by the startup time at the latest. This user ID must not be assigned
a password created using *RANDOM, as the application cannot be admin-
istered otherwise.

The parameters have the following meanings:

BS2000 systems:

password
*RANDOM

Standard sign-on dialog:
The user must enter ’KDCSIGN username,password’ to sign on to the appli-
cation.

Sign-on procedure:
The user ID and password must be transferred to openUTM using the SIGN
ON call.

(password, DARK)
(*RANDOM,DARK)

Standard sign-on dialog:
To sign on to the application the user first enters ’KDCSIGN username’.
openUTM then prompts the user to enter the password in a blanked-out
field on the screen.

Sign-on procedure:
In an intermediate dialog, openUTM prompts the user to enter the password
in a blanked-out field.

password can be entered in the following format:
– hexadecimal, e.g. X’DDFF’
– as a constant, e.g. C’@LKE’
– as a printable alphanumeric character string, e.g. NORBERT.

Default: 8 blanks (i.e. no password)

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

USER KDCDEF control statements

550 Generating Applications

Unix systems and Windows systems:

password
*RANDOM
(password,DARK)
(*RANDOM,DARK)

Standard sign-on dialog:
To sign on to the application, the user first enters username. openUTM then
prompts the user to enter the password.

Sign-on procedure:
In an intermediate dialog, openUTM prompts the user to enter the password
as in the standard sign-on procedure.

The password can be entered in the form of a printable alphanumeric
character string, e.g. UTM4EVER or C’UTMËEVER’.

Default: 8 blanks (i.e. no password)

PERMIT= Administration authorization level of the user within the local application

ADMIN The user can execute administration functions under this user ID.

NONE The user must not execute any administration functions.

Default: NONE

Under BS2000 systems the user also must not execute any SAT prese-
lection functions.

SATADM The user can execute SAT preselection functions (UTM SAT adminis-
tration).

(ADMIN,SATADM)
The user can execute administration and SAT preselection functions.

PRINCIPAL=characterstring
(only permitted in BS2000 systems)
Authentication of the user is to be performed using Kerberos. It is only
possible to authenticate users using Kerberos if the user signs in directly
(not via OMNIS) at a terminal that supports Kerberos.

openUTM stores the Kerberos information in the maximum of the lengths
generated for MAX PRINCIPAL-LTH and MAX CARDLTH. If the Kerberos
information is longer, it is truncated and stored in this length.

The KDCS call INFO (KCOM=CD) enables a program unit to read this infor-
mation as long as the user is signed in on this client.

Specifying PRINCIPAL excludes the possibility of specifying the parameters
CERTIFICATE, CARD, and PASS.

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

B

B

BB

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

KDCDEF control statements USER

Generating Applications 551

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

characterstring must be specified as follows as an alphanumeric string
enclosed in single quotes:

C'windowsaccount@NT-DNS-REALM-NAME'

windowsaccount
Domain account of the user

NT-DNS-REALM-NAME
DNS name of the Active Directory domain. This name is a fixed
value for every Active Directory domain and was assigned when the
Kerberos key was set up.

The length of the character string passed must not be greater than
the value specified for MAX PRINCIPAL-LTH. Otherwise the
parameter is ignored.

openUTM stores the Kerberos information in the length resulting
from the maximum length generated for MAX PRINCIPAL-LTH and
MAX CARDLTH. If the Kerberos information is longer, it is truncated
to this length and stored.

The KDCS call INFO (KCOM=CD) allows a program unit run to read
this information as long as the user is signed in on this client.

Default: No Kerberos authentication
Maximum length: The value generated with MAX ...,PRINCIPAL-LTH. See
page 401

PROTECT-PW=
Specifies the minimum length, level of complexity, and minimum and
maximum validity period of the user password. The values defined for
PROTECT-PW must be taken into consideration when specifying the
password in the PASS= operand. They are checked by openUTM when the
password is changed by the administrator (KDCUSER administration
command, see the openUTM manual “Administering Applications”) or by a
program unit (SIGN CP call).

length Minimum number of characters that must be contained in the password.
The administrator can only delete the user password if the value 0 is
specified for length.

Default: 0

B
B

B

BB

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

USER KDCDEF control statements

552 Generating Applications

Minimum value:
0 for NONE or if a level of complexity is not defined
1 for MIN
2 for MED
3 for MAX

Maximum value: 8

NONE/MIN/MED/MAX
Level of complexity of the password

NONE The password can be any character string.

Default: NONE

MIN In the password, up to two consecutive characters may be identical. The
minimum length of the password is one character.

MED In the password, up to two consecutive characters may be identical. The
password must contain at least one letter and one number. The minimum
length of the password is two characters.

MAX In the password, up to two consecutive characters may be identical. The
password must contain at least one letter, one number, and one special
character. The minimum length of the password is three characters. Special
characters are all characters other than a-z, A-Z, 0-9, and blanks.

maxtime Maximum validity period:
maxtime specifies the maximum number of days for which the password is
valid.

If a validity period is specified, then the validity of the password expires at
the end of the last day of the specified validity period. For instance, if the
validity period is one day, the password ceases to be valid at 24:00 hours
on the following day.

If the application is generated with SIGNON GRACE=YES, when the appli-
cation is regenerated the password is set to “expired”, the user must then
assign a new password the first time they sign on.

If the password expires, then the next action taken depends on how the
UTM application is generated:

– With grace sign-ons (SIGNON GRACE= YES)
The user can and must change the password the next time the they sign
on, as long as the sign-on service of the application offers them this
opportunity. If this is not the case, the password must be modified by
administration otherwise the user will no longer be able to sign on under

KDCDEF control statements USER

Generating Applications 553

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

this user ID. This may occur, for example, with users that sign on via TS
applications and UPIC clients without sign on services or via an OSI-TP
partner.

– Without grace sign-ons (SIGNON GRACE= NO)
openUTM rejects a sign-on attempt with message K120. The adminis-
trator must then change the password.

With maxtime = 0 the validity period of the password is not restricted.

Default: 0 (validity period not restricted)
Maximum value: 180
Minimum value: 0

mintime Minimum validity period:
You specify the minimum validity period of the password in days in mintime.
Once the user has changed the password, the user may only change the
password again after the minimum validity period has expired.

By specifying mintime > 0 you can prevent a user whose password has
expired from changing his or her password twice in a row to set the
password back to the original (= expired) password.

If a minimum validity period of one day is specified, then the password may
be changed no earlier that at 12.00 midnight of the following day (local time
of the generation).

The user can always change the password after the administrator has
changed the password and after a new generation, regardless of whether
the minimum validity period has expired or not.

mintime must not be larger than maxtime (maximum validity period).
If mintime=0 is specified, then the minimum validity period of the password
is not restricted.

Default: 0 (no limit)
Minimum value: 0
Maximum value: 180

QLEV=queue_level_number
(queue level)
Specifies the maximum number of asynchronous messages that may be
buffered in the message queue of the user (= USER queue). QLEV can be
used to make sure that the page pool is not overloaded with messages for
this USER.
openUTM only takes asynchronous jobs into account at the end of the
transaction. It is thus possible that the maximum number of messages for a
message queue as specified in QLEV may be exceeded if several
messages are created for this queue during a single transaction.

USER KDCDEF control statements

554 Generating Applications

If the threshold value has been exceeded, then the behavior will depend on
the value set in the operand QMODE=, see below.

With QLEV=0 no messages may be saved in the queue and with
QLEV=32767 the queue length is not restricted.

Default: 32767
Minimum value: 0
Maximum value: 32767

If a value is specified that is greater than the maximum, this is set back to
the default in the KDCDEF run. No message is issued.

QMODE = (Queue Mode)
Determines the behavior of openUTM in the event that the maximum
permitted number of messages that may be saved in the USER queue has
been reached and thus the queue level (QLEV= operand) has also been
reached.

STD When the queue level is reached openUTM rejects all additional messages
for the queue with negative return code (40Z for DPUT).

WRAP-AROUND
openUTM continues to accept messages for the queue, even if the queue
level has been reached. When a new message is written to the queue,
openUTM deletes the oldest message in the queue and replaces it with the
new one.

Default: STD

Q-READ-ACL=read-keysetname
Specifies the read and delete rights for external users in the USER queue.
In read-keysetname you must enter a key set that has been generated using
a KSET statement.

If you enter Q-READ-ACL=, an external user (≠username) is only permitted
read access to the queue if both the key set of their user ID and the key set
of the LTERM partner via which the user is signed on contain at least one
of the key codes contained in the key set read-keysetname.

The owner (username) of the USER queue always has read and delete rights
to their queue, even if the rights are restricted using Q-READ-ACL.

If you do not specify Q-READ-ACL=, all users have both read and delete
rights in the queue.

Default: no key set

KDCDEF control statements USER

Generating Applications 555

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Q-WRITE-ACL=write-keysetname
Specifies the write rights for external users in the USER queue.
In write-keysetname you must enter a key set that has been generated using
a KSET statement.

If you enter Q-WRITE-ACL=, an external user (≠username) is only permitted
write access to the queue if both the key set of their user ID and the key set
of the LTERM partner via which the user is signed on contain at least one
of the key codes contained in the key set write-keysetname.
The owner (username) of the USER queue always has the write rights to their
queue, even if the rights are restricted using Q-WRITE-ACL.

If you do not specify Q-WRITE-ACL= all users have both write rights in the
queue.

Default: no key set

RESTART= This specifies whether openUTM is to save the service data for a user ID so
that a service restart will be possible on the next sign-on under this user ID.

YES The service context belonging to this user ID is saved. This means that a
service restart can be performed for users who sign on using this user ID if
an open service exists for the user ID.

With a service restart, the type of the client and possibly the generated sign
on service may play a role. Additional information can be found in section
“Generating a restart” on page 148 and in the openUTM manual “Using
openUTM Applications”.

Default: YES

NO The service context belonging to this user ID is not saved, no service restart
is possible,

– If the connection is shut down during operation by KDCOFF, if it is lost,
or if the application is terminated normally, the service is reset to the last
synchronization point and terminated. The event exit VORGANG is then
called with KCKNZVG=D (=Disconnect).

– During a UTM warm start following abnormal termination of the appli-
cation, an open service for this UTM user is terminated without calling
the event exit VORGANG.

– Following connection setup, KDCDISP/KDCLAST behaves in the same
way as after regeneration.

USER KDCDEF control statements

556 Generating Applications

If RESTART=NO is specified together with SIGNON MULTI-SIGNON=YES,
several users can sign on simultaneously to openUTM under this user ID,
but only one user can sign on to the terminal. Conversely, it is possible for
any number of client programs can sign on simultaneously.

i Explicitly generated connection user IDs to UPIC clients are always
generated with RESTART=NO (without any message) .

SATSEL= SAT logging mode for this user

If SAT logging is activated (MAX SAT=YES), all events triggered by this user
are logged as defined in this operand.

The SATSEL control statement is used to define the general SAT logging
mode for all TACs and users. This can be supplemented by the SATSEL
operand of the USER statement, which allows you to define user-specific
logging. If the logging of an event class is prohibited in the SATSEL
statement, events of this class are not logged. (For information on the link
between the EVENT-, TAC- and USER-specific log settings, see the
openUTM manual “Using openUTM Applications under BS2000 Systems”.)

SATSEL can be generated even if SAT logging is deactivated (MAX
statement with SECLEV=NO and SAT=OFF). In this case, the statements
are not effective when the application is started, but SAT logging is
predefined. When required, SAT logging can then be activated during
operation (UTM SAT administration command KDCMSAT, see the
openUTM manual “Using openUTM Applications under BS2000 Systems”).

NONE A user-specific SAT logging mode is not defined.

Default: NONE

BOTH Both successful and unsuccessful events are logged.

SUCC Only successful events are logged.

FAIL Only unsuccessful events are logged.

STATUS= Status (locked or unlocked) of the user ID when the application is started.

ON The user ID is unlocked.

Default: ON

OFF The user ID is locked. It cannot be used by a user or client to sign on to the
application until it has been released by the administrator.

i User IDs that are implicitly or explicitly assigned to an UPIC client or a client
of a TS application via an LTERM statement (LTERM ...,USER=) are always
locked. They cannot be authorized by the UTM administrator. These user
IDs are called connection user IDs.

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

BB

BB

BB

KDCDEF control statements UTMD

Generating Applications 557

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

UTMD - application parameters for distributed processing

The UTMD control statement allows you to define values for distributed processing
throughout the application. A UTMD statement is only required for applications that use
either the LU6.1 or the OSI TP protocol for communication.

The UTMD statement may only by entered once.

If you use the OSI TP protocol in your application, you can specify the Application Process
Title (APT) of the application in the UTMD statement. This is required by some heteroge-
neous partners that support another variant of the OSI TP protocol in order to establish a
connection. These applications expect the specification of the Application Process Title on
establishment of the connection.

The application process title is combined with any application entity qualifier (AEQ)
assigned to an access point of your application to form an application entity title (AET),
which is unique throughout the OSI network. This is used by the partner application to
identify the access point of the local application via which communication is to take place.

APPLICATION-PROCESS-TITLE=object_identifier
(only relevant if the OSI TP protocol is used in the application)
Address component of the application entity title (AET). The AET is required
if you are working with transaction management (commit functional unit), or
if a heterogeneous partner requires an AET to establish a connection.

object_identifier is the application process title (APT) of your application.
Even if this is not defined by a standardization body, the relevant conven-
tions for component1 and component2 must be observed when assigning an
APT. Further information can be found in section “Application entity title
(AET)” on page 95. In practice, the specified object_identifier must be unique
within the network.

i If the application context (definition of the communication partner in the
OSI-LPAP statement, page 439) agreed with a partner application contains
the CCR syntax, you must enter an application process title here.

UTMDË [APPLICATION-PROCESS-TITLE=object_identifier]

[,CONCTIME={ time1 | (time1,time2) }]

[,MAXJR=%_maxjr]

[,PTCTIME=time3]

[,RSET={ GLOBAL | LOCAL }]

UTMD KDCDEF control statements

558 Generating Applications

An application process title consists of at least 2 and at most 10 compo-
nents. It is specified in the following format:

(component1,component2,...,component10)

The components are specified in the form of positive integers. Symbolic
names are assigned to some numbers of individual components, and can
be used instead of the numbers. In the application process title, both the
number of components and their positions within the parentheses are
relevant, e.g. (1,2,3), (1,2,3,0,0) and (0,1,2,3,0) identify different application
process titles.

openUTM and the OSI standard only permit the following values or
symbolic names for component1:
0 or CCITT
1 or ISO
2 or JOINT-ISO-CCITT

The values permitted for component2 depend on the value of component1.
– If component1 = 0 or 1, values between 0 and 39 are permitted for

component2 (0 ≤ component2 ≤ 39).
– If component1 = 2, values between 0 and 67108863 (226-1) are permitted

for component2 (0 ≤ component2 ≤ 67108863).

Values between 0 and 67108863 (226-1) are permitted for all other compo-
nents.

openUTM does not check whether the specified application process title is
registered with a standardization body.

i Note on UTM cluster applications

In the case of UTM cluster applications, the APT of the individual node
applications is modified at node-specific level in order to ensure that the
AET is unique. If the APT consists of fewer than 10 elements then the APT
is extended by the index of the associated node when the node application
is started. The index of a node is determined by the sequence of CLUSTER-
NODE statements during generation.

Example

If (1,2,3) is generated as the APT and if the UTM cluster application has
two node applications, then the APT at runtime is as follows:

(1,2,3,1) for node 1 (= first CLUSTER-NODE statement) and
(1,2,3,2) for node 2 (= second CLUSTER-NODE statement) and

KDCDEF control statements UTMD

Generating Applications 559

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

If the generated APT already contains 10 elements then the APT remains
unchanged for all node applications. In this case, links with OSI-TP imple-
mentations from other vendors may result in problems because the AET is
not unique.

CONCTIME= (connection control time)

time1 Maximum number of seconds for which openUTM monitors the opening of
a session (LU6.1) or association (OSI TP). If the session or association is
not opened within the specified time, openUTM shuts down the transport
connection. This prevents the transport connection from being blocked if an
attempt to open a session or association fails. This can occur if a message
required to open the session/association is lost.

CONCTIME=0 for LU6.1 means opening is not monitored.
CONCTIME=0 for OSI TP means monitoring is set internally to 60 seconds.

Default: 0
Minimum value: 0
Maximum value: 32767

time2 Maximum number of seconds for which openUTM is to wait for confirmation
from the partner application when sending an asynchronous message.
Once the specified time has elapsed, openUTM shuts down the transport
connection. The job is not lost however. Monitoring prevents the connection
from being blocked because a confirmation has been lost, or because the
loss of connection was not reported to openUTM by the transport system.
The value 0 means that monitoring is not performed.

Default: 0
Minimum value: 0
Maximum value: 32767

MAXJR=%_maxjr
(maximal number of job receivers)
Specifies the maximum number of job-receiving services that can be
addressed in the local application at any one time.
This corresponds to the number of APRO calls that can be active simulta-
neously.

The percentage value refers to the number of generated sessions and
associations (maximum number of LSES statements for the LU6.1 protocol
+ total number of parallel connections specified in OSI-LPAP statements;
ASSOCIATIONS operand). It must be within the range 0 to 200. If you enter
a value > 100, APRO calls issued before the session is reserved can be
entered in a table.

Default: 100,

UTMD KDCDEF control statements

560 Generating Applications

i.e. the maximum number of job-receiving services active at a particular time
is equal to the number of sessions and associations.

Minimum value: 0
Maximum value: 200

PTCTIME=time3
(prepare to commit)
This is significant only for distributed processing via LU6.1 connections.
PTCTIME defines the maximum number of seconds for which a job-
receiving service waits in PTC state (transaction status P) for confirmation
from the job submitter. Once this time has elapsed, the connection to the job
submitter is shut down, the transaction in the job-receiving service is reset,
and the service is terminated. This can lead to inconsistent data if the
transaction is moved forward in the partner application (mismatch). The
value 0 means that the job-receiving service waits indefinitely for confir-
mation.

i If a value > 0 is specified in time3 then this value is ignored by openUTM if
a KDCSHUT WARN or GRACE has been issued. In this case, openUTM
chooses the wait time in such a way that the transaction is rolled back
before the application is terminated in order, if possible, to prevent the appli-
cation from being terminated abnormally with ENDPET.

Default:
Value specified in MAX ...,TERMWAIT=time for the waiting time after
PEND KP

Minimum value: 0
Maximum value: 32767

RSET= In the case of Distributed Transaction Processing, this operand defines how
resetting a local transaction affects the distributed transaction.

A local transaction can be reset:
– by a RSET call issued in a program unit, or
– by resetting a database transaction involved in the local transaction.

GLOBAL After the local transaction is reset, the program unit must be terminated
such that openUTM resets the distributed transaction.

Default: GLOBAL

KDCDEF control statements UTMD

Generating Applications 561

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

LOCAL Resetting the local transaction has no effect on the distributed transaction.

Inconsistencies may occur in the distributed databases if some of the local
transactions involved in a distributed transaction are reset while others are
concluded. If RSET=LOCAL is specified, it is no longer possible to
guarantee global data integrity in the relevant system components. This is
now the responsibility of the application program units. You must decide
when it makes sense to terminate the distributed transaction and when to
reset the transaction.

Dialog control - effects of generation parameters KDCDEF control statements

562 Generating Applications

6.6 Dialog control - effects of generation parameters

The following statements and parameters of the KDCDEF generation tool can be used to
control the dialog during generation:

KDCDEF statement Effect

EXIT ...,USAGE=INPUT Event exit INPUT

LTAC ..., WAITTIME= Maximum waiting time for distributed processing

LTERM ..., RESTART= Refers to asynchronous messages and the service restart
procedure if user IDs are not generated

LTERM ..., USER= Automatic KDCSIGN

MAX ..., APPLIMODE= Refers to the service restart procedure and asynchronous
messages

MAX ..., CONN-USERS= Application load: number of simultaneously active users or clients

MAX ..., NRCONV= Maximum number of stacked services

MAX ..., PGWTIME= Maximum time in seconds that a program unit is allowed to wait to
receive messages after a blocked call.

MAX ..., TERMWAIT= Maximum waiting time until the next input from the terminal in a
multi-step transaction (following PEND KP)

PTERM ..., IDLETIME=
TPOOL ..., IDLETIME=

Maximum waiting time until the next input from the client after the
end of the transaction or after signing on
(following PEND RE/FI/ER)

SIGNON ..., GRACE= The user may or may not change his or her password after it has
expired

SIGNON ..., MULTI-SIGNON= Several users/clients may or may not be signed on at the same time
under the same user ID

SIGNON ..., SILENT-ALARM= Limits the number of unsuccessful sign-on attempts

USER statements defined Sign-on check performed for all users

USER ..., PASS= Sign-on check with a password; input may be blanked-out

USER ..., PROTECT-PW= Authorization check with a blanked-out password, validity period,
and level of complexity

USER ..., RESTART= Service restart procedure

SFUNC ... Assignment of a F key or K key (under BS2000 systems) as a TAC,
UTM command, or stacking request

TAC KDCBADTC Event service BADTACS

TAC KDCSGNTC Sign on using a sign-on procedure

KDCDEF control statements Dialog control - effects of generation parameters

Generating Applications 563

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

Under BS2000 systems the following parameters also are relevant

LTERM ..., ANNOAMSG= Asynchronous messages with or without prior announcement

LTERM ..., FORMAT= LTERM specific start format

TPOOL ..., ANNOAMSG= Asynchronous messages announced in advance before being
output in the system line on the terminal

PTERM ..., CONNECT=Y Automatic connection setup to the terminal by openUTM when
starting the application

MAX ..., LOCALE= Default language environment of the application

LTERM ..., LOCALE= Language environment of clients that sign on via LTERM partners

TPOOL ..., FORMAT= defines the start format for the terminal user

TPOOL ..., LOCALE= Language environment of clients that sign on via LTERM pools

USER ..., CARD= Sign-on check with a magnetic strip card

USER ..., CERTIFICATE= Specifies if a user must identify himself with a chip card containing
the generated certificate when signing on to the UTM application.

USER ..., FORMAT= User specific start format

USER ..., LOCALE= Language environment of the user

USER ..., PRINCIPAL= User authentication will be performed using Kerberos.

KDCDEF statement Effect

B

B

BB

B
B

B
B

B

B

BB

B

BB

BB
B

BB

B

B

Example generation KDCDEF

564 Generating Applications

6.7 Example generation: ComfoTRAVEL

The example generation ComfoTRAVEL is a travel reservation system which allows the
customers of travel agents in Munich, Paris and New York, to book “all-inclusive” packages
consisting of hotel, flight and leisure activities plus the necessary bank operations. To do
this, the travel agents access a central reservation system (RMS Reservation Management
System).

Figure 19: Example generation ComfoTRAVEL with the employed protocols

Golf

Airline

Hotel

Travel

Travel

Travel

RMS
Reservation
Management

System
Bank

Munich

Paris

New York

OSI TPLU6.1

Resource server

not openUTM
openUTM under

Example generation ComfoTRAVEL

Travel Agencies

Unix systems

openUTM under
Unix systemsopenUTM

openUTM under
BS2000 systems

openUTM under
Unix systems

not openUTM

not openUTM

KDCDEF Example generation

Generating Applications 565

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.7.1 KDCDEF input file DYNAMIC.RMS for UTM-D application RMS

* ADMINISTRATION programs *

PROGRAM KDCADM, COMP=ILCS
PROGRAM KDCDADM,COMP=ILCS
PROGRAM KDCPADM,COMP=ILCS

* RMS programs *

PROGRAM AVALRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM RESRRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM CNCLRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM AUTHRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM INITRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM SHUTRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM ENQRRESP, COMP=ILCS, LOAD-MODULE=RMS
PROGRAM HNDLEXIT, COMP=ILCS, LOAD-MODULE=RMS

* BOOKKEEPING programs *

PROGRAM BOOKKEEP, COMP=ILCS, LOAD-MODULE=BOOKKEEP

* PERSONNEL programs *

PROGRAM PERSNNL, COMP=ILCS, LOAD-MODULE=PERSNNL

* OFFICE programs *

PROGRAM OFFICE, COMP=ILCS, LOAD-MODULE=OFFICE

*** TAC statements ***

******* TAC BOOKKEEP *****
*
TAC BOOKKEEP, PROGRAM=BOOKKEEP, LOCK=7

Example generation KDCDEF

566 Generating Applications

******* TACS PERSNNL *****
*
TAC OPERSNNL, PROGRAM=PERSNNL, LOCK=2
TAC MPERSNNL, PROGRAM=PERSNNL, LOCK=3
TAC CPERSNNL, PROGRAM=PERSNNL, LOCK=4

******* TACS OFFICE *****
*
TAC OFFCHRG , PROGRAM=OFFICE , LOCK=5
TAC OFFADMIN, PROGRAM=OFFICE , LOCK=6
*

********* TACS RMS *****
*
TAC AVALRESP, PROGRAM=AVALRESP, LOCK=8
TAC RESRRESP, PROGRAM=RESRRESP, LOCK=8
TAC CNCLRESP, PROGRAM=CNCLRESP, LOCK=8
TAC AUTHRESP, PROGRAM=AUTHRESP, LOCK=8
TAC INITRESP, PROGRAM=INITRESP, LOCK=8
TAC SHUTRESP, PROGRAM=SHUTRESP, LOCK=8
TAC ENQRRESP, PROGRAM=ENQRRESP, LOCK=8

*** ADMINISTRATION DIALOG ***

DEFAULT TAC ADMIN=Y, PROGRAM=KDCADM

TAC KDCTAC , LOCK=1
TAC KDCLTERM, LOCK=1
TAC KDCPTERM, LOCK=1
TAC KDCSWTCH, LOCK=1
TAC KDCSEND , LOCK=1
TAC KDCAPPL , LOCK=1
TAC KDCUSER , LOCK=1
TAC KDCDIAG , LOCK=1
TAC KDCLOG , LOCK=1
TAC KDCINF , LOCK=1
TAC KDCHELP , LOCK=1
TAC KDCLPAP , LOCK=1
TAC KDCLTAC , LOCK=1
TAC KDCSHUT , LOCK=1
TAC KDCTCL , LOCK=1

TAC TACDADM , PROGRAM=KDCDADM, LOCK=1
TAC TACPADM , PROGRAM=KDCPADM, LOCK=1

KDCDEF Example generation

Generating Applications 567

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

*** ADMINISTRATION ASYNCHRON ***

DEFAULT TAC TYPE=A

TAC KDCTACA , LOCK=1
TAC KDCLTRMA, LOCK=1
TAC KDCPTRMA, LOCK=1
TAC KDCSWCHA, LOCK=1
TAC KDCUSERA, LOCK=1
TAC KDCSENDA, LOCK=1
TAC KDCAPPLA, LOCK=1
TAC KDCDIAGA, LOCK=1
TAC KDCLOGA , LOCK=1
TAC KDCINFA , LOCK=1
TAC KDCHELPA, LOCK=1
TAC KDCLPAPA, LOCK=1
TAC KDCLTACA, LOCK=1
TAC KDCSHUTA, LOCK=1
TAC KDCTCLA , LOCK=1
*
*
*
*
*

*** USER statements ***

USER SUPERUSR, PERMIT=ADMIN, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
, KSET=MASTER

USER UTMADMIN, PERMIT=ADMIN, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
, KSET=UTMADMIN

USER CLERK , FORMAT=*BOOK, PASS='¤$*45jkl', PROTECT-PW=(8, MAX) -
, KSET=BOOKKEEP

USER PRSNLMNG, FORMAT=*PERSNNL, PASS='78+lsd*/', PROTECT-PW=(8, MAX) -
, KSET=MPRSNNL

USER MILLER , FORMAT=*PERSNNL, PASS='7HGFKK*/', PROTECT-PW=(, MED) -
, KSET=OPRSNNL

USER COMP , FORMAT=*PERSNNL, PASS='7sdfKK*/', PROTECT-PW=(, MED) -
, KSET=CPRSNNL

USER CHARGE , FORMAT=*TRAVEL, PASS='%aJ1df-+', PROTECT-PW=(, MED) -
, KSET=OFFCHRG , LOCALE=(EN)

USER CHIEF , FORMAT=*TRAVEL, PASS='%aJs5f-+', PROTECT-PW=(, MED) -
, KSET=OFFADMIN, LOCALE=(EN)

USER TPARIS , FORMAT=*TRAVEL, PASS='kj678+*', PROTECT-PW=(, MED) -
, KSET=TRVAGNCY, LOCALE=(FR, EU)

USER TNEWYORK, FORMAT=*TRAVEL, PASS='56asdf$~', PROTECT-PW=(, MED) -
, KSET=TRVAGNCY, LOCALE=(EN)

Example generation KDCDEF

568 Generating Applications

USER TMUNICH , FORMAT=*TRAVEL, PASS='%as3f$0', PROTECT-PW=(, MED) -
, KSET=TRVAGNCY, LOCALE=(DE, EU)

USER TLONDON , FORMAT=*TRAVEL, PASS='%4Jsdf-+', PROTECT-PW=(, MED) -
, KSET=TRVAGNCY, LOCALE=(EN)

USER MANOFF , FORMAT=*BOOK, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
, KSET=OFFADMIN

*** PTERM/LTERM statements ***

PTERM PRB22273, LTERM=PRINTER, PRONAM=PRO, PTYPE=T9021, CONNECT=YES
LTERM PRINTER, USAGE=O

PTERM RSO, LTERM=RSO, PTYPE=*RSO, PRONAM=*RSO, CONNECT=YES
LTERM RSO, USAGE=O

6.7.2 KDCDEF statements for UTM-D application RMS

*** K D C D E F - S T A T E M E N T S ***
*** FOR UTM-D-PROGRAM "RMS" ***

ROOT RMSROOT

OPTION GEN=ALL

ACCOUNT ACC = YES

FORMSYS

MESSAGE MODULE = KCSMSGS, LOCALE=(EN)
MESSAGE MODULE = MSGSGER, LOCALE=(DE, EU)
MESSAGE MODULE = MSGSFRA, LOCALE=(FR, EU)

MAX LOCALE = (EN)

MAX KDCFILE = (RMS, DOUBLE) -
,APPLINAME = APRMS -
,APPLIMODE = S -
,TASKS = 10 -
,ASYNTASKS = 3 -
,GSSBS = 200 -
,PGPOOL = 2048 -
,CACHESIZE = (512,50,RES) -
,CONN-USERS = 50 -
,RECBUF = (10,1024) -
,KEYVALUE = 20 -
,LSSBS = 9 -
,LPUTBUF = 10 -

KDCDEF Example generation

Generating Applications 569

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

,LPUTLTH = 1948 -
,NRCONV = 1 -
,TERMWAIT = (600) -
,DPUTLIMIT1 = (363,0,0,0) -
,DPUTLIMIT2 = (1,0,0,0) -
,KB = 1024 -
,NB = 2048 -
,SPAB = 4096 -
,CLRCH = X'FF'

*** RESERVE statement to allow dynamic administration ***

RESERVE OBJECT=ALL

*** DATABASE CONTROL statements ***

DATABASE TYPE=UDS
DATABASE TYPE=ORACLE

*
*

*** SFUNC CONTROL statements ***

SFUNC F1 , TAC = INITRESP
SFUNC F2 , TAC = SHUTRESP
SFUNC F5 , TAC = ENQRRESP
SFUNC F6 , TAC = AUTHRESP
SFUNC F7 , TAC = RESRRESP
SFUNC F8 , TAC = AVALRESP
SFUNC F20, TAC = CNCLRESP

*** KSET statements ***

KSET MASTER , KEYS=MASTER "SUPERUSER"
KSET UTMADMIN, KEYS=1 "Administrator of application"
KSET OPRSNNL , KEYS=2 "office personnel / Büropersonal"
KSET MPRSNNL , KEYS=3 "personnel manager / Personalchef"
KSET CPRSNNL , KEYS=4 "computer personnel / DV-Mitarbeiter"
KSET OFFCHRG , KEYS=5 "official in charge / Sachbearbeiter"
KSET OFFADMIN, KEYS=6 "administrator of office data"
KSET BOOKKEEP, KEYS=7 "book keeper"
KSET TRVAGNCY, KEYS=8 "travel agencies"

Example generation KDCDEF

570 Generating Applications

*** LOAD-MODULE statements ***

LOAD-MODULE BOOKKEEP, VERSION=@, LIB=DYNPROGLIB, LOAD-MODE=STARTUP
LOAD-MODULE PERSNNL , VERSION=@, LIB=DYNPROGLIB, LOAD-MODE=STARTUP
LOAD-MODULE RMS , VERSION=@, LIB=DYNPROGLIB, LOAD-MODE=STARTUP
LOAD-MODULE OFFICE , VERSION=@, LIB=DYNPROGLIB, LOAD-MODE=STARTUP

*** EXIT statements ***

EXIT PROGRAM=HNDLEXIT, USAGE=START
EXIT PROGRAM=HNDLEXIT, USAGE=SHUT

**
*** Read data which could be administered dynamically ***
**

* use create-control-statements if application ran before

* CREATE-CONTROL-STATEMENTS *ALL, TO-FILE = DYNAMIC.RMS.DATA -
* , FROM-FILE = COPIED.RMS.KDCA

OPTION DATA=DYNAMIC.RMS

*
*
*
*
*
*

*** TACCLASS statements ***

* not used

*** TLS statements ***

TLS TLSA

*** ULS statements ***

ULS ULSA
ULS ULSB

KDCDEF Example generation

Generating Applications 571

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

*** TPOOL statements ***

TPOOL LTERM=TP#, NUMBER=100, PRONAM=*ANY, PTYPE=*ANY, KSET=MASTER
TPOOL LTERM=UPICR, NUMBER=100, PRONAM=*ANY, PTYPE=UPIC-R, KSET=MASTER

*** UTMD statements ***

UTMD MAXJR = 200, APT=(1,2,3,10), CONCTIME=25, PTCTIME=0

*** Generation of syntax ***

ABSTRACT-SYNTAX EUROSI, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 3, 12) -
, TRANSFER-SYNTAX = BER

* Generation of APPLICATION CONTEXTS ***

*
* Without CCR
*
APPLICATION-CONTEXT EUROSIAC, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 4, 12) -

, ABSTRACT-SYNTAX = (EUROSI)
*
* Include CCR
*
APPLICATION-CONTEXT EUOSICCR, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 4, 13) -

, ABSTRACT-SYNTAX = (EUROSI, CCR)
*
*
*
*
*
*
*

Example generation KDCDEF

572 Generating Applications

*** OSI TP generation ***

*+---+
*| |
*| T R A V E L - Connections |
*| |
*+---+

ACCESS-POINT RMS, T-SEL=C'RMS', S-SEL=('SRMS',ASCII) -
, P-SEL=('PRMS',ASCII), AEQ=1

*
*
* travel-agency MUNICH <========> RMS
OSI-CON MUNICH, LOCAL-ACCESS-POINT=RMS, OSI-LPAP=MUNICH -

, N-SEL=C'HOST0001', T-SEL=C'TRAV', S-SEL=(C'STRV',ASCII) -
, P-SEL= (C'PTRV',ASCII)

*
* travel-agency PARIS <========> RMS
OSI-CON PARIS , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=PARIS -

, N-SEL=C'ISO09', T-SEL=C'TRAV', S-SEL=(C'STRV',ASCII) -
, P-SEL=(C'PTRV',ASCII)

*
* travel-agency NEWYORK <========> RMS
OSI-CON NEWYORK, LOCAL-ACCESS-POINT=RMS, OSI-LPAP=NEWYORK -

, N-SEL=C'ISO10', T-SEL=C'TRAV', S-SEL=('2',ASCII) -
, P-SEL=('2',ASCII)

*
* travel-agency LONDON <========> RMS
OSI-CON LONDON , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=LONDON -

, N-SEL=C'ISO06', T-SEL=C'TRAV', S-SEL=('2',ASCII) -
, P-SEL=('2',ASCII)

*
OSI-LPAP MUNICH , ASS-NAMES=MUNICH, ASSOCIATIONS=4, CONNECT=0 -

, CONTWIN=0, APPLICATION-CONTEXT=EUOSICCR -
, APT=(1,2,3,21),AEQ=1, KSET=TRVAGNCY

OSI-LPAP PARIS , ASS-NAMES=PARIS, ASSOCIATIONS=4, CONNECT=0 -
, CONTWIN=0, APPLICATION-CONTEXT=EUOSICCR -
, APT=(1,2,3,22), AEQ=1, KSET=TRVAGNCY

OSI-LPAP NEWYORK, ASS-NAMES=NEWYORK, ASSOCIATIONS=1, CONNECT=0 -
, CONTWIN=0, APPLICATION-CONTEXT=EUOSICCR -
, APT=(1,2,3,23), AEQ=1, KSET=TRVAGNCY

OSI-LPAP LONDON , ASS-NAMES=LONDON, ASSOCIATIONS=1, CONNECT=0 -
, CONTWIN=0, APPLICATION-CONTEXT=EUOSICCR -
, APT=(1,2,3,24), AEQ=1, KSET=TRVAGNCY

*
*

KDCDEF Example generation

Generating Applications 573

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

*
*
*
*
*
*
*
*

*+---+
*| From RMS to all servers |
*+---+
*
*
* RMS <========> Server
*

OSI-LPAP BANK , ASS-NAMES=BANK, ASSOCIATIONS=4, CONNECT=4 -
, CONTWIN=4, APPLICATION-CONTEXT=EUOSICCR -
, APT=(1,2,3,30), AEQ=1

OSI-LPAP GOLF , ASS-NAMES=GOLF, ASSOCIATIONS=4, CONNECT=4 -
, CONTWIN=4, APPLICATION-CONTEXT=EUOSICCR -
, APT=(1,2,3,30), AEQ=2

OSI-LPAP HOTEL , ASS-NAMES=HOTEL, ASSOCIATIONS=4, CONNECT=4 -
, CONTWIN=4, APPLICATION-CONTEXT=EUOSICCR -
, APT=(1,2,3,30), AEQ=3

OSI-LPAP AIRLINE, ASS-NAMES=FLIGHT, ASSOCIATIONS=4, CONNECT=4 -
, CONTWIN=4,APPLICATION-CONTEXT=EUOSICCR -
, APT=(1,2,3,30), AEQ=4

*
*
LTAC BANK, LPAP=BANK, RTAC=BANK, STATUS=ON, TYPE=D
*
*

OSI-CON BANK , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=BANK -
, N-SEL=C'HOST0001', T-SEL=C'BANK', S-SEL=('SBNK',ASCII) -
, P-SEL=(C'PBNK',ASCII)

OSI-CON GOLF , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=GOLF -
, N-SEL=C'HOST0001', T-SEL=C'GOLF', S-SEL=('SGLF',ASCII) -
, P-SEL=('PGLF',ASCII)

OSI-CON HOTEL , LOCAL-ACCESS-POINT=RMS, OSI-LPAP=HOTEL -
, N-SEL=C'HOST0001', T-SEL = C'HOTL' -
, S-SEL = ('SHTL',ASCII), P-SEL = ('PHTL',ASCII)

OSI-CON AIRLINE, LOCAL-ACCESS-POINT=RMS, OSI-LPAP=AIRLINE -
, N-SEL=C'HOST0001', T-SEL = C'FLGH' -
, S-SEL=('SFLG',ASCII), P-SEL=('PFLG',ASCII)

END

Example generation KDCDEF

574 Generating Applications

6.7.3 KDCDEF input file DynamicTravel for UTM application TRAVEL

* BANK program *

PROGRAM BANK, COMP=C, SHARED-OBJECT=BANK

* TRAVEL programs *

PROGRAM SIGN1, COMP=C
PROGRAM SIGN2, COMP=C
PROGRAM BDTAC, COMP=C
PROGRAM TRRECEIV, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM STRTEX, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM MMENUE, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO1, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO2, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO3, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO4, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO5, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINFO6, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM CANCEL, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM CANCALL, COMP=C, SHARED-OBJECT=TRAVEL
PROGRAM TRINQU, COMP=C, SHARED-OBJECT=TRAVEL

**** Administration

PROGRAM KDCADM, COMP=C
PROGRAM KDCDADM, COMP=C
PROGRAM KDCPADM, COMP=C

* TACS BANK *

TAC BANK, PROGRAM=BANK, LOCK=5

* TACS TRAVEL AGENCY *

TAC KDCBADTC, PROGRAM=BDTAC, TYPE=D
TAC KDCSGNTC, PROGRAM=SIGN1, TYPE=D
TAC SIGNON2 , PROGRAM=SIGN2, TYPE=D
TAC MMENUE , PROGRAM=MMENUE , LOCK=5
TAC INFO1 , PROGRAM=TRINFO1 , LOCK=5
TAC INFO2 , PROGRAM=TRINFO2 , LOCK=5
TAC INFO3 , PROGRAM=TRINFO3 , LOCK=5
TAC INFO4 , PROGRAM=TRINFO4 , LOCK=5

KDCDEF Example generation

Generating Applications 575

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

TAC INFO5 , PROGRAM=TRINFO5 , LOCK=5
TAC INFO6 , PROGRAM=TRINFO6 , LOCK=5
TAC TRRECEIV, PROGRAM=TRRECEIV, LOCK=5
TAC CANCEL , PROGRAM=CANCEL , LOCK=5, CALL=NEXT, TYPE=D
TAC CANCALL , PROGRAM=CANCALL , LOCK=5, CALL=FIRST, TYPE=D
TAC INQUIRY , PROGRAM=TRINQU , LOCK=5
*

**** ADMINISTRATION DIALOG ***

TAC KDCTAC , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCLTERM, LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCPTERM, LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCSWTCH, LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCSEND , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCAPPL , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCUSER , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCDIAG , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCLOG , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCINF , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCHELP , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCLPAP , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCLTAC , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCSHUT , LOCK=1, ADMIN=Y, PROGRAM=KDCADM
TAC KDCTCL , LOCK=1, ADMIN=Y, PROGRAM=KDCADM

TAC TACDADM , PROGRAM=KDCDADM, LOCK=1, ADMIN=Y
TAC TACPADM , PROGRAM=KDCPADM, LOCK=1, ADMIN=Y

*** ADMINISTRATION ASYNCHRON ***

TAC KDCTACA , LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCLTRMA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCPTRMA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCSWCHA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCUSERA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCSENDA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCAPPLA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCDIAGA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCLOGA , LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCINFA , LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCHELPA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCLPAPA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCLTACA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCSHUTA, LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
TAC KDCTCLA , LOCK=1, ADMIN=Y, TYPE=A, PROGRAM=KDCADM
*

Example generation KDCDEF

576 Generating Applications

*** USER statements ***

USER SUPERUSR, PERMIT=ADMIN, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
, KSET=MASTER

USER UTMADMIN, PERMIT=ADMIN, PASS='$23ADM--', PROTECT-PW=(8, MAX) -
, KSET=UTMADMIN

USER CHARGE1 , FORMAT=(TRAVEL, EXTEND),PASS='%aJ1df-+', PROTECT-PW=(,MED) -
, KSET=OFFCHRG

USER CHARGE2 , FORMAT=(TRAVEL, EXTEND),PASS='%aJ1df-+', PROTECT-PW=(, MED) -
, KSET=OFFCHRG

* .

*** PTERM/LTERM statements ***

PTERM PRINTX, LTERM=PRINTER, PTYPE=PRINTER, CONNECT=YES
LTERM PRINTER, USAGE=O

6.7.4 KDCDEF statements for UTM application TRAVEL

*** K D C D E F - S T A T E M E N T S ***
*** FOR UTM-PROGRAM "TRAVEL" ***

ROOT TRAVROOT

OPTION GEN=ALL

FORMSYS

MESSAGE MODULE = KCSMSGS

MAX KDCFILE = (TRAVFILE, DOUBLE) -
,APPLINAME = APTRAVEL -
,APPLIMODE = S -
,TASKS = 7 -
,ASYNTASKS = 3 -
,GSSBS = 200 -
,PGPOOL = (2048) -
,CACHESIZE = (512,50) -
,CONN-USERS = 50 -
,TRACEREC = 30000 -
,RECBUF = (10,1024) -
,KEYVALUE = 20 -
,LSSBS = 9 -
,LPUTBUF = 10 -

KDCDEF Example generation

Generating Applications 577

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

,LPUTLTH = 1948 -
,NRCONV = 1 -
,TERMWAIT = (600) -
,DPUTLIMIT1 = (363,0,0,0) -
,DPUTLIMIT2 = (1,0,0,0) -
,KB = 1024 -
,NB = 2048 -
,SPAB = 4096 -
,CLRCH = X'FF' -
,SEMARRAY =(00001221,5) -
,IPCSHMKEY = 00012210 -
,KAASHMKEY = 00012220 -
,CACHESHMKEY = 00012230 -
,OSISHMKEY = 00012244 -
,XAPTPSHMKEY = 00012254

**
*** Read data which can be administrated dynamically ***
**

* if application ran before use create-control-statements

* CREATE-CONTROL-STATEMENTS *ALL, TO-FILE = dynamicTravel -
* , FROM-FILE = TRAVFILE/copied.KDCA

OPTION DATA=DynamicTravel

*
*

*** RESERVE statement to allow dynamic administration ***

RESERVE OBJECT=ALL

*** RMXA ***

RMXA XASWITCH=xaswitch

*** SHARED-OBJECT statements ***

SHARED-OBJECT TRAVEL, LIB=DYNPROGLIB, LOAD-MODE=STARTUP
SHARED-OBJECT BANK, LIB=DYNPROGLIB, LOAD-MODE=STARTUP

Example generation KDCDEF

578 Generating Applications

*** KSET statements ***

KSET MASTER , KEYS=MASTER "SUPERUSER"
KSET UTMADMIN, KEYS=1 "Administrator of application"
KSET OFFCHRG , KEYS=5 "official in charge / Sachbearbeiter"

*** TPOOL statements ***

TPOOL LTERM=TP#, NUMBER=100, PTYPE=TTY, KSET=MASTER
TPOOL LTERM=UPICR, NUMBER=100, PTYPE=UPIC-R, KSET=MASTER

*** Generation of syntax ***

ABSTRACT-SYNTAX EUROSI, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 3, 12) -
, TRANSFER-SYNTAX = BER

* Generation of APPLICATION CONTEXTS ***

*
* Without CCR
*
APPLICATION-CONTEXT EUROSIAC, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 4, 12) -

, ABSTRACT-SYNTAX = (EUROSI)

*
* Include CCR
*
APPLICATION-CONTEXT EUOSICCR, OBJECT-IDENTIFIER = (1, 3, 9990, 1, 4, 13) -

, ABSTRACT-SYNTAX = (EUROSI, CCR)
*
*
*
*

*** OSI TP generation ***

*** UTMD statements ***

UTMD MAXJR = 200, APT=(1,2,3,21), CONCTIME=25, PTCTIME=0

KDCDEF Example generation

Generating Applications 579

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

*+---+
*| |
*| R M S - Connections |
*| |
*+---+

ACCESS-POINT TRAVEL, T-SEL=C'TRAV', S-SEL= (C'STRV',ASCII) -
, P-SEL= (C'PTRV',ASCII), AEQ=1 -
, LISTENER-PORT=30003, T-PROT=RFC1006 , TSEL-FORMAT=T

*+---+
*| From travel agency to RMS |
*+---+
*
* travel-agency <========> RMS
OSI-CON RMS , LOCAL-ACCESS-POINT=TRAVEL, OSI-LPAP=RMS,N-SEL=C'HOST0001'-

,T-SEL=C'RMS',S-SEL= (C'SRMS',ASCII), P-SEL= (C'PRMS',ASCII)-
,LISTENER-PORT=102, T-PROT=RFC1006, TSEL-FORMAT=T

OSI-LPAP RMS, ASS-NAMES=RMS, ASSOCIATIONS=4, CONNECT=0, CONTWIN=4 -
, APPLICATION-CONTEXT=EUOSICCR, APT=(1,2,3,10),AEQ=1

*
*
*+---+
*| |
*| B A N K - Connections |
*| |
*+---+

SESCHA PLUC, PLU=Y, PACCNT=0, CONNECT=Y

LPAP LPBANK, SESCHA=PLUC

BCAMAPPL SMP30041 -
,T-PROT=RFC1006 -
,LISTENER-PORT=30004,TSEL-FORMAT=T

* Connection 1 for sending ---> BANK---------------*
CON SMP30114,PRONAM=local,BCAMAPPL=SMP30041,LPAP=LPBANK -

,T-PROT=RFC1006 -
,LISTENER-PORT=30001,TSEL-FORMAT=T

LSES SMP30141,RSES=SMP30141,LPAP=LPBANK
* Connection 2 for sending ---> BANK---------------*
CON SMP30214,PRONAM=local,BCAMAPPL=SMP30041,LPAP=LPBANK -

,T-PROT=RFC1006 -
,LISTENER-PORT=30001,TSEL-FORMAT=T

LSES SMP30241,RSES=SMP30241,LPAP=LPBANK

Example generation KDCDEF

580 Generating Applications

* Connection 3 for sending ---> BANK---------------*
CON SMP30314,PRONAM=local,BCAMAPPL=SMP30041,LPAP=LPBANK -

,T-PROT=RFC1006 -
,LISTENER-PORT=30001,TSEL-FORMAT=T

LSES SMP30341,RSES=SMP30341,LPAP=LPBANK

* LTAC's -------> BANK

LTAC bank, RTAC=BANK, WAITTIME=(10,30), LPAP=LPBANK

* LTAC's -------> RMS

LTAC AVALRESP, LPAP=RMS
LTAC RESRRESP, LPAP=RMS
LTAC CNCLRESP, LPAP=RMS
LTAC AUTHRESP, LPAP=RMS
LTAC INITRESP, LPAP=RMS
LTAC SHUTRESP, LPAP=RMS
LTAC ENQRRESP, LPAP=RMS

*

END

KDCDEF KDCDEF messages

Generating Applications 581

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

24
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
6

6.8 KDCDEF messages

The KDCDEF generation tool logs the defined parameters on SYSLST (BS2000 systems)
or on stdout (Unix systems and Windows systems). It also outputs UTM messages relating
to execution of the program, with message numbers ranging from K400 to K549. Apart from
UTM messages K401, K513 and K514 all KDCDEF messages are output both to SYSLST
and to SYSOUT or to stderr and to stdout. UTM messages K401, K513 and K514 is output
only to SYSOUT or stderr.

Under Unix systems KDCDEF uses NLS message catalogs to output messages.

UTM messages relating to incorrect statements are preceded by the number of the
incorrect statement. The openUTM manual ”Messages, Debugging and Diagnostics” lists
all UTM messages together with information on the corrective actions to be performed.

X

KDCDEF messages KDCDEF

582 Generating Applications

Generating Applications 583

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
7

7 Changing the configuration of an application
dynamically

This chapter describes what to note in the KDCDEF generation of the application if you
want to use the dynamic configuration functions in your application. On the program
interface, openUTM provides KDCADMI functions as well as functions available at the
administration workstation WinAdmin or the web application WebAdmin with which you can
enter objects in the configuration of the application or delete them from the configuration
while the application is running. This increases the availability of UTM applications,
because a regeneration of the application with KDCDEF, which necessitates an interruption
to operation, is required much less often. In order to use the functions for dynamic config-
uration, you must reserve table locations in the object tables of openUTM when generating
with the KDCDEF control statement RESERVE.

This means that services as well as clients and printers can be entered dynamically in the
configuration with the assigned LTERM partners, and also means that user IDs can be
created dynamically. All of these objects can also be deleted dynamically.

You can dynamically create and delete the following objects:

– transaction codes and TAC queues
– program units and VORGANG exits (only in applications with load modules, shared

objects or DLLs)
– user IDs
– LTERM partners
– key sets
– local service names
– transport connections to LU6.1 partner applications and LU6.1 session names
– communication partners that are TS applications, UPIC clients or terminals
– printers.B/X

Dynamic configuration

584 Generating Applications

To be able to use the functions of dynamic configuration, you must create administration
programs or use the openUTM components WinAdmin or WebAdmin. By calling
KC_CREATE_OBJECT on the program interface for administration you can enter new
objects in the configuration, and by calling KC_DELETE_OBJECT you can delete objects
from the configuration. The openUTM manual “Administering Applications” describes what
to note when creating administration programs for dynamically entering objects and when
deleting objects from the configuration of the application.

i The dynamic configuration functions can also be used in full in the function variant
UTM-F. openUTM logs all changes to the configuration in the KDCFILE. The
modified configuration data then also remains available for the next application run,
as with UTM-S.

To allow you to incorporate objects into the configuration of your UTM application dynami-
cally, you must make certain preparations (see page 585 and page 587) when generating
the application with KDCDEF.

No preparations are necessary in the KDCDEF generation for deleting objects from the
configuration.

Dynamic configuration Reserving locations in object tables

Generating Applications 585

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
7

7.1 Reserving locations in the KDCFILE object tables

The configuration data of a UTM application is stored in the object tables of the KDCFILE,
which is created in the KDCDEF generation of the application. These object tables can only
be expanded dynamically insofar as free table locations are available. For this reason, free
table locations for objects you do not want to incorporate into the application configuration
until the application is running, must still be reserved when generating with the KDCDEF
statement RESERVE. You can reserve table locations for the following UTM objects:

With the RESERVE statement on page 473, you define the number of empty table locations
to be created for an object type; this corresponds to the number of individual objects of the
respective object type that can be configured dynamically.

The number of table locations that can be created for each object type is limited by the
number of names that can be generated. See also the table on page 266.

The empty table locations in the object tables are reserved for specific object types, i.e. a
table location you reserved for an LTERM partner for example, cannot be occupied by a
transaction code, etc.

During the application run, the number of objects of a particular type that can be configured
dynamically corresponds to the number of empty table locations you reserved with
KDCDEF. Deleting another object of the same type does not immediately release a table
location for a new object.

User IDs are one exception to this. You can delete user IDs in one of two ways, "delayed"
or "immediately". If a user ID is deleted with "delayed", then the table locations remain
reserved (as for the other types of objects). If the user ID is removed "immediately" from the
configuration, the table location for this user ID is released and can be used immediately
for a new user ID.

UTM object Object type

User IDs USER

TS applications, UPIC clients, terminals and printers PTERM

LTERM partners LTERM

Program units and VORGANG exits PROGRAM

Transaction codes and TAC queues TAC

Transport connections to LU6.1 partner applications CON

LU6.1 session names LSES

Key sets KSET

Local service names LTAC

Reserving locations in object tables Dynamic configuration

586 Generating Applications

i Please note the following when reserving table locations with RESERVE:
openUTM internally creates a user ID for each UPIC client and each TS application
entered dynamically in the configuration. Therefore, in UTM applications generated
with user IDs (the KDCDEF generation contains at least one USER statement), an
additional table location for user IDs must be reserved for each client of type APPLI,
SOCKET, UPIC-R or UPIC-L to be entered dynamically. These table locations are
not released when the clients are deleted (corresponds to a “delayed“ delete). In
applications without user IDs, these table locations are reserved internally by
openUTM.

Examples

RESERVE OBJECT=LTERM, NUMBER=100

This means that up to 100 LTERM partners can be entered dynamically in the configuration.

RESERVE OBJECT=LTERM, PERCENT=200

In this case, the number of reserved table locations was defined relative to the number of
statically generated LTERM partners. Twice as many (200%) LTERM partners can be
created dynamically as were entered statically in the KDCDEF generation. If 50 LTERM
partners were entered in the KDCDEF generation, another 100 LTERM partners can be
entered dynamically.

RESERVE OBJECT=ALL, NUMBER=100

This means that 100 objects can be entered dynamically for each object type, i.e. 100 user
IDs, 100 LTERM partners, etc.

RESERVE OBJECT=USER, NUMBER=0

This statement means that the number of objects of the specified type (here USER) can be
increased dynamically up to the maximum value that can be generated.

i Due to the large amount of space required by the tables, it is advisable to specify a
value ≠ 0 for NUMBER in order to reduce the space requirement of the application.

Dynamic configuration Prerequisites

Generating Applications 587

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
7

7.2 Prerequisites for entering objects dynamically

This section describes what objects you must generate statically beforehand and what
prerequisites must be met before you can dynamically enter program units, VORGANG
exits, transaction codes, user IDs and LU6.1 connections.

Note that the statically generated limit values also apply for dynamically generated objects,
e.g. the value defined with MAX ...,KEYVALUE= applies to dynamically generated key sets.

Generating lock codes, BCAMAPPL names, formatting system and LPAP partners

The following objects must be statically generated in KDCDEF:

● The lock codes you want to assign to transaction codes and LTERM partners as data
access control must lie within the range between 1 and the maximum value defined with
MAX,...KEYVALUE= number. At the same time, you must generate the key sets that
contain the key codes corresponding to the lock codes.

The lock/key code concept is described in detail in the openUTM manual “Concepts und
Functions”.

● All names of the local application (BCAMAPPL names) via which the connections are
to be established to clients or printers, must be generated with KDCDEF. Remember
especially that a separate BCAMAPPL name must be generated for the connection of
TS applications via the socket interface (PTYPE=SOCKET).

● If start formats are to be assigned to user IDs and LTERM partners, a format handling
system must be generated with the FORMSYS statement in the KDCDEF generation.
If #formats are used as start formats, a sign-on service must also be generated.

● If you want to enter LU6.1 connections or session names dynamically, the LPAP
partners and the session characteristics (SESCHA statement) must be statically
generated.

B

B

B

Prerequisites Dynamic configuration

588 Generating Applications

Prerequisites for program units and VORGANG exits

New program units and VORGANG exits can only be incorporated dynamically into the
configuration of the application if the UTM application

● BS2000 systems:

The application was generated with load modules (KDCDEF generation with LOAD-
MODULE statements), and the functionality of the BLS must be used for linking and
loading the application program.

The new program unit must be linked in a load module which was defined in the
KDCDEF generation. This load module must not be linked statically in the application
program (LOAD-MODE=STATIC), because this type of load module cannot be
exchanged dynamically.

● Unix systems, Windows systems:

The application was generated with shared objects or DLLs (KDCDEF generation with
SHARED-OBJECTS statements).
The new program unit must be linked in a shared object or DLL which was defined in
the KDCDEF generation.

At least one program unit must be generated statically with KDCDEF for each programming
language in which you want to create program units of your application. Only then the
language connection modules and runtime systems are required for operation contained in
the application program.

i BS2000 systems:
For program units compiled with ILCS-capable compilers (COMP=ILCS), it is suffi-
cient to generate one program unit with COMP=ILCS in the KDCDEF generation. It
is not necessary to issue PROGRAM statements for the various programming
languages.

B

B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

B

B

B

B

B

Dynamic configuration Prerequisites

Generating Applications 589

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
7

Prerequisites for transaction codes

Please note the following for the dynamic configuration of transaction codes:

● Transaction codes for program units that use an X/Open program interface can only be
created dynamically if at least one transaction code has been configured for an X/Open
program unit in the KDCDEF generation (TAC statement with API≠KDCS).

● If you want to divide the transaction codes into TAC classes to control job processing,
then you must create at least one TAC class in the KDCDEF generation. TAC classes
can be created in two ways in the KDCDEF generation:

– You generate a transaction code, and you specify a TAC class in the TACCLASS
operand (TAC statement) that is then implicitly created by KDCDEF.

– If you run the application without priority control (the application does not contain
any TAC-PRIORITIES statements), then you can create the TAC classes by writing
a TACCLASS statement.

If you created a TAC class in the KDCDEF generation, then the transaction codes you
enter dynamically can be assigned to any TAC class between 1 and 16. The TAC
classes are then created implicitly by openUTM. These TAC classes can be adminis-
tered.

If the application is generated without TAC-PRIORITIES, then openUTM assigns the
process numbers (TASKS) for implicitly created TAC classes as follows:
1 for dialog TAC classes (classes 1 through 8)
and 0 for asynchronous TAC classes (classes 9 through 16).

Asynchronous TAC classes (9 through 16) are only created by openUTM, however, if
you have set ASYNTASKS > 0 in the MAX statement in the generation.

● In applications with TAC classes without priority control, you can only dynamically
create transaction codes that start the program unit runs with blocking calls when TAC
classes have been statically generated with PGWT=YES (dialog and/or asynchronous
TAC classes).
Dialog and asynchronous TAC classes with PGWT=YES must therefore be generated
explicitly in the KDCDEF generation with TACCLASS statements.
You must also set MAX TASKS-IN-PGWT > 0.

● In applications with priority control (with TAC-PRIORITIES statements) , you can only
dynamically create transaction codes that start the program unit runs with blocking calls
(TAC ...,PGWT=YES) when MAX TASKS-IN-PGWT>0 was set in the KDCDEF gener-
ation.

Prerequisites Dynamic configuration

590 Generating Applications

Prerequisites for user IDs

User IDs can only be entered dynamically if your application is generated with user IDs. In
this case, your KDCDEF generation must contain at least one USER statement. At least
one user ID must be configured with administration authorization, so that the calls for
dynamic administration can be executed under this user ID.

If user IDs with ID cards are also to be configurable, the percentage of table locations that
can be occupied by user IDs with ID card must be explicitly specified when reserving the
table locations with the RESERVE statement.

You must generate the length of the ID card information statically in the KDCDEF gener-
ation using the MAX statement for user IDs with ID cards:
MAX...,CARDLTH=length

B

B

B

B

B

B

Generating Applications 591

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8 The tool KDCUPD – updating the KDCFILE

You can use the KDCUPD tool after regenerating your UTM application to transfer
important user data and administration information of the production application from the
old KDCFILE to the new one. In addition, you can use the KDCUPD update tool to switch
from an older openUTM version to the current new openUTM version without losing the
data from the previous production application in the KDCFILE.

The same applies to UTM cluster applications, both for the KDCFILEs of the node applica-
tions and for the user data and management information in the UTM cluster files created
during generation.

You can use the KDCUPD statement TRANSFER to control which data are to be trans-
ferred. KDCUPD automatically carries out a consistency check for the KDCFILE files prior
to transfer.

You can use the KDCUPD statement CHECK to check the completeness and consistency
of the KDCFILE files of an application without transferring data.

i In the case of UTM cluster applications, a distinction is made in the KDCUPD run
depending on whether the data of a KDCFILE or the data from the UTM cluster files
is to be transferred. For details, see the section “Update generation with transfer
from 32-bit to 64-bit architecture” on page 603.

Overview

592 Generating Applications

8.1 Overview

This section provides an overview of

● Version upgrades

● Prerequisites

● Data backups

● Scope of transfer, i.e. what data is transferred

8.1.1 Supported upgrades

You can use the KDCUPD utility program to transfer data from applications from openUTM
versions 5.3, 6.0, 6.1, 6.2 or 6.3.

The KDCUPD utility program from openUTM V6.3 also supports the following upgrades:

openUTM V5.3 → openUTM V6.3(standalone applications only)
openUTM V6.0 → openUTM V6.3
openUTM V6.1 → openUTM V6.3
openUTM V6.2 → openUTM V6.3
openUTM V6.3 → openUTM V6.3

On Unix platforms, KDCUPD in V6.3 also supports a transfer from 32-bit to 64-bit archi-
tecture, see section “Update generation with transfer from 32-bit to 64-bit architecture” on
page 603.

When changing versions, you must create a new KDCFILE with the KDCDEF of the new
openUTM version.

A changeover from a standalone UTM application to a UTM cluster application or vice versa
is only possible within Version 6.3. If you want to change from a V5.3, V6.0, V6.1 or V6.2
standalone UTM application to a V6.3 UTM cluster application then you must first convert
the V5.3, V6.0, V6.1 or V6.2 standalone UTM application to V6.3 before you can convert it
to a cluster application in V6.3.

KDCUPD does not support a change from a newer openUTM to an older one.

X

X

X

the tool KDCUPD Overview

Generating Applications 593

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8.1.2 Prerequisite for using KDCUPD

The prerequisites for running KDCUPD are:

● You have used the KDCDEF to create a new KDCFILE.

If the application is a UTM cluster application and if a cluster update is to performed
then it is necessary to use the KDCDEF generation tool to create new UTM cluster files
as well as the new KDCFILE.

● The application was terminated normally (e.g. with the administration command
KDCSHUT N, W or G). If the application was terminated abnormally, then you must
execute a warm start beforehand and then terminate the application normally. In the
case of a cluster update, all the node applications must have been terminated normally.

In the case of a cluster update, all the node applications must have been terminated
normally.

8.1.3 Backing up data

Before you start your work, please read the following notes:

v CAUTION!

● When you create the new KDCFILE with KDCDEF, you must ensure that you
do not accidentally overwrite the old KDCFILE and thus destroy important
application data!

● The records in user log files (USLOG files) must be saved before the application
is restarted because openUTM overwrites the current USLOG file generation
from the beginning after a KDCUPD run.

There are a number of ways of avoiding overwriting the KDCFILE:

● As shown here, you create the new KDCFILE before terminating the application. You
use the same base name, but set up the KDCFILE under another ID (BS2000 systems)
or in another directory (Unix systems, Windows systems). After you terminate the appli-
cation, you must rename or copy the files for the subsequent KDCUPD run.

● First terminate the application and then rename the old KDCFILE and all associated
files by changing the base name. Alternatively, copy the old KDCFILE and all
associated files to a different ID (BS2000 systems) or to a different directory (Unix
systems, Windows systems). Then start the KDCDEF run to generate the new
KDCFILE with the same base name.

Overview the tool KDCUPD

594 Generating Applications

Specify the following in the subsequent KDCUPD run:

– KDCFILE OLD= base_name-renamed/copied-KDCFILE

– KDCFILE NEW= base_name-new-KDCFILE

● Use a new base name for the new KDCFILE and work with this name in the KDCUPD
run. When you subsequently start the application, you can either use the new base
name or continue to use the previous base name after copying and renaming the files.

8.1.4 What data does KDCUPD transfer?

This section lists the data that is transferred, indicates the dependencies of the UTM
variants and generation parameters and describes in greater detail which user data is
always transferred and which it might sometimes not be possible to transfer.

Transfer in standalone applications

The data that KDCUPD transfers from the old KDCFILE to the new one depends on the
variant of the UTM application, see also section “Transfer of user data” on page 597:

● UTM-S and UTM-F applications

KDCUPD only transfers certain changes to the administration data:
– passwords and RSA keys
– version number of load modules and Locales under BS2000 systems
– version number of shared objects under Unix systems
– version number of DLLs under Windows systems.

In addition, all available RSA keys of levels 1 to 4 are also transferred in a KDCUPD
run. Active keys and keys created using administration facilities but not yet activated
are transferred. If, in the old KDCFILE, there are no RSA keys in an encryption level,
then nothing is transferred for this level. It can therefore happen that RSA keys
generated for this encryption level in the new KDCFILE are not overwritten with 0.

● UTM-S applications

KDCUPD also transfers administration data and current user data such as global
secondary storage areas, asynchronous messages, TLS or ULS areas, and service-
specific information etc. from the previous KDCFILE to a newly generated KDCFILE. In
the data transfer, the KDCUPD checks whether the owner, the destination or the initiator
of the data is missing in the new KDCFILE or if it was deleted by the administration in
the previous application run. In this case, KDCUPD does not transfer the data and logs
this event.

B

X

W

the tool KDCUPD Overview

Generating Applications 595

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

Transfer in UTM cluster applications

In UTM cluster applications, the scope of the transferred data also depends on whether you
are performing a node update or a cluster update.

Cluster update

When a cluster update is performed in a UTM cluster application, the management and
user data for the GSSB, ULS and the service-specific information from the previous UTM
cluster files is imported into the new UTM cluster files irrespective of the variant of the UTM
application. If data cannot be transferred, for example because the owner of the service-
specific data is not present in the new UTM cluster files, then this is logged.

Node update

In the case of a node update, the data that KDCUPD transfers from the old to the new
KDCFILE depends on the variant of the UTM application:

● UTM-S and UTM-F applications

KDCUPD only transfers certain changes to the administration data:
– passwords and RSA keys
– version number of load modules and Locales under BS2000 systems
– version number of shared objects under Unix systems
– version number of DLLs under Windows systems.

All available RSA keys of levels 1 to 4 are also transferred in a KDCUPD run. Active
keys and keys created using administration facilities but not yet activated are trans-
ferred. If, in the old KDCFILE, there are no RSA keys in an encryption level, then
nothing is transferred for this level. It can therefore happen that RSA keys generated
for this encryption level in the new KDCFILE are not overwritten with 0.

● UTM-S applications

KDCUPD transfers administration data and current user data such as asynchronous
messages, TLS areas from the previous KDCFILE to a newly generated KDCFILE. In
the data transfer, the KDCUPD checks whether the owner, the destination or the initiator
of the data is missing in the new KDCFILE or if it was deleted by the administration in
the previous application run. In this case, KDCUPD does not transfer the data and logs
this event.

For further details, see section “Update generation with transfer from 32-bit to 64-bit archi-
tecture” on page 603. The effect of the individual parameters in node updates and cluster
updates can be found in the description of the TRANSFER statement, see section
“TRANSFER - control the data transfer of the user data” on page 621 ff.

B

X

W

Overview the tool KDCUPD

596 Generating Applications

8.1.4.1 Changing generation parameters

KDCUPD compares the generations of the two KDCFILEs. Depending on the results of
these checks, KDCUPD cannot transfer some items of data and in some cases must reject
transfer completely.

If the KDCUPD run detects that the database configurations of the two generations are
incompatible then an error message is output and the KDCUPD run is terminated abnor-
mally.

No transfer

When generating new KDCFILE the user is basically permitted to change all the generation
parameters compared with the old KDCFILE. However, there are some exceptions which
apply only to UTM-S in the case of standalone applications and to UTM-S and UTM-F in
the case of UTM cluster applications.

The entire upgrade is denied by KDCUPD for the UTM-S variant if there are the following
differences between certain generation parameters in the new and old generation because
running an application with the KDCFILE would lead to errors.

● Old KDCFILE generated with formatting, new KDCFILE without.

● Different database systems or different number of database systems, if they were
defined with DATABASE statements.

The upgrade is not denied in the following cases:

– No database system was generated in the old KDCFILE one or two database
systems are generated in the new KDCFILE.

– In the old KDCFILE, the Oracle database system was generated with
DATABASE, TYPE=ORACLE, and in the new KDCFILE with DATABASE,
TYPE=XA.

● The same database systems are entered in the generations, but the DATABASE state-
ments are not in the same sequence.

In the case of standalone applications of the UTM-F variant, differences of this type do not
prevent KDCUPD from carrying out the transfer.

Limited transfer

There are generation differences between the old and new KDCFILE which in principle
permit transfer, but for which individual messages or data areas cannot be transferred.
KDCUPD logs events such as these to SYSOUT or SYSLST (on BS2000 systems) or to
stdout or stderr (on Unix systems and Windows systems) and continues transfer to the new
KDCFILE.

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

the tool KDCUPD Overview

Generating Applications 597

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

Examples

If an LTERM partner is no longer defined in the new KDCFILE, KDCUPD cannot
transfer any FPUT messages and TLS areas for these LTERM partners.

If the communication area of a dialog service is larger than the maximum communi-
cation area length (operand MAX KB=...) in the new KDCFILE, KDCUPD rejects
transfer of this service.

In general, the generation values of the new KDCFILE apply when transferring with
KDCUPD.

8.1.4.2 Transfer of user data

The transfer of user data can be controlled using the KDCUPD TRANSFER statement.

Please note that in the case of standalone applications as well as of node updates in UTM
cluster applications, the following remarks only apply to UTM-S.

User data always transferred by KDCUPD

KDCUPD always transfers the following data of a KDCFILE, irrespective of the specifica-
tions in the TRANSFER control statement:

● asynchronous messages in USER queues when the user, generating LTERM, and
generating USER also exist in the new KDCFILE

User data which KDCUPD transfers optionally

The TRANSFER control statement allows you to control which of the following data
KDCUPD is to transfer to the new KDCFILE or the UTM cluster files:

● Dialog services started by a terminal or a TS application of type APPLI.

● Dialog services started by a UPIC client.

● Dialog services started by a TS application of type SOCKET.

● Passwords for the user IDs and - if generated - the validity period remaining, minimum
wait time until the next password change, and the password history

● Secondary storage area GSSB, TLS, and ULS

● Queued output jobs

● Queued messages to local asynchronous services and TAC queues as well as open
asynchronous services

● Queued messages to local partners

● Queued messages to remote partners

Overview the tool KDCUPD

598 Generating Applications

● Queued messages to temporary queues

● Current version number of the loadable objects (load objects under BS2000 systems,
shared objects on Unix systems, DLLs on Windows systems)

● The locales of user IDs (only on BS2000 systems)

When services are transferred, all service-specific data is transferred:

● Local secondary storage area data

● Saved dialog messages

● Communication areas

● Batch stacked services (only for standalone applications)

Data not transferred by KDCUPD

The following is not transferred by KDCUPD:

● Objects which have been added with the administration function such as new USERs.

● Data belonging to open, distributed services.
KDCUPD does not issue a message that this data was not transferred!

● Open dialog services of users when the user does not exist in the new KDCFILE.

● Open asynchronous services when the user who started the service or the LTERM or
(OSI-)LPAP partner from which the asynchronous service was started does not exist in
the new KDCFILE.

● Queued messages when the destination of the message, the user who generated the
message, or the LTERM or (OSI-)LPAP partner from which the asynchronous service
was started does not exist in the new KDCFILE.

● The TLS or ULS storage areas when the corresponding LTERM, (OSI-)LPAP, the
associated USER, or the associated session or association does not exist in the new
KDCFILE.

● Service stacks in UTM cluster applications.

B

Updating the KDCFILE KDCUPD for standalone UTM applications

Generating Applications 599

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8.2 Updating the KDCFILE for standalone UTM applications

Steps

v Before performing the operations below, please read section “Backing up data” on
page 593!

Steps 1 to 5 on the following pages explain how to use the tool KDCUPD to update the
KDCFILE.

1. Create the new KDCFILE with KDCDEF

2. Terminate the application normally

3. Rename/copy the old KDCFILE and back up the user log file

4. Call KDCUPD

5. Start application

These steps are described in detail on the following pages. The method shown here is only
one of several possibilities. In all cases, you must ensure that the KDCFILE is not
overwritten, see warning on page 593.

KDCUPD for standalone UTM applications Updating the KDCFILE

600 Generating Applications

Figure 20: Updating the KDCFILE

1. Create the new KDCFILE with KDCDEF

You can change the configuration of your application in the KDCDEF run, i.e. you can define
new partner applications and connections, for example, delete existing ones or change
application properties, etc.

It is possible to switch from single-file to dual-file operation. In addition, the “new” KDCFILE
can be divided into several files, or the number of files can be changed. When dual-file
operation is used and/or the new KDCFILE is distributed across several files, all these files
must exist and KDCUPD must be able to access them.

2. Terminate the application normally

Terminate the application normally, see section “Prerequisite for using KDCUPD” on
page 593.

The application must be terminated normally before calling KDCUPD so that the old
KDCFILE is in a consistent state.

KDCUPD update tool

KDCUPD
control statements

Log of
KDCUPD

“Old” KDCFILE KDCA [,KDCB]1)

(base name filebase1)

“New” KDCFILE KDCA [,KDCB]1)

(base name filebase2)

2)

1)KDCB in the case of dual-file operation of the KDCFILE

2)KDCUPD writes the protocol under BS2000 systems per default to SYSOUT and
SYSLST, under Unix systems and Windows systems to stdout and stderr.

read user data transfer

read

Updating the KDCFILE KDCUPD for standalone UTM applications

Generating Applications 601

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

Make sure that the user log file exists and is not locked when the application is terminated.
openUTM stores the user log records (LPUT calls) temporarily and does not write them to
the file immediately. When the application is terminated normally, an attempt is made to
write these records to the current user log file. If this attempt fails, the records remain in the
old KDCFILE.
KDCUPD does not transfer these LPUT records to the new KDCFILE. But KDCUPD
indicates with a warning message (K314) that the data get lost.

3. Copy the KDCFILE and back up the user log file

After terminating the application, you must copy or rename the current KDCFILE, for
instance to OLD.KDCA. Then you assign the ‘correct’ name to the new KDCFILE.

When dual-file operation is used and/or the current KDCFILE is distributed across several
files, all these files must be copied or renamed using the same filebase name, and
KDCUPD must be able to access them.

Back up any existing user log file, as this file is overwritten when the system is restarted
after a KDCDEF or KDCUPD run.

4. Call KDCUPD

In a subsequent KDCUPD run, specify the base name of the copied KDCFILE (including
the user ID under BS2000) in the control statement KDCFILE OLD= and specify the base
name of the newly generated KDCFILE in the control statement KDCFILE NEW=.

BS2000 systems:

Before calling KDCUPD you must do the following:

● The library SYSLNK.UTM.063 must be set as the tasklib:

/SET-TASKLIB LIBRARY=$userid.SYSLNK.UTM.063

The library of the UTM version with which the new KDCFILE was generated must be
assigned.If no library or an incorrect library was assigned, the DLL outputs a corre-
sponding message.

● Process switch 3 should be set to OFF:

/MODIFY-JOB-SWITCHES OFF=3

KDCUPD is called as follows:

START-EXECUTABLE-PROGRAM FROM-FILE=*LIB-ELEM
 (LIBRARY=$userid.SYSLNK.UTM.063.UTIL,ELEMENT-OR-SYMBOL=KDCUPD)
 :
 : KDCUPD control statements
 :
 *END

B

B

B

B

B

B

B

B

B

B

B
B
B
B
B
B

KDCUPD for standalone UTM applications Updating the KDCFILE

602 Generating Applications

Alternatively, you can also call KDCUPD via the SDF command START-KDCUPD. This
command is located in the SDF UTM application area. For more detailed information, see
openUTM manual “Using openUTM Applications under BS2000 Systems” section "Calling
UTM tools".

KDCUPD reads control statements from SYSDTA. A description of the KDCUPD control
statements can be found as of page 614.

KDCUPD outputs the procedure for logging purposes to SYSLST and/or SYSOUT (see
control statement LIST on page 619).

Unix systems, Windows systems:

The subdirectory DUMP must exist in the base directory of the old KDCFILE (filebase1) as
well as in the base directory of the new KDCFILE (filebase2) before KDCUPD is called.
DUMP is used for diagnostic purposes.

You start KDCUPD under Unix systems from the shell. You must call KDCUPD in a DOS
window in Windows systems. Enter the following command to do this:

Unix systems: utmpath/ex/kdcupd 1>upd.out

Windows systems: utmpath\ex\kdcupd 1>upd.out.txt

Note the following:

● You should always redirect the output to stdout to a file (upd.out or upd.out.txt in the
examples above).

● You may not redirect stderr (command mode) because KDCUPD asks you to enter the
control statements via stderr (e.g. the ‘∗‘ of the KDCUPD input mode is output to stderr).

KDCUPD reads the control statements from stdin. A description of the control statements
for KDCUPD can be found in section “Control statements for KDCUPD” on page 614.

KDCUPD outputs the procedure for logging purposes to stdout and/or stderr (see control
statement LIST on page 619).

5. Start the application

The base name (filebase2) of the new KDCFILE must be specified in the start parameter
FILEBASE=. Modify your start procedure if you have assigned a new base name to the new
KDCFILE when creating it.

If the data has been transferred to the new KDCFILE with KDCUPD and you restart the
application, then every user can continue to work as if the application was terminated
normally and then restarted.

B
B

B

B

B

B

B

B

X/W

X/W

X/W

X/W

X/W

X/W

X

W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

X/W

Updating the KDCFILE KDCUPD for 64-bit transfer

Generating Applications 603

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8.3 Update generation with transfer from 32-bit to 64-bit
architecture

On 64-bit platforms, KDCUPD as of V6.3, is also able to transfer data from a 32-bit UTM
application to a 64-bit UTM application. The transfer is always performed from the 32-bit
UTM application to the 64-bit application and is supported only by the 64-bit variant of the
utility program KDCUPD.

This function is only provided for system platforms on which the 64-bit variant of openUTM
is available. When doing so, please note the following:

● KDCUPD is only able to process UTM applications on the same system platform.

● The previous 32-bit UTM application and the 64-bit UTM application to which the data
is to be transferred must be of the same version.

● If the 32-bit UTM application was run with a predecessor version < V6.3 then the
transfer must be performed in two stages, see following example for openUTM V6.2:

1. Transfer from openUTM V6.2 (32-bit) to openUTM V6.3 (32-bit) using the KDCUPD
V6.3 32-bit program.

2. Transfer from openUTM V6.3 (32-bit) to openUTM V6.3 (64-bit) using the KDCUPD
V6.3 64-bit program.

● In the case of UTM cluster applications, the change of architecture must be performed
both for the node update and the cluster update.

Steps

The steps are the same as when performing transfers between 32-bit platforms, see for
example section “Updating the KDCFILE for standalone UTM applications” on page 599.

KDCUPD automatically detects the change of architecture when the transfer operation is
performed, i.e. no special control statements are required for this operation. More specifi-
cally, the following applies:

● You enter the directory containing the previously used 32-bit KDCFILE in the OLD
parameter of the TRANSFER statement.

● You enter the directory for the newly generated 64-bit KDCFILE in the NEW parameter
of the TRANSFER statement.

When this change of architecture is performed, KDCUPD outputs the message K841.

v CAUTION!
All user data, e.g. GSSB, TLS, ULS content and the KB program areas, is taken
over unchanged at the binary level because KDCUPD has no information about the
internal structure of the user data employed by the user!

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

KDCUPD for UTM cluster applications Updating the KDCFILE

604 Generating Applications

8.4 Updating the KDCFILE and UTM cluster files for UTM cluster
applications

KDCUPD allows you to update and convert UTM cluster applications when performing the
following actions:

● Online update of a UTM cluster application V6.3

● Update generation of a UTM cluster application V6.3 see page 607

● Conversion of a UTM cluster application V6.3, see, siehe page 609

When performing a KDCUPD run, you can choose between a node update and and a
cluster update:

● In the case of a node update, you update the KDCFILE of a node application.

● In the case of a cluster update, you update the UTM cluster files created during gener-
ation.

You can control these two variants using the KDCFILE and CLUSTER-FILEBASE state-
ments.

v Before performing a KDCUPD run, please read section “Backing up data” on
page 593!

The following sections describe the KDCUPD statements that are required for these
functions and provide information on how you must first use KDCDEF to create the gener-
ation file. In addition, further activities are required depending on the situation, e.g. starting
or terminating node applications or theUTM cluster application or adapting the start param-
etersn.

 For details see the relevant openUTM manual “Using openUTM Applications”,
section “Update generation in the cluster”.

Updating the KDCFILE KDCUPD for UTM cluster applications

Generating Applications 605

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8.4.1 Online update of a UTM cluster application

When you perform an online update, only the KDCFILE is regenerated and no changes are
made to the UTM cluster files. As a result, the changes to the generation apply only to the
KDCFILE.

You can perform an online update while the cluster application is running, i.e. at least one
node application is always active during the update. To perform an online update, you can
terminate each node application in succession, run a node update to transfer the node-
specific data and then restart the node applications. The node-specific data includes, for
example, TLS areas, asynchronous messages to LTERM, OSI(-LPAP), asynchronous
TACs and TAC, USER and temporary queues or open asynchronous services.

v CAUTION!
Please note the following when performing an online update to a UTM cluster appli-
cation:

– The sequence of TAC statements must not be modified. Otherwise services
may be terminated abnormally on service restarts. As a result, you must append
new TAC statements at the end and must not delete any TAC statements.

– The RESTART parameter in the USER statements must not be modified.

Please note that global administration of all applications of a cluster and an online inverse
KDCDEF run are not possible until all active node applications have been updated to the
same generation status. Local administration of individual node applications, however, can
be carried out at any time.

v CAUTION!
After a node application has been restarted on the basis of a newly generated
KDCFILE, it is not possible to start other node applications using a KDCFILE from
an older generation run!

Proceed as follows to perform an online update:

KDCDEF run

Use KDCDEF to generate a new initial KDCFILE. When you do this, you must specify the
cluster filebase name of the current UTM cluster files. You must not specify OPTION
GEN=CLUSTER.

KDCUPD for UTM cluster applications Updating the KDCFILE

606 Generating Applications

KDCUPD runs

1. First node update

Make the old KDCFILE and the new KDCFILE file under the base name specified
below.

Perform the KDCUPD run with the following statements:

KDCFILE OLD=filebase-old,NEW=filebase-new
TRANSFER ...

Explanation

filebase-old
Base name of the node application’s old KDCFILE.

filebase-new
Base name of the new KDCFILE generated using KDCDEF and copied for the
node application. KDCUPD transfers the data from the old KDCFILE to the
node application’s new KDCFILE. You use the TRANSFER statement to specify
the scope of the data to be transferred.

2. Subsequent node updates

Perform the actions described in step 1 for all the other node applications without delay.

Updating the KDCFILE KDCUPD for UTM cluster applications

Generating Applications 607

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8.4.2 Update generation for a UTM cluster application

When you perform an update generation for a UTM cluster application, the UTM cluster files
(cluster configuration file, cluster user file, cluster page pool etc.) are also regenerated. To
do this, the UTM cluster application must first have been completely terminated.

Before a cluster update can be performed, all the node applications must have been termi-
nated normally.

A new variant of KDCUPD can now be used during update generations. This is the so-
called cluster update. When you perform a cluster update you require the old UTM cluster
files and the new UTM cluster files generated by KDCDEF in addition to the old and new
KDCFILE.

To perform a cluster update, you must specify not only the KDCUPD statement KDCFILE
but also the statement CLUSTER-FILEBASE. You can specify the initial KDCFILE or any
other node KDCFILE in the KDCFILE statement.

During a cluster update, data that applies globally in the cluster such as GSSB and ULS
areas is transferred together with service-specific information and passwords. The data that
applies globally throughout the cluster is also transferred in the case of UTM-F. You can
also use the TRANSFER statement to control the data that is transferred during a cluster
update.

Proceed as follows to perform an update generation:

KDCDEF run

Use KDCDEF to generate the new initial KDCFILE for the UTM cluster application,
including the UTM cluster files. To do this, specify GEN=(CLUSTER,KDCFILE) in the
OPTION statement.

KDCUPD runs

1. Cluster update

Make the old and new UTM cluster files and the old and new KDCFILE available under
the base names specified below. For the old and new KDCFILE, you can use either the
initial KDCFILE or the KDCFILE of a node application. In this case, the KDCFILEs are
used only for the program run and for a variety of checks. The content of the old
KDCFILE is not transferred and the new KDCFILE is not changed.

Perform the KDCUPD run with the following statements:

CLUSTER-FILEBASE OLD=cluster-filebase-old,NEW=cluster-filebase-new
KDCFILE OLD=filebase-old,NEW=filebase-new
TRANSFER ...

KDCUPD for UTM cluster applications Updating the KDCFILE

608 Generating Applications

Explanation

cluster-filebase-old
Base name of the old UTM cluster files.

cluster-filebase-new
Base name of the new UTM cluster files generated by KDCDEF. KDCUPD
transfers the data that is valid globally in the cluster from the old UTM cluster
files to the new UTM cluster files. You use the TRANSFER statement to specify
the scope of the data to be transferred.

filebase-old
Base name of the old KDCFILE in the UTM cluster application.

filebase-new
Base name of the new KDCFILE in the UTM cluster application.

2. First node update

Perform the node update in the same way as an online update, see page 606.

After the KDCUPD run, you can start the node application.

3. Subsequent node updates

Repeat step 2 for all the other node applications.

Updating the KDCFILE KDCUPD for UTM cluster applications

Generating Applications 609

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8.4.3 Converting a UTM cluster application

KDCUPD allows you to convert UTM cluster applications when performing the following
actions:

● Conversion from a standalone application V6.3 to a UTM cluster application V6.3

● Conversion from a UTM cluster application V6.0 to V6.3, see page 611

● Conversion from a UTM cluster application V6.3 to a standalone UTM application V6.3,
see page 612

8.4.3.1 Conversion from a standalone UTM application to a UTM cluster application

Standalone UTM applications can be converted directly to UTM cluster applications in the
case of UTM applications as of version 6.3.

If you want to convert a standalone UTM application V5.3, V6.0, V6.1 or V6.2 into a UTM
cluster application then you must first convert it into a version 6.3 standalone application.
For details, see section “Updating the KDCFILE for standalone UTM applications” on
page 599.

KDCDEF run

Use KDCDEF to generate the initial KDCFILE for the UTM cluster application, including the
UTM cluster files. To do this, specify GEN=(CLUSTER,KDCFILE) in the OPTION
statement.

KDCUPD runs

1. Cluster update

Make the new UTM cluster files and the old and new KDCFILE available under the base
names specified below. For the new KDCFILE, you can use either the initial KDCFILE
or the KDCFILE of a node application. In this case, the KDCFILEs are only used for
various checks. The content of the new KDCFILE is not changed.

Perform the KDCUPD run with the following statements:

CLUSTER-FILEBASE NEW=cluster-filebase
KDCFILE OLD=filebase-old,NEW=filebase-new
TRANSFER ...

KDCUPD for UTM cluster applications Updating the KDCFILE

610 Generating Applications

Explanation

cluster-filebase
Base name of the new UTM cluster files generated by KDCDEF. KDCUPD
transfers the data that applies globally at cluster level from the old KDCFILE of
the standalone application to the UTM cluster files. You use the TRANSFER
statement to specify the scope of the data to be transferred.

filebase-old
Base name of the old KDCFILE in the standalone application.

filebase-new
Base name of the new KDCFILE in the UTM cluster application.

2. Node update

Perform a KDCUPD run with the following statements for a node application’s
KDCFILE:

KDCFILE OLD=filebase-old,NEW=filebase-new
TRANSFER ...

Explanation

filebase-old
Base name of the old KDCFILE in the standalone application.

filebase-new
Base name of the node application’s KDCFILE. KDCUPD transfers the data
from the old KDCFILE to the node application’s KDCFILE. You use the
TRANSFER statement to specify the scope of the data to be transferred.

v CAUTION!
You can only perform a KDCUPD run for a node application!

Updating the KDCFILE KDCUPD for UTM cluster applications

Generating Applications 611

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8.4.3.2 Converting a UTM cluster application from V6.0 to V6.3

When converting a UTM cluster application from V6.0 to V6.3, the only global cluster-level
data that you can transfer are the passwords and locales. GSSB, ULS and service data is
not transferred even if the old UTM cluster application was generated with GLOBAL-UTM-
DATA=YES and/or USER-RESTART=YES.

KDCDEF run

Use KDCDEF to generate the initial KDCFILE for the UTM cluster application, including the
UTM cluster files. To do this, specify GEN=(CLUSTER,KDCFILE) in the OPTION
statement.

KDCUPD runs

1. Cluster update

Before the last node application is terminated, the administration facilities must be used to
read the current values for all users, e.g. using WinAdmin or WebAdmin. This transfers the
user passwords from the cluster user file into the KDCFILE of this node application. Use
this node application’s KDCFILE ("old" KDCFILE) for the cluster update. For the new
KDCFILE, you can use either the initial KDCFILE or the KDCFILE of a node application.

Perform the KDCUPD run with the following statements:

CLUSTER-FILEBASE NEW=cluster-filebase
KDCFILE OLD=filebase-old,NEW=filebase-new
TRANSFER ...

Explanation

cluster-filebase
Base name of the new UTM cluster files generated by KDCDEF. KDCUPD
transfers the locales (BS2000 systems) and passwords from the node appli-
cation’s old KDCFILE of Version 6.0 to the new UTM cluster files unless you
have specified otherwise in the TRANSFER statement.

filebase-old
Base name of the selected node application’s old KDCFILE.

filebase-new
Base name of the new KDCFILE in the UTM cluster application. This KDCFILE
is required only for checking purposes and no data is taken over into the new
KDCFILE.

KDCUPD for UTM cluster applications Updating the KDCFILE

612 Generating Applications

2. Node update

Perform the KDCUPD run with the following statements for all node applications:

KDCFILE OLD=filebase-old,NEW=filebase-new
TRANSFER ...

Explanation

filebase-old
Name of the old KDCFILE of the selected node application.

filebase-new
Name of the new KDCFILE generated using KDCDEF and copied for the node
application. KDCUPD transfers the data from the node application’s old
KDCFILE to the new KDCFILE. You use the TRANSFER statement to specify
the scope of the data to be transferred.

8.4.3.3 Converting a UTM cluster application to a standalone UTM application

If you want to convert a UTM cluster application of V6.3 into a standalone V6.3 application
then you can perform either a cluster update or a node update, but not both. This is due to
the fact that KDCUPD is only able to transfer data to a newly generated KDCFILE.

When you perform a cluster update, you can only transfer data that applies globally to the
cluster such as passwords, locales, GSSB, ULS and service-specific data. In the case of a
node update, you can only transfer local, node-level data such as TLS, asynchronous
messages etc.

KDCDEF run

Use KDCDEF to generate the KDCFILE for the standalone application, i.e.
GEN=CLUSTER must not be specified in the OPTION statement.

KDCUPD run

You can only perform one KDCUPD run. If you perform a cluster update then you cannot
perform a node update and vice versa.

● Cluster update

Make the old UTM cluster files and the old and new KDCFILE available under the base
names specified below. For the old KDCFILE, you can use either the initial KDCFILE or
the KDCFILE of a node application. In this case, the KDCFILEs are only used for
various checks. The content of the old KDCFILE is not transferred.

Updating the KDCFILE KDCUPD for UTM cluster applications

Generating Applications 613

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

Perform the KDCUPD run with the following statements:

CLUSTER-FILEBASE OLD=cluster-filebase-old
KDCFILE OLD=filebase-old,NEW=filebase-new
TRANSFER ...

Explanation

cluster-filebase-old
Base name of the old UTM cluster files. KDCUPD transfers the data that applies
globally at cluster level to the KDCFILE of the new standalone application. You
use the TRANSFER statement to specify the scope of the data to be trans-
ferred.

filebase-old
Base name of the selected KDCFILE in the UTM cluster application (initial
KDCFILE or KDCFILE of a node application).

filebase-new
Name of the KDCFILE of the standalone application. KDCUPD transfers the
data of the UTM cluster files to the new KDCFILE.

● Node update

i To transfer as much node-specific data as possible during the node update, it
may be advisable, in the last running node application, to initiate an online
import for all the other node applications and then to use the KDCFILE of this
last node application for the KDCUPD run.

Perform the KDCUPD run with the following statements:

KDCFILE OLD=filebase-old,NEW=filebase-new
TRANSFER ...

Explanation

filebase-old
Name of the KDCFILE of the selected node application.

filebase-new
Name of the KDCFILE that was generated with KDCDEF. KDCUPD transfers
the data from the KDCFILE of the node application to the KDCFILE of the stand-
alone application. You use the TRANSFER statement to specify the scope of
the data to be transferred.

Control statements for KDCUPD Updating the KDCFILE

614 Generating Applications

8.5 Control statements for KDCUPD

KDCUPD knows the following control statements for data transfer:

KDCUPD knows the following control statements for the consistency check:

The control statements are read from SYSDTA under BS2000 systems or from stdin
(command prompt) under Unix systems and Windows systems.The control statements
KDCFILE, CATID, LIST and CHECK may only be entered once per KDCUPD run. The input
must be contained in a single line. Multiple (separate single) lines can be entered for the
control statement TRANSFER.

Example

1. KDCUPD is to transfer the data from the old KDCFILE (base name BOOK01) of a
standalone UTM-S application to the new KDCFILE (base name BOOK02). All data is to
be transferred except for the asynchronous messages intended for the communication

Statement Meaning

TRANSFER Control the transfer of the data from the old KDCFILE to the new KDCFILE

KDCFILE Specify the base name of the newly generated and the old KDCFILE

CLUSTER-FILEBASE Specify base name of old and new UTM cluster files

CATID The catid of the old and new KDCFILE are specified under BS2000
systems

LIST Control the runtime log

END Terminate input and start processing

Statement Meaning

CHECK Check the consistency of the KDFILE of a UTM application

LIST Control the runtime log

END Terminate input and start processing

BB
B

Updating the KDCFILE Control statements for KDCUPD

Generating Applications 615

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

partners (LPAP and LTERM) that are still located in the message queues of the old
KDCFILE. KDCUPD is to output the successful transfer messages only to SYSLST
(BS2000 systems) or stdout (Unix systems, Windows systems).

2. If you only enter the mandatory parameters in all statements, then KDCUPD attempts
to transfer everything and outputs the log to SYSOUT and SYSLST or to stdout and
stderr. You must specify the following to transfer all data:

CATID - define Catid of the old and the new KDCFILE

The CATID statement specifies the catalog ID of the old and new KDCFILE. You must
specify at least one of the operands OLD or NEW.

OLD=(catalog_A,catalog_B)
Catids for the old (previously used) KDCFILE

NEW=(catalog_A,catalog_B)
Catids for the new KDCFILE
If you specify only catalog_A, this Catid is assigned to all parts of the
KDCFILE. If you are working with Catids, the base name (filebase1/2) must
be specified in the KDCFILE statement without a catalog ID.

Input under BS2000 systems Input under Unix systems, Windows

*KDCFILE NEW=BUCH02,OLD=BUCH01
*CATID OLD=(20SN,20PN),NEW=(20SN,20PN)
*TRANSFER ASYNLPAP=NO
*TRANSFER ASYNTERM=NO
*LIST PROTOCOL=SYSLST
*END

*KDCFILE NEW=BUCH02,OLD=BUCH01

*TRANSFER ASYNLPAP=NO
*TRANSFER ASYNTERM=NO
*LIST PROTOCOL=STDOUT
*END

 under BS2000 systems under Unix systems, Windows

*KDCFILE NEW=BUCH02,OLD=BUCH01
*CATID OLD=(20SN,20PN),NEW=(20SN,20PN)
*END

*KDCFILE NEW=BUCH02,OLD=BUCH01

*END

CATIDË [OLD=(catalog_A,catalog_B)]

[, NEW=(catalog_A,catalog_B)]

B

B

B

B

B

B

B

B

B

B

B

Control statements for KDCUPD Updating the KDCFILE

616 Generating Applications

CHECK - check the consistency of the KDCFILE

The CHECK statement causes KDCUPD to check the KDCFILE file(s) of an application for
consistency (completeness, identical generation and processing status). No data is trans-
fered.

filebase Base name of the KDCFILE
(KDCDEF control statement MAX KDCFILE=filebase)

BS2000 systems:
With dual-file operation, filebase must be specified with the catalog ID of the
A files.

CLUSTER-FILEBASE - Specify the base names of the old and new UTM
cluster files

You use the CLUSTER-FILEBASE statement to inform KDCUPD of the base names of the
old and new UTM cluster files.

NEW=cluster_filebase2
Base name of the newly generated UTM cluster files.
You must not specify this parameter when converting a UTM cluster appli-
cation to a standalone application.

OLD=cluster_filebase1
Base name of the previously used UTM cluster files.
You must not specify this parameter when converting a standalone appli-
cation to a UTM cluster application.

i The old and new UTM cluster files must have different base names. You can do this
in two ways:

– For the new KDCDEF generation, enter a base name that is different from that
in the old KDCDEF generation (KDCDEF statement CLUSTER; operand
CLUSTER-FILEBASE).

CHECKË filebase

CLUSTER-FILEBASEË [NEW=cluster_filebase2]

[, OLD=cluster_filebase1]

B

B

B

B

B

Updating the KDCFILE Control statements for KDCUPD

Generating Applications 617

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

– In the KDCDEF generation, leave the base name in CLUSTER CLUSTER-
FILEBASE= unchanged. When you do this, rename the previously used UTM
cluster files before the KDCUPD run so that they have a different base name.

END - terminate input and start processing

The END statement terminates the entry of parameters and starts processing.
The KDCUPD control statements must be terminated with END.

END

Control statements for KDCUPD Updating the KDCFILE

618 Generating Applications

KDCFILE - specify the base name of the old and new KDCFILE

The KDCFILE statement passes the base name of the old and new KDCFILE to KDCUPD.

NEW=filebase2
Base name of the newly generated KDCFILE

BS2000 systems:
In the case of dual-file operation, the catalog IDS for the A and B files can
be assigned with the CATID statement. In this event, you must specify the
base name without the catalog ID.

OLD=filebase1
Base name of the old KDCFILE

KDCFILEË NEW=filebase2

, OLD=filebase1

B

B

B

B

Updating the KDCFILE Control statements for KDCUPD

Generating Applications 619

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

LIST - control the runtime log

The LIST statement controls output of the positive and negative transfer messages as well
as messages K305 and K306 for the number of pages used in the page pool.

ERRORS= Controls the output of negative transfer messages

BOTH Data is logged to SYSOUT and SYSLST (under BS2000 systems) or to
stderr and stdout under Unix systems and Windows.

Default: BOTH

SYSOUT Data is logged to SYSOUT.

SYSLST Data is logged to SYSLST.

STDOUT Data is logged to stdout.

STDERR Data is logged to stderr.

INFO= Controls the output of messages K305 and K306 for the number of pages
used in the page pool of the new KDCFILE

SHORT At the end of the log for the successful transfer messages, K306 messages
are used to output an overview of the number of pages used in the page
pool. An overall view and a view with the number of pages used by each of
the GSSB, QUEUE, LTERM, LPAP, TAC, USER, and ASYNVG object types
(if they use pages in the page pool) are output.

LISTË [ERRORS={ BOTH | SYSOUT1 | SYSLST1 | STDERR2 | STDOUT2 }]

[,INFO={ SHORT | LONG | NO | }]

[,PROTOCOL={ BOTH | NO | SYSOUT1 | SYSLST1 | STDERR2 | STDOUT2 }]

1 SYSLST and SYSOUT are only permitted under BS2000 systems.
2 STDERR and STDOUT are only permitted under Unix systems and Windows

B

X/W

BB

BB

X/WX/W

X/WX/W

Control statements for KDCUPD Updating the KDCFILE

620 Generating Applications

In the page pool usage view the following are displayed for each type of
object:

Standard: SHORT

LONG In a K305 message, the page pool usage is also output for each object of
this type after the last positive transfer message as long as at least one
page pool page is used.

NO Messages K305 and K306 are deactivated.

PROTOCOL= Controls the output of positive transfer messages and the messages for the
page pool usage (see INFO).

BOTH Data is logged to SYSOUT and SYSLST (under BS2000 systems) or to
stderr and stdout under Unix systems and Windows systems.

Default: BOTH

NO No positive transfer messages are output and no messages for the page
pool usage.

SYSOUT Data is logged to SYSOUT.

SYSLST Data is logged to SYSLST.

STDOUT Data is logged to stdout.

STDERR Data is logged to stderr.

GSSB Data of the GSSB storage area

QUEUE Asynchronous messages of the temporary queue and the
management information required for administration

LTERM TLS blocks and asynchronous messages (including management
information) of the LTERM

LPAP TLS blocks and asynchronous messages (iincluding management
information) of the LPAP or OSI-LPAP

TAC Asynchronous messages (including management information) of
the TAC

USER ULS blocks, asynchronous messages (including management infor-
mationn) and dialog service information of the user, ULS blocks of
the LSES or OSI-ASS.

ASYNVG Service data (including any LSSBs that are present) of all the user’s
open asynchronous services

BB

BB

X/WX/W

X/WX/W

Updating the KDCFILE Control statements for KDCUPD

Generating Applications 621

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

TRANSFER - control the data transfer of the user data

The TRANSFER specifies the user data KDCUPD is to transfer to the new KDCFILE.

If you omit the TRANSFER statement, KDCUPD transfers the user data as if the value YES
was specified for all the TRANSFER operands.

ASYNLPAP=

YES All asynchronous messages that have not yet been output to partner appli-
cations (distributed processing via LU6.1 / OSI TP) are also transferred.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

NO These messages are not transferred.

TRANSFERË [ASYNLPAP=YES | NO]

[,ASYNTACS=YES | NO]

[,ASYNTERM=YES | NO]

[,DIALOGS=YES | NO]

[,LOCALE=YES | NO]

[,PASS=YES | NO]

[,PROG-VER=YES | NO]

[,SOCKET-DIALOGS=YES | NO]

[,STORAGES=YES | NO]

[,UPIC-DIALOGS=YES | NO]

B

Control statements for KDCUPD Updating the KDCFILE

622 Generating Applications

ASYNTACS=

YES All background jobs not yet processed, including time-driven jobs and all
asynchronous jobs with their data, are transferred. In addition, all messages
in all TAC queues are transferred.

Messages from the dead letter queue are taken on regardless of whether
the original destination still exists in the new generation or
DEAD-LETTER-Q=YES was generated for TACs.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

v CAUTION!
In the case of wraparound queues, the messages which were transferred
first are lost and replaced by the most recently transferred messages when
the queue level is reached. No warning message is issued.

NO These jobs and data are not transferred.

Neither queued messages nor open asynchronous messages are trans-
ferred.

ASYNTERM=

YES All asynchronous messages not yet output to LTERM partners are trans-
ferred, including time-driven messages.

NO These messages are not transferred.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

DIALOGS=

YES The data to dialog services is transferred.
If the service is open, this includes LSSBs, KB and the last dialog message.
If the service is terminated, only the last logged dialog message is trans-
ferred.

The following applies to UTM cluster applications:
– In the case of a node update, the service-specific data of connection

user IDs is taken over.
– In the case of a cluster update, the service-specific data of genuine user

IDs is taken over.

NO No service-specific data is transferred.

Updating the KDCFILE Control statements for KDCUPD

Generating Applications 623

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

LOCALE=

YES KDCUPD transfers the current values of the locale of each UTM user
(USER) to the new KDCFILE. The values can differ from generated values,
e.g. if a user has changed his/her locale using the SIGN CL call in the appli-
cation run.

The following applies to UTM cluster applications:
The parameter only applies to cluster updates.

NO The locales of users are not transferred, i.e. the generated values apply.

PASS=

YES Passwords are transferred from the old to the new KDCFILE. This applies
to all USERs for whom a password was generated in the old and in the new
KDCFILE. The following is also transferred (if generated):
– the remaining validity period of the password
– the most recently used passwords, in other words the password history
– the minimum period before the password can next be changed

In the case of users for whom no password was defined in the old KDCFILE
(in contrast to the new file), the new password is retained.
If no password is generated for a user in the new KDCFILE, any existing
password in the old KDCFILE is not transferred.

The following applies to UTM cluster applications:
The parameter only applies to cluster updates.

NO No passwords are transferred.

PROG-VER=

YES The current version numbers of the load modules (BS2000), shared objects
(Unix systems) or DLLs (Windows systems) are transferred to the new
KDCFILE.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

NO The current version numbers are not transferred.

QUEUES=

YES All temporary queues and the messages they contain are transferred from
the old to the new KDCFILE.

The following applies to UTM cluster applications:
The parameter only applies to node updates.

NO The temporary queues and the messages they contain are not transferred.

B

BB

B

B

B

B

B

BB

Control statements for KDCUPD Updating the KDCFILE

624 Generating Applications

SOCKET-DIALOGS=

YES The data for dialog services started by socket partners is transferred. In the
case of an open service, these are the LSSBs, KB and the most recent
dialog message. In the case of a terminated service, it is the most recently
saved dialog message.

The following applies to UTM cluster applications:
– In the case of a node update, the service-specific data of connection

user IDs is taken over.
– In the case of a cluster update, the service-specific data of genuine user

IDs is taken over.

NO The data is not transferred.

STORAGES=

YES All UTM secondary storage areas, i.e. GSSB, TLS and ULS are transferred.

The following applies to UTM cluster applications:
– In the case of a node update, the TLS areas are taken over.
– In the case of a cluster update, the GSSBs and the ULS areas are taken

over.

NO The UTM secondary storage area are not transferred.

UPIC-DIALOGS=

YES The data for dialog services started by UPIC clients is transferred. In the
case of an open service, these are the LSSBs, KB and the most recent
dialog message. In the case of a terminated service, it is the most recently
saved dialog message.

The following applies to UTM cluster applications:
The parameter only applies to cluster updates.

NO The data is not transferred.

Updating the KDCFILE KDCUPD runtime log and messages

Generating Applications 625

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

us
 fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9.
02

.2
01

0
©

 c
og

ni
ta

s
G

m
bH

 2
00

1
-2

01
0

D
ok

us
ch

ab
lo

ne
n

19
x2

4
V

er
si

o
n

7.
4u

s
fü

r
F

ra
m

e
M

ak
er

 V
7

.x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

a
nu

a
ry

 2
01

5
 S

ta
n

d
17

:3
7.

25
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

k0
8

8.6 KDCUPD runtime log and messages

The update tool KDCUPD creates a runtime log that contains the following important infor-
mation in addition to the parameters specified:

– Specifications on the data that was transferred.
– Specifications on the data that could not be transferred (these messages are marked

with *).
– Brief information on the page pool usage

KDCUPD compares the generation of the old and new KDCFILE.
As a result of these checks, KDCUPD can reject transfer of individual items of user data
because they are incompatible with the generation options of the new KDCFILE.
It is also possible for KDCUPD to reject transfer completely because individual generation
options of the old and new KDCFILE differ so significantly that it would not be possible to
start the application with the new KDCFILE and the transferred data (see also page 596).

The runtime log is output to SYSOUT and SYSLST or to stdout and stderr by default. The
output can be controlled using the LIST statement.

The KDCUPD messages are listed in the openUTM manual ”Messages, Debugging and
Diagnostics”. The causes of error and the actions to be taken in response to the UTM
message are described where necessary.

Under Unix systems and Windows systems KDCUPD uses the NLS message catalog to
output its messages.

Behavior in the event of errors

If an internal error occurs, KDCUPD creates a UTM dump (under Unix systems and
Windows the dump is located in the DUMP subdirectory of the base directory).
This dump can be edited using the KDCDUMP editing tool (see the openUTM manual
”Messages, Debugging and Diagnostics”).

Under BS2000 systems the process switch 3 is set if KDCUPD cannot terminate itself
normally due to an error. Process switch 3 is also set when not all of the data could be trans-
ferred to the new KDCFILE because some generation components have been removed
although KDCUPD terminated itself normally.

The process switch 3 is also set if KDCUPD could not run because an error occured during
checking the KDCFILEs.

X/W

X/W

B

B

B

B

B

B

KDCUPD runtime log and messages Updating the KDCFILE

626 Generating Applications

Diagnostic documentation

If an error message is output in relation to the execution of KDCUPD, the following
documentation should be supplied or at least saved:

● UTM dump, if one was created
In the event of a memory bottleneck, it may be the case that no dump file can be written.
For UTM applications under Unix systems the core dump also must be logged.

● log of KDCUPD

● KDCDEF control statements for the old and new KDCFILE
(unless prohibited for data protection reasons)

● the old KDCFILE

● the new KDCFILE in the state before the KDCUPD run
(alternatively KDCDEF control statements)

● in the case of cluster updates:
the old cluster files and the new cluster files in their state before the KDCUPD run

X

Generating Applications 627

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

Glossary

A term in italic font means that it is explained somewhere else in the glossary.

abnormal termination of a UTM application
Termination of a UTM application, where the KDCFILE is not updated. Abnormal
termination is caused by a serious error, such as a crashed computer or an error
in the system software. If you then restart the application, openUTM carries out
a warm start.

abstract syntax (OSI)
Abstract syntax is defined as the set of formally described data types which can
be exchanged between applications via OSI TP. Abstract syntax is independent
of the hardware and programming language used.

acceptor (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The acceptor accepts the conversation initiated by the initiator
with Accept_Conversation.

access list
An access list defines the authorization for access to a particular service, TAC
queue or USER queue. An access list is defined as a key set and contains one or
more key codes, each of which represent a role in the application. Users or
LTERMs or (OSI) LPAPs can only access the service or TAC queue/USER queue
when the corresponding roles have been assigned to them (i.e. when their key
set and the access list contain at least one common key code).

access point (OSI)
See service access point.

ACID properties
Acronym for the fundamental properties of transactions: atomicity, consistency,
isolation and durability.

administration
Administration and control of a UTM application by an administrator or an
administration program.

Glossary

628 Generating Applications

administration command
Commands used by the administrator of a UTM application to carry out adminis-
tration functions for this application. The administration commands are imple-
mented in the form of transaction codes.

administration journal
See cluster administration journal.

administration program
Program unit containing calls to the program interface for administration. This can
be either the standard administration program KDCADM that is supplied with
openUTM or a program written by the user.

administrator
User who possesses administration authorization.

AES
AES (Advanced Encryption Standard) is the current symmetric encryption stan-
dard defined by the National Institute of Standards and Technology (NIST) and
based on the Rijndael algorithm developed at the University of Leuven (Bel-
gium). If the AES method is used, the UPIC client generates an AES key for
each session.

Apache Axis
Apache Axis (Apache eXtensible Interaction System) is a SOAP engine for the
design of Web services and client applications. There are implementations in
C++ and Java.

Apache Tomcat
Apache Tomcat provides an environment for the execution of Java code on Web
servers. It was developed as part of the Apache Software Foundation's Jakarta
project. It consists of a servlet container written in Java which can use the JSP
Jasper compiler to convert JavaServer pages into servlets and run them. It also
provides a fully featured HTTP server.

application cold start
See cold start.

application context (OSI)
The application context is the set of rules designed to govern communication
between two applications. This includes, for instance, abstract syntaxes and
any assigned transfer syntaxes.

Glossary

Generating Applications 629

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

application entity (OSI)
An application entity (AE) represents all the aspects of a real application which
are relevant to communications. An application entity is identified by a globally
unique name (“globally” is used here in its literal sense, i.e. worldwide), the
application entity title (AET). Every application entity represents precisely one
application process. One application process can encompass several application
entities.

application entity qualifier (OSI)
Component of the application entity title. The application entity qualifier identifies
a service access point within an application. The structure of an application entity
qualifier can vary. openUTM supports the type “number”.

application entity title (OSI)
An application entity title is a globally unique name for an application entity
(“globally” is used here in its literal sense, i.e. worldwide). It is made up of the
application process title of the relevant application process and the application entity
qualifier.

application information
This is the entire set of data used by the UTM application. The information com-
prises memory areas and messages of the UTM application including the data
currently shown on the screen. If operation of the UTM application is coordi-
nated with a database system, the data stored in the database also forms part
of the application information.

application process (OSI)
The application process represents an application in the OSI reference model. It
is uniquely identified globally by the application process title.

application process title (OSI)
According to the OSI standard, the application process title (APT) is used for
the unique identification of applications on a global (i.e. worldwide) basis. The
structure of an application process title can vary. openUTM supports the type
Object Identifier.

application program
An application program is the core component of a UTM application. It com-
prises the main routine KDCROOT and any program units and processes all jobs
sent to a UTM application.

application restart
see warm start

Glossary

630 Generating Applications

application service element (OSI)
An application service element (ASE) represents a functional group of the appli-
cation layer (layer 7) of the OSI reference model.

application warm start
see warm start.

association (OSI)
An association is a communication relationship between two application enti-
ties. The term “association” corresponds to the term session in LU6.1.

asynchronous conversation
CPI-C conversation where only the initiator is permitted to send. An asynchro-
nous transaction code for the acceptor must have been generated in the UTM
application.

asynchronous job
Job carried out by the job submitter at a later time. openUTM includes message
queuing functions for processing asynchronous jobs (see UTM-controlled queue
and service-controlled queue). An asynchronous job is described by the asynchro-
nous message, the recipient and, where applicable, the required execution time.
If the recipient is a terminal, a printer or a transport system application, the asyn-
chronous job is a queued output job. If the recipient is an asynchronous service of
the same application or a remote application, the job is a background job.
Asynchronous jobs can be time-driven jobs or can be integrated in a job complex.

asynchronous message
Asynchronous messages are messages directed to a message queue. They are
stored temporarily by the local UTM application and then further processed
regardless of the job submitter. Distinctions are drawn between the following
types of asynchronous messages, depending on the recipient:
– In the case of asynchronous messages to a UTM-controlled queue, all further

processing is controlled by openUTM. This type includes messages that
start a local or remote asynchronous service (see also background job) and
messages sent for output on a terminal, a printer or a transport system
application (see also queued output job).

– In the case of asynchronous messages to a service-controlled queue, further
processing is controlled by a service of the application. This type includes
messages to a TAC queue, messages to a USER queue and messages to a
temporary queue. The USER queue and the temporary queue must belong
to the local application, whereas the TAC queue can be in both the local
application and the remote application.

Glossary

Generating Applications 631

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

asynchronous program
Program unit started by a background job.

asynchronous service (KDCS)
Service which processes a background job. Processing is carried out indepen-
dently of the job submitter. An asynchronous service can comprise one or more
program units/transactions. It is started via an asynchronous transaction code.

audit (BS2000 systems)
During execution of a UTM application, UTM events which are of relevance in
terms of security can be logged by SAT for auditing purposes.

authentication
See system access control.

authorization
See data access control.

Axis
See Apache Axis.

background job
Background jobs are asynchronous jobs destined for an asynchronous service of
the current application or of a remote application. Background jobs are particu-
larly suitable for time-intensive processing or processing which is not time-crit-
ical and where the results do not directly influence the current dialog.

basic format
Format in which terminal users can make all entries required to start a service.

basic job
Asynchronous job in a job complex.

browsing asynchronous messages
A service sequentially reads the asynchronous messages in a service-controlled
queue. The messages are not locked while they are being read and they remain
in the queue after they have been read. This means that they can be read simul-
taneously by different services.

bypass mode (BS2000 systems)
Operating mode of a printer connected locally to a terminal. In bypass mode,
any asynchronous message sent to the printer is sent to the terminal and then redi-
rected to the printer by the terminal without being displayed on screen.

Glossary

632 Generating Applications

cache
Used for buffering application data for all the processes of a UTM application.
The cache is used to optimize access to the page pool and, in the case of UTM
cluster applications, the cluster page pool.

CCS name (BS2000 systems)
See coded character set name.

client
Clients of a UTM application can be:
– terminals
– UPIC client programs
– transport system applications (e.g. DCAM, PDN, CMX, socket applications

or UTM applications which have been generated as transport system applica-
tions).

Clients are connected to the UTM application via LTERM partners.
openUTM clients which use the OpenCPIC carrier system are treated just like
OSI TP partners.

client side of a conversation
This term has been superseded by initiator.

cluster
A number of computers connected over a fast network and which in many cases
can be seen as a single computer externally. The objective of clustering is gen-
erally to increase the computing capacity or availability in comparison with a sin-
gle computer.

cluster administration journal
The cluster administration journal consists of:
– two log files with the extensions JRN1 and JRN2 for global administration

actions,
– the JKAA file which contains a copy of the KDCS Application Area (KAA).

Administrative changes that are no longer present in the two log files are
taken over from this copy.

The administration journal files serve to pass on to the other node applications
those administrative actions that are to apply throughout the cluster to all node
applications in a UTM cluster application.

cluster configuration file
File containing the central configuration data of a UTM cluster application. The
cluster configuration file is created using the UTM generation tool KDCDEF.

Glossary

Generating Applications 633

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

cluster filebase
Filename prefix or directory name for the UTM cluster files.

cluster GSSB file
File used to administer GSSBs in a UTM cluster application. The cluster GSSB
file is created using the UTM generation tool KDCDEF.

cluster lock file
File in a UTM cluster application used to manage cross-node locks of user data
areas.

cluster page pool
The cluster page pool consists of an administration file and up to 10 files con-
taining a UTM cluster application’s user data that is available globally in the clus-
ter (service data including LSSB, GSSB and ULS). The cluster page pool is cre-
ated using the UTM generation tool KDCDEF.

cluster start serialization file
Lock file used to serialize the start-up of individual node applications (only in
Unix systems and Windows systems).

cluster ULS file
File used to administer the ULS areas of a UTM cluster application. The cluster
ULS file is created using the UTM generation tool KDCDEF.

cluster user file
File containing the user management data of a UTM cluster application. The
cluster user file is created using the UTM generation tool KDCDEF.

coded character set name (BS2000 systems)
If the product XHCS (eXtended Host Code Support) is used, each character set
used is uniquely identified by a coded character set name (abbreviation: “CCS
name” or “CCSN”).

cold start
Start of a UTM application after the application terminates normally (normal ter-
mination) or after a new generation (see also warm start).

communication area (KDCS)
KDCS primary storage area, secured by transaction logging and which contains
service-specific data. The communication area comprises 3 parts:
– the KB header with general service data
– the KB return area for returning values to KDCS calls

Glossary

634 Generating Applications

– the KB program area for exchanging data between UTM program units
within a single service.

communication resource manager
In distributed systems, communication resource managers (CRMs) control
communication between the application programs. openUTM provides CRMs
for the international OSI TP standard, for the LU6.1 industry standard and for
the proprietary openUTM protocol UPIC.

configuration
Sum of all the properties of a UTM application. The configuration describes:
– application parameters and operating parameters
– the objects of an application and the properties of these objects. Objects

can be program units and transaction codes, communication partners,
printers, user IDs, etc.

– defined measures for controlling data and system access.
The configuration of a UTM application is defined at generation time (static con-
figuration) and can be changed dynamically by the administrator (while the
application is running, dynamic configuration). The configuration is stored in the
KDCFILE.

confirmation job
Component of a job complex where the confirmation job is assigned to the basic
job. There are positive and negative confirmation jobs. If the basic job returns a
positive result, the positive confirmation job is activated, otherwise, the negative
confirmation job is activated.

connection bundle
see LTERM bundle.

connection user ID
User ID under which a TS application or a UPIC client is signed on at the UTM
application directly after the connection has been established. The following
applies, depending on the client (= LTERM partner) generation:
– The connection user ID is the same as the USER in the LTERM statement

(explicit connection user ID). An explicit connection user ID must be
generated with a USER statement and cannot be used as a “genuine” user
ID.

Glossary

Generating Applications 635

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

– The connection user ID is the same as the LTERM partner (implicit
connection user ID) if no USER was specified in the LTERM statement or if
an LTERM pool has been generated.

In a UTM cluster application, the service belonging to a connection user ID
(RESTART=YES in LTERM or USER) is bound to the connection and is there-
fore local to the node.
A connection user ID generated with RESTART=YES can have a separate ser-
vice in each node application.

contention loser
Every connection between two partners is managed by one of the partners. The
partner that manages the connection is known as the contention winner. The
other partner is the contention loser.

contention winner
A connection's contention winner is responsible for managing the connection.
Jobs can be started by the contention winner or by the
contention loser. If a conflict occurs, i.e. if both partners in the communication
want to start a job at the same time, then the job stemming from the contention
winner uses the connection.

conversation
In CPI-C, communication between two CPI-C application programs is referred
to as a conversation. The communication partners in a conversation are
referred to as the initiator and the acceptor.

conversation ID
CPI-C assigns a local conversation ID to each conversation, i.e. the initiator and
acceptor each have their own conversation ID. The conversation ID uniquely
assigns each CPI-C call in a program to a conversation.

CPI-C
CPI-C (Common Programming Interface for Communication) is a program
interface for program-to-program communication in open networks standard-
ized by X/Open and CIW (CPI-C Implementor's Workshop).
The CPI-C implemented in openUTM complies with X/Open’s CPI-C V2.0 CAE
Specification. The interface is available in COBOL and C. In openUTM, CPI-C
can communicate via the OSI TP, LU6.1 and UPIC protocols and with
openUTM-LU62.

Cross Coupled System / XCS
Cluster of BS2000 computers with the Highly Integrated System Complex Multiple
System Control Facility (HIPLEX® MSCF).

Glossary

636 Generating Applications

data access control
In data access control openUTM checks whether the communication partner is
authorized to access a particular object belonging to the application. The
access rights are defined as part of the configuration.

dead letter queue
The dead letter queue is a TAC queue which has the fixed name
KDCDLETQ. It is always available to save queued messages sent to transac-
tion codes or TAC queues but which could not be processed. The saving of
queued messages in the dead letter queue can be activated or deactivated for
each message destination individually using the TAC statement's
DEAD-LETTER-Q parameter.

DES
DES (Data Encryption Standard) is an international standard for encrypting
data. One key is used in this method for encoding and decoding. If the DES
method is used, the UPIC client generates a DES key for each session.

dialog conversation
CPI-C conversation in which both the initiator and the acceptor are permitted to
send. A dialog transaction code for the acceptor must have been generated in
the UTM application.

dialog job, interactive job
Job which starts a dialog service. The job can be issued by a client or, when two
servers communicate with each other (server-server communication), by a differ-
ent application.

dialog message
A message which requires a response or which is itself a response to a request.
The request and the response both take place within a single service. The
request and reply together form a dialog step.

dialog program
Program unit which partially or completely processes a dialog step.

dialog service
Service which processes a job interactively (synchronously) in conjunction with
the job submitter (client or another server application) . A dialog service pro-
cesses dialog messages received from the job submitter and generates dialog
messages to be sent to the job submitter. A dialog service comprises at least
one transaction. In general, a dialog service encompasses at least one dialog
step. Exception: in the event of service chaining, it is possible for more than one
service to comprise a dialog step.

Glossary

Generating Applications 637

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

dialog step
A dialog step starts when a dialog message is received by the UTM application. It
ends when the UTM application responds.

dialog terminal process (Unix systems/Windows systems)
A dialog terminal process connects a terminal of a Unix system or a Windows
system with the work processes of the UTM application. Dialog terminal pro-
cesses are started either when the user enters utmdtp or via the LOGIN shell.
A separate dialog terminal process is required for each terminal to be con-
nected to a UTM application.

Distributed Lock Manager / DLM (BS2000 systems)
Concurrent, cross-computer file accesses can be synchronized using the
Distributed Lock Manager.
DLM is a basic function of HIPLEX® MSCF.

distributed processing
Processing of dialog jobs by several different applications or the transfer of back-
ground jobs to another application. The higher-level protocols LU6.1 and OSI TP
are used for distributed processing. openUTM-LU62 also permits distributed
processing with LU6.2 partners. A distinction is made between distributed pro-
cessing with distributed transactions (transaction logging across different applica-
tions) and distributed processing without distributed transactions (local transac-
tion logging only). Distributed processing is also known as server-server
communication.

distributed transaction
Transaction which encompasses more than one application and is executed in
several different (sub)-transactions in distributed systems.

distributed transaction processing
Distributed processing with distributed transactions.

dynamic configuration
Changes to the configuration made by the administrator. UTM objects such as
program units, transaction codes, clients, LU6.1 connections, printers or user IDs can
be added, modified or in some cases deleted from the configuration while the
application is running. To do this, it is necessary to create separate administra-
tion programs which use the functions of the program interface for administration.
The WinAdmin administration program or the WebAdmin administration pro-
gram can be used to do this, or separate administration programs must be cre-
ated that utilize the functions of the administration program interface.

Glossary

638 Generating Applications

encryption level
The encryption level specifies if and to what extent a client message and pass-
word are to be encrypted.

event-driven service
This term has been superseded by event service.

event exit
Routine in an application program which is started automatically whenever cer-
tain events occur (e.g. when a process is started, when a service is terminated).
Unlike event services, an event exit must not contain any KDCS, CPI-C or XATMI
calls.

event function
Collective term for event exits and event services.

event service
Service started when certain events occur, e.g. when certain UTM messages are
issued. The program units for event-driven services must contain KDCS calls.

filebase
UTM application filebase
In BS2000 systems, filebase is the prefix for the KDCFILE, the user log file
USLOG and the system log file SYSLOG.
In Unix and Windows systems, filebase is the name of the directory under which
the KDCFILE, the user log file USLOG, the system log file SYSLOG and other
files relating to to the UTM application are stored.

generation
Static configuration of a UTM application using the UTM tool KDCDEF and cre-
ation of an application program.

global secondary storage area
See secondary storage area.

hardcopy mode
Operating mode of a printer connected locally to a terminal. Any message which
is displayed on screen will also be sent to the printer.

heterogeneous link
In the case of server-server communication: a link between a UTM application and
a non-UTM application, e.g. a CICS or TUXEDO application.

Glossary

Generating Applications 639

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

Highly Integrated System Complex / HIPLEX®
Product family for implementing an operating, load sharing and availability clus-
ter made up of a number of BS2000 servers.

HIPLEX® MSCF
(MSCF = Multiple System Control Facility)
Provides the infrastructure and basic functions for distributed applications with
HIPLEX®.

homogeneous link
In the case of server-server communication: a link between two UTM applications.
It is of no significance whether the applications are running on the same oper-
ating system platforms or on different platforms.

inbound conversation (CPI-C)
See incoming conversation.

incoming conversation (CPI-C)
A conversation in which the local CPI-C program is the acceptor is referred to as
an incoming conversation. In the X/Open specification, the term “inbound con-
versation” is used synonymously with “incoming conversation”.

initial KDCFILE
In a UTM cluster application, this is the KDCFILE generated by KDCDEF and
which must be copied for each node application before the node applications
are started.

initiator (CPI-C)
The communication partners in a conversation are referred to as the initiator and
the acceptor. The initiator sets up the conversation with the CPI-C calls
Initialize_Conversation and Allocate.

insert
Field in a message text in which openUTM enters current values.

inverse KDCDEF
A function which uses the dynamically adapted configuration data in the KDC-
FILE to generate control statements for a KDCDEF run. An inverse KDCDEF
can be started “offline” under KDCDEF or “online” via the program interface for
administration.

Glossary

640 Generating Applications

JDK
Java Development Kit
Standard development environment from Sun Microsystems for the develop-
ment of Java applications.

job
Request for a service provided by a UTM application. The request is issued by
specifying a transaction code. See also: queued output job, dialog job, background
job, job complex.

job complex
Job complexes are used to assign confirmation jobs to asynchronous jobs. An
asynchronous job within a job complex is referred to as a basic job.

job-receiving service (KDCS)
A job-receiving service is a service started by a job-submitting service of another
server application.

job-submitting service (KDCS)
A job-submitting service is a service which requests another service from a dif-
ferent server application (job-receiving service) in order to process a job.

KDCADM
Standard administration program supplied with openUTM. KDCADM provides
administration functions which are called with transaction codes (administration
commands).

KDCDEF
UTM tool for the generation of UTM applications. KDCDEF uses the configuration
information in the KDCDEF control statements to create the UTM objects KDC-
FILE and the ROOT table sources for the main routine KDCROOT.
In UTM cluster applications, KDCDEF also creates the cluster configuration file,
the cluster user file, the cluster page pool, the cluster GSSB file and the cluster ULS
file.

KDCFILE
One or more files containing data required for a UTM application to run. The
KDCFILE is created with the UTM generation tool KDCDEF. Among other
things, it contains the configuration of the application.

KDCROOT
Main routine of an application program which forms the link between the program
units and the UTM system code. KDCROOT is linked with the program units to
form the application program.

Glossary

Generating Applications 641

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

KDCS message area
For KDCS calls: buffer area in which messages or data for openUTM or for the
program unit are made available.

KDCS parameter area
See parameter area.

KDCS program interface
Universal UTM program interface compliant with the national DIN 66 265 stan-
dard and which includes some extensions. KDCS (compatible data communi-
cations interface) allows dialog services to be created, for instance, and permits
the use of message queuing functions. In addition, KDCS provides calls for distrib-
uted processing.

Kerberos
Kerberos is a standardized network authentication protocol (RFC1510) based
on encryption procedures in which no passwords are sent to the network in
clear text.

Kerberos principal
Owner of a key.
Kerberos uses symmetrical encryption, i.e. all the keys are present at two loca-
tions, namely with the key owner (principal) and the KDC (Key Distribution Cen-
ter).

key code
Code that represents specific access authorization or a specific role. Several
key codes are grouped into a key set.

key set
Group of one or more key codes under a particular a name. A key set defines
authorization within the framework of the authorization concept used (lock/key
code concept or access list concept). A key set can be assigned to a user ID, an
LTERM partner an (OSI) LPAP partner, a service or a TAC queue.

linkage program
See KDCROOT.

local secondary storage area
See secondary storage area.

Glossary

642 Generating Applications

Log4j
Log4j is part of the Apache Jakarta project. Log4j provides information for log-
ging information (runtime information, trace records, etc.) and configuring the
log output. WS4UTM uses the software product Log4j for trace and logging func-
tionality.

lock code
Code protecting an LTERM partner or transaction code against unauthorized
access. Access is only possible if the key set of the accesser contains the appro-
priate key code (lock/key code concept).

logging process
Process in Unix and Windows systems that controls the logging of account
records or monitoring data.

LPAP bundle
LPAP bundles allow messages to be distributed to LPAP partners across sev-
eral partner applications. If a UTM application has to exchange a very large
number of messages with a partner application then load distribution may be
improved by starting multiple instances of the partner application and distribut-
ing the messages across the individual instances. In an LPAP bundle, openUTM
is responsible for distributing the messages to the partner application instances.
An LPAP bundle consists of a master LPAP and multiple slave LPAPs. The
slave LPAPs are assigned to the master LPAP on generation. LPAP bundles
exist for both the OSI TP protocol and the LU6.1 protocol.

LPAP partner
In the case of distributed processing via the LU6.1 protocol, an LPAP partner for
each partner application must be configured in the local application. The LPAP
partner represents the partner application in the local application. During com-
munication, the partner application is addressed by the name of the assigned
LPAP partner and not by the application name or address.

LTERM bundle
An LTERM bundle (connection bundle) consists of a master LTERM and multi-
ple slave LTERMs. An LTERM bundle (connection bundle) allows you to distrib-
ute queued messages to a logical partner application evenly across multiple
parallel connections.

LTERM group
An LTERM group consists of one or more alias LTERMs, the group LTERMs
and a primary LTERM. In an LTERM group, you assign multiple LTERMs to a
connection.

Glossary

Generating Applications 643

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

LTERM partner
LTERM partners must be configured in the application if you want to connect cli-
ents or printers to a UTM application. A client or printer can only be connected if
an LTERM partner with the appropriate properties is assigned to it. This assign-
ment is generally made in the configuration, but can also be made dynamically
using terminal pools.

LTERM pool
The TPOOL statement allows you to define a pool of LTERM partners instead
of issuing one LTERM and one PTERM statement for each client. If a client
establishes a connection via an LTERM pool, an LTERM partner is assigned to
it dynamically from the pool.

LU6.1
Device-independent data exchange protocol (industrial standard) for transac-
tion-oriented server-server communication.

LU6.1-LPAP bundle
LPAP bundle for LU6.1 partner applications.

LU6.1 partner
Partner of the UTM application that communicates with the UTM application via
the LU6.1 protocol.
Examples of this type of partner are:
– a UTM application that communicates via LU6.1
– an application in the IBM environment (e.g. CICS, IMS or TXSeries) that

communicates via LU6.1

main process (Unix systems / Windows systems)
Process which starts the UTM application. It starts the work processes, the UTM
system processes, printer processes, network processes, logging process and the timer
process and monitors the UTM application.

main routine KDCROOT
See KDCROOT.

management unit
SE Servers component; in combination with the SE Manager, permits centralized,
web-based management of all the units of an SE server.

mapped host name
Mapping of the partner application's UTM host name to a real host name or vice
versa.

Glossary

644 Generating Applications

message definition file
The message definition file is supplied with openUTM and, by default, contains
the UTM message texts in German and English together with the definitions of
the message properties. Users can take this file as a basis for their own mes-
sage modules.

message destination
Output medium for a message. Possible message destinations for a message
from the openUTM transaction monitor include, for instance, terminals, TS appli-
cations, the event service MSGTAC, the system log file SYSLOG or TAC queues,
asynchronous TACs, USER queues, SYSOUT/SYSLST or stderr/stdout.
The message destinations for the messages of the UTM tools are SYSOUT/
SYSLST and stderr/stdout.

message queue
Queue in which specific messages are kept with transaction management until
further processed. A distinction is drawn between service-controlled queues and
UTM-controlled queues, depending on who monitors further processing.

message queuing
Message queuing (MQ) is a form of communication in which the messages are
exchanged via intermediate queues rather than directly. The sender and recip-
ient can be separated in space or time. The transfer of the message is indepen-
dent of whether a network connection is available at the time or not. In
openUTM there are UTM-controlled queues and service-controlled queues.

message router (BS2000 systems)
Device in a central host or a communication computer which distributes queued
input messages to different UTM applications which can be located on different
computers. The message router also allows you to work with multiplex connec-
tions.

MSGTAC
Special event service that processes messages with the message destination
MSGTAC by means of a program. MSGTAC is an asynchronous service and is
created by the operator of the application.

multiplex connection (BS2000 systems)
Special method of connecting terminals to a UTM application. A multiplex con-
nection enables several terminals to share a single transport connection.

multi-step service (KDCS)
Service carried out in a number of dialog steps.

Glossary

Generating Applications 645

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

multi-step transaction
Transaction which comprises more than one processing step.

Network File System/Service / NFS
Allows Unix systems to access file systems across the network.

network process (Unix systems / Windows systems)
A process in a UTM application for connection to the network.

network selector
The network selector identifies a service access point to the network layer of the
OSI reference model in the local system.

node
Individual computer of a cluster.

node application
UTM application that is executed on an individual node as part of a UTM cluster
application.

node bound service
A node bound service belonging to a user can only be continued at the node
application at which the user was last signed on. The following services are
always node bound:
– Services that have started communications with a job receiver via LU6.1 or

OSI TP and for which the job-receiving service has not yet been terminated
– Inserted services in a service stack
– Services that have completed a SESAM transaction
In addition, a user’s service is node bound as long as the user is signed-on at
a node application.

node filebase
Filename prefix or directory name for the node application's KDCFILE, user log
file and system log file.

node recovery
If a node application terminates abnormally and no rapid warm start of the appli-
cation is possible on its associated node computer then it is possible to perform
a node recovery for this node on another node in the UTM cluster. In this way,
it is possible to release locks resulting from the failed node application in order
to prevent unnecessary impairments to the running UTM cluster application.

Glossary

646 Generating Applications

normal termination of a UTM application
Controlled termination of a UTM application. Among other things, this means
that the administration data in the KDCFILE are updated. The administrator ini-
tiates normal termination (e.g. with KDCSHUT N). After a normal termination,
openUTM carries out any subsequent start as a cold start.

object identifier
An object identifier is an identifier for objects in an OSI environment which is
unique throughout the world. An object identifier comprises a sequence of inte-
gers which represent a path in a tree structure.

open terminal pool
Terminal pool which is not restricted to clients of a single computer or particular
type. Any client for which no computer- or type-specific terminal pool has been
generated can connect to this terminal pool.

online import
In a UTM cluster application, online import refers to the import of application data
from a normally terminated node application into a running node application.

online update
In a UTM cluster application, online update refers to a change to the application
configuration or the application program or the use of a new UTM revision level
while a UTM cluster application is running.

OpenCPIC
Carrier system for UTM clients that use the OSI TP protocol.

OpenCPIC client
OSI TP partner application with the OpenCPIC carrier system.

openSM2
The openSM2 product line offers a consistent solution for the enterprise-wide
performance management of server and storage systems. openSM2 offers the
acquisition of monitoring data, online monitoring and offline evaluation.

openUTM application
See UTM application.

openUTM cluster
From the perspective of UPIC clients, not from the perspective of the server:
Combination of several node applications of a UTM cluster application to form
one logical application that is addressed via a common symbolic destination
name.

Glossary

Generating Applications 647

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

openUTM-D
openUTM-D (openUTM distributed) is a component of openUTM which allows
distributed processing. openUTM-D is an integral component of openUTM.

OSI-LPAP bundle
LPAP bundle for OSI TP partner applications.

OSI-LPAP partner
OSI-LPAP partners are the addresses of the OSI TP partners generated in
openUTM. In the case of distributed processing via the OSI TP protocol, an OSI-
LPAP partner for each partner application must be configured in the local appli-
cation. The OSI-LPAP partner represents the partner application in the local
application. During communication, the partner application is addressed by the
name of the assigned OSI-LPAP partner and not by the application name or
address.

OSI reference model
The OSI reference model provides a framework for standardizing communica-
tions in open systems. ISO, the International Organization for Standardization,
described this model in the ISO IS7498 standard. The OSI reference model
divides the necessary functions for system communication into seven logical
layers. These layers have clearly defined interfaces to the neighboring layers.

OSI TP
Communication protocol for distributed transaction processing defined by ISO.
OSI TP stands for Open System Interconnection Transaction Processing.

OSI TP partner
Partner of the UTM application that communicates with the UTM application via
the OSI TP protocol.
Examples of such partners are:
– a UTM application that communicates via OSI TP
– an application in the IBM environment (e.g. CICS) that is connected via

openUTM-LU62
– an application of the OpenCPIC carrier system of the openUTM client
– applications from other TP monitors that support OSI TP

outbound conversation (CPI-C)
See outgoing conversation.

outgoing conversation (CPI-C)
A conversation in which the local CPI-C program is the initiator is referred to as
an outgoing conversation. In the X/Open specification, the term “outbound con-
versation” is used synonymously with “outgoing conversation”.

Glossary

648 Generating Applications

page pool
Part of the KDCFILE in which user data is stored.
In a standalone application this data consists, for example, of dialog messages,
messages sent to message queues, secondary memory areas.
In a UTM cluster application, it consists, for example, of messages to message
queues, TLS.

parameter area
Data structure in which a program unit passes the operands required for a UTM
call to openUTM.

partner application
Partner of a UTM application during distributed processing. Higher communica-
tion protocols are used for distributed processing (LU6.1, OSI TP or LU6.2 via
the openUTM-LU62 gateway).

postselection (BS2000 systems)
Selection of logged UTM events from the SAT logging file which are to be eval-
uated. Selection is carried out using the SATUT tool.

prepare to commit (PTC)
Specific state of a distributed transaction
Although the end of the distributed transaction has been initiated, the system
waits for the partner to confirm the end of the transaction.

preselection (BS2000 systems)
Definition of the UTM events which are to be logged for the SAT audit. Preselec-
tion is carried out with the UTM-SAT administration functions. A distinction is
made between event-specific, user-specific and job-specific (TAC-specific) pre-
selection.

presentation selector
The presentation selector identifies a service access point to the presentation
layer of the OSI reference model in the local system.

primary storage area
Area in main memory to which the KDCS program unit has direct access, e.g.
standard primary working area, communication area.

print administration
Functions for print control and the administration of queued output jobs, sent to a
printer.

Glossary

Generating Applications 649

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

print control
openUTM functions for controlling print output.

printer control LTERM
A printer control LTERM allows a client or terminal user to connect to a UTM
application. The printers assigned to the printer control LTERM can then be
administered from the client program or the terminal. No administration rights
are required for these functions.

printer control terminal
This term has been superseded by printer control LTERM.

printer group (Unix systems)
For each printer, a Unix system sets up one printer group by default that con-
tains this one printer only. It is also possible to assign several printers to one
printer group or to assign one printer to several different printer groups.

printer pool
Several printers assigned to the same LTERM partner.

printer process (Unix systems)
Process set up by the main process for outputting asynchronous messages to a
printer group. The process exists as long as the printer group is connected to the
UTM application. One printer process exists for each connected printer group.

process
The openUTM manuals use the term “process” as a collective term for pro-
cesses (Unix systems / Windows systems) and tasks (BS2000 systems).

processing step
A processing step starts with the receipt of a dialog message sent to the UTM
application by a client or another server application. The processing step ends
either when a response is sent, thus also terminating the dialog step, or when a
dialog message is sent to a third party.

program interface for administration
UTM program interface which helps users to create their own administration pro-
grams. Among other things, the program interface for administration provides
functions for dynamic configuration, for modifying properties and application
parameters and for querying information on the configuration and the current
workload of the application.

Glossary

650 Generating Applications

program unit
UTM services are implemented in the form of one or more program units. The
program units are components of the application program. Depending on the
employed API, they may have to contain KDCS, XATMI or CPIC calls. They can
be addressed using transaction codes. Several different transaction codes can
be assigned to a single program unit.

queue
See message queue.

queued output job
Queued output jobs are asynchronous jobs which output a message, such as a
document, to a printer, a terminal or a transport system application.
Queued output jobs are processed by UTM system functions exclusively, i.e. it
is not necessary to create program units to process them.

Quick Start Kit
A sample application supplied with openUTM (Windows systems).

redelivery
Repeated delivery of an asynchronous message that could not be processed cor-
rectly because, for example, the transaction was rolled back or the asynchronous
service was terminated abnormally. The message is returned to the message
queue and can then be read and/or processed again.

reentrant program
Program whose code is not altered when it runs. In BS2000 systems this con-
stitutes a prerequisite for using shared code.

request
Request from a client or another server for a service function.

requestor
In XATMI, the term requestor refers to an application which calls a service.

resource manager
Resource managers (RMs) manage data resources. Database systems are
examples of resource managers. openUTM, however, also provides its own
resource managers for accessing message queues, local memory areas and
logging files, for instance. Applications access RMs via special resource man-
ager interfaces. In the case of database systems, this will generally be SQL and
in the case of openUTM RMs, it is the KDCS interface.

Glossary

Generating Applications 651

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

restart
See screen restart,
see service restart.

RFC1006
A protocol defined by the IETF (Internet Engineering Task Force) belonging to
the TCP/IP family that implements the ISO transport services (transport
class 0) based on TCP/IP.

RSA
Abbreviation for the inventors of the RSA encryption method (Rivest, Shamir
and Adleman). This method uses a pair of keys that consists of a public key and
a private key. A message is encrypted using the public key, and this message
can only be decrypted using the private key. The pair of RSA keys is created by
the UTM application.

SAT audit (BS2000 systems)
Audit carried out by the SAT (Security Audit Trail) component of the BS2000
software product SECOS.

screen restart
If a dialog service is interrupted, openUTM again displays the dialog message of
the last completed transaction on screen when the service restarts provided that
the last transaction output a message on the screen.

SE manager
Web-based graphical user interface (GUI) for the SE series of Business
Servers. SE Manager runs on the management unit and permits the central
operation and administration of server units (with /390 architecture and/or x86
architecture), application units (x86 architecture), net unit and peripherals.

SE server
A Business Server from Fujitsu's SE series.

secondary storage area
Memory area secured by transaction logging and which can be accessed by the
KDCS program unit with special calls. Local secondary storage areas (LSSBs)
are assigned to one service. Global secondary storage areas (GSSBs) can be
accessed by all services in a UTM application. Other secondary storage areas
include the terminal-specific long-term storage (TLS) and the user-specific long-term
storage (ULS).

Glossary

652 Generating Applications

selector
A selector identifies a service access point to services of one of the layers of the
OSI reference model in the local system. Each selector is part of the address of
the access point.

semaphore (Unix systems / Windows systems)
Unix systems and Windows systems resource used to control and synchronize
processes.

server
A server is an application which provides services. The computer on which the
applications are running is often also referred to as the server.

server-server communication
See distributed processing.

server side of a conversation (CPI-C)
This term has been superseded by acceptor.

service
Services process the jobs that are sent to a server application. A service of a
UTM application comprises one or more transactions. The service is called with
the service TAC. Services can be requested by clients or by other servers.

service access point
In the OSI reference model, a layer has access to the services of the layer
below at the service access point. In the local system, the service access point
is identified by a selector. During communication, the UTM application links up to
a service access point. A connection is established between two service access
points.

service chaining (KDCS)
When service chaining is used, a follow-on service is started without a dialog
message specification after a dialog service has completed .

service-controlled queue
Message queue in which the calling and further processing of messages is con-
trolled by services. A service must explicitly issue a KDCS call (DGET) to read
the message. There are service-controlled queues in openUTM in the variants
USER queue, TAC queue and temporary queue.

Glossary

Generating Applications 653

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

service restart (KDCS)
If a service is interrupted, e.g. as a result of a terminal user signing off or a UTM
application being terminated, openUTM carries out a service restart. An asynchro-
nous service is restarted or execution is continued at the most recent synchroni-
zation point, and a dialog service continues execution at the most recent synchro-
nization point. As far as the terminal user is concerned, the service restart for a
dialog service appears as a screen restart provided that a dialog message was
sent to the terminal user at the last synchronization point.

service routine
See program unit.

service stacking (KDCS)
A terminal user can interrupt a running dialog service and insert a new dialog ser-
vice. When the inserted service has completed, the interrupted service contin-
ues.

service TAC (KDCS)
Transaction code used to start a service.

session
Communication relationship between two addressable units in the network via
the SNA protocol LU6.1.

session selector
The session selector identifies an access point in the local system to the services
of the session layer of the OSI reference model.

shared code (BS2000 systems)
Code which can be shared by several different processes.

shared memory
Virtual memory area which can be accessed by several different processes
simultaneously.

shared objects (Unix systems / Windows systems)
Parts of the application program can be created as shared objects. These objects
are linked to the application dynamically and can be replaced during live oper-
ation. Shared objects are defined with the KDCDEF statement SHARED-
OBJECT.

sign-on check
See system access control.

Glossary

654 Generating Applications

sign-on service (KDCS)
Special dialog service for a user in which program units control how a user signs
on to a UTM application.

single-step service
Dialog service which encompasses precisely one dialog step.

single-step transaction
Transaction which encompasses precisely one dialog step.

SOA
(Service-Oriented Architecture)
SOA is a system architecture concept in which functions are implemented in the
form of re-usable, technically independent, loosely coupled services. Services
can be called independently of the underlying implementations via interfaces
which may possess public and, consequently, trusted specifications. Service
interaction is performed via a communication infrastructure made available for
this purpose.

SOAP
SOAP (Simple Object Access Protocol) is a protocol used to exchange data
between systems and run remote procedure calls. SOAP also makes use of the
services provided by other standards, XML for the representation of the data
and Internet transport and application layer protocols for message transfer.

socket connection
Transport system connection that uses the socket interface. The socket inter-
face is a standard program interface for communication via TCP/IP.

standalone application
See standalone UTM application.

standalone UTM application
Traditional UTM application that is not part of a UTM cluster application.

standard primary working area (KDCS)
Area in main memory available to all KDCS program units. The contents of the
area are either undefined or occupied with a fill character when the program unit
starts execution.

start format
Format output to a terminal by openUTM when a user has successfully signed
on to a UTM application (except after a service restart and during sign-on via the
sign-on service).

Glossary

Generating Applications 655

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

static configuration
Definition of the configuration during generation using the UTM tool KDCDEF.

SYSLOG file
See system log file.

synchronization point, consistency point
The end of a transaction. At this time, all the changes made to the application
information during the transaction are saved to prevent loss in the event of a
crash and are made visible to others. Any locks set during the transaction are
released.

system access control
A check carried out by openUTM to determine whether a certain user ID is
authorized to work with the UTM application. The authorization check is not car-
ried out if the UTM application was generated without user IDs.

system log file
File or file generation to which openUTM logs all UTM messages for which
SYSLOG has been defined as the message destination during execution of a UTM
application.

TAC
See transaction code.

TAC queue
Message queue generated explicitly by means of a KDCDEF statement. A TAC
queue is a service-controlled queue that can be addressed from any service using
the generated name.

temporary queue
Message queue created dynamically by means of a program that can be deleted
again by means of a program (see service-controlled queue).

terminal-specific long-term storage (KDCS)
Secondary storage area assigned to an LTERM, LPAP or OSI-PAP partner and
which is retained after the application has terminated.

time-driven job
Job which is buffered by openUTM in a message queue up to a specific time until
it is sent to the recipient. The recipient can be an asynchronous service of the
same application, a TAC queue, a partner application, a terminal or a printer.
Time-driven jobs can only be issued by KDCS program units.

Glossary

656 Generating Applications

timer process (Unix systems / Windows systems)
Process which accepts jobs for controlling the time at which work processes are
executed. It does this by entering them in a job list and releasing them for pro-
cessing after a time period defined in the job list has elapsed.

TNS (Unix systems / Windows systems)
Abbreviation for the Transport Name Service. TNS assigns a transport selector
and a transport system to an application name. The application can be reached
through the transport system.

Tomcat
see Apache Tomcat

transaction
Processing section within a service for which adherence to the ACID properties
is guaranteed. If, during the course of a transaction, changes are made to the
application information, they are either made consistently and in their entirety or
not at all (all-or-nothing rule). The end of the transaction forms a synchronization
point.

transaction code/TAC
Name which can be used to identify a program unit. The transaction code is
assigned to the program unit during static or dynamic configuration. It is also pos-
sible to assign more than one transaction code to a program unit.

transaction rate
Number of transactions successfully executed per unit of time.

transfer syntax
With OSI TP, the data to be transferred between two computer systems is con-
verted from the local format into transfer syntax. Transfer syntax describes the
data in a neutral format which can be interpreted by all the partners involved.
An Object Identifier must be assigned to each transfer syntax.

transport selector
The transport selector identifies a service access point to the transport layer of
the OSI reference model in the local system.

transport system application
Application which is based directly on a transport system interface (e.g. CMX,
DCAM or socket). When transport system applications are connected, the part-
ner type APPLI or SOCKET must be specified during configuration. A transport
system application cannot be integrated in a distributed transaction.

Glossary

Generating Applications 657

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

TS application
See transport system application.

typed buffer (XATMI)
Buffer for exchanging typed and structured data between communication part-
ners. Typed buffers ensure that the structure of the exchanged data is known to
both partners implicitly.

UPIC
Carrier system for openUTM clients. UPIC stands for Universal Programming
Interface for Communication.

UPIC Analyzer
Component used to analyze the UPIC communication recorded with UPIC
Capture. This step is used to prepare the recording for playback using UPIC
Replay.

UPIC Capture
Used to record communication between UPIC clients and UTM applications so
that this can be replayed subsequently (UPIC Replay).

UPIC client
The designation for openUTM clients with the UPIC carrier system.

UPIC Replay
Component used to replay the UPIC communication recorded with UPIC
Capture and prepared with UPIC Analyzer.

user exit
This term has been superseded by event exit.

user ID
Identifier for a user defined in the configuration for the UTM application (with an
optional password for system access control) and to whom special data access
rights (system access control) have been assigned. A terminal user must specify
this ID (and any password which has been assigned) when signing on to the
UTM application. In BS2000 systems, system access control is also possible
via Kerberos.
For other clients, the specification of a user ID is optional, see also connection
user ID.
UTM applications can also be generated without user IDs.

Glossary

658 Generating Applications

user log file
File or file generation to which users write variable-length records with the
KDCS LPUT call. The data from the KB header of the KDCS communication area
is prefixed to every record. The user log file is subject to transaction manage-
ment by openUTM.

USER queue
Message queue made available to every user ID by openUTM. A USER queue is
a service-controlled queue and is always assigned to the relevant user ID. You
can restrict the access of other UTM users to your own USER queue.

user-specific long-term storage
Secondary storage area assigned to a user ID, a session or an association and which
is retained after the application has terminated.

USLOG file
See user log file.

UTM application
A UTM application provides services which process jobs from clients or other
applications. openUTM is responsible for transaction logging and for managing
the communication and system resources. From a technical point of view, a
UTM application is a process group which forms a logical server unit at runtime.

UTM cluster application
UTM application that has been generated for use on a cluster and that can be
viewed logically as a single application.
In physical terms, a UTM cluster application is made up of several identically
generated UTM applications running on the individual cluster nodes.

UTM cluster files
Blanket term for all the files that are required for the execution of a UTM cluster
application. This includes the following files:
– Cluster configuration file
– Cluster user file
– Files belonging to the cluster page pool
– Cluster GSSB file
– Cluster ULS file
– Files belonging to the cluster administration journal*
– Cluster lock file*
– Lock file for start serialization* (only in Unix systems and Windows systems)
The files indicated by * are created when the first node application is started. All
the other files are created on generation using KDCDEF.

Glossary

Generating Applications 659

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

UTM-controlled queue
Message queues in which the calling and further processing of messages is
entirely under the control of openUTM. See also asynchronous job, background job
and asynchronous message.

UTM-D
See openUTM-D.

UTM-F
UTM applications can be generated as UTM-F applications (UTM fast). In the
case of UTM-F applications, input from and output to hard disk is avoided in
order to increase performance. This affects input and output which UTM-S uses
to save user data and transaction data. Only changes to the administration data
are saved.
In UTM cluster applications that are generated as UTM-F applications (APPLI-
MODE=FAST), application data that is valid throughout the cluster is also
saved. In this case, GSSB and ULS data is treated in exactly the same way as
in UTM cluster applications generated with UTM-S. However, service data relat-
ing to users with RESTART=YES is written only when the relevant user signs
off and not at the end of each transaction.

UTM message
Messages are issued to UTM message destinations by the openUTM transaction
monitor or by UTM tools (such as KDCDEF). A message comprises a message
number and a message text, which can contain inserts with current values.
Depending on the message destination, either the entire message is output or
only certain parts of the message, such as the inserts).

UTM page
A UTM page is a unit of storage with a size of either 2K, 4K or 8 K. In standalone
UTM applications, the size of a UTM page on generation of the UTM application
can be set to 2K, 4K or 8 K. The size of a UTM page in a UTM cluster application
is always 4K or 8 K. The page pool and the restart area for the KDCFILE and
UTM cluster files are divided into units of the size of a UTM page.

utmpath (Unix systems / Windows systems)
The directory under which the openUTM components are installed is referred to
as utmpath in this manual.
To ensure that openUTM runs correctly, the environment variable UTMPATH
must be set to the value of utmpath. On Unix systems, you must set UTMPATH
before a UTM application is started. On Windows systems, UTMPATH is set on
installation.

Glossary

660 Generating Applications

UTM-S
In the case of UTM-S applications, openUTM saves all user data as well as the
administration data beyond the end of an application and any system crash
which may occur. In addition, UTM-S guarantees the security and consistency
of the application data in the event of any malfunction. UTM applications are
usually generated as UTM-S applications (UTM secure).

UTM SAT administration (BS2000 systems)
UTM-SAT administration functions control which UTM events relevant to secu-
rity which occur during operation of a UTM application are to be logged by SAT.
Special authorization is required for UTM-SAT administration.

UTM system process
UTM process that is started in addition to the processes specified via the start
parameters and which only handles selected jobs. UTM system processes
ensure that UTM applications continue to be reactive even under very high
loads.

UTM terminal
This term has been superseded by LTERM partner.

virtual connection
Assignment of two communication partners.

warm start
Start of a UTM-S application after it has terminated abnormally. The application
information is reset to the most recent consistent state. Interrupted dialog ser-
vices are rolled back to the most recent synchronization point, allowing processing
to be resumed in a consistent state from this point (service restart). Interrupted
asynchronous services are rolled back and restarted or restarted at the most
recent synchronization point.
For UTM-F applications, only configuration data which has been dynamically
changed is rolled back to the most recent consistent state after a restart due to
a preceding abnormal termination.
In UTM cluster applications, the global locks applied to GSSB and ULS on
abnormal termination of this node application are released. In addition, users
who were signed on at this node application when the abnormal termination
occurred are signed off.

WebAdmin
Web-based tool for the administration of openUTM applications via a Web
browser. WebAdmin includes not only the full function scope of the adminis-
tration program interface but also additional functions.

Glossary

Generating Applications 661

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

7.
21

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

pe
nU

T
M

V
6.

3\
_1

40
36

0
3_

G
en

\e
n\

ge
n_

e
.m

ix

Web service
Application which runs on a Web server and is (publicly) available via a stan-
dardized, programmable interface. Web services technology makes it possible
to make UTM program units available for modern Web client applications inde-
pendently of the programming language in which they were developed.

WinAdmin
Java-based tool for the administration of openUTM applications via a graphical
user interface. WinAdmin includes not only the full function scope of the admin-
istration program interface but also additional functions.

work process (Unix systems / Windows systems)
A process within which the services of a UTM application run.

workload capture & replay
Family of programs used to simulate load situations; consisting of the main
components UPIC Capture, UPIC Analyzer and Upic Replay (on Unix and
Windows systems) the utility program kdcsort. Workload Capture & Replay can
be used to record UPIC sessions with UTM applications, analyze these and
then play them back with modified load parameters.

WS4UTM
WS4UTM (WebServices for openUTM) provides you with a convenient way of
making a service of a UTM application available as a Web service.

XATMI
XATMI (X/Open Application Transaction Manager Interface) is a program inter-
face standardized by X/Open for program-program communication in open net-
works.
The XATMI interface implemented in openUTM complies with X/Open’s XATMI
CAE Specification. The interface is available in COBOL and C. In openUTM,
XATMI can communicate via the OSI TP, LU6.1 and UPIC protocols.

XHCS (BS2000 systems)
XHCS (Extended Host Code Support) is a BS2000 software product providing
support for international character sets.

XML
XML (eXtensible Markup Language) is a metalanguage standardized by the
W3C (WWW Consortium) in which the interchange formats for data and the
associated information can be defined.

Glossary

662 Generating Applications

Generating Applications 663

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

. J
an

ua
r

20
1

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

ab
k

Abbreviations

Please note: Some of the abbreviations used here derive from the German acronyms used
in the original German product(s).

ACSE Association Control Service Element

AEQ Application Entity Qualifier

AES Advanced Encryption Standard

AET Application Entity Title

APT Application Process Title

ASCII American Standard Code for Information Interchange

ASE Application Service Element

Axis Apache eXtensible Interaction System

BCAM Basic Communication Access Method

BER Basic Encoding Rules

BLS Binder - Loader - Starter (BS2000)

CCP Communication Control Program

CCR Commitment, Concurrency and Recovery

CCS Coded Character Set

CCSN Coded Character Set Name

CICS Customer Information Control System

CID Control Identification

CMX Communication Manager in Unix Systems

COM Component Object Model

CPI-C Common Programming Interface for Communication

CRM Communication Resource Manager

CRTE Common Runtime Environment (BS2000)

DB Database

DC Data Communication

DCAM Data Communication Access Method

Abbreviations

664 Generating Applications

DES Data Encryption Standard

DLM Distributed Lock Manager (BS2000)

DMS Data Management System

DNS Domain Name Service

DP Distribted Processing

DSS Terminal (Datensichtstation)

DTD Document Type Definition

DTP Distributed Transaction Processing

EBCDIC Extended Binary-Coded Decimal Interchange Code

EJB Enterprise JavaBeansTM

FGG File Generation Group

FHS Format Handling System

FT File Transfer

GSSB Global Secondary Storage Area

HIPLEX® Highly Integrated System Complex (BS2000)

HLL High-Level Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IFG Interactive Format Generator

ILCS Inter-Language Communication Services (BS2000)

IMS Information Management System (IBM)

IPC Inter-Process Communication

IRV International Reference Version

ISO International Organization for Standardization

Java EE Java Platform, Enterprise Edition

JCA Java EE Connector Architecture

JDK Java Development Kit

KAA KDCS Application Area

KB Communication Area

KBPRG KB Program Area

KDCADMI KDC Administration Interface

KDCS Compatible Data Communication Interface

Abbreviations

Generating Applications 665

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

. J
an

ua
r

20
1

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

ab
k

KTA KDCS Task Area

LAN Local Area Network

LCF Local Configuration File

LLM Link and Load Module (BS2000)

LSSB Local Secondary Storage Area

LU Logical Unit

MQ Message Queuing

MSCF Multiple System Control Facility (BS2000)

NB Message Area

NEA Network Architecture for BS2000 Systems

NFS Network File System/Service

NLS Native Language Support

OLTP Online Transaction Processing

OML Object Module Library

OSI Open System Interconnection

OSI TP Open System Interconnection Transaction Processing

OSS OSI Session Service

PCMX Portable Communication Manager

PID Process Identification

PIN Personal Identification Number

PLU Primary Logical Unit

PTC Prepare to commit

RAV Computer Center Accounting Procedure

RDF Resource Definition File

RM Resource Manager

RSA Encryption algorithm according to Rivest, Shamir, Adleman

RSO Remote SPOOL Output (BS2000)

RTS Runtime System

SAT Security Audit Trail (BS2000)

SECOS Security Control System

SEM SE Manager

SGML Standard Generalized Markup Language

SLU Secondary Logical Unit

Abbreviations

666 Generating Applications

SM2 Software Monitor 2

SNA Systems Network Architecture

SOA Service-oriented Architecture

SOAP Simple Object Access Protocol

SPAB Standard Primary Working Area

SQL Structured Query Language

SSB Secondary Storage Area

SSO Single Sign-On

TAC Transaction Code

TCEP Transport Connection End Point

TCP/IP Transport Control Protocol / Internet Protocol

TIAM Terminal Interactive Access Method

TLS Terminal-Specific Long-Term Storage

TM Transaction Manager

TNS Transport Name Service

TP Transaction Processing (Transaction Mode)

TPR Privileged Function State in BS2000 (Task Privileged)

TPSU Transaction Protocol Service User

TSAP Transport Service Access Point

TSN Task Sequence Number

TU Non-Privileged Function State in BS2000 (Task User)

TX Transaction Demarcation (X/Open)

UDDI Universal Description, Discovery and Integration

UDS Universal Database System

UDT Unstructured Data Transfer

ULS User-Specific Long-Term Storage

UPIC Universal Programming Interface for Communication

USP UTM Socket Protocol

UTM Universal Transaction Monitor

UTM-D UTM Variant for Distributed Processing in BS2000

UTM-F UTM Fast Variant

UTM-S UTM Secure Variant

UTM-XML openUTM XML Interface

Abbreviations

Generating Applications 667

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

. J
an

ua
r

20
1

5
 S

ta
n

d
17

:3
7.

22
P

fa
d

: P
:\F

T
S

-B
S

\o
pe

n
S

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6.
3

_
14

0
36

03
_

G
e

n\
en

\g
e

n_
e.

ab
k

VGID Service ID

VTSU Virtual Terminal Support

WAN Wide Area Network

WS4UTM Web-Services for openUTM

WSDD Web Service Deployment Descriptor

WSDL Web Services Description Language

XA X/Open Access Interface
(X/Open interface for acess to the resource manager)

XAP X/OPEN ACSE/Presentation programming interface

XAP-TP X/OPEN ACSE/Presentation programming interface Transaction Process-
ing extension

XATMI X/Open Application Transaction Manager Interface

XCS Cross Coupled System

XHCS eXtended Host Code Support

XML eXtensible Markup Language

Abbreviations

668 Generating Applications

Generating Applications 669

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

5.
03

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

p
en

U
T

M
V

6.
3\

_1
40

36
0

3_
G

en
\e

n\
ge

n_
e

.li
t

Related publications

You will find the manuals on the internet at http://manuals.ts.fujitsu.com. You can order printed
copies of those manuals which are displayed with an order number.

i PDF files of all openUTM manuals are included on the openUTM Enterprise DVD
with open platforms and on the openUTM WinAdmin DVD (for BS2000 systems).

openUTM documentation

openUTM
Concepts and Functions
User Guide

openUTM
Programming Applications with KDCS for COBOL, C and C++
Core Manual

openUTM
Generating Applications
User Guide

openUTM
Using openUTM Applications under BS2000 Systems
User Guide

openUTM
Using openUTM Applications under Unix Systems and Windows Systems
User Guide

openUTM
Administering Applications
User Guide

openUTM
Messages, Debugging and Diagnostics in BS2000 Systems
User Guide

http://manuals.ts.fujitsu.com

Related publications

670 Generating Applications

openUTM
Messages, Debugging and Diagnostics in Unix Systems and Windows Systems
User Guide

openUTM
Creating Applications with X/Open Interfaces
User Guide

openUTM
XML for openUTM

openUTM Client (Unix systems)
for the OpenCPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM Client
for the UPIC Carrier System
Client-Server Communication with openUTM
User Guide

openUTM WinAdmin
Graphical Administration Workstation for openUTM
Description and online help system

openUTM WebAdmin
Web Interface for Administering openUTM
Description and online help system

openUTM, openUTM-LU62
Distributed Transaction Processing
between openUTM and CICS, IMS and LU6.2 Applications
User Guide

openUTM (BS2000)
Programming Applications with KDCS for Assembler
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for Fortran
Supplement to Core Manual

Related publications

Generating Applications 671

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

5.
03

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

p
en

U
T

M
V

6.
3\

_1
40

36
0

3_
G

en
\e

n\
ge

n_
e

.li
t

openUTM (BS2000)
Programming Applications with KDCS for Pascal-XT
Supplement to Core Manual

openUTM (BS2000)
Programming Applications with KDCS for PL/I
Supplement to Core Manual

WS4UTM (Unix systems and Windows systems)
WebServices for openUTM

openUTM
Master Index

Related publications

672 Generating Applications

Documentation for the openSEAS product environment

BeanConnect
User Guide

JConnect
Connecting Java Clients to openUTM
User documentation and Java docs

WebTransactions
Concepts and Functions

WebTransactions
Template Language

WebTransactions
Web Access to openUTM Applications via UPIC

WebTransactions
Web Access to MVS Applications

WebTransactions
Web Access to OSD Applications

Related publications

Generating Applications 673

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

5.
03

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

p
en

U
T

M
V

6.
3\

_1
40

36
0

3_
G

en
\e

n\
ge

n_
e

.li
t

Documentation for the BS2000 environment

AID
Advanced Interactive Debugger
Core Manual
User Guide

BCAM
BCAM Volume 1/2
User Guide

BINDER
User Guide

BS2000 OSD/BC
Executive Macros
User Guide

BS2000
BLSSERV
Dynamic Binder Loader / Starter
User Guide

DCAM
COBOL Calls
User Guide

DCAM
Macros
User Guide

DCAM
Program Interfaces
Description

FHS
Format Handling System for openUTM, TIAM, DCAM
User Guide

IFG for FHS
User Guide

Related publications

674 Generating Applications

HIPLEX AF
High-Availability of Applications in BS2000/OSD
Product Manual

HIPLEX MSCF
BS2000 Processor Networks
User Guide

IMON
Installation Monitor
User Guide

MT9750 (MS Windows)
9750 Emulation under Windows
Product Manual

OMNIS/OMNIS-MENU (BS2000)
Functions and Commands
User Guide

OMNIS/OMNIS-MENU (BS2000)
Administration and Programming
User Guide

OSS (BS2000)
OSI Session Service
User Guide

RSO
Remote SPOOL Output
User Guide

SECOS
Security Control System
User Guide

SECOS
Security Control System
Ready Reference

SESAM/SQL
Database Operation
User Guide

Related publications

Generating Applications 675

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

5.
03

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

p
en

U
T

M
V

6.
3\

_1
40

36
0

3_
G

en
\e

n\
ge

n_
e

.li
t

openSM2
Software Monitor
Volume 1: Administration and Operation

TIAM
User Guide

UDS/SQL
Database Operation
User Guide

Unicode in BS2000/OSD
Introduction

VTSU
Virtual Terminal Support
User Guide

XHCS
8-Bit Code and Unicode Support in BS2000/OSD
User Guide

Related publications

676 Generating Applications

Documentation for the Unix system environment

CMX V6.0 (Unix systems)
Betrieb und Administration (only available in German)
User Guide

CMX V6.0
Programming CMX Applications
Programming Guide

OSS (UNIX)
OSI Session Service
User Guide

PRIMECLUSTERTM

Concepts Guide (Solaris, Linux)

openSM2
The documentation of openSM2 is provided in the form of detailed online help systems,
which are delivered with the product.

Related publications

Generating Applications 677

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
2

0.
 J

an
ua

ry
 2

01
5

 S
ta

n
d

17
:3

5.
03

P
fa

d:
 P

:\F
T

S
-B

S
\o

p
en

S
E

A
S

\o
pe

nU
T

M
\o

p
en

U
T

M
V

6.
3\

_1
40

36
0

3_
G

en
\e

n\
ge

n_
e

.li
t

Other publications

XCPI-C (X/Open)
Distributed Transaction Processing
X/Open CAE Specification, Version 2
ISBN 1 85912 135 7

Reference Model Version 2 (X/Open)
Distributed Transaction Processing
X/Open Guide
ISBN 1 85912 019 9

TX (Transaction Demarcation) (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 094 6

XTAMI (X/Open)
Distributed Transaction Processing
X/Open CAE Specification
ISBN 1 85912 130 6

XML
W3C specification (www consortium)
Web page: http://www.w3.org/XML

http://www.w3.org/XML

Related publications

678 Generating Applications

Generating Applications 679

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

Index

102
port number 151

24-bit addressing mode 422
31-bit addressing mode 422
64-bit

transfer from 32-bit using KDCUPD 603
8-bit codes 235
9001-3 printer 464
9001-893 printer 464
9011-18 printer 464
9011-19 printer 464
9012 printer 464
9013 printer 464
9022 printer 464

A
abstract syntax 97

define 279
identify 541

ABSTRACT-SYNTAX 98, 251, 279, 290
access authorization 345

common memory pool 421
access list concept 217
access permissions

client/client programs 532
defining for user 547

access point 92
define (OSI TP) 281
generate 100
identify by AET 557
TNS entry 283, 286

access protection
LTERM pool 533

access rights

client (LTERM pool) 132
partner application 445
UTM terminal (KDCDEF) 368

access to UTM application 450
ACCESS-POINT 98, 251, 281
ACCOUNT 249, 287
accounting

CPU seconds 288
print output 288
record 288
weighting of partner application 358

accounting parameters
define 287

accounting phase 358, 511
accounting units

number 288
acknowledgment procedure

printer 177
activate

SAT logging 405
ADD-SPOOL-CHARACTER 172
ADD-SPOOL-FORM 172
address

generate (OSI TP) 435
OSI TP access point 284
OSI TP partner 92

address format 285
BCAMAPPL 302
CON 321
OSI-CON 437, 468

address information
CMX 109

administration
print job queue 177
printer queue 366, 455

Index

680 Generating Applications

administration authorization
partner application (LU6.1) 352
partner application (OSI TP) 445
transaction code 501
user 550

administration authorizations 147
administration call

asynchronous, define destination 387
result 387

administration journal 632
administration TAC

generate 497
administrative data 47

initialize 47
KDCFILE 47
modification by transactions 50
update 52
UTM-F application 47
UTM-S application 47

administrative data (KDCFILE) 29
administrative information

assign process 120
administrator

define 556
ADMINISTRATOR=*ADMINISTRATOR 171
AEQ 95, 96, 439

OSI-LPAP 441
AES methods 229
AET 95, 282, 439, 557
alias LTERM 366
ALTERNATE-LIBRARIES 347
ALTERNATE-LIBRARIES=NO 200
ALTERNATE-LIBRARIES=YES 200
announce asynchronous message 527
APDN 464
APPLI 464, 465
application

define default locale 393
define locale 130

application context 95
define 289, 439
generate 100
OSI-LPAP 439

application entity qualifier 95, 96, 439

application entity title 95, 282, 439, 557
generate 99

application message module 186
application name

generate 295
application process title 95, 439

UTM cluster application 442, 558
UTMD 557

application properties 31
generate 376

APPLICATION-CONTEXT 98, 251
APT 95, 439

in UTM cluster applications 99
OSI-LPAP 442
UTMD 557

AREA 248, 292
areas

KDCFILE 43
ASCII code 236
ASCII/EBCDIC 434, 460, 485
ASIS99 310
assign

client/printer to LTERM partner 459
session characteristics 353

assigning roles 220
assigning user roles 220
association (OSI TP) 94
asynchronous administration

FPUT 51
asynchronous message

character set used 239
display 365
maximum number 371
time-driven 47

asynchronous processes
maximum number 380

asynchronous processing 380
asynchronous service 47, 512
asynchronous tasks

maximum number 380
ASYNTASKS 208, 380
AT-PRINTER-START 171
authorization key

semaphore 406

Index

Generating Applications 681

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

authorization profile
LTERM partner 127

autolink function 200, 347, 348
automatic

connection 143
automatic connection setup 168
automatic KDCSIGN 372
automatic mode

printer 177
automatic service restart 371, 555
automatic sign-on 143
automatically establishing a connection 455

B
BADTACS 497
base name 44, 45

KDCFILE 44, 391
new KDCFILE (KDCUPD) 602

BCAM 382
BCAM application name 295
BCAM generation 453

distributed processing 108
BCAM name 453
BCAMAPPL 81, 128, 193, 249, 251, 295, 454

for Clients 129
BCAMAPPL name 587
BCMAP

for clients 154, 158
BCMAP entries 108
block length

user data 395
block size

KDCFILE 43
page pool 48

blocked call
wait time 562

blocking call 516
waiting time 400

BLS interface
using 346

BRETRYNR
MAX 382

BS2000
minimal configuration 34

BUNDLE 136
bypass mode 176

printer 176

C
cache

(non-)resident 383
define properties 383
define size 383

cache paging algorithm 383
CAE specification 478
call

inverse KDCDEF 273
KDCDEF 256, 601
KDCDEF (BS2000) 256
KDCDEF (Unix system) 258
KDCDEF (Windows) 259
KDCUPD (BS2000) 601
KDCUPD (Unix system) 602
KDCUPD (Windows) 602

case
node computers 316, 317
partner computer (CON) 321
partner computer (OSI-CON) 435
partner computer (PTERM) 462
partner computer (TPOOL) 536

catalog entry
KDCFILE 384

catalog IDs
node application 317

CATID
KDCFILE 615

catid 44
CCS name 237

edit option 336, 369, 393, 533
edit profile 241

CERTIFICATE 546
certificate 546
character interpretation 284
character set

compatible 237
extended 235, 238

character set name 237
format 241

Index

682 Generating Applications

locale 238
character sets

for editing messages 242
CID 168, 455

printer 177
PRINTER, printertype, 466
client 126

assign LTERM partner 127
BCMAP entry for 154, 158
connect 127
connect via LTERM pool 131
define 363, 372
define (PTERM) 450
logical 127
multiple connections 132
properties for physical 128
secure 230
status 467
trusted 230
TS application 465

client program, see openUTM client program
client/server cluster, generating 161
close session 75
CLUSTER 249, 252, 303
cluster

configuring a node application 315
relocatable IP address 390

cluster administration journal 632
cluster configuration file 65

generating 305, 429
cluster GSSB file 66

generating 305, 429
cluster page pool

number of files 314
size, warning level 312

cluster page pool files 66
generating 305

cluster ULS file 67
generating 305, 429

cluster update 604
cluster user file 306

generating 305, 429
user locales 312
UTM cluster application 65

CLUSTER-FILEBASE
defining new base name (KDCUPD) 616
KDCUPD statement 616

cluster-internal communication
communication end point 306
port number 306

CLUSTER-NODE 249, 252, 315
CMX

providing address information 109
code conversion

ASCII/EBCDIC 434
for TS applications 150

code types 358
coded character set name 237
CODED-CHARACTER-SET 238
combination

multiplex connection - direct connection 195
ComfoTRAVEL 564
comment line

insert 472
KDCDEF 261, 262

commit functional unit 282
common memory pool

generate 203, 421
generate size 422
shared code 203
size 203

communication
with partner 100

communication area
define fill character 385
define length 391

communication partner
define (PTERM) 450
define type 463
type 468
UPIC-L/UPIC-R 465

compatible character sets 237
compiler 447, 449

Micro Focus 449
NETCOBOL 449

CON 82, 251, 277, 318
changing dynamically 585

configuration 31

Index

Generating Applications 683

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

change dynamically 583
define 30, 256
example application 564
store configuration information 29

configuration data (KDCROOT) 29
configuration file

UTM cluster application 65
configuration information

store 31
configure

node application 315
UTM cluster application 303

CONN-USERS 130
CONNECT 168, 193
connect

client program, multiple 132
connect client 127
CONNECT-MODE 132
connection

automatic 143
define (LU6.1) 318
define name (OSI TP) 443
generate (OSI TP) 100
parallel (OSI TP) 94
reestablishing 386
transport protocol 462

connection bundle 135
connection control time 559
connection module 232
connection point, logical 126
connection request 466
CONNECTION REQUEST TIME 386
connection request time 169
connection setup

automatic 455
global timeout 559
RSO printer 166

connection shutdown
confirmation (MUX) 194

connection user ID 142
restart 148

CONRTIME 169, 386
CONSOLE 186
contention loser 484

LU6.1 75
OSI TP 94

contention winner 484, 485
LU6.1 75
OSI TP 94

continuation lines
KDCDEF control statements 261

control
application load 385
KDCDEF run 427
SAT logging 481
utilization 130

control identification
printer 177

control sign-on procedure 491
control statements

create 41, 271
enter 256
format 261
KDCDEF 256
KDCUPD 614
order 260

control_statements_file 323
CONTWIN 484
conversation exit 504
conversion 150

to native TCP-IP connections 534
conversion file 122
copy KDCFILE 43
CPI-C program unit

blocking calls 505, 516
TAC 497, 502

CPU seconds
weighting 288

CPU time
define 511

create
control statements 41, 271
control statements for object types 324
new KDCFILE 600

CREATE-CONTROL-STATEMENTS 41, 249,
323

cssname 238
CTERM 166

Index

684 Generating Applications

D
data access control 31, 217, 344

define for services 101
for service-controlled queues 222
transaction code 504
using encryption functions 230
with distributed processing 224

data areas
define 292
shareable 204

data conversion ASCII/EBCDIC 485
data protection 145
data security 46
data transfer

application context 289
transfer syntax (BER) 97

DATABASE 248
database

password 329, 478
user name 328, 478

database connection
define 328

database key 502
database linking 233

define 232
multi-instance mode 234

DATABASE statement 232
database system 232

define 328, 478
KDCUPD 596
maximum number 328

DB 328
DCAM application 464
dead letter queue

number of messages 387
DEFAULT 248, 331
default language environment 130
default system code 237
default user character set 238
default values

application-specific 331
define 331

define
abstract syntax 279

accounting parameters 287
alias LTERM 366
application context 289
base name for KDCFILE 391
client 363
configuration 256
database linking 232
database system 328
default values 331
edit options 335
event exits 341
format handling system 343
function keys 486
key set 344
language environment 238
locale 238
logical connection (LU6.1) 318
LPAP bundle 375
LPAP partner 351
LTERM group 366
LTERM pool 524
master LPAP 375
master LPAP of an LU6.1-LPAP bundle 374
master LTERM 365
multiplex connections 192
OSI-LPAP partner 439
parallel connections (LU6.1) 295
physical clients/printers 450
physical printer 167
printer 166, 363
printer control LTERM 166, 177, 366
process values 376
program unit 447
Resource Manager 478
RSO buffer size 174
session name 354
shared objects 489
SM2 data supply 407
start format 366
TAC 496
TAC classes 513, 589
transfer syntax 541
user ID 543
user message module 185, 417

Index

Generating Applications 685

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

define character set
edit option 336

define locale
TPOOL 532

define names 263
delete

dynamically 272, 278
DES encryption 227
DES methods 229
destination_process_name 484
device definition 171

example 172
dialog control 562
dialog message 47

character set used 239
dialog service 512
dialog TACs 510
DISCONNECT PENDING 194
DISCONNECT=*YES 171
disk partition

estimate 58
distributed processing

define global values 557
define partner application (LU6.1) 351
generate (OSI TP) 98
generate connection (LU6.1) 318
generate connection (OSI TP) 432
generate session name (LU6.1) 354
local TAC 356
OSI TP 92

documentation
summary 14

DPUT
LTERM bundle 135
LTERM group 139

DPUTLIMIT1 387
DPUTLIMIT2 388
DSS 3270 (IBM) 464
DSS 9748 463
DSS 9749 463
DSS 9750 463
DSS 9751 463
DSS 9752 463
DSS 9753 463

DSS 9754 463
DSS 9756 463
DSS 9763 463
DSS X28 (TELETYPE) 464
DSS X28 (VIDEO) 464
dual-file operation

KDCFILE 43, 391
raw-device 60

dump error code 310
dynamic

deletion 272, 278
entering objects 473, 583
object entry 271

E
EBCDIC 236
EBCDIC character sets 236
EBCDIC/ASCII conversion

native TCP-IP communication 534
EDIT 249, 335

define CCS name 336
define character set 336, 369, 393, 533, 548

edit options
define 335

edit profile 335
character set name 241

EJECT 248, 261, 339
encryption 226

passwords 228
transaction code 503

encryption level 229
generation 229
specifying for clients 456, 528

encryption methods 227
ENCRYPTION-LEVEL

PTERM 456, 503, 528
END 248, 340
ENDPET 311
enter

control statements 256
objects, dynamically 473
RSO device manager 171
UTM objects, dynamically 584

ENTRY 232, 248, 249

Index

686 Generating Applications

error code
UTM dump 310

error documentation 626
establishment of connection

cyclically after failure 386
event exit SERVICE 504
event exits 201

define 341
event services 201, 341
event-specific preselection 481
example

example generation ComfoTRAVEL 564
generate locale 240

example generation 564
execution time

time-driven job 387
EXIT 341, 504
explicit connection user ID 142
extended character set 235

F
F keys 486
FHS-DOORS Front End 463
file that is global to the cluster

lock 312
lock request retry 312

FILEBASE
node application 315

filebase
derived files 44

filebase directory
other files 45

fill character
communication area/standard primary working

area 385
follow-up program 504
FORMAT 342, 546
format

KDCDEF control statements 261
names (KDCDEF) 263

format handling system
define 343

format mode 244
FORMMODE 342

FORMSYS 248, 343
FPUT 51

LTERM bundle 135
LTERM group 139

Fujitsu
compiler 449

function keys
define 486

functions
KDCUPD 614

G
generate

address (OSI TP) 435
administration TAC 497
application properties 376
cluster configuration file 305, 429
cluster GSSB file 305, 429
cluster page pool files 305
cluster ULS file 305, 429
cluster user file 305, 429
distributed processing (OSI TP) 92
ID card check 545
introduction 29
KDCFILE 429
load module (BLS) 346
load modules 197
logical connection (OSI TP) 432
LU6.1-LPAP bundle 87
multiplex connection 425
OSI-LPAP bundle 105
printer 166
printer pool 176
ROOT table source 429
RSA keys 430
RSO printer 170
shareable modules 204
shareable objects 204
UTM and BCAM 108
UTM application 30
UTM cluster application 62
UTM database linking 234
UTM objects 32
UTM-D application (LU6.1) 74

Index

Generating Applications 687

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

UTM-D application (OSI TP) 92
generating

LU6.1 connection 79
generating a UTM cluster application 62
generation

change 600
client/server cluster 161
maximum value exceeded 266
terminate 266

generation interface 30
generation notes

LU6.1 protocol 76
generation tool 247
generation variants of UTM 379
global application pool 203
global properties

UTM cluster application 303
global values

define 101
distributed processing 557

Grace-Sign-On 492
GROUP 140
GSSB 47

define maximum number 389

H
high transaction rate 55
high-performance file 382
Hiperfile 382
host name

mapped 121
node application 316
real 121
UTM 121

HOSTCODE 237
HOSTNAME 390
HP-UX 13
hyphen

in names 264

I
I/O behavior 55
ID card check

generate 545

ID card information 545
define length 384

identifier
communication partner 446

identify
printer 168

idle
connection (OSI TP) 444
session 484

IDLETIME 145, 444, 484
IMON installation path

SESAM/SQL 329
UDS/SQL 329

implicit connection user ID 142
INFO LO 235
INFORMIX 478
INIT PU 235
initialize

administrative data 47
INPUT 342
input files

KDCDEF 277
specifying for KDCDEF run 428

input/output
weighting 288

insert
comment line 472

instance (OSI) 92
intelligent terminal 464
internationalization 235

application 417
introduction

generation 29
inverse KDCDEF 41, 271, 323

call 273
generated files 274
object types 271
start 273

IP address
relocatable 390

IPC 390
IPCTRACE 390
ISO 646 236
ISO 8859 236

Index

688 Generating Applications

ISO character sets 236
IUTMDB 328

J
job control 206
job receiver confirmation

waiting time 559
job receiver response

waiting time (KDCDEF) 362
job-receiving services

maximum number 559
job-specific SAT logging 508

K
K keys 486
K009 487
K040 50
K041 50
K101 50
K492 281
KAA 270
KAA size 270
KAASHMKEY 391
KCMF 171
KCSMSGS 184, 417
kcsmsgs.o 420
KCSMSGSE 184, 417
KDC Application Area 270
KDCAPLKS 344
KDCAPPL SPOOLOUT=ON 167
KDCBADTC 208, 497
KDCDEF

call 256, 601
call (BS2000) 256
call (Unix systems) 258
call (Windows) 259
comment line 261, 262
control statements 247
enter control statements 256
Inputdateien 428
inverse KDCDEF 274
logging 262
messages 581
name classes 268

name conventions 264
number of names 265
optimize input files 277
page feed 261
result 32, 270
terminate input 340

KDCDEF control statements
continuation lines 261
format 261

KDCDEF run
control 427

KDCFILE 29, 31, 43, 270
administrative data 47
areas 43
base name 44
block size 43
catalog entry 384
CATID 615
check consistency 616
control data transfer 620
copy 43
create new 600
creating during operation 53
data transfer with KDCUPD 597
define base name 391
define new base name 615
dual-file operation 43, 391
filebase directory 45
generate 256
generate dual-file operation (KDCDEF) 384
generating 429
main file 56
number of files 56
page pool 47
performance enhancement 55
raw-device 57
restart area 50
specifying new base name 618
split 55, 391
update 591
updating for a UTM cluster application 604
UTM cluster application 69

KDCINF PTERM 194
KDCMMOD 184, 188

Index

Generating Applications 689

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

KDCMSGTC 208, 497
KDCMTXT 184
KDCPTERM 194
KDCROOT 29, 256
KDCROOT main routine 29
KDCS message area

define length 396
KDCSGNTC 208, 497
KDCSIGN 372, 384, 545
KDCTXT 188
KDCUPD 602

64-bit variant 603
call 601
call (BS2000) 601
call (Unix system) 602
call (Windows) 602
check KDCFILE consistency 616
control data transfer 621
control runtime log 619
control statements 614
necessary steps 600
prerequisites 593
RSA key 594, 595

Kerberos 550
generating system access control 245

Kerberos dialog
performing 245, 367, 531

Kerberos principal 543
KERBEROS-DIALOG 367, 531
key code 217, 344

define maximum value 392
key set 344

assign to LTERM partner 368
changing dynamically 583
define 344
LTERM pool 132, 532
partner application 445
user 547

KEYSET 132
KSET 127, 218, 220, 249, 277, 344

changing dynamically 585
with inverse KDCDEF 271

L
lang_id 184, 238
language environment

application (default) 393
application-specific 239
define 238
LTERM partner-specific 239, 368, 532
LTERM-specific 127, 133
quering 241
standard 239
user-specific 239, 548

language identifier
locale 238

language-specific message modules 185
assign 417

layer (OSI) 92
LEADING-SPACES 392
LEASY 232, 328
length

buffer 51
level of complexity

password 551
LIB 185, 232
LINEMODE 342
linked operation 233
Linux distribution 13
listener ID 119, 300

MAX 397
LISTENER-ID

cluster communication 312
LISTENER-PORT 129, 130

ACCESS-POINT 283, 434
BCAMAPPL 296, 300
CON 320
PTERM 459

load
control 385

load mode 198
load module 348
shared object 489

load module (BLS)
autolink function 347
define load mode 348
generate 346

Index

690 Generating Applications

load mode 348
version number 350

load modules
generate 197
libraries 199

LOAD-MODULE 248, 249, 346
local application pool 203
local service name

changing dynamically 583
local session name

define 354
local_sessionname 354
local-session-name 74
LOCALE 127, 130, 133, 185, 186, 239

default language environment 393
LTERM partner-specific 368

locale 235, 238
define 238
generation example 240

LOCK 127, 132
lock

transaction code 509
user ID 556

lock code 217, 345, 357, 587
LTERM partner 369
LTERM pool 533
remote service 356
transaction code 504

lock/key code concept 217, 368, 504
locked resource

waiting time 404
log

page feed 339
LOGACKWAIT 169
logging

activate 405
KDCDEF 262

logical access point
client/printer 363
partner application 351
partner application (OSI TP) 439

logical client 127
logical connection

define (LU6.1) 318

define (OSI TP) 432
reestablish 169
reestablishing 386

logical connection point 126
logical print acknowledgement 169, 394
long-term storage area

user-specific 542
LPAP 251

LU6.1-LPAP bundle 87
LPAP bundle 375

OSI TP protocol 104
LPAP bundles

LU6.1 protocol 86
LPAP name 320
LPAP partner

assign session characteristics 353
define 351

LPUT buffer 394
LPUT data 394
LPUT message 395
LPUTLTH 395
LSES 83, 251, 277, 354

changing dynamically 585
LSSB 47

define maximum number of 395
LTAC 98, 224, 251, 277, 356

changing dynamically 585
for inverse KDCDEF 271

LTERM 129, 132, 168, 219, 221, 249, 363
LTERM bundle 136
LTERM group 140
reserve table locations 474

LTERM bundle
LTERM statement 136
PTERM statement 137

LTERM group 138, 366
LTERM statement 140
PTERM statement 140

LTERM partner 126, 127, 136, 140, 587
administer message queue 166
assign 131
assign client/printer 459
authorization profile 127
define locale 368

Index

Generating Applications 691

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

define locale for LTERM pool 532
define properties 363
defining access permissions 368
language environment 239
LTERM group 138, 366
LTERM pool 131
message queue 167, 371
name 127, 166, 365
of an LTERM pool 533
predefine 363
specific language environment 239
system access control 127

LTERM pool
access permissions 532
connecting clients 133
define 524
define communication partner type 537
define LTERM partners 533
LTERM partner names 132
maximum number of clients 535
message queue 538
names of LTERM partners 533
number of clients 132
properties 131
system access control 132
types 131

ltermname 127, 166
ltermprefix 533
LU6.1

generation 79
generation notes 76

LU6.1 protocol 74
LU6.1-LPAP bundle 86

generating 87
making an LPAP a slave LPAP 352
standalone application with UTM cluster

application 88
LU6.2 applications 73

M
magnetic strip card 545
main file

KDCFILE 56
main routine KDCROOT 256

mapped host names 121
master LPAP

define 375
defining for an LU6.1-LPAP bundle 374

master LTERM 135
specify 365

MASTER-LU61-LPAP 87, 251, 374
MASTER-OSI-LPAP 98, 105, 375
MAX 119, 129, 183, 248, 249, 252, 376
MAX OSI-SCRATCH-AREA 99, 251
MAX OSISHMKEY 99, 251
MAX statement 127, 169
maximum length

physical messages 130, 169
maximum waiting time 145

sign on to common memory pool 396
MAXSES 193
MESSAGE 185, 188, 248, 417, 420
message

leading blanks 392
message definition file 184, 187
message destination 186

user-specific 189
message display, with WinAdmin 189
message distribution 190

basic principle 191
message encryption

transaction code 503
Message in format mode 244
Message in line mode

with edit profiles 243
without edit profile 242

message module 417, 420
create 184
English 184
Standard 186
user-specific 184

message queue 371
LTERM partner 167, 371
LTERM pool 538
maximum number of messages 371
OSI-LPAP partner 445

message router
functions 192

Index

692 Generating Applications

message tools 188
messages

KDCDEF 581
KDCUPD 625

metasyntax 27
MFCOBOL 449
Micro Focus compiler 449
minimal configuration

BS2000 systems 34
modify

KDCFILE administrative data 47
page pool size 48

MODIFY-SPOOL-DEVICE 171
MODULE 185, 248, 249
MP-WAIT 396
MPOOL 421
MSCF 635
MSG-DEST 189
MSGTAC 497
multi-instance mode

database linking 234
multi-lingual message module 417
multi-step transaction, wait time 409
multi-threaded 119, 397
multi-threaded network access 119

ACCESS-POINT 283
BCAMAPPL 300
MAX 376

multi-threaded network connection
BCAMAPPL 312

multilingualism 235
UTM program units 235

multiple sign-ons 144, 493
multiplex 192
multiplex connection 195

avoid data jam 195
define 192
generate 190, 425
PTERM 462

multiplex function 190
MUX 249, 425

confirm connection shutdown 194
statement 193

MUX connection

statistics 194

N
name

format (KDCDEF) 263
maximum number (KDCDEF) 265
partner application 320
remote application (LU6.1) 320
session characteristics 483

name classes, KDCDEF 268
name conventions 264
NEABT 463, 537
NET-ACCESS 396
NETCOBOL compiler 449
network access 119, 396
NLS standard message catalog 187
node application 61

assignment to session 355
availability 307
bound service 71
catalog IDs 317
communication retries 308
configuring 315
emergency command 309
failure command 311
FILEBASE 315
generating with provisional values 69
host name 316
reference name 316
reply time 308
warm start 314

node recovery 317
node update 604
node-bound service 307
nonprivileged subsystems 202
notational conventions 27
NRCONV 397
NUMBER 132
number

asynchronous services 380
tasks 514

O
object identifier 289

Index

Generating Applications 693

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

object protection 217
object types

inverse KDCDEF 271
OMNIS 190, 425
OMNIS-MENU 193
ONCALL 349, 489
open

session 75, 485
OpenCPIC

data access protection 225
OpenCPIC client 141
openUTM client program 464

multiple connections via LTERM pool 528
OPTION 32, 43, 248, 427
OPTION DATA 277, 428
OPTION DATA=control_statements_file 274
OSI terms 92
OSI TP 92

generate connection 432
OSI TP access point 434
OSI TP partner

address 92
generate 100

OSI-CON 98, 251, 432
OSI-LPAP 98, 251, 439

OSI-LPAP bundle 105
OSI-LPAP bundle 104

generate 105
standalone application with UTM cluster

application 104
OSI-LPAP partner 126

assign partner application 432
define 439
maximum number asynchronous

messages 445
replacement connections 434

output messages 47

P
pacing_count_time 484
page feed

log 339
page pool 43, 47

block size 48

define properties 398
define size 394
estimate size 48
size 45, 48
warning levels 49

page pool size
KDCDEF 371
modify 48

page pool utilization
define warning levels 398

PAM read/write jobs 403
parallel connections

define (LU6.1) 295
general OSI TP 94
generate (LU6.1) 318
generate (OSI TP) 100
generate number of (OSI TP) 443

PARTNER 186
partner application

access authorization 352
access rights 445
address (OSI TP) 435
administration authorization 352
assign 318
define (LU6.1) 351
define local TAC 356
define LPAP partner 351
logical access point 351
name 356
name (LU6.1) 320

partner type 463, 537
password

blanked-out input 549
database 329, 478
database system 478
define level of complexity 551
encrypted 228
for database 329
user ID 549

password history 494
PCMX 18
PDN 464
PDN application 464
performance 55, 145, 379

Index

694 Generating Applications

CONTWIN 484
monitoring, generate 407

performance enhancement
KDCFILE 55

PGPOOL 169
PGPOOLFS 56
PGWT

TAC class 505, 516
wait time 400
waiting time 400

physical clients
properties 128

physical message
maximum length 410

PLEV 166
PLU 75, 485
pool

global application 203
local application 203

port number 102 109, 151
Unix systems and Windows systems 109

prefix 44
prerequisites

dynamic entry of objects 583
KDCUPD 593

preselection
event-specific 481
predefine values 481

presentation layer 94
presentation selector 284
primary logical unit 75, 485
PRINCIPAL 550
PRINCIPAL-LTH 401
print acknowledgment 394
print job

weighting 288
print job queue 177

administer 177
print process 455
print_level_number 370
PRINTER 465
printer

activate for openUTM 174
assign LTERM partner 168

bypass mode 176
connection setup 370
control identification (CID) 177
define 166, 363, 372
define (PTERM) 450
generate 166
identify 168
logical 166
OLTP interface 170
status 467

printer (RSO)
release in the event of error 175

printer control 455
printer control LTERM 177, 455

define 166, 177, 366
printer group 167
printer ID 168, 455
printer information (RSO)

query 175
printer pool 177

generate 176
printer queue

administer 366, 455
printer sharing 167, 370
printer status (RSO) 175
printer type 168
printertype 466
priority control 206

generate 518
PRISMA 232, 328
private key (RSA) 227
PRIVILEGED-LTERM 400
process

maximum number 409
number per TAC class 513

process limitation
TAC classes 206

process values
define 376

processor
partner application 321

processor name 321, 426, 461, 536
PROGRAM 248, 249, 447

reserve table locations 475

Index

Generating Applications 695

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

program
assign transaction code 505

program exchange 489
binder 449
BLS 348
generate (BLS) 346

program unit 588
define 447
weighting 358, 511

program wait 516
PRONAM 132, 170
properties

clients and printers 31
LTERM pools 131
partner applications 31
physical clients 128
TACs 31
UTM application 31

properties of UTM application
generate 376

PROTECT-PW 551
protecting objects 217
PTCTIME 560
PTERM 249, 450

LTERM bundle 137
LTERM group 140
reserve table locations 475

ptermname 128, 167, 170
PTYPE 129, 133, 168, 170, 463, 537

LTERM bundle 137
LTERM group 140

public key (RSA) 227
PUTMMUX connection 192
PUTMMUX protocol 192

Q
QAMSG 167
query

printer information (RSO) 175
QUEUE 182, 249
queue level

USER queue 553
queue_level_number 371, 538, 553
queues

asynchronous message 371
defined with TAC statement 179
service-controlled 179
temporary 179
user-specific 179

R
raw-device, KDCFILE 57
Readme files 20
real host name 121
real user ID 142

restart 148
RECBUF 85
RECBUFFS= 56
recipient_TPSU-title 358
Red Hat 13
reestablish

logical connection 169, 386
reference code 237
regeneration, recommendations 277
relocatable 390
relocatable IP address 390
REMARK 248, 261, 472
remote application, see partner application
remote session name

define 354
REMOTE-BUFFER-SIZE 170
remote-session-name 74
replacement connection

(OSI TP) 101
RESERVE 248, 249, 251, 473
reserve

empty table locations 585
table locations 31
table locations for UTM objects 473

reserve node application
generating 69

reserved names
KDCDEF 263

RESET RSO printer 171
RESET=*YES 171
Resource Manager 233

define 478
RESOURCE WAIT 404

Index

696 Generating Applications

RESTART
LTERM bundle 136

restart
connection user IDs 148
real user ID 148

restart area 45, 50
define size 402
size 45, 51
split (KDCDEF) 402

restart information 50
result

inverse KDCDEF 274
KDCDEF 32
KDCDEF run 270

RFC1006 285
RFC1006 connection

BCAM 108
RFC1006 link

example 161, 163
RMXA 248, 478
RMXA statement 233
ROOT 32, 248, 480

generating the table source 429
ROOT table source

define name 480
RSA 227
RSA key

length 229
transfer to new KDCFILE 594, 595

RSA key pair 227
creation 231

RSA keys
generate 430

RSET 560
RSO 170, 171

device entry 172
RSO buffer size

define 174
RSO device manager

enter 171
RSO printer

generate 170, 465
RTS modules 348
runtime parameters 47

S
SAT logging

activate 405
control 481
TAC-specific 508
user-specific 556

SATSEL 249, 481
secure client 230
selector

format 94
OSI TP 92

semaphores 406
service

bound to node application 71
protected 220

service access point 92
generate 100

service program (remote)
lock code 357
TAC name 358

service restart 371, 546, 555
service stacking 397
service-controlled queue 47

data access control 222
number of redeliveries 183
wait time for reading 183

SESAM 328
SESAM/SQL 232
SESCHA 80, 251, 483
session 191, 192

assignment to node application 355
close 75
define characteristics (LU6.1) 483
define session name (LU6.1) 354
duration 75
idle 484
name 74
open 75, 485
open, global timeout 559
reserve, waiting time 361

session characteristics
assign 353

session layer 94
Session Manager 191

Index

Generating Applications 697

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

OMNIS 425
session selector 284
session setup 191
SFUNC 249, 486
shareable data area 204
shareable objects, generate 204
shareable program units 202
shareable programs

nonprivileged subsystems 202
shared code

common memory pool 203
shared memory 390
shared memory segment

authorization key 382
SHARED OBJECT 248, 250, 489
shared objects

define 489
file name 490
version identifier 490

SHARED-OBJECT 449
SHUT 342
SIGN CL 235
sign-on

automatic 143
SIGNON 249, 491, 497
SINGLE-THREADED 397
single-threaded network access 120
size

cluster page pool 313
KAA 270
page pool 45, 48
page pool (KDCDEF) 371
restart area 45, 51

size monitoring
SYSLOG 408

slave LTERM 135, 365
SM2 data supply

define 407
SNA sessions 74
SOCKET 465

providing address information 117
socket application 464, 465
socket connections

EBCDIC/ASCII conversion 534

Solaris 13
split

KDCFILE 55
SPOOL parameter file 171
standalone UTM application 11
standard language environment 239
standard message module

KCSMSGS 187
standard primary working area

define fill character 385
define length 407

standard UTM message module 417
START 342
start

inverse KDCDEF 273
KDCDEF 256

start error KF58 408
start format 530, 546

define 366
user-specific 546

START-PRINTER-OUTPUT 171, 174
STARTUP 348, 489
STATIC 349
static generation, object components 587
STATION 186
statistics

on MUX connections 194
stdin 258, 259
steps

KDCFILE update 599
updating the KDCFILE for a UTM cluster

application 604
store

configuration information 29, 31
subsystems

nonprivileged 202
SUSE 13
SYSDTA 256
SYSLINE 186
SYSLNK

DATABASE 329
SYSLOG 408

size monitoring 408
SYSLST 186

Index

698 Generating Applications

SYSLST log
generate page feed 339

SYSMSH.UTM.060.MSGFILE 184
SYSOUT 186
system access control 146

generating with Kerberos 245
LTERM partner 127
LTERM pool 132
using encryption functions 229

T
T-PROT 129, 130, 285
T-selector

generate partner application 437
table locations

for UTM objects 473
reserve 585
reserved 31

TAC 180, 218, 221, 222, 248, 249, 496
administration authorization 501
define 496
reserve table locations 475

TAC class control 47
TAC classes 510

define 513, 589
setting priorities 518

TAC name
service program (remote) 358

TAC properties
generate 496

TAC queue 179, 180
generate 512

TAC-PRIORITIES 249, 518
TAC-specific SAT logging 508
TACCLASS 249, 513, 518
TACUNIT 511
task

number of 516
TASKS 515

maximum number 409
TCB entries

define 522
TCBENTRY 248, 511, 522
TCP/IP

port 102 109
temporary queue 179, 182
terminal ID 321
terminal identifier 539

communication partner 467
TERMINAL WAIT 409
terminal-specific long-term storage area 523
TERMWAIT 145
terr_id 184, 238
territorial identifier

locale 238
LTERM partner 368

TESTMODE 390
time to think

user 409
time-driven job

time of execution 387
timeout

connection setup (OSI TP) 559
opening of session (LU6.1) 559

timer
input from dialog partner 458, 531

TLS 47, 523
TLS block 523

define name 523
TNS mode

converting to KDCDEF 113
TPOOL 249, 524
TPOOL statement 131
TPSU-title 95
TRACE=YES 175
transaction code 589

data access control 504
define for partner application 356
define name 501
lock 509
lock code 504
remote application 356

transaction rate 55
transaction-oriented processing 281
transactions

default space requirements in restart area 51
transfer

RSA key to new KDCFILE 594, 595

Index

Generating Applications 699

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

user data 279
transfer message

number of attempts 382
transfer syntax 97

define 541
TRANSFER-SYNTAX 99, 251, 541
transport confirmation 394
transport connection 74, 92, 192

define 318
transport connection to LU6.1

changing dynamically 583
transport layer 94
transport protocol 462, 537
transport selector 285
transport system application 126, 464
travel reservation system

example generation 564
TRMSGLTH 130, 169, 170
trusted client 230, 458
TS application 126, 450

code conversion 150
multiple connection via LTERM pool 528

TSEL-FORMAT 129, 130
TSOS 175
TTY 465
tuning

KDCFILE 55
TYP 233
type

communication partner 463
communication partner for LTERM pool 537

type identifier of database system 233

U
UDS 328
UDS/SQL 232
UDTAC 290
UDTCCR 291
UDTDISAC 290
UDTSEC 291
ULS 47, 249, 542
underscore

in names 264
Unix platform 13

update
administrative data 52
KDCFILE 591
KDCFILE (UTM cluster application) 604

update generation
32-bit to 64-bit 603

UPIC client program
UPIC-L/UPIC-R 465

UPIC connection
signing off a user 494

UPIC-R 464
define openUTM client program 450

USAGE 128, 129, 167
LTERM bundle 137
LTERM group 140

USAGE=O 168
USER 179, 219, 221, 223, 249, 543

reserve table locations 475
user

maximum number 385
sign-on check 549

user data
current 47
encode for transfer 289
encrypted 228
transfer 97, 279

user data (KDCFILE) 29
user file

user locales 312
UTM cluster application 65

user ID 31, 142, 373, 590
define 543
lock 556
LTERM partner 372
password 549

user locales
taking over specifications into the cluster user

file 312
user log file

buffered records 47
define name 391
dual-file operation 411

user message modules 186
define 185, 417

Index

700 Generating Applications

define language environment 417
user name

database 328, 478
database system 478
for database 328

USER queue
queue level 553

USER queues 179
user services protocol 463, 537
USER-DEST number (user-specific message

destinations) 189
user-specific

language environment 239
SAT logging 556
start format 546

user-specific long-term storage area 542
user-specific message destinations 189
user-specific queues 179
USERFORM 342
userid 44
USP (UTM socket protocol) 149
utilization

control 130
UTM accounting, see accounting
UTM application

access to 450
define name 376
generate 30

UTM cache 48
UTM cluster application 11, 61

APT 99
checking the availability of nodes 307
cluster administration journal 632
cluster configuration file 65
cluster user file 65
communication retries 308
configuring 303
defining global properties 303
emergency command 309
failure command 311
generating 62
KDCDEF statements 67
KDCFILE 69
LU6.1-LPAP bundle 88

OSI-LPAP bundle 104
reply time 308
using global memory areas 70

UTM cluster files
generating 429

UTM database linking
generate 234

utm file directory/msgdescription 187
UTM host names 121
UTM messages

user-specific adaptation 184
UTM object

generate 32
reserve table location 585

UTM object tables 31
UTM page 48

define size 382
UTM SAT administration authorization

partner application (LU6.1) 353
partner application (OSI TP) 445
transaction code 508
user 550

UTM SAT administration TACs
generate 499

UTM socket protocol (USP) 149
UTM system process 400
UTM user ID, see user ID
UTM_NET_HOSTNAME 124
UTM-C.CPMD 66
UTM-C.CPnn 66
UTM-C.GSSB 66
UTM-C.ULS 67
UTM-D application

generate 74
utm-directory/sys/kcsmsgs.o 420
UTM-F application 379

administrative data 47
UTM-INFORMIX linking 233
UTM-ORACLE linking 233
UTM-S application 379

administrative data 47
UTMD 98, 99, 251, 557
utmhostname 123
utmnetm 120

Index

Generating Applications 701

D
ok

us
ch

a
bl

on
en

 1
9x

24
 V

e
rs

io
n

7.
4

de
 f

ür
 F

ra
m

e
M

ak
er

 V
7.

x
vo

m
 0

9
.0

2.
20

10
©

 c
og

ni
ta

s
G

m
b

H
 2

0
01

-2
0

10
20

.
Ja

nu
ar

y
20

1
5

 S
ta

nd
 1

7:
35

.0
0

P
fa

d
: P

:\F
T

S
-B

S
\o

pe
nS

E
A

S
\o

p
en

U
T

M
\o

p
en

U
T

M
V

6
.3

_
14

03
6

03
_G

e
n\

en
\g

en
_

e.
si

x

utmpfad 122

V
variant numbers 236
version change

with KDCUPD 592
version identifier

shared objects 490
version number 199

load module (BLS) 350
virtual host name

utmhostname 123
virtual host names

conversion file 122
UTM_NET_HOSTNAME 124

VTSU code 174
VTSU version 464
VTSU-B 236

W
waiting job

job receiver confirmation 559
waiting time

job receiver response (KDCDEF) 362
locked resource 404
maximum 145
multi-step transaction 409
PGWT 400
reading from service-controlled queues 183
reserve session 361

warm start
node application 314

warning level
cluster page pool utilization 313

warning level 1 398
WebAdmin 584
WinAdmin 584

message display 189
Windows system 13

X
XA 232, 328
XA interface 233, 478
xa_switch_t 478

xa_switch_t structure 233
XAPTP shared memory 99
XAPTP shared memory segment 411
XASWITCH 233
XATMI program unit

blocking calls 505, 516
TAC 497, 502

XATMIAC 291
XATMICCR 291
XHCS 238
XHCS definition of terms 236
XHCS support 235

Index

702 Generating Applications

	Contents
	Preface
	Summary of contents and target group
	Summary of contents of the openUTM documentation
	openUTM documentation
	Introduction and overview
	Programming
	Configuration
	Linking, starting and using UTM applications
	Administering applications and changing configurations dynamically
	Testing and diagnosing errors
	Creating openUTM clients
	Communicating with the IBM world
	PCMX documentation

	Documentation for the openSEAS product environment
	Integrating Java EE application servers and UTM applications
	Connecting to the web and application integration

	Readme files
	Information under BS2000 systems
	Additional product information
	Readme files under Unix systems
	Readme files under Windows systems
	Innovations in openUTM V6.3

	New server functions
	Additional UTM system processes for internal tasks
	Higher resolution for output of used CPU time
	New trace functions
	KDCDEF input/output via LMS library elements
	Performance enhancements
	Other changes

	Load simulation with "Workload Capture & Replay"
	New client function
	New and modified functions for openUTM WinAdmin
	New functions for openUTM WebAdmin
	Additional functions
	Support for new features in openUTM V6.3
	Integration in SE Server
	Notational conventions
	Metasyntax
	Other symbols

	Introduction to the generation procedure
	Figure 1: Structure of the UTM application program
	Configuring the UTM application
	Generating application components - result of the KDCDEF run
	Figure 2: The result of the KDCDEF run (with OPTION ...,GEN=ALL) for a standalone UTM application.
	KDCDEF statements for a minimal configuration
	Minimal configuration for BS2000 systems:
	Comments
	Minimal configuration for Unix systems, Windows systems
	Comments

	Regenerating existing UTM applications
	Figure 3: KDCDEF run with inverse KDCDEF

	The KDCFILE
	KDCDEF generation
	systems:
	Unix systems, Windows systems:

	Data security - dual-file operation of the KDCFILE
	systems:
	Unix systems:
	Windows systems:

	Administrative data
	Page pool
	Estimating the necessary size of the page pool
	Figure 4: Dual-file operation of changed areas in the page pool

	Page pool overflow warning

	Restart area
	Setting the length parameter
	Setting the number parameter

	Creating a new KDCFILE during operation
	systems:
	Unix systems, Windows systems:
	Performance aspects - tuning

	Splitting the KDCFILE
	Generation notes
	File names
	Example

	KDCFILE on raw-device (Unix systems)
	Estimating the size of the required disk partition
	Creating the raw special file
	Writing the KDCFILE to the special file
	Dual-file operation

	KDCFILE on a stripe set in (Windows systems)

	Notes on generating a UTM cluster application
	Generating a UTM cluster application
	UTM cluster files
	Figure 5: The result of the KDCDEF run (with OPTION ...,GEN=(KDCFILE, ROOTSRC, CLUSTER)) for a UTM cluster application.
	Shared properties of the UTM cluster files
	Cluster configuration file
	Cluster user file
	Cluster page pool files
	Cluster GSSB file
	Cluster ULS file

	KDCDEF statements
	Initial KDCFILE
	Generating a reserve node application
	Using global memory areas
	GSSB and ULS
	TLS

	Using users with RESTART=YES
	Node-bound services
	Connection user IDs

	Special issues in BS2000 systems
	Special issues on Unix systems and Windows systems
	Special issues with LU6.1 connections

	Generating applications for distributed processing
	Generation when standalone UTM applications are to be linked to UTM cluster applications
	Distributed processing via the LU6.1 protocol
	Transport connections and SNA sessions
	Generation notes
	Figure 6: Two applications with several transport connections

	Procedure when generating LU6.1 connections
	Example
	Example
	Notes

	LU6.1-LPAP bundles
	MASTER-LU61-LPAP
	Figure 7: Example of an LU6.1-LPAP bundle
	Generating an LU6.1-LPAP bundle
	CONs of LPAPs belonging to an LU6.1-LPAP bundle
	Distribution of messages
	Display in the KB header

	LU6.1-LPAP bundles of a standalone application with a UTM cluster application
	Example:
	Distributed processing via the OSI TP protocol

	OSI terms
	system name (system address) **
	Figure 8: Addresses of the service access points in the OSI reference model
	Application entity title (AET)
	Application process title (APT)
	Application entity qualifier (AEQ)

	Application context

	Generation procedure for distributed processing based on OSI TP
	Figure 9: Coordination during the generation of OSI TP applications

	OSI-LPAP bundles
	MASTER-OSI-LPAP
	Figure 10: Example of a OSI-LPAP bundle
	Generating OSI-LPAP bundles
	OSI-CONs of LPAPs in an OSI-LPAP bundle
	Distributing messages
	Information displayed in the KB header
	Coordinating the UTM and BCAM generations (BS2000 systems)
	Providing address information for the CMX transport system (Unix systems and Windows systems)
	Port number 102 for TCP/IP connections

	Providing address information with KDCDEF
	OSI TP connection
	connection
	PTYPE=APPLI connection
	PTYPE=UPIC-R connection

	Converting address information from TNS entries to KDCDEF
	connection
	Before conversion
	After conversion
	In order to be able to determine the IP address of the partner computer, the name CENTRAL2 must be known to the DNS.

	connection using symbolic names
	Before conversion
	After conversion

	Providing address information for the SOCKET transport system (Unix systems and Windows systems)
	PTYPE=SOCKET connection

	Single- and multi-threaded network access (Unix systems and Windows systems)
	Use of multi-threaded and single-threaded net processes
	Multi-threaded network process with CMX and socket connections
	Single-threaded network processes (for CMX connections on Unix systems only)

	Using mapped host names (Unix systems and Window systems)
	Generation
	Runtime

	Conversion file for mapped host names
	File name
	File format

	UTM_NET_HOSTNAME environment variable

	Generating selected objects and functions of the application
	Connecting clients to the application
	Connecting clients via LTERM partners
	LTERM pools
	Assignment of client when connecting via an LTERM pool

	LTERM bundle
	LTERM master
	Figure 11: Example of a LTERM bundle
	FPUT/DPUT calls
	Information displayed in the KB header

	LTERM groups
	Primary LTERM
	Figure 12: Example of a LTERM group

	Master LTERM
	Figure 13: Example of a LTERM group in conjunction with a LTERM bundle
	FPUT/DPUT calls
	Information displayed in the KB header

	Connecting OpenCPIC clients
	Generation

	Defining the client sign-on services
	Signing on to a UTM application
	Establishing an automatic connection
	Automatic sign-on under a specific user ID
	Generating sign-on services for clients
	Multiple sign-ons

	Specifying maximum waiting times for dialog prompting
	Generating security functions
	Defining system access control
	Assigning administration authorizations

	Generating a restart
	Restart function for real user IDs
	Restart function for connection user IDs

	USP headers for output messages to socket connections
	Code conversion
	Providing address information
	Port number 102 for TCP/IP connections
	Providing the address information for clients of type SOCKET
	KDCDEF generation
	Example

	Providing address information for clients of type UPIC and APPLI in BS2000 systems
	KDCDEF generation
	Coordination with the BCAM generation

	Providing address information for clients of type UPIC and APPLI in Unix systems and Windows systems
	KDCDEF generation for RFC1006
	Example

	Additional information for LTERM pools in Unix systems and Windows systems
	Providing address information for OpenCPIC clients in BS2000 systems
	KDCDEF generation
	Coordination with the BCAM generation

	Providing address information for OpenCPIC clients in Unix systems and Windows systems
	KDCDEF generation for RFC1006

	Examples of the generation of a client/server cluster
	Example 1: Connecting a UPIC client to openUTM under BS2000 systems
	Example 2: Connecting an UPIC client to openUTM under Unix system
	Example 3: Connecting an OpenCPIC client
	Generating printers (on BS2000 systems and Unix systems)

	Generating RSO printers (BS2000 systems)
	Entries for the KDCDEF generation
	Entries for RSO and SPOOL
	Device definition
	Sample device entry
	Defining the RSO buffer size
	VTSU codes

	Activating printers for openUTM
	Querying printer information
	Printer information in openUTM
	Printer information in RSO

	Releasing printers in the event of an error

	Generating printer pools
	Bypass mode (BS2000 systems)
	Generating printer control LTERMs
	Figure 14: Configuring a printer control LTERM and the associated printers
	Generating service-controlled queues

	USER queues
	TAC queues
	Temporary queues
	Specifying the maximum waiting time for reading from service-controlled queues
	Limiting the maximum number of redeliveries to service-controlled queues
	UTM messages

	Messages in openUTM under BS2000 systems
	Application message module and user message modules

	Messages in openUTM under Unix systems and Windows systems
	Unix systems
	Windows systems
	Unix systems
	Windows system

	User-specific message destinations
	Message distribution and multiplexing with OMNIS (BS2000 systems)
	Figure 15: Message distribution and multiplexing with OMNIS

	Multiplex connections
	Figure 16: Transport connections and sessions when multiplexing
	Defining multiplex connections
	Confirming the connection shutdown by the partner

	Statistics on multiplex connections
	Combination of multiplex connections and direct connections
	Figure 17: Combination of multiplex and direct connections
	Generating load modules, common memory pools and shared code (BS2000 systems)

	Generating load modules
	Generating shared code and common memory pools
	Shared code in system memory
	Example

	Shared code in common memory pools
	Generating shareable objects that are to be loaded in a common memory pool
	Example

	Job control - priorities and process limitations
	Dividing the transaction codes into TAC classes
	Which jobs are subject to job control?
	Distribution of resources amongst dialog, asynchronous and PGWT processing
	Default setting

	Job processing via priority control
	Reserving processes for dialog jobs outside of the TAC classes
	Example

	Job processing via process limitation for TAC classes control
	Comparison of some of the properties of the two methods
	Program units with blocking calls
	Temporarily stopping the execution of certain asynchronous jobs
	Change of process when processing jobs
	Change of process for asynchronous services

	Process priorities in BS2000 systems
	Data access control

	Lock/key code concept
	Access list concept
	Data access control for service-controlled queues using access lists

	Data access control with distributed processing
	Protection methods for job-submitting services
	Protection measures for job-receiving services
	Message encryption on connections to clients

	Requirements
	Connecting a server application to a UPIC client
	Connecting a server application to a terminal emulation (BS2000 systems)

	Encryption methods
	AES and DES methods
	RSA methods
	Encryption methods for BS2000 terminal emulations

	Encrypting passwords and user data
	System access control
	Data access control
	Information for encryption on the KDCS program interface

	Creating the RSA key pair and reading the public key
	Defining database linking

	Linking databases under BS2000 systems
	Linking to a Resource Manager under Unix systems and Windows systems
	Linking with Oracle
	Linking with INFORMIX
	Internationalizing the application – XHCS support (BS2000 systems)

	Definitions of XHCS terms
	ISO character sets, variant numbers
	EBCDIC character sets
	Compatible character sets
	Reference code
	Coded character set name (CCS name)
	Default system code
	Default user character set

	Defining the language environment – setting the locale
	Application-specific language environment – standard-language environment
	User-specific language environment
	LTERM partner-specific language environment
	Example

	Character set names for edit profiles and formats
	Querying the language environment in a UTM program unit
	Character sets for editing messages
	Message in line mode without edit profile and messages created by event EXIT FORMAT
	Message in line mode with edit profiles
	Message in format mode
	Generating system access control using Kerberos (BS2000 systems)

	The KDCDEF generation tool
	Creating the ROOT table source and KDCFILE
	Statements for controlling the KDCDEF run
	Statements for creating the ROOT table source
	Basic statements for creating a KDCFILE
	Creating the KDCFILE - additional statements for distributed processing via LU6.1
	Creating the KDCFILE - additional statements for distributed processing via OSI TP
	Generating KDCFILE and UTM cluster files - additional statements for UTM cluster applications

	Effects of the KDCDEF statements on the generation objects

	Calling KDCDEF and entering the control statements
	Starting KDCDEF and executing a KDCDEF run
	BS2000 systems
	Unix systems
	Windows systems

	Order of the control statements
	Format of the control statements
	Continuation lines in control statements
	Syntax and plausibility checks
	KDCDEF logging
	Format and uniqueness of object names
	Reserved names
	Format of names
	Number of names
	Uniqueness of names and addresses

	Result of the KDCDEF run

	Inverse KDCDEF
	Starting inverse KDCDEF
	Result of inverse KDCDEF
	Creating KDCDEF control statements in upgrades

	Recommendations when regenerating an application
	KDCDEF control statements
	ABSTRACT-SYNTAX - define the abstract syntax
	ACCESS-POINT - create an OSI TP access point
	ACCOUNT - define the accounting functions
	APPLICATION-CONTEXT - define the application context
	AREA - define additional data areas
	BCAMAPPL - define additional application names
	CLUSTER – Define global properties of a UTM cluster application
	CLUSTER-NODE – Define a node application of a UTM cluster application
	CON - define a connection for distributed processing based on LU6.1
	CREATE-CONTROL-STATEMENTS - Create KDCDEF control statements
	DATABASE - define the database system (BS2000 systems)
	DEFAULT - define default values (BS2000 systems)
	EDIT - define edit options (BS2000 systems)
	EJECT - initiate a page feed in the log
	END - terminate KDCDEF input
	EXIT - define event exits
	FORMSYS - define the format handling system
	KSET - define a key set
	LOAD-MODULE - define a load module (BLS, BS2000 systems)
	LPAP - define an LPAP partner for distributed processing based on LU6.1
	LSES - define a session name for distributed processing based on LU6.1
	LTAC - define a transaction code for the partner application
	LTERM - define an LTERM partner for a client or printer
	MASTER-LU61-LPAP – Define the master LPAP of an LU6.1-LPAP bundle
	MASTER-OSI-LPAP - Defining the master LPAP of an OSI-LPAP bundle
	MAX - define UTM application parameters
	MESSAGE - define a UTM message module
	MPOOL - define a common memory pool (BS2000 systems)
	MSG-DEST - define user-specific messages destinations
	MUX - define a multiplex connection (BS2000 systems)
	OPTION - manage the KDCDEF run
	OSI-CON - define a logical connection to an OSI TP partner
	OSI-LPAP - define an OSI-LPAP partner for distributed processing based on OSI TP
	PROGRAM - define a program unit
	PTERM - define the properties of a client/printer and assign an LTERM partner
	QUEUE - reserve table entries for temporary messages queues
	REMARK - insert a comment line
	RESERVE - reserve table locations for UTM objects
	RMXA - define a name for an XA (database) connection (Unix systems, Windows systems)
	ROOT - define a name for the ROOT table source
	SATSEL - define SAT logging (BS2000 systems)
	SESCHA - define session characteristics for distributed processing based on LU6.1
	SFUNC - define function keys
	SHARED-OBJECT - define shared objects/DLLs (Unix systems, Windows systems)
	SIGNON - control the sign-on procedure
	TAC - define the properties of transaction codes and TAC queues
	TACCLASS - define the number of processes for a TAC class
	TAC-PRIORITIES - specify priorities of the TAC classes
	TCBENTRY - define a group of TCB entries (BS2000 systems)
	TLS - define a name for a TLS block
	TPOOL - define an LTERM pool
	TRANSFER-SYNTAX - define the transfer syntax
	ULS - define a name for a ULS block
	USER - define a user ID
	UTMD - application parameters for distributed processing

	Dialog control - effects of generation parameters
	Example generation: ComfoTRAVEL
	KDCDEF input file DYNAMIC.RMS for UTM-D application RMS
	KDCDEF statements for UTM-D application RMS
	KDCDEF input file DynamicTravel for UTM application TRAVEL
	KDCDEF statements for UTM application TRAVEL

	KDCDEF messages

	Changing the configuration of an application dynamically
	Reserving locations in the KDCFILE object tables
	Examples

	Prerequisites for entering objects dynamically
	Generating lock codes, BCAMAPPL names, formatting system and LPAP partners
	Prerequisites for program units and VORGANG exits
	Prerequisites for transaction codes
	Prerequisites for user IDs

	The tool KDCUPD – updating the KDCFILE
	Overview
	Supported upgrades
	Prerequisite for using KDCUPD
	Backing up data
	What data does KDCUPD transfer?
	Transfer in standalone applications
	Transfer in UTM cluster applications
	Cluster update
	Node update

	Changing generation parameters
	No transfer
	Limited transfer
	Examples

	Transfer of user data
	User data always transferred by KDCUPD
	User data which KDCUPD transfers optionally
	Data not transferred by KDCUPD

	Updating the KDCFILE for standalone UTM applications
	Steps
	Figure 20: Updating the KDCFILE
	systems:
	Unix systems, Windows systems:

	Update generation with transfer from 32-bit to 64-bit architecture
	Steps

	Updating the KDCFILE and UTM cluster files for UTM cluster applications

	Online update of a UTM cluster application
	KDCDEF run
	KDCUPD runs
	Explanation

	Update generation for a UTM cluster application
	KDCDEF run
	KDCUPD runs
	Explanation

	Converting a UTM cluster application
	Conversion from a standalone UTM application to a UTM cluster application
	KDCDEF run
	KDCUPD runs
	Explanation
	Explanation

	Converting a UTM cluster application from V6.0 to V6.3
	KDCDEF run
	KDCUPD runs
	Explanation
	Explanation

	Converting a UTM cluster application to a standalone UTM application
	KDCDEF run
	KDCUPD run
	Explanation
	Explanation

	Control statements for KDCUPD
	Example
	CATID - define Catid of the old and the new KDCFILE
	CHECK - check the consistency of the KDCFILE
	CLUSTER-FILEBASE - Specify the base names of the old and new UTM cluster files
	END - terminate input and start processing
	KDCFILE - specify the base name of the old and new KDCFILE
	LIST - control the runtime log
	TRANSFER - control the data transfer of the user data

	KDCUPD runtime log and messages
	Behavior in the event of errors
	Diagnostic documentation

	Glossary
	Abbreviations
	Related publications
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

